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Abstract 

 
Watershed export of nutrients, sediments, and chemicals impacts receiving waters. Changes 

within the watershed (e.g., anthropogenic or climatic) can alter the transport of constituents in 

streams. Stream monitoring is crucial for understanding these effects. This study developed a 

potential improvement to flow-adjusting constituent concentrations in streams, an important step 

of analyzing monitoring data in lotic systems for trends. The method incorporates a K-fold cross-

validation procedure to optimize a model explaining the relationship between the concentration 

and streamflow, thus providing a valuable tool to researchers in water quality. Additionally, two 

case studies were conducted on watersheds located in northwest Arkansas using monitoring data 

collected from 2009 to 2015. The first case study focused on phosphorus concentrations in the 

Illinois River watershed and illustrated significant decreases in soluble reactive phosphorus 

following reductions of effluent phosphorus from upstream wastewater treatment plants. 

However, no significant trends were found in total phosphorus at the most downstream site on 

the Illinois River, suggesting that there are legacy sources of phosphorus remaining in the 

watershed. The second case study focused on nitrogen and phosphorus in the three main inflows 

to Beaver Lake, where primary productivity will likely cause the lake to violate its water quality 

standard for chlorophyll-a concentration. Data collected at two sites in Beaver Lake showed 

elevated chlorophyll-a concentrations and one site near Lowell, Arkansas, the location of a major 

drinking water supply intake, showed increasing trends from 2001 to 2015 for total nitrogen as 

well as chlorophyll-a. Monitoring data of the inflows illustrated the variability in hydrological 

and climatic factors (e.g., drought), which affects nutrient delivery to Beaver Lake. Long-term 

monitoring of streams in both watersheds will be crucial for understanding the processes that 

affect water quality and will better inform watershed management. 
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Introduction 

Stream water quality is a valuable resource and multiple programs, agencies, and others seek to 

protect or improve water quality. For example, section 319 of the Clean Water Act established 

state programs to manage nonpoint source (NPS) pollution in navigable waters. In order to assess 

any impact that these programs have on water quality, monitoring programs are required. 

Monitoring can not only inform us of what the current conditions are, but give an idea of the 

dynamics at play within the watershed (e.g., seasonality, changes following an event in the 

watershed, etc.). One of the tools that can be used with stream monitoring data is trend analysis 

(Hirsch et al., 1991). 

Trend analysis finds changes in concentrations of a constituent of interest, where the 

manifestation of this change over time can be monotonic (i.e., only increasing or only decreasing 

with time). To detect monotonic trends, exogenous variables in the data will need to be 

accounted for (e.g., seasonality and streamflow). Often, streamflow (Q) contributes the largest 

portion of variation in concentrations (Helsel and Hirsch, 2002). For example, phosphorus 

concentrations in the Illinois River in northwest Arkansas decreased with increased base flow, 

illustrating dilution of point sources, but then increased with increased runoff during storm 

events (Green and Haggard, 2001). 

One method for modelling this relationship between the concentration and Q (termed as flow-

adjustment) employs locally weighted regression (LOESS; Cleveland, 1979). The residuals from 

a LOESS fit to the data, referred to as flow-adjusted concentrations (FACs), can then be plotted 

against time to detect trends (Helsel and Hirsch, 2002; Bekele and McFarland, 2004). However, 

studies using this technique have often used default settings on LOESS, primarily its smoothing 

parameter (f), in order to flow-adjust concentrations (e.g., Bekele and McFarland, 2004; White et 
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al., 2004). The first chapter of this thesis focused on developing a method to statistically 

optimize f, so that LOESS has the smoothest possible fit to the data while still capturing the 

important characteristics of the relationship (Jacoby, 2000).  

In addition to developing a potential improvement to trend analysis methods, this thesis 

conducted two case studies using monitoring data from northwest Arkansas where two priority 

watersheds are located: the Illinois River Watershed (IRW) and the Upper White River Basin 

(UWRB). Both the IRW and UWRB have been targeted for nutrient management, where 

nitrogen (N) and phosphorus (P) concentrations are a primary concern. Trend analysis was 

employed in both studies to relate events in the watershed (nutrient management, changes in 

climate, etc.) to possible changes in stream water quality. 

The IRW, a trans-boundary watershed in Arkansas and Oklahoma, has been the focus of nutrient 

management due to lawsuits, watershed planning, total maximum daily loads (TMDLs) 

implementation, and other activities. Primarily, P is the constituent of concern, and multiple 

sources have been targeted. A major NPS source of P is land-applied poultry litter, which has 

seen improvements in management over the past decade (e.g., Sharpley et al., 2003). 

Additionally, wastewater treatment plants (WWTPs) in the IRW have made significant 

reductions in effluent P concentrations, which has resulted in decreases of stream P (Haggard, 

2010; Scott et al., 2011). The second chapter of this thesis examined P concentrations in the IRW 

from 2009 to 2015 in order to determine whether P concentrations have continued to decrease.  

The UWRB contains Beaver Lake, a primary drinking water source for northwest Arkansas. 

Recently, a standard for chlorophyll-a has been implemented at Beaver Lake in order to protect 

the lake’s uses from excess algal growth (Scott and Haggard, 2015). However, it is likely that 
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Beaver Lake will violate this standard (Scott and Haggard, 2015), thus making UWRB a 

potential focus for nutrient loadings. The third chapter of this thesis examined the inflows to 

Beaver Lake from 2009 to 2015 for both N and P using trend analysis methods. Additionally, 

lake data (chlorophyll-a, N and P) from two sites on Beaver Lake were analyzed to relate 

changes in stream water quality to conditions in the lake.  
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I. An Optimized Procedure for Flow-adjustment of Constituent Concentrations for Trend 

Analysis 

 

Abstract 

Trend analysis of stream constituent concentrations requires adjustment for exogenous variables 

like discharge, because concentrations often have variable relations with flow. Trend analyses in 

stream water quality studies normally require an accurate characterization of the relationship 

between the constituent and streamflow. One popular method, locally weighted regression 

(LOESS), provides an effective means for flow-adjusting concentrations. However, the 

smoothing parameter (f), which exerts the most control over the LOESS fit, needs to be selected 

for each dataset analyzed to avoid over-fitting or over-smoothing the data. This study provides a 

robust method for determining the optimal f value (fopt) for each dataset via a K-fold cross-

validation procedure that minimizes prediction error in LOESS. The method is developed by 

analyzing datasets of 7 different constituents across 17 sites from a stream monitoring program 

in northwest Arkansas (USA). We recommend using 10 iterations of 10 fold cross-validation (10 

x 10 CV) in order to select fopt when flow-adjusting water quality data with LOESS.  

Introduction 

Nonpoint source (NPS) pollution is one of the greatest challenges to water quality. To mitigate 

the problem, section 319 of the Clean Water Act has established state programs to manage NPS 

pollution in navigable waters. A critical part of assessing the effect of these programs is 

monitoring, where monitoring programs seek to answer this question, ‘Is water quality getting 

better or worse?’ A decreasing pollutant concentration within a stream could reflect the 

implementation of best management practices on the landscape (e.g., Miltner, 2015) or a 
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reduction in point sources (e.g., Haggard, 2010; Scott et al., 2011). On the contrary, an 

increasing concentration may reflect poor land management in the watershed (Carpenter et al., 

1998) or increased erosion risk due to change of land use (Leh et al., 2011). The manifestation of 

this change in concentrations can be monotonic, where the change over time is continuous and 

does not reverse (Hirsch et al., 1991). 

To detect these monotonic trends, similar to other water quality data analyses like load 

estimation, multiple years of data are needed (Harmel et al., 2006). This time period introduces 

variation in concentrations due to exogenous variables (e.g., hydrologic and climatic variability) 

which have to be accounted for in order to clearly see how concentrations are changing with 

time. Often, streamflow (Q) contributes the largest portion of variation in concentrations, 

especially for nutrients and suspended sediment (Helsel and Hirsch, 2002; Lettenmaier et al., 

1991). Streamflow can affect concentrations through dilution (i.e., concentration is reduced with 

increasing Q) or through runoff (i.e., overland flow delivers more of the constituent to the stream 

during rain events). This relationship varies and some stream constituent concentrations can even 

show a combination of both relationships, where there could be an initial dilution of a 

concentration with increasing baseflow followed by an increase in concentration due to runoff 

contributing a greater amount of flow and carrying more particulate matter. For example, 

phosphorus concentrations in the Illinois River in northwest Arkansas decreased as base flow 

increased, illustrating dilution of point sources, but then concentrations were greater with 

increased runoff during storm events (Green and Haggard, 2001). Contrarily, nitrate 

concentrations increased with baseflow, likely due to increased groundwater input, but decreased 

with surface runoff. The relationship between a constituent concentration and Q will depend on 

the stream characteristics, the constituent being modelled, and possible sources of the 



7 

constituent. Thus, multiple methods, both parametric and non-parametric, have been used to 

adjust concentrations per a given site for exogenous influences in trend analysis (Helsel and 

Hirsch, 2002; Hirsch et al., 1982). 

One method for flow adjustment, which has gained some popularity in the past decade, employs 

locally weighted regression (LOESS) to adjust concentrations for Q. The residuals from LOESS, 

or flow-adjusted concentrations (FACs), can then be plotted against time to detect trends (Bekele 

and McFarland, 2004; Helsel and Hirsch, 2002; White et al., 2004). LOESS can model unknown, 

even nonlinear, relationships that would otherwise be difficult and sometimes inappropriate for 

parametric methods (Cleveland, 1979; Jacoby, 2000). LOESS does not make assumptions about 

the data like parametric methods, so it is useful for adjusting concentrations for flow where the 

relationship does not necessarily fit a specific theoretical model. But, the smoothing factor (f) 

must be taken into account for the LOESS regression. The smoothing factor, where 0<f≤1, can 

increase smoothness with greater f values or follow the variation more closely with lower f 

values. A past study concluded that, in general, f=0.5 is acceptable for flow-adjustment with 

LOESS (Bekele and McFarland, 2004). Subsequent studies on trends of several kinds of 

constituent concentrations at widely varying locations have defaulted to this value in their 

analyses (e.g., Bekele et al., 2006; Boeder and Chang, 2008; Scott et al., 2011; Wang et al., 

2007). 

Contrarily, the optimal f ought to be selected for each individual dataset (Cleveland, 1979; Helsel 

and Hirsch, 2002). The ideal f will produce the smoothest possible regression while still 

capturing the important curvilinear behavior of the data. Thus, the FACs will better reflect 

concentrations that are accurately normalized or adjusted for Q. In essence, error from the 

LOESS regression due to lack of fit should be minimized while predictive power of the 



8 

regression technique should be maximized. Optimizing LOESS by changing f has been a time-

consuming, tedious, and sometimes subjective process in the past, where f was manually changed 

in an iterative manner until the regression was deemed a good fit for the data (e.g., Trexler and 

Travis, 1993). The use of automated procedures to select an optimal f is particularly valuable for 

studies with numerous datasets (e.g., Lettenmaier et al., 1991). Some procedures have calculated 

the prediction sum of squares (PRESS; Allen, 1974) to find the optimal f value for each analysis 

(Cleveland, 1979; Lettenmaier et al., 1991). Alternatively, minimizing the bias-corrected Akaike 

Information Criterion (AICc) has been used for selecting f (Bekele and McFarland, 2004).  

Recent innovations in software have allowed for more complex and powerful methods of 

analyzing data, which can be extended to the task of optimizing a LOESS fit (e.g., Lee and Cox, 

2010). Here, we propose an automated LOESS optimization procedure for trend analysis of 

water quality data that uses the “loess.wrapper” function from the “bisoreg” package (Curtis, 

2015) in the statistical program R (R Core Team, 2015). This method involves optimizing f 

through an iterative random K-fold cross-validation process (Kohavi, 1995), thus removing a 

degree of subjectivity from the flow-adjustment procedure. The objective of this study is to first 

develop an optimized procedure for flow-adjustment of concentrations for trend analysis. Next, 

we evaluate monotonic changes in constituent concentrations that have been flow-adjusted using 

LOESS with the default f=0.5 (sensu White et al., 2004) and with a statistically optimized f. This 

paper will determine whether f optimization makes a difference in the interpretation of trend 

results and provide guidance for trend analysis using LOESS to flow-adjust concentrations. 
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Materials and Methods 

Data Set 

The water quality data used in this study comes from a monitoring program conducted on two 

basins in northwest Arkansas, the Upper White River Basin (UWRB) and the Illinois River 

Watershed (IRW), covering 17 sites. Water samples were collected on a near-weekly basis under 

base flow conditions and during storm events from July 2009 to June 2015 following quality 

assurance project plans (QAPPs) approved by the Arkansas Natural Resources Commission 

(ANRC) and Environmental Protection Agency (EPA). The monitoring sites were located at U.S. 

Geological Survey (USGS) discharge monitoring stations where mean daily Q was available via 

the National Water Information System (NWIS; http://waterdata.usgs.gov/nwis) or at stations 

where the Arkansas Water Resources Center (AWRC) monitors stage continuously to develop a 

stage-Q rating curve for predicting mean daily Q. The monitored streams vary from small creeks 

and urban tributaries to large, 5th and 6th order rivers (see Scott et al., 2015). Water samples 

were analyzed by the AWRC water quality lab (http://arkansas-water-

center.uark.edu/waterqualitylab.php) according to standard analytical methods following the 

QAPP (Scott et al., 2015). The analyzed constituents were: nitrate-nitrogen (NO3-N), total 

nitrogen (TN), soluble reactive phosphorus (SRP), total phosphorus (TP), total suspended solids 

(TSS), chloride (Cl), and sulfate (SO4). Thus, there are 119 individual datasets used in the 

present study. More information about the monitoring sites and analytical methods is available in 

Scott et al. (2015), which is readily accessible in the AWRC’s digital library (see http://arkansas-

water-center.uark.edu/publications/msc.php). 
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General Flow-adjustment Procedure 

White et al. (2004) used a three-step trend analysis procedure for water quality data characterized 

by covariation with Q. First, concentrations and Q were log-transformed to reduce the effect of 

outliers and produce relatively constant variance in the data (Helsel and Hirsch, 2002; 

Lettenmaier et al., 1991). Second, the constituent log-concentrations were flow-adjusted via a 

LOESS fit using f=0.5. Third, the residuals from the LOESS fit, also termed flow-adjusted 

concentrations (FACs), were analyzed for trends through time. The test for trends can be either 

parametric (i.e., simple linear regression) or nonparametric, such as a Mann-Kendall or even 

Seasonal Kendall test (Helsel and Hirsch, 2002). Figure 1 shows this three step process for TSS 

concentrations at War Eagle Creek using linear regression to determine whether FACs were 

changing over time. 

Optimizing LOESS 

The smoothing parameter for LOESS, f, indexes models from nearly a simple linear regression (f 

= 1) to approximately an nth-order polynomial at low values (Jacoby, 2000). Overfitting the 

model can lead to unwanted variance, or “wiggle”, in the fit while underfitting can create a 

biased model that fails to capture the important variance in the data. This concept, known as the 

bias-variance tradeoff, is well-known in the field of machine learning where the true relationship 

being modelled must be inferred from the data (Hastie et al., 2009). Characterizing the bias-

variance tradeoff requires an estimate of prediction error since the true prediction error for some 

model cannot be known. Estimates of model prediction error can help identify an ideal amount of 

model complexity, balancing bias and variance. When estimating prediction error, using all the 

available data is not appropriate since increasing model complexity can only improve model 

performance. In order to make sure a model generalizes well (i.e., minimizes prediction error), 
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validation methods can be used to estimate prediction error for a given model (Hastie et al., 

2009). 

Cross-validation 

To estimate prediction error, several model validation techniques can be employed (e.g., Moriasi 

et al., 2012). One robust method is K-fold cross-validation (Kohavi, 1995). K-fold cross-

validation (k-fold CV) randomly partitions data into K number of subsets (folds), fits a model to 

K-1 of the folds, and uses the fold that was left out as the test set. This is repeated for each fold 

so that each observation is used for validation exactly one time while being used for training the 

model K-1 times. In the case where prediction mean squared error (MSE) is being estimated for a 

given f, the CV procedure is given by: 

 

����� , �	 = 1
� 
 ����, �� ����	���, �		

�

���
 (1) 

where ��  is the fitted LOESS function with the given f parameter, N is the number of 

observations, yi is the ith observed value, k is an indexing vector {1,…K} that randomly 

partitions the observations,  xi is the ith predictor variable and L is the squared error loss function 

given by: 

 ���, ���	� = �� − ���		� (2) 

The smoothing parameter is tuned so that the estimated MSE from equation (1) is minimized. In 

our study, we compared a sequence of f values from 0.1 to 1 indexed by a value of 0.05. 

Lettenmaier et al. (1991) used the PRESS statistic (Allen, 1974) as a method to determine an 

optimal f which is actually K-fold CV with K equal to N (also known as leave-one-out CV). 

However, Kohavi (1995) points out that too large of a K, such as in leave-one-out CV, results in 
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poor estimations of prediction error due to high variance (i.e., largely dependent on the sample) 

of the error estimation. Contrarily, too small of a K (e.g., 2-fold CV) can be a pessimistic, or 

biased, estimation of prediction error. 

Since K-fold CV can never perform perfectly no matter the choice of K (Bengio and Grandvalet, 

2004), heuristic rules on how to apply K-fold CV are developed for different applications such as 

a 5 x 2 CV test (5 iterations of 2-fold CV t-test) in the context of classification learning 

algorithms (Dietterich, 1998). In the present study, we compare the variability in choice of f that 

minimizes the prediction error estimated by K-fold CV from K = 5 to K = 45 with the statistics 

environment R (R Core Team, 2015). The ‘loess.wrapper’ function from the bisoreg package 

(Curtis, 2015; CRAN: bisoreg) effectively incorporates K-fold CV with fitting LOESS models 

and was modified as needed to generate additional output (e.g., MSE estimates). All 7 

constituents at one study site, West Fork of the White River, were analyzed via the flow-

adjustment procedure to find the optimized f (fopt ; the median value of the K-fold CV selections) 

for each value of K for 1000 iterations. This information was used to guide our selection of K. 

An appropriate number of iterations of K-fold CV were needed to consistently select fopt. Here, 

we seek to use a minimal number of iterations to minimize computation costs. To compare the 

number of iterations of K-fold CV necessary to select the median f opt in a consistent manner, we 

conducted the flow-adjustment procedure with a relatively small value of K for an arbitrary small 

number of iterations and for 1000 iterations for all 119 datasets. We plotted the fopt selected for K 

= 10 with iterations of 10 and 1000 to evaluate apparent differences relative to the 1:1 line across 

streams and constituents.  
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The last step in developing our heuristic K-fold CV flow-adjustment procedure was to 

recommend a final K. The choice of K was analyzed by comparing variability in fopt with our 

selection of K and a relatively large value of K = 35. For this simulation, the flow-adjustment 

procedure with both values of K was conducted for all 119 datasets for only 10 iterations. These 

selected fopt were plotted against each other to observe differences relative to the 1:1 line. 

Trend Comparisons 

We used the three step process to evaluate monotonic trends in constituent concentrations, where 

flow-adjustment was performed using the standard f=0.5 (f0.5) and fopt using our rule for K-fold 

CV; this approach was used on all 119 datasets. The monotonic trends were evaluated using 

simple linear regression on the plot of FACs over time, providing an estimate of the trend 

magnitude (interpreted as percent change per year in constituent concentration; % change year-1) 

as well as significance behind the trend from the overall F-test (Helsel and Hirsch, 2002). The 

equation for determining % change year-1 is given by: 

 % �ℎ�� ! �!�"�� =  �!# − 1	 × 100 (3) 

where m is the linear regression slope with the necessary time unit conversions. 

All values of % change year-1 in constituent concentrations deemed significant at α=0.10 were 

compared between flow-adjustment procedures using f0.5 and fopt. It must be noted here that we 

assume that trends in the water quality data are monotonic and that the stream systems exhibit 

stationarity, such that we can determine whether optimizing f has an influence on trend 

interpretation across these sites and constituents (n=119 datasets). 
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Results and Discussion 

Developing a heuristic K-fold CV rule for trend analysis 

The simulation of the K-fold CV procedure for flow-adjustment at West Fork of the White River 

showed variability with fopt (Figure 2), providing two key observations. First, the choice of fopt 

varies depending on which constituent is being analyzed at this site. NO3, TN, SRP and Cl 

concentrations were better characterized with relatively larger values for f (f > 0.6) while TP and 

TSS concentrations were fit better with a smaller f value (f < 0.3). The median fopt was not 0.5 

with an increasing value of K and 1000 iterations for this site across these constituents. Second, 

selection variability tends to be reduced after K=10 across most of these constituents resulting in 

a similar median fopt for a given constituent with increasing K. This reduced variability in fopt 

agrees with observations on the performance of K-fold CV in other settings (Arlot and Lerasle, 

2015; Kohavi, 1995). In a theoretical approach, Arlot and Lerasle (2015) evaluated the choice of 

K (notated as V in their paper) in a least-squares density estimation application and showed that 

the error estimation with a small K is improved greatly when K is increased to K=5 or 10, but 

improvements diminish quickly with greater K values.  Kohavi (1995) used multiple well-known 

datasets (e.g., Fisher’s iris dataset) to illustrate the performance of classification algorithms in 

terms of accuracy estimated via K-fold CV. Kohavi (1995) noted that the choice of K affects the 

stability of the learning algorithm with small values (e.g., K=2) generating pessimistically biased 

error estimates, especially with small datasets, while larger K (K=20) can be more variable in 

estimating model prediction error. Given our empirical study of K-fold CV at West Fork of the 

White River and the insight from statistical literature, we opted to further analyze the 

performance of K=10. 
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Since the K-fold CV procedure has inherent randomness due to the fold partitioning procedure, 

multiple iterations can be helpful to account for the variability in the error estimate of K-fold CV 

(Kohavi, 1995). To compare the effect that the number of iterations has on the consistency of the 

CV procedure with K=10, the selected fopt for 10 x 10 CV (10 iterations of 10-fold CV) and for 

1000 x 10 CV for all datasets are shown in Figure 3. Generally, the selected fopt values follow a 

1:1 relationship, where most fopt values for 10 and 1000 iterations were within ±0.1. The 

exception, which deviated the most, was the flow-adjustment of Cl concentrations at the Kings 

River, where the median fopt varied from 0.35 with 1000 iterations to 0.875 with 10 iterations.  

The comparison in the selected fopt for 10 and 35 folds with 10 iterations for all datasets is shown 

in Figure 4. The two choices of K show a good amount of agreement on selecting fopt with the 

majority of points differing in choice of fopt by less than ±0.1. Only a few cases resulted in 

widely different values for fopt. For example, the largest differences in observed median fopt were 

Cl concentrations at Kings River (0.3 for K=35 folds, 0.875 for K=10 folds), Cl concentrations at 

WR45 (0.2 for K=35 folds, 0.775 for K=10 folds), and TSS concentrations at Spring Creek (0.1 

for K=35 folds, 0.725 for K=10 folds). 

The points that deviate the most from the 1:1 line in figures 3 and 4 are the result of selecting fopt 

to minimize for very small differences in MSE of the LOESS fit. For example, Figure 5 shows 

the test error relationship with choice of f for each constituent at the Kings River using 10 x 10 

CV as well as the conceptual test/training error relationship in machine learning applications 

described by Hastie et al. (2009) for comparison. In the Cl subplot (Figure 5), the estimated MSE 

is near its minimum for f=0.3 as well as f=0.85. In this case, the discrepancy in the LOESS fit 

due to choice of either f is negligible. Thus, the choice of fopt given by 10 x 10 CV performs well 

in minimizing prediction error for the present application. 
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We prefer to use the lesser value of K=10 in order to cut computation costs, reduce the risk of 

employing a potentially variable (i.e., dependent on the specific sample data being used) 

estimation of prediction error via a larger K (Kohavi, 1995), and to avoid the statistical issue of 

correlated training sets (Dietterich, 1998). K values ranging from 5 to 10 are often used in 

statistical learning frameworks including hydrological studies such as evaluating model 

performance when predicting groundwater NO3 concentrations (10-fold CV; Nolan et al., 2015); 

selecting kernel function parameters for modelling flood-prone areas of Malaysia (5-fold CV; 

Tehrany et al., 2014) and for predicting streamflow (5-fold CV; He et al., 2014); and evaluating 

regression tree models for reservoir algal growth responses to physical and nutrient content 

variables (10-fold CV; Park et al., 2015). Our empirical analysis further supports the use of K=10 

for cross-validating various hydrological models, including flow-adjusting concentrations for 

trend analysis. 

It is interesting to note that the error relationships given in Figure 5 generally reflect the pattern 

of the test error shown in the conceptual figure (see top left plot). However, the shape of this 

relationship is different for not only each constituent dataset at the Kings River, but is unique to 

each dataset at all sites in our study. This can be related to the study site, the constituent being 

analyzed, or even the number of observations in the dataset (e.g., Warrick et al., 2013). When 

flow-adjusting suspended sediment concentrations from six sites in California using the general 

procedure described above, Warrick et al. (2013) selected f manually so that LOESS followed 

the curvature in the data. Warrick et al. (2013) noted that smaller datasets benefitted from 

relatively larger f values and vice versa for larger datasets, although their choice of f only ranged 

from 0.1 to 0.2.  In comparison, the fopt values in this study varied from 0.25 to 0.9 for TSS 

(analogous to suspended sediment concentrations), and from 0.1 to 1.0 across all constituents. 
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Applying 10 x 10 CV rule for trend analysis 

With the selected 10 x 10 CV rule, all 119 datasets were flow-adjusted for trend analysis. Figure 

6 shows the distribution of selected fopt values across all datasets and for each constituent. 

Overall,  fopt spans the full range of possible f values examined and tends to occur most 

frequently near 0.6 with more extreme values (i.e., fopt = 0.1 or 1.0) occurring less frequently. On 

a constituent basis, the fopt selections showed near-uniform distributions for SRP and Cl (Figure 

6, subplots D and G, respectively) while selected fopt values in TP and SO4 (subplots E and H, 

respectively) resembled the overall distribution. For these datasets, there appears to be no pattern 

between the type of constituent (e.g., dissolved versus particulate forms) and the choice of f, 

reflecting a case-specific need for determining fopt. 

Given the tendency of most datasets in our analysis to have a mid-range fopt (Figure 6), the value 

(f0.5) recommended by Bekele and McFarland (2004) likely works well for flow-adjusting 

concentrations when analyzing water quality trends. Indeed, when applying both fopt and f0.5 to all 

our datasets and determining the % change year-1 in concentrations using the slope from simple 

linear regression (α=0.10), there is no discernible difference in interpretation of trend magnitude 

(Figure 7). Additionally, out of 119 datasets, there were only 3 datasets where the trend was 

statistically significant using fopt but not significant using f0.5 at the 10% significance level (data 

not shown). There was only one instance of the opposite case where NO3 concentrations at 

Spring Creek showed a statistically significant trend with f0.5 (p=0.06) but no significant trend 

with fopt = 1.0 (p = 0.18). However, this site had a shorter record of data (3.5 years) and trend 

analysis techniques may be less reliable for data with insufficient time spans. 

The use of non-parametric trend detection techniques may be more appropriate than simple 

linear regression for water quality data (see discussion by Esterby, 1996 and Hirsch et al., 1991). 
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The FACs generated by the proposed technique here can be analyzed for trends via methods such 

as the Seasonal Kendall test just as easily as simple linear regression (Hirsch et al. 1991).  

Additional studies could evaluate the efficacy of the method on other datasets that vary in site 

characteristics, the nature of the constituent being analyzed, and data availability. The sites used 

in this study were relatively data rich, where near weekly concentration data were available. It 

would be interesting to determine if using fopt has an influence on trend interpretations for sites 

with less frequent sampling (e.g., monthly or bimonthly data), which is common in water quality 

studies. More complex work in understanding stream biogeochemical processes could potentially 

benefit from the proposed flow-adjustment procedure where it is necessary to include the 

constituent’s covariation with Q in a model, such as in the time-series model with autoregressive 

moving average (ARMA) error developed by Abaurrea et al. (2011). 

Conclusion 

Trend analyses of stream water quality should consider carefully how to model the covariation of 

a constituent with Q in order to produce accurate estimates of trends. Here, we build upon the 

flow-adjustment procedure using LOESS so that the smoothing parameter, and thus the LOESS 

fit, is tailored to each dataset. We recommend using 10 x 10 CV to determine the optimal f value 

to use. Though we found that the interpretation of the monotonic trend magnitude and direction 

was not different using either fopt or f0.5, we cannot speak to what effect there may be when fopt is 

applied to other sites containing more/less data, differently behaving constituents, or other 

potential factors. However, the 10 x 10 CV is a robust method to determine the optimal fit of 

LOESS to water quality data and should perform well in other environments.  
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Figure 1. Three step trend process with (A) total suspended solids (TSS) concentrations at War 
Eagle Creek, AR from 2009 to 2015, (B) log-transformed TSS concentrations and log-
transformed streamflow (Q) with a LOESS fit (f=0.5), and (C) residuals from the LOESS fit, or 
flow-adjusted concentrations (FACs), plotted as a function of time with a linear regression as the 
trend test (p < 0.01) and the trend slope given in percent change in TSS per year.
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Figure 2. Boxplots of the optimal sampling proportion (fopt) chosen for a given value of K in 
1000 iterations of K-fold cross-validation for 7 constituents at West Fork of the White River. 
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Figure 3. Selection of optimal sampling proportion (fopt) for all datasets when using K = 10 for 10 
and 1000 iterations of K-fold cross-validation (10 by 10 and 1000 by 10, respectively).  
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Figure 4. Selection of optimal sampling proportion (fopt) for all datasets when using K = 10 and K 
= 35 folds for 10 iterations of K-fold cross-validation (10 by 10 and 10 by 35, respectively).  
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Figure 5. Test error plotted against model complexity. The top left plot is a conceptual figure 
adapted from Hastie et al. (2009), where training sample refers to using all available data for 
estimating prediction error rather than a subset (test sample). For the constituent plots, estimated 
mean squared error of prediction (PMSE) via 10-fold cross-validation across a  f values ranging 
from 0.1 to 1.0 (note that larger f gives a simpler LOESS model) is shown for the datasets at the 
Kings River. Each line represents an iteration of 10-fold cross-validation. Note that the y-scale 
for each subplot is different due to differing magnitudes in the underlying constituent 
concentrations (PMSE is estimated from the log-transformed data). The dashed vertical line is a 
reference for f = 0.5. 
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Figure 6. Distribution of fopt selected via 10 x 10 cross-validation for all 119 datasets (A), and the 
subsets for nitrate-nitrogen (B), total nitrogen (C), soluble reactive phosphorus (D), total 
phosphorus (E), total suspended solids (F), chloride (G), and sulfate (H). The dashed vertical line 
is a reference for f=0.5. 
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Figure 7. Monotonic trend magnitudes given as percent change in concentration per year (% 
change year-1) for all datasets using a sampling proportion of 0.5 (f0.5) and an optimal sampling 
proportion (fopt) in the flow-adjustment procedure. Only trends that are significant at the 10% 
level are shown. 
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II. Are Phosphorus Concentrations Still Declining in the Illinois River Watershed, 

Northwest Arkansas? 

 

Abstract 

Phosphorus (P) management at the watershed-scale has the ultimate goal of improving water 

quality. A case study would be the Illinois River Watershed (IRW), located in northwest 

Arkansas and Oklahoma, with its history of P enrichment from land-applied poultry litter and 

effluent discharges, where reduced effluent P concentration resulted in significant reduction in 

total P (TP) concentrations in the Illinois River from 2002 to 2008. However, it is unknown 

whether the efforts taken to further reduce effluent P, as well as management of land-applied 

poultry litter, have continued to decrease P concentrations in the Illinois River. In this study, we 

examine three streams for changes in flow-adjusted P concentrations from 2009 to 2015. 

Phosphorus, both soluble reactive P (SRP) and TP), decreased 12 and 9% year-1, respectively, at 

the most upstream site, Spring Creek, which was the site in closest proximity to a major effluent 

discharge. However, only SRP showed significant decrease further downstream at Osage Creek 

(3% year-1) and the Illinois River (6% year-1). These decreases likely reflect the decreases in 

effluent P during the study period (11% year-1 decrease in monthly average TP concentrations 

across all major wastewater facilities). This study highlights the importance of managing effluent 

inputs when seeking water quality improvements, while possible benefits from landscape 

management likely exhibit a lag time in taking effect.  

Introduction 

Water quality issues have forced changes in regulations and nutrient management, resulting from 

lawsuits, watershed planning, total maximum daily loads (TMDLs) implementation, and other 
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activities. The trans-boundary Illinois River Watershed (IRW) in Arkansas and Oklahoma is a 

perfect example, where Oklahoma established a scenic rivers total phosphorus (TP) criterion 

(0.037 mg L-1; OWRB, 2002), prompting the Oklahoma Attorney General to file a lawsuit 

against members of the poultry industry in northwest Arkansas. The states signed two statements 

of joint principles and actions (2003 and 2013), and several new regulations were put into place, 

as well as a joint study to evaluate algal response to increasing P concentrations. The aim of 

these jointly signed statements and new regulations was to reduce both non-point and point 

sources of P, while determining an appropriate P threshold. 

The primary focus on non-point sources in the IRW has been the poultry industry and the 

management of the resultant poultry litter. Poultry litter represents two P sources in the 

watershed, the legacy of soil P from historic applications and that applied to the landscape - these 

sources were addressed through new programs and policies in Arkansas and Oklahoma. Poultry 

litter applications to fields within the IRW must conform to state nutrient management (i.e., the P 

index; Sharpley et al., 2003). The subsequent reduction in litter application coincided with the 

development of a litter export program. Established in the mid-2000s, the program now annually 

exports around 90,000 metric tons of poultry litter to neighboring watersheds, thus removing a 

significant portion of the 250,000 metric tons produced within the IRW on average (Herron et 

al., 2012). However, these changes in management might not result in a water quality response 

(i.e., decreasing stream P concentrations) for decades (e.g., Meals et al., 2010; Sharpley et al., 

2013).  

Another scrutinized source of P in the IRW has been the municipal wastewater treatment plants 

(WWTPs). After voluntary reductions in effluent TP concentrations at two major WWTPs in the 

IRW, the proportion of the TP load from WWTPs decreased from 40% to less than 15% by 2006 
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(Haggard, 2010). This resulted in a significant decrease in TP concentrations in the Illinois River 

at the Arkansas-Oklahoma border from 2003 to 2009 (Scott et al., 2011). Recently, regulations 

specific to the IRW have required all WWTPs to meet a TP limit of 1 mg L-1 (effective 2012; 

APCEC, 2015) and one major WWTP (i.e., Springdale’s WWTP) in northwest Arkansas has 

changed management to further reduce effluent P inputs.  

We hypothesize that further reductions in effluent TP should be reflected in downstream P 

concentrations within the IRW, thus continuing the decreases previously observed within the 

Oklahoma portion of the watershed (Scott et al., 2011). In this study, we analyze soluble reactive 

P (SRP) and TP concentrations in the IRW from 2009 to 2015 at three monitoring sites 

downstream from major WWTP discharges. The concentration data were separated according to 

baseflow contribution and subsequently analyzed for trends in flow-adjusted concentrations 

(FACs). 

Methods 

Site Description 

The IRW (HUC 11110103) lies in northwest Arkansas, originating southwest of Fayetteville, 

Arkansas, and flows into northeastern Oklahoma before emptying into the Arkansas River. IRW 

drains approximately 432,823 ha, with 54% of the drainage on the Oklahoma side (OCC, 2010) 

and is characterized by the Ozark Highlands and the Boston Mountains Ecoregions. The 

Arkansas side of the watershed is mostly pasture (45%), forest (37%), and urban (13%) (CAST, 

2006), and the IRW has seen a large increase in population from 1990 to 2000 (131,000 to 

194,000). The population has continued to increase by over 30% (2010 Census Data) in the 

Arkansas portion since 2000. 
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Water Quality Sampling 

Water quality samples were collected at USGS gaging stations at Spring Creek (USGS 

07194933), Osage Creek (USGS 07195000), and Illinois River at Arkansas Highway 59 (Illinois 

River; USGS 07195430), shown in Figure 1. Grab samples were collected from the stream’s 

centroid of flow on a near weekly basis including both baseflow and storm events. Samples were 

analyzed at the Arkansas Water Resources Center (AWRC) certified water quality lab using 

approved standard methods for the analysis of water samples (AWRC, 2016). Analytes included 

nitrate-nitrogen, total nitrogen, SRP, TP, total suspended solids (TSS), chloride, and sulfate (see 

Scott et al., 2015); however, we focused on SRP, TP and TSS. Osage Creek and Illinois River 

data spanned July 2009 through June 2015 (6 years), while the record for Spring Creek was only 

from January 2012 to June 2015 (~3.5 years). Discharge data (cfs) were available from the 

USGS National Water Information System (NWIS) for each site across the study period.  

All of these sites are downstream from major WWTPs in northwest Arkansas (Figure 1). The 

WWTP in Springdale discharges into Spring Creek about 1.8 km upstream from our sampling 

site. The sampling site on Osage Creek is downstream from the effluent discharge of the 

Springdale and Rogers WWTPs, as well as a rural treatment facility built by the Northwest 

Arkansas Conservation Authority (NACA).  The sampling site on the Illinois River is influenced 

by all the above mentioned WWTPs as well as the Fayetteville Westside treatment facility. 

Monthly averaged effluent TP concentrations were provided by these WWTPs and are shown in 

Figure 2. 

Data Analysis 

Daily mean discharge (Q) was used to generate the baseflow discharge (BQ) record via 

hydrograph separation (Eckhardt, 2005). This method involves a procedure developed by Nathan 
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and McMahon (1990) with an improvement on the BQ filter algorithm (Chapman, 1991), which 

produces hydrologically reasonable results (Eckhardt, 2008). Filter values recommended for 

perennial streams with porous aquifers were used (Nathan and McMahon, 1990; Eckhardt, 

2005), since the IRW has underlying karst geology (Jarvie et al., 2014). An example hydrograph 

for the Illinois River during May 2011 is provided in Figure 3, illustrating how the separation 

technique characterizes the flashy peaks as mostly surface runoff while the BQ has a dampened, 

smoothed response.  

To define which data points in our analysis were representative of storm or base conditions, a 

baseflow fraction (BFF; BQ/Q) was generated for each sample date. Considering that these 

streams are normally relatively clear under base conditions (e.g., 10 NTU is the water quality 

standard (Arkansas Regulation 2; APCEC, 2015), and turbidity during base flow at Illinois River 

is ~5 NTU on average (data not shown)), we expect that total suspended solids (TSS) 

concentrations during storm events should be characteristically different from baseflow 

conditions. So, a changepoint with 95% confidence intervals in the relationship between log-

transformed TSS concentrations and BFF was identified at all three sites using a nonparametric 

changepoint analysis technique (NCPA; see Qian et al., 2003). Since the changepoints, ranging 

from 0.42 for Spring Creek to 0.59 for Illinois River, had overlapping confidence intervals, a 

common value of 0.6 was used as the changepoint across all three sites (Figure 4). Water quality 

data with BFF of 0.6 or greater (i.e., 60% or more of Q is BQ) were classified as baseflow data, 

while data with a lesser BFF were termed as storm data. This is similar to the 70% value used in 

White et al. (2004) for separating water quality data at the Buffalo River, Arkansas, as well as 

the value used by Green and Haggard (2001) in a previous study on the Illinois River. 
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The concentration data separated into baseflow and storm datasets were subjected to the three 

step process to evaluate changes in FACs over time (White et al., (2004) as modified by Simpson 

and Haggard (2016)). Log-transformed concentrations were flow-adjusted using locally weighted 

regression (LOESS) with an optimized smoothing parameter (ranging from 0.65 to 0.9; see 

Simpson and Haggard, 2016). Trends in FACs were evaluated using both a parametric and 

nonparametric technique. Simple linear regression was used to estimate the trend magnitude (i.e., 

slope) in FACs over time and determine significance of the trend with the overall F-test 

(α=0.05). Trends in FACs were also tested with Kendall’s τ, which is insensitive to underlying 

distributions or extreme values in the data (Hirsch et al., 1991). However, a previous study on 

water quality trends found that trend significance and magnitude in FACs for both parametric 

and nonparametric methods (where the Sen Slope estimator was the nonparametric estimate of 

trend magnitude) were strongly related and generally similar in magnitude (Bailey et al., 2012). 

Results and Discussion 

Soluble Reactive Phosphorus Concentrations 

To illustrate the separation of the water quality data, log-transformed SRP and Q for water 

samples from Illinois River were plotted in Figure 5. While the extreme ends of the Q range was 

predominantly either base or storm samples, a significant part of the range (~500-1500 cfs) have 

a mix of water samples collected during baseflow and storm events. This observation was 

consistent across all three monitoring locations, resulting from the large temporal variations in 

seasonal baseflow. So, a given Q might represent baseflow during the late winter and spring 

seasons but it might reflect storm runoff during other periods (e.g., late summer, when baseflow 

in the IRW is typically low). Overall, approximately 79% of the water samples were collected 

during baseflow conditions across these streams. 
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Flow-adjusted SRP concentrations revealed significant decreasing trends (p < 0.05; F-test and 

Kendall’s τ) during baseflow conditions at all three sites (Figure 6). The magnitude of the 

decrease was greatest (12% year-1) at Spring Creek, whereas the percent decrease was less at the 

two downstream sites (Osage Creek, 3% and Illinois River, 6%). Water quality data at Spring 

Creek was only available from 2012 to 2015 (~3.5 years), which may influence the trend 

interpretation. When baseflow SRP data at the other sites were constrained to the same 

timeframe, the decrease was similar to that observed at Spring Creek (14 and 15% year-1 

decrease (p<0.05) at Osage Creek and the Illinois River, respectively), which illustrates that SRP 

concentrations in IRW likely experienced the greatest proportional change during the last 3.5 

years of our study.   

When considering the major WWTPs (excluding NACA) during the period from 2009 to 2015, 

there is a general decreasing trend of 11% year-1 in effluent TP concentrations. On closer 

inspection, Springdale’s geometric mean TP was 0.32 mg L-1 from 2009 to 2012 and 0.25 mg L-1 

after 2012. This decrease is incremental in comparison to that observed in an earlier study that 

found Springdale’s effluent TP was 7.0 mg L-1 before October 2002 and 0.62 mg L-1 from 

October 2002 to September 2008 (Scott et al., 2011). However, Springdale’s WWTP contributes 

much of Spring Creek’s Q; the average daily effluent flow during the study was 20 cfs while 

average base Q in Spring Creek was 40 cfs. Since Springdale’s WWTP contributes around 50% 

of base Q in Spring Creek, it is likely driving the SRP decreases in Spring Creek and sites further 

downstream.   

These streams are known to be effluent-dominated, especially with respect to P concentrations 

during baseflow (Ekka et al., 2006; Haggard, 2010). The changes in effluent P concentrations 

have taken place quickly (the general trend across all WWTPs was an 11% year-1 decrease for 
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2009-2015), whereas the SRP concentrations in the streams have responded somewhat slower 

over the same timeframe. The effluent inputs not only influence stream water P, but also P stored 

and available for exchange within the bottom sediments (Ekka et al., 2006; Haggard et al., 2001). 

The sediments can contribute to elevated SRP when the overlying water has P concentrations 

less than the sediment equilibrium P concentration (EPC0, Froelich, 1988; McDowell, 2015). 

That is, the effluent P might decrease but the stream sediments downstream from the discharge 

release historic P, potentially buffering in-stream reductions of P. 

Only Spring Creek exhibited a statistically significant decrease (p<0.05) in flow-adjusted SRP 

concentrations during storm events (Figure 6). Sources of P in storm flow are generally 

attributed to runoff from the landscape but the resuspension of P retained in stream sediments 

has been shown to be a potentially large P source during high flow events in the IRW (Jarvie et 

al., 2012). Thus, effluent P-enriched sediments that are flushed downstream during storm events 

may contribute to the decreasing SRP trend at Spring Creek. This effect may take longer to 

propagate further downstream, or the additional P sources downstream might mask the potential 

reductions in SRP during storm events at Osage Creek or the Illinois River. 

Total Phosphorus Concentrations 

Despite the improvement in baseflow SRP concentrations at all three sites, the only significant 

trend in flow-adjusted TP concentrations was a 9% year-1 decrease at Spring Creek under base 

conditions (Figure 7). Considering that the average SRP concentration at Spring Creek across all 

base samples (0.15 mg L-1) makes up nearly all of the average base TP concentration (0.17 mg L-

1), it is unsurprising that there was a decrease in baseflow TP concentrations similar to the 

baseflow SRP trend. In contrast, average base SRP concentrations in Osage Creek and Illinois 

River (0.07 and 0.04 mg L-1) are proportionally less of the average base TP concentrations (0.10 
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and 0.06 mg L-1).  Thus, SRP is a smaller proportion of TP further downstream which might 

explain why TP did not significantly change at Osage Creek or the Illinois River. 

Interestingly, if we define the difference between TP and SRP concentrations as particulate P 

(PP), then PP concentrations did not change under base flow conditions at any of the sties. 

However, the Illinois River showed a significant increase in PP concentrations (12% year-1) 

during storm flows (data not shown), whereas the other sites did not exhibit increases in PP 

concentrations during storm events. Reduced SRP concentrations downstream from the 

Springdale WWTP were likely due to abiotic (i.e., sediment) and biotic uptake which would be 

resuspended or scoured during storm events and transported downstream (Jarvie et al., 2012). 

The accumulation of effluent P in the stream bottom might promote an increase in PP 

concentrations during storm events downstream at the larger Illinois River, though TP 

concentrations do not significantly change during the study period at this site. 

The lack of change in TP at the Illinois River may suggest that the effects of watershed 

management across IRW (e.g., poultry litter management) have not been realized yet. A lag time 

of years to decades in management effect for water quality is not uncommon (Meals et al., 2010). 

In fact, the IRW may be experiencing a lag between a P ‘accumulation phase’ and ‘depletion 

phase’ due to a legacy source of P (Haygarth et al., 2014; Powers et al., 2016). In addition to in-

stream retention (Jarvie et al., 2012), the karst geologic features in the IRW have been shown to 

exhibit net P retention during storm events, where P acts like a non-conservative tracer (Jarvie et 

al., 2014). Furthermore, soils with historical elevated application of poultry litter provide another 

legacy P source (Sharpley et al., 2013). These sinks could provide a constant source of P to 

surface waters in the IRW which could take on the order of decades to diminish (Jarvie et al., 

2014; Sharpley et al., 2009). Management of P in the IRW should take into consideration these 
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sources in addition to the point sources evaluated in this paper and the monitoring required to 

detect future changes. 

Conclusions 

Following improvements in WWTP removal of P, three sites downstream in IRW exhibited 

decreasing trends in baseflow SRP from 2009 to 2015. Much of this decrease occurred after 

2012, which coincides with a state regulation requiring all WWTPs in the IRW to meet a TP 

limit of 1 mg L-1 (APCEC, 2015). Unfortunately, this did not translate to a significant decrease in 

TP concentration at the Illinois River, despite the observed decreases of TP in the Illinois River 

in the 2000s (Scott et al., 2011). Legacy P in the IRW may be buffering the positive effects of 

watershed management, and a close examination of the potential mechanisms behind this legacy 

P specific to the IRW is needed in order to better focus mitigation efforts. Large strides in P 

management in the IRW have been made but more time to bring TP in the Illinois River down to 

the Oklahoma scenic river standard of 0.037 mg L-1 may be needed. 
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Figure 1. Map of the Illinois River Watershed with sampling sites at Spring Creek (Spring), 
Osage Creek (Osage) and Illinois River at Hwy 59 (IR59) and the four major wastewater 
treatment plants (WWTPs). USGS streamgage station numbers are given as well. 
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Figure 2. Monthly average total phosphorus (TP) concentrations in the effluent at four major 
WWTPs in the IRW; period of record is variable between plants, and data was graciously 
provided by personnel from each treatment facility. 
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Figure 3. Hydrograph separation for the month of May 2011 at the Illinois River using the 
Eckhardt baseflow filter; the mean daily streamflow (Q; cfs) is separated into two components: 
baseflow (BQ) and a runoff component (RO).  
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Figure 4. Changepoints in baseflow fraction (BFF) identified with TSS data using nonparametric 
changepoint analysis (NCPA; see text) at Spring Creek, Osage Creek, and Illinois River at Hwy 
59 (IR59). The solid line is the identified changepoint while the dashed lines are the 95% 
confidence interval estimated via bootstrapping. Data points with BFF lower than 0.6 were 
termed as storm data while points greater than 0.6 were termed as baseflow data. 
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Figure 5. Separation of soluble reactive phosphorus (SRP) concentration data at the Illinois River 
into base and storm samples based on the BFF changepoint described in text. 
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Figure 6. Trend analyses of soluble reactive phosphorus (SRP) data under both baseflow and 
storm conditions at Spring Creek (Spring), Osage Creek (Osage), and Illinois River at Hwy 59 
(IR59). Significant trends (F-test, p<0.05) are shown with a linear regression and trend 
magnitude is reported as percent change in concentration per year.  
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Figure 7. Trend analyses of TP data under both baseflow and storm conditions at Spring Creek 
(Spring), Osage Creek (Osage), and Illinois River at Hwy 59 (IR59). Significant trends (F-test, 
p<0.05) are shown with a linear regression and trend magnitude is reported as percent change in 
concentration per year.  
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III. Relating Water Quality in Beaver Lake to Nutrient Trends in Watershed Inflows 

 

Abstract 

Beaver Lake (northwest Arkansas) has recently adopted an effects-based water quality standard 

for algal productivity where growing season geometric mean chlorophyll-a (chl-a) must not 

exceed 8 µg L-1 and annual average Secchi transparency must not fall below 1.1 m. However, 

Beaver Lake is likely to violate this standard since chl-a concentrations have been increasing 

near the assessment location. We evaluated watershed nutrient inputs to Beaver Lake from 2009 

to 2015 via trend analysis of monitoring data collected at the three main inflows, as well as 

examine chl-a and nutrient data collected at two sites in Beaver Lake. Flow-adjusted 

concentrations of soluble reactive phosphorus (SRP) and total P (TP) have increased at Richland 

Creek (5.2 and 7.4% year-1, respectively) while a 3.7% year-1 decrease has occurred at War Eagle 

Creek. Total nitrogen (TN) concentrations have increased at Richland Creek and White River 

(7.3 and 3.8% year-1, respectively); however, nitrogen (N) concentrations (both NO3-N and TN) 

exhibit a nonlinear pattern across all three sites, where N increased from 2009 through 2012 and 

have potentially decreased or maintained from 2013 through 2015. The pattern in N is likely tied 

to hydroclimatic factors, such as an extensive drought that occurred in 2012. Data collected at 

Beaver Lake illustrated an increasing trend in both growing season geometric mean chl-a (0.24 

µg L-1 year-1) and annual average TN (0.02 mg L-1 year-1) from 2001 to 2015 at the site closest to 

a drinking water supply intake (Lowell, Arkansas).  This study provides important insight to 

nutrient concentrations in the Beaver Lake watershed for the past 6 years (2009 through 2015), 

but longer records of data are needed to fully understand short-term fluctuations and long-term 

persistent trends of N and P in this basin. Watershed-scale nutrient management and 
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hydroclimatic factors are key considerations for understanding variations in algal productivity in 

Beaver Lake. 

Introduction 

The eutrophication of freshwater bodies is a pervasive problem throughout the U.S. (Brown and 

Froemke, 2012), particularly in agricultural watersheds where nutrient inputs are elevated. A 

study of the economic impact eutrophication has on U.S. freshwaters estimates an annual loss of 

$2.2 billion when accounting for impacts such as loss of aesthetic value, loss of biodiversity, and 

water treatment (Dodds et al., 2009). The eutrophication of drinking water supply reservoirs 

presents concerns over increased treatment costs, taste and odor issues, disinfection by-products 

(DBPs) and even harmful algal blooms, requiring water treatment facilities to use non-

conventional treatment to provide drinking water (Walker Jr., 1983). In northwest Arkansas, the 

Upper White River Basin (UWRB) is unique in that it also contains northwest Arkansas’s 

primary drinking water source, Beaver Lake, and Beaver Water District has recently shifted to 

more non-conventional pretreatment processes (i.e., chlorine-dioxide pre-disinfection) to address 

eutrophication and potential DBP formation (Beaver Water District, 2014).  

Recently, an effects-based standard for eutrophication in Beaver Lake was adopted, where 

reservoir eutrophication is regulated via algal biomass (i.e., chlorophyll-a concentrations) and 

clarity. The standard states that the growing season (i.e., May through October) geometric mean 

chlorophyll-a (chl-a) concentration in Beaver Lake near Hickory Creek shall not exceed 8 µg L-1 

and that the annual average Secchi transparency shall not be less than 1.1 m (APCEC, 2015). 

However, Scott and Haggard (2015) point out the numerous issues with this standard; for 

instance, the assessment location is in the riverine-transition zone and chl-a concentrations have 

generally been increasing in this zone at Beaver Lake. Reservoirs that are at risk of 
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eutrophication typically exhibit elevated algal biomass in the riverine and transition zones (e.g., 

Scott et al., 2009; Cooke et al., 2011).  

The proposed assessment methodology is that the geometric mean chl-a concentration at Hickory 

Creek cannot exceed the state’s water quality standard in more than two out of five years 

(APCEC, 2016). According to collected and modeled chl-a data from 2001 to 2014, there is a 

60% probability that a five-year assessment at Hickory Creek would result in violation (Scott and 

Haggard, 2015). Thus, it seems likely that Beaver Lake will be listed as impaired after the 

standard has been implemented and assessment occurs by the Arkansas Department of 

Environmental Quality (ADEQ), which is likely an unintended consequence. However, it is 

important to understand the reasons why chl-a concentrations have increased in Beaver Lake, 

including external processes that might be driving the high productivity.  

The UWRB is mostly forested but is still influenced by pasture and urban land use, where greater 

percent pasture and urban land use within drainage basins have been linked to greater in-stream 

nitrogen (N) and phosphorus (P) concentrations (Haggard et al., 2003; Migliaccio et al., 2007; 

Giovannetti et al., 2013). Watershed nutrient inputs delivered to drinking water supply reservoirs 

and internal processes (i.e., P release from bottom sediments) influence algal productivity in the 

water column. The potential future 303(d) listing of Beaver Lake for its water quality standard 

violation will essentially open the opportunity to start developing the total maximum daily load 

(TMDL), focusing on watershed nutrient inputs because internal loading is relatively low (Sen et 

al., 2007). 

In the present study, we examine trends in N, P, and chl-a concentrations at two sites of interest 

at Beaver Lake, as well as N and P trends in the three main tributaries to Beaver Lake using 
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monitoring data from 2009 to 2015. We wanted to know if changes in the N, P, and chl-a within 

the transitional zone of Beaver Lake were linked to changes in watershed inputs, suggesting that 

increased nutrient transport into Beaver Lake resulted in increased productivity and potential 

303(d) listing of the water body. We hypothesized that patterns in algal biomass at Beaver Lake 

were closely tied to variability in nutrient availability from stream inputs. 

Methods 

Site Description 

The UWRB (HUC 11010001) lies in northwest Arkansas with a small portion in Missouri and 

abuts the Illinois River Watershed to the east within the major metropolitan areas of Fayetteville, 

Springdale, and Rogers, Arkansas. The watershed drains approximately 574,718 ha before 

flowing into Missouri. In 2006, land use was mostly forest (64%) and pasture (23%) with some 

urban (4%) (CAST, 2006). Madison and Carroll counties, which are nearly completely within the 

watershed, have seen little population growth from 2000 to 2010; however, the major 

metropolitan areas within Benton and Washington counties, have seen an increase in population 

of approximately 44% and 29% from 2000 to 2010, respectively (2010 Census Data). The White 

River is impounded to form Beaver Lake (approximately 11,396 ha) which serves as the primary 

water supply for northwest Arkansas. On average, UWRB gets 1230 mm year-1 of precipitation; 

however, in 2012, there was only 797 mm of precipitation (NADP, 2016), resulting in extreme 

drought throughout the growing season of 2012 (via Palmer Drought Severity Index; NOAA, 

2016). 

The three main tributaries to Beaver Lake are the White River, Richland Creek, and War Eagle 

Creek. The West Fork of the White River contributes roughly 30% of the annual Q to the White 



53 

River while the remainder comes from the outflow of Lake Sequoyah, an impoundment of the 

Middle Fork and eastern mainstem of the White River. Additionally, one of Fayetteville’s 

wastewater treatment plants (WWTP; Paul Noland Wastewater Treatment Facility) is located on 

the White River, just downstream from the sampling site on the White River. The plant has an 

average discharge of 48,000 m3 day-1 and has historically operated under a monthly average total 

phosphorus (TP) standard of 1 mg L-1; however, effluent concentrations were consistently under 

0.5 mg L-1 during our study. Another WWTP, although smaller, is located in Huntsville and 

discharges upstream from the sampling site on War Eagle Creek. 

Water samples were collected at USGS gaging stations at West Fork of the White River (West 

Fork; USGS 07048550), White River near Fayetteville, AR (White River; USGS 07048600), 

Richland Creek at Hwy 45 (Richland Creek; USGS 07048800), and War Eagle Creek ( USGS 

07049000), shown in Figure 1. Grab samples were collected from the stream’s centroid of flow 

on a near weekly basis including both baseflow and storm events from bridge access using an 

alpha style horizontal sampler. Water samples were analyzed at the Arkansas Water Resources 

Center (AWRC) certified water quality lab for nitrate-nitrogen (NO3), total nitrogen (TN), 

soluble reactive phosphorus (SRP), and TP using approved standard methods for the analysis of 

water samples (AWRC, 2016). Data at each stream was collected from July 2009 to June 2015 (6 

years) except at Richland Creek, where data was only available through April 2015 due to 

backwater conditions in Beaver Lake. The stream gage at Richland Creek was subsequently 

moved upstream at the end of this study. Discharge data (cfs) were available from the USGS 

National Water Information System (NWIS) for each site during this study period. 

In addition to water samples from the inflows collected by AWRC, water samples from Beaver 

Lake were collected by the USGS at five sites from the riverine zone down the reservoir to the 
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dam. Grab samples were collected about 2 m below surface and analyzed for chl-a, TN, and TP 

at the USGS National Water Quality Lab (Denver, Colorado). Our analysis of the lake data 

focused on two sites, including Hickory Creek and Lowell. The site at Hickory Creek on Beaver 

Lake is where the geometric mean chl-a standard (8 µg L-1) during the growing season (May 

through October) applies; the assessment proposed by ADEQ is a violation will result if 

exceeded more than two times within a five year period (ADEQ, 2016). The site at Lowell on 

Beaver Lake is in close proximity to the intake of Beaver Water District, which provides 

drinking water to approximately 400,000 residents as well as multiple industries. Nutrient and 

chl-a data were available from the USGS NWIS since 2001 at Lowell and since 2009 at Hickory 

Creek. 

Analysis 

Daily mean discharge (Q) was used to generate the baseflow discharge (BQ) record via 

hydrograph separation (Eckhardt, 2005). The procedure, originally developed by Nathan and 

McMahon (1990), features an improvement on the BQ filter algorithm (Chapman, 1991), and 

produces hydrologically sound results (Eckhardt, 2008). The filter values recommended for 

perennial streams with porous aquifers were used (Nathan and McMahon, 1990; Eckhardt, 

2005), since the UWRB is characterized by limestone geology with some karst features. 

Unfortunately, one site in our study (White River) had too many gaps in the later part of the 

hydrological record to allow for analysis of BQ. Therefore, these water samples at White River 

were separated into baseflow and storm event samples evaluating field sheets and sampling 

conditions at other sampling sites in the UWRB monitoring program (e.g., West Fork of the 

White River). 
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A baseflow fraction (BFF; BQ/Q) was determined for each sample collected at sites where BQ 

data was available. Based on change point analysis of water quality data collected in the adjacent 

Illinois River Watershed, a BFF value of 0.6 was used to separate data into baseflow data and 

storm data (Simpson and Haggard, 2016A). That is, data with BFF ≥ 0.6 (i.e., 60% or more of Q 

is BQ) were classified as baseflow data, while data with BFF < 0.6 were considered as storm 

data. Approximately 70% of water samples collected in this study were during baseflow 

conditions. 

All water quality data, as well as data split into baseflow and storm data, were subjected to the 

three step process to evaluate changes in flow-adjusted concentrations (FACs) over time (White 

et al., (2004) as modified by Simpson and Haggard (2016B)). Log-transformed concentrations 

were flow-adjusted using locally weighted regression (LOESS) with an optimized smoothing 

parameter, which ranged from 0.3 to 1.0 (see Simpson and Haggard, 2016B). Trends in FACs 

were evaluated using both a parametric and nonparametric technique (Helsel and Hirsch, 2002). 

Simple linear regression was used to estimate trend magnitude (i.e., slope) in FACs over time 

and determine significance of the trend with the overall F-test (α=0.05). Trends were also 

evaluated with Kendall’s τ, a rank-correlation statistic that is insensitive to underlying 

distributions or extreme values in the data (Hirsch et al., 1991). A previous study on water 

quality trends found that trend interpretations using both methods generally found similar trend 

magnitudes and degree of significance (Bailey et al., 2012). 

It should be noted here that a key assumption we make in the trend analysis of this data is that 

trends are only monotonic (i.e., only increasing or only decreasing over the entire period). 

However, water quality (i.e., FACs) might show subtle changes over time in response to 
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variations in climate (e.g., drought) or other factors during the study period.  Therefore, LOESS 

was used to evaluate subtle shifts in FACs over time that might not be expressed monotonically. 

For the analysis of Beaver Lake data, the growing season geometric means of chl-a were 

evaluated for changes in time. We analyzed chl-a at Hickory Creek, since this is the site of the 8 

µg L-1 standard assessment, and we analyzed data at Lowell to gain perspective on chl-a 

concentrations on a longer time scale. Additionally, nutrient data at Lowell were evaluated on 

annual average basis. Simple linear regression was used to determine the change in the central 

tendency of these parameters over time. 

Results and Discussion 

UWRB Inputs:  Soluble Reactive Phosphorus 

Baseflow concentrations of SRP were generally low for this study period with geometric mean 

SRP concentrations of 0.004, 0.006, and 0.005 mg L-1 in Richland Creek, War Eagle Creek and 

White River, respectively. These streams reflect the lower range of baseflow SRP seen across 

multiple sites in the UWRB (0.003 – 0.021 mg L-1; Giovannetti et al., 2013). SRP concentrations 

in storm events at the tributaries were considerably higher (0.013 – 0.019 mg L-1) but similar to 

the range (0.010 – 0.054 mg L-1) reported by Giovannetti et al. (2013). It is well known that 

stream nutrients can correlate with the percent pasture in the drainage area, especially in the 

UWRB (Haggard et al., 2003; Migliaccio et al., 2007; Giovannetti et al., 2013). However, the 

drainage areas of these streams are largely forested (>50% forest in each basin) and represent a 

larger subwatershed area as the monitoring sites are located near the entrance to Beaver Lake. 

Indeed, annual nutrient export (i.e., mass exported per subwatershed area) is significantly greater 
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in the smaller catchments in UWRB (Haggard et al., 2003). Larger drainage areas may buffer the 

critical source areas that are contributing much of the nutrient loss (McDowell et al., 2004). 

No trends were detected in the SRP concentrations of water samples collected during only 

baseflow conditions; however, War Eagle Creek showed an 11.7% year-1 decrease in storm SRP 

(Table 1). When analyzing all data, this same trend was dampened to a 3.8% year-1 decrease at 

War Eagle Creek, illustrating that decreases in SRP at this site are largely due to decreases in 

SRP during elevated flows (Figure 2). Interestingly, Richland Creek only showed a significant 

increasing trend when analyzing all data (5.4% year-1), while no trend was detected in either 

baseflow or storm data. This may be an artifact of greater statistical power in trend analysis when 

using more observations. 

UWRB Inputs: Total Phosphorus 

TP concentrations under baseflow conditions were variable across all three sites where the 

geometric means ranged from (0.017 – 0.031 mg L-1), similar to the range reported for sites in 

the UWRB not influenced by effluent discharge (0.009 – 0.070 mg L-1; Giovannetti et al., 2013). 

Though only one site in our study was impacted by a major WWTP (War Eagle Creek), point 

sources like WWTPs have a large impact on nutrient concentrations under baseflow conditions, 

where the near-constant source can elevate concentrations within the stream while likely playing 

a smaller role in the annual TP load (Stamm et al., 2013). Additionally, it is likely that excess 

nutrients from the Fayetteville WWTP effluent discharged into the White River are not being 

sequestered before reaching Beaver Lake (Hufhines et al., 2011). However, the major WWTP in 

the UWRB (Fayetteville) has historically managed effluent TP concentrations below 0.5 mg L-1 

(e.g., was generally less than 0.4 mg L-1 from 2006 to 2007; Hufhines et al., 2011) as well as 

during the current study period (Figure 3), which is less than the effluent TP limit of 1.00 mg L-1. 
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We did not collect discharge data from the Huntsville WWTP, however, our site on War Eagle 

Creek, downstream from the WWTP, maintained relatively low TP concentrations in baseflow 

(geometric mean of 0.023 mg L-1) for the period. 

The only site to exhibit significant trends in TP for the study was Richland Creek (Figure 2). 

Baseflow TP increased 9.1% year-1 which resulted in a 7.6% year-1 increase when considering all 

data (Table 1). Most of the watershed has not had significant changes in TP, which could be due 

to initiatives like the P index (DeLaune et al., 2004) stabilizing excess P inputs on the landscape. 

While there was a statistically significant trend in TP at Richland Creek, the geometric mean TP 

concentration across all water samples was relatively low (0.027 mg L-1); proportional increases 

in TP at this site are less likely to significantly alter nutrient dynamics within Beaver Lake. It is 

unclear what sources may drive increases in TP at Richland Creek. Potentially, groundwater 

stores of P as well as historical inputs of watershed P (e.g., land-applied poultry litter) may 

provide a legacy P source (Jarvie et al., 2014). 

UWRB Inputs: Nitrate 

Most of the TN fraction in UWRB was made up by NO3, which varied across sites (58 to 87%, 

on average). Richland Creek and the White River had geometric mean NO3 concentrations of 

0.42 and 0.28 mg L-1, respectively, under baseflow conditions, reflecting the lower part of the 

range reported for baseflow NO3 in the UWRB (0.05 – 2.28 mg L-1; Giovannetti et al., 2013). 

However, War Eagle Creek had a geometric mean NO3 concentration of 1.40 mg L-1 for the 

study period. This elevated concentration is similar to that reported elsewhere for streams in the 

War Eagle Creek watershed (Migliaccio et al., 2007; Giovannetti et al., 2013). Subwatersheds 

within UWRB exhibit a positive correlation between stream NO3 concentrations and percent 
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pasture (Giovannetti et al., 2013), which may explain the elevated concentrations in War Eagle 

Creek, which is approximately 35% pasture. 

Monotonic trends for NO3 indicated that there was a significant increase at Richland Creek under 

baseflow conditions (11.3% year-1; Table 1). Additionally, a statistically significant decrease in 

storm NO3 concentrations (6.2% year-1) occurred at War Eagle Creek. When analyzing all data at 

these sites, the increasing trend at Richland Creek was still evident (8.4% year-1; Figure 4) but no 

trend in NO3 concentrations was apparent at War Eagle Creek despite the decrease in NO3 

concentrations during storm events. The White River showed no significant changes during this 

study period. These analyses assume monotonic changes in the constituent, however the 

relationship between flow-adjusted NO3 concentrations and time at each site illustrated a 

nonlinear pattern (Figure 4). Following the smoother regression to the data, there is an apparent 

increase from the early part of the period to late 2012/2013, accompanied by an increase in the 

variance of the data. After this period, NO3 at War Eagle Creek and White River likely decreased 

again; meanwhile, this shift may not be evident at Richland Creek.  

The 2012 period in this study experienced extreme drought, as evidenced by the large dip in 

streamflow at each site (Figure 5). Hydroclimatic variability may affect the transport of NO3 

through groundwater sources. NO3 can be highly mobile in sufficiently wet soils due to lack of 

binding forces, which results in leaching. It is considered that this mechanism may explain the 

elevated baseflow NO3 concentrations in subwatersheds with extensive pasture land use, 

especially in the War Eagle Creek watershed (Migliaccio et al., 2007); the karst geology in the 

UWRB could supply more of the stream flow from diffuse sources within the groundwater that 

contain elevated concentrations of NO3 (Boyer and Pasquarrell, 1995; Green and Haggard, 2001, 

Bowes et al., 2015). Another effect of dry periods, especially during severe drought conditions 
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like in 2012, is that excess organic N could build up on soil surfaces when little rain-driven 

percolation or runoff has occurred, leading to a large NO3 source delivered when sufficient rain 

relieves the dry conditions (Boyer and Pasquarrell, 1995; Mosley, 2015). It is possible that the 

UWRB experienced a buildup of N during the 2012 drought, which could explain the relatively 

low flow-adjusted NO3 concentrations during this period (Figure 4), and flushed out excess N 

immediately after the drought (see Mosley, 2015 and references therein).  

UWRB Inputs: Total Nitrogen 

Baseflow TN concentrations in the UWRB follow the same pattern as NO3, with geometric 

means ranging from 0.50 mg L-1 to 1.54 mg L-1, similar to the range reported for sites across 

UWRB (0.17 – 2.33 mg L-1; Giovannetti et al., 2013). The highest TN concentrations also 

occurred at War Eagle Creek (1.54 mg L-1 geometric mean), consistent with the relatively high 

TN concentrations recorded in this watershed previously (1 to 4 mg L-1 in sites closer to outlet of 

watershed; Migliaccio et al., 2007).  

Two sites reflected a monotonic change in baseflow TN concentrations (Table 1). Baseflow TN 

increased 8.3% year-1 at Richland Creek and 6.3% year-1 at White River. Additionally, storm 

event TN increased 5.2% year-1 at Richland Creek. When considering all data, TN increased at 

both Richland Creek and White River by 7.3 and 3.8% year-1, respectively (Figure 4). There was 

no statistically significant change in TN at War Eagle Creek. While increasing trends are evident 

for both NO3 and TN at Richland Creek, the discrepancy at White River where only TN showed 

changes could be attributed to additional inputs of N in organic forms. Similar to NO3, TN likely 

underwent nonlinear changes during the study period (Figure 4). Again, flow-adjusted TN 

concentrations peaked during the late 2012/2013 period, after a major drought had occurred, 

likely reflecting groundwater influence as well as concentrated nutrient cycling under the low 
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flows. Droughts are important hydrological events that can greatly shift watershed nutrient 

concentrations (Mosely, 2015), and need to be considered when examining algal productivity 

within reservoirs such as Beaver Lake. 

Beaver Lake 

Water samples collected at Hickory Creek had chl-a concentrations ranging from 1.8 to 17.5 µg 

L-1 from 2009 to 2015, whereas geometric mean chl-a concentrations were from 6.3 to 12.3 µg L-

1 during the growing season (May through October; Figure 6). Five of these seven years 

exceeded the 8 µg L-1 standard for chl-a at Beaver Lake, where the assessment location is at 

Hickory Creek. Hickory Creek lies in the riverine-transition zone of Beaver Lake downstream 

from the confluence of all major tributaries. The riverine-transition zone of reservoirs with 

elevated nutrient inputs, such as at Beaver Lake, are highly productive areas (Cooke et al., 2011; 

Scott et al., 2009) and are often sites of intense biogeochemical processes (e.g., nitrogen-fixation; 

Scott et al., 2008). Algal productivity in this zone is fueled by the nutrient inputs from the three 

tributaries and declines (i.e., along a trophic gradient) further down the reservoir towards the 

outlet (Scott and Haggard, 2015).  

At the Lowell site, geometric mean chl-a concentrations ranged from 1.4 to 9.5 µg L-1 and 

increased at a rate of 0.24 µg L-1 year-1 from 2001 to 2015 (Figure 7). Accompanying this trend, 

annual average TN increased at a rate 0.02 mg L-1 year-1, where concentrations ranged from 0.59 

to 1.00 mg L-1. Annual average TP concentrations ranged from 0.016 to 0.037 mg L-1, typical of 

mesotrophic to eutrophic lakes (Nürnberg, 1996) and similar to another lake impacted by 

agricultural P in eastern Oklahoma (Lake Tenkiller; Cooke et al., 2011). However, no trend was 

apparent in TP at Lowell. Increased productivity in Beaver Lake may drive such high N removal 

in the water column that the ecosystem has become sensitive to additional N loadings (Scott and 
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McCarthy, 2010; Finlay et al., 2013), which may be supported by the coincidental increases in 

TN and chl-a at Lowell. More and more evidence points to N and P co-limitation (Sterner, 2008), 

meaning that management should consider P as well as N inputs to water bodies. 

Attention should also be placed on other hydrological and climatic variables when considering 

lake water quality data. Water residence time and temperature can provoke greater algal 

productivity (Paerl and Huisman, 2008), which may explain peaks in chl-a concentrations, such 

as in 2012 (Figure 6 and 7). In fact, droughts in Beaver Lake’s drainage area have been tied to 

elevated 2-methylisoborneol (MIB) concentrations, a taste-and-odor compound produced by 

cyanobacteria (Winston et al., 2014). These relationships are concerning considering that, with 

changes in our climate, heat waves and droughts may be increasing in the U.S. (Petersen et al., 

2014). The complex phytoplankton community in Beaver Lake is likely influenced by both 

nutrient inputs as well as the hydro-climate, but further research is needed to fully characterize 

what taxa are present and how the community reacts to changes in the reservoir. 

Conclusions 

Beaver Lake is at risk of violating its chl-a standard (Scott and Haggard, 2015). Increases in TN 

as well as chl-a at the Lowell site are of concern for water management and sources of nutrients 

need to be understood. Trend analysis of the tributaries from 2009 to 2015 revealed that SRP has 

decreased in War Eagle Creek while SRP and TP increased at Richland Creek. Monotonic trends 

imply increases in TN at Richland Creek and White River; however, NO3 and TN concentrations 

throughout the UWRB reflect an increase from 2009 to late 2012/2013, and either declining or 

maintaining through the later period. Large variability in the hydro-climate is likely a major 

driver in N concentrations as well as algal productivity, where hot and dry periods may increase 

baseflow N concentrations and elevate algal growth. The assumption of stationarity (i.e., 
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stochastic systems exhibits statistical properties that do not change with time) is considered to be 

no longer valid (Milly et al., 2008), thus, real persistent trends in monitoring data are difficult to 

separate from large-scale variability (Cohn and Lins, 2005). In order to better characterize how 

the UWRB is changing with time, long-term (i.e., on the order of decades) high-quality data (i.e., 

sufficient coverage across the seasonal, hydrological, and temporal records) are needed (Burt et 

al., 2014). Short-term records can characterize some important events (e.g., certain hot 

biogeochemical processes); long-term records can inform strategic planning across the 

watershed. 
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Table 1. Trend magnitudes, in percent change in concentration per year (% change y-1), 
for nitrate-nitrogen (NO3), total nitrogen (TN), soluble reactive phosphorus (SRP), and 
total phosphorus (TP) at the three inflows into Beaver Lake from 2009 to 2015, where 
trends were estimated using just baseflow data, just storm data, and all data combined; 
only significant trends (via overall F-test; p<0.10) are reported. 

 

  Trend in Constituent Concentration  

(% change y-1) 

Site Flow Regime NO3 TN SRP TP 

Richland Creek Baseflow 11.3 8.3 - 9.1 

 Storm - 5.2 - - 

 All 8.4 7.3 5.2 7.4 

War Eagle Creek Baseflow - - - - 

 Storm -6.2 - -11.7 - 

 All - - -3.7 - 

White River Baseflow - 6.3 - - 

 Storm - - - - 

 All - 3.8 - - 
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Figure 1. Map of the Upper White River Basin within the Beaver Lake Watershed with sampling 
sites at White River (USGS 07048600), Richland Creek (07048800), and War Eagle Creek 
(07049000). 
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Figure 2. Trend analyses of soluble reactive phosphorus (SRP) and total phosphorus (TP) under 
all flow conditions at Richland Creek, War Eagle Creek, and White River from 2009 through 
2015; significant monotonic trends (F-test, p<0.10) are shown with a green line with magnitude 
given in percent change in concentration per year. 
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Figure 3. Monthly average effluent total phosphorus (TP) concentrations at the Paul Noland 
wastewater treatment plant (WWTP) in Fayetteville, Arkansas; this facility discharges into the 
White River downstream from the site in our study. 
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Figure 4. Trend analyses of nitrate-nitrogen (NO3) and total nitrogen (TN) under all flow 
conditions at Richland Creek, War Eagle Creek, and White River from 2009 through 2015; 
significant monotonic trends (F-test, p<0.10) are shown with a green line with magnitude given 
in percent change in concentration per year, and a smoother (in blue) is fit to the data to visualize 
subtle changes over time. 
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Figure 5. (Top) Daily precipitation (mm) measured in Fayetteville, Arkansas from 2009 through 
2015 (NADP, 2016), and (Bottom) daily mean stream flow (Q; cfs) measured at Richland Creek, 
War Eagle Creek, and White River from July 2009 through June 2015.  
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Figure 6. Growing season (May through October) geometric mean chlorophyll-a in Beaver Lake 
at Hickory Creek, and the water quality standard for Beaver Lake is shown (dashed line). 
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Figure 7. Growing season (May through October) geometric means for chlorophyll-a (chl-a) and 
annual average total nitrogen (TN) and total phosphorus (TP) concentrations in Beaver Lake at 
Lowell, Arkansas; linear regression trend lines are given (blue line, p<0.10). 
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Conclusion 

Trend analysis is a valuable tool for water resources management, but should be wary of how a 

constituent covaries with streamflow. The first chapter of this thesis developed an improvement 

to a flow-adjustment procedure by optimizing the smoothing parameter in LOESS. It is 

recommended to use 10 x 10 cross-validation to determine an optimal fit to the data. While there 

was no significant difference in trend interpretations for the datasets used in this study, the 

proposed method may have benefits with other datasets containing more/less data, longer period 

of record, or differently-behaving constituents.  

The case study of phosphorus (P) in the Illinois River Watershed (IRW) in the second chapter of 

this thesis found significant decreases in the dissolved form of P at three sites located 

downstream from major wastewater treatment plants (WWTPs). However, total P (TP) 

concentrations have not continued to decrease at the Illinois River. Legacy sources of P in the 

IRW may be buffering the positive effects of watershed management, prolonging the period until 

desired changes take place. Future studies could examine the mechanisms behind legacy P 

sources; meanwhile, it is important for watershed managers to remain determined.  

The last chapter of this thesis, the case study of nutrient trends in the inflows to Beaver Lake, 

illustrated the importance of long-term monitoring. Particularly, nitrogen (N) concentrations 

showed a similar pattern for the study period across each sampling site, where flow-adjusted 

concentrations increased from 2009 to 2013 then declined or maintained for the remainder of the 

study period. This correlated with a major drought that occurred in 2012, providing a disturbance 

in the hydro-climate across this watershed. Elevated chlorophyll-a concentrations were found at 

both sites in Beaver Lake, and the site near a drinking water intake exhibited increases in total N 

and chlorophyll-a from 2001 to 2015. It will be important for future studies to use long-term data 
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of the inflows to understand processes driving nutrient loadings and determine whether persistent 

trends exist in the data.  
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