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Abstract

Self-Monitoring of Blood Glucose (SMBG) for Type-2 Diabetes (T2D) remains highly

challenging for both patients and doctors due to the complexities of diabetic lifestyle data

logging and insufficient short-term and personalized recommendations/advice. The recent

mobile diabetes management systems have been proved clinically effective to facilitate self-

management. However, most such systems have poor usability and are limited in data analytic

functionalities. These two challenges are connected and affected by each other. The ease of

data recording brings better data for applicable data analytic algorithms. On the other hand,

the irrelevant or inaccurate data input will certainly commit errors and noises. The output of

data analysis, as potentially valuable patterns or knowledge, could be the incentives for users

to contribute more data.

We believe that the incorporation of machine learning technologies in mobile diabetes man-

agement could tackle these challenge simultaneously. In this thesis, we propose, build, and

evaluate an intelligent mobile diabetes management system, called GlucoGuide for T2D pa-

tients. GlucoGuide conveniently aggregates varieties of lifestyle data collected via mobile

devices, analyzes the data with machine learning models, and outputs recommendations.

The most complicated part of SMBG is diet management. GlucoGuide aims to address

this crucial issue using classification models and camera-based automatic data logging. The

proposed model classifies each food item into three recommendation classes using its nutrient

and textual features. Empirical studies show that the food classification task is effective.

A lifestyle-data-driven recommendations framework in GlucoGuide can output short-term

and personalized recommendations of lifestyle changes to help patients stabilize their blood

glucose level. To evaluate performance and clinical effectiveness of this framework, we con-

duct a three-month clinical trial on human subjects, in collaboration with Dr. Petrella (MD).

Due to the high cost and complexity of trials on humans, a small but representative subject

group is involved. Two standard laboratory blood tests for diabetes are used before and af-

ter the trial. The results are quite remarkable. Generally speaking, GlucoGuide amounted to

turning an early diabetic patient to be pre-diabetic, and pre-diabetic to non-diabetic, in only 3-

months, depending on their before-trial diabetic conditions. cThis clinical dataset has also been

expanded and enhanced to generate scientifically controlled artificial datasets. Such datasets

can be used for varieties of machine learning empirical studies, as our on-going and future

research works.

GlucoGuide now is a university spin-off, allowing us to collect a large scale of practical

diabetic lifestyle data and make potential impact on diabetes treatment and management.

Keywords: machine learning, lifestyle data, T2D management, mobile computing
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Chapter 1

Introduction

Diabetes is a metabolic disease in which patients have abnormally high blood glucose. There

are two main types of diabetes: Type-1 and Type-2 Diabetes. Type-1 Diabetes (T1D) is a

disease in which the pancreas produces little or no insulin. As such, glucose builds up in blood

instead of being used for energy. Individuals with T1D need to inject insulin as prescribed.

Type-2 Diabetes (T2D), on the other hand, is a disease in which the pancreas does not produce

enough insulin, and/or the human body does not properly use the insulin it makes [2, 3]. There

is also a type of diabetes called Prediabetes, which refers to blood glucose levels that are higher

than normal, but not yet high enough to be diagnosed as T2D [2].

Diabetes, if not well-treated, will develop many long-term complications including heart at-

tack, stroke, amputations, and blindness. According to WHO 2013, 347 million people world-

wide have diabetes, and T2D patients comprise more than 90% of them. Thus, improving the

treatments of T2D is significant to patients’ condition and our society [2].

After a person is diagnosed with T2D, usually medications will be prescribed by doctors.

Also, a protocol called Self-Monitoring of Blood Glucose (SMBG) will be advised by health-

care providers to help the patient achieve proper blood glucose targets [2]. In fact, blood

glucose is affected by a large number of lifestyle and clinical factors, including what you ate,

how long ago you ate, your previously blood glucose levels, physical activity, mental stress, ill-

ness, sleep patterns, and so on [2]. Each factor can have different impact on a specific person’s

blood glucose and there could also be complex interactions among these factors.

1.1 Challenges and Barriers of Diabetes Management

Adopting and maintaining healthy lifestyle changes is highly challenging for T2D patients [4].

For example, the overwhelming complexity of carbohydrate or calories counting presents an

1



2 Chapter 1. Introduction

often insurmountable obstacle for most T2D patients. Also, when the patient’s blood glucose

is high, it can be difficult to determine which factor(s) causes it. On the other hand, the time-

constraints for healthcare providers do not allow for 24/7 real-time monitoring and personalized

advice, leaving a patient in a potentially life-threatening situation.

The rapid development of mobile computing starts a new era of diabetes management.

Mobile apps and wearable medical devices have significantly facilitated diabetes management

regarding their usabilities. For example, it is possible now that patients can conveniently sync

their blood glucose readings from Bluetooth-enabled glucometers to their mobile apps and send

them to health providers via the Internet. Their health providers can log-in Web portal to review

and analyze their blood glucose readings. Such ubiquitous procedure is a revolution. However,

there are still two main challenges preventing the current mobile diabetes management systems

from reaching their full potential.

The first challenge is related to the system input, i.e., the complexities of lifestyle data

logging. Even utilizing the modern mobile diabetes system and wearable sensors, data logging

is still troublesome and time-consuming, especially for diet and glucose levels. For example,

most systems use food database searching to help patients record diet information. However,

to record every detail of a meal, patients need to search each food item in the meal and estimate

its serving and portion size, which makes diet recording a very time-consuming process. As

for blood glucose levels, continuous blood glucose monitoring (CGM) devices or finger-prick

based glucometers are mostly used to estimate glucose concentration from real blood samples,

which means testing blood glucose level is painful and costly [20, 59].

The second challenge is related to the system output. More specifically, most systems are

lacking evidence-based, personalized, and instantaneous feedback to patients’ diabetes man-

agement practices. Diabetic lifestyle data now are collected without being adequately ana-

lyzed. Some popular systems such as Glooko TM and Glucose Buddy TM, only log and plot

blood glucose and other lifestyle data, without data analytics on patient data to actively advise

and engage patients. A few others, such as WellDoc [5], do give patients personalized advice

but only prescribed by doctors who need to access the system to review their patients data.

That is in fact not practical when the data volume is huge and data structure becomes complex.

1.2 Our Solutions

A trend in healthcare analytics is taking advantage of machine learning models to discover

patterns from the large scale of clinical data and to aggregate medical domain knowledge from

a variety of sources. Specifically, predictive modeling, as an important component of machine

learning, is a process used in predictive analytics to create one or multiple models with fore-
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casting probabilities and trends. It could be utilized to facilitate the processing of patients’

data and allow patients and their health providers to interact in a more convenient and timely

manner.

To tackle the data input issue. We believe that machine learning technologies can be utilized

to facilitate lifestyle data input. For example, it is possible now that patients can take pictures

of a food item, and that food item can be recognized using predictive models such as deep

neutral networks. Then, we can use the food meta-data learned from machine learning models

to obtain detailed nutrition information from querying food databases.

Machine learning could also be used to enhance the outputs of diabetes management sys-

tem, i.e., learning of lifestyle data and output practical hidden patterns or knowledge. Numer-

ous research works have been proposed to use predictive models in diabetes diagnosis and risk

analysis [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. They aim to predict diabetes clinical diagnosis and

risk factors based on patients’ profile data. Another challenging research area is blood glucose

prediction. With the help of reliable blood glucose prediction models, patients would be able

to take actions proactively to stabilize their predicted blood glucose levels. Previous studies

have been focusing on the exclusive CGM (Continuous Blood Glucose Monitoring) data, and

achieve remarkable prediction accuracy [16, 17, 18, 19]. To elaborate, CGM is an advanced

way to measure glucose levels in real-time (or short sampling interval like 5 minutes) through-

out the day and night. In particular, glucose sensors are inserted under the skin to measure

glucose levels in tissue fluid. They are also connected to a transmitter that sends the informa-

tion via wireless networks. Such procedure mostly used in clinical treatments for T1D patients,

which are usually costly and publicly inaccessible.

As for T2D patients, we believe that the design principle of blood glucose prediction frame-

work should focus on the lifestyle data and discrete finger-prick blood glucose samples since

they are the essences of T2D self-management. Furthermore, the lifestyle data nowadays can

be collected cost-efficiently (comparing to the clinical data such as CGM data) using modern

mobile devices. The lower of the cost of lifestyle data collection makes it has the potential of

being expanded to big informative data.

In this thesis work, we propose, build, and evaluate an intelligent mobile diabetes man-

agement system, called GlucoGuide for T2D patients. GlucoGuide conveniently aggregates

varieties of lifestyle data collected via mobile devices/sensors, analyzes the data with predic-

tive models, and outputs the model outcomes as recommendations.

The most complicated part of self-management is diet management, and GlucoGuide aims

to address this crucial issue using classification models and mobile-camera-based automatic

data logging. The proposed classification model can categorize any food item into three rec-

ommendation classes using its nutrient and textual features. Our evaluation shows that the best
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model classification accuracy is around 95%, indicating this method is empirically effective

and reliable for food items recommendations.

A lifestyle-data-driven recommendations framework in GlucoGuide can output short-term

and personalized recommendations for lifestyle changes to help patients stabilize their blood

glucose level. This framework conduct predictive modeling on patients’ lifestyle data to predict

blood glucose levels. Each prediction iteration can also rank lifestyle factors in terms of their

importance or relevance. The data-driven recommendations regarding the important factor(s)

will be sent to patients.

To collect training data from real patients and evaluate the clinical effectiveness of this

framework, we have collaborated with Dr. Petrella’s health team to conduct a three-month

clinical trial on human subjects. Due to the high cost and complexity of trials on human, a

small but representative subject group is involved. Using the lifestyle data collected from this

group, the performance of our blood glucose prediction framework is similar to state-of-the-art

methods [20, 16] using clinical CGM data.

In terms of clinical effectiveness, two standard laboratory blood tests for diabetes are used

before and after the trial. The results are quite remarkable. Generally speaking, GlucoGuide

amounted to turning an early diabetic patient to be pre-diabetic, and pre-diabetic to non-

diabetic, in only 3-months, depending on their diabetic conditions before the trial.

Since the collected clinical dataset is relatively “small“ regarding its volume and dimen-

sions, our blood glucose prediction framework was possibly not converged. Meanwhile, we do

not have large scale of practical diabetic lifestyle datasets to explore the potential of our model

at this point. As such, we have designed an effective mechanism to expand and enhance this

clinical trial dataset. After the data expansion, we have obtained large scientifically controlled

artificial datasets for further studies on blood glucose predictions.

Specifically, we first use parametric statistical inference to find the properties of underlying

distributions and potential dependencies. We have also applied diabetic domain knowledge to

make certain assumptions on the data and determine all the well-known feature dependencies

and parameters. The unlabeled lifestyle datasets will be sent to AIDA (a very popular online

diabetes simulator) to generate blood glucose labels [75, 76]. Our evaluation results show that

this generation process is effective. Such artificial datasets can also be used for varieties of

machine learning empirical studies such as blood glucose warnings, missing value imputation,

data sparsity analysis, transfer learning, etc., as our on-going and future research works.

GlucoGuide now is a university spin-off, allowing us to collect a large scale of practical

diabetic lifestyle data and make potential impact on diabetes treatment and management. As

far as we know, diabetic datasets similar to ours are not publicly available at this point, thus, we

also plan to release our de-identified datasets for better collaborations with peer researchers.
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The remaining chapters of the thesis are presented as follows: We first review the prior rele-

vant research and developments on mobile diabetes management system and diabetes modeling

using predictive models in Chapter 2. Then, our research question is defined in Chapter 3, as

well as the design principle of GlucoGuide system. The diet management sub-system and

food classification of GlucoGuide is explained in Chapter 4. Chapter 5 presents the proposed

diabetic lifestyle analytical framework and its empirical and clinical evaluation results. The

clinical data expansion and enhancement process is presented in Chapter 6.

The current research and development status of GlucoGuide spin-off and its future research

objectives are briefly discussed in Chapter 7. The thesis is concluded in Chapter 8.



Chapter 2

Literature Review

In this chapter, we will first discuss the features of diabetic lifestyle data and how they can

be collected and managed via mobile diabetes management systems. Next, we will review

relevant machine learning researches on diabetes-related predictive tasks such as diagnosis and

risk analysis.

2.1 Mobile Diabetes Management System

Nowadays, mobile computing has been emerging as an integral part of daily activities. As

for their application in medical informatics, the technological advances could make medical

services and treatment overcome time and location barriers thus provide ubiquitous, real-time,

individualized medical treatments [21, 22, 23]. In fact, researchers have consistently shown that

such ubiquitous healthcare services could be utilized to enhance the quality of life for people

living with chronic illnesses (such as diabetes, heart disease, cancer, and so on.) [24, 22].

It is well known that the healthcare for T2D is mostly focused on lifestyle changes and self-

management, which are typically managed by increasing exercise, diet modification, and/or

medications/insulins adjustments. If blood glucose levels are adequately lower than certain

levels, medications such as metformin or insulin might not be needed.

In fact, self-management is often a challenge for T2D patients since the control is con-

tingent on numerous complex factors and behaviors. One promising solution is to integrate

ubiquitous healthcare services into diabetes self-management, which could bring more effec-

tive behavioral changes and continuous health monitoring [25].

6
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2.1.1 Features of Diabetes Lifestyle Data

Health features are aspects of the health conditions that need to be managed and monitored

to best control the chronic illness [26]. Smith and Schatz [26] identify 14 health features,

which are Access to care, Air quality, Blood pressure, Blood glucose levels, Depression, Diet,

Education, Heart rate, Medication, Physical Activity, Respiration, Stress, and Substance abuse

respectively. In terms of diabetes, the most relevant health features of lifestyle data are listed

as follows (other similar health features for diabetes can also be found in [24, 27, 5, 28]):

• Blood Glucose. Blood glucose level is the most important feature and the target variable

for diabetes [25]. This feature is typically collected via either finger-prick glucome-

ter or Continuous Glucose Monitor (CGM) [26, 29].The blood glucose readings can be

transmitted to mobile devices wirelessly or using USB port (some advanced glucometers

follow Bluetooth communication specification made by Continua Health Alliance). To

give an example, Cho et al. [29] employed mobile phone to collect blood glucose mea-

surements. Their results indicated good levels of participants’ satisfaction and adherence

using the mobile technologies to manage blood glucose levels. More conveniently, in the

future, we would image the appearance of wearable sensors measuring glucose levels

without actually taking blood glucose sample, such as Google’s prototype called “Smart

Contact Lens“ for measuring blood glucose levels.

• Diet. Diabetic patients need to delicately monitor carbohydrates intake to avoid abnor-

mal high/low blood glucose level or adjust insulin dosage (mostly for T1D patients).

Other nutrients information such as protein, fat, sodium could also affect their blood

glucose level. Researches have also shown that mobile nutritional support is effective

on diabetes management [26, 29]. Nowadays, diabetes patients could conveniently use

advanced technologies such as barcode scan, Optical Character Recognition (OCR), or

food database searching to conduct diet management. Shortly, with the rapid develop-

ments of advanced machine learning technologies, especially for deep learning, meals

could be recorded via image or voice recognition reliably.

• Physical Activity. Physical activity is typically measured by exercise intensity and dura-

tion [25]. Step counts tracking (pedometer) is another convenient method for estimating

the exercise calories consumption. It is proved that moderate or vigorous exercises could

increase the insulin sensitivity of cells. Thus, keeping track of exercise is important to

T2D patients. Stuckey [30, 31] et al. conducted The Diabetes and Technology for In-

creased Activity (DaTA) study to test the effectiveness of a lifestyle intervention driven

by self-monitoring of blood glucose (BG), blood pressure (BP), physical activity (PA),
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and weight using the mobile devices and wireless communication technologies. Their

research results showed that self-monitoring of the risk factors for metabolic syndrome

(such as hypertension and dysglycemia) and increased physical activity improved the

participant’s cardiovascular disease risk profile. Furthermore, with the help of hourly

step counts information and aerobic step counts, future systems can make more specific

and intelligent recommendations to improve patient’s self-management.

• Access to Care. Access to care mainly refers to the capabilities of being able to commu-

nicate with the health providers in the case of questions or emergency. This can be done

via voice, messages, E-mails between mobile devices and servers [29, 30, 22, 32, 33, 34].

This feature is important for all chronic self-management systems. Patients are motivated

to upload their data since they know that all data could be carefully taken care by health

providers, and they would receive valuable feedback. The location-awareness mobile

device can also report patient’s location to health provider to deal with the emergent

situations.

• Blood Pressure. Blood pressure can be measured using wireless communication enabled

sphygmomanometer or other wearable devices such as Fitbit.

• Weight. Weight is normally related to BMI measurement. Bluetooth-enabled scales can

conveniently record weight data and communicate with mobile phones.

• Education. Education is important for diabetes patients since self-management involves

many complex factors and most diabetic patients lack such knowledge. Mobile devices

have been proven very useful in this area [26]. However, according to the best of our

knowledge, personalized and real-time education is still a big challenge and largely un-

explored.

• Substance abuse. Substance abuse normally refers to tobacco and alcohol. Mobile de-

vices could use message, reminder, or alert functionality to encourage smoking cessation

and reduction in alcohol.

Current mobile diabetes systems are designed to facilitate the management of these health

features. On their clinical effectiveness, Liang et al. [35] reviewed 22 clinical trials that as-

sessed the effect of mobile phone intervention on blood glucose control of patients with dia-

betes. Most results show that significant reduction in glycosylated hemoglobin A1c values and

/ or other health outcomes in diabetes patients when comparing the mobile phone intervention

group with the control group. We list several landmark research papers and clinical trials which
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represent the typical research methodologies and evaluation procedure of ubiquitous diabetes

management research:

• Tang et al. [27] evaluated an online disease management system supporting patients with

uncontrolled T2D. It is a randomized controlled trial of 415 patients with T2D. Patients

in the intervention group (INT) need to upload their glucometer, nutrition, exercise logs,

and insulin record. Nurses and physicians remotely provide glucose summary report,

personalized text and video, and diet advice to INT group. Its clinical trial results show

that INT group has significantly reduced A1c at six months compared to usual care (UC)

(-1.32% vs. -0.66%). While for the 12 months duration, the difference was not very

significant (-1.14% INT vs. -0.95% UC). According to their analysis, the main potential

reason is that UC group could have stimulated behavioral changes due to “Hawthorne

effect“ (changes influenced by being observed in a study).

• Quinn et al. [5] conducted a similar 3-month study. The INT group received mobile

phone based software which provides real-time feedback on patients’ blood glucose

level, medication regiments, incorporated hypo- and hyperglycemia treatment algorithm

and other requested additional feedback. The system sent computer-generated logbooks

with suggested treatment plans to INT group. They claim that adults with T2D achieved

statistically significant improvements in A1c as well as satisfaction levels.

• Noh et al. [36] designed and developed a web-based ubiquitous information system for

diabetes education. They compared the INT group using this system with conventional

education for diabetes patients. Their results show that blood glucose level and A1c are

significantly decreased over time in the INT group but not in the control group.

• Spring et al. [37] argued that some patients exhibit multiple chronic disease risk behav-

iors. They believe that the current literature provides little information about advice that

can maximize simultaneous health behavior changes. They randomized 204 adults with

observed unhealthy behaviors such as saturated fat and low fruit and vegetable, high

sedentary leisure time, and low physical activity. They were requested to use mobile

devices to record and upload their daily activities. The increase fruits/vegetables and de-

crease sedentary leisure treatments improved more than the other three type of treatments

(P ≤ 0.001). Specifically, daily fruit/vegetable intake increased from 1.2 servings to 5.5

servings, sedentary leisure decreased from 219.2 minutes to 89.3 minutes and saturated

fat decreased from 12.0% to 9.5% of calories consumed.

• In the pilot-controlled clinical trial conducted by Katz and Nordwall [34], they utilized

Bluetooth, mobile phones, and application servers to facilitate the self-management pro-
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cess. More importantly, their system translated scientifically supported knowledge for

chronic disease management into action by providing easily followed daily coaching

using the patients’ data. It is a data-driven system because the feedback messages are

selected by the system based on the patient’s historical data. However, their feedback

is simply generated using domain knowledge and needed human involvement to review

the data and provide personalized feedbacks. We argue that such process is not feasible

when the data scale become large.

We have surveyed state-of-the-art products and applications in the industry. By reviewing their

product specifications, we can conclude that all the health features mentioned above are man-

ageable via nowadays’ mobile technologies and Web technologies. Most recently, IT giants

such as Google, Apple, and Microsoft have also released their mobile health platforms for fit-

ness and chronic diseases managements. Take ResearchKit for an example, which is an open

source framework introduced by Apple to enable efficient lifestyle and clinical data collec-

tion and aggregation. Researchers can easily create visual consent flows, conduct real-time

dynamic active tasks and survey using a variety of customizable modules provided by Re-

searchKit. Also, since ResearchKit works seamlessly with HealthKit, allowing iOS apps that

provide health and fitness services to share their data with each others. Researchers thus can

access even more relevant lifestyle data for their studies, such as daily step counts, calorie use,

and heart rate, etc.

Although the clinical trials and products mentioned above show that it is technically feasi-

ble to improve diabetes self-management using mobile devices and Web technologies. How-

ever, most systems are very similar in their functionalities and implementations, and there

are obvious gaps between the evidence-based recommendations and their current implemented

functionalities. Furthermore, in spite of the effectiveness of these clinical trials, most of them

are not cost-effective. Participants in the clinical trials still take large efforts to synchronize

their lifestyle data. Health providers on the server-side need to routinely check and review pa-

tients’ data and provide feedback. As such, we believe it is still very challenging to design and

develop an intuitive, intelligent, and interactively ubiquitous diabetes management system.

Predictive models, as an important component of machine learning, could be utilized to

facilitate the data processing and allow patients and their health providers interact in a more

convenient and timely manner. Researchers have been exploring the application of predictive

models in diabetes domain for nearly two decades. In the next section, we will discuss how

predictive modeling can be applied to diabetes diagnosis and risk analysis.



2.2. Diabetes Risk and Diagnosis Using PredictiveModeling 11

2.2 Diabetes Risk and Diagnosis Using Predictive Modeling

Predictive modeling, also can be called supervised learning, is a process used in predictive

analytics to create one or multiple models with forecasting probabilities and trends. It has

two main components: Classification and Regression. Classification aims to categorize data

entries into discrete class labels (e.g., Spam vs.Non-Spam), with minimum classification errors

subject to applicable constraints. Regression tries to predict continuous values such as stock

price, temperature, etc. The overall performance of regression is usually measured by mean

absolute error or mean squared error.

Diabetes risk and diagnosis prediction are typically considered as classification tasks, clas-

sic classification framework such as Support Vector Machine (SVM) [6, 10, 15], Decision

Tree [12], RandomForest [14], Neural Networks [9], Naı̈ve Bayes [11] are widely employed.

Training datasets are focused on clinical diagnoses and patient’s profile data, including pa-

tients’ family history, age, race and ethnicity, weight, height, waist circumference, body mass

index (BMI), hypertension, diagnosis code, etc. Once classification models are well-built, it is

clearly to predict and identify the important rules and features causing diabetes disease.

Yu et al. [10] built SVM models on patient data from the 1999-2004 National Health and

Nutrition Examination Survey (NHANES). They designed two classification schemes: Clas-

sification Scheme I (diagnosed or undiagnosed diabetes vs. pre-diabetes or no diabetes) and

Classification Scheme II (undiagnosed diabetes or prediabetes vs. no diabetes), and achieved

receiver operating characteristic (ROC) curve, were 83.5% and 73.2%, respectively. Nahla et

al. [15] used an additional explanation module, turning the “black box“ model of an SVM into

an intelligible representation (ruleset). Evaluation results on a real-life diabetes dataset show

that their intelligible SVMs achieve with the prediction accuracy of 94%. Polat et al. [6] have

used Generalized Discriminant Analysis to discriminant features between healthy individuals

and patients (diabetes). Then, they built LS-SVM to classify diabetes dataset. The proposed

system called GDALS-SVM and obtained 82.05% classification accuracy using 10-fold cross

validation. Similar research classification works have also been found in the literature using

Decision Tree [12], Artificial Neural Network (ANN) [9], and Naı̈ve Bayes [11].

Li and Zhou in [14] argued that if we can learn models in the presence of a large amount of

undiagnosed samples, the heavy labeling burden on the medical experts could be released.

They proposed a semi-supervised learning algorithm named Co-Forest. It extends the co-

training paradigm by using a well-known ensemble method named Random Forest, which

enables Co-Forest to estimate the labeling confidence of undiagnosed samples and produce

the final hypothesis easily. Their diabetes case studies show that undiagnosed samples were

helpful in building computer-aided diagnosis systems, and their model was able to improve the
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performance via learning only a small amount of diagnosed samples by utilizing the available

undiagnosed samples.

Although the diabetes diagnosis and risk analysis are well-studied using predictive models,

we argue that more short-term and actionable predictive tasks could be performed. For exam-

ple, predictive models could be used to learn the knowledge from dietitians and then provide

food guide for T2D patients. More advanced, given sufficient training data, predictive models

should be able to discover which lifestyle factor has the largest influence on the abnormal blood

glucose level.

In the next chapter, we will further discuss our research questions regarding the challenges

and barriers of current diabetes self-management and how predictive models can be applied to

solve them.
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Overview of the GlucoGuide System

In this chapter, we will further discuss the main challenges of current mobile diabetes manage-

ment systems. Next, we will compose our research questions regarding the solutions to these

challenges via applying machine learning technologies and mobile computing.

3.1 Challenges

Based on the remarks of literature review and our preliminary studies, we think there are two

main challenges for current mobile diabetes management systems. The first one is the com-

plexities of lifestyle data input. The second one is the lacking of evidence-based lifestyle

recommendation for patients to effectively stabilize their blood glucose. These two issues are

in fact connected and affected by each other. The ease of data recording enables more and

better quality of training data from patients for applicable predictive models to generate better

results. On the other hand, the irrelevant or inaccurate data input will certainly commit errors

and noise to further data analysis. The output of predictive models, as potential personalized

patterns or knowledge, could be incentives for users to record more qualified data.

Most lifestyle data nowadays can be automatically captured via a variety of sensors (such

as glucometers, pedometers, blood pressure monitors, etc.). Smart wearable sensors like Fitbit

products can also collect comprehensive health data about your body, especially for your phys-

ical activities. However, for diabetes patients, logging diet and glucose level are still relatively

difficult. As discussed before, machine learning technologies such as most recent deep learning

can be utilized to help patients with diet and blood glucose input. For example, it is possible

now that patients can take pictures of a food item, and that food item can be recognized us-

ing deep neutral networks. Then, we can query the meta-data about that food item in a food

database to get its nutrition information.

13
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How to tackle the second challenge is the focus of this thesis work. We aim to collect

and analyze lifestyle data using predictive models. Based on the model outcomes, evidence-

based, personalized, and timely recommendations could be generated to guide patients’ self-

management practices. Such recommendations are closely related to patients’ data, thus can

effectively evaluate their performance and help patients creating more specific and personalized

action plans. On the other hand, recommendations can also be viewed as incentives of data

recording and motivate patients to record and upload more qualified data.

3.2 Research Questions

We set the focus of this thesis on T2D patients since it comprises more than 90% of the diabetic

population [25]. Thus, improving the treatments of T2D is significant to patients’ condition

and our society. We believe predictive models could be applied to the two most important and

complex components of T2D self-management: 1) Diet management and 2) Blood glucose

monitoring and predictions. Specifically, predictive models could be used to analyze food

data and categorize each food item into different recommendation levels for patients. More

intelligently, predictive models could also be used to predict blood glucose level and identify

what factor(s) causes abnormal blood glucose levels. Since T2D patients usually do not use

CGM devices, our blood glucose prediction task will focus on lifestyle data and fingerstick-

based blood glucose samples.

As such, we propose three research questions or hypotheses as follows:

• Can we use classification models to generate real-time food guideline to help pa-
tients proactively manage their diet?

• Can we predict T2D patients’ blood glucose level merely based on lifestyle data and
discrete fingerstick-based blood glucose samples?

• Can we provide clinically effective lifestyle recommendations based on the outcomes
of blood glucose prediction?

To answer these research questions, we propose, build, and evaluate an intelligent mobile di-

abetes management system, called GlucoGuide for T2D patients. GlucoGuide conveniently

aggregates varieties of lifestyle data collected via mobile devices, analyzes the data with pre-

dictive models, and outputs recommendations.

In the next section, we will present the architecture of GlucoGuide.
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3.3 The GlucoGuide Solution

GlucoGuide contains three sub-systems, as shown in Figure 3.1, including the 1) Lifestyle data

collection and preprocessing, 2) GlucoGuide mobile clients, and 3) GlucoGuide Engine. Their

design and development processes involve many up-to-date technologies.

The GlucoGuide mobile clients has been designed and built on the latest Google Android

and Apple iOS systems, aiming to provide excellent user experience powered by our well-

designed user interface and information visualization technologies. One design goal here is to

reduce the burden of lifestyle data input in GlucoGuide. For example, we have been designing

and implementing the camera-based auto logging of food items and glucometer readings. It

acts as a bridge connecting patients and GlucoGuide Engine. The mobile clients collect raw

lifestyle data, preprocess and upload them securely to GlucoGuide Engine where data analysis

takes place. Patients can also use the mobile clients to receive and review recommendations,

setup different kinds of reminders, etc.

Figure 3.1: GlucoGuide architecture

The GlucoGuide Engine, consisting of various computing servers, can also be regarded as
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a computer cloud. It consists of a centralized database, machine learning engines, and a web

portal, which allows patients and our health teams to log-in to review the visualized health data

and online logbook. The core function of GlucoGuide Engine is to analyze the uploaded data

and generate recommendations based on patients’ data using predictive models.

3.3.1 Food Classification

The first type of recommendation is proactive diet guideline. Among all the components of

self-management, the most important and complicated part is the diet management, requiring

T2D patients restrict and accurately count the amount of carbohydrates, protein, fat, and so

on [25]. Since there are diverse foods available at various places (supermarket, restaurant,

home-made, etc.), for most T2D patients (especially for prediabetic patients) often feel frus-

trated and troublesome in composing effective and diabetic-friendly meal plans to achieve their

daily carbohydrates goals. They do need assistance to help them determine what kinds of food

items are suitable for their diabetic conditions or not. Ideally, patients should be able to query

concerning the recommendation of any food items in nearly real-time.

We model this problem as a binary or multinomial classification problem, predictive models

for classification thus can be employed to categorize any food items into its corresponding

recommendation level (such as this food item should be chosen more often or chosen less

often).

To achieve this goal, we first construct a comprehensive food feature vector via extracting

nutrient and textual features from training food datasets. Then, three food recommendation

labels: “Choose More Often“, “In Moderate“, and “Choose Less Often“ are designed as class

labels. Next, we explore and evaluate several state-of-art predictive models with different bi-

ases and structures for the food classification task. According to the results of our empirical

study, we find that tree-based classification models outperform others in this practical problem

context. The best prediction accuracy of tree-based models could reach to around 95%, which

is a very promising result indicating the proposed idea of using classification model for diabetic

food classification is empirical effective. See Chapter 4 for details.

3.3.2 Lifestyle Recommendation

The second type of recommendation is related to lifestyle activities (such as diet, exercise, etc.)

and derived from the outcomes of blood glucose prediction.

If the updated lifestyle data indicate that a patient is in emergent or dangerous situations,

such as abnormally high or low blood glucose levels for longer period of times, GlucoGuide

provides immediate assistance to the patient, as well as alerts to the healthcare providers.
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If patients’ lifestyle data do not present emergent or dangerous situations as above, those

data will be accumulated. A few times in a week, a proposed predictive framework called

temporal-weighted regression (TWR) will be deployed on our server to discover correlations

between the recent lifestyle data and the blood glucose levels for each patient. Such correla-

tions will be framed in natural language templates (aligned with CDA guidelines) and sent to

patients’ mobile devices as recommendations. As patients’ data are different, the recommen-

dations are also personalized.

To evaluate the performance and the clinical effectiveness of this framework, we conducted

a three-month clinical trial on human subjects. Due to the high cost and complexity of trials on

human, a small but representative subject group was involved. We empirically evaluated the

TWR framework and showed that the prediction performance of TWR is similar to the state-of-

the-art [16], using the collected lifestyle data and discrete blood glucose samples. Furthermore,

two standard laboratory blood tests for diabetes were conducted on patients before and after

the trial. The results were quite remarkable with over 90% confidence levels in the significance

test. In sum, GlucoGuide could be amounted to turning an early diabetic patient to be pre-

diabetic, and pre-diabetic to non-diabetic, after a three-month trial. See Chapter 5 for details.
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Food Classification for Diabetes

Effective diet management requires T2D patients restrict and accurately count the amount of

carbohydrates, protein, fat, and so on. T2D patients (especially for prediabetic) often feel

frustrated and troublesome in composing efficient and diabetic-friendly meal plans to achieve

their daily carbohydrates goals.

Most diet management tools for T2D patients only provide basic meal recording and nutri-

ent visualization functionalities, such as food database searching, calories counting, etc. The

primary barrier of these tools is the lack of diet guideline/assistance for T2D patients, which

is typically provided by dietitians with a costly (either patients’ own time costs and/or gov-

ernment/insurance company medical costs) and time-consuming consultation process. In fact,

T2D patients do need such assistance in a more convenient and timely manner to help them

decide what kinds of food items are suitable for their diabetic conditions or not, especially for

those home-made food items.

As far as we are concerned, predictive models can be utilized to overcome this challenge

and proactively guide patients in their food selection. More specifically, they can be employed

to determine whether a food item should be chosen more often or less more.

We define this problem as a multinomial classification task. As for this problem, we first

construct a comprehensive food feature vector and extract nutrient and textual information from

two different training food databases. Then, three food recommendation labels: “Choose More

Often“, “In Moderate“, and “Choose Less Often“ are designed as class labels.

Next, we explore and evaluate several state-of-art predictive models with different biases

and structures for the food classification task. According to the results of our empirical study,

we find that tree-based models outperform others in this practical problem context. The best

prediction accuracy of RandomForest reaches around 95%, which is a very positive result indi-

cating the proposed idea of using classification models is promising. Furthermore, we have also

explored the feature importance and instance proximity matrix of generated RandomForest.

18
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More details about this empirical study can be found in Section 4.3.

We have deployed the fine-tuned classification model in the GlucoGuide mobile clients,

along with a comprehensive food database and food UPC scanning technologies. As such,

T2D patients could ubiquitously and conveniently access any food items in the database with

the help of model-generating food recommendation labels.

The rest of this chapter is organized as follows: Section 4.1 describes the design principle

of the proposed food classification tool, Section 4.2 presents the construction of food feature

vector, Section 4.3 describes the classification models selection, evaluation methodology, and

its results. The last two sections discuss the relationships to previous works and conclusions.

4.1 Design Principle

Figure 4.1: Patients nowadays can easily use mobile devices to get the detailed information

about food items (nutrient and textual information). Then, our classification model can gener-

ate recommendation labels on each food item.

The design principle of our food classification tool is shown in Figure 4.1. With the assis-

tance of many advanced HCI technologies, patients nowadays can use their mobile devices to

first obtain the meta-data of food items (UPC code, entities, keyphrases, categories, etc). Then,

we can use the meta-data to query our food database to get the specific nutrient and textual
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information about the food items. By utilizing well-trained classification models, our tool can

output recommendation labels for users.

Numerous food databases are available in the health and nutrition industry. They typi-

cally have different characteristics and scales in terms of dimension and volume. For example,

Canadian Diabetes Association (CDA) maintains a food database with only three nutrition fea-

tures while a large scientific food database provided by Canadian Nutrition File (CNF) has

more than 150 nutrition features. However, most of these food databases do not provide food

recommendation to T2D patients.

The food database used in our tool contains 65,000+ popular North-American food items

(a commercialized food database), and it is a very comprehensive database with each item

has its food name, category, sub-category, and 18 nutrient attributes. Also, this is the target

dataset for the food classification task. Patients can search this food database to record detailed

information about their diet. To facilitate the database search, we designed several interactions

for users to input food keyword. They can type the keywords (such as “bagel“ or “starbucks

coffee“) using a soft keyboard or using the voice dictation to speak out the keywords. More

conveniently, we employed barcode scan technologies to help patients scan the food UPC code

(Figure 4.2) and retrieve food nutrition and textual information.

Our training datasets are two diabetic food databases, each food item in the databases has

been labeled by dietitians and nutrition experts. In particular, one training dataset is provided

by CDA [2] containing around 500 most common food items in Canada. CDA classifies each

food item to be “Choose More Often“ or “Choose Less Often“ (e.g., binary labels) as a food

guidance for diabetic patients. Another one is provided by Food Picker TM containing more than

13,000 food items. Each food item has three class labels: “Choose More Often“ , “In Mod-

eration“, or “Choose Less Often“ (e.g., muti-nominal labels). Note that these two databases

are collected from two different data sources, with different features, food items, and label-

ing strategies. Thus, the classification model to be learned could absorb more comprehensive

domain knowledge via such data aggregation.

Next, we construct the food feature vector for classification. Ideally, a large feature vector

is desirable to characterize food items comprehensively. Based on the properties of food, we

defined two types of features: nutrition features and textual features.

In particular, nutrient features characterize a food item via its nutrition attributes, such as

carbohydrate, fat, protein, sodium, etc., which are costly but accurately calculated by numerous

nutrition laboratories worldwide. Most food databases provide nutrient information by default.

The second feature is related to a food item’s textual information, such as category, subcategory,

name, etc. This kind of feature can also be very useful for classification especially when the

nutrition information is not available. How the textual features can be extracted and integrated
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will be described in Section 4.2.

Once the training datasets are prepared, we then need to select the classification model(s)

for the classification task via empirical evaluations. The best fit model will be deployed on

GlucoGuide mobile clients to classify food items.

Figure 4.2: Scan the barcode on a salad product to get its UPC code, then use the UPC code to

retrieve nutrition and textual information from UPC database. Our classification model tries to

classify this food item based on the nutrition and textual information.

With this tool, patients can conveniently track and review their daily nutrition intakes. More

intelligently, the embedded model can guide patients in their food selection. Here is an example

illustrating how T2D patients could use this tool. Suppose a patient is purchasing groceries in

a supermarket and having difficulties in choosing a food product. He/she can then open our

tool to scan the barcode of the product (such as Dole Salad) and get its nutrient and textual

information. Then, our model can output the color-coded class label to guide the patient about

this food, as shown in Figure 4.2.
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4.2 Textual Feature Extraction

We believe that a food item can not only be classified by its the nutrient features but also by its

textual features as supportive information. As such, we define the full feature vector of a food

data instance as:

F = [N ,T ]

where N represents the nutrition feature vector and T represents the textual feature vector.

Since the values of nutrition featureN are already known in both training food databases, how

to extract textual features and generate T is the main component of our feature extraction task.

In particular, nutrition features are obtained straightforward from the nutrition label. Once

we have obtained the nutrition features of food items, we can utilize some state-of-art clas-

sification models without taking any domain knowledge into consideration. On the contrary,

constructing the textual features do require domain knowledge and specifically-designed fea-

ture extraction strategies.

We choose to extract textual features mainly from the CDA food database since it is an

official food database [2]. In other words, it provides the most authoritative textual information.

Given the food vocabulary vector V of CDA’s training food database, each dimension cor-

responds to phrase wt from V . Typically, the dimension of the vocabulary is large. To reduce

the dimension size, we replace it with a subset of keyphrases vector K. Note that we only use

1-word or 2-word keyphrases such as “whole wheat“, “low fat“, and “sweeten“, etc., appear in

the food name.

The next step becomes how to extract the important keyphrases existing in the food vocab-

ulary vector V . We proposed two approaches to generate the keyphrases vector K to achieve

this goal.

4.2.1 Domain Knowledge based Extraction

Human labeling is an effective approach to extract keyphrases, although it could be very time-

consuming and expensive. Thus, with the assistance of our medical team, we identified a

human-labeled keyphrase list kh, h ∈ {1, . . . ,H} via thoroughly and delicately searching in

CDA literature and its official diet guideline [2].

However, the human extracted keyphrase list could not be comprehensive enough. To en-

rich the human-labelled keyphrase list Kh, machine learning based feature extraction will also

be used.
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4.2.2 Machine Learning based Extraction

We have employed the Naı̈veBayes learning to extract the keyphrases, which is widely used

in document classification. The influence of each phrase in a food item was measured with

respect to its class to discover the most important/informative keyphrases.

The training food items in CDA database provide binary class labels. To simplify the

format, we define the class “Choose More Often“ as c0 and “Choose Less Often“ as c1. We

treat each food item i as a document di, which is a binary vector over the vocabulary V . Then,

we characterize the probability of food item with its class using multi-variate Bernoulli event

model [38, 39] (following the Naı̈ve Bayes assumption):

P(di|c j) =

|V |∏
t=1

(BitP(wt|c j) + (1 − Bit)(1 − P(wt|c j))). (4.1)

where Bit ∈ {0, 1} indicates whether phrase wt appears at the dimension t of food item di. Then,

we build a Naı̈veBayes classifier attempting to find the class c j that maximize the probability

P(di|c j).

Given the CDA training data D = {d1, d2, . . . , d|D|}, we calculate the binary-class conditional

phrase probability as:

P(wt|c j) =
1 +

∑|D|
i=1 BitP(c j|di)

2 +
∑|D|

i=1 P(c j|di)
. (4.2)

Note that a Laplacean prior in Equation 4.2 is calculated in case some phrase counts are zero.

Having such phrase probability, we define a keyphrase selection metric Qt as:

Qt =
P(wt|c0)
P(wt|c1)

. (4.3)

By intuition, Qt indicates how likely the phrase wt associated with class c0 compared to class c1.

In another phrase, any phrase with a large Qt value means it is a class discriminative keyphrase

with respect to classification. We thus choose phrase wt as a candidate keyphrase km (note that

each keyphrase here contains only one phrase) if its Qt is beyond a predefined threshold (5th

quintile was chosen in this experiment). By iteratively performing the above calculations, we

can build a machine-generated keyphrase list km,m ∈ {0, . . . ,M}.

4.2.3 Merge Textual Features

The last step is to append the extracted keyphrase vector Km list to the existing human labeled

keyphrase list Kh. We first compare each keyphrase km with all human labeled keyphrase Kh.

If a keyphrase km is “similar“ enough to an existing keyphrase kh, we just ignore the keyphrase
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and move to the next one on the list. Here we employ a metric Q(km, kh) defining such similarity

between km and keyphrase kh:

Q(km, kh) = 1 −
L(km, kh)

lmax(km, kh)
, 0 ≤ Q(km, kh) ≤ 1. (4.4)

where L(w, k) is the Levensthein distance [40, 41] between km and kh. The lmax(km, kh) is the

maximum string length between km and kh. As such, for each phrase km, we calculate the

maximal similarity Q(km, kh)max, h ∈ {1, . . . ,H}. If Q(km, kh)max is below a predefined threshold,

we will consider km as a newly discovered keyphrase and append it to the human-labelled

keyphrase list Kh.

4.3 Generating the Training Dataset

Carbs Pro ... Fat 0 0 0 ... 0

17 Nutrition Features (filled values)

216 Keyphrase Features (all start with zero)

Textual value calculation

(Levensthein distance calculation)

Carbs Pro ... Fat k1 k2 k3 ... kT

Figure 4.3: Aggregating the nutrition features and textual features, and calculating the values of textual

features using Levenshtein distance.

After merging the two keyphrase lists Kh and Km, we can generate the textual feature vector

T . For each food item in the training databases, we combine the textual feature T to the
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Figure 4.4: Classification accuracy for each model using 3 different feature vectors

nutrition feature vector N and obtain the complete structure of feature vector F, as shown in

Figure 4.3.

The complete feature vector F has 17 nutrient features and 216 textual features; each nu-

trition feature Ni represents a nutrient element and each textual feature T j, (0 ≤ T j ≤ 1)

represents the keyphrase similarity. The value of T j is calculated by measuring the maximal

similarity between each keyphrase feature T j and all the subsequences whose length less than

three words of the food name. Such calculation process is similar to Equation 4.4.

After the feature extraction and data preprocessing, the training dataset (including 233 fea-

tures and 13,260 data instances) is ready for the classification task.

In this section, we will discuss the classification model selection and evaluation.

4.3.1 Evaluation Methodology

4.4 Model Selection and Evaluation

Different classification models have different cost functions, structures, and biases. As far as

we are concerned, choosing the best fit model for the food classification task is an iterative
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and experimental process. Given the characteristics of this food classification problem, we

have chosen five popular classification models as candidates: J48 [42], RandomForest [43],

LibSVM [44], Naı̈veBayes [45], and LogisticRegression [45].

Next we will describe the experimental settings for these classification models. Finding

the optimal parameters for each model is a necessary but time-consuming process. For each

model, we conduct ten fold cross-validation first with different parameter settings to ensure it

could reach the potential on this dataset. For example, all tree-based models were pruned with

confidence level set to 0.25 [42], the number of trees in the RandomForest was set to 10, the

kernel of LibSVM was set to the RBF kernel, the standard classification accuracy was selected

as the main performance measurement. etc.

In addition, we evaluate each model using three different feature sets (i.e., textual features

T , nutrition features N , and comprehensive features (T + N)). As such, we can empirically

evaluate the different combinations of feature vectors and classification models then find the

best one.

After the ten folder cross-validation with optimal parameter tuning, we obtain the model

accuracies, as shown in Figure 4.4. We can see that all models have the worst classification

accuracy using only the textual feature vector (yellow bars) and have much better accuracy

using the nutrition feature vector (red bars). Furthermore, by integrating the textual and nu-

trition feature vectors, the accuracy is significantly improved for almost all models except for

RandomForest (blue bars). The classification precision and recall have the similar trend as the

overall accuracy thus we do not depict them in here.

Note that J48 and RandomForest outstand from other candidates on this dataset. They are

able to obtain around 95% prediction accuracy using the combination of nutrition and textual

features (Figure 4.4). One possible explanation could be that the tree models are the most

suitable model for mimicking the dietitians’ reasoning/classification process. Also according

to Kotsiantis [46], tree models are sequential models, which logically combine a sequence of

simple tests; each test compares a numeric attribute against a threshold value or a nominal at-

tribute against a set of possible values. In that way, they can closely resemble human reasoning

and are easy to understand. As a result, the tree models have been discovered to be the best

model for the food classification task in this problem domain.

Also in this experiment, we find that textual features based food classification is also

promising, as it can obtain about 80% classification accuracy using tree models. Thus, we

believe that textual features based classification could be useful especially when the nutrition

features are not accessible or available. For example, if the nutrition information of a food

item is unknown, patients can still use modern HCI technologies such as barcode scan or OCR

to obtain the textual information (name, categories, brand names, etc.). Tree models can still
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conduct classification tasks on the text-only test instances with reasonable good prediction ac-

curacy.

In sum, in this empirical study, we find that RandomForest model is the best-fit model

among all the candidates. Thus, we can conduct further empirical studies using the RandomForest

model.

4.5 Food Classification Using RandomForest

RandomForest [43] is a very powerful and comprehensive classification model. It is a combi-

nation of randomly generated classification trees. For each test instance, each tree in the forest

generates a class label and the final class label is the one gets the most “vote“. RandomForest

has many advantages, including the generation of an internal unbiased estimate of general-

ization error (out-of-bag error), feature importance estimation, case proximities, and handling

large scale of data, etc.

4.5.1 Model Tuning

In RandomForest, each tree is generated using a different bootstrap sample from the original

data sample. About one-third of the cases are left out of the bootstrap sample and not used in

the tree construction as the test set. In this way, a test set classification is obtained for each

case in about one-third of the trees. The proportion of times the estimated class is not equal

to the true class averaged over all cases is called the out-of-bag (OOB) error estimate. As

such, RandomForest typically dose not require cross-validation or separate test datasets to get

unbiased performance estimation [43].

RandomForest has two importance parameters to be tuned. The first one is the number of

features randomly sampled as candidates at each split, and the second parameter is the number

of the trees in the forest.

We used grid searching to tune the first parameter, i.e., the number of feature candidates,

started with 15. We set the inflation/deflation rate to 1.5. For each tuning iteration, the OOB

error estimation is compared with the previous iteration until converged (improvement less

than 0.05). In this experimental context, we find that the optimized feature number is 73.

As for tuning the number of trees in the forest, we investigated the OOB with 50, 100,

250, 500, 1000 trees, as shown in Figure 4.5. The feature candidate number was set to 73,

as discussed above. As we can observe from Figure 4.5, the OOB error rate converges at 100

trees. Thus, we can choose the optimized tree number to be 100 for the future experiments.
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Figure 4.5: OOB error rate with different tree numbers in the forest

With the fine-tuned RandomForest, the classification error rate is 5.37%, meaning a very

promising 94.63% classification accuracy. To further estimate the classification error rate for

each class, we output its confusion matrix, as shown in Table 4.1. We can see from the matrix

that although the class distribution of original data sample is not well balanced, the estimation

error rates for each class are still similar. As such, we think no imbalanced classification

technologies such as cost matrix or class weighting are required for this food classification

task.
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In Moderation Less Often More Often class error

In Moderation 6317 282 50 0.04993232

Less Often 336 5277 8 0.06119907

More Often 33 5 952 0.03838384

Table 4.1: Classification confusion matrix

4.5.2 Feature Importance

The dimension of our food feature vector is 233. To increase the interpretation, we want to

discover which features have the large influence on prediction results. In RandomForest, the

feature importance of feature m is calculated by first randomly permute its values in the OOB

cases and put these cases down each tree in the forest. Then we subtracted the number of votes

for the correct class in the variable-m-permuted OOB test cases from the number of votes for

the correct class in the untouched OOB cases. The average of this accuracy decrease over

all trees in the forest is the raw importance score for the variable m [43]. We depict the top

important features in Figure 4.6, we can see that among all the features, the most importance

nutrient features are: Saturated Fat, Calories, Sodium, Total Fat, Sugars, Protein, Carbohydrate,

and Fiber. The most discriminative 1-word keyphrases are “wheat“, “light“, “grains“, “fruit“,

“milk“, “sugar“, “cheese“, “diet“, “dressing“, “yogurt“, “unsweeten“, “free“, etc.

Note that the important features we discovered in this empirical study are consistent with

the nutrient and diet guideline provided by CDA [25] and Health Canada. This finding also

validates the effectiveness of our classification model.

4.5.3 Prototype

RandomForest can also be used to calculate a N by N (N is the total number of data instances)

proximities matrix [43]. After a classification tree is built, we can put all of the data instances

down the tree. If cases k and j are in the same leaf node, their proximity in the matrix will be

increased by one. The final proximity matrix is normalized by the total number of trees in the

forest.

After the proximity matrix is calculated, we can further obtain the “representative“ in-

stances on each class label. Such instances are called Prototype [43], which is a similar concept

to centroid in clustering but generated in a supervised manner.

We calculate food item prototypes (nutrient features only since they are much more impor-

tant) with respect to each class, as shown in Table 4.2. We can see that some features such
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Choose More Often In Moderation Choose Less Often

Calories Total (g) 5 110 270

Total.Fat. (g) 0 1 14

Saturated.Fat (g) 0 0 6

Cholesterol (mg) 0 0 30

Sodium (mg) 20 380 460

Carbohydrate (g) 1 20 27

Dietary.Fiber (g) 0 3 2

Sugars (g) 0 2 5

Protein (g) 0 0 8

Vitamin.A (%) 0 0 6

Calcium (%) 0 4 10

Iron (%) 0 8 6

Table 4.2: Food classification prototypes

as Calories, Sugars, Carbohydrate, Sodium, and Total Fat increase monotonically with class

labels.

Other features such as Fiber and Iron do not follow such pattern. This inconsistency could

be caused by low measurement granularity. Any value less than 1g or 1% will be given zero

value in the data instance. Thus, the fiber value for “Choose More Often“ prototype is in fact

unknown due to the granularity. However, if we output the fiber calories breakdown ratio in

total carbohydrates, we can see that the ratios are 0%, 15%, and 0.07% respectively. Still, it

is reasonable to assume that in healthy foods, the percentage of fibers in total carbohydrates

should be much larger than the unhealthy foods. We think that the fiber percentage possibly

also increase monotonically with class labels.

In sum, features like fiber percentages, as well as other calories breakdown ratios, could

be added in the food feature vector as new features to improve the classification accuracy. We

could collaborate with nutrition experts to discover more such features. More food feature

engineering will be one of our future work.

4.6 Relationship to Previous Work

Food labeling/classification for T2D diabetes is an interdisciplinary area and has been research-

ing for several decades. In this area, the glycemic index (GI) is the most impact food labeling
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system created on 1980 [47].

More specifically, GI is a measurement of the power of foods to raise blood sugar glucose

levels after being eaten. Food items with a high GI value contain rapidly digested carbohydrate,

which causes a rapid rise and fall in the level of blood glucose. In contrast, food items with

a low GI value contain slowly digested carbohydrate, which causes a gradual, relatively low

rise in the level of blood glucose. The GI values of foods must be measured using valid and

expensive scientific methods [47].

Sydney University GI Research Service (SUGiRS) provides a reliable commercial GI test-

ing laboratory for the local and international food industry [48]. They created GI values of

more than 2500 foods. However, as far as we are concerned, GI system is still too complicated,

expensive, and not user-friendly for general T2D diabetes.

Guiding Star [49] system is another nutrition guidance system aiming to score the food

items in Canada’s most popular supermarkets manually. Its food labeling is a collaborative

process between grocery retailers and a panel of nutrition experts. However, as far as we are

concerned, the classification rules of Guiding Star system are all fixed thus not data-driven,

which makes its scalability is very low. Moreover, its guideline is designed for general people,

which is different from the diet guidelines for people with T2D.

Compared to the previous works, our work proposed a more flexible and reliable frame-

work for this problem, which makes the following contributions. Firstly, the concept itself is

novel, to the best of our knowledge, this work is the first attempt integrating machine learning

technologies into T2D patients’ diet management. The second contribution is that we have

designed an effective approach to extract a comprehensive food feature vector, including both

nutrient and textual features, for the classification task. The third contribution is that we find

that the tree-based classification models (J48, RandomForest, etc.) can archive the best per-

formance in this problem context. We also evaluate the performance of tree-based models

using the different feature and instance sets. Furthermore, the optimal features are discovered

after the evaluation. The last contribution is that the deployment of the classification model

on GlucoGuide mobile clients, allowing patients to access food database and the embedded

classification model conveniently and ubiquitously.

4.7 Food Classification Future Works

Even with the help of barcode scanning and food database searching, food recording could still

be difficult. Ideally, when a meal is taken pictures by the camera of patients’ mobile devices,

labels and nutrients of this meal are automatically analyzed by images pattern recognition

algorithms. Such automatically food recording process would greatly enhance the usability and
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user experience. However, image-based food information retrieval is extremely challenging in

generic objects recognition due to its large varieties in spatial, shape, color, texture features, etc.

Due to these complex characteristics, traditional multinomial classification solutions would

cause large intra-class errors in practical settings.

Deep learning frameworks could be applied to classify food items based on food photos.

In fact, the basic ideas of deep learning appeared about two decades ago. However, due the

limitation of computational power, modeling a deep Artificial Neural Networks (ANN) would

be extremely time-consuming (normally with the unit of years). As such, researchers at that

time only applies “shallow“ ANN but still achieve state-of-art results. In 2011, Andrew Ng

founded the Google Brain project at Google, which developed deep ANN using Google’s dis-

tributed compute infrastructure. Among its notable results was a neural network trained using

deep learning algorithms on 16,000 CPU cores, that learned to recognize higher-level concepts,

such as cats, after watching only YouTube videos, and without ever having been told what a

”cat” is. The project’s technology is currently also used in the Android Operating System’s

speech recognition system.

Although deep learning can automatically learn the hierarchical feature representations and

achieve very promising precision, it normally needs a huge amount of training data. In another

word, if data are limited, the performance of deep learning might not be able to outperform

some simple learning algorithms. Also, in deep learning, the time complexity is also big,

to assure the feasibility of the algorithm, high-quality distributed computing and hardware

supports are required.

The computer vision team of GlucoGuide has been researching and developing mobile

camera-based food recognition for more than two years now. We have applied Convolutional

Neural Networks (CNN), a state-of-art deep learning approach, to recognize the food item

through parameter optimization on GPU. We constructed a dataset composed of 49,360 food

images of 40 types most popular Canadian and American food and trained a Convolutional

Neural Network classifier for food recognition. Our test results show promising accuracy rates

(top 1 accuracy rate: 78%; top-five accuracy rate: 93%). With the aid of food recognition

technique and high-end GPU computers, users are able to conveniently log their diet data just

by snapping a photo and getting an estimate of the nutrition information in less than one second.

4.8 Conclusion

In this chapter, an intelligent food classification tool is proposed using classification mod-

els and mobile computing, aiming to facilitate T2D patients’ diet management and provide

food recommendations. We have collected two training food database with true labels and
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extracted a comprehensive feature vector from them. Extensive empirical studies have been

conducted to explore among different types of classification models. The studies indicate that

the RandomForest is the best-fit model with around 95% prediction accuracy. The well-trained

model is also deployed on GlucoGuide mobile clients to help T2D patients conveniently man-

age their diet.

This tool has proved empirically effective to provide proactive food guidelines allowing

T2D patients to make decisions on their food selection beforehand. In addition to food recom-

mendation, we also want to provide recommendations regarding patients’ historical lifestyle

activities. To achieve this goal, we have designed and implemented a lifestyle recommen-

dation framework to generate data-driven recommendations helping T2D patients to stabilize

their blood glucose. We also conduct a clinical trial to collect training data and evaluate its

clinical effectiveness. The details of this framework and its evaluation results will be presented

in the next chapter.
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Lifestyle Recommendation Framework

In this chapter, we will discuss how the comprehensive lifestyle recommendations, are gener-

ated and distributed.

The proposed lifestyle recommendation framework is generally illustrated in Figure 5.1. It

contains three main components: 1) Lifestyle Data Aggregation and Preprocessing, 2) Temporal-

Weighted Regression (TWR), and 3) Model Postprocessing.

To evaluate this framework, we conduct a 3-month clinical trial to collect training data and

generate recommendations. Patients during the clinical trial upload various types of data si-

multaneously or at any times of a day; some are very noisy and abundant. As such, a data

aggregation and preprocessing module is designed to convert the raw lifestyle data into proper

training datasets for predictive tasks. Then, the proposed TWR (Temporal-Weighted Regres-

sion) should be able to identify the temporal patterns of blood glucose levels and convert them

into computer-generated recommendations.

In next sections, each component of this framework will be described in detail.

5.0.1 Data Aggregation

The GlucoGuide mobile client can collect more than fifty health features (such as medicine

records, meter readings, nutrients, physical activities, water intake, sleep pattern, weather, and

so on) for each patient daily. It is a very comprehensive feature vector which almost cover ev-

ery aspect of T2D diabetes management. However, it might not be feasible to include all these

features in the model, due to the data sparsity, missing values, noise in the data, and the fea-

ture irrelevance. Thus, finalized by our medical team, the most relevant sixteen features were

delicately selected to characterize the main characteristics of T2D patients’ daily activities, as

listed in Table 5.1.

All heath features except for nutrient intake (discussed in the previous section) were recorded

35
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Figure 5.1: T2D lifestyle recommendations framework

via different medical devices as described in Figure 5.2. For example, the glucometer (One-

TouchUltra2, see Figure 5.2a) can record the blood glucose level and automatically send the

readings to GlucoGuide clients via Bluetooth. The full Bluetooth-enabled medical device list

is shown in Figure 5.2.

Among all features listed in Table 5.1, the blood glucose level is treated as the dependent

variable or target variable and the rest fifteen features are used as independent variables or

features. Some previous works have shown correlations between blood glucose level and the

independent variables we used [50, 51]. However, the exact relation will be found in our

predictive models, to be discussed next.

5.0.2 Data Pre-processing

Not like the continuous CGM data, diabetes specialists (doctors) usually advise T2D patients

to check their blood glucose level (by using glucometers) at the following two critical times of

the day. The first one is the fasting blood glucose, usually taken early in the morning before

breakfast. This may reflect the overall status of the diabetic condition in the previous day. The

second is the blood glucose level taken two hours after a main meal. Such blood glucose levels

reflect more directly the effect of the meal two hours ago.

Our health team advise our patients in the clinical trial to check their fasting blood glucose

levels daily, and their after-meal blood glucose regularly (mainly the main meal of the a day).
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(a) OneTouchUltra2 glucometer with PolyMap

Bluetooth addon

(b) OmronHJ-720ITC pedometer with Blue-

tooth docking station

(c) AND UA0767BT blood pressure monitor

Figure 5.2: Medical devices list in clinical trial
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Table 5.1: Health features used in clinical trial

Relevant Feature Recording Method Unit

Blood Glucose Level Glucometer mmol/L

Last Blood Glucose Level Glucometer mmol/L

Pulse Blood Pressure Monitor beats/minute

Systolic Blood Pressure Monitor mmHg

Diastolic Blood Pressure Monitor mmHg

Step Count Pedometer Steps

Aerobic Step Count Pedometer Steps

Carbohydrates Intaken Food database gram

Fat Intaken Food database gram

Proteins Intaken Food database gram

Calories Intaken Food database kcal

Calories Consumption Estimated via step counts kcal

Meal Counts Counting times

Carbohydrates Ratio Food database percentage

Fat Ratio Food database percentage

Proteins Ratio Food database percentage
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The recorded blood glucose levels, along with other raw lifestyle data, must be pre-processed

and converted into a specific format so that predictive algorithm can apply. In addition to the

traditional de-normalization process, we design a practical data aggregation scheme.

Specifically, we have created two types of data instance for the predictive task:

• Fasting instance: When GlucoGuide Engine receives a fasting blood glucose recorded

by a patient, the blood glucose timestamp is first extracted. Then, lifestyle data recorded

within the window of the previous day are aggregated to generate an entry of the fasting

dataset.

• After-meal instance: When GlucoGuide Engine receives an after-meal blood glucose

recorded by a patient, the blood glucose timestamp is extracted. Then, lifestyle data

within the 4-hours window before that timestamp are aggregated to generate an entry of

After-meal dataset. The window is set to 4 hours to include more relevant data.

Data cleaning process is then performed to obtain qualified data instances. In particular, dupli-

cate data are removed since they presented a source of error. Missing values are replaced with

the rolling average value of each individual’s data. All numerical features (except for the target

label blood glucose) are scaled to be in the range of [0, 1].

Note that our clinical dataset is not publicly accessible since we must follow an approved

clinical ethics protocol. However, other researchers can contact us and sign a confidentiality

agreement (CA) to obtain a de-identified copy of the dataset.

To mine the lifestyle data after pre-processing, we have proposed a predictive algorithm

called TWR (Temporal-Weighted Regression). It can learn timely health patterns and generate

recommendations accordingly with minimal generalized errors. We will discuss this frame-

work in the subsequent subsections.

5.0.3 Temporal-Weighted Regression (TWR)

Challenges and Contributions

Designing and adopting an efficient, robust, and reliable model to mine real T2D patients’ data

stream is challenging. Firstly, T2D lifestyle data is costly since they are from a variety of sen-

sors, food database queries, real blood glucose samples from patients. The cost of lifestyle data

collection indicates that the scale of such dataset could not be large and we need to overcome

the overfitting issue (too many features vs. few data instances). Secondly, patients may forget

to upload the data, or make mistakes during the data recording and uploading. These issues

cause the data stream to be noisy and sparse. On the other hand, in order to keep patients
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motivated, we need to start sending recommendations shortly, within several days, instead of

weeks or months later. Lastly, as more data are accumulated over time and patients have been

making good lifestyle changes, our system must weigh the recent data more than those in the

distant past. Clearly, all of these domain-specific challenges require the model to be robust and

adaptive.

Since the dependent variable (blood glucose) and independent variables (shown in Ta-

ble 5.1) are all numeric, regression framework thus becomes the most suitable solution for

the blood glucose prediction task. Also, regression with regularization is well-known to pre-

vent model overfitting, and generate models for better interpretation (smaller or zero feature

coefficient).

Although regression with regularization has been researched for years [52], [53], [54], we

still make the following contributions in the TWR framework.

The first contribution is that in TWR we proposed a straightforward yet effective temporal

weighting mechanism, which is essentially a function of time to weigh data uploaded at differ-

ent times. The more recent data, the more weight they carry. Thus, TWR adapts quickly to the

change of new lifestyle data as patients are taking our recommendations. The second contribu-

tion is the implementation of an online parameter tuning strategy that automatically conducts

the model and feature selection. Last but not least, the deployment of TWR into T2D treatment

itself is novel and is shown to be effective in the clinical trial (see later). This research could

also inspire other researchers to design better predictive applications in other mobile health

domains.

At a high level, TWR has been deployed in the GlucoGuide Engine and triggered weekly

to generate lifestyle recommendations for each patient. In every recommendation cycle, it

generates a group of candidate models for each patient based on different parameter settings.

The model with the smallest error on patient blood glucose prediction was chosen. From the

best model, TWR greedily chooses the most relevant health feature(s) and converted it into

recommendations using predefined NLP (Natural Language Processing) templates and domain

knowledge. We will present technical details about TWR below.

TWR Cost Function

TWR is essentially a form of locally weighted regression, a memory-based framework that

performs regressions around a data instance of interest using only the training data that are

“local“ to that point [52]. It weights the training instances according to their distance to the

test instance and performs regression analysis on the weighted data. Training instances close

to the target instance receive higher weights while those far away receive low ones.
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Many distance-based weight functions, such as Euclidean distance, Gaussian kernel, and

so on, can be used. For our problem, we use the temporal-factor to measure such distance

for two main reasons. Firstly, as we have mentioned, the more recent data instances should

be considered more informative in the training process. Secondly, our clinical data tend to be

noisier at the early stage of the clinical trial since the subjects are most elderly, and some of

them have long learning curves about GlucoGuide system.

Suppose we have collected N training instances for a specific patient. Each instance has a

target blood glucose level as the dependent variable yi, data entry xi with p dimensions, and

coefficient vector θ. We assume that the relationship between the independent variables (health

features) and dependent variable (blood glucose) is linear. According to Zecchin et.al [20], the

performance of linear and complex nonlinear models (such as ANN) on CGM blood glucose

predictions are not significantly different. However, linear model has the advantage of simple

structure, fast learning rate, and high interpolation. Thus, we first explore the usage of the

linear model on blood glucose prediction.

We define the cost function for the blood glucose regression model as in Equation 5.1.

J(θ) =

N∑
i=1

wi
t(yi − θ0 − xiθ

T )2. (5.1)

Here we assign a dynamic weight wi
t following a temporal decay for each training instance

i. Two typical decay functions are adopted to characterize the temporal decay: linear decay

function and exponential decay function. More specially, given an instance i, its weight wi
t is

defined as:

wi
t =


1 − dl−di

L Linear,

β(dl−di)∑l
j=0 β

(dl−d j)
Exponential.

(5.2)

where dl is the date when recommendation is generated (triggered) and di is the date of instance

i. Also, L determines the linear decay rate and is assigned to be the length of our clinical trial

(90 days). β is the exponential decay rate and will be optimized for each recommendation cycle

of each patient using cross-validation.

The above decay mechanisms are both functions of time. However, which function has the

better explanation ability of temporal importance needs to be determined via empirical studies.

Their comparison and evaluation will be presented at the end of this section.

Also, regularization is employed to address the overfitting problem, possibly caused by the

lack of qualified training instances and sparsity (potential p > N problem). Furthermore, the

interpretation of the model is also important for practical applications. A simpler model is
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preferred by the doctors because it can illustrate more clear relationships between the depen-

dent variable and the independent variables. As such, we have adopted a flexible regularization

framework called Elastic net [53], which was a compromise between the Ridge-regression (L2

form) [55] and the Lasso-regression (L1 form) [56]. The main advantage of the elastic net is

that it simultaneously conducts automatic variable selection and continuous shrinkage without

losing group effects (variables with high correlations or even identical). For example, carbo-

hydrate intake and total calories are highly correlated. If we employed L1 penalty, only one

feature of the group might be chosen, and the grouped information will be lost thus potentially

affect prediction accuracy.

The original cost function J(θ) is thus extended to a penalized form J′(θ) as shown in

Equation 5.3, along with the regularization penalty parameter λ. Note that Pα is a convex

combination of L1 and L2 penalty, where α is the elastic net mixing parameter, with 0 ≤ α ≤ 1.

J′(θ) =

N∑
i=1

wi
t(yi − θ0 − xiθ

T )2 + λPα(θ). (5.3)

where the elastic penalty Pα(θ) is defined as:

Pα(θ) =

p∑
j=1

[
1
2

(1 − α)θ2
j + α|θ j|]. (5.4)

Cost Function Optimization

The cost function of TWR (Equation 5.3) is optimized using the cyclical coordinate descent,

which is an efficient and very fast algorithm to estimate the generalized regression with the

convex penalties [54, 57]. Cyclical coordinate descent minimizes J′(θ) along one gradient

direction at a time. The convergence is reached when no improvement is observed after one

cycle of line search along all directions.

Here is the detailed optimization process used in TWR. First, all elements of θ are initialized

with zero value. Then, suppose we already have the estimates θ̃0 and θ̃` (all ` , j), and we

would like to partially optimize the cost function J′(θ) by updating θ j = θ̃ j along its gradient

direction
∂J′(θ)
∂θ j

|θ=θ̃ = −

N∑
i=1

wi
txi j(yi − θ̃0 − xĩθ

T ) + λ(1 − α)θ j + λα. (5.5)

Note that the above derivation only applies to θ j > 0. There will be a very similar equation for

θ j < 0, which we do not present here.

Then, we can update θ̃ j as follows:

θ̃ j ←
S

(∑N
i=1 wi

txi j(yi − ỹi
j), λα

)
∑N

i=1 wi
tx2

i j + λ(1 − α)
. (5.6)
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Figure 5.3: Contour plots of Ridge (L2), Lasso (L1), and TWR

where

ỹi
j
= θ̃0 +

∑
all`, j

xi`θ̃`. (5.7)

S (δ, γ) is the soft-thresholding operator [58] and calculated as:

sign(δ)(|δ| − γ)+ =


δ − γ, if δ > 0 and γ < δ

δ + γ, if δ < 0 and γ < δ

0, if γ ≤ |δ|.

(5.8)

Such an update process will be repeated in all directions till convergence (the convergence

threshold is set to 10e-5).

This cost function has the following properties:

• Convex

As clearly shown in Figure 5.3, the cost function (Equation 5.3) is strict convex.

• Variable Selection

The soft-thresholding will give penalties to the coefficient updates and keep the coeffi-

cients of irrelevant variables to be zero. As such, the generalized errors could be reduced

especially when the training data are insufficient.
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• Group Effect

The group effect means the coefficients of a group of highly correlated variables tend to

be equal. It is proved by Hui Zou and Trevor Hastie [53] that α , 1 (strictly convex)

guarantees the grouping effect.

• Temporal Weight

The designed linear and exponential reweighing mechanisms (Equation 5.2) weigh more

on the lifestyle data records closing to recommendation triggered date. Thus, the gener-

ated models should reflect more on patients’ recent lifestyle activities.

• Computational Efficient

Each step costs O(n) operations to calculate the gradient. A complete cycle through all p

variables costs O(pn) operations. Coordinate descent usually converges within 100 cy-

cles. This fast algorithm is particularly important to generate real-time recommendations

to potential large-scale of patients.

Online Parameters Tuning

In practical usage, TWR tunes the proposed two (linear/exponential) weighting mechanisms

with different parameter combinations in order to obtain the best model for each recommenda-

tion cycle. It assigned the value of α from 0 to 1 with a 0.1 increment and β from 0.5 to 1 with a

0.05 increment to generate a group of parameter combinations. For each combination of α and

β, TWR chooses the optimized λ giving the minimum cross-validated error from its candidates

sequence. The best model (with optimized α, β, λ) then is chosen to output recommendations.

5.0.4 TWR Model Evaluation

The effectiveness of TWR framework is evaluated mainly via measuring the MAE (Mean Ab-

solute Error) of the blood glucose predictions; other metrics included value range and standard

derivation.

We first compare TWR with other state-of-art regression methods including Lasso, Ridge,

and Elastic net. They are evaluated using the same patient dataset obtained from our clinical

trial (details about this clinical trial will be discussed in the next section). All methods are

using the same optimization approach (cyclical coordinate descent). The cost functions of
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Table 5.2: Prediction performance comparison of different regression models

Regression Method MAE

Lasso (α = 1) 1.0154

Ridge (α = 0) 0.9894

Elastic Net 0.9594

TWR with exponential decay 0.9475

TWR with linear decay 0.9273

these methods are shown as follows:

Lasso:

1
2N

N∑
i=1

(yi − θ0 − xiθ
T )2 + λ

p∑
j=1

α|θ j|.

Ridge:

1
2N

N∑
i=1

(yi − θ0 − xiθ
T )2 + λ

p∑
j=1

1
2

(1 − α)θ2
j .

Elastic Net:

1
2N

N∑
i=1

(yi − θ0 − xiθ
T )2 + λ

p∑
j=1

[
1
2

(1 − α)θ2
j + α|θ j|].

TWR:
N∑

i=1

wi
t(yi − θ0 − xiθ

T )2 + λ

p∑
j=1

[
1
2

(1 − α)θ2
j + α|θ j|].

The results of the comparison are shown in Table 5.2. We can see that by assigning the

linear temporal weights, TWR obtains the best accuracy (with least MAE around 0.927) in our

experiments. This result is promising if we consider the normal blood glucose range of 4 -

15 mmol/L in our clinical trial. Thus, our results clearly show that TWR outperforms other

modern regression approaches for this type of real-world lifestyle dataset. To zoom-in to the

detailed blood glucose prediction, we plot the MAE for each patient, shown in Figure 5.4. The

x axis represents the patient ID and the y axis represents the MAE. The average value and

standard deviations are also shown in Figure 5.4. The best model performance is observed for

the patient ID 2 with the MAE 0.67 mmol/L. Even with the worst performance, the MAE is 1.26

mmol/L for the patient ID 7, which is still acceptable, as blood glucose fluctuates throughout

the day, and glucometers can have errors just as large. These results are also consistent with
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Figure 5.4: MAE of blood glucose prediction for each patient using TWR with linear decay

the state-of-art prediction performance (0.9 mmol/L) ([20, 59, 16]) using ANN and expensive

CGM data. However, we can achieve similar prediction accuracy using merely lifestyle data

and finger-prick blood glucose samples.

Although the MAE is very promising, as discussed above, the R2 measurement (also called

the ratio of deviation explained by the model) during the entire clinical trial is not very high

(0.45 ± 0.19). However, predicting human health outcomes is highly challenging and compli-

cated, thus, the results are still satisfiable under the practical circumstance. As we will show

in the next section, even such a level of model fitness can still achieve a significant clinical

improvement on patients with diabetes.

In summary, the experimental results indicate that our TWR is a reliable and effective

framework for analyzing real lifestyle data of diabetic patients. This model, as a important

component of GlucoGuide Engine, is validated to effectively predict on patients’ blood glucose

levels obtained in the clinical trial (see later in Section 5.1).

5.0.5 Model Postprocessing

As we have discussed, for each recommendation cycle, TWR generates a group of candidate

models with different parameter settings and choose the best-tuned model with the least MAE

to predict the blood glucose levels. With the selected model, it then ranks the features(s)
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with the largest coefficient (note that all features are already scaled and calibrated) to generate

recommendations. Such feature(s) corresponds the maximum impact on the blood glucose

levels. Thus, recommendations for changing those feature values can be generated, combined

with T2D domain knowledge and patients’ historical data.

To illustrate, suppose the discovered linear model is generated as follows:

BloodGlucose =

1.12 ×Carb + −0.88 × Pro+

0.038 × Fat + 0.056 ×Cals+

0.64 × ProProportion+

0.47 × FatProportion+

0.827 ×CarbProportion+

− 0.146 × S tepCount+

0.196 × Aerobic

Clearly, the heath feature with the largest coefficient is the amount of carbohydrate intake.

That is, lowering carbohydrate intake should lower the blood glucose levels the most. Thus,

the best recommendation is to slowly reduce carbohydrate intake, for this patient. In addition,

GlucoGuide will also search our food database to recommend diet replacement based on diet

guideline and nutrient equivalence. Such recommendations, after being compared to the dia-

betes guidelines or verified by our healthcare team, are wrapped in a natural language template

and sent to patients’ GlucoGuide mobile clients. An example of such a recommendation is

shown as follows:

By examining your uploaded health data we have seen that your Carbohydrate and blood

glucose levels are highly related. Consider reducing the proportion of carbohydrates you eat

at dinner to better control your after dinner blood glucose. For example, try replacing some of

the pasta in your meal with an extra portion of lean meat or vegetables, both of which have a

lower Carbohydrate content and often help with satiety.

The complete recommendations list and their validation rules are detailed in Appendix A.

5.1 GlucoGuide Clinical Trial

Preparing and conducting a clinical trial on human subjects is very expensive and resource-

intensive. It is estimated that the averaged cost per enrolled subject is slightly more than

6,094 USD (ranged from 2,098 USD to 19,285 USD) [60]. In particular, our clinical trial
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costs around 4,000 CAD per subject including the cost of technology package (Software de-

velopment/maintenance, mobile devices with GlucoGuide installed, and medical devices such

as glucometers, etc.), laboratory blood tests, training sessions, cellular data communication,

subjects follow-ups and questionnaires, etc.

Given the constraint of our budgets, we could only conduct a relatively small clinical trial.

However, we set up restrict criteria to ensure the representativeness of our subjects group. The

inclusion criteria were: a recent diagnosis of T2D or prediabetes, age between 18 and 80 years,

with a survey that concludes a sedentary or low active lifestyle, which was confirmed using the

7-day Physical Activity Recall Questionnaire. In addition, subjects who had difficulties under-

standing English, were taking more than two diabetes medications, were suffering from severe

mental disease or malignant disease, or were abusing drugs were excluded from participation

in the study.

At the end of the enrollment, we sampled seventeen adults included seven men (41%) and

ten women (59%), with one person in an ethnic minority group (6%) and four individuals with

less than a college degree (24%). The average age of the subjects was 62 years (±8). At

baseline, men had a mean weight of 105.8 kg (±19.6) and a Body Mass Index 1 of 35.1 kg/m2

(±6.4). Women had a mean weight of 90.0 kg (±19.9), and a BMI of 34.3 kg/m2 (±6.3).

Ten subjects are selected to be in the Intervention Group (INT). They are given the

GlucoGuide package and taught how to use it in the training sessions. The Control Group
(CON) includes the rest seven subjects with allied health and physical conditions who do not

use GlucoGuide. They are instructed to use standard paper logbooks to keep track of their

blood glucose levels, diet, and other similar lifestyle data. Thus, subjects in both groups need

to record and keep track of their lifestyle data; the main difference is that the subjects in the

intervention group use GlucoGuide with data recording and receive, several times in a week,

personalized recommendation while subjects in the control group would not receive any such

recommendations. Primary evaluations include two standard clinical blood tests: Fasting blood

glucose (FBG) and laboratory-measured A1c (or HbA1c), conducted in the clinical labs (i.e.,

not at home), for all subjects, before and after the trial. To elaborate, fasting blood glucose is

a measure of the amount of glucose in the blood stream after an 8 hour fast, usually overnight.

A1c, on the other hand, is proportionally related to the amount of glucose in the blood stream

over a long period of time (not affected by day-to-day changes). Therefore, A1c provides an

indication of average blood glucose levels over a longer time, usually three months.

A clinical diagnosis of diabetes is made when fasting blood glucose > 7.0 mmol/L or A1c

> 6.5%, while fasting blood glucose between 6.0 mmol/L and 6.9 mmol/L or an A1c between

1BMI, a measure for human body shape based on an individual’s mass and height, T2D patients usually have
high BMI



5.1. GlucoGuide Clinical Trial 49

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

INT CON

A
1

C
 R

e
d

u
c

ti
o

n
 (

%
)

Group Type

Standard Dev
Value Range

(a) A1c reduction: 0.36 %(INT) vs 0.1%(CON)

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

INT CON

F
B

G
 R

e
d

u
c

ti
o

n
 (

m
m

o
l/

L
)

Group Type

Standard Dev
Value Range

(b) Fasting blood glucose reduction: 0.77 mmol/L (INT) vs

0.086 mmol/L (CON)

Figure 5.5: Comparison of A1c and fasting blood glucose reduction between two groups, before

and after the trial



50 Chapter 5. Lifestyle Recommendation Framework

6.0% and 6.4% is considered prediabetes. A normal person’s fasting blood glucose should be

less than 6.0 mmol/L, and an A1c less than 6.0%. (Note that the values of fasting blood glucose

and A1c are not equivalent or equal, but this is beyond the scope of this thesis). By analyzing

the differences of A1c and fasting blood glucose between the two groups, before and after the

trial, we can clinically evaluate the effectiveness of GlucoGuide on patients in our clinical trial.

Clearly, for both A1c and fasting blood glucose values, smaller values are better, and reduc-

tions in these values usually represent an improvement in diabetic condition.

Differences in both A1c and fasting blood glucose reduction between the two groups have

been observed before and after the trial. As shown in Figure 5.5a, subjects in the intervention

group had an average of 0.36% A1c reduction compared to only 0.10% in the control group.

Such an A1c reduction for patients with diabetes is clinically significant when considering the

differences in A1c for normal, pre-diabetic, and early diabetic people are quite small. A larger

difference can be observed in the fasting blood glucose reduction before and after the trial. For

the intervention group, the fasting blood glucose reduction was 0.770 mmol/L, comparing to

only 0.086 mmol/L in the control group.

To test the statistical significance, we conducted unpaired T-test on both A1c and fasting

blood glucose reductions between the intervention and control groups. If we use p = 0.10

as the significance level, the differences between the two groups on the A1c reduction and the

fasting blood glucose reduction before and after the trial are significant (p = 0.08 and p = 0.06

respectively). However, our significance levels are just above the stringent level of p = 0.05

due to the small sample size. To further evaluate the efficiency of GlucoGuide, a larger clinical

trial will be conducted in our future work.

To conclude, patients who use GlucoGuide in our clinical trial reliably improve their dia-

betic condition after only three months. Roughly speaking, GlucoGuide amounted to turning

an early diabetic patient to be pre-diabetic, and pre-diabetic to non-diabetic, in three months.

5.1.1 Adherence to Recommendations

In the best scenario, patients using GlucoGuide should follow or adhere all recommendations

made by GlucoGuide. However, most patients in our clinical trial could not adhere 100% to the

recommendations made by GlucoGuide. As such, we have defined the Adherence to Recom-

mendations (ATR) ratio for the subjects using GlucoGuide, reflecting how well they adhere the

GlucoGuide recommendations throughout the trial. Then we can build an Adherence Model

to predict patients’ A1c and fasting blood glucose reduction if they had adhered 100% to the

GlucoGuide recommendations.

Here is how we define the ATR (Adherence To Recommendations) ratio. We first divide
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all recommendations into 14 categories. For each category, we design rules to decide if the

recommendation is adhered or not. For example, one recommendation type is about reducing

the carbohydrate intake. If patients do reduce the carbohydrate in future days, we consider

that the patients have adhered to the recommendation. AR is then defined as the ratio on the

adhered recommendations over all recommendations sent to the patients. Clearly, the range of

ATR is from 0 to 100%, where 100% means that patients adhere completely to GlucoGuide’s

recommendations.

We build simple linear regression models to predict the A1c and fasting blood glucose

reductions using ATR as an independent variable. Both linear models have positive slopes,

indicating that the more the patients adhered to GlucoGuide recommendations, the more A1c

and fasting blood glucose reductions could be achieved. The graph for A1c is illustrated In

Figure 5.6. This Adherence Model predicts that if patients had adhered 100% to GlucoGuide

recommendations, the expected reduction on A1c would be 1.23%. Also, the expected re-

duction on fasting blood glucose would be 1.03 mmol/L, having patients adhered 100% to

GlucoGuide recommendations (graph not shown).

Considering the differences in A1c and fasting blood glucose for normal, pre-diabetic, and

early diabetic people are quite small, people with diabetes would achieve highly significant

improvement if they adhere better to GlucoGuide’s recommendations.
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5.2 Relationships to Previous Works

The use of mathematical models in clinical diabetes is well-known [61], [62]. However, most

of the previous research works focus on using predictive models to generate long-term health

outcomes such as diagnosis prediction, A1c, complications, etc., as discussed in our literature

review. On the contrary, GlucoGuide uses predictive models on short-term health outcomes:

lifestyle changes to better control blood glucose levels. Recommending lifestyle changes, as

in GlucoGuide, is a form of action mining. It is an important topic in predictive. It aims

to generate action plans to maximize the gain or provides personalized recommendations for

individuals. Ling et al. [63] first proposed a novel algorithm to suggest actions of changing

customers from an undesired status (such as disloyal) to a desired one (such as loyal). However,

they used the decision tree model as the target variable is discrete, while in our case, the target

variable (the blood glucose levels) is continuous. Thus, an improved regression is used in

GlucoGuide.

Qiang et al. [64], [65] extended and refined the decision-tree approach by considering it as

a constrained optimization. Their approach is again only applicable to the classification tasks,

while GlucoGuide is a regression problem. In addition, those previous works did not consider

the involving nature of lifestyle data instances in our work and did not include any temporal

information as we did in GlucoGuide.

5.3 Conclusion

The efficiency of self-management for Type-2 Diabetes (T2D) is well-known but remains

highly challenging to implement for both patients and doctors in the practice. Our clinical

trial shows that GlucoGuide does help T2D patients to alleviate their diabetes conditions based

on two standard clinical blood tests. Our adherence model also predicted that the more they

adhere to GlucoGuide recommendations, the better the glucose control they would achieve.

In fact, the main difference of diabetes practice between the CON group and INT group is

the usage of the entire GlucoGuide system. Thus, it is difficult to point out and compare the

clinical efficiency of each sub-system of GlucoGuide (components such as food classification,

user interface, Web portal, lifestyle recommendations, etc.) specifically. In the future, more

specific clinical trials are needed to distinguish the efficiency of each component of GlucoGu-

ide.

The core function of our lifestyle recommendation framework is the blood glucose pre-

diction. Due to the constrains of resources, the diabetic lifestyle data collected in the clinical

trial are limited. It means the TWR framework is probably not converged to his full prediction
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potentials. In addition, we also want to explore the prediction performance of other non-linear

and complex models such as ANN or RandomForest, which usually require a huge amount of

training data.

In the next chapter, we will discuss how the small clinical dataset can be expanded and

enhanced to large scientifically-controlled datasets for more comprehensive blood glucose pre-

diction tasks.



Chapter 6

Predicting Blood Glucose with Data
Expansion

6.1 Blood Glucose Prediction: State-of-the-Art

With nearly two decades’ research and development, it is possible now to predict near future

blood glucose levels (e.g., 30 or 60 minutes later) within reasonable prediction error ranges.

This could be very useful for hyperglycemia/hypoglycemia warnings. For example, if a patient

is informed with an extremely high after-meal blood glucose (such as 15 mmol/L), he/she

can proactively conduct suitable actions such as increasing moderate/vigorous exercise, and/or

adjusting insulin dosage, etc., to stabilize blood glucose beforehand.

The methods of blood glucose prediction reported in the literature can be mainly divided

into two groups. The first group uses mathematical models to simulate the physiological dy-

namics of the glucose-insulin regulatory system. However, due to the complexities of the

human body, it is not possible for a simple mathematical model, to precisely predict an indi-

vidual’s blood glucose levels. The second group includes machine learning and data-driven

models, which aim to predict blood glucose based on training datasets. The main advantage of

data-driven approaches is that they do not require much previous knowledge about the physi-

ology of diabetes. However, a large amount of qualified training data is required for machine

learning models to achieve satisfying generalization-errors levels.

Most previous machine learning-based researches focus on continuous blood glucose mon-

itoring (CGM) data. CGM is an advanced technology to measure glucose levels in a real-time

throughout the day and night. CGM sensors are inserted under the skin to measure glucose lev-

els in tissue fluid. They are connected to a transmitter sending the blood glucose information

via wireless networks. An example of CGM dataset is shown in Figure 6.1, which is a sample

54



6.1. Blood Glucose Prediction: State-of-the-Art 55

of CGM data of a 14 years old T1D patient, sampled every 5 minutes. From Figure 6.1, we can

observe a blood glucose peak from 9:50 AM to 11:15 AM after breakfast and be stabilized via

insulin injection or medication intake. AutoRegression (AR) [66, 67, 68, 69, 70, 71, 72, 73] is

Figure 6.1: CGM data of a 14-years old T1D patient, sampled every 5 minutes

the first proposed and also the most popular framework to predict time-series CGM readings.

A general linear AR model can be formulated as:

y(t) =

M∑
i=1

wi(t)y(t − i) + e(t). (6.1)

where y is the blood glucose at time t, M denotes the order of the AR model, e(t) is as white

noise with E[e(t)] = 0 and var[e(t)] = θ2, and wi is the weight/coefficient of previous blood glu-

cose readings. The future blood glucose prediction ŷ(t + PH) by using a weighted combination

of history signals before time t:

ŷ(t + PH) =

M∑
i=1

wi(t)y(t − i). (6.2)

where PH is the prediction horizon. The coefficient of AR model can be learned usually via

least squares-wised algorithms.

To illustrate AR’s performance, we used an univariate AR(12) time series model to fit a

demo dataset, i.e., the 14-years old T1D patient dataset (around 50,000 readings) by ordinary

least squares (OLS) method. The prediction performance is measured by prediction residual.
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The mean of prediction residual is 0.11 mmol/L. As we can see from Figure 6.1, the prediction

errors ranged from 5 to -5 mmol/L but most are less than 1 mmol/L, indicating AR model is

quite effective on this demo dataset.

AR framework has been improving and refining by researchers. Sparacino et al. [67, 68, 70]

archived sufficient prediction accuracy by using first-order polynomial AR(1) model, with

time-varying parameters (coefficients) learned via recursive least squares (RLS). They also

introduced a constant forgetting factor to reduce the weights of blood glucose readings. Eren-

Oruklu et al. [71] used AR(3) and auto-regressive with moving average (ARMA) models, with

time-varying parameters learned via RLS. Their forgetting factor can be modulated according

to the glucose trend. Gani et al. [72] developed an AR(30) model with time-invariant parame-

ters identified by regularized LS. Finan et al. [73] propose an AR model with extra exogenous

inputs given by ingested carbohydrates and insulin medications. Artificial Neural Networks

Figure 6.2: AR(12) prediction residual on a 14-years old T1D patient demo dataset prediction

(ANN), as a very powerful non-linear predictive framework, has been employing in CGM

blood glucose prediction recently [1, 20, 16, 18, 19, 59].

ANN is a modeling tool that consists of simple processing elements, called neurons, linked

to each other through weighted connections. The main goal of ANN training is to learn those
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weights in order to minimize the estimation errors. The main advantage of ANN is that it

can learn the relationship between input and output without strong assumptions on the target

system. Figure 6.3 shows the basic principle of ANN for CGM blood glucose prediction.

Pérez-Gandı́a et al. [1] first proposed the idea of CGM prediction using ANN in 2010. The

Figure 6.3: ANN architecture for t+PH blood glucose used previous 20 minutes blood glucose

readings, cited from the origin paper [1].

inputs of their designed ANN were the values provided by CGM devices during the previous 20

minutes readings, and the outputs were the prediction of blood glucose concentration at chosen

PHs (15, 30, and 45 minutes). Their performance was estimated via RMSE (root-mean-square

error), with results ranged from 10, 18 and 27 mg/dl (0.55, 1.0, 1.5 mmol/L equivalently) for

15, 30, and 45 minutes of PH respectively. They claimed that ANN model is more accurate

than linear AR models.

Pappada et al. [59] refined ANN-based CGM prediction by adding more inputs such as

insulin dosage, nutritional intake, lifestyle, and emotional facts, into ANN model. However,

the reported prediction error is relatively high (2.43 mmol/L) due to the imbalance (limited

number of hypoglycemic CGM readings) of their training data.

Zecchin et al. [20] proposed a hybrid model combining both an ANN and AR(1) model in

parallel to model the nonlinear and linear components of blood glucose. The main rationale is

that they believe the performance of the linear AR models decreases for after-meal blood glu-

cose trend (usually blood glucose peaks). Thus, they argue that the relationship between blood

glucose and meal information is nonlinear, which is related to the glucose rate of appearance

after a meal, modeled by previously published physiological models. As such, they modeled

the ŷ(t + PH|t), the glucose concentration at t + PH as the sum of two components,

ŷ(t + PH|t) = ŷl(t + PH|t) + ê(t + PH|t). (6.3)

where ŷl(t + PH|t) is the glucose prediction via AR model and ê(t + PH|t) is the estimation
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of the error introduced by the AR model, which is modeled via ANN model. Their evaluation

results on twenty simulated datasets and nine real datasets showed that the integration of meal

information dose improve the prediction accuracy but not significantly.

Later, Zecchin et al. [16] improved ANN-based blood glucose prediction via modifying the

architecture of their predictors mentioned in [20]. A modified ANN model called jump NN,

i.e., a feed-forward NN whose inputs are not only connected to its next hidden layer, but also to

the output layer. Their empirical studies showed that such new model resulted not statistically

different than the previous model proposed in [16]. However, they believe that the new jump

NN model has much simpler structure.

In addition to AR and ANN framework, the usages of other predictive models such as

SVM [74, 69], Regularized Learning [17], and Extreme Learning Machine [69] are also re-

ported in the literature.

In general, we think that the performance of CGM-based blood glucose prediction mainly

depends on the quality of training data (volume, sparsity, noise, etc.), the length of PH (typ-

ically 30 to 75 minutes), selected predictive framework, parameter tuning, etc. However,

the main disadvantage of CGM-based blood glucose prediction is its cost. For example, the

CGM datasets used in researches [1, 20, 16, 18, 19, 59, 69] were from a large-scale data-

acquisition clinical trial called DIAdvisor project, involving 90 patients across three sites in

Europe: France, Italy, and Czech Republic. The first round of this clinical trial has already

cost about 7.1 million Euro. Also, they claim that these datasets are the properties of clinical

researches and hospitals, meaning they are not publicly accessible. As such, their empirical

studies are difficult to be repeated and improved by other researchers.

Moreover, nearly 90% diabetic patients belong to T2D and usually do not need to use

CGM devices. The management tools they have nowadays are paper log-book, mobile apps,

glucometer, pedometers, insulin pens, etc., which are capable of generating a large scale of

non-clinical but diabetic lifestyle data.

6.2 Clinical Data Expansion and Enhancement

It is well known that the main efforts and overhead of conducting machine learning tasks come

from data collection and processing. Occasionally, researchers even have to develop a working

platform first for collecting training data (such as the GlucoGuide platform). As such, data

scarcity problem, also can be considered as “small data“ problem, is one of the main problems

of machine learning. The small size of data is often responsible for poor performances and

makes the extraction of the significant information for inferences is difficult.

Due to the constraints of resources, the diabetic lifestyle data collected in our clinical trial
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(detailed in the previous chapter) is not quite comprehensive regarding its dimensions and vol-

ume. Fortunately, GlucoGuide, as a commercialized platform now, is collecting lifestyle data

accumulatively from the users worldwide. Still, before we have collected sufficient training

data, we plan to design data expansion and enhancement mechanisms to create scientifically

controlled artificial datasets, as intermediate datasets between the small clinical trial dataset

and the large scale of real-world datasets for empirical studies.

In this simulation, we focus on the 2 hours after-meal blood glucose instance because it

involves more informative features (such as meals, exercise, etc.). To build the artificial after-

meal blood glucose dataset, we first design a new lifestyle feature vector on the basis of features

used in the clinical trial (Table 5.1, Chapter 5). We try to use parametric statistical inference

to find the properties of underlying distributions and potential dependencies of our clinical

dataset. We also apply diabetic domain knowledge to make certain assumptions about the

data and determine some important feature dependencies and parameters. Then, we generate

unlabeled lifestyle training datasets using the new feature vector. The last step is to send the

unlabeled datasets to a popular diabetes simulator called AIDA [75, 76, 77], as an oracle, to

generate after-meal blood glucose labels. Since AIDA can process insulin information, we

thus can add insulin features, which were not collected in the clinical trial. When the artificial

datasets are generated, we can conduct empirical studies to evaluate the quality of the artificial

datasets and the prediction performance.

6.3 Artificial Lifestyle Feature Vectors

We categorize the lifestyle health features into three predict levels based on their relevance to

blood glucose levels, as shown in Figure 6.4. We believe these predictors are able to cover

the main components of patients’ daily blood glucose management. Their dependencies and

relevance levels in this simulation have been determined via domain knowledge [2]. Note

that there are cross-level interactions, and not all predictors are necessarily significant to blood

glucose levels. We will explain these predictors and their interactions in the following sections.

6.3.1 L1 Predictions

L1 predictors are patients’ general profile information, including:

BMI. Relevant to patients’ height information.

Follows continuous normal distribution N(µ, σ2) with parameters µ = 35.6 and σ = 4.3

inferred from the clinical data sample.
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Figure 6.4: The proposed three levels of lifestyle predictors used to predict after-meal blood glucose

levels

Sex. Gender information, correlated to daily calories target estimated by Harris-Benedict

equation [78], which is a method used to estimate patients’ Basal Metabolic Rate (BMR)

and daily calories requirements.

Follows discrete uniform distributionU with 45% to be female and to be 55% male.

Age. Correlated to daily calories target estimated by Harris-Benedict equation.

Follows continuous normal distribution N(µ, σ2) with parameters µ = 61 and σ = 6

inferred from the clinical data sample.

A1c. Patients’ HbA1c information.

Follows continuous normal distribution N(µ, σ2) with parameters µ = 0.066 and σ =

0.009 inferred from the clinical data sample.

Education. Education level.

Follows discrete uniform distribution U with 90% to be post-secondary or above and

10% to be below post-secondary.
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6.3.2 L2 Predictions

L2 predictors are mostly related to patients’ daily activities, containing more predictive infor-

mation about daily after-meal blood glucose levels, including:

Height. Height information, determined by BMI and weight.

StepLength. Patients’ stride length, estimated by Height.

TargetCalories, denoted as C. Energies needed to maintain daily activities, estimated

using Weight, Height, Age, and Sex and activities level. In this simulation, daily target

calories are distributed equally as 25±5% for breakfast, 25±5% for lunch, 8.75±2.5%

for the snack between breakfast and lunch, 8.75±2.5% for the snack between lunch and

dinner, 25±5% for dinner, and 8.75±2.5% snack after dinner. It is also designed that

patients will have 10% change to skip a meal.

Protein. Daily target protein intake, determined by target calories and calories break-

down ratio. Note that 1g protein generates 4 kcal calories.

Follows continuous normal distribution N(µ, σ2) with parameters µ = 0.29 ∗ C/4 and

σ = 0.12∗C/4. The mean and sd value 0.29±0.12 represent the calories ratio contributed

by protein, inferred from the clinical data sample.

Fat. Daily target fat intake, determined by target calories and calories breakdown ratio.

Note that 1g fat generates 9 kcal calories.

Continuous normal distributionN(µ, σ2) with parameters µ = 0.21∗C/9 and σ = 0.18∗

C/9. The mean and sd value 0.21 ± 0.18 represent the calories ratio contributed by

protein, inferred from the clinical data sample.

Hourly StepCount. Hourly step count information, related to physical exercise activi-

ties. In the previous clinical trial, hourly step counts are collected use Bluetooth-enabled

pedometers.

Note that the hourly step counts could have correlations between each other. To test the

correlations among step count on different hours, we calculate and plot the covariance

matrix in Figure 6.5. As we can see from the Figure 6.5, most pairs have zero or small

covariance (less than 0.25). As such, to simplify, we assume the step count on each

hour is independent of other hours and we will fit each hour’s step count independently.

By analyzing the shape and properties (mean, standard deviation, skewness, kurtosis,

etc.) of step count samples collected in the clinical trial, we decide to hypothesize three

popular non-negative continuous distributions: Weibull Weillbull(λ, k), Gamma Γ(k, θ),
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Figure 6.5: The correlation matrix of hourly step counts recorded in the clinical trial

LogNormal lnN(µ, σ2) as candidates. Then, we use maximum likelihood estimation to

learn their parameters and Aikake’s Information Criterion to compare the goodness of fit-

ting. The best fitting distribution found for the step count sample is Gamma distribution.

Thus, we believe hourly step count sample

Follows continuous gamma distribution Γ(k, θ) with parameters shape k and scale θ in-

ferred from the clinical data sample (different hour has different parameter pair).

Moderate and Vigorous Exercise. In the previous clinical trial, the only exercise re-

lated data collected are step counts from pedometer. However, we also need to determine

the specific exercise types and durations. In fact, kinesiology researches show that there

is equivalence between a number of steps and physical activities [79]. By referring the

step conversion chart proposed by Purdue University [79], we make the following esti-

mations:

4500 hourly steps approximately equivalent to moderate intensity exercise with moder-

ate duration (30 minutes, 150 steps/min).

6500 hourly steps approximately equivalent to vigorous intensity exercise with moderate

duration (30 minutes, 216 steps/min).
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6.3.3 L3 Predictions

L3 predictors are the most relevant covariates, including:

Weight. Weight information, relevant to BMI.

Follows continuous normal distribution N(µ, σ2) with parameters µ = 99 and σ = 5.0

inferred from the clinical data sample.

Carbohydrates. Daily target carbohydrates intake, determined by target calories and

calories breakdown ratio. Note that 1 g carbs generates 4 kcal calories.

Follows continuous normal distribution N(µ, σ2) with parameters µ = 0.50 ∗ C/4 and

σ = 0.13∗C/4. The mean and sd value 0.50±0.13 represent the calories ratio contributed

by carbs, inferred from the clinical data sample.

Renal Threshold of Glucose. The renal threshold of glucose (RTG) is the blood glucose

concentration at which glucose begins to be excreted by the kidneys into the urine, which

is an indicator of kidney function.

Follows discrete uniform distribution U with 10% to be Low, 80% to be Normal, and

10% to be High.

Renal function. Renal function is a measure of kidney’s working status.

Follows discrete uniform distributionU with 80% to be Normal, 20% to be Reduced.

Liver sensitivity. Liver sensitivity represents the insulin sensitivity of the liver.

Follows discrete uniform distribution U with 10% to be Normal, 80% to be Reduced,

and 10% to be Increased.

Periphery sensitivity. Periphery sensitivity represents the insulin sensitivity of the rest

of the body.

Follows discrete uniform distribution U with 10% to be Normal, 80% to be Reduced,

and 10% to be Increased.

Insulin. Patients’ daily insulin and dosage information.

Based on the properties of our clinical patients sample, such as aged, overweight, need

to reduce food intake, and A1c 6.6 ± 0.9%, etc. We use the insulin treatment suggested

by AIDA as follows:

– Humulin S, short-acting insulins. Humulin S is a short-acting human insulin, which

usually be taken 20 to 45 minutes before eating. Its peak activity occurs after

about 30 minutes and lasts for approximately 2 hours [80]. It is well-known that
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Table 6.1: Health features of the 2 hours after-meal blood glucose artificial dataset

Feature Name Description

MealTime Timestamp of this meal

MealType Type of this meal

MealCarb Carbs intake in this meal

MealCarb Ratio Percentage of calories from carbs

MealProtein Protein intake in this meal

MealProtein Ratio Percentage of calories from protein

MealFat Fat intake in this meal

MealFat Ratio Percentage of calories from fat

Calories Calories of this meal

SnackCarb Carb intake in the snack between meal and blood glucose testing

SnackProtein Protein intake in the snack between meal and blood glucose testing

SnackFat Fat intake in the snack between meal and blood glucose testing

Humulin S Dosage Active short-acting insulin dosage intake

Humulin I Dosage Active intermediate-acting insulin dosage intake

Step Count Step counts between meal and blood glucose testing

Aerobic Step Count Aerobic step counts between meal and blood glucose testing

Blood Glucose 2 hours after-meal blood glucose level

moderate or vigorous exercise could increase the efficiency of insulin. Thus, we

also apply Humulin S adjustment to be 30% reduction for moderate exercise and

50% reduction for vigorous exercise (both for 30 minutes moderate duration). This

adjustment mechanism is based on the Guidelines for Insulin Adjustment for Extra

Activity suggested by St Joseph’s Hospital, London, ON.

Suggested dosage: 4 units before breakfast and 2 units before supper.

– Humulin I Insulin, intermediate-acting insulins. Humulin I is an intermediate-

acting insulin. It is usually taken in the morning (before breakfast) and/or in the

evening (either before dinner or before bed). Its peak activity occurs after about 6

hours and lasts for approximately 10 hours [80].

Suggested dosage: 16 units before breakfast, 12 units before supper, and 14 units

before bed.
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6.3.4 Assemble Predictors and Construct Feature Vector

Based on the lifestyle predictors explained in the last section, we construct our feature vector

of the training dataset for blood glucose prediction, as shown in Table 6.1.

From the above discussion, we can see that the blood glucose prediction technologies allow

us to form a training set z = {(xµ, yµ), µ = 1, 2, . . . ,M}, |z| = M, where

xµ = ((tµ1 , x
µ
1), . . . , (tµm, x

µ
m)) ∈ (R2

+)m ,

yµ = (tµb , y
µ) ∈ R2

+ .
(6.4)

where M is the size of the training datasets and m is the size of the feature vector, tu
i is the

timestamp of feature xi in data entry µ, tb is the timestamp of blood glucose testing, and yµ is the

blood glucose value. Applying the predictive modeling framework, we try to use the lifestyle

training dataset z to find the relations between lifestyle data and blood glucose, parametrized

with θ

fz(x; θ) : xµ → yµ (6.5)

fz(x; θ) is constructed as the minimizer of certain regularized or non-regularized cost functions.

6.3.5 Feature Temporal Re-weighting

Since many predictors have time-variant effects (e.g., short-acting insulin reach its peak at 2

hours), we argue that the influence of each predictor on blood glucose level should be adjusted

according to their time difference, which is designed as a function of time difference. For each

data entry, we scale the decay factor of each feature xi among all timestamps. Note that this

temporal weight is feature-dependent, which is different from the instance temporal weight we

designed in the lifestyle recommendation model.

As such, we give any feature xi with a timestamp associated (e.g., meal time, snack time,

etc) an exponential temporal decay d(xi), to weigh its relevant to the after-meal blood glucose,

as shown in Equation 6.6.

d(xi) =
β(tb−ti)∑m
j=0 β

(tb−t j)
xi. (6.6)

where xi is the ith feature, tb is the blood testing time and β = 0.8∆t is a selected exponential

decay function. As such, the Equation 6.5 is rewritten as

fz(x; θ) : d(xµ)→ yµ (6.7)

In the prediction performance evaluation section, we will show that the temporal feature

re-weighting do increase the prediction performance for most popular predictive models.
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6.3.6 Blood Glucose Labeling

The target variable is 2-hours after-meal blood glucose level yµ and labeled via sending lifestyle

data entry queries to AIDA simulator. AIDA is a popular diabetes simulator which enables

interactive simulation of plasma insulin and blood glucose profiles for demonstration, teaching,

self-learning, and research purposes. The AIDA interactive educational diabetes simulator (see

www.2aida.org) has been proved effective in numerous online-surveys, clinical trials, and

empirical studies[75, 76, 81, 82, 77].

AIDA requires all information from L3 predictors to predict 24 hours blood glucose tread,

as shown in Figure 6.6. In our case, we only take the discrete 2 hour after-meal blood glucose

sample as our labels.

Figure 6.6: 24 hours blood glucose trend, sampled every 15 minutes

6.4 Empirical Evaluation

We evaluate the quality of this data generation process from two aspects. The first one is to

compare the statistical properties the blood glucose levels (the target variable) between the

clinical samples and artificial samples. Our data generation process is validated if the blood

glucose levels in the artificial dataset are statistically similar to clinical trial sample. The second

aspect is the predictive capability of artificial datasets. To perform these two evaluation studies,

we generated a lifestyle dataset containing 100 patients over three months with 30,000 data

entries.
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6.4.1 Statistical Properties
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(a) Blood glucose levels in the clinical trial sample
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(b) Blood glucose levels in the artificial dataset

Figure 6.7: Distributions fitting (Weibull, Gamma, and LogNormal) on the blood glucose levels

of two datasets (the clinical trial sample and the artificial dataset (100 patients)). Two blood

glucose histograms have very similar shapes.

Exploratory blood glucose data analysis is our first step to validate the generated artificial

datasets. We use graphical techniques (Histograms/densities, Quantiles-Quantiles plot, Em-

pirical Cumulative Distribution Function (ECDF), and Probability-Probability plots) to visual-

ize the statistical properties of the empirical data and thus hypothesize the candidate families

of distributions which would fit well. As we can see in Figure 6.7, blood glucose levels in

both dataset are non-negative continuous and nearly normal distributed. Based on these prop-

erties, we choose the distribution candidates as Weillbull(λ, k), Gamma Γ(k, θ), LogNormal

lnN(µ, σ2).

The parameters in these candidates are estimated using maximum-likelihood methods. We

also use the most popular distribution K-S test to test if the data sample is from a reference

distribution statistically. The distribution fitting results show that all candidate distributions

have very similar AIC values, but LogNormal distribution has statistical significance in K-

S test 1. The fitted LogNormal distributions and other descriptive percentiles are shown in

Table 6.2. As we can see from Table 6.2, the blood glucose levels in the clinical trial sample and
1We reject the null hypothesis that the data sample is drawn from the LogNormal distribution if the p-value is

less than the significance level (0.05).
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Table 6.2: Descriptive percentiles and two fitted LogNormal distributions of blood glucose data

in clinical trial and artificial dataset.

Property Clinical Trial (mmol/L) Artificial (mmol/L)

Min 0.1 0.82

1st Quantile 6.0 6.6

Median 7.1 8.4

Mean 7.166 8.6

3rd Quantile 8.2 10.2

Max 14.5 27.6

Best-fit lnN(1.94, 0.282) (K-S test, p = 0.067) lnN(2.08, 0.382) (K-S test, p = 0.058)

the 100-patients’ artificial dataset share similar statistical properties and distributions, which

indicate that our data generation process is valid.

6.4.2 Prediction Capabilities Evaluation

Now the artificial training dataset is well-generated to have similar statistical properties with

an original clinical dataset. The next step is to evaluate the predictive ability of this artificial

dataset.

In our previous clinical trial, we applied generalized linear-model to predict blood glucose

and determine the feature relevance. In this study, since we now have much larger and more

informative datasets, we can investigate the prediction abilities of complex and non-linear mod-

els. As such, we choose four representative predictive models as: RandomForest (discussed in

Chapter 4), ElasticNet (GLMNET) (discussed in Chapter 5), ANN, and SVM.

The complete training dataset is randomly split into 5 subsets (10%, 20%, 40%, 60%,

and 100%). These percentages are equivalent to the number of patients since the total patient

number is 100. These subsets are used to evaluate the scalability of each model. For each

sub-dataset, we then split 70% of the data for model training, and 30% for model testing. Also,

we have prepared another validation dataset for parameters tuning. The prediction evaluation

metric is the standard MAE (Mean Absolute Error). After the standard parameter tuning (grid

searching) using the validation dataset, each model is well-calibrated to perform prediction

task on the training datasets. We plot their prediction performance in Figure 6.8.

As we can see in the Figure 6.8, the prediction errors of almost all models decrease with

the size of the training data. Simple-structured models, such as GLMNET and SVM, seem do
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Figure 6.8: Solid lines present the models enhanced with temporal weight (TW), dash lines represent

the regular predictive models. We can see that the integration of temporal weights improves the predic-

tion performance for all models. Also, the prediction performance increases with more training data for

most models.

not require too much training data to be converged. The start point is ten patients’ data over

three months, which have the similar size as our entire clinical trial dataset, are sufficient for

them to reach their prediction potentials. However, as for complex-structured models such as

RandomForest and ANN, they certainly require more data to reach their prediction potentials.

Thus, we do believe that our previous clinical dataset might not be sufficient enough to train

complex and non-linear models. Inspired by this fact, we argue that deep learning framework

such as Convolution Neural Network would achieve better prediction results on a large scale

of lifestyle datasets.

We also evaluate the feature temporal re-weighting mechanism. In Figure 6.8, solid lines

present the models enhanced with temporal weight (TW) described in Section 6.3.5 and dash

lines represent the regular predictive models. Obviously, we can see that the integration of



70 Chapter 6. Predicting Blood Glucose with Data Expansion

temporal weights does improve the prediction performance of all models. We can see that

RandomForest-TW (best prediction error are 1.36571 mmol/L) and ANN-TW (1.349877 mmol/L)

outperform other candidates on this training dataset. These MAE values are larger than the one

(0.9273 mmol/L) we reported in the clinical trial studies. However, the clinical trial samples in

fact have much smaller value range as shown in Table 6.2.

This study also suggests a linear model, even with complex regularization such as ElasticNet,

might not be the best prediction model in terms of blood glucose prediction accuracy. How-

ever, compared to the complex models such as ANN, the comprehensibility of the linear model

is very high. This advantage is in fact important and practically valuable for clinical decision

supports.

The artificial blood glucose datasets can also be used for varieties of other machine learn-

ing empirical studies such as blood glucose warnings, missing value imputation, data sparsity

analysis, transfer learning, etc., as our on-going and future research works. Still, they are not

real-world datasets. In order to conduct more reliable empirical studies, we certainly need

large datasets with more feature dimensions and huge data volume. Fortunately, the commer-

cialization of GlucoGuide gives us such opportunities, and we can collect large lifestyle data

worldwide now. The spin-off of GlucoGuide and our future research objectives will be briefly

described in the next chapter.
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GlucoGuide Spin-off

GlucoGuide Corp., established since Feb 2015 (https://glucoguide.com), aims to use ma-

chine learning technologies to tackle the two main challenges of diabetes self-management,

i.e., complexities of data input and lacking of short-term and personalized recommendations, as

detailed in Chapter 3. In particular, we have been researching and developing computer vision-

based approaches to reduce the complexities of lifestyle data input and provide evidence-based

lifestyle recommendations for patients to stabilize their blood glucose effectively.

GlucoGuide has received several rewards and raised approximately 1 million CAD R&D

fundings mainly from NSERC I2I, MITACS, and Angel Investments (See Appendix B for de-

tails). At this point, the main functionalities of GlucoGuide have been developed, and it is at the

stage of promotion and increasing user base. We believe that our user base will explode soon

because many GlucoGuide users believe that it is the best diabetes self-management system

they have seen. We been collaborating with many health organizations such as the nonprofit

organizations like CDA, local Diabetes Education Centers (DECs), and for-profit organizations

like MedPoint).

7.1 Current Status

Stable versions of GlucoGuide mobile clients for both Android and iOS can be downloaded

from Google Play and App Store respectively and used to log lifestyle data and receive advice

and recommendations from data-analytics algorithms. With the current version of GlucoGuide,

users are able to:

• Log and track data, including diet, exercise, sleep, blood glucose, insulin, A1c, weight,

etc., as shown in Figure 7.1. Users can also use reminder functions to one-click log the

data.

71
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Figure 7.1: Users can use GlucoGuide mobile clients to conveniently log varieties of lifestyle

data and receive recommendations

• Receive evidence-based lifestyle recommendations, some examples are also shown in

Figure 7.1.

• Log the diet data by snapping a photo of the meal and auto-estimate the nutrition facts,

as shown in Figure 7.2;

• Score their meal, based on a novel scoring system, as shown in Figure 7.2. The meal

scoring is a novel feature of GlucoGuide system, as it works with the existing data min-

ing system to give individualized feedback based on personal profile (such as weight,

height, gender, etc.) Note that the meal scoring system is designed to align with the

CDA Guidelines [2] (http://guidelines.diabetes.ca/Browse/Chapter11), and

with consultation from diabetes specialists and experts.

• View all the lifestyle data entered in a secure online logbook (https://myaccount.

glucoguide.com). The data are visualized with charts and trends as shown in Fig-

ure 7.3, and users can also print their logbook and bring them to their health providers;
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Figure 7.2: Log the diet data by snapping a photo of the meal and auto-estimate the nutrition

facts. A overall meal score is also generated to evaluate the whole meal.

7.2 Future Research Objectives

The current GlucoGuide system has already provided a comprehensive platform covering nearly

every aspect of diabetes self-management. For example, GlucoGuide is able to record detailed

information about each meal including the meal photos, specific food items in the meal, serving

and portion size, meal score, etc. As such, our future lifestyle feature vector can be expanded

to hundreds of thousands of dimensions. It is possible that in the future we can discover more

relationships between food items and blood glucose levels and provide more personalized and

detailed recommendations. Such as “Reducing 20% of the portion size of your home-made

sandwich to avoid high 2-hour blood glucose level“ or “30 minutes Yoga after dinner would be

the most effective way for you to control your fasting blood glucose“.

In fact, for a large feature vector, a huge amount of qualified training data are required to

fully describe the varieties of each feature and their relationships. Complex machine learning

frameworks are also needed to discover knowledge hidden in the big lifestyle data. Collect

such big lifestyle data and mine them with varieties of machine learning frameworks will be

our main future research objective.
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Figure 7.3: Users can review and print all their data using GlucoGuide online logbook.



Chapter 8

Conclusions

The efficiency of self-management for Type-2 Diabetes (T2D) is well-known but remains

highly challenging to implement for both patients and doctors in the practice. Based on the

challenges we discovered in the current diabetes management systems, we have proposed three

research questions and evaluated a novel system called GlucoGuide to answer them. We sum-

marize the answers to these questions as follows:

• Can we use classification models to generate real-time food guideline to help pa-
tients proactively manage their diet?
Answer: Evaluation results of our food classification tool show that it can achieve around

95% classification accuracy using RandomForest model on the proposed feature vector

combining textual and nutrient features. Thus, we can conclude that patients could re-

ceive empirically reliable real-time food recommendations using our tool. Note that our

food classes are subjective and labeled by health experts, which means they are not per-

sonalized and be changed over time.

• Can we predict T2D patients’ blood glucose level merely using lifestyle data and
discrete fingerstick-based blood glucose samples?
Answer: Evaluation results show that the MAEs of the proposed blood glucose predic-

tion framework are similar to the state-of-the-art results on both the real dataset and the

artificial datasets, using merely the lifestyle data and discrete blood glucose samples. In

fact, to the best of our knowledge, most related blood glucose prediction works are fo-

cused on CGM datasets mainly for T1D patients. We could not find the benchmarks of

blood glucose prediction for T2D’s lifestyle data but we believe there will be more simi-

lar research works in machine learning and computational diabetes management areas in

the future.

Also, we find that the prediction performance improved with temporal re-weighting

75



76 Chapter 8. Conclusions

mechanisms. We believe that the performance can be further improved by using deep

learning framework on a large scale of lifestyle data.

• Can we provide clinically effective lifestyle recommendations based on the outcomes
of blood glucose prediction?
Answer: Our clinical trial results suggest that GlucoGuide system could help T2D pa-

tients to alleviate their diabetes conditions based on two standard clinical blood tests. Our

adherence model also predicted that the more they adhere to GlucoGuide recommenda-

tions, the better the glucose control they would achieve. However, the main difference

of diabetes practice between the control group and intervention group is the usage of the

entire GlucoGuide system. Thus, it is difficult to point out and compare the clinical ef-

fectiveness of each component of GlucoGuide. In the future, more specific clinical trials

are needed to distinguish the effectiveness of each component.

Our work can be regarded as a proof of concept in integrating machine learning, mobile com-

puting, and medical knowledge into a mobile intelligent system that can benefit people with

chronic diseases, such as diabetes. We hope that our work could inspire future interdisciplinary

researchers to apply machine learning and mobile computing into the treatment and manage-

ment of other diseases.

GlucoGuide now is a university spin-off, allowing us to collect a large scale of practical

diabetic lifestyle data in terms of dimensions and volume. We can then design and implement

more advanced models to analyze the data and generate more personalized and effective rec-

ommendations. We hope our work would have potential impact on the entire diabetes treatment

and management area.
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Table A.1: Recommendation List

Type Condition Recommendation Templates
Carbohydrates Exceeds carbs tar-

get and has the

largest coefficient
• By examining your uploaded health data we have

seen that your carbohydrate and blood glucose lev-

els are related. Consider reducing the proportion

of carbohydrates you eat at dinner to better control

your after dinner blood glucose. For example, try

replacing some of the bread, rice or pasta in a meal

with an extra portion of meat or vegetables, both of

which have a lower carbohydrate content and often

help with satiety.

• Blood glucose was a little high after yesterday’s

meal. Try this trick: Heighten the flavour of your

foods with herbs, spices, vinegars, and mustards.

They’re all low calorie or calorie free and thus

don’t raise blood glucose levels.

• Based on your uploaded data, GlucoGuide has

found that carbohydrates are very linked to high

after-meal blood sugar. Consider reducing the to-

tal carbohydrates of the dinner meal by replacing

some of the grains in your meal (ex. rice, pasta,

bread) with vegetables or protein.
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Protein Exceeds protein

target and has the

largest coefficient
• Based on your uploaded data, GlucoGuide has

found that your protein intake is linked to your

blood glucose levels. To improve your blood glu-

cose levels try eating a smaller portion of protein

at meals. Ideally, we should all be eating between

0.8 - 1.8 grams of protein per kilogram of body

weight, and protein should make up 20% of our

total calories that we eat each day.
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Fat Exceeds fat target

and has the largest

coefficient
• Blood glucose was a little high yesterday. Think

about what you ate: was there a way you could

have made it a little healthier? Perhaps scaling

back the portion size, decreasing the amount of sat-

urated fat you have at dinner could make the differ-

ence. We’ve send a trend between your blood glu-

cose and the amount of fat you eat, so that would

be a good place to start!

• By examining your uploaded data, we have seen a

trend between the amount of fat you have at dinner

and your blood glucose levels. Try reducing the

portion size of the foods that have a high fat con-

tent, and increasing your intake of carbohydrates

and protein. For example, in your evening meal,

have a salad with garbanzo beans or black beans

added in to get extra protein, or try having a 1/2

cup of low-fat or non-fat yogurt with berries for

dessert.

• To improve your blood glucose levels try eating

foods with less saturated fat at meals. Ideally fat

should make up 30% of our total calories that we

eat each day. Lighten up on fats. For example,

decrease the amount of butter, oil, salad dressing,

cream cheese, sour cream and other fats you use.

They’re loaded with calories and some have un-

healthy saturated fat.



90 Chapter A. T2D Lifestyle Recommendations List

Carb Ratio Carb ratio exceeds

target ratio and has

the largest coeffi-

cient

• Great healthy eating choices - by incorporating

whole grains and protein-rich Greek yogurt you

are fueling your body with the nutrients you need.

Keep seeking out ways to add those vegetables for

extra punch.

Protein Ratio Exceeds protein

ratio target and

has the largest

coefficient

• Based on your uploaded data, GlucoGuide has

found that your protein intake is linked to your

blood glucose levels. To improve your blood glu-

cose levels try eating a smaller portion of protein

at meals. Ideally, we should all be eating between

0.8 - 1.8 grams of protein per kilogram of body

weight, and protein should make up 20% of our

total calories that we eat each day.

Fat Ratio Exceeds fat ratio

target and has the

largest coefficient
• Great work incorporating an extra serving of veg-

gies to your meals. Looking to lighten up on satu-

rated fats. Look at the nutrition facts of butter, oil,

salad dressing, cream cheese or sour cream. Some

varieties are loaded with calories and too much un-

healthy saturated fat. Consider reducing your por-

tions or replacing them with lower-fat varieties.



91

Step Counts Detected inactive

and has the largest

coefficient
• Your blood glucose levels have been a little high

before dinner the last two days. Consider adding

a short walk before dinner or between dinner and

your blood glucose measurement two hours after

dinner.

Aerobic Detected inactive

and has the largest

coefficient
• Your blood glucose levels have been a little high

before dinner the last two days. Consider adding

a moderate exercises before dinner or between

dinner and your blood glucose measurement two

hours after dinner.

• Physical activity is anything that increases your

heart rate. It is beneficial as it improves blood flow

to organs and helps body in the production of in-

sulin. Try reaching your training heart rate today

to improve your cardiovascular health!

Blood Glucose

Reminder

Missing blood glu-

cose testing for ad-

jacent three days
• Please remember to upload your evening blood

glucose: before and two hours after dinner.
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Data Record Re-

minder

Missing data up-

loading for adja-

cent three days
• Please remember to record and upload your

evening data: blood glucose before and two hours

after dinner, what you ate, your blood pressure and

step count.

• We’ve missed you the past couple days. Please

upload your dinner, blood glucose, blood pressure

and step count today. Way to meet your step count

goals the last few days!
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Blood Glucose

Target

Reach blood glu-

cose targets
• Yesterday’s blood glucose levels look great. Way

to go! Healthy choices, incorporating lots of veg-

gies and fruits means that your body will get the

nutrients it needs.

• Awesome - blood glucose levels are looking really

good.

• Please upload what you’ve been eating for dinner.

Blood glucose is looking great lately, and we want

to see how you’ve achieved such success!

• You are doing well - blood glucose and blood pres-

sure are looking good today. Based on your up-

loaded data, GlucoGuide has found that carbo-

hydrates are very linked to high after-meal blood

sugar. Continue to replace some of the grains in

your meal (ex. rice, pasta, bread) with vegetables

or protein.

• Your blood glucose levels have been a little more

elevated than normal the last few days. Is there

something you’re doing differently?

• Your blood glucose was very high this morning af-

ter your meal. This may happen once in a while,

but it is better to keep levels steady. Food that has

fibre, protein, and healthy fats helps us do that. For

example, eating a meal with veggies and hummus

instead of chips and dip will keep your blood glu-

cose levels lower.

• Your blood glucose was quite low - if you aren’t

planning on having dinner, have a small snack,

with about 15 g of carbohydrates, such as an ap-

ple, an orange or a pear.
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Blood Glucose

Warning

Abnormal blood

glucose levels

detected
• It looks like your blood glucose was very variable

today. To even out blood glucose swings, try to eat

smaller meals every 2-4 hours that include some

protein, fat, carbohydrates and fibre.

• It looks like your blood glucose was very variable

today. To even out blood glucose swings, try to eat

smaller meals every 2-4 hours that include some

protein, fat, carbohydrates and fibre.

• Your fasted blood glucose was quite low tonight -

we would like to monitor this. Please take your

blood glucose two hours after your meal.

• Your after dinner glucose level was very low

tonight. We’d like to monitor this. Please have

something to eat with at least 15 grams of carbo-

hydrates and repeat the measure in two hours.

• You are making great healthy choices! Remem-

ber to reward yourself - decide what kind of re-

ward would work best for you: maybe it’s praise

from your doctor, a new pair of running shoes, or

some time for reading a good book. Use the reward

you choose to treat yourself when you’ve reached

a goal.
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Step Count Target Reach step count

target
• Great work uploading your data. Your daily step

counts are looking good: small steps towards

change, added together can yield big results for

your health and wellness.

• Blood pressure is looking good! Keep it up with

that step count, yesterday - 8000+! Fantastic.

• Small changes today will yield great results when

added together. Your step count is great, the next

step is adding those veggies and healthy snacks!

• Go for that step goal! Plan ahead: set aside time

in your day for activity, and you’re more likely to

follow through with it.

• 10,000+ steps yesterday! Awesome!

• Blood glucose levels and step count are looking

great. Keep it up - your healthy lifestyle can help

reduce your risk of disease!
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Encouragement No data driven rec-

ommendation gen-

erated and/or over-

all well performed

• Make small goals and then plan to celebrate when

you accomplish them! Reward is an important part

of goal setting. Ideas include: a relaxing walk, a

movie, a good book, or a chat with an old friend.

• Good work uploading your data. By uploading ac-

curate and complete information about your din-

ners we will be able to see what affects your blood

glucose most.

• Fantastic job uploading your data. Through

healthy eating and physical activity you are di-

rectly and positively affecting your health. Re-

member - slow and steady wins the race!

• BP looked good yesterday! You can now move to

just monitoring dinner. Keep on uploading your

dinner data accurately and completely, so that we

can find what is affecting your blood glucose most.



Appendix B

Rewards and Fundings

• The 1st prize for the best Clinical Research Presentation at the 2nd Annual Diabetes

Research Day by the Schulich School of Medicine & Dentistry in Nov 2011.

• 79,000 CAD R&D funding from 2014 NSERC Idea to Innovation Grants.

• Angel Investments from Jordann Capital Management Inc since 2014.

• 125,000 CAD R&D funding from 2016 NSERC Idea to Innovation Grants.

• 146,000 CAD R&D funding from 2016 MITACS Accelerate.
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