
Western University
Scholarship@Western

Electronic Thesis and Dissertation Repository

March 2016

Food Recognition and Detection with Minimum
Supervision
Renfeng Liu
The University of Western Ontario

Supervisor
Dr. Charles X. Ling
The University of Western Ontario

Graduate Program in Computer Science

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science

© Renfeng Liu 2016

Follow this and additional works at: https://ir.lib.uwo.ca/etd

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis
and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact tadam@uwo.ca.

Recommended Citation
Liu, Renfeng, "Food Recognition and Detection with Minimum Supervision" (2016). Electronic Thesis and Dissertation Repository.
3507.
https://ir.lib.uwo.ca/etd/3507

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fetd%2F3507&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F3507&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F3507&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/3507?utm_source=ir.lib.uwo.ca%2Fetd%2F3507&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tadam@uwo.ca


Abstract

Food recognition can help people keep track of and analyze their eating habits conveniently

by snapping a photo on their smartphones. A lot of existing work has been published in food

recognition using computer vision and deep learning techniques. However, most previous work

assumed that one food image contains only one food item, thus can not handle images which

contain multiple food items. In real-life scenarios, it is more common for a food image having

more than one food item. Existing methods for multiple-food detection have various limita-

tions: they either require certain kinds of additional user operations (such as drawing bounding

boxes on food items) or are still in primitive stage with low accuracy rate. Current state-of-the-

art object detection models usually utilize the power of convolutional neural networks (CNNs)

which require a lot of training data with ground truth bounding boxes. Those limitations narrow

down the usability of existing methods in real life.

To solve these problems, we propose a novel method which jointly detects food item com-

binations and their locations in the image with minimal supervision. We create a food image

dataset with 10 categories for our experiments. In our dataset, images with only one food item

are used as the training set while images with multiple food items are used as the test dataset.

Our method does not require any ground truth bounding boxes in the training set.

At the training stage, we firstly use region proposal algorithms to generate candidate regions

and extract the CNN features of all regions. Secondly, we perform region mining to select

discriminative positive regions for each food category using maximum cover by submodular

optimization. With these mined positive regions, we train a binary SVM classifier for each

food category and further refine these classifiers with hard negative examples.

At the testing stage, we firstly generate a set of candidate regions. For each region, a clas-

sification score is computed based on its extracted CNN features. Then we select the regions

using non-maximum suppression and output the locations and predicted food names of the

selected regions.

Our experiments show very promising results. We obtain the average recall rate of 80.18%

and precision rate of 83.78% on our test dataset. Our method achieve minimum supervision in

the sense that it uses only “weakly labeled” images for training and does not require any ground

truth bounding boxes for training dataset, thus can be easily extended to a larger dataset with

more food categories.

Keywords: Food recognition, food detection, object localization, weakly supervised learn-

ing
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Chapter 1

Introduction

1.1 Problem Statement

With the abundance of food available, more and more people have dietary problems. People ei-

ther eat too much more than what they need or eat unhealthily. Obesity is a direct consequence

of dietary problems, which can cause many diseases such as diabetes and heart diseases. Amer-

ican Medical Association has officially announced obesity as a disease in 2013 1. A mobile app

for keeping track of diet is becoming more important for people to keep healthy. Apps such as

MyFitnessPal2 and LoseIt3 for this purpose are quite popular. These apps ask users to manually

type keywords in the search box and select the food in the returned list. Usually it takes several

steps to record just one food item which discourages constant uses of those apps.

With the prevalence of smartphone cameras, taking a photo of the food is an ideal method to

conveniently log diet data. There has been existing work [43, 60, 61, 59, 42] using image-based

food recognition techniques to analyze the food images and help record the nutrition facts.

However, most existing approaches are either requiring user input or are still in primitive stage

with low accuracy rate. Furthermore, although a few existing approaches [40, 42] addressed the

problem of recognizing multiple food items, they assumed the availability of a lot of training

data with ground truth bounding boxes. Most existing work assumed that one food image

contained only one food item, thus could not handle images which contained two or more food

items. Therefore, a method that can automatically classify multiple food items in a camera

image taken under real-world conditions is essential for the success of a food recording system.

1http://www.ama-assn.org/ama/pub/news/news/2013/2013-06-18-new-ama-policies-annual-meeting.page
2https://www.myfitnesspal.com/
3https://www.loseit.com/

1



2 Chapter 1. Introduction

1.2 Thesis Motivation and Objectives

The problems in food recognition have not been fully addressed yet.

On one hand, most previous work assumed that one food image contained only one food

item as reviewed in Chapter 2 (examples shown in Figure 1.1). However, in real-life scenarios,

a food image of a meal plate is more common to include multiple food items (examples shown

in Figure 1.2). Despite the importance of multiple food recognition, there are only four research

papers on this problem as reviewed in Chapter 2 Section 2.2. Moreover, these four existing

studies either need user interactions or require a lot of training data with ground truth bounding

boxes of food items.

Figure 1.1: Food images contain only one food item

On the other hand, food images have high intra-class variations due to lighting conditions

and different realization of a recipe. Thus, identifying discriminative regions which help dis-

tinguish each type of food from the others is essential to the success of food recognition. Since
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Figure 1.2: Real life food images contain multiple food items

large scale food image dataset with annotated food bounding boxes is not available, weakly su-

pervised learning is considered to be a promising choice. Bossard et al. [7] addressed weakly

supervised discriminative region mining in food recognition based on Random Forest. How-

ever, similar to most previous work, they still use the classical visual features like SURF and

color histogram instead of the state-of-art CNN (Convolutional Neural Networks) features.

Generic feature descriptors obtained from deep learning with convolutional nets are very pow-

erful, outperforming classical visual features. Comparative studies [44] have suggested that

CNN features should be the primary candidate in visual recognition and detection tasks.

In this thesis, we aim to solve the task of multiple food items recognition and detection

using CNN features and weakly supervised learning. A classical processing pipeline to learn

object detection models consists of: 1) proposing candidate regions from the image; 2) com-

puting feature descriptors for all candidate regions; 3) training classifiers based on annotated

object bounding boxes and their corresponding feature vectors. To train such an object detec-
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tor, ground truth bounding boxes on target object instances are required in training. However,

this hand labeling approach is very costly and error-prone for large scale training datasets. We

believe that weakly supervised learning which only requires image level labels is a promising

solution for multiple food items detection.

1.3 Thesis Contributions

We propose an algorithm which jointly detects food item combinations and their locations in

the image, with only “weakly labeled” images for training. Without ground truth bounding

boxes in training, our method can automatically detect the food items in the images and also

localize their positions with promising accuracy rate. In our experiments, we have achieved

the average recall and precision rate of 80.18% and 83.78% respectively on our test dataset

when detecting 10 kinds of food. As far as we know, it is the first work in multiple food items

recognition which use CNN features and weakly supervised learning. It is a novel algorithm

with “minimal supervision”.

Our contributions can be summarized in detail as follows:

1. We collect a dataset of 1792 food images, each of which contains one of the ten popular

food categories, as our training data set. For the test set, we collect food images, each

being a combination of food items from these 10 categories. Figure 1.1 and 1.2 show

some examples of our training and testing images.

2. We compute a 4096-dimension CNN feature descriptor for each region proposed by Se-

lective Search [53] on training images. The CNN architecture of AlexNet [35] is used

for CNN feature extraction.

3. For each proposed region, we compute its Euclidean distances in 4096-d feature domain

to all other candidate regions in the training set including positive regions (from the same

class) and negative regions (from all other 9 classes); then we sort this distance list and

retain top-N nearest regions.

4. Based on each region and its top-N nearest regions, we integrate the relevance for pos-

itive regions versus negative regions into the submodular cover framework to discover

discriminative regions for each class.

5. With the discriminative regions for each class, we train a linear binary Support Vec-

tor Machine(SVM) for each class. For training, we use these discriminative regions as

positive sets while all the other regions as negative sets.
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6. To speed up the training process which has a much larger negative sets than positive sets,

we perform iterative hard-negative mining. We also apply non-maximum suppression

over the class scores calculated by SVM classifiers to make predictions at test stage.

7. We perform test experiments on images with combination of these 10 kinds of food.

The recall and precision rate are computed on the test sets. Moreover, we perform a

comparative test using the whole image as proposed region without any region mining,

and compare its recall and precision rate with that obtained by our method. Our results

suggest that region mining is essential to improve the detection results.
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1.4 Thesis Outline

In Chapter 2, we review previous work in food recognition, including single food item recogni-

tion (Section 2.1), multiple food items recognition (Section 2.2) and multiple objects detection

(Section 2.3).

In Chapter 3, we describe the motivation behind our proposed method, and present the

processing pipelines of our method at the training stage and the testing stage.

In Chapter 4, we briefly introduce region proposal methods in object detection. Specif-

ically, the strength of the Selective Search method is described in Section 4.1. For feature

representation, we describe different convolutional neural networks (CNN) architectures and

how we compute CNN features for proposed regions in Section 4.2. we present our method

for discriminative region mining using maximum cover by submodular optimization in Section

4.3. In Section 4.4, we explain the training of SVM classifiers with hard-negative mining. In

Section 4.5 we explain the non-maximum suppression algorithms we used on the detection

results from the trained classifier.

In Chapter 5, we demonstrate our experiment results by figures and tables. We also compare

the results using our proposed processing pipeline with the results obtained using the whole

image as the proposed region.

In Chapter 6, we discuss the results and highlight the conclusion that could be drawn from

the results. We also discuss possible future work in Section 6.2.



Chapter 2

Related Work

Food image recognition is an active research area and there are several existing approaches that

have been previously published. The task to recognize what the food is in one image could be

categorized into several problems. At a coarse level, it is enough to classify the food image,

assuming that only one food item is in the image; in a more delicate way, the algorithm needs

to figure out what food items are in the images and where they are located, which is a much

more complicated problem.

2.1 Related Work in Food Image Recognition

Most existing research work in food recognition assumes that only one food item was present

in one image. Thus, food recognition can be solved as an image classification problem.

Image classification is a core problem in computer vision. Classical approaches exploit

interest point descriptors like SIFT [38] extracted locally or on a dense grid, then pool the

features into a vectorial representation e.g., bag of words [36] and Fisher Vectors [49] to use

SVM for classification. A very recent and successful trend in image classification is to use

convolutional neural networks (CNN), a deep learning approach.

Concerning food recognition, most previous work uses classical approaches with differ-

ences in feature combinations of specified food image dataset. There are also a handful of

recent food recognition approaches using CNN, yielding much higher recognition accuracy

rate. We elaborate the most representative research work in food recognition for each method

in the following two sections.

7
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2.1.1 Classification Using Classical Approach

Bossard et al. [7] created a food database named Food1011 containing 101 food categories.

For each category, there were 1000 images. Firstly, they extracted the color and SURF [3]

features for superpixels on each image. Then all the superpixels were clustered into groups

using Random Forest based on their respective Fisher vector encoded feature vectors to obtain

discriminative components across all the images, as shown in Figure 2.1. For each category,

only the top N mined components were used to train a binary SVM, with the component in

the leaf treated as positive set and all others as negative sets. Since there were much more

negative samples in the training set, the hard-negative mining technique was used iteratively to

speed up the training process. In this way, there were K(classes)∗N(TopNcomponents) SVM

classifiers and for each image there would be a K ∗ N score vector. This score vector was used

as the source of training data to train the multiple-class SVM for image classification. They

achieved a test accuracy rate of 50.8%.

Figure 2.1: Discriminative component mining using Random Forest. For each superpixel,
the LAB color feature and SURF feature are encoded by Fisher Vector. Random Forest is
used to hierarchically cluster the feature vectors of superpixels of the training images. The
discriminative clusters in the leaves are selected and used to train the component model. [7]

Joutou et al. [31] created a private Japanese food dataset with 50 classes and each class

included 100 images downloaded from the Internet. They proposed a Multiple Kernel Learn-

ing(MKL) method using combined features including SIFT-based bag-of-features, color his-

togram and Gabor Texture features. The MKL method could determine the weights for each

type of features, and they trained a SVM classifier based on the combined features with adap-

tive weights. They achieved an accuracy rate of 61.3% on their dataset. Hoashi et al.[26]

continued this research work and achieved an accuracy rate of 62.5% using the same method

on an extended dataset of 85 classes.
1http://www.vision.ee.ethz.ch/datasets/food-101/
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Chen et al. [11] created the Pittsburgh food database which contained 101 classes of Amer-

ican fast food images taken in a controlled environment. For each class, there were 24 images

taken in 3 instances. Yang et al. [58] defined eight basic food materials and learned spatial re-

lationships between these ingredients in a food image using pairwise features. They achieved

28.2% classification accuracy rate on 61 food categories which was a subset of Pittsburgh [11]

dataset.

Bettadapura et al. [4] incorporated the geological information of where the food picture

was taken, they used this information to get the information about the restaurant and then

downloaded the menu online. And they assumed that the food image must be one of the items

in the menu. They combined 6 feature descriptors (2 color-based and 4 SIFT-based) together

and used SMK-MKL Sequential Minimal Optimization to train a SVM classifier. They created

a training food dataset with 3750 food images of 75 categories (50 images per category). They

reported an accuracy of 63.33% on their test dataset.

2.1.2 Classification Using Deep Learning Approach

Kagaya et al. [32] trained convolutional neural network for food recognition and also non-

food detection. They built a food database of 170,000 images containing 10 popular food

items. Using 6-fold cross-validation, the optimal CNN hyper parameters related to the number

of layers, pre-processing and training were decided. Examples of the optimal convolutional

kernels in CNN after training show that the features extracted for food images were almost

color-specific, which was in agreement with the conclusion obtained by Bosch et al’s [5] food

recognition research work using classical hand-crafted global and local features. Experiments

showed that CNN outperformed all the other baseline classical approaches by achieving an

average accuracy rate of 73.7% for 10 classes.

Kawano et al. [34] used CNN as a feature extractor and achieved state-of-the-art top-1

accuracy of 72.3% on the UEC-FOOD100 2 dataset containing 100 classes of Japanese food.

Since the UEC-FOOD100 dataset only contained 100 images for each class, the pretrained

AlexNet proposed by Krizhevsky et al. [35] was used as a feature extractor. For each food

image, a 4096-dimension CNN feature vector were obtained by taking the output of the layer

just before the last layer (classifier layer) in AlexNet. By integrating both the CNN feature and

Fisher Vector encoded conventional SIFT and color features, they trained one-vs-rest linear

SVM classifiers for 100 food classes. Experiments showed that CNN features alone achieved

57.9% top-1 accuracy, while combination of conventional features and CNN features achieved

72.3% top-1 accuracy.

2http://foodcam.mobi/dataset
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Bossard et al. [7] trained a deep CNN on Food101 from scratch using the architecture of

AlexNet [35] and achieved 56.4% top-1 accuracy on test set after 450,000 iterations.

Yanai et al. [57] fine-tuned the AlexNet which was pretrained on 2000 categories of the

ImageNet dataset including 1000 food-related categories. They achieved the best results on

public food datasets so far, with a top-1 accuracy of 78.8% for UEC-FOOD100 dataset and

67.6% for UEC-FOOD256. Their experiments showed that accuracy rate on a small set of

food images like UEC-FOOD256 and UEC-FOOD100 (both of which contained 100 images

for each class) can be boosted by fine-tuning the pretrained CNN net which was trained on a

large data set of similar objects.

Most recently, Myers et al. [42] presented the Im2Calories system for food recognition

which extensively used CNN-based approaches. They used the architecture of GoogLeNet [52]

and fine-tuned the pretrained model on Food101. By replacing the last layer of GoogLeNet

with different loss functions, problems in food recognition including food recognition, non-

food detection and multiple food recognition could be solved efficiently. The resulting model

has a classification top-1 accuracy rate of 79% on Food101 test set.

2.2 Related Work in Multiple-Food Recognition

There are four research works on multiple-food recognition so far.

Matsuda et al. [40] presented the first work in multiple-food recognition and Figure 2.2

shows the processing flow of the method they proposed. Firstly, candidate regions generated by

the whole image, deformable part model, circle detector and JSEG region segmentation were

integrated to create a candidate set of bounding-box regions. Secondly, various kind of image

features including bag of features (BoW), histogram of oriented gradient (HOG), Gabor texture

features and color histograms were computed for each bounding box region in the candidate

set. Evaluation values of each region belonging to all the given classes were computed using

trained SVM classifiers by multiple kernel learning. Then, the evaluation values were sorted

and the system will only output the top 10 classes for the user to choose. They further extended

their work in [41] by considering multiple-food co-occurrence statistics. The sorted evaluation

values were re-ranked by manifold ranking using a co-occurrence probability matrix. Their

proposed system only listed all the possible food items and did not associate the location of

bounding boxes with the food items names. They trained the SVM models on their own dataset

which contained 9132 food images of 100 food categories. A top-10 accuracy rate of 65.6%

was reported on their test set.
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Figure 2.2: Multiple-food recognition processing flow [41]. SVM classifiers with chi-square
RBF kernel were trained by multiple-kernel learning. The evaluation values computed by SVM
classifiers were re-ranked by manifold ranking using co-occurrence statistics. Names of top 10
classes of food items were provided for users to choose from.

Kawano [33] et al. developed a mobile application FoodCam for real-time multiple food

recognition. The processing flow of FoodCam is shown in Figure 2.3. In this system, users

needed to draw bounding boxes over food items on the screen. This bounding box was adjusted

to the food region by a GrubCut-based segmentation method. For each segmented region within

the bounding box, Fisher Vector encoded feature vectors of color histogram and histogram

of gradient were computed and passed into SVM classifiers to predict the food item. The

system would show the top 5 predicted food names of each bounding box region. All the food

recognition processing was computed on the mobile CPU. The SVM classifiers of 100 food

categories were trained offline with a nonlinear RBF kernel on 12,905 food images. A top-1

accuracy rate of 51.9% and top-5 accuracy rate of 79.2% were reported on their test set.

Zhang et al. [59] developed a mobile application for multiple-food recognition of 15 food

categories on the phone without any user intervention. Firstly, the user took a photo of the food

plate and a cropped 400×400 food image was uploaded to the server for food recognition. On

the server side, the food image was firstly segmented into possible salient regions, and these

regions were further grouped based on the similarity of their color, HOG and SIFT feature

vectors. Normally a typical food image yielded about 100 salient segment regions. They

collected 2000 training images for 15 classes with mobile phone’s camera as they found that

the model trained with images downloaded from Internet could not generalize well for images

taken on mobile phones. They trained a linear multiple-class SVM classifier for each class

using the Fisher vector encoded feature vectors (including SIFT and color features) of salient

regions. They reported a top1 accuracy rate of 85% when detecting 15 different kinds of foods

in their experiments.

In the Im2Calories system Myers et al. [42] proposed, multiple-food recognition were
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Figure 2.3: FoodCam system process flow. Users draw bounding boxes over each food item
and image classification is performed for each bounding box region. Top-5 candidate food
items are displayed on the screen for users to choose from.

solved by replacing the last layer named softmax classifiers of GoogLeNet by a multiple-label

classifier named logistic nodes. They trained the CNN on an extended dataset of Food101

which contained 201 food items. An average top1 accuracy rate of 50% were achieved, with

mean top1 accuracy of 80% for classes in Food101 and 20% for classes outside Food101.

They argued that the number of training images for classes outside Food101, which were much

smaller compared with classes in Food101 which had 1000 images for each categories, was the

reason for the low accuracy rate.

2.3 Related Work in Multiple-Object Detection

In real life scenarios, it is common that people have multiple food items in their plate. In order

to address this problem, the system need to be able to localize and identify multiple food items

in the image.

We aim to learn multiple food detectors to localize food items where only binary image

labels that encodes whether an image contains this target object or not is provided. Thus

our work is strongly related to the research area of multiple-object detection. Generally, the

detectors are trained in two ways: the supervised way with ground-truth bounding boxes and

the weakly supervised way with labels only for whole image. In this section, we review the

most representative work of those two approaches.
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2.3.1 Supervised Multiple-Object Detection

The state-of-the-art object detectors are trained with ground truth bounding box. Usually, there

are three main steps in training an object detector:

1. Region Proposals: proposing candidate regions which may contains target objects for

each image;

2. Region Representation: computing feature representation (eg. SIFT, HOG and CNN) for

each proposed region.

3. Classifier training and bounding boxes location regression: training the classifier for

bounding boxes localizing and content predictions.

The last step varies from one approach to another. Efficient approaches often combine the

bonding box location regression and classifier training together to speed up the training process.

In the following section, we review the most representative work in this category.

Girshick [23] et al. proposed an algorithm which significantly improved the accuracy rate

of object detection. Figure 2.4 3 shows the pipeline of their method. They first used the method

SelectiveSearch proposed by Uijlings et al. [53] to propose regions in the image which may

contains objects. In their work, they used about two thousand regions in the image as the

candidate regions. Then they used the AlexNet [35] to extract features of each of those regions.

Figure 2.4: Overview of RCNN

Since the ground-breaking work of [23], many CNN based approaches achieved better

performance and needed less time to train. Successors such as [22], [45], and [24] improved

the detection accuracy rate significantly.

3Image is from [23]
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2.3.2 Weakly Supervised Multiple-Object Detection

In object detection, weakly supervised learning refers to methods that rely on image-level

labels which indicate the absence or presence of object instances in the images. Such methods

do not require ground truth bounding box annotations on training images and can potentially be

widely used on large amount of textually tagged images on the Web. There have been intensive

studies in weakly supervised object detection in recent years. Most of these approaches adopt

a similar framework, which shares following main steps:

1. Region Proposals: proposing candidate regions which may contains target objects for

each image;

2. Region Representation: computing feature representation (eg. SIFT, HoG and CNN) for

each proposed region.

3. Region Mining: finding out the most representative object regions (positive samples)

among all the candidate regions.

4. Classifier training and refining: training a classifier for each object category based on the

mined regions, and then applying hard negatives mining to refine the classifier.

Song et al. [50] proposed a method to learn object detectors from weakly labeled images.

Images with only labels of whether the object was presented or not were called as weakly

labeled images. They solved the detection problem by training latent SVM classifiers, where

the mined bounding boxes positions in the positive images were the latent variables. They

used the submodular cover algorithm to get a good initialization of candidate bounding boxes.

They got a set of guessed bounding boxes in this step that were as good as manually labeled by

human. They created a smooth formulation of LSVM, which allowed to use efficient algorithms

for solving the optimization problem. They achieved the state-of-the-art result on the PASCAL

VOC 2007 dataset among the approaches of weakly supervised learning.

Wang et al [55] proposed a similar procedure for weakly supervised object localization as

[50]. However they focused more on the cluttered backgrounds and treated this information as

the latent variable. They claimed that using the co-occurrence of the object and background

could improve the detection accuracy rate.

Weakly supervised learning for object detection is becoming a hot topic and generally fol-

lows the four steps as described in the beginning of section 2.3.2.
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Overview of Our Proposed Method

We propose an algorithm which jointly detects food item combinations and their locations in

the image, with only “weakly labeled” images for training. In other words, each of the training

images contains only a single food item with no bounding box and its label, while the testing

images may contain multiple food items. Our proposed algorithm will predict the labels of

food items and their corresponding locations in the test images. Thus, it is a novel algorithm

with “minimal supervision”. We overview the processing flows of our proposed method in

Figure 3.1 and Figure 3.2.

Figure 3.1: Overview of the training pipeline of Multiple-Food detection

15
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Figure 3.2: Overview of the testing pipeline of Multiple-Food detection

Given an input image, our method firstly generates candidate regions which may contain

objects, using the segmentation based region proposal method named Selective Search [53].

Since each training image in our experiment contains only one food item, the sizes of these

regions which contain the food item should not be too small and the aspect ratio of width and

height of these regions should be in a reasonable range. Thus, we exclude irrelevant proposed

regions regarding their size and aspect ratio to construct a much smaller set of candidate re-

gions. In this thesis, we also use the whole image as the proposed region for comparison in our

experiments.

Next, we extract the CNN features of each region in the candidate set for every training

image. We use the pretrained AlexNet [35] model to represent each candidate region using the

output of the model’s f c7 layer, which is second fully-connected layer in AlexNet and contains

4096 neurons. Therefore, the feature vector of each region has the dimension of 4096.

Then, we propose a novel strategy to discover the discriminative regions for each food

category. The idea is based on the fact that regions come from the same class (positive samples)

share similar feature appearance and thus are close to each other in the feature space. We

examine the discriminative power of each region by its maximum cover. The maximum cover

of each region is computed by counting how many positive training images it covers. A region

covers a positive training image if it is one of the top K nearest neighbors of regions in the
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image. Outputs of this procedure are a set of positive discriminative regions for each class.

With these mined positive regions, one binary linear SVM classifier is trained for each food

category. A total number of 10 classifiers are trained from the mined regions. These classifiers

are further refined iteratively with hard negative examples.

At the testing stage (shown in Figure 3.2), we first select the regions based on the classi-

fication scores, then we apply our improved Non Maximum Suppression (NMS) algorithm on

these regions to generate the final results. The outputs of our proposed method are the region

locations and its predicated food names.

Some of the results of our proposed method on test images are shown in Figure 3.3.

Figure 3.3: Sample detection results of our proposed method on test images
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Multiple-Food Detection

To recognize multiple food items and localize them separately in a single food image is a very

challenging task, especially when there are no ground-truth bounding boxes provided during

training. To the best of our knowledge, no previous work has addressed the problem of multiple

food items recognition and detection in a weakly supervised manner.

Our goal is to learn a detector for each food category from a set of training images with

only binary labels indicating whether the image contains this food category or not. We model

an image as a set of overlapping rectangular windows, therefore, we can reduce the detection

problem to the problem of binary classification of image rectangular windows. We model each

image as a bag of instances (rectangular windows). The binary image label y = 1 specifies that

the image contains at least one instance of the target category, and the label y = −1 specifies

that the image contains no instances of the category. Since instance labels are not provided, we

perform region mining with submodular cover optimization to find the positive instances which

are rectangular windows containing the target food category. With the positive instances, we

can train a classifier for each food category and further refine the classifier by mining the hard

negatives .

In this chapter, we describe each step of our proposed algorithm in detail and offer a brief

rationale for why certain methods and parameters have been chosen. We also show the inter-

mediate results of each step at the training stage and the testing stage.

4.1 Detection Region Proposals

To detect objects in an image, candidate regions where objects are expected to exist are usually

extracted to guide the object detection.

Region proposal methods can generate a small number of semantic regions where objects

18
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are most likely present, avoiding exhaustive sliding window search across the whole image.

Good region proposal methods can propose high quality regions, all of which contains potential

target objects. Meanwhile, the number of generated regions is also relatively small so that we

can mine the regions effectively. There are many region proposal methods. We briefly overview

them in Section 4.1.1 and discuss the region proposal method we choose in our proposed

pipeline.

4.1.1 Introduction of Detection Region Proposal Methods

A method based on sliding window is an intuitive way to propose regions. This approach

exhaustively searches across the whole image, yielding 104 − 105 rectangular windows [27] on

a typical image. In multiple-scale detection, the number of proposed windows grows by orders

of magnitude with the number of different size of detection windows.

One approach to alleviate the computing burden is to propose regions only on objects of

interest. One observation is that objects of interest share common visual properties most of

time. Based on this observation, a much smaller number of regions which have high probability

to contain objects of interest can be proposed to be candidate regions. Current state-of-the-art

object detectors often employ region proposal methods to speed up the search for objects.

Those approaches are more efficient than the sliding window approach as fewer windows are

examined.

Currently there are two categories of region proposal methods [27]. One category is window

scoring and the most popular method in this category is Objectness. The other category is

grouping method and the most popular algorithm in this category is known as SelectiveSearch

[53].

Objectness is proposed by Alexe et al. [1] in 2010. It is among the earliest well known

region proposal methods. In this method, the salient locations in an image are used for initial

proposals. Each of the salient regions are then scored based on the probability of containing

an object [2]. The score estimation is based on a combination of multiple information such as

color contrast, edge, location and size, saliency and its overlap with superpixels.

SelectiveSearch is proposed by Uijlings et al. [54] [53] in 2011. This method greedily

merge similar regions together to generate candidate regions. Since the author designed sim-

ilarity functions manually, there is no learned parameters. Because of its high recall rate and

no customized parameters, it is the most widely used region proposal method and most recent

object detection methods use SelectiveSearch as region proposal method.
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4.1.2 SelectiveSearch Region Proposal

Good region proposal methods typically depends on cheap features and quick inference model

[45]. SelectiveSearch greedily merge superpixels to generate proposals where features and

similarity functions used for merging superpixels can be manually designed. It proposes high

quality candidate regions at different scales using multiple grouping criteria with relatively

small computational cost.

SelectiveSearch has been broadly used as the detection proposal method by many state-of-

the-art object detectors. The idea of this method is grouping superpixels to generate a hierarchy

of small to large regions. The processing procedures of this algorithm can be summarized as

follows:

1. Generate initial regions. In this step, SelectiveSearch use the superpixel extraction method

described by Felzenszwalb et al. [20] to generate as many regions as possible, and each

of them belongs to at most one object.

2. Recursively merge similar regions into larger ones greedily until only one region left.

This procedure yields a hierarchy of successively larger regions. The merge criteria is

based on the similarity in color and texture between regions. The similarity is measured

by the similarity metric, which is defined as follow:

(a) Choose the color space from RGB, HSV,and Lab color space.

(b) Compute the color similarity based on the selected color space using histogram

intersection.

(c) Compute the HOG-like features for texture similarity measurement.

(d) Add a size component in the similarity metric so that all smaller regions are more

similar to each other.

(e) Shape compatibility also measures similarity of two regions.

The function of similarity measure is computed as a linear combination of all the metrics

described above.

3. Lastly, output regions which likely contain candidate objects.

We adopt SelectiveSearch to generate region proposals for multiple-food detection. Figure

4.1 (a) shows the original image; Figure 4.1 (b) shows the regions proposed by SelectiveSearch

overlaid on the original image, and only a small number of proposed regions are shown. Usu-

ally more than 2000 regions can be generated for a single image by SelectiveSearch. We further
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filter the candidate regions based on their size and aspect ratio. Regions that are either too small

(area is less than 1/100 of the original image) or the ratio of length to width is too large (larger

than 20) or too small (less than 1/20) are removed. Because of this simple and reasonable

filtering, we successfully decrease the number of proposed regions per image from about 2000

to about 150. This significantly improves the speed and accuracy of the subsequent procedures.

(a). The Food image (b). Proposed region windows by SelectiveSearch

Figure 4.1: Example of a food image (left) with proposed regions computed by SelectiveSearch
overlaid (right)
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4.2 Region Representation

Extracting features to represent the regions in feature space is an important component of

object detection. Traditional feature extractors are based on hand-engineered methods, such as

HOG[14] and SIFT[38]. Recently large performance improvements on detection benchmarks

have been realized by training deep convolutional neural networks. Generic feature vectors

extracted from CNN are very powerful and have been reported to outperform all of other feature

extracting methods [44]. It is suggested that features obtained from deep learning with CNN

should be the primary candidate in most visual recognition tasks [44].

In this section, we briefly describe convolutional neural networks and some of the most

popular CNN architectures. Then we explain how to extract feature vectors from convolutional

neural networks in our experiments.

4.2.1 Convolutional Neural Network

Neural network is inspired by biological visual cortex. In the central nervous system, each

neuron receives input signals from the output of its dendrites, and then combines all the input

with some kind of computation to generate an output signal to another neuron. In this model,

the neuron will fire if the combination of all the input signals is strong enough. The activation

function f is used to calculate the strength of the output signal. Sigmoid function is a common

choice of activation function. Figure 4.2 shows a biological neuron and its corresponding

mathematical model.

Figure 4.2: A biological neuron (left) and its corresponding mathematical model (right). 1

Convolutional neural network is very similar to ordinary neural network and it is explic-

itly designed for inputs which are images. CNN is make up of layers and each CNN layer

transforms an input 3D volume of activation neurons to an output 3D volume of neurons with

1Images are from http://cs231n.github.io/neural-networks-1/
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some differentiable function that may or may not have parameters. There are four main types

of layers to build CNN architectures: Convolutional Layer, Pooling Layer, RELU layer and

Fully-Connected Layer.

There are several popular CNN architectures and we briefly describe three most popular

CNN architectures below.

Yann LeCun applied CNN computer vision tasks in his ground-breaking work [37]. In

this work, he trained a CNN name LeNet5 for recognition of handwritten digits. His archi-

tecture (Figure 4.3) achieved the highest accuracy rate (error rate less than 1%) compared

to other traditional method at the time. The LeNet5 contains 2 convolutional layers, 2 sub-

sampling(pooling) layers, 2 fully connected layers, and one output layers. Figure 4.3 shows

the architecture of this network.

Figure 4.3: Architecture of LeNet5 2.

Krizhevsky et al. [35] unveiled the power of deep convolutional neural network for the task

for image classification. The ImageNet organization holds an ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) on their large image dataset [15] yearly since 2010. There

are 15 million images in the dataset spread in 22000 categories. Every year many teams submit

their algorithms try to improve the classification accuracy rate.

In 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC2012), [35] pro-

posed a large deep convolutional neural network which outperformed far away than many

teams and won the competition. They achieved top-1 and top-5 error rates of 37.5% and 15.3%

respectively, while the second place achieved a top-5 error rate of 25.7%. This was a major

breakthrough in image classification. Since then, lots of better classification results are re-

ported. The AlexNet contains 60 Million parameters, and even just to store the parameters will

require 230 Megabytes. Figure 4.4 shows the architecture of the AlexNet.

2Image is from [37]
3Image is from [35]
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Figure 4.4: Architecture of AlexNet 3

4.2.2 Feature Extraction with Convolutional Neural Network

Using features extracted from the convolutional neural network is becoming the standard fea-

ture extraction method. In 2012 with the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) [15] [16] classification breakthrough obtained by convolutional neural network, the

power of CNN has been explored extensively. Donahue et al. [17] showed that the winner

(AlexNet [35]) of ILSVRC12 could be used as a powerful black-box feature extractor. Cur-

rently the best-performing methods for detection also employed CNN to extract high level

features. Girshick et al. [23] used features extracted from AlexNet in their ground-breaking

work on object detection. Figure 4.5 visualizes the features extracted from a burger image

using the f 7 layer of AlexNet.

In our experiments, we use the pre-trained AlexNet model as our feature extraction model.

We use the Caffe [29] deep learning framework and its pre-trained AlexNet model to compute

the feature vectors of the proposed regions. For each region, we first resize it to 227 by 227 pix-

els to meet the input requirement of AlexNet. Then the pixel values of the region are subtracted

by the mean and then normalized to between [0.0, 1.0]. The normalized pixel values are then

forward propagate through the neural network and a 4096-dimension feature is extracted by

using the output of the last convolutional layer ( f c7 layer) in the model. As we have decreased

the number of proposed regions from about 2000 to about 150 per image (every image has

different number of proposed regions), after extracting features for all these regions, a feature

matrix of 150 × 4096 is computed for each image. This feature matrix is used as the input data

for the region mining process.
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(a). Sample input image (b). The filter of first convolutional layer

(c). The output of first convolutional layer (d). The output of last (the 5th) pooling layer

Figure 4.5: Visualization of a burger go through the AlexNet. (a) Sample input image to the
neural network; (b) Visualization of the filters in the first convolutional layer; (c) The activation
output of the second fully connected layer f c7 by sample input image; (d) The activation output
of the 5th pooling layer, which is the input of the second fully connected layer f c7.
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Figure 4.6: Values of the 4096-d feature vector extracted from one proposed region of the
burger image shown in Figure 4.5.
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4.3 Region Mining

With the features of all candidate regions extracted, we do not know which region contains the

object and can be used as positive samples to train classifiers because class labels of regions

are not provided. Figure 4.1 shows one example of the result of the proposed regions generated

by the SelectiveSearch algorithm. We can observe that although the SelectiveSearch algorithm

do propose many regions which contain objects, most of those regions do not contain or just

contain part of the target objects (burger) we want to detect. Thus we need to find out which

region contains the target object?

In this section, we describe an effective region mining strategy to discover a set of positive

region samples for each class.

4.3.1 The Goal of Region Mining

Region mining aims to find two types of regions from all the proposed regions of training

images.

1. Positive regions: Based on the fact that different proposed regions have different discrim-

ination to the target object class, region mining procedure evaluates the discrimination

to discover the positive regions which best differentiate the target object class and back-

grounds.

2. Hard Negative regions: Negative regions consist of two parts: the background regions

from positive images belong to the same class and the regions from negative images

belong to other classes. Hard negative regions are samples that are similar to positive

regions and falsely detected by the classifiers.

In this section, we focus on positive regions mining with the algorithm described below.

4.3.2 Maximum-Cover Region Selection

Based on the assumptions that: i) the correct rectangular windows are similar across training

images which belong to the same food category in the feature space and must be clustered well,

and ii) the correct rectangular windows do not occur in the negative images (training images

belong to all other food categories), we formalize the intuition to mine the positive regions as

a submodular cover problem.

For each region, we integrate its relevance to regions coming from positive images (belong

to the same object class) versus negative images. Similar to [50], we create a bipartite graph
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G = (R, I, e) to represent this relationship. Each image has a set RI = {r1, ..., rn} of proposed

regions from previous step. Set I contains all regions of positive images RI of a food category.

Set R contains all the regions of all the images. An edge e exists between R and I if region ri

from R is one of the top-k nearest neighbors of region in I. The idea is that, if a region ri is the

nearest neighbor in both positive and negative regions, then the number of edges stem from this

region would be small since we only count edges connected to positive image regions. This is

reasonable because if the region is close to regions in both positive and negative images, it is

very possible that this region is background.

As shown in Figure 4.7, the regions in the top row are the individual proposed regions,

and those at bottom are their nearest neighbors with respect to other training images belong

to the same class in the feature space. All training images from the same class are treated

as positive images and images from all other categories are treated as negative images. For

each proposed region, its distances to all other regions proposed on both positive and negative

training images are computed and ranked. Based on the top-k nearest neighbors, we count the

number of regions coming from positive images and used it as a score for next step.

Figure 4.7: Regions with Maximum Cover
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Maximum-Cover by Submodular Optimization

After we get the scores of each region, we want to select a set of regions S ⊆ R, that (i) can

well represent the category; (ii) is small enough for fast training. We have two reasons for that:

i) there are too many regions from the region proposal step and, ii) only a small portion of

these regions contain the target food item. How many regions are needed to represent one food

category is a problem with submodularity: the representation margin diminishes by adding one

more region to the set S compared to previous added region. We define the function N(S ) as

the neighbors of a set of regions S ⊆ R.

A set function F : 2Ω → R is submodular if it satisfies diminishing gains [21]. That is, for

any S ⊆ T ⊆ Ω \ {v}, it holds equation 4.1

F(T ∪ {v}) − F(T ) ≤ F(S ∪ {v}) − F(S ),∀v ∈ Ω (4.1)

Figure 4.8: Submodular Set Function. Set T get less margin by adding ν compare to the margin
get by adding ν to set S .

We define a covering score CI,t(S ) for each image I. The score is determined by a covering

threshold t and the number of regions from RI that are in the set of neighbors of S , that is,

N(S ).

CI,t(S ) = min{t, |N(S ) ∩ RI |} (4.2)

The covering score CI,t(S ) measures how many regions in RI are the near neighbors of S ,

if there are many regions in RI which are the near neighbors of S , then set S can well represent

the image I, and we call that set S covers image I. The covering score F(S ) from equation 4.3

for the whole set s is then defined as sum of scores on all positive images P of that category.

F(S ) =
∑
I∈P

CI,t(S ) (4.3)

Our target is to find a set of regions S from R that minimize equation 4.3, while having

enough representation ability. We want regions in S come from each of the positive images,
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and at the same time to keep S as small as possible. This is indirect controlled by the threshold

parameter t. If t is small, than regions in S will come from regions from many different images

and the set S is relatively small. on the other hand, if t is large, there will be many more regions

in set S , which covers each image more.

To minimize F(S ), we want regions in S are those with the most number of edges stem

from positive images. An edge e exists between R and I if region ri from R is the top-k nearest

neighbors of region in I. That means the more edges stem from one region, the more positive

images it can covers, the higher representation ability it has.

Function F(S ) is a submodular function and can be optimized via a greedy algorithm. This

is because:

Function F(S ) : 2Ω → R defined in Equation 4.3 is a submodular function.

A set function that satisfies decreasing gains is submodular. That is, for ν ∈ Ω and S ⊆ T ⊆

Ω \ {ν}, it holds F(S ∪ ν) − F(S ) ≤ F(T ∪ ν) − F(T ).

Let Cov = |N(S ) ∩ RI |, then function Cov is a covering function. For S ⊂ T ⊆ Ω \ r, we

can have

N(S ) ⊆ N(T ) (4.4)

|N(T ∪ {r})| − |N(T )| = |N(r) \ N(T )|

≤ |N(r) \ N(S )|

= |N(S ∪ {r})| − |N(S )|

(4.5)

Thus function Cov is a non-decreasing submodular function. Function F(S ) is the sum over

Cov, thus also is a non-decreasing submodular function.

Optimization Our goal is to select a representative minimum subset S ⊆ R, which can be

stated as:

min
S⊆R
|S | s.t. F(S ) ≤ αF(R), for α ∈ (0, 1] . (4.6)

Submodular cover is an old problem. Wolsey et al. [56] analyzed the greedy algorithm for

the submodular set covering problem in 1982. We adopt the greedy optimization algorithm. Let

S 0 = ∅ and in each following iteration step τ, add the region r that can cover the largest number

of uncovered regions. More formally, add the region that could maximize the marginal gain

F(S τ ∪ {r}) − F(S τ). Figure 4.9 shows the top-10 regions selected from the greedy algorithm

for the burger training images with the α = 0.95 [50].
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Figure 4.9: The top-10 regions in set S for the training dataset of the burger category
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4.4 Classifier Training

After we get the candidates of positive and negative regions, we use the features extracted from

those regions to train an initial classifier. As we have explained in the begin of this chapter,

we chose to use Support Vector Machine (SVM) [6] [13] to train the binary classifier for each

class.

4.4.1 SVM Optimization

Support Vector Machine (SVM) is one of the most important algorithms in machine learning

since it was introduced by Boser et al in 1992 in [6].

Usually, a linear classifier can be expressed by yi = f (x) = wT xi + b, where xi is the feature

vector of the sample i. In the training phase, we have the ground truth label yi, we use the pairs

(xi, yi) of the training data to obtain the weights vector w and bias b. After that, we could use

this model to predict on test data. In the testing phase, the feature vector xi is first obtained from

the sample, and then we compute the prediction by yi = wT xi + b. The function f (x) = wT xi + b

is one hyperplane to separating the training data into categories. As Figure 4.10 shows, H2,H3

are the separating hyperplanes for the training data, in which H3 has the largest margin between

two classes.

Figure 4.10: Example hyperplanes. H1 does not separate the two classes. H2,H3 can separate
them but H3 with the largest margin. 5

5Image is from https://en.wikipedia.org/wiki/Support vector machine
7Image is from https://en.wikipedia.org/wiki/Support vector machine
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Figure 4.11: Maximum-margin hyperplane for an example SVM with two classes. Samples on
the two marginal hyperplanes are the support vectors. The margin is the distance between two
marginal hyperplanes. 7

The idea of SVM is to find a discriminative hyperplane that represents the largest margin

between the two classes in the training data. Figure 4.11 shows the hyperplane for a linear SVM

and its support vectors. The margin the hyperplane has between two classes can be expressed

as 2
‖w‖2 . Thus target of SVM is to maximize 2

‖w‖2 to get the maximum margins between the two

classes. That is:

min ‖w‖2, subject to:

(w
T xi + b) ≥ 1 if yi = 1

(wT xi + b) ≤ −1 if yi = −1

This can be combined to:

min ‖w‖2 subject to: yi(wT xi + b) ≥ 1 (4.7)

The Loss Function

To deal with non-separable case, we can add some slack variable ξi and the problem becomes

as:
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Minimize:

‖w‖2 + C
m∑

i=1

ξi (4.8)

Subject to:

yi(wT xi + b) ≥ 1 − ξi, ξi ≥ 0 (4.9)

for all m training instances in the training data.

Thus the loss function of SVM is:

L(w, b) =
1
m

m∑
i=1

`(wT xi + b, yi) + ‖w‖2 (4.10)

With the slack variable ξi, the loss ` for one sample is no longer the zero-one loss, but is

the “hinge-loss”:

`(y, ŷ) = max(0, 1 − yŷ) (4.11)

The final task is to minimize:

min L(w, b) =
1
2
‖w‖2 + C

m∑
i=1

max(1 − yi(wT xi + b), 0) (4.12)

Optimization of SVM Loss Function

The target loss function defined in Equation 4.12 can be optimized by the BroydenFletcher-

GoldfarbShanno (BFGS) algorithm. We use the SciPy package [30] which implements this

algorithms. The code listed in 4.1 is our implementation using the fmin bfgs function from the

module optimize in the SciPy package.
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Listing 4.1: Python code to optimize the loss function with SciPy optimize module

1 def u p d a t e m o d e l ( c l a s s i d , p o s f e a t , n e g f e a t ,

2 w, b , pwe igh t =2 , b i a s m u l t =10 , C=0 .001 , h a r d i t e r =1) :

3

4 i = 0

5 whi le i < h a r d i t e r :

6 h a r d t h r e s h o l d = −1.0001

7 f e a t d i m = p o s f e a t . shape [ 1 ]

8 i f w i s None :

9 w = np . z e r o s ( f e a t d i m + 1)

10

11 x , y = g e t t a i n i n g s e t w i t h n e g m i n i n g ( p o s f e a t ,

12 n e g f e a t , pweight , w, h a r d t h r e s h o l d )

13

14 def l o s t f u n c (w) :

15 re turn g e t s v m l 1 h i n g e c o s t ( c l a s s i d , w, x , y , C)

16

17 def g r a d f u n c (w) :

18 re turn g e t s v m l 1 h i n g e g r a d (w, x , y , C)

19

20 pos num = p o s f e a t . shape [ 0 ]

21 neg num = x . shape [ 0 ] − pos num ∗ pwe igh t

22

23 w = f m i n b f g s ( l o s t f u n c , w, f p r i m e=g r a d f u n c ,

24 d i s p =1 , m a x i t e r =3)

25 i += 1

26 re turn w

The key for the optimization is to get the loss and gradient. The gradient of the hinge loss

is:

∂lhinge

∂w
=

0 yiw · x ≥ 1

−yix yiw · x < 1
(4.13)
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The sum of the gradient is:

∂Lhinge
S

∂w
=
∑

i

∂lhinge

∂w
(4.14)

Based on the mathematics equation, we implemented the procedure in the Python. The code

listed in 4.2

Listing 4.2: Python code to compute the gradient and the loss for each category

1 # c a l c u l a t e t h e h i n g e l o s s f o r t h e c l a s s

2 def g e t s v m l 1 h i n g e c o s t ( c l a s s i d , w, x , y , C) :

3 s c o r e s = np . d o t ( x , w. T ) . r e s h a p e ( −1 , 1 )

4 marg ins = y∗ s c o r e s

5 l o s s = np . maximum ( 0 , 1 − marg ins )

6 n = np . l i n a l g . norm (w)

7 c o s t = 0 . 5 ∗ n∗n + C ∗ np . sum ( l o s s )

8 re turn c o s t

9

10

11 # c a l c u l a t e t h e sum o f g r a d i e n t f o r t h e c l a s s

12 def g e t s v m l 1 h i n g e g r a d (w, x , y , C) :

13 s c o r e s = np . d o t ( x , w. T )

14 s c o r e s = s c o r e s . r e s h a p e ( −1 , 1 )

15 marg ins = y∗ s c o r e s

16 m a r g i n t e s t = marg ins < 1

17 l o s s g r a d m a t = np . d o t ( ( m a r g i n t e s t ∗ ( −1 ∗ y ) ) . T , x )

18 g rad = w + C ∗ l o s s g r a d m a t . r e s h a p e ( −1)

19 re turn g rad
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4.4.2 Hard Negatives Mining

Our training dataset is imbalanced. This is because we use the regions from other categories

as negative samples. Therefor, the number of negative sample is hundreds of times of the

positive samples (we have 10 categories, each have about 150 regions proposed, and less than

10 percent of the regions are selected to be the positive instances). The impact of imbalanced

dataset on the learning algorithm has been investigated since decades ago [28] [10]. In our

setting, we have two problems about this imbalanced data. First, imbalanced dataset harms the

accuracy rate of the classifier [28] [10] [25]. Second, it is costly to train such a large dataset.

Dalal and Triggs et al. [14] developed the method of data-mining for hard negative ex-

amples which is based on the bootstrapping methods used by [48] and [51]. In the work of

Pedro F. et al. [19], the authors extensively used this method to improve their classifier. In

our experiment, we also used this method to speed up the training process and to improve our

classification accuracy rate.

Initially, when there’s no “hard negatives”, we select the k negative regions from all negative

regions of a food category, where k is the number of mined positive regions. During previous

mining step, we have already calculated the distance between negative and positive regions.

With this information, we select top-k negative regions whose distances are the closest to those

positive regions, those regions then become the initial “hard negative”, which are used to train

the initial linear SVM classifier.

With the initial classifier, we get the parameter w and b of the linear SVM. We can get the

prediction from this initial classifier with the feature vector xi of region i by equation 4.15.

For negative regions, an accurate SVM classifier should get f (x) ≤ −1.0. However, for the

initial classifier, there are many negative regions are wrongly classified. To improve this initial

classifier, we need to iteratively refine the classifier by re-train it with emphasize on the wrongly

classified instances.

f (x) = wT xi + b (4.15)

The refine process mainly focus on the negative regions for two reasons. First, the number

of negative instances is hundreds times more than positive instances. Selecting only the “hard”

ones can increase the distance between positive and negative “support vectors”, thus increasing

the accuracy rate. Second, the number of positive regions is small. If we focus only on the

wrongly classified ones, then we will tend to have very few training instances, which will

seriously under-fit the classifier, thus decreasing the accuracy rate. Focusing only on negative

instances will not have the over-fit classifier problem due to its abundance of instances.

To mine the hard negatives, we compute the f (x) for all the negative regions and then sort

the results by descending order, so the instances with the largest values are in the front (they
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are the “hard” ones). Then the top-k regions are selected base on the sorted results. Those top-k

regions are then become the “hard negatives” for the next iteration to refine our classifier.

4.5 Non-Maximum Suppression

One major problem for object detector is that it almost always detects multiple bounding boxes

surrounding the object in the image. Figure 4.12 shows one example of this problem. This is

because the region proposal method proposes many windows near the target object area. An

efficient solution to this problem is to use the non-maximum suppression (NMS) method to

select only representative regions as the output region.

Figure 4.12: Results without Non-Maximum Suppression. Left side are 4 candidate bounding
boxes and their predictions (burger). Right side are 5 bounding boxes and their predictions
(fries).

NMS has been widely used in object detection tasks and became a part of many detection

pipelines. It was first used by Canny et al [9] for edge detection. In the area of object detection,

Dalal et al. [14] used non-maximum suppression for human detection and made this method

popular. Their method is based on the Mean-Shift algorithm [12]. More recent object detectors

such as [19] and [39] also employed this method to deal with multiple bounding box for one

single object.
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4.5.1 Greedy Non-Maximum Suppression

Initially, we used the greedy iterative NMS algorithm similar to Felzenszwalb et al. [19]. We

start by selecting the highest score region, the regions which classified to be the same food

and are too close to the top score window then are suppressed. Then the next highest score

region which has not been processed is selected and the previous steps are repeated until all the

regions are processed. The distance between regions is defined by the ratio of overlapping area

to the area of the current processing region, if it is larger than 0.5, then there’s overlap, and the

current regions will be suppressed.

However this approach has some drawbacks. It selects the regions with the highest score

as the output. This approach does not always select the best region [46]. Usually the regions

contain only the center area of the target object received the highest score, which makes the

output region not covering the whole object. Based on this observation, we make a small

modification on the greedy approach which improves the accuracy of our bounding box.

Figure 4.13: Results with greedy version of Non-Maximum Suppression with top-5 regions.
Left side is the final bounding box and its prediction (burger). Right is the final bounding box
and its prediction (fries).

4.5.2 Non-Maximum Suppression on Top-N Regions

Normally, there are several proposed regions around the target food area. Those regions usually

have the same predicted label as showed in Figure 4.12. With this information on hand, we
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could fuse the top-N predictions on that area to generate one output bounding box instead of

just using the top-1 score.

In our experiment, we set N to be 5. This has the advantage to capture all the strong

responses from the classifier and drop those not so confident prediction. In the selected top-N

regions, we first run the greedy version of the NMS algorithm to get the initial location of

the object. Then we loop through the other four candidate bounding boxes, to see if any of

them significantly overlaps with the one selected by the greedy NMS algorithm. Significantly

overlap means the ration of the overlapped area of the two regions with the candidate region

exceed at certain threshold α (In our experiment α = 0.8). If the candidate bounding box is

significantly overlap with the selected one and is larger than the selected one, then it becomes

the selected bounding box, we repeat this process until all the regions have been processed.

After the process, the selected region then become the final output of the detection. Figure

4.14 shows the resulting regions for the detection.

Figure 4.14: Results with Non-Maximum Suppression with top-5 regions. Left side is the final
bounding box and its prediction (burger). Right is the final bounding box and its prediction
(fries).
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Experiments and Results

In this chapter, we describe how we train and evaluate the proposed method on a manually

collected food dataset. Detailed experiment setup is given in the following sections.

5.1 The Dataset

The food dataset used for our experiments is composed of a training set and a test set.

For training, we collected 1792 images of 10 categories of food. Each one of the training

images only contains one food item. A detailed number of training images for each food type

is listed in Table 5.1.

For testing, we collected 153 food images and each image contains at least two different

food items from the 10 classes. In Table 5.2, we summarize the number of instances of each

food category shown in the test dataset.

Table 5.1: The training dataset
Categories Number of Images
Apple 145
Orange 128
Banana 95
Salad 201
Bagel 205
Pizza 202
Burger 204
Fries 325
Muffin 200
Coffee 87
Total 1792

Table 5.2: The testing dataset
Categories Number of Instances
Apple 47
Orange 17
Banana 19
Salad 18
Bagel 17
Pizza 14
Burger 28
Fries 23
Muffin 15
Coffee 40
Total 135

41
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Figure 5.1 shows some examples of the training and testing images.

Figure 5.1: Examples of training in the food dataset and testing (right) images. The training
dataset contains images with only single food item and the testing dataset contains images only
with multiple food items.
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5.2 Detector Evaluation Criterion

Mean Average Precision (mAP) The PASCAL Visual Object Classes (VOC) [18] defined a

criterion to compute the mean average precision (mAP) for object detection evaluation, which

has become the standard evaluation criterion. The mAP metric is used to compare a detection di

to a ground truth bounding box gi by computing the ratio of the area of the intersection |di ∩ gi|

over the area of union di ∪ gi of the two regions. When the overlap exceeds 0.5, the detection

is considered to be successful. Then the Average Precision (AP) on each class is calculated

based on the detection result. This is an accurate evaluation criterion on tasks such as object

detection. However, this criterion requires the ground truth bounding boxes of the test dataset

to compute the ratio, which are not available in our experiment.

Classification Rate (CR) Matsuda et al. [40] developed a criterion to evaluate the results of

multiple food detection:

CR =
num. of correctly detected food items in top-N candidates

num. of all the food items in all the test image
(5.1)

This criterion does not consider the location information and evaluate on top N classification

results.

Average Recall and Precision We report detection accuracy as average top-1 recall and pre-

cision on the test dataset to evaluate our proposed algorithm instead of top-N. This is meaning-

ful for our experiment since recall rate measures the ability to detect food items and precision

rate measures how accurate the detection is. The recall rate is computed by Equation 5.2 and

the precision rate is computed by Equation 5.3 as follows:

recall =
num. of correctly detected items in the category

ground truth num. of items in the category
(5.2)

precision =
num. of correctly detected items in the category

num. of predicted items in the category
(5.3)
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5.3 Experiment Results

Following the proposed processing pipeline, we train multiple-food detectors on the training

images and test their performance on the test dataset. An average recall rate of 80.18% and

precision rate of 83.78% is obtained on the test dataset. Detailed recall rate and precision rate

for each food category is listed in Table 5.3.

Table 5.3: The recall rate and the precision rate on the test dataset with our proposed pipeline

Categories Num Recall Precision
Coffee 40 95.00% 92.68%
Apple 47 78.26% 94.74%
Salad 18 100.00% 85.00%
Muffin 15 73.33% 64.71%
Fries 23 76.19% 94.12%
Bagel 17 50.00% 70.00%
Burger 28 80.77% 77.78%
Orange 17 82.35% 87.50%
Banana 19 81.25% 86.67%
Pizza 14 84.62% 84.62%
Average 24 80.18% 83.78%

Figure 5.2 shows some successful recognition and localization by our proposed method.

More results are attached in Appendix A. Although food items vary a lot in appearance, size

and occlusion, our proposed method correctly recognizes and localizes most of the samples.

Promising results are shown in Figure 5.2. However, our proposed algorithm also generates

inaccurate detection on some of the test images. Figure 5.3 shows some inaccurate detection

examples. We discuss the reasons for those inaccurate detections in chapter 5.4.2.
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Figure 5.2: Example of successful detection results on test images. Our proposed algorithm
can recognize the food items and also localize them in the image correctly.
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Figure 5.3: Some inaccurate detection results on the test images. (a). Did not detect the bagel
in the image. (b). Wrongly detect the burger as an orange. (c). Did not detect the bagel. (d).
Wrong object location and did not detect the salad and the apple.(e). Did not detect the apple.
(f). Did not detect the fries.
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5.3.1 Comparison Experiment

To evaluate the significance of region mining procedure in object detection, we conduct a

comparison experiment which uses the whole image region to train multiple food detectors

without any region mining involved during training. Because the training dataset only contains

a single food item per image, the whole image region can be used as a positive sample in

training. An overview of the processing procedures at training stage is shown in Figure 5.4. At

training stage, SVM classifiers are trained using all the training images themselves as positive

samples. The rest procedures are exactly the same, with hard negative mining during training

and non maximum suppression at testing stage.

Figure 5.4: Overview of the training pipeline using whole image

An average recall rate of 88.71% and precision rate of 56.31% is obtained by the com-

parison method. Compared to the results obtained with region mining, it has a higher recall

rate but a much lower precision rate. We argue that the high recall rate is mostly due to the

classifiers which always output many labels for one image and therefore increase its recall rate

according to Equation 5.1. The classifiers trained without region mining produce low precision

rate because many false predictions are computed.

We compare the recall rate and the precision rate of our proposed pipeline and the method

using whole images as positive regions without region mining. The scores for each food cate-

gory obtained are listed in Figure 5.5. From this figure we could see that even though the recall
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Table 5.4: Result of comparison experiment: recall and precision rate on the test dataset with-
out region mining

Categories Num Recall Precision
Coffee 40 82.50% 91.67%
Apple 47 93.62% 68.75%
Salad 18 100.00% 40.00%
Muffin 15 93.33% 25.45%
Fries 23 95.65% 61.11%
Bagel 17 88.24% 46.88%
Burger 28 82.14% 60.53%
Orange 17 94.12% 72.73%
Banana 19 78.95% 34.88%
Pizza 14 78.57% 61.11%
Average 24 88.71% 56.31%

rates of the two methods are comparable, the precision rates of our method are much higher

than the method using a whole image as one region.



5.3. Experiment Results 49

The recall rates of our pipeline and the method using whole image as one region

The precision rates of our pipeline and the method using whole image as one region

Figure 5.5: Comparison of the recall (top) and the precision (bottom) of our proposed pipeline
and the method using whole image as one region.
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5.4 Discussion

In this section, we discuss the performance of our proposed method and address the importance

of region mining and hard negative mining in our processing pipeline. We also discuss the

potential improvement that can be made on our proposed method.

5.4.1 Discussion on the Proposed Processing Pipeline

Our experiments show that the proposed method described in Chapter 3 works effectively well

on both localizing and predicting the food items in the image. Each step in our processing

pipeline plays its own importance.

Region mining is an important step in object detection. It discovers discriminative regions

which helps distinguish each type of food from the others. Regions that belong to the back-

ground or would possible confuse the classifier are discarded. Classifiers trained on regions

with high discriminative power are much more robust and accurate. In our proposed method,

we use the submodular cover algorithm to select the discriminative regions from a large amount

of proposed regions. Region mining improves the accuracy of classifiers for each food cate-

gory because the classifiers are trained on carefully selected positive samples. On the contrary,

when training classifiers using the whole image as the positive region without region mining,

the precision accuracy rate is very low. This is because the individual classifier for each cate-

gory trained on the whole image is not accurate. Thus, there are many false positive detections

at the testing phase.

Mining the hard negative regions is another important step in our proposed method. This

processing step solves the problem of imbalanced positive and negative samples at training

stage. As a result, it helps to improve the recall rate of our detection. Classifiers trained with

the data most of which are negative examples will predict “NO” most of the times, resulting

in very low recall rate. The step of mining the hard negatives only select the hardest samples

from the negative sample set and thus can balance the positive/negative samples in training set.

Non maximum suppression is also very important in accurately localizing the bounding

box. We improve the standard NMS by combining the scores of the bounding boxes and the

area information to get more accurate location of the bounding boxes for each food item. We

select regions with top 5 SVM scores, and only keep the one with the largest area to be the final

bounding box.
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5.4.2 Discussion on Inaccurate Cases

Figure 5.3 shows some examples of inaccurate detection. Based on our observation, there are

two main reasons for these inaccurate detection results:

1. Too much variance in food appearance. For example, the color, size, shape of muffin vary

too much. In some images muffin appears to be round shaped and dark brown color, some

appears to be square shaped and black chocolate color. Region mining procedure in our

proposed pipeline is based on the assumption that object regions of images belonging to

the same class will cluster closely together in feature space. If the appearance varies too

much, it is difficult to obtain meaningful positive regions from region mining. Without

discriminative positive regions, highly robust and accurate classifiers can not be learned,

resulting in inaccurate detection.

2. Feature extractor is not fine-tuned on food dataset. The feature extractor we used is the

f c7 layer of AlexNet pretrained on ImageNet rather than on food dataset. Previous work

[32] has pointed out that color feature is more important to food recognition. Thus, a fea-

ture extractor fine-tuned on food dataset would greatly improve the feature to represent

the most important information for recognition.

5.4.3 Discussion on Methods Comparison

Based on the experiments, we show that the approach using the whole image as one region to

train a SVM classifier does not work well. The precision of the classifier is very low due to its

inaccurate classification for each category. This can be explained by two reasons. Firstly, even

though the collected training images contains only one food item, there are many other ob-

jects such as tables, wrapping paper and various other backgrounds in those images. Features

extracted with those noise included could significantly decrease the performance of the SVM

classifier as we show later in our experiments. Secondly, we have only around 200 training im-

ages per category, this number of training data is not big enough to train an accurate classifier.

Even if we could collect a lot of training data to mitigate this, we still could not get an accuracy

classifier due to the reason mentioned.

5.4.4 Discussion on Potential Improvements

One issue with our proposed method is that it requires a lot of computations, compared with

the simpler using the whole image approach. The extensive computation happens mainly in

the region mining step, which needs to compute the distance of features between proposed



52 Chapter 5. Experiments and Results

regions. The distance can be computed independently, thus it would be easy to parallelize the

computation. We use the vectorized code for effective computation. This could be further

optimized with the parallel computation on GPU.

The other issue is that we could use better evaluation criterion on our results if we have the

ground truth bounding boxes on the test dataset. This evaluation method actually favors more

for using the whole image as one region, as the evaluation criterion is insensitive to locations.

Actually we get very promising results on locating the bounding boxes of the food items, which

could be see in the Figure 5.2 and Figure A.1 to A.5.
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Conclusions and Future Work

We develop a method for multiple food detection with minimum supervision. In this chapter,

we summarize our work and highlight the conclusions that can be drawn from our experiment.

We also discuss the possible future work which may extend from this thesis.

6.1 Conclusions

In this thesis, we propose an effective method to detect multiple food items with minimum

supervision. Our experiments are conducted on a dataset of 10 food categories, where images

containing only a single food item are used as training set and images containing multiple food

items are used as test set. Our proposed method learns from single food item images using

techniques including CNN features, region mining, classifier training and hard negative mining.

At training stage, our method discovers the discriminative regions to construct a set of positive

regions for initial detector training and then refines the detector by mining hard negatives. At

testing stage, we use non-maximum suppression to refine the detection results. We obtain

an average precision rate of 83.78% of the prediction. Without any ground-truth bounding

boxes at training stage, our algorithm can localize the objects on test images reasonably well,

demonstrated by figures with detected bounding boxes shown in Appendix A. We also conduct

experiments to demonstrate the importance of region mining in our method. Classifiers trained

by the whole image without region mining have much lower precision rate on test dataset,

indicating that object detectors should be trained on selected discriminative regions to obtain

good results.

53
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6.2 Future Work

Our proposed method can easily extend for a larger dataset containing more food categories for

real application on smartphone. Since only CPU computation is needed, porting this implemen-

tation to mobile application is possible. By integrating the code to mobile health application,

user could easily log their meal by just taking one picture of all the food items they eat.

Another future work is on food image segmentation, which can be used to estimate the

portion size of food items. With the predicted bounding boxes obtained by our method, it

could be a good start point for segmentation algorithms such as Graph Cuts [8] and Grabcut

[47] to precisely segment the food items. Based on the segmentation, we can estimate the

volume of food item to approximate the calories of food items in the meal photo.
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Appendix A

More Detection Results on Test Images

Figure A.1: Detection results on the test images (cont. 1)
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Figure A.2: Detection results on the test images (cont. 2)
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Figure A.3: Detection results on the test images (cont. 3)
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Figure A.4: Detection results on the test images (cont. 4)
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Figure A.5: Detection results on the test images (cont. 5)
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