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Abstract

All drivers have their own driving style while performing different driving maneuvers. They
vary in using vehicle’s control devices such as the steering wheel, pedals, gears etc. In this
thesis, we analyze driving behaviour in different timeframes prior to turns. We employ data
obtained from actual driving behaviour in an urban environment collected from the CAN-Bus
of an instrumented vehicle. Five CAN-Bus signals, vehicle speed, gas pedal pressure, brake
pedal pressure, steering wheel angle, and acceleration, is collected for 5, 10, and 15 seconds
of driving prior to each turn. We consider all turns for each driver as well as look specifically
and right and left turns. We use cluster analysis to see if we can categorize drivers into
possible groups of driving styles. In our first approach, we use hierarchical clustering on
statistical features extracted from the signals. The results show that using this approach we
can effectively cluster drivers into two groups, moderate and aggressive drivers. This pattern
is also reflected in the analysis of right and left turns. Another approach makes use of the
Dynamic Time Warping (DTW) technique to identify the distance between signals of each
pair of drivers, and based on these distances, a cluster analysis using hierarchical clustering is
performed as well. The results show high consistency in the membership within a cluster

throughout different timeframes.

Keywords

Driving behaviour, Dynamic Time Warping (DTW)), statistical feature extraction,
Hierarchical Clustering Analysis (HCA).
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Chapter 1

1 Introduction

As the number of vehicles and road mileage increases, traffic safety has become one of
the main issues for governments and manufacturers. Traffic accidents are one of the main
reasons for injuries today. According to a study in 2015 for The National Highway
Traffic Safety Administration (NHTSA)', in approximately 94% of the accidents
examined, the major reason was driver’s error. The result of this study, which was

conducted based on data from the National Motor Vehicle Crash Causation Survey

(NMVCCS) 2005-2007, is shown in Table 1-1.

Table 1-1. Critical reasons of crashes from 2005 to 2007 conducted by the National
Motor Vehicle Crash Causation Survey (NMVCCS).

Estimated
Critical Reason Number of Crashes Percentage*
Drivers 2,046,000 94% +2.2%
Vehicles 44,000 2% £0.7%
Environment 52,000 2% +1.3%
Unknown 47,000 2% +1.4%
Total 2,189,000 100%

*Percentage are based on unrounded estimated frequencies
(Data Source: NMVCCS 2005-2007)

In order to improve traffic safety and traffic efficiency, it is essential to try to understand
the characteristics of driver behaviour and study the relationships between driving
behaviour and traffic systems. Understanding driver behaviour can help us to build
models of drivers which can be used to improve Advanced Driver Assistance Systems

(ADASS), improve vehicle safety and privacy, and also help to detect risky driving styles.

! https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812115



In this thesis we examine driving behaviour based on data collected from actual drivers in

a controlled driving scenario.

1.1 Problem Statement

Driving is one of the most common yet highly complex tasks that individuals do. It
involves multiple essential subtasks and it can be affected by many internal and external
factors. Driving consists of a series of complex decisions and actions that a driver
performs based on the current traffic environment. It is obvious that different drivers have
different driving behaviour in the same traffic situation. Drivers differ in how hard they
hit the pedals, in the way they turn the steering wheel, how they keep their eye on the
road, how much distance they keep when following a car, etc. (Miyajima et al. 2007;
Higgs and Abbas 2015). In fact, these differences are key factors in building individual
drivers’ driving behaviour. As a consequence, various driving behaviours need to be
analyzed in order to personalize Intelligent Transportation System (ITS) applications for

different drivers with different driving styles.

In addition to the ITS personalization, identifying different types of driver behaviour can
also help improve traffic safety by identifying safe or unsafe driving styles (Chen, Pan,
and Lu 2015), aggressive or normal drivers (Carmona et al. 2015; Johnson and Trivedi
2011), distracted or undistracted drivers (Choi et al. 2007), etc. Another application of
driver behaviour analysis is in the area of security and privacy, for example, by looking at

driver identification based on driving style (Enev et al. 2016).

Consequently, being aware of the differences between driving styles and behaviour, we
can model intelligent Advance Driver Assistance Systems (ADAS), and improve the

performance of each individual driver.

1.2 Research Approach

In this thesis, normal driving behaviour is analyzed in order to try to identify different
driving styles. Our focus in this study is on the driver’s behaviour before turns. Several

important driving signals have been extracted from an automobile’s Controller Area



Network (CAN—Bus)1 data as driving indicators. Vehicle speed, gas pedal pressure, brake
pedal pressure, steering wheel angle, and acceleration are the signals used in this study.
Since the activities in preparing for a turn is a challenging and complex driving
behaviour, and given that it has not been studied, we decided to focus on this activity.
Our goal is to explore whether there are clusters of driver behaviour that can be identified

from driving signals during small periods of time before turning maneuvers.

Our assumption is that that there are different styles of driving when approaching a
turning maneuver. We apply two approaches to cluster the drivers based on their driving
behaviour before turns. In the first approach we extract statistical features from the
driving signals prior to each turn and look at clusters based on feature vectors. In the
other approach, we use the Dynamic Time Warping technique to find the similarities
between the extracted CAN-Bus signals in each driver prior to turns, and cluster based on

those similarities.

1.3 Thesis Organization

The rest of this thesis is structured as follows. Chapter 2 consists of three different
subsections covering the related literature. In the first section, background information on
driving behaviour is discussed. The next section covers previous work on clustering
driving behaviours, and the third section provides an overview of work making use of the
Dynamic Time Warping technique. A description of the data we used for our study can
be in Chapter 3. Chapter 4 consists of an explanation of our research approach. In
Chapter 5, the results are presented and discussed. Finally, Chapter 6 presents our

conclusions and discusses future work.

! CAN-Bus is a vehicle bus standard designed to allow microcontrollers and devices to communicate with
each other.



Chapter 2

2 Literature Review

Since the 1950s, understanding and modeling various driving behaviours has always been
the traffic scientist’s issue of concern (Chandler, Herman, and Montroll 1958). In fact,
analysis of driving behaviour is needed by many scientists and researchers. Intelligent
vehicle designers need to understand driving behaviour in order to make driving
assistance systems work properly in dynamic traffic situations. Autonomous vehicle
designers need them to make driving driver-free. Traffic engineers need them to improve

the safety and reliability of roads and related infrastructure.

Driving behaviour, like every other human-related task, is complicated and hard to
analyze. Our research is focused on the analysis of driver data, specifically looking at
driver behaviour based on in-vehicle signals using extracted statistical features and also
using Dynamic Time Warping. In this Chapter, the research developments in the field of
understanding driving behaviour, and the use of cluster analysis and Dynamic Time

Warping in understanding driving behaviour are reviewed.

2.1 Understanding Driving Behaviour

Various literature has emphasized the need for a comprehensive method to understand
basic normal driving behaviour and to distinguish between different driving styles.
Drivers have different driving behaviours because there exist various different aspects of
driving. They differ in how they use the pedals (gas, brake), how fast or slow they turn a
steering wheel or how often they change speed. Several scholars have considered the role

of these driving signals in characterizing driver behaviour.

Aarts and Van Schagen emphasized the role of vehicle speed in driving behaviour in both
road and traffic safety (Aarts and van Schagen 2006). They discussed some of the
research which studied the relation between vehicle speed and probability of crashes and

indicated that high speed not only makes collisions more severe, but also increases the



risk of accident occurrence. The relation between vehicle speed and the number of
crashes was also investigated in a study conducted by (Fildes, Rumbold, and Leening
1991) and some of their results are illustrated in Figure 2-1. This Figure shows the
relation between speed and number of crashes in both urban and rural roads which

indicate that the higher the speed, the larger the increase in the crash rate.
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Figure 2-1. Relation between vehicle speed and number of crashes, based on self-

reports in Australia, in urban and rural roads for last 5 years as found in the study
of (Fildes, Rumbold, and Leening 1991).

(Miyajima et al. 2007) conducted a study on modeling driver behaviour in order to
perform driver identification. In their study, they show that gas and brake pedal
operation signals efficiently model individual driver differences. GMMs (Gaussian
Mixture Modell) are used to model the spectral features of pedal signals and an
identification rate of 76.8% is achieved, which suggests that each driver has a different

pattern in pedal pressure. The spectral features are frequency based features which are

T'A Gaussian Mixture Model (GMM) is a parametric probability density function represented as a weighted
sum of Gaussian component densities



obtained by converting the time based signal into the frequency domain using the Fourier

Transform.

In another study, Ohta shows that driver behaviour differs among drivers considering the
distance they keep when following another vehicle (Ohta 1993). He asked drivers to
follow a car at various distances which are proper for them (e.g. most comfortable
distance, minimum safe distance, etc.). Based on that he defined a temporal comfort zone
for individuals following another vehicle; these were between 1.1 and 1.7 seconds.

Below 1.1s he considered critical and more than 1.7s behind was considered
uncomfortable because it was against the social norm. Consequently, based on these
thresholds for a comfort zone, drivers’ behaviour can be classified in three different

groups considering how frequently a driver drove in a particular zone.

Chen, Pan, and Lu build a driving behaviour classification model to model safe and
unsafe driving behaviours (Chen, Pan, and Lu 2015). In their study, vehicle operation
data, including vehicle speed, engine RPM, throttle position, and calculated engine load,
are collected via OBD (On-Board Device) interfaces and make use of AdaBoost

algorithms for classification.

Choi et al. perform driver analysis using Hidden Markov Models (HMMs)' and Gaussian
Mixture Model (GMM) on in-vehicle CAN-Bus signals such as steering wheel angle,
brake status, acceleration, and vehicle speed (Choi et al. 2007). Three different
classification tasks were conducted in this study, 1) action classification, 2) distraction
detection, and 3) driver identification. Action classification consisted of categorizing
long-term driving behaviours such as turning, lane changing, stopping, and constant
driving. In distraction detection the goal was to detect if the driver was distracted by any
secondary tasks such as working with cellphone, GPS, etc. Driver identification is
concerned with driver classification based on driving behaviour characteristics. For driver

identification they generate HMMs and GMM models based on driving signals collected

I A hidden Markov model (HMM) is a statistical Markov model in which the system is assumed to be a
Markov process with hidden states and can be presented as the simplest dynamic Bayesian network.



during neutral and distracted driving periods. They classified the drivers using seventy
percent of driving signals for training the models and the remaining was used to test the
models. Figure 2-2 shows the accuracy of the best result for driver identification, for
both 5 and 10 seconds segmented signals. This result is obtained by applying HMM using
a 3 state model, and its best performance is when the number of Gaussian components is
7 (31.45% for 5 seconds and 29.16% for 10 seconds). They were able to identify drivers
based on analysis of signals during distracted and neutral driving about 25% of the time;
they did not evaluate their model on normal driving behaviour to study the differences
between drivers in normal driving conditions.
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Figure 2-2 Accuracy of driver identification using HMM with 3 states for 5 and 10
seconds segmented signals (Choi et al. 2007).

2.2 Cluster Analysis Approaches

Several studies of driving analysis have been based on data mining in order to find a
meaningful relation between data derived from different sources, as well as data from
vehicle monitoring systems, driver behavioural characteristics, and road safety systems.
Research utilizing cluster analysis is divided into two main groups, univariate clustering
and multivariate clustering. In this section, we will review the literature on the research

that utilizes cluster analysis to analyze drivers’ behaviour.

In research performed by Kalsoom and Halim, individual driver behaviours are classified

based on each driver’s statistical driving features, such as, the ratio of indicators to turns,



the number of brake uses, the number horn uses, the average speed, the maximum speed
and the gear (Kalsoom and Halim 2013). They apply K-means and hierarchical
clustering on their experimental data in order to try to classify them to slow, normal and
fast driving styles over the entire driving sequence. The data in this study was collected
from a driving simulator and contained 5 minutes of data for each driver. The clustering
was not based on the values of time-series driving signals, instead they used the number
of operative devices, such as brake, gear, clutch, horn, left/right indicators. They also
used the average and maximum of gears and average and maximum of speed in a 10
second time window. The results of the clustering analyses were inconclusive, with both
Hierarchical Clustering Analysis (HCA) and K-means explored with different numbers of
clusters. Clustering with HCA resulted in most of the data being grouped into a single

cluster.

In a study by Wu et al., GPS data is collected from typical driving of commercial vehicles
by professional drivers and then after using factor analysis the attributes which were
related to the driving behavioural characteristics were extracted from the GPS data (Wu
et al. 2016). Based on the GPS data, 8 speed and acceleration related features are
extracted for each driver, and those were combined into four aggregated attributes:
acceleration-deceleration, speeding-prone, acceleration, and deceleration. Using each of
these attributes as indicators, four different cluster analyses of driver behaviour is done
using hierarchical clustering. In each analysis, they identified five clusters that indicated
how risky the driver behaviour is considering each attribute: minimal, slight, moderate,
serious, or severe. Among the four cluster analyses were performed on 50 drivers, the
results were not consistent across all attributes and drivers, but there were couple of
drivers that showed a higher degree of risky driving behaviour for all the attributes.
Again, they focused on trying to characterize the driving style of each driver over the

entire driving period.

In both of these previous studies, the researchers focused on trying to use cluster analysis
to categorize drivers across the entire driving sequence. This may be very challenging

because over long periods driver behaviour may “average out” to look very similar. In



our work we have chosen to focus on a short driving period immediately before an

identifiable event, i.e., a turn.

In 2013, Higgs and Abbas investigate the hypothesis that drivers have different driving
behaviour in their daily driving tasks (Higgs and Abbas 2013). In order to investigate this
assumption, three different truck drivers representing low-, medium-, and high-risk
drivers performed 10 different car-following periods. They first divided the car-
following period into different segments and then performed a cluster analysis on these
segments. For clustering and optimization, they use different K-means techniques. Based
on their results, each of three drivers shows a specific distribution of behaviours, however
some of these behaviours are common between drivers but at different frequencies. For
example, the behaviour of tailgating occurred in high frequency in the high-risk driver,
low frequency in the medium-risk driver and did not occurr in the low-risk driver

behaviour.

In another study done by Higgs and Abbas, a two-step algorithm was introduced to
segment and cluster car-following behaviour based on eight state-action variables, in
order to define driving pattern of drivers (Higgs and Abbas 2015). They defined driver
behaviour as the way a driver responds to the current driving state (e.g., the vehicle
speed, distance from the following vehicle, etc.) by performing a specific action (e.g.,
steer or push brake pedal). In this study, each car-following period was divided into
similar driving state-action signals in the segmentation phase. Specific segments may
repeat several times so the clustering phase tries to find and cluster the repeated segments
into groups using K-Means as the clustering method. A representation of this two-step
algorithm is shown in Figure 2-3 for a sample car-following period. In the middle graphs
in this figure, segments of similar data have been formed. Then in the clustering step,
these segments are processed and clustered as shown in the bottom graph. Since the
clustering step is more constricting than the segmentation step, some adjacent segments

are placed in the same cluster.
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Figure 2-3. Two-step algorithm to segment and cluster driver car following
behaviour (Higgs and Abbas 2015).
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2.3 Dynamic Time Warping

Dynamic Time Warping (Berndt and Clifford 1994) is a time-series alignment algorithm,
which attempts to align two sequences of features by warping the time axis to find an
optimal match. Since in driver analysis data are often in the form of time-series, several
scholars have used this algorithm in their analysis. We present the details of Dynamic
Time Warping in Section 4.2. The technique’s goal is to align two sequences of feature
vectors by warping the time axis iteratively until an optimal match between the two

sequences is found.

In a study conducted by Johnson and Trivedi, MIROAD was designed to detect driving
events and driving style. Potentially aggressive driving behaviour is detected and
recognized using Dynamic Time Warping (DTW) and data from smartphones, such as
accelerometer, gyroscope, magnetometer, GPS, and video (Johnson and Trivedi 2011).
Since the length of driving events is not the same, the DTW is a suitable algorithm as it

was designed to find the optimal alignment between two signals. In order to detect
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whether a driving event was aggressive or not, the DTW algorithm was used to find the

closest match between the event signal and different pre-recorded template signals.

In a similar research by Eren et al., a driver’s behaviour was detected as safe or unsafe
using the DTW algorithm and a Bayesian classifier (Eren et al. 2012). In this study, data
such as that from an accelerometer, gyroscope and magnetometer from a typical smart
phone was used, and the speed, position angle and deflection from the regular trajectory
was computed from the data. Figure 2-44 shows the process of classifying drivers as safe

or risky based on data from smartphones using the DTW and Bayesian classifier.
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Figure 2-4. Classifying drivers’ behaviour into risky or safe based on sensory data
from smartphone using DTW and Bayesian classifier.

Various studies have been conducted to explore the individual driving behaviours and
cluster them into different clusters. In some of this research, the data used was gathered
from simulators. Other research explored data collected from pre-identified driving

scenarios, such as aggressive/non aggressive driving, distracted/undistracted driving, etc.

Our work differs in that we look at a specific small portion of driving data (data prior to
turning maneuvers) collected from actual drives in an urban area. We are interested in
identifying differences among drivers, i.e., clusters, within this short time period. We
explore two different approaches. In the first approach, statistical features derived from

individual driving signals are used, while in the second, the Dynamic Time Warping



technique is applied to these signals to identify the distance between them. Based on the

results of each approach we apply hierarchical clustering analysis to cluster drivers.

12
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Chapter 3

3  Experimental Data

In order to have a better understanding of normal driving behaviour, we need detailed
observations on the driver, vehicle and traffic environment. In 2012, Beauchemin, et. al.
(Beauchemin et al. 2012) equipped a modern vehicle, with OBD' Il CAN-bus channels
with video cameras, GPS system, cameras to record the driver’s head pose and gaze
direction. This vehicle, dubbed RoadLAB, was used to collect the driving data from the
vehicle’s internal network, the environment and the driver. As Figure 3-1 shows, the
Driver-Environment-Vehicle (DEV), RoadLAB collected data from a frontal stereo-
vision system, faceLAB eye tracker 2 and the CAN-bus interface. This instrumented

vehicle can monitor and record the following:

o  FEnvironment: Front view of traffic environment with two calibrated stereo cameras;
o Vehicle: The internal vehicle functions via CAN-bus interface;

e Driver: The driver cephalo-ocular behaviour head rotation and gaze direction.

! On-board diagnostics (OBD) refers to a vehicle’s self-diagnostic and reporting capability
2 FaceLAB™ 5 (http://www.ekstremmakina.com/EKSTREM/product/facelab/index.html)
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Figure 3-1. Equipped car used in RoadLAB to provide Driver-Environment-Vehicle
data stream.

The dataset was recorded with 16 different test drivers, consisting 7 males and 9 females,
with ages ranging between 20 and 47. The drivers drove normally through a pre-
determined path in an urban area inside the city of London, Ontario. Figure 3-2 shows
the driving path on Google map. Each driver drove around 28.5 kilometers for about 60
minutes over this route. In total, 3TB of vehicular data was collected over more than 450
kilometers of driving. Table 3-1 shows the general information about each driving

experiment conducted.



o™

Figure 3-2. Driving path in urban area- London, Ontario.

o
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Table 3-1. General information about each driving experiment.

Experiments  Driver No.  Age Gender  Starttime Weather Temp
1 Driver 1 37 Male 13:15 Sunny 29°C
2 Driver 2 37 Male 15:30 Sunny 31°C
3 Driver 3 41 Female 12:15 Sunny 23°C
4 Driver 4 41 Male 11:00 Sunny 24 °C
5 Driver 5 37 Female 12:05 Partly cloudy 27°C
6 Driver 6 22 Female 13:00 Partly cloudy 21°C
7 Driver 7 31 Female 11:30 Sunny 21°C
8 Driver 8 21 Male 14:45 Sunny 27°C
9 Driver 9 21 Female 13:00 Partly cloudy 24 °C
10 Driver 10 20 Male 09:30 Sunny 8°C
11 Driver 11 22 Female 14:45 Sunny 12°C
12 Driver 12 24 Female 11:45 Partly cloudy 18 °C
13 Driver 13 23 Male 14:45 Partly cloudy 19 °C
14 Driver 14 47 Female 11:00 Sunny 7°C
15 Driver 15 44 Female 14:00 Partly cloudy 13°C
16 Driver 16 25 Male 10:00 Partly cloudy 14 °C

3.1 Data Collection

In this study, we use the data from CAN-bus (Controller Area Network) interface of the
vehicle. From the various CAN-bus vehicular data that we have, we extract the most
comprehensive and general ones about the vehicle, such as speed, gas pedal pressure,
brake pedal pressure and steering wheel angle. These signals were originally sampled at
30 Hz in this experiment. We calculate acceleration based on the speed value, such that

in each Isecond intervals (30 frames), we calculate V-V as the acceleration.

16

Among all 16 driving experiments, we selected 12 subjects (1, 2, 3,4, 7, 8,9, 10, 11, 12,

15, 16) to analyze in this study. The other 4 subjects were not used due to existence of
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noise in collected data in some cases and\or because of minor changes in driving path in

others.

Figure 3-3 shows examples of 4 driving signals collected during normal urban driving for
a period of 300 seconds. From the top, the figures correspond to the speed of the vehicle,
gas pedal pressure, brake pedal pressure and steering wheel angle, respectively. As we
can see in Figure 3-3, the steering wheel angle value is almost zero in most of the frames
although the experiment takes place in urban area. Also, as we might expect, the gas
pedal pressure and brake pedal pressure are complementary to each other. In addition,

the direct correlation between gas pedal pressure and vehicle speed is obvious.
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Figure 3-3. Examples of driving behaviour signals collected in 300 seconds of
normal driving. (a) speed of vehicle; (b) gas pedal pressure; (c) brake pedal
pressure; (d) steering wheel angle.
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3.2 Preprocessing

Since the main focus of this study is to categorize drivers based on their driving
behaviour considering the pre-turn driving behaviour, we need to extract each of these
signals before each turn. In total, we have data for 10 right turns and 7 left turns for 12

drivers consisting of 6 male and 6 female drivers.

As we are analyzing the driver behaviour while driving, we can ignore the time when the
vehicle’s speed is actually zero (the vehicle stopped). The “stopped state” usually
happens right before turning maneuvers, especially before left turns. Heavy traffic, stop
signs, traffic light, yield rights, etc. are some common reasons for stopping before turning

mancuvers.

Among the not-stopped frames before each turn, we collect three different sets with 150
frames, 300 frames, and 450 frames length (5 seconds, 10 seconds and 15 seconds before

each turn respectively).

In the next Chapter the proposed method for clustering drivers based on their driving

behaviour before turning maneuvers is discussed and its implementation presented.
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Chapter 4

4 Analysis Methods

The main purpose of this study is to explore possible groups of drivers that have similar
driving behaviour patterns by clustering individual driver’s behaviour based on in-vehicle
CAN-Bus signals. These signals include speed, gas pedal pressure, brake pedal pressure,
steering wheel angle, and acceleration, collected 5, 10, and 15 seconds before each

turning maneuver for different drivers while performing normal driving.

This Chapter highlights the main methods that we applied on these extracted signals in
order to come up with the best clustering of driver behaviour. In the first method,
different statistical features are extracted from the in-vehicle CAN-Bus signals in order to
lower the dimensionality of the data. These statistical features preserve the main
characteristics of the corresponding signals and are described in detail in Section 4.1. In
Section 4.2, the Dynamic Time Warping (DTW) algorithm (Berndt and Clifford 1994)
will be introduced as a distance measure, which we used in our second approach in this
study. In this approach, the distance between different time-series signals is calculated
using the Dynamic Time Warping algorithm and using these distances, the clustering
analysis is performed. These two methods have been used for clustering time series
sequences before in other studies, therefore we apply them on the time series driving
signals that we have. Time series data are usually high-dimensional data and a specialized
distance function is needed to compare them for similarity. Moreover, there might be
outliers in these data. Most of machine learning methods, such as K-Means, are designed
for low-dimensional spaces with a (meaningful) Euclidean distance. K-Means is not very
robust towards outliers, as it puts squared weight on them. Finally, in Section 4.3,
hierarchical clustering will be discussed in detail, which is our main clustering method

used in this thesis for both approaches.

All the implementation is performed in MATLAB Release 2016a, using the Statistics and
Machine Learning Toolbox, and for Dynamic Time Warping a package from MATLAB
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Central’s File Exchange is used (Wang 2015). Sample implementation code can be found

in Appendix C.

4.1 Feature Extraction

The data that we have is a collection of in-vehicle CAN-Bus signals which are time series
data. Since the time series data have a unique data structure, it is not easy to directly
apply existing data mining tools. In clustering, each time point is often considered a
variable and each time series is considered an observation. In time-series data, as the
time increases, the number of variables also increases. Therefore, in order to perform
clustering we need some feature extraction techniques to summarize the main features of

time series data in a significantly lower dimension.

4.1.1 Statistical Feature Extraction

In order to represent a time-series sequence in a lower dimension, we need to transform
patterns into features that are considered as a compressed representation. These features

construct a high-level representation of the original time-series data.

In this study, for each time series sequence S; = {X1, X2,..., Xa}, NUMerous statistical
features were calculated to measure different properties of that sequence. Below are

details about each of the statistical features extracted and used in this study.

e Mean
The mean p is the average of the values {xi, X2,..., Xn} located within a time window

of the time-series sequence. It was calculated by:

S|e=

== > x (4-1)

n
i=1

e Standard Deviation



22

In order to measure how the values {xi, X2,..., Xn} are spread out within a specific

time window of a time-series sequence, the standard deviation o is calculated as:

n

1
o= |- (i—wy? (42)
i=1

o Kurtosis

Kurtosis Ku is a measure of the “peakedness™ of the probability distribution of the values
{x1, X2,..., Xn} Within a specific time window of a time-series sequence. It was calculated

as:

_ M (4-3)

Ku=—
0—4

where |1,is the 4" moment about the mean, and is given as:
n
1 4 (4-4)
Ky n Zl (i —n)
i=

o Skewness

In order to measure the asymmetry of the sequence of data {xi, X2,..., Xa}, the skewness

was calculated as:

_ M3 (4-5)
T o8

Sk

where |15 is the 3" moment about the mean, and calculated as:

I, (4-6)
U3—E;(xi 1))
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The above mentioned basic statistical functions were calculated for each of the 5 different
signals (speed, gas pedal pressure, brake pedal pressure, steering wheel angle and
acceleration) before each turn, which results in 4x5=20 statistical features representing
the characteristics of signals corresponding to a single driver’s behaviour before each

turn.

Having these feature vectors for each driver before each turning maneuver, we could now
compute the distances between drivers and attempt to cluster them based on these

statistical features representing their driving behaviour prior to turns.

4.2 Dynamic Time Warping

As discussed in previous section, the general characteristics and dimensionality of the
time series data are different. Temporal sequences have different characteristics
considering normal feature based data, which make the process of comparing sequences
more challenging. One algorithm that is widely use in order to find similarities between

time series sequences is Dynamic Time Warping (Berndt and Clifford 1994).

Dynamic time warping (DTW) is a time series alignment algorithm developed originally
for speech recognition (Sakoe and Chiba 1978). In 1994 Berndt and Clifford introduced
the technique, dynamic time warping (DTW), to the database community (Berndt and
Clifford 1994). The technique’s goal is to align two sequences of feature vectors by
warping the time axis iteratively until an optimal match between the two sequences is

found. Figure 4-1 shows an optimal alignment between two time dependent sequences.
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Figure 4-1. Alignment of two time-series sequences. Aligned points are indicated by
arrows (Meinard Miiller 2007).

The objective of DTW is to compare two (time-series) sequences X = (x1, x2,. . ., xn) of
length N €N and Y= (y1, )2, . . ., yu) of length M €N. To be able to compare two
different instances x, y, we need a local cost measure, sometimes also referred to as local
distance measure. Typically, c(x, ) is small (low cost) if x and y are similar to each
other, and otherwise c(x, y) is large (high cost). Evaluating the local cost measure for
each pair of elements of the sequences X and Y, one obtains the cost matrix (or distance
matrix) C € RVM defined by C(n,m) := c(x», ym). Then the goal is to find an alignment

between X and Y having minimal overall cost (Meinard Miiller 2007).

4.2.1  Constraints for the optimal path

In order to reach this goal and find the best match between two sequences, we need to
find a path through the cost matrix which minimizes the total cost between them. The
overall cost is the minimum of all possible path between troughs in the cost (distance)
matrix. Obviously, the number of possible paths through the matrix between two
considerably long sequences can be enormous. Exploring every possible path would lead
to a computational complexity that is exponential in the lengths of N and M. In order to
lower the order of computational complexity to O(NM), several optimisations and

constraints are applied when using DTW:

e Monotonicity condition: With this condition, during the construction of a path,

indexes i and j never decrease, they either stay the same or increase.
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o Continuity condition: This condition limits i and j indexes to increase by at most 1

in each step of the path.

e Boundary condition: The path starts at i =j = ( and ends at i = M and j = N, where
M and N are the number of instances in the first and second sequences

respectively.

e Warping window condition: 1t is unlikely for the path to wander very far from the
diagonal. The window width determines the distance that the path is allowed to

wander.

e Slope constraint condition: This condition would prevent subsequences with very
different lengths to match by limiting the number of steps allowed in the same
direction (horizontal or vertical). The condition is expressed as a ratio p/q, where p
is the number of steps allowed in the same (horizontal or vertical) direction. After p
steps in the same direction, the algorithm is not allowed to step further in the same

direction before stepping at least q time in the diagonal direction.

Figure 4-2 shows the smoothed speed signal of a vehicle 10 seconds before a specific
right turn when driven by two different drivers (Driver8 and Driver12). The
corresponding optimal warping path p* between two signals is demonstrated in Figure
4-3 (the white line). The gray area in this figure shows the Cost Matrix between two
sequence within the warping window around the diagonal and the white line indicate the
optimal warping path. Figure 4-4 compares the original signals (a), with warped ones (b)
which are perfectly aligned.
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Figure 4-2. Speed signal of two drivers’ behaviour 10 seconds before a specific turn.
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In this study, we apply the Dynamic Time Warping package, implemented by (Wang
2015) on different CAN-bus signals, such as speed, gas pedal pressure, brake pedal
pressure, steering wheel angle, and acceleration, for 5, 10, and 15 second of driving
(excluding zero-speed frames) before each turn. In order to analyze the turning behaviour
better, we first analyse all the turns and then left turns and right turns are analyzed
separately. As a result, for each category of all turns, right turns, or left turns, we come up
with three 12x12 distance matrices which shows the distance between each of the 12
drivers for driving behaviour of 5, 10, and 15 seconds before turns, respectively.
Therefore, overall we have nine distance matrixes which are our references for the
distance measure used in hierarchical clustering (three distance matrixes for all turns,
three for left turns, and three for right turns). Using these distance matrices, we can now
apply hierarchical clustering analysis to categorize the drivers based on their driving
signals similarities. In the next section, hierarchical clustering and various distance

metrics are discussed in detail.

4.3 Hierarchical Clustering

One of the most famous clustering methods is hierarchical clustering, which has been
applied in many domains. Hierarchical clustering (also known as hierarchical cluster

analysis or HCA) is a method of cluster analysis which attempts to build a hierarchy of
clusters. In the process of clustering, a dendogram1 is generated to visualize the result of

clustering, representing the nested clustering of patterns and similarity levels at which

groupings change.

Two different strategies are applied in hierarchical clustering:

'A dendogram is a tree diagram which illustrate the arrangement of the clusters produced by hierarchical
clustering.
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o Agglomerative: Also known as a “Bottom-up” approach. This approach starts with
putting each observation in its own cluster and merge the clusters as we go up the

hierarchy

e Divisive: Also known as “Top-down” approach. This approach starts with one
cluster containing all the observation splits down into different clusters as we go

down the hierarchy

Figure 4-5 shows these two general approaches to hierarchical clustering. In this

study we apply agglomerative clustering approach.

A,B,C,D,E

QAISIAI(]

Agglomerative

—1 B
1 I T F I

Figure 4-5. Agglomerative versus Divisive approach in hierarchical clustering.

4.3.1  Cluster dissimilarity

In order to see which two clusters should be merged in an agglomerative approach or
when a cluster should be split in divisive approach, a distance measure (metric) between

observations and a linkage criterion is required.
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4.3.1.1 Distance Metric

It is really important to choose an appropriate metric as the whole shape of clusters relate
directly to the distance metric. This is because two instances may be close based on one

distance metric and farther away according to another.

In the following, some common distance metrics for hierarchical clustering are presented.
Consider p = (p1, p2,..., pn) and q = (q1, q2,..., gn), and the distance between p and ¢q ,
d(p,q), can be calculated by the following distance metrics:

o  Fuclidean distance

n
2 (4-7)
d(p,q) = Z(pl - ql)
i=1
e Squared Euclidean distance
C 2 (4-8)
d(p,q) = Z(pl - ql)
i=1
o Manhattan distance
\ (4-9)
d,9) = ) Ip,—aj
i=1
o Maximum distance
(4-10)

d(p,q) = max|p, — q;|

o  Mahalanobis distance
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To—1 (4-11)
dip,q) =@ - 7S (0 — 9
where S is the covariance matrix. The covariance matrix is a matrix whose element

in the i, j position is the covariance between the i element of vector p and ;™ element

of vector q.

e Other metrics

There are many distance metrics that can be used. In this study, Euclidian distance is
used to find the distance between statistical features of observation signals in our first
approach and in the second approach the output of Dynamic Time Warping is used as

the distance matrix of drivers directly.

The Mahalanobis Distance is one metric that has been frequently used in cluster analyses.
However, in order to use the Mahalanobis Distance, the number of observations needs to
be more than the number of features. Since we have just 12 drivers in this study, we
could not use this metric. Among the other metrics, the Euclidean Distance seems to be

more useful for clustering analysis in Statistical Feature Extraction approach.

4.3.1.2 Linkage Criterion

In order to merge or split two clusters we need to be able to measure the distance of two
sets of observations. A linkage criterion measures this distance as a function of distance
metrics d. Here D(P,Q) is the merging cost of combining clusters P and Q. In the

following, some commonly used linkage criteria between two sets of observations P and

Q are introduced:

o  Complete-linkage

D(P,Q) = max{d(p,q) : p € P,q € Q} (4-12)

o Single-linkage
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D(P,Q) = min{d(p,q) : p € P,q € Q} (4-13)

e Average linkage

1

PEP q€Q

o Centroid linkage

D(P,Q) = llcy = coll (415)
where cpand cp are the centroids of clusters P and Q respectively.

o  Ward linkage

This method minimizes the total within-cluster variance.

DP,Q) = ) N F—Tpg IP= ) W& =y IP= ) 1% = 7ig I
iEPUQ i€P i€Q (4-16)

npn - =
=—2C i, —m, 2
P Q
np + Ny

where 1, is the center of cluster P, and np is the number of instances in it.

Since, in this analysis, our goal is to find clusters with minimum variation, the “ward”

method as linkage criteria seems to fit our needs.

As discussed in the previous sections of this Chapter, in this research two different
approaches are used to measure the distances between in-vehicle CAN-bus signals of
various drivers’ driving behaviour before turning events. Hierarchical clustering can
have two different set of inputs. The input can be the observations, distance metric and
linkage criterion (as we need in our first approach with statistical feature vectors), or it be
the distance matrix between observations and the linkage criterion (which we need in our

second approach with the DTW technique).
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Based on the extracted statistical features discussed in Section 4.1, hierarchical clustering
using the Euclidean distance as a distance metric and the Ward method as linkage criteria
was used. This results in 9 cluster trees clustering 12 drivers based on 5, 10, and 15
seconds before all turns, before right turns and before left turns separately. In addition, as
discussed in Section 4.2, DTW was also used as a distance metric and results in a
distance matrix that can be used to cluster the drivers based on similarities between in-
vehicle signals before turning events. In this approach, we used the DTW as a distance
metric and the ward linkage method as the linkage criteria for the hierarchical clustering.
This approach, as well, results in 9 cluster trees, three of them correspond to 5, 10, and 15

seconds before all turns, three for before right turns, the other three for before left turns.

The results and corresponding clustering figures for both approaches are shown in the

next Chapter.
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Chapter 5

5  Analysis of Results and Discussion

5.1 Introduction

To evaluate the proposed method described in the previous chapter, an experiment was
conducted to cluster typical behaviour of drivers considering how they drive before
turning events. As mentioned in Chapter 3, in this study our data consists of 10 different
right turns and 7 different left turns for 12 drivers, among them there are 6 male and 6

female drivers.

We collect three sets of data with different numbers of driving frames in each set,
consisting of 150, 300, and 450 frames before each turn (equal to 5, 10, and 15 seconds).
Choosing the correct number of frames is an important factor in analyzing the result. A
small number of frames may not reflect signal changes needed for a proper clustering, on
the other hand, since in our experiment some of turning maneuvers are close to each
other, choosing a large number of frames may contain frames from the previous turn. A
set of 300 frames seems to be a reasonable, although we perform our analysis on 150

frames and 450 frames too.

Five different CAN-bus signals consisting of speed, gas pedal pressure, brake pedal
pressure, steering wheel angle, and acceleration are extracted from each set of frames for
each driver before turning events. Two different approaches were used to analyze this
data in order to explore clustering drivers into different groups; clustering using statistical
features and clustering using Dynamic Time Warping. In the next section we provide an

overview of both approaches.
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5.2 General Overview

The general overview of the two approaches that we apply to our data is illustrated in
Figure 5-1. The approach using Statistical Feature Extraction is illustrated in Figure
5-1.a. and the Dynamic Time Warping approach is shown in Figure 5-1.b.

5.2.1  Statistical Feature Approach

As is shown in Figure 5-1.a, we first extract the 5 CAN-Bus time-series signals over 17
turns for each of the 12 drivers. From each time-series signal that we have, we extract
four statistical features (Mean, STD, Kurtosis, Skewness), representing driving behaviour
of each driver before each turn. Then in step a.1, we calculate the average of these
features over all turns. The result is a 5x4 matrix for each driver. Then in step a.2., for
each driver we convert its 5x4 matrix to a feature vector of size 20. Doing that for all 12
drivers we end up with 12x20 feature matrix. Then we apply HCA on the result of all
drivers’ feature vectors using the “ward” linkage criteria and “Euclidean distance” as the
distance metric. The result of the HCA is a dendogram clustering drivers based on
statistical features extracted from pre-turns driving behaviour. We do this for each of the

150, 300 and 450 frame sequences.

5.2.2 DTW Approach

The Dynamic Time Warping approach is illustrated in Figure 5-1.b. We have the same
data as we had in statistical approach, containing 12 drivers and for each driver we have 5
CAN-Bus time-series signals over 17 turns. As mentioned in step b.2. we calculate the
average distance of all corresponding signals between each pair of drivers over all turns
using DTW. This will result a symmetric 12x12 distance matrix which indicates the
distance between each pair of drivers. In the next step, we apply HCA on this matrix

using the “ward” linkage criteria to achieve the clustering dendogram.
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Figure 5-1. An overview of the two approaches. a. The Statistical feature extraction
approach. b. The DTW approach.



37

5.3 Analysis of Statistical Features

As mentioned in Chapter 4, in order to lower the dimensionality of our data we extract 4
statistical features containing Mean, STD, Kurtosis, and Skewness from each of 5 CAN-
bus signals and use them as a descriptor for the corresponding signal. Using these
extracted features, we can find the distance between each pair of signals for different
drivers. Combining all the statistical features from all the signals for each driver results in
a 2-dimentional matrix of size 5 x 4 that corresponds to the driving behaviour before each
turning event. Since we have 10 right turns and 7 left turns in our experiment, we obtain
three 3-dimentional matrixes representing each driver. One 3D matrix corresponds to
right turns with size 5 x 4 x 10, one for left turns with size 5 x 4 x 7, and one for all turns
of size 5 x 4 x 17. Figure 5-2 shows the general structure of a 5 x 4 x 7 3D matrix

indicating feature values of signals corresponds to all left turns of a specific driver.
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Figure 5-2. The general structure of 3-dimentional 5x4x7 matrix of the 4 extracted
statistical features from 5 CAN-Bus signals in 7 left turns of a specific driver
behaviour. The highlighted 2D matrix corresponds to statistical features of fifth left
turn as an example.
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We now calculate the average value of each statistical features for each signal over all the
turns. So we would end up with a 5x4 feature matrix for each driver. Then we convert

this matrix to a feature vector of size 20 for each driver, representing the behaviour of the
driver over all the turns. Combining all the 12 drivers feature vector would result a 12x20

matrix of drivers-features.

Because of the variation in the range of each of these statistical features, we normalize
each column of this matrix using a feature scaling method in order to come up with more
reasonable distances. The feature scaling method used to bring all features into the range

[0,1] was performed as:

X = Xpni
X =——70" (5-1)

Xmax — Xmin
where X4, 1S maximum value and X,,;,, is the minimum value in the set.

In our case, we consider all the values of a specific feature (e.g. Maximum speed)
from all 12 drivers, and perform feature scaling on them. Feature scaling not only
keeps the differences between values of same features but also scales all the
features in the same range to prevent domination of specific features with large

variations.

Table 5-1 shows an example of real values of average statistical features extracted from
each of the CAN-Bus signals of driverl’s driving behaviour 450 frames before all turns,
and Table 5-2 shows the normalized values in the same situation. Note that feature
scaling of a feature is done considering the values of that feature from all the
drivers. More actual values of average statistical features of each driving signal

can be found in Appendix A.



39

Table 5-1. An example of statistical features values extracted from signals of
driver1’s driving behaviour, 450 frames before all turns.

Mean STD Kurtosis  Skewness
Speed 33.097 9.7282 2.5267 -0.5157
‘: Gas 10.49 16.0562 5.0206 1.6615
_g Brake 42.4679 38.2385 2.1391 0.178
S SWA 4.0627 12.4934 3.2634 0.0477
Acceleration | -1.1597 3.2778 2.9281 0.0513

Table 5-2. An example of normalized* statistical features values extracted from
signals of driver1’s driving behaviour, 450 frames before all turns.

Mean STD Kurtosis  Skewness
Speed 0.8950 0.4421 0.0169 0.1183
= | Gas 0.6253 0.9190 0.3880 0.8027
2 | Brake 0.8530 1.000 0.1163 0.3925
S | SWA 0.5974 0.3461 0.0063 0.1484
Acceleration | 03617 0.9999 0.9999 0.9488

* Normalization of each feature is done considering corresponding feature from all drivers

After doing feature scaling on the extracted features, the ‘ward” method as linkage
criteria and ‘Euclidean distance’ as the distance metric is used for hierarchical cluster
analysis. In order to find any possible considerable differences in driving behaviour prior
to right turns or left turns, we not only analyze the all pre-turns but also analyze pre-left-
turns and pre-right-turns driving behaviour separately. The results are shown in the next

three sub-sections.

5.3.1 All turns

We perform Hierarchical Clustering Analysis (HCA) on 150, 300, and 450 frames before
all turns for 12 drivers using their statistical features. The dendogram related to HCA on
150 frames before all turns is shown in Figure 5-3 as an illustration. Other dendograms

related to 300 and 450 frames before turns can be found in Appendix B.
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Figure 5-3. HCA based on statistical features considering 150 driving frames before
all turns.

For all of our dendograms in analyzing all pre-turns using statistical features, we can
identify two clusters of drivers (the red dashed line indicates the threshold). In order to
investigate each cluster, we calculate the centroid of each the statistical features in each
cluster. In this case, Cluster 1 include drivers “8, 16, 9, 10, 11 and Cluster 2 contains
drivers “1, 4, 7, 3, 15, 12”. The centroid of two clusters obtained from HCA on 150 pre-

turns frames related to Figure 5-3 is presented in

Table 5-3. The similar centroid values of clusters in other clustering analyses using 300

and 450 frames before all turns can be found in Appendix B.
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Table 5-3. Centroid values of statistical features in clusters from HCA on 150
driving frames before all turns.

Cluster 1 Cluster 2
“8, 16,9, 10, 11” “1,4,7, 3,15, 12”
Speed Gas Brake SWA Acc Speed Gas Brake SWA Acc
Mean | 0.405 0.6087 03294 0.8471 0.6988 | 0.8333 0.2997 0.8714 0.6059 0.2686
STD | 0.0559 0566 0.3839 0.0989 0.2721 | 0.2149 0.3254  0.645 0.1457 0.4638
Kurtosis | 0.0497 0.1338 0.3225 0.1786 0.5397 | 0.0572 0.4829 0.0555 0.1136 0.5264
Skewness 0.26 0.1772 0.5131 0.4522 0.6386 | 0.2343 0.5872 0.1442  0.555 0.6853

As shown in

Table 5-3, comparing the centroid values of cluster 1 and 2 we can see that they are
mostly different. To identify the actual difference between centroids of these two
clusters, we convert each clusters’ centroids matrix to a vector of size 20 and calculate
the Angle and the R-Value! between these two vectors. The Angle and R-Value between
the two clusters in each experiment using 150, 300, and 400 frames are shown in Table
5-4. This table also shows the driver number and the number of Male and Female drivers

in each cluster.

Table 5-4. Angle and R-Value between centroid vectors of two clusters result from
150, 300, and 450 frames before all turns.

Cluster 1 Cluster 2 Cluster 1 Cluster 2 Angle R-

(Drivers No.) (Drivers No.) M/F M/F (degrees) Value
All Turns 150 | 8,9,10,11,16 1,3,4,7,12,15 3M, 2F 2M, 4F 35 0.32
All Turns 300 | 1,7,8,10,15,16 3,4,9,11,12 4M, 2F 1M, 4F 33 0.35
All Turns 450 | 2,7,10,12,15 1,3,4,8,9,11,16 2M, 3F 4m, 3F 35 0.06

The Angle value indicates the angle between the two vectors, and the R-Value shows the
correlation between each pair of vectors. The R-Values and Angles show that the clusters

are not particularly correlated. Moreover, there is some consistency in each cluster,

! R-value is the correlation coefficient, measures the strength and direction of a linear relationship between
two variables. The value of r is always between +1 and —1.
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Cluster 1 and Cluster 2, across all three timeframes, that is, there is some consistency in

membership in these clusters.

Among all the five signals that we investigate through this research, the raw value of all
signals are always positive except for the Steering Wheel Angle (SWA) and
Acceleration. Since these signals can have both negative and positive values (indicating
steering to right or left, and accelerating or decelerating), it is important to see how zero
value in these signals changed after normalizing the signals between 0 and 1. In a normal
distribution of these signals we expect zero to be around 0.5, if it is less than 0.5, then we
had more positive values in the data set, if it is more than 0.5, the we have more negative
values, below 0 means that all values are positive, and more than 1 means all values are
negative. The zero value in SWA and Acceleration for each experiment is presented in

Table 5-5. This table also include the mean value of each signals in each cluster.

Table 5-5. Mean value of all signals of two clusters results from performing HCA on
150, 300, and 450 frames before all turns.

All Turns Cluster 1 Cluster 2

Mean Mean Mean Mean Mean | Mean Mean Mean Mean Mean
Speed Gas Brake SW Acc. Speed Gas Brake SW Acc.

SW=0 Acc=0

150 Frms |0.2440 1.3176 |0.4050 0.6087 0.3294 0.8471 0.6988 |0.8333 0.2997 0.8714 0.6059 0.2686
300 Frms |0.1928 1.7536 |0.5445 0.7271 0.5316 0.5588 0.7914 |0.6940 0.3181 0.8608 0.6107 0.3103
450 Frms |0.0888 1.3403 (0.6327 0.8942 0.5349 0.5188 0.6326 [0.5368 0.3072 0.8215 0.5486 0.2989

Comparing the mean value of each of the signals, we can see that there are obvious
differences between Cluster 1 and Cluster 2. Based on Table 5-5 we can see that zero
value of SWA after normalization is way less than 0.5, which indicates that prior to all
turns, drivers have been steering more to right than left. There are more right turns in the

route, hence the mean Steering Wheel values are skewed to right.

Also, the zero value of Acceleration after normalization is more than 1 in all three
timeframes, which means that prior to all turns, all drivers decelerate, therefore the higher
value in this signal means lower deceleration (smaller negative acceleration). Considering

the mean value of the Acceleration signal, it is obvious that drivers in Cluster] have more
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values (lower deceleration) than Cluster2 (which have higher deceleration). Which means
that drivers in Cluster2 slow down more quickly than those in Clusterl, and as a result
they push the brake harder and they have lower pressure on these gas pedal. This
behaviour leads us to classify drivers in Cluster2 as “more aggressive” when compared to

the drivers of Clusterl, which we classify as “moderate” drivers.

So to sum up, for 150 and 300 timeframes the two clusters have these behaviours

approaching turns:

e C(Cluster 1 (Moderate Drivers): Moderate speed, some gas pressure approaching
turn, gentle braking, and gradual deceleration;
o Cluster 2 (Aggressive Drivers): Higher speed approaching turns, harder braking

and more rapid deceleration.

For 450 timeframes, signal values start to level out, but differences between two clusters

are still noticeable.

5.3.2 Right Turns

As with all turns, we perform Hierarchical Clustering Analysis (HCA) on 150, 300, and
450 frames looking at the time before right turns for the 12 drivers. The dendogram from
the HCA on 150 frames before right turns is shown in Figure 5-4. Other dendograms
related to 300 and 450 frames before right turns can be found in Appendix B.
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Figure 5-4. HCA based on statistical features considering 150 driving frames before
right turns.

For all of our dendograms from analyzing right turns using statistical features, we can

identify two clusters of drivers (the red dashed line indicate the threshold). In order to

investigate each cluster, we calculate the centroid of each statistical features in each

cluster. According to result shown in Figure 5-4, Cluster 1 included drivers “8, 16, 2, 10,

7 and Cluster 2 contains drivers “1, 4, 9, 11, 3, 12, 15”. The centroid of two clusters

obtaining from HCA on 150 frames before right turns (related to Figure 5-4) is presented

in Table 5-6. The similar centroid values of clustering in 300 and 450 timeframes before

right turns can be found in Appendix B.

Table 5-6. Centroid values of statistical features in clusters from HCA on 150
driving frames before right turns.

Mean
STD
Kurtosis

Skewness

Cluster 1 Cluster 2
“8, 16,2, 10, 7” “1,4,9, 11, 3, 12, 15”
Speed Gas Brake Steer Acc Speed Gas Brake Steer Acc
0.4361 0.8036 0.2299 0.7078 0.8814 | 0.7089 0.2972 0.7459 0.7424 0.2996
0.197 0.7463 0.5817 0.46 0.4311 0.616 0.3554 0.5632 0.1549 0.5959
0.3169 0.1119 0.3667 0.377 0.6081 | 0.3392 0.2931 0.4624 0.56 0.5932
0.655 0.2486 0.7861 0.4852 0.5519 | 0.4272 0.5687 0.5543 0.5208 0.7837
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Based on the centroid values in Table 5-6, we can see that the centroid values of signals
related to Clusterl and Cluster2 are mostly different. As with our analysis of all turns, in
order to identify the actual difference between centroids of these two clusters, we convert
each clusters’ centroids 4x5 matrix to a vector of size 20 and calculate the Angle and the
R-Value between these two vectors. The Angle and R-Value between two clusters in each
experiment using 150, 300, and 400 frames are shown in Table 5-7.

Table 5-7. Angle and R-Value between centroid vectors of two clusters resulting
from 150, 300, and 450 frames before right turns.

Right Turns | Cluster 1 Cluster 2 Cluster1 | Cluster2 | Angle R-
(Drivers No.) (Drivers No.) M/F M/F (degrees) Value
150 Frames | 2,7,8,10,16 1,3,4,9,11,12,15 4M, 1F 2M, 5F 32  -0.15
300 Frames | 1,2,7,8,10,12,15,16 3,4,9,11 5M, 3F 1M, 4F 37 -0.29
450 Frames | 2,7,8,10,12,15,16 1,3,4,9,11 4m, 3F 2M, 4F 34  -0.35

Again, we can see some consistency among drivers within each of Cluster 1 and Cluster 2
across the different timeframes. Here, we can see that the membership in the clusters is
fairly consistent across the different timeframes, which shows some consistency in the

membership in both clusters.

Table 5-8 contains the mean value of signals in different timeframes before right turns.
The normalized zero value for Steering Wheel (SWA) and the Acceleration for each

analysis is also presented in this table.

Table 5-8. Mean value of all signals of two clusters result from performing HCA on
150, 300, and 450 frames before right turns.

Right Turns Cluster 1 Cluster 2

SW= Acc= | Mean Mean Mean Mean Mean | Mean Mean Mean Mean Mean
0 0 Speed Gas Brake SW Acc. Speed Gas Brake SW Acc.

150 Frms |0.4654 1.3716 [0.4361 0.8036 0.2299 0.7078 0.8814 |0.7089 0.2972 0.7459 0.7424 0.2996
300 Frms |0.3700 1.4805 |0.5384 0.6990 0.4022 0.5162 0.7393 (0.6814 0.2368 0.8092 0.7114 0.1589
450 Frms |0.2565 1.0368 |0.3910 0.6713 0.5391 0.4375 0.6037 |0.7040 0.4322 0.7309 0.5307 0.2347
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Based on the values in Table 5-8, the differences between the mean values of signals of
Cluster 1 and Cluster 2 are obvious. As with the analysis of all turns, the zero value of
SWA after normalization is less than 0.5, which shows that when approaching right turns,
drivers have more steering to right than left. However, their difference is not that much
in 150 frames where the frequency of steering to the right and left are almost the same in

150 frames before right turns.

As before, the zero value of Acceleration after normalization is more than 1 in all three
timeframes, which means that approaching right turns, all drivers decelerate. As
mentioned before, the higher value in this signal means lower deceleration (smaller
negative acceleration). Considering the mean value of the Acceleration signal in Table
5-8, it is obvious that drivers in Cluster] have lower deceleration than Cluster2 (which
have higher deceleration). This means that drivers in Cluster2 reduce their speed more
rapidly than those in Clusterl, as a result they push the brake pedal harder and they have

lower pressure on the gas pedal.

As the cluster analysis for all turns in the previous section, we can again identify the

same types of clusters:

o C(Cluster 1 (Moderate Drivers): Moderate speed, some gas pressure approaching
turn, gentle braking, and gradual deceleration;
o Cluster 2 (Aggressive Drivers): Higher speed approaching turns, harder braking

and more rapid deceleration.

Again, there exists differences between two clusters formed from the 450 frames; this is

probably because we are analyzing too many frames and signal values start to level out.

Though not surprising, the analysis of the right turns is very consistent with the clusters

identified in the analysis of all turns.
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5.3.3 Left Turns

Using statistical features extracted from driving signals before left turns, we perform
Hierarchical Clustering Analysis (HCA) on 150, 300, and 450 frames. Figure 5-5 shows
the dendogram related to the HCA on 150 frames before left turns; other dendograms
related to 300 and 450 frames before left turns is presented in Appendix B.

AP RO A DO IO I I A AR R
N A Q& %Q' \4 N A e L N q/@
S N < < N N
(\\‘Q} W '&Q} {\‘\Q} & 4?}\ : AQ'{\ o \Aé \\\Q} «\Ae} ;\\4@'\
Q N ) < PSSP & & & J

Drivers (Age/Gender)

Figure 5-5. HCA based on statistical features considering 150 driving frames before
left turns.

We can identify two clusters for each dendograms related to different timeframes before
left turns. According to the clustering result shown in Figure 5-5, Cluster 1 includes
drivers “1, 10, 8, 9, 16, 4, 7” and Cluster 2 contains drivers “3, 15, 12”. In order to
investigate each cluster, we calculate the centroid of each statistical features in each
cluster. Table 5-9 shows the centroid values related to HCA on 150 frames before left
turns as an instance. Other centroids values related to 300 and 450 frames can be found

on Appendix B.
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Table 5-9. Centroid values of statistical features in clusters from HCA on 150
driving frames before left turns.

Mean
STD
Kurtosis

Skewness

Cluster 1 Cluster 2
“1,10,8,9,16,4, 7" “3,15, 12”7
Speed Gas Brake Steer Acc Speed Gas Brake Steer Acc
0.5841 0.447 0.5606 0.7323 0.5974 | 0.4549 0.0729 0.6908 0.7037 0.2121
0.0908 0.3786 0.4684 0.0813 0.5472 | 0.1516 0.1088 0.5541 0.0684 0.4438
0.0274 0.0943 0.0853 0.1358 0.481 | 0.0234 0.5919 0.1091 0.2347 0.899
0.1873 0.1961 0.2605 0.5017 0.633 0.268 0.8888 0.0708 0.3372 0.5617

Based on the centroid values in Table 5-9, we calculate the Angle and the R-Value

between these two vectors same as before. The Angle and R-Value between two clusters

in each experiment using 150, 300, and 400 frames are shown in Table 5-10.

Table 5-10. Angle and R-Value between centroid vectors of two clusters result from
150, 300, and 450 frames before left turns.

Left Turns

150 Frames
300 Frames
450 Frames

Cluster 1 Cluster 2 Cluster 1 Cluster 2 Angle R-
(Drivers No.) (Drivers No.) M/F M/F (degrees) Value
1,4,7,8,9,10,16 3,12,15 5M, 2F OMm, 3F 35 0.45
8,9,10,11,15,16 1,3,4,7,12 3M, 3F 2M, 3F 32 0.48
2,7,10,15 1,3,4,8,9,11,12,16 2M, 2F 4M, 4F 32 0.22

In Table 5-11, the mean value of signals in different timeframes before left turns is

presented. The normalized zero value for Steering Wheel and Acceleration for each

analysis is also included in this table.

Table 5-11. Mean value of all signals of two clusters result from performing HCA on
150, 300, and 450 frames before left turns.

Left Turns

Cluster 1

Cluster 2

0

Sw=

Acc =

Mean
0 Speed

Mean
Gas

Mean

Brake SW

Mean

Mean
Acc.

Mean
Speed

Mean
Gas

Mean
Brake

sw

Mean

Mean
Acc.

150 Frms
300 Frms
450 Frms

0.087 1.143
-0.215 1.309
-0.475 1.748

0.5841
0.4456
0.7154

0.447

0.5606 0.7323
0.6525 0.3915 0.6443
0.7467 0.4929 0.6598

0.5974
0.7774
0.8024

0.4549
0.8358
0.5902

0.0729
0.3659
0.3705

0.6908
0.8512
0.8271

0.7037
0.6414
0.3941

0.2121
0.2631
0.4180
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The values presented in Table 5-11, indicate similar differences between clusters as for
all turns and right turns. The zero value of SWA after normalization is way less than 0.5
in 150 frames and negative in the 300 and 450 frames. This indicates that there is very
few left steering in the 150, in the 300 and 450 frames before left turns. Also, the zero
value for Acceleration after normalization is more than one as for all turns and right

turns, which means that we just have deceleration before turns.

Considering the mean value of the Acceleration signal in Table 5-11, it is obvious that
drivers in Cluster]l have lower deceleration than those in the Cluster2 (which have higher
deceleration). This means that drivers in Cluster2 lower their speed more rapidly than
those in Clusterl, and as a result they push the brake pedal harder and they have lower

pressure on gas pedal.

As with the previous analysis, we can label the clusters as Moderate and Aggressive

drivers for different timeframes prior to left turns:

e C(Cluster 1 (Moderate Drivers): More gas pressure approaching turn, gentle
braking, and gradual deceleration

o Cluster 2 (Aggressive Drivers): Harder braking and more rapid deceleration

Again, although there exist considerable differences between two clusters in 450 frames,
it seems that for 450 frames we are analyzing too much frames because signal values start

to level out.

We also looked at some of the cluster analyses where there were 3 clusters, though this
was not possible in all situations. As with the 2 cluster situation, we compared the vectors
representing the three clusters. Same patterns of drivers show up in the three cluster in
those analyses, though the third cluster found in each case seemed to be segmented from

one of the pairs of clusters identified in the two cluster situation.
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54 Cluster analysis using DTW

Dynamic Time Warping (Berndt and Clifford 1994), as mentioned before, is a time-series
alignment algorithm, which aims to align two sequences of features by warping the time
axis to find an optimal match. Since our data is time-series and we are looking for
similarities between driving signals which are not necessarily aligned in a specific period

of time, this approach seems to fit our needs.

In order to obtain a better result for comparing the signals, some preprocessing is needed
before applying the DTW algorithm. First, we smooth the signals using a smoothing
function that is a moving average filter of a specific size. Then we compute the z-score
(standard score) for each instance of each signal so that all sequences are centered to have
mean equals to 0 and scaled to have standard deviation equals to 1. This will help signals

to be aligned vertically and hopefully results in better comparisons.

Using DTW as the distance measure on 150, 300, and 450 frames before turns, we end up
with a symmetric12 x 12 distance matrix which indicates the distance between each pair

of drivers.

Table 5-12 shows an example of distance matrix based on 300 frames before all turns.
Based on this distance matrix, we perform the hierarchical cluster analysis. As with our
previous approach, the ‘ward’ method is used as the linkage criteria for hierarchical
cluster analysis.

Table 5-12. An example of a distance matrix results from performing DTW
algorithm on all signals 300 frames before all turns.

D1 D2 D3 D4 D7 D8 D9 D10 D11 D12 D15 D16
D1 0

D2 74.4932 0

D3 72.6479 76.1137 0

D4 68.6884 77.9309 70.8191 0

D7 87.5164 87.2952 82.4854 86.3546 0

D8 70.6811 80.6799 82.8156 82.0003 90.5861 0

D9 71.8016 76.6865 76.1693 80.8976 86.0703  71.2459 0

D10 |75.6432 84.6925 76.0442 78.9084 94.5304 85.5281 85.1184 0

D11 |79.4278 81.7004 76.545 77.0671 93.378 85.4301 81.7125 81.1709 0

D12 | 73.4488 85.2893 72.457 81.5628 84.3096 84.1272 76.0266 75.52 71.9166 0

D15 |78.9168 82.2629 74.9728 80.1667 89.0437 82.5796 88.2824 83.4631 85.4309 78.2106 0

D16 89.577 95.1347 90.7233 91.2382 89.3299 84.3107 87.8455 92.6021 84.5202 90.1001  98.6547 0
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In the next three sections, we would study the result of HCA on different timeframes of

signals before all turns and also left and right turns separately, using DTW.

541 All turns

We have applied HCA on 150, 300, and 450 frames before all turns. Figure 5-6 contains
the dendogram related to clustering driving behaviour using DTW, based on 300 frames

before all turns. Other dendograms regarding 150 and 450 frames can be found in

Appendix B.
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Figure 5-6. HCA based on DTW considering 300 driving frames before all turns.

Table 5-13 presents the drivers in each of the clusters resulting from HCA on different
timeframes before all turns using DTW. The results show high consistency between
cluster members in different timeframes. In fact, using 150 frames and 450 frames in this
case clusters the drivers exactly the same. Since the only parameters that we have in this
approach is the information about each driver, namely, gender and age, we are not able to
conclude much about the driving characteristics of the drivers in each cluster since both

clusters have both male and female drivers in various age ranges.
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Table 5-13. Summary result of clustering driver behaviour using DTW with
different timeframes before all turns.

Cluster 1 Cluster 2
(Drivers No.) (Drivers No.)
150 Frames 1,2,3,4,7,10,11,12,15 8,9,16
300 Frames 1,2,3,4,8,9,10,11,12,15 7,16
450 Frames 1,2,3,4,7,10,11,12,15 8,9,16

In order to investigate if there exist any differences in driving behaviour characteristics
approaching to right or left turns, cluster analysis is performed on right turns and left

turns separately. The result is presented in the next two sub-sections.

5.4.2 Right Turns

As with the previous sub-section we apply HCA on 150, 300, and 450 frames before right
turns. The dendogram related to applying HCA on 300 frames prior to right turns using
DTW is shown in Figure 5-7. Other dendograms related to similar cluster analysis on 150

and 450 frames can be found in Appendix B.
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Figure 5-7. HCA based on DTW considering 300 driving frames before right turns.



Table 5-14 contains drivers’ number in each clusters result from HCA on different

timeframes prior to right turns using DTW.

Table 5-14. Summary result of clustering driver behaviour using DTW with
different timeframes before right turns.

Cluster 1 Cluster 2
(Drivers No.) (Drivers No.)
150 Frames 1,2,3,4,7,10,11,12,15 8,9,16
300 Frames 1,2,3,48,9,10,11,12,15 7,16
450 Frames 1,2,3,4,8,9,10,11,12,15 7,16

The results show high consistency between cluster members in different timeframes. In
fact, HCA analysis using 300 frames and 450 frames results in the same clusters as the
HCA analysis with 150 frames. Once again, the results for right turns analysis is almost

the same as all turn analysis. Again, we can conclude little about the clusters.

543 Left Turns

Using the DTW technique as a distance measure we perform the hierarchical clustering
for pre-left-turn driving behaviour. As with the previous analyses, we study 150, 300,
and 450 non-zero-speed frames before left turns. Dendogram related to HCA result on
300 frames is shown in Figure 5-8. Other dendograms for 150 and 450 frames can be

found in Appendix B.
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Figure 5-8. Hierarchical clustering analysis based on DTW considering 300 driving
frames before left turns.

The result of the cluster analysis performed on left turns with different timeframes is

presented in Table 5-15.

Table 5-15. Summary result of clustering driver behaviour using DTW with
different timeframes before right turns.

Cluster 1 Cluster 2
(Drivers No.) (Drivers No.)
150 Frames 1,2,3,4,7,10,12,15 8,9,11,16
300 Frames 3,7,9,12,15 1,2,4,8,10,11,16
450 Frames 1,2,3,4,7,9,10, 12,15 8,11,16

Similar to the previous result, this analysis also reflected consistency of members across
clusters. Moreover, if we look at the analysis for 300 frames, we see a clustering along
gender lines. As shown in Figure 5-8, we can see that male and female drivers are
grouped predominantly into two clusters. As shown in Table 5-16, based on this
clustering analysis, 100% of the drivers in Cluster 1 are female drivers and 85.7% of the

drivers in Cluster 2 are male drivers. This suggests that there may be some gender
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differences in how they approach left turn; however, these results would need to be

validated on a larger dataset with greater numbers of drivers.

Table 5-16. Two clusters result from cluster analysis using DTW for 300 pre-left-
turns driving frames.

Cluster Drivers Ages Genders Percent

1 3,12,7,9,15 41, 24,31, 21,44 F,F,F,F, F % 100

2 1,4,2,10,8,16,11 37,41,37,20,21,25,22 M,M,M,M,M,M,F % 85.7

5.5 Discussion of Overall Results

Considering the results from previous sections, we show that analyzing the statistical
features of CAN-bus signals would result in at least two distinct clusters of driving
behaviour before turns, indicating moderate (normal) or aggressive driving behaviour.
Moreover, the consistency between clusters’ members was good throughout different

timeframes and even for left and right turns separately.

The results of our second approach in clustering drivers’ behaviour using DTW indicate
that the consistency between the membership of the clusters member was high across
different timeframes and there was even some consistency across the clusters obtained
from all turns, left turns and right turns. In the cluster analysis on 300 frames using the
DTW approach before left turns (Figure 5-8), male and female drivers seem to be
categorized into two different groups suggesting that there may be some gender
differences in driving behaviour approaching a left turn. This result may have occurred
because of left turns seem to be more challenging when compared to right turns and may
result in different behaviour. This is, however, a single example and more data is needed

to investigate this hypothesis.
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Chapter 6

6 Conclusion and Future Works

Understanding driver behaviour can be used to improve Advanced Driver Assistance
Systems (ADASSs), improve vehicle safety and privacy by monitoring the driver’s
behaviour, and also help to detect risky driving styles. Driving behaviour has been
studied from many aspects in the field of traffic safety analysis. Many of these studies
have focused on various aspects of overall driving behaviour of individual drivers and
have met with varying success. Few of these studies focus on specific parts of driving to
analyze individual driving characteristics. Driving activities in preparing for a turn is a
complex driving behavior. It is a confined period of activities where there would appear
to be identifiable differences in driver behavior. We have been able to identify these
differences in small time periods (5-15 seconds) before turns. Analysis of driving
behaviour in different maneuvers may enable the intelligent driver assistance systems to

be customized for individual drivers.

6.1 Conclusion

In this thesis, driver behaviour is analyzed in different timeframes prior to turns. Our aim
was to study the way each driver would prepare the vehicle for a turning maneuver and to
find possible distinct clusters that represent their behaviour. We carried out the
investigation on actual driving data collected from 12 drivers driving through a pre-
determined path in an urban area inside the city of London, Ontario. Five CAN-Bus
time-series signals, including speed, gas pedal pressure, brake pedal pressure, steering
wheel angle, and acceleration, were collected for 5, 10, and 15 seconds before all turns;

left turns and right turns were also considered separately.

We applied two different approaches to cluster drivers using these data. In the first
approach, 4 statistical features including Mean, Standard Deviation, Kurtosis, and
Skewness were extracted from the signals. Using these statistical features as a

representative of each driver’s behaviour, Hierarchical Clustering Analysis was used to
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cluster the drivers. The results show that there exist at least two distinct groups of drivers
with different pre-turn behaviour, one cluster includes moderate drivers, while the other

cluster contains more aggressive ones.

Another approach carried out in this study was using Dynamic Time Warping (DTW) to
measure the dissimilarity between different time-series signals of drivers. As the previous
approach, we used Hierarchical Clustering Analysis to cluster the drivers based on the
dissimilarity matrix we calculated through DTW. The results show high consistency
between members of clusters in different timeframes. Also, in the case of 300 frames

before left turns, male and female drivers categorized into two different groups.

A major distinction of our approach was to focus on a small portion of a driving
behaviour i.e. before turns, and cluster drivers based on that. At least two distinct clusters

of driving behaviour detected by our analysis.

6.2 Future Work

This novel approach has great potential in several fields. Future work will focus on the
testing our approach on larger dataset, containing more drivers and more turns. Also, we
would like to see if it is possible to use this approach to classify drivers, by collecting and
computing data while driving and then mapping a driver to a class. Further, we could use
the cluster characteristics identified and investigate whether it might be possible to
determine if a driver was not preparing for a turn by comparing the immediate data to the
cluster corresponding to that driver. This might provide a method of providing an “early

warning” when a driver is not paying attention to turns.



Appendix A

Summary of Statistical Features for All Drivers Over Al
Turns

Table A-1. Statistical features for each signal for all drivers over all turns.

Mean STD Kurtosis Skewness

Speed 33.097 9.7282 25267 -0.5157
- Gas 10.49 16.0562 5.0206  1.6615
E Brake 42.4679 38.2385 2.1391 0.178
] SWA 4.0627 12.4934 3.2634  0.0477
Acceleration | -1.1597 3.2778  2.9281 0.0513
Mean STD  Kurtosis Skewness
Speed 29.6391 1245  17.7962  0.7574
~ Gas 11.0025 13.8383  4.8364 1.2215
§ Brake 41.7044 38.0499  2.1371 0.3014
S SWA -0.1947 19.4537 28.4443  0.9429
Acceleration | -0.8067 2.7939 26563  -0.3728
Mean STD  Kurtosis Skewness
Speed | 322061 87619 265 -0.6865
™ Gas 7.8214 115761  7.6512 1.681
§ Brake 39.0537 31363  2.5021 0.3674
Q SWA 3221 12748 32795  0.1046
Acceleration | ) 5ggy 22828 22762 -0.3111
Mean STD  Kurtosis Skewness
Speed 344621 9.1342 25879  -0.5702
N Gas 11.7788 15.7949  9.1431 1.8641
2 Brake 41.1542 342111 2.8136 0.1091
S SWA 47638 10.8893  3.9507 0.1289
Acceleration | -1.2395 29485 2913 -0.0337




Mean STD Kurtosis Skewness
Speed 28.0978 8.7935  2.5904 -0.29
& Gas 124142 15.8853 24068  0.8369
§ Brake 35.4999 37.3366  1.7302 0.3681
_ SWA 59341 203927 3.9916  0.4325
Acceleration | eeag 30551 21360 -0.1353
Mean STD Kurtosis Skewness
Speed | 240304 75711 25058  -0.2098
% Gas 7.7779 11.1518  4.9558 1.4225
§ Brake 39.9979 352268  2.461 0.2908
2 SWA 1.3371 13.5558  3.1047 0.0012
Acceleration | 59034 2.4741 2.297 -0.1105
Mean STD Kurtosis Skewness
Speed 267962 9.105  2.6107  -0.1643
R Gas 6.8268 97566  7.6564 1.539
§ Brake | 437800 289318 27092  -0.3379
_ SWA 72792 83119  4.215 0.4574
Acceleration | ; 3697 24579 28831 -0.209
Mean STD Kurtosis Skewness
Speed 29.1785 8.2703  2.782 -0.4831
= Gas 12.8152 13.8042 3.4816  0.8659
~
S| Brake 548244 306001 31584  0.9766
~
S SWA 5.4873 17.693  3.4838 0.1549
Acceleration | 4031 26566  2.882 -0.5161
Mean STD Kurtosis Skewness
Speed | 549454 8948 2973  -0.1568
— Gas 6.4433  7.0318  7.2759 1.5657
~
S| Brake 1497504 286675 52453  0.4365
~
S SWA 07094 12.6119 4102  -0.1083
Acceleration | ;5563 25818 2.6246 0.5
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Mean STD Kurtosis Skewness
Speed | 351247 10813 23307  -0.4055
Gas
N 12.9153 16.8514  3.0522 0.9894
5 Brake
2 41.127 34.8289  2.1598 0.1025
& SWA
2.8904 12.8679  3.9028 -0.0096
Acceleration
-1.2437 3.0067  2.0755 -0.0978
Mean STD Kurtosis Skewness
Speed 29.3951  9.499 2.6379 -0.3099
3 Gas 12.0071 15.0025  4.8097 1.3208
~
2 il 36.2827 363882 22696  0.3644
~
Q SWA 3.0584 18.9255  3.5816 0.0713
Acceleration | osae 30777 21584 -0.2291
Mean STD Kurtosis Skewness
Speed 21.4632 8.6786  2.2643 -0.1088
3 Gas 7.8826 12.5062  4.3079 1.4086
~
2 izl 45.5087 32.6084  2.023  -0.1293
~
Q SWA 5.757 11.6498  3.4747 0.111
Acceleration | 4 1518 31164 2.4729 0.0818
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Appendix B

Summary of Cluster Analyses and Centroids
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Figure B-1. HCA based on Statistical Features on 300 driving frames before all

turns.

Table B-1. Centroid values of statistical features in clusters from HCA on 300
driving frames before all turns.

Cluster 1 Cluster 2
“7,15,1, 8, 16, 10” “3,4,12,9,11”
Speed Gas Brake Steer Acc Speed Gas Brake Steer Acc

Mean | 45445 07271 05316 05588 07914 | 0.694 03181 0.8608 0.6107 0.3103

STD | 01515 0.7494 0.6775 0.3423 0.6866 | 0.2097 0.2663 0.2408 0.1412 0.2644

Kurtosis | 40437 01239 0.1615 0.0609 0.2958 | 0.0484 0.169 0.5374 0.0954 0.4806

Skewness | (o054 04212 05575 04963 0.6278 | 0.1681 0.4972 03342 03469 0.5313
Zero-SWA = 0.1928
Zero-ACC = 1.7536
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Figure B-2. HCA based on Statistical Features on 450 driving frames before all
turns.

Table B-2. Centroid values of statistical features in clusters from HCA on 450
driving frames before all turns.

Cluster 1 Cluster 2
“7,15, 12, 10, 2” “1,4,3,9, 11, 8, 16”
Speed Gas Brake Steer Acc Speed Gas Brake Steer Acc
Mean 0.6327 0.8942 0.5349 0.5188 0.6326 | 0.5368 0.3072 0.8215 0.5486 0.2989
1D 0.4907 0.8192 0.7077 0.7909 0.6383 | 0.2615 0.5041 0.4265 0.2847 0.4536
Kurtosis

0.2165 0.1945 0.1595 0.2201 0.3592 | 0.0209 0.6185 0.3162 0.0206 0.6477
Skewness | (3747 02044 05785 0.4059 04112 | 0.2368 0.7348 0.3564 0.2039 0.6167

Zero-SWA = 0.0888
Zero-ACC = 1.3403
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Figure B-3. HCA based on Statistical Features on 300 driving frames before right
turns.

Table B-3. Centroid values of statistical features in clusters from HCA on 300
driving frames before right turns.

Cluster 1 Cluster 2
“12, 15, 16, 7,1,8,2,10” “3,4,11,9”
Speed Gas Brake Steer Acc Speed Gas Brake Steer Acc

Mean | 45384 0699 04022 05162 07393 | 0.6814 0.2368 0.8092 0.7114 0.1589

STD | 06278 05722 06311 04712 0.5448 | 0.6549 0.1121 0.1352 0.1142 0.3657

Kurtosis | 3694 02108 0.1428 03079 0.3242 | 0.8068 0.2362 05511 0.757 0.5426
Skewness

0.7061 0.388 0.7331 0.3919 0.6548 | 0.3579 0.3649 0.6129 0.3527 0.3923

Zero-SWA = 0.3700
Zero-ACC = 1.4805
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Figure B-4. HCA based on Statistical Features on 450 driving frames before right
turns.

Table B-4. Centroid values of statistical features in clusters from HCA on 450
driving frames before right turns.

Cluster 1 Cluster 2
“12, 15, 2, 8, 16, 7, 10” “1,4, 3,11, 9”
Speed Gas Brake Steer Acc Speed Gas Brake Steer Acc

Mean | (391 06713 05391 04375 0.6037 | 0.704 0.4322 07309 05307 0.2347
STD | 06313 0.5786 0.6651 0.6366 0.5606 | 0.6255 0.3896 0.393 0.2057 0.4992
Kurtosis

0.2726 0.1444 0.1059 0.2945 0.2473 | 0.8184 0.5208 0.3404 0.433  0.681
Skewness | 7756 02273 0.5979 02925 0.675 | 0.2636 0.6042 0.5536 04275 0.5254

Zero-SWA = 0.2565
Zero-ACC = 1.0368
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Figure B-5. HCA based on Statistical Features on 300 driving frames before left
turns.

Table B-5. Centroid values of statistical features in clusters from HCA on 300
driving frames before left turns.

Cluster 1 Cluster 2
“8,9, 11, 10, 15, 16" “1,4,7, 3 12"

Speed Gas Brake Steer Acc Speed Gas Brake Steer Acc

Mean | 44456 06525 03915 0.6443 0.7774 | 0.8358 0.3659 0.8512 0.6414 0.2631
STD | 01256 0571 04832 0052 04734 | 03215 0531 0.6321 0.1894 0.6596
Kurtosis

0.0221 0.0572 0.2881 0.0762 0.1628 | 0.0169 0.1105 0.4319 0.0413 0.6371
Skewness 0.22 01503 0.5241 0.312 0.4447 | 0.2496 0.2932 0.1821 0.3131 0.7642

Zero-SWA = -0.2153
Zero-ACC = 1.3087
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Figure B-6. HCA based on Statistical Features on 450 driving frames before left
turns.

Table B-6. Centroid values of statistical features in clusters from HCA on 450
driving frames before left turns.

Cluster 1 Cluster 2
“8,11,9,16,1,4, 3, 12” “2,7,15, 10"

Speed Gas Brake Steer Acc Speed Gas Brake Steer Acc

Mean | 55902 03705 0.8271 03941 0418 | 0.7154 0.7467 04929 0.6598 0.8024
STD | 0234 05258 04317 0.1691 0.3909 | 0.3464 0.8802 0.731 05612 0.7957
Kurtosis | 90136 0.4419 03151 0.0161 0.461 | 02757 0.1401 0.3856 0.2655 0.4586
Skewness | 51897 0.6264 0.1638 0.1594  0.604 | 0.3422 0.2638 0.5835 0.4882 0.2742

Zero-SWA = -0.4745
Zero-ACC = 1.7478
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Figure B-7. HCA based on DTW considering 150 driving frames before all turns.

Table B-7. Distance matrix results from performing DTW algorithm on all signals
150 frames before all turns.

DRIVERS D1 D2 D3 D4 D7 D8 D9 D10 D11 D12 D15 D16
D1

D2 51.2546

D3 48.6483 49.5566

D4 443311 52.4798 46.4935

07 51.5046 54.6996 51.348 49.7418

D8 48.308 55.1185 54.0396 54.1882 60.0213

D9 50.5568 53.9396 52.0281 53.8165 54.7563 47.5004

D10 52.1599 57.877 49.1979 54.0064 59.5241 59.2137 58.8579

D11 54.2962 52.671 48.2999 51.4589 58.6577 57.2593 55.0249 56.2285

D12 51.7494 56.1508 45.3792 50.6812 50.2555 54.2545 55.8975 52.7679 50.7702

D15 48.6052 50.7403 [42.2493 46.9675 52.734 48.872 55.5972 52.5592 53.6186 49.8345

D16 57.9264 59.5456 59.0409 58.5393 53.9675 57.9566 63.5366 58.9484 59.1714 62.6138
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Figure B-8. HCA based on DTW considering 450 driving frames before all turns.

Table B-8. Distance matrix results from performing DTW algorithm on all signals
450 frames before all turns.

DRIVERS D1 D2 D3 D4 D7 D8 D9 D10 D11 D12 D15 D16
D1

D2 94.9468

D3 93.1676 101.148

D4 88.1167 100.541 94.3533

D7 106.599 108.045 100.058 107.526

D8 97.7012 102.060 102.294 109.326 114.368

D9 95.0492 99.1176 94.4158 108.968 108.005 | 87.5281

D10 98.3847 108.921 91.5471 102.881 109.686 105.695 105.672

D11 106.717 104.767 99.1274 104.075 [119.979 108.655 102.161 99.6747

D12 93.9888 104.766 | 88.2726 107.591 102.878 105.627 96.6164 93.9993 96.5483

D15 105.698 102.099 95.5567 102.434 109.632 103.964 108.075 104.288 104.026 95.7589

D16 113.924 117.946 117.577 115.291 110.427 100.546 108.403 113.165 106.025 114.860-—
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Figure B-9. HCA based on DTW considering 150 driving frames before right turns.

Table B-9. Distance matrix results from performing DTW algorithm on all signals
150 frames before right turns.

DRIVERS D1 D2 D3 D4 D7 D8 D9 D10 D11 D12 D15 D16
D1

D2 49.5135

D3 43.3185 44.6568

D4 40.9993 50.6249 | 39.8005

07 54.6068 54.4743 50.7884 50.2951

D8 46.1774 51.7396 50.4646 53.6885 63.5316

DS 48.0922 51.1961 50.8718 53.1112 55.3085 43.0078

D10 49.2868 54.7977 45.3592 50.5047 59.8392 62.4929 59.3831

D11 44,5927 44.4074 |36.2492 44.445 55.5378 52.5564 46.27 47.7645

D12 47.8186 56.3619 41.6595 44.8404 51.8492 54.2649 53.7997 49.3847 44.7228

D15 49.046 43.8538 40.5371 41.5657 56.1563 49.3988 55.9017 46.3685 48.5281 50.3906

D16 61.9111 56.2177 62.9226 60.6855 59.5236 63.0579 61.7722 59.7957 52.2851 67.948
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Figure B-10. HCA based on DTW considering 450 driving frames before right

turns.

Table B-10. Distance matrix results from performing DTW algorithm on all signals
450 frames before right turns.

DRIVERS D1 D2 D3 D4 D7 D8 D9 D10 D11 D12 D15 D16
D1

D2 98.2756

D3 90.266 98.3832

D4 90.261 99.4485 | 83.831

07 117.081 110.940 109.438 112.633

D8 93.5974 99.8389 99.938 104.937

DS 87.3721 95.9247 94.5126 102.377 120.085 84.5878

D10 102.119 107.316 88.3997 94.9056 116.373 107.572 97.5258

D11 99.8555 94.2353 86.7186 92 115.005 105.693 89.9617 89.7028

D12 91.858 104.964 94.7665 101.558 111.717 109.945 100.990 90.1775 87.7965

D15 103.302 95.8731 90.2139 87.0101 113.616 104.884 109.288 96.8859 93.6847 96.0448

D16 123.409 122.877 114.787 117.873 110.107 110.285 113.590 111.361 107.402 112.456 120.039
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Figure B-11. HCA based on DTW considering 150 driving frames before left turns.

Table B-11. Distance matrix results from performing DTW algorithm on all signals
150 frames before left turns.

DRIVERS D1 D2 D3 D4 D7 D8 D9 D10 D11 D12 D15 D16
D1

D2 53.7418

D3 56.2622 56.5563

D4 49.0908 55.1296 56.0549

07 47.0728 55.0214 52.1473 48.9514

D8 51.3517 59.9456 59.1468 54.902 55.0064

D9 54.0777 57.8588 53.6799 54.8242 53.9674 53.9185

D10 56.2643 62.2758 54.6819 59.009 59.0739 54.5291 58.1076
D11 64.4762 65.5152 61.4788 63.1146 63.9779

D12

57.3648 55.8492 50.6932 59.0251 47.9789 54.2397 58.8944 57.6011 59.4093

D15 | 479754 60.5781-54.6845 47.8451 481195 55.1622 61.4029 60.8908 49.0401
D16

52.2339 63.5223 64.2997 53.4956 55.4732 46.0302 50.6691 66.0573 57.738 54.9936




72

[ ]

~ ~ ~ ~ ~ Q Q Q
&> N4 o N4 Ny N NS &
@ QA i) ) N O &
N N N N N
& @ @ & @ @ @ X
S S S S S S & N
N Q Q N 9 Q' 9 K

Drivers (Age/Gender)

Figure B-12. HCA based on DTW considering 450 driving frames before left turns.
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Table B-12. Distance matrix results from performing DTW algorithm on all signals
450 frames before left turns.

DRIVERS D1 D2 D3 D4 D7 D8 D9 D10 D11 D12 D15 D16
D1

D2 90.1913

D3 97.3126 105.098

D4 85.0535 102.101 109.385

07 91.6242 103.908 86.6582 100.232

D8 103.563 105.234 105.661 115.596 94.6008

DS 106.016 103.678 94.2776 118.384 90.7497 91.7284

D10 93.0497 111.213 96.0433 114.275 100.134 103.013 117.310

D11 116.520 119.812 116.854 121.326-112.886 119.589 113.920

D12 97.0326 104.483 | 78.9956 116.211 90.251 99.4583 90.3677 99.4588 109.051

D15 109.120 110.994 103.189 | 124.469 103.941 102.649 106.342 114.863 118.800 95.3504

D16 100.375 110.902 121.562 111.604 110.883 86.6324 100.992 115.742 104.057 118.295 123.406




algorithm on all signals 300 frames before all turns.

Table B-13. An example of a distance matrix results from performing DTW
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DRIVERS D1 D2 D3 D4 D7 D8 D9 D10 D11 D12 D15 D16
D1 0

D2 744932 0

D3 72,6479 76.1137 0O

D4 68.6884 77.9309 70.8191 0O

D7 87.5164 87.2952 82.4854 86.3546 0

D8 70.6811 80.6799 82.8156 82.0003 90.5861 0

D9 71.8016 76.6865 76.1693 80.8976 86.0703 (71.2459 O

D10 | 756432 84.6925 76.0442 78.9084 94.5304 85.5281 85.1184 O

D11 |79.4278 81.7004 76.545 77.0671 93.378 85.4301 81.7125 81.1709 0

D12 |73.4488 85.2893 72.457 81.5628 84.3096 84.1272 76.0266 7552 719166 O

D15 |789168 82.2629 74.9728 80.1667 89.0437 82.5796 88.2824 83.4631 85.4309 782106 O

D16 | 89.577 951347 90.7233 91.2382 89.3299 84.3107 87.8455 92.6021 84.5202 90.1001 98.6547| O

algorithm on all signals 300 frames before right turns.

Table B-14. An example of a distance matrix results from performing DTW

DRIVERS D1 D2 D3 D4 D7 D8 D9 D10 D11 D12 D15 D16
D1

D2 72.7475

D3 67.2147 72.1581

D4 70.1736 73.1471 63.7107

07 94.4698 86.8538 86.9808 90.1276

D8 67.2627 77.2001 78.2481 80.3248 | 100.547

D9 64.2839 71.753 73.5898 78.1092 92.6175 65.1311

D10 72.6604 81.8688 71.6455 70.7454 98.1962 86.8711 76.707

D11 71.6766 71.1121 63.4653 67.7811 88.5023 82.5187 69.572 70.6478

D12 67.1283 83.334 73.2689 75.5041 91.32 84.7817 75.3577 66.5002 62.495

D15 78.0049 74.5194 70.5577 67.7507 94.6199 84.026 85.7638 77.6787 78.7367 79.6789

D16 97.414 101.413 87.7375 94.0377 91.6336 92.627 90.5237 89.192 85.1862 88.1528 | 102.051




Table B-15. An example of a distance matrix results from performing DTW

algorithm on all signals 300 frames before left turns.
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DRIVERS D1 D2 D3 D4 D7 D8 D9 D10 D11 D12 D15 D16
D1

D2 76.9869

D3 80.4096 81.7646

D4 66.5668 84.7649 80.9741

D7 77.5829 87.9256 76.0633 80.9646

D8 75.5646 85.6512 89.3406 84.3937 76.3555

D9 82.5411 83.7344 79.8544 84.8809 76.717 79.9813

D10 79.9043 88.7264 82.328 90.5699 89.2935 83.6095 97.1349

D11 90.501 96.8265 95.2304 90.3329 [ 100.343 89.5893 | 99.0561 96.2039

D12 82.478 88.0825 71.297 90.2182 74.2948 83.1922 76.9821 88.4054 85.3761

D15 80.2195 93.3252 81.2801 | 97.9038 81.0776 80.5134 91.8804 91.7265 94.9939 76.113

D16 78.3812 86.1644 94.9889 87.2389 86.0389  72.4302 84.0195 | 97.4736 83.5687 92.882 93.8019




Appendix C

Sample Implementation Code

Statistical Feature Extraction:
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clear all;

D=[]; % contains speed signal of one driver before right turns
driVerS={'l','2','3','4','7','8','9','lo','11','12','15','16'} ’.

prompt = 'Do you want to extract features of all turns, left turns or
right turns? A/L/R [A]: ';
str = input (prompt, 's'):;
if isempty(str)
str = 'A';
end

if str=='A"
trns=(3,7,8,9,11,13,14,2,4,5,6,10,12,15,17,18,19];
trnTyp="Al1l";

elseif str=='L"
trns = [3,7,8,9,11,13,14];
trnTyp="'Left"';

else
trns = [2,4,5,6,10,12,15,17,18,19];
trnTyp='Right';

end

prompt = 'How many frames? 150/300/450 ';
noFr = input (prompt) ;

dNo=1;
for d=l:size(drivers, 2)
S strcat ('Driver',drivers{d}, 'All.csv");
M = csvread(s) ; %all data:
speed, gas, brake, leftSteer, rightSteer,leftSignal, rightSignal

s = strcat('turn ',drivers{d},'.csv');
T = csvread(s):; %all turns

for i=trns

v=[];g=[]1:b=[1;1s=[];rs=[];acc=I[];

currfr = T(i,1); 2current frame

k = 0; $number of sequenses with non zero speed
1 =0; gcounter

vl = M(currfr,1); $vl-v0/t for caculating accelerate

while k ~= noFr
if M(currfr,l) ~= 0
v = [M(currfr,1l),v]; $speed
g = [M(currfr,2),qg]; $gas




b = [M(currfr,3),bl:; $brake
ls = [M(currfr,4),1s]; $left steering wheel
rs = [M(currfr,5),rs]; $right steering wheel
sw = rs-1s; $steering wheel
if 1 == 30
1=0;
v0 = M(currfr,1);
acc = [vl1-v0,acc]; $accelerate (every 30 frames)
v1=vO0;
end
k=k+1;
1=1+1;
end
currfr = currfr - 1;

end
v=v'; g=g'; b=b'; ls=1ls'; rs=rs'; acc=acc';
s=strcat ('turn',num2str (i), 'extracted',num2str (nokFr),"'.csv');

if exist(s, 'file'")
X = csvread(s);

else
X=[1;
end
D=[X;
mean (v) ,std(v), kurtosis(v), skewness(v), ...
mean (g),std(g), kurtosis(g), skewness(qg), ...
mean (b) ,std(b), kurtosis (b), skewness(b), ...
mean (sw) , std(sw), kurtosis (sw), skewness (sw), ...
mean (acc), std(acc), kurtosis (acc), skewness (acc) ] ;

csvwrite(s,D);
end
dNo=dNo+1;
end

total=zeros (12, 20);
for i=trns
s=strcat ('turn',num2str (i), 'extracted',num2str (nokFr),"'.csv');
x=csvread(s) ;
X (isnan(x)) = 0;
total = total + x;
end

total=total/size(trns,2);
s=strcat (trnTyp, 'TurnsExtracted',num2str (nokFr),'.csv');
csvwrite (s, total);
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Statistical feature extraction clustering:

clear all;

prompt = 'All turns, left turns or right turns? A/L/R [A]l: ';
str = input (prompt, 's');
if isempty(str)

str = 'A';
end
if str == 'A'
trnTyp = 'All';
elseif str == 'L'
trnTyp = 'Left';
else
trnTyp = 'Right';
end
prompt = 'How many frames? 150/300/450 ';

noFr = input (prompt) ;

s=strcat (trnTyp, 'TurnsExtracted',num2str (noFr),"'.csv'):;
turns=csvread(s) ;

o)

% Normalizing the feature values between 0 and 1

for i = l:size(turns,2)
turns(:,1i)=(turns(:,1)-min(turns(:,1i)))/ (max(turns(:,1i))-

min(turns(:,1i))+0.0001) ;

end

turns (isnan (turns)) = 0;

% performing HCA using Ward linkage criteria and Euclidean Distance
Z = linkage (turns, "ward');

figure;
H = dendogram(Z, 'labels', {'Driverl (37/M)"', 'Driver2 (37/M) "', 'Driver3
(41/F)"', 'Driverd (41/M) "', 'Driver? (31/F) "', 'Drivers8 (21/M) "', 'Driver9

(21/F)"', 'Driverl0 (20/M)', 'Driverll (22/F)"','Driverl?2
(24/F) "', 'Driverlb (44/F)','Driverl6e (25/M)"'}):
set (H, 'LinewWwidth',1); ax = gca; ax.XTickLabelRotation = 45;
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