
Western University
Scholarship@Western

Electronic Thesis and Dissertation Repository

November 2017

Middleware Architecture for Sensing as a Service
Muhamed Alarbi
The University of Western Ontario

Supervisor
Prof. Hanan Lutfiyya
The University of Western Ontario

Graduate Program in Computer Science

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science

© Muhamed Alarbi 2017

Follow this and additional works at: https://ir.lib.uwo.ca/etd

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis
and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact tadam@uwo.ca.

Recommended Citation
Alarbi, Muhamed, "Middleware Architecture for Sensing as a Service" (2017). Electronic Thesis and Dissertation Repository. 4965.
https://ir.lib.uwo.ca/etd/4965

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fetd%2F4965&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F4965&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F4965&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/4965?utm_source=ir.lib.uwo.ca%2Fetd%2F4965&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tadam@uwo.ca

Abstract

The Internet of Things is a concept that envisions the world as a smart space in which

physical objects embedded with sensors, actuators, and network connectivity can

communicate and react to their surroundings. Recent advancements in information and

communication technologies make it possible to make the IoT vision a reality. However,

IoT devices and consumers of data from these IoT devices can be owned by different

entities which make IoT data sharing a real challenge. Sensing as a Service is a concept

that is influenced by the cloud computing term “Every Thing as a Service”. Sensing as a

Service enables sensor data sharing. Sensing as a Service middleware enables IoT

applications to access data generated by sensing devices owned by other entities. IoT

applications are charged by the Sensing as a Service middleware for the amount of sensor

data they use. This thesis addresses the architectural design of a cloud-based Sensing as

Service middleware. The middleware enables sensor owners to sell their sensor data

through the Internet. IoT applications can collect, and analyze sensors through the

middleware API. We propose multitenancy algorithms for the middleware resource

management. In addition, we propose a SQL-Like language that can be used by IoT

applications for sensing service discovery, and sensor stream analytics. The evaluation of

the middleware implementation shows the effectiveness of the algorithms.

Keywords

Sensing as a Service, Internet of Things, Stream Analytics, Continuous query, Cloud

Computing, IoT Platform.

ii

Acknowledgments

First and foremost, I would like to express my heartiest gratitude to the Almighty, most

gracious, and most merciful, for providing me with the ability and patience to accomplish

this thesis successfully.

I would like to express my sincere gratitude to my advisor Prof. Hanan Lutfiyya for her

constant guidance and supervision, for her patience, motivation, enthusiasm, and immense

knowledge. Her guidance helped me in all the time of research and writing of this thesis.

Without her support, this work could not have been completed.

I would also thank my parents, brothers, and sisters, albeit I understand any amount of

gratitude shown to them is woefully inadequate. No words are sufficient to describe my

late father contribution to my life. Thank you mother, brothers and sisters for your love,

understanding and their non-stop emotional support over the period of my postgraduate

study away from home. It would not have been possible for me to make this achievement

if was not for your support and motivation. Therefore, I am very grateful for the impact

they had on my progression.

Finally, I would like to thank my friends those of whom that I met locally at and around

my studying environment and those who are scattered around the world including my home

land Libya. I would like to thank all of them for being there for me when I needed their

opinions, consultations and even their quality leisure time.

iii

Dedication

To the memory of my late Father Alarbi Aboalaed Alarbi.

To my Mother Zahra Alarbi.

iv

Table of Contents
Abstract .. i

Acknowledgments... ii

Dedication .. iii

List of Tables ... ix

List of Figures ... x

List of Appendices ... xiii

Chapter 1 ... 1

1 Introduction ... 1

 Internet of Things .. 1

 Cloud Computing .. 2

 Sensing as a Service Model .. 3

 Problem Statement .. 3

 Thesis Focus.. 5

 Thesis Outline ... 6

Chapter 2 ... 7

2 Literature Review.. 7

 Background on Middleware Architecture ... 7

 Background on Sensor Network ... 8

 Sensing as a Service .. 8

 Sensing as a Service Model .. 9

 Sensing as a Service Features ... 10

 Sensing as a Service Applications .. 10

 Related Work .. 11

 Middleware Solutions ... 11

v

This section discusses research efforts in designing middleware solutions. 11

 Commercial IoT platforms (State of Art) ... 14

2.4.2.1 AWS IoT.. 14

2.4.2.2 IBM IoT Foundation .. 15

2.4.2.3 Azure IoT Suite ... 16

 Stream Processing ... 16

2.4.3.1 Stream Definition .. 16

2.4.3.2 Window Semantics .. 17

2.4.3.3 Stream Processing Engines .. 19

2.4.3.4 Database Limitation for Real-Time Stream Processing 20

2.4.3.5 Stream Processing Engine Requirements .. 21

2.4.3.6 Single-Site Stream Processing Engines ... 22

2.4.3.7 Distributed Stream Processing... 23

2.4.3.7.1 Parallel Query Execution .. 24

2.4.3.7.2 Elastic vs Static SPE Configuration .. 24

2.4.3.7.3 Multi-Site Stream Processing Engines .. 24

 Gap Analysis ... 26

Chapter 3 ... 29

3 Sensing as a Service Query Language .. 29

 Stream Query Language Requirements .. 29

 Query Language .. 30

 Information Model .. 30

 Sensing Discovery Query ... 33

3.2.2.1 General Knowledge Sensing Discovery .. 33

3.2.2.2 Discovery at the Sensor Level ... 36

vi

 Stream Analytics Query .. 38

Chapter 4 ... 43

4 Middleware Architecture .. 43

 Architecture overview ... 43

 Service Interface ... 44

 Service Interface Communication Protocols .. 44

 Request Format ... 45

 Query Interpreter ... 45

 Expression Evaluator .. 47

 Sensor Management and Representation .. 48

 Publish-Subscribe Pattern ... 48

 Sensor Manager .. 49

 Sensor Agent ... 49

 Sensor Data Dispatcher ... 50

 Stream Processor ... 51

 Live Stream Session Module .. 51

4.5.1.1 Request Handler .. 52

4.5.1.2 Query Registry ... 52

4.5.1.3 Data Transmitter .. 52

4.5.1.4 Query Execution Strategies ... 54

4.5.1.4.1 Raw Data Query .. 54

4.5.1.4.2 Filtered Raw Data Query... 55

4.5.1.4.3 Time-based Tumbling Window Query ... 55

4.5.1.4.4 Instantaneous Query .. 58

 Buffer Manager ... 60

vii

4.5.2.1 Sensor Stream Buffer Management ... 60

4.5.2.2 Subset Extraction using Modulo Operator .. 61

4.5.2.3 Deleting unused buffer tuples .. 63

 Sensing Discovery Module ... 65

 Historical Session Handler .. 65

4.5.4.1 Historical Session Query Strategy ... 66

 Billing Module .. 67

Chapter 5 ... 68

5 Implementation ... 68

 Cloud Platform .. 68

 Middleware Prototype ... 69

 Communication Protocols ... 70

 MQTT ... 70

 Server-Sent Events .. 70

 Sensor Gateway .. 70

 Data Dispatcher ... 70

 Query Parser.. 71

 In-Memory Database engine ... 71

Chapter 6 ... 72

6 Experimental Design and Results ... 72

 Experimental setup.. 72

 Cloud Deployment .. 72

 Sensor Setup.. 73

 Stress Testing Tool ... 73

 Experimental Scenarios and Parameters ... 73

viii

 Evaluation Metrics .. 74

 Results ... 75

 First Scenario .. 75

6.4.1.1 Response Time .. 75

6.4.1.2 Memory Consumption ... 77

6.4.1.3 CPU Utilization ... 79

 Second Testing Scenario ... 79

6.4.2.1 Response Time .. 79

6.4.2.2 Memory Consumption ... 81

6.4.2.3 CPU Utilization ... 83

 Third Testing Scenario .. 83

6.4.3.1 Response Time .. 83

6.4.3.2 Memory Consumption ... 85

6.4.3.3 CPU utilization .. 87

 Experimental Discussion .. 87

Chapter 7 ... 91

7 Conclusion and Future Work .. 91

 Conclusion .. 91

 Future Work .. 91

8 References ... 95

Appendices .. 102

Curriculum Vitae .. 116

ix

List of Tables

Table 1 First Scenario Response Time. .. 76

Table 2 Memory Usage for the first scenario experiments ... 78

Table 3 Second Scenario Response Time. .. 80

Table 4 Memory Usage for the second scenario experiments .. 81

Table 5 Buffer size information during 1000 client application experiment. 82

Table 6 Third Scenario Response Time. ... 84

Table 7 Memory Usage for the third scenario experiments. ... 86

Table 8 Sensor Buffer Size throughout the 1000 client application experiment in the third

scenario. .. 87

x

List of Figures

Figure 1 Growth of ‘things’ connected to the Internet [32]. ... 2

Figure 2 Sensing as service Model relation with IoT and Smart City [32]. 3

Figure 3 Sensing as a Service Model for IoT applications [32]. .. 9

Figure 4 AWS IoT [48] ... 14

Figure 5 IBM IoT Foundation [47]. .. 15

Figure 6 Azure IoT Suite Preconfigured IoT solution [50]. ... 16

Figure 7 Window Types [31] .. 19

Figure 8: General Concept of Stream Processing Engine [39] ... 20

Figure 9 Information Model.. 32

Figure 10 Middleware Architecture. ... 44

Figure 11 Push Protocol. ... 45

Figure 12 Abstract Syntax Tree Structure. ... 46

Figure 13 AST Generated to translate a query.. 46

Figure 14 Session Condition Tree... 47

Figure 15 Publish Subscribe Protocol. .. 48

Figure 16 Data Transmitter. .. 53

Figure 17 Raw Data Query Execution. ... 54

Figure 18 Filtered Raw Data Query Execution. .. 55

Figure 19 : Time-based Tumbling Window Query Execution. 57

xi

Figure 20 Instantaneous Query Execution. ... 59

Figure 21 Client Application Buffer Subset Extraction .. 63

Figure 22 Sensor Stream Buffer Management.. 65

Figure 23 Mapping Middleware Implementation to the proposed Architecture. 69

Figure 24 Experimental Setup. ... 72

Figure 25 First Scenario Response Time Distribution For the duration of 1000 client

application expriement. ... 77

Figure 26 Cumulative Distribution Function for memory consumption during 1000 client

application request for the first scenario. .. 78

Figure 27 First Scenario Experiments CPU usage. ... 79

Figure 28 Response Time Distribution for the second Scenario with 1000 client

Applications. ... 80

Figure 29 Memory Consumption. ... 82

Figure 30 CDF for the duration of the 1000 client application request in the Second

Scenario... 82

Figure 31 CUP usage in second scenario experiments. .. 83

Figure 32 Response Time distribution for the Third Scenario with 1000 client

applications. .. 85

Figure 33 Cumulative Distribution Function for memory consumption during 1000 client

application request for the third scenario. ... 86

Figure 34 Third Scenario Experiments CPU usage .. 87

xii

Figure 35 Memory Usage for 500 client application experiment on a machine that has 16

GB RAM. .. 89

Figure 36 cumulative distribution function graph for the in-memory storage size in the

second and third testing scenarios... 90

xiii

List of Appendices

Appendix A: Response Time Distribution for First Scenario experiments 102

Appendix B: Response Time Distribution for Second Scenarios experiments 105

Appendix C: Response Time Distribution for third Scenarios experiments................... 108

Appendix D: Middleware Prototype ... 111

Chapter 1

1 Introduction

In this chapter, we introduce three concepts that form the basis of the proposed work: the

Internet of Things, Cloud Computing, and Sensing as a Service Model. We then introduce

the problem statement, thesis focus, and thesis outline.

 Internet of Things

Over the last decade, IoT has been the focus of industry as well as academia because of its

great functional and financial potential. The term (IoT) was coined by Kevin Ashton in

1998. He said “The IoT has the potential to change the world, just as the Internet did.

Maybe even more so. [40]”. The goal of IoT is to convert the physical world into a smart

space in which physical objects, called things, are equipped with computing and

communication capabilities. Those things can connect with anything, anyone at any time,

any space via any network or service [32]. Harald et al. [41] defines IoT as “Things have

identities and virtual personalities operating in smart spaces using intelligent interfaces to

connect and communicate within social, environment, and user contexts”. The European

Union defines IoT as “IoT allows people and things to be connected Anytime, Anyplace,

with Anything and Anyone, ideally using Any network and Any service [30]”. Perera et

al. [34] defines IoT as “The Internet of Things (IoT) is a network of networks where,

typically, a massive number of objects, things, sensors and devices are connected through

communications and information infrastructure to provide value-added services”.

Essentially, IoT enables the vision in which there is a connectivity to almost everything.

IoT is a result of a major advancement in Information and Communication Technology.

More specifically, IoT emergence is attributed to the advancement of sensor networks.

Over the last 10 years, the number of deployed sensors has significantly increased because

of a substantial decrease in sensor production cost [43]. Figure 1 shows that, in 2008, the

number of things that were equipped with Internet connectivity surpassed the population

of earth [32]. Furthermore, the European Commission notes that the number of devices that

will be equipped with Internet connectivity is predicted to reach 50 to 100 billion devices

by 2020 [40].

2

Figure 1 Growth of ‘things’ connected to the Internet [32].

 Functionally, IoT opens doors to developing new applications in different domains such

as traffic management, waste management, healthcare, smart home to name but few. The

development of such applications is crucial to smart cities. Financially, the number of

applications that is built on top of sensors is expected to have a positive impact on the

economy. According to Cisco, IoT is predicted to create $14.4 trillion net profit value to

the private sector by 2022 [3]. The amount of data generated by IoT devices is projected to

be 44 zettabytes (e.g., 44 trillion gigabytes) by 2022. This immensely huge amount of data

is a valuable asset that can be used to derive knowledge and detect patterns about our

surroundings [3].

In summary, the Internet of Things is a concept that envisions the world as a smart space

in which billions of sensors and actuators are attached to physical objects to enable them

to communicate and interact with people and other things. The ability of things to

communicate and react is a necessity for smart city applications that address challenges in

modern cities such as traffic management, waste management, energy, education, smart

home and some other challenges [37]. It’s believed that coupling the IoT concept with

modern computing technologies such as Cloud Computing will facilitate the development

of IoT applications in many domains such as smart cities and agriculture to name a few

[32, 4].

 Cloud Computing

Cloud computing offers computing resources as services to its clients following the pay as

you go business model. Cloud computing services include infrastructure as a service,

platform as a service, and software as a service [32]. Recently, many organizations have

3

shifted to using cloud services to reduce maintenance and operational cost. There are a

number of commercial cloud platforms that provide computing resources to their clients

over the Internet such as Amazon Web Services, IBM Bluemix, Microsoft Azure, Cloud

Foundry, and Google Cloud Platform. The key advantage of cloud computing is that it

provides its clients with elastic, and scalable resources that fits client resource needs.

 Sensing as a Service Model

Sensing as a Service model [32, 37] is a new concept that is expected to be built on top of

an IoT infrastructure and cloud computing services. The basic idea behind Sensing as a

Service can be explained as follows: In Sensing as a Service, sensors are connected to a

middleware solution, possibly hosted on a cloud platform. Data consumers are provided

access to sensor data over the internet either for free or by paying a service fee to sensor

owners [32]. The Sensing as a Service model is seen as a component that resides in between

two IoT data sources and IoT applications in different domains such as smart cities,

agriculture, manufacturing, and health care etc. Empowered by cloud computing, sensing

as a service middleware solutions are expected to play a key role in delivering sensor data

to IoT applications.

Figure 2 Sensing as service Model relation with IoT and Smart City [32].

 Problem Statement

In the last several years, the number of sensors and actuators that have communication and

computation capabilities has increased significantly. Those sensors generate an immensely

huge amount of data that is considered meaningless unless it is used to derive knowledge

[42]. The advancement in information and communication technologies made it possible

to remotely access sensors over the Internet which opens the door to the development of

4

many IoT applications that can analyze, control and react to sensory data in real-time.

However, there are several challenges that must be addressed in order for IoT applications

to benefit from the enormous number of deployed sensors.

To start with, connecting IoT applications to sensors is a major problem for IoT for a

number reasons. First, sensors have limited power and computational resources, so they

cannot directly deal with a large number of client applications. Second, dealing with sensor

data entails processing a high volume of heterogeneous sensor data streams that cannot be

done at the sensor device level. In some cases, an IoT application is also deployed at a

resource constrained device. If the IoT application is interested in receiving processed data,

stream processing should be done through an intermediary system that receives a sensor

data stream, processes it and then delivers the processing result to the IoT application.

Third, sensors, typically, belong to different organizations and traditionally are

intentionally deployed to serve the sensor owner needs. Nevertheless, the ultimate goal is

to share sensor data with other entities that are interested in the data. Having said that, there

should be a way to attract sensor owners to participate in sensing operations.

 There is a need for an intermediary system, known as a middleware, which decouples IoT

applications from the underling physical infrastructure. This leads to a set of hardware

resource requirements that should be considered in the intermediary system design. First,

as the number of IoT devices continuously increases, the system must be able to connect

to billions of devices. In addition, because of the heterogeneous nature of sensor data

streams, the system must be generic to an extent that it is able to process any type of sensor

data and deliver processing results to client applications in a near real-time manner. The

system should contain an elastic, and scalable stream processing engine. Having said that,

the system must have enough resources to ingest and process a tremendous amount of data

and deal with spikes in client application requests.

Furthermore, there are other functional requirements that should be considered in the

middleware design. First, adding a sensor to the middleware should be an easy process that

even the average computer user can do, such that any sensor owner should be able to plug

the sensor to the middleware. Second, sensor search is a major problem for IoT

5

applications. As the number of sensors is in billions, there should a mechanism through

which IoT applications can find sensors that fits their needs.

Recent development in cloud computing has resulted in several IoT platforms such

Amazon IoT, Azure IoT, and IBM Bluemix IoT. Those platforms have the means to

support IoT resource management requirements. However, those platforms lack support

for sensor data sharing as only device owners can access sensor data. An IoT middleware

can be built on top of those resource-rich platforms to collect, process, and enable sensor

data sharing.

 Thesis Focus

This work focuses on the architectural design of a Sensing as a Service IoT middleware

that addresses some of the challenges discussed in the previous section. Although there has

been a considerable surge of research in many aspects of IoT middleware solutions, this

work relies on the emerging, resource-rich cloud based IoT platforms in the middleware

design. In our design, we focus on three main aspects of middleware design. First, using a

lightweight communication protocol between data sources and the middleware. Second,

using resource sharing techniques when processing sensor data streams in order to reduce

network traffic and cloud resource consumption. Finally, designing a programming

interface that decouples IoT application from the underlying cloud and sensor

infrastructure.

The primary contribution of this work is the design and implementation of Sensing as a

Service IoT middleware that is built on top of a cloud platform. The middleware provides

an easy, plug-and-play like approach to add sensors. In addition, the middleware provides

IoT applications with an SQL-Like language that can be used through an Application

Programming Interface (API) that abstracts the operations of sensing discovery, collecting

and processing sensors data. Furthermore, we propose multitenancy buffer management

algorithms that are used for memory management. Finally, our middleware adopts an

incentive mechanism to attract sensor owners to participate in sensing operations.

6

 Thesis Outline

The thesis is organized as follows: Chapter 2 describes the related and relevant work about

this research area. Chapter 3 describes our proposed SQL-Like language and the data

model used to describe sensors. Chapter 4 describes the proposed middleware architectural

design and our proposed algorithms for sharing cloud resources. Chapter 5 describes the

technologies used in the middleware implementation. Chapter 6 presents the results of

evaluation experiments. Chapter 7 discusses conclusions and future work.

7

Chapter 2

2 Literature Review

In this chapter, we discuss the background of the proposed work. The foundation of the

proposed work relies on Middleware Architecture, Sensor Networks, Sensing as a Service

Model, Cloud-based IoT platforms, and Stream Processing Engines. Sections 2.1, 2.2

and 2.3 present the foundation of the work. Section 2.4 discusses the related work.

Section 2.5 presents the gap analysis. Literature Review

 Background on Middleware Architecture

A middleware can be defined as a software that resides in between the application layer

and hardware layer. The middleware is designed to decouple applications from the

underlying hardware infrastructure [4,37, 43]. More specifically, the middleware is usually

used when there are applications that need to communicate with heterogeneous data

sources. In addition to data source heterogeneity, middleware design addresses other

problems such as security, interoperability, and dependability [24]. An important

characteristic of middleware systems is that they are generic so that they can support

applications in different domains. When using middleware, applications interact with the

underlying hardware through a programming interface that abstracts the underlying

infrastructure. Although this abstraction comes at an additional performance overhead as

every interaction needs to go through the middleware, the reusability of its programming

interface facilitates the development of new applications and makes it easier and faster.

The emergence of IoT requires a design of a middleware architecture that addresses

problems beyond hardware abstraction. For example, IoT applications require a

middleware that supports some other non-functional properties such as context-awareness

and semantic interoperability [43] to name a few. To illustrate, for IoT applications, the

context of a thing is not restricted to just its location. It has a much broader concept. For

example, sensor information such as its accuracy, and capabilities are essential for IoT

applications. As for semantic interoperability, it’s believed that IoT will connect billions

of devices. With that being said, semantic technologies are thought of as useful tools to

achieve this goal [43]. Corcho et al. [16] identify a set of challenges that can be addressed

8

by semantic technologies. Those challenges include sensor configuration, context

identification, complex sensor data querying, event detection and monitoring.

 Background on Sensor Network

The emergence of IoT is attributed to the advancement in sensor networks. Over the last

ten years, sensor production cost has significantly decreased. Furthermore, sensors become

smaller and smarter as they are equipped with computation and communication resources.

A sensor is defined as “as a device that detects or measures a physical phenomenon such

as humidity, temperature, etc. [43]”. A sensor network consists of several sensor nodes. A

sensor node is a platform that can be connected to a number of sensors. Sensor nodes have

the ability to sense, process sensor data, and communicate with each other through either

wired or wireless connection [5].

 Sensing as a Service

Sensing as a Service is a new concept that is expected to be built on top of IoT infrastructure

and cloud computing services. The basic idea behind sensing as a service is to provide

client applications access to sensors, managed and deployed by other entities, over the

Internet. In Sensing as a Service, the interaction between sensor owner and sensor

consumer is controlled by a pay-as-you-go model in which sensor consumers pay only for

what they use. This service model benefits both sensor owners and sensor consumers [32].

From the sensor owner point of view, the sensor owner would be able to receive money in

exchange for sensor data that is sold to consumers. On the other hand, sensor consumers

reduce their operational cost. To illustrate, sensor consumers don’t need to own physical

sensor resources, yet they can use them in their applications. Thus, Sensing as a Service

abstracts the underlying physical sensor network. This abstraction allows sensor consumers

to focus more on their business instead of spending time and efforts dealing with sensor

network infrastructure.

 A Sensing as a Service middleware system is envisioned to be built on top of a cloud-

based platform [4,37, 43]. The system consists of three main entities: Sensing devices, the

middleware, and sensor consumers (e.g., client applications). Those entities interact as

follows [37]: 1) a client application issues a sensing request through a programming

9

interface to a cloud-based sensing server; 2) the server sends the request to sensing devices

in an area of interest; 3) the server pushes sensing data received from sensing devices to

the client application that issued the request.

Figure 3 Sensing as a Service Model for IoT applications [32].

 Sensing as a Service Model

It’s envisioned that IoT applications would be provided access to the underlying IoT

infrastructure through multiple IoT middleware solutions that adopt the Sensing as a

Service concept. Charith et al. [32] proposed an IoT Sensing as a Service model that

comprises four conceptual layers. The model is graphically depicted in Figure 3. First, with

the sensors and sensor owners layer, sensor owners have full control over their sensors.

They decide whether to share sensor data or not. If a sensor owner is willing to share sensor

data, the owner specifies the terms of using the sensor. Furthermore, the owner selects the

middleware through which sensor data is presented to client applications. Second, the

sensor publisher layer consists of multiple cloud-based middleware solutions that manage

sensors connectivity, process sensor data, and deliver it to software systems. Third, the

extended service providers layer collects data from multiple sensor publishers on behalf of

the consumers. It can provide domain-specific data analytics and provide sensor consumers

the result. Finally, the sensor data consumers layer represents IoT applications.

10

 Sensing as a Service Features

Empowered by cloud technology, sensing as a service model provides many features to

client applications in different domains [4]:

1) Decentralized data acquisition process in which sensed data is collected from

everywhere.

2) Worldwide resource and data sharing in which cloud and sensing resources are

globally shared by different applications.

3) Remotely accessing and analyzing real-time data where sensed data can be

accessed and analyzed in real time from anywhere.

4) On-demand elastic resource provisioning and scaling where users can scale the

requested resources up and down based on the demand.

5) Pay-as-you-go pricing model in which client applications are just charged for the

amount of sensor data and cloud resources they use.

 Sensing as a Service Applications

Sensing as a Service middleware enables the development of IoT applications in a wide

range of domains. In this section, we present IoT applications that can be enabled by

Sensing as a Service Middleware.

1) Remote Tracking and Monitoring: Sensing as a Service middleware can be used to

remotely monitor objects of interest. Therefore, the middleware can be used to raise

alarms, and react to occurring actions in a real-time manner. Applications of remote

tracking and monitoring include [4]: environmental conditions, animal behaviors,

vehicles, patient-health conditions, building surveillance and security, vegetation

production quality and smart-grid operations just to name a few.

2) Real-Time Resource Management: Sensing as a Service Middleware can be used

for on-line resource control and optimization to ensure cost reduction and improve

system performance. In real-time resource management, the middleware can

support applications in various domains such as guided navigation, traffic control,

smart parking, waste management and water/irrigation management [4, 32].

11

3) Smart Troubleshooting: Sensing as a service middleware can be used to remotely

detect problems in IT systems in several domains that include: network systems,

Automotive, Aviation and Aerospace, smart grids, and oil and gas pipelines [4].

 Related Work

In this section, we present the related work. Section 2.4.1 describes middleware solutions,

section 2.4.2 describes IoT cloud platforms, and section 2.4.3 describes Stream processing.

 Middleware Solutions

This section discusses research efforts in designing middleware solutions.

Sense Cloud [26] is a sensing as a service middleware that is built on top of Amazon AWS

cloud platform. Sense Cloud is a general-purpose middleware that addresses a set of

middleware challenges such as dynamic resources provisioning, sensor virtualization, load

balancing, and multitenancy mechanisms. For each sensor owner, Sensor cloud creates a

virtual machine through which the sensor owners connect their sensors to the platform.

Furthermore, Sense Cloud provides sensor consumers with a web application, hosted on a

server instance, through which they can create virtual sensors to accesses sensors data that

is placed in a cloud database. Sense Cloud can dynamically provision new server instances

when the usage of the currently running instances surpasses a predefined threshold.

Moreover, when Sense Cloud receives a sensing request, the load balancer is triggered to

select the server instance that has the smallest outstanding request queue.

Linked Sensor middleware (LSM) [28] addresses sensor semantic interoperability. LSM

uses web semantic technologies to link raw sensor data to its semantics. This process is

known as Linked Stream Data. The goal of Linked Stream Data is to facilitate integrating

sensor data streams into existing web technologies. LSM transforms raw sensor data into

linked data represented using Resource Description Framework, known as RDF. RDF is

used to process metadata; it provides interoperability between applications that exchange

data on the web. RDF data store is queried using a query language called SPARQL. LSM

receives sensor data through a set of wrappers that provide access to physical sensors and

sensor data presented by other applications. The raw sensor data is then annotated with

12

Linked Stream Data Layout, which provides information such as observed property and

unit of measurement. Sensor data consumers use SPARQL to query live and historical

linked sensor data through an Ajax-based web application.

OpenIoT [38] is an open source, cloud-based IoT middleware that supports semantic

interoperability among IoT services. Open IoT relies on W3C Semantic Sensor Network

Ontology (SSN) to provide a unified metadata model for physical and virtual sensor

representations. SNN ontology describes sensor accuracy, capabilities, observations,

sensing method, performance, and infield deployment structure [15]. The OpenIoT

ontology is an extension of SNN ontology as it doesn’t restrict sensor definition to physical

sensing devices since a sensor can be a device, a program, or a combination of a device

and a program that can observe a phenomenon. This ontology enriches sensor description

terminologies with vocabularies that facilitate IoT and cloud integration. Furthermore,

OpenIoT relies on LSM [28] to transform raw sensor data into Linked Data. In addition to

stationary sensors, OpenIoT supports mobile crowd sensing in which sensing operations

are carried out by mobile devices.

Da Rocha et al. [19] proposed a semantic middleware for wireless sensor networks. The

work addresses the Structural Health Monitoring (SHM) application domain in which

semantic sensor networks can be used to enable using semantic information for monitoring

and handling the environment. The middleware was developed using a low-level language

called NesC, a C language extension that is used for embedded programming. The

middleware uses ontologies to describe sensor information such as sensor capabilities and

battery power level. Furthermore, the proposed ontologies define concepts related to other

services. The middleware intelligently shares semantic information among the deployed

sensors based on the semantic knowledge that controls the information sharing process. To

illustrate, when the measurements of two sensors complement each other (e.g., humidity

and corrosion), the sensors are allowed to share their observed values and combine their

values to do reasoning. When many sensors provide the same sensing service, a few of

them can be turned off to reduce energy consumption. The middleware uses a rule-based

reasoning engine that employs the proposed ontologies.

13

Zafeiropoulos et al. [45] proposed a middleware architectural design that addresses data

aggregation, management, and querying. The work focus on using semantic technologies

to extract knowledge from raw sensor data. To achieve this goal, the system should employ

a set of semantic technologies such as annotation frameworks, query languages and content

description languages. The proposed architecture consists of three layers. First, the Data

Layer in which raw sensor data is collected using polling-based or event-based

mechanisms. Second, the Processing Layer which saves raw sensor data into XML files.

Finally, the Semantic Layer maps sensor data stored in XML files to their semantic model.

After mapping sensors data to their semantic, they system can analyze the mapped data via

a semantic query language.

The Hydra project [20] proposed a domain-specific middleware that addresses applications

in home automation, health-care, and agriculture domains. Hydra connects several sensor

devices together to detect interesting events. Hydra is designed based on the Service

Oriented Architecture and Model Driven Architecture. The middleware architecture

consists of a network manager, discovery manager, event manager, storage manager, and

ontology manager. The middleware uses web services to encapsulate sensors. Sensor

semantic interoperability is enabled by the ontology that describes sensor devices. It is

important to note that Hydra does not annotate raw sensor data with its semantic.

Lee et al. [27] proposed a hybrid middleware which consists of a server-side middleware

and an in-network middleware. The server-side middleware is responsible for handling

context-aware stream processing, querying and event detection. The in-network

middleware is responsible for handling energy-efficient data transmission. Furthermore.

In-network middleware can intelligently identify false and in-complete data values. In this

work, more focus was given to in-network middleware. For this reason, the server-side

middleware has limited capabilities in terms of processing sensor data.

SWASN [23] is a server-side middleware. SWASN stands for Semantic Web Architecture

for Sensor Networks. SWASN employs semantic technologies to enhance sensor data

processing. SWASN can connect many sensor networks by taking advantage of ontologies

each network. The local ontology is used to map sensor data to a common RDF data model

that can be queried using SPARQL. The SWASN architecture comprises four layers:

14

sensor networks, data sources, ontology, semantic web processing and, the application

layer. SWASN is a domain-specific middleware with a focus on handling data for building

fire emergency applications.

 Commercial IoT platforms (State of Art)

This section describes industry solutions.

2.4.2.1 AWS IoT

AWS IoT [48] is the Amazon Web Services IoT platform. This platform was launched in

October 2015. AWS IoT provides an easy, and secure way to connect IoT devices to the

AWS platform and deliver device data streams to AWS Cloud services such as AWS S3,

AWS Dynamo DB, and AWS Kinesis to name a few. AWS IoT can connect to billions of

devices and deliver trillions of messages. AWS IoT consists of four components: Device

gateway, Rule-based Engine, Device Registry, and Message Broker. The device gateway

is an application that knows how to connect and send data to AWS IoT. The rule-based

engine allows developers to write rules that can be used to route data streams to other AWS

services such as AWS Lambda or Dynamo DB. The Registry keeps information about IoT

devices and their status. AWS IoT communicates with IoT devices through a messaging

broker that uses a lightweight communication protocol called MQTT. AWS IoT provides

developers an easy way to connect to IoT devices, and integrate them with other services

within AWS ecosystem.

Figure 4 AWS IoT [48]

15

2.4.2.2 IBM IoT Foundation

IBM IoT Foundation [47,49] is a cloud-based IoT platform for managing IoT devices. IBM

IoT Foundation is part of the IBM Bluemix Cloud platform. The IBM IoT Foundation

provides an easy way to manage and connect IoT devices. With the IBM IoT Foundation,

an IoT device can be a sensor, an actuator, or a gateway. A gateway is a device that is

connected to multiple sensors, or actuators, and it’s responsible for publishing sensor data

to the cloud. IBM IoT foundation provides developers with a powerful web interface to

add IoT devices, control access to IoT services, monitor usage, and perform device

management tasks such as firmware update. Furthermore, IBM IoT foundation delivers

IoT devices data to developer applications, other IBM Bluemix, storage services and IBM

Bluemix Analytics services through the industry-standard MQTT protocol.

Figure 5 IBM IoT Foundation [47].

Recently, IBM empowered its IoT service with another IoT platform called Watson IoT

[49]. Watson IoT relies on IBM IoT Foundation to manage IoT devices. Watson IoT adds

cognitive capabilities to IoT applications to produce new insights and intelligence.

16

2.4.2.3 Azure IoT Suite

Azure IoT Suite [50] is Microsoft’s cloud-based IoT platform. Azure IoT suite is an

enterprise-grade solution that enables developers to create and deploy a set of extensible

preconfigured solutions that address common IoT scenarios such as predictive

maintenance, remote monitoring, and connected factory. Those solutions are complete,

working, production-ready solutions which comprise simulated devices to produce data

streams, preconfigured Azure services such as Azure IoT Hub, Stream Analytics, Machine

learning, and storage services. Developers can download the source code of a

preconfigured solution, customize it, and extend it to meet their specific IoT application

requirements. Azure IoT Suite relies on Azure IoT Hub to manage IoT devices, and collect

IoT device streams. Figure 6 shows a preconfigured IoT solution for a remote monitoring

domain.

Figure 6 Azure IoT Suite Preconfigured IoT solution [50].

 Stream Processing

Stream processing is a necessity for IoT applications. In this section, we present the

foundation of stream processing and discuss research efforts in stream processing.

2.4.3.1 Stream Definition

Abstractly, a stream, S, is a set of relational tuples, possibly infinite. The tuples share the

same structure. Each tuple is characterized by a set of attribute names {A0,…, An-1} [31].

The tuples may be generated by one or more data sources. A timestamp is associated with

each tuple. This timestamp can be regarded as a supplementary tuple attribute that is

17

denoted by At. Another way to define a stream is as a big bag of pair elements <r,t> where

r is a tuple characterized by a set of attribute names and t is a timestamp associated with

the tuple [8]. Regardless of the formalism, a tuple has a unique timestamp, but there can

be multiple tuples associated with a timestamp. The rest of this section assumes the use of

a supplementary tuple attribute.

At a given timestamp ti, the current stream content is defined as follows [31]:

S(ti) = {s S: s.At ≤ ti}

Streams satisfy the following properties:

 Existence: s S, s.At NULL

 Monotonicity: If ti < tj then S(ti) S(tj).

2.4.3.2 Window Semantics

A stream may be very large or possibly infinite. This makes it difficult to execute queries

especially those with aggregation operators (e.g., average, maximum) and stateful

operators (e.g., intersection and join which use multiple streams). These operators cannot

generate output before the entire input is read. However, with streams, it is not always

possible to know when or if a stream ends. To address this problem, queries can specify a

window of time that represents a subset of a stream [31, 39,1]. A window is a mechanism

to specify, dynamically, moving boundaries over stream tuples in order to extract a finite,

yet always changing, set of tuples to be used as an input for blocking and stateful operators

such as aggregations, join, and merge operators [31].

Window attributes are used to specify the upper bound, lower bound, extent, and mode of

adjustment. These are described below.

 Upper bound is a value that specifies the most recent tuple that should be included

in the window subset.

 Lower bound is a value that specifies the oldest tuple that that should be included

in the window subset.

 Extent is a value that specifies the size of the window that could be a number of

elements or a time interval.

18

 Mode of adjustment specifies the way in which the window changes as time

advances.

Representative examples of windows are briefly described in the rest of this section.

A time-based window is defined by a time interval. A time-based window can be

represented by a start time (ts) and an end time (te). These represent the lower and upper

bounds of the window as well as the extent. For a stream, S, a query that uses time-based

windows would apply query operators to the set represented by the following [8]:

S(te)-S(ts)

Possible adjustment modes include the following [31]:

 Landmark: One of the window boundaries is kept equal to a specific time, while

the other window boundary incrementally changes as time advances. This is

referred to as a landmark window. A lower-bounded landmark window is where

the lower bound stays fixed at a specific time while the upper bound advances with

time. An upper-bounded landmark window is where the upper bound is set to a

fixed value while the lower bound advances with time.

 Sliding Window: Both the start and end times may change. Boundaries proceed

based on a predefined progression step and a fixed temporal size . is always

set to be less than . As a result, an overlap between successive windows is always

observed (see Figure 7 c). An overlap is prevented by the condition ≥ (Figure

7 d).

A count-based window is defined by a timestamp, t, and N which represents the N most

recent tuples with a timestamp less than or equal to t. This is more formally defined by

the following [31]:

 {s S(t) : t1 T (t1 ≤ t | { s S(t) : t1 ≤ s.At ≤ t } | ≤ N)

 t2 T (t2< t1 | { s S(t) : t2 ≤ s.At ≤ t }| > N)}

The upper bound is defined by the timestamp, t and N is the extent. One possible

adjustment mode varies t.

19

With partitioned windows, the stream tuples are first partitioned into different sub streams

based on the values of specified grouping attributes. At each time, t, the N most recent

tuples are taken from the sub streams.

Figure 7 Window Types [31]

2.4.3.3 Stream Processing Engines

Stream processing Engine (SPE) is a term this is used to refer to an application that is

designed to process a massive amount of streaming data on the fly in a near real-time

manner [39]. An SPE is an intermediary between data sources and client applications. SPEs

execute client application queries over live, possibly unbounded, data streams presented

by data sources. Unlike database systems that execute queries over stored data, SPEs

analyze stream tuples as they move through the system due to the high volume of input

messages that discourages the use of persistent storage [22]. Abstractly, SPEs are similar

to DBMSs in the sense that both apply relational algebra operations (e.g., select, project,

aggregate, filter, etc.) over a dataset. However, their implementation of these operations is

substantially different [8]. The operations need to consider the unbounded nature of data

streams [31,8]. Figure 8 shows the general concept of a stream processing engine.

20

Figure 8: General Concept of Stream Processing Engine [39]

2.4.3.4 Database Limitation for Real-Time Stream Processing

SPEs are designed to overcome DBMSs limitations in supporting real-time stream-based

applications. DBMSs follow the store then process programming paradigm. A traditional

database model is inappropriate for real-time stream-based applications [1,25, 39]. This

section briefly describes the limitation of DBMSs in supporting real-time stream-based

applications.

First, in traditional database systems, a query processor reads data from a disk. In a

traditional database system store, input tuples are stored and indexed before they are made

available for query activity. Disk storage introduces latency which makes it difficult for

applications to receive the data in real-time or even in near real-time.

 Second, the query processor in SPEs needs to consider that the data arrival rate can be

extremely high and thus a query processing for stream applications should employ

scheduling and load shading techniques to control CPU and memory usage by active

queries [12].

Third, typically queries from stream-based applications are long running queries [8,31].

Blocking operators such as aggregation operators (e.g., avg, max) need special treatment

by running them over a portion of the stream which is referred to as a window. Blocking

operators return their results at the end of each window i.e., essentially all the input has to

be read before output can be produced. Similarly, stateful operators like join and group

also should work on stream subsets. A system that manages streaming data must consider

reducing operator state accumulated by continuous queries.

21

2.4.3.5 Stream Processing Engine Requirements

 A stream processing engine must provide the following features [39]:

1. Keep the Data Moving: A query may consist of one or more operators. To provide

low latency, an SPE must be able to process stream messages without using storage

operations throughout the processing path of query operators that may include blocking

and stateful operators. However, an SPE should have a special treatment for blocking

and stateful operators. In addition, to reducing latency, SPEs should adopt an active

processing model (e.g., non-polling) in which query output is constantly delivered to

client applications rather than waiting for client applications to make requests to poll

results because polling increases the system overhead and the processing delay.

2. Query using SQL on Streams (StreamSQL): There should be a mechanism through

which client applications can express operations to be executed over data streams. An

SPE should support a high-level query language such as SQL that supports stream

operations [8, 18, 7, 10]. The language operators should be extensible to allow

developers to define new streaming functionalities [1,10].

3. Handle Stream Imperfections (Delayed, Missing and Out-of-Order Data): Unlike

traditional database systems, stream data is queried before it’s presented. For this

reason, an SPE must provide a mechanism to provide flexibility to deal with stream

imperfection situations that include delayed, missing, and out-of-order data [2].

4. Integrate Stored and Streaming Data: As some streaming applications demand

access to stored data in order to compare past and present stream data, an SPE should

be able to execute queries over stream data, stored data, or a combination of the both.

The system should provide a uniform query language that can be used when querying

either data source.

5. Guarantee Data Safety and Availability: An SPE must always be up and running

despite the workload spikes that might happen at run-time. In case of system failure, a

backup hardware device should take over tasks assigned to failed devices in order to

keep going.

6. Partition and Scale Applications Automatically: An SPE should be able to support

parallel query execution in which query processing is distributed among a set of

22

machines in a cluster. In addition, the system should load balance computation across

its nodes.

7. Process and Respond Instantaneously: In order to provide low latency when

processing high-volume input streams, an SPE should be able to process hundreds of

thousands of messages per second. To do so, the SPE should have a highly-optimized,

minimal-overhead execution engine.

2.4.3.6 Single-Site Stream Processing Engines

Aurora [1] is a stream processing engine (SPE) that was a result of collaborative research

efforts of students and professors at MIT, Brandies, and Brown University. Aurora’s main

task is to perform data analytics on inbound stream messages in a way specified by an

application administrator. Aurora follows a dataflow-style paradigm in which operations

on a stream are represented by boxes, and arrows indicate the order in which operations

are applied. Basically, an Aurora query is an acyclic directed graph where the nodes

represent operators, and the edges represent data flow. Aurora provides a graphical user

interface to specify the query. In addition to online stream processing, Aurora supports

historical analytics in which Aurora stores stream tuples for a certain amount of time and

uses this storage to answer ad-hoc queries. Aurora translates the query graph into a data

structure that is saved into a database. At run-time, Aurora loads the query graph from the

database to be used to direct the input stream to the relevant operators. In addition to on

the fly query execution, Aurora addresses stream processing challenges such as query

optimization [1], load shedding (i.e., load reduction) [1], and scheduling [12].

STREAM [7] is a single site stream processing engine developed at Stanford. STREAM

stands for STanford StREam Data Manager. Stream was designed to run queries over a

combination of data streams and static relations (e.g., tables). STREAM was developed

with the intention to minimize memory allocation. Furthermore, STREAM supports query

plan modification runtime [6, 7]. In addition, due to resource limitations, STREAM

provides a way to compute approximate query results. Furthermore, STREAM clients use

a SQL-Like query language to define continuous queries over incoming data stream and

static tables. The STREAM query language is known as CQL which stands for Continuous

Query Language [8]. As CQL uses SQL-99 standards, it supports relational operators such

23

as select, project, filter, duplicate elimination and aggregation functions. In addition, CQL

provides window operators that partition streams into small chunks.

COUGAR [10] is a stream processing engine developed at Cornell. COUGAR is a

prototype sensor database system that performs long running queries over unbounded

streams and static relations. COUGAR was developed as an extension for an object-

relational database called PREDATOR. COUGAR defines a sensor database system as a

mix of stored relations that consists of sensor deployment information and sensor streams

which are represented as a time series. A continuous query over sensor streams runs for a

user defined time interval and defines a persistent view that is updated with the query

results during the query time interval. The COUGAR sensor database system model

consists of the Remote Sensor Model, Stream Model, Query Language, and Query

processing. Although COUGAR supports long running queries, it does not support window

operations over stream data.

Gigascope [18] is a Data Stream Management System that runs queries over a continuous

stream of data emitted by network card interfaces (NICs). Gigascope serves as an

intermediary between data sources (e.g., NICs) and network monitoring applications. It

receives queries from user applications and executes the queries over the incoming data

streams from network card interfaces. Gigascope does not run queries over stored data, so

all Gigascope inputs and output are streams. Gigascope can analyze high-speed streams

presented by communication networks without using expensive processors. Furthermore,

Gigascope provides its clients with a query interface that uses a SQL-Like language called

GSQL.

2.4.3.7 Distributed Stream Processing

Stream processing in a distributed environment offers several advantages [46]. To begin

with, it enables stream processing to be scaled over many nodes. It increases the availability

of Stream Processing Engines as the processing nodes monitor each other and take actions

to keep the system running in case of node failure. Moreover, it makes it easier for nodes

to cope with sharp increases in load by having nodes cooperate in sharing the load until

each node has the required resources to handle its assigned tasks. In this section, we first

24

present concepts related to stream processing in a distributed environment. We then

present a number of multi-site stream processing engines.

2.4.3.7.1 Parallel Query Execution

The parallel query execution paradigm states that queries are distributed among multiple

nodes that collaboratively interact to produce output. Parallel query execution can be

classified into two categories [22]. First, inter-query parallelism in which different queries

are assigned to different nodes. Second, inter-operator parallelism in which query operators

are distributed across different nodes.

Despite which parallelism technique an SPE follows, query parallelization implementation

should satisfy two transparency conditions: syntactic transparency and semantic

transparency [22]. Syntactic transparency states that users should be unaware of the query

parallelization process. Semantic transparency states that using a given input data stream,

the result of a parallel query must be the same as its centralized counterpart.

2.4.3.7.2 Elastic vs Static SPE Configuration

Elastic and static SPE configurations are terms used to describe SPE resource management

mechanisms in distributed environments [22]. In static configurations, an SPE employs a

fixed number of nodes for handling query processing. In contrast, in an Elastic SPE

configuration, the number of running nodes dynamically changes at run-time in response

to the current workload. Although static SPEs have the means to support parallel query

execution, their resource management poses two major disadvantages [22]: resource under-

provisioning, and resource over-provisioning. Under-provisioning occurs when the number

of provisioned nodes is not sufficient to cope with the workload. Over-provisioning occurs

when the size of workload can be handled with a fewer number of nodes which results in

a waste of resources. In contrast, the elastic configuration makes an SPE able to adjust its

amount of allocated resources to the level that serves the current workload.

2.4.3.7.3 Multi-Site Stream Processing Engines

Medusa [46] is a distributed version of Aurora [1]. Medusa extends Aurora’s functionality

by distributing queries across multiple single site stream processing engines (e.g., nodes)

that cooperate at runtime to process stream tuples and deliver processing results to client

25

applications [46]. Medusa nodes are called participants who might belong to a single

organization or be part of a coupled federation of nodes in which nodes are controlled by

independent owners. Medusa adopts a financial incentive model in which nodes receive

payments for rules they play in query processing and load sharing [9]. The Medusa

incentive model is called the bounded-price mechanism in which inter-node load sharing

agreement is negotiated before participating in the runtime environment. At run-time, a

node can only move the load to another node if and only if there is a contract between them.

Moreover, Medusa brings another significant change to the way Aurora works. Instead of

using Aurora as a stand-alone system, Medusa allows client applications to communicate

with the system through an API that wraps the system functions. The API facilitates the

integration of Aurora with client applications.

Borealis [2] follows the work-flow paradigm that Aurora [1] implements, so a Borealis

query is a directed graph of boxes, arcs, and arrows that collectively describes the order of

stream processing steps. Borealis adopts the Medusa [46] query distribution mechanism.

Moreover, Borealis extends the Aurora query model by allowing client applications to

change or update operators at run-time. Furthermore, Borealis proposes a data model that

allows dynamic query revision. Dynamic query revision allows a stream processing engine

to correct mistakes in previously generated output messages. Wrong output values are

generated as a result of incorrect input values generated by data sources.

Stream Cloud [22] is a distributed stream processing engine that processes continuous

queries by distributing those queries among multiple nodes. Stream Cloud adopts a

parallelization mechanism in which queries are split into small chunks, called subqueries,

which are assigned to a set of independent Stream Cloud instances, e.g., nodes. Stream

Cloud query distribution approach aims to minimize distribution overhead. Furthermore,

Stream Cloud is an elastic and scalable SPE that is capable of handling large volumes of

stream data. Stream Cloud was built on top of a Borealis [2], so Stream Cloud inherits

Borealis query model in which a client application query is represented as an acyclic

directed graph where nodes represent operators and edges represent data workflow.

However, Stream cloud approaches for parallel query execution, scalability, and elasticity

are substantially different from Borealis. This is due to the different query parallelization

techniques used in the two systems. While Borealis distributes query operators among

26

multiple nodes, Stream Cloud supports three different query parallelization techniques that

are categorized based on the granularity of the parallelization units which are Query-cloud

strategy, Operator-cloud strategy, and Operator-set-cloud strategy [22].

TelegraphCQ [14] is a stream processing engine developed at UC Berkeley. TelegraphCQ

directs stream tuples through a set of query operators that handle tuples in the same fashion

used in traditional databases. Furthermore, TelegraphCQ has a special set of routing

modules which are used to route tuples among query operators. TelegraphCQ was built to

support shared and adaptive continuous query processing over, possibly unbounded, data

streams. Adaptive query processing states that an SPE should have the ability to adjust its

processing dynamically in response to unexpected changes in data availability or as a

response to changes in client needs [14]. The Shared query processing targets commonality

among client queries. Instead of processing each query separately, shared processing states

that stream tuples should be processed simultaneously by all active client queries as the

tuples pass through the system. In addition, TelegraphCQ addresses resource management,

scheduling, and distributed parallel query execution. TelegraphCQ inherits most of its

functions from predecessor projects: Telegraph [36], CACQ [29] and PSoup [13].

Telegraph provided adaptive query processing, yet it did not target commonality among

active queries. The latter two projects addressed shared query processing. However, their

implementation showed significant limitations [14]. For instance, the limit of data that they

can process depends on the memory size. Moreover, they did not provide solutions to

resource management and scheduling. For those reasons, TelegraphCQ was developed to

address challenges that were considered to be drawbacks of its predecessors Telegraph

[36], CACQ [29] and PSoup [13]. Furthermore, TelegraphCQ supports distributed parallel

query processing through an extension project called FLuX [35]. TelegraphCQ uses FLuX

as a routing module that routes tuples across multiple nodes in a cluster. The key feature

of FLuX that it’s able to redistribute query operators alongside their internal state with

minimal impact on query processing.

 Gap Analysis

Over the last decade, researchers spent a great deal of time working on building IoT

solutions to support IoT applications in different domains. Those solutions focus on the

27

architectural design of a middleware that decouples the underlying IoT infrastructure from

IoT applications. The proposed work is devoted to address aspects of middleware design

that increase interoperability such as sensor ontology, sensor data semantic, sensor query

language, sensor virtualization, data acquisition wrappers, and programming interfaces.

However, the proposed middleware solutions have some drawbacks. First, the proposed

middlewares cannot support a large number of IoT devices as they don’t have the means

to connect to billions of devices. Although some of the proposed solutions use cloud

services, those solutions mainly depend on cloud services for hosting and storage services

which make connecting to IoT devices a system bottleneck. Second, some of those

middlewares are domain-specific middlewares that only support applications in specific

domains. Third, to the best of our knowledge, none of the proposed systems have

multitenancy mechanisms that enable multiple client applications to share resources for

sensor connections and sensor data streams. For example, when different client

applications request a middleware to perform aggregations over sensor stream. In most

cases, processing sensor data streams dictates storing stream elements in a buffer for a

period of time, processing stream elements and delivering the results to client applications.

With that being said, the lack of buffer management poses significant problem to the

middleware resource consumption as stream buffers are stored in the RAM, which is a

limited resource. Thus, there is need for a multitenancy mechanism to manage stream

buffers. Finally, the proposed middleware solutions present sensor data streams to client

applications at the same frequency that the sensor uses when it sends its data to the

middleware. However, client applications might be interested in receiving sensor data at

different frequencies, and they should not pay for a frequency they don’t need. For

Example, a sensor sends its data every second, yet a client application wants to receive

sensor data every 10 seconds, the sensor should have multiple pricing policies for different

frequencies. To the best of our knowledge, none of the proposed middleware solutions

considered the idea pricing policies.

Commercial cloud-based IoT solutions are resource-rich platforms that enable the

connection of billions of devices that can send trillions of messages. The commercial

platforms provide powerful analytics and stream engine services. Basically, commercial

cloud-based IoT platforms have the means to build IoT middleware solutions. However,

28

they are more focused on providing tools and services that enable developers to easily

integrate their IoT devices into the cloud platforms and facilitate the process of routing

device data streams to different cloud services within the same platform or at a different

one. Essentially, sensors are tied to a cloud platform account. Only developers who have

access to that account would be able to access the sensor data. This contradicts the IoT data

and resource sharing concepts. Moreover, an IoT middleware should also abstract the

underlying cloud structure, so software developers can focus on building their application.

To summarize, commercial cloud-based IoT platforms have the required infrastructure to

build IoT middleware solutions. However, they are more focused on providing the services

that enable developers to create their own IoT applications.

Finally, Stream Processing Engines (SPEs) can analyze sensor streams on the fly, and

present analysis results in a near real-time manner. Moreover, SPEs support continuous

query semantic. However, SPEs are focused on providing algorithms for stream analysis,

reducing memory usage, and supporting adaptive query processing. SPEs don’t consider

the idea of sharing sensor data. SPEs replicate stream data for queries issued by different

client applications. SPEs don’t consider that the relation between a stream and its consumer

applications is a one-to-many relationship. For this reason, SPEs cannot be considered as

a middleware solution that provides sensing as a service concept.

To summarize, middleware solutions, stream processing engines, and cloud-based IoT

platforms have some drawbacks that imply that they cannot be used as an IoT solution that

enables sharing sensor data. There is an apparent need for an IoT solution that supports

sensor data sharing. This solution can be built on top of a combination of the

aforementioned technologies.

29

Chapter 3

3 Sensing as a Service Query Language

Sensing as a Service Query Language is a SQL-like declarative language used to execute

consumer queries over sensor metadata, and sensor data streams. As noted in the previous

chapter there is a considerable number of published research papers in the area of stream

processing. In addition to focusing on stream management techniques, researchers also

focused on building query languages that have the capability of executing stream

operations on windows of data. However, these languages are mostly focused on stream

processing. Moreover, some of the middleware solutions proposed search functionalities

that facilitate sensing search [28, 38]. However, those search functionalities are limited and

use query language called SPARQL which is not user-friendly for non-technical users [33].

Furthermore, to the best of our knowledge, there is no query language that supports the

Sensing as a Service concept. In this section, we propose a SQL-like declarative query

language. The proposed query language allows client applications to search for sensors

using a metadata model built on top of the SSN ontology [15]. Moreover, the language

supports Sensing as a Service model by allowing client applications to specify query

parameters that indicate the frequency of the requested data and the pricing policy of the

Pay-As-You-Go Incentive Model.

 Stream Query Language Requirements

Querying sensor data streams is quite different from querying data stored in static relations.

This is due to the volatile nature of streaming data. Unlike static relations, data streams

cannot be stored in a disk. This is due to the fact that streams may be very large or possibly

infinite which discourages stream storage. This makes it difficult to execute queries

especially those with aggregation operators (e.g., average, maximum) and stateful

operators (e.g., intersection and join which use multiple streams) since these operators

cannot generate output before the entire input is read. Furthermore, client application

queries might be executed over generated data from a future time. Subsequently, queries

must be applied as data streams flow through the stream query processing engine. With

30

that being said, operations like stream filtering and aggregations should be treated in a

special way. Therefore, special terms should be added to the stream query language to

capture concepts like query session, sensing discovery, windowing, and pricing policies.

 Query Session is a term used to refer to the time frame which a consumer wants to

execute their query over the stream data generated during the time frame.

 Windowing is the process of splitting the data stream into smaller subsets of data

in order to run a query over those subsets separately. Windowing is a technique

used to unblock stateful (i.e., Join, Merge) and blocking operators (i.e., Aggregation

functions).

 Pricing policies form the commercial model regarding what consumers pay for

their sensor data usage.

 Sensing Discovery is the process that enables software systems to locate sensors

that fit their needs.

 Query Language

In this section, we present a query language for a Sensing as a Service middleware. Using

this language, the middleware clients can perform sensing discovery tasks. In addition,

clients can use the proposed SQL-Like query language to perform stream analytics

operations.

 Information Model

Sensing discovery is crucial for IoT applications. As the number of IoT devices is in the

billions, it will not be easy for IoT applications to identify sensors that fit their needs out

of billions deployed sensors. Sensing discovery provides a searching mechanism which

narrows down the range of sensors that fit client needs. However, the fact that sensors are

owned by different entities poses a problem for integrating sensors with IoT applications

because sensor owners might describe their sensors in different ways. For this reason, there

is a need for an information model that provides a unified method for describing the

deployed sensors. In our design, the proposed middleware employs sensor metadata model

that describes sensor capabilities and deployment features. Our sensor metadata model

31

relies on a semantic sensor network ontology (SSN) in describing sensors [15]. The SSN

ontology includes the most common context properties, such as accuracy, precision, drift,

sensitivity, selectivity, measurement range, detection limit, response time, frequency and

latency. In addition to sensor context properties, a sensor location description is also

important for the Sensing Discovery process. We use a hierarchical model to capture sensor

location description. At the top level, we have countries, then cities. In a city, sensors might

be deployed outside or inside a property. In both cases, we store the sensor longitude and

latitude. For sensors located inside a property, we store more location information such as

property type (e.g., apartment building, flat, house). Each property type consists of a set of

components: room, hallway, bathroom, kitchen, entrance, parking lot, backyard, etc.

Within a property component, a sensor might be attached to an object which might be a

wall, a door, or a window. When a sensor owner adds a sensor, the owner specifies detailed

location information which includes the property, the property component, to which object

the sensor is attached to within the property component. This information model provides

a precise sensor location description information. Outdoor sensors also can have more

location information. For example, a sensor in a parking lot might have a location

description that indicates where in the parking lot the sensor is located (e.g., in which spot

in which floor). Moreover, a sensor deployed in a highway might have a description that

tells which lane this sensor monitors and to which object the sensor is attached. It’s

important to note that currently we limit outdoor sensor description to GPS location. A full

outdoor location modeling is beyond this work. The proposed information model is

graphically depicted in Figure 9.

32

Figure 9 Information Model.

33

 Sensing Discovery Query

A Sensing Discovery query is a query that client applications submit to the middleware to

construct sensors deployment knowledge. Sensing Discovery queries are executed against

the sensor information model. The goal of Sensing Discovery Queries is to help consumers

discover sensors that meet their needs. It’s important to note that in the sensor discovery

process, the middleware does not make a decision about which sensor satisfies the

consumer needs the best. Rather it is the consumer who makes this decision based on the

middleware answers for sensing discovery queries. Essentially, the middleware narrows

down the range of selection.

3.2.2.1 General Knowledge Sensing Discovery

General Knowledge Sensing Discovery provides consumers with general knowledge about

sensing services in a given country. The middleware’s response for these queries is to

provide general deployment information. For example, in which cities temperature sensors

are deployed, in which buildings in a given city there are air quality sensors, or what are

the available sensing services in a given city. Using EBNF, we define a General Knowledge

Sensing Discovery Query as follows:

<SelectStatement> ::=

 SELECT <SelectOptions>

 FROM <CountryIdentifier>

 [IN <CityIdentifier>]

 [PROVIDES <sensingService>]

 [MANUFACTUREDBY <VendorName>] ;

<SelectOptions> ::= ‘City’ | ‘SensingService’ | ‘Building’

<CountryIdentifier> ::= String

<CityIdentifire> ::= String

<sensingService>::=<sensorType>{‘,’<sensorType>}*

<sensorType> ::= String

<VendorName> ::=String

34

A General Knowledge Sensing Discovery Query has the following format:

SELECT < City | Sensing Service |Building>

FROM <CountryIdentifier>

[IN CityIdentifer]

[PROVIDES sensingService]

[MANUFACTUREDBY vendor];

Select: The select expression takes three possible keyword values: City, SensingService,

or Building. The keyword City indicates that the consumer wants to receive a list of cities

(e.g. <CityId, CityName>). The keyword sensingType indicates that the consumer wants

to receive a list of Sensing Types (e.g, temperature, humidity, traffic) available in a country

specified in the Country Identifier part of the query. The keyword Building indicates that

the consumer wants to know the addresses of buildings that provide sensing services.

CountryIdentifier: This part of the query indicates which country the consumer wants to

search to find general sensor deployment information.

IN CityIdentifer: This is an optional part of the query that can be used alongside the

SensingService, and Building keywords. This means that the consumer wants a list of the

available sensing services, or building addresses in a given city as identified by

CityIdentifier.

PROVIDES sensingService: This is an optional part of the query that can be used

alongside the City and Building keywords. This part tells the middleware that the consumer

wants to know in which cities or buildings a giving sensing service is available.

MANUFACTURED BY vendor: This is an optional part of the query which indicates

that the consumer wants to find sensing services or cities in which the deployed sensors

are manufactured by a given vendor.

We will now provide several example queries.

Example 1: This query is used to discover names of cities in which the temperature

sensing service is available.

35

SELECT City

FROM Canada

PROVIDES Temperature;

Example 2: This query is used to discover names of cities in which Humidity sensors

manufactured by OMEGA are deployed.

SELECT City

FROM Canada

PROVIDES Humidity

MANUFACTUREDBY OMEGA;

Example 3: This query is used to discover names of sensing services associated with

sensors that are manufactured by OMEGA.

SELECT SensingService

FROM Canada

MANUFACTUREDBY OMEGA;

Example 4: This query is used to discover cities in which there are deployed sensors

manufactured by OMEGA.

SELECT City

FROM Canada

MANUFACTUREDBY OMEGA;

Example 5: This query is used to discover the addresses of buildings that provide

humidity sensing services in London.

SELECT Building

FROM Canada

IN London

PROVIDES Humidity;

This query states that a consumer is looking for address of building that provides

humidity sensing services in London.

36

3.2.2.2 Discovery at the Sensor Level

Sensing discovery at the sensor level provides consumers with detailed information about

the deployed sensors based on context and location features. The middleware responds to

queries with a list of detailed sensor information. For each sensor, the response consists of

sensor identifier, sensor data scheme (e.g., sensor data attribute names and data types),

Sensing Service (e.g., temperature, humidity), sensor context features, manufacturer name,

pricing policies, and location description.

EBNF notation:

<SelectStatement> ::=

 SELECT <SelectOptions>

 FROM <CountryIdentifier>

 [WHERE <search_condition>]

 [IN <CityIdentifier>]

 [AT <BuildingAddress>]

 [WITHIN <DistanceAttributes>]

 [MANUFACTUREDBY <VendorName>] ;

<SelectOptions> ::= <sensorType>{‘,’sensorType}*

<CountryIdentifier> ::= String

<search_condition>:= <logicalExpression> [{<logicalOp><logicalExpression>}*]

<logicalOp> ::= (And | Or)

<LogicalExpression> ::= <Expression> <OP> <Expression>

<OP> ::=(> | >= | < | <= | = | !=)

<Expression> ::= <term>[(+|-) <term>]*

<term> ::= <factor> [(* | /) <factor>]*

<factor> :=’(‘< Expression>’)’| attributeName | number

<CityIdentifire> ::= String

<BuildingAddress> ::= String

<DistanceAttributes> ::= number, number, number

37

<sensorType> ::= String

<VendorName> ::=String

 A discovery query has the following format:

SELECT <SelectOptions>

FROM <CountryIdentifier>

WHERE <search_condition >

IN <CityIdentifier>

[AT Building Address]

[WITHIN distance, longitude, latitude]

[MANUFACTUREDBY vendor];

SELECT: The SELECT expression indicates the sensing service the consumer is looking

for which might be one or many sensing services such as temperature, humidity, air

quality …etc.

FROM: This part of the query specifies the country in which the consumer wants to

discover sensors.

WHERE: This part of the query specifies sensor context features.

IN: This part of the query indicates which city the consumer wants to search for sensors.

AT Building Address: This an optional part of the query that is used when the consumer is

looking for sensors information at a specific building.

WITHIN : This an optional part of the query that is used when the consumer is interested

in finding sensors that are located within a specific distance from a given longitude and

latitude.

MANUFACTUREDBY: This indicates that the consumer wants to find sensing services

in which the deployed sensors are manufactured by a given vendor.

We now present an example of a query.

38

Example 6: This query returns full description of temperature sensors which are

deployed at building 740 Proudfoot Lane in London and satisfy the condition accuracy=

90.

SELECT Temperature

FROM Canada

Where accuracy= 90

IN London

At 740 Proudfoot Lane;

 Stream Analytics Query

Stream Analytics Query is the query used to analyze sensor data streams on the fly. The

middleware provides a SQL-like query language that provides consumers the ability to

query a sensor as they would query a table in a relational database. Using this language,

consumers can specify sensor data attributes they want to receive in case the sensor

provides a set of attributes. For example, a sensor that measures temperature and humidity

provides two attributes that are named temp and hum. Moreover, consumer can use

aggregation functions such as average, minimum, maximum, sum and count. Furthermore,

consumers have the ability to filter the data streams provided by sensors.

 It’s important to note that in our design we adopt the formal definitions presented in

sections 2.4.3.1 and 2.4.3.2 for sensor stream, stream tuple, and window semantics.

We formally define the Stream Analytic Query using the EBNF notation as follows:

<SelectStatement> ::=

 SELECT <SelectOptions>

 FROM <Sensor Identifier>

 WHEN <SessionFilter>

 [WINDOW (“number | “unbounded”)]

 USING number

 FOR (number | “unbounded”);

39

<SelectOptions> ::=

(‘*’| attributeName {‘,’attributeName}* | < aggregationFunction > ‘(’attributeName ‘)’

{‘,’<aggregationFunction> ‘(’ attributeName ‘)’}*)

 <aggregationFunction> ::= ‘avg’ | ‘sum’ | ‘count’ | ‘min ‘| ‘max’ | ‘std’

<SensorIdentifier> ::= number

<SessionFilter>:= <logicalExpression> [{<logicalOp><logicalExpression>}*]

<logicalOp> ::= (And | Or)

<LogicalExpression> ::= <Expression> <OP> <Expression>

<OP> ::=(> | >= | < | <= | = | !=)

<Expression> ::= <term>[(+|-) <term>]*

<term> ::= <factor> [(* | /) <factor>]*

<factor> :=’(‘< Expression>’)’| attributeName | number

 The Stream Analytics Query has the following format:

SELECT <Select Options>

FROM <sensorIdentifier>

WHEN<sessionFilter>

[WINDOW <WindowSize>]

USING <pricingPolicyIdentifier>

FOR <sessionDuration> ;

Select Options: This refers to sensor data attributes that the consumer wants to receive.

Generally, the attributes list can take one of the following values. First, the symbol “*” is

used to indicate that the consumer wants to receive all data attributes the sensor provides.

Second, one or more sensor data attributes separated by comma “,” e.g., temperature,

humidity. Finally, the attribute list might represent aggregation functions over the sensor’s

data attributes. The query syntax does not allow multiple attribute-list types in a query, so

consumers cannot mix aggregation functions with “*” or data attributes.

40

Sensor Identifier: The sensor identifier is a value that uniquely identifies the sensor which

a consumer wants to receive its data. This value can be extracted from the sensing discovery

stage.

Session Filter: The session filter is a logical expression set by the consumer to filter sensor

data. The use of the session filter means that the consumer is interested in receiving a subset

of sensor data that can satisfy the filter. The filter can be a simple condition such as WHEN

temp > 25 or a much more complicated logical expression in which conditions are

connected by logical operators such as AND, and OR.

WINDOW windowSize: This is an optional part of the query which is used when

consumers want to perform stream analytics over a subset of the stream data. There are two

possible values for windowSize: an integer value representing the size of the window in

seconds, or the keyword unbounded. The integer value is used when the consumer wants

to run a Time-based Tumbling Window query. When a consumer uses a Time-based

Tumbling Window Query, the middleware retains sensor data for the window size. After

each window period, the middleware runs the query over the buffered data, cleans the

buffer and pushes the result to the consumer. The middleware repeats this process until the

session expire time is due. The keyword, unbounded, is used when the consumer wants

the middleware to buffer all sensor data throughout the session to help run

INSTANTANEOUS queries over the buffered data. An INSTANTANEOUS query is a

query that the consumer sends at any point of time during a session to analyze the buffered

data.

USING pricing Policy identifier: This represents the sensor pricing policy which the

consumer wants to use in the session. As mentioned previously, every sensor has multiple

pricing policies.

FOR sessionDuration: The session duration has two possible values: An integer value that

represents the session lifetime in seconds, or the keyword unbounded which means that the

session duration is uncertain, yet the client application that opened the session can send a

request to terminate the session.

We will now present several examples.

41

Example 1:

SELECT temp, hum

FROM Sensor i

USING Pricing Policy j

FOR 360;

This query states that a consumer wants to receive the sensor data attributes temperature

and humidity from sensor i using a pricing policy j for the next 360 seconds.

Example 2:

SELECT *

FROM Sensor i

WHEN temp>25

USING Pricing Policy j

FOR 360;

This query states that a consumer wants to receive all data attributes from sensor i if and

only if the value of sensor data attribute temp is greater than 25 using a pricing policy j

for the next 360 seconds.

Example 3:

SELECT avg(temp),min(temp),max(temp), avg(hum),min(hum),max(hum)

FROM Sensor i

WHEN temp>25

WINDOW 20

USING Pricing Policy j

FOR 360;

This query states that a consumer wants to receive the result of aggregation functions

over sensor i data attributes every 20 time units. The session filter temp>25 indicates that

only sensor stream data tuples that have temp > 25 will be processed in the aggregation

functions. The consumer wants to use a pricing policy j for the next 360 seconds.

42

Example 4:

SELECT temp, hum

FROM Sensor i

WHEN temp>25

WINDOW unbounded

USING Pricing policy j

FOR 360;

This query states that a consumer wants to the middleware to buffer the specified sensor i

data attributes for the entire session period to allow the consumer to run

INSTANTANEOUS queries over the buffered data. The session filter temp>25 indicates

that only sensor stream data tuples that have temp > 25 will be buffered. The consumer

wants to use a pricing policy j for the next 360 seconds. An INSTANTANEOUS query is

any query that the consumer sends during the session, and it takes the following format:

SELECT <attributeList|aggregats>

FROM <sensor I >

WHEN <filter>

As an example of INSTANTANEOUS queries, we might consider the following query:

SELECT avg (temp),std(temp)

FROM sensor I

WHEN temp > 20 and hum >80

This query calculates the average and the standard deviation of the temperature attribute.

The middleware runs this query over the buffered data generated by the first query of the

session. The middleware sends back the query results to the consumer.

43

Chapter 4

4 Middleware Architecture

In this chapter, we present the architecture of a Sensing as a Service (SaaS) middleware,

which is graphically depicted in Figure 10. Basically, the middleware has three primary

layers: The Service Interface layer, the Stream Processor layer, and the Sensors

Management and Representation layer. We assume that this middleware is hosted on a

cloud platform and interacts with both sensors and client applications. We presume that

sensor owners specify policies for how frequently a consumer should receive sensor data

and the cost of this frequency. To illustrate, a sensor owner might specify the following

policy: To receive the sensor’s readings every 10 seconds, a client must be charged $X

every minute. The cost increases as the frequency increases. The price policy cannot use a

frequency, which is higher than the physical sensor’s actual frequency of sending data. The

following is a brief description of the middleware layers.

 Architecture overview

 The Service Interface layer receives client requests, directs these requests to the Stream

Processor for stream operations handling. Stream processor, then, replies the requests

through the Service Interface. For client applications, the Service Interface hides the

underlying knowledge and technology required to deploy, manage, and transfer sensor

data, so that client applications need only to know which service interface method to use.

Secondly, the Stream Processor is the core of the proposed middleware. It is responsible

for executing client application queries and charging client applications based on the

chosen sensor pricing policy and data consumption. After executing a query over a stream,

the Stream Processor returns the query result to the client application through the Service

Interface.

Finally, the Sensor Management and Representation layer manages the connection

between the Stream Processor and physical sensors. Furthermore, this layer maintains the

sensor deployment and pricing policy database.

44

Figure 10 Middleware Architecture.

 Service Interface

The Service Interface layer receives client requests and invokes relevant services after

verifying a consumer’s right to invoke a service. This section describes the communication

paradigms used and the format of request messages.

 Service Interface Communication Protocols

 The push and pull models designate two ways of exchanging data between two distinct

entities. In this work, the entities are client applications and the middleware. The pull

model is based on the request/response paradigm. The response may be sent synchronously

or asynchronously. With the push model, a client subscribes to data providers and new

content is automatically sent to the client. The push protocol is graphically depicted in

Figure 11. Since push allows multiple responses per request, it is preferred over pull when

data volume and velocity are high. To handle different ways of client-server

communications, the middleware provides two kinds of interfaces through which the

clients can interact with the middleware: an interface that provides an API that uses pull

45

communication protocol used for single response per request communication paradigm and

an interface that provides an API that uses push communication protocol for multiple

responses per request communication paradigm.

Figure 11 Push Protocol.

 Request Format

A service interface request consists of two variables. The Authentication Token is a unique

token generated by the middleware and is provided to clients at the end of the client

registration process. Client applications must submit this token in every request to ensure

that the client application is allowed to carry out the request. The command variable

represents the query.

 Query Interpreter

The Query Interpreter breaks down queries into smaller elements where each element is

translated into a command that is understandable by the other components of the

middleware. For example, there are queries that require the buffering of data. In the

middleware, the Buffer Manager uses an in-memory NoSQL database. The Query

Interpreter translates the query to commands that can be understood by the NoSQL

database. For example, consider the following query to be executed over a buffer:

46

SELECT * FROM SensorId WHEN temperature >=0 and temperature <= 10 Using Pi For 3600.

The Query Interpreter generates the following code to be passed to the Buffer Manager

(described in Section 4.5.2) to execute:

query.sensorBufferName.find(Filter.and(Filter.gte(“temperature”,0),Filter.lte(“temperature”,10

)))

To do this task, the Query Interpreter generates an Abstract Syntax Tree (AST) and then

traverses the tree to generate the code for commands that can be understood by other

middleware components. Figure 12 shows the structure of the AST. Figure 13 shows the

Abstract Syntax Tree created by the Query Interpreter to translate the query provided in

the example.

Figure 12 Abstract Syntax Tree Structure.

Figure 13 AST Generated to translate a query.

47

 Expression Evaluator

 This component evaluates a combination of arithmetic and logical expressions specified

in the query filter (i.e., WHEN clause). The Expression Evaluator is used when a query has

a filter in order to check whether a sensor data tuple satisfies a condition. Basically, the

Data Transmitter (see section 4.5.1.3) passes the sensor data and the filter to the Expression

Evaluator which replies with the comparison result. If a sensor data tuple satisfies the

condition, the tuple is pushed to the client application. To understand how the Expression

Evaluator works, let us consider the following example:

A sensor S sends data represented by four data attributes that are referred to as a, b, c and

d. A client application wants to execute a query with the following filter:

((a=9) and (b=c) Or ((c*(a+9)) > (9+a)) and (d<=c ()

When the Data Transmitter receives sensor data from the sensor, the Data Transmitter

passes sensor data and the parse tree of the client application’s filter to the Expression

Evaluator. The Expression Evaluator modifies the tree by substituting sensor data attribute

names with their values in the message. After that, the Expression Evaluator traverses the

tree to evaluate the session condition and then sends evaluation results to the Data

Transmitter. The result of the evaluation is either true or false. Figure 14 shows the session

condition parse tree that is built by the Query Interpreter.

Figure 14 Session Condition Tree.

48

 Sensor Management and Representation

This layer handles the connection between the middleware and the sensors. More

specifically, the Stream Processor layer connects to sensors through this layer. Abstractly,

the connection between the sensors and the middleware is managed by a cloud-based

Publish-Subscribe Broker. In our design, both middleware components and the sensors are

clients of the Publish-Subscribe Broker. These clients have to know how to communicate

with the broker. For this reason, we split this layer into three different, yet related

components: Sensors Manager, Sensor Agent, and Sensor Data Dispatcher.

 Publish-Subscribe Pattern

The Publish-Subscribe is messaging pattern that supports a bidirectional messaging

approach in which data sources publish data on a topic and potential data consumers

subscribe to that topic. Typically, the data publishers and consumers do not directly

communicate with each other. The interaction is done through an intermediary system

which is referred to as a “message broker.” In this work, a Publish-Subscribe

communication pattern is used for managing the connection between sensors and the

middleware. Sensors publish data to a messaging broker using a Publish-Subscribe client,

and the middleware receives sensor data from the messaging broker using a Publish-

Subscribe client. The rationale of using a Publish-Subscribe protocol as a communication

protocol between the middleware and the sensors is that the Publish-Subscribe protocol is

a lightweight communication protocol that is designed for devices with limited power, and

computational resources [64].

Figure 15 Publish Subscribe Protocol.

49

When a sender publishes a message to the broker, the sender tags the message with a topic

that identifies the message. A receiver sends a tag asking the broker to send any message

that has that tag attached to it. The tag is called a message topic. The receiver must know

the topic that the sender uses for tagging their messages. Once the broker receives a

message from the sender, the broker sends the message to all clients who requested

messages tagged with the topic associated with the sender. An example of Publish-

Subscribe connection is graphically depicted in Figure 15. In our middleware, the Sensor

Manager generates a unique topic for each sensor. This topic is used by the middleware

and Sensor Data Dispatcher (see section 4.4.2 and 4.4.4), which publishes sensor data on

behalf of a sensor.

 Sensor Manager

The Sensor Manager manages sensor registration and connectivity. For sensor registration,

the sensor owner specifies the sensor’s data scheme template which describes the sensor’s

data attributes and their data types. Generally, a sensor data scheme is more formally

defined as a set of pairs where a pair is of the form (attribute: datatype).

 For example, a sensor that measures temperature and humidity might have the following

data scheme:

{Temperature: double, Humidity: double}

At the end of the sensor registration process, the Sensor Manager stores the sensor data

scheme in a database alongside a unique topic identifier to be used by the Publish-

Subscribe clients. After that, the Sensor Manager generates a Sensor Data Dispatcher that

can be deployed in the gateway that the sensor is associated with. Furthermore, the Sensor

Manager manages the connection between a Sensor Data Dispatcher and the Stream

Processor through a Sensor Agent. The Sensor Manager is responsible for creating the

Sensor Agent and providing it with the required information to receive sensor data from

the Publish-Subscribe Broker.

 Sensor Agent

The Sensor Agent delivers inbound sensor data streams to the Stream Processor. As

previously mentioned, sensors publish their readings to the Publish-Subscribe Broker

50

which passes the readings to the middleware. In order to deliver a sensor data stream to the

Stream Processor, the Sensor Manager creates a Sensor Agent which is a client of the

Publish-Subscribe Broker and provides the Sensor Agent with the unique topic that is used

by the sensor when publishing its data. The Sensor Agent subscribes to the Publish-

Subscribe Broker using the given sensor topic. The Sensor Agent supplies sensor data to

the Historical Module and the Live Stream Session Module.

 Sensor Data Dispatcher

A Sensor Data Dispatcher is software generated by the Sensor Manager at the end of the

sensor registration process. This software runs on a gateway associated with one or more

sensors. A gateway is an embedded device with computing and networking capabilities

where software can be executed to fetch the data from sensors as well as send the data to a

remote server. Gateways are usually placed in close vicinity to the sensors. The connection

between the sensors and the gateway can be wired or wireless. The Sensor Data Dispatcher

software communicates with the Publish-Subscribe Broker through a Publish-Subscribe

Client and knows how to structure the sensor’s data in the format that the service broker

understands. The Sensor Data Dispatcher knows the topic to be used for publishing sensor

readings, and the sensor data scheme. It is important to note that we assume the sensor

owner deploys the generated Sensor Data Dispatcher in the gateway to which the sensor is

attached. In addition, we also assume that the sensor owner modifies the generated Sensor

Data Dispatcher to have it read information from the physical sensor. The rationale for this

decision is that there is no unified approach that can be followed to pull readings from a

physical sensor. To illustrate, the connection between a sensor and a gateway can be wired

or wireless. If the connection is wired, then the way the wiring is done is different from

one sensor to another. The same problem applies to the wireless connections. Furthermore,

there are many sensor vendors, and the way sensor connection is handled differs among

vendors. For example, let us assume Sensori and Sensorj are both air quality sensors

manufactured by vendors A and B. The connection for both sensors is a wired connection.

Vendor A specifies that the connection requires three wires. The wires have to be connected

to the gateway GPIO pins 0, 6 and 7 respectively. On the other hand, vendor B specifies

that the connection requires two wires. The wires have to be connected to the gateway

51

GPIO pins 1and 5, respectively. Even though both sensors provide the same service, the

way they are connected to the gateway is completely different. For this reason, the Sensor

Manager generates a software, Sensor Data Dispatcher, that knows how to connect to the

Publish-Subscribe Broker and assumes that the sensor owner can update the software to

pull data from the physical sensor.

 Stream Processor

The Stream Processor is responsible for executing client application queries over sensor

data streams. A sensor data may need to be analyzed quickly in order to send a notification

which we call a Live Stream Session query. However, sensor data could be analyzed to

detect long-term trends which we call a Historical Session query. A Stream Processor

receives client applications queries through the Service Interface. It then takes action based

on the request type. To distinguish a Live Stream query from a Historical query, the Service

Interface provides different API functions for Live and Historical queries. In addition, the

Stream Processor responds to sensing discovery queries in which queries are executed

against the Sensor Database that has the knowledge of sensor locations, data scheme, and

pricing policies. Once the Stream Processor executes a query, the result is sent to a client

application through the Service Interface. The Stream Processor consists of four modules:

Live Stream Session Module, Historical Session Module, Belling Module, and Sensing

Discovery Module.

 Live Stream Session Module

The Live Stream Session Module handles consumer real-time data stream requests. We use

the term Live Session to refer to a request in which a client application is interested in

receiving a live stream of data from a sensor for a period of time. For example, a client

application might be interested in receiving a sensor stream of data for the next 30 minutes.

The Live Stream Session Module receives client requests from the service interface,

identifies which sensor the consumer wants to query, collects sensor information, executes

the query, and sends the query result to the consumer. To handle those tasks, the Live

Stream Session Module has four main components: Request Handler, Query Registry, Data

Transmitter, and Sensor Stream Buffer.

52

4.5.1.1 Request Handler

The Request Handler is responsible for managing Live Stream Session Module

components. It creates the Query Registry and Sensor Data Transmitter. It communicates

with the Query Interpreter to parse client application requests and with the Sensor

Representation & Management Layer to open a connection with a sensor.

4.5.1.2 Query Registry

Each sensor is associated with a Query Registry that is used to maintain information for

each active query application that is using the sensor. A query registry tuple representing

an active query application consists of information, extracted by the Query Interpreter, and

includes the sensor identifier, the session filter, message receiving frequency (i.e. how

frequently a client application should receive sensor data), pricing policy, attribute list (e.g.,

the part of the query right after the SELECT keyword) and query type. Once a consumer

session is over, its tuple is removed from the Query Registry.

4.5.1.3 Data Transmitter

The Data Transmitter is responsible for delivering query results to consumers.

Upon receiving sensor data from the Sensor Agent, The Data Transmitter uses

the Query Registry to determine the consumers of the sensor data. For each

consumer, the Data Transmitter determines if the consumer should receive the

sensor data, based on the frequency of the requested pricing policy. The Data

Transmitter ensures that the consumer receives a single sensor observation for

every time frame specified in the pricing policy, e.g., every 20 seconds. If the

consumer is allowed to receive the sensor data, the transmitter follows the

consumer’s query execution strategy to deliver the message. The Live Stream

Session query execution strategies are discussed in Section 4.5.1.4.

To reduce network traffic and communication load on the broker, only one

Sensor Agent is created per sensor to serve all ongoing live sessions. This is

graphically depicted in Figure 16. Upon receiving sensor data, the Sensor Agent

passes the data to the Data Transmitter which takes care of the rest of the

53

delivery process. This Sensor Agent connection with the Publish-Subscribe

Broker is terminated when there is no open live session with the sensor. It is

important to note, that the Request Handler creates one Data Transmitter per

sensor as shown in Figure 16. When the first live stream session request arrives

at the Request Handler for a sensor, the Request Handler creates a Data

Transmitter and uses the session duration of the first request as the Data

Transmitter’s expiration time. Whenever a new live stream session request for

the same sensor arrives, the Request Handler does not create another Data

Transmitter. Instead, it updates the Data Transmitter expiration time if needed.

Figure 16 Data Transmitter.

54

4.5.1.4 Query Execution Strategies

A Query Execution Strategy is the way Data Transmitter executes client applications

queries over inbound sensor data streams. The Query Execution Strategy is determined by

the type of query which is determined by the query interpreter based on the query structure.

Currently, the middleware supports four types of query execution strategies: a raw data

query, filtered raw data query, Time-based Tumbling Window query, and instantaneous

query.

4.5.1.4.1 Raw Data Query

A Raw Data Query is a query that does not specify a filter nor require any data processing

operations (e.g., aggregation functions). A client application query that takes the following

format is considered a raw data query:

SELECT <attribute List> FROM <SensorIdentifier> USING <pricingPolicy> FOR <sessionDuration>;

Figure 17 Raw Data Query Execution.

As we can see the query does not have a filter (i.e., WHEN clause) and does not specify a

window. The query is executed as follows during the session period. Whenever, the Data

Transmitter receives sensor data, if the client can receive the message based on the pricing

policy frequency, the Data Transmitter pushes the sensor message to the client application.

When the client application session duration expires, the Data Transmitter removes the

client application query tuple for the sensor from the Query Registry. Stream Processor

components interaction for a Raw Data Query Execution in Figure 17.

55

4.5.1.4.2 Filtered Raw Data Query

A filtered raw data query is a query that specifies a filter but does not require data

processing operations (e.g., aggregation functions). A client application query uses the

WHEN clause is considered a filtered raw data query.

SELECT <attributeList>

FROM <SensorIdentifier>

WHEN <SessionFilter>

USING <pricingPolicy>

FOR <sessionDuration>

Figure 18 Filtered Raw Data Query Execution.

This query follows the same execution strategy as the raw data query in the sense that the

Data Transmitter passes the sensor data to the client application without any further

processing. The presence of a filter implies that the client application is only interested in

receiving sensor data that satisfies the session filter, so the Data Transmitter evaluates the

session filter and pushes the data to the client only if the result of condition evaluation is

TRUE. The session filter evaluation is done by the Expression Evaluator. The Stream

Processor components interaction for a Filtered Raw Data Query Execution is graphically

depicted in Figure 18.

4.5.1.4.3 Time-based Tumbling Window Query

A Time-based Tumbling Window Query (TTW) is a query that requests the execution of

aggregation functions over a subset of the sensor data stream. Time-based Tumbling

56

Window splits the stream into non-overlapping portions and executes the aggregation

functions over stream portions in a successive manner [31]. The subset size is defined by

the window size. This query re-executes itself every N seconds where N is specified in the

WINDOW clause. A TTW query remains active for the number of seconds specified in the

FOR clause. A client application query that takes the following format is considered a

continuous query:

SELECT avg(temp), min(hum), max(temp)

FROM sensorId

WHEN temp > 25

WINDOW 120

USING policyId

FOR 3600

This request means the user U wants to open a session with a Sensor S, identified by

sensorId which is known from the sensor discovery stage, for the next 3600 seconds using

a pricing policy P, identified by policyId. The keyword WINDOW followed by an integer

number indicates that the query type for this session is a Time-based Tumbling Window

query (TTW) which requires that the Data Transmitter buffers sensor data for a certain

period of time specified in the window clause. For the example query, this is 120 seconds.

The Data Transmitter executes the aggregation function and pushes the result to the client

application. The Data Transmitter re-executes the query every N seconds (e.g., 120 in the

example query), specified in window clause, by using a query worker that remains active

for the number of seconds specified in FOR clause. A Time-based Tumbling Window

query requires buffering the sensor data for a specified period of time and then executing

aggregation functions, sending the result to the client, and then cleaning the buffer for

another execution cycle. To handle a continuous query, the Data Transmitter uses two

components: A Sensor Stream Buffer and a Query Worker.

 Sensor Stream Buffer: Sensor data is held for a certain amount of time in the

Sensor Stream Buffer. The Data Transmitter is a producer of data for the buffer

while the Query Worker consumes the buffer. The Buffer Manager creates a single

57

buffer per sensor regardless of the number of client applications that use the buffer.

Sensor stream buffer management is discussed in section 4.5.2.1.

 Query Worker: This represents a user application of the data in Sensor Stream

Buffer. Essentially, there is a query worker for each user application. The Query

Worker is responsible for running the query every N seconds and pushing the query

results to the client application. After each run, the Query Worker sleeps until the

next query execution cycle. A Query Worker is a thread that executes time-based

tumbling window query over the sensor stream buffer. The query worker uses two

variables WindowlowerBound and WindowupperBound to slide over the sensor stream

buffer. On each run, the query worker advances the window boundaries by the value

of window size specified in the Query Registry tuple. Subsequently, the Query

Worker sends the window boundaries and the Query Registry tuple to Buffer

Manager to stream buffer data that falls within the window boundaries. Window

boundaries specify a portion of the buffer to be used for as a query dataset. The

Query Worker then pushes the query result to the client application and prepares

for the next execution cycle by advancing the window’s upper and lower

boundaries. Essentially, WindowlowerBound is set to WindowupperBound + 1, and

WindowupperBound is incremented by the window size.

Figure 19 : Time-based Tumbling Window Query Execution.

58

The Stream Processor components interaction for a Time-based Tumbling Window query

execution is graphically depicted in Figure 19. As with any other query, the query arrives

at the Request Handler through the Service Interface. The Request Handler passes the

query to the Query Interpreter which returns a tuple of query details to the Request Handler.

It then adds the tuple to the Query Registry and starts the Data Transmitter if it has not

already been started. After that, when the Data Transmitter finds that the query type is a

Time-based Tumbling Window query, the Data Transmitter creates a Query Worker. The

Query Worker expiration time is the same as the Query Registry tuple expiration time.

After that, when the Data Transmitter receives sensor data, the Data Transmitter checks if

there are active queries in the Query Registry that require buffering. If so, the Data

Transmitter instructs that the Buffer Manager creates a Sensor Stream Buffer if the buffer

has not already been created. The Data Transmitter then puts the sensor data in the Sensor

Stream Buffer. Furthermore, the Query Worker periodically wakes up to execute the query

based on the window clause. The query is executed over a subset of the Sensor Stream

Buffer. The way a subset of the Sensor Stream Buffer is extracted for analysis by the Query

Worker is discussed in section 4.5.2.1.

4.5.1.4.4 Instantaneous Query

Instantaneous queries give client applications the ability to analyze sensor data stream

using multiple queries throughout the session. An Instantaneous query shares some

similarities with a Time-based Tumbling Window query in the sense that it defines a

window and might use aggregation functions. However, the window semantics for

Instantaneous queries is quite different from Time-based Tumbling Window queries.

Instantaneous queries use a lower-bounded landmark window which is a window that has

its lower bound fixed, but its upper bound advances with time (see section 2.4.3.2). Another

major difference is that Instantaneous queries allow client applications to analyze the

window subset using different queries (e.g., they can change the aggregation functions and

the session filter) whereas client application cannot update a Time-based Tumbling

Window once a session started. To better understand Instantaneous queries, let us consider

a client application query that takes the following format:

59

SELECT temp, hum

FROM sensorId

WHEN temp > 25

WINDOW unbounded

USING policy ID

FOR 3600

This query is called a session opening query. It tells the middleware that user U wants to

open a session with a Sensor S for N seconds using pricing policy P. The keyword window

followed by the keyword unbounded indicates that the client application requests a window

of a type lower-bounded landmark window.

An Instantaneous Query is a query that the client application submits during the session to

be executed over the buffered data. This query is answered directly by the Request Handler.

Throughout the session, the client application can send as many instantaneous queries as

possible. Instantaneous queries have the following format:

SELECT <attributeList|aggregates> FROM sesnsorId WHEN <Condition>

Figure 20 Instantaneous Query Execution.

Stream Processor components interaction for an Instantaneous query execution is

graphically depicted in Figure 20. When the Request Handler recognizes that the user

wants to run an Instantaneous query, it inserts the query details in the Query Registry.

When the client application sends an Instantaneous Query, the Request Handler executes

60

the query over a subset of the Sensor Stream buffer and asks the service interface to push

the results to the client application. When the Client Application Session is completed, the

Data Transmitter deletes the client application query from the Query Registry and asks the

Buffer Manager to clean the buffer if no other client application needs the sensor data that

is stored in the buffer.

 Buffer Manager

The Buffer Manager is an in-memory database engine used to handle sensor stream

buffer operations (e.g., create, insert, select, delete). This is used to avoid disk I/O

operation overhead. Aggregation functions over buffered data are applied by the buffer

manager.

4.5.2.1 Sensor Stream Buffer Management

Execution strategies for Time-based Tumbling Window query and Instantaneous query

require buffering sensor data for a certain amount of time. This section describes the

management of the Sensor Stream buffer that satisfies these characteristics: (1) The sensor

data should be buffered in memory to avoid disk I/O overhead; (2) Sensor data should not

be buffered unless there are ongoing client application sessions that require executing

continuous or instantaneous query; (3) As memory storage is expensive due to the size

limitation, a single buffer per sensor should be created, so that data redundancy is avoided.

 However, using a single buffer per sensor poses other challenges. First, we assume that

client applications receive sensor data at different frequencies. For example, let us assume

that sensor S sends data every second. Client application Ci and Cj are interested in

receiving sensor S’s data. However, Ci uses a pricing policy that states that the client must

receive sensor data once every 10 seconds while Cj uses a pricing policy that states that the

client must receive sensor data once every 30 seconds. If sensor data is stored in a single

buffer, there must be a way to extract subsets of the sensor stream buffer that can be used

to execute the queries from Ci and Cj. Second, sensor stream buffer tuples that no client

application can use should be deleted. To illustrate, let us assume that client application Ci

started its session with sensor S at 10.00 am, and the session ends at 11.00 am. Let us then

assume Cj started its session with the same sensor S at 10.30 am and the session ends at

11.30 am. Both client applications ask to execute continuous queries which require

61

buffering sensor data. The sensor stream buffer should hold sensor data that arrived

between 10.00 am, and 11.30 am in order to execute client applications queries. When the

session of client Ci is completed, we know Cj will not benefit from the data stored in the

buffer for the period between 10.00 am, and 10.29 am because the Cj session started at

10.30 am, so the portion of the buffer that Cj is not using should be deleted. When the client

Cj’s session is completed, the buffer can be deleted as no other client application is

currently running a query that requires buffering sensors data.

We manage the Sensor Stream Buffer in a way that addresses these challenges. First, in

order to extract a subset of the Sensor Stream Buffer that can be used to execute client Ci
’s

query, we take the following steps. Sensor data messages (e.g., sensor tuples) are tagged

with a timestamp upon arrival at the Data Transmitter. The Data Transmitter then checks

the Query Registry to see if there is at least one client application query that requires

buffering sensor data. If so, the sensor data tuple is placed in the buffer. We propose a

multitenancy algorithm to extract client application subset from sensor buffer. The

proposed algorithm is to be used when executing client application queries over sensor data

buffers.

4.5.2.2 Subset Extraction using Modulo Operator

In this algorithm, we employ remainder after division operation (modulo operation) to

extract a subset of the Sensor Stream Buffer that a client application query should be

executed over. The timestamp of the first sensor message that arrives after a client

application session has begun is essential in extracting the client application subset of the

Sensor Stream Buffer.

For each tuple in the sensor stream buffer, a tuple belongs to the client application subset

if and only if the tuple satisfies the following condition:

(tij – ti0) Mod (fq) = 0

where

tij represents the arrival timestamp of tuple ti

ti0 is the timestamp of the first tuple that arrived after the start of the client session.

62

fq is the pricing policy message arrival frequency

We formally define a client application buffer subset as follows:

Csubset = {si | si S tij - ti0 mod fq = 0}

If the client application uses a window operation over a stream, then a client application

subset for a window that starts at Wt1 and ends at Wt2 is defined as follows:

CWsubset = {si | si S tij - ti0 mod fq = 0 tij wt1 tij ≤ wt2 }

Example:

Sensor S sends messages every x seconds. The sensor data scheme is {temperature:

double}. Clients C1, and C2 are interested in receiving sensor S’s data. C1 and C2 submitted

the following queries:

C1 query: Select avg(temperature) from Sensor S window 10 using P1 For 120

C2 query: Select temperature from Sensor S window unbounded using P2 For 120

C1’s session starts at 10.00.00 AM and ends at 10.02.00 AM. P1 is a pricing policy stating

that C1 wants to get a message every 2 seconds. C1 wants the middleware to run a Time-

based Tumbling Window query with a window size 10 seconds which means buffer the

sensor data for 10 seconds and then send the average of temperature to C1. On the other

hand, C2’s session starts at 10.00.15 AM and ends at 10.03.15 AM. P2 is a pricing policy

that states C2 wants to get a message every 4 seconds. C2 ‘s query states that the middleware

buffers all sensor data for the next two minutes so C2 can execute instantaneous queries

over the buffered data.

Figure 21 shows a snapshot of the sensor stream buffer that shows how the middleware

manages the sensor stream buffer. The middleware creates a single buffer. When the

middleware executes a client application query, the middleware executes the query over a

subset of the buffer. As shown in Figure 21, 5 tuples are extracted from the buffer to

calculate the temperature average for the first window in C1 query. As for C2 client

63

application, whenever C2 submits an instantaneous query, the middleware extracts a subset

to be used to answer the query.

Figure 21 Client Application Buffer Subset Extraction

After the execution of C1 ’s first window, the query worker asks the buffer manager to

delete the first five tuples in the buffer. This is graphically depicted in Figure 21 with tuples

highlighted by yellow color since no other client application can use the first five tuples

other than C1 in the first window as C2’ session started fifteen seconds after C1’s session.

In other words, Buffer elements that arrived before C2’s sessions had begun, should be

deleted when C1 no longer needs them.

4.5.2.3 Deleting unused buffer tuples

Deleting buffer tuples that cannot be used by any client application is crucial for the

middleware resource management because buffers are stored in the memory. As client

applications share the buffer for a certain amount of time, there should be a mechanism for

deleting buffer tuples that client applications can never use as some client application’s

sessions end. Figure 22 shows how client applications share a sensor stream buffer. The

grey arrow at the topmost right part of the figure shows the part of the buffer that the

middleware deleted after the end of C1’s session. The deleted portion of the buffer

64

represents sensors data that arrived at the middleware between 10.00AM and 10.15.

Although C1’s session lasts for an hour, buffer tuples for the first fifteen minutes are deleted

because C2 joined the session at 10.15, so C2 uses the buffer tuples till 11.15AM.

Furthermore, the blue arrow shows that no tuples would be deleted at the end of C3’s

session because C3’s session started after C1, C2 and ended before C1 and C2 sessions ended.

Moreover, the golden arrow points the portion of the buffer that is deleted at the end of C2’

session. C2’s session ended at 11.15 AM, yet C4’s session started at 11.00 and ended at

11.25, so the buffer content from 11.00 till 11.15 (e.g., C2’ end session time) cannot be

deleted. However, as C4 is the only client application that has an active session with sensor

S, and C4 cannot use buffer content that arrived before 11.00, that portion of the buffer is

deleted at the end of C2’s session. Finally, at the end of C4’s session, the buffer is dropped

as no other client application needs the buffer. The buffer is created again when a client

application requests executing a query that requires buffering sensor data.

In our design, buffer tuples are deleted by the buffer manager, yet the portion of the buffer

to be deleted is specified by the Data Transmitter that requests Buffer Manager to delete

the tuples. At the end of a client application session, the Data Transmitter asks the buffer

manager to delete part of the buffer that is no longer needed by the client application and

other client applications cannot use.

It’s important to note that most likely there might be tuples in the buffer that client

applications cannot use. This happens when client applications use pricing policy that has

a frequency less than the sensor frequency. For example, the sensor sends data every

second, yet client applications want to receive the data every 2 or 4 seconds as shown in

Figure 21. In this case, some tuples won’t satisfy the subset extraction condition for any

client application that does not use every second frequency. However, in our design, we

opt to buffer all tuples without checking if they are used by active queries. The rationale

for this decision is that the process of checking whether the arrived sensor message (e.g.,

tuple) satisfies the subset extraction condition of any client application has an active session

before buffering the message is time and resource consuming if the number of client

applications with active sessions is large. For this reason, we opt to buffer the all the

65

message even though no client application might use it as the message would just be

buffered temporarily.

Figure 22 Sensor Stream Buffer Management

 Sensing Discovery Module

Sensing Discovery provides client applications with information about sensor locations,

types, pricing policies, and data scheme. The Sensing Discovery Module receives client

application sensing discovery queries through the service interface and then uses the Query

Interpreter to parse the query. The result of Query Interpreter is used to execute the queries

over sensing discovery information model (see section 3.2.1). After that, the Sensing

Discovery Module passes the query result to the client application through the Service

Interface.

 Historical Session Handler

As mentioned previously, this module handles consumers’ requests for sensors readings in

the past. This module consists of two components. A cloud based data repository, and

66

Sensor Agents. Every sensor has a Sensor Agent that catches every message the sensor

sends to the cloud-based publish/subscribe broker. Once the message is received, it is

stored in the data repository. Now, we assume that sensors messages are heterogeneous.

To illustrate, one sensor might just sense the temperature, so that its message structure

looks like this “{temp:50}”. Another sensor might sense two attributes (e.g., Temperature

and humidity). In this case message structure looks like this “{temp:50, hum:80}”. Despite

message structure, all sensors messages are stored in the same repository. When messages

are written to the repository, they are labeled with a sensor tag. Using this tag, the

middleware relates messages to sensors. During the lookup process, the sensor tag is used

to retrieve sensor messages over a defined period in the past. To apply a filter over the

retrieved data, the historical Session Handler calls the analytical module which applies the

filter and returns a subset of the retrieved data that passes the filter condition.

4.5.4.1 Historical Session Query Strategy

When a consumer initiates a historical session request, the Historical Session Module

Handler handles it. The consumer specifies the sensor, the timeframe of the data and the

filtering information as parameters through the client application or directly using the API

from any custom application. The Historical module receives the consumer provided

parameters and connects to the cloud data repository to retrieve the historical data. The

Historical module sends the sensor tag and the timeframe parameters to the cloud data

repository. Upon receiving the results from the repository, if the consumer did not specify

a filter, the historical session handler which writes the results in a csv file and passes that

file to the service interface to deliver it to the consumer. In case the consumer specified a

filter, the Historical module looks up the sensor structure description, which the sensor

owner enters at the registration process. Now, the Historical has the required knowledge to

do filtering, as it knows the result set, the structure of the result set, and the filter condition.

The Historical module goes over the result set row by row and evaluates the filter

expression. Rows that pass the filter are sent back to the historical session handler which

writes the results in a csv file and passes that file to the service interface to deliver it to the

consumer.

67

 Billing Module

The Billing Module is triggered at the end of a client application session, regardless if it is

live or historical. The main task of this module is to calculate the client application session

chargers based on the pricing policy used in the session. For live session charges, Billing

Module has to know the pricing policy, session start time, session ends time and the user

id. For a historical session, the Billing Module has to know the pricing policy and the

number of processed sensor readings. After that, session charges are applied to the user

account, and the sensor owner account. In case a client application requests a session that

lasts for more than a week. The Billing module chargers the client application at the end of

every week.

68

Chapter 5

5 Implementation

In this section, we describe the tools and technologies used to implement the Sensing as a

Service middleware described in chapter 4.

 Cloud Platform

The Sensing as a Service Middleware described in chapter 4 is built on top of Amazon

Web Services platform (AWS) [55]. Mainly, the middleware relies on four AWS services

which are AWS IoT [48], AWS EC2 [59], AWS RDS [54], and AWS DynamoDB [52].

The used AWS services are briefly described below.

 AWS IoT: The middleware uses AWS IoT to connect to client deployed sensors. In

the Sensor Representation & Management Layer, the middleware connects to

sensors through AWS IoT MQTT Broker [56] that can to connect to billions of IoT

devices. The middleware uses Eclipse Paho library [60] to create MQTT clients,

which are called sensor agents in the architecture.

 AWS EC2: Amazon Elastic Compute Cloud (Amazon EC2) is a web service that

provides secure, and scalable virtual machines. Our middleware prototype is hosted

on an EC2 instance.

 AWS DynamoDB is a fully managed NoSQL database offered by the AWS

platform. The middleware uses DynamoDB as a Historical Data Repository. A copy

of sensor data is sent to DynamoDB upon its arrival at the AWS IoT MQTT broker.

When the middleware receives a client request for historical sensor data, the

middleware queries the DynamoDB for the requested sensor data, then delivers

DynamoDB query result to the requestor.

 AWS RDS is Amazons Relational Database service. The middleware uses an AWS

RDS instance as a host for the middleware information model described in

chapter3.

69

 Middleware Prototype

The middleware prototype was developed using Java Spring Boot Framework [65]. Spring

Boot is a popular Java framework for developing enterprise web applications. The

prototype has a graphical user interface that consists of two major components: user

management and sensor management. The user management component is used for user

registration and management. The sensor management component is used by sensor

owners to add their sensors to the middleware. Besides, the middleware prototype provides

a RESTful API interface through which client application can access sensor data. The

Restful API is documented using Swagger API documentation Framework 72]. Figure 23

depicts the mapping between the used technologies and the proposed architecture.

Figure 23 Mapping Middleware Implementation to the proposed Architecture.

70

 Communication Protocols

The middleware prototype uses two different communication protocols which are MQTT

protocol to communicate with sensors, and the Server-Sent Events protocol to push sensor

data to client applications.

 MQTT

MQTT stands for (Message Queue Telemetry Transport). MQTT is an Internet of Things

communication protocol that is designed to be an extremely lightweight publish-subscribe

messaging transport for lower powered devices [64]. The middleware prototype uses

MQTT through Eclipse Paho Java Client [60].

 Server-Sent Events

The middleware uses Server-Sent Events (SSE) to push sensor data to client applications,

upon sensor data arrival, in a form of server notification to a client application. The SSE is

a unidirectional communication protocol that allows the server to push data to a client. SSE

is built on top of HTTP [69].

 Sensor Gateway

The Sensor Gateway is a low powered computer that is used to connect sensors to the

middleware. In our prototype, sensors are attached to a Raspberry Pi 2 [67] with Quad-

Core 900 MHz CPU and 1GB RAM. The Raspberry Pi uses an operating system called

Raspbian, a Debian-based computer operating system. Raspbian is highly optimized for

the Raspberry Pi line's low-performance ARM CPUs [66]. In our implementation, sensors

are attached to the Raspberry Pi through the GPIO Pins [68].

 Data Dispatcher

Data Dispatcher is a Node JS application that runs on the Raspberry Pi. The Data

Dispatcher reads sensor data through the Raspberry PI GPIO Pins and sends sensor data to

the AWS MQTT Broker that delivers sensor data to the middleware. The Data Dispatcher

uses the AWS IoT SDK to communicate with the AWS MQTT Broker.

71

 Query Parser

The middleware Query Parser is built on top of an open source tool called JSqlParser [62].

JSqlParser translates SQL statements to a traversable hierarchy of Java classes.

 In-Memory Database engine

The middleware uses MongoDB as an In-Memory repository to store sensor data for

window operation. MongoDB has a component called storage manager responsible for how

data is stored. As our prototype aim is to perform stream processing, we used MongoDB

In-Memory storage engine to speed up stream processing tasks. MongoDB In-Memory

Storage engine is available on MongoDB Enterprise edition [63].

72

Chapter 6

6 Experimental Design and Results

This chapter describes the performance of the Sensing as a Service middleware described

in chapter 4. The goal of the evaluation is to observe the middleware’s performance when

it’s flooded with client application requests for sensor data. Section 6.1 describes the

experimental environment, section 6.2 describes the experimental parameters and

scenarios, section 6.3 describes the evaluation metrics, and section 6.4 describes the

experimental results of the proposed Sensing as a Service Middleware in terms of response

time, memory consumption, and CPU utilization.

 Experimental setup

This section describes the experimental setup.

Figure 24 Experimental Setup.

 Cloud Deployment

We deployed the proposed middleware in an AWS EC2 instance that is designed to support

applications that perform heavy in-memory processing [59]. The AWS instance type used

is r4.16xlarge. This instance has a 488 GB Memory and 32 physical CPUs that provide a

total of 64 cores. The instance uses the Amazon Linux operating system. The instance

version of the operating system is amzn-ami-hvm-2017.03.1.20170623-x86_64-gp2 (ami-

6df1e514). In addition, we deployed the middleware database in an AWS RDS (Amazon

73

Relational Database Service) instance [54]. The type of the RDS instance is

db.m4.10xlarge. The middleware instance and the database instance are hosted in

Amazon’s us-west-2a region (e.g., Oregon, US) [57].

 Sensor Setup

The sensor used in the experiments is the DHT11 Humiture sensor [64] that senses

temperature and humidity. The sensor is attached to a Raspberry Pi [67] computer where

the Data Dispatcher service is deployed. The Data Dispatcher is an application written in

NodeJS using the AWS IoT developer SDK [58]. The Data Dispatcher reads sensor

observations and sends these observations to the AWS IoT Publish-Subscribe broker [56].

The broker is hosted in amazon’s us-west-2a region (e.g., Oregon, US) [57].

 Stress Testing Tool

The Gatling Load Testing [61] is the load generation tool used in the experiments. Gatling

is an open-source load and performance testing framework based on Scala. We used

Gatling to generate virtual users that flood the middleware with client requests. Gatling

testing scenarios are written in Scala.

 Experimental Scenarios and Parameters

We used three scenarios in which virtual client applications, simulated by the load testing

framework, send requests to the middleware. The requests are queries in which client

applications demand live sensor data for a future period of time. In each testing scenario,

we ran eight experiments, so the total number of experiments is 24. In the first scenario,

the users send Raw Data queries. In the second scenario, the users send Time-based

Tumbling Window queries, and the middleware uses the single buffer algorithm to store

sensor data for window operations. In the third scenario, the users send Time-based

Tumbling Window queries and the middleware creates a buffer for each client query in

order to store sensor data for window operations. The queries used in the scenarios use the

following format:

 First Scenario: In this scenario, clients request to receive raw sensor data for

the next five minutes (e.g., 300 seconds) using a pricing policy which states that

74

a client should receive a message every second. The query for this scenario

takes the following format.

Select temp, hum from DHT11 Using 1 For 300;

 Second and Third Scenarios: In these scenarios, client applications request that

the middleware buffer sensor data for 30 seconds then executes the aggregation

functions over the buffered data. The query for those scenarios takes the

following format:

Select avg(temp), avg(hum), max(temp), max(hum) from DHT11 Window 30

Using 1 For 300;

For each scenario, the experimental parameters include the length of query session (e.g.,

for how long each query runs), the number of client applications, buffer management

algorithm (for second and third scenarios). We set the experimental parameters as follows:

For all testing scenarios, the query session length was set to 5 minutes, the number of

sensors was one and the number of client applications took the following values: 1, 10, 50,

100, 250, 500, 750, and 1000.

It’s important to note that we configured the load testing framework not to send the number

of requests at once to avoid Amazon’s firewall request rejection. Instead, we set the load

testing framework to send the request over a period of time (i.e., 180 seconds for 1000

request). In addition, the reason we limit the number of client application requests to 1000

is that the Tomcat server [71] that runs the middleware kept crashing whenever the number

of the sent requests exceeded 1500 requests which represent the maximum number of

requests that can be received by the Tomcat server. Although this is configurable, we do

not have the permissions to do so.

 Evaluation Metrics

We used three metrics to evaluate the middleware performance in our experiments. Our

evaluation metrics include Response Time, Memory Consumption, and CPU utilization.

Per client request response time: The response time represents the period of time that a

client application needs to wait to receive the submitted query results. For example, in the

first scenario, a client application sends a query to request raw sensor data for the next 5

75

minutes using a pricing policy that has a frequency of one second, so the middleware needs

to push the sensor data to the client application every second in the upcoming five minutes.

The response time represents how long it took the client to receive the requested number

of sensor messages. We measure the response time as the difference between the request

issuing time (tstart) and the time when the client has received all query results (tend).

 responseTime = tend - tstart

Memory consumption: Memory consumption represents the amount of memory used by

the middleware during an experiment. For each experiment, we monitor memory

consumption values every second for the duration of the experiment. The collected values

are Total memory assigned by the Java Virtual Machine (JVM) to the middleware, the free

and, the used portions of the assigned memory. In addition, for the second and third

scenarios, we measure the size of the sensor buffer.

CPU utilization: For each experiment, the CPU utilization represents the maximum CPU

usage value for the duration of the experiment. Those values are collected using the AWS

Cloud watch service [51] that monitors the AWS EC2 instance while it’s running.

 Results

In this section, we present the results of the middleware performance in the three testing

scenarios. Moreover, we compare the middleware performance when using the single

buffer vs multiple buffers. Section 6.4.1 presents the First Testing scenario results.

Section 6.4.2 presents the second testing scenario results. Section 6.4.3 presents the third

testing scenario results. In section 6.5, we discuss the evaluation results.

 First Scenario

In this section, we present the response time results for the first scenario in which client

applications send Raw Data Queries to the middleware.

6.4.1.1 Response Time

Table 1 presents the response time for the first scenario’s experiments. The table shows

that the number of client applications significantly affects the response time. For example,

in the 1000 client application experiment, the delay reaches 108 seconds which means that

76

there was a client application that had to wait 6 minutes and 48 seconds to receive all query

results. However, the minimum response time has been slightly affected by the number of

client applications. Moreover, the table shows that the standarad deviation increases as the

number of client application increases. The increase in standard deviation indicates the

wide range of response time values which means that not all client applications experienced

significant latency. The rationale for this behavior is attributed to the Data Transmitter

design. Our design aims to reduce the network traffic by minimizing the number of

connections between the middleware and the AWS publish-subscribe broker, so the Data

Transmitter connects to the middleware on behalf of the client applications and whenever

the Data Transmitter receivesa sensor data tuple, the Data Transmitter goes over a list of

client application (Query Registry) to deliver the sensor tuple to each client on the list. It’s

obvious that client applications at the end of the list experienced a significant delay in

response time. However, the results show that our Data Transmitter design provided

consistent performance up until 500 client applications.

Table 1 First Scenario Response Time.

Number Of Client

Applications
Min Max Mean Std Deviation

1 301198 ms 301198 ms 301198 ms 0 ms

10 299706 ms 301015 ms 300317 ms 441 ms

50 299735 ms 301291 ms 300731 ms 541 ms

100 299697 ms 301054 ms 300132 ms 295 ms

250 299537 ms 310821 ms 302857 ms 2983 ms

500 298415 ms 306126 ms 301944 ms 2352 ms

750 300528 ms 342542 ms 346194 ms 10292 ms

1000 303655 ms 408517 ms 346194 ms 20922 ms

77

Figure 25 First Scenario Response Time Distribution For the duration of 1000 client

application expriement.

Figure 25 depicts the response time distribution for the 1000 client application experiment.

The figure shows that response time was 359238 ms for 21.83 % of the requests. Moreover,

the figure shows that around 55 % of the requests failed to receive complete query results

by the time the Load Testing Framework closed the connections with the middleware. The

load testing framework was configured to wait at most 420 seconds to receive all messages.

When the request time passes 420 seconds (e.g., 7 Minutes), Gatling considered the request

as a failed request and closed the connection with the middleware.

6.4.1.2 Memory Consumption

In this section, we present the memory consumption results for the first scenario

experiments. Table 2 presents the values of the minimum, maximum, median, average and

the standard deviation of the used memory for each experiment. The values are collected

every second throughout an experiment. The table shows that the middleware memory

consumption rate increases as the number of client application requests increase.

78

Table 2 Memory Usage for the first scenario experiments

Number of Client

Applications
Min Max Median

Average
Std Deviation

1 194 MB 863 MB 519 MB 522.65 MB 191.20 MB

10 122 MB 1089 MB 384 MB 433 MB 273 MB

50 79 MB 1202 MB 726 MB 704 MB 274 MB

100 77 MB 1215 MB 679 MB 645 MB 289 MB

250 103 MB 2969 MB 789 MB 983 MB 671 MB

500 79 MB 10401 MB 3524 MB 4001 MB 2993 MB

750 78 MB 10410 MB 2014 MB 3111 MB 2693 MB

1000 89 MB 10523 MB 3496 MB 4149 MB 2954 MB

In addition, Figure 26 shows the cumulative distribution function for the total allocated

memory, free memory and the used memory for the duration of the 1000 client application

request experiment. The figure shows that for 50% of the experiment time, the used

memory was around 5000 MB.

Figure 26 Cumulative Distribution Function for memory consumption during 1000

client application request for the first scenario.

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000 12000

CDF for First Secnario with 1000 Client application

Toal Memory[%] Free Memory [%] Used Memory [%]

79

6.4.1.3 CPU Utilization

In this section, we present the CPU usage for the first scenario experiments. Figure 27

depicts the maximum CPU usage for each experiment. The figure shows that the CPU

usage sharply increased as the number of client application goes over 250.

Figure 27 First Scenario Experiments CPU usage.

 Second Testing Scenario

In this section, we present the response time results for the second testing scenario in which

client applications submit Time-Based Tumbling Window Queries and the middleware

uses a single buffer to store sensor data for window operations.

6.4.2.1 Response Time

Table 3 presents the values of minimum, maximum, mean, and the standard deviation of

response times for each experiment. The values are represented in milliseconds.

Table 3 shows that the response time in the second scenario’s experiments has not been

affected by the number of client application as the response time will be at most increased

by 3 seconds. This is because of the reduced message delivery overhead.

0.5 0.9 0.89

10.012
14.7

51.064

62.5

96.54

0

10

20

30

40

50

60

70

80

90

100

1 10 50 100 250 500 750 1000

CPU Usage

80

Table 3 Second Scenario Response Time.

Number Of Client

Applications
Min Max Mean Std Deviation

1 301628 ms 301628 ms 301628 ms 0 ms

10 300215 ms 301599 ms 300676 ms 499 ms

50 300154 ms 301579 ms 300642 ms 252 ms

100 300240 ms 301655 ms 300637 ms 276 ms

250 300034 ms 302047 ms 300562 ms 347 ms

500 300011 ms 302817 ms 300636 ms 395 ms

750 300047 ms 302716 ms 300597 ms 356 ms

1000 300405 ms 303465 ms 300634 ms 423 ms

To illustrate, when executing Time-based Tumbling Window queries using the single

buffer algorithm, the Data Transmitter does not deliver query results to client applications

as this task is assigned to the query workers. Whenever the Data Transmitter receives a

sensor data tuple, the Data Transmitter stores these tuples in the sensor buffer. The query

workers concurrently read from the buffer using the buffer subset extraction algorithm and

deliver the window result to client applications. The response time distribution for the 1000

client application requests is graphically depicted in Figure 28.

Figure 28 Response Time Distribution for the second Scenario with 1000 client

Applications.

81

6.4.2.2 Memory Consumption

In this section, we present the memory consumption results for the second scenario. Table

4 presents the values of the minimum, maximum, median, average and the standard

deviation of the middleware memory consumption during each experiment. The values are

collected every second throughout each experiment.

Table 4 Memory Usage for the second scenario experiments

Number of Client

Applications
Min Max Median

Average
Std Deviation

1 128 MB 1049 MB 489 MB 645 MB 349 MB

10 85 MB 1052 MB 627 MB 632 MB 236 MB

50 79 MB 1202 MB 726 MB 704 MB 274 MB

100 77 MB 1215 MB 679 MB 645 MB 289 MB

250 103 MB 2969 MB 789 MB 983 MB 671 MB

500 79 MB 10401 MB 3524 MB 4001 MB 2993 MB

750 78 MB 10410 MB 2014 MB 3111 MB 2693 MB

1000 89 MB 10523 MB 3496 MB 4149 MB 2954 MB

It’s obvious that the middleware uses more memory as the number of client applications

increases. However, every time the garbage collection is triggered, it sharply decreases the

amount of used memory. Figure 29 graphically depicts the memory usage for the duration

of the 1000 client applications experiment. The figure shows how the garbage collection

actively decreases the amount of used memory. However, as the server has 488 GB RAM,

the Java Virtual Machine can allocate more RAM to the application. Figure 30 shows the

cumulative distribution function for the total allocated memory, free memory and the used

memory for the duration of the 1000 client application request experiment. The figure

shows that for 50% of the duration of the experiment, the used memory was around 4825

MB.

82

Figure 29 Memory Consumption.

Figure 30 CDF for the duration of the 1000 client application request in the Second

Scenario.

In addition, Table 5 shows that the amount of memory used for the sensor data buffer

remained the same for all experiments because the middleware used a single buffer to store

sensor data.

Table 5 Buffer size information during 1000 client application experiment.

Sensor Data Buffer

Minimum 0

Maximum 41.28 KB

Average 28.83 KB

Median 35.068KB

Standard Deviation 13.94 KB

0

2000

4000

6000

8000

10000

12000

14000

1

1
3

2
5

3
7

4
9

6
1

7
3

8
5

9
7

1
0

9

1
2

1

1
3

3

1
4

5

1
5

7

1
6

9

1
8

1

1
9

3

2
0

5

2
1

7

2
2

9

2
4

1

2
5

3

2
6

5

2
7

7

2
8

9

3
0

1

3
1

3

3
2

5

3
3

7

3
4

9

3
6

1

3
7

3

3
8

5

3
9

7

Total Memory Free Memory Used Memory

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000 12000 14000

Used Memory [%] Free Memory Total Memory

83

6.4.2.3 CPU Utilization

In this section, we present the CPU utilization for the second scenario experiments. Figure

3 depicts the maximum CPU usage for each experiment. The figure shows that the CPU

usage increases as the number of client applications increase. However, the maximum

value for the middleware CPU usage was just 35.77% during the 1000 client application

experiment. In comparison to other scenarios, the reduced processing assigned to the Data

Transmitter resulted in less CPU usage.

Figure 31 CUP usage in second scenario experiments.

 Third Testing Scenario

In this section, we present the response time results for the third testing scenario in which

client applications submit Time-Based Tumbling Window Queries and the middleware

creates a buffer for each client application request to store sensor data for window

operations.

6.4.3.1 Response Time

Table 6 presents the values of minimum, maximum, mean, and the standard deviation of

response times for each experiment. The values are represented in milliseconds. Table 6

shows that the response time is affected by the number of client applications. The table

0.5 0.5 0.64 0.66 2.2
8.39

11.62

35.77

0

10

20

30

40

50

60

70

80

90

100

1 10 50 100 250 500 750 1000

CPU Usage

84

shows the there was a delay of 97 seconds in the 1000 client application requests

experiment. Unlike the second testing in which the Data Transmitter stores the sensor data

in a single buffer, in the third testing scenario, every client application has a buffer.

Whenever the Data Transmitter receives a sensor data tuple, the Data Transmitter needs to

go over the Query Registry and store the received tuple in each client application buffer.

Consequently, client applications at the end of the list experience an increased delay as the

number of client application goes over 250.

Table 6 Third Scenario Response Time.

Number Of Client

Applications
Min Max Mean Std Deviation

1 301602 ms 301602 ms 301602 ms 0 ms

10 300733 ms 301599 ms 300833 ms 256 ms

50 300087 ms 301562 ms 300659 ms 325 ms

100 300774 ms 335173 ms 310771 ms 12752 ms

250 298566 ms 302083 ms 300736 ms 423 ms

500 300256 ms 311070 ms 305777 ms 2905 ms

750 300157 ms 313238 ms 307641 ms 3244 ms

1000 308039 ms 397429 ms 348350 ms 21383 ms

The response time distribution for the 1000 client application experiment is graphically

depicted in Figure 32. The figure shows that 3.76 % of client application waited 361226

ms to receive the results of their submitted queries. Overall, the figure shows how the

number of client applications affected the response time as the minimum response time in

the experiment was 308486 ms (8 seconds).

85

Figure 32 Response Time distribution for the Third Scenario with 1000 client

applications.

6.4.3.2 Memory Consumption

In this section, we present the memory consumption results for the third scenario. Table 7

presents the values of the minimum, maximum, median, average and the standard deviation

of the middleware memory consumption during each experiment. The values are collected

on every second throughout each experiment. The table shows that the middleware memory

consumption rate increases as the number of client application requests increase.

 Figure 33 shows the cumulative distribution function for the total allocated memory, free

memory and the used memory for the duration of the 1000 client application request

experiment. In addition, the amount of memory used for the sensor data buffer increases

with the number of client applications. Table 8 shows the size of 1000 client application

buffer for the 1000 client application experiment. A comparison of Table 5 and Table 8

shows how the single buffer approach significantly decreases the size of sensor data buffer.

86

Table 7 Memory Usage for the third scenario experiments.

Number of Client

Applications
Min Max Median

Average
Std Deviation

1 90 MB 828 MB 506 MB 503.71 MB 192.53 MB

10 104 MB 1038 MB 605 MB 593.06MB 230.12 MB

50 75 MB 1996 MB 759 MB 811.60 MB 506.10 MB

100 89 MB 9233 MB 2106 MB 2409.51 MB 1577.58 MB

250 79 MB 5887 MB 1893 MB 2060 MB 1460 MB

500 78 MB 10385 MB 4370.5 MB 4612.19 MB 3110.69 MB

750 89 MB 10512 MB 4545 MB 4730.48 MB 3165.57 MB

1000 79 MB 10487 MB 5317 MB 5195 MB 2907 MB

Figure 33 Cumulative Distribution Function for memory consumption during 1000

client application request for the third scenario.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000 12000

Total Memory [%] Free Memory [%] Used Memory [%]

87

Table 8 Sensor Buffer Size throughout the 1000 client application experiment in the

third scenario.

Sensor Data Buffer

Minimum 0

Maximum 6063.88 KB

Average 2885.56 KB

Median 3476.14 KB

Standard Deviation 1675.57 KB

6.4.3.3 CPU utilization

In this section, we present the CPU usage for the first scenario experiments. Figure 34

depicts the maximum CPU usage for each experiment. The figure shows that the CPU

usage increases as the number of client applications increase. The figure shows that the

CPU usage is sharply increased as the number of client application goes over 250.

Figure 34 Third Scenario Experiments CPU usage

 Experimental Discussion

We observe that the second testing scenario experiments provided the best results in terms

of response time, memory consumption, and CPU usage as the number of client

applications increases. In this section, we discuss the reasons for different middleware

behavior in the three scenarios.

88

First, the second scenario experiments provided the lowest response time as the number of

client applications increased. On the other hand, the response time for the first and third

scenarios sharply increases when the number of client applications passes 250 client

applications. This behavior is mostly attributed to the Data Transmitter design. In the

second testing scenario, the Data Transmitter is assigned a simple task in which the Data

Transmitter stores sensor messages in a single sensor buffer. On the contrary, more

processing is assigned to the Data Transmitter in the first and third testing scenarios. In the

first testing scenario, the Data Transmitter delivers each sensor message to all client

applications using the Server-Sent Events protocol (SSE) [73] which increases response

time for client applications at the end of the Query Registry as the Data Transmitter has to

push the message to several SSE channels. In the third testing scenario, the Data

Transmitter stores each sensor message in every client application buffer, yet the query

result delivery is assigned to query workers. As the number of client applications increases,

the Data Transmitter needs more time to store a sensor message in all client application

buffers which results in a sharp increase in response time. To illustrate, a query worker is

a thread that executes the aggregation functions at the end of each window (e.g., every 30

seconds), delivers the window results to the client application over the SSE and then sleeps

for the window size (30 seconds). When the Query Worker wakes in order to execute the

query over a client application sensor buffer, the Query Worker checks if the buffer has the

required number of tuples to execute the query. If the buffer does not have the required

number of tuples, the query worker waits until the number of tuples reaches the required

number tuples to execute the query. In our experiments, the buffer should have 30 tuples

for every window execution. This is because client applications used a window of size 30

seconds and a pricing policy which allows client applications to receive sensor data every

second. A delay in delivering sensor tuples to client application buffers results in longer

waits for the buffer size to reach the required number of window tuples which increases

the response time for client applications.

Second, the three testing scenarios show a similar behavior for memory consumption. The

used memory is increased with the number of client applications. Table 2, Table 4, and

Table 7 show that middleware memory consumption was almost the same in the first and

second scenarios while the third scenario experiments consumed slightly more memory.

89

Overall, the middleware, on average, used around 4500 MB during the 1000 client

application experiment in the three scenarios. It’s important to note that memory allocation

and management is controlled by the Java Virtual Machine (JVM) and the frequency of

memory freeing depends on the size of available RAM. To illustrate, the EC2 instance that

hosts the middleware has 488 GB RAM. Table 2, Table 4, and Table 7 show that the

average of memory usage for 500 client application experiments in the three testing

scenarios was around 4000 MB. We ran the experiment of 500 client applications on a

computer that has 16 GB RAM, and the used memory never passed 1500 MB as shown in

Figure 35.

Figure 35 Memory Usage for 500 client application experiment on a machine that

has 16 GB RAM.

In addition, the second testing scenario shows that buffer management significantly

decreases the memory used for sensor data buffer. Figure 36 shows the cumulative

distribution function graph for the in-memory storage size used by the second and the third

testing scenarios in the 1000 client application experiments. The figure shows that for the

duration of the two experiments, 50% of the storage size measurements were around 33

KB for the second testing scenario (e.g., single buffer scenario) whereas 50% of the storage

size measurements was around 3500 KB for the third testing scenario (e.g., buffer per client

scenario).

90

Finally, Figure 27, Figure 31, and Figure 34 show that the second testing scenario CPU

usage was significantly lower than the first and the third testing scenarios in all experiments

which might be a result of less processing tasks assigned to the Data Transmitter in the

second testing scenario.

Figure 36 cumulative distribution function graph for the in-memory storage size in

the second and third testing scenarios.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000 7000

Buffer per Client Single Buffer

91

Chapter 7

7 Conclusion and Future Work

 Conclusion

Recent advancement in information technology has increased the number of devices that

are connected to the Internet which has resulted in the emerging phenomenon known as

the Internet of Things (IoT). However, the problem with IoT devices is that they are

heterogeneous and owned by different organizations and individuals which makes IoT data

sharing a real challenge. This thesis addresses the architectural design and implementation

of sensing as a service middleware for the Internet of Things.

In this thesis, we proposed and implemented a cloud-based sensing as a service middleware

that enables sensor data sharing for IoT applications. Our middleware decouples IoT

applications from the underlying IoT infrastructure. The middleware provides an

abstraction layer which enables developers to access sensors, owned by other entities, over

the Internet using a SQL-like query language that supports data filtering and aggregation

operation over sensor data streams using continuous query semantic. Client applications

are charged for the amount of sensor data they consume using a pay-as-you-go pricing

model specified by sensor owners. In addition, we proposed multitenancy algorithms to

reduce network traffic and cloud resource consumption. More specifically, we proposed

buffer management techniques to reduce the amount of RAM used for sensor stream

processing operations using algorithms proposed in Chapter 4. Furthermore, we proposed

an algorithm to minimize the number of connections between the middleware and the

publish-subscribe broker using the Data Transmitter algorithm in Chapter 4.

 Future Work

In this thesis, we built a proof-of-concept Sensing as a Service middleware for the Internet

of Things. Although our implementation performed well in a real-world deployment, there

92

are several challenges that need to be addressed to improve the middleware performance

and support more features.

First, the experiments show that the Data Transmitter design requires more development

to provide better response time. The experiments show that response time is increased is

increased when the number of client applications, requesting the same sensor data, is

increased. Our Data Transmitter design minimizes the number of connections between the

middleware and the publish-subscribe Broker by not opening more than a single connection

for each sensor despite the number of client applications requesting the sensor data. The

experiments show that this design becomes unfeasible when the number of client

applications goes over 250 clients. With that being said, it might be useful if the

middleware creates multiple Data Transmitters per sensor and each Data Transmitter opens

a single connection with the Publish-Subscribe broker and serves a maximum of 250 client

applications.

Second, subset extraction algorithm proposed in chapter 4 needs more development to deal

with sensor messages delay. The algorithm assumes that sensor messages arrive in the

exact frequency that sensor owner specifies in sensor registration. If a sensor message

experienced a delay, the algorithm would not be able to recognize it. As a result, client

application window subset might have tuples less than its number of required tuples. For

instance, the algorithm might retrieve four tuples while the window subset is supposed to

be five tuples. Although we did not encounter this problem during the experiments, it’s

likely to happen if sensor messages experienced an unexpected delay.

Third, despite the middleware prototype ability to connect to billions of sensors through

the cloud-based Publish-Subscribe broker, the middleware prototype cannot serve a high

number of client applications, and the middleware is susceptible to a single point of failure

in case the middleware crashed because of a high number of client application requests.

There are many solutions to this problem. For example, it’s possible to run to middleware

in several servers and use load balancing techniques to keep the middleware instances

running. Another solution might be to develop a distributed version of the middleware in

which the tasks assigned to the middleware are assigned to a set of nodes that work together

in a collaborative fashion. Medusa [46], Borealis [2], and Stream Cloud [22] are good

93

examples of such distributed design as they provide fallback mechanisms that help the

middleware to cope with spikes in workload.

Fourth, the sensing discovery module requires more development to support sensing

discovery queries described in chapter 3. Currently, our implementation does not provide

full support to search the information model proposed in chapter 3. As a proof of concept,

we limit our implementation to list out sensor deployed in a given city. Moreover, sensor

search techniques proposed in CASSARAM [33] might be considered to improve sensor

search operations when the number of sensors is large. Furthermore, the sensing discovery

module should be deployed on a separate server to reduce the workload as Sensing

discovery operations and stream processing operation are completely separate operations.

Fifth, the stream processor, and query parser components require more development to

support query operations such as Join and Merge. Currently, a client application submits a

select statement to query a single sensor. As the Join and Merge operations are supported

by the in-memory stream buffer repository (e.g., MongoDB), the middleware can support

those operations with more development on the stream processor and query parser

components.

Sixth, the middleware needs to adopt fault tolerance techniques to deal with situations

when sensor connectivity is lost. This can be done by either looking for another sensor in

the same area to carry out the sensing operations. Another technique might be to use

machine learning techniques to predict sensor readings based on the historical sensor data.

Finally, cloud platforms have powerful stream analytics services that can be used by the

stream processor component to support complex stream analytics operations. Services such

as AWS Kinesis [53], and IBM Watson [74] have great potential to extend the middleware

stream processing operations if they have APIs through which the stream processor can

direct the sensor stream to the analytics service and instructs the analytics service to carry

out the client application request. Then, when the analytical service finishes the work, the

result can be delivered to the client application via the middleware stream processor

component. We tried to use AWS kinesis through the stream processor component.

However, we found that AWS kinesis does not have a programmable interface, so stream

analytics operations have to be configured manually, and thus the service cannot be used

94

to carry out client applications stream analytics tasks. Nevertheless, when Amazon builds

an API for Kinesis, the service can significantly improve the middleware analytics

capabilities.

95

8 References

1. Abadi, Daniel J., et al. "Aurora: a new model and architecture for data stream

management." The VLDB Journal—The International Journal on Very Large Data

Bases 12.2 (2003): 120-139.

2. Abadi, Daniel J., et al. "The Design of the Borealis Stream Processing Engine."

Cidr. Vol. 5. No. 2005. 2005.

3. Abdelwahab, Sherif, et al. "Cloud of things for sensing as a service: sensing

resource discovery and virtualization." Global Communications Conference

(GLOBECOM), 2015 IEEE. IEEE, 2015.

4. Abdelwahab, Sherif, et al. "Enabling smart cloud services through remote sensing:

An internet of everything enabler." IEEE Internet of Things Journal 1.3 (2014):

276-288.

5. Akyildiz, Ian F., et al. "A survey on sensor networks." IEEE Communications

magazine 40.8 (2002): 102-114.

6. Arasu, Arvind, et al. "Stream: The stanford data stream management system." Data

Stream Management. Springer Berlin Heidelberg, 2016. 317-336.

7. Arasu, Arvind, et al. "STREAM: the stanford stream data manager (demonstration

description)." Proceedings of the 2003 ACM SIGMOD international conference on

Management of data. ACM, 2003.

8. Arasu, Arvind, Shivnath Babu, and Jennifer Widom. "The CQL continuous query

language: semantic foundations and query execution." The VLDB Journal—The

International Journal on Very Large Data Bases 15.2 (2006): 121-142.

9. Balazinska, Magdalena, Hari Balakrishnan, and Michael Stonebraker. "Load

management and high availability in the Medusa distributed stream processing

system." Proceedings of the 2004 ACM SIGMOD international conference on

Management of data. ACM, 2004.

10. Bonnet, Philippe, Johannes Gehrke, and Praveen Seshadri. "Towards sensor

database systems." Mobile Data Management. Springer Berlin/Heidelberg, 2001.

96

11. Bradley, Joseph, Joel Barbier, and Doug Handler. "Embracing the internet of

everything to capture your share of $14.4 trillion." White Paper, Cisco (2013).

12. Carney, Don, et al. "Operator scheduling in a data stream manager." Proceedings

of the 29th international conference on Very large data bases-Volume 29. VLDB

Endowment, 2003.

13. Chandrasekaran, Sirish, and Michael J. Franklin. "Streaming queries over

streaming data." Proceedings of the 28th international conference on Very Large

Data Bases. VLDB Endowment, 2002.

14. Chandrasekaran, Sirish, et al. "TelegraphCQ: continuous dataflow

processing." Proceedings of the 2003 ACM SIGMOD international conference on

Management of data. ACM, 2003.

15. Compton, Michael, et al. "The SSN ontology of the W3C semantic sensor network

incubator group." Web semantics: science, services and agents on the World Wide

Web 17 (2012): 25-32.

16. Corcho, Oscar, and Raúl García-Castro. "Five challenges for the semantic sensor

web." Semantic Web 1.1, 2 (2010): 121-125.

17. Cranor, Charles D., Theodore Johnson, and Oliver Spatscheck. "Stream Processing

Techniques for Network Management." Data Stream Management. Springer Berlin

Heidelberg, 2016. 431-449.

18. Cranor, Chuck, et al. "Gigascope: High performance network monitoring with an

SQL interface." Proceedings of the 2002 ACM SIGMOD international conference

on Management of data. ACM, 2002.

19. da Rocha, Atslands R., et al. "A semantic middleware for autonomic wireless sensor

networks." Proceedings of the 2009 workshop on middleware for ubiquitous and

pervasive systems. ACM, 2009.

20. Eisenhauer, Markus, Peter Rosengren, and Pablo Antolin. "A development

platform for integrating wireless devices and sensors into ambient intelligence

systems." Sensor, Mesh and Ad Hoc Communications and Networks Workshops,

2009. SECON Workshops' 09. 6th Annual IEEE Communications Society

Conference on. IEEE, 2009.

97

21. Giffinger, Rudolf, et al. "Smart cities. Ranking of European medium-sized cities,

Final Report, Centre of Regional Science, Vienna UT." (2007): 303-320.

22. Gulisano, Vincenzo, et al. "Streamcloud: An elastic and scalable data streaming

system." IEEE Transactions on Parallel and Distributed Systems 23.12 (2012):

2351-2365.

23. Huang, Vincent, and Muhammad Kashif Javed. "Semantic sensor information

description and processing." Sensor Technologies and Applications, 2008.

SENSORCOMM'08. Second International Conference on. IEEE, 2008.

24. Issarny, Valerie, Mauro Caporuscio, and Nikolaos Georgantas. "A perspective on

the future of middleware-based software engineering." 2007 Future of Software

Engineering. IEEE Computer Society, 2007.

25. Johnson, Theodore, et al. "A heartbeat mechanism and its application in

gigascope." Proceedings of the 31st international conference on Very large data

bases. VLDB Endowment, 2005.

26. Kim, Mihui, et al. "Developing an On-Demand Cloud-Based Sensing-as-a-Service

System for Internet of Things." Journal of Computer Networks and

Communications 2016 (2016).

27. Lee, Kwang-Won, Jung-Hwan Park, and Ryum-Duck Oh. "Design of active

semantic middleware system to support incomplete sensor information based on

ubiquitous sensor network." Application of Information and Communication

Technologies (AICT), 2010 4th International Conference on. IEEE, 2010.

28. Le-Phuoc, Danh, et al. "The linked sensor middleware–connecting the real world

and the semantic web." Proceedings of the Semantic Web Challenge 152 (2011):

22-23.

29. Madden, Samuel, et al. "Continuously adaptive continuous queries over

streams." Proceedings of the 2002 ACM SIGMOD international conference on

Management of data. ACM, 2002.

30. P. Guillemin and P. Friess. (2009). Internet of things strategic research roadmap.

Technical report, The Cluster of European Research Projects.

31. Patroumpas, Kostas, and Timos Sellis. "Window specification over data streams."

Current Trends in Database Technology–EDBT 2006 (2006): 445-464.

98

32. Perera, Charith, et al. "Sensing as a service model for smart cities supported by

internet of things." Transactions on Emerging Telecommunications Technologies

25.1 (2014): 81-93.

33. Perera, Charith, et al. "Sensor search techniques for sensing as a service architecture

for the internet of things." IEEE Sensors Journal 14.2 (2014): 406-420.

34. Perera, Charith, Chi Harold Liu, and Srimal Jayawardena. "The emerging internet

of things marketplace from an industrial perspective: A survey." IEEE Transactions

on Emerging Topics in Computing 3.4 (2015): 585-598.

35. Shah, Mehul A., et al. "Flux: An adaptive partitioning operator for continuous query

systems." Data Engineering, 2003. Proceedings. 19th International Conference on.

IEEE, 2003.

36. Shah, Mehul A., et al. "Java support for data-intensive systems: Experiences

building the Telegraph dataflow system." ACM Sigmod Record 30.4 (2001): 103-

114.

37. Sheng, Xiang, et al. "Sensing as a service: Challenges, solutions and future

directions." IEEE Sensors journal 13.10 (2013): 3733-3741.

38. Soldatos, John, et al. "Openiot: Open source internet-of-things in the cloud."

Interoperability and open-source solutions for the internet of things. Springer,

Cham, 2015. 13-25.

39. Stonebraker, Michael, Uǧur Çetintemel, and Stan Zdonik. "The 8 requirements of

real-time stream processing." ACM SIGMOD Record 34.4 (2005): 42-47.

40. Su, Kehua, Jie Li, and Hongbo Fu. "Smart city and the applications." Electronics,

Communications and Control (ICECC), 2011 International Conference on. IEEE,

2011.

41. Sundmaeker, Harald, et al. "Vision and challenges for realising the Internet of

Things." Cluster of European Research Projects on the Internet of Things, European

Commision 3.3 (2010): 34-36.

42. Tan, Lu, and Neng Wang. "Future internet: The internet of things." Advanced

Computer Theory and Engineering (ICACTE), 2010 3rd International Conference

on. Vol. 5. IEEE, 2010.

99

43. Wang, Meisong, et al. "City Data Fusion: Sensor Data Fusion in the Internet of

Things." International Journal of Distributed Systems and Technologies (IJDST)

7.1 (2016): 15-36.

44. Zafeiropoulos, A., et al. "Data Management in the Semantic Web, ser. Distributed,

Cluster and Grid Computing-Yi Pan (Georgia State University), Series Edito, H.

Jin, Ed." (2011).

45. Zafeiropoulos, Anastasios, et al. "A semantic-based architecture for sensor data

fusion." Mobile Ubiquitous Computing, Systems, Services and Technologies,

2008. UBICOMM'08. The Second International Conference on. IEEE, 2008.

46. Zhong, Jianlong, and Bingsheng He. "Medusa: A parallel graph processing system

on graphics processors." ACM SIGMOD Record 43.2 (2014): 35-40.

47. "5 Things To Know About The IBM Internet Of Things Foundation." Ibm.com.

N.p., 2017. Web. 23 July 2017.

48. "How AWS Iot Works - AWS Iot." Docs.aws.amazon.com. N.p., 2017. Web. 23

July 2017.

49. "IBM Bluemix Docs." Console.bluemix.net. N.p., 2017. Web. 23 July 2017.

50. "Microsoft Azure Iot Suite Overview." Docs.microsoft.com. N.p., 2017. Web. 23

July 2017.

51. Amazon Web Services, Inc. (2017). Amazon CloudWatch - Cloud & Network

Monitoring Services. [online] Available at: https://aws.amazon.com/cloudwatch/

[Accessed 20 Aug. 2017].

52. Amazon Web Services, Inc. (2017). Amazon DynamoDB Getting Started –

Amazon Web Services. [online] Available at:

https://aws.amazon.com/dynamodb/getting-started/ [Accessed 20 Aug. 2017].

53. Amazon Web Services, Inc. (2017). Amazon Kinesis Streams – Amazon Web

Services (AWS). [online] Available at: https://aws.amazon.com/kinesis/streams/

[Accessed 20 Aug. 2017].

54. Amazon Web Services, Inc. (2017). Amazon RDS for MySQL – Amazon Web

Services (AWS). [online] Available at: https://aws.amazon.com/rds/mysql/

[Accessed 20 Aug. 2017]

100

55. Amazon Web Services, Inc. (2017). What is AWS? - Amazon Web Services.

[online] Available at: https://aws.amazon.com/what-is-aws/ [Accessed 20 Aug.

2017].

56. Docs.aws.amazon.com. (2017). Message Broker for AWS IoT - AWS IoT. [online]

Available at: http://docs.aws.amazon.com/iot/latest/developerguide/iot-message-

broker.html [Accessed 20 Aug. 2017].

57. Docs.aws.amazon.com. (2017). Regions and Availability Zones - Amazon Elastic

Compute Cloud. [online] Available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-

availability-zones.html [Accessed 20 Aug. 2017].

58. Docs.aws.amazon.com. (2017). Using the AWS IoT Device SDK for JavaScript -

AWS IoT. [online] Available at:

http://docs.aws.amazon.com/iot/latest/developerguide/iot-device-sdk-node.html

[Accessed 20 Aug. 2017].

59. EC2, (2017). [online] Available at: https://www.amazonaws.cn/en/ec2/details/

[Accessed 20 Aug. 2017].

60. Eclipse Paho, (2017). [online] Available at: https://eclipse.org/paho/clients/java/

[Accessed 20 Aug. 2017].

61. Gatling Load and Performance testing. (2017). Gatling Load and Performance

testing - Open-source load and performance testing. [online] Available at:

http://gatling.io/ [Accessed 20 Aug. 2017].

62. GitHub. (2017). JSQLParser/JSqlParser. [online] Available at:

https://github.com/JSQLParser/JSqlParser/wiki [Accessed 20 Aug. 2017].

63. MongoDB, (2017). [online] Available at:

https://docs.mongodb.com/manual/core/storage-engine [Accessed 20 Aug. 2017].

64. Mqtt.org. (2017). MQTT. [online] Available at: http://mqtt.org/ [Accessed 23 Jul.

2017].

65. Projects.spring.io. (2017). Spring Boot. [online] Available at:

https://projects.spring.io/spring-boot/ [Accessed 20 Aug. 2017].

101

66. Raspberry Pi. (2017). Download Raspbian for Raspberry Pi. [online] Available at:

https://www.raspberrypi.org/downloads/raspbian/ [Accessed 20 Aug. 2017]

67. Raspberry Pi. (2017). Raspberry Pi 2 Model B - Raspberry Pi. [online] Available

at: https://www.raspberrypi.org/products/raspberry-pi-2-model-b/ [Accessed 20

Aug. 2017].

68. Raspberrypi.org. (2017). GPIO: Raspberry Pi Models A and B - Raspberry Pi

Documentation. [online] Available at:

https://www.raspberrypi.org/documentation/usage/gpio/ [Accessed 20 Aug. 2017].

69. Streamdata.io. (2017). Server-Sent Events explained with usecases. [online]

Available at: https://streamdata.io/blog/server-sent-events/ [Accessed 20 Aug.

2017]

70. Sunfounder.com. (2017). Humiture Sensor Module. [online] Available at:

https://www.sunfounder.com/humiture-sensor-module.html [Accessed 20 Aug.

2017].

71. Tomcat.apache.org. (2017). Apache Tomcat® - Apache Tomcat 8 Software

Downloads. [online] Available at: https://tomcat.apache.org/download-80.cgi

[Accessed 20 Aug. 2017].

72. Tools, S., Editor, S., Codegen, S., UI, S., Inspector, S., Tools, C., Integrations, O.,

Discussion, R., Forum, O. and Champions, S. (2017). World's Most Popular API

Framework | Swagger. [online] Swagger. Available at: https://swagger.io/

[Accessed 28 Aug. 2017].

73. W3.org. (2017). Server-Sent Events. [online] Available at:

https://www.w3.org/TR/eventsource/#server-sent-events-intro [Accessed 20 Aug.

2017].

74. Watson Analytics. (2017). Watson Analytics. [online] Available at:

https://www.ibm.com/watson-analytics [Accessed 20 Aug. 2017].

102

Appendices

Appendix A: Response Time Distribution for First Scenario experiments

Appendix A Figure 1: 1 client application.

Appendix A Figure 2 10 client applications.

Appendix A Figure 3: 50 client applications

103

Appendix A Figure 4: 100 client applications

Appendix A Figure 5: 250 client applications

Appendix A Figure 6: 500 client applications

104

Appendix A Figure 7: 750 client applications

105

Appendix B: Response Time Distribution for Second Scenarios experiments

Appendix B Figure 1: 1 client application

Appendix B Figure 2: 10 client applications

106

Appendix B Figure 3: 50 client applications

Appendix B Figure 4: 100 client applications

Appendix B Figure 5: 250 client applications

107

Appendix B Figure 6: 500 client applications

Appendix B Figure 7: 750 client applications

108

Appendix C: Response Time Distribution for third Scenarios experiments

Appendix C Figure 1: 1 client application

Appendix C Figure 2: 10 client applications

Appendix C Figure 3: 50 client applications

109

Appendix C Figure 4: 100 client applications

Appendix C Figure 5: 250 client applications

Appendix C Figure 6: 500 client applications

110

Appendix C Figure 7: 750 client applications

111

Appendix D: Middleware Prototype

Appendix D Figure 1 : Middleware Home Page.

Appendix D Figure 2: Sensing Discovery Module Interface.

112

Appendix D Figure 3: Live Stream Session.

Appendix D Figure 4: Sensor Management Module.

113

Appendix D Figure 5: Sensor Details.

Appendix D Figure 6: Billing Module.

114

Appendix D Figure 7: Observed Properties Page.

Appendix D Figure 8: Middleware Health Dashboard.

115

Appendix D Figure 9: API Documentation.

116

Curriculum Vitae

Name: Muhamed Alarbi

Post-secondary University of Tripoli

Education and Tripoli, Libya

Degrees: 2007-2011 B.Sc.

The University of Western Ontario

London, Ontario, Canada

2015-2017 M.Sc.

Honors and University of Tripoli Graduate Scholarship

Awards: 2014-2017

Related Work Teaching Assistant

Experience University of Tripoli

2013-2014

	Western University
	Scholarship@Western
	November 2017

	Middleware Architecture for Sensing as a Service
	Muhamed Alarbi
	Recommended Citation

	tmp.1509565541.pdf.GpoGo

