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Abstract 

The goal of an intelligent transportation system is to increase safety, convenience and 

efficiency in driving. Besides these obvious advantages, the integration of intelligent features 

and autonomous functionalities on vehicles will lead to major economic benefits from 

reduced fuel consumption to efficient exploitation of the road network.  

While giving this information to the driver can be useful, there is also the possibility of 

overloading the driver with too much information. Existing vehicles already have some 

mechanisms to take certain actions if the driver fails to act. Future vehicles will need more 

complex decision making modules which receive the raw data from all available sources, 

process this data and inform the driver about the existing or impending situations and 

suggest, or even take actions.  

Intelligent vehicles can take advantage of using different sources of data to provide more 

reliable and more accurate information about driving situations and build a safer driving 

environment. I have identified five general sources of data which is available for intelligent 

vehicles: the vehicle itself, cameras on the vehicle, communication between the vehicle and 

other vehicles, communications between vehicles and roadside units and the driver 

information. But facing this huge amount of data requires a decision making module to 

collect this data and provide the best reaction based on the situation. 

In this thesis, I present a data fusion approach for decision making in vehicles in which a 

decision making module collects data from the available sources of information and analyses 

this data and provides the driver with helpful information such as traffic congestion, 

emergency messages, etc. 

The proposed approach uses agents to collect the data and the agents cooperate using a black 

board method to provide the necessary data for the decision making system. The Decision 

making system benefits from this data and provides the intelligent vehicle applications with 

the best action(s) to be taken.  

Overall, the results show that using this data fusion approach for making decision in vehicles 

shows great potential for improving performance of vehicular systems by reducing travel 
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time and wait time and providing more accurate information about the surrounding 

environment for vehicles. In addition, the safety of vehicles will increase since the vehicles 

will be informed about the hazard situations. 

 Keywords 

Intelligent Transportation System, Vehicle-to-Vehicle Communication, Vehicle-to-

Infrastructure Communication, Cooperative Collision Warning and Rerouting System, 

Vehicle Tracking System, Road Side Unit 
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1 Introduction 

The growing number of vehicles over the last few decades has affected our lives, particularly 

in urban areas. Increasing need for traveling more and more between different places has 

resulted in more traffic congestion, accidents, traffic delays and larger vehicle pollution 

emission. Since the conception of Intelligent Transportation Systems (ITS) in the 1980s, 

there have been many studies in this field. Several solutions have been introduced to 

overcome these driving problems and to make driving a much better experience. The 

research presented in this thesis aims at increasing safety and convenience in driving by 

introducing a decision making system which assists the driver in certain situations and 

provides necessary information about the surrounding environment, such as other vehicles on 

the road. 

In recent years, many intelligent vehicle (IV) applications have been introduced to enhance 

driving safety. The range of applications for ITS is quite broad and applies to all types of 

vehicles. The usage of these applications varies from safety in driving to passenger 

entertainment. Generally, the most significant goals of IV applications are safety, 

productivity and traffic assistance. 

There are different kinds of IV applications which are designed to assist the driver and 

increase safety in driving. Some important and well-known IV applications are: 

 Adaptive Cruise Control 

 Forward Collision Warning/Mitigation/Avoidance 

 Vehicle Tracking Systems 

 Lane/Road Departure Warning/Avoidance 

 Parking Assist 

 Stability Control 

 Blind Spot Monitoring 

 Pedestrian/Animal Detection/Warning. 

However, these systems perform individually in the vehicle and do not benefit from 

integration of the information. That led us to design and implement an in-vehicle decision 



3 

 

 

making system which is an integrated system that can be installed in vehicles and collects 

data from all available sources, such as other vehicles, driver, vehicle, infrastructure, sensors, 

etc. and decides whether any action should be taken and if so what the best action to be taken 

should be. While there is large amount of existing research on different aspects of intelligent 

vehicle applications, little attention is devoted to making a central system for the vehicle to 

benefit from all information that is available. 

1.1 Research Overview 

The primary goal of this research is to study usage of an in-vehicle decision making system 

and its effects on the IV applications. In this thesis I describe this novel decision making 

system and the simulation which I have partially designed to implement the intended 

decision making system and four Intelligent Vehicle applications which use this decision 

making system to perform. The decision making system is designed in such a way to provide 

sufficient information to the driver either by warning the driver about an accident and 

suggesting an alternative route in order to avoid traffic congestion. I have used my decision 

making module to design some intelligent vehicle applications: a cooperative collision 

warning and rerouting system, a vehicle tracking system and an emergency message 

propagation system. Though I have designed and tested each intelligent system individually, 

all these systems can use the same decision making module at the same time. The 

performance of the system is evaluated in various circumstances such as heavy traffic versus 

light traffic, urban areas versus highways, different portion of vehicles equipped with our 

system, etc. In our context, I have examined the effects of using the decision making system 

in certain Intelligent Vehicles applications (cooperative collision warning and rerouting 

system, extended cooperative rerouting system using an accident model, vehicle tracking 

system and emergency message propagation system) understanding that all mentioned 

circumstances can have major effect on the way our system would perform.  

1.2 Thesis Organization and Contributions 

This thesis is a part of the ongoing research across the world concerned with Intelligent 

Vehicles. Our focus is on the idea of an intelligent decision making system for vehicles and 

how data from multiple sensors and input sources can be effectively utilized. In Chapter 2 I 



4 

 

 

introduce the decision making system which is the main contribution on this thesis, and its 

design and implementation using a simulator. The structure of this simulator is also explained 

in Chapter 2. In Chapters 3, 4, 5 and 6 I present published or submitted work addressing 

problems around intelligent decision making in different scenarios. My contributions with 

regards to each publication within the thesis are as follows: 

Chapter 2: In this chapter the architecture and structure of my decision making system and its 

specification is explained. In addition, the simulation which I have used to test my work is 

described in this Chapter. My work on the simulator extended a previous simulator to 

incorporate the decision making module and components. 

Chapter 3: Besat Zardosht, Steven Beauchemin and Michael Bauer, “A Decision Making 

Module for Cooperative Collision Warning System Using Vehicular Ad-Hoc Network”. The 

16th International IEEE Annual Conference on Intelligent Transportation Systems, 2013 

The focus of this study is the design of a cooperative collision warning and rerouting system 

which benefits from our decision making system to advise the driver based on the driving 

situation. I designed and implemented this cooperative collision warning and rerouting 

system which uses a wireless agent’s data to avoid accidents and to suggest alternative routes 

in case of an accident. 

Chapter 4: Besat Zardosht, Steven Beauchemin and Michael Bauer, “A Cooperative Traffic 

Management System Using Accident Duration Prediction in Highway and Urban Areas”. 

Elsevier Vehicular Communication Journal (to be submitted) 

To make our cooperative collision warning and rerouting system more realistic I used an 

accident duration model to predict the duration of the accident based on accident conditions, 

such as the number of lanes blocked by the accident, the number of lanes of the road, the 

number of vehicles involved in the accident, etc.  

Chapter 5: Besat Zardosht, Steven Beauchemin and Michael Bauer, “An In-Vehicle Tracking 

Method Using Vehicular Ad-Hoc Networks with a Vision-Based System”. IEEE 

International Conference On Systems, Man, And Cybernetics(SMC'14), 2014 
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I proposed a new method of vehicle tracking as an application of the decision making module 

which uses both wireless-based and vision-based technologies together to track the vehicles. 

In my vehicle tracking method, each vehicle sends a map request via wireless to other 

vehicles in range and based on their response updates its own information.  

Chapter 6: Besat Zardosht, Steven Beauchemin and Michael Bauer, “An Emergency Message 

Propagation System Using Roadside Units and Vehicle-To-Vehicle Communication”. IEEE 

Smart Vehicles, 2016 (to be submitted) 

In this paper I have designed a novel Intelligent Vehicle system for emergency message 

propagation using both vehicle-to-vehicle communications and vehicle-to-infrastructure 

communications using our decision making system. 

Finally, Chapter 7 offers a conclusion and outline path for future research. 
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2 Decision Making System for Intelligent Vehicles 

The goal of an intelligent transportation system (ITS) is to increase safety, convenience 

and efficiency in driving. Besides these obvious advantages, the integration of intelligent 

features and autonomous functionalities on vehicles will lead to economic benefits, from 

reduced fuel consumption to efficient exploitation of the road network. Central to ITS, 

are decision making modules. These modules, as part of intelligent vehicles, can assess 

information about the infrastructure, environment and neighboring vehicles, sense the 

driver status and vehicle status and provide information to the driver so that they can 

make more reliable decisions in emergency situations or for the vehicle’s own control 

systems, such as automatic braking, to take action. 

While giving this information to the driver can be useful, there is also the possibility of 

overloading the driver with too much information. Existing vehicles already have some 

mechanisms to take certain actions if the driver fails to act. Future vehicles will need 

more complex decision making modules which receive the raw data from a range of 

available sources, process this data and inform the driver about the existing or impending 

situations and suggest, or even take actions. 

In previous work, the sources of information are used separately and there is no central 

decision making module which considers all the information and makes decisions based 

on the overall situation. Vehicles may use both camera and wireless communication 

systems, but they do not cooperate. Intelligent vehicles can benefit from a central 

decision making module which collect the information from all sources and advises or 

warns the driver or even takes necessary actions.  

I have focused on the design and implementation of a decision making module for 

vehicles which collects data from five available sources of information, can carry out 
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analyses of this data and provides the best action to be taken for certain applications. The 

proposed module uses four agents to collect data: vehicle agent, wireless agent (to collect 

Vehicle-2-Vehicle (V2V) and Vehicle-2-Infrustructure (V2I) information), driver status 

agent and camera agent (to provide images of the environment). Vehicle data contains all 

information about the vehicle itself namely speed, acceleration, engine status, etc. V2V 

data is the information about all other vehicles around our subject vehicle, V2I data is the 

information collected from roadway units such as emergency warnings propagated by 

central emergency system trough road side units (RSU) and finally driver data consist of 

all the information that can be collected about the driver namely, driver hearth beat, 

driver gaze, etc. Since both V2V and V2I data are collected using wireless technologies, I 

have used one agent for both. 

I have designed and implemented four Intelligent Vehicle applications which use our 

Decision making system with data from its information agents to provide warning and 

suggestions for the driver. These Intelligent Vehicle systems are discussed in detail in 

Chapter 3 (cooperative collision warning and rerouting system), Chapter 4 (extended 

version of our CCW and rerouting system), Chapter 5 (vehicle tracking system) and 

Chapter 6 (Emergency Message Propagation system). 

2.1 Related Work 

In the following, I consider some related work that has been done on decision support 

modules and in the area of simulation for intelligent vehicle systems. 

2.1.1 Collision Avoidance Systems 

Decision making methods have been implemented and used in some sensor-based or 

vision-based collision avoidance systems. A method for decision making in collision 

avoidance applications was presented by Jansson et al. [14]. This method uses modern 

tracking theory along with a decision making module to avoid or mitigate a possible 
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accident. The prototype system they developed and evaluated significantly reduces the 

impact speed in frontal collisions [1]. The decision making model has to predict how the 

position of the tracked object evolves in time. This model is based on the coordinated 

turn model, where the object is supposed to follow straight line segment and circle 

segment. 

A framework for a collision avoidance system is provided by Jansson using statistical 

decision making and stochastic numerical integration [2]. This system uses radar sensors 

to detect and track other vehicles. Since inaccurate sensor information can lead to 

uncertain state information and can influence the performance of collision avoidance 

system, a statistical decision making algorithm was developed to deal with estimation 

uncertainties by calculating the probability for each action. 

The potential benefit of using sensor-based collision mitigation systems and the 

prediction uncertainties of these kinds of systems are two significant tradeoff issues 

which Hillenbrand [3] has tried to deal with. Hillenbrand has proposed a decision making 

approach to allow an intuitive tradeoff between potential benefit on one hand and 

readiness to take risk with respect to product liability and driver acceptability on the other 

hand. The performance of this system is investigated on three dangerous traffic 

situations: rear-end collision due to an unexpected braking; cutting-in vehicles; and 

crossing traffic at intersections. 

Karlsson [4] has implemented a decision rule in a collision mitigation by braking 

(CMbB) system for late braking using a hypothesis test based on estimates of the relative 

longitudinal dynamics. The brake decision is based on estimates from tracking sensors. 

The required acceleration to obtain a zero velocity at a possible impact has been 

calculated for this statistical decision making system. 
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2.1.2 Simulation of Transportation Systems 

To develop an intelligent transportation system, a reliable simulation environment is a 

key element. There have been some simulation environments developed in this area. 

Gruyer has presented a cooperative system simulation architecture developed within the 

interconnection of the sensors simulation platform SiVIC ( “Simulateur Véhicule-

Infrastructure-Capteurs”, Vehicle-Infrastructure-Sensors Simulator) and the prototyping 

platform RTMaps (Real Time Multisensor Advanced Prototyping Software) [5]. The 

SiVIC simulator is interfaced in real-time with the RTMaps software which allows 

prototyping and testing ADAS (advanced driver assistance systems) and behavioral 

analysis applications in a simulated environment. 

Eichler has presented a simulation environment which can be used to analyze the effect 

of real-time vehicle-to-vehicle warning message distribution applications on road traffic 

[6]. Three major components of this simulation are: the traffic simulator CARISMA, 

developed by BMW to simulate the traffic network; the network simulator NS2 to 

simulate mobile Vehicle-to-vehicle network; and a comprehensive ad-hoc agent for 

vehicle-to-vehicle warning message propagation. 

Sommer [7] has developed a simulation framework that provides coupled network and 

road traffic simulation called Veins (VEhicles In Network Simulation). For network 

simulation, OMNeT++, a simulation environment free for academic use, was used to 

model realistic communication patterns of VANET nodes and traffic simulation is 

performed by the microscopic road traffic package, SUMO. Veins supports the active 

exchange of control and statistics data and also Veins provides a framework for the real-

time interaction between the network simulation and the road traffic microsimulation. 

Both road traffic simulation and network simulation are bi-directionally coupled and 

simulations are performed on-line. This way, not only the influence of road traffic on 

network traffic can be modeled, but also vice versa. In particular, the influences of inter-
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vehicle communication (IVC) on road traffic can be modeled and complex interactions 

between both domains examined. I use Veins as our starting point end extend it to 

accommodate our sensor and vehicle environment as well as incorporating our decision 

making module. 

2.2 Decision Making System Structure 

Intelligent vehicles can access different sources of data, such as vehicle data, data from 

other vehicles through wireless communication, data from cameras or other sensors, data 

about the driver and infrastructure data. To process this data a decision making module is 

presented which performs data collection and provides the best action to be taken in 

different situations. 

I have designed and implemented an initial decision making module for vehicles which 

collects information from different sources using a blackboard method. The decision 

making module works in conjunction with one or more intelligent vehicle applications. 

The decision making module warns or suggest actions on some specific situation, for 

example our decision making module could suggest an alternative route as soon as its 

wireless agent warns about an upcoming accident (See Figure 2.1). In this system each 

source of data represents an agent in the system. 



11 

 

 

 

 

 
 

Figure 2-1: Decision Making Module Integration 

A blackboard system is an application based on the blackboard architectural model, 

where a common knowledge base, the "blackboard", is iteratively updated by a diverse 

group of knowledge sources known as agents. Each knowledge agent updates the 

blackboard with partial information [8] . 

A blackboard-system application consists of three major components: 

 The knowledge sources (KSs). Each knowledge source provides specific expertise 

needed by the application. In our system each agent represents a knowledge source 

which provides part of the information. 
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 The blackboard is a shared repository of problems, partial solutions, suggestions, 

and contributed information. The blackboard can be thought of as a dynamic 

"library" of contributions to the current problems that have been recently 

"published" by other knowledge sources. A simple text file is used in our system as 

the blackboard to which all the agents write and read data from it.  

 The control shell controls the flow of problem-solving activity in the system. KSs 

need a mechanism to organize their use in the most effective and coherent fashion 

which is provided by the control shell. While in our system the problem-solving 

activity is detecting emergency or critical situation in driving, the decision making 

module role is as the control shell which collects the blackboard information and 

decides whether an action is required. 

Intelligent applications use the information provided by the decision making module to 

assist the driver in certain circumstances. Based on the data provided, the decision 

making module decides which agent should do what action(s). For instance, in case of 

receiving an accident message the wireless agent writes the location of the accident, the 

time of the accident, etc. on the blackboard. On the other hand, the vehicle agent provides 

GPS information and trajectory and writes this information on the blackboard. 

Subsequently, the decision making module reads the blackboard, extracts and processes 

the information and if the accident has happened on its road, provides an alternative route 

and asks the vehicle agent to change the vehicle trajectory. Also the decision making 

module asks the wireless agent to resend the wireless message if the number of hops is 

more than one. All information written to the blackboard contains a timestamp and the 

name of the agent which has provided that piece of information. In other words, all 

agents provide information to the decision making modules using the blackboard and the 

decision making module processes this information and sends an appropriate request to 

the corresponding agent(s). Without using the decision making module there would be no 
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integration of information and each agent could be taking action(s), if any, based on their 

own limited information. 

I have designed and implemented the Wireless Agent, Vehicle Agent, Camera Agent but 

the driver agent is not designed and implemented. Four different intelligent applications 

which use the decision making module to operate; a cooperative collision warning and 

rerouting system, a cooperative collision warning and rerouting system using an accident 

model, a vehicle tracking system and an emergency propagation system using V2I and 

V2V. Using the decision making module in intelligent vehicle applications makes it 

possible to collect data and make decisions based on all of the data in order to have more 

accurate decision making. With the decision making module these applications can 

integrate together and benefit from machine learning methods to adapt to various 

circumstances. The details of the applications are explained in Chapter 3, 4, 5 and 6 and 

the implementation of the decision making module as well as camera agent, wireless 

agent and vehicle agent is explained in the next section. 

2.3 Simulation 

I have developed a simulation environment for inter-vehicle communication. To model 

the communication between VANET nodes, I have used OMNeT++ using the MiXiM 

framework. Road network simulations are performed using the Simulation of Urban 

Mobility (SUMO) package. The Vehicle in Network Simulation (Veins) simulator has 

been used to link OMNeT++ with SUMO [7]. Figure 2.2 shows the simulator 

components and flow of information between these components as well as how our 

decision making module is related to other modules in the simulation. 
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Figure 2-2 Simulator Components Integration 

What follows briefly describes our road network simulator (Vehicle Agent), wireless 

module (Wireless Agent) and computer vision simulator (Camera Agent). 

2.3.1 Road and Traffic Network Simulator (Vehicle Agent) 

SUMO (Simulation of Urban MObility) is an open source, highly portable, microscopic 

and continuous road traffic simulation package designed to handle large road networks. 

In our work SUMO has been used to simulate road and traffic networks. Any selected 

part of a map can convert into a XML file representing the network of streets, roads, 

traffic lights, etc. Another XML file defines all the vehicles traveling in this network, 

their routes, speed, etc. Sumo obtains these XML files as inputs and simulates road and 
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traffic networks. To communicate with SUMO there are API calls (known as commands) 

available in the TraCIScenarioManager and TraCIMobility modules of Veins which each 

module can use to directly interact with the running traffic simulation (SUMO). In order 

to design our decision making module, I have used some of these commands and also 

have implemented additional commands which were not available in the original 

TraCIScenarioManager module or in TraCIMobility module. For this simulation I have 

added eight commands to the existing ones: 

 commandReroutingByTravelTime: this command computes a new route using the 

vehicle’s global edge travel time (the time to travel one specific street when there is 

no traffic jam) information and replaces the current route by the new route found. 

 commandGetCurrentTravelTime: this command returns the travel time for the edge 

(graphical representation of the street) which the vehicle is currently on. 

 commandGetEdgeTravelTime: this command returns the travel time for a specific 

edge. 

 commandChangeEdgeTravelTime: this command changes the travel time for a 

specific edge. 

 commandGetVehiclePosition: this command returns the position of any vehicle 

from SUMO. 

 commandGetVehicleAngle: this command returns the direction of the vehicle based 

on its last step in the simulator. 

 commandGetVehicleLength: this command returns the length of a given vehicle. 

 commandGetVehicleWidth: this command returns the width of given vehicle. 

Using these commands, the vehicles can react based on the messages they receive in the 

simulation and take action(s). 
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2.3.2 Wireless Module (Wireless Agent) 

A multi-Channel IEEE 1609.4 and IEEE 802.11p Enhanced Distributed Channel Access 

(EDCA) model is implemented in Veins. This model encompasses the 80211.p Dedicated 

Short Range Communication1 (DSRC) PHY and MAC layers, including Access 

Categories for QoS, the Wave Short Message (WSM) handling, and beaconing WAVE 

service announcements, as well as multi-channel operations, such as the periodic 

switching between the Control Channel (CCH) and Service Channels (SCHs) [9], [10]. 

The messages are transmitted with a bitrate of 8Mbps and a transmission power2 of 

20mW on the Control Channel (CCH). I model path loss3 with path loss coefficient of 2.0 

and shadowing with a mean signal attenuation of -89dB with a standard deviation of 4dB. 

The wireless module could be installed in a vehicle as V2V communication enhanced 

system or can be installed as road way communication unit to propagate wireless 

messages on the road. The road side units are simulated using the same specification. 

2.3.3 Vision Simulator (Camera Agent) 

In order to simulate the use of cameras on the vehicles, I needed to have a vision module 

in our simulator which could act in a manner similar to a real camera installed in the 

vehicle. 

                                                 
1
 Dedicated short-range communications are one-way or two-way short-range to medium-range wireless 

communication channels specifically designed for automotive use and a corresponding set of protocols and 

standards 

2
 Power transmission is the movement of energy from its place of generation to a location where it is 

applied to perform useful work 

3
 Path loss (or path attenuation) is the reduction in power density (attenuation) of an electromagnetic wave 

as it propagates through space 
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Computer vision algorithms provide mathematical models of the world based on series of 

images captured by cameras. Since I am using a VANET and a traffic simulator, with 

access to a 2D mathematical model of the world which can be used to determine which 

vehicle or obstacle in this model would be visible to each camera. All vehicles are 

modeled as rectangles and therefore can be presented by four corner points. All buildings 

are modeled as a set of points which are the corners of the shape of the building. All 

cameras are specified by a) the angle specifying the area covered by each camera and b) 

the associated maximum distance over which they can accurately detect and position the 

objects. 

Having shape and position of all buildings and vehicles from SUMO [11] and also the 

specification of each camera from the camera simulator, I present the following algorithm 

to determine all visible objects for each vehicle equipped with a camera: 

1. All vehicles or buildings in which at least one of their points is in the observable 

area of the vehicle’s camera will be determined. 

2. Based on the camera position for each object, the two outermost points of any 

vehicle or building will be determined and that object will be defined by the line 

joining these two points. 

3. For each object identified (represented as a line), all other objects which are 

placed completely or partially beyond it will be determined. 

4. For all identified objects (step 2) the visibility percentage of each object is 

determined and any object for which its visibility percentage is less than 50% will 

be removed from the list. 

Figure 2.3 illustrates how camera simulator works. The vehicles which are beyond other 

vehicles or buildings will be considered as invisible to the camera. In Figure 2.3, vehicle1 

is completely visible, vehicle 2 in completely invisible, vehicle 3 is partially visible but 
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less than 50% visible and would be considered as invisible and more than 50% of 

vehicle4 is visible and it is considered as visible. 

 

Figure 2-3: Camera Simulator 

This approach is, of course, somewhat simplified as it does not take into account the 

vertical axis and creates the model in 2D. However, since most roads are relatively flat 

and all buildings are higher than most vehicles, identifying vehicles in 3D would be 

approximately the same as this approach. In addition, SUMO only operates in 2D so 

doing a 3D analysis is unfortunately not possible without changes to SUMO. 

The code for vision simulator is in Appendix A. 
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3 Cooperative Collision Warning and Rerouting System 

This Chapter is a reformatted version of the following article: 

Besat Zardosht, Steven Beauchemin and Michael Bauer, “A Decision Making Module  

for Cooperative Collision Warning System Using Vehicular Ad-Hoc Network”. The 16th 

International IEEE Annual Conference on Intelligent Transportation Systems, 2013 

In this paper I present a rerouting system that is an event based algorithm which informs 

other vehicles about an accident and can provide an alternative route to the driver in order 

to avoid traffic congestion. I assume that each car is equipped with GPS and wireless 

communication hardware that can implement our decision making algorithm and benefit 

from its rerouting algorithm. Our decision making system is an event based system so it 

just triggers when an event (accident message or release message from the accident) 

happens, and, therefore, does not consume much channel bandwidth. 

Our intelligent application is a cooperative collision warning and rerouting system which 

uses our decision making module to inform other vehicles about an accident and provide 

an alternative route to avoid traffic congestion. Each car that is equipped with GPS and 

wireless communication hardware can implement our system and benefit from its 

rerouting algorithm. Our decision making system is an event based system so it just 

triggers when an event (accident message or release message from the accident) happens, 

therefore it does not consume much channel bandwidth. Overall, the results show that 

using our intelligent application shows great potential for improving performance of 

vehicular systems by reducing travel time and wait time for vehicles. In addition, the 

safety of vehicles will increase since the vehicles will be informed about the accident by 

wireless communication. 
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3.1 Introduction 

Intelligent vehicles can benefit from exchanging data about driving situations, other 

vehicles, the surrounding environment and even the driver; and process this data to 

inform the driver about the existing or impending situations and suggest, or even take, 

actions. 

Other than exchanging information about the overall state of the vehicles, vehicles can 

send wireless messages to each other in emergency situations, such as an accident, to 

warn other vehicles about the accident and decrease the possibility of danger from them. 

In addition to the obvious advantage of increasing safety, warning the driver in the 

accident situation can be helpful in decreasing the traffic in the accident area.  

I have implemented a decision making module for vehicles which collaborates with data 

collection agents (vehicle agent for information about vehicle such as vehicle direction 

and trajectory, wireless agent which collects the information about other vehicles, etc.) to 

collect the information about other vehicles, informs the driver about it and suggests an 

alternative route in order to avoid the traffic caused by the accident. This decision making 

module has been implemented and tested using the Vehicles in Network Simulation 

(Veins) which uses OMNet++ [12], (wireless network simulation tool) linked to SUMO 

[11] (a road network simulation tool). Our decision making module has been tested in a 

city network based on Erlangen [7]. 

A cooperative collision warning (CCW)Intelligent vehicle system is one which makes 

use of data, including communication between vehicles, to enhance vehicle safety and 

warn drivers of potentially dangerous conditions. Our decision making approach 

contributes to research in the following ways: 

CCW systems have mostly been used to provide warning information for the driver and 

do not suggest possible actions. These systems inform the following vehicle about the 
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potential collision, but do not provide rerouting choices for the driver which can help 

avoid traffic congestion. I have used my decision making algorithm in CCW and 

rerouting system to provide an alternative route for vehicles approaching the accident 

location in order to decrease waiting and travel time and avoid traffic. 

It is the first event based CCW and rerouting system which has used a decision making 

system for a rerouting system based on wireless communication. Our decision making 

system triggers when an accident happens and the car which has been in the accident 

sends accident message(s). In this work, I assume that all vehicles are equipped with the 

communication hardware for vehicle to vehicle communication and wireless protocols, a 

GPS, maps of the roadways and street information, namely, the length of each street, 

maximum legal speed of each street, and our decision making algorithm. In other 

proposed rerouting algorithms, vehicles send request messages to other vehicles in order 

to find out about traffic congestion based on the responses. In our system there is no need 

to continue sending redundant messages and this reduces channel bandwidth by not 

sending unnecessary messages. 

Our system uses a specific “resending” accident message alongside the propagating 

messages for one hop by receivers in order to make sure that all needed vehicles are 

aware of the accident and can take action to reroute to avoid the traffic jam caused by the 

accident. The wireless messages are tagged with hop number when a vehicle receives a 

wireless message which is tagged with a hop number bigger than zero, it reduces the 

number by one and propagates the message again. The vehicles which propagate the 

message again are known as hops. 

3.2 Related Work 

Using wireless communication among vehicles is a potentially useful way to make 

driving more intelligent. There have been several studies which have shown the 

beneficial use of wireless communication among vehicles in cooperative collision 
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warning (CCW) systems and in driving assistance systems. Some of this previous work is 

described in the following. 

The technical feasibility of CCW systems was shown by Sengupta et al. [13]. In their 

paper, they introduced a CCW prototype that provides the driver with both warnings and 

situation awareness through displays provided in the vehicle. Their prototype has been 

tested in low speeds in an urban office campus with poor GPS coverage, and at high 

speed on an unused airfield. This prototype is the first prototype able to provide 360-

degree awareness by using GPS and wireless communication. However, the warning 

system used in this prototype simply informs the driver about ongoing situation and does 

not suggest any alternative actions to take. In other words, the analysis of the information 

provided by the system is left to the driver. Also, this approach does not make use of a 

map and results in shortage of information about road geometry. 

A DGPS (Differential Global Positioning System)-based vehicle-to-vehicle collision 

warning system is introduced by Tan [14] which requires a simple GPS unit and basic 

motion sensors to detect a possible collision situation. This system predicts the hazard 

situation using the information of nearby vehicles to provide safety but it covers a very 

small area around the vehicle so it cannot support traffic leading applications. 

Dashtinezhad et al. have proposed the “Traffic View” system which gathers information 

about other vehicles and the environment through wireless ad-hoc communication among 

vehicles and provides traffic information that helps driving in situations such as foggy 

weather, or finding an optimal route in a trip several miles long [15], [16]. This system 

provides a map of the vehicles nearby. However, it does not have any prediction of their 

actions or any information about hazard situations. 

Yung has proposed another vehicle to vehicle communication protocol for meeting delay 

constraints in cooperative collision warning systems [17]. In this protocol, if a vehicle 

faces a mechanical failure or unexpected road hazard, the warning system repeatedly 
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transmit the emergency wireless message to other equipped vehicle in range of 300m and 

by defined congestion control policies for emergency warning messages, a low 

emergency warning message delivery has been achieved.  

Biswas has presented an overview of a highway cooperative collision avoidance (CCA) 

system, which is an emerging vehicular safety application using the IEEE- and ASTM-

adopted Dedicated Short Range Communication (DSRC) standard [18]. In this paper it is 

assumed that all the equipped vehicles are aware of each other and communicate via 

wireless to warn each other about a collision. 

Huang has proposed a joint rate-power control algorithm for broadcast of a self-

information message that enables neighbor tracking in VANETs. This algorithm decides 

how frequently a vehicle should broadcast its own state information and how far the state 

information should be broadcast to obtain the best performance. This algorithm is 

evaluated through realistic network and microscopic traffic simulations [19]. However, 

sending the state information to other vehicles frequently can consume channel 

bandwidth. 

Elbatt has studied the suitability of the standard DSRC protocol for inter-vehicle 

communication applications and, in particular, cooperative collision warning systems 

[20]. In this paper two novel latency metrics are introduced to calculate the performance 

of CCW system using the DSRC protocol: Packet Inter-Reception Time (IRT) at the 

vehicle for packets sent by a given transmitter and Cumulative Number of Packet 

Receptions at the vehicle from a given transmitter. 

Lakas has proposed a traffic jam detection system which uses wireless communication 

for information exchange. In this system each vehicle periodically sends a request 

message to other vehicles and by their responses a vehicle can detect road congestions. 

Then a modified version of the Dijkstra algorithm can be used to find a better route for 

the requested vehicle [21]. The main problem with this system is that every vehicle has to 
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frequently send a request message to other vehicles in order to detect and avoid road 

traffic congestion. 

Dogan has designed an intersection collision warning system using digital GPS location 

data and then broadcasts this information at a certain distance from the intersection using 

an ad-hoc wireless network [22]. This intersection collision warning system has been 

evaluated by a MATLAB-based simulator which consists of vehicle traffic simulator and 

wireless simulator. 

3.3 Decision Making System for Cooperative Collision 
Warning and Rerouting 

In this work, I assume that all vehicles are equipped with the communication hardware 

for vehicle to vehicle communication and wireless protocols, a GPS, maps of the 

roadways and street information, namely, the length of each street, maximum legal speed 

of each street, and the decision making algorithm. I have also assumed that the traveling 

route has been determined by the driver and that the decision making algorithm has 

access to the basic information of the travelling route. 

Travel time is the approximate time that one vehicle needs to travel through that specific 

street and at a point in time it is calculated by the length of the street divided by the 

maximum legal speed of the street; a delay constant is added for each accident, if any, in 

progress on that street (Equation (3.1)). Since each car is provided with a map of the road 

it has access to travel time information of each street, and when it is informed about an 

accident on a specific street, it can change its local travel time information for that street. 

In this work any situation which causes the vehicle to stop unusually for a while would be 

considered as an accident. The Delay Constant is the mean delay (s) which an accident 

would cause for a vehicle. 

𝑇𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒 (𝑆𝑖)  = (
𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝑖)

𝑀𝑎𝑥 𝑆𝑝𝑒𝑒𝑑 (𝑆𝑖)
) + (𝐷𝑒𝑙𝑎𝑦𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∗ 𝑁𝑢𝑚𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡(𝑆𝑖)) (3.1) 
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When an accident happens, the vehicle which had the accident broadcasts an accident 

message containing the identifier for the type of message (accident or release) and 

location of itself. Then the travel time for the street on which the accident happened will 

increase by a specific amount (see Equation (3.1)). 

The vehicles which receive the accident signal are divided into three different categories 

based on the location of the accident and their current locations: those not affected by the 

accident; those affected by the accident but can do nothing and those affected by the 

accident and can change route. The decision making module in a vehicle can determine 

the category of its vehicle by comparing the street on which the accident has occurred to 

the route provided by the driver for each vehicle. 

The first category contains the vehicles where the street on which the accident happened 

is not in their trajectories. Therefore, they simply ignore the accident message and 

continue their journey. The second category contains the vehicles which are currently on 

the same street that the accident has happened. They may or may not be able to change 

their routes; however, they can reduce their speed to avoid the accident. These vehicles 

are often those that become stuck in the traffic. The last category of vehicles is those that 

are not currently on the same street that the accident has happened but that street is on 

their route. These vehicles can change their route to avoid the traffic jam created by the 

accident. The decision module will try to find a new route to avoid the accident and 

where the travel time is minimal. 

Figure 3.1 shows a vehicle which is sending an accident message to other vehicles. The 

red circles indicate the vehicles which are stopped because of the accident, the green 

circles show the vehicles which are not affected by the accident (first category), the blue 

ones shows the vehicles which are on the same street as the one where the accident 

happened (second category) and the yellow circles indicate the vehicles which can 

reroute to avoid the accident (third category). 
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Figure 3-1. A vehicle sending an accident message to other vehicles 

 I also assume that when a vehicle is “removed” from the accident situation (by driving 

away or being taken away), it broadcasts a release message to other vehicles in the range 

and each vehicle which receives release message reduces the street travel time by the 

specific amount of delay constant. 

The vehicles which receive the release signal are categorized as follows. Not affected; 

affected but can do nothing and finally, affected and can reroute. The first category 

contains the vehicles where the accident was not in their way and therefore they ignore 

the message. The second category contains the vehicles which are currently affected by 

the accident street and are stuck in the traffic. They ignore the release message as well. 

The last category contains the vehicles which are not currently on the street where the 

accident has happened, but this street is on their way. As they receive the release signal 

they calculate the best travel route based on new information and reroute if necessary. 

Again, these categories are based on the information about the route for each vehicle. 
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The vehicle which had the accident can send the accident message periodically rather 

than send it just once to inform upcoming traffic about the accident. In this case, more 

vehicles receive the message and take the proper action. The other method to inform 

more vehicles is message propagation. Each vehicle that receives the accident message or 

release message can propagate it to other vehicles in range. 

By using the combination of these two methods more vehicles will be informed about the 

accident and therefore the decision making system can be more efficient and more 

reliable. Therefore, I can compare four versions of the decision making module based on 

how they propagate the accident message. 

In the first and very simple version the car that has had the accident sends the accident 

message once and each other car which is stuck in the accident broadcasts this message 

once. In the second scenario, the car which had the accident sends the accident message 

once and each car which receives this message propagates it once. The next scenario is 

the case in which the car that had the accident sends the accident message periodically 

and no other vehicle propagates this message. Finally, in the fourth scenario the car 

which had the accident sends the accident message periodically and other vehicles which 

receive the accident message propagate it once. 

The other question that should be addressed is how often should a message be resent and 

for how long should a car resend a message. The very first seconds of the accident are the 

most critical and making sure that all vehicles around are informed about the accident 

soon enough is very important. However, the more time that passes from the occurrence 

of the accident the less critical it would be to resend the message and after a while it is 

not necessary to resend the message again. 

In our decision making module the car that had the accident sends a message every 2 

seconds for the first minute, every 10 seconds for next minute, every 30 seconds for third 
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minute, every 60 second for forth minute and it stops resending the message after five 

minutes. The simulation environment and its details are discussed in next section. 

3.4 Evaluation 

In order to evaluate our decision making module I execute our simulation without using 

our decision making module and with this module and in four different scenarios. In the 

first and very simple scenario (Scenario1), the decision making module in the car which 

had the accident sends an accident message and each car which is stuck in the accident 

send this message again. In next scenario (Scenario2), after the car which had the 

accident sends the accident message, each vehicle which receives it will propagate it 

once. The third scenario (Scenario3) is the case in which the car that had the accident 

sends an accident message periodically but no other vehicle propagates it. And in last 

configuration (Scenario4) the car which had the accident sends the accident message 

periodically and any other vehicle which receives this message will propagate it once. 

I calculated the waiting time for each vehicle, the overall travel time of each vehicle and 

the number of messages transferred between all vehicles in each case. Waiting time is the 

time the vehicles have been stopped due to an accident, a traffic light or even heavy 

traffic jam. One result of our approach is that the overall waiting time of the vehicles is 

reduced by 47% using Scenario1, it is reduced by 38% using Scenario2, 54% using 

Scenario3 and the best result was by using Scenario4 which reduced waiting time by 

86%. 
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Figure 3-2. Waiting Time for each vehicle in the road network. 

Figure 3.2 shows the waiting time(s) for each vehicle on the road when they use the 

decision making module in different scenarios and when they do not use decision making 

module. 

Travel time is calculated by considering the time that the vehicle enters the network and 

starts its journey and the time it reaches its destination. From Figure 3.3, I can see that the 

average travel time for vehicles has been reduced significantly when they use our 

decision making module. The overall travel time has been reduced by 31% in Scenario1, 

it is reduced by 25% in Scenario2, 34% in Scenario3 and, more significantly, 52% in 

Scenario4 of the decision making module. 
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Figure 3-3. Travel Time for each vehicle in the road network 

Table 3.1 shows the sums of waiting times and sums of travel times for all vehicles. It 

can be seen from this table that the least waiting time and travel time is obtained when 

Scenario4 of the decision making module has been used. In other words, when the car 

which had the accident sends an accident message periodically and each vehicle which 

receives the message propagates it, the overall waiting time and travel time of the 

vehicles reduced the most. 

 

 



31 

 

 

 

 

Table 3-1. Total waiting time and total travel time in different cases. 

 Sum of Waiting 

Time (s) 

Sum of Travel 

Time (s) 

Without Decision 

Making module 

13076.5 31618.6 

Using Decision Making 

module-Scenario1 

6886.191 21666.1 

Using Decision Making 

module-Scenario2 

8102.642 23638.8 

Using Decision Making 

module-Scenario3 

5957.396 20600.5 

Using Decision Making 

module-Scenario4 

1785.692 15133.4 

The other factor to be considered is the number of messages which have been passed 

between the vehicles. In the simple case, when the vehicles do not use the decision 

making module, there is no message passing between the vehicles. But when they use the 

decision making module, they propagate wireless messages to inform other vehicles 

about the accident. The total number of messages that have been sent while using 

Scenario1 was 40 messages and the total number of received messages by all 100 

vehicles was 995 messages. By using Scenario2 of decision making module, 996 

messages were sent and 17414 messages were received in total. Scenario3 involved 58 

sent messages and 910 received messages and finally by using Scenario4 372 messages 

were sent and 3453 messages have been received. In other words, the average of 0.4 

message has been send by each vehicle and each vehicle has received approximately 10 

messages during its journey in Scenario1, an average of 10 messages per vehicle were 

sent and average of 17.4 messages were received in Scenario2, approximately 6 messages 

were sent and 9 messages were received by each vehicle in Scenario3 and there are about 

37 messages sent and 345 messages received per vehicle in Scenario4. 
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Table 3-2. Number of transferred messages in different cases 

 Number of 

Messages Sent 

Number of 

Messages 

Received 

Messages 

Without using Decision 

Making module 

0 0 

Using Decision Making 

module-Scenario1 

40 995 

Using Decision Making 

module-Scenario2 

996 17414 

Using Decision Making 

module-Scenario3 

58 910 

Using Decision Making 

module-Scenario4 

372 3453 

The total number of transferred messaged among vehicles are shown in Table 3.2. 

Overall, the best result regarding travel time and waiting time is observed in using 

Scenario4 of the decision making module. The number of transferred messages between 

vehicles is small compared to the significant reduced amount of travel time and waiting 

time. 
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4 Cooperative Collision Warning and Rerouting System 
using an Accident Model 

This Chapter is a reformatted version of the following article: 

Besat Zardosht, Steven Beauchemin and Michael Bauer, “A Decision Making Module for 

Cooperative Collision Warning and Rerouting in Highway and Urban Area Using VANET”. 

IEEE Transaction on ITS (ITSC'13), 2014 (to be Submitted) 

Our cooperative collision management system is an event-based algorithm that informs 

other vehicles about accidents and provides alternative routes to avoid traffic congestion. 

Each vehicle equipped with GPS and wireless communication hardware can implement 

our decision-making algorithm and benefit from its rerouting capabilities. In addition, our 

system does not consume much channel bandwidth, due to its event-based 

implementation. 

Since traffic situations vary between highway driving with high speeds and city areas 

with much lower speeds, I evaluated both cases and compared results. The decision-

making module reduces waiting times in both driving environments. The results suggest 

that travel time can also be reduced in a city environment. However, this may not be the 

case in a highway environment and further investigation is needed.  

4.1 Introduction 

Providing drivers with relevant information about the environment surrounding their 

vehicle can assist them in making driving safer and easier. Wireless communication is 

one of the ways to obtain information on the status of surrounding vehicles such as their 

position and speed, for instance. With relevant information at hand, a driver can make 
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more reliable decisions and stands a better chance of reacting properly in emergency 

situations. 

While providing this information to the driver can be useful, there is also the possibility 

of giving the driver unnecessary or extraneous information. Many existing vehicles 

already have mechanisms, which may take specific actions if the driver fails to act, such 

as dynamic cruise control and emergency braking. Future vehicles will undoubtedly 

feature more advanced decision-making modules capable of taking complex maneuvers 

in the event that a driver becomes incapacitated, or simply to drive the vehicle in 

autonomous mode. 

Vehicles, other than simply exchanging information about their respective state with each 

other, can also send wireless messages in emergency situations, such as when an accident 

occurs, to warn other vehicles and decrease the possibility of danger for them. In addition 

to the obvious advantage of increasing safety, warning the driver of an accident situation 

can be helpful in decreasing the traffic congestion in the area of the accident. 

I have implemented a Vehicular Ad-Hoc Network (VANET)-based decision-making 

module for vehicles that receives accident information from other vehicles, informs the 

driver about it and suggests an alternative route in order to avoid the traffic caused by the 

accident. This decision-making module has been implemented and tested using the 

Vehicles in Network Simulation (Veins) which uses OMNet++ [12], (wireless network 

simulation tool) linked to SUMO [11] (a road network simulation tool).  

Our decision-making module has been tested in a road network of the city of Erlangen in 

Germany and in a road network of the 401 highway in Ontario, Canada. I also considered 

the impact of the decision-making module in situations where various proportions of 

vehicles are equipped with the system. Our proposed decision-making system uses an 

accident model to predict the duration of the accident based on factors such as its 

location, the number of lanes in the road, the number of lanes blocked by the accident, 
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the type of vehicles, and so on [23]. Using this model, the system estimates an accident 

duration based on the time passed from the accident and provides an alternative route for 

vehicles approaching the accident zone in order to decrease waiting and travel times and 

avoid traffic using VANET. This module uses an event-based decision making approach 

for vehicle rerouting and triggers only when accident messages are received. Hence, there 

is no need to continually send redundant messages. In addition, our system does not 

require a central management control mechanism; any so-equipped vehicle can provide 

the necessary warning messages to other surrounding vehicles. In case of an accident and 

in order to cover an adequately wide area, the module resends the relevant accident 

message periodically and propagates them for two hops by receivers in order to make 

other vehicles aware of the accident, such that they can reroute accordingly.  

Our system is capable of detecting whether the driver is in an urban or highway 

environment, since driving on highways is a different activity from driving in urban 

areas. Our system also considers traffic volume. High traffic is detected based on the 

difference between the speed of the vehicle and the maximum legal speed of the road it is 

traveling on. Both of these capabilities do not use Vehicle to Infrastructure (V2I) 

communication. 

Our contribution is structured as follows: Section 4.2 provides a survey of related work. 

In Section 4.3, the decision-making module is described in detail. In Section IV, the 

simulation environment is explained and in Section V, the results of the simulation of our 

decision-making module are examined. Lastly, Section VI provides some concluding 

remarks and future directions for this research.  

4.2 Related Work 

Wireless communication among vehicles is a potentially useful way to make driving 

more intelligent. There have been several studies that have shown the beneficial use of 

wireless communication among vehicles in cooperative collision warning (CCW) 
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systems and in driving assistance (DAS) systems. Another use of these cooperative 

systems is dynamic routing to avoid traffic congestion.  

VANETs have been used widely in transportation systems to provide safety and 

convenience in driving. In particular VANETs have been used to develop Traffic 

Information Systems (ITS) in order to monitor traffic situations and detect congestion 

[24]. Traffic monitoring has been traditionally addressed with algorithms using the 

outputs of infrastructure cameras, or other similar sensors [25], [26]. Nowadays, loosely 

decentralized approaches to this problem (such as V2I and V2V) have become popular. 

For instance, a V2I traffic management system introduced by Milanes et al. [27] requires 

an intelligent traffic control station which manages all the incoming information from 

vehicles and, when the environment requires it, returns warning signals with the state of 

the traffic to all vehicles.  

It has been recognized that V2V cooperative applications could provide better 

opportunities to monitor traffic congestion without depending on infrastructure. There 

have been many algorithms and methods developed to provide a view of the road, detect 

traffic congestion, and enhance driver decision-making regarding traffic without the need 

to communicate with infrastructure. For instance, a traffic management protocol 

presented by Santamaria et al. [28] uses V2V to inform nearby vehicles about accidents. 

In this approach the road network is considered as a graph and the weight of the arc in 

which the accident occurred is increased, therefore allowing vehicles to use a simple 

rerouting graph-based algorithm. The system proposed by Leontiadis et al. [29] detects 

traffic conditions through information gathered from other vehicles using V2V 

communication. The effectiveness of this decentralized traffic management system is 

evaluated using a realistic test case scenario. They have designed a method that allows 

the vehicles to dynamically reroute based on individually collected traffic information. 

Another method to reduce the impact of traffic jams via VANET is presented by Knorr 

using beacon messages which periodically broadcast status messages containing vehicle 
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speed, location and acceleration [30]. This system does require vehicles to be connected 

at all times and share their speed and location in order to evaluate the traffic situation.  

The key problem of these systems is the limited bandwidth they must work with. Another 

factor to be considered in these systems is information age or how long the exchanged 

information remains valid. The problem of information age in vehicular network where 

vehicles periodically broadcast information is addressed in [31]. 

The effects of traffic density on rerouting is considered in [32]. In this approach, 

centralized and distributed routing methods are introduced and evaluated. In terms of 

time efficiency, it is found that in low traffic volume the distributed method is more 

suitable, while in heavy traffic the centralized method appears superior. 

All of these methods have been developed to detect traffic congestion based on 

information gathered from other vehicles (V2V), infrastructure (V2I), or both. However, 

none of them predicts possible traffic congestion when a specific event such as an 

accident occurs. Other than predicting possible traffic congestion, intelligent vehicles 

would benefit from a method to estimate the delay caused by an accident.  

Given the occurrence of an accident in the vicinity of a vehicle, if estimates of its location 

and duration could be obtained, then an optimized rerouting decision could be made. 

There are studies that attempt to predict the severity and duration of accidents using 

various models [23], [33], [34]. Our approach uses such a prediction model to estimate 

the duration of the accident and provide smarter rerouting for upcoming traffic. 

4.3 Decision Making Module for Rerouting System Using an 
Accident Duration Model 

In this work, I assume that some vehicles are equipped with the hardware for V2V 

communication and wireless protocols, a GPS, maps of the roadways, and street 

information, such as the length and maximum legal speed of each street and the number 



38 

 

 

 

 

of lanes in each direction. I also assume that the driver has determined the traveling route 

and that the decision-making algorithm has access to it via the on-board maps. Lastly, I 

assumed that the vehicle(s) involved in the accident simulations are equipped with our 

decision-making module. 

I define travel time as the approximate time a vehicle needs to travel through a specific 

street and calculate it by dividing the length of the street by the maximum legal speed of 

the street. A delay 𝐷(𝑡) is added for accidents, if any, in progress on that street, as per: 

 

 
𝑇(𝑠𝑖, 𝑡) =  (

𝐿(𝑠𝑖)

𝑀(𝑠𝑖)
) + 𝐷(𝑡) (1) 

 

where 𝑇(𝑠𝑖, 𝑡) is the travel time on street 𝑠𝑖, 𝐿(𝑠𝑖) is the length of 𝑠𝑖, and 𝑀(𝑠𝑖) is the 

maximum posted speed on 𝑠𝑖. Each vehicle is provided with a map of the roads it has 

access to and the travel time information for each street. When a vehicle is informed of 

an accident on a specific street, it can change its local travel time information for that 

particular street. I consider any situation that causes a vehicle to stop unusually for an 

extended period of time to be an accident, causing an increase of travel time for the street. 

The accident-induced delay 𝐷(𝑡) is determined with the help of Zong’s accident duration 

model [23]. This model is based on an Accelerated Failure Time (AFT) metric employing 

a Weibull distribution to model the relationship between the time an accident has lasted 

already and the likelihood of it ending soon. Figure 4.1 indicates the baseline survival 

function (S0) for accident duration. 
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Figure 4-1. Estimated probability of survival versus accident duration [23]. 

With the baseline survival probability, the AFT model uses identified variables to provide 

an estimate of the duration of the accident. The survival function given the accident 

duration model is obtained with: 

 

 𝑆(𝑡) = 𝑠0[𝑡𝑒(−𝛽𝑇𝑋)] (2) 

 

where 𝑠0 is the baseline survival function, 𝑋 is a vector of accident attributes, and 𝛽 is a 

vector of estimable coefficients for each accident attribute. These are given in Table 4.1.  

I assume our decision-making module has access only to some of these parameters, 

namely: number of lanes blocked, accident location, and number of lanes in each 

direction. For other variables our system uses the provided default values (Table 4.1) to 

build the survival model.  
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Table 4-1. Accident severity variables with default values. These parameters are 

selected from previous research in [23]. 

Variable Coefficient 

Constant 5.12 

Number of fatalities 0.51 

Number of Injuries 0.33 

Rear-end type collision -0.37 

Vehicle rollover 0.28 

Number of lanes blocked 0.24 

Bus involved 0.60 

Truck involved 0.58 

Debris involved 0.55 

Hazard material 0.88 

Weekend or festival -0.14 

Accident location -0.57 

Number of lanes in each direction -0.18 

Tow services 0.38 
 

 When an accident occurs the decision-making module creates the survival model then, 

with the survival function, it calculates the probability of the accident being cleared after 

a time 𝑡 has passed from the time of the accident. To calculate the time to accident 

clearance (accident duration), I multiply the probability 𝑆(𝑡) by 𝑀𝑑, the mean accident 

duration time, which is the average of accident durations derived from real traffic 

accident data used to create the survival model [23]: 

 

 𝐷(𝑡) = 𝑀𝑑𝑆(𝑡) (3) 

 

When a vehicle experiences an accident, it broadcasts an accident message containing the 

identifier for the type of message (accident or release), its location, and estimated 

accident duration 𝐷(𝑡). Then it increases the local travel time for the street on which the 

accident happened by a delay equal to the predicted accident duration. 
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In this current study I am interested in understanding the potential impact of the decision-

making module on traffic given different adoption rates for V2V. Hence, I assume that 

the vehicle involved in the accident is equipped with V2V and the decision-making 

module. 

The vehicles that receive the accident signal are divided into three categories, based on 

the location of the accident and their current situation relative to it: those which are not 

affected by the accident (the street on which the accident occurred is not on their route); 

those which are already stuck in the congestion caused by the accident, and finally, those 

which are affected by the accident and yet have the opportunity to change routes and 

avoid the traffic congestion.  

When a vehicle receives an accident message, the decision making module in the vehicle 

determines its category by comparing the street location on which the accident has 

occurred to the route provided by the driver and verifies if the route contains the specific 

street or not. 

The first category contains the vehicles where the street on which the accident happened 

is not in their future routes. Therefore, they simply ignore the accident message and 

continue their journey. The second category contains the vehicles which are currently on 

the same street that the accident has happened. They may or may not be able to change 

their routes; however, they can reduce their speed to increase safety and avoid further 

accidents. These vehicles are often those that become stuck in the ensuing traffic. The last 

category of vehicles comprises those that are not currently on the same street that the 

accident has happened but that street is on their route. These vehicles can change their 

route to avoid the traffic created by the accident. The decision module tries to find an 

alternate route while minimizing travel time. I assume that when the accident situation is 

clear and the vehicle is removed from the accident area (by driving away or being taken 

away), it broadcasts a release message to other vehicles in the range and each vehicle that 
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receives the release message reduces their local street travel time to the default street 

travel time and reroutes if necessary. The vehicles that receive the release signal are 

categorized in the same way as when they received the accident message: not affected; 

affected but cannot reroute and finally, affected and can reroute.  

In our simulations, the vehicle which experiences an accident sends the accident message 

periodically rather than just once to inform upcoming traffic about it. In this case, more 

vehicles receive the message and take proper action. I used an adaptive resending method 

that updates the time to clear the accident before resending the message. The system 

calculates a new accident duration time with respect to the time passed from the accident 

and creates new messages based on the updated accident duration. Therefore, the time to 

clear accident value decreases each time the accident message is resent by the system. 

The very first seconds of the accident are the most critical and making sure that nearby 

vehicles are informed about the accident soon enough is very important. However, the 

more time that passes from the occurrence of the accident the less critical it would be to 

resend the message. In our decision making module the vehicle involved in the accident 

sends a message every 2 seconds for the first minute, every 10 seconds for the next 

minute, every 30 seconds for the third minute, and every minute afterwards until it is 

released from the accident.  

A message propagation technique is also in place in our simulations. Each vehicle that 

receives the accident message or release message propagates it to other vehicles in range. 

The other factor to be considered is to decide how far a message should go or on how 

many hops is enough when the message is propagated. This factor could differ based on 

traffic congestion, the average speed of the vehicle, and road type, (whether it is highway 

or urban). In our system, I considered two hops for highways and one hop for urban 

areas. Our earlier work [35] showed that this message resending and propagating 

approach was effective in reducing waiting time and in keeping the amount of 

communication relatively low. 
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I assessed the performance of our decision-making module by providing different 

simulation scenarios. The factors considered in the simulations are: 

 Accident Location (highway, urban) 

 Traffic (high, normal) 

 Number of equipped vehicles or adoption rate of V2V in percent (0, 10, … ,100)  

 Number of lanes on the road in the direction which the accident happened (1, 2, 

more than 2) 

 Number of blocked lanes caused by the accident (1, 2, more than 2) 

The results are summarized and analyzed in the following Section. 

4.4 Evaluation 

I simulated three accidents within the city environment: one involving 1 blocked lane in a 

street with only one lane, one accident involving 1 blocked lane in a street with 2 lanes 

and one with 2 blocked lanes in a street with 2 lanes. Similarly, I simulated four accidents 

within the highway environment, again involving different number of lanes (3 or 4) and 

different number of blocked lanes (1 or 2). This yields four lane-related accidents for 

each driving environment, and allows us to compare the impact of accidents across 

simulations. If the location of the accidents is left vary, then the predicted accident 

duration, which is based on accident information (highway or city, number of lanes, and 

number of blocked lanes), would be different in each case and render it difficult to study 

the impact of the adoption rate on the decision-making strategy.  
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Figure 4-2. Map of Erlangen, Germany, is available from the OpenStreetMap 

project [7], [36]. 

I have executed the simulations with different proportions of vehicle equipped with the 

decision-making module, starting with no vehicle equipped with my system, then 

proceeding by increments of 10%, up to a 100% rate of adoption. 
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Figure 4-3. Map of highway 401, in Ontario, Canada, as available from the 

OpenStreetMap project [36]. 

I tested these different scenarios both in city and highway environments. In both driving 

environments, I considered normal and high traffic situations. I consider normal traffic as 

approximately 150 vehicles per square kilometer and 300 vehicles per square kilometer 

as high traffic. These numbers are based on my own empirical evaluation of the 

simulator.  

Additionally, the accident scenarios provided additional parameters, such as the number 

of lanes on the road, the number of blocked lanes caused by the accident, and the accident 

duration. There are two choices of areas, two choices of traffic, eleven choices of 

adoption rates, two choices for the number of lanes, and two choices for the number of 

blocked lanes resulting in a set of 176 experiments (see Table 2). However, in the cases 

where there is only one lane on the road, the number of blocked lanes cannot be more 

than one and hence 22 cases are not applicable, yielding a set of 154 experiments.  
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Table 4-2. Different simulation parameters resulting in 154 experiments. 

Experiment Factors Choices 

Area City or highway 

Traffic Normal (approximately 150 vehicles per square 

kilometer) or High (approximately 300 vehicles 

per square kilometer) 

Adoption Rate By increments of 10% 

Number of Lanes 1 or 2 in city and 3 or 4 on highway 

Number of Blocked Lanes 1 or 2 (for roads with 2 or more lanes) 

I calculated the waiting time (delay) and the total travel time for each vehicle and the 

number of messages transferred between all vehicles in each case. Waiting time is the 

time the vehicles have been stopped due to an accident, a traffic light or by heavy traffic.  

Figure 4.4 and Figure 4.5 illustrate the waiting times for the different adoption rates on 

highways and in city environments. I observe that the average waiting time for the 

vehicles in both normal and high traffic conditions are reduced by higher adoption rates 

of my system.  
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Figure 4-4. Average waiting time in urban area with different proportion of vehicles 

equipped with my system. 

 

 

Figure 4-5. Average waiting time in highway with different proportion of vehicles 

equipped with my system. 
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A similar result is observed for travel time4 in urban environments as adoption rates 

increase (see Figure 4.6). As shown in Figure 4.7, the travel time in a highway 

environment under both normal and high traffic is increased slightly. Since alternative 

routes for highways could take longer to travel onto (non-highway roads with possibly 

lower maximum legal speed limits), this result is not surprising. 

 

Figure 4-6. Average Travel Time in urban area with different proportion of vehicles 

equipped with my system 

                                                 
4
 Travel time is computed by considering the time a vehicle enters the network and starts its journey until 

the time it reaches its destination. 
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Figure 4-7. Average Travel Time in highway with different proportion of vehicles 

equipped with my system 

The other factor of importance in the different scenarios is the number of messages 

exchanged by the vehicles. In the simplest case, when vehicles are not equipped with the 

decision-making module, there is no message passing between them. However, when 

vehicles use the decision-making module, they propagate messages to inform others 

about accidents.  

The average number of sent messages when the vehicles were traveling within a city area 

in normal traffic is shown in Table 3.2. When 100% of vehicles are equipped with the 

decision-making module, an average of 0.9 messages were sent per vehicle and each 

vehicle received an average of 16.5 messages during its journey. 
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Table 4-3. Average number of transferred messages in normal traffic within city 

areas 

Adoption Rate Number of Sent 

Messages 

Number of Received 

Messages 

0% 0 0 

10% 30 62.33 

10% 45.33 168 

30% 63.33 366.66 

40% 81 605.33 

50% 90 825.66 

60% 100.66 1068.66 

70% 112.33 1376 

80% 123.33 1779.66 

90% 135.33 2213.33 

100% 142.33 2482.33 

 

Table 4-4. Average number of transferred messages in high traffic of city area 

Adoption Rate Number of Sent 

Messages 

Number of Received 

Messages 

0% 0 0 

10% 55.66 296.66 

10% 93.33 780.66 

30% 127.66 1287.66 

40% 161 1782.66 

50% 191.66 2131.66 

60% 189 2372.33 

70% 198 2619.66 

80% 166.33 2497 

90% 179.33 2833.33 

100% 190.33 3228 

Table 4.4 shows the average number of sent and received messages in a high-traffic 

urban area per adoption rate. An average of 0.6 messages were sent by each vehicle and 
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each vehicle received an average of 10.7 messages during its journey at the 100% 

adoption rate. 

Table 4-5. Average number of transferred messages in normal traffic on highway 

Adoption Rate Number of Sent 

Messages 

Number of Received 

Messages 

0% 0 0 

10% 80.25 459 

10% 137.5 1157.75 

30% 177 1764.75 

40% 232 2528.5 

50% 255.25 3194.5 

60% 324 4095.25 

70% 358 5236.75 

80% 381 6407.25 

90% 451.5 7225.25 

100% 455 7896.75 

 

Table 4-6. Average number of transferred messages in high traffic on highway 

Adoption Rate Number of Sent 

Messages 

Number of Received 

Messages 

0% 0 0 

10% 84.5 527 

10% 138.75 1173.75 

30% 206.75 2381.5 

40% 274.25 3586 

50% 346 4604.75 

60% 369 5401.5 

70% 412 6601.25 

80% 449.75 7533.75 

90% 501.25 8234.5 

100% 554 9469.75 
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Table 4.5 and Table 4.6 show the total number of transferred messages in the highway 

environment for normal and high traffic volumes. In this environment, the average 

number of sent and received messages turns out to be less than in urban environments. 

The results are summarized in Table 4.7 for the 100% adoption rate in order to compare 

different scenarios. In general, I observe that there are fewer messages transferred within 

the urban environment than on the highway. This is because in the city messages 

propagate for one hop as opposed to two hops on the highway. In addition, in higher 

traffic density areas of the highway, more messages are transferred between vehicles due 

to their relative proximity. 

Table 4-7. Number of sent and received messages when all vehicles are equipped 

with the decision-making module 

 Number of Sent 

Messages 

Number of Received 

Messages 

City – Normal Traffic 142.33 2482.33 

City – High Traffic 190.33 3228.00 

Highway – Normal Traffic 455.00 7896.75 

Highway – High Traffic 554.00 9469.75 

In general, the results show that in urban environments, both travel times and waiting 

times are reduced with increasing adoption rates. On highways, using my system results 

in less waiting time, at the price of a slightly increased travel time. The number of 

transferred messages per vehicle remains small and manageable across the set of 

simulations.  
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5 Vehicle Tracking System 

This Chapter is a reformatted version of the following article: 

Besat Zardosht, Steven Beauchemin and Michael Bauer, “An In-Vehicle Tracking 

Method Using Vehicular Ad-Hoc Networks with a Vision-Based System”. IEEE 

International Conference On Systems, Man, And Cybernetics(SMC'14), 2014  

My vehicle tracking system integrates a vision based tracking system with wireless based 

tracking system. The approach seems to have the benefits of both technologies while 

avoiding their disadvantages. I evaluated the system via simulation and it shows potential 

for improving performance of intelligent driving assistance systems making use of 

information about the surrounding vehicles’ locations. The results show that the system 

can perform well even if a small percentage of the vehicles are equipped.  

5.1 Introduction 

Having information about the environment surrounding a vehicle can assist a driver in 

driving safer and making driving more convenient. Different sources of information can 

be available for use by vehicles. Having knowledge of neighboring vehicles can provide 

useful information for intelligent vehicle (IV) applications, such as collision warning 

systems or alternative route planning systems. With such information, the driver can 

make more reliable decisions and has a better chance of reacting properly in emergency 

situations. 

Using wireless communication is one of the ways to obtain information about the 

vehicle’s environment, and, in particular, the status of other vehicles, such as their 

location, speed and other data. Vehicles can exchange information with other vehicles 

and inform them about their location, speed, acceleration, etc. Having this information 
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gathered from other vehicles a vehicle can locate neighboring vehicles. Such exchanges 

of information about neighboring vehicles are constrained to vehicles within the range 

and messages can be interfered with, as in an urban environment.  

On the other hand, vehicles can also benefit by using cameras as another source of 

information to monitor the road and nearby traffic. Vehicle tracking via image processing 

systems is done by mounting cameras on the vehicles which provide images to a 

processing system to recognize other vehicles. Depending on the cameras and image 

processing, vehicles at some distance can be detected and even properties of those 

vehicles, such as their speed, can be determined. This information could augment the 

information being exchanged among nearby vehicles and even propagated to other 

vehicles. However, if a vehicle is occluded or partially occluded, the cameras may not be 

able to detect it and it would be out of the view. Wireless communications between 

vehicles could augment such vehicle identification. 

Using cameras to capture elements of the surrounding environment and tracking the 

neighboring vehicles provides the technology with valuable information which can be 

used in many different situations and for many different applications. As noted, the main 

shortcoming in using cameras for tracking vehicles is that they can provide the 

information about the vehicles only in their sight and in lots of situations. On the other 

hand, vehicle-to-vehicle communication can provide driving assistance systems with 

more information about position, speed and directions of nearby vehicles regardless of 

their visibility. However wireless based methods also have some limitations. Not all the 

vehicles may be equipped with wireless communication facilities, messages may 

experience interference and there could be other objects, like pedestrians, animals, etc., 

which cannot report their status using wireless systems, although information about their 

location could be critical. 
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To overcome some of these shortcomings, I propose a new method of vehicle tracking 

which uses both technologies together to track the vehicles. In my vehicle tracking 

method, each vehicle sends a map request via wireless to other vehicles in range and 

based on their responses it updates its own information. I also assume that not all the 

vehicles are fully equipped and consider the implications.  

I have implemented a Vehicular Ad-Hoc Network (VANET)-based vehicle tracking 

method for vehicles which receives the camera information from other vehicles and uses 

its own camera information to match the received information and to update its own 

information. This vehicle tracking method has been implemented and tested using the 

Vehicles in Network Simulation (Veins) which uses OMNet++ [37], (wireless network 

simulation tool) linked to SUMO [38] (a road network simulation tool) and a camera 

simulator which mimics camera operation which is mounted on a vehicle. My tracking 

method has been tested in a city network based on Erlangen [39] and in highway network 

based on 401 highway in Ontario [36]. My vehicle tracking method contributes to 

research in the following ways: 

 Previous tracking methods have used either wireless communication or vision based 

systems to detect neighboring objects and to provide a view of the surrounding 

environment. In the proposed tracking system, both of these technologies have been 

used to overcome their respective limitations and provide more reliable and more 

accurate information about the objects around the vehicle. 

 My vehicle tracking method does not rely on other vehicles and it can work in the 

situation in which no vehicle around is equipped with wireless technology. In this 

case the system just uses its own information obtained from its cameras and a vision 

based tracking system. Generally, my system can work if all the vehicles are 

equipped with both camera and wireless communication, with just wireless or 

neither. 
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 My system works well in specific traffic situations, such as an intersection or in low 

light situations, where other tracking methods cannot operate well. 

This paper is structured as follows. I present related work on which this paper is based in 

Section II. In Section III, the vehicle tracking method is described. In Section IV the 

simulation environment is explained and in Section V, the results of a simulation of my 

vehicle tracking method are examined. Finally, Section VI provides some concluding 

remarks and future directions for this research. 

5.2 Related Work 

In this section, some of the previous works in the field of vehicle tracking are discussed. I 

also review simulation environments for vehicles on roads. 

Using one or more cameras to detect and track neighboring vehicles is a common way to 

provide necessary information for many different intelligent transportation applications 

such as forward collision warning systems, travel management systems, etc. A vision 

based vehicle detection and tracking system was presented by Coifman [40], [41]. This 

tracking system was designed to operate under challenging conditions, such as various 

lighting conditions. In this vision based tracking system, instead of tracking an entire 

vehicle, vehicle features are tracked which makes the system less sensitive to the problem 

of partial visibility. 

Another vision based vehicle tracking system has been presented by Bertozzi which 

detects and tracks vehicles based on a monocular image sequence [42]. Betke has also 

introduced a vision based tracking system which recognizes and tracks multiple cars in 

hard real time from sequences of images [43]. Alin [44] has presented a vision based 

tracking system which uses the street information and attractor-based adjustment of the 

probabilistic forward prediction in a Bayesian grid filter to track other vehicles. 
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A real time object tracking approach for the design of a video based freeway traffic 

monitoring system was proposed by Gloyer [45]. The tracking algorithm operates based 

on mapping the detected vehicles onto the real 3D scene. The proposed tracking 

algorithm makes an estimate of expected position of the vehicles as well as tracking all 

the vehicles on the road [45]. 

Other than using a camera to capture surrounding environment, wireless communication 

among vehicles can also provide the information for vehicle tracking systems. 

Rezaei et al. introduced four different schemes for tracking neighboring vehicles with the 

use of wireless communications. Based on these schemes, each vehicle broadcasts its 

GPS position, speed and heading to other vehicles via wireless communication. In their 

first scheme, the sender broadcasts its information every 100ms and the receiver assumes 

that the sender remains constant until reception of the next message. The second scheme 

provides the receiver with a model estimator which estimates the position of the sender 

based on the model and the received information. In the third scheme, the sender uses a 

model estimator as well as the receiver. Finally, in the fourth scheme the sender repeats 

its message a few times within a short time window [46].  

Shafiee introduced a routing protocol for vehicular ad hoc networks which uses a vehicle 

tracking method to position neighboring vehicles [47]. In this vehicle tracking method, 

vehicles send beacons reporting their position to other vehicles. Based on the information 

obtained from neighboring vehicles, each vehicle can calculate the density of vehicles in 

the network and select the adequate route to communicate via VANET.  

A joint rate-power control algorithm for broadcast of self-information that provides 

vehicle tracking is presented by C. Huang [48]. This algorithm performs based on two 

modules, a rate control module which decide how frequently a vehicle should broadcast 

its information, and a power control module which determine how far the information 

should be broadcast.  
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Fallh has introduced a cooperative tracking method for vehicles, which uses the state 

information of neighboring vehicles broadcast by themselves and provide an estimation 

of their locations on the road. The effect of different choices of rate and range of the 

transmission on such kinds of tracking system is analyzed [49]. 

The most significant problem of vision based vehicle tracking systems is that these 

systems do not have any information about the vehicles or other objects which are not in 

camera’s field of vision, especially near intersections. Also, object detection with use of a 

camera depends on the lighting in each situation. In contrast, communication among 

vehicles can provide position information of the vehicles within communication range or 

even propagate that information. But vehicles out of range or without communications 

capability are not trackable. In contrast, cooperative vehicle tracking systems can be 

considered to overcome these problems. I have combined both vision based systems and 

wireless systems and introduced a new vehicle tracking method and tested it in a 

simulation environment. 

Having a reliable simulation environment is a significant element in the development and 

evaluation of an intelligent transportation application. There has been a number of 

different simulation environments developed in this area. 

Gruyer has presented a cooperative system simulation architecture developed within the 

interconnection of the sensors simulation platform SiVIC ( “Simulateur Véhicule - 

Infrastructure - Capteurs”, Vehicle – Infrastructures - Sensors Simulator) and the 

prototyping platform RTMaps (Real Time Multisensor Advanced Prototyping Software) 

[5]. The SiVIC simulator is interfaced in real-time with the RTMaps software which 

allows prototyping and testing of ADAS (advanced driver assistance systems) and 

behavioral analysis applications in a simulated environment. 

Eichler has presented a simulation environment which can be used to analyze the effect 

of real-time vehicle-to-vehicle warning message distribution applications on road traffic 



59 

 

 

 

 

[6]. Three major components of this simulation are: the traffic simulator CARISMA, 

developed by BMW to simulate the traffic network; the network simulator NS2 to 

simulate mobile vehicle-to-vehicle network; and a comprehensive ad-hoc agent for 

vehicle-to-vehicle warning message propagation. 

C. Sommer has developed a simulation framework that provides coupled network and 

road traffic simulation called Veins (vehicles in network simulation) [7]. For network 

simulation, OMNeT++, a simulation environment free for academic use, is implemented 

to model realistic communication patterns of VANET nodes and the traffic simulation is 

performed by the microscopic road traffic package, SUMO. Veins supports the active 

exchange of control and statistics data and also Veins provides a framework for the 

interaction between the network simulation and the road traffic micro-simulation. Both 

road traffic simulation and network simulation are bi-directionally coupled and 

simulations are performed on-line. This way, not only the influence of road traffic on 

network traffic can be modeled, but also vice versa. In particular, the influences of inter-

vehicle communication (IVC) on road traffic can be modeled and complex interactions 

between both domains examined. I have used Veins as the basis of the current research. 

5.3 Vehicle Tracking Method 

As noted, both vehicle-to-vehicle communications and using cameras for tracking 

vehicles both have plusses and limitations. Cooperative tracking methods can provide 

driving assistance systems with more information about vehicles. I present a new vehicle 

tracking method which integrates both camera based methods and wireless based 

methods to take the advantages of both kinds of systems. Figure 5.1 shows how sharing 

camera information can provide more accurate view of road for each vehicle.  

My tracking method uses camera technology integrated with wireless technology to 

provide information about neighboring vehicles. The camera captures the surrounding 

environment and the associated vision system provides the position, direction and speed 
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of all the vehicles which are visible to the camera. In some situations, like reaching an 

intersection, it would be helpful if the system had information about other vehicles which 

are not in camera’s sight, e.g. the example in Figure 5.1. To do so, wireless technology 

can be used. 

Each subject vehicle (SV) will send a wireless message to neighboring vehicles (NV) in 

the surrounding area and request their position, speed and direction as well as their 

camera’s information about other vehicles’ position, speed and direction. Each NV sends 

the requested information along with a timestamp. 

 

Figure 5-1. In the right picture the vehicle can detect two other vehicles using its 

camera and in left picture another vehicle can detect two other vehicles by its 

camera. If these two vehicles share their camera views they can have a more 

complete view of road 
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Each wireless message received by an SV contains the positions of detected vehicles by 

the sender and the position of the sender vehicle itself. Other than a list of detected 

vehicle positions, the message contains a timestamp which shows the time this list was 

created. The SV has its own list of the positions of detected vehicles and when it receives 

a wireless message, the SV processes the message and adds all the vehicles’ positions in 

that list to its own list. Each response message is of the following format:  

Response Message = (TimeStamp , ListOfVehicles) 

ListOfVehicles = {Vehiclesender, Vehicle1, Vehicle2, … , Vehiclei, … , Vehiclen} 

Vehiclei = (Positioni , Speedi , Directioni) 

The first triple in the list represents the sender information and the next ones are the 

information about the vehicles detected by the sender’s camera. 

 

Figure 5-2. Tracking System Structure 
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SV collects the responses within 2 seconds and ignores the messages received after that. 

When the SV receives the NVs’ information, it matches the information to its own list of 

detected vehicles and creates a bigger view of surrounding environment. To do so, based 

on the estimation of vehicles’ position, the system either finds the match for each vehicle 

in its own list provided by its camera, considering an acceptable error, or adds its “view” 

of vehicles as a new vehicle (See Figure 5.2). 

The error is based on the time at which the request was sent, the timestamp of the 

received message, the vehicle speed and direction; it is calculated as follows: 

For Each ListOfVehiclesi.Vehiclej from V2V Messagesi 

 Errori,j = (CurrentTime – MessageTimeStampi) * Speedi.j 

If There is no Vehiclek in ListOfVehicleSv where 

 (Vehiclei,j.Position – Error <= Vehiclek.Position <= Vehiclei,j.Position + Error) 

Then Add Vehiclei,j to ListOfVehicleSv 

If the system can find each vehicle with same position in its list of vehicles or if it can 

find one with an error less than or equal to the Error calculated above, consider both the 

same vehicle and ignore it. But if it cannot find such a vehicle in its list, it adds the 

vehicle information to the list (See Figure 5.3). 

The more vehicles that can be detected by the system, the more accurate and reliable the 

tracking system can be. 
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Figure 5-3. Vehicle Tracking System adds a new vehicle to the list if it is not already 

in the list within an error; Vehiclei,j in 3.a will not be added to the list while 

Vehiclei,j in 3.b will be added to the list 

 

Figure 5-4. Map of Erlangen, Germany, as available from the OpenStreetMap 

project [7], [36] 
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Figure 5-5. Map of 401 Highway, Canada, as available from the OpenStreetMap 

project [36] 

I have tested the tracking method with an Erlangen city map (Figure 5.4) and a 401 

Highway map (Figure 5.5) in Ontario in light traffic congestion and heavy traffic 

congestion and also specifically at intersections. 

In order to evaluate the vehicle tracking method, I have used a simulator which consists 

of three main components; a vision simulator, a wireless communication simulator and a 

traffic simulator. The specification of these components and their connections is 

explained in next section. 

5.4 Evaluation 

I evaluated the vehicle tracking system under different situations when different 

percentages of vehicles are equipped with wireless communication or both camera and 

wireless (our presented vehicle tracking system). Each subject vehicle (SV) sends a map 

request every 100 seconds through a wireless message to neighboring vehicles (NV) in 
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range and asks for their information about other vehicles in their cameras’ sight. When 

NVs which have wireless technologies receive the map request message they send the 

information about their positions along with the positions of the vehicles identified 

through their cameras. In the case that they do not have a camera, they just send their 

own positions. The SV collects all the information within two seconds and ignores the 

messages received after two seconds. Then the SV combines the collected information 

with its own information provided by its camera to form a better view of the road and 

vehicles on it.  

I calculated the number of messages transferred between vehicles and the number of 

tracked vehicles assuming different adoption rates (number of equipped vehicles) in six 

different traffic road simulation scenarios; light traffic on highway (150 vehicles 

traveling on the roads), heavy traffic on highway(300 vehicles), light traffic in urban area 

(90 vehicles), heavy traffic in urban area (180 vehicles, light traffic at intersections (76 

vehicles) and heavy traffic at intersections (160 vehicles). 

The adoption rate could be different based on the proportion of the vehicles which are: a) 

not equipped with tracking technologies; b) are only equipped with wireless 

communication technologies and no camera; c) are equipped with the presented tracking 

system and d) use both camera and wireless technologies to track neighboring vehicles. 

When 100% of the vehicles are not equipped, 0% are equipped with wireless technology 

and 0% with wireless and camera technologies, the adoption rate is denoted as 100%-0%-

0%. In other words, the first number shows the proportion of the vehicles which are not 

equipped, the second number shows the proportion of the vehicles which only use 

wireless technology to track other vehicles and the third number shows the proportion of 

the vehicles that use the integrated tracking system. Therefore, a 33%-33%-33% adoption 

rate means that 33% of all vehicles traveling on the road are not equipped with any 

technology, 33% of the vehicles are equipped with wireless technology, and 33% of the 

vehicles are equipped with the tracking system (wireless and camera).  
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Figure 5-6. Normalized number of tracked vehicles in different tracking methods 

with various adoption rates in a highway heavy and light traffic; error bars show 

the range of one standard deviation 
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Figure 5-7. Normalized number of tracked vehicles in different tracking methods 

with various adoption rates in the city of Erlangen with heavy and light traffic; 

error bars show the range of one standard deviation 

Figure 5.6 illustrates the normalized5 average number of tracked vehicles for different 

adoption rates in the different scenarios for highway with heavy and light traffic. The 

results show, as expected, that by increasing the adoption rate, the number of tracked 

vehicles increases and overall number of tracked vehicles in the tracking method is much 

more than just the wireless based method. 

                                                 

5 The normalized average of tracked vehicles was computed by dividing the actual average of tracked vehicles by the 

total number of vehicles and multiplied by 100. 
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Figure 5-8. Normalized number of tracked vehicles in different tracking methods 

with various adoption rates at intersections with heavy and light traffic; error bars 

show the range of one standard deviation 

The normalized number of tracked vehicles in both tracking methods using various 

adoption rates in an urban area is shown in Figure 5.7. The number of tracked vehicles in 

the wireless based tracking method and the integrated tracking method using different 

adoption rates at intersections with heavy traffic and light traffic is shown in Figure 5.8. 

The number of vehicles which could be recognized and tracked only with camera only 

depends on the number of the vehicles in camera’s sight of view. The average numbers of 

the vehicles tracked only with cameras in different scenarios are shown in Table 5.1. 
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Table 5-1. Average number of tracked vehicles with camera only 

 Number of Tracked vehicles  

Highway Heavy Traffic 1.68 

Highway Light Traffic 1.77 

Urban Heavy Traffic 3.87 

Urban Light Traffic 2.80 

Intersection Heavy Traffic 2.68 

Intersection Light Traffic 1.08 

The results show that using the proposed vehicle tracking method can have significant 

impact on number of tracked vehicles, especially at intersections where cameras’ sights 

are limited. In these scenarios, even with low adoption rates, a vehicle can recognize a 

large number of neighboring vehicles. Integrating a vision based system and wireless 

technologies is an effective approach to track a larger number of the vehicles on the road 

and provide a better view of the surrounding environment. This, in turn, can provide safer 

and more reliable intelligent transportation applications. 

The other factor which should be considered is the number of messages transferred 

between vehicles in order to provide requested information. Figure 5.9 shows the average 

number of transferred wireless messages between vehicles for tracking requests with 

considering various adoption rates in highway scenarios; the average number of 

transferred messages per request for an urban area is shown in Figure 5.10 and for 

intersection scenarios in Figure 5.11. 
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Figure 5-9. Number of transferred messages for tracking requests in highway 
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Figure 5-10. Number of transferred messages for tracking requests in urban area 
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Figure 5-11. Number of transferred messages for a tracking request at intersection 

Though the numbers of transferred messages in both systems are almost the same, the 

sizes of messages are different since the amount of transferred information is different. 

Each tracked vehicle location data contains latitude and longitude which is represented as 

a float variable with 4 bytes. Therefore, for each tracked vehicle 8 bytes is added to the 

size of the wireless message. So in the wireless tracking system, the size of each message 

is approximately 8 bytes because it just includes just one vehicle’s location information. 

The average size of each message in the integrated wireless-camera tracking system can 

be calculated based on the average number of tracked vehicles with cameras plus its own 

location information (See Table 5.2).  
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Table 5-2. Average size of each message in integrated wireless-camera tracking 

system 

 
Average Size of Each 

Message (Bytes) 

Highway Heavy Traffic 21.47 

Highway Light Traffic 22.13 

Urban Heavy Traffic 38.93 

Urban Light Traffic 30.36 

Intersection Heavy Traffic 29.48 

Intersection Light Traffic 16.61 

Overall, the size of the messages in an integrated wireless-camera tracking system is 

larger than the size of the messages in wireless-only tracking system. The communication 

system’s bitrate is 11Mbps, so the overall impact is not so big as to influence the overall 

performance of the system. Generally, the integrated camera-wireless vehicle tracking 

system has shown great potential in increasing efficiency and accuracy in vehicle 

tracking applications. 
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6 An Emergency Message Propagation System 

This Chapter is a reformatted version of the following article: 

Besat Zardosht, Steven Beauchemin and Michael Bauer, “An Emergency Message 

Propagation System Using Roadside Units and Vehicle-To-Vehicle Communication”. 

IEEE Smart Vehicles, 2016 (to be submitted)  

A message propagation system which uses Vehicle-to-Vehicle (V2V) and Vehicle-to-

Infrastructure (V2I) communication is presented in this chapter. In emergency situations, 

wireless technology enables vehicles to share warning messages with other vehicles using 

V2V and with emergency services by using V2I. The time that passes before an 

emergency service is notified about an emergency situation, such as an accident, is 

critical. In this paper I evaluate the effects of traffic density, V2V adoption rates, the 

number of hops for messages in V2V communication, location and number of roadside 

units on the performance of message propagation for emergency response and network 

coverage.  

6.1 Introduction 

The number of vehicles in service has grown dramatically in the past decades and has led 

to increases in the number of accidents. The time between an accident and the arrival of 

medical assistance is critical and is often referred to as the golden hour [1]. One of the 

largest time fractions of this hour is the time between the occurrence of an accident and 

when emergency services are notified of it. If the occupants of a vehicle are injured and 

cannot call for assistance, this time may increase and the result can be detrimental to 

those involved in the accident. With V2V and V2I capabilities, other vehicles passing by 

the accident can inform emergency services about it using wireless communication 
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between vehicles and roadside units. One could rely on V2V or V2I only, but a hybrid 

approach using both V2V and V2I communications makes the most sense. With a hybrid 

approach, however, there are a number of tradeoffs, including the number of times an 

emergency message is propagated and the geographical distribution of roadside units. 

The former impacts the volume of V2V communication and the latter impacts the 

deployment of roadside units. 

In this work, I use a simulation environment to study the effect of vehicle location 

(whether it is city or highway), traffic density, V2V adoption rates (percentage of 

vehicles with V2V capability), the number of hops emergency messages can be 

propagated, and the number of roadside units on the notification time6 for emergency 

message propagation. For Simplicity, I have used equidistant square grid for RSU (Road 

Side Units) placement. I have used a modified version of Veins [2] as my simulator to 

evaluate the emergency message propagation system. 

This paper is organized as follows: Section II reviews the related work regarding roadside 

unit placements and emergency warning systems; Section III describes my proposed 

emergency message propagation system; Section IV introduces the simulation 

environment of the system; Section V shows the evaluation results, and Section VI offers 

a conclusion and avenues for future work. 

6.2 Previous Work 

In this Section I discuss pervious work on emergency message propagation systems and 

the integration of V2V and V2I communication modes into these systems. 

Intelligent Vehicle (IV) systems typically use one or more forms of communication that 

can be categorized into three types: Inter-Vehicle Communication (IVC) which uses V2V 

                                                 
6
 Notification time is the time between the occurrence of an accident and the time when emergency services are 

notified about it.  
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communication, Roadside-to-Vehicle Communication (RVC) which uses V2I 

communication and Hybrid Vehicular Communication (HVC), employing both V2V and 

V2I communication [3].  

There are several cooperative collision warning systems which use V2V communication 

to inform other vehicles about impeding collisions [4]–[7]. In addition, Hybrid Vehicular 

communication methods have been introduced for similar purposes [8], [9]. These 

systems integrate V2V with V2I in order to improve the performance of various IV 

applications. 

Martinez et al. present a futuristic architecture of an accident notification system that 

combines V2V and V2I communication in order to reduce the notification time after an 

accident occurs [10]. In this system, wireless messages are delivered to a control unit 

which in turn estimates the severity of the accident and determines the appropriate rescue 

resources to be deployed. However, there is yet to be an implementation of these ideas.  

A message propagation system protocol for both V2V and V2I communication is 

described by Vegni and Little [11]. In this model the lower and upper bound for the 

message propagation rate is characterized by factors such as the direction and speed of 

vehicles. To prioritize emergency messages over other messages, a dual frequency 

channel approach is presented by Maeshima et al. [12]. 

V2V and V2I communication can be used for purposes other than accident or driving 

information. In the case of a natural catastrophe, such as earthquakes or floods, V2V and 

V2I communication may be used to spread warning messages about the specific threat 

[13]. Alternatively, a model to address security and efficiency issues in Vehicular Ad-

Hoc Networks (VANET) is presented by Zhu et al. [14]. 

Roadside Units (RSUs) constitute additional hardware that emergency message 

propagation systems may use. However, they are expensive to install and maintain in 
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vehicular environments and thus reducing their number is an important aspect of their 

deployment [15]. There are many approaches to RSU placement in vehicular networks. 

Lochert et al. present an RSU placement model which uses a genetic algorithm aimed at 

overcoming problems inherent to limited bandwidth while ensuring minimal deployment. 

[16].  

Another approach to minimize the number of RSUs in vehicular networks presented by 

Abdrabou and Zhuang considers vehicle density, vehicle speed, and warning message 

lifespan in the placement of RSUs [17]. Wu et al. present a similar method also based on 

vehicle density and speed [19]. Alternatively, Barrachina et al. observe that in areas of 

high vehicle density, V2V communication can be used to propagate messages over large 

distances and present a placement method that considers fewer RSUs for high vehicle 

density areas and vice-versa [18]. The problem of bounded-delay RSU placement is 

studied by Li et al. and provides a model in which all the vehicles are able to receive the 

messages within a given time window [20]. 

In this work I use a decision-making module to detect accidents and propagate relevant 

messages to other vehicles. The number of times (hops) that an accident message can be 

propagated from vehicle to vehicle, the traffic density, the number of RSUs, and the V2V 

adoption rate are all important factors in the process of informing emergency services 

regarding situations such as accidents. Other than the statistical study of the effect of 

these factors on the overall performance of the system, the decision-making module 

provides useful information for emergency services such as the location of an accident 

and an estimate of its duration. 

6.3 Emergency Message Propagation System 

The problem of RSU placement is difficult but important in vehicular networks. Too 

many RSUs on the road network may result in high installation and maintenance costs 

while fewer RSUs may cause low performance of V2I systems. Hence, finding the 
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optimal number of RSUs is crucial. The number of RSUs needed depends on many 

factors including traffic location, traffic density, vehicle speed and number of vehicles 

equipped with wireless communication systems. 

 Once the decision-making system of the vehicle detects that it is in an accident, it 

collects location information from the sensor agent, gets the number of lanes in the 

current road, and speed and acceleration of the vehicle prior to the accident from the 

vehicle agent. Then the decision-making module uses an accident duration model to 

predict its duration [22] and, with the use of a wireless agent, sends an accident message 

to other nearby vehicles and RSUs. 

I have designed an emergency message propagation system which uses both V2V and 

V2I communication to inform emergency services about the occurrence of an accident. 

With this system I evaluate the effect of traffic location, traffic density, V2V adoption 

rates, and the number of hops that an emergency message is propagated. I measure both 

the notification time, the time for an emergency message to reach an emergency center, 

and the percentage of number of vehicles which are in the range of the communication 

network. I have used a uniform, equally spaced RSU placement grid scheme and 

considered two different scenarios: one with nine RSUs, and another with four RSUs 

only (see Figure 6-1 and Figure 6-2). 
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Figure 6-1 Location of RSUs in City: Red circles are the location of RSUs in a nine 

RSU configuration and the circles with blue outlines are the locations of RSUs in a 

four RSU configuration 
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Figure 6-2 Location of RSUs in Highway: Red circles are the location of RSUs in a 

nine RSU configuration and the circles with blue outlines are the locations of RSUs 

in a four RSU configuration 

In the configuration with nine RSUs, the distance between them is about one kilometer 

and in the other configuration with four RSUs, the distance is approximately two 

kilometers. The RSUs are assumed to be connected to each other by a network and to an 

emergency centre. When a RSU receives an emergency message, it forwards it to an 

emergency response center and the assumption is that the center will then notify the 

emergency response units that should proceed to the accident. When a vehicle is involved 

in an accident, it propagates a wireless message; for the current study I assume that at 

least one vehicle per accident is equipped with V2V. Any vehicle or RSU can receive an 

accident message if they are in communication range. If a vehicle receives an accident 

message, it will resend it if the hop number is more than one. The first RSU that receives 
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this message will forward it to the emergency response center. The RSU also broadcasts 

the accident message to warn other nearby vehicles. When a vehicle receives the message 

from the RSU, it stops resending it since the emergency services have already been 

notified. The emergency message contains important information about the accident, such 

as the time of the accident, its location (GPS), and its predicted duration. The predicted 

duration of the accident is calculated with a survival model [22]. Accident duration 

predictions can be helpful for emergency systems to estimate the severity of an accident 

and to perform necessary actions. In addition, vehicles in proximity to the accident can 

provide an estimation of when the road might be cleared, warn other drivers about a 

possible traffic jams, and perhaps look for alternative routes. 

I assessed the performance of my system by providing different simulation scenarios. The 

factors considered in the simulations are shown in Table 6-1. The details of my 

simulation are discussed in the next Section. 

Table 6-1. Different simulation parameters 

Experiment Factors Choices 

Vehicle Location Highway or City 

Traffic Low (approximately 150 vehicles in four 

square kilometers) or High (approximately 

750 vehicles in four square kilometers) 

Adoption Rate 10, by increments of 10% 

Number of Hops 1 or 2 

Number of RSUs 9 or 4 

 

 

6.4 Evaluation 

I measured the notification time and average number of vehicles which are within 

communication range of the emergency network under different circumstances using my 
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simulation: two different locations (City and Highway), two sets of RSUs (nine and four), 

two traffic densities (low traffic: 150 vehicles in 4 square kilometer and high traffic: 750 

vehicles in 4 square kilometers), two sets of hops (one and two), and ten adoption rates 

(from 10% to 100%). These choices gave us 160 distinct simulations. Every 10 seconds I 

compute the notification time of an emergency message propagated from each vehicle 

within range of the communication network as if each was sending a message regarding 

an accident. This allows us to measure the average notification without running many 

more simulations for specific accidents and vehicle travel patterns. It gives us a means of 

comparing the impact on notification time of the different criteria.  

 

Figure 6-3. Notification time in city of London ON in high traffic with four roadside 

units 
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Figure 6-4. Network coverage for high traffic density with four roadside units in city 

area 

Figure 6-3 and Figure 6-4 show notification times and average number of vehicles 

covered by the network in high density traffic with four RSUs installed on the road 

network in a city area. As shown, when the emergency message is propagated for two 

hops the number of vehicles covered increases dramatically. Another observation is that 

the average response time increases with two hops. The reason is that when the number 

of hops increases, more vehicles which had not been covered will be in network range but 

for those vehicles the notification time is higher since the message will pass through more 

hops to reach a central point. This results in higher average notification time. As 

expected, the adoption rate has great impact on the number of covered vehicles since the 

number of potential covered vehicles increases when more vehicles are equipped with 

wireless technology. 
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Figure 6-5 and Figure 6-6 show the results for the situation with high traffic density and 9 

RSUs on the road in the city. The trend for network coverage is almost identical to the 

results obtained with fewer RSUs but in this case the average number of covered vehicles 

are generally higher. In this set of experiments the notification time is higher with more 

hops but it decreases when a higher percentage of vehicles are equipped with wireless 

technologies. 

 

Figure 6-5. Notification time in high traffic with nine roadside units in city 

environment 
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Figure 6-6 . Average number of covered vehicles in high density traffic with nine 

roadside units in city area 

For low traffic density in a city environment, Figure 6-7, Figure 6-8, Figure 6-9 and 

Figure 6-10 summarize the results. In low traffic density with 4 RSUs, the results for the 

notification time are similar to the high density situation, but the number of covered 

vehicles is different. When there is low traffic density with 4 RSUs there are many fewer 

vehicles covered by the network if with the adoption rate is below 60%; this is the case 

for 9 RSUs as well. Interestingly, the lower coverage rate has little impact on the 

notification time when there are 4 RSUs (steady at aroun 0.002 seconds) but in the case 

of the 9 RSUs the increased coverage when over 60% of the vehicles have V2V, the 

notification rate drops. 
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Figure 6-7. Notification time in low traffic with four roadside units in city area 



87 

 

 

 

 

 

Figure 6-8. Average number of covered vehicles in low density traffic with nine 

roadside units in city area 
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Figure 6-9. Notification time in low traffic with nine roadside units in city area 
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Figure 6-10. Network coverage in low traffic with nine roadside units in city area 

Driving in a highway environment is different than driving in a city area. One might 

expect that the notification time in highway environment might be higher than in city 

because of less dense traffic or network coverage. However, the notification time and 

network coverage trends are almost the same. The results for notification time and 

network coverage in highway environment with high traffic and with four RSUs are 

shown in Figure 6-11 and Figure 6-12. 
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Figure 6-11. Notification time in high traffic with four roadside units in highway 

area 
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Figure 6-12. Network coverage in high traffic with four roadside units in highway 

area 

The notification time and network coverage for high traffic density with nine roadside 

units in a highway environment is shown in Figure 6-13 and Figure 6-14. The notification 

time is over half the time with with only four RSUs. However, the number of covered 

vehicles is almost the same. These results suggest that adding the number of RSUs in 

highway with high traffic density does not have considerable impact on the network 

coverage nor has an impact on the notification time. In contrast, in a low traffic density 

environment with fewer RSUs (4), since there are fewer vehicles to propagate the 

wireless messages, higher notification times and lower network coverage occurs (see 

Figure 6-15 and Figure 6-16). Finally, the results for the notification time and network 

coverage for highway in low traffic density with nine RSUs, the notification time is lower 

when compared the are shown in Figure 6-17 and Figure 6-18. Response time is much 

lower comparing to the low traffic density 4 RSU environment; this is not surprising. 
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Figure 6-13. Notification time for highway in high traffic density with nine roadside 

units 
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Figure 6-14. Number of covered vehicles for highway in high traffic density with 

nine roadside units 
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Figure 6-15. Notification time for highway in low traffic density with four roadside 

units 
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Figure 6-16. Number of covered vehicles for highway in low traffic density with four 

roadside units 
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Figure 6-17. Notification time for highway in low traffic density with nine roadside 

units 
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Figure 6-18. Number of covered vehicles for highway in low traffic density with nine 

roadside units 

 

6.5 Conclusion 

I have used a decision-making system to design an emergency message notification 

system simulation and examined the effects of traffic location, traffic density, V2V 

adoption rate, number of hops in V2V, and number of RSUs installed on vehicular 

networks on the time to notify emergency services. Generally, the results show that in 

higher traffic density the notification time is lower. The results also show that traffic 

density, number of RSUs (and likely placement), and V2V/I adoption rate impacts 

notification time. The interplay among these factors is not clear. As the adoption rate 

increases, the potential value of more RSUs seems to diminish. With two hops, there is 

increased coverage. The reason for increasing notification time with use of more hops 

may not be clear at first but more precise analysis of result specifies that the reason is 
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higher network coverage. With use of two hops all of the vehicles that have been covered 

in the same situation but with use of one hop are covered with same notification time. In 

addition, there are some more vehicles that have not been covered with use of one hop 

but with use of two hops they are covered and they can communicate with at least one 

RSU. The second group of covered vehicles have higher notification time since their 

messages should go through more hops to reach a RSU. Having first group of covered 

vehicles with same notification time and second group of covered vehicles with higher 

notification time results in higher average notification time for the situation with two 

hops comparing to one hop. Higher adoption rates have a positive impact on the 

notification time. This is not surprising given the increased coverage. The higher number 

of RSUs is also associated with decreased notification times. This impact may be more 

pronounced if the RSUs were less frequent. One could easily imagine the same level of 

performance if the RSUs were further apart and there were more hops. These trade-offs 

require further study.  
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7 Conclusion and Future Work  

I have implemented a decision making module for vehicles which collects data from 

available sources of information and analyses this data to provide the best action to be 

taken. The proposed module uses three agents to collect data: vehicle agent, wireless 

agent (V2V and V2I) and camera agent. Using this module, I have evaluated the 

approach with a cooperative collision warning and rerouting application and a vehicle 

tracking system. 

The main contributions of this work are: 

 A novel in-vehicular decision making system based on blackboard architectural 

model which collects raw data from available sources of information using its 

agents and process these data and provides the best action to be taken. The 

decision making system works in conjunction with one or more IV applications 

simultaneously. 

 Four intelligent vehicle application which operate using decision making system 

 Extend Veins Simulator to accommodate camera simulator and the decision 

making system which uses 2D mathematical model of road network obtained 

from SUMO and determines if an object is detectable by a camera installed on the 

vehicle or not.  

The presented cooperative collision warning and rerouting system uses wireless agent’s 

data to avoid accidents and to suggest alternative routes in case of an accident. My 

application contributes to research in the following ways: 

 CCW systems have mostly been used to provide warning information for the driver 

and do not suggest possible actions to be taken. These systems inform the following 
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vehicle about the potential collision, but do not provide rerouting choices for the 

driver which can help avoid traffic congestion and reduce waiting time. My 

decision making algorithm provides an alternative route for vehicles approaching 

the accident location in order to decrease waiting and travel time and avoid traffic 

using VANET communication. 

 My decision making module is the first event based decision making approach for 

collision warning and rerouting system based on wireless communication. My 

decision making system triggers when an accident happens and the car which has 

been in the accident sends accident message(s). In other proposed rerouting 

algorithms, vehicles send request messages to other vehicles in order to find out 

about traffic congestion based on the responses. In the presented system there is no 

need to continue sending redundant messages and this reduces channel bandwidth 

by not sending unnecessary messages. 

 My decision making module does not need a central management control to collect 

the information from vehicles and manage the following traffic. Any equipped 

vehicle can provide the necessary warning messages to other vehicles. 

 My system uses a specific “resending” accident messages alongside the propagating 

messages for one or two hop(s) in order to make sure that all needed vehicles are 

aware of the accident and can take action to reroute to avoid the traffic jam caused 

by the accident. 

 Since driving in highways is different than driving in urban areas, I evaluated my 

system in different areas to compare the differences based on driving areas. 

 The other factor which can be important is traffic congestion. The decision making 

module chooses different scenarios in high traffic and normal traffic. High traffic is 

detected based on the speed of the vehicle and the maximum legal speed of the road 

it is traveling on. 
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Knowledge of neighboring vehicles can provide useful information for safety intelligent 

vehicle (IV) applications, such as collision warning systems. One approach to vehicle 

tracking via image processing systems is by mounting cameras on the vehicles. However, 

if a vehicle is behind other objects the camera is not able to detect as it would be out of 

view. Wireless communications between vehicles could be an alternative to this problem. 

Vehicles could exchange information about their location, speed, acceleration, etc. 

Having this information gathered from other vehicles, I can locate neighboring vehicles. 

However, what if not all the vehicles are equipped with a Dedicated Short Range 

Communication (DSRC) transceiver. In that case, using wireless communication alone 

among the vehicles for vehicle tracking cannot be a completely effective solution. 

To overcome these shortcomings, I have proposed a new method of vehicle tracking as 

an application of the decision making module which uses both technologies together to 

track the vehicles. In my vehicle tracking method, each vehicle sends a map request via 

wireless to other vehicles in range and based on their response updates its own 

information. This system does not assume that all the vehicles are equipped. My vehicle 

tracking method contributes to research in the following ways: 

 All previous tracking methods have used either wireless communication or vision 

based systems to detect neighboring objects and provide a view of surrounding 

environment. In the proposed tracking system, both of these technologies have been 

used to overcome their respective limitations and provide more reliable and more 

accurate information about the objects around the vehicle. 

 My vehicle tracking method does not rely on other vehicles and it can work in the 

situation in which no nearby vehicle is equipped with cameras or wireless 

technology. In this case the system just uses its own information obtained from its 

cameras. Generally, my system can work if all the vehicles are equipped with both 

camera and wireless communication or one of the technologies. 
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 My system works well in specific traffic situations, such as reaching an intersection 

or in low light situations, where other tracking methods cannot operate well. 

I have proposed a novel emergency message propagation system which uses both V2V 

and V2I communications in order to notify emergency services about the the 

emergency situations such as an accident. This emergency message propagation 

system contributes to research in the following ways: 

 This VI application is a novel emergency message propagation system using 

decision making system and both V2V and V2I to decrease notification time for 

emergency systems. 

 My system provides more information about the accident to emergency services 

such as the estimated duration of the accident to determine accident severity. 

 I have considered traffic location, traffic density, Number of hops, etc. on system 

operation. 

 

Research on using a decision making system for vehicles is relatively recent with the 

potential for significant results and applications in near future. Here are a few possible 

research areas that may be undertaken immediately:  

 Driver information such as driver gaze, heartbeat etc. could have major influence on 

driving situation. Adding driver behavior data as a new data agent to the proposed 

decision making system could improve the overall result with making the whole 

system personalized by the driver. 

 The first step of each technology could be testing the design on simulation. 

However, designing and developing a system on real world could provide more 

realistic overview of the system and show possible issues and limitations. 

Overall, the results show that using a decision making module shows great potential for 

improving performance of vehicular systems by reducing travel time and wait time and 
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providing more accurate information about the surrounding environment for vehicles. In 

addition, the safety of vehicles will increase since the vehicles will be informed about the 

accident by wireless communication. 
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Appendices 

To simulate camera operations, I have implemented a vision simulator which is defined 

for each vehicle. Each camera is defined by three factors; range, angle and direction. 

Having these factors and the mathematical model of road network it is possible to figure 

out if an obstacle is detectable by a camera or not. Followings are the codes which 

provide these calculations. 

This code is written in c++ and as an Omnet++ component. 

Appendix A: Vision simulator code 

Shape TraCIDemo11p::Vehicle_to_Shape(Point Position, double Direction, double 

Lenght, double Width) 

{ 

    Shape VehicleShape; 

    Point VehiclePoint; 

    double r; 

    double Teta,Gamma,Alpha; 

  

    r=pow((pow(Width/2,2)+pow(Lenght/2,2)),0.5); 

    Gamma=atan(Width/Lenght); 

    Teta=(Direction*PI)/180;// degree to radian 

  

    Alpha=Teta-Gamma; 

    VehiclePoint.x=cos(Alpha)*r+Position.x; 

    VehiclePoint.y=sin(Alpha)*r+Position.y; 

    VehiclePoint.Visible=true; 

    VehicleShape.PointList.push_front(VehiclePoint); 

  

    Alpha=Teta+Gamma; 

    VehiclePoint.x=cos(Alpha)*r+Position.x; 

    VehiclePoint.y=sin(Alpha)*r+Position.y; 

    VehiclePoint.Visible=true; 

    VehicleShape.PointList.push_front(VehiclePoint); 

  

    Alpha=((180*PI)/180)+Teta-Gamma; 
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    VehiclePoint.x=cos(Alpha)*r+Position.x; 

    VehiclePoint.y=sin(Alpha)*r+Position.y; 

    VehiclePoint.Visible=true; 

    VehicleShape.PointList.push_front(VehiclePoint); 

  

    Alpha=((180*PI)/180)+Teta+Gamma; 

    VehiclePoint.x=cos(Alpha)*r+Position.x; 

    VehiclePoint.y=sin(Alpha)*r+Position.y; 

    VehiclePoint.Visible=true; 

    VehicleShape.PointList.push_front(VehiclePoint); 

  

  

    return VehicleShape; 

} 

 

bool TraCIDemo11p::Check_Point_Inside(Camera Camera, Point Point) 

{ 

    double Alpha1,Alpha2; 

    Alpha1=((Camera.Angle1+Camera.Direction)*PI)/180; 

    Alpha2=((Camera.Angle2+Camera.Direction)*PI)/180; 

  

    if ( 

             ( 

                 (pow((Point.x-Camera.Position.x),2)+pow((Point.y-

Camera.Position.y),2))<=pow(Camera.Distance,2) 

             ) 

         and ( 

                  ((cos(Alpha1)==0) and (sin(Alpha1)>0) and (Point.x >= Camera.Position.x)) 

               or ((cos(Alpha1)==0) and (sin(Alpha1)<0) and (Point.x <= Camera.Position.x)) 

               or ((cos(Alpha1)>0) and ((Point.y-tan(Alpha1)*Point.x)<=(Camera.Position.y-

tan(Alpha1)*Camera.Position.x))) 

               or ((cos(Alpha1)<0) and ((Point.y-tan(Alpha1)*Point.x)>=(Camera.Position.y-

tan(Alpha1)*Camera.Position.x))) 

             ) 

         and ( 

                 ((cos(Alpha2)==0) and (sin(Alpha2)>0) and (Point.x <= Camera.Position.x)) 

              or ((cos(Alpha2)==0) and (sin(Alpha2)<0) and (Point.x >= Camera.Position.x)) 

              or ((cos(Alpha2)>0) and ((Point.y-tan(Alpha2)*Point.x)>=(Camera.Position.y-

tan(Alpha2)*Camera.Position.x))) 

              or ((cos(Alpha2)<0) and ((Point.y-tan(Alpha2)*Point.x)<=(Camera.Position.y-

tan(Alpha2)*Camera.Position.x))) 

            ) 
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        ) 

    { 

        return true; 

    } 

    else 

    { 

        return false; 

    } 

  

} 

 

std::list<Point> TraCIDemo11p::Determine_Outermost_Points(Camera Camera, Shape 

Shape) 

{ 

    std::list<Point> TempPointList,Outermosts; 

    int ListSize=Shape.PointList.size(); 

    double MaxAngle; 

    Point Point1,Point2,Outermost1,Outermost2; 

    double Angle,Angle1,Angle2; 

  

    MaxAngle= -1; 

    TempPointList=Shape.PointList; 

  

    Point1=TempPointList.front(); 

    if (Camera.Position.x==Point1.x) 

    { 

        if (Camera.Position.y>Point1.y) Angle1=270; 

        if (Camera.Position.y<Point1.y) Angle1=90; 

    } 

    else Angle1=(atan((Camera.Position.y-Point1.y)/(Camera.Position.x-

Point1.x))*180)/PI; 

    if (Camera.Position.x>Point1.x) Angle1+=180; 

    if ((Angle1<0)and(Camera.Position.x<Point1.x)) Angle1+=360; 

    for (int i=0;i<ListSize;i++) 

    { 

        Point2=TempPointList.front(); 

        TempPointList.pop_front(); 

        if (Camera.Position.x==Point2.x) 

        { 

            if (Camera.Position.y>Point2.y) Angle2=270; 

            if (Camera.Position.y<Point2.y) Angle2=90; 

        } 
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        else Angle2=(atan((Camera.Position.y-Point2.y)/(Camera.Position.x-

Point2.x))*180)/PI; 

        if (Camera.Position.x>Point2.x) Angle2+=180; 

        if ((Angle2<0)and(Camera.Position.x<Point2.x)) Angle2+=360; 

        Angle=fabs(Angle1-Angle2); 

        if (Angle>=180) Angle-=180; 

        if (Angle>MaxAngle) 

        { 

            MaxAngle=Angle; 

            Outermost1=Point2; 

        } 

    } 

  

    TempPointList=Shape.PointList; 

    MaxAngle= -1; 

    Point1=Outermost1; 

    if (Camera.Position.x==Point1.x) 

    { 

        if (Camera.Position.y>Point1.y) Angle1=270; 

        if (Camera.Position.y<Point1.y) Angle1=90; 

    } 

    else Angle1=(atan((Camera.Position.y-Point1.y)/(Camera.Position.x-

Point1.x))*180)/PI; 

    if (Camera.Position.x>Point1.x) Angle1+=180; 

    if ((Angle1<0)and(Camera.Position.x<Point1.x)) Angle1+=360; 

    for (int i=0;i<ListSize;i++) 

    { 

        Point2=TempPointList.front(); 

        TempPointList.pop_front(); 

        if (Camera.Position.x==Point2.x) 

        { 

            if (Camera.Position.y>Point2.y) Angle2=270; 

            if (Camera.Position.y<Point2.y) Angle2=90; 

        } 

        else Angle2=(atan((Camera.Position.y-Point2.y)/(Camera.Position.x-

Point2.x))*180)/PI; 

        if (Camera.Position.x>Point2.x) Angle2+=180; 

        if ((Angle2<0)and(Camera.Position.x<Point2.x)) Angle2+=360; 

        Angle=fabs(Angle1-Angle2); 

        if (Angle>=180) Angle-=180; 

        if (Angle>MaxAngle) 

        { 
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            MaxAngle=Angle; 

            Outermost2=Point2; 

        } 

    } 

    Outermosts.push_front(Outermost1); 

    Outermosts.push_front(Outermost2); 

    return Outermosts; 

} 

 

std::list<Shape> TraCIDemo11p::Determine_Shape_Visibility(Camera 

Camera,std::list<Shape> Shapes) 

{ 

  

    Shape Shape1, Shape2, TempSahpe; 

    int SSize = Shapes.size(); 

    double y1, y2, y3, y4, x1, x2, x3, x4; 

  

    for (int s = 0; s < SSize; s++) { 

        Shape1 = Shapes.front(); 

        Shapes.pop_front(); 

        Shape1.OutermostVisiblePoint1 = Shape1.OutermostPoint1; 

        Shape1.OutermostVisiblePoint2 = Shape1.OutermostPoint2; 

        Shape1.Visibility = 100; 

        Shapes.push_back(Shape1); 

    } 

  

    for (int i = 0; i < SSize; i++) { 

        Shape1 = Shapes.front(); 

        Shapes.pop_front(); 

        for (int j = 0; j < SSize - 1; j++) { 

            int area1 = 0; 

            int area2 = 0; 

            double VisibleLenght = 0; 

            Shape2 = Shapes.front(); 

            Shapes.pop_front(); 

            if (((((Shape2.OutermostVisiblePoint1.y 

                    - Shape1.OutermostVisiblePoint1.y) 

                    * (Shape1.OutermostVisiblePoint2.x 

                            - Shape1.OutermostVisiblePoint1.x)) 

                    - ((Shape1.OutermostVisiblePoint2.y 

                            - Shape1.OutermostVisiblePoint1.y) 

                            * (Shape2.OutermostVisiblePoint1.x 
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                                    - Shape1.OutermostVisiblePoint1.x))) 

                    * (((Camera.Position.y - Shape1.OutermostVisiblePoint1.y) 

                            * (Shape1.OutermostVisiblePoint2.x 

                                    - Shape1.OutermostVisiblePoint1.x)) 

                            - ((Shape1.OutermostVisiblePoint2.y 

                                    - Shape1.OutermostVisiblePoint1.y) 

                                    * (Camera.Position.x 

                                            - Shape1.OutermostVisiblePoint1.x)))) 

                    < 0) { 

                if (((((Shape2.OutermostVisiblePoint1.y 

                        - Shape1.OutermostVisiblePoint1.y) 

                        * (Camera.Position.x - Shape1.OutermostVisiblePoint1.x)) 

                        - ((Camera.Position.y - Shape1.OutermostVisiblePoint1.y) 

                                * (Shape2.OutermostVisiblePoint1.x 

                                        - Shape1.OutermostVisiblePoint1.x))) 

                        * (((Shape1.OutermostVisiblePoint2.y 

                                - Shape1.OutermostVisiblePoint1.y) 

                                * (Camera.Position.x 

                                        - Shape1.OutermostVisiblePoint1.x)) 

                                - ((Camera.Position.y 

                                        - Shape1.OutermostVisiblePoint1.y) 

                                        * (Shape1.OutermostVisiblePoint2.x 

                                                - Shape1.OutermostVisiblePoint1.x)))) 

                        > 0) { 

                    if (((((Shape2.OutermostVisiblePoint1.y 

                            - Shape1.OutermostVisiblePoint2.y) 

                            * (Camera.Position.x 

                                    - Shape1.OutermostVisiblePoint2.x)) 

                            - ((Camera.Position.y 

                                    - Shape1.OutermostVisiblePoint2.y) 

                                    * (Shape2.OutermostVisiblePoint1.x 

                                            - Shape1.OutermostVisiblePoint2.x))) 

                            * (((Shape1.OutermostVisiblePoint1.y 

                                    - Shape1.OutermostVisiblePoint2.y) 

                                    * (Camera.Position.x 

                                            - Shape1.OutermostVisiblePoint2.x)) 

                                    - ((Camera.Position.y 

                                            - Shape1.OutermostVisiblePoint2.y) 

                                            * (Shape1.OutermostVisiblePoint1.x 

                                                    - Shape1.OutermostVisiblePoint2.x)))) 

                            > 0) { 

                        Shape2.OutermostVisiblePoint1.Visible = false; 
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                        Shape2.OutermostPoint1.Visible = false; 

                        area1 = 0; 

                    } else 

                        area1 = 2; 

                } else 

                    area1 = 1; 

            } else if (((((Shape2.OutermostVisiblePoint1.y 

                    - Shape1.OutermostVisiblePoint1.y) 

                    * (Camera.Position.x - Shape1.OutermostVisiblePoint1.x)) 

                    - ((Camera.Position.y - Shape1.OutermostVisiblePoint1.y) 

                            * (Shape2.OutermostVisiblePoint1.x 

                                    - Shape1.OutermostVisiblePoint1.x))) 

                    * (((Shape1.OutermostVisiblePoint2.y 

                            - Shape1.OutermostVisiblePoint1.y) 

                            * (Camera.Position.x 

                                    - Shape1.OutermostVisiblePoint1.x)) 

                            - ((Camera.Position.y 

                                    - Shape1.OutermostVisiblePoint1.y) 

                                    * (Shape1.OutermostVisiblePoint2.x 

                                            - Shape1.OutermostVisiblePoint1.x)))) 

                    > 0) { 

                if (((((Shape2.OutermostVisiblePoint1.y 

                        - Shape1.OutermostVisiblePoint2.y) 

                        * (Camera.Position.x - Shape1.OutermostVisiblePoint2.x)) 

                        - ((Camera.Position.y - Shape1.OutermostVisiblePoint2.y) 

                                * (Shape2.OutermostVisiblePoint1.x 

                                        - Shape1.OutermostVisiblePoint2.x))) 

                        * (((Shape1.OutermostVisiblePoint1.y 

                                - Shape1.OutermostVisiblePoint2.y) 

                                * (Camera.Position.x 

                                        - Shape1.OutermostVisiblePoint2.x)) 

                                - ((Camera.Position.y 

                                        - Shape1.OutermostVisiblePoint2.y) 

                                        * (Shape1.OutermostVisiblePoint1.x 

                                                - Shape1.OutermostVisiblePoint2.x)))) 

                        > 0) 

                    area1 = 5; 

                else 

                    area1 = 4; 

            } else 

                area1 = 3; 
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            if (((((Shape2.OutermostVisiblePoint2.y 

                    - Shape1.OutermostVisiblePoint1.y) 

                    * (Shape1.OutermostVisiblePoint2.x 

                            - Shape1.OutermostVisiblePoint1.x)) 

                    - ((Shape1.OutermostVisiblePoint2.y 

                            - Shape1.OutermostVisiblePoint1.y) 

                            * (Shape2.OutermostVisiblePoint2.x 

                                    - Shape1.OutermostVisiblePoint1.x))) 

                    * (((Camera.Position.y - Shape1.OutermostVisiblePoint1.y) 

                            * (Shape1.OutermostVisiblePoint2.x 

                                    - Shape1.OutermostVisiblePoint1.x)) 

                            - ((Shape1.OutermostVisiblePoint2.y 

                                    - Shape1.OutermostVisiblePoint1.y) 

                                    * (Camera.Position.x 

                                            - Shape1.OutermostVisiblePoint1.x)))) 

                    < 0) { 

                if (((((Shape2.OutermostVisiblePoint2.y 

                        - Shape1.OutermostVisiblePoint1.y) 

                        * (Camera.Position.x - Shape1.OutermostVisiblePoint1.x)) 

                        - ((Camera.Position.y - Shape1.OutermostVisiblePoint1.y) 

                                * (Shape2.OutermostVisiblePoint2.x 

                                        - Shape1.OutermostVisiblePoint1.x))) 

                        * (((Shape1.OutermostVisiblePoint2.y 

                                - Shape1.OutermostVisiblePoint1.y) 

                                * (Camera.Position.x 

                                        - Shape1.OutermostVisiblePoint1.x)) 

                                - ((Camera.Position.y 

                                        - Shape1.OutermostVisiblePoint1.y) 

                                        * (Shape1.OutermostVisiblePoint2.x 

                                                - Shape1.OutermostVisiblePoint1.x)))) 

                        > 0) { 

                    if (((((Shape2.OutermostVisiblePoint2.y 

                            - Shape1.OutermostVisiblePoint2.y) 

                            * (Camera.Position.x 

                                    - Shape1.OutermostVisiblePoint2.x)) 

                            - ((Camera.Position.y 

                                    - Shape1.OutermostVisiblePoint2.y) 

                                    * (Shape2.OutermostVisiblePoint2.x 

                                            - Shape1.OutermostVisiblePoint2.x))) 

                            * (((Shape1.OutermostVisiblePoint1.y 

                                    - Shape1.OutermostVisiblePoint2.y) 

                                    * (Camera.Position.x 
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                                            - Shape1.OutermostVisiblePoint2.x)) 

                                    - ((Camera.Position.y 

                                            - Shape1.OutermostVisiblePoint2.y) 

                                            * (Shape1.OutermostVisiblePoint1.x 

                                                    - Shape1.OutermostVisiblePoint2.x)))) 

                            > 0) { 

                        Shape2.OutermostVisiblePoint2.Visible = false; 

                        Shape2.OutermostPoint2.Visible = false; 

                        area2 = 0; 

                    } else 

                        area2 = 2; 

                } else 

                    area2 = 1; 

            } else if (((((Shape2.OutermostVisiblePoint1.y 

                    - Shape1.OutermostVisiblePoint1.y) 

                    * (Camera.Position.x - Shape1.OutermostVisiblePoint1.x)) 

                    - ((Camera.Position.y - Shape1.OutermostVisiblePoint1.y) 

                            * (Shape2.OutermostVisiblePoint1.x 

                                    - Shape1.OutermostVisiblePoint1.x))) 

                    * (((Shape1.OutermostVisiblePoint2.y 

                            - Shape1.OutermostVisiblePoint1.y) 

                            * (Camera.Position.x 

                                    - Shape1.OutermostVisiblePoint1.x)) 

                            - ((Camera.Position.y 

                                    - Shape1.OutermostVisiblePoint1.y) 

                                    * (Shape1.OutermostVisiblePoint2.x 

                                            - Shape1.OutermostVisiblePoint1.x)))) 

                    > 0) { 

                if (((((Shape2.OutermostVisiblePoint1.y 

                        - Shape1.OutermostVisiblePoint2.y) 

                        * (Camera.Position.x - Shape1.OutermostVisiblePoint2.x)) 

                        - ((Camera.Position.y - Shape1.OutermostVisiblePoint2.y) 

                                * (Shape2.OutermostVisiblePoint1.x 

                                        - Shape1.OutermostVisiblePoint2.x))) 

                        * (((Shape1.OutermostVisiblePoint1.y 

                                - Shape1.OutermostVisiblePoint2.y) 

                                * (Camera.Position.x 

                                        - Shape1.OutermostVisiblePoint2.x)) 

                                - ((Camera.Position.y 

                                        - Shape1.OutermostVisiblePoint2.y) 

                                        * (Shape1.OutermostVisiblePoint1.x 

                                                - Shape1.OutermostVisiblePoint2.x)))) 
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                        > 0) 

                    area2 = 5; 

                else 

                    area2 = 4; 

            } else 

                area2 = 3; 

  

            if ((area1 == 0) and (area2 == 0)) 

                VisibleLenght = 0; 

            else if ((area1 == 0) and (area2 == 1)) { 

                y1 = Shape2.OutermostPoint1.y; 

                x1 = Shape2.OutermostPoint1.x; 

                y2 = Shape2.OutermostPoint2.y; 

                x2 = Shape2.OutermostPoint2.x; 

                y3 = Camera.Position.y; 

                x3 = Camera.Position.x; 

                y4 = Shape1.OutermostVisiblePoint1.y; 

                x4 = Shape1.OutermostVisiblePoint1.x; 

                Shape2.OutermostVisiblePoint1.x = 

                        (((y2 - y1) * (x4 - x3) * (x1)) 

                                + ((y3 - y1) * (x2 - x1) * (x4 - x3)) 

                                + ((y3 - y4) * (x2 - x1) * (x3))) 

                                / (((y2 - y1) * (x4 - x3)) 

                                        - ((y4 - y3) * (x2 - x1))); 

                Shape2.OutermostVisiblePoint1.y = (((y2 - y1) 

                        * (Shape2.OutermostVisiblePoint1.x - x1)) / (x2 - x1)) 

                        + y1; 

                Shape2.OutermostVisiblePoint1.Visible = true; 

                y1 = Shape2.OutermostVisiblePoint1.y; 

                x1 = Shape2.OutermostVisiblePoint1.x; 

                y2 = Shape2.OutermostVisiblePoint2.y; 

                x2 = Shape2.OutermostVisiblePoint2.x; 

                VisibleLenght = pow(pow((y2 - y1), 2) + pow((x2 - x1), 2), 0.5); 

            } else if ((area1 == 0) and (area2 == 2)) { 

                y1 = Shape2.OutermostPoint1.y; 

                x1 = Shape2.OutermostPoint1.x; 

                y2 = Shape2.OutermostPoint2.y; 

                x2 = Shape2.OutermostPoint2.x; 

                y3 = Camera.Position.y; 

                x3 = Camera.Position.x; 

                y4 = Shape1.OutermostVisiblePoint2.y; 

                x4 = Shape1.OutermostVisiblePoint2.x; 
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                Shape2.OutermostVisiblePoint1.x = 

                        (((y2 - y1) * (x4 - x3) * (x1)) 

                                + ((y3 - y1) * (x2 - x1) * (x4 - x3)) 

                                + ((y3 - y4) * (x2 - x1) * (x3))) 

                                / (((y2 - y1) * (x4 - x3)) 

                                        - ((y4 - y3) * (x2 - x1))); 

                Shape2.OutermostVisiblePoint1.y = (((y2 - y1) 

                        * (Shape2.OutermostVisiblePoint1.x - x1)) / (x2 - x1)) 

                        + y1; 

                Shape2.OutermostVisiblePoint1.Visible = true; 

                y1 = Shape2.OutermostVisiblePoint1.y; 

                x1 = Shape2.OutermostVisiblePoint1.x; 

                y2 = Shape2.OutermostVisiblePoint2.y; 

                x2 = Shape2.OutermostVisiblePoint2.x; 

                VisibleLenght = pow(pow((y2 - y1), 2) + pow((x2 - x1), 2), 0.5); 

            } else if ((area1 == 1) and (area2 == 0)) { 

                y1 = Shape2.OutermostPoint1.y; 

                x1 = Shape2.OutermostPoint1.x; 

                y2 = Shape2.OutermostPoint2.y; 

                x2 = Shape2.OutermostPoint2.x; 

                y3 = Camera.Position.y; 

                x3 = Camera.Position.x; 

                y4 = Shape1.OutermostVisiblePoint1.y; 

                x4 = Shape1.OutermostVisiblePoint1.x; 

                Shape2.OutermostVisiblePoint2.x = 

                        (((y2 - y1) * (x4 - x3) * (x1)) 

                                + ((y3 - y1) * (x2 - x1) * (x4 - x3)) 

                                + ((y3 - y4) * (x2 - x1) * (x3))) 

                                / (((y2 - y1) * (x4 - x3)) 

                                        - ((y4 - y3) * (x2 - x1))); 

                Shape2.OutermostVisiblePoint2.y = (((y2 - y1) 

                        * (Shape2.OutermostVisiblePoint1.x - x1)) / (x2 - x1)) 

                        + y1; 

                Shape2.OutermostVisiblePoint2.Visible = true; 

                y1 = Shape2.OutermostVisiblePoint1.y; 

                x1 = Shape2.OutermostVisiblePoint1.x; 

                y2 = Shape2.OutermostVisiblePoint2.y; 

                x2 = Shape2.OutermostVisiblePoint2.x; 

                VisibleLenght = pow(pow((y2 - y1), 2) + pow((x2 - x1), 2), 0.5); 

            } else if ((area1 == 2) and (area2 == 0)) { 

                y1 = Shape2.OutermostPoint1.y; 

                x1 = Shape2.OutermostPoint1.x; 
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                y2 = Shape2.OutermostPoint2.y; 

                x2 = Shape2.OutermostPoint2.x; 

                y3 = Camera.Position.y; 

                x3 = Camera.Position.x; 

                y4 = Shape1.OutermostVisiblePoint2.y; 

                x4 = Shape1.OutermostVisiblePoint2.x; 

                Shape2.OutermostVisiblePoint2.x = 

                        (((y1 - y1) * (x4 - x3) * (x1)) 

                                + ((y3 - y1) * (x2 - x1) * (x4 - x3)) 

                                + ((y3 - y4) * (x2 - x1) * (x3))) 

                                / (((y2 - y1) * (x4 - x3)) 

                                        - ((y4 - y3) * (x2 - x1))); 

                Shape2.OutermostVisiblePoint2.y = (((y2 - y1) 

                        * (Shape2.OutermostVisiblePoint1.x - x1)) / (x2 - x1)) 

                        + y1; 

                Shape2.OutermostVisiblePoint2.Visible = true; 

                y1 = Shape2.OutermostVisiblePoint1.y; 

                x1 = Shape2.OutermostVisiblePoint1.x; 

                y2 = Shape2.OutermostVisiblePoint2.y; 

                x2 = Shape2.OutermostVisiblePoint2.x; 

                VisibleLenght = pow(pow((y2 - y1), 2) + pow((x2 - x1), 2), 0.5); 

            } else if ((area1 == 1) and (area2 == 2)) { 

                y1 = Shape2.OutermostPoint1.y; 

                x1 = Shape2.OutermostPoint1.x; 

                y2 = Shape2.OutermostPoint2.y; 

                x2 = Shape2.OutermostPoint2.x; 

                y3 = Camera.Position.y; 

                x3 = Camera.Position.x; 

                y4 = Shape1.OutermostVisiblePoint1.y; 

                x4 = Shape1.OutermostVisiblePoint1.x; 

                Shape2.OutermostVisiblePoint1.x = 

                        (((y2 - y1) * (x4 - x3) * (x1)) 

                                + ((y3 - y1) * (x2 - x1) * (x4 - x3)) 

                                + ((y3 - y4) * (x2 - x1) * (x3))) 

                                / (((y2 - y1) * (x4 - x3)) 

                                        - ((y4 - y3) * (x2 - x1))); 

                Shape2.OutermostVisiblePoint1.y = (((y2 - y1) 

                        * (Shape2.OutermostVisiblePoint1.x - x1)) / (x2 - x1)) 

                        + y1; 

                Shape2.OutermostVisiblePoint1.Visible = true; 

                y1 = Shape2.OutermostPoint1.y; 

                x1 = Shape2.OutermostPoint1.x; 
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                y2 = Shape2.OutermostPoint2.y; 

                x2 = Shape2.OutermostPoint2.x; 

                y3 = Camera.Position.y; 

                x3 = Camera.Position.x; 

                y4 = Shape1.OutermostVisiblePoint2.y; 

                x4 = Shape1.OutermostVisiblePoint2.x; 

                Shape2.OutermostVisiblePoint2.x = 

                        (((y2 - y1) * (x4 - x3) * (x1)) 

                                + ((y3 - y1) * (x2 - x1) * (x4 - x3)) 

                                + ((y3 - y4) * (x2 - x1) * (x3))) 

                                / (((y2 - y1) * (x4 - x3)) 

                                        - ((y4 - y3) * (x2 - x1))); 

                Shape2.OutermostVisiblePoint2.y = (((y2 - y1) 

                        * (Shape2.OutermostVisiblePoint1.x - x1)) / (x2 - x1)) 

                        + y1; 

                Shape2.OutermostVisiblePoint2.Visible = true; 

                y1 = Shape2.OutermostPoint1.y; 

                x1 = Shape2.OutermostPoint1.x; 

                y2 = Shape2.OutermostPoint2.y; 

                x2 = Shape2.OutermostPoint2.x; 

                y3 = Shape2.OutermostVisiblePoint1.y; 

                x3 = Shape2.OutermostVisiblePoint1.x; 

                y4 = Shape2.OutermostVisiblePoint2.y; 

                x4 = Shape2.OutermostVisiblePoint2.x; 

                VisibleLenght = pow(((pow((y1 - y3), 2)) + (pow((x1 - x3), 2))), 

                        0.5) 

                        + pow(((pow((y2 - y4), 2)) + (pow((x2 - x4), 2))), 0.5); 

            } else if ((area1 == 2) and (area2 == 1)) { 

                y1 = Shape2.OutermostPoint1.y; 

                x1 = Shape2.OutermostPoint1.x; 

                y2 = Shape2.OutermostPoint2.y; 

                x2 = Shape2.OutermostPoint2.x; 

                y3 = Camera.Position.y; 

                x3 = Camera.Position.x; 

                y4 = Shape1.OutermostVisiblePoint1.y; 

                x4 = Shape1.OutermostVisiblePoint1.x; 

                Shape2.OutermostVisiblePoint2.x = 

                        (((y2 - y1) * (x4 - x3) * (x1)) 

                                + ((y3 - y1) * (x2 - x1) * (x4 - x3)) 

                                + ((y3 - y4) * (x2 - x1) * (x3))) 

                                / (((y2 - y1) * (x4 - x3)) 

                                        - ((y4 - y3) * (x2 - x1))); 
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                Shape2.OutermostVisiblePoint2.y = (((y2 - y1) 

                        * (Shape2.OutermostVisiblePoint1.x - x1)) / (x2 - x1)) 

                        + y1; 

                Shape2.OutermostVisiblePoint2.Visible = true; 

                y1 = Shape2.OutermostPoint1.y; 

                x1 = Shape2.OutermostPoint1.x; 

                y2 = Shape2.OutermostPoint2.y; 

                x2 = Shape2.OutermostPoint2.x; 

                y3 = Camera.Position.y; 

                x3 = Camera.Position.x; 

                y4 = Shape1.OutermostVisiblePoint2.y; 

                x4 = Shape1.OutermostVisiblePoint2.x; 

                Shape2.OutermostVisiblePoint1.x = 

                        (((y2 - y1) * (x4 - x3) * (x1)) 

                                + ((y3 - y1) * (x2 - x1) * (x4 - x3)) 

                                + ((y3 - y4) * (x2 - x1) * (x3))) 

                                / (((y2 - y1) * (x4 - x3)) 

                                        - ((y4 - y3) * (x2 - x1))); 

                Shape2.OutermostVisiblePoint1.y = (((y2 - y1) 

                        * (Shape2.OutermostVisiblePoint1.x - x1)) / (x2 - x1)) 

                        + y1; 

                Shape2.OutermostVisiblePoint1.Visible = true; 

                y1 = Shape2.OutermostPoint1.y; 

                x1 = Shape2.OutermostPoint1.x; 

                y2 = Shape2.OutermostPoint2.y; 

                x2 = Shape2.OutermostPoint2.x; 

                y3 = Shape2.OutermostVisiblePoint1.y; 

                x3 = Shape2.OutermostVisiblePoint1.x; 

                y4 = Shape2.OutermostVisiblePoint2.y; 

                x4 = Shape2.OutermostVisiblePoint2.x; 

                VisibleLenght = pow(((pow((y1 - y3), 2)) + (pow((x1 - x3), 2))), 

                        0.5) 

                        + pow(((pow((y2 - y4), 2)) + (pow((x2 - x4), 2))), 0.5); 

            } else if ((area1 == 3) and (area2 == 0)) { 

                y1 = Shape2.OutermostPoint1.y; 

                x1 = Shape2.OutermostPoint1.x; 

                y2 = Shape2.OutermostPoint2.y; 

                x2 = Shape2.OutermostPoint2.x; 

                y3 = Camera.Position.y; 

                x3 = Camera.Position.x; 

                y4 = Shape1.OutermostVisiblePoint1.y; 

                x4 = Shape1.OutermostVisiblePoint1.x; 
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                Shape2.OutermostVisiblePoint2.x = 

                        (((y2 - y1) * (x4 - x3) * (x1)) 

                                + ((y3 - y1) * (x2 - x1) * (x4 - x3)) 

                                + ((y3 - y4) * (x2 - x1) * (x3))) 

                                / (((y2 - y1) * (x4 - x3)) 

                                        - ((y4 - y3) * (x2 - x1))); 

                Shape2.OutermostVisiblePoint2.y = (((y2 - y1) 

                        * (Shape2.OutermostVisiblePoint1.x - x1)) / (x2 - x1)) 

                        + y1; 

                Shape2.OutermostVisiblePoint2.Visible = true; 

                y1 = Shape2.OutermostVisiblePoint1.y; 

                x1 = Shape2.OutermostVisiblePoint1.x; 

                y2 = Shape2.OutermostVisiblePoint2.y; 

                x2 = Shape2.OutermostVisiblePoint2.x; 

                VisibleLenght = pow(pow((y2 - y1), 2) + pow((x2 - x1), 2), 0.5); 

            } else if ((area1 == 0) and (area2 == 3)) { 

                y1 = Shape2.OutermostPoint1.y; 

                x1 = Shape2.OutermostPoint1.x; 

                y2 = Shape2.OutermostPoint2.y; 

                x2 = Shape2.OutermostPoint2.x; 

                y3 = Camera.Position.y; 

                x3 = Camera.Position.x; 

                y4 = Shape1.OutermostVisiblePoint1.y; 

                x4 = Shape1.OutermostVisiblePoint1.x; 

                Shape2.OutermostVisiblePoint1.x = 

                        (((y2 - y1) * (x4 - x3) * (x1)) 

                                + ((y3 - y1) * (x2 - x1) * (x4 - x3)) 

                                + ((y3 - y4) * (x2 - x1) * (x3))) 

                                / (((y2 - y1) * (x4 - x3)) 

                                        - ((y4 - y3) * (x2 - x1))); 

                Shape2.OutermostVisiblePoint1.y = (((y2 - y1) 

                        * (Shape2.OutermostVisiblePoint1.x - x1)) / (x2 - x1)) 

                        + y1; 

                Shape2.OutermostVisiblePoint1.Visible = true; 

                y1 = Shape2.OutermostVisiblePoint1.y; 

                x1 = Shape2.OutermostVisiblePoint1.x; 

                y2 = Shape2.OutermostVisiblePoint2.y; 

                x2 = Shape2.OutermostVisiblePoint2.x; 

                VisibleLenght = pow(pow((y2 - y1), 2) + pow((x2 - x1), 2), 0.5); 

            } else if ((area1 == 0) and (area2 == 4)) { 

                y1 = Shape2.OutermostPoint1.y; 

                x1 = Shape2.OutermostPoint1.x; 
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                y2 = Shape2.OutermostPoint2.y; 

                x2 = Shape2.OutermostPoint2.x; 

                y3 = Camera.Position.y; 

                x3 = Camera.Position.x; 

                y4 = Shape1.OutermostVisiblePoint2.y; 

                x4 = Shape1.OutermostVisiblePoint2.x; 

                Shape2.OutermostVisiblePoint1.x = 

                        (((y2 - y1) * (x4 - x3) * (x1)) 

                                + ((y3 - y1) * (x2 - x1) * (x4 - x3)) 

                                + ((y3 - y4) * (x2 - x1) * (x3))) 

                                / (((y2 - y1) * (x4 - x3)) 

                                        - ((y4 - y3) * (x2 - x1))); 

                Shape2.OutermostVisiblePoint1.y = (((y2 - y1) 

                        * (Shape2.OutermostVisiblePoint1.x - x1)) / (x2 - x1)) 

                        + y1; 

                Shape2.OutermostVisiblePoint1.Visible = true; 

                y1 = Shape2.OutermostVisiblePoint1.y; 

                x1 = Shape2.OutermostVisiblePoint1.x; 

                y2 = Shape2.OutermostVisiblePoint2.y; 

                x2 = Shape2.OutermostVisiblePoint2.x; 

                VisibleLenght = pow(pow((y2 - y1), 2) + pow((x2 - x1), 2), 0.5); 

            } else if ((area1 == 4) and (area2 == 0)) { 

                y1 = Shape2.OutermostPoint1.y; 

                x1 = Shape2.OutermostPoint1.x; 

                y2 = Shape2.OutermostPoint2.y; 

                x2 = Shape2.OutermostPoint2.x; 

                y3 = Camera.Position.y; 

                x3 = Camera.Position.x; 

                y4 = Shape1.OutermostVisiblePoint2.y; 

                x4 = Shape1.OutermostVisiblePoint2.x; 

                Shape2.OutermostVisiblePoint2.x = 

                        (((y2 - y1) * (x4 - x3) * (x1)) 

                                + ((y3 - y1) * (x2 - x1) * (x4 - x3)) 

                                + ((y3 - y4) * (x2 - x1) * (x3))) 

                                / (((y2 - y1) * (x4 - x3)) 

                                        - ((y4 - y3) * (x2 - x1))); 

                Shape2.OutermostVisiblePoint2.y = (((y2 - y1) 

                        * (Shape2.OutermostVisiblePoint1.x - x1)) / (x2 - x1)) 

                        + y1; 

                Shape2.OutermostVisiblePoint2.Visible = true; 

                y1 = Shape2.OutermostVisiblePoint1.y; 

                x1 = Shape2.OutermostVisiblePoint1.x; 
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                y2 = Shape2.OutermostVisiblePoint2.y; 

                x2 = Shape2.OutermostVisiblePoint2.x; 

                VisibleLenght = pow(pow((y2 - y1), 2) + pow((x2 - x1), 2), 0.5); 

            } else { 

                Shape2.OutermostVisiblePoint1.Visible = true; 

                Shape2.OutermostVisiblePoint2.Visible = true; 

                y1 = Shape2.OutermostVisiblePoint1.y; 

                x1 = Shape2.OutermostVisiblePoint1.x; 

                y2 = Shape2.OutermostVisiblePoint2.y; 

                x2 = Shape2.OutermostVisiblePoint2.x; 

                VisibleLenght = pow(pow((y2 - y1), 2) + pow((x2 - x1), 2), 0.5); 

            } 

  

            Shape2.Visibility = (VisibleLenght 

                    / (pow( 

                            (pow( 

                                    (Shape2.OutermostPoint2.y 

                                            - Shape2.OutermostPoint1.y), 2) 

                                    + pow( 

                                            (Shape2.OutermostPoint2.x 

                                                    - Shape2.OutermostPoint1.x), 

                                            2)), 0.5))) * 100; 

            Shapes.push_back(Shape2); 

        } 

        Shapes.push_back(Shape1); 

    } 

  

    SSize = Shapes.size(); 

    for (int s = 0; s < SSize; s++) { 

        TempSahpe = Shapes.front(); 

        Shapes.pop_front(); 

        if (TempSahpe.Visibility > 0) 

           Shapes.push_back(TempSahpe); 

    } 

  

    return Shapes; 

  

} 

 

std::list<Point> TraCIDemo11p::Determine_Points_Visibility(Camera Camera, 

std::list<Shape> Shapes, std::list<Point> Points) 

{ 
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    Shape SS; 

    Point PP; 

    int PSize=Points.size(); 

    int SSize=Shapes.size(); 

  

    for (int s=0;s<SSize;s++) 

    { 

        SS=Shapes.front(); 

        Shapes.pop_front(); 

        for (int p=0;p<PSize;p++) 

        { 

            PP=Points.front(); 

            Points.pop_front(); 

            if ( 

                    (PP.Visible!=false) 

                and (((((PP.y-SS.OutermostPoint1.y)*(Camera.Position.x-

SS.OutermostPoint1.x))-((Camera.Position.y-SS.OutermostPoint1.y)*(PP.x-

SS.OutermostPoint1.x)))*(((SS.OutermostPoint2.y-

SS.OutermostPoint1.y)*(Camera.Position.x-SS.OutermostPoint1.x))-

((Camera.Position.y-SS.OutermostPoint1.y)*(SS.OutermostPoint2.x-

SS.OutermostPoint1.x))))>0) 

                and (((((PP.y-SS.OutermostPoint2.y)*(Camera.Position.x-

SS.OutermostPoint2.x))-((Camera.Position.y-SS.OutermostPoint2.y)*(PP.x-

SS.OutermostPoint2.x)))*(((SS.OutermostPoint1.y-

SS.OutermostPoint2.y)*(Camera.Position.x-SS.OutermostPoint2.x))-

((Camera.Position.y-SS.OutermostPoint2.y)*(SS.OutermostPoint1.x-

SS.OutermostPoint2.x))))>0) 

                and (((((PP.y-SS.OutermostPoint1.y)*(SS.OutermostPoint2.x-

SS.OutermostPoint1.x))-((SS.OutermostPoint2.y-SS.OutermostPoint1.y)*(PP.x-

SS.OutermostPoint1.x)))*(((Camera.Position.y-

SS.OutermostPoint1.y)*(SS.OutermostPoint2.x-SS.OutermostPoint1.x))-

((SS.OutermostPoint2.y-SS.OutermostPoint1.y)*(Camera.Position.x-

SS.OutermostPoint1.x))))<0) 

                ) 

            { 

                PP.Visible=false; 

            } 

            Points.push_back(PP); 

  

        } 

    } 

    return Points; 
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} 

 

std::list<Shape> TraCIDemo11p::FindShapeList() 

{ 

  

    std::list<Shape> TempShapeList; 

    TempShapeList.clear(); 

  

    std::list<std::string> VehicleIds; 

    VehicleIds=traci->commandGetCurrentVehicleIds(CurrentVehicleID); 

    int VSize=VehicleIds.size(); 

    Shape VShape; 

    double direction,lenght,width; 

    std::string VType,VId; 

    std::list<Point> OutermostPointsV; 

  

    for (int i=0;i<VSize;i++) 

    { 

        VId=VehicleIds.front(); 

        VehicleIds.pop_front(); 

  

        direction=traci->commandGetVehicleAngle(VId); 

        if (direction<0) direction+=360; 

        VType=traci->commandGetVehicleType(VId); 

        lenght=traci->commandGetVehicleLenght(VType); 

        width=traci->commandGetVehicleWidth(VType); 

        VShape=Vehicle_to_Shape(VShape.Position,direction,lenght,width); 

        VShape.ID=VId; 

        VShape.Position.Visible=true; 

        VShape.Position.x=traci->commandGetVehiclePosition(VId).x; 

        VShape.Position.y=traci->commandGetVehiclePosition(VId).y; 

        OutermostPointsV=Determine_Outermost_Points(Camera1,VShape); 

        VShape.OutermostPoint1=OutermostPointsV.front(); 

        OutermostPointsV.pop_front(); 

        VShape.OutermostPoint2=OutermostPointsV.front(); 

        OutermostPointsV.pop_front(); 

        VShape.OutermostVisiblePoint1=VShape.OutermostPoint1; 

        VShape.OutermostVisiblePoint2=VShape.OutermostPoint2; 

        VShape.Type=VType; 

        VShape.Visibility=100; 

  



133 

 

 

 

 

        TempShapeList.push_front(VShape); 

  

    } 

  

  

    std::list<std::string> PolygonIds; 

    PolygonIds=traci->commandGetPolygonIds(); 

    int PSize=PolygonIds.size(); 

    Shape PShape; 

    std::string PType,PId; 

    std::list<Point> OutermostPointsP; 

    std::list<Veins::TraCICoord> Coords; 

    Point TempPoint; 

    Veins::TraCICoord TempCoord; 

  

    for (int j=0;j<PSize;j++) 

    { 

        PId=PolygonIds.front(); 

        PolygonIds.pop_front(); 

  

        PType=traci->commandGetPolygonTypeId(PId); 

        PShape.ID=PId; 

        PShape.PointList.clear(); 

        Coords=traci->commandGetPolygonShape(PId); 

        int CSize=Coords.size(); 

        for (int c=0;c<CSize;c++) 

        { 

            TempCoord=Coords.front(); 

            Coords.pop_front(); 

            TempPoint.x=TempCoord.x; 

            TempPoint.y=TempCoord.y; 

            TempPoint.Visible=true; 

            PShape.PointList.push_front(TempPoint); 

        } 

        OutermostPointsP=Determine_Outermost_Points(Camera1,PShape); 

        PShape.OutermostPoint1=OutermostPointsP.front(); 

        OutermostPointsP.pop_front(); 

        PShape.OutermostPoint2=OutermostPointsP.front(); 

        OutermostPointsP.pop_front(); 

        PShape.OutermostVisiblePoint1=PShape.OutermostPoint1; 

        PShape.OutermostVisiblePoint2=PShape.OutermostPoint2; 

        PShape.Type=PType; 
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        PShape.Visibility=100; 

  

        TempShapeList.push_front(PShape); 

  

    } 

    return TempShapeList; 

} 

 

std::list<Shape> TraCIDemo11p::Check_Sahpe_Inside (Camera Camera, 

std::list<Shape> Shapes) 

{ 

    int SSize=Shapes.size(); 

    Shape TempShape; 

    for (int s=0;s<SSize;s++) 

    { 

        TempShape=Shapes.front(); 

        Shapes.pop_front(); 

  

        int PSize=TempShape.PointList.size(); 

        Point TempPoint; 

        bool inside=false; 

        for (int p=0;p<PSize;p++) 

        { 

            TempPoint=TempShape.PointList.front(); 

            TempShape.PointList.pop_front(); 

            TempPoint.Visible=Check_Point_Inside(Camera,TempPoint); 

            if (TempPoint.Visible) inside=true; 

            TempShape.PointList.push_back(TempPoint); 

        } 

        if (inside) 

            { 

                TempShape.Visibility=100; 

                Shapes.push_back(TempShape); 

  

            } 

        else TempShape.Visibility=0; 

  

    } 

    return Shapes; 

} 

 

std::list<Shape> TraCIDemo11p::FindVisibleShapeList() 
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{ 

    Veins::TraCICoord TempCoord= traci-

>commandGetVehiclePosition(CurrentVehicleID); 

    Camera1.Position.x=TempCoord.x; 

    Camera1.Position.y=TempCoord.y; 

  

    ShapeList=FindShapeList(); 

    ShapeList=Check_Sahpe_Inside(Camera1,ShapeList); 

    ShapeList=Determine_Shape_Visibility(Camera1,ShapeList); 

  

    return ShapeList; 

} 

 

std::list<Shape> TraCIDemo11p::FindVisibleVehicleList() 

{ 

  

    ShapeList.clear(); 

    if (CameraEquipment) 

    { 

        ShapeList=FindVisibleShapeList(); 

        int SSL=ShapeList.size(); 

        Shape TempShape; 

        std::list<Shape> TempShapeList; 

        for (int i=0;i<SSL;i++) 

        { 

            TempShape=ShapeList.front(); 

            ShapeList.pop_front(); 

            if (TempShape.Type=="vtype0") 

                TempShapeList.push_back(TempShape); 

        } 

        ShapeList=TempShapeList; 

    } 

    return ShapeList; 

} 

 

std::list<TrackingShape> TraCIDemo11p::FindTrackingVehicleList() 

{ 

    std::list<TrackingShape> TempTrackingVehicleList; 

    TempTrackingVehicleList.clear(); 

    int s1=VisibleShapes1.size(); 

    int s2=VisibleShapes2.size(); 

    std::list<Shape> TempVisibleShapes2=VisibleShapes2; 
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    double Y,X; 

    Shape Shape1,Shape2; 

    TrackingShape Shape3; 

  

    for (int i=0; i<s1;i++) 

    { 

        Shape1=VisibleShapes1.front(); 

        VisibleShapes1.pop_front(); 

        for (int j=0;j<s2;j++) 

        { 

            Shape2=VisibleShapes2.front(); 

            VisibleShapes2.pop_front(); 

            if (Shape1.ID==Shape2.ID) 

            { 

                Y=Shape2.Position.y-Shape1.Position.y; 

                X=Shape2.Position.x-Shape1.Position.x; 

                Shape3.ID=Shape1.ID; 

                if ((Y>0)and(X>0))  Shape3.Direction=((atan(Y/X)*180)/PI); 

                else if ((Y>0)and(X<0))  Shape3.Direction=((atan(Y/X)*180)/PI)+180; 

                else if ((Y>0)and(X==0))  Shape3.Direction=90; 

                else if ((Y<0)and(X>0))  Shape3.Direction=((atan(Y/X)*180)/PI)+360; 

                else if ((Y<0)and(X<0))  Shape3.Direction=((atan(Y/X)*180)/PI)+180; 

                else if ((Y<0)and(X==0))  Shape3.Direction=270; 

                else if ((Y==0)and(X<0))  Shape3.Direction=180; 

                else if ((Y==0)and(X>0))  Shape3.Direction=0; 

                else if ((Y==0)and(X==0))  Shape3.Direction=0; 

                Shape3.Position=Shape2.Position; 

                Shape3.Speed=(pow((pow(Y,2)+pow(X,2)),0.5))/TrackingTime; 

                TempTrackingVehicleList.push_front(Shape3); 

            } 

        } 

        VisibleShapes2=TempVisibleShapes2; 

    } 

    return TempTrackingVehicleList; 

  

} 
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