
Western University
Scholarship@Western

Electronic Thesis and Dissertation Repository

December 2016

Color Separation for Background Subtraction
Jiaqi Zhou
The University of Western Ontario

Supervisor
Olga Veksler
The University of Western Ontario

Graduate Program in Computer Science

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science

© Jiaqi Zhou 2016

Follow this and additional works at: https://ir.lib.uwo.ca/etd

Part of the Other Computer Sciences Commons

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis
and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact tadam@uwo.ca.

Recommended Citation
Zhou, Jiaqi, "Color Separation for Background Subtraction" (2016). Electronic Thesis and Dissertation Repository. 4272.
https://ir.lib.uwo.ca/etd/4272

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fetd%2F4272&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F4272&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F4272&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=ir.lib.uwo.ca%2Fetd%2F4272&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/4272?utm_source=ir.lib.uwo.ca%2Fetd%2F4272&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tadam@uwo.ca

Abstract
Background subtraction is a vital step in many computer vision systems. In background

subtraction, one is given two (or more) frames of a video sequence taken with a still camera.
Due to the stationarity of the camera, any color change in the scene is mainly due to the pres-
ence of moving objects. The goal of background subtraction is to separate the moving objects
(also called the foreground) from the stationary background. Many background subtraction ap-
proaches have been proposed over the years. They are usually composed of two distinct stages,
background modeling and foreground detection.

Most of the standard background subtraction techniques focus on the background modeling.
In the thesis, we focus on the improvement of foreground detection performance. We formulate
the background subtraction as a pixel labeling problem, where the goal is to assign each image
pixel either a foreground or background labels. We solve the pixel labeling problem using
a principled energy minimization framework. We design an energy function composed of
three terms: the data, smoothness, and color separation terms. The data term is based on
motion information between image frames. The smoothness term encourages the foreground
and background regions to have spatially coherent boundaries. These two terms have been used
for background subtraction before. The main contribution of this thesis is the introduction of
a new color separation term into the energy function for background subtraction. This term
models the fact that the foreground and background regions tend to have different colors. Thus,
introducing a color separation term encourages foreground and background regions not to share
the same colors. Color separation term can help to correct the mistakes made due to the data
term when the motion information is not entirely reliable. We model color separation term with
L1 distance, using the technique developed by Tang et.al. Color clustering is used to efficiently
model the color space. Our energy function can be globally and efficiently optimized with
graph cuts, which is a very effective method for solving binary energy minimization problems
arising in computer vision.

To prove the effectiveness of including the color separation term into the energy function
for background subtraction, we conduct experiments on standard datasets. Our model depends
on color clustering and background modeling. There are many possible ways to perform color
clustering and background modeling. We evaluate several different combinations of popular
color clustering and background modeling approaches. We find that incorporating spatial and
motion information as part of the color clustering process can further improve the results. The
best performance of our approach is 97% compared to the approach without color separation
that achieves 90%.

Keywords: background subtraction, graph cuts, color separation, energy optimization

i

Acknowledgements
I would like to express my deepest gratitude to my supervisor, Dr. Olga Veksler, who gave
me great help by providing me with necessary materials, advice of great value and inspiration
of new ideas. She walked me through all the stages of the writing of this thesis. It is her
suggestions that draw my attention to a number of deficiencies and make many things clearer.
Without her strong support, this thesis could not been the present form.

I would like to express my sincere thanks to Dr. Yuri Boykov, whose lectures have a great
influence on my study in computer vision and image analysis. I feel grateful that I had the
change to attend his lectures. The clear and detailed ways he explained a problem impressed
me a lot.

Special thanks are given to the members of my examining committee, Dr. John Barron, Dr.
Robert Mercer and Dr. Jagath Samarabandu.

I would like to thank Dr. Lena Gorelick for her valuable and helpful suggestions to my thesis.
She taught me how to explain a problem in a more comprehensive way.

I also owe my heartfelt gratitude to my friends and other members in our vision group, who
gave me their help and time in listening to me and helping me work out my problems during
the difficult course of the thesis. I want to give special thanks to Meng Tang who did the prior
work of this thesis. He answered my questions patiently when I came to him for help.

I would extend my thanks to the help and support of the staff members in the main office and
system group.

I especially appreciate the support of my parents, who give me continuous encouragement and
love through all these years.

ii

Contents

Abstract i

Acknowledgements ii

List of Figures v

List of Tables ix

1 Introduction 1
1.1 Background Subtraction . 1
1.2 Our Approach . 4
1.3 Outline of the Thesis . 8

2 Background Subtraction Techniques 9
2.1 Basic Models . 9

2.1.1 Static Frame Difference . 9
2.1.2 Further Frame Difference . 10
2.1.3 Mean Filter . 12

2.2 Gaussian Average . 12
2.3 Gaussian Mixture Model . 14

3 Image Segmentation Techniques 17
3.1 Kmeans . 17
3.2 Mean Shift . 18
3.3 Efficient Graph-based Image Segmentation . 21

3.3.1 Graph-based segmentation . 21
3.3.2 Pairwise region comparison metric . 21
3.3.3 Algorithm . 22

4 Energy Minimization using Graph Cuts 25
4.1 Labeling Problem and Energy Minimization Framework 25
4.2 Optimization with Graph Cuts . 27
4.3 Color Separation Term . 32

5 Background Subtraction using Color Separation Term 37
5.1 Overview . 38
5.2 Graph Construction for Energy Function . 43

iii

5.2.1 Data Term . 44
5.2.2 Color Separation Term . 46
5.2.3 Smoothness Term . 48

6 Experimental Results 51
6.1 Image Database . 51
6.2 Parameter Selection . 52

Parameters in Kmeans . 52
Parameters in Meanshift . 53
Parameters in Efficient Graph-based Image Segmentation Algorithm . . 53
Parameters in Energy Function . 54

6.3 Evaluation Methods . 55
6.4 Evaluation of the Results . 57

Results without Color Separation and without Motion Information . . . 57
Results with Color Separation and without Motion Information 57
Results with Color Separation and with Motion Information 59

6.5 Results Comparison . 59
Background Modeling Techniques Comparison 60
Comparison with Color Separation . 62
Comparision with Motion Information 62

6.6 Failure Cases . 67

7 Conclusion and Future Work 68

Bibliography 69

Curriculum Vitae 71

iv

List of Figures

1.1 Example of input to the background subtraction algorithm. The background
model is estimated from the scene without moving objects, as shown in (b).
Usually, more than one frame is used for estimating the background model, to
be robust to illumination changes. Given a new, previously unobserved frame
(a), the task is to find pixels that belong to the new object (the red car in this
case). It is done by thresholding the difference between the current frame and
the background model, as shown in (c). The foreground detection results with
different thresholds 15, 25, 40 are shown in (d), (e), (f) separately. 2

1.2 The flow chart of the algorithm . 6
1.3 Example of background subtraction results using GMM (left) and our algo-

rithm (right): (top) original image; (middle) background model; (bottom) fore-
ground mask. 7

2.1 Background subtraction using static frame difference 10
2.2 Background subtraction using further frame. We chose the threshold that leads

to the best result. 11
2.3 Background subtraction using mean filter . 13
2.4 Background subtraction using Gaussian average 14
2.5 Background subtraction using Gaussian mixture model 16

3.1 Example of mean shift for 1D histogram . 19
3.2 Example of mean shift segmentation with different color features: (a) Ori-

gianl image, (b)-(g) mean shift segmentation using scale bandwidth 7 and color
bandwidths 3, 7, 11, 15, 19 and 23 respectively. [28] 20

3.3 A synthetic image (320 × 240 grey image), and the segmentation results (σ =

0.8, k = 300) [11]. 23
3.4 A street scene (320 × 240 color image), and the segmentation results (σ =

0.8, k = 300) [11]. 23
3.5 A baseball scene (432 × 294 grey image), and the segmentation results (σ =

0.8, k = 300) [11]. 23

4.1 Illustration of 4 and 8 neighborhood systems in images 27
4.2 An example of a graph with source and sink terminals. [Image credit: Yuri

Boykov] . 28
4.3 An example of a s − t cut on a graph. [Image credit: Yuri Boykov] 29
4.4 Illustrates the max-flow/min-cut algorithm. [Image credit: Yuri Boykov] 29

v

4.5 Binary segmentation for 3 by 3 image. (top-left): Original image; (top-right):
Graph constructed based on original image with source and sink terminals;
(bottom-right) A minimum cut for the graph separating all pixels into two dis-
joint sets; (bottom left): Segmentation result, one color stands for one label.
[Image credit: Yuri Boykov] . 31

4.6 Color separation gives segments with low entropy. [Image credit: Meng Tang] . 33
4.7 Plots for different energy terms. 34
4.8 Graph construction for L1 color separation term in one color bin. [Image credit:

Meng Tang] . 34
4.9 Overall graph construction for energy with L1 color separation term. This ex-

ample shows three different color bins, blue, orange and green. Three auxiliary
nodes are added for these color bins. All pixels are connected to the corre-
sponding auxiliary node. [Image credit: Meng Tang] 35

4.10 Example of segmentation results with one graph cut. [Image credit: Meng Tang] 36

5.1 The flow chart of the algorithm . 39
5.2 An example of background subtraction using Gaussian average model: a se-

quence of images from a video stream (first row and third row) and corre-
sponding background subtraction results (second row and last row). 40

5.3 Illustrates motion information using the mean filter background modeling. . . . 41
5.4 An example of the foreground mask (left) and background mask (right) using

mean filter. White area in the two images represents the pixels that prefer to be
foreground and background respectively. 41

5.5 Color clustering results using different algorithms. 42
5.6 An example of the visualization of edge contrast between neighboring pixels. . 43
5.7 An example of color clustering results using the efficient graph-based segmen-

tation algorithm. 44
5.8 Overall graph construction for energy with L1 color separation term. 50

6.1 Sample frames (top) and the corresponding ground truth (bottom) from our
dataset: (a) a general sequence from object detection dataset used in [7], (b)-
(c) sequences from wallflower dataset [32], (d) sequence obtained by ourselves. 52

6.2 Example of kmeans clustering results with different number of clusters: (a)
original image, (b)-(g) kmeans color clustering with number of clusters 3, 5, 8,
10, 15, 20 and 50 respectively. 53

6.3 Example of meanshift clustering results with different color bandwidths: (a)
original image, (b)-(g) mean shift clustering using scale bandwidth 10 and color
bandwidths 3, 5, 6, 6.5, 8 and 10 respectively. 54

6.4 Example of an efficient graph-based clustering results with different color fea-
tures: (a) Original image, (b)-(g) graph-based clustering using cluster threshold
100, 150, 200, 300, 500, 1000 and 1500 respectively. 54

6.5 Example of background subtraction results with different weight of smooth-
ness term using mean filter background modeling techniques without the color
separation term: (a) original image, (b)-(d) background subtraction results with
λ = 10, 50, 500, 2500, 3000 respectively. 55

vi

6.6 Example of background subtraction results with different weight of color sepa-
ration term using mean filter background modeling techniques without motion
information: (a) original image, (b)-(d) background subtraction results with
λ = 50 and β = 1, 10, 100, 200, 1000 respectively. 56

6.7 Background subtraction results on an indoor scene with different background
modeling techniques without color separation term. First column shows the
original image (top) and the corresponding ground truth (bottom). The second
column is the data term mask (top) and background subtraction result (botton)
using mean filter background modeling technique. Red is the foreground and
blue is the background masks for the background modeling step. The third
column is the data term mask (top) and background subtraction result (bottom)
using Gaussian average background modeling technique. The fourth column
is the data term mask (top) and background subtraction result (bottom) using
Gaussian mixture model background modeling technique. 60

6.8 Background subtraction results on a moving person scene with different back-
ground modeling techniques without color separation term. First column shows
the original image (top) and the corresponding ground truth (bottom). The
second column is the dataterm mask (top) and background subtraction result
(bottom) using mean filter background modeling technique. Red is the pri-
ori foreground information from the background modeling process and blue
is the priori background information. The third column is the dataterm mask
(top) and background subtraction result (bottom) using Gaussian average back-
ground modeling technique. The fourth column is the dataterm mask (top) and
background subtraction result (bottom) using Gaussian mixture model back-
ground modeling technique. 61

6.9 Background subtraction results on a waving tree scene with different back-
ground modeling techniques without color separation term. First column shows
the original image (top) and the corresponding ground truth (bottom). The
second column is the dataterm mask (top) and background subtraction result
(bottom) using mean filter background modeling technique. Red is the pri-
ori foreground information from the background modeling process and blue
is the priori background information. The third column is the dataterm mask
(top) and background subtraction result (bottom) using Gaussian average back-
ground modeling technique. The fourth column is the dataterm mask (top) and
background subtraction result (bottom) using Gaussian mixture model back-
ground modeling technique. 61

6.10 An example of background subtraction results on an indoor scene with dif-
ferent combinations of background modeling techniques and color clustering
algorithms. Left: background subtraction method using mean filter. Middle:
background subtraction method using Gaussian average. Right: background
subtraction method using Gaussian mixture model. From top to bottom are
background subtraction methods: without color separation, with kmeans color
clustering algorithm, with meanshift color clustering algorithm and with effi-
cient graph-based color clustering algorithm. 63

vii

6.11 An example of background subtraction results on a waving tree scene with dif-
ferent color clustering algorithms using Gaussian average background model-
ing technique. (a) original image, (b) ground truth, (c) background subtraction
result without color separation, (d) background subtraction result with kmeans
color clustering, (e) background subtraction result with meanshift color cluster-
ing, (f) background subtraction result with efficient graph-based color clustering. 64

6.12 An example of background subtraction results on an indoor scene with differ-
ent background modeling techniques using kmeans color clustering algorithms
with motion information. Left: background subtraction method using mean
filter. Middle: background subtraction method using Gaussian average. Right:
background subtraction method using Gaussian mixture model. From top to
bottom are background subtraction methods: without color separation, with
kmeans color clustering algorithm without motion, with kmeans color cluster-
ing algorithm with motion. 65

6.13 An example of background subtraction results on an indoor scene with differ-
ent background modeling techniques using efficient graph-based color cluster-
ing algorithms with motion information. Left: background subtraction method
using mean filter. Middle: background subtraction method using Gaussian av-
erage. Right: background subtraction method using Gaussian mixture model.
From top to bottom are background subtraction methods: without color sep-
aration, with efficient graph-based color clustering algorithm without motion,
with efficient graph-based color clustering algorithm with motion. 66

6.14 An example of background subtraction results on a waving tree scene using
Gaussian average background modeling method with two color clustering al-
gorithms including motion information. From left to right are background sub-
traction methods: without color separation, with color clustering algorithm
without motion, with clustering algorithm with motion. Top: with kmeans
color clustering algorithm. Bottom: with efficient graph-based color clustering
algorithm. 67

viii

List of Tables

6.1 Average error rate, recall, precision and F-measure of different methods in
backgound modeling. 57

6.2 Average error rate, recall, precision and F-measure of different backgound
modeling techniques using kmeans color clustering. This table shows the ef-
fectiveness of color separation. 58

6.3 Average error rate, recall, precision and F-measure of different backgound
modeling techniques using meanshift color clustering. This table shows the
effectiveness of color separation. 58

6.4 Average error rate, recall, precision and F-measure of different backgound
modeling techniques using an efficient graph-based color clustering. This table
shows the effectiveness of color separation. 58

6.5 Average error rate, recall, precision and F-measure of different backgound
modeling techniques using kmeans color clustering with motion information.
This table shows the benefits of motion information. 59

6.6 Average error rate, recall, precision and F-measure of different backgound
modeling techniques using an efficient graph-based color clustering with mo-
tion information. This table shows the benefits of motion information. 59

ix

Chapter 1

Introduction

1.1 Background Subtraction

Background subtraction is a vital step in many computer vision applications and it is mainly
used for detecting moving objects in videos from static cameras. The rationale of this approach
is to segment out foreground objects from their background in a video sequence by using the
difference between the current image and a background image (see Figure 1.1). Here the
background image represents the scene without moving objects. Background subtraction is
composed of two distict steps, background modeling and foreground detection. These two steps
are performed successively. In the background modeling, a background model is estimated in
the beginning of the algorithm and usually it is updated regularly during the deployment of the
algorithm. The need to update the background is due to multiple factors. For example, the
illumination in the scene may change due to the change in the weather conditions, or due to the
change in time of the day. Also, if an object was moving but then stops moving for a sufficient
long time (for example a car that has been parked), then it should be considered as part of
the background. Thus a reliable background model should adapt with time to the changing
circumstances in the scene. In foreground detection, a decision is made about whether a pixel
fits the background model or not. The result is ususlly fed back to background modeling, so
that no foreground pixels are used when constructing the background model.

Many background subtraction approaches have been proposed previously. The simplest
way to build a background model it to manually select a static image that represents the back-
ground and has no moving object. By thresholding the difference between the current image
and the chosen image, the foreground can be detected, as shown in Figure 1.1.

A static image is not the best choice. If the light changes suddenly, then the foreground
segmentation may fail due to the large intensity difference in the background induced by the
changing light. Some other previous works propose to use the frame previous to the current
one instead of the static image [3]. This approach fails if the moving object has large areas
of uniform color. In [21], they suggest to compute the arithmetic mean or weighted mean
of the pixels in the previous frames as the background image. The main advantage of this
method is that the background model is updated and might be able to handle large changes in
the scene over time. Assuming that the background is more likely to appear in a scene, in [24]
the authors proposed to use the median value of the previous several frames as the background

1

2 Chapter 1. Introduction

(a) Input video (b) Background model

(c) Difference between current
frame and background model

(d) Foreground detection with
a threshold 15

(e) Foreground detection with
a threshold 25

(f) Foreground detection with a
threshold 50

Figure 1.1: Example of input to the background subtraction algorithm. The background model
is estimated from the scene without moving objects, as shown in (b). Usually, more than one
frame is used for estimating the background model, to be robust to illumination changes. Given
a new, previously unobserved frame (a), the task is to find pixels that belong to the new object
(the red car in this case). It is done by thresholding the difference between the current frame
and the background model, as shown in (c). The foreground detection results with different
thresholds 15, 25, 40 are shown in (d), (e), (f) separately.

1.1. Background Subtraction 3

model. However, the approach has a high memory requirement with a buffer for the previous
pixels.

After obtaining the background model, foreground detection is the next step. It can be
done by thresholding the absolute difference computed from the current image and the back-
ground image. However, the detection results are sensitive to threshold selection, as shown in
Figure 1.1. The works in [2][14][15][36] suggest other ways to improve the performance of
foreground detection by using color, texture and edges features. Firstly, a simple approach to
integrate the texture and color features for background subtraction is proposed in [36]. The
method can handle the background that contain jittering background objects such as waving
tree branches and detect the moving objects in the scene efficiently. In [15], the author presents
a new background subtraction technique based on a combination of texture feature, color fea-
ture and intensity information. The approach works robustly both in rich texture areas and
uniform areas and can also deal with noise and shadows effectively. A new algorithm for back-
ground modeling is presented by combining texture, RGB color information and Sobel edge
detector [2]. The proposed method is robust and effective against illumination variation and
scene motion.

In [34], Wren et al. propose to build the background model independently at each pixel
location. It is based on an assumption that the intensity values of a pixel in the previous several
frames fit a Gaussian distribution. So only two parameters need to be maintained for each pixel
in background modeling, the average of previous pixels and standard deviation. But a single
valued background is not an adequate model if the background changes are complex. In [30],
the authors propose to model intensity of a pixel by a mixture of Gaussians distribution. This
model has proved to be more appropriate as it provides a description of multiple background
objects. After computing the difference between the current frame and previous average, the
foreground detection can be done by comparing this value with standard deviation.

In this thesis, our main goal is to show that the color separation term is useful for the
background subtraction energy. Thus rather than focusing on sophisticated background models,
we chose three simple background modeling methods in our experiment: mean filter, Gaussian
average and Gaussian mixture model, see Chapter 2 for details. If the color term is useful with
simple models of the background, it should also be useful when more complex models are
introduced.

In order to achieve a good performance in a practical application system, such as people
tracking, traffic monitoring and video surveillance, foreground should be accurately segmented.
Most recent studies on background subtraction are mainly about background modeling, the
main difference between most methods is how the background model is represented. Few of
them focus on foreground detection. Besides the practical needs, our work is motivated by the
foregound segmentation through graph cuts, which achieves accurate and efficient foreground
detection accuracy [13]. Segmentation with graph cuts to detect foreground is attractive be-
cause it allows formulation of an objective function that encodes the desired property of seg-
mentation, such as color coherence of the object/background, smoothness of the boundary, etc,
as well as providing a method for globally optimizing this objective function.

Binary energy optimization with graph cuts is an efficient approach for segmenting an
image into foreground and background regions [4][29]. Many interactive segmentation ap-
proaches such as grabcut [29], lazy sanpping [22], [22], [23], are built upon it. Most segmenta-
tion functions include an appearance term to model foreground/background, and a smoothness

4 Chapter 1. Introduction

term to encourage smooth boundaries. If we want to apply the graph cut framework to back-
ground subtraction, what we need to consider is how to build the appearance model which is
unknown in advance. In image segmentation, to estimate appearance models, a user input is
needed first for initialization, usually through a box placed by the user roughly around the ob-
ject. We can estimate the foreground model inside the box and the background model outside.
After the initial appearance model is known, the image is segmented by a graph cut. Model
estimation and segmentation are repeated until covergence to a local minimum [1]. However,
we do not have user input for background subtraction within a video stream. So the appearance
model can only be estimated by using the information from the background modeling. We fol-
low the basic framework introduced in [13] to design an energy function for the background
subtraction problem. The key difference is that we introduce the color separation term in the
energy.

Color is a useful feature for segmentation. Background separation is also a type of segmen-
tation problem, and so incorporating color should help to achieve better results. The main goal
of this thesis is to incorporate color information into background subtraction. For this purpose,
we incorporate the color separation term from [31] into the energy function for background
subtraction.

In this thesis, we need to model color space efficiently. There are various approaches for
modeling color, such as color histogram, kmeans, Gaussian Mixture Models (GMM), etc.
Color space partitioning is usually performed independently from segmentation process, as
a preprocessing step. There is a limited prior work, such as [25], where the authors propose to
make color clustering an integral part of segmentation, by including a new color clustering term
into the energy function. However, the approach in [25] is computationally intensive. There-
fore, instead of integrating the search for a good color space as part of the energy function, we
empirically search over a various ways to construct color space to determine what works the
best for our application. In addition, there are multiple background modeling methods, and we
search over them as well.

1.2 Our Approach
In this thesis, we formulate the background subtraction problem as a binary pixel labeling
problem, where the goal is to assign each image pixel a ”background” or ”foreground” labels.
We solve the pixel labeling problem using a principled energy minimization framework. We
design an energy function composed of three terms: the data, smoothness, and color separation.
The data term uses the background model. It assigns each pixel a cost of being assigned to
the foreground and background labels. If a pixel fits the background model well, then its
cost to be background is low. Otherwise the background cost is high. The smoothness term
encourages the foreground and background regions to have spatially coherent boundaries. We
use the standard pairwise term [5] [29] in this work. Commonly used pairwise potential is
edge contract sensitive smoothness penalty. The higher the intensity contrast between two
adjacent pixels, the smaller the smoothness penalty. This model is effective because the object
boundaries are likely to align with strong image edges.

The data and smoothness terms have been used for the background subtraction problem
before [13]. The main contribution of this thesis is the introduction of a new color separation

1.2. Our Approach 5

term into the energy function for background subtraction. This term models the fact that the
foreground and background regions tend to have different colors. Thus, introducing a color
separation term encourages foreground and background regions not to share the same colors.
Color separation term can help to correct the mistakes made due to the data term when the
motion information is not entirely reliable. We model color separation as L1 distance term
using the model proposed in [31]. Color clustering is used to model the color space efficiently.
Our energy function can be globally and efficiently optimized with a single graph cut [31],
which is a big advantage of the framework.

Figure 1.2 shows the flow chart of our method, which can be roughly divided into three
parts. Given an input video stream, we first build a background model including background
initialization and background maintenance, based on a fixed number of frames. This model
can be designed in various ways. The initialization should be done first, but it varies according
to the chosen background modeling method. The background model needs to be upated during
each step after the foreground detection process. These result images are analyzed in order to
update the background model learned at the initialization step, with respect to a learning rate.
After we get the background model, we compare the current frame with the background model
and construct the data term in our energy function.

Another early step of our approach is to cluster the color space. This step is necessary for
constructing the color separation term. We also found it helpful to augment the color feature
with the spatial coordinates and motion features to obtain more accurate results.

The pairwise term in the eneryg function measures the smoothness of the boundary. This
can be built using the intensity gradient information from the current frame. The last step is
to use one graph cut to optimize the energy function and finish background subtraction for the
current frame. This iteration comes to an end at the last frame of the video.

We evaluate our novel algorithm on an object detection dataset used in [7], wallflower
dataset [32] and a video stream recorded by ourselves. Our approach with color separation
term performs better compared with the results without color separation term and also better
than results from previous background subtraction methods with the same modeling process.
For instance, in Figure 1.3, we show a sample image from a video. We get more precise
background subtraction for the moving object than the work in [30], which uses the Gaussian
mixture model to build the background model. To make the comparison fair, in our proposed
algorithm, we use the same background modeling method as the previous approach in the
background subtraction process. The framework is shown in Figure 1.2. We also compare the
result with and without color separation. Our approach reaches higer accuracy compared to
the method [30]. More comparisons among different background modeling methods and color
quantization methods are shown in Chapter 6.

This work contributes in many aspects, which are summarized as follows:
We propose to focus on the foreground detection in background subtraction by using binary

energy minimization framework with the color separation term [31]. Unlike NP-hard multi-
label problems discussed in [18], the high-order color separation constraint can be efficiently
and globally minimized.

We propose to enhance the color separation term with spatial and motion information.
Motion information is especially useful for the background subtraction problem. Thus the
combination of the color and motion features performs more robustly.

We show general usefulness of the color separation term by using different background

6 Chapter 1. Introduction

Figure 1.2: The flow chart of the algorithm

1.2. Our Approach 7

Figure 1.3: Example of background subtraction results using GMM (left) and our algorithm
(right): (top) original image; (middle) background model; (bottom) foreground mask.

8 Chapter 1. Introduction

modeling methods and color clustering algorithms in experiments, such as mean filter, Gaus-
sian mixture model, kmeans, meanshift, etc.

1.3 Outline of the Thesis
The thesis is organized as follows: Chapter 2 is a review of the background subtraction tech-
niques used in this work, including basic background subtraction model, mean filter, and statis-
tical models such as Gaussian average (one Gaussian) and Gaussian mixture model. Chapter
3 introduces some image segmentation algorithms we use in this work for color clustering.
In Chapter 4, related work of binary optimization using graph cuts is analysed and the color
separation term is indroduced. In Chapter 5, details of background subtraction using color
sepatation term are explained. Furthermore, we show the graph construction for minimizing
the energy function and present specific meanings for each term in background subtraction.
Some experimental results are provided in Chapter 6. We apply the color separation term
to background subtraction with different background modeling methods and different image
segmentation methods. Chapter 7 concludes the thesis work and point out future work.

Chapter 2

Background Subtraction Techniques

Given an input image, in most cases it is the objects in the scene that are of interest, not the
scene itself. Examples include car tracking, people counting, etc. Background subtraction is
widely used in such cases. Background subtraction is especially useful when no prior knowl-
edge about object appearance is available. Background subtraction is among the most robust
and efficient methods in computer vision.

Most background subtraction methods follow a similar procedure. It consists of two main
stages: background initialization and maintenance and foreground detection. Background ini-
tialization builds an initial background model based on a fixed number of frames. In fore-
ground detection, for each frame, the comparison is made between the current frame and the
background model leading to the computation of the foreground of the scene. Usually the re-
sults of the foreground detection are fed back into the background modeling module to update
the background model. This is called background maintenance.

In our principled energy minimization approach to background subtraction, we need to
build a background model to be used as the data term in the energy function. We choose three
background subtraction techniques for our experiments and compare the performance to find
the method that shows the largest background subtraction accuracy. In this chapter, we will
start with the basic background subtraction model including mean filter and further describe
a simple statistical model, Gaussian average (one Gaussian). Finally, we introduce a robust
statistical model, Gaussian mixture model (GMM).

2.1 Basic Models

2.1.1 Static Frame Difference

Without any prior knowledge about the moving object, we first aim to build a background
model. The simplest way is to manually select a static image that represents the background.
This method is called the static frame difference. So we initialize the background with one
static image. For each video frame, we then compute the absolute difference between the
current frame and the selected static image. Based on the assumption that a moving object is
made of colors that differ from those in the background, every pixel at time t whose color is
significantly different from the ones in the background is more likely to be in motion. We can

9

10 Chapter 2. Background Subtraction Techniques

apply a threshold, Th, to the absolute difference to get the foreground mask. In particular, the
foreground mask image is defined as M(x, y) = 1, if the condition in Equation 2.1 is satisfied,
and M(x, y) = 0 otherwise.

|I(x, y, t) − I(x, y, t0)| > Th (2.1)

Here I(x, y, t) denotes the intensity of a pixel at position (x, y), time t. I(x, y, t0) denotes the
intensity of the pixel at the same position in background image. Instead of using just the
intensity value at each pixel, we can use the full color information avaliable at that pixel to
get a more accurate result. In this simplest approach to background modeling, there is not
mechanism for updating the background model, which is a significant drawback. Figure 2.1
shows a sample frame in a video and background subtraction result using this method.

(a) Input video (b) Background model

(c) Difference between current frame and
background model

(d) Foreground mask M

Figure 2.1: Background subtraction using static frame difference

The obtained foreground is very noisy. This is because the background is very likely to
undergo through changes due to illumination, etc. between the static image chosen some time
in the past and the current frame.

2.1.2 Further Frame Difference
As discussed previously, a static image is not the best choice, if the background has changes,
for example due to the changed lighting conditions, then the foreground segmentation may fail
dramatically. Alternatively, one can use the previous frame rather than a static image to build
the background model. This approach is called Further Frame Difference. The background is

2.1. BasicModels 11

initialized with the first input image. Here we maintain the background to be the previous frame
of current frame in the algorithm. Based on the same assumption as Static Frame Difference,
we also apply a threshold, Th. The background subtraction equation then becomes as follows:

|I(x, y, t) − I(x, y, t − 1)| > Th (2.2)

where I(x, y, t) is the intensity of a pixel at position (x, y), time t and I(x, y, t−1) is the intensity
of a pixel at position (x, y), time t − 1. Similarly, one can also use multiple component color
spaces, such as (R, G, B), (Y, U, V), (L, A, B), instead of intensity. As in the previous section,
the foreground mask M(x, y) is defined to be 1 for any pixel (x, y) that satisfies condition in
Equation 2.2, and 0 otherwise.

Since any change in the background is much smaller between two constitutive frames, this
methods is more robust to the changes in the background. However, if the object is moving
slowly and has regions of uniform color, then motion of such pixels can go undetected. That is
there may be no significant difference in color corresponding to the moving areas of a uniformly
colored object. This can be observed in Figure 2.2. Notice that most of the background noise
observed in Figure 2.1(d) is gone now. But now many interior parts of the car are not detected
as the foreground, since the color difference between the two frames is small in the areas of
uniform color. This figure shows the result on the same frame from the test video by using this
method.

(a) Input video (b) Background model

(c) Difference between current frame and
background model

(d) Foreground mask

Figure 2.2: Background subtraction using further frame. We chose the threshold that leads to
the best result.

12 Chapter 2. Background Subtraction Techniques

2.1.3 Mean Filter
Another commonly used method is the mean filter. In this approach, the initialization and
maintenance of the background model is performed by computing the arithmetic mean (or
weighted mean) of the pixels between successive images [21]. The background model B is
defined by:

B(x, y, t) =
1
n
·

n−1∑
i=0

I(x, y, t − i) (2.3)

If implemented naively, the mean background model has a relatively high memory require-
ments, as all the frames to compute the average from have to be stored in memory. However,
there is a memory efficient way to implement mean filter. First one uses equation 2.3 to ini-
tialize the background model. After the initialization, to perform the background maintenance,
Equation 2.3 is computed recursively via:

B(x, y, t) = (1 − α)B(x, y, t − 1) + αI(x, y, t) (2.4)

where α is a learning rate. The larger is the α the faster the background gets updated. The main
advantage of the mean filter method is the adaptive maintenance of the background model so
that it can handle changes of the background to some degree, see Figure 2.3.

After building the background model, the next step is the foreground detection. Just as
before, we compute the absolute difference between the current frame and the background
model. At image positions where the difference is greater than some threshold the position is
classified as a foreground pixel. The foreground detection equation is:

|I(x, y, t) − B(x, y, t)| > Th (2.5)

where I(x, y, t) is the intensity or color of pixel (x, y) at time t. The background subtraction
result from the same frame as in Figures 2.1 and 2.2 is shown in Figure 2.3.

Although the result is less noisy than in Figure 2.1 and less object parts are missing than in
Figure 2.2, there are still many mislabeled background pixels. There is a shadow behind the ob-
ject, since the color difference between the two frames is big in the some areas of background,
it is not only present at colored object areas.

The three methods I have introduced above are easy to implement and use. All three
are very efficient. And for the mean filtering method, the corresponding background model
changes over time. But there is one global threshold for all pixels in the image in all these
methods. And even a bigger problem, this threshold is not a function of time t. If the back-
ground appearance is bimodal or multi-modal, or if the light conditions in the scene change
with time, these approaches will not give satisfactory results.

2.2 Gaussian Average
Building a statistical background model is one of the most popular methods. Each pixel at
the same position in the successive images can be modeled independently by a Gaussian dis-
tribution [34]. Recall that the Gaussian distribution with mean µ and variance σ2 is defined

2.2. Gaussian Average 13

(a) Input video (b) Background model

(c) Difference between current frame and
background model

(d) Foreground mask

Figure 2.3: Background subtraction using mean filter

as

N(x|µ, σ2) =
1

√
2πσ2

e−
(x−µ)2

2σ2 (2.6)

For each Gaussian function, only two parameters (µ, σ) need to be stored. Parameter µ is
estimated as the average value of previous pixels. Parameter σ is the standard deviation and
is estimated through previous pixel samples as well. There seems to be the same problem as
with the mean filter, in order to estimate the parameters of the Gaussian function, we need to
store all the previous images in the memory at each new frame time. This memory problem is
solved as before, by computing and storing only the running average:

µ(x, y, t) = αI(x, y, t) + (1 − α)µ(x, y, t − 1) (2.7)

where I(x, y, t) is the current intensity of pixel at (x, y). Parameter α is the empirical learning
rate which is a tradeoff between background stability and the speed of update. The lower the
learning rate, the less quickly a background model can respond to the background changes.
Meanwhile, the standard deviation can be computed in a memory efficient manner as:

σ2(x, y, t) = α(I(x, y, t) − µ(x, y, t))2 + (1 − α)σ2(x, y, t − 1) (2.8)

Instead of the buffer with previous images, this method consists of only two parameters for
each pixel, which contributes to low memory requirement and fast speed.

14 Chapter 2. Background Subtraction Techniques

At each frame time t, the current image pixel is labeled as a foreground pixel if it satisfies
this inequality:

|I(x, y, t) − µ(x, y, t)| > kσ(x, y, t) (2.9)

otherwise, it will be classified as background pixel. The parameter k is usually set to a number
between 2 and 3. This model can be extended to other color spaces, such as (R, G, B), (Y, U,
V), (L, A, B) and etc. The background subtraction result from the same test frame is shown in
Figure 2.4. There is a small amount of noise in the foreground mask. But almost the entire car

(a) Input video (b) Background model

(c) Foreground mask

Figure 2.4: Background subtraction using Gaussian average

object is segmented, compared to the basic background subtraction methods.
In [19], the author suggests that the background model in Equation 2.7 is updated unneces-

sarily at pixels which are regarded as foreground. So a modified background model is proposed
as:

µ(x, y, t) = Mµ(x, y, t − 1) + (1 − M)(αI(x, y, t) + (1 − α)µ(x, y, t − 1)) (2.10)

where M is a binary image mask set to 1 if a pixel is classified as the foreground, and set to 0
otherwise. This method is known as selective background update.

2.3 Gaussian Mixture Model
A more robust method is to model the background with Gaussian mixture model which is
proposed by Stauffer and Grimson [30]. In this algorithm, the distribution of the color of each

2.3. GaussianMixtureModel 15

pixel is modeled as a sum of weighted Gaussian distributions defined in a given color space.
Namely, the intensity is modeled as:

P(I(x, y, t)) =

K∑
i=1

w(i, x, y, t) ·G(I(x, y, t), µ(i, x, y, t), σ(i, x, y, t)) (2.11)

At any time t, what is known about a particular pixel is its history. The history is modeled by a
mixture of K Gaussians G. Thus, the probability of occurrence of an intensity at a given pixel
(x, y) is represented as Equation 2.11. G is the ith Gaussian model and w(i, x, y, t) is its weight.

The mixture of Gaussians model is capable of modeling appearance as a mixture of several
objects. If the background has animated textures such as waves on the water or tree branches
shaken by the wind, or even just changing illumination conditions throughout the day, then a
background pixel is best modeled as a mixture of several (usually a small) number of objects.

The parameters in the Gaussian functions, that is the means, standard deviations, and the
mixing weights need to be initialized. We can initialize them randomly. But the standard de-
viation should be large enough, the weight of a new coming Gaussian should be small enough.
Because the Gaussian model is not accurate when just initialized, we need to update it in the
following process. If the standard deviation is larger, more samples can be included in one
model, so that we get a more accurate model. Another way to initialize is with kmeans results
obtained on training samples. We can set the value of µ as the average value for one cluster
obtained by kmeans, σ can be computed from the same cluster and the corresponding weight
is the ratio of samples from this cluster. Then, pixels which are at more than k (2 or 3) standard
deviations away from any of the estimated Gaussian distributions are labeled ”in motion”.

|I(x, y, t) − µ(i, x, y, t − 1)| > kσ(i, x, y, t − 1) (2.12)

If a new pixel value, I(x, y, t), can be matched to one of the existing Gaussians (within kσ),
then the matched Gaussian’s µ(i, x, y, t) and σ(i, x, y, t) are updated as follows:

µ(i, x, y, t) = (1 − ρ)µ(i, x, y, t − 1) + ρI(x, y, t) (2.13)

σ2(i, x, y, t) = (1 − ρ)σ2(i, x, y, t − 1) + ρ(I(x, y, t) − µ(i, x, y, t))2 (2.14)

where ρ = αG(I(x, y, t), µ(i, x, y, t), σ(i, x, y, t)) and α is a learning rate. Non-matched Gaus-
sians are left unchanged. Prior weights of all Gaussians are adjusted as follows:

w(i, x, y, t) = (1 − α)w(i, x, y, t − 1) + α(M(i, t)) (2.15)

where M(i, t) = 1 for the matching Gaussian and M(i, t) = 0 for all the others. In this model,
objects are allowed to become part of the background.

If I(x, y, t) does not match to any of the K existing Gaussians, the least probably distribution
is replaced with a new one. ”Least probably” means in the w/σ sense. New distribution has
µ(i, x, y, t) = I(x, y, t), a high σ and a low weight. Once every Gaussian has been updated, the
K weights w(i, x, y, t) are normalized so they sum up to 1.

The Gaussians with the most supporting weight and least variance should correspond to
the background. Large weight means a large support area and smaller variance means larger

16 Chapter 2. Background Subtraction Techniques

probability. The assumption is that the distribution with the largest area of support and low
variance (high probability) belongs to the background. Then the smallest number b of distri-
butions whose weights add up to a sufficiently large potion of the space T are chosen as the
background model:

B = argminb(
b∑

i=1

wi

σi
> T) (2.16)

where T is a threshold. Here is the background subtraction result from the same testing frame
in Figure 2.5.

(a) Input video (b) Background model

(c) Foreground mask

Figure 2.5: Background subtraction using Gaussian mixture model

There is still noise in the foreground mask. But among all these methods, Gaussian mixture
model technique performs the best in terms of getting the whole foreground object. However,
it performs much worse than the mean Gaussian average method in getting accurate results at
object boundary.

Although a different threshold is selected for each pixel by Gaussian average and Gaussian
mixture model, and these pixel-wise thresholds are adapted in time in this approach, it does not
take the spatial information into consideration. That is each pixel makes a decision indepen-
dently of other pixels, even though decisions are correlated. That is why the foreground mask
boundary is not accurate even in GMM. In this work, our proposed algorithm models spatial
interactions between pixels, encouraging a spatially coherent boundary.

Chapter 3

Image Segmentation Techniques

The goal of image segmentation is to assign labels to image pixels. As a result, the image is
partitioned into distinct regions such that pixels within each region have high similarity and are
very different between the regions. Image segmentation is a useful tool in many areas, such as
object recognition, image processing, medical image analysis, 3D reconstruction, etc. In this
work we focus on a specific segmentation task - background subtraction, where the goal is to
segment the foreground object from the background in an image or a sequence of images. In
this case the segmentation is binary, meaning there are only two labels. Our main contribution
is incorporating color/feature separation energy term [31] into the segmentation energy. We
show that color separation significantly improves background subtraction.

In this chapter, we will review three different segmentation techniques, the K-means clustering-
based segmentation algorithm [26], the meanshift-based segmentation algorithm [9] and an
efficient graph-based segmentation algorithm [11].

3.1 Kmeans

There is an extensive literature in computer vision that views segmentation problem as an
instance of clustering [12]. Clustering is an unsupervised method in which given data points
are partitioned into distinct groups/clusters based on their features. Many different clustering
methods exist [17]. One of the most popular methods is K-means clustering. It was developed
by J. MacQueen in 1967 and then by J. A. Hartigan and M. A. Wong around 1975. Given a
set of data points, K-means partitions the points into k disjoint clusters, where the number of
clusters is given by positive integer k. K-means algorithm consists of alternating between two
major steps. In the first step, given current assignment of the data points to clusters, a centroid
(mean point) is computed for each cluster. In the second step, each data point is assigned to
the cluster with the closest centroid. These basic two steps are alternated until convergences,
that is until there is no change in the cluster assignments. There are different approaches to
compute the distances between data points and cluster centroids. The most commonly used
is the Euclidean distance. As a part of this work, we have implemented one version of the
K-means algorithm.

Given an input image, let p ∈ Ω ⊂ R2 be a pixel and let fp be a vector of features for pixel
p. This vector can include geometric location of the pixel in the image as well as color and

17

18 Chapter 3. Image Segmentation Techniques

other descriptors. Let L be the set of labels, namely L = {1 . . . k}. We denote by lp ∈ L the label
of pixel p, namely the cluster to which p belongs. Let 1 ≤ i ≤ k. We denote by Ωi all the pixels
that have label i. That is Ωi = {p|lp = i}.
The algorithm is given by the following pseudo-code:
1. Initialize cluster assignments lp.
2. Iterate till convergence

2.1 Compute new cluster centroids

ci =
∑
p∈Ωi

fp (3.1)

2.2 Compute new cluster assignment for each pixel

lp = mini∈L|| fp − ci|| (3.2)

Although K-means is a very simple algorithm, it has some drawbacks. First, it is very
sensitive to initialization. That is, the quality of the final clustering results strongly depends on
the initial assignment of data points to clusters. Second, K-means might be computationally
expensive as there is no guarantee of the convergence time.

There are many ways to initialize the cluster assignments to improve the results. Most
initializations rely on Euclidean distances between pairs of the data points. In [27] they itera-
tively remove data points that are close to other data points from the original set, pruning the
initial clustering. In this algorithm, they reported reduced running time without sacrificing the
accuracy of clusters.

Madhu Yedla and etc [35] also focus on the centroid initialization to enhance the K-means
clustering algorithm. They proved their proposed algorithm has more accuracy with less com-
putational time compared to original k-means clustering algorithm. For each data point, they
calculate the distance from origin. Then, the original data points are sorted according to the
distances. After sorting, they partition the sorted data points into k equal sets. In each set
take the middle points as the initial centroids. This algorithm does not require any additional
parameters.

In this work we make use of both color and position of the pixels into account, which results
in 5-dimensional feature space.

3.2 Mean Shift
As mentioned above, K-means segmentation requires the user to predefine the number of clus-
ters. In many cases, the number of clusters is not known a priori and depends on the input data.
Clustering algorithms that can automatically find the number of clusters during the processing
are theretofore desirable. Mean shift is generally a non-parametric effective clustering algo-
rithm that does not require the number of clusters as an input. It has become widely-used in
the computer vision area since it was first proposed in [9] by D. Comaniciu and P. Meer. It was
introduced as a robust approach toward feature space analysis. We give a brief review of the
mean shift clustering algorithm for gray-scale images first and then explain how to use it on
color images.

3.2. Mean Shift 19

Let Ω = p1, ..., pN be a set of N image pixels, each described by a feature vector fp. Let
H = (b1, b2, ..., bM) be the image intensity histogram with M bins. Here each bin i is represented
by its center. Let g(bi) be the count of data points in bin bi. A window of the histogram is a
consecutive subset of 2w + 1 bins centered at some bin bi. The mean shift algorithm starts
at a random bin as the center of the window. Then, the center of the window is shifted in
the direction of the centroid of all the points that fall within the window, namely towards the
higher density region. This is repeated until the window converges at a mode of the histogram.
This mode represents a cluster and all bins that converge to the same mode are assigned to the
same cluster. The process is repeated until all bins are associated with one of the computed
modes/clusters. The details of the above iterative mode search are shown below.
1. Place a window center at a randomly selected bin bi.

cw = bi (3.3)

2. Repeat till convergence:
2.1. compute the weighted centrorid which will be the new center of the window

cw =

∑
b j≤cw+w and b j≥cw−w big(bi)∑
b j≤cw+w and b j≥cw−w g(b j)

(3.4)

The shift procedure is illustrated in Figure 3.1 for a one-dimensional feature vector, e.g.,
intensity. In the figure, a nine bins window is shown, centered on bin five. The first five bins
have count zero, while the other four bins have nonzero values giving nineteen in total. The
new mean is computed as

1 × 6 + 1 × 7 + 7 × 8 + 10 × 9
19

= 8 (3.5)

Figure 3.1: Example of mean shift for 1D histogram

Thus the mean will be shifted from bin five to bin eight, and the procedure continues until
it converges. When using the mean shift technique for grayscale image segmentation, the
shift procedure is run for each grayscale value and the mode at convergence gives the cluster
assignment for all pixels with that gray-scale value.

20 Chapter 3. Image Segmentation Techniques

Naturally the mean shift approach can be applied to multidimensional vectors. In our work,
feature vectors for each pixel are comprised from color and location.

Finding the mode associated with each data point helps to smooth the image while preserv-
ing discontinuities. Two points that are far from each other in the feature space would not fall
in the same window and therefore will likely converge to two different clusters. Hence, pixels
on either side of a strong discontinuity will not attract each other. By controlling the size of
the window in color and space with bandwidth (hs, hc), we can determine the resolution of the
mode detection. If the window size is not appropriate the results can be noisy. In this case it is
possible to run a filtering post-processing which will remove/merge small neighboring clusters.

In [9], a simple linkage clustering is used for grouping modes which are less than one
window size apart and their corresponding data points are merged. This simple procedure ef-
fectively converts the noisy results into smooth. The authors in [8] suggest to build a region
adjacency graph to hierarchically cluster the modes. But color information may not be suffi-
cient, since there might be color overlap between the object and the background. They also
proposed to combine edge information with color information to get better clustering results.

Figure 3.2 shows examples of mean shift segmentations for different values of the window
bandwidth parameter hc in the color space. Small changes in this parameter can make large
differences in the segmentation results. Figure 3.2(a) shows the original image. When the color
bandwidth is small, we get an over-segmented image in Figure 3.2(b). As we increase the value
of the color bandwidth, we get reasonable segmentation results with clear objects boundary in
Figure 3.2(f). Figure 3.2(g) shows a segmentation result for a large color bandwidth.

(a) (b) (c) (d)

(e) (f) (g)

Figure 3.2: Example of mean shift segmentation with different color features: (a) Origianl
image, (b)-(g) mean shift segmentation using scale bandwidth 7 and color bandwidths 3, 7, 11,
15, 19 and 23 respectively. [28]

Mean shift works well for color quantization. As we discuss in the experiments section,
this algorithm is a reliable building block for our background subtraction with color separation.
For some input images mean shift algorithm might produce noisy segmentation. Moreover, it
might be sensitive to variations in lighting, e.g. in consecutive video frames.

3.3. Efficient Graph-based Image Segmentation 21

3.3 Efficient Graph-based Image Segmentation

Another method to cluster image pixels in the feature space is efficient graph-based image
segmentation as described in [11]. Different from mean shift, this method does not need to
perform a filtering step first. It directly works on the data points in feature space and uses a
adaptive threshold instead of a constant threshold on single linkage clustering. In this section,
we first introduce the graph-based representation of the image, then describe the metric for
comparing the dissimilarity inside one region and between regions, and give a brief overview
of the complete algorithm at last.

3.3.1 Graph-based segmentation

Let G = (V, E) represent an undirected graph, in which V is the set of vertices and E is the set of
edges. It is the set of vertices V that needs to be segmented in image segmentation. To measure
the dissimilarity between neighboring vertices vi and v j, we use an edge between them with a
corresponding weight w(vi, v j). This dissimilarity between the vertices can be simply measured
by the difference in intensity. Or even more complex, it can be based on color, depth, motion,
location or any other local attributes. In [11], an edge weight is based on the color information
in the RGB space. Then, the goal of this method is to partition the vertices into two sets such
the variance within each set is low compared to the boundary between the sets. The principle of
such a partition is that the data points which belong to the same parts are similar and yet data
points which belong to different parts are dissimilar. The edge weights give a measurement
of dissimilarity between two vertices as we described above, so that edges between vertices
belonging to the same region will have low weights whereas edges between vertices belonging
to different regions will have high weights.

3.3.2 Pairwise region comparison metric

Using a constant threshold as a criterion for merging clustering does not consider the variability
between different regions. This may cause some problems. For example, neighboring regions
with low contrast between them may be merged together, whereas neighboring regions with
high internal variability may be separated into several components. To avoid this, a metric
which has an adaptive threshold taking into account the variability of the region is used. The
metric has two dissimilarity components. One is to measure the dissimilarity between two
neighboring regions by comparing the data points along their boundary. The other is to measure
the dissimilarity of the data points within each region. Internal difference is defined as follows:

Int(C) = max
e∈MST(C,E)

w(e) (3.6)

where, G = (C, E) is a subgraph and MST(C, E) is the Minimum Spanning Tree built on
this subgraph. A minimum spanning tree is generated by connecting all data points in the
subgraph with edges so that the resulting tree has the minimal sum of weights. Thus, the
internal difference can be explained as the largest edge weight in the minimum spanning tree
of the subgraph.

22 Chapter 3. Image Segmentation Techniques

The difference between two different regions is measured as the minimum edge weight
connecting these two parts. External difference is defined as follows:

Diff(Ci,C j) = min
vi∈Ci,v j∈C j,(vi,v j)∈E

w(vi, v j) (3.7)

If there is no edge between Ci and C j, it means that these two regions are not neighbors, so that
Diff(Ci,C j) = ∞. And then if the external difference between the two regions is less than the
internal difference inside either of the region plus a variable threshold term, the two regions are
allowed to be merged. We define the merged difference as follows:

MInt(Ci,C j) = min(Int(Ci) + τ(Ci), Int(C j) + τ(C j)) (3.8)

More specifically, we compare Equation 3.7 with the formula 3.8. If Equation 3.7 is less than
the Equation 3.8, the regions are merged. Therefore, the regions are not combined if there is a
strong evidence of a boundary between them. A strong evidence of a boundary is required for
small regions and vice versa, so the threshold function is written as follows:

τ(C) = k/|C| (3.9)

The above threshold function implies that a larger k produces larger regions and yet smaller
k produces smaller regions. Instead of constant threshold in traditional linkage clustering, the
key to success of this algorithm is this data-dependent thresholding. It is also possible to define
τ(C) based on prior information to favor some desired shape. Using adaptive dissimilarity
metric above is robust to outliers, but makes the partition problem NP-hard [11].

3.3.3 Algorithm
Below we describe the algorithm in detail. First, the graph G = (V, E) is formed with m edges
and n vertices. Each vertex is a pixel. The final segmentation will be S = (S 1, .., S r) where S i

is a cluster of data points. The pseudo-code for the efficient graph-based image segmentation
is illustrated in Algorithm 1.

Algorithm 1 Efficient Graph-based Image segmentation
Input: G = (V, E) and w(vi, v j) ∀vi, v j ∈ V and vi , v j

1: Sort E into E′ = (e1, ..., em) in non-decreasing order
2: start with a segmentation S 0 where each vertex vi is in a component by itself
3: Let eq = (vi, v j). Repeat step 3 for q = 1, ...,m to find S q given S q−1

4: if vi and v j are in disjoint components of S q−1 then
5: if w(eq) is less than MInt(Ci,C j) where vi ∈ Ci and v j ∈ C j then
6: Merge Ci and C j

7: end if
8: end if

Output: S m

The merging metric in 3.8 allows efficient graph-based clustering to be more sensitive to
edges in regions of low variability and less sensitive to edges in the regions of high variability.

3.3. Efficient Graph-based Image Segmentation 23

Figure 3.3: A synthetic image (320 × 240 grey image), and the segmentation results (σ =

0.8, k = 300) [11].

Figure 3.4: A street scene (320 × 240 color image), and the segmentation results (σ = 0.8, k =

300) [11].

Figure 3.5: A baseball scene (432×294 grey image), and the segmentation results (σ = 0.8, k =

300) [11].

24 Chapter 3. Image Segmentation Techniques

Gaussian filter is often used first to remove artifacts and smooth the image before segmentation.
Some segmentation results implemented in [11] are shown here.

Figure 3.3 shows a synthetic image with a region which has high variability in the right
part. This algorithm can segment out such region due to lower sensitivity to edges in this
region. Figure 3.4 and Figure 3.5 show two real world scenes and the segmentation result
produced by the method.

Chapter 4

Energy Minimization using Graph Cuts

For each frame in a video, we formulate background subtraction as a binary labeling problem
where the goal is to assign each image pixel either a ”foreground” (or object) or a ”background”
label. We solve this binary pixel labeling problem in a principled energy minimization frame-
work. The advantage of using energy minimization framework is that we can encode useful
problem constraints, such as the requirement that the foreground and background regions are
spatially coherent. After the energy function is formulated, we can use optimization algorithm
to do energy minimization. The advantage of our energy is that it can be efficiently and globally
optimized with a single graph cut [5].

In this chapter, we introduce the labeling problems and a common form of energy function
first. Then we give an overview of the energy minimization method based on graph cuts and
finally describle a new color separation energy term used in the energy function, which can be
globally minimized with a single graph cut [31].

4.1 Labeling Problem and Energy Minimization Framework
Many problems in computer vision can be formulated as labeling problems. In a labeling
problem, one has a set of sites and a set of labels. The set of sites is usually all the image
pixels. The set of labels are application dependent. The goal is to to assign each site a label
from the label set.

To describe the labeling problem more formally, let P be the set of sites and L be the
set of labels. The set of sites could be image pixels, medical volume voxels, and any other
image entity to which we wish to assign a label. In this thesis, we will assume that sites are
image pixels. A labeling problem now can be described as assigning a label fp to each pixel
p ∈ P. The collection of all pixel label assignments will be denoted by f . The labels can have
a semantic meaning, such as ”house”, ”person”, ”vehicle”, or geometric meaning such as ”left
oriented surface”, ”right oriented surface”, etc. Many other meanings of labels are possible. In
this work, we need only two labels, the ”foreground” and the ”background”. We identify the
foreground with label 1 and the background with label 0. Thus our label set is binary and is
equal to {0, 1}.

If the label set for all pixels is the same, i.e. L, then the labeling f belongs to the set

L = L × L × ... × L (4.1)

25

26 Chapter 4. EnergyMinimization using Graph Cuts

Thus the total number of different possible labelings f is exponentially large, even in the case
when the label set L is binary. Any naive method for optimization, such as exhaustive search,
is not feasible.

To solve the labeling problem in the energy minimization framework, we design an energy
function E(f). The energy function E(f) measures whether labeling f is a good solution to
the problem or not. That is E(f) should output a small value if labeling f is considered good
labeling, and E(f) should output a large number if f is not satisfactory. A number of criteria can
be used by the energy function to judge whether f is a good labeling or not. Most commonly
E(f) consists of two terms, the data and the smoothness, both evaluating different aspects of
how good a labeling f is. The typical form of energy E(f) is as follows:

E(f) = Edata(f) + λ · Esmooth(f) (4.2)

In Equation 4.2, the Edata is called data term, because this term penalizes labels inconsis-
tency with the observed data according to some data model known a priori, or estimated from
the user marked regions, or learned from a dataset with ground truth. Esmooth term is called
smoothness term, it measures how smooth or regular the boundaries between regions with dif-
ferent labels are. A typical model used in the smoothness term penalizes any two adjacent
pixels that have different labels. If the label set has many labels, then typically a larger label
difference is penalized more. However in our case, there are only two labels. Thus either two
nearby pixels have exactly the same label, in which case there is no penalty, or they have differ-
ent labels, in which case there is a penalty. The weight λ > 0 measures the relative importance
of smoothness versus the data terms. If λ is small, then the smoothness term is not so important
and we are looking for a labeling which fits the data terms closely. If λ is large, then the data
term is less important and a labeling with less discontinuities between the labels of nearby pix-
els is preferred. Thus the choice of λ is very important. It is chosen either through a parameter
learning technique, or estimated experimentally on validation data through grid search.

The typical form for data term is as follows:

Edata(f) =
∑
p∈P

Dp(fp) (4.3)

where Dp measures the penalty for assigning pixel p to the label fp, according to the data
model. The data model can be based on image intensity, color and etc. For example, let us
consider a simple case. Suppose we know a priori that the background should have intensity
20 or lower and the object should have intensity 220 or higher. Then a good choice for the data
term is Dp(0) = max(Ip − 20, 0) and Dp(1) = max(220 − Ip, 0).

The smoothness term is typically written as,

Esmoothness(f) =
∑
pq∈N

Vpq(fp, fq) (4.4)

where N is the set of pairs of neighboring pixels. The structure of N is most often given
by 4-connected or 8-connected grid. Each pixel is connected to its four nearest neighbors if
using the 4-connected neighborhood, and to its eight nearest neighbors if using the 8-connected
neighborhood. Figure 4.1 shows the construction of the neighborhood systems.

4.2. Optimization with Graph Cuts 27

Figure 4.1: Illustration of 4 and 8 neighborhood systems in images

The smoothness term penalizes the discontinuties between neighboring pixels. The more
similarity the two neighboring pixels have, the larger is the penalty if they are assigned different
labels. Parameter λ is used to adjust the relative weight of the smoothness term versus the data
term.

4.2 Optimization with Graph Cuts
A graph cut is a popular energy optimization algorithm in computer vision. It has been suc-
cessfully used in many applications [3]. In this work, the optimization algorithm is also based
on computing a graph cut of minimum cost [5]. In this section, we will briefly describe the
graph cut optimization algorithm which is based on the max-flow/min-cut theorem. Then we
discuss how a graph cut is applied to the binary labeling problem.

Let G = (V, E) be a connected weighted graph with vertices V and edges E. The set of
vertices contains two special vertices, called the source s and the sink t. Figure 4.2 shows an
example of a graph with source and sink vertices. An s − t cut C = (S,T) segments vertices
V into two sets S and T , such that s ∈ S, t ∈ T and V = S ∪ T . More specifically, a cut C
is a subset of edges E, such that when edges in C are removed from the graph G, vertices V is
partitioned into two disjoint sets S and T . The cost of the cut C is computed as follows,

|C| =
∑
e∈C

we (4.5)

where we is the weight of edge e ∈ E. Figure 4.3 shows an example of s − t graph cut with
terminals s and t. It is shown for a 4-connected neighborhood. The thickness of the edge is
directly proportional to the edge weight. The aim of the minimum cut problem is to find a cut
with the minimum cost among all possible cuts in the graph G. The green dashed curve shown
in Figure 4.3 illustrates a minimum cut, that is the cut with the lowest cost.

According to the max-flow/min-cut theoriem proved by Ford and Fulkerson [16], the min-
imum cut of a graph can be easily computed by finding a maximum flow from the source s

28 Chapter 4. EnergyMinimization using Graph Cuts

to the sink t. In [16], they describe each edge of the graph as a pipe with a capacity that is
equal to its weight. Thus the flow that one can push through an edge cannot be larger than the
capacity of that edge. Then, maximum flow is explained as the maximum ”amount of water”
that can be sent from the source to the sink [6]. A maximum flow from source to tink saturates
a set of edges in the graph. An edge is saturated if the flow through that edge is equal to the
weight (or capacity) of that edge. These saturated edges divides the nodes into two disjoint
parts corresponding to a minimum cut [16]. Thus, the minimum cut problem is equivalent to
the maximum flow problem.

More specifically, the flow from one node to another is denoted as a function f : V × V →
R. The value of the flow for the graph G = (V, E) is defined as follows:

| f | =
∑
v∈V

f (s, v) (4.6)

where f (s, v) means the flow sent out of the source s to v. If the edge (u, v) is non saturated,
we call the additional amount of flow as residual capacity c f (u, v).

c f (u, v) = c(u, v) − f (u, v) (4.7)

where c(u, v) denotes the capacity of the edge, f (u, v) denotes the flow sent from u to v.
Consider a path p = (s, v1, v2, ..., t) with no repeated vertices from s to t, we define the

residual capacity of the path as below:

c f (p) = min{c f (u, v)|(u, v) ∈ p} (4.8)

If we iteratively send flows from the source to the sink till no more flow can pass through the
edges, each path reach the lowest residual capacity with a saturated edge, then we have sent
the maximum flow from the source to sink.

Figure 4.2: An example of a graph with source and sink terminals. [Image credit: Yuri Boykov]

Then, the process of max-flow/min-cut algorithm is described as following steps. Figure
4.4 also gives an intuitive description.

1. First, find a flow path f from s to t along non saturated edges, which means that the
capacity of the flow f is smaller than all edges weight along the path.

2. Increase flow f along this path until some edge saturates. The edge become saturated
when the capacity of the flow f is equal its edge weight.

3. Iterate step 1 and step 2 until all paths from s and t have at least one saturated edge.

4.2. Optimization with Graph Cuts 29

Figure 4.3: An example of a s − t cut on a graph. [Image credit: Yuri Boykov]

(a) (b)

(c)

Figure 4.4: Illustrates the max-flow/min-cut algorithm. [Image credit: Yuri Boykov]

30 Chapter 4. EnergyMinimization using Graph Cuts

4. All the saturated edges found in the former steps form the minimum cut.
The algorithm introduced before is one of the popular algorithms to compute the maximum

flow of a given graph. It is the basic maximum flow algorithm proposed by Ford-Fulkerson.
Edmonds-Karp presented another method to compute the maximum flow, which is an improve-
ment of Ford-Fulkerson’s algorithm in terms of computational efficiency. More details are in
[10].

Generally, the optimization of the energy Equation 4.2 is an NP-hard problem, even when
dealing with the binary energy. But in some special cases, a global optimum of the energy
function can be found by finding a minimum cut on a certain graph. In particular, if a binary
energy function is submodular, then it can be minimized exactly with finding a minimum cut
on a certain graph. In this thesis, we choose to use the max-flow/min-cut algorithm developed
by Boykov and Kolmogorov [6] as it is particularly efficient in practice for the graphs that arise
in computer vision problems.

For binary energies, Kolmogorov [20] showed that the energy function is submodular if

Vpq(0, 0) + Vpq(1, 1) ≤ Vpq(0, 1) + Vpq(1, 0) (4.9)

where Vpq is the pairwise smoothness term in the energy function,

E(f) =
∑
p∈P

Dp(fp) + λ
∑
pq∈N

Vpq(fp, fq) (4.10)

Consider a simple 3 by 3 image as an example for binary energy optimization. As shown in
Figure 4.5, we first need to construct a graph G = (V, E) based on the original image. The
pixels in the image correspond to graph vertices V and the neighboring pixels are connected by
graph edges E. There are two special terminal nodes source s and sink t, corresponding to the
two different labels in binary optimization problem. Each pixel node in the constructed graph
is connected to the terminal nodes source s and sink t by an edge usually called t − link. The
data term Dp(fp) in the energy function is used for the weight of t − link, and it corresponds to
the penalty of assigning label fp to pixel p ∈ P. In this work, Dp(fp) is computed based on the
difference between background model and the current image, where fp ∈ 0, 1.

The links between neighboring pixel nodes are usually called n − links. The smoothness
term is used for the weight of n − link, which penalizes the discontinuity between the neigh-
boring pixel nodes. More specifically, the more similar the two neighboring pixel nodes p and
q are, the higher the Vpq is to prevent assigning them to different labels. The measurement of
the weight between neighboring pixel nodes is performed in different ways. For example, in
grayscale images the similarity can be computed on local gradient of intensity.

Any cut in the constructed graph corresponds to a binary labeling of pixels in the image. If
a pixel stayed connected to the source, it is assigned label 1. If it stayed connected to the sink,
it is assigned label 0. In this way, the cost of any cut is equal to the energy of the corresponding
label assignment. Then, the max-flow/min-cut algorithm in [6] is applied to find the cut with
the minimum cost. Finally, all the nodes that correspond to pixels are segmented into two
disjoint sets. The process to optimize the energy function by using graph cuts is shown in
Figure 4.5.

4.2. Optimization with Graph Cuts 31

Figure 4.5: Binary segmentation for 3 by 3 image. (top-left): Original image; (top-right):
Graph constructed based on original image with source and sink terminals; (bottom-right) A
minimum cut for the graph separating all pixels into two disjoint sets; (bottom left): Segmen-
tation result, one color stands for one label. [Image credit: Yuri Boykov]

32 Chapter 4. EnergyMinimization using Graph Cuts

4.3 Color Separation Term
In [31], the authors focused on the energy minimization for image segmentation problem and
proposed a new energy term to measure the L1 distance between foreground and background
color histograms. This new color separation term is submodular, so that the whole energy
function can be globally minimized in one graph cut. The new color separation term leads to
an improved segementation performance in many applications. The main idea of this thesis is
to include the color separation term in the energy function in order to improve the performance
of the foreground detection process. In this section, we will introduce the color separation term
in detail.

As previously, let fp ∈ {0, 1} be the binary labes for pixel p, 1 represents foreground and
0 represents background. Let Ip be the intensity of pixel p. Given a fixed foreground and
background appearance model θ1 and θ0, for each pixel p, the data term in Equation 4.10 can
be represented by an appearance-based log-likelihood term lnPr(Ip|θ

f
p). The smoothness term

gives penalties for discontinuities between neighboring pixels. Denote N is the set of pairs of
neighboring pixels. The smoothness term is commonly set as |∂F| =

∑
pq∈N wpq| fp − fq|. The

more difference between the two neighboring pixels, the less penality is given in the pairwise
energy term when they are assigned different labels. wpq in the fomular decides the contrast
sensitive metric for the smoothness term. If it is equal to a constant value, the smoothness
term is not edge-contrast sensitive and vice versa. Combine the log-likelihood data term and
the edge-contrast sensitive smoothness term, the binary image segmentation energy function in
Equation 4.10 can be written as

E(F|θ1, θ0) = −
∑
p∈P

lnPr(Ip|θ
f
p) + |∂F| (4.11)

where P is the set of image pixels and F is the set of foreground pixels , that is the pixels
with fp = 1. The data term in Equation 4.11 is a unary term and the smoothness term is a
pairwise term.

A simple way to build foreground and background appearance models is by color his-
tograms, the energy function 4.11 can be rewritten as:

E(F|θ1, θ0) = −
∑
fp=1

lnPr(Ip|θ
1) −
∑
fp=0

lnPr(Ip|θ
0) + |∂F|

= −
∑

k

nF
k lnθ1

k −
∑

k

nF̄
k lnθ0

k + |∂F|

= −|F|
∑

k

θF
k lnθ1

k − |F̄|
∑

k

θF̄
k lnθ0

k + |∂F|

= |F| · H(θF |θ1) + |F̄| · H(θF̄ |θ0) + |∂F|

(4.12)

where nF
k and nF̄

k represent the number of pixels in the kth color bin in foreground and back-
ground respectively. Terms θF and θF̄ represent histograms in foreground F and background F̄.
Based on the theoriem of cross entropy inenquality H(θF |θ1) ≥ H(θF), minimization of enery
function 4.11 equals to the minimization of energy

E(F) = |F| · H(θF) + |F̄| · H(θF̄) + |∂F| (4.13)

4.3. Color Separation Term 33

Equation 4.12 only depends only on the foreground F, so that the global minimum dose not
depend on the initial foreground and background appearance models θ1 and θ0. The entropy
terms of this energy prefer segments with more peaked color distributions that give lower en-
tropy, which means smaller overlap between foreground and background histograms. Figure
4.6 shows a black-white image as an illustration. There are only two color bins in the his-
tograms. When the white pixels are completely separated from the black pixels, we get the
lowest entropy value.

(a) High entropy example (b) Low entropy example

Figure 4.6: Color separation gives segments with low entropy. [Image credit: Meng Tang]

Then the energy function 4.13 can be rewritten further as,

E(F) = −|F|
∑

k

θF
k lnθF

k − |F̄|
∑

k

θF̄
k lnθF̄

k + |∂F|

= −
∑

k

nF
k lnθF

k −
∑

k

nF̄
k lnθF̄

k + |∂F|

= −
∑

k

nF
k ln

nF
k

|F|
−
∑

k

nF̄
k ln

nF̄
k

|F̄|
+ |∂F|

= |F|lnF + |F̄||ln|F̄| −
∑

k

(nF
k ln nF

k + nF̄
k ln nF̄

k) + |∂F|

(4.14)

Therefore the two entropy term in function 4.13 can be equivalently written as,

hP(F) −
∑

i

hPi(Fi) (4.15)

where hA(B) = |B| · ln|B|+ |A/B| · ln|A/B| is standard Jensen-Shannon(JS) divergence functional
for subset B ⊂ A [31]. Pi represents the set of all pixels in color bin i and Fi is the subset of
pixels with color bin i inside the foreground region. hP(F) is volume balancing term, which
shows that the energy function 4.11 prefers segmentation of foreground and background with
equal size. Term −

∑
i hPi(Fi) shows preference of color separation in the energy function. They

propose to use a L1 color separation term −|Fi − F̄i| instead of −hPi(Fi). Figure 4.7 shows the
rough plots for these terms.

F is the set of the pixels labeled as foreground by f , θF is the foreground color histogram
and θF̄ is the background color histogram. Then the L1 color separation term gives penalty for
the overlap between the color bins in foreground and background appearance model. The L1

color separation term is defined as,

EL1(θ
F , θF̄) = −|θF − θF̄ |L1 (4.16)

34 Chapter 4. EnergyMinimization using Graph Cuts

(a) hP(F) (b) −hPi(Fi) (c) −|Fi − F̄i|

Figure 4.7: Plots for different energy terms.

In [31], they have proved that this simple effective color appearance term is submodular, so the
L1 color separation term can be optimized by one graph cut. Below we will explain how to
construct the graph by using L1 color separation term. To gain more intuition, they rewrite the
L1 term as,

EL1(θ
F , θF̄) =

K∑
k=1

min(nF
k , n

F̄
k) −

|P|

2
(4.17)

where K denotes the number of color bins. Terms nF
k and nF̄

k are the number of foreground and
background pixels in color bin k respectively. It is easy to see that L1 color separation term
penalizes the case when pixels in the same color bin are assigned to different labels. That is to
say, labeling continuity is encouraged among pixels in the same color bin. Figure 4.8 shows
the graph construction for one color bin when optimizing the L1 color separation term in one
graph cut.

Figure 4.8: Graph construction for L1 color separation term in one color bin. [Image credit:
Meng Tang]

In Figure 4.8, they ignore the links for other energy terms, such as n− links between neigh-
boring pixels. A new auxiliary node Ak is added and it is connected to nodes v1, v2, ..., vnk which
correspond to the pixels in the color bin k using undirected links. The edges capacity β gives

4.3. Color Separation Term 35

penalty of color appearance model overlap. Figure 4.9 construct the overall graph structure
of energy with L1 color separation term. K auxiliary nodes A1, A2, ..., AK corresponding to the
1, 2, ...,K color bins are added to the structure. Each pixel in the graph lies in its correspond-
ing color bin, so that edges are built to connect the auxiliary Ak with the pixels in kth color
bin. In the end, every pixel is assigned to one auxilliary node. If the pixels in color bin k are
separated into foreground and background with nF

k and nF̄
k pixels inside two parts respectively,

min(nF
k , n

F̄
k) is the number of links that need to be cut in graph cut. The L1 color separation

optimization is achieved in this by finding a cut with minimum cost.

Figure 4.9: Overall graph construction for energy with L1 color separation term. This example
shows three different color bins, blue, orange and green. Three auxiliary nodes are added for
these color bins. All pixels are connected to the corresponding auxiliary node. [Image credit:
Meng Tang]

Notice that the volume balancing term hP(F) in energy function 4.15 is not submodular. If it
is replaced by a submodular term, then the energy in Equation 4.15 can be globally optimized.
For example, in binary segmentation with bounding box, a ballooning term is used to replace
the volume balancing term.

EF = |F̄ ∩ R| − β||θF − θF̄ ||L1 + λ|∂F| (4.18)

where R is the foreground bounding box, which is provided by a user. The ballooning term
here encourages larger foreground inside R and helps to avoid the trival image segmentation
solutions. The energy optimization can be achieved by using one graph cut. Figure 4.10 shows
some image segmentation results by using one cut.

In this work, depending on the previous work of Meng [31], we use different image seg-
mentation techniques to get more accurate color bins and apply the energy funtion with L1
color separation term in background subtraction hoping to achieve better performance than
traditional background subtraction methods. In a word, the energy function proposed by [31]

36 Chapter 4. EnergyMinimization using Graph Cuts

Figure 4.10: Example of segmentation results with one graph cut. [Image credit: Meng Tang]

is the heart of our thesis. We will introduce how we use it in background subtraction in the
following chapter.

Chapter 5

Background Subtraction using Color
Separation Term

Our approach to background subtraction is based on minimizing a binary energy function with
L1 color separation term proposed by [31]. Energy function with L1 color separation term can
be used in many other applications, such as interactive segmentation, shape matching, saliency
segmentation and etc. The advantage of using L1 color separation term is that many problems
that were formulated before with NP-hard energies can now be reformulated with tractable
energies. The results can be improved both in terms of time complexity and the resulting
accuracy [31].

In this chapter, we first introduce the overall framework of our background subtraction
method. It is mainly composed of three parts, background model construction and mainte-
nance, color clustering and foreground detection based on one graph cut. We will explain each
step in our algorithm in detail.

The vital part in this thesis is to formulate our energy function for background subtraction.
There are three terms in our background subtraction energy function. First, we explain the data
term, which is based on the background modeling. The pixels that change significantly between
the observed image and background image prefer to be foreground, while the other pixels with
only slight changes prefer to be the background. We use three different ways to build the
background model and therefore three different methods to compute the data term. The second
term in the energy function is the L1 color separation term, which gives a penalty for the
color overlap in foreground and background. Three image segmentation techniques are used
in our work to perform clusterinig needed to obtain the color clusters. The resulting clusters
respresent the color appearance for each pixel. To enhance the performance of color separation
term in background subtraction problem, we add spatial coordinates and motion information
to features during clustering. The experimental results with and without motion information
are shown is Chapter 6. At last, we introduce the smoothness term. The smoothness term used
here is contrast-sensitive. More penalty is given for discontinuity between two neighboring
pixels with lower contrast. This standard smoothness term encourages segments along places
of high image gradient, as those are more likely to correspond to object boundaries.

37

38 Chapter 5. Background Subtraction using Color Separation Term

5.1 Overview
Binary energy optimization is a popular method to segment an image into foreground and
background. Most segmentation functions include an appearance term to model foreground
and background, and a smoothness term to encourage smooth boundaries. In [31], the authors
focused on appearance models and proposed a simple tractble L1 color separation term. The
new energy term with color separation term can be optimizaited in one graph cut. We pro-
pose to use this new efficient energy function in background subtraction in order to improve
performance. Our background subtraction methods consists of the following steps:

1. Build the initial background model in background initialization step.
2. Compute the difference between each pixel in the current observed image with pixel in

the same position in the background model. The data term and motion information about the
moving objects comes from this step.

3. Perform color clustering for the current observed image. Motion information obtained
from step 2 can also be added to the color features in order to get clustering result more related
to the background subtraction aim. The L1 color separation term is built using the clustering
result in this step.

4. Build the smoothness term in current observed image to penalize discontinuities between
neighboring pixels.

5. Use one graph cut to do binary energy optimization for segmenting the current observed
image into foreground and background.

6. Background model is updated for next observed image in the video.
7. Go to step 2 till the all the frames from the video are finished in background subtraction.
Figure 5.1 shows the flow chart of our algorithm.
We have described the background modeling methods in Chapter 2. The three background

modeling methods used here are the mean filter, Gaussian average and Gaussian mixture model.
These background modeling methods comes from previous background subtraction methods.
As explained previously, background subtraction has two main parts, background modeling and
foreground detection. These approaches have a lot of shortcomings in foreground detection
process. Mean filter still uses a global threshold for all pixels in the image. And even a
bigger problem, this threshold is not adapted in time. This might bring artifacts in the final
background subtraction result. Though a different threshold is selected for each pixel by the
Gaussian average and Gaussian mixture model and these pixel-wise thresholds are adapting in
time, these methods do not take the spatial information into account, that is the neighboring
pixels make decisions whether to be labeled background or foreground independently of each
other. Background subtraction results produced by these traditional methods are shown in
Chapter 2. Figure 5.2 shows the background subtraction result using Gaussian average model
on a sequence of images. While we use relatively simplistic background modeling techniques,
our algorithm can be easily adapted to use more advanced background models.

To achieve the tractable appearance based algorithm in [31], they replace the non-tractable
volume-balancing term with application-dependent unary term. In this way, the energy is no
longer NP-hard and therefore can be globally optimized with a single graph cut. When applying
the framework from [31] to our background subtraction problem, the application-dependent
unary term is set as a data term, which is related to the motion information computed from the
current frame and background model.

5.1. Overview 39

Figure 5.1: The flow chart of the algorithm

40 Chapter 5. Background Subtraction using Color Separation Term

Figure 5.2: An example of background subtraction using Gaussian average model: a sequence
of images from a video stream (first row and third row) and corresponding background sub-
traction results (second row and last row).

5.1. Overview 41

Let us consider one pixel p in the current frame and p′ is its corresponding pixel at the same
position in background image. If the intensity or color information changes significantly, the
pixel is more likely to be in the foreground. These pixels form a foreground mask. Otherwise, if
the difference is little, p is more likely to be in the background. These pixels form a background
mask. The difference |I(p) − I(p′)| gives information about presence of motion for pixel p,
where I(p) is the color or intensity of pixel p. In case of color, |I(p) − I(p′)| stands for taking
the norm between the color vectors. Figure 5.3 is a visualization of the motion information
from one image. In this example, we used the mean filter. With blue and red spectrum we
show pixels with large |I(p) − I(p′)|. With green and yellow spectrum we show pixels with
smaller |I(p) − I(p′)|. The data term prefers segments with larger foreground in the foreground
mask and larger background in the background mask. An example of the foreground mask and
background mask computed from Figure 5.3 by thresholding given in Figure 5.4. More details
about specific data term is discussed in the following section.

Figure 5.3: Illustrates motion information using the mean filter background modeling.

Figure 5.4: An example of the foreground mask (left) and background mask (right) using
mean filter. White area in the two images represents the pixels that prefer to be foreground and
background respectively.

Color information is very usefull to build appearance models. When the appearance model
is known, an optiminal segmentation can be achieved by a graph cut. In this work, it is the
most important part for forming the color separation term in the energy functon. The color

42 Chapter 5. Background Subtraction using Color Separation Term

space should be handled efficiently due to its relatively high dimensionality. In [31] they adapt
a simple way to handle color by using a binned histogram. The binning is done uniformly in
each color channel. In this thesis, we evaluate several color clustering techniques. We also
found it helpful to include the coordinates of a pixel into color clustering. Thus in addition to
the standard color clustering techniques such as k-means, we evaluate some standard segmen-
tation algorithms such as [11], which can be thought of as performing clustering with features
consisting of the pixel color and pixel coordinates.

When the color space is partitioned into clusters (or bins), all pixels in an image are quan-
tized. Including clustering information into the energy function can help enhance the fore-
ground and background distinction. To observe the effect of different color space clustering
algorithms, color space patitioning is performed by mean-shift, kmeans and an efficient graph-
based segmentation algorithm [11] in this work. By including a new color separation term, the
energy function prefers labeling pixels that are in the same color bin with the same label, as
much as possible. Color quantization maps produced by different color clustering methods are
shown in Figure 5.5.

However in some the background subtraction cases, the moving objects might have color
similar to the background color. Thus to obtain more accurate background subtraction results,
motion information should be helpful to include into the clustering process, as a feature, in
addition to color and coordinates. We enhance our feature vectors with motion information
obtained in part 2, and perform clustering.

(a) color space clustering using
kmeans

(b) color space clustering using
meanshift

(c) color space clustering using
an efficient graph-based seg-
mentation algorithm

Figure 5.5: Color clustering results using different algorithms.

Since the boundary information is also very important in obtaining an accurate segmenation
result, a smoothness term is required in the energy function. This term gives a penalty for
assigning nearby pixels different labels. Hence, the penalties all lie on the boundary of the
segmentation. The boundary smoothness term prefers the segments with a shorter ”length”
along the boundary. The penalty cost in this work is contrast-sensitive. It means that the
penalty cost is inversely proportional to the color (or intensity) difference between pixel pairs.
Figure 5.6 shows the visualization of edge contrast between neighboring pixels.

Section 5.2 provides a more detailed description on the energy function, the construction
of the graph and corresponding weight of graph edges.

5.2. Graph Construction for Energy Function 43

(a) original image (b) visualization of edges

Figure 5.6: An example of the visualization of edge contrast between neighboring pixels.

5.2 Graph Construction for Energy Function
In this section, we apply the energy optimization framework to the problem of foreground seg-
mentation in the background subtraction framework. It is a binary labeling problem. The goal
is to segment the current image into two sets for each frame in a video stream, the foreground
and background. As explained previously, a new energy term explicitly measuring the L1 dis-
tance between foreground and background color clusters is added in the energy function to
minimize the appearance overlap between the foreground and background regions. To change
the NP-hard problem to a tractable one, the non-tractable volume-balancing term should be re-
placed with an application-dependent unary term, so that the energy function can be optimized
in one graph cut. In this work, we use our background subtraction based unary data term in the
function. The complete energy function E(f) is given by:

E(f) =
∑
p∈P

Dp(fp) − β|θ f − θ f̄ | + λ
∑
pq∈N

Vpq(fp, fq) (5.1)

where N is a set of neighboring pixels in the 4-neighborhood system, P is a set of image
pixels, θ f and θ f̄ are unnormalized color histograms for foreground and background regions,
respectively. Dp(fp) is the data term, |θ f − θ f̄ | is the L1 color separation term for all color bins
and Vpq(fp, fq) is the smoothness term for a pair of pixels. Parameters λ and β are the relative
weights of smoothness term and color separation term in the energy function.

In this work, the motion information obtained from the background image is used for two
purposes. First, it is used to form the data term in the energy function, which connects the
background subtraction problem to energy minimization framework. That is to say, the pixels
with large motion indicators are more likely to be in the foreground. Second, the motion infor-
mation is also used for color quantization. When taken into account it can help to reduce the
color appearance overlap between moving objects and background. This is especially helpful
when a moving object has colors similar to that in the background. In this case, these object
pixels can get clustered into the bin with other object pixels that have a similar motion, rather
than to the bin with the background pixels of similar color. Figure 5.7 shows an example of
color clustering results using the efficient graph-based segmentation algorithm with and with-
out motion information. The parameters are the same in the two cases. We can see that many

44 Chapter 5. Background Subtraction using Color Separation Term

parts of the person is clustered into one brown color bin as the background before adding the
motion information. After the motion information is added, the color bins within the person
are clustered more accurately with different color bins from most part of the background, such
as the yellow color bin.

(a) original image (b) motion information

(c) color clustering result without motion
information

(d) color clustering result including mo-
tion information

Figure 5.7: An example of color clustering results using the efficient graph-based segmentation
algorithm.

5.2.1 Data Term
This section explains the data term in the energy function. In this work, we use mean filer,
Gaussian average and Gaussian mixture background models to build the data term. However,
different background modeling methods have different measurements. First, they compute the
motion information of pixels in different ways, because the background image varies between
different background modeling approaches. The motion information here can be defined as the
absolute difference between the observed current image and the background image. Denote
I(x, y, t) as the intensity of a pixel at position (x, y), time t in current image. Similarly, we use
multiple component color spaces, (L, A, B) instead of intensity. B(x, y, t) is the intensity of
the pixel at the same position in the current background image. The motion information for
this pixel is |I(x, y, t) − B(x, y, t)|. Pixels with high information of motion are more likely to

5.2. Graph Construction for Energy Function 45

be in the foreground. Otherwise, pixels with low information of motion are more likely to be
in the background. But how to measure the degree of motion differs in background modeling
methods. Mean filer just compares the motion information with a global threshold which is
the same for all pixels in the image. Gaussian average and Gaussian mixture model compares
the motion information with the standard deviation for each pixel, which can be updated with
time. We explain the data term for different background modeling methods separately.

As introduced in chapter 2, mean filter computes the background model by computing
the arithmetic mean (or weighted mean) of the pixels between successive images. So the
background model B is defined by:

B(x, y, t) =
1
n
·

n−1∑
i=0

I(x, y, t − i) (5.2)

Once we get the background model, we apply a threshold Th1,

|I(x, y, t) −
1
n
·

n−1∑
i=0

I(x, y, t − i)| > Th1 (5.3)

where I(x, y, t) is the intensity or color of pixel (x, y) at time t. The results of thresholding in
Equation 5.3 can be used as an indicator of the presence of motion. Those pixels that pass the
test in Equation 5.3 are likely to be the foreground.

By applying thresholding in different direction and with a possibly different value, we can
find a set of pixels that are likely to be the background:

|I(x, y, t) −
1
n
·

n−1∑
i=0

I(x, y, t − i)| < Th2 (5.4)

Pixels that satisfy equation 5.3 form a foreground mask O and pixels that satisfy equation
5.4 form a background mask N. The foreground mask and background mask determined by
the mean filter modeling method are used to model the data term. Recall that fp = 0 means
the background and fp = 1 means the foreground. Then the data term for foreground and
background are defined as:

Dp(0) =

 Z if p ∈ O
0 if p ∈ N

(5.5)

and

Dp(1) =

 Z if p ∈ N
0 if p ∈ O

(5.6)

where Z is a positive penalty value. The capacity of the t − links between terminal sink t and
the pixels is set as Dp(1) and the capacity of the t − links between terminal source s and the
pixels is set as Dp(0).

For Gaussian average modeling method, only two parameters (µ, σ) need to be stored.
Parameter µ is the average value of previous pixels, which represents the background model.

46 Chapter 5. Background Subtraction using Color Separation Term

Parameter σ is the standard deviation. The maintance of µ and σ has been introduced in
chapter 2, we don’t show much details here. At each t frame time, then we can get the estimate
of foreground at the current image pixel by finding pixels that pass the test below,

|I(x, y, t) − µ(x, y, t)| > kσ(x, y, t) (5.7)

Pixels that do not pass the test in Equation 5.7 are more likely to be in the background. Param-
eter k in the inequality 5.7 is usually chosen in the range from between 2 and 3. In this work,
we set k = 3.

For the Gaussian model, instead of using the same penalty for all pixels passing a threshold
test, we now use a different way to model the data term. In particular, our data term is:

Dp(0) = |I(x, y, t) − µ(x, y, t)| (5.8)

Dp(1) = kσ(x, y, t) (5.9)

where the position of pixel p is (x, y). The model in equations 5.8 and 5.9 imposes a small
penalty for pixels with intensity not far from the mean to be the background. Pixels with
standard deviation far from the norm are encouraged to be the foreground. The capacity of the
t − links between terminal sink t and the pixels is set as Dp(1) and the capacity of the t − links
between terminal source s and the pixels is set as Dp(0).

Our last model, the mixture of Gaussians is handled similarly to the single Gaussian model
just discussed. Suppose we have K existing Gaussians, then µ(i, x, y, t) and σ(i, x, y, t) are
the two parameters of the ith Gaussian function with a weight w(i, x, y, t). All the K weights
w(i, x, y, t) are normalized so they sum up to 1. The updating of Gaussian mixture model
is explained in chapter 2. The weighted average value of previous pixels µ(x, y, t) and the
weighted standard deviation σ(x, y, t) are computed as below

µ(x, y, t) =

K∑
i=1

w(i, x, y, t) · µ(i, x, y, t) (5.10)

σ(x, y, t) =

√√
K∑

i=1

w(i, x, y, t) · σ(i, x, y, t)2 (5.11)

To build the data model, we use, as before:

Dp(0) = |I(x, y, t) − µ(x, y, t)| (5.12)
Dp(1) = kσ(x, y, t) (5.13)

The capacity of t − links is also set in the same way.

5.2.2 Color Separation Term
The color separation term used in this work is based on previous work of [31]. They choose
to use a binned color histogram with different bin sizes to handle the color space. They use a
uniform binning of the color space, using separate binning in each color channel. Each pixel is

5.2. Graph Construction for Energy Function 47

assigned to the bin that its color falls into. Bin size has to be carefully chosen. If the bin size
is too small, the histogram may be too sparse and unreliable. If the bin size is too large, then
many pixels from foreground and background may fall into the same bin, and thus encouraging
a color bin to be either fully assigned to the foreground or background is not helpful.

To obtain a smaller size histogram with more reliable bin counts, one can cluster the color
feature using clustering algorithms such as kmeans. Using k-means has an advantage over
uniform color binning as it adapts to the color space more closely. Unlike uniform binning,
color clustering based on kmeans does not produce many empty bins [33]. In this thesis, we
evaluate three different algorithms to partition the color space into reliable clusters. K-means
[26], mean shift [9] and an efficient graph-based image segmentation algorithm [11] are per-
formed. Notice that we also add the coordinate feature to image pixels when performing color
clustering using the image segmentation algorithm in [11]. This enriched space is more helpful
for separating moving objects from the background, since moving objects have coherence in
space.

Color quantization for all pixels is achieved from the clustering results by these techniques.
If we have 1, 2, ..., k clusters (or bins) for an image, each pixel from that image is quantized to
its corresponding bin from bin1, bin2, ...bink as a result. Different color clustering methods may
bring different distributions between the pixel and corresponding color bin.

Considering that we are dealing with the background subtraction problem, adding the mo-
tion information in the clustering process should also help to improve the performance. We
should prefer to get clusters that contain pixels moving similarly, since these clusters are more
likely to contain only the foreground pixels (i.e. with large motion) or the background pixels
(i.e. with small motion). Thus we also include motion information as a feature during the
clustering step.

For the k-means clustering algorithm, including the motion information is straightforward.
The k-means clustering is a general algorithm that clusters k-dimensional feature vectors. Color
is a 3 dimensional feature based on LAB space. In our case, motion information is a three
dimensional feature in the LAB space. More specifically, our motion features is the difference
between the current frame and the background model, taken in each channel independently.
Thus we simply add our 3D motion feature to the 3D color feature getting a 6D combined
feature vector. Let p(x, y) be a 3-dimensional color feature vector of an image at position (x, y),
we denote the motion information at (x, y) is m(x, y), which is also a 3-dimensional feature.
Then for each image the k-means clustering algorithm is performed on a set of 6-dimensional
feature vectors n(x, y) = (p(x, y),m(x, y)). The kmeans algorithm was explained in Chapter 3.
Note that our motion feature is only sensitive to the presence of motion. It does not estimate
neither direction nor the magnitude of motion.

For the efficient graph-based image segmentation algorithm, as described in Chapter 3,
there are two dissimilarity mesurements, internal difference and external difference. As shown
in Equation 3.6 and 3.7, both of them are based on the weight between two neighboring pixels.
Therefore, the weight is measured by using the color information and motion information of
two neighboring pixels instead of color information only. We compute the weight between two
vertices w(vi, v j) as

w(vi, v j) =

√
||pi − p j||

2 + ||mi − m j||
2 (5.14)

48 Chapter 5. Background Subtraction using Color Separation Term

where pi and p j denote 3-dimensional color features at pixel i and j, mi and m j denote 3-
dimentional motion features at pixel i and j. Because all the measurements are computed from
the edge weight, all the steps to perform this method are exactly as in Algorithm 1.

The clustering results are now more reliable to enhance background subtraction perfor-
mance. We will show the impact of clustering methods towards the final background subtrac-
tion results in the next chapter. It is obvious that the color separation term encourages pixels
from the same color bin assigned to the same label. The L1 color separation term used in this
work is the one introduced by Tang et al. [31], which is

EL1(θ
f , θ f̄) = −|θ f − θ f̄ |L1 (5.15)

where θ f and θ f̄ denote the color histograms of the foreground and background respectively.
For more intuition, we can further rewrite the L1 term as,

EL1(θ
f , θ f̄) =

K∑
k=1

min(n f
k , n

f̄
k) −

|P|

2
(5.16)

where K means the number of clusters produced by the clustering algorithm. Here n f
k and n f̄

k
are the number of foreground and background pixels in cluster k respectively. It is easy to see
that L1 color separation term gives penalty for pixels in the same cluster with different labels.
That is to say, labeling continuity is encouraged among pixels in the same cluster. If the pixels
in cluster k are separated into foreground and background with n f

k and n f̄
k pixels inside two parts

respectively, min(n f
k , n

f̄
k) is the number of links that need to be cut in graph cut. The L1 color

separation is encouraged in this way for the labeling achieving the minimum energy. Figure
5.8 shows the details of graph construction for the color separation term when optimizing the
L1 color separation term in one graph cut. The capacity of a− links between the auxiliary node
and the pixels is set as the weight of color separation term β.

5.2.3 Smoothness Term
The smoothness term in energy function in Equation 4.2 is the same as the traditional smooth-
ness term proposed in [5]. It gives penalties for discontinuities between pixels p and q. The
penalities all lie on the segmentation boundary, so the length of the boundary is encouraged
to be small in energy minimization. More specifically, the more similar the two neighboring
pixels, the more penalty cost is given if they are assigned to different labels in segmentation.
Otherwise, if the two neighboring pixels are different in appearance, it is more possible that
they belong to different labels, so the penalty cost for assigning different labels to them is low.

The similarity between pixels can be measured by intensity, color, texture and etc. In this
work, smoothness term is constructed by comparing the color information in Lab space of two
neighboring pixels. It is a non-increasing function of the color difference in Lab space between
neighboring pixels. The smoothness term is:

E(f) =
∑
pq∈N

wpq · δ(fp , fq) =
∑

pq∈N exp(− 4I2

2σ2) · δ(fp , fq) (5.17)

In four-nighborhood system, the distance of all pixel pairs is equal. Therefore we do not
need to consider the term 1

dist(p,q) in Equation 5.17. In Equation 5.17 4I denotes the color

5.2. Graph Construction for Energy Function 49

difference of two neighboring pixels in Lab space, 4I2 = ||Ip − Iq||
2, where Ip = (Lp, ap, bp)

and Iq = (Lq, aq, bq) are three-dimensional feature vectors in Lab space, when L stands for
intensities and A, B stand for color opponent dimensions. Parameter σ2 is the variance of color
difference of pixels in Lab space. Intuitively, in this function, if the color difference between
neighboring pixels is smaller than average |Ip − Iq| < σ, high penalty is given for assigning
different labels to them. In contrast, if the color difference between neighboring pixels is larger
than average |Ip − Iq| > σ, the function gives low penalty for labeling inconsistency between
them.

Function δ is defined as:

δ(fp , fq) =

 1 if fp , fq

0 if fp = fq
(5.18)

It means that the function does not penalize the case when two pxiels are assigned the same
label. In contrast, when the labels of two neighboring pixels are different, penalty is given as
wpq. The details of the graph construction for the smoothness term are shown in Figure 5.8.
The capacity of n − link between pixel p and pixel q is set as wpq · δ(fp , fq).

The graph construction for our energy in Equation 5.1 is shown in Figure 5.8. Each pixel is
represented as a node in a four connected graph. There are also two terminal nodes in the graph,
source node s and sink node t. The auxiliary nodes are added into the graph, one for each color
cluster. Each of the auxiliary node represents a corresponding color bin produced by color
clustering. All the nodes in the graph are connected by links. All the pixel nodes are connected
to terminal nodes through t − links. The way of setting t − links value is through motion
information of foreground and background in this work. Foreground has larger motion value
and background has smaller motion value. The t − links here corresponds to construction the
data term. The capacity of the t− links between sink and pixels is set as Dp(1) and the capacity
of t − links between source and pixels is set as Dp(0). For different background modeling
methods, Dp(1) and Dp(0) are set to different values, as we described before in section 5.2.1.
Each pixel is linked to its neighboring pixels through n−links in the four neighborhood system.
The weight of n − links can be contrast-sensitive. If the pair of pixels are similar, the n − links
value between them is strong and vice versa. The similarity is measured by color information
in this work. n − links here corresponds to the construction of smoothness term. Each n − link
between a pair of neighboring pixel p and q is set as wpq · δ(fp , fq), where wpq is evaluated
by color difference between two pixels, fp and fq are the labels of two pixels. The specific
value is illustrated before. Each pixel in the graph is connected to its corresponding auxiliary
node by a − links. Each auxiliary node represents a color bin. These a − links connect the
auxiliary node to all pixels that belong to certain color bin. It is obvious that a − links helps
labeling consistency among pixels in the same color bin. The capacity of these links is the
weight of appearance overlap term. The a − links here corresponds to the construction of L1

color separation term. Each a − link is set as the weight of color separation term β.

50 Chapter 5. Background Subtraction using Color Separation Term

Figure 5.8: Overall graph construction for energy with L1 color separation term.

Chapter 6

Experimental Results

As explained in Chapter 5, our approach to background subtraction depends on a particular
choice for background modeling and color clustering. In this chapter, we evaluate several meth-
ods for background modeling and color clustering. In addition, we discuss the effect of adding
motion information in color clustering and its influence on background subtraction results. We
also provide implementation details and experimental results of our approach including some
failure cases.

6.1 Image Database

There are many available datasets for background subtraction taking under conditions of vari-
ous complexity. In order to be able to handle more complex background subtraction settings,
we would need to consider more complex background models. However, the main goal of
this thesis is to show the usefulness of the color separation term. Thus we restrict the back-
ground modeling methods to the relatively simple models discussed in Chapter 2 and evaluate
our method in only moderately complex settings. Our approach can be extended to more com-
plex background subtraction settings by incorporating more complex background modeling
techniques.

In order to build a dataset that can convincingly prove the usefulness of color separation and
make wide comparisions, we build our own dataset by selecting sequences from other datasets
and also recording a test video by ourselves. We select sequences with distinct colorful moving
objects. First, one general sequence is selected from the object detection dataset used in [7].
This dataset includes four different sequences that contain challenging phenomena such as cast
shadows, color and depth camouflage. For each sequence hand-labeled ground truth is provided
in order to test background subtraction algorithms. We choose the basic indoor environment
sequence from [7].

Second, one of the most popular datasets to test background subtraction algorithms is
the wallflower dataset [32]. It contains seven different test sequences that represent a differ-
ent, potentially problematic scenario for background subtraction. Each sequence has a hand-
segmented evaluation image. We test our algorithm on two sequences of this dataset. Also, we
record a video stream and use it as another sequence in our dataset. Each frame has a hand-
segmented ground truth constructed by ourselves. Because the ground truth is obtained by

51

52 Chapter 6. Experimental Results

using photoshop, there may be small labeling errors. Figure 6.1 shows several sample images
and the corresponding ground truth from all the sequences in our dataset.

(a) (b) (c) (d)

Figure 6.1: Sample frames (top) and the corresponding ground truth (bottom) from our dataset:
(a) a general sequence from object detection dataset used in [7], (b)-(c) sequences from
wallflower dataset [32], (d) sequence obtained by ourselves.

6.2 Parameter Selection

In order to implement a high accuracy background subtraction approach, besides algorithm
design, parameter selection is another challenge. There are multiple parameters to be set both
at the background modeling and color clustering stages. In addition, there are the weights in
the energy function that control the relative strengths of the data and color separation terms.
We use a grid search over parameters to find a setting that works best for all the sequences.
Below we list the parameters that need to be searched for.

Parameters in Kmeans

There is only one parameter in Kmeans, namely the number of clusters K. The number of
clusters determines how many disjoint clusters the image colors are divided into. If the number
of clusters K is too large, then there may be too many color bins, and therefore, too few pixels
for each bin. This means that the moving object is broken into too many small clusters, and
thus the color clustering term will have no significant influence for the background subtraction.
On the other hand, if the number of clusters is too small, a large portion of pixels from the
background and object may fall into the same color bin. In such a case, including a color
separation term will worsen the performance, as it will encourage pixels that should not have
the same label (i.e. the pixels from background and foreground that fall into the same color
cluster) to have the same label. So in the final algorithm, we need to set cluster number K to
an appropriate value. A grid search is performed for all the possible values of K. Figure 6.2
shows the Kmeans clustering results with different number of clusters.

6.2. Parameter Selection 53

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.2: Example of kmeans clustering results with different number of clusters: (a) original
image, (b)-(g) kmeans color clustering with number of clusters 3, 5, 8, 10, 15, 20 and 50
respectively.

Parameters in Meanshift

In mean shift clustering, there are two main parameters, namely the spatial bandwidth (hs) and
the color bandwidth (hc). These two parameters in the algorithm have a large effect on the
clustering results. By controlling the bandwidth parameter h = (hs, hc), we can determine the
resolution of the mode detection. This mode represents a cluster. In this work, we use the LAB
color space, and these two parameters are different width in LAB (color feature) and XY (spa-
tial feature) parts of the space. Adding spatial features helps coherence in the image domain.
The bandwidth parameter selection is critical. They indirectly control the number of clusters
and thus have an effect on the construction of color separation term in background subtraction.
They cannot be too small or too large. Figure 6.3 shows examples of mean shift clustering with
different color bandwidth (hc). Slight changes in color bandwidth parameter can make large
differences in the clustering results. We do grid search for all the combinations of possible hs

and hc and select the settings with best performance. Figure 6.3(a) shows the original image.
When the color bandwidth is too small, we get an over-clustered image in Figure 6.3(b). As we
increase the value of color bandwidth, we get reasonably intuitive clustering results with clear
objects boundary in Figure 6.3(e). But Figure 6.3(g) is under-clustered so that the foreground
and background objects are merged together in one cluster, making such result unsuitable for
the use in the color separation term.

Parameters in Efficient Graph-based Image Segmentation Algorithm

There are three parameters in the graph-based image segmentation algorithm [11]. One param-
eter σ is for Gaussian filter used first to remove noise and smooth the image before segmenta-
tion. Another parameter is a threshold parameter thresh which determines the size of clusters.
Bigger threshold means bigger clusters. There is one more parameter that sets the minimum
allowed cluster size. Any cluster less than the allowed size is merged to a neighboring cluster.

54 Chapter 6. Experimental Results

(a) (b) (c) (d)

(e) (f) (g)

Figure 6.3: Example of meanshift clustering results with different color bandwidths: (a) orig-
inal image, (b)-(g) mean shift clustering using scale bandwidth 10 and color bandwidths 3, 5,
6, 6.5, 8 and 10 respectively.

The minimum segment size and σ do not have a significant effect on the clustering results.
Therefore we set them to default recommended values, namely σ = 0.8 and minimum segment
size set to 50. The threshold parameter thresh has a significant effect, and therefore this is the
paramter we search over. Figure 6.4 shows different clustering results with different cluster
threshold values.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.4: Example of an efficient graph-based clustering results with different color features:
(a) Original image, (b)-(g) graph-based clustering using cluster threshold 100, 150, 200, 300,
500, 1000 and 1500 respectively.

Parameters in Energy Function

The parameters λ and β are the relative weights of the smoothness and color separation terms
with respect to the data term. They determine how much each of these energy terms influence
the resulting foreground segmentation. In Figure 6.5, the background subtraction results for

6.3. EvaluationMethods 55

different λ are illustrated. Small λ will cause background subtraction result to be noisy as
shown in Figure 6.5(b), while when λ is too large, the result is too smooth. In fact, for a very
large λ the object is completely smoothed out from the result, see Figure 6.5(f).

In Figure 6.6, the background subtraction results for different β are illustrated. A large β
will cause the background subtraction result to miss pieces of the object, as shown in Figure
6.6(d). There are many small color clusters that straddle both the background and the object
along the object boundary, and these get segmented as the background, thus the object bound-
ary is not smooth enough. While when β is too small, the color consistency term is loose,
and some color clusters inside the car object get split between the foreground and background,
resulting in the object that misses pixels, as in Figure 6.6(b).

(a) (b) (c)

(d) (e) (f)

Figure 6.5: Example of background subtraction results with different weight of smoothness
term using mean filter background modeling techniques without the color separation term:
(a) original image, (b)-(d) background subtraction results with λ = 10, 50, 500, 2500, 3000
respectively.

For different images in one video stream, the best λ and β are likely to be different. How-
ever, for an automatic system, we have to use the same parameter setting for each sequence.
We perform a grid search to find the combination of parameters that work well, on average, for
all frames. For the sequence shown in Figure 6.6 we choose λ = 100 and β = 100 for all the
frames.

6.3 Evaluation Methods
To evaluate the performance of our background subtraction algorithm, we choose two com-
monly used metrics, error rate and F-measure. Error rate is a simple widely used evaluation
method in image segmentation, which computes the ratio of pixels that are wrongly labeled
and the total number pixels. The equation for the error rate is:

error =
FP + FN

number of pixels
(6.1)

56 Chapter 6. Experimental Results

(a) (b) (c)

(d) (e) (f)

Figure 6.6: Example of background subtraction results with different weight of color separa-
tion term using mean filter background modeling techniques without motion information: (a)
original image, (b)-(d) background subtraction results with λ = 50 and β = 1, 10, 100, 200,
1000 respectively.

where FP is the false positive number, which is the number of background pixels falsely la-
beled as foreground. FN is the false negative number, which is the number of foreground pixels
falsely labeled as background in this case.

Another standard evaluation metric used in this thesis is the F-measure, which is calculated
based on the precision and recall. Precision is defined as the fraction of elements correctly
classified as positive out of all the elements the algorithm classifies as positive, whereas recall
is the fraction of elements correctly classified as positive out of all the positive elements. The
calculation of precision and recall are as follows,

precision =
TP

TP + FP
(6.2)

recall =
TP

TP + FN
(6.3)

where TP is the number of true positives, FP the number of false positives and FN the number
of false negatives. Then, the F-measure is computed as below,

Fβ = (1 + β2) ·
precision · recall

(β2 · precision) + recall
(6.4)

where a positive real β is used to set the relative importance between precision and recall. In
this work, we choose β = 1 to give recall as much importance as precision. This balanced
F-measure metric is called F1 score. Notice that TN does not play a role in computing the
F-measure.

6.4. Evaluation of the Results 57

6.4 Evaluation of the Results
Chapter 5 explains our approach based on color separation term for improving the background
subtraction. Many background modeling techniques and color clustering algorithms have been
tried in our experiments. They have a different effect on the performance of our approach.
Thus, we have various combinations of these methods. In addition, the influence of motion
information added in the color clustering process also needs to be evaluated. We compare the
F-measure averaged on all frames in one image sequence for the results in this section.

Results without Color Separation and without Motion Information

We first discuss the results using different background modeling methods without the color
separation and motion features. The comparison of the average error rate and F-measure are
listed in Table 6.1. Gaussian mixture model performs better than the other two. Mean filter
performs the worst. This is because the background model built by Gaussian mixture model is
the most reliable out of the three background subtraction methods we evaluate.

method error rate precision recall F-measure
mean filter 0.02713 0.76141 0.986969 0.85964

Gaussian average 0.01694 0.837478 0.991106 0.907838
Gaussian mixture model 0.01582 0.851693 0.983295 0.912775

Table 6.1: Average error rate, recall, precision and F-measure of different methods in back-
gound modeling.

Results with Color Separation and without Motion Information

Second, the effect of color separation term is discussed. For clustering, we use the kmeans,
meanshift, and the graph-based algorithm [11]. For background modeling, we use the same
methods as previously. For each clustering algorithm, we compare the results with different
background modeling techniques. Also, for each background modeling technique, we com-
pare the results with different color clustering algorithms. Notice that all the parameters are set
to those that produce the best results. The average error rate, precision, recall and F-measure
results of all possible combinations between background modeling techniques and color clus-
tering algorithms are listed in the following tables. Color appearance constraints help to get
significantly better result compared to background subtraction results without color separation
term in Table 6.1. When there is no color appearance constraint, the pairwise constraint can
easily cause oversmoothing.

The results of using kmeans, meanshift and efficient graph-based color clustering algorithm
for different background modeling methods are shown separately in Table 6.2, Table 6.3 and
Table 6.4.

We can see from the three tables that no matter which color clustering algorithms is per-
formed, the Gaussian mixture model still outperforms other two background modeling tech-
niques in general. And the mean filter works the worst as well. Comparing the results from
each row in the three tables, we can see the accuracy of different color clustering algorithms.

58 Chapter 6. Experimental Results

method error rate precision recall F-measure
mean filter 0.01300 0.889879 0.964928 0.925885

Gaussian average 0.008900 0.930622 0.96632 0.948135
Gaussian mixture model 0.006826 0.939391 0.98229 0.960361

Table 6.2: Average error rate, recall, precision and F-measure of different backgound mod-
eling techniques using kmeans color clustering. This table shows the effectiveness of color
separation.

method error rate precision recall F-measure
mean filter 0.018255 0.828367 0.987819 0.901093

Gaussian average 0.013988 0.863839 0.989869 0.92257
Gaussian mixture model 0.013236 0.873292 0.985809 0.926226

Table 6.3: Average error rate, recall, precision and F-measure of different backgound model-
ing techniques using meanshift color clustering. This table shows the effectiveness of color
separation.

method error rate precision recall F-measure
mean filter 0.013330 0.878987 0.976026 0.924968

Gaussian average 0.011426 0.890111 0.986002 0.935606
Gaussian mixture model 0.009489 0.909311 0.985577 0.945909

Table 6.4: Average error rate, recall, precision and F-measure of different backgound modeling
techniques using an efficient graph-based color clustering. This table shows the effectiveness
of color separation.

6.5. Results Comparison 59

Among the three algorithms, kmeans works the best, while meanshift is not that accurate com-
pared to the other two.

Results with Color Separation and with Motion Information

Table 6.5 and Table 6.6 show the results of different background modeling techniques with
color separation and motion information, using kmeans and an efficient graph-based color
clustering methods separately. We did not perform experiments with adding motion to the
meanshift algorithm as the meanshift performs the worst out of color clustering algorithms.
Incorporating motion information in the color clustering process improves the result, because
the motion information provides relevant information to clustering.

method error rate precision recall F-measure
mean filter 0.012653 0.889997 0.969529 0.928062

Gaussian average 0.003978 0.977778 0.974904 0.976339
Gaussian mixture model 0.005166 0.977872 0.960365 0.96904

Table 6.5: Average error rate, recall, precision and F-measure of different backgound model-
ing techniques using kmeans color clustering with motion information. This table shows the
benefits of motion information.

method error rate precision recall F-measure
mean filter 0.012585 0.889003 0.97185 0.928528

Gaussian average 0.010443 0.897491 0.988902 0.940982
Gaussian mixture model 0.009440 0.91015 0.985113 0.946149

Table 6.6: Average error rate, recall, precision and F-measure of different backgound modeling
techniques using an efficient graph-based color clustering with motion information. This table
shows the benefits of motion information.

Comparing the F-measure results of color separation without motion information in Table
6.2 and Table 6.4 with the results in Table 6.5 and Table 6.6, we can see color separation with
motion information can help background subtration to get a better performance. Generally
speaking, kmeans color clustering can help to get the best performance both with and without
motion features. Gaussian mixture model to build the background model tends to work the
best in most cases. However sometimes the Gaussian average model is slightly better. Our
best overall F-measure is 0.976339 building background model using Gaussian average, color
clustering by kmeans with motion information, corresponding to the second row in Table 6.5.

6.5 Results Comparison
In this section, we present comparisons among all the combinations of different background
modeling techniques and color clustering algorithms, including with and without motion infor-
mation. We display just some sample video frames. Note that all images are generated from

60 Chapter 6. Experimental Results

the best parameter settings of different methods respectively. First, three different kinds of
background modeling techniques, mean filter, Gaussian average and Gaussian mixture model
will be compared. Second, the advantages of color separation will be discussed. In the end, the
benefits of motion information included in color clustering will be explained. Since we have
too many combinations, there are a lot of comparisons that could be done. Hence, we only
show the representative ones as example. Some failure cases are shown in the next section.

Background Modeling Techniques Comparison

The average F-measure in Table 6.1 shows that background subtraction with Gaussian mixture
model works slightly better than Gaussian average when there is no color separation term in the
energy function. Although the background subtraction with mean filter performs, on average,
the worst, there are still cases where mean filter works better than the other two background
model methods. Figure 6.7, Figure 6.8 and Figure 6.9 show three examples of background
subtraction results with different background modeling techniques without color separation.
In the sequence as shown in Figure 6.7, Gaussian mixture model achieve best performance
among all tree methods. However, Gaussian mixture is not all always the best. As shown in
Figure 6.8, Gaussian mixture model works almost the same as Gaussian average. And in the
last sequence in Figure 6.9 with a waving tree in the background, mean filter works better than
the other two. The Gaussian mixture model tends to model all the moving pixels by different
Gaussian distributions, so that the moving tree in the background is most likely modeled by
one Gaussian distribution and is labeled as a moving object. In this case, Gaussian mixture
model is overly sensitive to the background changes.

Figure 6.7: Background subtraction results on an indoor scene with different background mod-
eling techniques without color separation term. First column shows the original image (top)
and the corresponding ground truth (bottom). The second column is the data term mask (top)
and background subtraction result (botton) using mean filter background modeling technique.
Red is the foreground and blue is the background masks for the background modeling step.
The third column is the data term mask (top) and background subtraction result (bottom) using
Gaussian average background modeling technique. The fourth column is the data term mask
(top) and background subtraction result (bottom) using Gaussian mixture model background
modeling technique.

6.5. Results Comparison 61

Figure 6.8: Background subtraction results on a moving person scene with different back-
ground modeling techniques without color separation term. First column shows the original
image (top) and the corresponding ground truth (bottom). The second column is the dataterm
mask (top) and background subtraction result (bottom) using mean filter background model-
ing technique. Red is the priori foreground information from the background modeling pro-
cess and blue is the priori background information. The third column is the dataterm mask
(top) and background subtraction result (bottom) using Gaussian average background model-
ing technique. The fourth column is the dataterm mask (top) and background subtraction result
(bottom) using Gaussian mixture model background modeling technique.

Figure 6.9: Background subtraction results on a waving tree scene with different background
modeling techniques without color separation term. First column shows the original image
(top) and the corresponding ground truth (bottom). The second column is the dataterm mask
(top) and background subtraction result (bottom) using mean filter background modeling tech-
nique. Red is the priori foreground information from the background modeling process and
blue is the priori background information. The third column is the dataterm mask (top) and
background subtraction result (bottom) using Gaussian average background modeling tech-
nique. The fourth column is the dataterm mask (top) and background subtraction result (bot-
tom) using Gaussian mixture model background modeling technique.

62 Chapter 6. Experimental Results

Comparison with Color Separation

When the color separation term is incorporated, it shows significant improvement over the
background subtraction without color separation using the same background modeling tech-
nique. However, the efficiency of the color separation term also varies when using different
color clustering algorithms. One example of the background subtraction results with different
combinations of color clustering algorithms and background modeling techniques are listed in
Figure 6.10. Since a relatively accurate result has been achieved even without the color sepa-
ration term on the second sequence in Figure 6.8, the average F-measure is almost 0.97. Even
though including the color separation term still helps, the small enhancement is not easy to no-
tice in the foreground segmentation result. We don’t show the result with color separation on
this sequence here since we cannot observe the obvious changes easily. Also, a rather accurate
result has been achieved without color separation by using mean filter as shown in Figure 6.9.
The value of F-measure is 0.979 in this case. In contrast, on the same sequence, the method
using Gaussian mixture model without color separation performs poorly with a F-measure of
0.75. The barrier here lies in the background modeling method. It is sensitive to a moving
background. While adding color separation term helps and the F-measure increases, the im-
provement is only marginal. We show the test results on this sequence in Figure 6.11 which is
implemented with Gaussian average.

Comparing each row in Figure 6.10, we can see that all the methods with color separa-
tion outperform the one without color separation which uses the same background modeling
method. And among the three color clustering algorithms, kmeans works the best in improving
the performance, while meanshift seems not that powerful compared to the other two. Com-
paring each column in Figure 6.10, Gaussian mixture model seems more reliable in general.

It is obvious that adding color separation term in the energy function helps to enhance the
foreground/background difference. But different color clusterings have different performance.
As shown in Figure 6.11, kmeans makes background subtraction particularly accurate in this
case. The F-measure reaches the highest 0.9846. Mean shift helps not much than the other
two, but still helps a lot in improving accuracy.

Comparision with Motion Information

To enhance the connection between background subtraction and color separation, we propose
to include the motion information in the color clustering step, making it a part of the color
separation construcion process. Thus the color clustering can make the foreground and back-
ground regions more distinct from each other. Figure 6.12 shows an example of background
subtraction results with different background modeling techniques using kmeans color clus-
tering algorithm including motion information. Figure 6.13 shows an example of background
subtraction results with different background modeling techniques using efficient graph-based
color clustering algorithm including motion information.

Recall that in Table 6.5 and Table 6.6 motion information makes F-measure results better.
In Figure 6.12 and Figure 6.13, shows an example. For the mean filter case, it is hard to see a
noticeable improvement with motion information. Under Gaussian and mixture of Gaussian,
the improvement is more noticeable.

6.5. Results Comparison 63

(a) meanfilter without color
separation

(b) Gaussian average without
no color separation

(c) Gaussian mixture model
without no color separation

(d) mean filter uing kmeans (e) Gaussian average using
kmeans

(f) Gaussian mixture using
kmeans

(g) mean filter using meanshift (h) Gaussian average using
meanshift

(i) Gaussian mixture model us-
ing meanshift

(j) mean filter using graph-
based

(k) Gaussian average using
graph-based

(l) Gaussian mixture model us-
ing graph-based

Figure 6.10: An example of background subtraction results on an indoor scene with differ-
ent combinations of background modeling techniques and color clustering algorithms. Left:
background subtraction method using mean filter. Middle: background subtraction method
using Gaussian average. Right: background subtraction method using Gaussian mixture
model. From top to bottom are background subtraction methods: without color separation,
with kmeans color clustering algorithm, with meanshift color clustering algorithm and with
efficient graph-based color clustering algorithm.

64 Chapter 6. Experimental Results

(a) (b) (c)

(d) (e) (f)

Figure 6.11: An example of background subtraction results on a waving tree scene with dif-
ferent color clustering algorithms using Gaussian average background modeling technique. (a)
original image, (b) ground truth, (c) background subtraction result without color separation, (d)
background subtraction result with kmeans color clustering, (e) background subtraction result
with meanshift color clustering, (f) background subtraction result with efficient graph-based
color clustering.

6.5. Results Comparison 65

(a) mean filter without color
separation

(b) Gaussian average without
color separation

(c) Gaussian mixture model
without color separation

(d) mean filter using color sep-
aration

(e) Gaussian average using
color separation

(f) Gaussian mixture model us-
ing color separation

(g) mean filter using motion (h) Gaussian average using
motion

(i) Gaussian mixture model us-
ing motion

Figure 6.12: An example of background subtraction results on an indoor scene with different
background modeling techniques using kmeans color clustering algorithms with motion infor-
mation. Left: background subtraction method using mean filter. Middle: background subtrac-
tion method using Gaussian average. Right: background subtraction method using Gaussian
mixture model. From top to bottom are background subtraction methods: without color sepa-
ration, with kmeans color clustering algorithm without motion, with kmeans color clustering
algorithm with motion.

66 Chapter 6. Experimental Results

(a) mean filter without color
separation

(b) Gaussian average without
color separation

(c) Gaussian mixture model
without color separation

(d) mean filter using color sep-
aration

(e) Gaussian average using
color separation

(f) Gaussian mixture model us-
ing color separation

(g) mean filter using motion (h) Gaussian average using
motion

(i) Gaussian mixture model us-
ing motion

Figure 6.13: An example of background subtraction results on an indoor scene with different
background modeling techniques using efficient graph-based color clustering algorithms with
motion information. Left: background subtraction method using mean filter. Middle: back-
ground subtraction method using Gaussian average. Right: background subtraction method
using Gaussian mixture model. From top to bottom are background subtraction methods: with-
out color separation, with efficient graph-based color clustering algorithm without motion, with
efficient graph-based color clustering algorithm with motion.

6.6. Failure Cases 67

6.6 Failure Cases
Including the motion features into clustering does not always help. There are also few cases
where adding motion information makes the background subtraction worse, as shown in Figure
6.14.

(a) Gaussian average without
color separation

(b) Gaussian average using
kmeans without moton

(c) Gaussian average using
kmeans with motion

(d) Gaussian average without
color separation

(e) Gaussian average using
graph-based without motion

(f) Gaussian average using
graph-based with motion

Figure 6.14: An example of background subtraction results on a waving tree scene using Gaus-
sian average background modeling method with two color clustering algorithms including mo-
tion information. From left to right are background subtraction methods: without color sepa-
ration, with color clustering algorithm without motion, with clustering algorithm with motion.
Top: with kmeans color clustering algorithm. Bottom: with efficient graph-based color clus-
tering algorithm.

In this case, adding motion information fails in improving the performance of background
subtraction algorithm. Although it is a useful cue for color clustering, for sequences whose
background has moving objects, such as a moving tree, the observed motion information con-
tains a lot of noise. If we add these motion information in clustering, the pixels in the back-
ground may be clustered in the same color bin as foreground pixels. This can directly deduct
the effectiveness of color separation term. As we can see in Figure 6.14, the background
subtraction results become worse after adding motion information. In conclustion, it is not ap-
propriate to consider motion information for color clustering when the background has slight
moving objects, which can be easily recognized as foreground as a consequence.

Chapter 7

Conclusion and Future Work

In this thesis, we propose to use a color separation term for graph-cut based background sub-
traction. Our approach is based on the energy funtion with L1 color separation term proposed
by [31]. It turns out that this L1 color separation term changes many NP-hard energy mini-
mization problems into tractable ones. In this work, we make application of this efficient enery
function to the foreground detection process of background subtraction and show how this sim-
ple term can help to achieve better performance. Graph cut method is utilized for the energy
optimization. A background modeling technique is required first for background maintenance.
We tried three kinds of background modeling techniques in our experiments, mean filter, Gaus-
sian average and Gaussian mixture model. Then it is a binary energy optimization problem to
perform foreground detection. There are three terms in our background subtraction energy
function. Apart from the boundary constraint in the smoothness term, we have also integrated
motion information in the data term, which is based the background modeling process. Most
imporantly, we include the L1 color separation term, which gives penalty for the color appear-
ance overlap in foreground and background. Three color clustering algorithms are used in our
work to perform color quantization. The resulting clusters respresent the color appearance for
each pixel. Finally, we propose to add motion features in the clustering process, so that the
effectiveness of color separation term in background subtraction problem is enhanced. With all
these improvements, the background subraction accuracy improves.

Although we have achieved significant improvements for the background subtraction, there
are still a lot of complex cases to investigate. When the background of a sequence is dynamic,
adding motion information deducts the effectiveness of color separation. It turns out that the
motion information is not accurate. The main reason lies in the limitation of background
modeling methods. We could investigate other more reliable background modeling techniques
for improvement.

So far we have done a lot of work in parameter selection, even the images in the same
sequence have different optimal parameters, it is quite expensive for us to select parameters
that perform the best overall. More work is needed to solve this problem.

68

Bibliography

[1] R. Achanta, F. Estrada, P. Wils, and S. Ssstrunk. Interactive image segmentation using an
adaptive gmmrf model. European Conference on Computer Vision (ECCV), I:428–441,
2004.

[2] M.M. Azab, H.A. Shedeed, and A.S. Hussein. A new technique for background modeling
and subtraction for motion detection in real-time videos. IEEE International Conference
on Image Processing (ICIP), pages 3453–3456, 2010.

[3] Y. Benezeth, P.M. Jodoin, and B. Emile. Review and evaluation of commonly-
implemented background subtraction algorithms. IEEE International Conference on Pat-
tern Recognition (ICPR), 2008.

[4] Y. Boykov and G. Funka-Lea. Graph cuts and efficient n-d image segmentation. IEEE
International Conference on Computer Vison (ICCV), 70(2):109–131, 2006.

[5] Y. Boykov and M.P. Jolly. Interactive graph cuts for optimal boundary and region seg-
mentation. IEEE International Conference on Computer Vison (ICCV), pages 105–112,
2001.

[6] Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-cut/max-
flow algorithms for energy minimization in vision. IEEE Pattern Analysis and Machine
Intelligence.

[7] M. Camplani and L. Salgado. Background foreground segmentation with rgb-d kinect
data: an efficient combination of classifiers. Journal of Visual Communication and Image
Representation, 25(1):122–136, 2014.

[8] C. Christoudias, B. Georgescu, and P. Meer. Synergism in low level vision. International
Conference on Pattern Recognition, 4:40190, 2002.

[9] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis.
IEEE Pattern Analysis and Machine Intelligence, 24:603–619, 2002.

[10] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to algorithms. MIT Press, Cambridge, MA, USA.

[11] P. Felzenszwalb and D. Huttenlocher. Efficient graph-based image segmentation. IEEE
International Journal of Computer Vision, 59(2), 2004.

69

70 BIBLIOGRAPHY

[12] Robert M. Haralick and Linda G. Shapiro. Image segmentation techniques. Computer
vision, graphics, and image processing, 29(1):100–132, 1985.

[13] Nicholas R. Howe and Alexandra Deschamps. Better foreground segmentation through
graph cuts. arXiv preprint cs/0401017, 2004.

[14] V. Jain, B.B. Kimia, and J.L. Mundy. Background modeling based on subpixel edges.
IEEE International Conference on Image Processing (ICIP), 2007.

[15] X. Jian, D. Xiaoqing, W. Shengjin, and W. Youshou. Background subtraction based
on a combination of texture, color and intensity. International Conference on Signal
Processing (ICSP), 2008.

[16] Lester Randolph Ford Jr and Delbert Ray Fulkerson. Flows in networks. Princeton
University Press, 1962.

[17] Shehroz S. Khan and Amir Ahmad. Cluster centre initialization algorithm for k -means
cluster. Pattern Recognition Letters, pages 1293–1302, 2004.

[18] Pushmeet Kohli, Lubor Ladicky, and Philip H. S. Torr. Robust higher order potentials
for enforcing label consistency. IEEE Computer Vision and Pattern Recognition (CVPR),
2008.

[19] D. Koller, J. Weber, T. Huan, J. Malik, G. Ogasawara, B. Rao, and S. Russell. Towards
robust automatic traffic scene analysis in real-time. International Conference on Pattern
Recognition (ICPR), pages 126–131, 1994.

[20] V. Kolmogorov and R. Zabin. What energy functions can be minimized via graph cuts?
IEEE Pattern Analysis and Machine Intelligence.

[21] A. Lai and N. Yung. A fast and accurate scoreboard algorithm for extimating station-
ary backgrounds in an image sequence. IEEE International Symposium on Circuits and
Systems (ISCAS), pages 241–244, 1998.

[22] Y. Li, J. Sun, C-K. Tang, and H-Y. Shum. grabcut: interactive foreground extraction using
iterated graph cuts. ACM Transactions on Graphics, 23(3), 2004.

[23] Jiangyu Liu, Jian Sun, and Heung-Yeung Shum. Paint selection. siggraph, 2009.

[24] B.P.L Lo and S.A. Velastin. Automatic congestion detection system for underground plat-
forms. International Symposium on Intelligent Multimedia, Video and Speech Processing,
pages 158–161, 2001.

[25] Ekaterina Lobacheva, Olga Veksler, and Yuri Boykov. Joint optimization of segmentation
and color clustering. IEEE International Conference on Computer Vison (ICCV), pages
1626–1634, 2015.

[26] J. B. MacQueen. Some methods for classification and analysis of multivariate observa-
tions. Proceedings of 5th Berkeley Mathematical Statistics and Probability, pages 281–
297, 1967.

BIBLIOGRAPHY 71

[27] K. A. Abdul Nazeer and M. P. Sebastian. Improving the accuracy and efficiency of the
k-means clustering algorithm. Proceedings of the World Congress on Engineering, 1,
2009.

[28] Caroline Pantofaru and Martial Hebert. A comparison of image segmentation algorithms.
The Robotics Institute in Carnegie Mellon University, 2005.

[29] C. Rother, V. Kolmogorov, and A. Blake. grabcut: interactive foreground extraction using
iterated graph cuts. ACM Transactions on Graphics, 23(3):309–314, 2004.

[30] C. Stauffer and W.E.L. Grimson. Adaptive background mixture models for real-time
tracking. IEEE Computer Vision and Pattern Recognition (CVPR), pages 246–252, 1999.

[31] M. Tang, L. Gorelick, O. Veksler, and Y. Boykov. Grabcut in one cut. IEEE International
Conference on Computer Vision (ICCV), pages 1769–1776, 2013.

[32] Kentaro Toyama, John Krumm, Barry Brumitt, and Brian Meyers. Wallflower: Principles
and practice of background maintenance. IEEE International Conference on Computer
Vision (ICCV), pages 255–261, 1999.

[33] S. Vicente, V. Kolmogorov, and C. Rother. Joint optimization of segmentation and ap-
pearance models. IEEE International Conference on Computer Vision (ICCV), 2009.

[34] C. Wren and A. Azarbayejani. Pfinder: real-time tracking of the human body. IEEE
Trans. on Pattern Anal. and Machine Intell, 19(7):780–785, 1997.

[35] Madhu Yedla, Srinivasa Rao Pathakota, and T. M. Srinivasa. Enhanced k -means cluster-
ing algorithm with improved initial center. International Journal of Science and Infor-
mation Technologies, 1(2):121–125, 2010.

[36] H. Zhang and D. Xu. Fusing color and texture features for background model. Interna-
tional Conference on Fuzzy Systems and Knowledge Discovery, 2006.

Curriculum Vitae

Name: Jiaqi Zhou

Post-Secondary University of Western Ontario
Education and London, ON, CA
Degrees: M.Sc. in computer science, Sep. 2015 - Dec. 2016

Nankai University
Tianjin, China
B.E. in Information Security, 2011 - 2015

Honours and WGRS, Western University, 2015 -2016
Awards: Outstanding Graduate, Nankai University, 2015

Related Work Teaching Assistant, Western University,Sep. 2015 -Dec. 2016
Experience: Research Assistant, Computer Vision Group,

University of Western Ontario, Sep. 2015 - Dec. 2016

72

	Western University
	Scholarship@Western
	December 2016

	Color Separation for Background Subtraction
	Jiaqi Zhou
	Recommended Citation

	tmp.1482169891.pdf.QB9N1

