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Abstract 

The Internet of Things is a concept that envisions the world as a smart space in which 

physical objects embedded with sensors, actuators, and network connectivity can 

communicate and react to their surroundings. Recent advancements in information and 

communication technologies make it possible to make the IoT vision a reality. However, 

IoT devices and consumers of data from these IoT devices can be owned by different 

entities which make IoT data sharing a real challenge. Sensing as a Service is a concept 

that is influenced by the cloud computing term “Every Thing as a Service”. Sensing as a 

Service enables sensor data sharing. Sensing as a Service middleware enables IoT 

applications to access data generated by sensing devices owned by other entities. IoT 

applications are charged by the Sensing as a Service middleware for the amount of sensor 

data they use. This thesis addresses the architectural design of a cloud-based Sensing as 

Service middleware. The middleware enables sensor owners to sell their sensor data 

through the Internet. IoT applications can collect, and analyze sensors through the 

middleware API. We propose multitenancy algorithms for the middleware resource 

management. In addition, we propose a SQL-Like language that can be used by IoT 

applications for sensing service discovery, and sensor stream analytics. The evaluation of 

the middleware implementation shows the effectiveness of the algorithms.     

Keywords 

Sensing as a Service, Internet of Things, Stream Analytics, Continuous query, Cloud 

Computing, IoT Platform. 
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Chapter 1 

1 Introduction  

In this chapter, we introduce three concepts that form the basis of the proposed work: the 

Internet of Things, Cloud Computing, and Sensing as a Service Model.  We then introduce 

the problem statement, thesis focus, and thesis outline. 

 Internet of Things  

Over the last decade, IoT has been the focus of industry as well as academia because of its 

great functional and financial potential. The term (IoT) was coined by Kevin Ashton in 

1998. He said “The IoT has the potential to change the world, just as the Internet did. 

Maybe even more so. [40]”. The goal of IoT is to convert the physical world into a smart 

space in which physical objects, called things, are equipped with computing and 

communication capabilities. Those things can connect with anything, anyone at any time, 

any space via any network or service [32]. Harald et al. [41] defines IoT as “Things have 

identities and virtual personalities operating in smart spaces using intelligent interfaces to 

connect and communicate within social, environment, and user contexts”. The European 

Union defines IoT as “IoT allows people and things to be connected Anytime, Anyplace, 

with Anything and Anyone, ideally using Any network and Any service [30]”.  Perera et 

al. [34] defines IoT as “The Internet of Things (IoT) is a network of networks where, 

typically, a massive number of objects, things, sensors and devices are connected through 

communications and information infrastructure to provide value-added services”. 

Essentially, IoT enables the vision in which there is a connectivity to almost everything. 

IoT is a result of a major advancement in Information and Communication Technology. 

More specifically, IoT emergence is attributed to the advancement of sensor networks. 

Over the last 10 years, the number of deployed sensors has significantly increased because 

of a substantial decrease in sensor production cost [43]. Figure 1 shows that, in 2008, the 

number of things that were equipped with Internet connectivity surpassed the population 

of earth [32]. Furthermore, the European Commission notes that the number of devices that 

will be equipped with Internet connectivity is predicted to reach 50 to 100 billion devices 

by 2020 [40].  
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Figure 1 Growth of ‘things’ connected to the Internet [32]. 

 Functionally, IoT opens doors to developing new applications in different domains such 

as traffic management, waste management, healthcare, smart home to name but few. The 

development of such applications is crucial to smart cities. Financially, the number of 

applications that is built on top of sensors is expected to have a positive impact on the 

economy. According to Cisco, IoT is predicted to create $14.4 trillion net profit value to 

the private sector by 2022 [3]. The amount of data generated by IoT devices is projected to 

be 44 zettabytes (e.g., 44 trillion gigabytes) by 2022.  This immensely huge amount of data 

is a valuable asset that can be used to derive knowledge and detect patterns about our 

surroundings [3].  

In summary, the Internet of Things is a concept that envisions the world as a smart space 

in which billions of sensors and actuators are attached to physical objects to enable them 

to communicate and interact with people and other things.  The ability of things to 

communicate and react is a necessity for smart city applications that address challenges in 

modern cities such as traffic management, waste management, energy, education, smart 

home and some other challenges [37]. It’s believed that coupling the IoT concept with 

modern computing technologies such as Cloud Computing will facilitate the development 

of IoT applications in many domains such as smart cities and agriculture to name a few 

[32, 4].     

 Cloud Computing 

Cloud computing offers computing resources as services to its clients following the pay as 

you go business model. Cloud computing services include infrastructure as a service, 

platform as a service, and software as a service [32]. Recently, many organizations have 
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shifted to using cloud services to reduce maintenance and operational cost. There are a 

number of commercial cloud platforms that provide computing resources to their clients 

over the Internet such as Amazon Web Services, IBM Bluemix, Microsoft Azure, Cloud 

Foundry, and Google Cloud Platform.  The key advantage of cloud computing is that it 

provides its clients with elastic, and scalable resources that fits client resource needs.   

 Sensing as a Service Model 

Sensing as a Service model [32, 37] is a new concept that is expected to be built on top of 

an IoT infrastructure and cloud computing services. The basic idea behind Sensing as a 

Service can be explained as follows: In Sensing as a Service, sensors are connected to a 

middleware solution, possibly hosted on a cloud platform. Data consumers are provided 

access to sensor data over the internet either for free or by paying a service fee to sensor 

owners [32]. The Sensing as a Service model is seen as a component that resides in between 

two IoT data sources and IoT applications in different domains such as smart cities, 

agriculture, manufacturing, and health care etc. Empowered by cloud computing, sensing 

as a service middleware solutions are expected to play a key role in delivering sensor data 

to IoT applications.  

 

Figure 2 Sensing as service Model relation with IoT and Smart City [32]. 

 Problem Statement 

In the last several years, the number of sensors and actuators that have communication and 

computation capabilities has increased significantly. Those sensors generate an immensely 

huge amount of data that is considered meaningless unless it is used to derive knowledge 

[42]. The advancement in information and communication technologies made it possible 

to remotely access sensors over the Internet which opens the door to the development of 
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many IoT applications that can analyze, control and react to sensory data in real-time. 

However, there are several challenges that must be addressed in order for IoT applications 

to benefit from the enormous number of deployed sensors.  

To start with, connecting IoT applications to sensors is a major problem for IoT for a 

number reasons. First, sensors have limited power and computational resources, so they 

cannot directly deal with a large number of client applications. Second, dealing with sensor 

data entails processing a high volume of heterogeneous sensor data streams that cannot be 

done at the sensor device level. In some cases, an IoT application is also deployed at a 

resource constrained device. If the IoT application is interested in receiving processed data, 

stream processing should be done through an intermediary system that receives a sensor 

data stream, processes it and then delivers the processing result to the IoT application. 

Third, sensors, typically, belong to different organizations and traditionally are 

intentionally deployed to serve the sensor owner needs. Nevertheless, the ultimate goal is 

to share sensor data with other entities that are interested in the data. Having said that, there 

should be a way to attract sensor owners to participate in sensing operations. 

 There is a need for an intermediary system, known as a middleware, which decouples IoT 

applications from the underling physical infrastructure. This leads to a set of hardware 

resource requirements that should be considered in the intermediary system design. First, 

as the number of IoT devices continuously increases, the system must be able to connect 

to billions of devices. In addition, because of the heterogeneous nature of sensor data 

streams, the system must be generic to an extent that it is able to process any type of sensor 

data and deliver processing results to client applications in a near real-time manner. The 

system should contain an elastic, and scalable stream processing engine. Having said that, 

the system must have enough resources to ingest and process a tremendous amount of data 

and deal with spikes in client application requests.  

Furthermore, there are other functional requirements that should be considered in the 

middleware design. First, adding a sensor to the middleware should be an easy process that 

even the average computer user can do, such that any sensor owner should be able to plug 

the sensor to the middleware. Second, sensor search is a major problem for IoT 
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applications. As the number of sensors is in billions, there should a mechanism through 

which IoT applications can find sensors that fits their needs. 

Recent development in cloud computing has resulted in several IoT platforms such 

Amazon IoT, Azure IoT, and IBM Bluemix IoT. Those platforms have the means to 

support IoT resource management requirements. However, those platforms lack support 

for sensor data sharing as only device owners can access sensor data. An IoT middleware 

can be built on top of those resource-rich platforms to collect, process, and enable sensor 

data sharing.    

 Thesis Focus 

This work focuses on the architectural design of a Sensing as a Service IoT middleware 

that addresses some of the challenges discussed in the previous section. Although there has 

been a considerable surge of research in many aspects of IoT middleware solutions, this 

work relies on the emerging, resource-rich cloud based IoT platforms in the middleware 

design.  In our design, we focus on three main aspects of middleware design. First, using a 

lightweight communication protocol between data sources and the middleware. Second, 

using resource sharing techniques when processing sensor data streams in order to reduce 

network traffic and cloud resource consumption. Finally, designing a programming 

interface that decouples IoT application from the underlying cloud and sensor 

infrastructure.   

The primary contribution of this work is the design and implementation of Sensing as a 

Service IoT middleware that is built on top of a cloud platform. The middleware provides 

an easy, plug-and-play like approach to add sensors. In addition, the middleware provides 

IoT applications with an SQL-Like language that can be used through an Application 

Programming Interface (API) that abstracts the operations of sensing discovery, collecting 

and processing sensors data. Furthermore, we propose multitenancy buffer management 

algorithms that are used for memory management. Finally, our middleware adopts an 

incentive mechanism to attract sensor owners to participate in sensing operations.   
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 Thesis Outline  

The thesis is organized as follows: Chapter 2 describes the related and relevant work about 

this research area. Chapter 3 describes our proposed SQL-Like language and the data 

model used to describe sensors. Chapter 4 describes the proposed middleware architectural 

design and our proposed algorithms for sharing cloud resources. Chapter 5 describes the 

technologies used in the middleware implementation. Chapter 6 presents the results of 

evaluation experiments. Chapter 7 discusses conclusions and future work.  
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Chapter 2 

2 Literature Review 

In this chapter, we discuss the background of the proposed work. The foundation of the 

proposed work relies on Middleware Architecture, Sensor Networks, Sensing as a Service 

Model, Cloud-based IoT platforms, and Stream Processing Engines. Sections 2.1, 2.2 

and 2.3 present the foundation of the work. Section 2.4 discusses the related work. 

Section 2.5 presents the gap analysis.   Literature Review    

 Background on Middleware Architecture  

A middleware can be defined as a software that resides in between the application layer 

and hardware layer. The middleware is designed to decouple applications from the 

underlying hardware infrastructure [4,37, 43 ]. More specifically, the middleware is usually 

used when there are applications that need to communicate with heterogeneous data 

sources. In addition to data source heterogeneity, middleware design addresses other 

problems such as security, interoperability, and dependability [24]. An important 

characteristic of middleware systems is that they are generic so that they can support 

applications in different domains.   When using middleware, applications interact with the 

underlying hardware through a programming interface that abstracts the underlying 

infrastructure. Although this abstraction comes at an additional performance overhead as 

every interaction needs to go through the middleware, the reusability of its programming 

interface facilitates the development of new applications and makes it easier and faster.   

The emergence of IoT requires a design of a middleware architecture that addresses 

problems beyond hardware abstraction. For example, IoT applications require a 

middleware that supports some other non-functional properties such as context-awareness 

and semantic interoperability [43] to name a few. To illustrate, for IoT applications, the 

context of a thing is not restricted to just its location. It has a much broader concept. For 

example, sensor information such as its accuracy, and capabilities are essential for IoT 

applications. As for semantic interoperability, it’s believed that IoT will connect billions 

of devices. With that being said, semantic technologies are thought of as useful tools to 

achieve this goal [43]. Corcho et al. [16] identify a set of challenges that can be addressed 
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by semantic technologies. Those challenges include sensor configuration, context 

identification, complex sensor data querying, event detection and monitoring.       

 Background on Sensor Network  

The emergence of IoT is attributed to the advancement in sensor networks. Over the last 

ten years, sensor production cost has significantly decreased. Furthermore, sensors become 

smaller and smarter as they are equipped with computation and communication resources. 

A sensor is defined as “as a device that detects or measures a physical phenomenon such 

as humidity, temperature, etc. [43]”. A sensor network consists of several sensor nodes. A 

sensor node is a platform that can be connected to a number of sensors. Sensor nodes have 

the ability to sense, process sensor data, and communicate with each other through either 

wired or wireless connection [5].   

 Sensing as a Service 

Sensing as a Service is a new concept that is expected to be built on top of IoT infrastructure 

and cloud computing services. The basic idea behind sensing as a service is to provide 

client applications access to sensors, managed and deployed by other entities, over the 

Internet. In Sensing as a Service, the interaction between sensor owner and sensor 

consumer is controlled by a pay-as-you-go model in which sensor consumers pay only for 

what they use. This service model benefits both sensor owners and sensor consumers [32]. 

From the sensor owner point of view, the sensor owner would be able to receive money in 

exchange for sensor data that is sold to consumers. On the other hand, sensor consumers 

reduce their operational cost. To illustrate, sensor consumers don’t need to own physical 

sensor resources, yet they can use them in their applications. Thus, Sensing as a Service 

abstracts the underlying physical sensor network. This abstraction allows sensor consumers 

to focus more on their business instead of spending time and efforts dealing with sensor 

network infrastructure. 

 A Sensing as a Service middleware system is envisioned to be built on top of a cloud-

based platform [4,37, 43]. The system consists of three main entities: Sensing devices, the 

middleware, and sensor consumers (e.g., client applications). Those entities interact as 

follows [37]:  1) a client application issues a sensing request through a programming 
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interface to a cloud-based sensing server; 2) the server sends the request to sensing devices 

in an area of interest; 3) the server pushes sensing data received from sensing devices to 

the client application that issued the request. 

 

Figure 3 Sensing as a Service Model for IoT applications [32].  

 Sensing as a Service Model  

It’s envisioned that IoT applications would be provided access to the underlying IoT 

infrastructure through multiple IoT middleware solutions that adopt the Sensing as a 

Service concept. Charith et al. [32] proposed an IoT Sensing as a Service model that 

comprises four conceptual layers. The model is graphically depicted in Figure 3. First, with 

the sensors and sensor owners layer, sensor owners have full control over their sensors. 

They decide whether to share sensor data or not. If a sensor owner is willing to share sensor 

data, the owner specifies the terms of using the sensor. Furthermore, the owner selects the 

middleware through which sensor data is presented to client applications. Second, the 

sensor publisher layer consists of multiple cloud-based middleware solutions that manage 

sensors connectivity, process sensor data, and deliver it to software systems. Third, the 

extended service providers layer collects data from multiple sensor publishers on behalf of 

the consumers. It can provide domain-specific data analytics and provide sensor consumers 

the result. Finally, the sensor data consumers layer represents IoT applications. 
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 Sensing as a Service Features   

Empowered by cloud technology, sensing as a service model provides many features to 

client applications in different domains [4]:  

1) Decentralized data acquisition process in which sensed data is collected from 

everywhere.  

2) Worldwide resource and data sharing in which cloud and sensing resources are 

globally shared by different applications.     

3) Remotely accessing and analyzing real-time data where sensed data can be 

accessed and analyzed in real time from anywhere.  

4) On-demand elastic resource provisioning and scaling where users can scale the 

requested resources up and down based on the demand.  

5) Pay-as-you-go pricing model in which client applications are just charged for the 

amount of sensor data and cloud resources they use.  

 Sensing as a Service Applications 

Sensing as a Service middleware enables the development of IoT applications in a wide 

range of domains. In this section, we present IoT applications that can be enabled by 

Sensing as a Service Middleware. 

1) Remote Tracking and Monitoring: Sensing as a Service middleware can be used to 

remotely monitor objects of interest. Therefore, the middleware can be used to raise 

alarms, and react to occurring actions in a real-time manner. Applications of remote 

tracking and monitoring include [4]:  environmental conditions, animal behaviors, 

vehicles, patient-health conditions, building surveillance and security, vegetation 

production quality and smart-grid operations just to name a few.   

2)  Real-Time Resource Management: Sensing as a Service Middleware can be used 

for on-line resource control and optimization to ensure cost reduction and improve 

system performance. In real-time resource management, the middleware can 

support applications in various domains such as guided navigation, traffic control, 

smart parking, waste management and water/irrigation management [4, 32].   
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3) Smart Troubleshooting: Sensing as a service middleware can be used to remotely 

detect problems in IT systems in several domains that include: network systems, 

Automotive, Aviation and Aerospace, smart grids, and oil and gas pipelines [4].  

 Related Work 

In this section, we present the related work. Section 2.4.1  describes middleware solutions, 

section 2.4.2 describes IoT cloud platforms, and section 2.4.3 describes Stream processing.  

 Middleware Solutions 

This section discusses research efforts in designing middleware solutions.   

 

Sense Cloud [26] is a sensing as a service middleware that is built on top of Amazon AWS 

cloud platform. Sense Cloud is a general-purpose middleware that addresses a set of 

middleware challenges such as dynamic resources provisioning, sensor virtualization, load 

balancing, and multitenancy mechanisms. For each sensor owner, Sensor cloud creates a 

virtual machine through which the sensor owners connect their sensors to the platform. 

Furthermore, Sense Cloud provides sensor consumers with a web application, hosted on a 

server instance, through which they can create virtual sensors to accesses sensors data that 

is placed in a cloud database. Sense Cloud can dynamically provision new server instances 

when the usage of the currently running instances surpasses a predefined threshold. 

Moreover, when Sense Cloud receives a sensing request, the load balancer is triggered to 

select the server instance that has the smallest outstanding request queue.  

Linked Sensor middleware (LSM) [28] addresses sensor semantic interoperability. LSM 

uses web semantic technologies to link raw sensor data to its semantics. This process is 

known as Linked Stream Data. The goal of Linked Stream Data is to facilitate integrating 

sensor data streams into existing web technologies. LSM transforms raw sensor data into 

linked data represented using Resource Description Framework, known as RDF. RDF is 

used to process metadata; it provides interoperability between applications that exchange 

data on the web. RDF data store is queried using a query language called SPARQL. LSM 

receives sensor data through a set of wrappers that provide access to physical sensors and 

sensor data presented by other applications. The raw sensor data is then annotated with 
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Linked Stream Data Layout, which provides information such as observed property and 

unit of measurement. Sensor data consumers use SPARQL to query live and historical 

linked sensor data through an Ajax-based web application.   

OpenIoT [38] is an open source, cloud-based IoT middleware that supports semantic 

interoperability among IoT services. Open IoT relies on W3C Semantic Sensor Network 

Ontology (SSN) to provide a unified metadata model for physical and virtual sensor 

representations.  SNN ontology describes sensor accuracy, capabilities, observations, 

sensing method, performance, and infield deployment structure [15].  The OpenIoT 

ontology is an extension of SNN ontology as it doesn’t restrict sensor definition to physical 

sensing devices since a sensor can be a device, a program, or a combination of a device 

and a program that can observe a phenomenon. This ontology enriches sensor description 

terminologies with vocabularies that facilitate IoT and cloud integration. Furthermore, 

OpenIoT relies on LSM [28] to transform raw sensor data into Linked Data. In addition to 

stationary sensors, OpenIoT supports mobile crowd sensing in which sensing operations 

are carried out by mobile devices. 

Da Rocha et al. [19] proposed a semantic middleware for wireless sensor networks. The 

work addresses the Structural Health Monitoring (SHM) application domain in which 

semantic sensor networks can be used to enable using semantic information for monitoring 

and handling the environment. The middleware was developed using a low-level language 

called NesC, a C language extension that is used for embedded programming. The 

middleware uses ontologies to describe sensor information such as sensor capabilities and 

battery power level. Furthermore, the proposed ontologies define concepts related to other 

services. The middleware intelligently shares semantic information among the deployed 

sensors based on the semantic knowledge that controls the information sharing process. To 

illustrate, when the measurements of two sensors complement each other (e.g., humidity 

and corrosion), the sensors are allowed to share their observed values and combine their 

values to do reasoning. When many sensors provide the same sensing service, a few of 

them can be turned off to reduce energy consumption. The middleware uses a rule-based 

reasoning engine that employs the proposed ontologies.  
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Zafeiropoulos et al. [45] proposed a middleware architectural design that addresses data 

aggregation, management, and querying. The work focus on using semantic technologies 

to extract knowledge from raw sensor data. To achieve this goal, the system should employ 

a set of semantic technologies such as annotation frameworks, query languages and content 

description languages. The proposed architecture consists of three layers. First, the Data 

Layer in which raw sensor data is collected using polling-based or event-based 

mechanisms. Second, the Processing Layer which saves raw sensor data into XML files. 

Finally, the Semantic Layer maps sensor data stored in XML files to their semantic model. 

After mapping sensors data to their semantic, they system can analyze the mapped data via 

a semantic query language.    

The Hydra project [20] proposed a domain-specific middleware that addresses applications 

in home automation, health-care, and agriculture domains. Hydra connects several sensor 

devices together to detect interesting events.  Hydra is designed based on the Service 

Oriented Architecture and Model Driven Architecture. The middleware architecture 

consists of a network manager, discovery manager, event manager, storage manager, and 

ontology manager. The middleware uses web services to encapsulate sensors. Sensor 

semantic interoperability is enabled by the ontology that describes sensor devices. It is 

important to note that Hydra does not annotate raw sensor data with its semantic.  

Lee et al. [27] proposed a hybrid middleware which consists of a server-side middleware 

and an in-network middleware. The server-side middleware is responsible for handling 

context-aware stream processing, querying and event detection. The in-network 

middleware is responsible for handling energy-efficient data transmission. Furthermore. 

In-network middleware can intelligently identify false and in-complete data values. In this 

work, more focus was given to in-network middleware. For this reason, the server-side 

middleware has limited capabilities in terms of processing sensor data.     

SWASN [23] is a server-side middleware. SWASN stands for Semantic Web Architecture 

for Sensor Networks. SWASN employs semantic technologies to enhance sensor data 

processing. SWASN can connect many sensor networks by taking advantage of ontologies 

each network. The local ontology is used to map sensor data to a common RDF data model 

that can be queried using SPARQL. The SWASN architecture comprises four layers: 
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sensor networks, data sources, ontology, semantic web processing and, the application 

layer. SWASN is a domain-specific middleware with a focus on handling data for building 

fire emergency applications. 

 Commercial IoT platforms (State of Art) 

This section describes industry solutions. 

2.4.2.1 AWS IoT 

AWS IoT [48] is the Amazon Web Services IoT platform. This platform was launched in 

October 2015. AWS IoT provides an easy, and secure way to connect IoT devices to the 

AWS platform and deliver device data streams to AWS Cloud services such as AWS S3, 

AWS Dynamo DB, and AWS Kinesis to name a few. AWS IoT can connect to billions of 

devices and deliver trillions of messages. AWS IoT consists of four components: Device 

gateway, Rule-based Engine, Device Registry, and Message Broker. The device gateway 

is an application that knows how to connect and send data to AWS IoT. The rule-based 

engine allows developers to write rules that can be used to route data streams to other AWS 

services such as AWS Lambda or Dynamo DB. The Registry keeps information about IoT 

devices and their status. AWS IoT communicates with IoT devices through a messaging 

broker that uses a lightweight communication protocol called MQTT. AWS IoT provides 

developers an easy way to connect to IoT devices, and integrate them with other services 

within AWS ecosystem.   

 

Figure 4 AWS IoT [48] 
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2.4.2.2 IBM IoT Foundation 

IBM IoT Foundation [47,49] is a cloud-based IoT platform for managing IoT devices. IBM 

IoT Foundation is part of the IBM Bluemix Cloud platform. The IBM IoT Foundation 

provides an easy way to manage and connect IoT devices.  With the IBM IoT Foundation, 

an IoT device can be a sensor, an actuator, or a gateway. A gateway is a device that is 

connected to multiple sensors, or actuators, and it’s responsible for publishing sensor data 

to the cloud. IBM IoT foundation provides developers with a powerful web interface to 

add IoT devices, control access to IoT services, monitor usage, and perform device 

management tasks such as firmware update. Furthermore, IBM IoT foundation delivers 

IoT devices data to developer applications, other IBM Bluemix, storage services and IBM 

Bluemix Analytics services through the industry-standard MQTT protocol.  

 

Figure 5 IBM IoT Foundation [47]. 

Recently, IBM empowered its IoT service with another IoT platform called Watson IoT 

[49]. Watson IoT relies on IBM IoT Foundation to manage IoT devices. Watson IoT adds 

cognitive capabilities to IoT applications to produce new insights and intelligence.  
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2.4.2.3 Azure IoT Suite 

Azure IoT Suite [50] is Microsoft’s cloud-based IoT platform. Azure IoT suite is an 

enterprise-grade solution that enables developers to create and deploy a set of extensible 

preconfigured solutions that address common IoT scenarios such as predictive 

maintenance, remote monitoring, and connected factory. Those solutions are complete, 

working, production-ready solutions which comprise simulated devices to produce data 

streams, preconfigured Azure services such as Azure IoT Hub, Stream Analytics, Machine 

learning, and storage services. Developers can download the source code of a 

preconfigured solution, customize it, and extend it to meet their specific IoT application 

requirements.  Azure IoT Suite relies on Azure IoT Hub to manage IoT devices, and collect 

IoT device streams. Figure 6 shows a preconfigured IoT solution for a remote monitoring 

domain.  

 

Figure 6 Azure IoT Suite Preconfigured IoT solution [50]. 

 Stream Processing  

Stream processing is a necessity for IoT applications. In this section, we present the 

foundation of stream processing and discuss research efforts in stream processing.     

2.4.3.1 Stream Definition 

Abstractly, a stream, S, is a set of relational tuples, possibly infinite.  The tuples share the 

same structure. Each tuple is characterized by a set of attribute names {A0,…, An-1} [31].  

The tuples may be generated by one or more data sources.  A timestamp is associated with 

each tuple.  This timestamp can be regarded as a supplementary tuple attribute that is 
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denoted by At.  Another way to define a stream is as a big bag of pair elements <r,t> where 

r is a tuple characterized by a set of attribute names and t is a timestamp  associated with 

the tuple [8].  Regardless of the formalism, a tuple has a unique timestamp, but there can 

be multiple tuples associated with a timestamp. The rest of this section assumes the use of 

a supplementary tuple attribute. 

At a given timestamp ti, the current stream content is defined as follows [31]:  

S(ti) = {s  S: s.At ≤ ti}     

Streams satisfy the following properties: 

 Existence:    s  S,  s.At    NULL 

 Monotonicity:   If ti < tj then S(ti)  S(tj).  

2.4.3.2 Window Semantics  

A stream may be very large or possibly infinite.  This makes it difficult to execute queries 

especially those with aggregation operators (e.g., average, maximum) and stateful 

operators (e.g., intersection and join which use multiple streams). These operators cannot 

generate output before the entire input is read.   However, with streams, it is not always 

possible to know when or if a stream ends. To address this problem, queries can specify a 

window of time that represents a subset of a stream [31, 39,1].  A window is a mechanism 

to specify, dynamically, moving boundaries over stream tuples in order to extract a finite, 

yet always changing, set of tuples to be used as an input for blocking and stateful operators 

such as aggregations, join, and merge operators [31].   

Window attributes are used to specify the upper bound, lower bound, extent, and mode of 

adjustment. These are described below. 

 Upper bound is a value that specifies the most recent tuple that should be included 

in the window subset.  

 Lower bound is a value that specifies the oldest tuple that that should be included 

in the window subset.  

 Extent is a value that specifies the size of the window that could be a number of 

elements or a time interval.  
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 Mode of adjustment specifies the way in which the window changes as time 

advances.       

Representative examples of windows are briefly described in the rest of this section.  

A time-based window is defined by a time interval.  A time-based window can be 

represented by a start time (ts) and an end time (te). These represent the lower and upper 

bounds of the window as well as the extent.  For a stream, S, a query that uses time-based 

windows would apply query operators to the set represented by the following [8]: 

S(te)-S(ts)  

Possible adjustment modes include the following [31]: 

 Landmark: One of the window boundaries is kept equal to a specific time, while 

the other window boundary incrementally changes as time advances.  This is 

referred to as a landmark window.  A lower-bounded landmark window is where 

the lower bound stays fixed at a specific time while the upper bound advances with 

time.  An upper-bounded landmark window is where the upper bound is set to a 

fixed value while the lower bound advances with time.        

 Sliding Window: Both the start and end times may change. Boundaries proceed 

based on a predefined progression step  and a fixed temporal size .  is always 

set to be less than .  As a result, an overlap between successive windows is always 

observed (see Figure 7 c). An overlap is prevented by the condition  ≥  (Figure 

7 d). 

A count-based window is defined by a timestamp, t, and N which represents the N most 

recent tuples with a timestamp less than or equal to t.  This is more formally defined by 

the following [31]: 

    {s  S(t) :  t1  T (t1 ≤ t   | { s  S(t) : t1 ≤ s.At  ≤ t } | ≤ N)    

                         t2  T ( t2< t1  |  { s  S(t) : t2 ≤ s.At ≤ t }| > N)}               

The upper bound is defined by the timestamp, t and N is the extent.  One possible 

adjustment mode varies t. 
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With partitioned windows, the stream tuples are first partitioned into different sub streams 

based on the values of specified grouping attributes.  At each time, t, the N most recent 

tuples are taken from the sub streams.   

 

Figure 7 Window Types [31] 

2.4.3.3 Stream Processing Engines 

Stream processing Engine (SPE) is a term this is used to refer to an application that is 

designed to process a massive amount of streaming data on the fly in a near real-time 

manner [39]. An SPE is an intermediary between data sources and client applications. SPEs 

execute client application queries over live, possibly unbounded, data streams presented 

by data sources. Unlike database systems that execute queries over stored data, SPEs 

analyze stream tuples as they move through the system due to the high volume of input 

messages that discourages the use of persistent storage [22]. Abstractly, SPEs are similar 

to DBMSs in the sense that both apply relational algebra operations (e.g., select, project, 

aggregate, filter, etc.) over a dataset. However, their implementation of these operations is 

substantially different [8]. The operations need to consider the unbounded nature of data 

streams [31,8]. Figure 8 shows the general concept of a stream processing engine.  
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Figure 8: General Concept of Stream Processing Engine [39] 

 

2.4.3.4 Database Limitation for Real-Time Stream Processing  

SPEs are designed to overcome DBMSs limitations in supporting real-time stream-based 

applications. DBMSs follow the store then process programming paradigm. A traditional 

database model is inappropriate for real-time stream-based applications [1,25, 39].  This 

section briefly describes the limitation of DBMSs in supporting real-time stream-based 

applications.   

First, in traditional database systems, a query processor reads data from a disk. In a 

traditional database system store, input tuples are stored and indexed before they are made 

available for query activity. Disk storage introduces latency which makes it difficult for 

applications to receive the data in real-time or even in near real-time.   

 Second, the query processor in SPEs needs to consider that the data arrival rate can be 

extremely high and thus a query processing for stream applications should employ 

scheduling and load shading techniques to control CPU and memory usage by active 

queries [12]. 

Third, typically queries from stream-based applications are long running queries [8,31]. 

Blocking operators such as aggregation operators (e.g., avg, max) need special treatment 

by running them over a portion of the stream which is referred to as a window. Blocking 

operators return their results at the end of each window i.e., essentially all the input has to 

be read before output can be produced. Similarly, stateful operators like join and group 

also should work on stream subsets. A system that manages streaming data must consider 

reducing operator state accumulated by continuous queries. 
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2.4.3.5 Stream Processing Engine Requirements  

  A stream processing engine must provide the following features [39]: 

1. Keep the Data Moving: A query may consist of one or more operators.  To provide 

low latency, an SPE must be able to process stream messages without using storage 

operations throughout the processing path of query operators that may include blocking 

and stateful operators.   However, an SPE should have a special treatment for blocking 

and stateful operators. In addition, to reducing latency, SPEs should adopt an active 

processing model (e.g., non-polling) in which query output is constantly delivered to 

client applications rather than waiting for client applications to make requests to poll 

results because polling increases the system overhead and the processing delay.   

2. Query using SQL on Streams (StreamSQL): There should be a mechanism through 

which client applications can express operations to be executed over data streams. An 

SPE should support a high-level query language such as SQL that supports stream 

operations [8, 18, 7, 10]. The language operators should be extensible to allow 

developers to define new streaming functionalities [1,10].  

3. Handle Stream Imperfections (Delayed, Missing and Out-of-Order Data): Unlike 

traditional database systems, stream data is queried before it’s presented. For this 

reason, an SPE must provide a mechanism to provide flexibility to deal with stream 

imperfection situations that include delayed, missing, and out-of-order data [2].  

4. Integrate Stored and Streaming Data: As some streaming applications demand 

access to stored data in order to compare past and present stream data, an SPE should 

be able to execute queries over stream data, stored data, or a combination of the both. 

The system should provide a uniform query language that can be used when querying 

either data source. 

5. Guarantee Data Safety and Availability:  An SPE must always be up and running 

despite the workload spikes that might happen at run-time. In case of system failure, a 

backup hardware device should take over tasks assigned to failed devices in order to 

keep going. 

6. Partition and Scale Applications Automatically: An SPE should be able to support 

parallel query execution in which query processing is distributed among a set of 
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machines in a cluster. In addition, the system should load balance computation across 

its nodes. 

7. Process and Respond Instantaneously:  In order to provide low latency when 

processing high-volume input streams, an SPE should be able to process hundreds of 

thousands of messages per second. To do so, the SPE should have a highly-optimized, 

minimal-overhead execution engine. 

2.4.3.6 Single-Site Stream Processing Engines 

Aurora [1] is a stream processing engine (SPE) that was a result of collaborative research 

efforts of students and professors at MIT, Brandies, and Brown University. Aurora’s main 

task is to perform data analytics on inbound stream messages in a way specified by an 

application administrator. Aurora follows a dataflow-style paradigm in which operations 

on a stream are represented by boxes, and arrows indicate the order in which operations 

are applied. Basically, an Aurora query is an acyclic directed graph where the nodes 

represent operators, and the edges represent data flow. Aurora provides a graphical user 

interface to specify the query.  In addition to online stream processing, Aurora supports 

historical analytics in which Aurora stores stream tuples for a certain amount of time and 

uses this storage to answer ad-hoc queries. Aurora translates the query graph into a data 

structure that is saved into a database. At run-time, Aurora loads the query graph from the 

database to be used to direct the input stream to the relevant operators. In addition to on 

the fly query execution, Aurora addresses stream processing challenges such as query 

optimization [1], load shedding (i.e., load reduction)  [1], and scheduling [12]. 

STREAM [7] is a single site stream processing engine developed at Stanford. STREAM 

stands for STanford StREam Data Manager. Stream was designed to run queries over a 

combination of data streams and static relations (e.g., tables). STREAM was developed 

with the intention to minimize memory allocation. Furthermore, STREAM supports query 

plan modification runtime [6, 7].  In addition, due to resource limitations, STREAM 

provides a way to compute approximate query results. Furthermore, STREAM clients use 

a SQL-Like query language to define continuous queries over incoming data stream and 

static tables. The STREAM query language is known as CQL which stands for Continuous 

Query Language [8]. As CQL uses SQL-99 standards, it supports relational operators such 
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as select, project, filter, duplicate elimination and aggregation functions. In addition, CQL 

provides window operators that partition streams into small chunks. 

COUGAR [10] is a stream processing engine developed at Cornell. COUGAR is a 

prototype sensor database system that performs long running queries over unbounded 

streams and static relations. COUGAR was developed as an extension for an object-

relational database called PREDATOR. COUGAR defines a sensor database system as a 

mix of stored relations that consists of sensor deployment information and sensor streams 

which are represented as a time series. A continuous query over sensor streams runs for a 

user defined time interval and defines a persistent view that is updated with the query 

results during the query time interval. The COUGAR sensor database system model 

consists of the Remote Sensor Model, Stream Model, Query Language, and Query 

processing. Although COUGAR supports long running queries, it does not support window 

operations over stream data.  

Gigascope [18] is a Data Stream Management System that runs queries over a continuous 

stream of data emitted by network card interfaces (NICs). Gigascope serves as an 

intermediary between data sources (e.g., NICs) and network monitoring applications. It 

receives queries from user applications and executes the queries over the incoming data 

streams from network card interfaces. Gigascope does not run queries over stored data, so 

all Gigascope inputs and output are streams. Gigascope can analyze high-speed streams 

presented by communication networks without using expensive processors. Furthermore, 

Gigascope provides its clients with a query interface that uses a SQL-Like language called 

GSQL. 

2.4.3.7 Distributed Stream Processing  

Stream processing in a distributed environment offers several advantages [46]. To begin 

with, it enables stream processing to be scaled over many nodes. It increases the availability 

of Stream Processing Engines as the processing nodes monitor each other and take actions 

to keep the system running in case of node failure. Moreover, it makes it easier for nodes 

to cope with sharp increases in load by having nodes cooperate in sharing the load until 

each node has the required resources to handle its assigned tasks. In this section, we first 
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present concepts related to stream processing in a distributed environment.  We then 

present a number of multi-site stream processing engines.  

2.4.3.7.1 Parallel Query Execution 

The parallel query execution paradigm states that queries are distributed among multiple 

nodes that collaboratively interact to produce output. Parallel query execution can be 

classified into two categories [22]. First, inter-query parallelism in which different queries 

are assigned to different nodes. Second, inter-operator parallelism in which query operators 

are distributed across different nodes.  

Despite which parallelism technique an SPE follows, query parallelization implementation 

should satisfy two transparency conditions: syntactic transparency and semantic 

transparency [22]. Syntactic transparency states that users should be unaware of the query 

parallelization process. Semantic transparency states that using a given input data stream, 

the result of a parallel query must be the same as its centralized counterpart. 

2.4.3.7.2 Elastic vs Static SPE Configuration 

Elastic and static SPE configurations are terms used to describe SPE resource management 

mechanisms in distributed environments [22]. In static configurations, an SPE employs a 

fixed number of nodes for handling query processing. In contrast, in an Elastic SPE 

configuration, the number of running nodes dynamically changes at run-time in response 

to the current workload. Although static SPEs have the means to support parallel query 

execution, their resource management poses two major disadvantages [22]: resource under-

provisioning, and resource over-provisioning. Under-provisioning occurs when the number 

of provisioned nodes is not sufficient to cope with the workload. Over-provisioning occurs 

when the size of workload can be handled with a fewer number of nodes which results in 

a waste of resources. In contrast, the elastic configuration makes an SPE able to adjust its 

amount of allocated resources to the level that serves the current workload. 

2.4.3.7.3 Multi-Site Stream Processing Engines 

Medusa [46] is a distributed version of Aurora [1]. Medusa extends Aurora’s functionality 

by distributing queries across multiple single site stream processing engines (e.g., nodes) 

that cooperate at runtime to process stream tuples and deliver processing results to client 
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applications [46]. Medusa nodes are called participants who might belong to a single 

organization or be part of a coupled federation of nodes in which nodes are controlled by 

independent owners. Medusa adopts a financial incentive model in which nodes receive 

payments for rules they play in query processing and load sharing [9]. The Medusa 

incentive model is called the bounded-price mechanism in which inter-node load sharing 

agreement is negotiated before participating in the runtime environment. At run-time, a 

node can only move the load to another node if and only if there is a contract between them. 

Moreover, Medusa brings another significant change to the way Aurora works. Instead of 

using Aurora as a stand-alone system, Medusa allows client applications to communicate 

with the system through an API that wraps the system functions. The API facilitates the 

integration of Aurora with client applications. 

Borealis [2] follows the work-flow paradigm that Aurora [1] implements, so a Borealis 

query is a directed graph of boxes, arcs, and arrows that collectively describes the order of 

stream processing steps. Borealis adopts the Medusa [46] query distribution mechanism. 

Moreover, Borealis extends the Aurora query model by allowing client applications to 

change or update operators at run-time. Furthermore, Borealis proposes a data model that 

allows dynamic query revision. Dynamic query revision allows a stream processing engine 

to correct mistakes in previously generated output messages. Wrong output values are 

generated as a result of incorrect input values generated by data sources.  

Stream Cloud [22] is a distributed stream processing engine that processes continuous 

queries by distributing those queries among multiple nodes. Stream Cloud adopts a 

parallelization mechanism in which queries are split into small chunks, called subqueries, 

which are assigned to a set of independent Stream Cloud instances, e.g., nodes. Stream 

Cloud query distribution approach aims to minimize distribution overhead. Furthermore, 

Stream Cloud is an elastic and scalable SPE that is capable of handling large volumes of 

stream data. Stream Cloud was built on top of a Borealis [2], so Stream Cloud inherits 

Borealis query model in which a client application query is represented as an acyclic 

directed graph where nodes represent operators and edges represent data workflow. 

However, Stream cloud approaches for parallel query execution, scalability, and elasticity 

are substantially different from Borealis.  This is due to the different query parallelization 

techniques used in the two systems. While Borealis distributes query operators among 



 

 

26 

 

multiple nodes, Stream Cloud supports three different query parallelization techniques that 

are categorized based on the granularity of the parallelization units which are Query-cloud 

strategy, Operator-cloud strategy, and Operator-set-cloud strategy [22].  

TelegraphCQ [14] is a stream processing engine developed at UC Berkeley. TelegraphCQ 

directs stream tuples through a set of query operators that handle tuples in the same fashion 

used in traditional databases. Furthermore, TelegraphCQ has a special set of routing 

modules which are used to route tuples among query operators. TelegraphCQ was built to 

support shared and adaptive continuous query processing over, possibly unbounded, data 

streams. Adaptive query processing states that an SPE should have the ability to adjust its 

processing dynamically in response to unexpected changes in data availability or as a 

response to changes in client needs [14]. The Shared query processing targets commonality 

among client queries. Instead of processing each query separately, shared processing states 

that stream tuples should be processed simultaneously by all active client queries as the 

tuples pass through the system. In addition, TelegraphCQ addresses resource management, 

scheduling, and distributed parallel query execution. TelegraphCQ inherits most of its 

functions from predecessor projects: Telegraph [36], CACQ [29] and PSoup [13]. 

Telegraph provided adaptive query processing, yet it did not target commonality among 

active queries. The latter two projects addressed shared query processing. However, their 

implementation showed significant limitations [14]. For instance, the limit of data that they 

can process depends on the memory size. Moreover, they did not provide solutions to 

resource management and scheduling. For those reasons, TelegraphCQ was developed to 

address challenges that were considered to be drawbacks of its predecessors Telegraph 

[36], CACQ [29] and PSoup [13]. Furthermore, TelegraphCQ supports distributed parallel 

query processing through an extension project called FLuX [35]. TelegraphCQ uses FLuX 

as a routing module that routes tuples across multiple nodes in a cluster. The key feature 

of FLuX that it’s able to redistribute query operators alongside their internal state with 

minimal impact on query processing.  

 Gap Analysis 

Over the last decade, researchers spent a great deal of time working on building IoT 

solutions to support IoT applications in different domains. Those solutions focus on the 
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architectural design of a middleware that decouples the underlying IoT infrastructure from 

IoT applications. The proposed work is devoted to address aspects of middleware design 

that increase interoperability such as sensor ontology, sensor data semantic, sensor query 

language, sensor virtualization, data acquisition wrappers, and programming interfaces. 

However, the proposed middleware solutions have some drawbacks. First, the proposed 

middlewares cannot support a large number of IoT devices as they don’t have the means 

to connect to billions of devices. Although some of the proposed solutions use cloud 

services, those solutions mainly depend on cloud services for hosting and storage services 

which make connecting to IoT devices a system bottleneck. Second, some of those 

middlewares are domain-specific middlewares that only support applications in specific 

domains. Third, to the best of our knowledge, none of the proposed systems have 

multitenancy mechanisms that enable multiple client applications to share resources for 

sensor connections and sensor data streams. For example, when different client 

applications request a middleware to perform aggregations over sensor stream. In most 

cases, processing sensor data streams dictates storing stream elements in a buffer for a 

period of time, processing stream elements and delivering the results to client applications. 

With that being said, the lack of buffer management poses significant problem to the 

middleware resource consumption as stream buffers are stored in the RAM, which is a 

limited resource. Thus, there is need for a multitenancy mechanism to manage stream 

buffers. Finally, the proposed middleware solutions present sensor data streams to client 

applications at the same frequency that the sensor uses when it sends its data to the 

middleware. However, client applications might be interested in receiving sensor data at 

different frequencies, and they should not pay for a frequency they don’t need. For 

Example, a sensor sends its data every second, yet a client application wants to receive 

sensor data every 10 seconds, the sensor should have multiple pricing policies for different 

frequencies. To the best of our knowledge, none of the proposed middleware solutions 

considered the idea pricing policies.        

Commercial cloud-based IoT solutions are resource-rich platforms that enable the 

connection of billions of devices that can send trillions of messages. The commercial 

platforms provide powerful analytics and stream engine services. Basically, commercial 

cloud-based IoT platforms have the means to build IoT middleware solutions. However, 
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they are more focused on providing tools and services that enable developers to easily 

integrate their IoT devices into the cloud platforms and facilitate the process of routing 

device data streams to different cloud services within the same platform or at a different 

one. Essentially, sensors are tied to a cloud platform account. Only developers who have 

access to that account would be able to access the sensor data. This contradicts the IoT data 

and resource sharing concepts. Moreover, an IoT middleware should also abstract the 

underlying cloud structure, so software developers can focus on building their application. 

To summarize, commercial cloud-based IoT platforms have the required infrastructure to 

build IoT middleware solutions. However, they are more focused on providing the services 

that enable developers to create their own IoT applications.  

Finally, Stream Processing Engines (SPEs) can analyze sensor streams on the fly, and 

present analysis results in a near real-time manner. Moreover, SPEs support continuous 

query semantic. However, SPEs are focused on providing algorithms for stream analysis, 

reducing memory usage, and supporting adaptive query processing. SPEs don’t consider 

the idea of sharing sensor data. SPEs replicate stream data for queries issued by different 

client applications. SPEs don’t consider that the relation between a stream and its consumer 

applications is a one-to-many relationship. For this reason, SPEs cannot be considered as 

a middleware solution that provides sensing as a service concept.  

To summarize, middleware solutions, stream processing engines, and cloud-based IoT 

platforms have some drawbacks that imply that they cannot be used as an IoT solution that 

enables sharing sensor data. There is an apparent need for an IoT solution that supports 

sensor data sharing. This solution can be built on top of a combination of the 

aforementioned technologies.   
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Chapter 3 

3 Sensing as a Service Query Language 

Sensing as a Service Query Language is a SQL-like declarative language used to execute 

consumer queries over sensor metadata, and sensor data streams.  As noted in the previous 

chapter there is a considerable number of published research papers in the area of stream 

processing. In addition to focusing on stream management techniques, researchers also 

focused on building query languages that have the capability of executing stream 

operations on windows of data. However, these languages are mostly focused on stream 

processing. Moreover, some of the middleware solutions proposed search functionalities 

that facilitate sensing search [28, 38]. However, those search functionalities are limited and 

use query language called SPARQL which is not user-friendly for non-technical users [33]. 

Furthermore, to the best of our knowledge, there is no query language that supports the 

Sensing as a Service concept. In this section, we propose a SQL-like declarative query 

language. The proposed query language allows client applications to search for sensors 

using a metadata model built on top of the SSN ontology [15]. Moreover, the language 

supports Sensing as a Service model by allowing client applications to specify query 

parameters that indicate the frequency of the requested data and the pricing policy of the 

Pay-As-You-Go Incentive Model.         

 Stream Query Language Requirements 

Querying sensor data streams is quite different from querying data stored in static relations. 

This is due to the volatile nature of streaming data. Unlike static relations, data streams 

cannot be stored in a disk. This is due to the fact that streams may be very large or possibly 

infinite which discourages stream storage. This makes it difficult to execute queries 

especially those with aggregation operators (e.g., average, maximum) and stateful 

operators (e.g., intersection and join which use multiple streams) since these operators 

cannot generate output before the entire input is read. Furthermore, client application 

queries might be executed over generated data from a future time. Subsequently, queries 

must be applied as data streams flow through the stream query processing engine. With 
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that being said, operations like stream filtering and aggregations should be treated in a 

special way. Therefore, special terms should be added to the stream query language to 

capture concepts like query session, sensing discovery, windowing, and pricing policies.  

 Query Session is a term used to refer to the time frame which a consumer wants to 

execute their query over the stream data generated during the time frame. 

 Windowing is the process of splitting the data stream into smaller subsets of data 

in order to run a query over those subsets separately. Windowing is a technique 

used to unblock stateful (i.e., Join, Merge) and blocking operators (i.e., Aggregation 

functions). 

 Pricing policies form the commercial model regarding what consumers pay for 

their sensor data usage.  

 Sensing Discovery is the process that enables software systems to locate sensors 

that fit their needs. 

 Query Language  

In this section, we present a query language for a Sensing as a Service middleware. Using 

this language, the middleware clients can perform sensing discovery tasks. In addition, 

clients can use the proposed SQL-Like query language to perform stream analytics 

operations. 

 Information Model  

Sensing discovery is crucial for IoT applications. As the number of IoT devices is in the 

billions, it will not be easy for IoT applications to identify sensors that fit their needs out 

of billions deployed sensors. Sensing discovery provides a searching mechanism which 

narrows down the range of sensors that fit client needs.  However, the fact that sensors are 

owned by different entities poses a problem for integrating sensors with IoT applications 

because sensor owners might describe their sensors in different ways. For this reason, there 

is a need for an information model that provides a unified method for describing the 

deployed sensors. In our design, the proposed middleware employs sensor metadata model 

that describes sensor capabilities and deployment features. Our sensor metadata model 
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relies on a semantic sensor network ontology (SSN) in describing sensors [15]. The SSN 

ontology includes the most common context properties, such as accuracy, precision, drift, 

sensitivity, selectivity, measurement range, detection limit, response time, frequency and 

latency. In addition to sensor context properties, a sensor location description is also 

important for the Sensing Discovery process. We use a hierarchical model to capture sensor 

location description. At the top level, we have countries, then cities. In a city, sensors might 

be deployed outside or inside a property. In both cases, we store the sensor longitude and 

latitude. For sensors located inside a property, we store more location information such as 

property type (e.g., apartment building, flat, house). Each property type consists of a set of 

components: room, hallway, bathroom, kitchen, entrance, parking lot, backyard, etc. 

Within a property component, a sensor might be attached to an object which might be a 

wall, a door, or a window. When a sensor owner adds a sensor, the owner specifies detailed 

location information which includes the property, the property component, to which object 

the sensor is attached to within the property component. This information model provides 

a precise sensor location description information. Outdoor sensors also can have more 

location information. For example, a sensor in a parking lot might have a location 

description that indicates where in the parking lot the sensor is located (e.g., in which spot 

in which floor). Moreover, a sensor deployed in a highway might have a description that 

tells which lane this sensor monitors and to which object the sensor is attached. It’s 

important to note that currently we limit outdoor sensor description to GPS location. A full 

outdoor location modeling is beyond this work. The proposed information model is 

graphically depicted in Figure 9.  
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Figure 9 Information Model. 
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 Sensing Discovery Query 

A Sensing Discovery query is a query that client applications submit to the middleware to 

construct sensors deployment knowledge. Sensing Discovery queries are executed against 

the sensor information model. The goal of Sensing Discovery Queries is to help consumers 

discover sensors that meet their needs. It’s important to note that in the sensor discovery 

process, the middleware does not make a decision about which sensor satisfies the 

consumer needs the best.  Rather it is the consumer who makes this decision based on the 

middleware answers for sensing discovery queries. Essentially, the middleware narrows 

down the range of selection. 

3.2.2.1 General Knowledge Sensing Discovery 

General Knowledge Sensing Discovery provides consumers with general knowledge about 

sensing services in a given country. The middleware’s response for these queries is to 

provide general deployment information. For example, in which cities temperature sensors 

are deployed, in which buildings in a given city there are air quality sensors, or what are 

the available sensing services in a given city. Using EBNF, we define a General Knowledge 

Sensing Discovery Query as follows: 

<SelectStatement> ::= 

       SELECT <SelectOptions> 

        FROM <CountryIdentifier>  

        [IN <CityIdentifier>] 

        [PROVIDES <sensingService>] 

        [MANUFACTUREDBY <VendorName>] ; 

<SelectOptions> ::= ‘City’ | ‘SensingService’ | ‘Building’ 

<CountryIdentifier> ::= String 

<CityIdentifire> ::= String 

<sensingService>::=<sensorType>{‘,’<sensorType>}* 

<sensorType> ::= String 

<VendorName> ::=String 
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A General Knowledge Sensing Discovery Query has the following format: 

SELECT < City | Sensing Service |Building> 

FROM <CountryIdentifier>  

[IN CityIdentifer]  

[PROVIDES sensingService] 

[ MANUFACTUREDBY vendor]; 

Select:  The select expression takes three possible keyword values: City, SensingService, 

or Building. The keyword City indicates that the consumer wants to receive a list of cities 

(e.g. <CityId, CityName>). The keyword sensingType indicates that the consumer wants 

to receive a list of Sensing Types (e.g, temperature, humidity, traffic) available in a country 

specified in the Country Identifier part of the query. The keyword Building indicates that 

the consumer wants to know the addresses of buildings that provide sensing services. 

CountryIdentifier: This part of the query indicates which country the consumer wants to 

search to find general sensor deployment information. 

IN CityIdentifer: This is an optional part of the query that can be used alongside the 

SensingService, and Building keywords. This means that the consumer wants a list of the 

available sensing services, or building addresses in a given city as identified by 

CityIdentifier.  

PROVIDES sensingService: This is an optional part of the query that can be used 

alongside the City and Building keywords. This part tells the middleware that the consumer 

wants to know in which cities or buildings a giving sensing service is available.  

MANUFACTURED BY vendor:  This is an optional part of the query which indicates 

that the consumer wants to find sensing services or cities in which the deployed sensors 

are manufactured by a given vendor.   

We will now provide several example queries. 

Example 1:  This query is used to discover names of cities in which the temperature 

sensing service is available. 
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SELECT City 

FROM Canada 

PROVIDES Temperature; 

 

Example 2: This query is used to discover names of cities in which Humidity sensors 

manufactured by OMEGA are deployed. 

SELECT City  

FROM Canada 

PROVIDES Humidity  

MANUFACTUREDBY OMEGA; 

Example 3: This query is used to discover names of sensing services associated with 

sensors that are manufactured by OMEGA. 

SELECT SensingService 

FROM Canada 

MANUFACTUREDBY OMEGA; 

Example 4: This query is used to discover cities in which there are deployed sensors 

manufactured by OMEGA. 

SELECT City 

FROM Canada 

MANUFACTUREDBY OMEGA; 

Example 5: This query is used to discover the addresses of buildings that provide 

humidity sensing services in London.  

SELECT Building  

FROM Canada 

IN London 

PROVIDES Humidity; 

This query states that a consumer is looking for address of building that provides 

humidity sensing services in London.  
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3.2.2.2  Discovery at the Sensor Level  

Sensing discovery at the sensor level provides consumers with detailed information about 

the deployed sensors based on context and location features.  The middleware responds to 

queries with a list of detailed sensor information. For each sensor, the response consists of 

sensor identifier, sensor data scheme (e.g., sensor data attribute names and data types), 

Sensing Service (e.g., temperature, humidity), sensor context features, manufacturer name, 

pricing policies, and location description.  

EBNF notation:  

<SelectStatement> ::= 

       SELECT <SelectOptions> 

        FROM <CountryIdentifier>  

        [ WHERE <search_condition> ] 

        [IN <CityIdentifier>] 

        [AT <BuildingAddress>] 

        [WITHIN <DistanceAttributes>] 

        [MANUFACTUREDBY <VendorName>] ; 

 

<SelectOptions> ::= <sensorType>{‘,’sensorType}* 

<CountryIdentifier> ::= String 

<search_condition>:= <logicalExpression> [{<logicalOp><logicalExpression>}*] 

<logicalOp> ::= (And | Or) 

<LogicalExpression> ::= <Expression> <OP> <Expression> 

<OP> ::=(> | >= | < | <= | = | !=) 

<Expression> ::= <term>[(+|-) <term>]* 

<term> ::= <factor> [ ( * | / ) <factor>]* 

<factor> :=’(‘< Expression>’)’| attributeName | number  

<CityIdentifire> ::= String 

<BuildingAddress> ::= String 

<DistanceAttributes> ::= number, number, number 
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<sensorType> ::= String 

<VendorName> ::=String 

 

 A discovery query has the following format:   

SELECT <SelectOptions> 

FROM <CountryIdentifier> 

WHERE <search_condition > 

IN <CityIdentifier> 

[AT Building Address] 

[WITHIN distance, longitude, latitude] 

[MANUFACTUREDBY vendor]; 

SELECT: The SELECT expression indicates the sensing service the consumer is looking 

for which might be one or many sensing services such as temperature, humidity, air     

quality …etc.  

FROM:  This part of the query specifies the country in which the consumer wants to 

discover sensors. 

WHERE: This part of the query specifies sensor context features.   

IN: This part of the query indicates which city the consumer wants to search for sensors. 

AT Building Address: This an optional part of the query that is used when the consumer is 

looking for sensors information at a specific building.  

WITHIN : This an optional part of the query that is used when the consumer is interested 

in finding sensors that are located within a specific distance from a given longitude and 

latitude. 

MANUFACTUREDBY: This indicates that the consumer wants to find sensing services 

in which the deployed sensors are manufactured by a given vendor. 

We now present an example of a query. 
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Example 6: This query returns full description of temperature sensors which are 

deployed at building 740 Proudfoot Lane in London and satisfy the condition accuracy= 

90.    

SELECT Temperature 

FROM Canada 

Where accuracy= 90 

IN London 

At 740 Proudfoot Lane; 

 Stream Analytics Query   

Stream Analytics Query is the query used to analyze sensor data streams on the fly. The 

middleware provides a SQL-like query language that provides consumers the ability to 

query a sensor as they would query a table in a relational database. Using this language, 

consumers can specify sensor data attributes they want to receive in case the sensor 

provides a set of attributes. For example, a sensor that measures temperature and humidity 

provides two attributes that are named temp and hum. Moreover, consumer can use 

aggregation functions such as average, minimum, maximum, sum and count. Furthermore, 

consumers have the ability to filter the data streams provided by sensors.  

 It’s important to note that in our design we adopt the formal definitions presented in 

sections 2.4.3.1 and 2.4.3.2  for sensor stream, stream tuple, and window semantics.  

We formally define the Stream Analytic Query using the EBNF notation as follows:  

<SelectStatement> ::= 

       SELECT <SelectOptions> 

        FROM <Sensor Identifier>  

       WHEN <SessionFilter> 

       [WINDOW (“number | “unbounded”)] 

       USING number  

       FOR (number | “unbounded”); 
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<SelectOptions> ::=  

(‘*’| attributeName {‘,’attributeName}* | < aggregationFunction > ‘(’attributeName ‘)’               

{‘,’<aggregationFunction> ‘(’ attributeName ‘)’}*) 

 <aggregationFunction> ::= ‘avg’ | ‘sum’ | ‘count’ | ‘min ‘| ‘max’ | ‘std’ 

<SensorIdentifier> ::= number 

<SessionFilter>:= <logicalExpression> [{<logicalOp><logicalExpression>}*] 

<logicalOp> ::= (And | Or) 

<LogicalExpression> ::= <Expression> <OP> <Expression> 

<OP> ::=(> | >= | < | <= | = | !=) 

<Expression> ::= <term>[(+|-) <term>]* 

<term> ::= <factor> [ ( * | / ) <factor>]* 

<factor> :=’(‘< Expression>’)’| attributeName | number 

  

 The Stream Analytics Query  has the following format: 

SELECT <Select Options> 

FROM <sensorIdentifier> 

WHEN<sessionFilter>  

[WINDOW <WindowSize>] 

USING <pricingPolicyIdentifier> 

FOR <sessionDuration> ; 

Select Options:   This refers to sensor data attributes that the consumer wants to receive. 

Generally, the attributes list can take one of the following values. First, the symbol “*” is 

used to indicate that the consumer wants to receive all data attributes the sensor provides. 

Second, one or more sensor data attributes separated by comma “,” e.g., temperature, 

humidity. Finally, the attribute list might represent aggregation functions over the sensor’s 

data attributes. The query syntax does not allow multiple attribute-list types in a query, so 

consumers cannot mix aggregation functions with “*” or data attributes. 



 

 

40 

 

Sensor Identifier: The sensor identifier is a value that uniquely identifies the sensor which 

a consumer wants to receive its data. This value can be extracted from the sensing discovery 

stage.  

Session Filter:  The session filter is a logical expression set by the consumer to filter sensor 

data. The use of the session filter means that the consumer is interested in receiving a subset 

of sensor data that can satisfy the filter. The filter can be a simple condition such as WHEN 

temp > 25 or a much more complicated logical expression in which conditions are 

connected by logical operators such as AND, and OR. 

WINDOW windowSize: This is an optional part of the query which is used when 

consumers want to perform stream analytics over a subset of the stream data. There are two 

possible values for windowSize: an integer value representing the size of the window in 

seconds, or the keyword unbounded. The integer value is used when the consumer wants 

to run a Time-based Tumbling Window query. When a consumer uses a Time-based 

Tumbling Window Query, the middleware retains sensor data for the window size. After 

each window period, the middleware runs the query over the buffered data, cleans the 

buffer and pushes the result to the consumer. The middleware repeats this process until the 

session expire time is due.  The keyword, unbounded, is used when the consumer wants 

the middleware to buffer all sensor data throughout the session to help run 

INSTANTANEOUS queries over the buffered data. An INSTANTANEOUS query is a 

query that the consumer sends at any point of time during a session to analyze the buffered 

data. 

USING pricing Policy identifier: This represents the sensor pricing policy which the 

consumer wants to use in the session. As mentioned previously, every sensor has multiple 

pricing policies.  

FOR sessionDuration: The session duration has two possible values: An integer value that 

represents the session lifetime in seconds, or the keyword unbounded which means that the 

session duration is uncertain, yet the client application that opened the session can send a 

request to terminate the session. 

We will now present several examples. 
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Example 1: 

SELECT temp, hum 

FROM Sensor i 

USING Pricing Policy j 

FOR 360; 

This query states that a consumer wants to receive the sensor data attributes temperature 

and humidity from sensor i using a pricing policy j for the next 360 seconds. 

Example 2: 

SELECT * 

FROM Sensor i 

WHEN temp>25 

USING Pricing Policy j 

FOR 360; 

This query states that a consumer wants to receive all data attributes from sensor i if and 

only if the value of sensor data attribute temp is greater than 25 using a pricing policy j 

for the next 360 seconds.  

 

Example 3: 

SELECT avg(temp),min(temp),max(temp), avg(hum),min(hum),max(hum) 

FROM Sensor i 

WHEN temp>25 

WINDOW 20 

USING Pricing Policy j 

FOR 360; 

This query states that a consumer wants to receive the result of aggregation functions 

over sensor i data attributes every 20 time units. The session filter temp>25 indicates that 

only sensor stream data tuples that have temp > 25 will be processed in the aggregation 

functions. The consumer wants to use a pricing policy j for the next 360 seconds. 
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Example 4: 

SELECT temp, hum 

FROM Sensor i 

WHEN temp>25 

WINDOW unbounded 

USING Pricing policy j 

FOR 360; 

This query states that a consumer wants to the middleware to buffer the specified sensor i 

data attributes for the entire session period to allow the consumer to run 

INSTANTANEOUS queries over the buffered data. The session filter temp>25 indicates 

that only sensor stream data tuples that have temp > 25 will be buffered. The consumer 

wants to use a pricing policy j for the next 360 seconds. An INSTANTANEOUS query is 

any query that the consumer sends during the session, and it takes the following format: 

SELECT <attributeList|aggregats> 

FROM <sensor I > 

WHEN <filter>  

As an example of INSTANTANEOUS queries, we might consider the following query:  

SELECT avg (temp),std(temp) 

FROM sensor I 

WHEN temp > 20 and hum >80 

This query calculates the average and the standard deviation of the temperature attribute. 

The middleware runs this query over the buffered data generated by the first query of the 

session. The middleware sends back the query results to the consumer. 
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Chapter 4  

4 Middleware Architecture 

In this chapter, we present the architecture of a Sensing as a Service (SaaS) middleware, 

which is graphically depicted in Figure 10. Basically, the middleware has three primary 

layers: The Service Interface layer, the Stream Processor layer, and the Sensors 

Management and Representation layer. We assume that this middleware is hosted on a 

cloud platform and interacts with both sensors and client applications. We presume that 

sensor owners specify policies for how frequently a consumer should receive sensor data 

and the cost of this frequency. To illustrate, a sensor owner might specify the following 

policy: To receive the sensor’s readings every 10 seconds, a client must be charged $X 

every minute. The cost increases as the frequency increases. The price policy cannot use a 

frequency, which is higher than the physical sensor’s actual frequency of sending data. The 

following is a brief description of the middleware layers.  

   Architecture overview 

 The Service Interface layer receives client requests, directs these requests to the Stream 

Processor for stream operations handling. Stream processor, then, replies the requests 

through the Service Interface. For client applications, the Service Interface hides the 

underlying knowledge and technology required to deploy, manage, and transfer sensor 

data, so that client applications need only to know which service interface method to use. 

Secondly, the Stream Processor is the core of the proposed middleware. It is responsible 

for executing client application queries and charging client applications based on the 

chosen sensor pricing policy and data consumption. After executing a query over a stream, 

the Stream Processor returns the query result to the client application through the Service 

Interface. 

Finally, the Sensor Management and Representation layer manages the connection 

between the Stream Processor and physical sensors. Furthermore, this layer maintains the 

sensor deployment and pricing policy database. 
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Figure 10 Middleware Architecture. 

 Service Interface  

The Service Interface layer receives client requests and invokes relevant services after 

verifying a consumer’s right to invoke a service.  This section describes the communication 

paradigms used and the format of request messages. 

 Service Interface Communication Protocols 

 The push and pull models designate two ways of exchanging data between two distinct 

entities. In this work, the entities are client applications and the middleware.  The pull 

model is based on the request/response paradigm.  The response may be sent synchronously 

or asynchronously.  With the push model, a client subscribes to data providers and new 

content is automatically sent to the client.  The push protocol is graphically depicted in 

Figure 11. Since push allows multiple responses per request, it is preferred over pull when 

data volume and velocity are high. To handle different ways of client-server 

communications, the middleware provides two kinds of interfaces through which the 

clients can interact with the middleware: an interface that provides an API that uses pull 
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communication protocol used for single response per request communication paradigm and 

an interface that provides an API that uses push communication protocol for multiple 

responses per request communication paradigm. 

 

Figure 11 Push Protocol. 

 Request Format 

A service interface request consists of two variables. The Authentication Token is a unique 

token generated by the middleware and is provided to clients at the end of the client 

registration process. Client applications must submit this token in every request to ensure 

that the client application is allowed to carry out the request. The command variable 

represents the query. 

 Query Interpreter 

The Query Interpreter breaks down queries into smaller elements where each element is 

translated into a command that is understandable by the other components of the 

middleware.  For example, there are queries that require the buffering of data.  In the 

middleware, the Buffer Manager uses an in-memory NoSQL database.  The Query 

Interpreter translates the query to commands that can be understood by the NoSQL 

database.  For example, consider the following query to be executed over a buffer: 
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SELECT * FROM SensorId WHEN temperature >=0 and temperature <= 10 Using Pi For 3600. 

The Query Interpreter generates the following code to be passed to the Buffer Manager 

(described in Section 4.5.2) to execute:  

query.sensorBufferName.find(Filter.and(Filter.gte(“temperature”,0),Filter.lte(“temperature”,10

))) 

To do this task, the Query Interpreter generates an Abstract Syntax Tree (AST) and then 

traverses the tree to generate the code for commands that can be understood by other 

middleware components. Figure 12 shows the structure of the AST. Figure 13 shows the 

Abstract Syntax Tree created by the Query Interpreter to translate the query provided in 

the example. 

 

 

Figure 12 Abstract Syntax Tree Structure. 

 

Figure 13 AST Generated to translate a query. 
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 Expression Evaluator 

 This component evaluates a combination of arithmetic and logical expressions specified 

in the query filter (i.e., WHEN clause). The Expression Evaluator is used when a query has 

a filter in order to check whether a sensor data tuple satisfies a condition. Basically, the 

Data Transmitter (see section 4.5.1.3) passes the sensor data and the filter to the Expression 

Evaluator which replies with the comparison result. If a sensor data tuple satisfies the 

condition, the tuple is pushed to the client application. To understand how the Expression 

Evaluator works, let us consider the following example: 

A sensor S sends data represented by four data attributes that are referred to as a, b, c and 

d. A client application wants to execute a query with the following filter:  

((a=9) and (b=c) Or ( (c*(a+9)) > (9+a)) and (d<=c () 

When the Data Transmitter receives sensor data from the sensor, the Data Transmitter 

passes sensor data and the parse tree of the client application’s filter to the Expression 

Evaluator. The Expression Evaluator modifies the tree by substituting sensor data attribute 

names with their values in the message. After that, the Expression Evaluator traverses the 

tree to evaluate the session condition and then sends evaluation results to the Data 

Transmitter. The result of the evaluation is either true or false. Figure 14 shows the session 

condition parse tree that is built by the Query Interpreter.  

 

Figure 14 Session Condition Tree. 
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 Sensor Management and Representation  

This layer handles the connection between the middleware and the sensors. More 

specifically, the Stream Processor layer connects to sensors through this layer. Abstractly, 

the connection between the sensors and the middleware is managed by a cloud-based 

Publish-Subscribe Broker. In our design, both middleware components and the sensors are 

clients of the Publish-Subscribe Broker. These clients have to know how to communicate 

with the broker. For this reason, we split this layer into three different, yet related 

components: Sensors Manager, Sensor Agent, and Sensor Data Dispatcher.  

 Publish-Subscribe Pattern 

The Publish-Subscribe is messaging pattern that supports a bidirectional messaging 

approach in which data sources publish data on a topic and potential data consumers 

subscribe to that topic.  Typically, the data publishers and consumers do not directly 

communicate with each other.  The interaction is done through an intermediary system 

which is referred to as a “message broker.” In this work, a Publish-Subscribe 

communication pattern is used for managing the connection between sensors and the 

middleware.  Sensors publish data to a messaging broker using a Publish-Subscribe client, 

and the middleware receives sensor data from the messaging broker using a Publish-

Subscribe client. The rationale of using a Publish-Subscribe protocol as a communication 

protocol between the middleware and the sensors is that the Publish-Subscribe protocol is 

a lightweight communication protocol that is designed for devices with limited power, and 

computational resources [64].  

 

Figure 15 Publish Subscribe Protocol. 
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When a sender publishes a message to the broker, the sender tags the message with a topic 

that identifies the message.  A receiver sends a tag asking the broker to send any message 

that has that tag attached to it. The tag is called a message topic.  The receiver must know 

the topic that the sender uses for tagging their messages. Once the broker receives a 

message from the sender, the broker sends the message to all clients who requested 

messages tagged with the topic associated with the sender.  An example of Publish-

Subscribe connection is graphically depicted in Figure 15. In our middleware, the Sensor 

Manager generates a unique topic for each sensor. This topic is used by the middleware 

and Sensor Data Dispatcher (see section 4.4.2 and 4.4.4), which publishes sensor data on 

behalf of a sensor.    

 Sensor Manager 

The Sensor Manager manages sensor registration and connectivity.  For sensor registration, 

the sensor owner specifies the sensor’s data scheme template which describes the sensor’s 

data attributes and their data types. Generally, a sensor data scheme is more formally 

defined as a set of pairs where a pair is of the form (attribute: datatype). 

 For example, a sensor that measures temperature and humidity might have the following 

data scheme:  

{Temperature: double, Humidity: double}  

At the end of the sensor registration process, the Sensor Manager stores the sensor data 

scheme in a database alongside a unique topic identifier to be used by the Publish-

Subscribe clients. After that, the Sensor Manager generates a Sensor Data Dispatcher that 

can be deployed in the gateway that the sensor is associated with. Furthermore, the Sensor 

Manager manages the connection between a Sensor Data Dispatcher and the Stream 

Processor through a Sensor Agent. The Sensor Manager is responsible for creating the 

Sensor Agent and providing it with the required information to receive sensor data from 

the Publish-Subscribe Broker.   

 Sensor Agent 

The Sensor Agent delivers inbound sensor data streams to the Stream Processor. As 

previously mentioned, sensors publish their readings to the Publish-Subscribe Broker 
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which passes the readings to the middleware. In order to deliver a sensor data stream to the 

Stream Processor, the Sensor Manager creates a Sensor Agent which is a client of the 

Publish-Subscribe Broker and provides the Sensor Agent with the unique topic that is used 

by the sensor when publishing its data. The Sensor Agent subscribes to the Publish-

Subscribe Broker using the given sensor topic. The Sensor Agent supplies sensor data to 

the Historical Module and the Live Stream Session Module.  

 Sensor Data Dispatcher   

A Sensor Data Dispatcher is software generated by the Sensor Manager at the end of the 

sensor registration process. This software runs on a gateway associated with one or more 

sensors. A gateway is an embedded device with computing and networking capabilities 

where software can be executed to fetch the data from sensors as well as send the data to a 

remote server. Gateways are usually placed in close vicinity to the sensors. The connection 

between the sensors and the gateway can be wired or wireless. The Sensor Data Dispatcher 

software communicates with the Publish-Subscribe Broker through a Publish-Subscribe 

Client and knows how to structure the sensor’s data in the format that the service broker 

understands.  The Sensor Data Dispatcher knows the topic to be used for publishing sensor 

readings, and the sensor data scheme. It is important to note that we assume the sensor 

owner deploys the generated Sensor Data Dispatcher in the gateway to which the sensor is 

attached. In addition, we also assume that the sensor owner modifies the generated Sensor 

Data Dispatcher to have it read information from the physical sensor. The rationale for this 

decision is that there is no unified approach that can be followed to pull readings from a 

physical sensor. To illustrate, the connection between a sensor and a gateway can be wired 

or wireless. If the connection is wired, then the way the wiring is done is different from 

one sensor to another. The same problem applies to the wireless connections. Furthermore, 

there are many sensor vendors, and the way sensor connection is handled differs among 

vendors. For example, let us assume Sensori and Sensorj are both air quality sensors 

manufactured by vendors A and B. The connection for both sensors is a wired connection. 

Vendor A specifies that the connection requires three wires. The wires have to be connected 

to the gateway GPIO pins 0, 6 and 7 respectively. On the other hand, vendor B specifies 

that the connection requires two wires. The wires have to be connected to the gateway 
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GPIO pins 1and 5, respectively. Even though both sensors provide the same service, the 

way they are connected to the gateway is completely different. For this reason, the Sensor 

Manager generates a software, Sensor Data Dispatcher, that knows how to connect to the 

Publish-Subscribe Broker and assumes that the sensor owner can update the software to 

pull data from the physical sensor.  

 Stream Processor 

The Stream Processor is responsible for executing client application queries over sensor 

data streams. A sensor data may need to be analyzed quickly in order to send a notification 

which we call a Live Stream Session query. However, sensor data could be analyzed to 

detect long-term trends which we call a Historical Session query. A Stream Processor 

receives client applications queries through the Service Interface. It then takes action based 

on the request type. To distinguish a Live Stream query from a Historical query, the Service 

Interface provides different API functions for Live and Historical queries. In addition, the 

Stream Processor responds to sensing discovery queries in which queries are executed 

against the Sensor Database that has the knowledge of sensor locations, data scheme, and 

pricing policies. Once the Stream Processor executes a query, the result is sent to a client 

application through the Service Interface. The Stream Processor consists of four modules: 

Live Stream Session Module, Historical Session Module, Belling Module, and Sensing 

Discovery Module. 

 Live Stream Session Module   

The Live Stream Session Module handles consumer real-time data stream requests. We use 

the term Live Session to refer to a request in which a client application is interested in 

receiving a live stream of data from a sensor for a period of time. For example, a client 

application might be interested in receiving a sensor stream of data for the next 30 minutes. 

The Live Stream Session Module receives client requests from the service interface, 

identifies which sensor the consumer wants to query, collects sensor information, executes 

the query, and sends the query result to the consumer. To handle those tasks, the Live 

Stream Session Module has four main components: Request Handler, Query Registry, Data 

Transmitter, and Sensor Stream Buffer. 
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4.5.1.1 Request Handler 

The Request Handler is responsible for managing Live Stream Session Module 

components. It creates the Query Registry and Sensor Data Transmitter. It communicates 

with the Query Interpreter to parse client application requests and with the Sensor 

Representation & Management Layer to open a connection with a sensor.     

4.5.1.2 Query Registry 

Each sensor is associated with a Query Registry that is used to maintain information for 

each active query application that is using the sensor. A query registry tuple representing 

an active query application consists of information, extracted by the Query Interpreter, and 

includes the sensor identifier, the session filter, message receiving frequency (i.e. how 

frequently a client application should receive sensor data), pricing policy, attribute list (e.g., 

the part of the query right after the SELECT keyword) and query type. Once a consumer 

session is over, its tuple is removed from the Query Registry. 

4.5.1.3 Data Transmitter 

The Data Transmitter is responsible for delivering query results to consumers. 

Upon receiving sensor data from the Sensor Agent, The Data Transmitter uses 

the Query Registry to determine the consumers of the sensor data. For each 

consumer, the Data Transmitter determines if the consumer should receive the 

sensor data, based on the frequency of the requested pricing policy. The Data 

Transmitter ensures that the consumer receives a single sensor observation for 

every time frame specified in the pricing policy, e.g., every 20 seconds. If the 

consumer is allowed to receive the sensor data, the transmitter follows the 

consumer’s query execution strategy to deliver the message.  The Live Stream 

Session query execution strategies are discussed in Section 4.5.1.4.  

To reduce network traffic and communication load on the broker, only one 

Sensor Agent is created per sensor to serve all ongoing live sessions. This is 

graphically depicted in Figure 16. Upon receiving sensor data, the Sensor Agent 

passes the data to the Data Transmitter which takes care of the rest of the 
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delivery process. This Sensor Agent connection with the Publish-Subscribe 

Broker is terminated when there is no open live session with the sensor. It is 

important to note, that the Request Handler creates one Data Transmitter per 

sensor as shown in Figure 16. When the first live stream session request arrives 

at the Request Handler for a sensor, the Request Handler creates a Data 

Transmitter and uses the session duration of the first request as the Data 

Transmitter’s expiration time. Whenever a new live stream session request for 

the same sensor arrives, the Request Handler does not create another Data 

Transmitter. Instead, it updates the Data Transmitter expiration time if needed. 

 

Figure 16 Data Transmitter.  
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4.5.1.4 Query Execution Strategies 

A Query Execution Strategy is the way Data Transmitter executes client applications 

queries over inbound sensor data streams. The Query Execution Strategy is determined by 

the type of query which is determined by the query interpreter based on the query structure.   

Currently, the middleware supports four types of query execution strategies: a raw data 

query, filtered raw data query, Time-based Tumbling Window query, and instantaneous 

query. 

4.5.1.4.1 Raw Data Query  

A Raw Data Query is a query that does not specify a filter nor require any data processing 

operations (e.g., aggregation functions). A client application query that takes the following 

format is considered a raw data query: 

SELECT <attribute List> FROM <SensorIdentifier> USING <pricingPolicy> FOR <sessionDuration>; 

 

Figure 17 Raw Data Query Execution. 

As we can see the query does not have a filter (i.e., WHEN clause) and does not specify a 

window. The query is executed as follows during the session period.  Whenever, the Data 

Transmitter receives sensor data, if the client can receive the message based on the pricing 

policy frequency, the Data Transmitter pushes the sensor message to the client application.  

When the client application session duration expires, the Data Transmitter removes the 

client application query tuple for the sensor from the Query Registry. Stream Processor 

components interaction for a Raw Data Query Execution in Figure 17.   
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4.5.1.4.2 Filtered Raw Data Query  

A filtered raw data query is a query that specifies a filter but does not require data 

processing operations (e.g., aggregation functions). A client application query uses the 

WHEN clause is considered a filtered raw data query. 

SELECT <attributeList> 

FROM  <SensorIdentifier> 

WHEN <SessionFilter> 

USING <pricingPolicy> 

FOR <sessionDuration>    

 

Figure 18 Filtered Raw Data Query Execution. 

This query follows the same execution strategy as the raw data query in the sense that the 

Data Transmitter passes the sensor data to the client application without any further 

processing. The presence of a filter implies that the client application is only interested in 

receiving sensor data that satisfies the session filter, so the Data Transmitter evaluates the 

session filter and pushes the data to the client only if the result of condition evaluation is 

TRUE. The session filter evaluation is done by the Expression Evaluator. The Stream 

Processor components interaction for a Filtered Raw Data Query Execution is graphically 

depicted in Figure 18.  

4.5.1.4.3 Time-based Tumbling Window Query 

A Time-based Tumbling Window Query (TTW) is a query that requests the execution of 

aggregation functions over a subset of the sensor data stream. Time-based Tumbling 
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Window splits the stream into non-overlapping portions and executes the aggregation 

functions over stream portions in a successive manner [31]. The subset size is defined by 

the window size. This query re-executes itself every N seconds where N is specified in the 

WINDOW clause. A TTW query remains active for the number of seconds specified in the 

FOR clause. A client application query that takes the following format is considered a 

continuous query: 

SELECT avg(temp), min(hum), max(temp) 

FROM sensorId 

WHEN  temp > 25 

WINDOW 120 

USING policyId 

FOR 3600  

This request means the user U wants to open a session with a Sensor S, identified by 

sensorId which is known from the sensor discovery stage, for the next 3600 seconds using 

a pricing policy P, identified by policyId. The keyword  WINDOW  followed by an integer 

number indicates that the query type for this session is a Time-based Tumbling Window 

query (TTW) which requires that the Data Transmitter buffers sensor data for a certain 

period of time specified in the window clause.  For the example query, this is 120 seconds.  

The Data Transmitter executes the aggregation function and pushes the result to the client 

application. The Data Transmitter re-executes the query every N seconds (e.g., 120 in the 

example query), specified in window clause, by using a query worker that remains active 

for the number of seconds specified in FOR clause. A Time-based Tumbling Window 

query requires buffering the sensor data for a specified period of time and then executing 

aggregation functions, sending the result to the client, and then cleaning the buffer for 

another execution cycle. To handle a continuous query, the Data Transmitter uses two 

components: A Sensor Stream Buffer and a Query Worker.  

 Sensor Stream Buffer: Sensor data is held for a certain amount of time in the 

Sensor Stream Buffer. The Data Transmitter is a producer of data for the buffer 

while the Query Worker consumes the buffer. The Buffer Manager creates a single 
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buffer per sensor regardless of the number of client applications that use the buffer.  

Sensor stream buffer management is discussed in section 4.5.2.1. 

 Query Worker: This represents a user application of the data in Sensor Stream 

Buffer. Essentially, there is a query worker for each user application. The Query 

Worker is responsible for running the query every N seconds and pushing the query 

results to the client application. After each run, the Query Worker sleeps until the 

next query execution cycle. A Query Worker is a thread that executes time-based 

tumbling window query over the sensor stream buffer. The query worker uses two 

variables WindowlowerBound and WindowupperBound to slide over the sensor stream 

buffer. On each run, the query worker advances the window boundaries by the value 

of window size specified in the Query Registry tuple. Subsequently, the Query 

Worker sends the window boundaries and the Query Registry tuple to Buffer 

Manager to stream buffer data that falls within the window boundaries. Window 

boundaries specify a portion of the buffer to be used for as a query dataset. The 

Query Worker then pushes the query result to the client application and prepares 

for the next execution cycle by advancing the window’s upper and lower 

boundaries. Essentially, WindowlowerBound is set to WindowupperBound + 1, and 

WindowupperBound is incremented by the window size. 

 

Figure 19 :  Time-based Tumbling Window Query Execution. 
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The Stream Processor components interaction for a Time-based Tumbling Window query 

execution is graphically depicted in Figure 19. As with any other query, the query arrives 

at the Request Handler through the Service Interface. The Request Handler passes the 

query to the Query Interpreter which returns a tuple of query details to the Request Handler.  

It then adds the tuple to the Query Registry and starts the Data Transmitter if it has not 

already been started. After that, when the Data Transmitter finds that the query type is a 

Time-based Tumbling Window query, the Data Transmitter creates a Query Worker. The 

Query Worker expiration time is the same as the Query Registry tuple expiration time. 

After that, when the Data Transmitter receives sensor data, the Data Transmitter checks if 

there are active queries in the Query Registry that require buffering. If so, the Data 

Transmitter instructs that the Buffer Manager creates a Sensor Stream Buffer if the buffer 

has not already been created. The Data Transmitter then puts the sensor data in the Sensor 

Stream Buffer. Furthermore, the Query Worker periodically wakes up to execute the query 

based on the window clause. The query is executed over a subset of the Sensor Stream 

Buffer. The way a subset of the Sensor Stream Buffer is extracted for analysis by the Query 

Worker is discussed in section 4.5.2.1. 

 

4.5.1.4.4 Instantaneous Query 

Instantaneous queries give client applications the ability to analyze sensor data stream 

using multiple queries throughout the session. An Instantaneous query shares some 

similarities with a Time-based Tumbling Window query in the sense that it defines a 

window and might use aggregation functions. However, the window semantics for 

Instantaneous queries is quite different from Time-based Tumbling Window queries. 

Instantaneous queries use a lower-bounded landmark window which is a window that has 

its lower bound fixed, but its upper bound advances with time (see section 2.4.3.2).  Another 

major difference is that Instantaneous queries allow client applications to analyze the 

window subset using different queries (e.g., they can change the aggregation functions and 

the session filter) whereas client application cannot update a Time-based Tumbling 

Window once a session started. To better understand Instantaneous queries, let us consider 

a client application query that takes the following format: 
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SELECT temp, hum 

FROM sensorId 

WHEN temp > 25 

WINDOW unbounded 

USING policy ID 

FOR 3600 

This query is called a session opening query. It tells the middleware that user U wants to 

open a session with a Sensor S for N seconds using pricing policy P.  The keyword window 

followed by the keyword unbounded indicates that the client application requests a window 

of a type lower-bounded landmark window. 

An Instantaneous Query is a query that the client application submits during the session to 

be executed over the buffered data. This query is answered directly by the Request Handler. 

Throughout the session, the client application can send as many instantaneous queries as 

possible. Instantaneous queries have the following format:  

SELECT <attributeList|aggregates> FROM sesnsorId WHEN <Condition> 

  

Figure 20 Instantaneous Query Execution. 

Stream Processor components interaction for an Instantaneous query execution is 

graphically depicted in Figure 20. When the Request Handler recognizes that the user 

wants to run an Instantaneous query, it inserts the query details in the Query Registry. 

When the client application sends an Instantaneous Query, the Request Handler executes 
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the query over a subset of the Sensor Stream buffer and asks the service interface to push 

the results to the client application. When the Client Application Session is completed, the 

Data Transmitter deletes the client application query from the Query Registry and asks the 

Buffer Manager to clean the buffer if no other client application needs the sensor data that 

is stored in the buffer. 

 Buffer Manager 

The Buffer Manager is an in-memory database engine used to handle sensor stream 

buffer operations (e.g., create, insert, select, delete). This is used to avoid disk I/O 

operation overhead. Aggregation functions over buffered data are applied by the buffer 

manager. 

4.5.2.1 Sensor Stream Buffer Management  

Execution strategies for Time-based Tumbling Window query and Instantaneous query 

require buffering sensor data for a certain amount of time. This section describes the 

management of the Sensor Stream buffer that satisfies these characteristics: (1) The sensor 

data should be buffered in memory to avoid disk I/O overhead; (2) Sensor data should not 

be buffered unless there are ongoing client application sessions that require executing 

continuous or instantaneous query; (3) As memory storage is expensive due to the size 

limitation, a single buffer per sensor should be created, so that data redundancy is avoided. 

 However, using a single buffer per sensor poses other challenges. First, we assume that 

client applications receive sensor data at different frequencies. For example, let us assume 

that sensor S sends data every second. Client application Ci and Cj are interested in 

receiving sensor S’s data. However, Ci uses a pricing policy that states that the client must 

receive sensor data once every 10 seconds while Cj uses a pricing policy that states that the 

client must receive sensor data once every 30 seconds. If sensor data is stored in a single 

buffer, there must be a way to extract subsets of the sensor stream buffer that can be used 

to execute the queries from Ci and Cj. Second, sensor stream buffer tuples that no client 

application can use should be deleted. To illustrate, let us assume that client application Ci 

started its session with sensor S at 10.00 am, and the session ends at 11.00 am.  Let us then 

assume Cj started its session with the same sensor S at 10.30 am and the session ends at 

11.30 am. Both client applications ask to execute continuous queries which require 
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buffering sensor data. The sensor stream buffer should hold sensor data that arrived 

between 10.00 am, and 11.30 am in order to execute client applications queries. When the 

session of client Ci is completed, we know Cj will not benefit from the data stored in the 

buffer for the period between 10.00 am, and 10.29 am because the Cj session started at 

10.30 am, so the portion of the buffer that Cj is not using should be deleted. When the client 

Cj’s session is completed, the buffer can be deleted as no other client application is 

currently running a query that requires buffering sensors data. 

We manage the Sensor Stream Buffer in a way that addresses these challenges. First, in 

order to extract a subset of the Sensor Stream Buffer that can be used to execute client Ci
’s 

query, we take the following steps. Sensor data messages (e.g., sensor tuples) are tagged 

with a timestamp upon arrival at the Data Transmitter.  The Data Transmitter then checks 

the Query Registry to see if there is at least one client application query that requires 

buffering sensor data. If so, the sensor data tuple is placed in the buffer. We propose a 

multitenancy algorithm to extract client application subset from sensor buffer. The 

proposed algorithm is to be used when executing client application queries over sensor data 

buffers.   

4.5.2.2  Subset Extraction using Modulo Operator 

In this algorithm, we employ remainder after division operation (modulo operation) to 

extract a subset of the Sensor Stream Buffer that a client application query should be 

executed over. The timestamp of the first sensor message that arrives after a client 

application session has begun is essential in extracting the client application subset of the 

Sensor Stream Buffer. 

For each tuple in the sensor stream buffer, a tuple belongs to the client application subset 

if and only if the tuple satisfies the following condition: 

(tij – ti0) Mod (fq) = 0 

where  

tij represents the arrival timestamp of tuple ti  

ti0 is the timestamp of the first tuple that arrived after the start of the client session.  
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fq is the pricing policy message arrival frequency  

We formally define a client application buffer subset as follows:  

Csubset = {si | si  S  tij - ti0 mod fq = 0} 

 

If the client application uses a window operation over a stream, then a client application 

subset for a window that starts at Wt1 and ends at Wt2 is defined as follows: 

CWsubset = {si | si  S  tij - ti0 mod fq = 0  tij    wt1  tij  ≤ wt2 }   

Example:  

Sensor S sends messages every x seconds. The sensor data scheme is {temperature: 

double}. Clients C1, and C2 are interested in receiving sensor S’s data. C1 and C2 submitted 

the following queries: 

C1 query: Select avg(temperature) from Sensor S window 10 using P1 For 120 

C2 query: Select temperature from Sensor S window unbounded using P2 For 120 

 

C1’s session starts at 10.00.00 AM and ends at 10.02.00 AM. P1 is a pricing policy stating 

that C1 wants to get a message every 2 seconds. C1 wants the middleware to run a Time-

based Tumbling Window query with a window size 10 seconds which means buffer the 

sensor data for 10 seconds and then send the average of temperature to C1. On the other 

hand, C2’s session starts at 10.00.15 AM and ends at 10.03.15 AM. P2 is a pricing policy 

that states C2 wants to get a message every 4 seconds. C2 ‘s query states that the middleware 

buffers all sensor data for the next two minutes so C2 can execute instantaneous queries 

over the buffered data.  

Figure 21 shows a snapshot of the sensor stream buffer that shows how the middleware 

manages the sensor stream buffer. The middleware creates a single buffer. When the 

middleware executes a client application query, the middleware executes the query over a 

subset of the buffer. As shown in Figure 21, 5 tuples are extracted from the buffer to 

calculate the temperature average for the first window in C1 query. As for C2 client 



 

 

63 

 

application, whenever C2 submits an instantaneous query, the middleware extracts a subset 

to be used to answer the query. 

 

Figure 21 Client Application Buffer Subset Extraction  

After the execution of C1 ’s first window, the query worker asks the buffer manager to 

delete the first five tuples in the buffer. This is graphically depicted in Figure 21 with tuples 

highlighted by yellow color since no other client application can use the first five tuples 

other than C1 in the first window as C2’ session started fifteen seconds after C1’s session. 

In other words, Buffer elements that arrived before C2’s sessions had begun, should be 

deleted when C1 no longer needs them. 

4.5.2.3 Deleting unused buffer tuples 

Deleting buffer tuples that cannot be used by any client application is crucial for the 

middleware resource management because buffers are stored in the memory. As client 

applications share the buffer for a certain amount of time, there should be a mechanism for 

deleting buffer tuples that client applications can never use as some client application’s 

sessions end. Figure 22 shows how client applications share a sensor stream buffer. The 

grey arrow at the topmost right part of the figure shows the part of the buffer that the 

middleware deleted after the end of C1’s session. The deleted portion of the buffer 
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represents sensors data that arrived at the middleware between 10.00AM and 10.15. 

Although C1’s session lasts for an hour, buffer tuples for the first fifteen minutes are deleted 

because C2 joined the session at 10.15, so C2 uses the buffer tuples till 11.15AM. 

Furthermore, the blue arrow shows that no tuples would be deleted at the end of C3’s 

session because C3’s session started after C1, C2 and ended before C1 and C2 sessions ended. 

Moreover, the golden arrow points the portion of the buffer that is deleted at the end of C2’ 

session.  C2’s session ended at 11.15 AM, yet C4’s session started at 11.00 and ended at 

11.25, so the buffer content from 11.00 till 11.15 (e.g., C2’ end session time) cannot be 

deleted. However, as C4 is the only client application that has an active session with sensor 

S, and C4 cannot use buffer content that arrived before 11.00, that portion of the buffer is 

deleted at the end of C2’s session. Finally, at the end of C4’s session, the buffer is dropped 

as no other client application needs the buffer. The buffer is created again when a client 

application requests executing a query that requires buffering sensor data.  

In our design, buffer tuples are deleted by the buffer manager, yet the portion of the buffer 

to be deleted is specified by the Data Transmitter that requests Buffer Manager to delete 

the tuples. At the end of a client application session, the Data Transmitter asks the buffer 

manager to delete part of the buffer that is no longer needed by the client application and 

other client applications cannot use.  

It’s important to note that most likely there might be tuples in the buffer that client 

applications cannot use. This happens when client applications use pricing policy that has 

a frequency less than the sensor frequency. For example, the sensor sends data every 

second, yet client applications want to receive the data every 2 or 4 seconds as shown in 

Figure 21. In this case, some tuples won’t satisfy the subset extraction condition for any 

client application that does not use every second frequency. However, in our design, we 

opt to buffer all tuples without checking if they are used by active queries. The rationale 

for this decision is that the process of checking whether the arrived sensor message (e.g., 

tuple) satisfies the subset extraction condition of any client application has an active session 

before buffering the message is time and resource consuming if the number of client 

applications with active sessions is large. For this reason, we opt to buffer the all the 
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message even though no client application might use it as the message would just be 

buffered temporarily.   

 

Figure 22 Sensor Stream Buffer Management  

 Sensing Discovery Module   

Sensing Discovery provides client applications with information about sensor locations, 

types, pricing policies, and data scheme. The Sensing Discovery Module receives client 

application sensing discovery queries through the service interface and then uses the Query 

Interpreter to parse the query. The result of Query Interpreter is used to execute the queries 

over sensing discovery information model (see section 3.2.1). After that, the Sensing 

Discovery Module passes the query result to the client application through the Service 

Interface.     

 Historical Session Handler 

As mentioned previously, this module handles consumers’ requests for sensors readings in 

the past. This module consists of two components. A cloud based data repository, and 
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Sensor Agents. Every sensor has a Sensor Agent that catches every message the sensor 

sends to the cloud-based publish/subscribe broker. Once the message is received, it is 

stored in the data repository. Now, we assume that sensors messages are heterogeneous. 

To illustrate, one sensor might just sense the temperature, so that its message structure 

looks like this “{temp:50}”. Another sensor might sense two attributes (e.g., Temperature 

and humidity).  In this case message structure looks like this “{temp:50, hum:80}”. Despite 

message structure, all sensors messages are stored in the same repository. When messages 

are written to the repository, they are labeled with a sensor tag. Using this tag, the 

middleware relates messages to sensors. During the lookup process, the sensor tag is used 

to retrieve sensor messages over a defined period in the past. To apply a filter over the 

retrieved data, the historical Session Handler calls the analytical module which applies the 

filter and returns a subset of the retrieved data that passes the filter condition. 

4.5.4.1 Historical Session Query Strategy  

When a consumer initiates a historical session request, the Historical Session Module 

Handler handles it. The consumer specifies the sensor, the timeframe of the data and the 

filtering information as parameters through the client application or directly using the API 

from any custom application. The Historical module receives the consumer provided 

parameters and connects to the cloud data repository to retrieve the historical data. The 

Historical module sends the sensor tag and the timeframe parameters to the cloud data 

repository. Upon receiving the results from the repository, if the consumer did not specify 

a filter, the historical session handler which writes the results in a csv file and passes that 

file to the service interface to deliver it to the consumer. In case the consumer specified a 

filter, the Historical module looks up the sensor structure description, which the sensor 

owner enters at the registration process. Now, the Historical has the required knowledge to 

do filtering, as it knows the result set, the structure of the result set, and the filter condition. 

The Historical module goes over the result set row by row and evaluates the filter 

expression. Rows that pass the filter are sent back to the historical session handler which 

writes the results in a csv file and passes that file to the service interface to deliver it to the 

consumer. 
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 Billing Module 
 

The Billing Module is triggered at the end of a client application session, regardless if it is 

live or historical. The main task of this module is to calculate the client application session 

chargers based on the pricing policy used in the session. For live session charges, Billing 

Module has to know the pricing policy, session start time, session ends time and the user 

id. For a historical session, the Billing Module has to know the pricing policy and the 

number of processed sensor readings. After that, session charges are applied to the user 

account, and the sensor owner account. In case a client application requests a session that 

lasts for more than a week. The Billing module chargers the client application at the end of 

every week.  
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Chapter 5 

 

5 Implementation  

In this section, we describe the tools and technologies used to implement the Sensing as a 

Service middleware described in chapter 4.   

 Cloud Platform  

The Sensing as a Service Middleware described in chapter 4 is built on top of Amazon 

Web Services platform (AWS) [55]. Mainly, the middleware relies on four AWS services 

which are AWS IoT [48], AWS EC2 [59], AWS RDS [54], and AWS DynamoDB [52].  

The used AWS services are briefly described below. 

 AWS IoT: The middleware uses AWS IoT to connect to client deployed sensors. In 

the Sensor Representation & Management Layer, the middleware connects to 

sensors through AWS IoT MQTT Broker [56] that can to connect to billions of IoT 

devices. The middleware uses Eclipse Paho library [60] to create MQTT clients, 

which are called sensor agents in the architecture.       

 AWS EC2:  Amazon Elastic Compute Cloud (Amazon EC2) is a web service that 

provides secure, and scalable virtual machines. Our middleware prototype is hosted 

on an EC2 instance.   

 AWS DynamoDB is a fully managed NoSQL database offered by the AWS 

platform. The middleware uses DynamoDB as a Historical Data Repository. A copy 

of sensor data is sent to DynamoDB upon its arrival at the AWS IoT MQTT broker. 

When the middleware receives a client request for historical sensor data, the 

middleware queries the DynamoDB for the requested sensor data, then delivers 

DynamoDB query result to the requestor. 

 AWS RDS is Amazons Relational Database service. The middleware uses an AWS 

RDS instance as a host for the middleware information model described in 

chapter3.  
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 Middleware Prototype  

The middleware prototype was developed using Java Spring Boot Framework [65]. Spring 

Boot is a popular Java framework for developing enterprise web applications. The 

prototype has a graphical user interface that consists of two major components: user 

management and sensor management. The user management component is used for user 

registration and management. The sensor management component is used by sensor 

owners to add their sensors to the middleware. Besides, the middleware prototype provides 

a RESTful API interface through which client application can access sensor data. The 

Restful API is documented using Swagger API documentation Framework 72]. Figure 23 

depicts the mapping between the used technologies and the proposed architecture.  

   

 

Figure 23 Mapping Middleware Implementation to the proposed Architecture. 
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 Communication Protocols 

The middleware prototype uses two different communication protocols which are MQTT 

protocol to communicate with sensors, and the Server-Sent Events protocol to push sensor 

data to client applications.  

 MQTT  

MQTT stands for (Message Queue Telemetry Transport). MQTT is an Internet of Things 

communication protocol that is designed to be an extremely lightweight publish-subscribe 

messaging transport for lower powered devices [64]. The middleware prototype uses 

MQTT through Eclipse Paho Java Client [60].  

 Server-Sent Events  

The middleware uses Server-Sent Events (SSE) to push sensor data to client applications, 

upon sensor data arrival, in a form of server notification to a client application. The SSE is 

a unidirectional communication protocol that allows the server to push data to a client. SSE 

is built on top of HTTP [69].  

 Sensor Gateway  

The Sensor Gateway is a low powered computer that is used to connect sensors to the 

middleware. In our prototype, sensors are attached to a Raspberry Pi 2 [67] with Quad-

Core 900 MHz CPU and 1GB RAM. The Raspberry Pi uses an operating system called 

Raspbian, a Debian-based computer operating system. Raspbian is highly optimized for 

the Raspberry Pi line's low-performance ARM CPUs [66]. In our implementation, sensors 

are attached to the Raspberry Pi through the GPIO Pins [68].  

 Data Dispatcher  

Data Dispatcher is a Node JS application that runs on the Raspberry Pi. The Data 

Dispatcher reads sensor data through the Raspberry PI GPIO Pins and sends sensor data to 

the AWS MQTT Broker that delivers sensor data to the middleware. The Data Dispatcher 

uses the AWS IoT SDK to communicate with the AWS MQTT Broker.   
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 Query Parser 

The middleware Query Parser is built on top of an open source tool called JSqlParser [62]. 

JSqlParser translates SQL statements to a traversable hierarchy of Java classes.    

 In-Memory Database engine 

The middleware uses MongoDB as an In-Memory repository to store sensor data for 

window operation. MongoDB has a component called storage manager responsible for how 

data is stored. As our prototype aim is to perform stream processing, we used MongoDB 

In-Memory storage engine to speed up stream processing tasks. MongoDB In-Memory 

Storage engine is available on MongoDB Enterprise edition [63].  

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 



 

 

72 

 

Chapter 6 

6 Experimental Design and Results 

This chapter describes the performance of the Sensing as a Service middleware described 

in chapter 4. The goal of the evaluation is to observe the middleware’s performance when 

it’s flooded with client application requests for sensor data. Section 6.1 describes the 

experimental environment, section 6.2 describes the experimental parameters and 

scenarios, section 6.3 describes the evaluation metrics, and section 6.4 describes the 

experimental results of the proposed Sensing as a Service Middleware in terms of response 

time, memory consumption, and CPU utilization.  

 Experimental setup 

This section describes the experimental setup. 

 

Figure 24 Experimental Setup. 

 Cloud Deployment 

We deployed the proposed middleware in an AWS EC2 instance that is designed to support 

applications that perform heavy in-memory processing [59]. The AWS instance type used 

is r4.16xlarge. This instance has a 488 GB Memory and 32 physical CPUs that provide a 

total of 64 cores. The instance uses the Amazon Linux operating system. The instance 

version of the operating system is amzn-ami-hvm-2017.03.1.20170623-x86_64-gp2 (ami-

6df1e514). In addition, we deployed the middleware database in an AWS RDS (Amazon 
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Relational Database Service) instance [54]. The type of the RDS instance is 

db.m4.10xlarge. The middleware instance and the database instance are hosted in 

Amazon’s us-west-2a region (e.g., Oregon, US) [57]. 

 Sensor Setup 

The sensor used in the experiments is the DHT11 Humiture sensor [64] that senses 

temperature and humidity. The sensor is attached to a Raspberry Pi [67] computer where 

the Data Dispatcher service is deployed. The Data Dispatcher is an application written in 

NodeJS using the AWS IoT developer SDK [58]. The Data Dispatcher reads sensor 

observations and sends these observations to the AWS IoT Publish-Subscribe broker [56]. 

The broker is hosted in amazon’s us-west-2a region (e.g., Oregon, US) [57]. 

 Stress Testing Tool 

The Gatling Load Testing [61] is the load generation tool used in the experiments. Gatling 

is an open-source load and performance testing framework based on Scala. We used 

Gatling to generate virtual users that flood the middleware with client requests. Gatling 

testing scenarios are written in Scala.   

 Experimental Scenarios and Parameters 

We used three scenarios in which virtual client applications, simulated by the load testing 

framework, send requests to the middleware. The requests are queries in which client 

applications demand live sensor data for a future period of time. In each testing scenario, 

we ran eight experiments, so the total number of experiments is 24. In the first scenario, 

the users send Raw Data queries. In the second scenario, the users send Time-based 

Tumbling Window queries, and the middleware uses the single buffer algorithm to store 

sensor data for window operations. In the third scenario, the users send Time-based 

Tumbling Window queries and the middleware creates a buffer for each client query in 

order to store sensor data for window operations. The queries used in the scenarios use the 

following format:  

 First Scenario: In this scenario, clients request to receive raw sensor data for 

the next five minutes (e.g., 300 seconds) using a pricing policy which states that 
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a client should receive a message every second. The query for this scenario 

takes the following format.  

Select temp, hum from DHT11 Using 1 For 300; 

 Second and Third Scenarios: In these scenarios, client applications request that 

the middleware buffer sensor data for 30 seconds then executes the aggregation 

functions over the buffered data. The query for those scenarios takes the 

following format:  

Select avg(temp), avg(hum), max(temp), max(hum) from DHT11 Window 30 

Using 1 For 300;  

For each scenario, the experimental parameters include the length of query session (e.g., 

for how long each query runs), the number of client applications, buffer management 

algorithm (for second and third scenarios). We set the experimental parameters as follows: 

For all testing scenarios, the query session length was set to 5 minutes, the number of 

sensors was one and the number of client applications took the following values: 1, 10, 50, 

100, 250, 500, 750, and 1000.  

It’s important to note that we configured the load testing framework not to send the number 

of requests at once to avoid Amazon’s firewall request rejection. Instead, we set the load 

testing framework to send the request over a period of time (i.e., 180 seconds for 1000 

request). In addition, the reason we limit the number of client application requests to 1000 

is that the Tomcat server [71] that runs the middleware kept crashing whenever the number 

of the sent requests exceeded 1500 requests which represent the maximum number of 

requests that can be received by the Tomcat server. Although this is configurable, we do 

not have the permissions to do so. 

 Evaluation Metrics 

We used three metrics to evaluate the middleware performance in our experiments. Our 

evaluation metrics include Response Time, Memory Consumption, and CPU utilization. 

Per client request response time: The response time represents the period of time that a 

client application needs to wait to receive the submitted query results. For example, in the 

first scenario, a client application sends a query to request raw sensor data for the next 5 
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minutes using a pricing policy that has a frequency of one second, so the middleware needs 

to push the sensor data to the client application every second in the upcoming five minutes. 

The response time represents how long it took the client to receive the requested number 

of sensor messages. We measure the response time as the difference between the request 

issuing time (tstart) and the time when the client has received all query results (tend). 

 responseTime =  tend - tstart 

Memory consumption: Memory consumption represents the amount of memory used by 

the middleware during an experiment. For each experiment, we monitor memory 

consumption values every second for the duration of the experiment. The collected values 

are Total memory assigned by the Java Virtual Machine (JVM) to the middleware, the free 

and, the used portions of the assigned memory. In addition, for the second and third 

scenarios, we measure the size of the sensor buffer. 

CPU utilization: For each experiment, the CPU utilization represents the maximum CPU 

usage value for the duration of the experiment. Those values are collected using the AWS 

Cloud watch service [51] that monitors the AWS EC2 instance while it’s running.      

 Results  

In this section, we present the results of the middleware performance in the three testing 

scenarios. Moreover, we compare the middleware performance when using the single 

buffer vs multiple buffers. Section 6.4.1 presents the First Testing scenario results. 

Section 6.4.2 presents the second testing scenario results. Section 6.4.3 presents the third 

testing scenario results. In section 6.5, we discuss the evaluation results.  

 First Scenario 

In this section, we present the response time results for the first scenario in which client 

applications send Raw Data Queries to the middleware.  

6.4.1.1 Response Time 

Table 1 presents the response time for the first scenario’s experiments. The table shows 

that the number of client applications significantly affects the response time. For example, 

in the 1000 client application experiment, the delay reaches 108 seconds which means that 
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there was a client application that had to wait 6 minutes and 48 seconds to receive all query 

results. However, the minimum response time has been slightly affected by the number of 

client applications. Moreover, the table shows that the standarad deviation increases as the 

number of client application increases. The increase in standard deviation indicates the 

wide range of response time values which means that not all client applications experienced 

significant latency. The rationale for this behavior is attributed to the Data Transmitter 

design. Our design aims to reduce the network traffic by minimizing the number of 

connections between the middleware and the AWS publish-subscribe broker, so the Data 

Transmitter connects to the middleware on behalf of the client applications and whenever 

the Data Transmitter receivesa sensor data tuple, the Data Transmitter goes over a list of 

client application (Query Registry) to deliver the sensor tuple to each client on the list. It’s 

obvious that client applications at the end of the list experienced a significant delay in 

response time.  However, the results show that our Data Transmitter design provided 

consistent performance up until 500 client applications.  

Table 1 First Scenario Response Time.  

Number Of Client 

Applications 
Min Max Mean Std Deviation 

1 301198 ms 301198 ms 301198 ms 0 ms 

10 299706 ms 301015 ms 300317 ms 441 ms 

50 299735 ms 301291 ms 300731 ms 541 ms 

100 299697 ms 301054 ms 300132 ms 295 ms 

250 299537 ms 310821 ms 302857 ms 2983 ms 

500 298415 ms 306126 ms 301944 ms 2352 ms 

750 300528 ms 342542 ms 346194 ms 10292 ms 

1000 303655 ms 408517 ms 346194 ms 20922 ms 
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Figure 25 First Scenario Response Time Distribution For the duration of 1000 client 

application expriement. 

 

 

Figure 25 depicts the response time distribution for the 1000 client application experiment. 

The figure shows that response time was 359238 ms for 21.83 % of the requests. Moreover, 

the figure shows that around 55 % of the requests failed to receive complete query results 

by the time the Load Testing Framework closed the connections with the middleware. The 

load testing framework was configured to wait at most 420 seconds to receive all messages. 

When the request time passes 420 seconds (e.g., 7 Minutes), Gatling considered the request 

as a failed request and closed the connection with the middleware.    

 

6.4.1.2 Memory Consumption  

In this section, we present the memory consumption results for the first scenario 

experiments. Table 2 presents the values of the minimum, maximum, median, average and 

the standard deviation of the used memory for each experiment. The values are collected 

every second throughout an experiment. The table shows that the middleware memory 

consumption rate increases as the number of client application requests increase. 
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Table 2 Memory Usage for the first scenario experiments 

Number of Client 

Applications 
Min Max Median 

Average 
Std Deviation 

1 194 MB 863 MB 519 MB 522.65 MB 191.20 MB 

10 122 MB 1089 MB 384 MB 433 MB 273 MB 

50 79 MB 1202 MB 726 MB 704 MB 274 MB 

100 77 MB 1215 MB 679 MB 645 MB 289 MB 

250 103 MB 2969 MB  789 MB 983 MB 671 MB 

500 79 MB 10401 MB 3524 MB 4001 MB 2993 MB 

750 78 MB 10410 MB 2014 MB 3111 MB 2693 MB 

1000 89 MB 10523 MB 3496 MB 4149 MB 2954 MB 

 

In addition, Figure 26 shows the cumulative distribution function for the total allocated 

memory, free memory and the used memory for the duration of the 1000 client application 

request experiment. The figure shows that for 50% of the experiment time, the used 

memory was around 5000 MB.  

 

 

Figure 26 Cumulative Distribution Function for memory consumption during 1000 

client application request for the first scenario. 
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6.4.1.3 CPU Utilization 

In this section, we present the CPU usage for the first scenario experiments. Figure 27 

depicts the maximum CPU usage for each experiment. The figure shows that the CPU 

usage sharply increased as the number of client application goes over 250. 

 

Figure 27 First Scenario Experiments CPU usage.  

 Second Testing Scenario 

In this section, we present the response time results for the second testing scenario in which 

client applications submit Time-Based Tumbling Window Queries and the middleware 

uses a single buffer to store sensor data for window operations. 

6.4.2.1 Response Time 

Table 3 presents the values of minimum, maximum, mean, and the standard deviation of 

response times for each experiment. The values are represented in milliseconds. 

Table 3 shows that the response time in the second scenario’s experiments has not been 

affected by the number of client application as the response time will be  at most  increased 

by 3 seconds. This is because of  the reduced message delivery overhead. 
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Table 3 Second Scenario Response Time. 

Number Of Client 

Applications 
Min Max Mean Std Deviation 

1 301628 ms 301628 ms 301628 ms 0 ms 

10 300215 ms 301599 ms 300676 ms 499 ms 

50 300154 ms 301579 ms 300642 ms 252 ms 

100 300240 ms 301655 ms 300637 ms 276 ms 

250 300034 ms 302047 ms 300562 ms 347 ms 

500 300011 ms 302817 ms 300636 ms 395 ms 

750 300047 ms 302716 ms 300597 ms 356 ms 

1000 300405 ms 303465 ms 300634 ms 423 ms 

 

To illustrate, when executing Time-based Tumbling Window queries using the single 

buffer algorithm, the Data Transmitter does not deliver query results to client applications 

as this task is assigned to the query workers. Whenever the Data Transmitter receives a 

sensor data tuple, the Data Transmitter stores these tuples in the sensor buffer. The query 

workers concurrently read from the buffer using the buffer subset extraction algorithm and 

deliver the window result to client applications. The response time distribution for the 1000 

client application requests is graphically depicted in Figure 28.  

 

Figure 28 Response Time Distribution for the second Scenario with 1000 client 

Applications. 
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6.4.2.2 Memory Consumption  

In this section, we present the memory consumption results for the second scenario. Table 

4 presents the values of the minimum, maximum, median, average and the standard 

deviation of the middleware memory consumption during each experiment. The values are 

collected every second throughout each experiment. 

Table 4 Memory Usage for the second scenario experiments 

Number of Client 

Applications 
Min Max Median 

Average 
Std Deviation 

1 128 MB 1049 MB 489 MB 645 MB 349 MB 

10 85 MB 1052 MB 627 MB 632 MB 236 MB 

50 79 MB 1202 MB 726 MB 704 MB 274 MB 

100 77 MB 1215 MB 679 MB 645 MB 289 MB 

250 103 MB 2969 MB  789 MB 983 MB 671 MB 

500 79 MB 10401 MB 3524 MB 4001 MB 2993 MB 

750 78 MB 10410 MB 2014 MB 3111 MB 2693 MB 

1000 89 MB 10523 MB 3496 MB 4149 MB 2954 MB 

 

It’s obvious that the middleware uses more memory as the number of client applications 

increases. However, every time the garbage collection is triggered, it sharply decreases the 

amount of used memory. Figure 29 graphically depicts the memory usage for the duration 

of the 1000 client applications experiment. The figure shows how the garbage collection 

actively decreases the amount of used memory.  However, as the server has 488 GB RAM, 

the Java Virtual Machine can allocate more RAM to the application. Figure 30 shows the 

cumulative distribution function for the total allocated memory, free memory and the used 

memory for the duration of the 1000 client application request experiment. The figure 

shows that for 50% of the duration of the experiment, the used memory was around 4825 

MB.  
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Figure 29 Memory Consumption.  

 

Figure 30 CDF for the duration of the 1000 client application request in the Second 

Scenario.  

In addition, Table 5 shows that the amount of memory used for the sensor data buffer 

remained the same for all experiments because the middleware used a single buffer to store 

sensor data. 

Table 5 Buffer size information during 1000 client application experiment. 

Sensor Data Buffer 

Minimum  0 

Maximum 41.28 KB 

Average 28.83 KB 

Median 35.068KB 

Standard Deviation  13.94 KB 
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6.4.2.3 CPU Utilization  

In this section, we present the CPU utilization for the second scenario experiments. Figure 

3 depicts the maximum CPU usage for each experiment. The figure shows that the CPU 

usage increases as the number of client applications increase. However, the maximum 

value for the middleware CPU usage was just 35.77% during the 1000 client application 

experiment. In comparison to other scenarios, the reduced processing assigned to the Data 

Transmitter resulted in less CPU usage.   

 

Figure 31 CUP usage in second scenario experiments. 
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client applications submit Time-Based Tumbling Window Queries and the middleware 
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shows the there was a delay of 97 seconds in the 1000 client application requests 

experiment. Unlike the second testing in which the Data Transmitter stores the sensor data 

in a single buffer, in the third testing scenario, every client application has a buffer. 

Whenever the Data Transmitter receives a sensor data tuple, the Data Transmitter needs to 

go over the Query Registry and store the received tuple in each client application buffer. 

Consequently, client applications at the end of the list experience  an increased delay as the 

number of client application goes over 250. 

Table 6 Third Scenario Response Time. 

Number Of Client 

Applications 
Min Max Mean Std Deviation 

1 301602 ms 301602 ms 301602 ms 0 ms 

10 300733 ms 301599 ms 300833 ms 256 ms 

50 300087 ms 301562 ms 300659 ms 325 ms 

100 300774 ms 335173 ms 310771 ms 12752 ms 

250 298566 ms 302083 ms 300736 ms 423 ms 

500 300256 ms 311070 ms 305777 ms 2905 ms 

750 300157 ms 313238 ms 307641 ms 3244 ms 

1000 308039 ms 397429 ms 348350 ms 21383 ms 

 

The response time distribution for the 1000 client application experiment is graphically 

depicted in Figure 32. The figure shows that 3.76 % of client application waited 361226 

ms to receive the results of their submitted queries. Overall, the figure shows how the 

number of client applications affected the response time as the minimum response time in 

the experiment was 308486 ms (8 seconds).  
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Figure 32 Response Time distribution for the Third Scenario with 1000 client 

applications. 

6.4.3.2 Memory Consumption 

In this section, we present the memory consumption results for the third scenario. Table 7 

presents the values of the minimum, maximum, median, average and the standard deviation 

of the middleware memory consumption during each experiment. The values are collected 

on every second throughout each experiment. The table shows that the middleware memory 

consumption rate increases as the number of client application requests increase. 

 

 Figure 33 shows the cumulative distribution function for the total allocated memory, free 

memory and the used memory for the duration of the 1000 client application request 

experiment. In addition, the amount of memory used for the sensor data buffer increases 

with the number of client applications. Table 8 shows the size of 1000 client application 

buffer for the 1000 client application experiment. A comparison of Table 5 and Table 8  

shows how the single buffer approach significantly decreases the size of sensor data buffer.  

 

 



 

 

86 

 

Table 7 Memory Usage for the third scenario experiments. 

Number of Client 

Applications 
Min Max Median 

Average 
Std Deviation 

1 90 MB 828 MB 506 MB 503.71 MB 192.53 MB 

10 104 MB 1038 MB 605 MB  593.06MB 230.12 MB 

50 75 MB 1996 MB 759 MB 811.60 MB 506.10 MB 

100 89 MB 9233 MB 2106 MB 2409.51 MB 1577.58 MB 

250 79 MB 5887 MB  1893 MB 2060 MB 1460 MB 

500 78 MB 10385 MB 4370.5 MB 4612.19 MB 3110.69 MB 

750 89 MB 10512 MB 4545 MB 4730.48 MB 3165.57 MB 

1000 79 MB 10487 MB 5317 MB 5195 MB 2907 MB 

 

 

 

Figure 33 Cumulative Distribution Function for memory consumption during 1000 

client application request for the third scenario. 
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Table 8 Sensor Buffer Size throughout the 1000 client application experiment in the 

third scenario. 

Sensor Data Buffer 

Minimum  0 

Maximum 6063.88 KB 

Average 2885.56 KB 

Median 3476.14 KB 

Standard Deviation  1675.57 KB 

6.4.3.3 CPU utilization  

In this section, we present the CPU usage for the first scenario experiments. Figure 34 

depicts the maximum CPU usage for each experiment. The figure shows that the CPU 

usage increases as the number of client applications increase. The figure shows that the 

CPU usage is sharply increased as the number of client application goes over 250. 

 

Figure 34 Third Scenario Experiments CPU usage 

 Experimental Discussion   

We observe that the second testing scenario experiments provided the best results in terms 

of response time, memory consumption, and CPU usage as the number of client 

applications increases. In this section, we discuss the reasons for different middleware 

behavior in the three scenarios.   
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First, the second scenario experiments provided the lowest response time as the number of 

client applications increased. On the other hand, the response time for the first and third 

scenarios sharply increases when the number of client applications passes 250 client 

applications. This behavior is mostly attributed to the Data Transmitter design. In the 

second testing scenario, the Data Transmitter is assigned a simple task in which the Data 

Transmitter stores sensor messages in a single sensor buffer. On the contrary, more 

processing is assigned to the Data Transmitter in the first and third testing scenarios. In the 

first testing scenario, the Data Transmitter delivers each sensor message to all client 

applications using the Server-Sent Events protocol (SSE) [73] which increases response 

time for client applications at the end of the Query Registry as the Data Transmitter has to 

push the message to several SSE channels. In the third testing scenario, the Data 

Transmitter stores each sensor message in every client application buffer, yet the query 

result delivery is assigned to query workers. As the number of client applications increases, 

the Data Transmitter needs more time to store a sensor message in all client application 

buffers which results in a sharp increase in response time. To illustrate, a query worker is 

a thread that executes the aggregation functions at the end of each window (e.g., every 30 

seconds), delivers the window results to the client application over the SSE and then sleeps 

for the window size (30 seconds). When the Query Worker wakes in order to execute the 

query over a client application sensor buffer, the Query Worker checks if the buffer has the 

required number of tuples to execute the query. If the buffer does not have the required 

number of tuples, the query worker waits until the number of tuples reaches the required 

number tuples to execute the query. In our experiments, the buffer should have 30 tuples 

for every window execution. This is because client applications used a window of size 30 

seconds and a pricing policy which allows client applications to receive sensor data every 

second.  A delay in delivering sensor tuples to client application buffers results in longer 

waits for the buffer size to reach the required number of window tuples which increases 

the response time for client applications.   

Second, the three testing scenarios show a similar behavior for memory consumption. The 

used memory is increased with the number of client applications. Table 2, Table 4, and 

Table 7 show that middleware memory consumption was almost the same in the first and 

second scenarios while the third scenario experiments consumed slightly more memory. 
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Overall, the middleware, on average, used around 4500 MB during the 1000 client 

application experiment in the three scenarios. It’s important to note that memory allocation 

and management is controlled by the Java Virtual Machine (JVM) and the frequency of 

memory freeing depends on the size of available RAM. To illustrate, the EC2 instance that 

hosts the middleware has 488 GB RAM. Table 2, Table 4, and Table 7 show that the 

average of memory usage for 500 client application experiments in the three testing 

scenarios was around 4000 MB. We ran the experiment of 500 client applications on a 

computer that has 16 GB RAM, and the used memory never passed 1500 MB as shown in 

Figure 35. 

 

Figure 35 Memory Usage for 500 client application experiment on a machine that 

has 16 GB RAM. 

 

In addition, the second testing scenario shows that buffer management significantly 

decreases the memory used for sensor data buffer. Figure 36  shows the cumulative 

distribution function graph for the in-memory storage size used by the second and the third 

testing scenarios in the 1000 client application experiments. The figure shows that for the 

duration of the two experiments, 50% of the storage size measurements were around 33 

KB for the second testing scenario (e.g., single buffer scenario) whereas 50% of the storage 

size measurements was around 3500 KB for the third testing scenario (e.g., buffer per client 

scenario). 
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Finally, Figure 27, Figure 31, and Figure 34 show that the second testing scenario CPU 

usage was significantly lower than the first and the third testing scenarios in all experiments 

which might be a result of less processing tasks assigned to the Data Transmitter in the 

second testing scenario.  

 

Figure 36 cumulative distribution function graph for the in-memory storage size in 

the second and third testing scenarios.  
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Chapter 7 

 

7 Conclusion and Future Work   

 Conclusion  

Recent advancement in information technology has increased the number of devices that 

are connected to the Internet which has resulted in the emerging phenomenon known as 

the Internet of Things (IoT). However, the problem with IoT devices is that they are 

heterogeneous and owned by different organizations and individuals which makes IoT data 

sharing a real challenge. This thesis addresses the architectural design and implementation 

of sensing as a service middleware for the Internet of Things.  

In this thesis, we proposed and implemented a cloud-based sensing as a service middleware 

that enables sensor data sharing for IoT applications. Our middleware decouples IoT 

applications from the underlying IoT infrastructure. The middleware provides an 

abstraction layer which enables developers to access sensors, owned by other entities, over 

the Internet using a SQL-like query language that supports data filtering and aggregation 

operation over sensor data streams using continuous query semantic. Client applications 

are charged for the amount of sensor data they consume using a pay-as-you-go pricing 

model specified by sensor owners. In addition, we proposed multitenancy algorithms to 

reduce network traffic and cloud resource consumption. More specifically, we proposed 

buffer management techniques to reduce the amount of RAM used for sensor stream 

processing operations using algorithms proposed in Chapter 4. Furthermore, we proposed 

an algorithm to minimize the number of connections between the middleware and the 

publish-subscribe broker using the Data Transmitter algorithm in Chapter 4.  

 Future Work 

In this thesis, we built a proof-of-concept Sensing as a Service middleware for the Internet 

of Things. Although our implementation performed well in a real-world deployment, there 
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are several challenges that need to be addressed to improve the middleware performance 

and support more features.  

First, the experiments show that the Data Transmitter design requires more development 

to provide better response time. The experiments show that response time is increased is 

increased when the number of client applications, requesting the same sensor data, is 

increased. Our Data Transmitter design minimizes the number of connections between the 

middleware and the publish-subscribe Broker by not opening more than a single connection 

for each sensor despite the number of client applications requesting the sensor data. The 

experiments show that this design becomes unfeasible when the number of client 

applications goes over 250 clients. With that being said, it might be useful if the 

middleware creates multiple Data Transmitters per sensor and each Data Transmitter opens 

a single connection with the Publish-Subscribe broker and serves a maximum of 250 client 

applications. 

Second, subset extraction algorithm proposed in chapter 4 needs more development to deal 

with sensor messages delay. The algorithm assumes that sensor messages arrive in the 

exact frequency that sensor owner specifies in sensor registration. If a sensor message 

experienced a delay, the algorithm would not be able to recognize it. As a result, client 

application window subset might have tuples less than its number of required tuples. For 

instance, the algorithm might retrieve four tuples while the window subset is supposed to 

be five tuples. Although we did not encounter this problem during the experiments, it’s 

likely to happen if sensor messages experienced an unexpected delay.  

Third, despite the middleware prototype ability to connect to billions of sensors through 

the cloud-based Publish-Subscribe broker, the middleware prototype cannot serve a high 

number of client applications, and the middleware is susceptible to a single point of failure 

in case the middleware crashed because of a high number of client application requests. 

There are many solutions to this problem. For example, it’s possible to run to middleware 

in several servers and use load balancing techniques to keep the middleware instances 

running. Another solution might be to develop a distributed version of the middleware in 

which the tasks assigned to the middleware are assigned to a set of nodes that work together 

in a collaborative fashion. Medusa [46], Borealis [2], and Stream Cloud [22] are good 
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examples of such distributed design as they provide fallback mechanisms that help the 

middleware to cope with spikes in workload.                   

Fourth, the sensing discovery module requires more development to support sensing 

discovery queries described in chapter 3. Currently, our implementation does not provide 

full support to search the information model proposed in chapter 3. As a proof of concept, 

we limit our implementation to list out sensor deployed in a given city. Moreover, sensor 

search techniques proposed in CASSARAM [33] might be considered to improve sensor 

search operations when the number of sensors is large. Furthermore, the sensing discovery 

module should be deployed on a separate server to reduce the workload as Sensing 

discovery operations and stream processing operation are completely separate operations.       

Fifth, the stream processor, and query parser components require more development to 

support query operations such as Join and Merge. Currently, a client application submits a 

select statement to query a single sensor. As the Join and Merge operations are supported 

by the in-memory stream buffer repository (e.g., MongoDB), the middleware can support 

those operations with more development on the stream processor and query parser 

components. 

Sixth, the middleware needs to adopt fault tolerance techniques to deal with situations 

when sensor connectivity is lost. This can be done by either looking for another sensor in 

the same area to carry out the sensing operations. Another technique might be to use 

machine learning techniques to predict sensor readings based on the historical sensor data.   

Finally, cloud platforms have powerful stream analytics services that can be used by the 

stream processor component to support complex stream analytics operations. Services such 

as AWS Kinesis [53], and IBM Watson [74] have great potential to extend the middleware 

stream processing operations if they have APIs through which the stream processor can 

direct the sensor stream to the analytics service and instructs the analytics service to carry 

out the client application request. Then, when the analytical service finishes the work, the 

result can be delivered to the client application via the middleware stream processor 

component. We tried to use AWS kinesis through the stream processor component. 

However, we found that AWS kinesis does not have a programmable interface, so stream 

analytics operations have to be configured manually, and thus the service cannot be used 



 

 

94 

 

to carry out client applications stream analytics tasks. Nevertheless, when Amazon builds 

an API for Kinesis, the service can significantly improve the middleware analytics 

capabilities.            
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Appendices 

Appendix A: Response Time Distribution for First Scenario experiments  

 

 

Appendix A Figure 1: 1 client application. 

 

 

Appendix A Figure 2 10 client applications. 

 

Appendix A Figure 3: 50 client applications 
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Appendix A Figure 4: 100 client applications 

 

 

Appendix A Figure 5: 250 client applications 

 

Appendix A Figure 6: 500 client applications 
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Appendix A Figure 7: 750 client applications 
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Appendix B: Response Time Distribution for Second Scenarios experiments  

 

Appendix B Figure 1: 1 client application 

 

 

Appendix B Figure 2: 10 client applications 
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Appendix B Figure 3: 50 client applications 

 

Appendix B Figure 4: 100 client applications 

 

Appendix B Figure 5: 250 client applications 
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Appendix B Figure 6: 500 client applications 

 

Appendix B Figure 7: 750 client applications 

 



 

 

108 

 

Appendix C: Response Time Distribution for third Scenarios experiments  

 

Appendix C Figure 1: 1 client application 

 

Appendix C Figure 2: 10 client applications 

 

Appendix C Figure 3: 50 client applications 
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Appendix C Figure 4: 100 client applications 

 

Appendix C Figure 5: 250 client applications 

 

Appendix C Figure 6: 500 client applications 
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Appendix C Figure 7: 750 client applications 
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Appendix D: Middleware Prototype 

 

Appendix D Figure 1 : Middleware Home Page. 

 

 

Appendix D Figure 2: Sensing Discovery Module Interface. 
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Appendix D Figure 3: Live Stream Session. 

 

 

 

Appendix D Figure 4: Sensor Management Module. 
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Appendix D Figure 5: Sensor Details. 

 

 

Appendix D Figure 6: Billing Module. 
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Appendix D Figure 7: Observed Properties Page. 

 

 

 

 

Appendix D Figure 8: Middleware Health Dashboard. 
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Appendix D Figure 9: API Documentation. 

  



 

 

116 

 

Curriculum Vitae 

 

Name:   Muhamed Alarbi 

 

Post-secondary  University of Tripoli 

Education and  Tripoli, Libya 

Degrees:   2007-2011 B.Sc. 

The University of Western Ontario 

London, Ontario, Canada 

2015-2017 M.Sc. 

 

Honors and   University of Tripoli Graduate Scholarship  

Awards:   2014-2017 

 

 

Related Work  Teaching Assistant 

Experience   University of Tripoli 

2013-2014 

 

 

 

 

 

 

 

 


	Western University
	Scholarship@Western
	November 2017

	Middleware Architecture for Sensing as a Service
	Muhamed Alarbi
	Recommended Citation


	tmp.1509565541.pdf.GpoGo

