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All drivers have their own driving style while performing different driving maneuvers. They 

thesis, we analyze driving behaviour in different timeframes prior to turns. We employ data 
obtained from actual driving behaviour in an urban environment collected from the CAN-Bus 
of an instrumented vehicle.  Five CAN-Bus signals, vehicle speed, gas pedal pressure, brake 
pedal pressure, steering wheel angle, and acceleration, is collected for 5, 10, and 15 seconds 
of driving prior to each turn. We consider all turns for each driver as well as look specifically 
and right and left turns.  We use cluster analysis to see if we can categorize drivers into 
possible groups of driving styles.  In our first approach, we use hierarchical clustering on 
statistical features extracted from the signals.  The results show that using this approach we 
can effectively cluster drivers into two groups, moderate and aggressive drivers.  This pattern 
is also reflected in the analysis of right and left turns.  Another approach makes use of the 
Dynamic Time Warping (DTW) technique to identify the distance between signals of each 
pair of drivers, and based on these distances, a cluster analysis using hierarchical clustering is 
performed as well. The results show high consistency in the membership within a cluster 
throughout different timeframes. 

Keywords 
Driving behaviour, Dynamic Time Warping (DTW), statistical feature extraction, 
Hierarchical Clustering Analysis (HCA). 
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Chapter 1  

1  
As the number of vehicles and road mileage increases, traffic safety has become one of 
the main issues for governments and manufacturers. Traffic accidents are one of the main 
reasons for injuries today. According to a study in 2015 for The National Highway 
Traffic Safety Administration (NHTSA)1, in approximately 94% of the accidents 
examined, the major 
conducted based on data from the National Motor Vehicle Crash Causation Survey 
(NMVCCS) 2005-2007, is shown in Table 1-1.  

Table 1-1. Critical reasons of crashes from 2005 to 2007 conducted by the National 
Motor Vehicle Crash Causation Survey (NMVCCS). 

Critical Reason 
Estimated 

Number of Crashes Percentage* 
Drivers 2,046,000 94% ±2.2% 
Vehicles 44,000 2% ±0.7% 
Environment 52,000 2% ±1.3% 
Unknown 47,000 2% ±1.4% 
Total 2,189,000 100% 
*Percentage are based on unrounded estimated frequencies 
(Data Source: NMVCCS 2005-2007)  

In order to improve traffic safety and traffic efficiency, it is essential to try to understand 
the characteristics of driver behaviour and study the relationships between driving 
behaviour and traffic systems. Understanding driver behaviour can help us to build 
models of drivers which can be used to improve Advanced Driver Assistance Systems 
(ADASs), improve vehicle safety and privacy, and also help to detect risky driving styles. 

                                                 
1 https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812115 
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In this thesis we examine driving behaviour based on data collected from actual drivers in 
a controlled driving scenario. 

1.1  
Driving is one of the most common yet highly complex tasks that individuals do. It 
involves multiple essential subtasks and it can be affected by many internal and external 
factors. Driving consists of a series of complex decisions and actions that a driver 
performs based on the current traffic environment. It is obvious that different drivers have 
different driving behaviour in the same traffic situation.  Drivers differ in how hard they 
hit the pedals, in the way they turn the steering wheel, how they keep their eye on the 
road, how much distance they keep when following a car, etc. (Miyajima et al. 2007; 
Higgs and Abbas 2015).  In fact, these differences are key factors in building individual 

behaviour.  As a consequence, various driving behaviours need to be 
analyzed in order to personalize Intelligent Transportation System (ITS) applications for 
different drivers with different driving styles. 
In addition to the ITS personalization, identifying  different types of driver behaviour can 
also help improve traffic safety by identifying safe or unsafe driving styles (Chen, Pan, 
and Lu 2015), aggressive or normal drivers (Carmona et al. 2015; Johnson and Trivedi 
2011), distracted or undistracted drivers (Choi et al. 2007), etc.  Another application of 
driver behaviour analysis is in the area of security and privacy, for example, by looking at 
driver identification based on driving style (Enev et al. 2016). 
Consequently, being aware of the differences between driving styles and behaviour, we 
can model intelligent Advance Driver Assistance Systems (ADAS), and improve the 
performance of each individual driver. 

1.2  
In this thesis, normal driving behaviour is analyzed in order to try to identify different 
driving styles. Our focus in this study is on the behaviour before turns. Several 

Controller Area 
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Network (CAN-Bus)1 data as driving indicators. Vehicle speed, gas pedal pressure, brake 
pedal pressure, steering wheel angle, and acceleration are the signals used in this study. 
Since the activities in preparing for a turn is a challenging and complex driving 
behaviour, and given that it has not been studied, we decided to focus on this activity.  
Our goal is to explore whether there are clusters of driver behaviour that can be identified 
from driving signals during small periods of time before turning maneuvers.  
Our assumption is that that there are different styles of driving when approaching a 
turning maneuver. We apply two approaches to cluster the drivers based on their driving 
behaviour before turns. In the first approach we extract statistical features from the 
driving signals prior to each turn and look at clusters based on feature vectors. In the 
other approach, we use the Dynamic Time Warping technique to find the similarities 
between the extracted CAN-Bus signals in each driver prior to turns, and cluster based on 
those similarities. 

1.3  
The rest of this thesis is structured as follows. Chapter 2 consists of three different 
subsections covering the related literature. In the first section, background information on 
driving behaviour is discussed. The next section covers previous work on clustering 
driving behaviours, and the third section provides an overview of work making use of the 
Dynamic Time Warping technique.  A description of the data we used for our study can 
be in Chapter 3. Chapter 4 consists of an explanation of our research approach.  In 
Chapter 5, the results are presented and discussed.  Finally, Chapter 6 presents our 
conclusions and discusses future work. 
 

                                                 
1 CAN-Bus is a vehicle bus standard designed to allow microcontrollers and devices to communicate with 
each other. 
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Chapter 2  

2  
Since the 1950s, understanding and modeling various driving behaviours has always been 

(Chandler, Herman, and Montroll 1958).  In fact, 
analysis of driving behaviour is needed by many scientists and researchers. Intelligent 
vehicle designers need to understand driving behaviour in order to make driving 
assistance systems work properly in dynamic traffic situations. Autonomous vehicle 
designers need them to make driving driver-free. Traffic engineers need them to improve 
the safety and reliability of roads and related infrastructure. 
Driving behaviour, like every other human-related task, is complicated and hard to 
analyze. Our research is focused on the analysis of driver data, specifically looking at 
driver behaviour based on in-vehicle signals using extracted statistical features and also 
using Dynamic Time Warping.  In this Chapter, the research developments in the field of 
understanding driving behaviour, and the use of cluster analysis and Dynamic Time 
Warping in understanding driving behaviour are reviewed. 

2.1  
Various literature has emphasized the need for a comprehensive method to understand 
basic normal driving behaviour and to distinguish between different driving styles. 
Drivers have different driving behaviours because there exist various different aspects of 
driving. They differ in how they use the pedals (gas, brake), how fast or slow they turn a 
steering wheel or how often they change speed. Several scholars have considered the role 
of these driving signals in characterizing driver behaviour. 
Aarts and Van Schagen emphasized the role of vehicle speed in driving behaviour in both 
road and traffic safety (Aarts and van Schagen 2006). They discussed some of the 
research which studied the relation between vehicle speed and probability of crashes and 
indicated that high speed not only makes collisions more severe, but also increases the 
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risk of accident occurrence. The relation between vehicle speed and the number of 
crashes was also investigated in a study conducted by (Fildes, Rumbold, and Leening 
1991) and some of their results are illustrated in Figure 2-1. This Figure shows the 
relation between speed and number of crashes in both urban and rural roads which 
indicate that the higher the speed, the larger the increase in the crash rate. 

 
Figure 2-1. Relation between vehicle speed and number of crashes, based on self-

reports in Australia, in urban and rural roads for last 5 years as found in the study 
of (Fildes, Rumbold, and Leening 1991). 

 (Miyajima et al. 2007) conducted a study on modeling driver behaviour in order to 
perform driver identification.  In their study, they show that gas and brake pedal 
operation signals efficiently model individual driver differences. GMMs (Gaussian 
Mixture Model1) are used to model the spectral features of pedal signals and an 
identification rate of 76.8% is achieved, which suggests that each driver has a different 
pattern in pedal pressure. The spectral features are frequency based features which are 

                                                 
1 A Gaussian Mixture Model (GMM) is a parametric probability density function represented as a weighted 
sum of Gaussian component densities 
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obtained by converting the time based signal into the frequency domain using the Fourier 
Transform. 
In another study, Ohta shows that driver behaviour differs among drivers considering the 
distance they keep when following another vehicle (Ohta 1993).  He asked drivers to 
follow a car at various distances which are proper for them (e.g. most comfortable 
distance, minimum safe distance, etc.).  Based on that he defined a temporal comfort zone 
for individuals following another vehicle; these were between 1.1 and 1.7 seconds.  
Below 1.1s he considered critical and more than 1.7s behind was considered 
uncomfortable because it was against the social norm. Consequently, based on these 
thresholds for a comfort behaviour can be classified in three different 
groups considering how frequently a driver drove in a particular zone. 
Chen, Pan, and Lu build a driving behaviour classification model to model safe and 
unsafe driving behaviours (Chen, Pan, and Lu 2015).  In their study, vehicle operation 
data, including vehicle speed, engine RPM, throttle position, and calculated engine load, 
are collected via OBD (On-Board Device) interfaces and make use of AdaBoost 
algorithms for classification.  

Choi et al. perform driver analysis using Hidden Markov Models (HMMs)1 and Gaussian 
Mixture Model (GMM) on in-vehicle CAN-Bus signals such as steering wheel angle, 
brake status, acceleration, and vehicle speed (Choi et al. 2007). Three different 
classification tasks were conducted in this study, 1) action classification, 2) distraction 
detection, and 3) driver identification. Action classification consisted of categorizing 
long-term driving behaviours such as turning, lane changing, stopping, and constant 
driving. In distraction detection the goal was to detect if the driver was distracted by any 
secondary tasks such as working with cellphone, GPS, etc.  Driver identification is 
concerned with driver classification based on driving behaviour characteristics. For driver 
identification they generate HMMs and GMM models based on driving signals collected 

                                                 
1 A hidden Markov model (HMM) is a statistical Markov model in which the system is assumed to be a 
Markov process with hidden states and can be presented as the simplest dynamic Bayesian network. 
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during neutral and distracted driving periods.  They classified the drivers using seventy 
percent of driving signals for training the models and the remaining was used to test the 
models.  Figure 2-2 shows the accuracy of the best result for driver identification, for 
both 5 and 10 seconds segmented signals. This result is obtained by applying HMM using 
a 3 state model, and its best performance is when the number of Gaussian components is 
7 (31.45% for 5 seconds and 29.16% for 10 seconds).  They were able to identify drivers 
based on analysis of signals during distracted and neutral driving about 25% of the time; 
they did not evaluate their model on normal driving behaviour to study the differences 
between drivers in normal driving conditions. 

 
Figure 2-2 Accuracy of driver identification using HMM with 3 states for 5 and 10 

seconds segmented signals (Choi et al. 2007). 

2.2  
Several studies of driving analysis have been based on data mining in order to find a 
meaningful relation between data derived from different sources, as well as data from 
vehicle monitoring systems, driver behavioural characteristics, and road safety systems. 
Research utilizing cluster analysis is divided into two main groups, univariate clustering 
and multivariate clustering.  In this section, we will review the literature on the research 
that utilizes clust behaviour.   
In research performed by Kalsoom and Halim, individual driver behaviours are classified 

the ratio of indicators to turns, 
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the number of brake uses, the number horn uses, the average speed, the maximum speed 
and the gear (Kalsoom and Halim 2013).  They apply K-means and hierarchical 
clustering on their experimental data in order to try to classify them to slow, normal and 
fast driving styles over the entire driving sequence. The data in this study was collected 
from a driving simulator and contained 5 minutes of data for each driver.  The clustering 
was not based on the values of time-series driving signals, instead they used the number 
of operative devices, such as brake, gear, clutch, horn, left/right indicators.  They also 
used the average and maximum of gears and average and maximum of speed in a 10 
second time window.  The results of the clustering analyses were inconclusive, with both 
Hierarchical Clustering Analysis (HCA) and K-means explored with different numbers of 
clusters.   Clustering with HCA resulted in most of the data being grouped into a single 
cluster. 
In a study by Wu et al., GPS data is collected from typical driving of commercial vehicles 
by professional drivers and then after using factor analysis the attributes which were 
related to the driving behavioural characteristics were extracted from the GPS data (Wu 
et al. 2016). Based on the GPS data, 8 speed and acceleration related features are 
extracted for each driver, and those were combined into four aggregated attributes:  
acceleration-deceleration, speeding-prone, acceleration, and deceleration. Using each of 
these attributes as indicators, four different cluster analyses of driver behaviour is done 
using hierarchical clustering.  In each analysis, they identified five clusters that indicated 
how risky the driver behaviour is considering each attribute: minimal, slight, moderate, 
serious, or severe. Among the four cluster analyses were performed on 50 drivers, the 
results were not consistent across all attributes and drivers, but there were couple of 
drivers that showed a higher degree of risky driving behaviour for all the attributes.  
Again, they focused on trying to characterize the driving style of each driver over the 
entire driving period.  
In both of these previous studies, the researchers focused on trying to use cluster analysis 
to categorize drivers across the entire driving sequence.  This may be very challenging 
because over long periods driver behaviour 
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our work we have chosen to focus on a short driving period immediately before an 
identifiable event, i.e., a turn. 
In 2013, Higgs and Abbas investigate the hypothesis that drivers have different driving 
behaviour in their daily driving tasks (Higgs and Abbas 2013). In order to investigate this 
assumption, three different truck drivers representing low-, medium-, and high-risk 
drivers performed 10 different car-following periods.  They first divided the car-
following period into different segments and then performed a cluster analysis on these 
segments. For clustering and optimization, they use different K-means techniques. Based 
on their results, each of three drivers shows a specific distribution of behaviours, however 
some of these behaviours are common between drivers but at different frequencies. For 
example, the behaviour of tailgating occurred in high frequency in the high-risk driver, 
low frequency in the medium-risk driver and did not occurr in the low-risk driver 
behaviour. 
In another study done by Higgs and Abbas, a two-step algorithm was introduced to 
segment and cluster car-following behaviour based on eight state-action variables, in 
order to define driving pattern of drivers (Higgs and Abbas 2015). They defined driver 
behaviour as the way a driver responds to the current driving state (e.g., the vehicle 
speed, distance from the following vehicle, etc.) by performing a specific action (e.g., 
steer or push brake pedal). In this study, each car-following period was divided into 
similar driving state-action signals in the segmentation phase. Specific segments may 
repeat several times so the clustering phase tries to find and cluster the repeated segments 
into groups using K-Means as the clustering method. A representation of this two-step 
algorithm is shown in Figure 2-3 for a sample car-following period. In the middle graphs 
in this figure, segments of similar data have been formed. Then in the clustering step, 
these segments are processed and clustered as shown in the bottom graph. Since the 
clustering step is more constricting than the segmentation step, some adjacent segments 
are placed in the same cluster. 
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Figure 2-3. Two-step algorithm to segment and cluster driver car following 

behaviour (Higgs and Abbas 2015). 

2.3  
Dynamic Time Warping (Berndt and Clifford 1994) is a time-series alignment algorithm, 
which attempts to align two sequences of features by warping the time axis to find an 
optimal match. Since in driver analysis data are often in the form of time-series, several 
scholars have used this algorithm in their analysis. We present the details of Dynamic 
Time Warping in Section 4.2. 
vectors by warping the time axis iteratively until an optimal match between the two 
sequences is found. 
In a study conducted by Johnson and Trivedi, MIROAD was designed to detect driving 
events and driving style. Potentially aggressive driving behaviour is detected and 
recognized using Dynamic Time Warping (DTW) and data from smartphones, such as 
accelerometer, gyroscope, magnetometer, GPS, and video (Johnson and Trivedi 2011).  
Since the length of driving events is not the same, the DTW is a suitable algorithm as it 
was designed to find the optimal alignment between two signals. In order to detect 
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whether a driving event was aggressive or not, the DTW algorithm was used to find the 
closest match between the event signal and different pre-recorded template signals.  

behaviour was detected as safe or unsafe 
using the DTW algorithm and a Bayesian classifier (Eren et al. 2012).  In this study, data 
such as that from an accelerometer, gyroscope and magnetometer from a typical smart 
phone was used, and the speed, position angle and deflection from the regular trajectory 
was computed from the data. Figure 2-44 shows the process of classifying drivers as safe 
or risky based on data from smartphones using the DTW and Bayesian classifier. 

 
Figure 2-4. Classifying drivers behaviour into risky or safe based on sensory data 

from smartphone using DTW and Bayesian classifier. 
Various studies have been conducted to explore the individual driving behaviours and 
cluster them into different clusters.  In some of this research, the data used was gathered 
from simulators.  Other research explored data collected from pre-identified driving 
scenarios, such as aggressive/non aggressive driving, distracted/undistracted driving, etc. 
Our work differs in that we look at a specific small portion of driving data (data prior to 
turning maneuvers) collected from actual drives in an urban area.  We are interested in 
identifying differences among drivers, i.e., clusters, within this short time period.  We 
explore two different approaches. In the first approach, statistical features derived from 
individual driving signals are used, while in the second, the Dynamic Time Warping 
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technique is applied to these signals to identify the distance between them. Based on the 
results of each approach we apply hierarchical clustering analysis to cluster drivers. 
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Chapter 3  

3  
In order to have a better understanding of normal driving behaviour, we need detailed 
observations on the driver, vehicle and traffic environment.  In 2012, Beauchemin, et. al.  
(Beauchemin et al. 2012)  equipped a modern vehicle, with OBD1 II CAN-bus channels 

direction.  This vehicle, dubbed RoadLAB, was used to collect the driving data from the 
, the environment and the driver. As Figure 3-1 shows, the 

Driver-Environment-Vehicle (DEV), RoadLAB collected data from a frontal stereo-
vision system, faceLAB eye tracker 2, and the CAN-bus interface. This instrumented 
vehicle can monitor and record the following: 

 Environment: Front view of traffic environment with two calibrated stereo cameras; 
 Vehicle: The internal vehicle functions via CAN-bus interface; 
 Driver: The driver cephalo-ocular behaviour head rotation and gaze direction. 

                                                 
1 On- -diagnostic and reporting capability 
2  
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Figure 3-1. Equipped car used in RoadLAB to provide Driver-Environment-Vehicle 

data stream. 
The dataset was recorded with 16 different test drivers, consisting 7 males and 9 females, 
with ages ranging between 20 and 47. The drivers drove normally through a pre-
determined path in an urban area inside the city of London, Ontario.  Figure 3-2 shows 
the driving path on Google map. Each driver drove around 28.5 kilometers for about 60 
minutes over this route. In total, 3TB of vehicular data was collected over more than 450 
kilometers of driving. Table 3-1 shows the general information about each driving 
experiment conducted.  
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Figure 3-2. Driving path in urban area- London, Ontario. 
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Table 3-1. General information about each driving experiment. 
Experiments Driver No. Age Gender Start time Weather Temp 

1 Driver 1 37 Male 13:15 Sunny 29 ºC 
2 Driver 2 37 Male 15:30 Sunny 31 ºC 
3 Driver 3 41 Female 12:15 Sunny 23 ºC 
4 Driver 4 41 Male 11:00 Sunny 24 ºC 
5 Driver 5 37 Female 12:05 Partly cloudy 27 ºC 
6 Driver 6 22 Female 13:00 Partly cloudy 21 ºC 
7 Driver 7 31 Female 11:30 Sunny 21 ºC 
8 Driver 8 21 Male 14:45 Sunny 27 ºC 
9 Driver 9 21 Female 13:00 Partly cloudy 24 ºC 
10 Driver 10 20 Male 09:30 Sunny 8 ºC 
11 Driver 11 22 Female 14:45 Sunny 12 ºC 
12 Driver 12 24 Female 11:45 Partly cloudy 18 ºC 
13 Driver 13 23 Male 14:45 Partly cloudy 19 ºC 
14 Driver 14 47 Female 11:00 Sunny 7 ºC 
15 Driver 15 44 Female 14:00 Partly cloudy 13 ºC 
16 Driver 16 25 Male 10:00 Partly cloudy 14 ºC 

3.1  
In this study, we use the data from CAN-bus (Controller Area Network) interface of the 
vehicle. From the various CAN-bus vehicular data that we have, we extract the most 
comprehensive and general ones about the vehicle, such as speed, gas pedal pressure, 
brake pedal pressure and steering wheel angle. These signals were originally sampled at 
30 Hz in this experiment.  We calculate acceleration based on the speed value, such that 
in each 1second intervals (30 frames), we calculate V1-V0 as the acceleration.  
Among all 16 driving experiments, we selected 12 subjects (1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 
15, 16) to analyze in this study. The other 4 subjects were not used due to existence of 
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noise in collected data in some cases and\or because of minor changes in driving path in 
others. 
Figure 3-3 shows examples of 4 driving signals collected during normal urban driving for 
a period of 300 seconds. From the top, the figures correspond to the speed of the vehicle, 
gas pedal pressure, brake pedal pressure and steering wheel angle, respectively.  As we 
can see in Figure 3-3, the steering wheel angle value is almost zero in most of the frames 
although the experiment takes place in urban area.  Also, as we might expect, the gas 
pedal pressure and brake pedal pressure are complementary to each other.  In addition, 
the direct correlation between gas pedal pressure and vehicle speed is obvious. 
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Figure 3-3. Examples of driving behaviour signals collected in 300 seconds of 
normal driving. (a) speed of vehicle; (b) gas pedal pressure; (c) brake pedal 

pressure; (d) steering wheel angle. 
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3.2  
Since the main focus of this study is to categorize drivers based on their driving 
behaviour considering the pre-turn driving behaviour, we need to extract each of these 
signals before each turn. In total, we have data for 10 right turns and 7 left turns for 12 
drivers consisting of 6 male and 6 female drivers. 
As we are analyzing the driver behaviour while driving, we can ignore the time when the 

happens right before turning maneuvers, especially before left turns. Heavy traffic, stop 
signs, traffic light, yield rights, etc. are some common reasons for stopping before turning 
maneuvers. 
Among the not-stopped frames before each turn, we collect three different sets with 150 
frames, 300 frames, and 450 frames length (5 seconds, 10 seconds and 15 seconds before 
each turn respectively). 
In the next Chapter the proposed method for clustering drivers based on their driving 
behaviour before turning maneuvers is discussed and its implementation presented. 
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Chapter 4  

4  
The main purpose of this study is to explore possible groups of drivers that have similar 
driving behaviour behaviour based on in-vehicle 
CAN-Bus signals. These signals include speed, gas pedal pressure, brake pedal pressure, 
steering wheel angle, and acceleration, collected 5, 10, and 15 seconds before each 
turning maneuver for different drivers while performing normal driving.  
This Chapter highlights the main methods that we applied on these extracted signals in 
order to come up with the best clustering of driver behaviour.  In the first method, 
different statistical features are extracted from the in-vehicle CAN-Bus signals in order to 
lower the dimensionality of the data. These statistical features preserve the main 
characteristics of the corresponding signals and are described in detail in Section 4.1. In 
Section 4.2, the Dynamic Time Warping (DTW) algorithm (Berndt and Clifford 1994) 
will be introduced as a distance measure, which we used in our second approach in this 
study. In this approach, the distance between different time-series signals is calculated 
using the Dynamic Time Warping algorithm and using these distances, the clustering 
analysis is performed. These two methods have been used for clustering time series 
sequences before in other studies, therefore we apply them on the time series driving 
signals that we have. Time series data are usually high-dimensional data and a specialized 
distance function is needed to compare them for similarity. Moreover, there might be 
outliers in these data. Most of machine learning methods, such as K-Means, are designed 
for low-dimensional spaces with a (meaningful) Euclidean distance. K-Means is not very 
robust towards outliers, as it puts squared weight on them. Finally, in Section 4.3, 
hierarchical clustering will be discussed in detail, which is our main clustering method 
used in this thesis for both approaches. 
All the implementation is performed in MATLAB Release 2016a, using the Statistics and 
Machine Learning Toolbox, and for Dynamic Time Warping a package from MATLAB 
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. Sample implementation code can be found 
in Appendix C. 

4.1  
The data that we have is a collection of in-vehicle CAN-Bus signals which are time series 
data. Since the time series data have a unique data structure, it is not easy to directly 
apply existing data mining tools.  In clustering, each time point is often considered a 
variable and each time series is considered an observation.  In time-series data, as the 
time increases, the number of variables also increases. Therefore, in order to perform 
clustering we need some feature extraction techniques to summarize the main features of 
time series data in a significantly lower dimension. 

4.1.1 Statistical Feature Extraction 
In order to represent a time-series sequence in a lower dimension, we need to transform 
patterns into features that are considered as a compressed representation. These features 
construct a high-level representation of the original time-series data. 
In this study, for each time series sequence Si = {x1, x2 n}, numerous statistical 
features were calculated to measure different properties of that sequence. Below are 
details about each of the statistical features extracted and used in this study. 

 Mean 
The mean µ is the average of the values {x1, x2 n} located within a time window 
of the time-series sequence. It was calculated by: 

 ( 4-1) 

 Standard Deviation 



22 

 

In order to measure how the values {x1, x2 n} are spread out within a specific 
time window of a time- is calculated as: 

 ( 4-2) 

 Kurtosis 
Kurtosis Ku is a measure of the peakedness  of the probability distribution of the values 
{x1, x2 n} within a specific time window of a time-series sequence. It was calculated 
as: 

 ( 4-3) 

where is the 4th moment about the mean, and is given as: 

 ( 4-4) 

 Skewness 
In order to measure the asymmetry of the sequence of data {x1, x2 n}, the skewness 
was calculated as: 

 ( 4-5) 

where  is the 3rd moment about the mean, and calculated as: 

 ( 4-6) 



23 

 

The above mentioned basic statistical functions were calculated for each of the 5 different 
signals (speed, gas pedal pressure, brake pedal pressure, steering wheel angle and 
acceleration) before each turn, which results in 4x5=20 statistical features representing 

behaviour before each 
turn.  
Having these feature vectors for each driver before each turning maneuver, we could now 
compute the distances between drivers and attempt to cluster them based on these 
statistical features representing their driving behaviour prior to turns. 

4.2  
As discussed in previous section, the general characteristics and dimensionality of the 
time series data are different. Temporal sequences have different characteristics 
considering normal feature based data, which make the process of comparing sequences 
more challenging. One algorithm that is widely use in order to find similarities between 
time series sequences is Dynamic Time Warping (Berndt and Clifford 1994). 
Dynamic time warping (DTW) is a time series alignment algorithm developed originally 
for speech recognition (Sakoe and Chiba 1978).  In 1994 Berndt and Clifford introduced 
the technique, dynamic time warping (DTW), to the database community (Berndt and 
Clifford 1994)
warping the time axis iteratively until an optimal match between the two sequences is 
found. Figure 4-1 shows an optimal alignment between two time dependent sequences. 
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Figure 4-1. Alignment of two time-series sequences. Aligned points are indicated by 

arrows (Meinard Müller 2007). 
The objective of DTW is to compare two (time-series) sequences X = (x1, x2, . . . , xN) of 
length N   and Y = (y1, y2, . . . , yM) of length M  . To be able to compare two 
different instances x, y, we need a local cost measure, sometimes also referred to as local 
distance measure. Typically, c(x, y) is small (low cost) if x and y are similar to each 
other, and otherwise c(x, y) is large (high cost). Evaluating the local cost measure for 
each pair of elements of the sequences X and Y, one obtains the cost matrix (or distance 
matrix) C  N×M defined by C(n,m) := c(xn, ym). Then the goal is to find an alignment 
between X and Y having minimal overall cost (Meinard Müller 2007). 

4.2.1 Constraints for the optimal path 
In order to reach this goal and find the best match between two sequences, we need to 
find a path through the cost matrix which minimizes the total cost between them. The 
overall cost is the minimum of all possible path between troughs in the cost (distance) 
matrix. Obviously, the number of possible paths through the matrix between two 
considerably long sequences can be enormous. Exploring every possible path would lead 
to a computational complexity that is exponential in the lengths of N and M. In order to 
lower the order of computational complexity to O(NM), several optimisations and 
constraints are applied when using DTW: 

 Monotonicity condition: With this condition, during the construction of a path, 
indexes i and j never decrease, they either stay the same or increase.  
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 Continuity condition:  This condition limits i and j indexes to increase by at most 1 
in each step of the path.  

 Boundary condition: The path starts at i = j = 0 and ends at i = M and j = N, where 
M and N are the number of instances in the first and second sequences 
respectively.   

 Warping window condition: It is unlikely for the path to wander very far from the 
diagonal. The window width determines the distance that the path is allowed to 
wander. 

 Slope constraint condition: This condition would prevent subsequences with very 
different lengths to match by limiting the number of steps allowed in the same 
direction (horizontal or vertical). The condition is expressed as a ratio p/q, where p 
is the number of steps allowed in the same (horizontal or vertical) direction. After p 
steps in the same direction, the algorithm is not allowed to step further in the same 
direction before stepping at least q time in the diagonal direction. 

 Figure 4-2 shows the smoothed speed signal of a vehicle 10 seconds before a specific 
right turn when driven by two different drivers (Driver8 and Driver12). The 
corresponding optimal warping path p* between two signals is demonstrated in Figure 
4-3 (the white line). The gray area in this figure shows the Cost Matrix between two 
sequence within the warping window around the diagonal and the white line indicate the 
optimal warping path.  Figure 4-4 compares the original signals (a), with warped ones (b) 
which are perfectly aligned.  
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Figure 4-2. Speed signal of two drivers behaviour 10 seconds before a specific turn. 

 
Figure 4-3. Accumulated cost matrix D with optimal warping path p  (white line). 
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Figure 4-4.  (a) Original speed signal (b) Warped speed signal. 
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In this study, we apply the Dynamic Time Warping package, implemented by (Wang 
2015) on different CAN-bus signals, such as speed, gas pedal pressure, brake pedal 
pressure, steering wheel angle, and acceleration, for 5, 10, and 15 second of driving 
(excluding zero-speed frames) before each turn. In order to analyze the turning behaviour 
better, we first analyse all the turns and then left turns and right turns are analyzed 
separately. As a result, for each category of all turns, right turns, or left turns, we come up 
with three 12x12 distance matrices which shows the distance between each of the 12 
drivers for driving behaviour of 5, 10, and 15 seconds before turns, respectively. 
Therefore, overall we have nine distance matrixes which are our references for the 
distance measure used in hierarchical clustering (three distance matrixes for all turns, 
three for left turns, and three for right turns). Using these distance matrices, we can now 
apply hierarchical clustering analysis to categorize the drivers based on their driving 
signals similarities. In the next section, hierarchical clustering and various distance 
metrics are discussed in detail. 

4.3  
One of the most famous clustering methods is hierarchical clustering, which has been 
applied in many domains. Hierarchical clustering (also known as hierarchical cluster 
analysis or HCA) is a method of cluster analysis which attempts to build a hierarchy of 
clusters. In the process of clustering, a dendogram1 is generated to visualize the result of 
clustering, representing the nested clustering of patterns and similarity levels at which 
groupings change. 
Two different strategies are applied in hierarchical clustering: 

                                                 
1 A dendogram is a tree diagram which illustrate the arrangement of the clusters produced by hierarchical 
clustering. 
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 Agglomerative: Also known as a -  approach. This approach starts with 
putting each observation in its own cluster and merge the clusters as we go up the 
hierarchy 

 Divisive: Top-down  approach. This approach starts with one 
cluster containing all the observation splits down into different clusters as we go 
down the hierarchy 

Figure 4-5 shows these two general approaches to hierarchical clustering. In this 
study we apply agglomerative clustering approach. 

 
Figure 4-5. Agglomerative versus Divisive approach in hierarchical clustering. 

4.3.1 Cluster dissimilarity 
In order to see which two clusters should be merged in an agglomerative approach or 
when a cluster should be split in divisive approach, a distance measure (metric) between 
observations and a linkage criterion is required.  

Ag
glo

me
rati

ve 

Divisive 
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4.3.1.1 Distance Metric 
It is really important to choose an appropriate metric as the whole shape of clusters relate 
directly to the distance metric. This is because two instances may be close based on one 
distance metric and farther away according to another. 
In the following, some common distance metrics for hierarchical clustering are presented. 
Consider p = (p1, p2,..., pn) and q = (q1, q2,..., qn), and the distance between p and q , 
d(p,q),  can be calculated by the following distance metrics: 

 Euclidean distance 

 ( 4-7) 

 Squared Euclidean distance 

 ( 4-8) 

 Manhattan distance 

 ( 4-9) 

 Maximum distance 

 ( 4-10) 

 Mahalanobis distance 
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 ( 4-11) 

where S is the covariance matrix.  The covariance matrix is a matrix whose element 
in the i, j position is the covariance between the ith element of vector p and jth element 
of vector q. 

 Other metrics 
There are many distance metrics that can be used. In this study, Euclidian distance is 
used to find the distance between statistical features of observation signals in our first 
approach and in the second approach the output of Dynamic Time Warping is used as 
the distance matrix of drivers directly.  

The Mahalanobis Distance is one metric that has been frequently used in cluster analyses.  
However, in order to use the Mahalanobis Distance, the number of observations needs to 
be more than the number of features. Since we have just 12 drivers in this study, we 
could not use this metric. Among the other metrics, the Euclidean Distance seems to be 
more useful for clustering analysis in Statistical Feature Extraction approach. 

4.3.1.2 Linkage Criterion 
In order to merge or split two clusters we need to be able to measure the distance of two 
sets of observations.  A linkage criterion measures this distance as a function of distance 
metrics d. Here D(P,Q) is the merging cost of combining clusters P and Q. In the 
following, some commonly used linkage criteria between two sets of observations P and 
Q are introduced: 

 Complete-linkage 
 ( 4-12) 

 Single-linkage 
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 ( 4-13) 

 Average linkage  

 ( 4-14) 

 Centroid linkage 
 ( 4-15) 

where cP and cQ are the centroids of clusters P and Q respectively. 

 Ward linkage 
This method minimizes the total within-cluster variance. 

 
( 4-16) 

 

where  is the center of cluster P, and  is the number of instances in it. 
Since, in this analysis, our goal is to find clus
method as linkage criteria seems to fit our needs. 
As discussed in the previous sections of this Chapter, in this research two different 
approaches are used to measure the distances between in-vehicle CAN-bus signals of 

behaviour before turning events.  Hierarchical clustering can 
have two different set of inputs.  The input can be the observations, distance metric and 
linkage criterion (as we need in our first approach with statistical feature vectors), or it be 
the distance matrix between observations and the linkage criterion (which we need in our 
second approach with the DTW technique). 
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Based on the extracted statistical features discussed in Section 4.1, hierarchical clustering 
using the Euclidean distance as a distance metric and the Ward method as linkage criteria 
was used.  This results in 9 cluster trees clustering 12 drivers based on 5, 10, and 15 
seconds before all turns, before right turns and before left turns separately. In addition, as 
discussed in Section 4.2, DTW was also used as a distance metric and results in a 
distance matrix that can be used to cluster the drivers based on similarities between in-
vehicle signals before turning events. In this approach, we used the DTW as a distance 
metric and the ward linkage method as the linkage criteria for the hierarchical clustering. 
This approach, as well, results in 9 cluster trees, three of them correspond to 5, 10, and 15 
seconds before all turns, three for before right turns, the other three for before left turns. 
The results and corresponding clustering figures for both approaches are shown in the 
next Chapter. 



34 

 

Chapter 5  

5  
5.1  

To evaluate the proposed method described in the previous chapter, an experiment was 
conducted to cluster typical behaviour of drivers considering how they drive before 
turning events. As mentioned in Chapter 3, in this study our data consists of 10 different 
right turns and 7 different left turns for 12 drivers, among them there are 6 male and 6 
female drivers. 
We collect three sets of data with different numbers of driving frames in each set, 
consisting of 150, 300, and 450 frames before each turn (equal to 5, 10, and 15 seconds). 
Choosing the correct number of frames is an important factor in analyzing the result.  A 
small number of frames may not reflect signal changes needed for a proper clustering, on 
the other hand, since in our experiment some of turning maneuvers are close to each 
other, choosing a large number of frames may contain frames from the previous turn. A 
set of 300 frames seems to be a reasonable, although we perform our analysis on 150 
frames and 450 frames too. 
Five different CAN-bus signals consisting of speed, gas pedal pressure, brake pedal 
pressure, steering wheel angle, and acceleration are extracted from each set of frames for 
each driver before turning events. Two different approaches were used to analyze this 
data in order to explore clustering drivers into different groups; clustering using statistical 
features and clustering using Dynamic Time Warping. In the next section we provide an 
overview of both approaches. 
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5.2  
The general overview of the two approaches that we apply to our data is illustrated in 
Figure 5-1. The approach using Statistical Feature Extraction is illustrated in Figure 
5-1.a. and the Dynamic Time Warping approach is shown in Figure 5-1.b. 

5.2.1 Statistical Feature Approach 
As is shown in Figure 5-1.a, we first extract the 5 CAN-Bus time-series signals over 17 
turns for each of the 12 drivers.  From each time-series signal that we have, we extract 
four statistical features (Mean, STD, Kurtosis, Skewness), representing driving behaviour 
of each driver before each turn. Then in step a.1, we calculate the average of these 
features over all turns. The result is a 5x4 matrix for each driver. Then in step a.2., for 
each driver we convert its 5x4 matrix to a feature vector of size 20. Doing that for all 12 
drivers we end up with 12x20 feature matrix. Then we apply HCA on the result of all 

 the 
distance metric. The result of the HCA is a dendogram clustering drivers based on 
statistical features extracted from pre-turns driving behaviour.  We do this for each of the 
150, 300 and 450 frame sequences. 

5.2.2 DTW Approach 
The Dynamic Time Warping approach is illustrated in Figure 5-1.b. We have the same 
data as we had in statistical approach, containing 12 drivers and for each driver we have 5 
CAN-Bus time-series signals over 17 turns. As mentioned in step b.2. we calculate the 
average distance of all corresponding signals between each pair of drivers over all turns 
using DTW. This will result a symmetric 12x12 distance matrix which indicates the 
distance between each pair of drivers. In the next step, we apply HCA on this matrix 
using the ring dendogram.   
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Figure 5-1.  An overview of the two approaches.  a. The Statistical feature extraction 
approach.  b. The DTW approach. 

b. a. 
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5.3  
As mentioned in Chapter 4, in order to lower the dimensionality of our data we extract 4 
statistical features containing Mean, STD, Kurtosis, and Skewness from each of 5 CAN-
bus signals and use them as a descriptor for the corresponding signal. Using these 
extracted features, we can find the distance between each pair of signals for different 
drivers. Combining all the statistical features from all the signals for each driver results in 
a 2-dimentional matrix of size 5 x 4 that corresponds to the driving behaviour before each 
turning event. Since we have 10 right turns and 7 left turns in our experiment, we obtain 
three 3-dimentional matrixes representing each driver. One 3D matrix corresponds to 
right turns with size 5 x 4 x 10, one for left turns with size 5 x 4 x 7, and one for all turns 
of size 5 x 4 x 17. Figure 5-2 shows the general structure of a 5 x 4 x 7 3D matrix 
indicating feature values of signals corresponds to all left turns of a specific driver. 

 Figure 5-2. The general structure of 3-dimentional 5x4x7 matrix of the 4 extracted 
statistical features from 5 CAN-Bus signals in 7 left turns of a specific driver 

behaviour. The highlighted 2D matrix corresponds to statistical features of fifth left 
turn as an example. 
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We now calculate the average value of each statistical features for each signal over all the 
turns. So we would end up with a 5x4 feature matrix for each driver. Then we convert 
this matrix to a feature vector of size 20 for each driver, representing the behaviour of the 
driver over all the turns. Combining all the 12 drivers feature vector would result a 12x20 
matrix of drivers-features. 
Because of the variation in the range of each of these statistical features, we normalize 
each column of this matrix using a feature scaling method in order to come up with more 
reasonable distances. The feature scaling method used to bring all features into the range 
[0,1] was performed as: 

 ( 5-1) 

where  is maximum value and  is the minimum value in the set. 
In our case, we consider all the values of a specific feature (e.g. Maximum speed) 
from all 12 drivers, and perform feature scaling on them. Feature scaling not only 
keeps the differences between values of same features but also scales all the 
features in the same range to prevent domination of specific features with large 
variations.  
 
Table 5-1 shows an example of real values of average statistical features extracted from 
each of the CAN- behaviour 450 frames before all turns, 
and Table 5-2 shows the normalized values in the same situation. Note that feature 
scaling of a feature is done considering the values of that feature from all the 
drivers. More actual values of average statistical features of each driving signal 
can be found in Appendix A. 
 



39 

 

Table 5-1. An example of statistical features values extracted from signals of 
 driving behaviour, 450 frames before all turns. 

Speed     
Gas     
Brake     
SWA     
Acceleration     

Table 5-2. An example of normalized* statistical features values extracted from 
signals of behaviour, 450 frames before all turns. 

Speed     
Gas     
Brake     
SWA     
Acceleration     

After doing feature scaling on the extracted features, the as linkage 
criteria for hierarchical cluster 
analysis. In order to find any possible considerable differences in driving behaviour prior 
to right turns or left turns, we not only analyze the all pre-turns but also analyze pre-left-
turns and pre-right-turns driving behaviour separately. The results are shown in the next 
three sub-sections. 

5.3.1 All turns 
We perform Hierarchical Clustering Analysis (HCA) on 150, 300, and 450 frames before 
all turns for 12 drivers using their statistical features. The dendogram related to HCA on 
150 frames before all turns is shown in Figure 5-3 as an illustration.  Other dendograms 
related to 300 and 450 frames before turns can be found in Appendix B. 
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Figure 5-3. HCA based on statistical features considering 150 driving frames before 

all turns. 
 
For all of our dendograms in analyzing all pre-turns using statistical features, we can 
identify two clusters of drivers (the red dashed line indicates the threshold).  In order to 
investigate each cluster, we calculate the centroid of each the statistical features in each 
cluster. 8, 16, 9, 10, 11  contains 
drivers . The centroid of two clusters obtained from HCA on 150 pre-
turns frames related to Figure 5-3 is presented in  
Table 5-3. The similar centroid values of clusters in other clustering analyses using 300 
and 450 frames before all turns can be found in Appendix B. 
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Table 5-3. Centroid values of statistical features in clusters from HCA on 150 
driving frames before all turns. 

As shown in  
Table 5-3, comparing the centroid values of cluster 1 and 2 we can see that they are 
mostly different.  To identify the actual difference between centroids of these two 
clusters, we convert each cluste
the Angle and the R-Value1 between these two vectors. The Angle and R-Value between 
the two clusters in each experiment using 150, 300, and 400 frames are shown in Table 
5-4. This table also shows the driver number and the number of Male and Female drivers 
in each cluster. 
Table 5-4. Angle and R-Value between centroid vectors of two clusters result from 

150, 300, and 450 frames before all turns. 

The Angle value indicates the angle between the two vectors, and the R-Value shows the 
correlation between each pair of vectors. The R-Values and Angles show that the clusters 
are not particularly correlated.  Moreover, there is some consistency in each cluster, 

                                                 
1 R-value is the correlation coefficient, measures the strength and direction of a linear relationship between 
two variables. The value of r is always between +1 and 1. 
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Cluster 1 and Cluster 2, across all three timeframes, that is, there is some consistency in 
membership in these clusters. 
Among all the five signals that we investigate through this research, the raw value of all 
signals are always positive except for the Steering Wheel Angle (SWA) and 
Acceleration. Since these signals can have both negative and positive values (indicating 
steering to right or left, and accelerating or decelerating), it is important to see how zero 
value in these signals changed after normalizing the signals between 0 and 1.  In a normal 
distribution of these signals we expect zero to be around 0.5, if it is less than 0.5, then we 
had more positive values in the data set, if it is more than 0.5, the we have more negative 
values, below 0 means that all values are positive, and more than 1 means all values are 
negative. The zero value in SWA and Acceleration for each experiment is presented in 
Table 5-5. This table also include the mean value of each signals in each cluster. 

Table 5-5. Mean value of all signals of two clusters results from performing HCA on 
150, 300, and 450 frames before all turns. 

Comparing the mean value of each of the signals, we can see that there are obvious 
differences between Cluster 1 and Cluster 2.  Based on Table 5-5 we can see that zero 
value of SWA after normalization is way less than 0.5, which indicates that prior to all 
turns, drivers have been steering more to right than left. There are more right turns in the 
route, hence the mean Steering Wheel values are skewed to right. 
Also, the zero value of Acceleration after normalization is more than 1 in all three 
timeframes, which means that prior to all turns, all drivers decelerate, therefore the higher 
value in this signal means lower deceleration (smaller negative acceleration). Considering 
the mean value of the Acceleration signal, it is obvious that drivers in Cluster1 have more 
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values (lower deceleration) than Cluster2 (which have higher deceleration). Which means 
that drivers in Cluster2 slow down more quickly than those in Cluster1, and as a result 
they push the brake harder and they have lower pressure on these gas pedal. This 
behaviour leads us to classify drivers in Cluster2 more aggressive  when compared to 
the drivers of Cluster1 moderate  drivers. 

So to sum up, for 150 and 300 timeframes the two clusters have these behaviours 
approaching turns: 

 Cluster 1 (Moderate Drivers): Moderate speed, some gas pressure approaching 
turn, gentle braking, and gradual deceleration; 

 Cluster 2 (Aggressive Drivers): Higher speed approaching turns, harder braking 
and more rapid deceleration. 

For 450 timeframes, signal values start to level out, but differences between two clusters 
are still noticeable.  

5.3.2 Right Turns 
As with all turns, we perform Hierarchical Clustering Analysis (HCA) on 150, 300, and 
450 frames looking at the time before right turns for the 12 drivers. The dendogram from 
the HCA on 150 frames before right turns is shown in Figure 5-4. Other dendograms 
related to 300 and 450 frames before right turns can be found in Appendix B. 
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Figure 5-4. HCA based on statistical features considering 150 driving frames before 

right turns. 
For all of our dendograms from analyzing right turns using statistical features, we can 
identify two clusters of drivers (the red dashed line indicate the threshold).  In order to 
investigate each cluster, we calculate the centroid of each statistical features in each 
cluster. According to result shown in Figure 5-4, Cluster 1 included drivers 8, 16, 2, 10, 
7 1, 4, 9, 11, 3, 12, 15 . The centroid of two clusters 
obtaining from HCA on 150 frames before right turns (related to Figure 5-4) is presented 
in Table 5-6. The similar centroid values of clustering in 300 and 450 timeframes before 
right turns can be found in Appendix B. 

Table 5-6. Centroid values of statistical features in clusters from HCA on 150 
driving frames before right turns. 
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Based on the centroid values in Table 5-6, we can see that the centroid values of signals 
related to Cluster1 and Cluster2 are mostly different.  As with our analysis of all turns, in 
order to identify the actual difference between centroids of these two clusters, we convert 

4x5 matrix to a vector of size 20 and calculate the Angle and the 
R-Value between these two vectors. The Angle and R-Value between two clusters in each 
experiment using 150, 300, and 400 frames are shown in Table 5-7. 

Table 5-7. Angle and R-Value between centroid vectors of two clusters resulting 
from 150, 300, and 450 frames before right turns. 

Again, we can see some consistency among drivers within each of Cluster 1 and Cluster 2 
across the different timeframes.  Here, we can see that the membership in the clusters is 
fairly consistent across the different timeframes, which shows some consistency in the 
membership in both clusters. 
Table 5-8 contains the mean value of signals in different timeframes before right turns. 
The normalized zero value for Steering Wheel (SWA) and the Acceleration for each 
analysis is also presented in this table. 

Table 5-8. Mean value of all signals of two clusters result from performing HCA on 
150, 300, and 450 frames before right turns. 
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Based on the values in Table 5-8, the differences between the mean values of signals of 
Cluster 1 and Cluster 2 are obvious.  As with the analysis of all turns, the zero value of 
SWA after normalization is less than 0.5, which shows that when approaching right turns, 
drivers have more steering to right than left.  However, their difference is not that much 
in 150 frames where the frequency of steering to the right and left are almost the same in 
150 frames before right turns. 

As before, the zero value of Acceleration after normalization is more than 1 in all three 
timeframes, which means that approaching right turns, all drivers decelerate. As 
mentioned before, the higher value in this signal means lower deceleration (smaller 
negative acceleration). Considering the mean value of the Acceleration signal in Table 
5-8, it is obvious that drivers in Cluster1 have lower deceleration than Cluster2 (which 
have higher deceleration).  This means that drivers in Cluster2 reduce their speed more 
rapidly than those in Cluster1, as a result they push the brake pedal harder and they have 
lower pressure on the gas pedal.  

As the cluster analysis for all turns in the previous section, we can again identify the 
same types of clusters: 

 Cluster 1 (Moderate Drivers): Moderate speed, some gas pressure approaching 
turn, gentle braking, and gradual deceleration; 

 Cluster 2 (Aggressive Drivers): Higher speed approaching turns, harder braking 
and more rapid deceleration. 

Again, there exists differences between two clusters formed from the 450 frames; this is 
probably because we are analyzing too many frames and signal values start to level out. 
Though not surprising, the analysis of the right turns is very consistent with the clusters 
identified in the analysis of all turns. 
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5.3.3 Left Turns 
Using statistical features extracted from driving signals before left turns, we perform 
Hierarchical Clustering Analysis (HCA) on 150, 300, and 450 frames. Figure 5-5 shows 
the dendogram related to the HCA on 150 frames before left turns; other dendograms 
related to 300 and 450 frames before left turns is presented in Appendix B. 

 
Figure 5-5. HCA based on statistical features considering 150 driving frames before 

left turns. 
We can identify two clusters for each dendograms related to different timeframes before 
left turns. According to the clustering result shown in Figure 5-5, Cluster 1 includes 

1, 10, 8, 9, 16, 4, 7
investigate each cluster, we calculate the centroid of each statistical features in each 
cluster. Table 5-9 shows the centroid values related to HCA on 150 frames before left 
turns as an instance. Other centroids values related to 300 and 450 frames can be found 
on Appendix B. 
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Table 5-9. Centroid values of statistical features in clusters from HCA on 150 
driving frames before left turns. 

Based on the centroid values in Table 5-9, we calculate the Angle and the R-Value 
between these two vectors same as before. The Angle and R-Value between two clusters 
in each experiment using 150, 300, and 400 frames are shown in Table 5-10. 

Table 5-10. Angle and R-Value between centroid vectors of two clusters result from 
150, 300, and 450 frames before left turns. 

In Table 5-11, the mean value of signals in different timeframes before left turns is 
presented. The normalized zero value for Steering Wheel and Acceleration for each 
analysis is also included in this table. 
Table 5-11. Mean value of all signals of two clusters result from performing HCA on 

150, 300, and 450 frames before left turns. 
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The values presented in Table 5-11, indicate similar differences between clusters as for 
all turns and right turns. The zero value of SWA after normalization is way less than 0.5 
in 150 frames and negative in the 300 and 450 frames.  This indicates that there is very 
few left steering in the 150, in the 300 and 450 frames before left turns.  Also, the zero 
value for Acceleration after normalization is more than one as for all turns and right 
turns, which means that we just have deceleration before turns. 

Considering the mean value of the Acceleration signal in Table 5-11, it is obvious that 
drivers in Cluster1 have lower deceleration than those in the Cluster2 (which have higher 
deceleration).   This means that drivers in Cluster2 lower their speed more rapidly than 
those in Cluster1, and as a result they push the brake pedal harder and they have lower 
pressure on gas pedal.  

As with the previous analysis, we can label the clusters as Moderate and Aggressive 
drivers for different timeframes prior to left turns: 

 Cluster 1 (Moderate Drivers): More gas pressure approaching turn, gentle 
braking, and gradual deceleration 

 Cluster 2 (Aggressive Drivers): Harder braking and more rapid deceleration 
Again, although there exist considerable differences between two clusters in 450 frames, 
it seems that for 450 frames we are analyzing too much frames because signal values start 
to level out. 
We also looked at some of the cluster analyses where there were 3 clusters, though this 
was not possible in all situations. As with the 2 cluster situation, we compared the vectors 
representing the three clusters. Same patterns of drivers show up in the three cluster in 
those analyses, though the third cluster found in each case seemed to be segmented from 
one of the pairs of clusters identified in the two cluster situation. 



50 

 

5.4  
Dynamic Time Warping (Berndt and Clifford 1994), as mentioned before, is a time-series 
alignment algorithm, which aims to align two sequences of features by warping the time 
axis to find an optimal match. Since our data is time-series and we are looking for 
similarities between driving signals which are not necessarily aligned in a specific period 
of time, this approach seems to fit our needs.  
In order to obtain a better result for comparing the signals, some preprocessing is needed 
before applying the DTW algorithm.  First, we smooth the signals using a smoothing 
function that is a moving average filter of a specific size. Then we compute the z-score 
(standard score) for each instance of each signal so that all sequences are centered to have 
mean equals to 0 and scaled to have standard deviation equals to 1. This will help signals 
to be aligned vertically and hopefully results in better comparisons. 
Using DTW as the distance measure on 150, 300, and 450 frames before turns, we end up 
with a symmetric12 x 12 distance matrix which indicates the distance between each pair 
of drivers.  
Table 5-12 shows an example of distance matrix based on 300 frames before all turns.  
Based on this distance matrix, we perform the hierarchical cluster analysis. As with our 

the linkage criteria for hierarchical 
cluster analysis. 

Table 5-12. An example of a distance matrix results from performing DTW 
algorithm on all signals 300 frames before all turns. 
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In the next three sections, we would study the result of HCA on different timeframes of 
signals before all turns and also left and right turns separately, using DTW. 

5.4.1 All turns 
We have applied HCA on 150, 300, and 450 frames before all turns. Figure 5-6 contains 
the dendogram related to clustering driving behaviour using DTW, based on 300 frames 
before all turns. Other dendograms regarding 150 and 450 frames can be found in 
Appendix B. 

 
Figure 5-6. HCA based on DTW considering 300 driving frames before all turns. 

Table 5-13 presents the drivers in each of the clusters resulting from HCA on different 
timeframes before all turns using DTW.  The results show high consistency between 
cluster members in different timeframes. In fact, using 150 frames and 450 frames in this 
case clusters the drivers exactly the same. Since the only parameters that we have in this 
approach is the information about each driver, namely, gender and age, we are not able to 
conclude much about the driving characteristics of the drivers in each cluster since both 
clusters have both male and female drivers in various age ranges. 
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Table 5-13. Summary result of clustering driver behaviour using DTW with 
different timeframes before all turns. 

In order to investigate if there exist any differences in driving behaviour characteristics 
approaching to right or left turns, cluster analysis is performed on right turns and left 
turns separately. The result is presented in the next two sub-sections. 

5.4.2 Right Turns 
As with the previous sub-section we apply HCA on 150, 300, and 450 frames before right 
turns.  The dendogram related to applying HCA on 300 frames prior to right turns using 
DTW is shown in Figure 5-7. Other dendograms related to similar cluster analysis on 150 
and 450 frames can be found in Appendix B. 

 Figure 5-7. HCA based on DTW considering 300 driving frames before right turns. 
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Table 5-14 contains drivers number in each clusters result from HCA on different 
timeframes prior to right turns using DTW.  

Table 5-14. Summary result of clustering driver behaviour using DTW with 
different timeframes before right turns. 

The results show high consistency between cluster members in different timeframes. In 
fact, HCA analysis using 300 frames and 450 frames results in the same clusters as the 
HCA analysis with 150 frames. Once again, the results for right turns analysis is almost 
the same as all turn analysis. Again, we can conclude little about the clusters. 

5.4.3 Left Turns 
Using the DTW technique as a distance measure we perform the hierarchical clustering 
for pre-left-turn driving behaviour.  As with the previous analyses, we study 150, 300, 
and 450 non-zero-speed frames before left turns. Dendogram related to HCA result on 
300 frames is shown in Figure 5-8.  Other dendograms for 150 and 450 frames can be 
found in Appendix B. 
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Figure 5-8. Hierarchical clustering analysis based on DTW considering 300 driving 

frames before left turns. 
The result of the cluster analysis performed on left turns with different timeframes is 
presented in Table 5-15.  

Table 5-15. Summary result of clustering driver behaviour using DTW with 
different timeframes before right turns. 

Similar to the previous result, this analysis also reflected consistency of members across 
clusters. Moreover, if we look at the analysis for 300 frames, we see a clustering along 
gender lines.  As shown in Figure 5-8, we can see that male and female drivers are 
grouped predominantly into two clusters.  As shown in Table 5-16, based on this 
clustering analysis, 100% of the drivers in Cluster 1 are female drivers and 85.7% of the 
drivers in Cluster 2 are male drivers.   This suggests that there may be some gender 
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differences in how they approach left turn; however, these results would need to be 
validated on a larger dataset with greater numbers of drivers. 

Table 5-16. Two clusters result from cluster analysis using DTW for 300 pre-left-
turns driving frames. 

1 3, 12, 7, 9, 15 41, 24, 31, 21, 44 F, F, F, F, F % 100 
2 1, 4, 2, 10, 8, 16, 11 37, 41, 37, 20, 21, 25, 22 M, M, M, M, M, M, F % 85.7 

5.5  
Considering the results from previous sections, we show that analyzing the statistical 
features of CAN-bus signals would result in at least two distinct clusters of driving 
behaviour before turns, indicating moderate (normal) or aggressive driving behaviour. 

timeframes and even for left and right turns separately. 
The results of our second approach in cluster behaviour using DTW indicate 
that the consistency between the membership of the clusters member was high across 
different timeframes and there was even some consistency across the clusters obtained 
from all turns, left turns and right turns.   In the cluster analysis on 300 frames using the 
DTW approach before left turns (Figure 5-8), male and female drivers seem to be 
categorized into two different groups suggesting that there may be some gender 
differences in driving behaviour approaching a left turn. This result may have occurred 
because of left turns seem to be more challenging when compared to right turns and may 
result in different behaviour. This is, however, a single example and more data is needed 
to investigate this hypothesis. 



56 

 

Chapter 6  

6  
Understanding driver behaviour can be used to improve Advanced Driver Assistance 
Systems (ADASs), improve vehicle safety and privacy by monitoring the driver
behaviour, and also help to detect risky driving styles. Driving behaviour has been 
studied from many aspects in the field of traffic safety analysis. Many of these studies 
have focused on various aspects of overall driving behaviour of individual drivers and 
have met with varying success.  Few of these studies focus on specific parts of driving to 
analyze individual driving characteristics. Driving activities in preparing for a turn is a 
complex driving behavior.  It is a confined period of activities where there would appear 
to be identifiable differences in driver behavior.  We have been able to identify these 
differences in small time periods (5-15 seconds) before turns.  Analysis of driving 
behaviour in different maneuvers may enable the intelligent driver assistance systems to 
be customized for individual drivers. 

6.1  
In this thesis, driver behaviour is analyzed in different timeframes prior to turns. Our aim 
was to study the way each driver would prepare the vehicle for a turning maneuver and to 
find possible distinct clusters that represent their behaviour. We carried out the 
investigation on actual driving data collected from 12 drivers driving through a pre-
determined path in an urban area inside the city of London, Ontario.  Five CAN-Bus 
time-series signals, including speed, gas pedal pressure, brake pedal pressure, steering 
wheel angle, and acceleration, were collected for 5, 10, and 15 seconds before all turns; 
left turns and right turns were also considered separately.  
We applied two different approaches to cluster drivers using these data. In the first 
approach, 4 statistical features including Mean, Standard Deviation, Kurtosis, and 
Skewness were extracted from the signals. Using these statistical features as a 

behaviour, Hierarchical Clustering Analysis was used to 



57 

 

cluster the drivers. The results show that there exist at least two distinct groups of drivers 
with different pre-turn behaviour, one cluster includes moderate drivers, while the other 
cluster contains more aggressive ones. 
Another approach carried out in this study was using Dynamic Time Warping (DTW) to 
measure the dissimilarity between different time-series signals of drivers. As the previous 
approach, we used Hierarchical Clustering Analysis to cluster the drivers based on the 
dissimilarity matrix we calculated through DTW. The results show high consistency 
between members of clusters in different timeframes. Also, in the case of 300 frames 
before left turns, male and female drivers categorized into two different groups. 
A major distinction of our approach was to focus on a small portion of a driving 
behaviour i.e. before turns, and cluster drivers based on that. At least two distinct clusters 
of driving behaviour detected by our analysis.  

6.2  
This novel approach has great potential in several fields. Future work will focus on the 
testing our approach on larger dataset, containing more drivers and more turns.  Also, we 
would like to see if it is possible to use this approach to classify drivers, by collecting and 
computing data while driving and then mapping a driver to a class. Further, we could use 
the cluster characteristics identified and investigate whether it might be possible to 
determine if a driver was not preparing for a turn by comparing the immediate data to the 
cluster co
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Table A-1.  Statistical features for each signal for all drivers over all turns.  
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Figure B-1. HCA based on Statistical Features on 300 driving frames before all 

turns. 
Table B-1. Centroid values of statistical features in clusters from HCA on 300 

driving frames before all turns. 

Zero-SWA =    0.1928 
Zero-ACC =    1.7536 
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Figure B-2. HCA based on Statistical Features on 450 driving frames before all 

turns. 
Table B-2. Centroid values of statistical features in clusters from HCA on 450 

driving frames before all turns. 

Zero-SWA =    0.0888 
Zero-ACC =    1.3403 
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Figure B-3. HCA based on Statistical Features on 300 driving frames before right 

turns. 
Table B-3. Centroid values of statistical features in clusters from HCA on 300 

driving frames before right turns. 

 
Zero-SWA =    0.3700  
Zero-ACC =    1.4805 
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Figure B-4. HCA based on Statistical Features on 450 driving frames before right 

turns. 
Table B-4. Centroid values of statistical features in clusters from HCA on 450 

driving frames before right turns. 

 
Zero-SWA =    0.2565 
Zero-ACC =    1.0368 
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Figure B-5. HCA based on Statistical Features on 300 driving frames before left 

turns. 
Table B-5. Centroid values of statistical features in clusters from HCA on 300 

driving frames before left turns. 

 
Zero-SWA =   -0.2153 
Zero-ACC =    1.3087 
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Figure B-6. HCA based on Statistical Features on 450 driving frames before left 

turns. 
Table B-6. Centroid values of statistical features in clusters from HCA on 450 

driving frames before left turns. 

 
Zero-SWA =   -0.4745  
Zero-ACC =    1.7478 
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Figure B-7. HCA based on DTW considering 150 driving frames before all turns. 
Table B-7. Distance matrix results from performing DTW algorithm on all signals 

150 frames before all turns. 
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Figure B-8.  HCA based on DTW considering 450 driving frames before all turns. 
Table B-8. Distance matrix results from performing DTW algorithm on all signals 

450 frames before all turns. 
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Figure B-9. HCA based on DTW considering 150 driving frames before right turns. 
Table B-9. Distance matrix results from performing DTW algorithm on all signals 

150 frames before right turns. 
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Figure B-10. HCA based on DTW considering 450 driving frames before right 

turns. 
Table B-10. Distance matrix results from performing DTW algorithm on all signals 

450 frames before right turns. 
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Figure B-11. HCA based on DTW considering 150 driving frames before left turns. 
Table B-11. Distance matrix results from performing DTW algorithm on all signals 

150 frames before left turns. 
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Figure B-12. HCA based on DTW considering 450 driving frames before left turns. 
Table B-12. Distance matrix results from performing DTW algorithm on all signals 

450 frames before left turns. 
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Table B-13. An example of a distance matrix results from performing DTW 
algorithm on all signals 300 frames before all turns. 

 
 

Table B-14. An example of a distance matrix results from performing DTW 
algorithm on all signals 300 frames before right turns. 
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Table B-15. An example of a distance matrix results from performing DTW 
algorithm on all signals 300 frames before left turns. 
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Statistical Feature Extraction: 
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Statistical feature extraction clustering: 
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