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Abstract 

Two primary methods of stream water sampling, the U.S. Geologic Survey (USGS) equal-

width increment (EWI) and point samples (PS) from vertical centroid of flow (VCF) were 

compared at three river sites, the White River near Fayetteville, Richland Creek at Goshen, and 

War Eagle Creek near Hindsville. A little over three years of concentration data, which was 

paired with corresponding instantaneous discharge values (http://ar.water.usgs.gov/), was 

gathered separately at each site by the Arkansas Water Resource Center (AWRC) and the United 

States Geological Survey (USGS). The purpose of this study was to evaluate how concentration 

is related to discharge when water samples are collected by the two different sampling methods. 

The measured constituents included nitrate-nitrogen (NO3-N), dissolved orthophosphorus 

(soluble reactive phosphorus, SRP), total phosphorus (TP), total nitrogen (TN), and suspended 

sediment (TSS). A three step process was used to analyze the concentration-discharge 

relationships: (1) simple linear regression comparison, (2) LOESS residual t-test, and (3) split 

base and storm flow linear regression comparisons. In addition, an estimation of mean 

constituent loads and corresponding 95
th

 confidence intervals were calculated using LOAD 

ESTimator (LOADEST, USGS). In general, PS samples provided results similar to the more 

rigorous and expensive EWI method. TSS and TN concentrations were significantly lower 

during storm flow at the White River and War Eagle Creek; however, SRP concentrations 

gathered by PS sampling method were greater during storm flow at the same two rivers. TP was 

significantly greater for the PS method during base flow at multiple sites, and combined with 

SRP results, was most likely due to seasonal variation not captured by the EWI method. 

Interestingly, no significant differences between methods were shown at Richland Creek for split 

flow regression comparison. NO3-N was not significantly different between sampling methods at 

any of the three sites. While both methods provide similar results under certain conditions, 



research goals and sampling method limitations must be full understood in order to obtain 

accurate measurements.  
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Introduction  

Watershed management is essential to sustaining valuable water resources; in particular, 

Beaver Lake watershed services a growing population in Northwest Arkansas, and development 

along primary tributaries that run in to Beaver Lake are constantly changing point and non-point 

source inputs (Haggard et al. 2003). Catchment land use has been shown to affect nutrient 

concentrations and loads in streams during seasonal base flow and storm flows across the United 

States (Beaulac and Reckhow, 1982; McFarland and Hauck, 1999; Haggard et al., 2003). An 

accurate measurement of nutrient and sediment concentrations entering in from the watershed via 

streams to Beaver Lake allows for the representative nutrient transport and loads to be measured.  

Water quality in streams is commonly analyzed by the chemical analysis of water samples 

collected to represent a body of water; however, a more precise view of total stream constituent 

concentrations can only be determined if a representative measurement is taken from the stream. 

Increasing the accuracy of constituent concentrations in water samples typically comes at a cost 

and the pressure between these two sides play an increasingly important role for researchers and 

watershed managers who need reliable information that stays within the budgets of their funding. 

There are two commonly used methods for stream sampling each with its own advantages and 

disadvantages (Hallock 2005). 

The United States Geological Survey (USGS) developed the equal width increment (EWI) 

sampling method in the 1970’s as an accurate technique for estimating constituents that may not 

be homogenous throughout the water column (USGS 2006). Though, due to many stipulations in 

the methods, funding, and inaccessible bridge access, many research labs opt out of the EWI for 

the less demanding grab sample (point sample, PS) method of sampling water (Hallock 2005). 

Some have objected that the extra cost of using the EWI method cannot be justified by the little 
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difference in improved accuracy for particular constituents. Comparison studies between the two 

methods have been completed in several different locations with varying trends of stream 

concentration representation. 

Numerous papers have reported similar findings on differences between EWI and PS 

sampling methods. Constituents such as total phosphorus (TP) and suspended solids (total 

suspended solids, TSS from here on out) that are not homogenously distributed throughout the 

water column were under-represented in the PS sampling method (Martin, 1992; Lietz, 1999; 

Ging, 2003); TSS and TP are vertically and horizontally distributed because TSS consists of 

different sized and density materials while fluvial velocities vary in the cross section (Horowitz, 

2013). However, these same sites had relatively small sample sizes for each site location within 

the study (observations ≤ 21).  On the other hand, no differences were found in the nitrogen 

concentration results. In a study by Kammerer (1998), significant differences between methods 

were shown in suspended sediment; moreover, orthophosphate (SRP from here on out) was 

significantly different while TP was not. This study showed that variability was not as great of a 

factor between EWI and PS sampling methods, but rather with-in laboratory variability was 

significantly different. Kammerer showed that the reliable but costly EWI water sampling 

method may not be as representative of stream constituent concentrations as previously thought 

simply due to the lab error. Other factors can influence differences between integrated and grab 

sample methods.   

According to Harmel (2010), integrated samples along the cross-section of the stream better 

represents within-channel variability, but this procedure does not capture temporal variability 

unless it is repeated during each high flow (storm) event. Seasonality affects the bioavailability 

of the dissolved constituents of TN and TP, NO3-N and SRP, making it more difficult to measure 
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long-term trends in concentrations when the EWI sampling method is used ten times a year at 

one site. The PS sampling method may not represent the concentration across the entire cross 

section of the stream, but major seasonal trends can be seen when weekly water samples with 

storm chasing samples are gathered. 

The objective of this study was to evaluate how concentration is related to discharge when 

water samples are collected by the two different sampling methods (EWI and PS). Five 

constituents (TN, NO3, TP, SRP, TSS) were sampled by both methods and analyzed across three 

streams in the Beaver Lake watershed. A progression of analysis was used to describe 

differences in the constituent concentrations between the two sampling methods, including (1) 

comparison of slope and intercept from log-log regressions, (2) comparison of residuals from 

LOESS, and (3) then comparison of regression during base flow and storm event conditions. 

Varying investigative techniques into the concentration-discharge relationship allowed for an 

appropriate interpretation of trends in the constituents. This analysis helped evaluate how each 

sampling method represents the stream concentrations, seasonal variation, differences between 

streams, and the potential benefits of either sampling method for short or long-term studies.  

Methods 

Study Site Description 

The Beaver Lake Watershed, situated in the Ozark Mountains, is the water supply for 

approximately 350,000 people and various industries in northwest Arkansas. There are several 

water districts pulling raw water from Beaver Lake, including Beaver Water District, Benton-

Washington Regional Public Water Authority, Carroll Boone Water District, and Madison 

County Regional Water District. This watershed and Beaver Lake are regionally important, 
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providing mainly water supply, flood control (via the U.S. Army Corps of Engineers), and 

recreational opportunities. The reservoir has been the focus of various limnological 

investigations and hydrodynamic-water-quality models (e.g., Haggard et al., 1999; Haggard and 

Green, 2002; Galloway and Green, 2007; De Lanois and Green, 2011; Sen et al., 2007). The 

streams and rivers draining the watershed have also been the focus of investigations on nutrient 

transport, the influence of municipal effluent discharge, and the effects of land use on stream 

sediment and water nutrients (e.g., Haggard et al., 2003; Migliaccio et al, 2007; Hufhines et al., 

2011; Giovannetti et al., 2013; Chaubey et al., 2005; Leh and Bajwa, 2007).  

Three stream sites were selected in the Beaver Lake Watershed including these three sites, 

the White River near Fayetteville (USGS station 07048600), Richland Creek at Goshen (USGS 

station 07048800), and War Eagle Creek near Hindsville (USGS station 07049000). These three 

sites drain the majority of the catchment area (70%) in the Beaver Lake Watershed (~2,080 km
2
, 

Figure 1). The White River has the largest drainage basin (1,040 km
2
) followed by War Eagle 

Creek (681 km
2
) and finally Richland Creek (357 km

2
).  The three streams are monitored and 

updated on-line every 15 minutes for stream discharge (cfs) to the USGS web site 

(http://ar.water.usgs.gov/). These streams have been monitored for constituent concentrations for 

the last decade or longer by two organizations, the USGS Arkansas Water Science Center and 

the Arkansas Water Resources Center (AWRC) within the University of Arkansas 

System.  Since 2009, these two organizations have been collecting water samples using two 

different protocols from the bridges crossing these three rivers.  

 

http://ar.water.usgs.gov/
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Figure 1- Location of study sites in Beaver Lake Watershed  
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 Water Sample Collection and Analysis 

Arkansas Water Resources Center 

Since 2009, the AWRC has been collecting grab or point samples from the bridges spanning 

these rivers at the vertical centroid of flow (VCF).  Point sampling or samples (PS) is a common 

method performed by hand with a bottle submerged in wadeable streams or using an alpha 

sampler (for example) to collect a water sample from a single point just under the water surface 

where water is actively moving and likely well-mixed.  Water samples have been collected 

approximately 46 times per year at these three streams during base flow conditions, as well as 

targeting the peak of the storm event hydrograph during select events.  The target has been 

having approximately 25 percent of collected water samples be during storm events, which 

varies annually depending upon precipitation frequency and intensity.  Water was collected using 

an alpha sampler from the VCF and then immediately chilled in an ice-chest. 

The water samples are transported back to the AWRC Water Quality Lab, which is certified 

by the Arkansas Department of Environmental Quality. Water samples are split, filtered, 

preserved and stored following the lab’s quality assurance plan, and then analyzed for soluble 

reactive P (SRP), total P (TP), nitrate-N (NO3-N), total N, and total suspended solids within 

appropriate holding times.  The analytical procedures follow standard methods for the analysis of 

water samples, and the details can be found at http://www.uark.edu/depts/awrc/ 

waterqualitylab.html.  In summary, unfiltered water was digested using the autoclave persulfate 

method (APHA 4500P), and then TP was analyzed using the ascorbic acid method on a 

spectrophotometer (EPA 365.2, Beckman Coulter Model DU 720) and TN using cadmium 

copper reduction on a Lachet 8500 or Skalar San Plus auto-analyzer (APHA 4500 PJ).  NO3-N 

was analyzed using ion chromatography on unfiltered raw samples (EPA 300.0, Dionex ICS 

http://www.uark.edu/depts/awrc/
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1600). The ascorbic acid method (EPA 365.2) was used to determine the SRP on acidified, 

filtered (0.45 µm) water samples. TSS was analyzed on raw water samples using a 1.5 micron 

glass fiber filters (934-AH filter) and weighed to determine the concentration (EPA 160.2). 

U.S. Geologic Survey 

The USGS collects water samples from these three streams using the EWI sampling method, 

which requires the cross-section of the stream to be split into an equal number of verticals 

(usually a minimum of 10 and a maximum of 20 increments).  The vertical samples across the 

cross section are split using a churn to produce a composite water sample, representing the cross 

section.  At low base flow where the sampler cannot be fully submerged, a representative sample 

may be taken with a handheld bottle at the VCF.  During high-flow events, a reduced number of 

verticals are necessary due to rapidly changing stage and the ability to collect a larger number of 

samples from multiple locations (USGS, 2006).  

The USGS Arkansas Water Science Center mails the composite samples to the USGS 

National Water Quality Laboratory (http://nwql.usgs.gov/). The water quality data was retrieved 

from the USGS National Water Information System (NWIS), and the parameters of interest 

included Ortho-P (USGS parameter code 00671), TP (parameter code 00665), NO3-N (parameter 

code 00618), TN (parameter code 00600), and SSC (parameter code 80154).  These parameters 

codes were selected because these most closely match the data collected by the AWRC, although 

there are some slight differences in analytical techniques.  For example, the AWRC measures 

SRP whereas the USGS NWQL measures ortho-phosphate (PO4-P), and PO4-P is a component 

of SRP.  Furthermore, the USGS NWQL also measures SSC whereas the AWRC measures 

TSS.  Despite, the slight analytical differences these data were compared directly against each 

other in the following data analysis. 
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Data Analysis 

Concentration data (TN, NO3-N, SRP, TP, and TSS) from the AWRC and USGS were paired 

with corresponding 15-minute increment discharge values gathered from USGS discharge 

monitoring stations. Due to the large range in magnitudes, all of the data including 

concentrations and discharge were natural log-transformed; log transformations are commonly 

used when viewing and analyzing water quality data (Hirsch, Alexander, and Smith, 1991). The 

log-transformed concentration (mg/L) and discharge (cfs) were the basis of the various statistical 

comparisons used to compare sampling methods (Figure 2A).  

The first step was to compare concentration collected by the two sampling methods (PS and 

EWI) with discharge using linear regression (least squares) and log-transformed data (Figure 

2B). The slopes and intercepts of the two regression lines were compared (Statistix 9.0, 

Tallahassee, FL) to evaluate whether the sampling method had a significant influence on the 

relation between concentration and discharge. Analysis of covariance was used to evaluate if the 

concentrations from either method were equal across similar discharge ranges. An alpha (α) of 

0.05 was used for these statistic comparisons and all subsequent tests. However, this assumes 

that the change in concentration with discharge is linear and several studies have shown that this 

relation is non-linear (Lettenmaier, 1976; Hirsch et al., 1982; Helsel and Hirsch, 2002). 

Since concentration-discharge relations are often not linear, locally weighted scatterplot 

smoothing (LOESS) was used to estimate this curve (Systat Software, Inc., San Jose, CA) 

(Figure 2C). This process requires that a smoothing factor (f) be defined, which was set at 0.5 (f 

= 0.5) in Sigmaplot. Bekele and McFarland (2004) suggested that the default value (f = 0.5) was 

adequate for reducing variability in constituent concentrations due to flow; this was also verified 

by incrementally increasing  f  in this study (data not shown). Sigmaplot also allows for the 
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polynomial degree and rejection of outliers, where this study used a degree of one and did not 

reject outliers. The residuals from the LOESS line are often used as flow adjusted concentrations 

in trend analysis (White et al., 2004; Scott et al., 2011). Assuming equal variance, the residuals 

were compared in this study using a t-test to determine if there was a difference between 

sampling methods (EWI and PS). The t-test assumed normal distributions, which was often not 

met based on the Shapiro-Wilk statistic (p<0.05). When the normal distribution was not met, a 

non-parametric procedure (Wilcoxin-Mann Whitney rank sum test) was used to determine if the 

residuals from the two sampling methods were different. In addition, the line produced by the 

LOESS smoothing suggested a change in the curve where base flow shifted to storm event 

conditions.   

 Stream water quality can be influenced differently at base and storm flow conditions by 

natural or anthropogenic point and nonpoint source pollutions (White et al., 2004). Therefore, 

separate linear regression (least squares) analysis was used to compare concentrations at different 

flow regimes. The breakpoint between the two flow conditions was determined from the LOESS 

curve, where an obvious shift in the concentration-discharge trend occurred (Figure 2D). The 

slopes and intercepts of the two regression lines for both base flow and storm event conditions 

were compared (Statistix 9.0) to determine differences between sampling methods.  
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Figure 2- Steps of data analysis performed on concentration-discharge data. 

  

For the stream discharge and constituent concentrations, an estimation of constituent loads 

was developed using LOAD ESTimator (LOADEST, USGS). Mean load estimates and 95 

percent confidence intervals (kg/d) were developed using the adjusted maximum likelihood 

estimation (AMLE), which is appropriate when the data set contains censored data. Regression 

models 1 and 4 were performed in LOADEST for each data set in order to determine constituent 
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loads as a result of a  linear relationship (model 1) or seasonal factors (model 4) in the discharge-

concentration relationship.  

Results  

Richland Creek 

Sample Count and Discharge  

 A total of 30 EWI samples were collected by the USGS, whereas 136 water samples were 

collected by the AWRC during the study period. Discharge was not available from October 2009 

to June 2010 from the USGS online database, resulting in the least number of paired 

observations (concentration and discharge) at Richland Creek relative to the other two study 

sites. The instantaneous discharge (Qi, ft
3
/s) ranged from <1 to 3,930 ft

3
/s associated with water 

samples collected by the AWRC, and the range (<1 – 3,920 ft
3
/s) was similar for the EWI 

samples. Interestingly, the highest flow sampled by both agencies was taken 15 minutes apart on 

March 20, 2012. The AWRC collected 60% of the water samples during base flow conditions, 

whereas only 40% of the EWI samples were collected base flow, showing that storm events were 

adequately samples by both agencies.   

Nitrogen (Total and Nitrate) 

The mean and standard deviation for TN and NO3-N concentrations (mg/L) were 

comparable between sampling methods. For TN, the mean concentration in EWI and PS water 

samples were 1.442 and 1.107 mg/L, and standard deviations were 0.882 and 0.763, respectively. 

Mean NO3-N concentration in EWI and PS water samples was 0.849 and 0.891 mg/L, and 

standard deviations were 0.658 and 0.733, respectively. Nitrogen concentrations generally 
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increased with increasing discharge across both sampling methods and the range of flow sampled 

(Table 1). 

For the two sampling methods, discharge (Qi) explained greater than 40% of the 

variability in nitrogen concentrations (log-transformed, linear regression, P<0.01).  The slope 

and intercepts of the linear regressions for TN, NO3-N and Qi were not significantly different 

(P>0.05) between the data collected by each sampling method (Table 1).  However, a clear 

pattern in the residuals existed suggesting that the increase in concentration with increasing 

discharge was not necessarily monotonic.    

Locally weighted scatterplot smoothing (LOESS) was used to define the non-linear 

relation between log-transformed nitrogen concentrations and discharge, showing that 

concentrations increased at low flow and then tended to level off at higher flows. The mean of 

the residuals from LOESS were not significantly different between the sampling methods for TN 

(t-test, P=0.20) or NO3-N (P=0.74); however, the residuals failed the Shapiro-Wilk normality test 

(SWNT, P<0.05).  The residuals were also compared non-parametrically, showing that the means 

were not significantly different for TN (P=0.10) or NO3-N (P=0.58).  The LOESS smoothing line 

followed an s-curve relationship with the greatest increase in concentration occurring between <1 

and 37 (ft
3
/s) before plateauing at high discharges. LOESS regression curve of NO3-N 

concentrations was similar in manner to the curve of TN, yet the regression curve began to 

decrease linearly at high discharge. 

The mid-point of the LOESS curve (37 ft
3
/s) was chosen as the breakpoint to separate the 

nitrogen concentrations into that from seasonal base flow conditions and high flow events (i.e., 

storm flow).  Linear regressions between log-transformed nitrogen concentrations and discharge 

were significant (P≤0.01) during base flow conditions, where discharge explained 33% or more 
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of the variability in nitrogen concentrations (Table 1).  The slopes and intercepts of the linear 

regressions using nitrogen concentrations during base flow conditions were not significantly 

different (P≥0.26).  The linear regressions of log-transformed data during high flow conditions 

were significant for NO3-N (P≤0.01) across the sampling methods (Table 1), but not for TN 

(P≥0.52).  The slopes and elevations for the linear regressions during high flow were not 

significantly different for either sampling method (P≥0.07).  

Phosphorus (Total and SRP) 

The mean and standard deviation for phosphorus concentrations (mg/L) were numerically 

different between constituents (SRP and TP) and sampling methods (EWI and PS).  For TP, the 

mean concentration in EWI and PS water samples were 0.139 and 0.319 mg/L, and standard 

deviations were 0.181 and 1.045, respectively. Mean SRP concentration in EWI and PS water 

samples was 0.027 and 0.014 mg/L, and standard deviations were 0.050 and 0.027, respectively. 

The mean concentrations (and standard deviation) were numerically greater for TP for the PS 

sampling method, but less for SRP.  However, phosphorus concentrations generally increased 

with increasing discharge across both sampling methods and the range of flow sampled (Table 

2). 

For the two sampling methods, discharge (Qi) explained greater than 31% of the variability 

in phosphorus concentrations (log-transformed, linear regression, P<0.01).  The slope and 

intercepts of the linear regressions for TP, SRP and Qi were not significantly different (P>0.06) 

between the data collected by each sampling method (Table 2).  A distinct pattern in the 

residuals existed showing that the increase in concentration with increasing discharge was not 

necessarily a straight line, especially for the concentrations from the PS sampling method which 

had over four times the number of samples. 
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LOESS was used to define the non-linear relation between log-transformed phosphorus 

concentrations and discharge, displaying that concentrations stayed level at low flow and then 

increased at higher flows. The mean of the residuals from LOESS were not significantly 

different between the sampling methods for SRP (t-test, P=0.53), whereas the residuals for TP 

were significantly different (P=0.04).  However, the residuals failed the test for normality 

(SWNT, P<0.05), and the non-parametric comparison also showed that the residuals were not 

significantly different between sampling methods for SRP (P=0.83) but were significantly 

different for TP (P=0.03).  The residuals for TP concentrations were greater for the PS sampling 

method (0.07) relative to the concentrations measured via the EWI sampling method (-0.44).  

The LOESS smoothing line showed that concentrations tended to decrease slightly during low 

flow conditions, and then the greatest increase in concentrations occurred after 37 and 20 ft
3
/s for 

SRP and TP, respectively. The LOESS curve of SRP concentrations was similar to the curve of 

TP, yet neither curve was linear at low flows. 

The mid-point of the LOESS curve for SRP and TP (37 and 20 ft
3
/s, respectively) was 

chosen as the breakpoint to separate the phosphorus concentrations into that from base flow 

conditions and high flow events. During base flow conditions, linear regressions between log-

transformed TP concentrations and discharge were significant (P≤0.01) for PS water samples but 

not EWI water samples (P=0.42). In contrast, SRP concentrations did not increase linearly with 

base flow discharge for either sampling method (log-transformed data, linear regression, 

P>0.92).  However, discharge only explained 5% of the variability in TP concentrations during 

base flow conditions (Table 2).  The slopes and intercepts of the linear regressions between 

phosphorus concentrations and base flow discharge were not significantly different (P≥0.14).  

The linear regressions of log-transformed data during high flow conditions were significant for 
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phosphorus concentrations (P<0.01) across the sampling methods (Table 2).  The slopes and 

elevations for the linear regressions during high flow were not significantly different between the 

sampling methods (P≥0.14).  

Total Suspended Solids 

The mean and standard deviation for TSS concentrations (mg/L) were numerically greater for 

the EWI sampling method when compared to the PS method. The mean concentration in EWI 

and PS water samples were 141 and 34 mg/L, and standard deviations were 215 and 89, 

respectively. Similar to other constituents, TSS concentrations generally increased with 

increasing discharge across both sampling methods and the range of flow sampled (Table 3). 

For the two sampling methods, discharge (Qi) explained greater than 40% of the variability in 

suspended solids concentrations (log-transformed, linear regression, P<0.01).  The slope of the 

linear regression for TSS and Qi was not significantly different (P=0.18) between the data 

collected by each sampling method, however the elevation of the linear regression was 

significant (P<0.01) (Table 3); the elevation of the linear regression for TSS and Qi was greater 

for the EWI sampling method (0.24) relative to the elevation of the PS sampling method (-0.23). 

Although the two sampling methods (EWI and PS) showed differences in the elevation of the 

linear regression, a distinct pattern in the residuals existed displaying that the increase in 

concentration with increasing discharge was not necessarily linear, especially for the data rich PS 

sampling method. 

LOESS was used to define the non-linear relation between log-transformed TSS 

concentrations and discharge, showing that concentrations stayed relatively level at low flow and 

increased at higher flows. The mean of the residuals from LOESS were significantly different 

between the sampling methods for TSS (t-test, P=0.02), and the residuals passed the test for 
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normality (SWNT, P=0.51). The residuals for TSS concentrations were greater for the EWI 

sampling method (0.35) relative to the concentrations measured via the PS sampling method (-

0.16). The LOESS smoothing line showed that concentrations tended to decrease slightly during 

low flow conditions, and then the greatest increase in concentrations occurred after 53 ft
3
/s.  

The mid-point of the LOESS curve (53 ft
3
/s) was chosen as the breakpoint to separate the 

suspended solid concentrations into that from low flow conditions and high flow events. During 

base flow conditions, linear regression between log-transformed TSS concentrations and 

discharge was significant (P=0.05) for PS water samples but not EWI water samples (P=0.35); 

however, discharge only explained 2% of the variability in TSS concentrations during base flow 

conditions (Table 3).  The slopes and intercepts of the linear regressions between TSS 

concentrations and base flow discharge were not significantly different (P≥0.14).  The linear 

regressions of log-transformed data during high flow conditions were significant for TSS 

(P<0.01) across the sampling methods, where discharge explained 68% of the variability in 

suspended solid concentrations during storm flow (Table 3). The slopes and elevations for the 

linear regressions during high flow were not significantly different between the sampling 

methods (P≥0.11). 

Loads (LOADEST) 

The mean annual discharge through the study period (2009-2013) was 169 ft
3
/s. Previous 

studies that conducted load estimations (1999-2008) showed similar average discharge of 176 

ft
3
/s (Bolyard et al, 2010). 

 TN mean load estimates ranged from 500 to 550 kg/d for both models and sampling methods 

(Table 10,11). An earlier USGS study (Bolyard et al, 2010) calculated a mean load of 600 kg/d, 

which was within the 95
th

 confidence intervals (350-680 kg/d) of both models and sampling 



17 

 

methods. Nitrate mean load estimates  made up greater than 69% of TN load estimates from the 

EWI sampling method, while Nitrate load estimates from PS method were slightly greater than 

TN load estimates. Nitrate mean load estimates ranged between models from 410 to 440 kg/d for 

the PS method and 600 to 800 kg/d for the EWI method (Table 10,11). The previous value from 

a USGS study (630 kg/d) fell within the 95
th

 confidence intervals (320-840 kg/d) for all models 

and sampling methods (Bolyard et al, 2010). 

Mean load estimates for TP were 60 kg/d for both models for the EWI sampling method and 

ranged from 70 to 130 kg/d for the PS method. A previous study by Bolyard et al (2010) 

calculated a mean load estimate of 25 kg/d, which was less than half the lower mean load 

estimates of this study; however, the 95
th

 confidence intervals (18-140 kg/d) from both models 

and sampling methods were within the range (Table 10,11). SRP mean load estimates made up 

less than 13% of the TP load estimates for both sampling methods and models. Mean load 

estimates ranged from 7 to 8 kg/d for both sampling methods and models. The USGS value 

provided by Bolyard et al (2010) (6 kg/d) was within the 95
th

 confidence intervals (4-14 kg/d) for 

both models and sampling methods (Table 10,11). 

Mean load estimates for TSS were between 20,000 and 26,000 kg/d for the PS method, while 

the EWI method was 70,000 for both models. Both models and sampling methods 95
th

 

confidence intervals (8,700-80,000) were within the USGS previous study value 26,767 kg/d 

(Bolyard et al 2010) (Table 10,11).  
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      Table 1- Results from linear regression and comparison of slope and elevation for 

nitrogen concentrations between samples collected using equal width increment (EWI) and 

single points (PS) from Richland Creek. 
 

 

 Total Nitrogen  (TN) Nitrate  (NO3-N) 

 EWI PS P-value 

(comparison) 

EWI PS P-value 

(comparison) 

All Data        

Observations
 30 134  30 136  

R
2
 0.705 0.475  0.424 0.410  

P-value (regression) <0.001 <0.001  <0.001 <0.001  

Slope (mg/L) 0.255 0.259 0.932 0.333 0.393 0.468 

Elevation (mg/L) -1.022 -1.041 0.977 -2.179 -1.998 0.053 

Base Flow Data       

Observations 12 79  12 80  

R
2
 0.479 0.333  0.670 0.500  

P-value (regression) 0.013 <0.001  0.001 <0.001  

Slope (mg/L) 0.431 0.398 0.860 1.251 0.907 0.258 

Elevation (mg/L) -1.288 -1.308 0.750 -3.405 -2.876 0.845 

Storm Flow Data       

Observations 18 55  18 56  

R
2
 0.026 0.004  0.439 0.111  

P-value (regression) 0.521 0.655  0.003 0.0112  

Slope (mg/L) 0.048 0.019 0.747 -0.309 -0.128 0.094 

Elevation (mg/L) 0.332 0.318 0.074 1.982 0.878 0.797 
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      Table 2 - Results from linear regression and comparison of slope and elevation for 

phosphorus concentrations between samples collected using equal width increment (EWI) and 

single points (PS) from Richland Creek. 
 

 Phosphate  (SRP) Total Phosphorus  (TP) 

 
EWI PS 

P-value 

(comparison) 
EWI PS 

P-value 

(comparison) 

All Data        

Observations
 

30 135  30 132  

R
2
 0.623 0.438  0.686 0.319  

P-value (regression) <0.001 <0.001  <0.001 <0.001  

Slope (mg/L) 0.350 0.363 0.849 0.499 0.449 0.639 

Elevation (mg/L) -5.999 -6.399 0.0631 -5.321 -4.892 0.438 

Base Flow Data       

Observations 12 79  12 78  

R
2
 0.0012 5E-05  0.0081 0.0548  

P-value (regression) 0.915 0.952  0.419 0.006  

Slope (mg/L) 0.00269 0.00459 0.993 0.0480 -0.180 0.350 

Elevation (mg/L) -5.488 -5.787 0.200 -4.624 -3.923 0.139 

Storm Flow Data       

Observations 18 56  18 54  

R
2
 0.503 0.531  0.694 0.228  

P-value (regression) 0.001 <0.001  <0.001 <0.001  

Slope (mg/L) 0.722 0.719 0.988 1.070 0.761 0.427 

Elevation (mg/L) -8.438 -8.363 0.820 -9.067 -6.450 0.143 
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Table 3 - Results from linear regression and comparison of slope and elevation for total 

suspended solids concentrations between samples collected using equal width increment (EWI) 

and single points (PS) from Richland Creek. 
 

 Total Suspended Solid (TSS) 

 EWI PS 
P-value 

(comparison) 

All data    

Observations
 29 136  

R
2
 0.710 0.405  

P-value (regression) <0.001 <0.001  

Slope (mg/L) 0.667 0.524 0.187 

Elevation (mg/L) 0.235 -0.231 <0.001 

Base Flow Data    

Observations 13 88  

R
2
 0.020 .008  

P-value (regression) 0.354 0.045  

Slope (mg/L) 0.104 -0.080 0.477 

Elevation (mg/L) 1.083 0.889 0.139 

Storm Flow Data    

Observations 16 48  

R
2
 0.679 0.739  

P-value (regression) <0.001 <0.001  

Slope (mg/L) 1.446 1.566 0.701 

Elevation (mg/L) -4.955 -6.255 0.110 
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White River  

Sample Count and Discharge  

 A total of 42 EWI samples were collected by the USGS, whereas 217 water samples were 

collected by the AWRC during the study period. The instantaneous discharge (Qi, ft
3
/s) ranged 

from <1 to 35,300 ft
3
/s associated with water sample collected by the AWRC, and the range (<1 

– 22,800 ft
3
/s) was collected for the EWI samples. The AWRC collected 65% of the water 

samples during base flow conditions, whereas only 40% of the EWI samples were collected 

during base flow, suggesting that storm events were adequately samples by both agencies.   

Nitrogen (Total and Nitrate) 

The mean and standard deviation for NO3-N concentrations (mg/L) were comparable 

between sampling methods (EWI and PS), but the mean and standard deviation of TN 

concentrations were numerically greater for the EWI sampling method when compared to the PS 

method. For TN, the mean concentration in EWI and PS water samples were 0.953 and 0.645 

mg/L, and standard deviations were 0.480 and 0.352, respectively. Mean NO3-N concentration in 

EWI and PS water samples was 0.413 and 0.394 mg/L, and standard deviations were 0.261 and 

0.293, respectively. Nitrogen concentrations generally increased with increasing discharge across 

both sampling methods and the range of flow sampled (Table 4). 

For the two sampling methods, discharge (Qi) explained greater than 24% of the 

variability in nitrogen concentrations (log-transformed, linear regression, P<0.01).  The slope 

and intercepts of the linear regressions for NO3-N and Qi were not significantly different 

(P>0.38) between the data collected by each sampling method, whereas TN and Qi were 

significantly different (P<0.02) (Table 4). The slope and intercepts of the linear regressions for 

TN and Qi were greater for the EWI sampling method (0.14 and -0.95) relative to the PS method 
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(0.08 and -0.95, respectively). A clear pattern in the residuals existed suggesting that the increase 

in concentration with increasing discharge was not necessarily monotonic.    

LOESS was used to define the non-linear relation between log-transformed nitrogen 

concentrations and discharge, showing that TN concentrations increased at low flow and then 

tended to level off at higher flows; however, NO3-N concentrations increased over the range of 

discharge. The mean of the residuals from LOESS were not significantly different between the 

sampling methods for TN (t-test, P=0.09) or NO3-N (P=0.94). Yet, the residuals failed the test 

for normality (SWNT, P<0.05), and the non-parametric comparison also showed that the 

residuals were not significantly different between sampling methods for NO3-N (P=0.99) but 

were significantly different for TN (P≤0.01). The residuals for TN concentrations were greater 

for the EWI sampling method (0.23) relative to the concentrations measured via the PS sampling 

method (-0.08). The LOESS smoothing line described different non-linear relationships between 

TN and NO3-N with the greatest increase in concentration for NO3-N occurring before 500 ft
3
/s, 

while TN concentration increased the greatest after 500 ft
3
/s.  

The mid-point of the LOESS curve (500 ft
3
/s) was chosen as the breakpoint to separate 

the nitrogen concentrations into that from base flow conditions and high flow events. During 

base flow conditions, linear regressions between log-transformed nitrogen concentrations and 

discharge were significant (P≤0.02), where discharge explained 33% of the variability in 

nitrogen concentrations from the EWI sampling method; however, discharge explained only 6% 

of the variability from the PS sampling method, but the PS sampling method had over eight 

times the number of samples (Table 4). The slopes and intercepts of the linear regressions 

between nitrogen concentrations and base flow discharge were not significantly different 

(P≥0.16).  The linear regressions of log-transformed data during high flow conditions were 
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significant for TN concentrations (P<0.01) across the sampling methods but not for NO3-N 

concentrations (P≥0.06) (Table 4).  The slopes and elevations for the linear regressions during 

high flow were not significantly different in between the sampling methods for NO3-N (P≥0.39), 

but elevation was significantly different for TN (P<0.01). The intercept of the linear regression 

during high flow for TN was greater for the PS sampling method (-1.25) relative to the EWI 

method (-1.35). 

Phosphorus (Total and SRP) 

The mean and standard deviation for phosphorus concentrations (mg/L) were numerically 

different between constituents (SRP and TP) and sampling methods (EWI and PS). For TP, the 

mean concentration in EWI and PS water samples were 0.128 and 0.087 mg/L, and standard 

deviations were 0.153 and 0.152, respectively. Mean SRP concentration in EWI and PS water 

samples were 0.013 and 0.008 mg/L, and standard deviations were 0.016 and 0.011, respectively. 

The mean concentrations were numerically greater for phosphorus for the EWI sampling 

method, whereas standard deviations were relatively similar. Phosphorus concentrations 

generally increased across the range of sampled flow for both sampling methods (Table 5). 

For the two sampling methods, Qi explained greater than 18% of the variability in 

phosphorus concentrations (log-transformed, linear regression, P<0.01).  The slope of the linear 

regressions for SRP and Qi was not significantly different (P=0.88) between the data collected 

by each sampling method, but the elevation was significantly different (P<0.01). The elevation of 

the linear regressions for TP and Qi was not significantly different (P=0.13) between sampling 

methods, but the slope was significantly (P=0.05) greater for the EWI sampling method (0.26) 

due to the much larger sample size taken at base flow by the PS method (0.17) (Table 5). The 

elevation of the linear regression for SRP was greater for the EWI sampling (-5.61), because the 
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PS sampling method (-6.13) contained more samples at the lower limits of detection. A distinct 

pattern in the residuals existed showing that the increase in concentration with increasing 

discharge was not necessarily linear.    

LOESS was used to define the non-linear relation between log-transformed phosphorus 

concentrations and discharge, showing that concentrations stayed level at low flow and then 

increased at higher flows. The mean of the residuals from LOESS were not significantly 

different between the sampling methods for SRP (t-test, P=0.07) or TP (P=0.94). However, the 

residuals failed the test for normality (SWNT, P<0.05), and the non-parametric comparison also 

showed that the residuals were not significantly different for SRP (P=0.20) or TP (P=0.22).  The 

LOESS smoothing line showed that concentrations tended to stay level during low flow 

conditions, and then the greatest increase in phosphorus concentrations occurred after 500 ft
3
/s. 

The LOESS curve of SRP concentrations was similar to the curve of TP, yet neither curve was 

linear at low flows. 

The mid-point of the LOESS curve (500 ft3/s) was chosen as the breakpoint to separate the 

phosphorus concentrations into that from base flow conditions and high flow events.  During 

base flow conditions, linear regressions between log-transformed phosphorus concentrations and 

discharge were not significant (P≥0.17), where discharge explained 5% of the variability in 

phosphorus concentrations (Table 5). The slopes and intercepts of the linear regressions between 

TP concentrations and base flow conditions were not significantly different (P≥0.10); however, 

the intercepts of the linear regressions between SRP and base flow were significantly different 

(P=0.05), while the slopes were not significantly different (P=1.0).  The intercept of the linear 

regression for SRP during low flow was greater for the EWI method (-5.27) relative to the 

elevation for the PS method (-5.66). The linear regressions of log-transformed data during high 
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flow conditions were significant for phosphorus concentrations (P≤0.02) across the sampling 

methods, where discharge explained 23% of the variability in phosphorus (Table 5).  The slopes 

and intercepts for the linear regressions during high flow were not significantly different for the 

TP sampling method (P≥0.12) or the elevation for the SRP method (P=0.56).  However, the 

slope of the linear regression for SRP during high flow was significantly (P=0.02) greater for the 

PS method (0.70) relative to the slope for the EWI method (0.34). 

Total Suspended Solids 

The mean and standard deviation for TSS concentrations (mg/L) were numerically greater for 

the EWI sampling method when compared to the PS method. The mean concentration in EWI 

and PS water samples were 90 and 38 mg/L, and standard deviations were 118 and 85, 

respectively. However, TSS concentrations generally increased with increasing discharge across 

both sampling methods and the range of flow sampled (Table 6). 

For the two sampling methods, discharge (Qi) explained greater than 46% of the variability in 

suspended solids concentrations (log-transformed, linear regression, P<0.01).  The slope of the 

linear regression for TSS and Qi was not significantly different (P=0.10) between the data 

collected by each sampling method, however the elevation was significantly different (P<0.01) 

(Table 6); the elevation of the linear regression for TSS and Qi was greater for the EWI sampling 

method (1.04) relative to the elevation of the PS sampling method (0.89). A distinct pattern in 

the residuals existed displaying that the increase in concentration with increasing discharge was 

not necessarily linear, especially for the PS sampling method. 

LOESS was used to define the non-linear relation between log-transformed total suspended 

solids concentrations and discharge, showing that concentrations stayed relatively level at low 

flow and increased at higher flows. The mean of the residuals from LOESS were significantly 
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different between the sampling methods for TSS (t-test, P=0.02); however, the residuals failed 

the test for normality (SWNT, P<0.05), and the non-parametric comparison also showed that the 

residuals were significantly different between sampling methods for TSS (P<0.01). The residuals 

for TSS concentrations were greater for the EWI sampling method (0.20) relative to the 

concentrations measured via the PS sampling method (-0.22). The LOESS smoothing line 

showed that concentrations stayed relatively constant during low flow conditions, and then the 

greatest increase in concentrations occurred after 500 ft
3
/s.  

The mid-point of the LOESS curve (500 ft
3
/s) was chosen as the breakpoint to separate TSS 

concentrations into that from low flow conditions and high flow events. During base flow 

conditions, linear regression between log-transformed TSS concentrations and discharge was 

significant (P=0.05) for PS water samples but not EWI water samples (P=0.39); however, 

discharge only explained 13% of the variability in TSS concentrations during base flow 

conditions (Table 6). The slopes and intercepts of the linear regressions between TSS 

concentrations and base flow discharge were not significantly different (P≥0.17).  The linear 

regressions of log-transformed data during high flow conditions were significant for TSS 

(P<0.01) across the sampling methods, where discharge explained 57% of the variability in 

suspended solid concentrations during storm flow (Table 6).  The slopes and elevations for the 

linear regressions during high flow were not significantly different between the sampling 

methods (P≥0.10).  

Loads (LOADEST) 

The mean annual discharge through the study period (2009-2013) was 556 ft
3
/s. Previous 

studies that conducted load estimations (1999-2008) showed comparable average discharge of 

526 ft
3
/s (Bolyard et al, 2010). 
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 TN mean load estimates ranged from 1,000 to 1,500 kg/d for both models and sampling 

methods (Table 10,11). An earlier USGS study (Bolyard et al, 2010) calculated a mean load of 

1,600 kg/d, which was within the 95
th

 confidence interval (1,300-1,700 kg/d) of both models for 

the EWI sampling methods; however, the 95
th

 confidence interval (910-1,100) of both models for 

the point sample method was outside of the previous USGS study value of 1,600 (Table 10,11).  

Nitrate mean load estimates made up greater than 48% and 83% of TN load estimates from the 

EWI and PS sampling methods, respectively. The previous value from a USGS study (750 kg/d) 

fell within the 95
th

 confidence intervals (710-910 kg/d) for all models and sampling methods 

(Bolyard et al, 2010). 

Mean load estimates for TP ranged from 200 to 210 kg/d for both models for the EWI 

sampling method, while the PS method ranged from 140 to 160 kg/d for both models (Table 

10,11). A previous study by Bolyard et al (2010) calculated a mean load estimate of 200 kg/d. 

The 95
th

 confidence intervals (140-210 kg/d) were within the range for both models for the EWI 

sampling method and model four for the point sample method. SRP mean load estimates made 

up less than 9% of the TP load estimates for both sampling method and models. Mean load 

estimates ranged from 15 to 19 kg/d for both sampling methods and models. The USGS value 

provided by Bolyard et al (2010) (28 kg/d) was not within the 95
th

 confidence intervals (14-21 

kg/d) for any of the models or sampling methods (Table 10,11). 

Mean load estimates for TSS were between 70,000 and 80,000 kg/d for the PS method, while 

the EWI method was 150,000 for both models. The EWI sampling methods 95
th

 confidence 

intervals (90,000-260,000) were within the USGS previous study value 190,000 kg/d (Bolyard et 

al 2010); however, the confidence interval (50,000-100,000) for the point sample method was 

not (Table 10,11).   
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Table 4- - Results from linear regression and comparison of slope and elevation for nitrogen 

concentrations between samples collected using equal width increment (EWI) and single points 

(PS) from the White River. 
 

 Total Nitrogen  (TN) Nitrate  (NO3-N) 

 EWI PS 
P-value 

(comparison) 
EWI PS 

P-value 

(comparison) 

All Data       

Observations
 42 216  42 217  

R
2
 0.684 0.249  0.544 0.362  

P-value (regression) <0.001 <0.001  <0.001 <0.001  

Slope (mg/L) 0.136 0.084 0.016 0.202 0.208 0.888 

Elevation (mg/L) -0.950 -0.953 <0.001 -2.311 -2.234 0.388 

Base Flow Data       

Observations 17 142  17 142  

R
2
 0.333 0.062  0.726 0.326  

P-value (regression) 0.015 0.003  <0.001 <0.001  

Slope (mg/L) 0.115 0.049 0.217 0.424 0.275 0.169 

Elevation (mg/L) -0.898 -0.870 0.227 -2.788 -2.419 0.960 

Storm Flow Data       

Observations 25 74  25 75  

R
2
 0.410 0.151  0.145 0.020  

P-value (regression) 0.001 0.001  0.060 0.224  

Slope (mg/L) 0.187 0.132 0.425 -0.122 -0.053 0.393 

Elevation (mg/L) -1.353 -1.254 <0.001 0.237 -0.332 0.774 
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Table 5- - Results from linear regression and comparison of slope and elevation for 

phosphorus concentrations between samples collected using equal width increment (EWI) and 

single points (PS) from the White River. 
 

 Phosphate  (SRP) Total Phosphorus  (TP) 

 EWI PS 
P-value 

(comparison) 
EWI PS 

P-value 

(comparison) 

All data       

Observations
 42 217  42 216  

R
2
 0.347 0.186  0.577 0.250  

P-value (regression) <0.001 <0.001  <0.001 <0.001  

Slope (mg/L) 0.154 0.161 0.876 0.265 0.174 0.045 

Elevation (mg/L) -5.608 -6.133 .002 -4.180 -3.901 0.126 

Base Flow Data       

Observations 17 142  17 142  

R
2
 0.008 0.002  0.046 0.013  

P-value (regression) 0.737 0.624  0.409 0.170  

Slope (mg/L) -0.015 -0.016 0.997 -0.044 -0.29 0.821 

Elevation (mg/L) -5.265 -5.665 0.049 -3.548 -3.361 0.104 

Storm Flow Data       

Observations 25 75  25 74  

R
2
 0.522 0.231  0.633 0.647  

P-value (regression) 0.015 <0.001  <0.001 <0.001  

Slope (mg/L) 0.344 0.703 0.020 0.627 0.836 0.124 

Elevation (mg/L) -7.084 -10.013 0.557 -7.001 -8.644 0.970 
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Table 6- Results from linear regression and comparison of slope and elevation for total 

suspended solid concentrations between samples collected using equal width increment (EWI) 

and single points (PS) from the White River. 
 

 Total Suspended Solids  (TSS) 

 EWI PS 
P-value 

(comparison) 

All Data    

Observations
 41 210  

R
2
 0.686 0.459  

P-value (regression) <0.001 <0.001  

Slope (mg/L) 0.414 0.324 0.095 

Elevation (mg/L) 1.044 0.888 <0.001 

Base Flow Data    

Observations 17 138  

R
2
 0.051 0.134  

P-value (regression) 0.386 <0.001  

Slope (mg/L) 0.067 0.109 0.591 

Elevation (mg/L) 1.769 1.451 0.166 

Storm Flow Data    

Observations 24 72  

R
2
 0.679 0.571  

P-value (regression) <0.001 <0.001  

Slope (mg/L) 0.889 1.022 0.497 

Elevation (mg/L) -2.701 -4.125 0.103 
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War Eagle Creek 

Sample Count and Discharge  

 A total of 41 EWI samples were collected by the USGS, whereas 211 water samples were 

collected by the AWRC during the study period. Discharge was not available from the USGS 

online database intermittently throughout the study period, resulting in less paired (concentration 

and discharge) observations at War Eagle Creek relative to the White River, but more paired 

samples relative to Richland Creek. The instantaneous discharge (Qi, ft
3
/s) ranged from 6.9 to 

17,600 ft
3
/s associated with water sample collected by the AWRC, and the range (6.2 – 14,200 

ft
3
/s) was sampled for the EWI samples. Both agencies (AWRC & USGS) collected less than one 

third of the water samples during base flow conditions, which was the least proportion collected 

compared to the White River and Richland Creek. 

Nitrogen (Total and Nitrate) 

The mean and standard deviation for TN and NO3-N concentrations (mg/L) were 

comparable between sampling methods. For TN, the mean concentration in EWI and PS water 

samples were 1.90 and 1.74 mg/L, and standard deviations were 0.70 and 0.58, respectively. 

Mean NO3-N concentration in EWI and PS water samples was 1.29 and 1.54 mg/L, and standard 

deviations were 0.45 and 0.56, respectively. Nitrogen concentrations increased little or not at all 

with increasing discharge across both sampling methods and the range of flow sampled (Table 

7). 

For the two sampling methods, Qi explained 22% of the variability in nitrogen 

concentrations, but only TN concentrations were significant (log-transformed, linear regression, 

P<0.01) for the EWI method.  The slope of the linear regression for NO3-N and Qi was not 

significantly different (P=0.43) between the data collected by each sampling method (Table 7), 
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but the intercept was significantly (P=0.02) greater for the PS sampling method (0.47) relative to 

the EWI method (0.44). Conversely, the elevation of the linear regression for TN and Qi was not 

significantly different (P=0.43) between the data collected by each sampling method (Table 7), 

but the slope was significantly (P=0.03) greater for the EWI sampling method (0.07) relative to 

the PS method (0.02).  Even though simple linear regression provided little evidence of a linear 

trend, a pattern in the residuals existed suggesting that the increase in concentration with 

increasing discharge was occurring at low flows, but not necessarily at high flows.     

LOESS was used to define the non-linear relation between log-transformed nitrogen 

concentrations and discharge, showing that concentrations increased at low flow and then tended 

to level off for TN or even decrease for NO3-N at higher flows. The mean of the residuals from 

LOESS was not significantly different between the sampling methods for TN (t-test, P=0.27) or 

NO3-N (P=0.29). The LOESS smoothing lines greatest increase in concentration occurred 

between <1 and 37 (ft
3
/s) before plateauing at higher discharges. LOESS regression curve of 

NO3-N concentrations was similar in manner to the curve of TN, yet the NO3-N regression curve 

began to decrease linearly at high discharge. 

The mid-point of the LOESS curve (37 ft
3
/s) was chosen as the breakpoint to separate the 

nitrogen concentrations into that base flow conditions and high flow events.  Linear regressions 

between log-transformed nitrogen concentrations and discharge were significant (P≤0.02) during 

base flow conditions, where discharge explained 44% or more of the variability in nitrogen 

concentrations (Table 7).  The slopes and intercepts of the linear regressions using nitrogen 

concentrations during base flow conditions were not significantly different (P≥0.61).  The linear 

regressions of log-transformed data during high flow conditions were significant for NO3-N 

concentrations (P≤0.01) across the sampling methods (Table 7); however, TN was not significant 
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(P=0.69) for the PS sampling method but was significant (P<0.01) for the EWI method.  The 

slopes and elevations for the linear regressions during high flow were not significantly different 

for NO3-N concentrations (P≥0.18), but the slope for TN was significantly different (P=0.02) 

while elevation was not significantly different (P=0.17). The slope of the linear regressions for 

TN and Qi during high flow was greater for the EWI sampling method (0.09) relative to the PS 

method (-0.01) (Table 7). 

Phosphorus (Total and SRP) 

The mean and standard deviation for phosphorus concentrations (mg/L) were numerically 

greater for the EWI sampling method when compared to the PS method. For TP, the mean 

concentration in EWI and PS water samples were 0.159 and 0.075 mg/L, and standard deviations 

were 0.202 and 0.148, respectively. Mean SRP concentration in EWI and PS water samples was 

0.024 and 0.014 mg/L, and standard deviations were 0.029 and 0.019, respectively. Phosphorus 

concentrations generally increased with increasing discharge across both sampling methods 

(Table 8). 

For the two sampling methods, Qi explained greater than 45% of the variability in 

phosphorus concentrations (log-transformed, linear regression, P<0.01).  The slope and 

intercepts of the linear regressions for SRP and Qi were not significantly different (P≥0.06) 

between the data collected by each sampling method; however, the slope of the linear regression 

for TP and Qi was significantly different (P≤0.01) while the elevation was not significantly 

different (P=0.22) (Table 8). The slope of the linear regressions for TP and Qi was greater for the 

EWI sampling method (0.55) relative to the PS method (0.41). The relation between TP 

concentration and Qi was not necessarily linear across the range of sampled flow based on the 

residuals, but SRP showed a monotonic increase over Qi.  
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LOESS was used to define the non-linear relation between log-transformed phosphorus 

concentrations and discharge, showing that concentrations stayed level at low flow and then 

increased at higher flows for TP; however, SRP concentrations stayed linear through the whole 

range of discharge. The mean of the residuals from LOESS were not significantly different 

between the sampling methods for SRP (t-test, P=0.18) or TP (P=0.20), yet the residuals failed 

the test for normality (SWNT, P<0.05) for TP. The non-parametric test for TP was also not 

significantly different (P=0.17).  Decreasing slightly during low flow, the LOESS smoothing 

lines greatest increase in concentration occurred after 138 ft
3
/s for TP, while SRP remained 

almost linear except for a short downward trend near 138 ft
3
/s as well. 

 The inflection of the LOESS curve for SRP and TP (138 ft
3
/s) was chosen as the breakpoint 

to separate the phosphorus concentrations into that from base flow conditions and high flow 

events. During base flow conditions, linear regressions between log-transformed SRP 

concentrations and discharge were significant (P≤0.02) across the sampling methods. TP 

concentrations increased linearly with discharge for the PS sampling method (P≤0.01); however, 

concentrations did not increase linearly with discharge for the EWI sampling method (log-

transformed data, linear regression, P≥0.11). Discharge explained 8% or more of the variability 

in SRP concentrations (Table 8). The slopes of the linear regressions were not significantly 

different (P≥0.09) across the sampling methods at base flow discharge. However, the intercepts 

of the linear regression were significantly different (P≤0.04) across the sampling methods at base 

flow discharge.  The linear regressions of log-transformed data during high flow conditions were 

significant for phosphorus concentrations (P<0.01) across the sampling methods (Table 8), 

where discharge explained 40% or more of the variability.  The slopes and elevations for the 
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linear regressions during high flow were not significantly different between the sampling 

methods (P≥0.11) (Table 8). 

Total Suspended Solids 

The mean and standard deviation for TSS concentrations (mg/L) were numerically 

greater for the EWI sampling method when compared to the PS method. The mean 

concentrations in EWI and PS water samples were 157 and 32 mg/L, and standard deviations 

were 248 and 84mg/L, respectively. Still, TSS concentrations generally increased with increasing 

discharge across both sampling methods and the range of flow sampled (Table 9). 

For the two sampling methods, discharge (Qi) explained greater than 59% of the 

variability in suspended solids concentrations (log-transformed, linear regression, P<0.01).  The 

slope of the linear regressions for TSS and Qi were not significantly different (P=0.08) between 

the data collected by each sampling method; however, the elevation was significantly (-1.04) 

greater for the EWI sampling method  (P<0.01) (Table 9). The elevation of the linear regressions 

for TSS and Qi was greater for the EWI sampling method (-1.04) relative to the EWI method (-

1.17).   

 LOESS was used to define the non-linear relation between log-transformed total 

suspended solids concentrations and discharge, showing that concentrations stayed relatively 

level at low flow and increased at higher flows. The mean of the residuals from LOESS was 

significantly different between the sampling methods for TSS (t-test, P<0.01); however, the 

residuals failed the test for normality (SWNT, P<0.05). The residuals were also compared non-

parametrically, but the means were still significantly different for TSS (P<0.01). The residuals 

for TSS concentrations were greater for the EWI sampling method (0.33) relative to the 

concentrations measured via the PS sampling method (0.02). The LOESS smoothing line showed 
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that concentrations tended to decrease slightly during low flow conditions, and then the greatest 

increase in concentrations occurred after 138 ft
3
/s.  

The mid-point of the LOESS curve (138 ft
3
/s) was chosen as the breakpoint to separate 

the TSS concentrations into that from low flow conditions and high flow events. During base 

flow conditions, linear regression between log-transformed TSS concentrations and discharge 

was significant (P=0.03) for EWI water samples, but not PS water samples (P=0.81) (Table 9). 

The slopes and intercepts of the linear regressions using TSS concentrations during base flow 

conditions were not significantly different (P≥0.10).  The linear regressions of log-transformed 

data during high flow conditions were significant for TSS (P<0.01) across the sampling methods, 

where discharge explained greater than 81% of the variability in suspended solid concentrations 

during storm flow (Table 9). The slopes for the linear regressions during high flow were not 

significantly different for either sampling method (P≥0.46), but the elevation was significantly 

(P<0.01) greater for the EWI sampling method (-4.014) relative to the PS method  

(-5.364) (Table 9). 

Loads (LOADEST) 

The mean annual discharge through the study period (2009-2013) was 348 ft
3
/s. Previous 

studies that conducted load estimations (1999-2008) showed a lower average discharge of 294 

ft
3
/s (Bolyard et al, 2010). 

TN mean load estimates ranged from 1,400 to 1,600 kg/d for both models and sampling 

methods. An earlier USGS study (Bolyard et al, 2010) calculated a mean load of 1,300 kg/d, 

which was within the 95
th

 confidence interval (1,300-1,600 kg/d) of both models for the PS 

methods; however, the 95
th

 confidence interval (1,400-1,800) of both models for the EWI 

sampling method was outside of the previous USGS study value (Table 10,11).  Nitrate mean 
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load estimates made up greater than 60% and 84% of TN load estimates from the EWI and PS 

sampling methods, respectively. The previous value from a USGS study (840 kg/d) was within 

the 95
th

 confidence interval (840-1,100 kg/d) for model one for the EWI sampling methods; 

however, confidence intervals for model four for the EWI sampling method and both  models for 

the PS method were not (Bolyard et al, 2010) (Table 10,11). 

Mean load estimates for TP were 170 kg/d for both models for the EWI sampling method, 

while the PS method ranged from 110 to 130 kg/d for both models. A previous study by Bolyard 

et al (2010) calculated a mean load estimate of 80 kg/d. The 95
th

 confidence interval (75-160 

kg/d) for model one of the PS method was within the range of the previous USGS value, but 

confidence intervals for both models for the EWI sampling method and model four for the PS 

method were not (Table 10,11). SRP mean load estimates made up less than 23% of the TP load 

estimates for both sampling method and models. Mean load estimates ranged from 22 to 27 kg/d 

for both sampling methods and models. The USGS value provided by Bolyard et al (2010) (30 

kg/d) was within the 95
th

 confidence intervals (18-31 kg/d) for all models and sampling methods 

except for model four for the EWI sampling method (Table 10,11). 

Mean load estimates for TSS were between 50,000 and 70,000 kg/d for the PS method, while 

the EWI method was 180,000 for both models. Both models and sampling methods 95
th

 

confidence intervals (80,000-90,000) were within the USGS previous study value 80,000 kg/d 

(Bolyard et al 2010) (Table 10,11).  
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Table 7- Results from linear regression and comparison of slope and intercept for 

nitrogen concentrations between samples collected using equal width increment (EWI) and 

single points (PS) from War Eagle Creek. 
 

 Total Nitrogen  (TN) Nitrate  (NO3-N) 

 EWI PS 
P-value 

(comparison) 
EWI PS 

P-value 

(comparison) 

All Data       

Observations
 41 211  41 211  

R
2
 0.220 0.008  0.075 0.010  

P-value (regression) 0.002 0.184  0.083 0.151  

Slope (mg/L) 0.0707 0.0162 0.026 -0.044 -0.021 0.427 

Elevation (mg/L) 0.167 0.428 0.433 0.444 0.466 0.021 

Base Flow Data       

Observations 11 68  11 68  

R
2
 0.467 0.439  0.441 0.443  

P-value (regression) 0.020 <0.001  0.026 <0.001  

Slope (mg/L) 0.407 0.458 0.746 0.544 0.570 0.897 

Elevation (mg/L) -0.698 -0.876 0.613 -1.24 -1.34 0.758 

Storm Flow Data       

Observations 30 143  30 143  

R
2
 0.178 0.001  0.204 0.115  

P-value (regression) <0.001 0.690  0.012 <0.001  

Slope (mg/L) 0.094 -0.008 0.016 -0.104 -0.092 0.797 

Elevation (mg/L) -0.016 0.569 0.166 0.886 0.907 0.183 
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Table 8- Results from linear regression and comparison of slope and elevation for 

phosphorus concentrations between samples collected using equal width increment (EWI) and 

single points (PS) from War Eagle Creek. 
 

 Phosphate  (SRP) Total Phosphorus  (TP) 

 EWI PS P-value 

(comparison) 

EWI PS P-value 

(comparison) 

All Data        

Observations
 41 211  41 211  

R
2
 0.617 0.451  0.832 0.451  

P-value (regression) <0.001 <0.001  <0.001 <0.001  

Slope (mg/L) 0.309 0.396 0.137 0.554 0.406 0.014 

Elevation (mg/L) -6.016 -6.737 0.069 -5.995 -5.339 0.222 

Base Flow Data       

Observations 15 117  15 117  

R
2
 0.368 0.078  0.189 0.068  

P-value (regression) 0.016 0.002  0.106 .005  

Slope (mg/L) 0.454 0.295 0.598 0.171 -0.189 0.087 

Elevation (mg/L) -6.383 -6.356 0.036 -4.699 -3.183 0.014 

Storm Flow Data       

Observations 26 94  26 94  

R
2
 0.402 0.446  0.750 0.756  

P-value (regression) <0.001 <0.001  <0.001 <0.001  

Slope (mg/L) 0.414 0.512 0.435 0.820 0.890 0.531 

Elevation (mg/L) -6.836 -7.509 0.868 -8.028 -8.528 0.983 
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Table 9- Results from linear regression and comparison of slope and elevation for total 

suspended solid concentrations between samples collected using equal width increment (EWI) 

and single points (PS) from War Eagle Creek. 
 

 Total Suspended Solids  (TSS) 

 EWI PS P-value 

(comparison) 

All Data     

Observations
 38 193  

R
2
 0.812 0.591  

P-value (regression) <0.001 <0.001  

Slope (mg/L) 0.762 0.630 0.077 

Elevation (mg/L) -1.036 -1.174 <0.001 

Base Flow Data    

Observations 13 104  

R
2
 0.379 0.001  

P-value (regression) 0.025 0.811  

Slope (mg/L) -0.406 -0.017 0.103 

Elevation (mg/L) 2.601 1.235 0.304 

Storm Flow Data    

Observations 25 89  

R
2
 0.805 0.808  

P-value (regression) <0.001 <0.001  

Slope (mg/L) 1.154 1.256 0.461 

Elevation (mg/L) -4.014 -5.364 <0.001 
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      Table 10 - LOADEST AMLE Load Estimates using model 1. Ex: Mean load (95% 

confidence interval). 
 

 

  

 EWI PS 

 Total Nitrogen (TN) 

Richland Creek 500 (350-710) 550 (350-800) 

War Eagle Creek 1,600 (1,400-1,900) 1,400 (1,300-1,600) 

White River 1,500 (1,300-1,700) 1,000 (910-1,100) 

 Nitrate (NO3-N) 

Richland Creek 440 (120-1,100) 800 (250-2,000) 

War Eagle Creek 970 (840-1,100) 1,200 (1,100-1,300) 

White River 740 (550-970) 940 (710-1200) 

 Total Phosphorus (TP) 

Richland Creek 60 (15-150) 70 (10-230) 

War Eagle Creek 170 (110-250) 110 (75-160) 

White River 210 (140-290) 140 (110 -190) 

 Phosphate (SRP) 

Richland Creek 8 (4-16) 7 (3-14) 

War Eagle Creek 23 (17-31) 25 (17-36) 

White River 19 (14-26) 15 (11-21) 

 Total Suspended Solids (TSS) 

Richland Creek 70,000 (7,700-290,000) 20,000 (2,000-80,000) 

War Eagle Creek 180,000 (80,000-340,000) 50,000 (30,000-90,000) 

White River 150,000 (80,000-260,000) 70,000 (40,000-100,000) 
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       Table 11 - LOADEST AMLE Load Estimates using model 4. Ex: Mean load (95% 

confidence interval). 
 

 

  

 EWI PS 

 Total Nitrogen (TN) 

Richland Creek 500 (350-680) 500 (360-690) 

War Eagle Creek 1,600 (1,400 – 1,800) 1400 (1,300-1,600) 

White River 1,500 (1,300-1,700) 1,000 (900-1,100) 

 Nitrate (NO3-N) 

Richland Creek 410 (170-840) 600 (320-1,000) 

War Eagle Creek 990 (850-1,100) 1,200 (1,100-1,300) 

White River 720 (560-910) 830 (670-1,000) 

 Total Phosphorus (TP) 

Richland Creek 60 (18-140) 130 (15-500) 

War Eagle Creek 170 (120-240) 130 (89-200) 

White River 200 (140-280) 160 (120-210) 

 Phosphate (SRP) 

Richland Creek 8 (4-14) 7 (3-15) 

War Eagle Creek 22 (17-29) 27 (18-38) 

White River 19 (14-26) 16 (11-23) 

 Total Suspended Solids (TSS) 

Richland Creek 70,000(8,700-280,000) 26,000(2,000-110,000) 

War Eagle Creek 180,000 (80,000-340,000) 70,000 (40,000-120,000) 

White River 150,000 (90,000-260,000) 80,000 (50,000-120,000) 
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Figure 3 - LOESS residuals (log-transformed concentrations, mg/L) for the EWI and PS 

     sampling methods across all streams and consituents. 
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Discussion 

A three step process was used to identify differences in constituent concentrations between 

the two sampling methods, including (1) comparison of slope and intercept from log-log 

regressions, (2) comparison of residuals from LOESS, and (3) then comparison of regression 

during base flow and storm event conditions. An estimation of constituent loads was made using 

LOAD ESTimator software. This allowed for load comparisons to other studies and values 

representing nutrient export over time. The constituent concentrations, in general, were not 

significantly different with respect to sampling method (EWI and PS) across the range of 

sampled flow. However, there were some differences that were consistently observed (e.g., 

sediment concentration) while others (e.g., nutrients) varied by site and were not consistent.  

Results from sediment concentrations for all streams sampled were consistent; residuals from 

the EWI sampling method were greater during storm flow conditions when compared to the PS 

method. However, separate laboratory techniques were used for processing suspended sediment 

concentration (SSC, USGS NWQL) and TSS (AWRC). SSC concentrations tend to increase at a 

greater rate than the TSS concentrations; likewise, SSC exceed paired TSS samples as during 

high flow events (Kammerer et al., 1998), which is what our split flow regression confirms.  

Studies comparing the techniques (Gray et al., 2000) have shown TSS concentrations to have a 

lower bias to SSC by up to 34%. While lab techniques might influence sediment differences, 

several papers have shown that sediment concentration varies between EWI and PS sampling 

methods when using the same lab techniques (Martin et al. 1992; Ging 1999). Near surface PS 

sampling can be lower than EWI sampling due to vertical and horizontal stratification of 

sediment, and during high flow conditions, differences between methods increases as velocity 

and carrying capacity of sediment also increases. As expected, sediment loads were greater for 
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the EWI sampling method than the PS method; however, calculated sediment loads from the PS 

method at Richland Creek and War Eagle Creek were more similar to previous studies by 

Bolyard et al (2010). The sediment loads from the EWI method at the White River matched 

previously obtained load data.  

Sediment associated constituents such as TP usually show differences between sampling 

method, because TP is correlated to sediment concentrations. In fact, TSS and TP were 

positively correlated (P<0.01) across all three study rivers. TP residuals were not significantly 

different between sampling methods at the White River or War Eagle Creek, yet the residuals of 

the PS method were significantly greater at Richland Creek. Moreover, split flow linear 

regression comparisons were not significantly different at Richland Creek or the White River, 

but the elevation of the PS method was greater during low flow at War Eagle Creek. Results 

suggested that TP concentration were not different between sampling methods at storm flow 

conditions. This contrasts to the studies by Martin (1992) and Ging (2002) where TP 

concentrations were significantly different between sampling methods. Differences among 

methods during low flow at Richland Creek and War Eagle Creek, where TP was greater for the 

PS method, most likely are due to seasonal variability and large differences in observations 

rather than bias between sample methods, but seasonal variation typically plays a larger role in 

the dissolved constituent of TP.  

Conversely, SRP concentrations were significantly different between sampling methods 

during storm flow at the White River and War Eagle Creek. Also, the elevation of the EWI 

method was greater than the PS method during base flow where differences such as greater 

method detection limits (MDL) for EWI samples and six times the number of grab samples could 

account for some of the concentration difference during low flow. Replacing the lower detection 
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limits for the PS sampling method with the detection limits of the EWI sampling method allowed 

for a more appropriate comparison of sampling methods during base flow conditions. Where 

significant differences in elevation were observed  at the White River between sampling methods 

at base flow, elevation comparison was not significantly different (P=0.87) once MDL’s were 

changed.   In a study by Kammerer et al. (1998), it described similar results that showed 

significant differences between methods in SRP, but not significant differences in TP. The 

numerous grab samples showed that there was some seasonality in SRP concentrations, which 

was not evident in the EWI samples that had much fewer samples taken per year.  

While seasonality may have caused differences in sampling method for the dissolved P, for 

the bioavailable form of nitrogen, NO3-N, this was not the case. The results for NO3-N provide 

evidence that both sampling methods adequately characterize concentrations across all river sites 

and flows. On the other hand, TN concentrations from the EWI sampling method had a greater 

slope and elevation for War Eagle Creek and the White River, respectively, during high flow. 

Moreover, the mean of the LOESS residuals were significantly greater for the EWI method for 

TN at the White River. In contrast to the results by Lietz (1999) where no difference was found 

between TN concentrations, it appears that in this study the PS sampling method may under-

represent TN concentrations compared to the EWI method during high flow especially at the 

larger rivers. 

Stream size, cross-sectional geometry, and morphological features are important properties 

when comparing integrated sampling and single point sampling (Hallock, 2005; USGS 2006). 

Although not measured for this study, the more uniform and shallow cross-section at Richland 

Creek is more visually obvious than the other two sampled sites, White River and War Eagle 

Creek, and Richland Creek has a much smaller discharge range over the study period. Having 
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more homogeneity (vertically and horizontally), this may explain the absence of significant 

differences in the linear regressions for constituents that were significantly different for the other 

two streams. Moreover, mean load estimations for the same constituents from Bolyard et al 

(2010) were within the 95
th

 confidence intervals for load estimations at Richland Creek. For 

Richland Creek, the PS sampling was as representative of the concentrations in the stream cross-

section as an integrated EWI sample, but more research would need to be done on similar 

streams in the Ozarks to confirm these findings.  

This study has dealt with how water sampling methods influence the concentration-discharge 

relationships of constituents, but concentrations alone do not quantify total nutrient and sediment 

transport that occurs over time. For the purposes of water-quality management in the Beaver 

Lake Watershed, mean annual constituent loads are estimated from sampled concentrations 

(Bolyard et al. 2010). This study showed that the mean loads for either sampling method across 

all constituents were within the 95
th

 confidence interval of the comparable constituent.  

Ultimately, overestimation can occur when fewer samples are taken during high flow events over 

longer periods of time rather than more samples throughout different flow conditions (Robertson 

and Roerish 1999); therefore, a regime of weekly sampling (PS) may be more beneficial for the 

long-term studies, which better represent seasonal variation in nutrient and sediment loading 

during storm flow. In a study of the same watershed, Haggard et al (2003) emphasized the need 

for long term management plans to mitigate excess nitrogen and phosphorus entering the Beaver 

Lake watershed.  For studies that require precision and accuracy of constituent concentrations 

during a specific time or season, the EWI sampling method might be the preferred technique.  

For streams in Beaver Lake watershed, ongoing, long-term water quality monitoring may benefit 

more from frequent, weekly sampling, rather than fixed-period bimonthly sampling. The costs 



48 

 

associated with using the more expensive and labor intensive EWI over the point sampling 

method should be considered by researcher’s who cannot exceed their budgets, yet need reliable 

and cheaper ways of obtaining representative water samples. In general, accurate representation 

of constituent concentrations varies between sampling methods and at different flow conditions 

depending on the nature and goals of the research. 

Conclusion 

We found that little difference was shown between sampling methods at base flow conditions 

for all streams; the few significant differences that were displayed most likely originated from 

differences between method detection limits. This provides evidence that EWI sampling does not 

provide a more accurate representation of constituent concentrations during low flow conditions. 

Differences between the three streams showed that Richland Creek, which represented the 

smallest stream in cross-section and discharge range, differed from the other two rivers in that no 

significant differences between sampling methods at either low or high flow conditions were 

shown. This indicates that streams with similar characteristics could potentially be sampled by 

the PS sampling method.  

Sediment stratification in larger streams may make the PS sampling method less appropriate 

for finding TSS where concentrations were underrepresented during high flow conditions; 

however, differences in lab analysis was important to observe for this study. Contrary to similar 

research, sediment associated constituent TP was not significantly different during high flow; 

however, TP concentrations were greater for the PS method during low flow in one instance. The 

dissolved constituent of TP, SRP, was significantly greater for the PS sampling method during 

storm flow conditions; for phosphorus concentrations, differences are most likely due to seasonal 
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variability and large differences in observations rather than bias between sample methods. For 

TN concentrations, our study found it may be underrepresented by the PS method during storm 

flow conditions. NO3-N was the only constituent without any significant differences between 

methods at all flow conditions, which provides evidence that NO3-N is accurately sampled by the 

PS method.  

Depending on the flow conditions, stream geometry, and study time length, EWI and PS 

sampling methods both a have a place in acquiring accurate constituent concentration data 

depending on the needs of the researcher. Beaver Lake is an important and increasingly utilized 

resource; proper management of the Beaver Lake and its watershed requires accurate knowledge 

of ongoing land uses and the seasonal factors that contribute nutrient and sediment loading. To 

increase the utilization of resources, PS sampling methods need be incorporated for appropriately 

measured constituents in short-term studies, but also for accurately following long-term seasonal 

variation in sediment and nutrient loading.  
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