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Abstract

Image recognition has become one of the most popular topics in machine learning. With

the development of Deep Convolutional Neural Networks (CNN) and the help of the large

scale labeled image database such as ImageNet, modern image recognition models can achieve

competitive performance compared to human annotation in some general image recognition

tasks. Many IT companies have adopted it to improve their visual related tasks. However,

training these large scale deep neural networks requires thousands or even millions of labeled

images, which is an obstacle when applying it to a specific visual task with limited training

data. Visual transfer learning is proposed to solve this problem. Visual transfer learning aims

at transferring the knowledge from a source visual task to a target visual task. Typically, the

target task is related to the source task, and the training data in the target task is relatively

small. In visual transfer learning, the majority of existing methods assume that the source

data is freely available and use the source data to measure the discrepancy between the source

and target task to help the transfer process. However, in many real applications, source data

are often a subject of legal, technical and contractual constraints between data owners and

data customers. Beyond privacy and disclosure obligations, customers are often reluctant to

share their data. When operating customer care, collected data may include information on

recent technical problems which is a highly sensitive topic that companies are not willing to

share. This scenario is often called Hypothesis Transfer Learning (HTL) where the source data

is absent. Therefore, these previous methods cannot be applied to many real visual transfer

learning problems.

In this thesis, we investigate the visual transfer learning problem under HTL setting. Instead

of using the source data to measure the discrepancy, we use the source model as the proxy to

transfer the knowledge from the source task to the target task. Compared to the source data, the

well-trained source model is usually freely accessible in many tasks and contains equivalent

source knowledge as well. Specifically, in this thesis, we investigate the visual transfer learning

in two scenarios: domain adaptation and learning new categories. In contrast to the previous

methods in HTL, our methods can both leverage knowledge from more types of source models

and achieve better transfer performance.

In chapter 3, we investigate the visual domain adaptation problem under the setting of

Hypothesis Transfer Learning. We propose Effective Multiclass Transfer Learning (EMTLe)

that can effectively transfer the knowledge when the size of the target set is small. Specifically,

EMTLe can effectively transfer the knowledge using the outputs of the source models as the

auxiliary bias to adjust the prediction in the target task. Experiment results show that EMTLe

can outperform other baselines under the setting of HTL.
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In chapter 4, we investigate the semi-supervised domain adaptation scenario under the set-

ting of HTL and propose our framework Generalized Distillation Semi-supervised Domain

Adaptation (GDSDA). Specifically, we show that GDSDA can effectively transfer the knowl-

edge using the unlabeled data. We also demonstrate that the imitation parameter, the hyper-

parameter in GDSDA that balances the knowledge from source and target task, is important

to the transfer performance. Then we propose GDSDA-SVM which uses SVMs as the base

classifier in GDSDA. We show that GDSDA-SVM can determine the imitation parameter in

GDSDA autonomously. Compared to previous methods, whose imitation parameter can only

be determined by either brute force search or background knowledge, GDSDA-SVM is more

effective in real applications.

In chapter 5, we investigate the problem of fine-tuning the deep CNN to learn new food

categories using the large ImageNet database as our source. Without accessing to the source

data, i.e. the ImageNet dataset, we show that by fine-tuning the parameters of the source model

with our target food dataset, we can achieve better performance compared to those previous

methods.

To conclude, the main contribution of is that we investigate the visual transfer learning

problem under the HTL setting. We propose several methods to transfer the knowledge from

the source task in supervised and semi-supervised learning scenarios. Extensive experiments

results show that without accessing to any source data, our methods can outperform previous

work.

Keywords: Visual Transfer Learning, Hypothesis Transfer Learning, Supervised Learning,

Semi-supervised Learning
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Chapter 1

Introduction

With the explosive image resources people uploaded every day, image recognition becomes a

very hot topic and has drawn many attentions in recent years. Every year, there are many in-

spiring results in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC). With the

development of recognition technology, many IT companies want to use the image recognition

techniques to serve their customers and many interesting applications have been developed,

such as HowOld from Microsoft and Im2Calories from Google.

To successfully capture the diversity of different objects around us, many recognition mod-

els contain thousands or sometimes even millions of parameters and require a large amount

of training images to tune these parameters as well. As the visual recognition system become

increasingly successful in many general recognition tasks, people expect that it can solve the

recognition problems in many new and complicated areas which are paid less attention to be-

fore. Unfortunately, for some real applications, it is often difficult and cost to collect a large

set of training images. Moreover, most algorithms require that the training examples should be

aligned with a prototype, which is commonly done by hand. In many real applications, collect-

ing and fully annotating these images can be extremely expensive and could have a significant

impact on the over cost of the whole system. Therefore, the biggest challenge of applying the

current recognition algorithms to the new task is lack of training data.

On the other hand, object recognition is one of the most important parts of our human visual

system. We can recognize various kinds of materials (apple, orange, grape), objects (vehicles,

buildings) and natural scenes (forests, mountain). At the age of six, human can recognize about

104 object categories[12]. Our human can learn and recognize a new object with just a glance,

which means we can capture the diversity of forms and appearances of an object with just a

handful examples. This remarkable ability is obtained by effectively leveraging the learned

knowledge and applying it to the new tasks. It could be ideal if there is a visual recognition

model can have such ability, which is referred to as Visual Transfer Learning (VTL).

1



2 Chapter 1. Introduction

VTL has been increasing popular with the success of modern image recognition algorithms.

In VTL, the source domain is referred to the one we have already learned and the target do-

main is the one we want to learn. In VTL, measuring the relatedness of the source and target

tasks is important for the transfer process. In previous studies of VTL, people assume that the

source data are always available and can be freely accessed. Therefore, the relatedness of the

source and target domain can be effectively measured by comparing the data in two domains.

However, this assumption rarely holds in real applications. Source data are often a subject of

legal, technical and contractual constraints between data owners and data customers. Beyond

privacy and disclosure obligations, customers are often reluctant to share their data. On the

other hand, sharing the model trained from the source data, i.e. the source model, instead of

the data can avoid these obligations and is more common in real applications. VTL under this

situation is usually called Hypothesis Transfer Learning (HTL) [60] and the source model is

called source hypothesis.

In this thesis, we investigate the VTL problem under the HTL setting. Specifically, we

investigate the VTL problem under two scenarios: domain adaptation (transductive transfer)

and learning the new categories (inductive transfer). The methods proposed in this thesis focus

on how to leverage the knowledge from the source model and transfer it to the target task

effectively. In this section, we first give an overview for image recognition. Then we illustrate

the current approach for VTL tasks and their limitation for the real applications. Finally, we

briefly demonstrate the contributions of this thesis.

1.1 Overview for Image Recognition

In this section, we review the major procedures for image recognition. A general image recog-

nition method consists of three parts: image preprocess, feature extraction and classification.

1.1.1 Preprocess

Firstly, the optical property of an object is captured through its optical sensor of a digital camera

and then the digital camera generates raw digital data of the image. After receiving the raw data

of a image from the sensor, preprocess is to generate a new image from the source image. This

new image is similar to the source image, but differs from it considering certain apsects, e.g.

the new image has smoother edge, better contrast and less noise. Here, some pixel operations

and local operations are used to improve the contrast and remove the noise.

Another important operation of preprecess is segmentation according to the object, i.e.

finding the region of interest. Images used for recognition should be aligned, making the target



1.1. Overview for Image Recognition 3

Figure 1.1: Major procedure for image recognition.

object appear in the central of the image and remove those irrelevant area.

The result of preprocess has great impact on the final result of the recognition. Clear and

noise free images can make the feature extraction more effective and significantly improve the

final classification accuracy.

1.1.2 Feature Extraction

Feature extraction is used to extract the optical properties of an image and represent interesting

parts of an image from the raw image data as a compact feature vector. The feature vector is

then used for either training the classifier or recognition. Therefore, feature extraction is the

most important part for image recognition. The quality of the features extracted from a image

have great impact on the recognition result. There are two major streams for feature extraction:

the hand engineered method and representation learning method.

1.1.2.1 Hand Engineered Feature

Hand engineered features are typically low level and local features. Low level features are

extracted according to some optical properties of an image. These features are low level / local

features. There is a widely agreement that local features are an efficient tool for object represen-

tation due to their robustness with respect to occlusion and geometrical transformations [105].

Common low level hand engineered features include Histogram of Oriented Gradients (HOG)
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[26], Scale Invariant Feature Transform (SIFT) [70], Speeded Up Robust Features (SURF) [8],

Local Binary Patterns (LBP) [78], and color histograms [13]. Feature descriptors obtain from

these low level features refer to a pattern or distinct structure found in an image, such as a point,

the edges, or some small image patches. They are usually associated with an image patch that

differs from its immediate surroundings by texture, color, or intensity. What the feature actually

represents does not matter. We know that it is distinct from its surroundings. These low level

Figure 1.2: Feature extraction using SIFT.

features can be used directly for recognition. However, since they just represent certain local

properties of an image and are not discriminative enough for recognition, discriminative high

level features can be further learned by combining the low level features using some algorithms

such as bag-of-visual words[62].

1.1.2.2 Representation Learning

Representation learning is mainly described by Deep Learning algorithms[58] or Auto En-

coders [11]. The ideas is to learn a group of filters that are able to capture various kinds of

features to discern one category of images from the another category with some supervised or

unsupervised algorithm. Typically in representation learning, features are learned hierarchi-

cally from low-level features to high level ones automatically. Learning representation from an

image can start from either low level hand-crafted features (for Auto Encoders) or raw pixels

of an image (for Deep Learning).

Auto Encoders are widely used to combine different types of low level feature. The outputs

of the Auto Encoders are some latent representations. These latent representations are learned

from the given images that have lowest possible reconstruction error. Even though the high
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Figure 1.3: General Scheme of Auto Encoders. L1 is the input layer, possibly raw-pixel inten-

sities. L2 is the compressed learned latent representation and L3 is the reconstruction of the

given L1 layer from L2 layer. AutoEncoders tries to minimize the difference between L1 and

L3 layers with some sparsity constraint.

level representations from Auto Encoders are learned by minimizing the reconstruction errors,

they are still not robust enough to handle all kinds of variance of the objects in some tasks.

Deep Learning is the most popular approach for learning representations. It has been

widely used for all kinds of image recognition tasks and achieved the state-of-the-art perfor-

mance on some large scale image recognition tasks, such as ILSVRC and The PASCAL Visual

Object Classes Challenge (PASCAL VOC). Convolutional Neural Networks (CNN) is the most

popular deep learning model for the image recognition tasks1. The first deep CNN that had

great success on image recognition is the LeNet proposed by Y.LeCun in 1989 [64]. Back-

propagation was applied to Convolutional Neural networks with adaptive connections. This

combination, incorporating with Max-Pooling and speeding up on graphics cards has become

an important part for many modern, competition-winning, feedforward, visual Deep Learners.

Deep CNNs have been widely used as the feature extractor for all kinds of images recognition

tasks and proven to be the most powerful method of feature extraction.

1Deep CNNs are sometimes considered as the end-to-end classifier while learning the feature representation
and discriminative classifier simultaneously. However, the feature representation learned from deep CNNs can
still achieve good results with other classifiers and here we consider it as a feature extractor rather than a classifier.
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Figure 1.4: The architecture of ALEXNET (adopted from [58]).

1.1.3 Classification

After extracting feature representation from the images, a classifier is used to train a recogni-

tion model as well as for predicting the new coming images. A supervised model is always

used for training the recognition model. Discriminative Classifier such as Support Vector Ma-

chine (SVM) is widely used as the classifier for recognition [24]. As we mentioned before,

in order to capture different variances of the images for one category, the size of the feature

representation for an image is usually very large. In order to avoid overfitting, the size of the

training set should be at least the same size of the feature representation as well. Some classi-

fiers such as Bayesian method or decision tree require to consider the correlations between each

feature and the class labels and suffer from the large feature dimension. However, Discrimi-

native Models[15] are more convenient for training. Discriminative Models can be effectively

optimized with stochastic gradient descent and are suitable for the large training set.

However, to capture all variance of an object, training a good recognition model requires

abundant data when we learn a model from scratch. With the limited training data, it is difficult

to achieve a good classification performance. Transfer learning is an effective way to solve

this problem by utilizing the knowledge from previous tasks. In this thesis, we focus on how to

transfer the knowledge from the source domain for recognition tasks. The methods proposed in

chapter 3 and chapter 4 mainly focus on the stage of classification while the method in chapter

5 focuses on both feature representation learning and classification.
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Figure 1.5: An intuitive description for human to learn new concept: an okapi can be roughly

described as the combination of a body of a horse, legs of the zebra and a head of giraffe.

1.2 Approaches in Visual Transfer Learning and the Limi-
tations

Previous work of visual transfer learning focuses on designing classifiers that can leverage the

source knowledge effectively. In this section, we briefly review methods for the visual transfer

learning and show the limitation of previous work.

1.2.1 Intuition for Visual Transfer Learning

The intuition of visual transfer learning comes from human recognition mechanism. For our

human, all the information acquired is stored in our memory. This information is organized

according to the properties. When we see a new concept, we don’t treat it isolated but connect it

to certain previous knowledge we stored in our memory. By comparing a new concept with the

organized information in our memory, we can capture the property of a new concept effectively.

When referring to visual tasks, several examples can be given to show this cognitive ability.

For instance, when we describe the animal ”okapi” (see Figure 1.5), we would probably say

that: okapi has a body of a horse, legs of the zebra and the head of giraffe. People who never

see a zebra could instantly have a rough idea of a zebra.

This indicates that to learn a concept effectively, we should be able to make use of the

gained knowledge instead of learning it from scratch. This process is commonly referred to
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as transfer learning[79]. Traditional machine learning methods work under the common as-

sumption: training data and testing data are drawn from the same feature space and same

distribution. In transfer learning, the test data can come from a different distribution. The data

from the original distribution is called source data, and data from the new distribution is called

target data. Transfer learning is used to utilize the source knowledge from the source data to

help to build the new model to classify the target data.

1.2.2 Approaches for Visual Transfer Learning

Successfully leveraging the source knowledge can greatly improve the performance of the tar-

get model. In general, the more related the source and target domain are, the more useful

the source knowledge is and the more benefit the target model can get. Leveraging unrelated

knowledge cannot help to improve the performance of the target model or even hurt it. There-

fore, the key issue for visual transfer learning is to identify the relatedness of the source and

target domain. The major approach for Visual Transfer Learning consists of two main direc-

tions: Distribution Similarity Measurement and Instance Reuse.

• Distribution Similarity Measurement. The core idea of transfer learning is to lever-

age the related source knowledge. The more related the source is, the better transfer

performance we can achieve. Thus, measuring the relatedness of the source knowledge

is an important part in transfer learning especially where there are multiple sources. A

straight-forward approach to identify the relatedness of the source and target domain is

to measure their similarity directly. Measuring the data discrepancy through some sta-

tistical measurements such as Maximum Mean Discrepancy (MMD) [31], has been a

popular way to identify the source and target domain. MMD reflects the distance of two

data distributions in the Reproducing Kernel Hilbert Space (RKHS) [3].

• Instance Reuse[67]. We apply transfer learning under the scenario where the target data

is scarce and we are not able to build the target model alone with the target data. A simple

solution is to “borrow” some of the data from the source domain and use it to build the

target model together with the target data. This approach can directly increase the size

of the data in the target domain and effectively improve the performance of the target

model. For example, Feature Transformation [32] can overcome the data distribution

mismatch in different domains and project the data into the same augmented space and

thus can increase the training data for the target task as well (see Figure 1.6).
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Figure 1.6: Feature transformation. Transform the data in different domains into a augmented

feature space.

1.2.3 Limitation of Previous Methods

From the review of the approaches for Visual Transfer Learning we can see that most previous

methods require access to the source data to obtain the source knowledge. However, in many

practical problems, these previous approaches may not be as convenient as we thought due to

the following reasons:

• Data accessibility. The source data may not be able to access for some tasks. For

example, the clinical database is not allowed to access for general publics due to the

privacy. Disclosure obligations and will to share the databases are also two important

reasons that make the source data inaccessible.

• Size of the source data. Besides data accessibility, many previous methods [27][32] re-

quire accessing to each of the individual source instance to obtain the source knowledge

which is ineffective for many large source domain. For example, it is almost impos-

sible to measure the MMD for some large source domain which contains hundreds of

thousands of instances.

From above we can see that these previous methods can successfully leverage the source

knowledge under the assumption that the source data are freely accessible and relatively small.

However, this assumption could fail in real applications. In some cases, the source data could

be private (such as the clinic data from patients) and therefore, could not be shared with the

public. Moreover, those large source dataset contains more knowledge and information com-

pared to the small ones and thus can better improve the transfer performance of the target

task. However, obtaining the similarity measurement of these large datasets with those previ-

ous methods can be tedious and inefficient. It is important to find a way to leverage the source

knowledge without accessing to the source data.

In this thesis, we assume that we can freely access to the source model trained from the

source data and thus leverage the knowledge from the model instead. Using the source model
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for transfer learning can successfully avoid the two issues discussed above. Source model

can contain as much knowledge as the source data while without containing any information

regarding the individual instance. Therefore, the owner of the source data does not have to

worry about the data privacy issue. For those large source dataset such as ILSVRC containing

millions of images, a trained source model is normally a few hundreds megabytes and public

available. Therefore, leveraging the source knowledge from source model instead of the source

data is more practical for real visual transfer learning applications.

1.3 Main Contribution

In this section, we discuss the challenges that we may encounter when we can only access

the source model. Then we demonstrate the learning scenarios and proposed solutions in this

thesis.

1.3.1 Challenges

Despite for the general challenges in transfer learning, in our HTL settings, there are some new

challenges in this thesis.

The first challenge is knowledge representation, i.e. how to obtain the source knowledge

when we are not able to access to the source data. When source data is accessible, the source

knowledge is relatively explicit and we can easily obtain the source knowledge by either an-

alyzing the source data distribution or make use of the source data to help training the target

mode. The knowledge of the source domain is implicit and encoded in the source model using

certain learning algorithms. How to effectively extract the source knowledge from the models

is challenging.

The second challenge is knowledge expressiveness, i.e. how to leverage the source knowl-

edge to help training the target model. As the source knowledge is implicit, how to effectively

leverage the source knowledge and improve the transfer performance is also important. We

also expect that the source knowledge extracted from the source model should be as general as

possible so that the source knowledge can be extracted from different types of source model.

Therefore, our transfer learning algorithm can work in many situations.

The last challenge is knowledge regularization i.e. how to guarantee the performance

of our transfer method. Humans appear to have mechanisms for deciding when to transfer

information, selecting appropriate sources of knowledge, and determining the appropriate level

of abstraction [100]. A basic criterion for the knowledge transfer process is that leveraging

the knowledge from the source model should not hurt the performance of the target model.
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Negative transfer [79] happens when the performance of target model degrades after receiving

the knowledge from the source domain and how to avoid negative transfer is still an open

question to all transfer learning researchers. The absence of the source data makes the situation

more complicated.

1.3.2 Two Transfer Learning Scenarios

In this thesis, we mainly focus on two transfer learning scenarios: inductive transfer learning

for new classes and domain adaptation. The definition of the two scenarios is as follows:

Definition Domain Adaptation[9] Let X be the input space and Y be output space. Given the

source domain Ds and the target learning task Dt with marginal distribution P(Xs) and P(Xt),

we assume that Ds and Dt share the same conditional distribution P(Y |X). The goal of Domain

Adaptation is to learn the P(Xt|Yt) for the target task with the help of Ds.

Definition Inductive Transfer Learning[79] Given a source domain Ds and the source learn-

ing task Ts, a target domian Dt and the target learning task Dt, inductive transfer learning aims

to help improve the learning of the target task function ft(·) in Dt using the knowledge from Ds

where Ds , Dt.

The major difference between the two transfer learning scenarios is that in inductive transfer

learning, the source and target tasks are two different but related tasks (e.g. from sport car to

heavy truck) while in domain adaptation, the source and target tasks are the same task but with

different marginal distributions (e.g. from the animation dog to the real dog).

(a) Domain Adaptation (b) Inductive transfer learning the new class

Figure 1.7: Difference between two transfer learning scenarios
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1.3.3 Proposed Methods

There are three methods proposed in this thesis, one in inductive transfer learning for new

classes and two methods in domain adaptation.

In chapter 3, we extend the previous methods in HTL which are limited to using SVMs

as the source model and propose a novel method Effective Multi-class Transfer Learning
(EMTLe) for supervised domain adaptation. We use the output of the source model as the

auxiliary bias to adjust the target model. Here, the output of the source model is used as the

prior to adjust the decision for the target model. As long as we can set a proper weight to the

prior knowledge, the source model can serve well for the target task. Because we only require

the source model to provide its decision, we can treat it as a black-box model and EMTLe can

leverage the source model from any source classifier that can generate the class probability of

an example.

In chapter 4, we investigate the problem of semi-supervised domain adaptation where most

of the data in the target task are unlabeled and propose a novel framework Generalized Distil-
lation Semi-supervised Domain Adaptation (GDSDA). In GDSDA, the source model gen-

erates “soft labels” for the target data and can improve the performance together with the true

labels from target task. We use the imitation parameter to determine the relative importance of

the soft label and true label. Then we propose GDSDA-SVM that can determine the imitation

parameter autonomously through cross-validation.

In chapter 5, we use the deep neural network to solve the transfer learning problem for food

recognition. We use GoogLeNet trained from ImageNet of 1000 classes as our source model

and two food databases as our target task, containing 101 classes and 265 classes respectively.

In this chapter, we don’t treat the source model as a black-box. Instead, we can obtain the

parameters of the original GoogLeNet. We re-use the parameters in the original GoogLeNet

as the prior and fine-tune it on our target task to achieve the improved performance. By re-

using and fine-tuning the parameter, i.e. features from source tasks, we can effectively learn

new categories of the target task. We show that without accessing the source data, we can still

achieve better performance compared to previous methods.

1.4 Summary

In this chapter, we briefly introduced the problems that are solved in this thesis. We first demon-

strate the procedure for image recognition and introduce some previous work for visual transfer

learning. Then we pointed out the limitations of the previous work and briefly introduced our

methods.
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Related Work

In this chapter, we review some previous work related to ours. We first review the classifiers

used in this thesis, providing the general concept and principle of how they work. Then we

review the types of transfer learning for visual recognition from two different views and then

discuss the previous work of how to alleviate negative transfer. Finally, we review some meth-

ods related to the three methods used in this thesis.

2.1 Classifiers for Image Recognition

In our scenario, we have to face the problem of image recognition. Due to the large dimension

of the feature representation for each image as well as the size of training image, manual

classification is hopeless. As we mentioned in Section 1.1, a recognition model is used to

distinguish the objects from different categories automatically trained by supervised learning.

In this section, we introduce the classifiers we used in this thesis.

2.1.1 Binary Classification and Multi-class Classification

In image recognition, we train a recognition model from a set of training images along with

their labels provided. The labels are predefined in a category space. Thus, the task of image

recognition is to classify each image as one predefined category. If there are only two cate-

gories, this recognition task is called binary classification. For the task recognizing the objects

from more than two categories, the recognition task is called multi-class classification [4] [58].

Here, we give a formal definition of the scenario for binary and multi-class classification.

Generally, we can decompose the multi-class learning task into a set of binary scenarios by

training a binary classifier for each class, e.g. One-VS-Rest strategy (see figure 2.1)[82] [102].

13
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Figure 2.1: One-vs-Rest strategy for multi-class scenario. A three classes problem can be

decomposed into 3 binary classification sub-problems.

The binary scenario for classification can be defined as follow: given a dataset from domain

X×Y whereX is the input feature representation andY is the binary label set {1,−1} (for some

classifier, {1, 0} is also used). We usually use the label 1 to denote the examples belong to one

certain category and -1 to denote examples not belong to that category. We assume that the

training image set Dtrain = {(xi, yi)} ⊂ X×Y and the test image set Dtest = {(xt
i, y

t
i)} ⊂ X×Y are

given and separated from each other. Each pair (xi, yi) denotes the input feature representation

xi and its corresponding label yi for the ith image in the both set. Our goal of the classification

problem is to learn a decision function f : X → Y from the training set Dtrain such that f can

achieve good performance on both Dtrain and Dtest.

2.1.2 Softmax Classifier

In this subsection, we will introduce a widely used linear classifier Softmax classifier in image

recognition. Linear classifier is commonly used as the classification model for image recogni-

tion. Linear classifier achieves this by making a classification decision based on the value of a

linear combination of the input feature representations of a image. A linear classifier consists

of two parts: a score function and a loss function[107]. The score function maps the input data
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into the class scores and the loss function that quantifies the agreement between the predicted

scores and the ground truth labels. Linear classifier often works very well when the number

of dimensions of the input is large. Therefore, it is widely used as the classifier for image

recognition, especially as the classifier for Convolutional Nueral Networks [64].

Typically, Softmax classifier is widely used for multi-class image classification. Softmax

classifier (also called multinomial logistic regression) is a generational form of logistic regres-

sion for the multi-class scenario. As logistic regression can only handle the binary classification

scenario, Softmax classifier adapts the one-vs-rest strategy where several logistic regression

models are trained for each class.

Given a training set {(x1, y1), (x2, y2), ..., (xm, ym)}, we assume the label yi ∈ {1, 0} and the

input feature xi ∈ R
n. For each binary logistic regression model, The score function takes the

form:

fw(x) =
1

1 + exp(−wT x)
(2.1)

and the parameters w are optimized to minimize the following loss function:

l(w) = −[
m∑

i=1

yi log fw(xi) + (1 − yi) log(1 − fw(xi))] (2.2)

For Softmax classifier, it is used to handle the multi-class classification problem and sup-

pose there are N classes. Therefore, y can take from N different values {1, 2, 3, ...,N} instead

of just two. For a given test example x, the score function estimate the probability P(y = n|x)

for each value of n = 1, 2, 3, ...,N, i.e. estimate the probability that each score assigns the input

x to the N classes associated to the N different possible values. Thus, the score function will

output a N-dimensional vector providing N estimated probabilities whose sum of elements is

1. The N dimensional output of the score function can be generated according to the following

form:

fw (x) =


P (y = 1|x; w)

P (y = 2|x; w)

...

P (y = n|x; w)

 =
1∑N

j=1 exp
(
w( j)T x

)


exp
(
w(1)T x

)
exp

(
w(2)T x

)
...

exp
(
w(N)T x

)
 (2.3)

Here w(1)T ,w(2)T , ...,w(N)T are the parameters of the Softmax classifier model. The term 1∑N
j=1 exp(w( j)T x)

is called the normalization term so that the N distributions sum to 1.

To optimize the parameters w(1)T ,w(2)T , ...,w(N)T , the cross-entropy loss used for the Soft-

max classifier is defined as:

J(w) = −

 l∑
i=1

N∑
k=1

` {yi = k} log
exp

(
w(k)T xi

)
∑N

j=1 exp
(
w( j)T xi

) (2.4)
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Here `x is the 0-1 loss function:

`{x} =

 1 x is true

0 x is false
(2.5)

It is noted that Eq (2.4) is a generalized form of Eq (2.2). Minimizing Eq (2.4) can be inter-

preted as minimizing the negative log likelihood of the correct class, which is equivalent to

performing Maximum Likelihood Estimation (MLE) [53].

The minimum of J(w) can be obtained by gradient descent method while taking the gradi-

ent:

∇J(w(n)) = −

l∑
i=1

xi

` {yi = n} −
exp

(
w(k)T xi

)
∑N

j=1 exp
(
w( j)T xi

)
 (2.6)

2.1.3 Support Vector Machines

In this subsection, we will review another widely used discriminant classifier, Support Vector
Machine (SVM) [24]. SVM is another classifier that has been adoptive in many image recog-

nition tasks [22] [89] [110]. In this thesis, we also use a classifier based on SVM. We will give

a detailed description of SVM.

As we mentioned before, the linear classifier consists of two parts: the score function and

loss function. SVM classifier can be divided into two categories based on their score function:

linear SVM that uses a linear discriminant function and kernel SVM that uses kernel function.

Kernel SVM can be considered as a extension version of linear SVM where kernels are used

for calculate the scores of the inputs. Another difference for between linear and kernel SVM is

linear SVM can be solved on the primal problem while kernel SVM is mostly optimized on its

dual [24] [90].

First, we will introduce the linear SVM. Linear SVM uses the simplest representation of a

score function by taking the linear combination of the input vector:

f (x) = wT x + b (2.7)

where w is called the weight vector and b is called the bias. In a binary scenario, for the

input example x and the class labels y ∈ {c1, c2}, x is assigned to class c1 if f (x) ≥ 0 and

c2 otherwise. Therefore, the corresponding decision surface is defined by f (x) = 0. For two

points x1 and x2 lie on the decision surface, we have f (x1) = f (x2) = 0. Then we can have

wT (x1 − x2) = 0 and hence the weight vector w is orthogonal to every point lying within the

decision surface, i.e w determines the orientation of the decision surface. Similarly, if x lies on

the decision surface, the normal distance from the origin to the decision surface is given by:

wT x
||w||

= −
b
||w||

(2.8)
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(a) Different sparating hyperplanes (b) Max-Margin hyperplanes

Figure 2.2: Support Vector Machine

Therefore, we can see that, the location of the decision surface is determined by the bias b.

2.1.3.1 Hard Margin SVM

Hard margin SVM is used to find the optimal solution for the data sets that are linear separable.

Given a set of n training points (x1, y1), (x2, y2), ..., (xn, yn) where yi ∈ {1,−1}, we expect to

find a decision surface that can separate the data from two classes. However, when the data

from these two classes can be linearly separated, there could be several decision surfaces that

can separate the data. The idea of SVM is to choose the maximal margin decision surface

so that the distance between these two classes is as large as possible (called maximal margin

hyperplane). For example, in figure 2.2(a), H2 and H3 are two candidate decision surface that

can separate the data. However, H3 is has the largest distance to all the data from two classes

and SVM will choose H3 as the optimal hyperplane.

The optimal hyperplane can be found by minimizing the following objective function:

min ||w||2

s.t. yi(wT xi + b) ≥ 1 for all 1 ≤ i ≤ n
(2.9)

2.1.3.2 Soft Margin SVM

In real world application, most data are not linear separable. Therefore, SVM introduce the

concept of slack variable to handle this situation. Slack variable is defined as:

ξi = hinge(xi) = max(0, 1 − yi(wT xi + b)) (2.10)
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Figure 2.3: Slack variables for soft-margin SVM

The value of slack variable is 0 if the example xi lies on the correct side of the margin. For

those data on the wrong side, its value is proportional to the distance from the correct margin.

Therefore, to find the parameters of hyperplane, i.e. weight vector w and bias b, soft-margin

SVM minimize the following loss function:

min
λ

2
||w||2 +

1
n

n∑
i

ξi

s.t. yi(wT xi + b) ≥ 1 − ξi

ξi ≥ 0 for all 1 ≤ i ≤ n

(2.11)

The objective function is called primal of SVM. A stochastic sub-gradient descent can be used

to find the optimal solution for eq. (2.11) effectively [90].

2.1.3.3 Kernel SVM

Linear soft-margin SVM works well when number of features is larger than number of training

examples. However, when the size of the training example is larger than the features, kernel

SVM (such as Gaussian Kernel) with proper parameters outperforms linear SVM [56].

The idea of kernel was first introduced into pattern recognition by Aizerman et. al. [2].

When the size of the training examples are significantly larger than the dimension of the input

features and the distribution become more complex, these data can not be easily separated by

a straight line in the feature space. Instead of obtaining the optimal hyperspace in the input

feature space, kernel SVM tries to map the inputs into a high-dimensional feature spaces and
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Figure 2.4: The hyperplane of SVM with RBF kernel for non-linear separable data.

find the optimal hyperplane in the high-dimensional feature spaces. Given a feature space

mapping φ(x), the score function for kernel SVM can be re-written as:

f (x) = wTφ(x) + b (2.12)

From eq (2.12) we can see that, when we take the identity mapping φ(x) = x, the kernel SVM

becomes a linear SVM. Therefore, the linear SVM can be considered as a special case of kernel

SVM where identity mapping is used as the kernel. The loss function of kernel SVM is almost

identical to eq. (2.11) except for replacing the term x with φ(x):

min
λ

2
||w||2 +

1
n

n∑
i

ξi

s.t. yi(wTφ(x)i + b) ≥ 1 − ξi

ξi ≥ 0 for all 1 ≤ i ≤ n

(2.13)

By introducing the Lagrangian term to the primal (2.13) and some transformation, we obtain



20 Chapter 2. RelatedWork

the dual of kernel SVM function:

max
n∑
i

αi −

n∑
i

n∑
j

yiy jαiα jφ(xi)φ(x j)

s.t. 0 ≤ αi ≤
1
λ

n∑
i

yiαi = 0 for all 1 ≤ i ≤ n

(2.14)

We can obtain the solution of (2.14) by Sequential Minimal Optimization (SMO) [81] or Dual

Coordinate Descent [46].

There are several advantages of using SVM as the classifier:

• Generalization ability. SVM provides good generalization ability by maximizing the

margin between the examples of the two classes. By setting the proper parameters and

generalization grade, SVM can overcome some bias from the training set. Therefore,

SVM is able to make correct prediction for unseen data. This ability can be very useful

for image recognition as there is no image dataset that can cover all the transformation

of the objects. Moreover,the idea of soft-margin makes it robust against noisy data.

• Kernel transformation. By introducing the non-linear transformation of the input, SVM

can model complex non-linear distributed data. The kernel trick can greatly improve the

computational efficiency.

• Unique solution. The objective function of SVM is convex. Compared to other methods,

such as Neural Networks, which are non-convex and have many local minima, SVM

can deliver a unique solution for any given training set and can be solved with efficient

methods, like sub-SGD [90] or SMO [81].

2.1.4 Convolutional Neural Networks

Convolutional Neural Networks [65] is the most popular and powerful method for image recog-

nition task. In this part, we introduce the history of Convolutional Neural Networks. The detail

description of the Convolutional Neural Networks layers will be included in chapter 5.

2.1.4.1 Early Work with Convolutional Neural Networks

The first simple version of Neural Networks (NNs) trained with supervised learning was pro-

posed in 1960s [85][86]. Networks trained by the Group Method of Data Handling (GMDH)
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could be the first DL systems of the Feedforward Multilayer Perceptron type [48][88]. Later,

there have been many applications of GMDH-style nets [38] [47] [57] [108].

Apart from deep GMDH networks, the Neocognitron, a hierarchical, multilayered artifi-

cial neural network, was perhaps the first artificial NN to incorporate the neurophysiological

insights [40]. Inspired by Neocognitron, Convolutional NNs (CNNs) was proposed where the

rectangular receptive field of a convolutional unit with given weight vector is shifted step by

step across a 2-dimensional array of input values, such as the pixels of an image (usually there

are several such filters). The results of the previous unit can provide inputs to higher-level

units, and so on. Because of its massive weight replication, relatively few parameters may be

necessary to describe its behavior.

In 1989, backpropagation [64][65] was applied to Convolutional Neural networks with

adaptive connections [64]. This combination, incorporating with Max-Pooling and speeding

up on graphics cards has become an important part for many modern, competition-winning,

feedforward, visual Deep Learners. Later, CNNs achieved good performance on many practical

tasks such as MNIST and fingerprint recognition and was commercially used in these fields in

1990s [7] [63].

In the early 2000s, even though GPU-MPCNNs wons several official contests, many prac-

tical and commercial pattern recognition applications were dominated by non-neural machine

learning methods such as Support Vector Machines (SVMs).

2.1.4.2 Recent Achievements with Convolutional Neural Networks

In 2006, CNN trained with backpropagation set a new MNIST record of 0.39% without us-

ing unsupervised pre-training [75]. Also in 2006, an early GPU-based CNN implementation

was introduced which was up to 4 times faster than CPU-CNNs [20]. Since then, GPUs or

graphics cards have become more and more essential for CNNs in recent years. In 2012, a

GPU implemented Max-Pooling CNNs (GPU-MPCNNs) was also the first method to achieve

human-competitive performance (around 0.2%) on MNIST [21].

In 2012, an ensemble of GPU-MPCNNs (called AlexNet) achieved best results (top-5 accu-

racy at 83%) on the ImageNet classification benchmark (ILSVRC2012), which contains 1000

classes and 1.2 million images [58]. After that, excellent results have been achieved by GPU-

MPCNNs in image recognition and classification. Many attempts have been made to improve

the architecture of AlexNet. With the help of high performance computing systems, such as

GPUs and large scale distributed cluster, some improvements have been made by either mak-

ing the network deeper or increasing the size of the training data (with extra training example

and data argumentation). By reducing the size of the receptive field and stride, Zeiler and Fer-
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gus improve AlexNet by 1.7% on top 5 accuracy [115]. By both adding extra convolutional

layers between two pooling layers and reducing the receptive field size, Simonyan and Zis-

serman built a 19 layer very deep CNN and achieved 92.5% top-5 accuracy [92]. After the

AlexNet-like deep CNNs won ILSVRC2012 and ILSVRC2013, Szegedy et al. built a 22-layer

deep network, called GoogLeNet and won the 1st prize on ILSVRC2014 for 93.33% top-5

accuracy, almost as good as human annotation[96]. Different from AlexNet-like architecture,

GoogLeNet shows another trend of design, utilizing many 1×1 receptive field. Recently, Wu et.

al present an image recognition system by aggressive data augmentation on the training data,

achieving a top-5 error rate of 5.33% on ImageNet dataset[109]. Searchers from Google suc-

cessfully trained an ingredient detector system based on GoogLeNet with 220 million images

harvested from Google Images and Flickr [74].

Besides its impressive performance on those huge datasets, MPCNNs shows some impres-

sive results by fine-tuning the existing models on small datasets.Zeiler et al. applied their

pre-trained model on Caltech-256 with just 15 instances per class and improved the previous

state-of-the-art in which about 60 instances were used, by almost 10% [115]. Chatfield et al.

used their pre-trained model on VOC2007 dataset and outperformed the previous state-of-the-

art by 0.9% [19]. Zhou et al. trained AlexNet for Scene Recognition across two datasets with

identical categories and provided the state-of-the-art performance using our deep features on all

the current scene benchmarks [116]. Hoffman et al. fine-tuned the MPCNNs trained from Im-

ageNet with one example per class, showing that it is possible to use a hybrid approach where

one uses different feature representations for the various domains and produces a combined

adapted model [45].

To summarize, in this section, we have briefly reviewed three types of classifier for image

recognition, namely Softmax classifier, SVM and CNNs. Softmax classifier is typically used as

the last layer of CNNs. Linear SVM is a general method for the image recognition. Moreover,

The generalization ability of SVM classifier can reduce the bias from the training data.

2.2 An Overview of Visual Transfer Learning

Traditional machine learning algorithms try to build the classifiers from a set of training data

and apply to the test data with the same distribution to the training data. In contrast, transfer

learning attempts to change this by transfer the learned knowledge from one or several tasks

(called source tasks) to improve a related new task (called target task). According to the

situations of the source and target tasks, transfer learning can be categorized as 3 types: in-

ductive transfer learning, transductive transfer learning and unsupervised transfer learning. On

the other hand, from the types of the source knowledge, transfer learning can be classified as:
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Figure 2.5: Apart from the standard machine learning, transfer learning can leverage the infor-

mation from an additional source: knoweldge from one or more related tasks.

instance transfer, feature representation transfer and parameter transfer.

Table 2.1: Categories of our learning scenarios

Situation of Task Source Knowledge

Learning New Categories Inductive Transfer
Parameter Transfer

Domain Adaptation Transductive Transfer

2.2.1 Types of Transfer Learning from the Situations of Tasks

Transfer learning can be categorized into 3 sub-settings: inductive transfer learning, trans-
ductive transfer learning and unsupervised transfer learning based on the different situa-

tions of the source and target domains and tasks. [79]. We compared the differences of these

three sub-categories and show them in Table 2.3.

Table 2.2: Relationship between traditional machine learning and different transfer learning

settings

Learning settings Source target domain Source target task

Traditional machine learning the same the same

Transfer learning

Inductive transfer learning the same different but related

Unsupervised transfer learning different but related different but related

Transductive transfer learning different but related the same
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Table 2.3: Various settings of transfer learning

Related areas Source data Target data

Inductive transfer learning
self-taught learning unlabeled labeled

multi-task learning labeled labeled

Transductive transfer learning
domain adaptation,

Sample selection bias
labeled labeled/unlabeled

Unsupervised transfer learning unlabeled unlabeled

2.2.2 Types of Transfer Learning from the Aspect of Source Knowledge

According to the type of the source knowledge comes from, transfer learning can be split into

3 major streams: instance transfer, feature representation transfer and parameter transfer.

The core idea of instance transfer learning is to select some useful data from the source task

to help learning the target task. Dai et al. [25] propose a method (called TrAdaBoost) that can

select the most useful examples from the source task as the additional training examples for the

target task. These useful examples are iteratively re-weighted according to the classification

results of some base classifiers. Jiang et al. [51] proposed a method that can ignore the ”mis-

leading” examples from the source data based on the conditional probabilities on the source

task P(yt|xt) and target task P(ys|xs). Liao et al. [66] proposed a active learning method that

selects and labels the unlabeled data from the target data with the help of the source data. Ben-

David et al. [9] provided a theoretical analysis the lowest target test error for different source

data combination strategies when the source data is large and target training set is small.

Feature representation transfer aims to find a good feature representations to reduce the

gap between the source and target domains. According to the size of labeled examples in the

source data, feature representation transfer consists of two approaches: supervised feature con-

struction and unsupervised feature construction. When the source data are labeled, supervised

feature transfer learning is used to find the feature representations shared in related tasks to

reduce the difference between the source and target tasks. Evgeniou et al. [34] proposed a

method that can learn sparse low-dimension feature representations that can share between dif-

ferent tasks. Jie et al. [52] reconstructed the feature representations for the target data by using

the outputs of the source models as the auxiliary feature representations. In unsupervised fea-

ture representation transfer learning, Daume III [27] proposed a simple feature reconstruction

method for both source and target data so that source and target data are triple augmented and

a SVM model is trained on both source and target data.

Parameter transfer assumes that there should be some parameters or prior distribution of
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Figure 2.6: Two steps for parameter transfer learning. In the first step multi-source and single

source combination are usually used to generate the regularization term. The hyperplane for

the transfer model can be obtained by either minimizing training error or cross-validation error

on the target training data.

the hyperparameters in the individual models of related tasks. Most of the approaches are

designed under the multi-task learning scenario. Therefore, in this thesis, we also focus on

the parameter transfer approach to leverage the knowledge from the source data. In parameter

transfer learning, there are three major frameworks: a regularization framework, a Bayesian

framework and a neural network framework.

• Regularization framework: In the regularization framework, some researchers propose

to transfer the parameters of the SVM following the assumption that the hyperplane for

the target task should be related to the hyperplane of the source models. Evgeniou et

al. [35] proposed an idea that the hyperplane of the SVM for the target task should be

separate into two terms: a common term shared over tasks and a specific term related to

the individual task. Inspired by this idea, some researchers propose different strategies to

combine these two terms for transfer learning [4] [98] [112]. Most of these work contains

two steps. In the first step, a SVM objective function with a biased regularization term for

the target model is built. Then another objective function is built to reduce the empirical

error of the target model on the target data.

• Neural network framework. In neural network framework, the idea is to use the parame-

ters of a CNN pre-trained from a very large dataset as an initialization to reduce the target

data bias when it is small. Yosinski et al. [114] show that the high level layer parameters
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are more related to a specific task while the low level layer ones are more general and

transferable. This framework is widely used for image recognition task. By re-using and

fine-tuning the parameters of some layers in the pre-trained model, the bias of the target

task can be greatly alleviated [19] [45] [115] [116].

• Bayesian framework. In Bayesian framework, one or several posterior probabilities of

the source data or parameters of the source model can be used to generate a prior proba-

bility for the target task. With this prior probability, a posterior probability for the target

task can be obtained with the target data. Li et al. [39] used a prior probability density

function to model the knowledge from the source and modify it with the data from target

to generate posterior density for detection and recognition. Rosenstein et al. [87] used

hierarchical Bayesian method to estimate the posterior distribution for all the parameters

and the overall model can decide the similarities of the source and target tasks.

2.2.3 Special Issues in Avoiding Negative Transfer

In transfer learning, for a given target task, the performance of a transfer method depends on

two aspects: the quality of the source task and the transfer ability of the transfer algorithm.

The quality of the source task refers to how the source and target tasks are related. If there

exists a strong relationship between the source and target, with a proper transfer method, the

performance in the target task can be significantly improved. However, if the source and target

tasks are not sufficiently related, despite of the transfer ability of the transfer algorithm, the

performance in the target task may fail to be improved or even decrease. In transfer learning,

negative transfer refers to the degraded performance compare to a method without using any

knowledge from the source [79]. How to avoid negative transfer is still an open question for

researchers. For example, we can use a teacher-student diagram to illustrate the procedure of

transfer learning. The student (target model) would like to learn the new knowledge (target

task) with the assistance of a teacher (source knowledge). If the teacher can provide helpful

knowledge (related knowledge), the student can learn the new knowledge very quickly (positive

transfer). If the teacher can only provide useless knowledge, the student could not learn the

new knowledge effectively or even get confused (negative transfer).

Another important aspect that affect the learning performance is the transfer ability of the

algorithm used for the target task. An ideal transfer algorithm would be able to produce posi-

tive transfer on related tasks while avoiding negative transfer on unrelated tasks. However, in

practice, it is not easy to achieve these two goals simultaneously. Approaches that can avoid

negative transfer often bring some affects on positive transfer due to their caution. On the other

hand, approaches using aggressive transfer strategies often have little or no protection against
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Figure 2.7: Positive transfer VS Negative transfer.

negative transfer [100]. Even though voiding negative transfer is an important issue in transfer

learning, how to avoid negative transfer has not been widely addressed [71] [79]. Previous

work show suggest that negative transfer can be alleviated through 3 approaches [100]:

• Rejecting unrelated source information. A important approach to avoid negative trans-

fer is to recognize and reject unrelated and harmful source knowledge. The goal of this

approach is to minimize the impact of the unrelated source, so that the transfer model

performs no worse than the learned model without transfer. Therefore, in some extreme

situation, the transfer model is allowed to completely ignore the source knowledge. Tor-

rey et al. [101] proposed a method using advice-taking algorithm to reject the unrelated

source knowledge. Rosenstein et al. [87] presented an approach that use naive Bayes

classifier to detect and reject the unrelated source.

• Choosing correct source task. When the source knowledge come from more than one

candidate source, it is possible for the transfer model to select the best source knowledge

of the candidates. In this scenario, leverage the knowledge from the best candidate may

be effective against negative transfer as long as the best source knowledge is sufficiently

related. Talvitie et al. [97] proposed a method that can iteratively evaluate the candidate

sources through a trail-and-error approach and select the best one to transfer. Kuhlmann

et al. [59] constructed a kernel function from certain sources for the target task by esti-

mating the bias from a set of candidate sources whose relationship to the target task is

unknown.

• Measuring task similarity. To achieve a better transfer performance, it is reasonable for a

transfer method to transfer the knowledge from multiple sources instead of just choosing
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a single source. In this approach, some methods try to involve all the source knowledge

without considering the explicit relationship between the source and target. The other

methods try to model the relationships between the source and target tasks and use the

information as a part of their transfer methods which can significantly reduce the af-

fect of negative transfer. Bakker et al. [6] proposed a method to provide guidance on

how to avoid negative transfer by using clustering and Bayesian approach to estimate

the similarities between the target task and multiple source tasks. Tommasi et al. [99]

constructed the transfer model by using some transfer parameters to measure the relation-

ships between each source and the target tasks and the transfer parameters are optimized

by minimizing the cross-validation error of the transfer model. Similar approaches can

be found in [52] [61]. Kuzborskij et al. [60] provided some theoretical analysis of trans-

fer learning and show that regularized least square SVM with truncation function and

leave-one-out cross-validation for source task measurement can reduce negative transfer

even though the training data of the target task is relatively small.

Here we can see that most of the previous approaches focus on measuring the similarity

of the source and target tasks, i.e. try to assign the most related source tasks to the target

one through various of metrics and use aggressive transfer algorithm to exploit the source

knowledge. Just a few work [60] [98] addressed the problem that a sophisticated transfer

algorithm should be designed to better exploit the source knowledge as well as avoid negative

transfer. Therefore, in this thesis, we mainly focus on how to design a better transfer algorithm

for transfer learning while certain source knowledge is assigned.

To summarize, in this section, we provided an overview of the categories of transfer learn-

ing from two different views. From the relationships of the tasks, our two transfer learning

scenarios belong to inductive transfer and transductive transfer learning respectively. In this

thesis, we assume that we are not able to access to the source data, therefore, from the as-

pect of source knowledge, we use parameter transfer for both scenarios. In this thesis, without

observing any source data, it is difficult to measure the relationship between the source and tar-

get tasks. Therefore, avoiding negative transfer is also an important part we have to consider.

Finally, we reviewed some methods that cab alleviate negative transfer.

2.3 Related Work in Hypothesis Transfer Learning

The main topic of this thesis is to investigate the problem of visual transfer learning under

the HTL setting. Therefore, in this section, we show some work related to this topic and this

thesis. We first review some work in fine-tuning the deep neural networks for inductive transfer
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learning related to our work in chapter 5. Then we discuss some methods in hypothesis transfer

learning, which is related to our work in chapter 3. The related work in chapter 4 is reviewed

at last.

2.3.1 Fine-tuning the Deep Net

Since Deep Convolutional Neural Networks (CNNs) became the most powerful algorithm in

object recognition task, fine-tuning the deep CNNs has become a popular and effective way

to transfer the knowledge between different visual recognition tasks. The intuition of fine-

tuning the deep CNNs for transfer learning is that low-level features, such as edges and lines,

are universal for object recognition while high-level features, which are the combinations of

the low-level features, are more specific for the designed task. Because deep CNNs can learn

hierarchical features, from abstract low-level features to detailed high-level ones, by changing

the combinations of the low-level features in the pre-trained deep CNNs, the high-level features

can be learned effectively for the new recognition task [37].

Applying the pre-trained model from ImageNet dataset on other object recognition bench-

mark datasets shows some impressive results. Zeiler et al. [115] applied their pre-trained

model on Caltech-256 with just 15 instances per class and improved the previous state-of-the-

art in which about 60 instances were used, by almost 10%. Chatfield et al. [19] used their

pre-trained model on the VOC2007 dataset and outperformed the previous state-of-the-art by

0.9%. Agrawal et al. [1] show that even in the mid-level features, there are some grandmother

cells, which can capture the high-level features of specific objects. Hoffman et al. [45] show

that even with one labeled example per class, it is possible to fine-tune the pre-trained deep

CNNs and obtain a good classifier for some new recognition tasks. Zhou et al. [116] provided

the state-of-the-art performance using the deep features on some scene benchmarks by fine-

tuning the deep CNNs. Yosinski et al. [114] investigated the transferability of the layers in

deep CNNs and show that the target task can be benefited from pre-training even though the

source and target tasks are distant.

In this thesis, we also use the pre-trained deep CNNs to learn new categories for food

recognition and investigate the affects of each layer in deep CNNs for knowledge transfer in

chapter 5.

2.3.2 Hypothesis Transfer Learning with SVMs

In this part, We will introduce the framework of Hypothesis Transfer Learning (HTL). HTL

is proposed to effective utilize the source knowledge, especially the source model, while we are

not able to visit the source data. We first introduce the basic principle of LS-SVM. Based on
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Figure 2.8: Hierarchical Features of Deep Convolutional Neural Networks for face recognition.
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LS-SVM, several transfer methods are introduced, including A-SVM, PMT-SVM, Multi-KT

and MULTIpLe. In these methods, the first two can only adopt the knowledge from single

source model and the rest can adopt the knowledge from multiple ones.

2.3.2.1 LS-SVM Classifier

Least Square SVM is proposed is least squares versions of support vector machines (SVM),

which are a set of related supervised learning methods that analyze data and recognize patterns

[95]. By replacing the hinge loss in classical SVM with L2 loss, LS-SVM classifier is obtained

by reformulating the minimization problem as:

min LLS S V M =
1
2
‖w‖2 +

C
2

l∑
i=1

ε2
i

s.t. yi = wxi + b + εi for i ∈ {1, 2, ..., l}

(2.15)

The primal Lagrangian for this optimization problem given the unconstrained minimization

problem can be written as:

L (w, b, α, ε) =
1
2
‖w‖2 +

C
2

l∑
i=1

εi
2 −

l∑
i=1

αi {wxi + b + εi − yi} (2.16)

Where α = [α1, ..., αl]T is the vector of Lagrange multipliers. The solution to minimise this

problem is give by:  K + 1
C I

1T

1

0

  αb
 =

 y

0

 (2.17)

Where K ∈ Rl×l,Ki, j = xi × xT
j . I is the identity matrix and 1 is a column vector with all its

elements equal to 1. With:

ψ−1 =

 K + 1
C I

1T

1

0

−1

(2.18)

Problem (2.16) can be solved by:  αb
 = ψ−1

 y

0

 (2.19)

2.3.2.2 ASVM & PMT-SVM

Adaptive SVM (ASVM) is the first work using LS-SVM for transfer learning for vision related

tasks [111]. The goal of ASVM is to minimize the distance between the target hyperplane

w and source one w′ incorporating with the transfer parameter γ. The objective function is

defined as follow:
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Figure 2.9: Projecting w to w′ in PMT-SVM (adapted from [4]).

min LAS V M =
1
2
‖w − γw′‖2 +

C
2

l∑
i=1

ε2
i

s.t. yi = wxi + b + εi for i ∈ {1, 2, ..., l}

(2.20)

Here, γ controls the amount of transfer regularization. Intuitively, the regularization term

of ASVM is like a spring between w and γw′. Equivalently, assume ‖w′‖2 = 1 and the regular-

ization term can be expended as:

‖w − γw′‖2 = ‖w‖2 − 2γ ‖w‖ cos θ + γ2

Where θ is the angle between w and w′. However, the term −γ ‖w‖ cos θ also encourages ||w||

to be larger (as this reduces the cost) which prevents margin maximization. Thus γ, which

defines the amount of transfer regularization, becomes a trade-off parameter between margin

maximization and knowledge transfer.

Based on this, Projective Model Transfer SVM (PMT-SVM) is proposed to solve the trans-

fer problem by optimizing the following objective function [4]:

min LPMT =
1
2
‖w‖2 + γ‖Pw′‖2 +

C
2

l∑
i=1

ε2
i

s.t. yi = wxi + b + εi for i ∈ {1, 2, ..., l}

wT w′ ≥ 0

(2.21)

Where P is the the projection matrix P = I − w′T×w′
w′×w′T . Therefore, ‖Pw‖2 = ‖w‖2sin2θ is the

squared norm of the projection of the w onto the source hyperplane (see Figure 2.9). As γ → 0,

the loss function (2.21) becomes a classic LS-SVM loss function. Because (2.21) is convex, it

can be solved effectively by quadratic optimization.
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In summary, both ASVM and PMT-SVM are designed to answer the question: how to

transfer by solving some convex objective function. However, they both require a pre-defined

parameter γ, which controls the amount of the knowledge to be transfered, to complete the ob-

jective function. In most cases, this parameter can only be set according to the background

knowledge. Also, both methods can only adopt the knowledge from single source model

which limits the their performance. Multi-KT To learning from many sources, Multi Model

Knowledge Transfer (Multi-KT) is proposed to reply on multiple sources by assigning different

weight for each of them [99]. Similar to the objective function (2.20), its objective function is

defined as follow:

min LMulti−KT =
1
2

∥∥∥∥∥∥∥w −
∑

k

βkw′k

∥∥∥∥∥∥∥
2

+
C
2

l∑
i=1

ζiε
2
i

s.t. yi = wxi + b + εi for i ∈ {1, 2, ..., l}

(2.22)

Here, βk is the weight assigned for the kth source model and ζi is defined as:

ζi =

 N
2N+ if yi = 1

N
2N− if yi = −1

where N+ and N− are number of positive and negative examples respectively and N is the total

number of examples.

The primal Lagrangian for optimization problem (2.22) can be written as:

LMulti−KT (w, β, ε, α) =
1
2

∥∥∥∥∥∥∥w −
∑

k

βkw′k

∥∥∥∥∥∥∥
2

+
C
2

l∑
i=1

ζiε
2
i +

l∑
i=1

αi
[
wxi + b + εi − yi

]
(2.23)

So problem (2.22) can be solved once β is set. Different from ASVM and PMT-SVM which

require background knowledge to select proper transfer parameter, Multi-KT can estimate the

transfer parameter β itself by using the closed-form Leave-One-Out (LOO) error. According

to [18], the closed-form LOO error is defined as:

yi − ŷi =
αi

ψ−1
ii

for i = 1, ..., l (2.24)

Here ψ−1
ii is its ith diagonal element of ψ−1 in (2.18).

To estimate β, a loss function, similar to hinge loss, is defined as:

min L =

l∑
i

ζi|1 − yiŷi|+

s.t. ‖β‖ ≤ 1

(2.25)
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Here |x|+ = max(x, 0). Intuitively, if β is properly set, yiŷi should be positive for each i.

However, focusing only on the sign of those quantities would result in a non-convex formula-

tion with many local minima. By adding the | · |+ function, formula (2.27) becomes convex and

can be solved by gradient descent method.

2.3.2.3 MULTIpLE

MULticlass Transfer Incremental LEarning (MULTIpLE) focuses on adding a new class to an

existing N class source problem while preserving the performance on the old classes [61]. To

preserving the overall performance of the classifier among N + 1 classes, MULTIpLE contains

two parts: incremental learning for existing N classes and transfer learning for the new class.

For the existing N classes, MULTIpLE uses the similar strategy as ASVM, setting the

transfer parameter γ to 1. For the new class, it adopts the strategy of Multi-KT, combining

knowledge from existing N-class models. As a result, the objective function for the hyperplanes

in MULTIpLE is defined as:

min LMULT I pLE =
1
2

N∑
n=1

‖wn − w′n‖
2

+
1
2

∥∥∥∥∥∥∥wN+1 −

N∑
k=1

w′kβk

∥∥∥∥∥∥∥
2

+
C
2

N+1∑
n=1

l∑
i=1

ε2
i,n

s.t. εi,n = Yin − xiwn − bn

(2.26)

Similar like Multi-KT, MULTIpLE uses LOO error in (2.24) to estimate the transfer pa-

rameter β for the new class. The objective function for β estimation is defined by [23]:

min L (β, i) =

 max
n,yi

∣∣∣1 − Ŷin (β) − Ŷiyi (β)
∣∣∣
+

: yi , N + 1∣∣∣1 − Ŷin (β) − Ŷiyi (β)
∣∣∣ : yi = N + 1

s.t. ‖β‖ ≤ 1

(2.27)

We can find the optimal β with projected subgradient descent [17].

These previous methods provided an approach to transfer the knowledge under the HTL

setting. The previous methods try to use the hyperplane parameter as the transferable knowl-

edge and thus limited to leverage the source knowledge from SVMs. In chapter 3 of this thesis,

we extend their methods and propose a novel method EMTLe under the HTL setting which

can leverage the knowledge from more types of source models.

2.3.3 Distillation for Knowledge Transfer

Distillation [43] was developed frameworks for knowledge transfer and addressed the problem

how to effectively transfer the knowledge from the source model directly. In chapter 4, we



2.3. RelatedWork in Hypothesis Transfer Learning 35

propose a framework called GDSDA based on it to solve semi-supervised domain adaptation

problem. In this part, we review the principle of Distillation and some related work using this

framework. The technical details will be introduced in chapter 4.

Hinton et al. proposed Distillation to transfer the knowledge from a source neural network

(or a whole ensemble of neural networks) to a single target one. In this setting, the capacity of

the source neural network is large while the capacity of the target one is small. The capacity

reflects the expressive power of a model and a model with larger capacity can fit complex data

better. In statistical learning theory [107], the relationship of the generalization error ete and

training error etr of a model can be bounded as follow:

ete ≤ etr + 2

√
log h + log 2

η

2N
(2.28)

Here, h is the capacity (VC dimension) of the model and N is the training set size. Inequation

2.28 holds with a probability of 1 − η. When we train the target model, we can let it mimick

the output of the source one on the training set. If both source and target models can achieve

similar training error on the training set, the small target model can typically do much better

on the test data due to its lower capacity. In this process, we don’t need the true label of the

training data. Instead, we only require the outputs of the source model of the training data.

The output of the source model is usually called the “soft label”. However, introducing the

true label of the training data can further improve the performance of the target model. In

distillation, imitation parameter is used to balance the importance between the soft label and

true label.

Distillation is typically used for training the deep neural network for knowledge transfer

between different models and tasks. Tzeng et al. [103] proposed a CNN architecture for

domain adaptation to leverage the knowledge from limited or no labeled data using the soft

label. Urban et al. [104] use a small shallow net to mimick the output of a large deep net while

using layer-wised distillation with `2 loss of the outputs of student and teacher net. Similarly,

Luo et al. [72] use `2 loss to train a compressed student model from the teacher model for face

recognition. Gupta et al. [42] use supervision transfer to distil the knowledge from a trained

CNN with unlabeled data or just a few labeled data.

In this thesis, we propose a novel framework that uses distillation for domain adaptation.

The limitation of the previous work in Distillation is that it is difficult to determine the value

of the imitation parameter. Previous studies avoid this problem by either using brute force

searching or domain knowledge. To better solve this problem, we proposed a novel method

that can autonomously balance the importance and extend it to the semi-supervised domain

adaptation.
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2.4 Summary

In this chapter, we reviewed some concepts and work related to this thesis. We demonstrate

the main methods related to our work and their limitations. In the following chapters, we will

provide the technical details of this thesis.



Chapter 3

Effective Multiclass Transfer For
Hypothesis Transfer Learning

3.1 Introduction

Domain adaptation for image recognition tries to exploit the knowledge from a source domain

with plentiful data to help learn a classifier for the target domain with a different distribution

and little labeled training data. In domain adaptation, the source and target domains share the

same label but their data are drawn from different distributions.

Previous research [9, 10] shows that without carefully measuring the distribution similarity

between the source and target data, the source knowledge could not be exploited effectively

or even hurt the learning process (called negative transfer)[79]. However, as we are not able

to access the source data in the Hypothesis Transfer Learning (HTL) [60] setting, how to ef-

fectively and safely exploit the knowledge from the source model could be an important issue

in HTL, especially when target data is relatively small (Effectiveness issue). Moreover, the

source models from different domains can be trained with different kinds of classifiers. For

example, most models trained from ImageNet are deep convolutional neural networks while

some models of the VOC recognition task could be SVMs or ensemble models. Therefore, a

practical HTL algorithm should be compatible with different types of source classifiers (Com-

patibility issue). Previous work is limited to either leveraging the knowledge from a certain

type of source classifiers [99, 39] or low transfer efficiency in a small training set[52]. To the

best of our knowledge, none of the previous work in HTL is able to solve these two issues at

the same time.

In this chapter, we propose our method, called Effective Multiclass Transfer Learning
(EMTLe), that can solve these two issues simultaneously. We perform comprehensive ex-

37
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Figure 3.1: Illustration of feature augmentation in MKTL. f ′i is the output of the i-th source

model and βin is the hyperparameter (need to be estimated) to weigh the augmented feature.

φn(x) is augmented feature for the n-th binary model.

periments on 4 real-world datasets from two benchmark datasets (3 from Office and 1 from

Caltech256). We show that EMTLe can effectively transfer the knowledge with different types

of source models and outperforms the baseline methods under the HTL setting.

This work has been accepted by Pacific-Asia Conference on Knowledge Discovery and

Data Mining, 2017.

3.2 Using the Source Knowledge as the Auxiliary Bias

Some previous work such as MKTL[52] suggests that using the prediction from the source

model as the source knowledge can greatly release the constraint of the type of the source

model. However, with complex feature augmentation method, there are many hyperparameters

to be estimated which makes it inefficient with small training set. In this paper, we adopt

the idea of using the source model prediction as the transferable knowledge and propose our

transfer strategy.

Suppose we have to recognize an image from one of the N visual classes and there are N

experts each of who can only provide the probability of this image for one certain class (binary

source model). After we make our decision for one example (prediction from target model), the

experts provide their decisions as well (probabilities from the source models). Their decisions

can provide extra information regarding this example as the auxiliary bias and adjust our final

prediction. As each of the experts is a specialist in one class, we should weigh their decisions

as well due to the bias of their predictions.

Suppose our target is to distinguish the bottles of 4 pop while our source model can dis-

tinguish the same 4 pops but in cans (see Figure 3.2). Apparently, there are some connections

between the source and target (such as the color information). In our solution, we treat the

knowledge from source (the prediction of the source model) as a prior to affect the output of

our final model. Due to the domain shift, we have to reweigh the source knowledge. As long

as we can choose the proper weight, we are able to obtain a good target model. It is important



3.2. Using the Source Knowledge as the Auxiliary Bias 39

Figure 3.2: Demonstration of using the source class probability as the auxiliary bias to adjust

the output of the target model. The source task is to distinguish the 4 pop cans while the target

one is to distinguish the 4 pop bottles
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to choose the transfer parameter in our solution.

Here, the weight of each source model reflects the relatedness between the source model

and our target domain. The more related they are, the better decision the source model can

make and the larger weight we should apply to it. Specifically, in this paper, we call the weight

transfer parameter. Therefore, for any target data D = {x, y} and the given source models

f ′ = { f ′1 , ..., f ′N}, our goal is to find the target model f :

f = arg min
f∈F

`
(
f + β f ′|D, β

)
(3.1)

where β = [β1, ..., βN] is the transfer parameter and `(·, ·) is the loss function to learn the tar-

get model. It is obvious that assigning the proper transfer parameter to the source model can

significantly improve the performance of our final prediction. From Eq. (3.1) we can see that,

once we have determined the value of the transfer parameter β, we are able to find the target

model f and solve the learning problem. However, the transfer parameter in Eq.(3.1) is a hy-

perparameter and we cannot solve it directly. Therefore, we introduce our bi-level optimization

method for transfer parameter estimation in the next section.

Unlike previous work[4, 99, 111] which has to use the specific parameter of the source

model as the source knowledge, our strategy is more compatible with different types of clas-

sifiers. Compared to MKTL[52], we only have to estimate N hyperparameters for the N-class

problem while there are N × N hyperparameters in MKTL (see Figure 3.1). Therefore, it is

easier to estimate the transfer parameters with our strategy and EMTLe can perform better es-

pecially when the size of the training set is small. In addition, there are two advantages of our

strategy: (1) It is a practical and easy way to align the knowledge from different types of source

classifiers. (2) The auxiliary bias term is naturally normalized in the same dimension as the

class probabilities are always in the interval [0, 1]. As EMTLe can select more types of source

classifiers, this makes it more practical in a real HTL scenario.

3.3 Bi-level Optimization for Transfer Parameter Estima-
tion

As we discussed before, the transfer parameter in Eq. (3.1) is a hyperparameter that can-

not be solved directly. Here we use bi-level optimization (BO)[80], a popular method that is

used in hyperparameter optimization to estimate the transfer parameter. In BO, the low-level

optimization problem is to learn the target model and the high-level problem is another cross-

validation (CV) hyperparameter optimization problem corresponding to the model learned at

the low-level.
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Figure 3.3: Bi-level Optimization problem for EMTLe.

Suppose we use K-fold CV on the high-level problem. For the i-th fold CV, the target set

D is split into training set Dtr
i and validation set Dval

i . The transfer parameter can be optimized

with the following BO function:

High level β = arg min
β

K∑
i

L( f i(β)|Dval
i )

Low level f i(β) = arg min
f∈F

`
(
f + β f ′|Dtr

i , β
) (3.2)

Here, `(·, ·) and L(·, ·) are our low-level and high-level objective functions respectively. We

can use any convex loss functions in Eq.(3.2) for optimization (e.g. SVM objective function).

In this paper, we use the leave-one-out cross-validation (LOOCV) in the high-level problem.

Previous research [60] suggests that LOOCV can increase the robustness of the estimated hy-

perparameter especially on the small dataset. In previous studies[73, 80], BO is a non-convex

problem and can only obtain the local optimal solution. However, we will show that problem

(3.2) is strongly convex and we are able to obtain its optimal solution.

3.3.1 Low-level optimization problem

To better illustrate our learning scenario, we define our learning process as follows. Suppose

we have N visual categories and can obtain N source binary classifiers f ′ = { f ′1 , ..., f ′N} from

the source domain. We want to train a target function f consisting of N binary classifiers

f = { f1, ..., fN} using the target training set D and the source models f ′. Specifically, in our
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BO problem Eq. (3.2), for the low-level optimization, we consider the scenario where we have

to train N binary linear target models fi = wix + bi so that for any {xi, yi}
l
i=1 ∈ D, the adjusted

result satisfies f (x) + f ′(x)β = y. Let D\i = D\{xi, yi}. Then, we use mean square loss in the

low-level objective function to optimize each target model fn with any given transfer parameter

β:

Low-level: f \i(β) : min
w,b

N∑
n

1
2
||wn||

2 +
C
2

∑
j

e2
jn

s.t. fn(x) = wnx + bn; x j ∈ D\i

e jn = Y jn − fn(x j) − βn f ′n(x j)

(3.3)

Here, Y is an encoded matrix of y using the one-hot strategy where Yin = 1 if yi = n and 0

otherwise.

The reason why we use the objective function (3.3) is that it can provide an unbiased closed

form Leave-one-out error estimation for each binary model fn[18]. As a result, the high-level

problem becomes a convex problem and we are able to estimate our transfer parameter easier.

Let K(X, X) be the kernel matrix and C be the penalty parameter in Eq.(3.3). We have:

ψ =

[
K(X, X) +

1
C

I
]

(3.4)

Let ψ−1 be the inverse of matrix ψ and ψ−1
ii is the ith diagonal element of ψ−1. Ŷin, the LOO

estimation of binary model f \in for sample xi, can be written as[18]:

Ŷin = Yin −
αin

ψ−1
ii

for n = 1, ...,N (3.5)

where the matrix α = {αin|i = 1, ...l; n = 1, ...,N} can be calculated as:

α = ψ−1Y − ψ−1 f ′(X)diag(β) (3.6)

3.3.2 High-level optimization problem

For the high level optimization problem, we use multi-class hinge loss [23] with `2 penalty in

our objective function.

High-level: β : min
λ

2

N∑
n

‖βn‖
2 +

∑
i

ξi

s.t. 1 − εnyi + Ŷin − Ŷiyi ≤ ξi

(3.7)

Here, εnyi = 1 if n = yi otherwise 0. λ is used to balance the `2 penalty and our multi-class hinge

loss. Compared to the previous work [61, 99] which uses the multi-class hinge loss without the

`2 penalty, there are two main advantages for our high-level objective function:
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1. When the training set is small, our LOOCV estimation could have a large variance. It

is important to add the `2 penalty to reduce the variance and improve the generalization

ability of the estimated transfer parameter.

2. It is clear that Ŷ is a linear function w.r.t. β. With the `2 penalty, the high-level optimiza-

tion problem (3.7) becomes a strongly convex optimization problem w.r.t. the transfer

parameter β.Therefore, we can obtain an O(log(t)/t) optimal solution with t iterations

using Algorithm 1 (see proof of Theorem A.2.1 in Appendix).

Algorithm 1 EMTLe
Input: λ, ψ,Y, f ′,T ,

Output: β =
{
β1, ..., βn

}
1: β0 = 1 ,α′ = ψ−1Y, α′′ = ψ−1 f ′

2: for t = 1 to T do
3: Ŷ ← Y −

(
ψ−1 ◦ I

)−1
(α′ − α′′diag(β))

4: for i = 1 to l do
5: ∆β = λβ

6: lir = max(1 − εyir + Ŷir − Ŷiyi)

7: if lir > 0 then
8: ∆

yi
β ← ∆

yi
β −

α′′iyi
ψ−1

ii
, ∆r

β ← ∆r
β +

α′′ir
ψ−1

ii

9: end if
10: end for
11: βt ← β(t−1) −

∆β

λ×t

12: end for

3.4 Experiments

In this section, we show empirical results of our algorithm for different transferring situations

on two image benchmark datasets: Office and Caltech.

3.4.1 Dataset & Baseline methods

Office contains 31 classes from 3 subsets (Amazon, Dslr and Webcam) and Caltech contains

256 classes. We select 13 shared classes from two datasets1. The input features of all exam-
113 classes include: backpack, bike, helmet, bottle, calculator, headphone, keyboard, laptop, monitor, mouse,

mug, phone and projector
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ples are extracted using AlexNet[58]. We compare our algorithm EMTLe with two kinds of

Table 3.1: Statistics of the datasets and subsets

Dataset Subsets # classes # examples # features

Office

Amazon (A) 13 1173 4096

Dslr (D) 13 224 4096

Webcam (W) 13 369 4096

Caltech256 Caltech (C) 13 1582 4096

baselines. The first one is the methods without leveraging any source knowledge (no transfer

baselines), including two methods. No transfer: SVMs trained only on target data. Any trans-

fer algorithm that performs worse than it suffers from negative transfer. Batch: We combine

the source and target data, assuming that we have full access to all data, to train the SVMs.

The result of the Batch method is expected to outperform other methods under the HTL setting

as it can access the source data. The second kind of baseline consists of two previous transfer

methods in HTL, MKTL[52] and Multi-KT[99]. Similar to EMTLe, both of them use the

LOOCV method to estimate the relatedness of the source model and target domain, but they

use their convex objective function without the `2 penalty terms. We use linear kernel for all

methods in all our experiments.

3.4.2 Transfer from Single Source Domain

In this subsection, following the experiment protocol in [52, 99] for a fair comparison, we

perform 12 groups of experiments under the setting of HTL. For each experiment, one of the 4

(sub)datasets is selected as the source, while another dataset is used as the target. We evaluate

the performance of EMTLe when all source models are of the same type. As Multi-KT can

only leverage knowledge when the source model is SVM, All source models are trained with

linear SVMs. The size of each target dataset is varied from 1 to 5 to see how EMTLe and other

baselines behave under the extremely small dataset. We use a heuristic way to set the value of

λ in Eq. (3.7):

λ = 2eerrn−errs (3.8)

where errn and errs denote the performance of “No transfer” and the source model on the

training set. We perform each experiment 10 times and report the average result in Figure 3.4.

Observation & discussion: EMTLe can significantly outperform other baselines espe-

cially with a small training set. As we have discussed above, when the training set is small,

with the transfer parameter estimated by our `2 penalty in our high-level objective functions,
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EMTLe has a strong generalization ability and performs better on the test data. As the train-

ing size increases, the variance of training data decreases and the affect of the `2 penalty term

become less significant. Therefore, EMTLe and the other two HTL baselines show similar

performance. It is interesting to see that MKTL even falls into negative transfer even with 5

training examples per class in some experiments. We found that, MKTL is more sensitive to

the variance of the training data. Its performance is not as stable as Multi-KT and EMTLe over

the 10 experiments. Because MKTL needs to learn more hyperparameters than Multi-KT and

EMTLe, even though the training size increases, it may not be able to obtain a good model. In

some experiments, we can see that EMTLe can even outperform the Batch method which can

access more information and is expected to outperform the other methods under the setting of

HTL.

3.4.3 Transfer from Multiple Source Domains

As we mentioned, EMTLe can exploit knowledge from different types of source classifiers

which could greatly extend our choice of the source domain under the HTL setting. In this

subsection, we show that EMTLe can successfully transfer the knowledge from two different

types of source classifiers. Meanwhile, MKTL and “No Transfer” are used as our baseline.

In this experiment, we assume that there is no single source domain that can cover all 13

classes in our target domain and we have to select source models from different source domains.

Specifically, the 13 classes are selected from two different domains separately (6 from DSLR

and 7 from Webcam) according to Table 3.2. Similar to our previous experiment configurations,

we only use Caltech and Amazon as the target domains. We show the experiment results in

Figure 3.6.

Table 3.2: The selected classes of the two source domains and the classifier type of the source

model.

class classifier

DSRL monitor,bike, helmet,calcu,headphone,projector Logistic

Webcam keyboard,mouse,phone,backpack,mug,bottle,laptop SVMs

Observation & discussion: In our multi-source scenario, it is more difficult to leverage the

knowledge from the source models as the models are trained from different domains separately.

From the results we can see that, EMTLe can still exploit the knowledge from the source

models despite the types of the source classifiers while MKTL can hardly leverage the source

knowledge. EMTLe uses a simple way to leverage the source models and BO can help us better
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estimate the transfer parameter. However, MKTL uses a sophisticated feature augmentation

and has more hyperparameters to estimate. Without sufficient training data, it is difficult for

MKTL to measure the importance of each source model and exploit the knowledge from the

models.

3.5 Summary

In this chapter, we propose a method, EMTLe that can effectively transfer the knowledge under

the HTL setting. We focus on the effectiveness and compatibility issues for HTL problems. We

propose our auxiliary bias strategy to let our model exploit the knowledge from different types

of source classifiers. The transfer parameter of EMTLe is estimated by bi-level optimization

method using our novel high-level objective function which allows our model to better exploit

the knowledge from source models. Experiment results demonstrate that EMTLe can effec-

tively transfer the knowledge even though the size of training data is extremely small.
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(a) A→D (b) C→D

(c) W→D (d) A→W

(e) C→W (f) D→W

Figure 3.4: Recognition accuracy for HTL domain adaptation from a single source (Part1). 5

different sizes of target training sets are used in each group of experiments. A, D, W and C

denote the 4 subsets in Table 3.1 respectively.
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(a) C→A (b) D→A

(c) W→A (d) A→C

(e) D→C (f) W→C

Figure 3.5: Recognition accuracy for HTL domain adaptation from a single source (Part2). 5

different sizes of target training sets are used in each group of experiments. A, D, W and C

denote the 4 subsets in Table 3.1 respectively.
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(a) D+W→ A (b) D+W→ C

Figure 3.6: Recognition Accuracy for Multi-Model & Multi-Source experiment on two target

datasets.



Chapter 4

Fast Generalized Distillation for
Semi-supervised Domain Adaptation

4.1 Introduction

Domain adaptation can be used in many real applications, which addresses the problem of

learning a target domain with the help of a different but related source domain. In real appli-

cations, it can be very expensive to obtain sufficient labeled examples while there are abundant

unlabeled ones. Semi-supervised domain adaptation (SDA) tries to exploit the knowledge from

the source domain and use a certain amount of unlabeled examples and a few labeled ones from

the target domain to learn a target model. Typically, the labeled examples in the target domain

are too few to construct a good classifier alone. Therefore, an important issue in SDA is how

to effectively utilize the unlabeled examples.

The previous work in SDA requires access to the source data to measure the data distribu-

tion mismatch between the source and target domain[31, 30, 28, 113]. It is difficult to apply

these methods in some real applications where we are not able to access the source data. In this

chapter, we try to use the framework of Generalized Distillation (GD)[69] to solve the SDA

problem. We try to explore these two questions: (1) Why GD can solve the SDA problem? (2)

How can we improve its effectiveness when we apply GD to real SDA applications?

To answer these two questions, in this chapter, we first propose a new paradigm, called

Generalized Distillation Semi-supervised Domain Adaptation (GDSDA), to solve the SDA

problem. We show that, with GDSDA the knowledge of the source models can be effectively

transferred to the target domain using the unlabeled data. Then we propose a novel imitation

parameter estimation method for GDSDA, called GDSDA-SVM for real SDA problems. Ex-

perimental results show that GDSDA-SVM can effectively find the optimal imitation parameter

50
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and achieve competitive performance compared to methods using brute force search but with

faster speed.

This work has been published in Thirtieth-First AAAI Conference on Artificial Intelligence,

AAAI 2017.

4.2 Previous Work

As we use GD to solve SDA problem, we introduce related work in both GD and SDA areas.

In SDA, previous work tried to utilize the unlabeled data to improve the performance. [113]

introduced a framework named Semi-supervised Domain Adaptation with Subspace Learning

(SDASL) to correct data distribution mismatch and leverage unlabeled data. [30] proposed a

framework for adapting classifiers by “borrowing” the source data to the target domain using

a combination of available labeled and unlabeled examples. [28] show that augmenting the

feature space of the data can compensate the domain shift. [31] proposed a method using the

unlabeled data to measure the mismatch between different domains based on the maximum

mean discrepancy.

There are also many studies related to GD for computer vision tasks. [91] proposed a

Rank Transfer method that uses attributes, annotator rationales, object bounding boxes, and

textual descriptions as the privileged information for object recognition. [76] proposed the

information bottleneck method with privileged information (IBPI) that leverage the auxiliary

information such as supplemental visual features, bounding box annotations and 3D skeleton

tracking data to improve visual recognition performance. [103] proposed a CNN architecture

for domain adaptation to leverage the knowledge from limited or no labeled data using the

soft label. [104] used a small shallow net to mimick the output of a large deep net while using

layer-wised distillation with `2 loss of the outputs of the student and teacher net. Similarly, [72]

used `2 loss to train a compressed student model from the teacher model for face recognition.

Compared to previous work on SDA, our method only requires the output of the source

models, which is more effective when the size of the source domain is relatively large and the

source model is well-trained. Compared to other work in GD, our method GDSDA-SVM can

effectively estimate the imitation parameter while previous work was limited to using either a

brute force search or domain knowledge.
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Figure 4.1: Illustration of Generalized Distillation training process.

4.3 Generalized Distillation for Semi-supervised Domain Adap-
tation

As previously mentioned, GDSDA is a paradigm using generalized distillation for semi-supervised

domain adaptation. In this section, we first give a brief review of generalized distillation. Then

we show the process of GDSDA and demonstrate the reason why GDSDA can work for the

SDA problem. Finally, we show the importance of the imitation parameter.

4.3.1 An Overview of Generalized Distillation and GDSDA

Distillation [43] and Learning Using Privileged Information (LUPI) [106] are two paradigms

that enable machines to learn from other machines. Both methods address the problem of

how to build a student model that can learn from the advanced teacher models. Recently, [69]

proposed a framework called generalized distillation that unifies both methods and show that

it can be applied in many scenarios.

In GD, the training data can be represented as a collection of the triples:

{
(
x1, x∗1, y1

)
,
(
x2, x∗2, y2

)
. . .

(
xn, x∗n, yn

)
}

x∗ is the privileged information for data x, which is only available in the training set and y is

the corresponding label. Therefore, the goal of GD is to train a model, called student model

with the guidance of the privileged information to predict the unseen example pair (x, y).

The process of generalized distillation is as follows: in step 1, a teacher model f (t) is trained

using the input-output pairs {x∗i , yi}
n
i=1. In step 2, use f (t) to generate the soft label si for each

training example xi using the softmax function σ:

si = σ( f (t)(xi)/T ) (4.1)

where T is a parameter called temperature to control the smoothness of the soft label. In step
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Figure 4.2: Illustration of GDSDA training process and our “fake label” strategy.

3, learn the student f (s) from the pairs {(xi, yi) , (xi, si)}ni=1 using:

f (s) =arg min
f (s)∈F (s)

1
n

n∑
i=1

[
λ`

(
yi, σ( f (s)(xi))

)
+ (1 − λ)`

(
si, σ( f (s)(xi))

) ]
(4.2)

Here, `(·, ·) is the loss function and λ is the imitation parameter to balance the importance

between the hard label yi and the soft label si.

GD can be used in many scenarios such as multi-task learning, semi-supervised learning,

and reinforcement learning. In domain adaptation, when we consider the source model as the

teacher and the predictions of the target data given by the source models as the privileged

information, GD can be naturally applied to SDA. This leads to Generalized Distillation Semi-

supervised Domain Adaptation (GDSDA). Moreover, in GDSDA, we also consider the multi-

source scenario and extend the GD paradigm to fit this scenario. To be consistent with other

work of domain adaptation, we use the source model and the target model to denote the teacher

model and the student model.

Technically, when we apply GD to SDA, according to Eq. (4.2), each example is assigned

with a hard label y (true label) and a soft label s (class probabilities from the teacher). However,

in SDA, we are not able to obtain the hard labels of the unlabeled data. Here we follow the

GD work[69] and use the “fake label” strategy to label the unlabeled data: for the labeled

examples, we use one-hot strategy to encode their labels while using all 0s as the label of

the unlabeled examples (see Fig 4.2). Thus, each example in the target domain is assigned

with a label. It is arguable that the “fake label” strategy would introduce extra noise and

degrade the performance. However, we will show in our experiment that this noise can be

well controlled by setting a proper value to the imitation parameter and we can still achieve

improved performance (See the single source experiment).
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Suppose we have M − 1 source domains denoted as D( j)
s = {X( j),Y ( j)}M−1

j=1 and the target

domain Dt = {X,Y} encoded with the “fake label” strategy. The process of GDSDA is as

follows:

1. Train the source models f ∗j for each of the M − 1 domains with {X( j),Y ( j)}.

2. For each of the training example xi in the target domain, generate the corresponding soft

label y∗i j with each of the source model f ∗j and the temperature T > 0.

3. Learn the target model ft using the (M + 1)-tuples {xi, yi, y∗i1, . . . , y
∗
i(M−1)}

L
i=1 with the imi-

tation parameters {λi}
M
i=1 using (4.3):

ft(λ) =arg min
ft∈F

1
L

L∑
i=1

[
λ1` (yi, ft(xi)) +

M−1∑
j=1

λ j+1`
(
y∗i j, ft(xi)

) ]
s.t.

∑
i

λi = 1
(4.3)

In Figure 4.3 we show an example of how to use GDSDA to train the target model when

there is one source model available. The distilled label consists two parts: the label informa-

tion from the source model and from the ground truth. For each part, we use the imitation

parameters to reweigh them. As long as we can find the good imitation parameters, we can

successfully label all data and therefore, can build a target model from the target data.

Compared to other studies on SDA where each example of the source domain was used,

by either re-weighting [30, 33] or augmentation [28], GDSDA only requires the trained model

from the source domain to generate the soft labels. Considering that it is more convenient

to access the source model than each of the examples of the source domain, GDSDA can be

more useful than those previous methods. For example, if we want to use ImageNet [29] as the

source domain, it is almost impossible to access each of the millions of examples while there

are many well trained models publicly available online that can be used for GDSDA. Also,

GDSDA is able to handle the multi-class scenario while previous methods, such as SHFA[32]

only solved the binary classification problem of SDA. Moreover, GDSDA is compatible with

any type of source model that is able to output the soft label (i.e., the class probabilities).

4.3.2 Why does GDSDA work

In this section, we demonstrate the scenarios where GDSDA can work. Before we provide our

analysis, we first introduce two basic assumptions for GDSDA: the assumption of distillation

and the assumption of the source model.

Assumption of Distillation: The capacity (or VC dimension) of the target model ft is

smaller than the capacity of source model f ∗. This assumption is inherited from distillation
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Figure 4.3: An example of using GDSDA to generate distilled labels for the target data.

[69]. Assumption of the source model: The source model f ∗ should work better than a target

model f ′t trained only with the hard labels. This assumption is common, especially in SDA

where the labeled examples are often too few to build a good target model. For example, when

we only have one labeled example from each class in the target training set, it is reasonable to

assume that the source model trained from another domain can perform better than the model

trained only with the target training data on the target task. Based on these two assumptions, we

will show that GDSDA can effectively leverage the source model and transfer the knowledge

between different domains under the SDA setting.

In GDSDA, we actually have two steps to get improved performance through knowledge

transfer: Unsupervised distillation and Label fusion with target label.

• Distillation with unlabeled data. According to the ERM principle[107], a simple model

has better generalization ability than the complex one, if they both have the same training

error. As long as the target model ft can achieve similar training error to that of the

source model f ∗ on the target domain, considering the fact that the VC dimension of ft

is smaller than f ∗, we can expect that the target model has better generalization ability.

This process can be achieved by letting the target model mimick the output of the source

model on the training data. Here, we call the output of the source model “soft label”. It
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is worthy to notice that in this process, the target model only has to mimick the soft label

without considering the true labels of the examples. In another word, GDSDA provide

an effective way to utilize the unlabeled data.

• Label fusion with target label. Arguably, because of the domain shift, the source model

is biased towards the source domain when we apply it to the target task. However, as

suggested in [43], we can use labeled information from the target domain to compensate

for the domain shift and achieve a better performance on the target task with Eq. (4.3).

Specifically, we use the imitation parameter λ to control the relative importance between

the soft label and the hard label, which in turn reflects the similarity between the source

and target tasks. For example, in Figure 4.3, when we set λ1 = 0, we actually ignore

the knowledge from source model and thus can avoid negative transfer if we notice the

source knowledge may hurt the transfer process. As a result, GDSDA can compensate

for the domain shift under the setting of SDA (for more details, please see the experiment

section).

4.3.3 Key Parameter: the Imitation Parameter

From the analysis above, we can see that in each of the step, the target model can get improved

performance through a simple but effective method. However, in the label fusion part, an

important issue is to determine the value(s) of the imitation parameter. As we show before,

the imitation parameter balance the importance of the source and target knowledge which is

essential in GDSDA. In this section, we demonstrate that the imitation parameter can greatly

affect the performance of the target model.

In GDSDA, we must decide the values of 2 parameters, the temperature T and the imita-

tion parameter λ. The temperature T controls the smoothness of the soft label and the imitation

parameter λ controls how much knowledge can be transferred from the source model. Previ-

ous work has addressed the importance of knowledge control in domain adaptation [32, 33].

Without carefully controlling the amount of knowledge transferred from the source domain,

the target model may suffer from degraded performance or even negative transfer [79]. How to

choose the imitation parameter is crucial for GDSDA. In previous work, however, the imitation

parameter was determined by either a brute force search [69] or background knowledge [103].

Meanwhile, in real applications, it is common that multiple source domains can be exploited.

As suggested by [99], learning from multiple related sources simultaneously can significantly

improve the performance of the target model. However, these previous methods become more

difficult to apply when there are multiple sources and imitation parameters to be determined.

For these reasons, it is ideal to find an approach that can determine the imitation parameter
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automatically.

4.4 GDSDA-SVM

As previously mentioned, it is important to find an approach that can effectively determine the

imitation parameter. In this section, we propose our method GDSDA-SVM which uses SVM

as the base classifier and can effectively estimate the imitation parameter by minimizing the

cross-validation error on the target domain.

4.4.1 Distillation with Multiple Sources

As suggested in [106], the optimal imitation parameter should be the one that can minimize

the training error on the target domain. Based on that, we propose our method GDSDA-SVM

which can effectively estimate the imitation parameter.

Instead of using hinge loss in our GDSDA-SVM, we use Mean Squared Error (MSE) as

our loss function for the following two reasons: (1) several recently studies [5, 72, 84, 104]

show that MSE is also an efficient measurement for the target model to mimick the output of

the source model. (2) MSE can provide a closed form cross-validation error estimation which

allows us to estimate the imitation parameter effectively.

Suppose we have L examples {x j, y j}
L
j=1 from N classes in the target domain where X ∈

RL×d,Y ∈ RL×N . Meanwhile, there are M − 1 source (teacher) models providing the soft labels

Y∗ = {y∗i j| j = 1, ..., L; i = 1, ...,M−1} for each of the L examples. For simplicity, we concatenate

the hard label Y and soft label Y∗ into a new label matrix S , where:

S = [Y; Y∗] = [S 1; ...; S M]; S i ∈ RL×N

To solve this N-class classification problem, we adopt the One-vs-All strategy to build N binary

SVMs. To build the nth binary SVM, we have to solve the following optimization problem:

min
wn

1
2
||wn||

2 + C
∑

j

e2
jn

s.t. e jn =
∑

i

λiS i jn − wnx j

(4.4)

We use the KKT theorem [24] and add dual sets of variables to the Lagrangian of the optimiza-

tion problem:

L =
1
2
||wn||

2 + C
∑

j

e2
jn

+
∑

j

η jn

∑
i

λiS i jn − wnx j − e jn

 (4.5)
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To find the saddle point,

∂L

∂wn
= 0→ wn =

∑
j

η jnx j;
∂L

∂e jn
= 0→ η jn = 2Ce jn (4.6)

For each example x j and its constraint of label S i jn, we have e jn + wnx j =
∑

i λiS i jn. Replacing

wn and e jn, we have: ∑
j

η jnx jxi +
ηin

2C
=

∑
i

λiS i jn (4.7)

Here we use Ω to denote the matrix Ω = [K + I
2C ] where K is the linear kernel matrix

K = {xix j|i, j ∈ 1 . . . L}. Let Ω−1 be the inverse of matrix Ω and Ω−1
j j be the jth diagonal

element of Ω−1. We have η =
∑

i λiΩ
−1S i =

∑
i λiη

′
i . According to [18], the Leave-one-out

(LOO) estimation of the example x j for the nth binary SVM can be written as:

ŷ jn =
∑

i

λi

S i jn −
η′i jn

Ω−1
j j

 (4.8)

Now for any given λ, we have found an efficient way to estimate the LOO prediction of

each binary target model for example x j. In the following section, we will introduce how to

find the optimal λi for each of the source models.

4.4.2 Cross-entropy Loss for Imitation Parameter Estimation

From the previous section, we have already found an effective solution to estimate the output of

the SVM. The optimal imitation parameters can be found by solving the following optimization

problem1:

min Lc (λ) =
1
2

M∑
i

||λi||
2 +

1
L

∑
j,n

`
(
yin, ŷ jn (λ)

)
s.t.

∑
λi = 1

(4.9)

Here we use the `-2 regularization term to control the complexity of λs so that the target model

can achieve better generalization performance. For the loss function `(·, ·), We choose the

cross-entropy loss function.

`
(
yin, ŷ jn (λ)

)
= yin log(P jn) P jn =

eŷ jn∑
h eŷ jh

(4.10)

Cross-entropy pays less attention to a single incorrect prediction which reduces the affect of the

outliers in the training data. Moreover, cross-entropy works better for the unlabeled data with

1In Eq.(4.9), it is reasonable to use a hyperparameter β to regularize λi, i.e. β
2
∑M

i ||λi||
2. Empirically, we found

that β = 1 can achieve good results in our experiment and ignore this hyperparameter β here.
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Algorithm 2 GDSDA-SVM
Input: Input examples X = {x1, ..., xL}, number of classes N, number of sources M, 3D label

matrix, S = [Y1,Y2, ...,YM] with size L × M × N, temperature T

Output: Target model ft = Wx

Ω = [K + I
2C ]

Find the imitation parameter λ with Algorithm 3

Generate new label Ynew =
∑

i λiS i

Calculate η = Ω−1Ynew

Calculate wn =
∑

j η jnx j

our “fake label” strategy. As we mentioned in our “fake label” strategy, we use 0s to encode

the hard labels of the unlabeled examples. From (4.10) we can see that cross-entropy loss can

automatically ignore penalties of the unlabeled examples and reduce the noise introduced by

our “fake label” strategy. Let:

µi jn := S i jn −
η′i jn

Ω−1
j j

(4.11)

The derivative can be written as:

∂`(λ)
∂λi

=
∑

n

µi jn

(
P jn − y jn

)
(4.12)

We describe GDSDA-SVM in Algorithm 2. As the optimization problem (4.9) is strongly

convex, it is easy to prove that Algorithm 3 can converge to the optimal λ with the rate of

O(log(t)/t) where t is the optimization iteration (see Appendix A.2).

4.5 Experiments

In this section, we show the empirical performance of our algorithm GDSDA-SVM on the

Office benchmark dataset. Specifically, we provide the empirical results under two transfer

scenarios: single source and multi-source transfer scenarios for GDSDA-SVM.

Dataset: We use the domain adaptation benchmark dataset Office as our experiment dataset.

There are 3 subsets in Office dataset, Webcam (795 examples), Amazon (2817 examples) and

DSLR (498 examples), sharing 31 classes. We denote them as W, A and D respectively. In

our experiments, we use DSLR and Webcam as the source domains and Amazon as the target

domain. We use the features extracted from Alexnet [58] FC7 as the input feature for both

source and target domain. The source models are trained with multi-layer perception (MLP)

on the whole source dataset.
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Algorithm 3 λ Optimization
Input: Input examples X, number of classes N, size of sources M, 3D label matrix S , temper-

ature T , optimization iteration iter, Kernel matrix Ω

Output: Imitation parameter λ

Initialize λ = 1
M ,

Let S n be the label matrix of S for class n

for Each label S n do
Calculate η′n = Ω−1S n

end for
Calculate µ using (4.11)

for it ∈ {1, ..., iter} do
Compute ŷ jn and P jn with (4.8) and (4.10)

∆λ ← 0

for each x j in X do
∆λ = ∆λ +

∑
n µi jn

(
P jn − y jn

)
end for
∆λ = ∆λ/L, λ = λ − 1

it (∆λ + λ)

λ = λ/
∑
λi

end for

4.5.1 Single Source for Office datasets

In this experiment, we compare our algorithm under the scenario where the source model is

trained from a single source dataset. Specifically, we have two groups of experiments, trans-

ferring from Webcam to Amazon and from DSLR to Amazon. As we mentioned, there are

significantly fewer labeled examples than unlabeled ones in real SDA applications. There-

fore, in each group of experiment, there are only 31 labeled examples (1 per class) and some

unlabeled examples (10, 15 and 20 per class) in the target domain.

To demonstrate the effectiveness of GDSDA-SVM, we show the performance of GDSDA

using brute force to search the imitation parameter as the baseline. As there are two imitation

parameters in this experiment, we use λ1 and 1 − λ1 to denote the imitation parameter for hard

and soft label respectively. Specifically, we search the imitation parameter λ1 in the range

[0, 0.1, ..., 1] with different temperature T . Meanwhile, we show the performance of the source

model (denoted as “Source”) and the performance of a target model (denoted as “No transfer”

using LIBLINEAR[36]) trained with only labeled examples of the target domain on the target

task. We run each experiment 10 times and report the average result. For GDSDA-SVM, as
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we are not able to tune the temperature T , we empirically set T = 20 for all experiments in this

subsection. The experimental results are shown in Figure 4.5.

From the results of the brute force search we can see that, the value of imitation parameter

can greatly affect the performance of the target model. As we expected, without using any true

label information of the target data, i.e. λ1 = 0, GDSDA can still slightly outperform the source

model. This means GDSDA can effectively transfer the knowledge between different domains

with the unlabeled data. As we increase the value of imitation parameter, i.e. considering the

hard labels from the target domain, the performance of GDSDA can be further improved. As

we mentioned before, even though our “fake label” strategy would introduce extra noise, the

noise can be limited by setting a proper value to imitation parameter and the target model can

still achieve improved performance compared to the baselines.

Figure 4.4: D+W→A, Multi-source results comparison.

Moreover, we can see that GDSDA-SVM can achieve competitive results compared to

baselines using brute force search in D→A experiments. In W→A experiments, it achieves

the best performances on all 3 different unlabeled sizes. This indicates that we can efficiently

(about 6 times faster than the brute force search) obtain a good target model with GDSDA-

SVM.

4.5.2 Multi-Source for Office datasets

In this experiment, we show the performance of GDSDA-SVM under the multi-source SDA

scenario. Specifically, we use Amazon as the target domain which can leverage the knowledge

of two source models trained from Webcam and DSLR. We use the similar settings as our

single source experiment and perform 2 groups of experiments using 1 labeled and 2 labeled

examples per class respectively. We use temperature T = 5. The results of multi-source

GDSDA-SVM are denoted as SVM Multi. Here we also include two single source GDSDA-
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SVMs obtained from the experiments above (SVM w and SVM d trained using Webcam and

DSLR as the source respectively) as the baselines. Moreover, we show the best performance

of the brute force search model (SVM BF). For SVM BF, we search temperature in range

T = [1, 2, 5, 10, 20, 50] and each imitation parameter in range [0, 0.1, ..., 1]. The experiment

results are shown in Figure 4.4.

From the results, we can see that, given 2 source models, SVM Multi can outperform any

single source model trained with GDSDA. This indicates GDSDA-SVM can still exploit the

knowledge even in the complex multi-source scenario. Even though SVM Multi performs

slightly worse than the best result found by brute force search in some experiments, consider-

ing their time consumption (GDSDA-SVM is around 30 times faster than brute force search),

SVM Multi still has its advantage in real applications.

4.6 Summary

In this chapter, we propose a novel framework called Generalized Distillation Semi-supervised

Domain Adaptation (GDSDA) that can effectively leverage the knowledge from the source do-

main for SDA problem without accessing to the source data. To make GDSDA more effective

in real applications, we proposed our method called GDSDA-SVM and show that GDSDA-

SVM can effectively determine the imitation parameter for GDSDA. In our future work, we

plan to use a more advanced hyperparameter optimization method, which can optimize the

imitation parameter λ and the temperature T in GDSDA simultaneously and expect further

performance improvement.
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(a) D→ A, 10 unlabeled (b) D→ A, 15 unlabeled

(c) D→ A, 20 unlabeled (d) W→ A, 10 unlabeled

(e) W→ A, 15 unlabeled (f) W→ A, 20 unlabeled

Figure 4.5: Experiment results on DSLR→Amazon and Webcam→Amazon when there are

just one labeled examples per class. The X-axis denotes the imitation parameter of the hard

label (i.e. λ1 in Fig 4.2) and the corresponding imitation parameter of the soft label is set to

1 − λ1.



Chapter 5

Learning Food Recognition Model with
Deep Representation

5.1 Introduction

Deep Learning with Convolutional Neural Networks (CNNs) is the most popular method for

image recognition and has been applied to solve many real problems. Different than the two

methods we proposed, which use the output of the source model for knowledge transfer, in this

chapter, we use the parameters of Deep CNNs as transferable knowledge and use it to initialize

the Deep CNNs for our recognition task.

In this chapter, we investigate the problem of using the pre-trained CNNs for transfer learn-

ing. In particular, we fine-tune the parameters of the pre-trained CNNs on two food image

database and achieve the improved results. We also investigate the changes of the parameters

after fine-tuning and try to obtain some important experience on fine-tuning the deep CNNs.

This work has been published by 2015 IEEE International Conference on Data Mining

Workshop (ICDMW).

5.2 Tuning the Deep CNNs

The basic fact that fine-tuning can work for transfer learning is that Deep CNN can learn hier-

archical features from bottom to top and some of the features are task-independent, especially

most low-level and some mid-level ones.

There are two major strategies to fine-tune the deep CNNs: fine-tune the last layer (i.e. the

classifier layer) and fine-tune the whole net.

• Fine-tune the last layer. In the first strategy, we consider the deep CNNs as a fixed

64
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Figure 5.1: Demonstration of Fine-tuning from ImageNet 1000 classes to Food-101 datasets.

feature extractor and only modify the last layer of the net. This assumes that the features

extracted by the pre-trained deep CNN can be directly applied to the new tasks. There-

fore, by changing the last layer of the model, e.g. the combination of the features, the

model can adopt new classes effectively. For example, when we introduce the mythical

creature Sphinx to someone, we usually say it has the head of a human, the haunches

of a lion, and the wings of a bird and people could obtain a rough idea of how Sphinx

looks like without even see its picture. Here, the features such as head and haunches to

describe Sphinx are high-level features that can be adopted directly from learned knowl-

edge. Without learning from scratch, we can adopt the new concept effectively.

• Fine-tune the whole net. When fine-tuning the whole net, typically, we assume that

some of the features extracted from the pre-trained deep CNN are not good enough

for the new tasks. Therefore, we have to learn some new high-level features again.

In fact, the high-level features are task-dependent and can be learned from those task-

independent low-level features with certain combination. The purpose of fine-tuning the

whole net is to changing the combination of the low-level features to reconstruct the

task-dependent high-level features for the new task.

For both strategies, the last layer, i.e. the layer of a classifier is removed. For different fine-

tuning strategies, the error would back propagate to different layers (see Figure 5.1). Typically,

a small learning rate is used to for fine-tuning the model to make sure that the model will not

overfit the data of the target task.



66 Chapter 5. Learning Food RecognitionModel with Deep Representation

5.3 Layers in Deep CNN

A CNN consists of some convolutional and subsampling layers optionally followed by fully

connected layers. In this part, we introduce the layers used in our work.

5.3.1 Convolutional Layer

Convolutional Layer is the core building block of a Convolutional Network, and its output

volume can be interpreted as holding neurons arranged in a 3D volume. Natural images have

the property of being ”stationary” meaning that the statistics of one part of the image are the

same as any other part. This suggests that the features that we learn at one part of the image can

also be applied to other parts of the image, and we can use the same features at all locations. For

example, some low-level features such as some special points or edges exist in many objects

and can be used as the features for different types of objects.

Formally, given some original h×w input images I, we can train a small autoencoder from

a× b kernel matrix. Also, we have to set other hyperparameters, stride s and padding p. Stride

defines the number of pixels the kernel should be moved in each step around the image I and

padding defines the number of rows/columns padded to the height and width of the original

input (see Figure 5.2). Given a a × b kernel matrix W (1), bias b(1), padding p and stride s, we

can encode the original image I as fconv = sigmod(W (1)Ip + b(1)) for Ip ∈ I, giving us fconv

(called feature map of W (1)), a
⌈

(h−a+2p)
s + 1

⌉
×

⌈
(w−b+2p)

s + 1
⌉

array of feature map. In general,

for any specific input I (h × w × c array matrix) of a convolutional layer L, assuming we have

k such a × b × c kernel matrix, its feature maps f should be a
⌈

(h−a+2p)
s + 1

⌉
×

⌈
(w−b+2p)

s + 1
⌉
× k

array matrix with f (i)
conv = sigmod(W (i)Ip + b(i)) for Ip ∈ I and i ∈ 1, . . . k.

In real applications, small kernels (3 × 3, 5 × 5 and 7 × 7) are preferred by many different

CNN architectures [58] [65] [92] [115]. Recent development of tiny 1 × 1 kernel shows an

improvement on both accuracy and computational efficiency [96].

5.3.2 Pooling Layer

Pooling layer is widely used in all kinds of CNN architecture for dimensional reduction and

computational efficiency. After obtaining features maps using convolutional layer, we need to

use them for classification. However, applying the feature maps from the convolutional layer

for classification would be a computational challenge. Consider for instance images of size

96 × 96 pixels, and suppose we have learned 400 features over 8 × 8 inputs. Each convolution

results in an output of size (96 − 8 + 1) × (96 − 8 + 1) = 7921, and since we have 400 features,
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Figure 5.2: Convolution operation with 3 × 3 kernel, stride 1 and padding 1. ⊗ denotes the

convolutional operator.

this results in a vector of 892 × 400 = 3, 168, 400 features per example. Learning a classifier

from over 3 million features could lead to severe over-fitting.

Therefore, it is common to periodically insert a (Max) Pooling layer in-between successive

convolutional layers in CNN architecture. Its function is to progressively reduce the spatial

size of the representation to reduce the amount of parameters and computation in the network,

and hence to also control overfitting. The pooling layer works independently on the channel

dimension and resizes the feature map spatially. For certain h × w × c input array matrix, a

a×b Pooling layer with stride s and p padding would output a
⌈

(h−a+2p)
s + 1

⌉
×

⌈
(w−b+2p)

s + 1
⌉
×c

matrix array.

In general, two kinds of pooling strategy, Max Pooling and Average Pooling, are com-

monly used in CNN architecture (see Figure 5.3). Average pooling was often used historically

but has recently fallen out of favor compared to the max pooling operation, which has been

shown to work better in practice [74] [96]. Max Pooling is been widely used in all kinds CNN

architectures [16] [110].

5.3.3 Fully Connected Layer

Fully Connected (FC) Layer have full connections to all activations in the previous layer, as

seen in regular Neural Networks. Recent work show that FC layers with Rectified Linear Units

and Dropout can greatly improve the learning speed as well as avoid overfitting for deep CNNs
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Figure 5.3: 2 × 2 pooling layer with stride 2 and padding 0.

[44] [77].

5.3.3.1 Rectified Linear Units (ReLUs) for Activation

Rectified Linear Units can be considered as replacing each binary unit with sigmoid activation

by an infinite number of copies that all have the same weights but have progressively more

negative biases. This replacing procedure can be mathematically presented as:

N∑
i

σ(x − i + 0.5) ≈ log(1 + ex) (5.1)

where σ(x) is the sigmoid function. In practice, Rectified Linear Units use the function

f (x) = max(x, 0) ≈ log(1 + ex) (5.2)

as the activation function for approximation [49]. With max function, the derivatives of the

active (x > 0) and inactive neurons are 1 and 0 respectively. As a result, ReLUs can speed up

the learning procedure greatly and improve the performance.

5.3.3.2 DropOut

In FC layer, nodes are connected to each other and this leads to a large number of parameters.

Generally, larger number of parameters means more power for Neural Networks and more

easily prone to overfitting. Dropout is a technique for addressing this problem. The key idea is
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(a) Standard Neural Net (b) After Dropout

Figure 5.4: Dropout Layers. Adopted from Standford CS231n Convolutional Neural Networks

for Visual Recognition

to randomly drop units (along with their connections) from the neural network during training

[94]. Technically, dropout can be interpreted as adding extra noise into the training procedure.

Without actually adding noise, FC layer with dropout is tolerant of higher level of noise (20

%-50%). Randomly dropping out the nodes, for any node in FC layer, it can’t rely on the other

nodes to adjust its result. By eliminating the co-adaptation of hidden units, dropout becomes

a technique that can be applied to any general domain and improve the performance of neural

nets.

5.4 Experiment Settings

In this section, we introduce some details about the two architectures and the food datasets

used in our experiments.

5.4.1 Models

In this paper, AlexNet and GoogLeNet are their Caffe [50] implementations and all the results

for a specific CNN architecture are obtained from a single model.

AlexNet contains 5 layers followed by the auxiliary classifier which contains 2 fully con-

nected layers (FC) and 1 softmax layer. Each of the first two layers can be subdivided into 3

components: convolutional layer with rectified linear units (ReLUs), local response normaliza-

tion layer (LRN) and max pooling layer. Layer 3 and layer 4 contain just convolutional layer

with ReLUs while layer 5 is similar to the first two layers except for the LRN. For each of the

fully connected layer, 1 ReLUs and 1 dropout [94] layer are followed.
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5x5 conv

concatenation
 output

5x5_reduce

pool_proj

input

1x1 conv

pool

3x3_reduce 3x3 conv

Figure 5.5: Inception Module. n × n stands for size n receptive field, n × n reduce stands for

the 1 × 1 convolutional layer before the n × n convolution layer and pool pro j is another 1 × 1

convolutional layer after the MAX pooling layer. The output layer concatenates all its input

layers.

GoogLeNet shows another trend of deep CNN architecture with lots of small receptive

fields. There are 9 Inception modules in GoogLeNet and Figure 5.5 shows the architecture of

a single inception module. Inspired by [68], lots of 1 × 1 convolutional layers are used for

computational efficiency. Another interesting feature of GoogLeNet is that there are two extra

auxiliary classifiers in intermediate layers. During the training procedure, the loss of these two

classifiers is counted into the total loss with a discount weight 0.3, in addition to the loss of the

classifier on top. More architecture details can be found from [96].

5.4.2 Food Datasets

Besides ImageNet dataset, there are many popular benchmark datasets for image recognition

such as Caltech dataset and CIFAR dataset, both of which contain hundreds of classes. How-

ever, in this paper, we try to focus on a more specific area, food classification. Compared to

other recognition tasks, there are some properties of the food (dishes) which make the tasks

become a real challenge:

• Food doesn’t have any distinctive spatial layout: for other tasks like scene recognition,

we can always find some discriminative features such as buildings or trees, etc;

• Food class is a small sub-category among all the categories in daily life, so the inter-class

variation is relatively small; on the other hand, the contour of food varies depending on
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many aspects such as the point of view or even its components.

These properties make food recognition catastrophic for some recognition algorithms. There-

fore, the training these two architectures on the food recognition task can reveal some important

aspects of themselves and help people better understand them. In this paper, we use two image

datasets Food-256 [54]1 and Food-101 [14]2. It is worthy to mention that PFID dataset is also

a big public image database for classification, but their images are collected in a laboratory

condition which is considerably not applicable for real recognition task.

Food-256 Dataset. This is a relatively small dataset containing 256 kinds of foods and

31644 images from various countries such as French, Italian, US, Chinese, Thai, Vietnamese,

Japanese and Indonesia. The distribution among classes is not even and the biggest class

(vegetable tempura) contains 731 images while the smallest one contains just 100 images. For

this small dataset, we randomly split the data into training and testing set, using around 80%

(25361 images) and 20% (6303 images) of the original data respectively and keep the class

distribution in these two sets uniform. The collector of this dataset also provides boundary

box for each image to separate different foods and our dataset is cropped according to these

boundary boxes.

Food-101 Dataset. This dataset contains 101-class real-world food (dish) images which

were taken and labeled manually. The total number of images is 101,000 and there are exactly

1000 images for each class. Also, each class has been divided into training and testing set

containing 750 images and 250 images respectively by its collector. The testing set is well

cleaned manually while the training set is not well cleaned on purpose. This noisy training set

is more similar to our real recognition situation and it is also a good way to see the effect of the

noise on these two architectures.

5.4.3 Data Augmentation

In this section, we introduce some data augmentation methods in our work to enrich our train-

ing data. Previous work shows that with intensive augmentation for the training data, the

performance of CNN model can be improved [109]. Data Augmentation is an efficient way to

enrich the data. There are also some techniques that can apply to enlarge the dataset such as

subsampling and mirroring. The original images are firstly resized to 256 × 256 pixels. We

crop the 4 corners and center for each image according to the input size of each model and flap

the 5 cropped images to obtain 10 crops. For the testing set, the prediction of an image is the

average prediction of the 10 crops (see Figure 5.6).

1Dataset can be found http://foodcam.mobi/dataset.html
2Dataset can be found http://www.vision.ee.ethz.ch/datasets extra/food-101
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(a) Original image (b) Center (c) Center mirror

(d) Up-left (e) Up-left mirror (f) Up-right (g) Up-right mirror

(h) Bottom-left (i) Bottom-left mirror (j) Bottom-right (k) Bottom-right mirror

Figure 5.6: Crop area from original image
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Batch Size 16

Learning Rate 0.01

Learning Rate Decay Policy Drop 0.1 every 10000 iterations

Drop Rate 0.1

Training Iteration 100000

Momentum 0.9

Weight Decay Rate 0.0002

Table 5.1: Experimental configuration for GoogLeNet

Before cropping subsamples from the original image, we also use other augmentation meth-

ods such as color casting and vignette etc., to enrich our data and make our model less sensitive

to lighting changes and other invariance (see Figure 5.7).

Compared to color shifting in [58], we use color casting to alter the intensities of the RGB

channels in training images. For each image, we firstly use a random boolean parameter to

determine whether its R, G, and B channel should be changed. For any channel that should

be changed, we add a random integer ranging from [−20, 20] to this specific channel. We also

apply vignetting effect to the original image. In our implementation, we apply a 2D Gaussian

kernel on the original image for vignetting. The two parameter σx and σy are randomly chosen

from [160, 200). We also apply some geometric transformation such as stretching and rotation,

on the original image for data augmentation. In summary, we enriched the data by 11 times,

3 times color shifting, 2 times vignetting, 4 times stretching and 1 time rotation and plus the

original image.

During the fine-tuning process, we initial the learning rate 0.01 and it decreases 90% (times

0.1) every 10000 iterations. The detail training configuration is shown in Table 5.1.

5.5 Discussion

Training a CNN with millions of parameters on a small dataset could easily lead to horrible

overfitting. But the idea of supervised pre-training on some huge image datasets could prevent

this problem in a certain degree. Compared to other randomly initialized strategies with a

certain distribution, supervised pre-training is to initialize the weights according to the model

trained for a specific task. Indeed, initialization using the pre-trained model has certain bias as

there is no single dataset including all the invariance for natural images [1], but this bias can be

reduced as the pre-trained image dataset increases and the fine-tuning should benefit from it.
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(a) Original image (b) Red casting (c) Green casting

(d) Blue casting (e) RGB casting (f) Vignette

(g) More vignette (h) Horizontal stretch (i) More horizontal stretch

(j) Vertical stretch (k) More vertical stretch (l) Rotation

Figure 5.7: Different data augmentation methods
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5.5.1 Pre-training and Fine-tuning

We conduct several experiments on both architectures and use different training initialization

strategies for both Food-256 and Food-101 datasets. The scratch models are initialized with

Gaussian distribution for AlexNet and Xavier algorithm for GoogLeNet[41]. These two ini-

tializations are used for training the original models for the ImageNet task. The ft-last and

fine-tuned models are initialized with the weights pre-trained from the ImageNet dataset. For

the ft-last model, we just re-train the fully connected layers while the whole network is fine-

tuned for the fine-tune model.

Table 5.2: Top-5 Accuracy in percent on fine-tuned, ft-last and scratch model for two architec-

tures

AlexNet GoogLeNet

Food-101 Food-256 Food-101 Food-256

Fine-tune 88.12 85.59 93.51 90.66
Ft-last 76.49 79.26 82.84 83.77

Scratch 78.18 75.35 90.45 81.20

Table 5.3: Accuracy compared to other methods on Food-256 dataset in percent

fv+linear [55] GoogLeNet AlexNet

Top1 50.1 70.13 63.82

Top5 74.4 90.66 85.59

Table 5.4: Top-1 accuracy compared to other methods on Food-101 dataset in percent

RFDC[14] MLDS(≈[93]) GoogLeNet AlexNet

Top1 accuracy 50.76 42.63 78.11 66.40

From Table 5.2 we can see that fine-tuning the whole network can improve the performance

of the CNN for our task. Compared to other traditional computer vision methods (see Table

5.3 and 5.4), GoogLeNet outperforms the other methods with large margins and we provide

the state-of-the-art performance of these two food image datasets.

In Figure 5.8 we visualize the feature maps of the pre-trained GoogLeNet model and fined-

tuned GoogLeNet model with the same input image for some layers. We can see that the feature

maps of the lower layer are similar as the lower level features are similar for most recognition
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Figure 5.8: Visualization of some feature maps of different GoogLeNet models in different

layers for the same input image. 64 feature maps of each layer are shown. Conv1 is the first

convolutional layer and Inception 5b is the last convolutional layer.

tasks. Then we can see that the feature maps in the high-level are different which leads to

totally different recognition results. Since only the last layer (auxiliary classifier) of the ft-last

model is optimized, we can infer that the higher level features are more important which is

consistent with our intuition. Also from Table 5.2, it is interesting to see that for the Food-101

task, the accuracy of the scratch models outperforms the pre-trained models. Since Food-101

is a relatively large dataset with 750 images per class while Food-256 dataset is an imbalanced

small one, this indicates that it is difficult to obtain a good deep CNN model while the data is

insufficient.

From Table 5.2 we can see that GoogLeNet always performances better than AlexNet on

both datasets. This implies that the higher level features of GoogLeNet are more discriminative

compared to AlexNet and this is due to the special architecture of its basic unit, Inception

module. Table 5.5 and 5.6 show the weights’ cosine similarity of each layer between the fine-

tuned models and their pre-trained models. From the results we can see that the weights in the

low layer are more similar which implies that these two architectures can learn the hierarchical

features. As the low-level features are similar for most of the tasks, the difference of the objects

is determined by high-level ones which are the combination of these low-level features. Also

from Table 5.6, we can observe that the weights of the pre-trained and fine-tuned models are

extremely similar in AlexNet. This can be caused by the size of receptive filed. Since ReLUs

are used in both architectures, vanishing gradients do not exist. Rectified activation function is

mathematically given by:

h = max(wT x, 0) =

 wT x wT x > 0

0 else
(5.3)
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The ReLU is inactivated when its input is below 0 and its partial derivative is 0 as well.

Sparsity can improve the performance of the linear classifier on top, but on the other hand,

sparse representations make the network more difficult to train as well as fine-tune. The deriva-

tive of the filter is ∂J
∂w = ∂J

∂y
∂y
∂w = ∂J

∂y ∗ x where ∂J
∂y denotes the partial derivative of the activation

function, y = wT x and x denotes the inputs of the layer. The sparse input could lead to sparse

filter derivative for back propagation which would eventually prevent the errors passing down

effectively. Therefore, the filters of the fine-tuned AlexNet is extremely similar. Compared

to large receptive field used in AlexNet, the inception module in GoogLeNet employs 2 ad-

ditional n × n reduced convolutional layers before the 3 × 3 and 5 × 5 convolutional layers

(see Figure 5.5). Even though the original purpose of these two 1 × 1 convolutional layer is

for computational efficiency, these 2 convolutional layers tend to squeeze their sparse inputs

and generate the dense outputs for the following layer. We can see from Table 5.7 that the

sparsity of the n × n reduce layers are denser than other layers within the inception module.

This makes the filters in the following layer more easily to be trained for transfer learning and

generate efficient sparse representations.

The unique structure of the Inception module guarantees that the sparse outputs from the

previous layer can be squeezed with the 1 × 1 convolutional layers and feed to convolutional

layers with a bigger receptive field to generate sparser representation. The squeeze action

promises the back propagation error can be transferred more efficiently and makes the whole

network more flexible to fit different recognition tasks.

5.5.2 Learning across the datasets

From the previous experiments we can see that pre-training on the ImageNet dataset can im-

prove the performance of the deep convolutional neural network in our specific area. In this

part, we will discuss the generalization ability within the food recognition problem. Zhou et al.

trained AlexNet for Scene Recognition across two datasets with identical categories [116]. But

for more complex situation, such as two similar datasets with a little overlapped categories, we

are very interested in exploring whether deep CNN can still successfully handle. Therefore, we

conduct the following experiment to stimulate a more challenging real world problem: trans-

ferring the knowledge from the fine-tuned Food-101 model to a target set, Food-256 dataset.

To make the experiment more practical, we limit the number of samples per category from

Food-256 for training, because if we want to build our model using deep CNN for a specific

task, the resource is always limited and it is exhausted to collect hundreds of labeled images

for each category.

The Food-101 and Food-256 datasets share about 46 categories of food even though the
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Table 5.5: Cosine similarity of the layers in Inception modules between fine-tuned models and

pre-trained model for GoogLeNet

food256

1x1 3x3 reduce 3x3 5x5 reduce 5x5 pool proj

inception 3a 0.72 0.72 0.64 0.67 0.73 0.69

inception 3b 0.59 0.64 0.53 0.70 0.60 0.56

inception 4a 0.46 0.53 0.54 0.50 0.67 0.38

inception 4b 0.55 0.58 0.63 0.52 0.69 0.41

inception 4c 0.63 0.64 0.63 0.57 0.68 0.52

inception 4d 0.60 0.62 0.60 0.58 0.68 0.50

inception 4e 0.60 0.61 0.67 0.61 0.68 0.50

inception 5a 0.51 0.53 0.58 0.48 0.60 0.39

inception 5b 0.40 0.44 0.50 0.41 0.59 0.40

food101

1x1 3x3 reduce 3x3 5x5 reduce 5x5 pool proj

inception 3a 0.71 0.72 0.63 0.67 0.73 0.68

inception 3b 0.56 0.63 0.50 0.71 0.60 0.53

inception 4a 0.43 0.50 0.50 0.47 0.62 0.36

inception 4b 0.48 0.52 0.57 0.50 0.67 0.35

inception 4c 0.57 0.61 0.59 0.53 0.63 0.47

inception 4d 0.54 0.58 0.53 0.54 0.64 0.44

inception 4e 0.53 0.54 0.61 0.55 0.62 0.42

inception 5a 0.43 0.47 0.53 0.45 0.57 0.34

inception 5b 0.36 0.39 0.46 0.38 0.52 0.37

Table 5.6: Cosine similarity of the layers between fine-tuned models and pre-trained model for

AlexNet

conv1 conv2 conv3 conv4 conv5 fc6 fc7

food256 0.997 0.987 0.976 0.976 0.978 0.936 0.923

food101 0.996 0.984 0.963 0.960 0.963 0.925 0.933
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Table 5.7: Sparsity of the output for each unit in GoogLeNet inception module for training data

from Food101 in percent

1x1 3x3 reduce 3x3 5x5 reduce 5x5 pool proj

inception 3a 69.3 ± 1.3 69.6 ± 1.1 80.0 ± 1.0 64.1 ± 2.2 75.8 ± 1.6 76.2 ± 5.4

inception 3b 92.8 ± 0.9 76.5 ± 0.9 94.7 ± 0.9 71.6 ± 2.3 94.4 ± 0.5 94.7 ± 1.6

inception 4a 90.9 ± 0.9 70.0 ± 1.2 93.8 ± 1.1 63.3 ± 4.0 91.9 ± 1.8 95.1 ± 2.0

inception 4b 71.9 ± 1.6 67.5 ± 1.2 75.4 ± 1.0 58.5 ± 2.6 78.9 ± 1.6 85.6 ± 3.6

inception 4c 75.1 ± 2.4 72.6 ± 1.3 81.0 ± 2.0 66.3 ± 6.1 79.7 ± 3.6 88.1 ± 3.3

inception 4d 87.3 ± 2.7 78.0 ± 2.2 88.0 ± 1.6 67.9 ± 3.1 88.9 ± 2.8 93.0 ± 2.2

inception 4e 91.8 ± 1.1 62.3 ± 2.2 91.0 ± 2.5 49.5 ± 3.7 94.0 ± 1.0 92.3 ± 1.5

inception 5a 78.7 ± 1.6 66.5 ± 1.7 82.3 ± 2.6 59.9 ± 3.2 86.4 ± 2.3 87.1 ± 2.6

inception 5b 88.2 ± 2.3 86.8 ± 1.6 83.3 ± 4.4 84.0 ± 3.1 81.4 ± 5.3 94.7 ± 1.5

AlexNet GoogLeNet

instances per class ImageNet Food101 ft ImageNet Food101 ft

20 68.80 75.12 74.54 77.77

30 73.15 77.02 79.21 81.06

40 76.04 80.23 81.76 83.52

50 78.90 81.66 84.22 85.84

all 85.59 87.21 90.66 90.65

Table 5.8: Top5 Accuracy for transferring from Food101 to subset of Food256 in percent
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images in the same category may vary across these two datasets. The types of food in Food-

101 are mainly western style while most types of food in Food-256 are typical Asian foods. We

compare the top-5 accuracy trained from different size of the subset for Food-256 on a different

pre-trained model and the results are shown in Table 5.8. The ImageNet columns denote using

the model pre-trained from ImageNet dataset as the pre-trained model and Food101 ft columns

denote using the fine-tuned Food-101 model (the same one in Table 5.2) as the pre-trained

model.

From the result of Table 5.8 we can see that, with this further transfer learning, both CNNs

can achieve around 95% of the accuracy trained on full dataset while just utilizing about half

of them (50 per class, 12800 of 25361 images). This indicates that when there is not enough

labeled data, with its strong generalization ability, deep CNN trained from a general task can

still achieve a satisfying result and perform even better when an additional relevant dataset is

involved. This encouraging result may attract more people to use deep CNN for their specific

task and continue to explore the potential of the existing architecture as well as designing new

ones.

5.6 Summary

In this chapter, we show that fine-tuning GoogLeNet on two food databases can effectively

transfer the knowledge from the general image recognition task to some specific recognition

tasks. Without using any information of the source data, fine-tuning the deep CNNs on the

target data shows impressive results. By comparing the changes of the parameters in each layer,

we found that the high-level features can be easily changed while most low-level features are

kept in fine-tuning.



Chapter 6

Conclusion

Large object recognition task can be effectively solved with deep CNNs, but learning from a

small size of data is still challenging. Transfer learning becomes a popular way to solve the

small data regime by leveraging knowledge from learned tasks. In this thesis, we investigate

the visual transfer learning problem in two scenarios under the setting where the source data is

absent. Transfer learning under this setting is common and investigating the transfer learning

problem in the absence of the source data is meaningful for the practical problems. The main

contributions of this thesis are as follows:

• In chapter 3, we investigated the supervised domain adaption problem under the HTL

setting. We proposed EMTLe that can leverage the knowledge from the source model.

Compared to previous methods, EMTLe can better leverage the source knowledge and

achieve improved performance.

• In chapter 4, we proposed a framework called GDSDA for semi-supervised domain adap-

tation, which can leverage the knowledge from the source model in the semi-supervised

learning scenario. To make GDSDA more practical, we then proposed GDSDA-SVM

as an example that uses SVM as the classifier in GDSDA. Experimental results show

that GDSDA can effectively leverage the source knowledge for semi-supervised domain

adaptation problem.

• Finally, we investigated the problem of fine-tuning the deep CNNs for food recogni-

tion tasks. We compared the performances of two CNNs architectures and found that

GoogLeNet is more suitable as the pre-trained model for transfer learning.

Visual transfer learning in the absence of the source data is challenging and important in

many real transfer learning scenarios. How to better leverage the knowledge from the source

data and void negative transfer at the same time is still an open question. In this thesis, we

81
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provided a few methods for this problem. In our future work, we plan to use the deep neural

network for visual transfer task. There are still many challenges in apply deep neural network

for transfer learning. An important issue of applying deep transfer learning is to solve the

problem of overfitting. Possible solutions could be eliminating the redundant “nodes” in deep

neural networks while keeping those informative “nodes” to reduce the size of the net and

therefore, can better avoid overfitting problem.
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[15] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Pro-

ceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[16] Y-Lan Boureau, Jean Ponce, and Yann LeCun. A theoretical analysis of feature pooling

in visual recognition. In Proceedings of the 27th International Conference on Machine

Learning (ICML-10), pages 111–118, 2010.

[17] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University

Press, New York, NY, USA, 2004.

[18] Gavin C Cawley. Leave-one-out cross-validation based model selection criteria for

weighted ls-svms. In Neural Networks, 2006. IJCNN’06. International Joint Confer-

ence on, pages 1661–1668. IEEE, 2006.

[19] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the

details: Delving deep into convolutional nets. In British Machine Vision Conference,

2014.

[20] Kumar Chellapilla, Sidd Puri, and Patrice Simard. High performance convolutional

neural networks for document processing. In Tenth International Workshop on Frontiers

in Handwriting Recognition. Suvisoft, 2006.



BIBLIOGRAPHY 85

[21] Dan Ciresan, Ueli Meier, and Jürgen Schmidhuber. Multi-column deep neural networks

for image classification. In Computer Vision and Pattern Recognition (CVPR), 2012

IEEE Conference on, pages 3642–3649. IEEE, 2012.

[22] Adam Coates, Andrew Y Ng, and Honglak Lee. An analysis of single-layer networks in

unsupervised feature learning. In International conference on artificial intelligence and

statistics, pages 215–223, 2011.

[23] Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass

kernel-based vector machines. The Journal of Machine Learning Research, 2:265–292,

2002.

[24] Nello Cristianini and John Shawe-Taylor. An introduction to support vector machines

and other kernel-based learning methods. Cambridge university press, 2000.

[25] Wenyuan Dai, Qiang Yang, Gui-Rong Xue, and Yong Yu. Boosting for transfer learning.

In Proceedings of the 24th international conference on Machine learning, pages 193–

200. ACM, 2007.

[26] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), volume 1,

pages 886–893. IEEE, 2005.
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Appendix A

Proofs of Theorems

A.1 Closed-form Leave-out Error for LS-SVM

Theorem A.1.1 (Extension of [18]) Given a dataset D = {(xi, yi)|i = 1, ..., l}, the solution of a

LS-SVM on D can be written as:

 K + 1
C I

1T

1

0

  αb
 =

 y

0

 (A.1)

Assume that D(n) = {(xi, yi)|i = 1, ..., n} is a subset of D and D\D(n) is the complement of D(n)

in D , The unbiased leave out error of a LS-SVM trained from D\D(n) on D(n) can be estimated

as:

ERRleave−out =
(
S n − sS −1

(l−n+1)s
T
)

[α1, ..., αn]T

Where [α1, ..., αn] is the first n rows of α in (A.1). S n, s and S (l−n+1) are the square blocks of

matrix:

 S n s

sT S (l−n+1)

 =

 K + 1
C I

1T

1

0


Proof Following the result of Eq. (A.1) and noticing that the matrix of the left hand in Eq.

(A.1) is symmetrical, it can be written as follow:

 K + 1
C I

1T

1

0

 =

 S n s

sT S (l−n+1)

 (A.2)

Where S n ∈ Rn×n, s ∈ Rn×(l−n+1) and S (l−n+1) ∈ R(l−n+1)×(l−n+1).
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For the first round of the cross validation situation, assume the first n examples are used

as the validation set. In this case, let
[
α−1, b−1

]
∈ Rl−n+1 denote the optimal parameters for a

LS-SVM f −1 trained on the rest of the samples and they can be found by: α−1

b−1

 = S−1
(l−n+1)

[
yn+1, ..., yl, 0

]T (A.3)

The prediction of f −1 on the validation set Ŷ =
[
ŷ1, ..., ŷn

]
is given by:

[
ŷ1, ..., ŷn

]T
= s

 α−1

b−1

 = sS −1
(l−n+1)

[
yn+1, ..., yl, 0

]T (A.4)

Moreover, the last l − n + 1 rows in Eq. (A.1) can be represented as
[

sT S l−n+1

]
[α, b]T =[

yn+1, ..., yl, 0
]T . So

Ŷ =
[
ŷ1, ..., ŷn

]T
= sS −1

(l−n+1)

[
sT S l−n+1

]  αb


= sS −1
(l−n+1)s

T [α1, ..., αn]T + s[αn+1, ..., αl, b]T

(A.5)

Then first n rows in Eq. (A.1) can be represented as:

Y =
[
y1, ...yn

]T
=

[
S n s

]  αb
 = S n[α1, ..., αn]T + s[αn+1, ..., αl, b]T (A.6)

Thus, combining (A.5) and (A.6), we have the following equation:

Ŷ = Y − S n[α1, ..., αn]T + sS −1
(l−n+1)s

T [α1, ..., αn]T

= Y −
(
S n − sS −1

(l−n+1)s
T
)

[α1, ..., αn]T (A.7)

According to block matrix inversion lemma

 S n

sT

s

S (l−n+1)

−1

=

 κ−1 −κ−1sS −1
(l−n+1)

−S (l−n+1)sTκ−1 S −1
(l−n+1) + S −1

(l−n+1)s
Tκ−1sS −1

(l−n+1)

 (A.8)

Where κ =
(
S n − sS −1

(l−n+1)s
T
)
. We have:

Y − Ŷ = κ[α1, ..., αn]T (A.9)

A.2 Converage of EMTLe

Theorem A.2.1 Let L(β) be a λ-strongly convex function and β∗ be its optimal solution.Let

β1, ..., βT+1 be a sequence such that β1 ∈ B and for t > 1, we have βt+1 = βt − ηt∆t , where ∆t is
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the sub-gradient of L(βt) and ηt = 1/(λt). Assume we he ||∆t|| ≤ G for all t. Then we have:

L(βT+1) ≤ L(β∗) +
G2(1 + ln(T ))

2λT
(A.10)

Proof: As L(β) is strongly convex and ∆t is in its sub-gradient set at βt, according to the

definition of λ-strong convexity [83], the following inequality holds:

〈βt − β
∗,∆t〉 ≥ L(βt) − L(β∗) +

λ

2
||βt − β

∗||2 (A.11)

For the term
〈
βt − β

∗,∆y

〉
, it can be written as:

〈βt − β
∗,∆t〉 =

〈
βt −

1
2
ηt∆t +

1
2
ηt∆t − β

∗,∆t

〉
=

1
2

〈[
(βt − ηt∆t) − β∗

]
+ (βt − β

∗) + ηt∆t,∆t
〉

=
1
2
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∗) ,∆t〉 +

1
2
ηt∆

2
t

=
1
2
〈βt+1 + βt − 2β∗,∆t〉 +

1
2
ηt∆

2
t

(A.12)

Then we have:

||βt − β
∗||2 − ||βt+1 − β

∗||2 = 〈βt+1 + βt − 2β∗, ηt∆t〉 (A.13)

Using the assumption ||∆t|| ≤ G, we can rearrange (A.11) and plug (A.12) and (A.13) into it,

we have:
Di f f t = L(βt) − L(β∗)

≤
||βt − β

∗||2 − ||βt+1 − β
∗||2

2ηt
−
λ

2
||βt − β

∗||2 +
1
2
ηt∆

2
t

≤
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∗||2 − ||βt+1 − β
∗||2

2ηt
−
λ

2
||βt − β

∗||2 +
1
2
ηtG2

≤
λ(t − 1)

2
||βt − β

∗||2 −
λt
2
||βt+1 − β

∗||2 +
1
2
ηtG2

(A.14)

Due to the convexity, for each pair of L(βt) and L(βt+1) for t = 1, ...,T , we have the following

sequence L(β∗) ≤ L(βT ) ≤ L(βT−1) ≤ ... ≤ L(β1). For the sequence Di f ft for t = 1, ...,T , we

have:

T∑
t=1

Di f ft =

T∑
t=1

L(βt) − T L(β∗) ≥ T
[
L(βT ) − L(β∗)

]
(A.15)

Next, we show that
T∑

t=1

Di f ft =

T∑
t=1

{
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2
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∗||2 −
λt
2
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1
2
ηtG2

}

= −
λT
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2λ

T∑
t=1

1
t
≤

G2

2λ

T∑
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1
t
≤
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(A.16)
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Combining (A.15) and rearranging the result, we have:

L(βT+1) ≤ L(β∗) +
G2(1 + ln(T ))

2λT



Appendix B

Configuration of GoogLeNet

Table B.1: Configuration of GoogLeNet

type patch size / stride output size depth #1x1 #3x3 reduce #3x3 #5x5 reduce #5x5 pool proj

convolution 7x7/2 112x112x64 1

max pool 3x3/2 56x56x64 0

convolution 3x3/1 56x56x192 2 64 192

max pool 3x3/2 28x28x192 0

inception(3a) 28x28x256 2 64 96 128 16 32 32

inception(3b) 28x28x480 2 128 128 192 32 96 64

maxpool 3x3/2 14x14x480 0

inception(4a) 14x14x512 2 192 96 208 16 48 64

inception(4b) 14x14x512 2 160 112 224 24 64 64

inception(4c) 14x14x512 2 128 128 256 24 64 64

inception(4d) 14x14x528 2 112 144 288 32 64 64

inception(4e) 14x14x832 2 256 160 320 32 128 128

maxpool 3x3/2 7x7x832 0

inception(5a) 7x7x832 2 256 160 320 32 128 128

inception(5b) 7x7x1024 2 384 192 384 48 128 128

avg pool 7x7/1 1x1x1024 0

dropout (40%) 1x1x1024 0

linear 1x1x1000 1

softmax 1x1x1000 0
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