
Western University
Scholarship@Western

Electronic Thesis and Dissertation Repository

September 2016

A Data Fusion Approach to Automated Decision
Making in Intelligent Vehicles
Besat Zardosht
The University of Western Ontario

Supervisor
Prof. Michael Bauer
The University of Western Ontario

Graduate Program in Computer Science

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of Philosophy

© Besat Zardosht 2016

Follow this and additional works at: https://ir.lib.uwo.ca/etd

Part of the Other Computer Sciences Commons

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis
and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact tadam@uwo.ca.

Recommended Citation
Zardosht, Besat, "A Data Fusion Approach to Automated Decision Making in Intelligent Vehicles" (2016). Electronic Thesis and
Dissertation Repository. 4101.
https://ir.lib.uwo.ca/etd/4101

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fetd%2F4101&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F4101&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F4101&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=ir.lib.uwo.ca%2Fetd%2F4101&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/4101?utm_source=ir.lib.uwo.ca%2Fetd%2F4101&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tadam@uwo.ca

Abstract

The goal of an intelligent transportation system is to increase safety, convenience and

efficiency in driving. Besides these obvious advantages, the integration of intelligent features

and autonomous functionalities on vehicles will lead to major economic benefits from

reduced fuel consumption to efficient exploitation of the road network.

While giving this information to the driver can be useful, there is also the possibility of

overloading the driver with too much information. Existing vehicles already have some

mechanisms to take certain actions if the driver fails to act. Future vehicles will need more

complex decision making modules which receive the raw data from all available sources,

process this data and inform the driver about the existing or impending situations and

suggest, or even take actions.

Intelligent vehicles can take advantage of using different sources of data to provide more

reliable and more accurate information about driving situations and build a safer driving

environment. I have identified five general sources of data which is available for intelligent

vehicles: the vehicle itself, cameras on the vehicle, communication between the vehicle and

other vehicles, communications between vehicles and roadside units and the driver

information. But facing this huge amount of data requires a decision making module to

collect this data and provide the best reaction based on the situation.

In this thesis, I present a data fusion approach for decision making in vehicles in which a

decision making module collects data from the available sources of information and analyses

this data and provides the driver with helpful information such as traffic congestion,

emergency messages, etc.

The proposed approach uses agents to collect the data and the agents cooperate using a black

board method to provide the necessary data for the decision making system. The Decision

making system benefits from this data and provides the intelligent vehicle applications with

the best action(s) to be taken.

Overall, the results show that using this data fusion approach for making decision in vehicles

shows great potential for improving performance of vehicular systems by reducing travel

ii

time and wait time and providing more accurate information about the surrounding

environment for vehicles. In addition, the safety of vehicles will increase since the vehicles

will be informed about the hazard situations.

 Keywords

Intelligent Transportation System, Vehicle-to-Vehicle Communication, Vehicle-to-

Infrastructure Communication, Cooperative Collision Warning and Rerouting System,

Vehicle Tracking System, Road Side Unit

iii

Acknowledgments

I would like to extend my gratitude to the many people who helped to bring this research

project to fruition. First, I would like to express my special appreciation and thanks to my

supervisor Professor Michael Bauer, you have been a tremendous mentor for me. Your

support and advice on my research was priceless. It was an honor for me to work under your

supervision and I really believe I was lucky for that and I do not have enough words to

express my deep and sincere appreciation.

 I would like to express the deepest appreciation to my co-supervisor Professor Steven

Beauchemin, who without his guidance and persistent help this project would not have been

possible. I am so deeply grateful for his help, professionalism and valuable guidance

throughout this project.

 I would like to thank the University of Western Ontario, the Faculty of Science and the

Computer Science Department for providing me financial support as a Teaching Assistant

and a Research Assistant.

Finally, I must express my very profound gratitude to my beloved husband for providing me

with unfailing support and continuous encouragement throughout my years of study and

through the process of researching and writing this thesis. This accomplishment would not

have been possible without him. Thank you.

iv

Table of Contents

Abstract .. i

Acknowledgments.. iii

Table of Contents ... iv

List of Tables ... vi

List of Figures ... vii

List of Appendices .. 1

1 Introduction .. 2

1.1 Research Overview ... 3

1.2 Thesis Organization and Contributions .. 3

2 Decision Making System for Intelligent Vehicles ... 6

2.1 Related Work .. 7

2.1.1 Collision Avoidance Systems ... 7

2.1.2 Simulation of Transportation Systems .. 9

2.2 Decision Making System Structure .. 10

2.3 Simulation ... 13

2.3.1 Road and Traffic Network Simulator (Vehicle Agent) 14

2.3.2 Wireless Module (Wireless Agent) ... 16

2.3.3 Vision Simulator (Camera Agent) .. 16

3 Cooperative Collision Warning and Rerouting System ... 19

3.1 Introduction .. 20

3.2 Related Work .. 21

3.3 Decision Making System for Cooperative Collision Warning and Rerouting 24

v

3.4 Evaluation ... 28

4 Cooperative Collision Warning and Rerouting System using an Accident Model 33

4.1 Introduction ... 33

4.2 Related Work .. 35

4.3 Decision Making Module for Rerouting System Using an Accident Duration

Model .. 37

4.4 Evaluation ... 43

5 Vehicle Tracking System ... 53

5.1 Introduction ... 53

5.2 Related Work .. 56

5.3 Vehicle Tracking Method ... 59

5.4 Evaluation ... 64

6 An Emergency Message Propagation System ... 74

6.1 Introduction ... 74

6.2 Previous Work .. 75

6.3 Emergency Message Propagation System .. 77

6.4 Evaluation ... 81

6.5 Conclusion .. 97

7 Conclusion and Future Work ... 99

References ... 104

Appendices .. 114

Curriculum Vitae .. 137

vi

List of Tables

Table 3-1. Total waiting time and total travel time in different cases. 31

Table 3-2. Number of transferred messages in different cases ... 32

Table 4-1. Accident severity variables with default values. These parameters are selected

from previous research in [23]. ... 40

Table 4-2. Different simulation parameters resulting in 154 experiments. 46

Table 4-3. Average number of transferred messages in normal traffic within city areas 50

Table 4-4. Average number of transferred messages in high traffic of city area 50

Table 4-5. Average number of transferred messages in normal traffic on highway 51

Table 4-6. Average number of transferred messages in high traffic on highway 51

Table 4-7. Number of sent and received messages when all vehicles are equipped with the

decision-making module ... 52

Table 5-1. Average number of tracked vehicles with camera only .. 69

Table 5-2. Average size of each message in integrated wireless-camera tracking system 73

Table 6-1. Different simulation parameters .. 81

vii

List of Figures

Figure 2-1: Decision Making Module Integration .. 11

Figure 2-2 Simulator Components Integration ... 14

Figure 2-3: Camera Simulator .. 18

Figure 3-1. A vehicle sending an accident message to other vehicles 26

Figure 3-2. Waiting Time for each vehicle in the road network. .. 29

Figure 3-3. Travel Time for each vehicle in the road network ... 30

Figure 4-1. Estimated probability of survival versus accident duration [23]. 39

Figure 4-2. Map of Erlangen, Germany, is available from the OpenStreetMap project [7],

[36]. ... 44

Figure 4-3. Map of highway 401, in Ontario, Canada, as available from the OpenStreetMap

project [36]. ... 45

Figure 4-4. Average waiting time in urban area with different proportion of vehicles

equipped with my system.. 47

Figure 4-5. Average waiting time in highway with different proportion of vehicles equipped

with my system. .. 47

Figure 4-6. Average Travel Time in urban area with different proportion of vehicles equipped

with my system ... 48

Figure 4-7. Average Travel Time in highway with different proportion of vehicles equipped

with my system ... 49

viii

Figure 5-1. In the right picture the vehicle can detect two other vehicles using its camera and

in left picture another vehicle can detect two other vehicles by its camera. If these two

vehicles share their camera views they can have a more complete view of road 60

Figure 5-2. Tracking System Structure ... 61

Figure 5-3. Vehicle Tracking System adds a new vehicle to the list if it is not already in the

list within an error; Vehiclei,j in 3.a will not be added to the list while Vehiclei,j in 3.b will

be added to the list .. 63

Figure 5-4. Map of Erlangen, Germany, as available from the OpenStreetMap project [7],

[36] .. 63

Figure 5-5. Map of 401 Highway, Canada, as available from the OpenStreetMap project [36]

... 64

Figure 5-6. Normalized number of tracked vehicles in different tracking methods with

various adoption rates in a highway heavy and light traffic; error bars show the range of one

standard deviation ... 66

Figure 5-7. Normalized number of tracked vehicles in different tracking methods with

various adoption rates in the city of Erlangen with heavy and light traffic; error bars show the

range of one standard deviation .. 67

Figure 5-8. Normalized number of tracked vehicles in different tracking methods with

various adoption rates at intersections with heavy and light traffic; error bars show the range

of one standard deviation .. 68

Figure 5-9. Number of transferred messages for tracking requests in highway 70

Figure 5-10. Number of transferred messages for tracking requests in urban area 71

Figure 5-11. Number of transferred messages for a tracking request at intersection 72

ix

Figure 6-1 Location of RSUs in City: Red circles are the location of RSUs in a nine RSU

configuration and the circles with blue outlines are the locations of RSUs in a four RSU

configuration ... 79

Figure 6-2 Location of RSUs in Highway: Red circles are the location of RSUs in a nine

RSU configuration and the circles with blue outlines are the locations of RSUs in a four RSU

configuration ... 80

Figure 6-3. Notification time in city of London ON in high traffic with four roadside units . 82

Figure 6-4. Network coverage for high traffic density with four roadside units in city area . 83

Figure 6-5. Notification time in high traffic with nine roadside units in city environment 84

Figure 6-6 . Average number of covered vehicles in high density traffic with nine roadside

units in city area .. 85

Figure 6-7. Notification time in low traffic with four roadside units in city area 86

Figure 6-8. Average number of covered vehicles in low density traffic with nine roadside

units in city area .. 87

Figure 6-9. Notification time in low traffic with nine roadside units in city area 88

Figure 6-10. Network coverage in low traffic with nine roadside units in city area 89

Figure 6-11. Notification time in high traffic with four roadside units in highway area 90

Figure 6-12. Network coverage in high traffic with four roadside units in highway area 91

Figure 6-13. Notification time for highway in high traffic density with nine roadside units . 92

Figure 6-14. Number of covered vehicles for highway in high traffic density with nine

roadside units .. 93

Figure 6-15. Notification time for highway in low traffic density with four roadside units .. 94

x

Figure 6-16. Number of covered vehicles for highway in low traffic density with four

roadside units .. 95

Figure 6-17. Notification time for highway in low traffic density with nine roadside units .. 96

Figure 6-18. Number of covered vehicles for highway in low traffic density with nine

roadside units .. 97

List of Appendices

Appendix A: Vision simulator code ... 114

2

1 Introduction

The growing number of vehicles over the last few decades has affected our lives, particularly

in urban areas. Increasing need for traveling more and more between different places has

resulted in more traffic congestion, accidents, traffic delays and larger vehicle pollution

emission. Since the conception of Intelligent Transportation Systems (ITS) in the 1980s,

there have been many studies in this field. Several solutions have been introduced to

overcome these driving problems and to make driving a much better experience. The

research presented in this thesis aims at increasing safety and convenience in driving by

introducing a decision making system which assists the driver in certain situations and

provides necessary information about the surrounding environment, such as other vehicles on

the road.

In recent years, many intelligent vehicle (IV) applications have been introduced to enhance

driving safety. The range of applications for ITS is quite broad and applies to all types of

vehicles. The usage of these applications varies from safety in driving to passenger

entertainment. Generally, the most significant goals of IV applications are safety,

productivity and traffic assistance.

There are different kinds of IV applications which are designed to assist the driver and

increase safety in driving. Some important and well-known IV applications are:

 Adaptive Cruise Control

 Forward Collision Warning/Mitigation/Avoidance

 Vehicle Tracking Systems

 Lane/Road Departure Warning/Avoidance

 Parking Assist

 Stability Control

 Blind Spot Monitoring

 Pedestrian/Animal Detection/Warning.

However, these systems perform individually in the vehicle and do not benefit from

integration of the information. That led us to design and implement an in-vehicle decision

3

making system which is an integrated system that can be installed in vehicles and collects

data from all available sources, such as other vehicles, driver, vehicle, infrastructure, sensors,

etc. and decides whether any action should be taken and if so what the best action to be taken

should be. While there is large amount of existing research on different aspects of intelligent

vehicle applications, little attention is devoted to making a central system for the vehicle to

benefit from all information that is available.

1.1 Research Overview

The primary goal of this research is to study usage of an in-vehicle decision making system

and its effects on the IV applications. In this thesis I describe this novel decision making

system and the simulation which I have partially designed to implement the intended

decision making system and four Intelligent Vehicle applications which use this decision

making system to perform. The decision making system is designed in such a way to provide

sufficient information to the driver either by warning the driver about an accident and

suggesting an alternative route in order to avoid traffic congestion. I have used my decision

making module to design some intelligent vehicle applications: a cooperative collision

warning and rerouting system, a vehicle tracking system and an emergency message

propagation system. Though I have designed and tested each intelligent system individually,

all these systems can use the same decision making module at the same time. The

performance of the system is evaluated in various circumstances such as heavy traffic versus

light traffic, urban areas versus highways, different portion of vehicles equipped with our

system, etc. In our context, I have examined the effects of using the decision making system

in certain Intelligent Vehicles applications (cooperative collision warning and rerouting

system, extended cooperative rerouting system using an accident model, vehicle tracking

system and emergency message propagation system) understanding that all mentioned

circumstances can have major effect on the way our system would perform.

1.2 Thesis Organization and Contributions

This thesis is a part of the ongoing research across the world concerned with Intelligent

Vehicles. Our focus is on the idea of an intelligent decision making system for vehicles and

how data from multiple sensors and input sources can be effectively utilized. In Chapter 2 I

4

introduce the decision making system which is the main contribution on this thesis, and its

design and implementation using a simulator. The structure of this simulator is also explained

in Chapter 2. In Chapters 3, 4, 5 and 6 I present published or submitted work addressing

problems around intelligent decision making in different scenarios. My contributions with

regards to each publication within the thesis are as follows:

Chapter 2: In this chapter the architecture and structure of my decision making system and its

specification is explained. In addition, the simulation which I have used to test my work is

described in this Chapter. My work on the simulator extended a previous simulator to

incorporate the decision making module and components.

Chapter 3: Besat Zardosht, Steven Beauchemin and Michael Bauer, “A Decision Making

Module for Cooperative Collision Warning System Using Vehicular Ad-Hoc Network”. The

16th International IEEE Annual Conference on Intelligent Transportation Systems, 2013

The focus of this study is the design of a cooperative collision warning and rerouting system

which benefits from our decision making system to advise the driver based on the driving

situation. I designed and implemented this cooperative collision warning and rerouting

system which uses a wireless agent’s data to avoid accidents and to suggest alternative routes

in case of an accident.

Chapter 4: Besat Zardosht, Steven Beauchemin and Michael Bauer, “A Cooperative Traffic

Management System Using Accident Duration Prediction in Highway and Urban Areas”.

Elsevier Vehicular Communication Journal (to be submitted)

To make our cooperative collision warning and rerouting system more realistic I used an

accident duration model to predict the duration of the accident based on accident conditions,

such as the number of lanes blocked by the accident, the number of lanes of the road, the

number of vehicles involved in the accident, etc.

Chapter 5: Besat Zardosht, Steven Beauchemin and Michael Bauer, “An In-Vehicle Tracking

Method Using Vehicular Ad-Hoc Networks with a Vision-Based System”. IEEE

International Conference On Systems, Man, And Cybernetics(SMC'14), 2014

5

I proposed a new method of vehicle tracking as an application of the decision making module

which uses both wireless-based and vision-based technologies together to track the vehicles.

In my vehicle tracking method, each vehicle sends a map request via wireless to other

vehicles in range and based on their response updates its own information.

Chapter 6: Besat Zardosht, Steven Beauchemin and Michael Bauer, “An Emergency Message

Propagation System Using Roadside Units and Vehicle-To-Vehicle Communication”. IEEE

Smart Vehicles, 2016 (to be submitted)

In this paper I have designed a novel Intelligent Vehicle system for emergency message

propagation using both vehicle-to-vehicle communications and vehicle-to-infrastructure

communications using our decision making system.

Finally, Chapter 7 offers a conclusion and outline path for future research.

6

2 Decision Making System for Intelligent Vehicles

The goal of an intelligent transportation system (ITS) is to increase safety, convenience

and efficiency in driving. Besides these obvious advantages, the integration of intelligent

features and autonomous functionalities on vehicles will lead to economic benefits, from

reduced fuel consumption to efficient exploitation of the road network. Central to ITS,

are decision making modules. These modules, as part of intelligent vehicles, can assess

information about the infrastructure, environment and neighboring vehicles, sense the

driver status and vehicle status and provide information to the driver so that they can

make more reliable decisions in emergency situations or for the vehicle’s own control

systems, such as automatic braking, to take action.

While giving this information to the driver can be useful, there is also the possibility of

overloading the driver with too much information. Existing vehicles already have some

mechanisms to take certain actions if the driver fails to act. Future vehicles will need

more complex decision making modules which receive the raw data from a range of

available sources, process this data and inform the driver about the existing or impending

situations and suggest, or even take actions.

In previous work, the sources of information are used separately and there is no central

decision making module which considers all the information and makes decisions based

on the overall situation. Vehicles may use both camera and wireless communication

systems, but they do not cooperate. Intelligent vehicles can benefit from a central

decision making module which collect the information from all sources and advises or

warns the driver or even takes necessary actions.

I have focused on the design and implementation of a decision making module for

vehicles which collects data from five available sources of information, can carry out

7

analyses of this data and provides the best action to be taken for certain applications. The

proposed module uses four agents to collect data: vehicle agent, wireless agent (to collect

Vehicle-2-Vehicle (V2V) and Vehicle-2-Infrustructure (V2I) information), driver status

agent and camera agent (to provide images of the environment). Vehicle data contains all

information about the vehicle itself namely speed, acceleration, engine status, etc. V2V

data is the information about all other vehicles around our subject vehicle, V2I data is the

information collected from roadway units such as emergency warnings propagated by

central emergency system trough road side units (RSU) and finally driver data consist of

all the information that can be collected about the driver namely, driver hearth beat,

driver gaze, etc. Since both V2V and V2I data are collected using wireless technologies, I

have used one agent for both.

I have designed and implemented four Intelligent Vehicle applications which use our

Decision making system with data from its information agents to provide warning and

suggestions for the driver. These Intelligent Vehicle systems are discussed in detail in

Chapter 3 (cooperative collision warning and rerouting system), Chapter 4 (extended

version of our CCW and rerouting system), Chapter 5 (vehicle tracking system) and

Chapter 6 (Emergency Message Propagation system).

2.1 Related Work

In the following, I consider some related work that has been done on decision support

modules and in the area of simulation for intelligent vehicle systems.

2.1.1 Collision Avoidance Systems

Decision making methods have been implemented and used in some sensor-based or

vision-based collision avoidance systems. A method for decision making in collision

avoidance applications was presented by Jansson et al. [14]. This method uses modern

tracking theory along with a decision making module to avoid or mitigate a possible

8

accident. The prototype system they developed and evaluated significantly reduces the

impact speed in frontal collisions [1]. The decision making model has to predict how the

position of the tracked object evolves in time. This model is based on the coordinated

turn model, where the object is supposed to follow straight line segment and circle

segment.

A framework for a collision avoidance system is provided by Jansson using statistical

decision making and stochastic numerical integration [2]. This system uses radar sensors

to detect and track other vehicles. Since inaccurate sensor information can lead to

uncertain state information and can influence the performance of collision avoidance

system, a statistical decision making algorithm was developed to deal with estimation

uncertainties by calculating the probability for each action.

The potential benefit of using sensor-based collision mitigation systems and the

prediction uncertainties of these kinds of systems are two significant tradeoff issues

which Hillenbrand [3] has tried to deal with. Hillenbrand has proposed a decision making

approach to allow an intuitive tradeoff between potential benefit on one hand and

readiness to take risk with respect to product liability and driver acceptability on the other

hand. The performance of this system is investigated on three dangerous traffic

situations: rear-end collision due to an unexpected braking; cutting-in vehicles; and

crossing traffic at intersections.

Karlsson [4] has implemented a decision rule in a collision mitigation by braking

(CMbB) system for late braking using a hypothesis test based on estimates of the relative

longitudinal dynamics. The brake decision is based on estimates from tracking sensors.

The required acceleration to obtain a zero velocity at a possible impact has been

calculated for this statistical decision making system.

9

2.1.2 Simulation of Transportation Systems

To develop an intelligent transportation system, a reliable simulation environment is a

key element. There have been some simulation environments developed in this area.

Gruyer has presented a cooperative system simulation architecture developed within the

interconnection of the sensors simulation platform SiVIC (“Simulateur Véhicule-

Infrastructure-Capteurs”, Vehicle-Infrastructure-Sensors Simulator) and the prototyping

platform RTMaps (Real Time Multisensor Advanced Prototyping Software) [5]. The

SiVIC simulator is interfaced in real-time with the RTMaps software which allows

prototyping and testing ADAS (advanced driver assistance systems) and behavioral

analysis applications in a simulated environment.

Eichler has presented a simulation environment which can be used to analyze the effect

of real-time vehicle-to-vehicle warning message distribution applications on road traffic

[6]. Three major components of this simulation are: the traffic simulator CARISMA,

developed by BMW to simulate the traffic network; the network simulator NS2 to

simulate mobile Vehicle-to-vehicle network; and a comprehensive ad-hoc agent for

vehicle-to-vehicle warning message propagation.

Sommer [7] has developed a simulation framework that provides coupled network and

road traffic simulation called Veins (VEhicles In Network Simulation). For network

simulation, OMNeT++, a simulation environment free for academic use, was used to

model realistic communication patterns of VANET nodes and traffic simulation is

performed by the microscopic road traffic package, SUMO. Veins supports the active

exchange of control and statistics data and also Veins provides a framework for the real-

time interaction between the network simulation and the road traffic microsimulation.

Both road traffic simulation and network simulation are bi-directionally coupled and

simulations are performed on-line. This way, not only the influence of road traffic on

network traffic can be modeled, but also vice versa. In particular, the influences of inter-

10

vehicle communication (IVC) on road traffic can be modeled and complex interactions

between both domains examined. I use Veins as our starting point end extend it to

accommodate our sensor and vehicle environment as well as incorporating our decision

making module.

2.2 Decision Making System Structure

Intelligent vehicles can access different sources of data, such as vehicle data, data from

other vehicles through wireless communication, data from cameras or other sensors, data

about the driver and infrastructure data. To process this data a decision making module is

presented which performs data collection and provides the best action to be taken in

different situations.

I have designed and implemented an initial decision making module for vehicles which

collects information from different sources using a blackboard method. The decision

making module works in conjunction with one or more intelligent vehicle applications.

The decision making module warns or suggest actions on some specific situation, for

example our decision making module could suggest an alternative route as soon as its

wireless agent warns about an upcoming accident (See Figure 2.1). In this system each

source of data represents an agent in the system.

11

Figure 2-1: Decision Making Module Integration

A blackboard system is an application based on the blackboard architectural model,

where a common knowledge base, the "blackboard", is iteratively updated by a diverse

group of knowledge sources known as agents. Each knowledge agent updates the

blackboard with partial information [8] .

A blackboard-system application consists of three major components:

 The knowledge sources (KSs). Each knowledge source provides specific expertise

needed by the application. In our system each agent represents a knowledge source

which provides part of the information.

12

 The blackboard is a shared repository of problems, partial solutions, suggestions,

and contributed information. The blackboard can be thought of as a dynamic

"library" of contributions to the current problems that have been recently

"published" by other knowledge sources. A simple text file is used in our system as

the blackboard to which all the agents write and read data from it.

 The control shell controls the flow of problem-solving activity in the system. KSs

need a mechanism to organize their use in the most effective and coherent fashion

which is provided by the control shell. While in our system the problem-solving

activity is detecting emergency or critical situation in driving, the decision making

module role is as the control shell which collects the blackboard information and

decides whether an action is required.

Intelligent applications use the information provided by the decision making module to

assist the driver in certain circumstances. Based on the data provided, the decision

making module decides which agent should do what action(s). For instance, in case of

receiving an accident message the wireless agent writes the location of the accident, the

time of the accident, etc. on the blackboard. On the other hand, the vehicle agent provides

GPS information and trajectory and writes this information on the blackboard.

Subsequently, the decision making module reads the blackboard, extracts and processes

the information and if the accident has happened on its road, provides an alternative route

and asks the vehicle agent to change the vehicle trajectory. Also the decision making

module asks the wireless agent to resend the wireless message if the number of hops is

more than one. All information written to the blackboard contains a timestamp and the

name of the agent which has provided that piece of information. In other words, all

agents provide information to the decision making modules using the blackboard and the

decision making module processes this information and sends an appropriate request to

the corresponding agent(s). Without using the decision making module there would be no

13

integration of information and each agent could be taking action(s), if any, based on their

own limited information.

I have designed and implemented the Wireless Agent, Vehicle Agent, Camera Agent but

the driver agent is not designed and implemented. Four different intelligent applications

which use the decision making module to operate; a cooperative collision warning and

rerouting system, a cooperative collision warning and rerouting system using an accident

model, a vehicle tracking system and an emergency propagation system using V2I and

V2V. Using the decision making module in intelligent vehicle applications makes it

possible to collect data and make decisions based on all of the data in order to have more

accurate decision making. With the decision making module these applications can

integrate together and benefit from machine learning methods to adapt to various

circumstances. The details of the applications are explained in Chapter 3, 4, 5 and 6 and

the implementation of the decision making module as well as camera agent, wireless

agent and vehicle agent is explained in the next section.

2.3 Simulation

I have developed a simulation environment for inter-vehicle communication. To model

the communication between VANET nodes, I have used OMNeT++ using the MiXiM

framework. Road network simulations are performed using the Simulation of Urban

Mobility (SUMO) package. The Vehicle in Network Simulation (Veins) simulator has

been used to link OMNeT++ with SUMO [7]. Figure 2.2 shows the simulator

components and flow of information between these components as well as how our

decision making module is related to other modules in the simulation.

14

Figure 2-2 Simulator Components Integration

What follows briefly describes our road network simulator (Vehicle Agent), wireless

module (Wireless Agent) and computer vision simulator (Camera Agent).

2.3.1 Road and Traffic Network Simulator (Vehicle Agent)

SUMO (Simulation of Urban MObility) is an open source, highly portable, microscopic

and continuous road traffic simulation package designed to handle large road networks.

In our work SUMO has been used to simulate road and traffic networks. Any selected

part of a map can convert into a XML file representing the network of streets, roads,

traffic lights, etc. Another XML file defines all the vehicles traveling in this network,

their routes, speed, etc. Sumo obtains these XML files as inputs and simulates road and

15

traffic networks. To communicate with SUMO there are API calls (known as commands)

available in the TraCIScenarioManager and TraCIMobility modules of Veins which each

module can use to directly interact with the running traffic simulation (SUMO). In order

to design our decision making module, I have used some of these commands and also

have implemented additional commands which were not available in the original

TraCIScenarioManager module or in TraCIMobility module. For this simulation I have

added eight commands to the existing ones:

 commandReroutingByTravelTime: this command computes a new route using the

vehicle’s global edge travel time (the time to travel one specific street when there is

no traffic jam) information and replaces the current route by the new route found.

 commandGetCurrentTravelTime: this command returns the travel time for the edge

(graphical representation of the street) which the vehicle is currently on.

 commandGetEdgeTravelTime: this command returns the travel time for a specific

edge.

 commandChangeEdgeTravelTime: this command changes the travel time for a

specific edge.

 commandGetVehiclePosition: this command returns the position of any vehicle

from SUMO.

 commandGetVehicleAngle: this command returns the direction of the vehicle based

on its last step in the simulator.

 commandGetVehicleLength: this command returns the length of a given vehicle.

 commandGetVehicleWidth: this command returns the width of given vehicle.

Using these commands, the vehicles can react based on the messages they receive in the

simulation and take action(s).

16

2.3.2 Wireless Module (Wireless Agent)

A multi-Channel IEEE 1609.4 and IEEE 802.11p Enhanced Distributed Channel Access

(EDCA) model is implemented in Veins. This model encompasses the 80211.p Dedicated

Short Range Communication1 (DSRC) PHY and MAC layers, including Access

Categories for QoS, the Wave Short Message (WSM) handling, and beaconing WAVE

service announcements, as well as multi-channel operations, such as the periodic

switching between the Control Channel (CCH) and Service Channels (SCHs) [9], [10].

The messages are transmitted with a bitrate of 8Mbps and a transmission power2 of

20mW on the Control Channel (CCH). I model path loss3 with path loss coefficient of 2.0

and shadowing with a mean signal attenuation of -89dB with a standard deviation of 4dB.

The wireless module could be installed in a vehicle as V2V communication enhanced

system or can be installed as road way communication unit to propagate wireless

messages on the road. The road side units are simulated using the same specification.

2.3.3 Vision Simulator (Camera Agent)

In order to simulate the use of cameras on the vehicles, I needed to have a vision module

in our simulator which could act in a manner similar to a real camera installed in the

vehicle.

1
 Dedicated short-range communications are one-way or two-way short-range to medium-range wireless

communication channels specifically designed for automotive use and a corresponding set of protocols and

standards

2
 Power transmission is the movement of energy from its place of generation to a location where it is

applied to perform useful work

3
 Path loss (or path attenuation) is the reduction in power density (attenuation) of an electromagnetic wave

as it propagates through space

17

Computer vision algorithms provide mathematical models of the world based on series of

images captured by cameras. Since I am using a VANET and a traffic simulator, with

access to a 2D mathematical model of the world which can be used to determine which

vehicle or obstacle in this model would be visible to each camera. All vehicles are

modeled as rectangles and therefore can be presented by four corner points. All buildings

are modeled as a set of points which are the corners of the shape of the building. All

cameras are specified by a) the angle specifying the area covered by each camera and b)

the associated maximum distance over which they can accurately detect and position the

objects.

Having shape and position of all buildings and vehicles from SUMO [11] and also the

specification of each camera from the camera simulator, I present the following algorithm

to determine all visible objects for each vehicle equipped with a camera:

1. All vehicles or buildings in which at least one of their points is in the observable

area of the vehicle’s camera will be determined.

2. Based on the camera position for each object, the two outermost points of any

vehicle or building will be determined and that object will be defined by the line

joining these two points.

3. For each object identified (represented as a line), all other objects which are

placed completely or partially beyond it will be determined.

4. For all identified objects (step 2) the visibility percentage of each object is

determined and any object for which its visibility percentage is less than 50% will

be removed from the list.

Figure 2.3 illustrates how camera simulator works. The vehicles which are beyond other

vehicles or buildings will be considered as invisible to the camera. In Figure 2.3, vehicle1

is completely visible, vehicle 2 in completely invisible, vehicle 3 is partially visible but

18

less than 50% visible and would be considered as invisible and more than 50% of

vehicle4 is visible and it is considered as visible.

Figure 2-3: Camera Simulator

This approach is, of course, somewhat simplified as it does not take into account the

vertical axis and creates the model in 2D. However, since most roads are relatively flat

and all buildings are higher than most vehicles, identifying vehicles in 3D would be

approximately the same as this approach. In addition, SUMO only operates in 2D so

doing a 3D analysis is unfortunately not possible without changes to SUMO.

The code for vision simulator is in Appendix A.

19

3 Cooperative Collision Warning and Rerouting System

This Chapter is a reformatted version of the following article:

Besat Zardosht, Steven Beauchemin and Michael Bauer, “A Decision Making Module

for Cooperative Collision Warning System Using Vehicular Ad-Hoc Network”. The 16th

International IEEE Annual Conference on Intelligent Transportation Systems, 2013

In this paper I present a rerouting system that is an event based algorithm which informs

other vehicles about an accident and can provide an alternative route to the driver in order

to avoid traffic congestion. I assume that each car is equipped with GPS and wireless

communication hardware that can implement our decision making algorithm and benefit

from its rerouting algorithm. Our decision making system is an event based system so it

just triggers when an event (accident message or release message from the accident)

happens, and, therefore, does not consume much channel bandwidth.

Our intelligent application is a cooperative collision warning and rerouting system which

uses our decision making module to inform other vehicles about an accident and provide

an alternative route to avoid traffic congestion. Each car that is equipped with GPS and

wireless communication hardware can implement our system and benefit from its

rerouting algorithm. Our decision making system is an event based system so it just

triggers when an event (accident message or release message from the accident) happens,

therefore it does not consume much channel bandwidth. Overall, the results show that

using our intelligent application shows great potential for improving performance of

vehicular systems by reducing travel time and wait time for vehicles. In addition, the

safety of vehicles will increase since the vehicles will be informed about the accident by

wireless communication.

20

3.1 Introduction

Intelligent vehicles can benefit from exchanging data about driving situations, other

vehicles, the surrounding environment and even the driver; and process this data to

inform the driver about the existing or impending situations and suggest, or even take,

actions.

Other than exchanging information about the overall state of the vehicles, vehicles can

send wireless messages to each other in emergency situations, such as an accident, to

warn other vehicles about the accident and decrease the possibility of danger from them.

In addition to the obvious advantage of increasing safety, warning the driver in the

accident situation can be helpful in decreasing the traffic in the accident area.

I have implemented a decision making module for vehicles which collaborates with data

collection agents (vehicle agent for information about vehicle such as vehicle direction

and trajectory, wireless agent which collects the information about other vehicles, etc.) to

collect the information about other vehicles, informs the driver about it and suggests an

alternative route in order to avoid the traffic caused by the accident. This decision making

module has been implemented and tested using the Vehicles in Network Simulation

(Veins) which uses OMNet++ [12], (wireless network simulation tool) linked to SUMO

[11] (a road network simulation tool). Our decision making module has been tested in a

city network based on Erlangen [7].

A cooperative collision warning (CCW)Intelligent vehicle system is one which makes

use of data, including communication between vehicles, to enhance vehicle safety and

warn drivers of potentially dangerous conditions. Our decision making approach

contributes to research in the following ways:

CCW systems have mostly been used to provide warning information for the driver and

do not suggest possible actions. These systems inform the following vehicle about the

21

potential collision, but do not provide rerouting choices for the driver which can help

avoid traffic congestion. I have used my decision making algorithm in CCW and

rerouting system to provide an alternative route for vehicles approaching the accident

location in order to decrease waiting and travel time and avoid traffic.

It is the first event based CCW and rerouting system which has used a decision making

system for a rerouting system based on wireless communication. Our decision making

system triggers when an accident happens and the car which has been in the accident

sends accident message(s). In this work, I assume that all vehicles are equipped with the

communication hardware for vehicle to vehicle communication and wireless protocols, a

GPS, maps of the roadways and street information, namely, the length of each street,

maximum legal speed of each street, and our decision making algorithm. In other

proposed rerouting algorithms, vehicles send request messages to other vehicles in order

to find out about traffic congestion based on the responses. In our system there is no need

to continue sending redundant messages and this reduces channel bandwidth by not

sending unnecessary messages.

Our system uses a specific “resending” accident message alongside the propagating

messages for one hop by receivers in order to make sure that all needed vehicles are

aware of the accident and can take action to reroute to avoid the traffic jam caused by the

accident. The wireless messages are tagged with hop number when a vehicle receives a

wireless message which is tagged with a hop number bigger than zero, it reduces the

number by one and propagates the message again. The vehicles which propagate the

message again are known as hops.

3.2 Related Work

Using wireless communication among vehicles is a potentially useful way to make

driving more intelligent. There have been several studies which have shown the

beneficial use of wireless communication among vehicles in cooperative collision

22

warning (CCW) systems and in driving assistance systems. Some of this previous work is

described in the following.

The technical feasibility of CCW systems was shown by Sengupta et al. [13]. In their

paper, they introduced a CCW prototype that provides the driver with both warnings and

situation awareness through displays provided in the vehicle. Their prototype has been

tested in low speeds in an urban office campus with poor GPS coverage, and at high

speed on an unused airfield. This prototype is the first prototype able to provide 360-

degree awareness by using GPS and wireless communication. However, the warning

system used in this prototype simply informs the driver about ongoing situation and does

not suggest any alternative actions to take. In other words, the analysis of the information

provided by the system is left to the driver. Also, this approach does not make use of a

map and results in shortage of information about road geometry.

A DGPS (Differential Global Positioning System)-based vehicle-to-vehicle collision

warning system is introduced by Tan [14] which requires a simple GPS unit and basic

motion sensors to detect a possible collision situation. This system predicts the hazard

situation using the information of nearby vehicles to provide safety but it covers a very

small area around the vehicle so it cannot support traffic leading applications.

Dashtinezhad et al. have proposed the “Traffic View” system which gathers information

about other vehicles and the environment through wireless ad-hoc communication among

vehicles and provides traffic information that helps driving in situations such as foggy

weather, or finding an optimal route in a trip several miles long [15], [16]. This system

provides a map of the vehicles nearby. However, it does not have any prediction of their

actions or any information about hazard situations.

Yung has proposed another vehicle to vehicle communication protocol for meeting delay

constraints in cooperative collision warning systems [17]. In this protocol, if a vehicle

faces a mechanical failure or unexpected road hazard, the warning system repeatedly

23

transmit the emergency wireless message to other equipped vehicle in range of 300m and

by defined congestion control policies for emergency warning messages, a low

emergency warning message delivery has been achieved.

Biswas has presented an overview of a highway cooperative collision avoidance (CCA)

system, which is an emerging vehicular safety application using the IEEE- and ASTM-

adopted Dedicated Short Range Communication (DSRC) standard [18]. In this paper it is

assumed that all the equipped vehicles are aware of each other and communicate via

wireless to warn each other about a collision.

Huang has proposed a joint rate-power control algorithm for broadcast of a self-

information message that enables neighbor tracking in VANETs. This algorithm decides

how frequently a vehicle should broadcast its own state information and how far the state

information should be broadcast to obtain the best performance. This algorithm is

evaluated through realistic network and microscopic traffic simulations [19]. However,

sending the state information to other vehicles frequently can consume channel

bandwidth.

Elbatt has studied the suitability of the standard DSRC protocol for inter-vehicle

communication applications and, in particular, cooperative collision warning systems

[20]. In this paper two novel latency metrics are introduced to calculate the performance

of CCW system using the DSRC protocol: Packet Inter-Reception Time (IRT) at the

vehicle for packets sent by a given transmitter and Cumulative Number of Packet

Receptions at the vehicle from a given transmitter.

Lakas has proposed a traffic jam detection system which uses wireless communication

for information exchange. In this system each vehicle periodically sends a request

message to other vehicles and by their responses a vehicle can detect road congestions.

Then a modified version of the Dijkstra algorithm can be used to find a better route for

the requested vehicle [21]. The main problem with this system is that every vehicle has to

24

frequently send a request message to other vehicles in order to detect and avoid road

traffic congestion.

Dogan has designed an intersection collision warning system using digital GPS location

data and then broadcasts this information at a certain distance from the intersection using

an ad-hoc wireless network [22]. This intersection collision warning system has been

evaluated by a MATLAB-based simulator which consists of vehicle traffic simulator and

wireless simulator.

3.3 Decision Making System for Cooperative Collision
Warning and Rerouting

In this work, I assume that all vehicles are equipped with the communication hardware

for vehicle to vehicle communication and wireless protocols, a GPS, maps of the

roadways and street information, namely, the length of each street, maximum legal speed

of each street, and the decision making algorithm. I have also assumed that the traveling

route has been determined by the driver and that the decision making algorithm has

access to the basic information of the travelling route.

Travel time is the approximate time that one vehicle needs to travel through that specific

street and at a point in time it is calculated by the length of the street divided by the

maximum legal speed of the street; a delay constant is added for each accident, if any, in

progress on that street (Equation (3.1)). Since each car is provided with a map of the road

it has access to travel time information of each street, and when it is informed about an

accident on a specific street, it can change its local travel time information for that street.

In this work any situation which causes the vehicle to stop unusually for a while would be

considered as an accident. The Delay Constant is the mean delay (s) which an accident

would cause for a vehicle.

𝑇𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒 (𝑆𝑖) = (
𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝑖)

𝑀𝑎𝑥 𝑆𝑝𝑒𝑒𝑑 (𝑆𝑖)
) + (𝐷𝑒𝑙𝑎𝑦𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∗ 𝑁𝑢𝑚𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡(𝑆𝑖)) (3.1)

25

When an accident happens, the vehicle which had the accident broadcasts an accident

message containing the identifier for the type of message (accident or release) and

location of itself. Then the travel time for the street on which the accident happened will

increase by a specific amount (see Equation (3.1)).

The vehicles which receive the accident signal are divided into three different categories

based on the location of the accident and their current locations: those not affected by the

accident; those affected by the accident but can do nothing and those affected by the

accident and can change route. The decision making module in a vehicle can determine

the category of its vehicle by comparing the street on which the accident has occurred to

the route provided by the driver for each vehicle.

The first category contains the vehicles where the street on which the accident happened

is not in their trajectories. Therefore, they simply ignore the accident message and

continue their journey. The second category contains the vehicles which are currently on

the same street that the accident has happened. They may or may not be able to change

their routes; however, they can reduce their speed to avoid the accident. These vehicles

are often those that become stuck in the traffic. The last category of vehicles is those that

are not currently on the same street that the accident has happened but that street is on

their route. These vehicles can change their route to avoid the traffic jam created by the

accident. The decision module will try to find a new route to avoid the accident and

where the travel time is minimal.

Figure 3.1 shows a vehicle which is sending an accident message to other vehicles. The

red circles indicate the vehicles which are stopped because of the accident, the green

circles show the vehicles which are not affected by the accident (first category), the blue

ones shows the vehicles which are on the same street as the one where the accident

happened (second category) and the yellow circles indicate the vehicles which can

reroute to avoid the accident (third category).

26

Figure 3-1. A vehicle sending an accident message to other vehicles

 I also assume that when a vehicle is “removed” from the accident situation (by driving

away or being taken away), it broadcasts a release message to other vehicles in the range

and each vehicle which receives release message reduces the street travel time by the

specific amount of delay constant.

The vehicles which receive the release signal are categorized as follows. Not affected;

affected but can do nothing and finally, affected and can reroute. The first category

contains the vehicles where the accident was not in their way and therefore they ignore

the message. The second category contains the vehicles which are currently affected by

the accident street and are stuck in the traffic. They ignore the release message as well.

The last category contains the vehicles which are not currently on the street where the

accident has happened, but this street is on their way. As they receive the release signal

they calculate the best travel route based on new information and reroute if necessary.

Again, these categories are based on the information about the route for each vehicle.

27

The vehicle which had the accident can send the accident message periodically rather

than send it just once to inform upcoming traffic about the accident. In this case, more

vehicles receive the message and take the proper action. The other method to inform

more vehicles is message propagation. Each vehicle that receives the accident message or

release message can propagate it to other vehicles in range.

By using the combination of these two methods more vehicles will be informed about the

accident and therefore the decision making system can be more efficient and more

reliable. Therefore, I can compare four versions of the decision making module based on

how they propagate the accident message.

In the first and very simple version the car that has had the accident sends the accident

message once and each other car which is stuck in the accident broadcasts this message

once. In the second scenario, the car which had the accident sends the accident message

once and each car which receives this message propagates it once. The next scenario is

the case in which the car that had the accident sends the accident message periodically

and no other vehicle propagates this message. Finally, in the fourth scenario the car

which had the accident sends the accident message periodically and other vehicles which

receive the accident message propagate it once.

The other question that should be addressed is how often should a message be resent and

for how long should a car resend a message. The very first seconds of the accident are the

most critical and making sure that all vehicles around are informed about the accident

soon enough is very important. However, the more time that passes from the occurrence

of the accident the less critical it would be to resend the message and after a while it is

not necessary to resend the message again.

In our decision making module the car that had the accident sends a message every 2

seconds for the first minute, every 10 seconds for next minute, every 30 seconds for third

28

minute, every 60 second for forth minute and it stops resending the message after five

minutes. The simulation environment and its details are discussed in next section.

3.4 Evaluation

In order to evaluate our decision making module I execute our simulation without using

our decision making module and with this module and in four different scenarios. In the

first and very simple scenario (Scenario1), the decision making module in the car which

had the accident sends an accident message and each car which is stuck in the accident

send this message again. In next scenario (Scenario2), after the car which had the

accident sends the accident message, each vehicle which receives it will propagate it

once. The third scenario (Scenario3) is the case in which the car that had the accident

sends an accident message periodically but no other vehicle propagates it. And in last

configuration (Scenario4) the car which had the accident sends the accident message

periodically and any other vehicle which receives this message will propagate it once.

I calculated the waiting time for each vehicle, the overall travel time of each vehicle and

the number of messages transferred between all vehicles in each case. Waiting time is the

time the vehicles have been stopped due to an accident, a traffic light or even heavy

traffic jam. One result of our approach is that the overall waiting time of the vehicles is

reduced by 47% using Scenario1, it is reduced by 38% using Scenario2, 54% using

Scenario3 and the best result was by using Scenario4 which reduced waiting time by

86%.

29

Figure 3-2. Waiting Time for each vehicle in the road network.

Figure 3.2 shows the waiting time(s) for each vehicle on the road when they use the

decision making module in different scenarios and when they do not use decision making

module.

Travel time is calculated by considering the time that the vehicle enters the network and

starts its journey and the time it reaches its destination. From Figure 3.3, I can see that the

average travel time for vehicles has been reduced significantly when they use our

decision making module. The overall travel time has been reduced by 31% in Scenario1,

it is reduced by 25% in Scenario2, 34% in Scenario3 and, more significantly, 52% in

Scenario4 of the decision making module.

30

Figure 3-3. Travel Time for each vehicle in the road network

Table 3.1 shows the sums of waiting times and sums of travel times for all vehicles. It

can be seen from this table that the least waiting time and travel time is obtained when

Scenario4 of the decision making module has been used. In other words, when the car

which had the accident sends an accident message periodically and each vehicle which

receives the message propagates it, the overall waiting time and travel time of the

vehicles reduced the most.

31

Table 3-1. Total waiting time and total travel time in different cases.

 Sum of Waiting

Time (s)

Sum of Travel

Time (s)

Without Decision

Making module

13076.5 31618.6

Using Decision Making

module-Scenario1

6886.191 21666.1

Using Decision Making

module-Scenario2

8102.642 23638.8

Using Decision Making

module-Scenario3

5957.396 20600.5

Using Decision Making

module-Scenario4

1785.692 15133.4

The other factor to be considered is the number of messages which have been passed

between the vehicles. In the simple case, when the vehicles do not use the decision

making module, there is no message passing between the vehicles. But when they use the

decision making module, they propagate wireless messages to inform other vehicles

about the accident. The total number of messages that have been sent while using

Scenario1 was 40 messages and the total number of received messages by all 100

vehicles was 995 messages. By using Scenario2 of decision making module, 996

messages were sent and 17414 messages were received in total. Scenario3 involved 58

sent messages and 910 received messages and finally by using Scenario4 372 messages

were sent and 3453 messages have been received. In other words, the average of 0.4

message has been send by each vehicle and each vehicle has received approximately 10

messages during its journey in Scenario1, an average of 10 messages per vehicle were

sent and average of 17.4 messages were received in Scenario2, approximately 6 messages

were sent and 9 messages were received by each vehicle in Scenario3 and there are about

37 messages sent and 345 messages received per vehicle in Scenario4.

32

Table 3-2. Number of transferred messages in different cases

 Number of

Messages Sent

Number of

Messages

Received

Messages

Without using Decision

Making module

0 0

Using Decision Making

module-Scenario1

40 995

Using Decision Making

module-Scenario2

996 17414

Using Decision Making

module-Scenario3

58 910

Using Decision Making

module-Scenario4

372 3453

The total number of transferred messaged among vehicles are shown in Table 3.2.

Overall, the best result regarding travel time and waiting time is observed in using

Scenario4 of the decision making module. The number of transferred messages between

vehicles is small compared to the significant reduced amount of travel time and waiting

time.

33

4 Cooperative Collision Warning and Rerouting System
using an Accident Model

This Chapter is a reformatted version of the following article:

Besat Zardosht, Steven Beauchemin and Michael Bauer, “A Decision Making Module for

Cooperative Collision Warning and Rerouting in Highway and Urban Area Using VANET”.

IEEE Transaction on ITS (ITSC'13), 2014 (to be Submitted)

Our cooperative collision management system is an event-based algorithm that informs

other vehicles about accidents and provides alternative routes to avoid traffic congestion.

Each vehicle equipped with GPS and wireless communication hardware can implement

our decision-making algorithm and benefit from its rerouting capabilities. In addition, our

system does not consume much channel bandwidth, due to its event-based

implementation.

Since traffic situations vary between highway driving with high speeds and city areas

with much lower speeds, I evaluated both cases and compared results. The decision-

making module reduces waiting times in both driving environments. The results suggest

that travel time can also be reduced in a city environment. However, this may not be the

case in a highway environment and further investigation is needed.

4.1 Introduction

Providing drivers with relevant information about the environment surrounding their

vehicle can assist them in making driving safer and easier. Wireless communication is

one of the ways to obtain information on the status of surrounding vehicles such as their

position and speed, for instance. With relevant information at hand, a driver can make

34

more reliable decisions and stands a better chance of reacting properly in emergency

situations.

While providing this information to the driver can be useful, there is also the possibility

of giving the driver unnecessary or extraneous information. Many existing vehicles

already have mechanisms, which may take specific actions if the driver fails to act, such

as dynamic cruise control and emergency braking. Future vehicles will undoubtedly

feature more advanced decision-making modules capable of taking complex maneuvers

in the event that a driver becomes incapacitated, or simply to drive the vehicle in

autonomous mode.

Vehicles, other than simply exchanging information about their respective state with each

other, can also send wireless messages in emergency situations, such as when an accident

occurs, to warn other vehicles and decrease the possibility of danger for them. In addition

to the obvious advantage of increasing safety, warning the driver of an accident situation

can be helpful in decreasing the traffic congestion in the area of the accident.

I have implemented a Vehicular Ad-Hoc Network (VANET)-based decision-making

module for vehicles that receives accident information from other vehicles, informs the

driver about it and suggests an alternative route in order to avoid the traffic caused by the

accident. This decision-making module has been implemented and tested using the

Vehicles in Network Simulation (Veins) which uses OMNet++ [12], (wireless network

simulation tool) linked to SUMO [11] (a road network simulation tool).

Our decision-making module has been tested in a road network of the city of Erlangen in

Germany and in a road network of the 401 highway in Ontario, Canada. I also considered

the impact of the decision-making module in situations where various proportions of

vehicles are equipped with the system. Our proposed decision-making system uses an

accident model to predict the duration of the accident based on factors such as its

location, the number of lanes in the road, the number of lanes blocked by the accident,

35

the type of vehicles, and so on [23]. Using this model, the system estimates an accident

duration based on the time passed from the accident and provides an alternative route for

vehicles approaching the accident zone in order to decrease waiting and travel times and

avoid traffic using VANET. This module uses an event-based decision making approach

for vehicle rerouting and triggers only when accident messages are received. Hence, there

is no need to continually send redundant messages. In addition, our system does not

require a central management control mechanism; any so-equipped vehicle can provide

the necessary warning messages to other surrounding vehicles. In case of an accident and

in order to cover an adequately wide area, the module resends the relevant accident

message periodically and propagates them for two hops by receivers in order to make

other vehicles aware of the accident, such that they can reroute accordingly.

Our system is capable of detecting whether the driver is in an urban or highway

environment, since driving on highways is a different activity from driving in urban

areas. Our system also considers traffic volume. High traffic is detected based on the

difference between the speed of the vehicle and the maximum legal speed of the road it is

traveling on. Both of these capabilities do not use Vehicle to Infrastructure (V2I)

communication.

Our contribution is structured as follows: Section 4.2 provides a survey of related work.

In Section 4.3, the decision-making module is described in detail. In Section IV, the

simulation environment is explained and in Section V, the results of the simulation of our

decision-making module are examined. Lastly, Section VI provides some concluding

remarks and future directions for this research.

4.2 Related Work

Wireless communication among vehicles is a potentially useful way to make driving

more intelligent. There have been several studies that have shown the beneficial use of

wireless communication among vehicles in cooperative collision warning (CCW)

36

systems and in driving assistance (DAS) systems. Another use of these cooperative

systems is dynamic routing to avoid traffic congestion.

VANETs have been used widely in transportation systems to provide safety and

convenience in driving. In particular VANETs have been used to develop Traffic

Information Systems (ITS) in order to monitor traffic situations and detect congestion

[24]. Traffic monitoring has been traditionally addressed with algorithms using the

outputs of infrastructure cameras, or other similar sensors [25], [26]. Nowadays, loosely

decentralized approaches to this problem (such as V2I and V2V) have become popular.

For instance, a V2I traffic management system introduced by Milanes et al. [27] requires

an intelligent traffic control station which manages all the incoming information from

vehicles and, when the environment requires it, returns warning signals with the state of

the traffic to all vehicles.

It has been recognized that V2V cooperative applications could provide better

opportunities to monitor traffic congestion without depending on infrastructure. There

have been many algorithms and methods developed to provide a view of the road, detect

traffic congestion, and enhance driver decision-making regarding traffic without the need

to communicate with infrastructure. For instance, a traffic management protocol

presented by Santamaria et al. [28] uses V2V to inform nearby vehicles about accidents.

In this approach the road network is considered as a graph and the weight of the arc in

which the accident occurred is increased, therefore allowing vehicles to use a simple

rerouting graph-based algorithm. The system proposed by Leontiadis et al. [29] detects

traffic conditions through information gathered from other vehicles using V2V

communication. The effectiveness of this decentralized traffic management system is

evaluated using a realistic test case scenario. They have designed a method that allows

the vehicles to dynamically reroute based on individually collected traffic information.

Another method to reduce the impact of traffic jams via VANET is presented by Knorr

using beacon messages which periodically broadcast status messages containing vehicle

37

speed, location and acceleration [30]. This system does require vehicles to be connected

at all times and share their speed and location in order to evaluate the traffic situation.

The key problem of these systems is the limited bandwidth they must work with. Another

factor to be considered in these systems is information age or how long the exchanged

information remains valid. The problem of information age in vehicular network where

vehicles periodically broadcast information is addressed in [31].

The effects of traffic density on rerouting is considered in [32]. In this approach,

centralized and distributed routing methods are introduced and evaluated. In terms of

time efficiency, it is found that in low traffic volume the distributed method is more

suitable, while in heavy traffic the centralized method appears superior.

All of these methods have been developed to detect traffic congestion based on

information gathered from other vehicles (V2V), infrastructure (V2I), or both. However,

none of them predicts possible traffic congestion when a specific event such as an

accident occurs. Other than predicting possible traffic congestion, intelligent vehicles

would benefit from a method to estimate the delay caused by an accident.

Given the occurrence of an accident in the vicinity of a vehicle, if estimates of its location

and duration could be obtained, then an optimized rerouting decision could be made.

There are studies that attempt to predict the severity and duration of accidents using

various models [23], [33], [34]. Our approach uses such a prediction model to estimate

the duration of the accident and provide smarter rerouting for upcoming traffic.

4.3 Decision Making Module for Rerouting System Using an
Accident Duration Model

In this work, I assume that some vehicles are equipped with the hardware for V2V

communication and wireless protocols, a GPS, maps of the roadways, and street

information, such as the length and maximum legal speed of each street and the number

38

of lanes in each direction. I also assume that the driver has determined the traveling route

and that the decision-making algorithm has access to it via the on-board maps. Lastly, I

assumed that the vehicle(s) involved in the accident simulations are equipped with our

decision-making module.

I define travel time as the approximate time a vehicle needs to travel through a specific

street and calculate it by dividing the length of the street by the maximum legal speed of

the street. A delay 𝐷(𝑡) is added for accidents, if any, in progress on that street, as per:

𝑇(𝑠𝑖, 𝑡) = (

𝐿(𝑠𝑖)

𝑀(𝑠𝑖)
) + 𝐷(𝑡) (1)

where 𝑇(𝑠𝑖, 𝑡) is the travel time on street 𝑠𝑖, 𝐿(𝑠𝑖) is the length of 𝑠𝑖, and 𝑀(𝑠𝑖) is the

maximum posted speed on 𝑠𝑖. Each vehicle is provided with a map of the roads it has

access to and the travel time information for each street. When a vehicle is informed of

an accident on a specific street, it can change its local travel time information for that

particular street. I consider any situation that causes a vehicle to stop unusually for an

extended period of time to be an accident, causing an increase of travel time for the street.

The accident-induced delay 𝐷(𝑡) is determined with the help of Zong’s accident duration

model [23]. This model is based on an Accelerated Failure Time (AFT) metric employing

a Weibull distribution to model the relationship between the time an accident has lasted

already and the likelihood of it ending soon. Figure 4.1 indicates the baseline survival

function (S0) for accident duration.

39

Figure 4-1. Estimated probability of survival versus accident duration [23].

With the baseline survival probability, the AFT model uses identified variables to provide

an estimate of the duration of the accident. The survival function given the accident

duration model is obtained with:

 𝑆(𝑡) = 𝑠0[𝑡𝑒(−𝛽𝑇𝑋)] (2)

where 𝑠0 is the baseline survival function, 𝑋 is a vector of accident attributes, and 𝛽 is a

vector of estimable coefficients for each accident attribute. These are given in Table 4.1.

I assume our decision-making module has access only to some of these parameters,

namely: number of lanes blocked, accident location, and number of lanes in each

direction. For other variables our system uses the provided default values (Table 4.1) to

build the survival model.

40

Table 4-1. Accident severity variables with default values. These parameters are

selected from previous research in [23].

Variable Coefficient

Constant 5.12

Number of fatalities 0.51

Number of Injuries 0.33

Rear-end type collision -0.37

Vehicle rollover 0.28

Number of lanes blocked 0.24

Bus involved 0.60

Truck involved 0.58

Debris involved 0.55

Hazard material 0.88

Weekend or festival -0.14

Accident location -0.57

Number of lanes in each direction -0.18

Tow services 0.38

 When an accident occurs the decision-making module creates the survival model then,

with the survival function, it calculates the probability of the accident being cleared after

a time 𝑡 has passed from the time of the accident. To calculate the time to accident

clearance (accident duration), I multiply the probability 𝑆(𝑡) by 𝑀𝑑, the mean accident

duration time, which is the average of accident durations derived from real traffic

accident data used to create the survival model [23]:

 𝐷(𝑡) = 𝑀𝑑𝑆(𝑡) (3)

When a vehicle experiences an accident, it broadcasts an accident message containing the

identifier for the type of message (accident or release), its location, and estimated

accident duration 𝐷(𝑡). Then it increases the local travel time for the street on which the

accident happened by a delay equal to the predicted accident duration.

41

In this current study I am interested in understanding the potential impact of the decision-

making module on traffic given different adoption rates for V2V. Hence, I assume that

the vehicle involved in the accident is equipped with V2V and the decision-making

module.

The vehicles that receive the accident signal are divided into three categories, based on

the location of the accident and their current situation relative to it: those which are not

affected by the accident (the street on which the accident occurred is not on their route);

those which are already stuck in the congestion caused by the accident, and finally, those

which are affected by the accident and yet have the opportunity to change routes and

avoid the traffic congestion.

When a vehicle receives an accident message, the decision making module in the vehicle

determines its category by comparing the street location on which the accident has

occurred to the route provided by the driver and verifies if the route contains the specific

street or not.

The first category contains the vehicles where the street on which the accident happened

is not in their future routes. Therefore, they simply ignore the accident message and

continue their journey. The second category contains the vehicles which are currently on

the same street that the accident has happened. They may or may not be able to change

their routes; however, they can reduce their speed to increase safety and avoid further

accidents. These vehicles are often those that become stuck in the ensuing traffic. The last

category of vehicles comprises those that are not currently on the same street that the

accident has happened but that street is on their route. These vehicles can change their

route to avoid the traffic created by the accident. The decision module tries to find an

alternate route while minimizing travel time. I assume that when the accident situation is

clear and the vehicle is removed from the accident area (by driving away or being taken

away), it broadcasts a release message to other vehicles in the range and each vehicle that

42

receives the release message reduces their local street travel time to the default street

travel time and reroutes if necessary. The vehicles that receive the release signal are

categorized in the same way as when they received the accident message: not affected;

affected but cannot reroute and finally, affected and can reroute.

In our simulations, the vehicle which experiences an accident sends the accident message

periodically rather than just once to inform upcoming traffic about it. In this case, more

vehicles receive the message and take proper action. I used an adaptive resending method

that updates the time to clear the accident before resending the message. The system

calculates a new accident duration time with respect to the time passed from the accident

and creates new messages based on the updated accident duration. Therefore, the time to

clear accident value decreases each time the accident message is resent by the system.

The very first seconds of the accident are the most critical and making sure that nearby

vehicles are informed about the accident soon enough is very important. However, the

more time that passes from the occurrence of the accident the less critical it would be to

resend the message. In our decision making module the vehicle involved in the accident

sends a message every 2 seconds for the first minute, every 10 seconds for the next

minute, every 30 seconds for the third minute, and every minute afterwards until it is

released from the accident.

A message propagation technique is also in place in our simulations. Each vehicle that

receives the accident message or release message propagates it to other vehicles in range.

The other factor to be considered is to decide how far a message should go or on how

many hops is enough when the message is propagated. This factor could differ based on

traffic congestion, the average speed of the vehicle, and road type, (whether it is highway

or urban). In our system, I considered two hops for highways and one hop for urban

areas. Our earlier work [35] showed that this message resending and propagating

approach was effective in reducing waiting time and in keeping the amount of

communication relatively low.

43

I assessed the performance of our decision-making module by providing different

simulation scenarios. The factors considered in the simulations are:

 Accident Location (highway, urban)

 Traffic (high, normal)

 Number of equipped vehicles or adoption rate of V2V in percent (0, 10, … ,100)

 Number of lanes on the road in the direction which the accident happened (1, 2,

more than 2)

 Number of blocked lanes caused by the accident (1, 2, more than 2)

The results are summarized and analyzed in the following Section.

4.4 Evaluation

I simulated three accidents within the city environment: one involving 1 blocked lane in a

street with only one lane, one accident involving 1 blocked lane in a street with 2 lanes

and one with 2 blocked lanes in a street with 2 lanes. Similarly, I simulated four accidents

within the highway environment, again involving different number of lanes (3 or 4) and

different number of blocked lanes (1 or 2). This yields four lane-related accidents for

each driving environment, and allows us to compare the impact of accidents across

simulations. If the location of the accidents is left vary, then the predicted accident

duration, which is based on accident information (highway or city, number of lanes, and

number of blocked lanes), would be different in each case and render it difficult to study

the impact of the adoption rate on the decision-making strategy.

44

Figure 4-2. Map of Erlangen, Germany, is available from the OpenStreetMap

project [7], [36].

I have executed the simulations with different proportions of vehicle equipped with the

decision-making module, starting with no vehicle equipped with my system, then

proceeding by increments of 10%, up to a 100% rate of adoption.

45

Figure 4-3. Map of highway 401, in Ontario, Canada, as available from the

OpenStreetMap project [36].

I tested these different scenarios both in city and highway environments. In both driving

environments, I considered normal and high traffic situations. I consider normal traffic as

approximately 150 vehicles per square kilometer and 300 vehicles per square kilometer

as high traffic. These numbers are based on my own empirical evaluation of the

simulator.

Additionally, the accident scenarios provided additional parameters, such as the number

of lanes on the road, the number of blocked lanes caused by the accident, and the accident

duration. There are two choices of areas, two choices of traffic, eleven choices of

adoption rates, two choices for the number of lanes, and two choices for the number of

blocked lanes resulting in a set of 176 experiments (see Table 2). However, in the cases

where there is only one lane on the road, the number of blocked lanes cannot be more

than one and hence 22 cases are not applicable, yielding a set of 154 experiments.

46

Table 4-2. Different simulation parameters resulting in 154 experiments.

Experiment Factors Choices

Area City or highway

Traffic Normal (approximately 150 vehicles per square

kilometer) or High (approximately 300 vehicles

per square kilometer)

Adoption Rate By increments of 10%

Number of Lanes 1 or 2 in city and 3 or 4 on highway

Number of Blocked Lanes 1 or 2 (for roads with 2 or more lanes)

I calculated the waiting time (delay) and the total travel time for each vehicle and the

number of messages transferred between all vehicles in each case. Waiting time is the

time the vehicles have been stopped due to an accident, a traffic light or by heavy traffic.

Figure 4.4 and Figure 4.5 illustrate the waiting times for the different adoption rates on

highways and in city environments. I observe that the average waiting time for the

vehicles in both normal and high traffic conditions are reduced by higher adoption rates

of my system.

47

Figure 4-4. Average waiting time in urban area with different proportion of vehicles

equipped with my system.

Figure 4-5. Average waiting time in highway with different proportion of vehicles

equipped with my system.

48

A similar result is observed for travel time4 in urban environments as adoption rates

increase (see Figure 4.6). As shown in Figure 4.7, the travel time in a highway

environment under both normal and high traffic is increased slightly. Since alternative

routes for highways could take longer to travel onto (non-highway roads with possibly

lower maximum legal speed limits), this result is not surprising.

Figure 4-6. Average Travel Time in urban area with different proportion of vehicles

equipped with my system

4
 Travel time is computed by considering the time a vehicle enters the network and starts its journey until

the time it reaches its destination.

49

Figure 4-7. Average Travel Time in highway with different proportion of vehicles

equipped with my system

The other factor of importance in the different scenarios is the number of messages

exchanged by the vehicles. In the simplest case, when vehicles are not equipped with the

decision-making module, there is no message passing between them. However, when

vehicles use the decision-making module, they propagate messages to inform others

about accidents.

The average number of sent messages when the vehicles were traveling within a city area

in normal traffic is shown in Table 3.2. When 100% of vehicles are equipped with the

decision-making module, an average of 0.9 messages were sent per vehicle and each

vehicle received an average of 16.5 messages during its journey.

50

Table 4-3. Average number of transferred messages in normal traffic within city

areas

Adoption Rate Number of Sent

Messages

Number of Received

Messages

0% 0 0

10% 30 62.33

10% 45.33 168

30% 63.33 366.66

40% 81 605.33

50% 90 825.66

60% 100.66 1068.66

70% 112.33 1376

80% 123.33 1779.66

90% 135.33 2213.33

100% 142.33 2482.33

Table 4-4. Average number of transferred messages in high traffic of city area

Adoption Rate Number of Sent

Messages

Number of Received

Messages

0% 0 0

10% 55.66 296.66

10% 93.33 780.66

30% 127.66 1287.66

40% 161 1782.66

50% 191.66 2131.66

60% 189 2372.33

70% 198 2619.66

80% 166.33 2497

90% 179.33 2833.33

100% 190.33 3228

Table 4.4 shows the average number of sent and received messages in a high-traffic

urban area per adoption rate. An average of 0.6 messages were sent by each vehicle and

51

each vehicle received an average of 10.7 messages during its journey at the 100%

adoption rate.

Table 4-5. Average number of transferred messages in normal traffic on highway

Adoption Rate Number of Sent

Messages

Number of Received

Messages

0% 0 0

10% 80.25 459

10% 137.5 1157.75

30% 177 1764.75

40% 232 2528.5

50% 255.25 3194.5

60% 324 4095.25

70% 358 5236.75

80% 381 6407.25

90% 451.5 7225.25

100% 455 7896.75

Table 4-6. Average number of transferred messages in high traffic on highway

Adoption Rate Number of Sent

Messages

Number of Received

Messages

0% 0 0

10% 84.5 527

10% 138.75 1173.75

30% 206.75 2381.5

40% 274.25 3586

50% 346 4604.75

60% 369 5401.5

70% 412 6601.25

80% 449.75 7533.75

90% 501.25 8234.5

100% 554 9469.75

52

Table 4.5 and Table 4.6 show the total number of transferred messages in the highway

environment for normal and high traffic volumes. In this environment, the average

number of sent and received messages turns out to be less than in urban environments.

The results are summarized in Table 4.7 for the 100% adoption rate in order to compare

different scenarios. In general, I observe that there are fewer messages transferred within

the urban environment than on the highway. This is because in the city messages

propagate for one hop as opposed to two hops on the highway. In addition, in higher

traffic density areas of the highway, more messages are transferred between vehicles due

to their relative proximity.

Table 4-7. Number of sent and received messages when all vehicles are equipped

with the decision-making module

 Number of Sent

Messages

Number of Received

Messages

City – Normal Traffic 142.33 2482.33

City – High Traffic 190.33 3228.00

Highway – Normal Traffic 455.00 7896.75

Highway – High Traffic 554.00 9469.75

In general, the results show that in urban environments, both travel times and waiting

times are reduced with increasing adoption rates. On highways, using my system results

in less waiting time, at the price of a slightly increased travel time. The number of

transferred messages per vehicle remains small and manageable across the set of

simulations.

53

5 Vehicle Tracking System

This Chapter is a reformatted version of the following article:

Besat Zardosht, Steven Beauchemin and Michael Bauer, “An In-Vehicle Tracking

Method Using Vehicular Ad-Hoc Networks with a Vision-Based System”. IEEE

International Conference On Systems, Man, And Cybernetics(SMC'14), 2014

My vehicle tracking system integrates a vision based tracking system with wireless based

tracking system. The approach seems to have the benefits of both technologies while

avoiding their disadvantages. I evaluated the system via simulation and it shows potential

for improving performance of intelligent driving assistance systems making use of

information about the surrounding vehicles’ locations. The results show that the system

can perform well even if a small percentage of the vehicles are equipped.

5.1 Introduction

Having information about the environment surrounding a vehicle can assist a driver in

driving safer and making driving more convenient. Different sources of information can

be available for use by vehicles. Having knowledge of neighboring vehicles can provide

useful information for intelligent vehicle (IV) applications, such as collision warning

systems or alternative route planning systems. With such information, the driver can

make more reliable decisions and has a better chance of reacting properly in emergency

situations.

Using wireless communication is one of the ways to obtain information about the

vehicle’s environment, and, in particular, the status of other vehicles, such as their

location, speed and other data. Vehicles can exchange information with other vehicles

and inform them about their location, speed, acceleration, etc. Having this information

54

gathered from other vehicles a vehicle can locate neighboring vehicles. Such exchanges

of information about neighboring vehicles are constrained to vehicles within the range

and messages can be interfered with, as in an urban environment.

On the other hand, vehicles can also benefit by using cameras as another source of

information to monitor the road and nearby traffic. Vehicle tracking via image processing

systems is done by mounting cameras on the vehicles which provide images to a

processing system to recognize other vehicles. Depending on the cameras and image

processing, vehicles at some distance can be detected and even properties of those

vehicles, such as their speed, can be determined. This information could augment the

information being exchanged among nearby vehicles and even propagated to other

vehicles. However, if a vehicle is occluded or partially occluded, the cameras may not be

able to detect it and it would be out of the view. Wireless communications between

vehicles could augment such vehicle identification.

Using cameras to capture elements of the surrounding environment and tracking the

neighboring vehicles provides the technology with valuable information which can be

used in many different situations and for many different applications. As noted, the main

shortcoming in using cameras for tracking vehicles is that they can provide the

information about the vehicles only in their sight and in lots of situations. On the other

hand, vehicle-to-vehicle communication can provide driving assistance systems with

more information about position, speed and directions of nearby vehicles regardless of

their visibility. However wireless based methods also have some limitations. Not all the

vehicles may be equipped with wireless communication facilities, messages may

experience interference and there could be other objects, like pedestrians, animals, etc.,

which cannot report their status using wireless systems, although information about their

location could be critical.

55

To overcome some of these shortcomings, I propose a new method of vehicle tracking

which uses both technologies together to track the vehicles. In my vehicle tracking

method, each vehicle sends a map request via wireless to other vehicles in range and

based on their responses it updates its own information. I also assume that not all the

vehicles are fully equipped and consider the implications.

I have implemented a Vehicular Ad-Hoc Network (VANET)-based vehicle tracking

method for vehicles which receives the camera information from other vehicles and uses

its own camera information to match the received information and to update its own

information. This vehicle tracking method has been implemented and tested using the

Vehicles in Network Simulation (Veins) which uses OMNet++ [37], (wireless network

simulation tool) linked to SUMO [38] (a road network simulation tool) and a camera

simulator which mimics camera operation which is mounted on a vehicle. My tracking

method has been tested in a city network based on Erlangen [39] and in highway network

based on 401 highway in Ontario [36]. My vehicle tracking method contributes to

research in the following ways:

 Previous tracking methods have used either wireless communication or vision based

systems to detect neighboring objects and to provide a view of the surrounding

environment. In the proposed tracking system, both of these technologies have been

used to overcome their respective limitations and provide more reliable and more

accurate information about the objects around the vehicle.

 My vehicle tracking method does not rely on other vehicles and it can work in the

situation in which no vehicle around is equipped with wireless technology. In this

case the system just uses its own information obtained from its cameras and a vision

based tracking system. Generally, my system can work if all the vehicles are

equipped with both camera and wireless communication, with just wireless or

neither.

56

 My system works well in specific traffic situations, such as an intersection or in low

light situations, where other tracking methods cannot operate well.

This paper is structured as follows. I present related work on which this paper is based in

Section II. In Section III, the vehicle tracking method is described. In Section IV the

simulation environment is explained and in Section V, the results of a simulation of my

vehicle tracking method are examined. Finally, Section VI provides some concluding

remarks and future directions for this research.

5.2 Related Work

In this section, some of the previous works in the field of vehicle tracking are discussed. I

also review simulation environments for vehicles on roads.

Using one or more cameras to detect and track neighboring vehicles is a common way to

provide necessary information for many different intelligent transportation applications

such as forward collision warning systems, travel management systems, etc. A vision

based vehicle detection and tracking system was presented by Coifman [40], [41]. This

tracking system was designed to operate under challenging conditions, such as various

lighting conditions. In this vision based tracking system, instead of tracking an entire

vehicle, vehicle features are tracked which makes the system less sensitive to the problem

of partial visibility.

Another vision based vehicle tracking system has been presented by Bertozzi which

detects and tracks vehicles based on a monocular image sequence [42]. Betke has also

introduced a vision based tracking system which recognizes and tracks multiple cars in

hard real time from sequences of images [43]. Alin [44] has presented a vision based

tracking system which uses the street information and attractor-based adjustment of the

probabilistic forward prediction in a Bayesian grid filter to track other vehicles.

57

A real time object tracking approach for the design of a video based freeway traffic

monitoring system was proposed by Gloyer [45]. The tracking algorithm operates based

on mapping the detected vehicles onto the real 3D scene. The proposed tracking

algorithm makes an estimate of expected position of the vehicles as well as tracking all

the vehicles on the road [45].

Other than using a camera to capture surrounding environment, wireless communication

among vehicles can also provide the information for vehicle tracking systems.

Rezaei et al. introduced four different schemes for tracking neighboring vehicles with the

use of wireless communications. Based on these schemes, each vehicle broadcasts its

GPS position, speed and heading to other vehicles via wireless communication. In their

first scheme, the sender broadcasts its information every 100ms and the receiver assumes

that the sender remains constant until reception of the next message. The second scheme

provides the receiver with a model estimator which estimates the position of the sender

based on the model and the received information. In the third scheme, the sender uses a

model estimator as well as the receiver. Finally, in the fourth scheme the sender repeats

its message a few times within a short time window [46].

Shafiee introduced a routing protocol for vehicular ad hoc networks which uses a vehicle

tracking method to position neighboring vehicles [47]. In this vehicle tracking method,

vehicles send beacons reporting their position to other vehicles. Based on the information

obtained from neighboring vehicles, each vehicle can calculate the density of vehicles in

the network and select the adequate route to communicate via VANET.

A joint rate-power control algorithm for broadcast of self-information that provides

vehicle tracking is presented by C. Huang [48]. This algorithm performs based on two

modules, a rate control module which decide how frequently a vehicle should broadcast

its information, and a power control module which determine how far the information

should be broadcast.

58

Fallh has introduced a cooperative tracking method for vehicles, which uses the state

information of neighboring vehicles broadcast by themselves and provide an estimation

of their locations on the road. The effect of different choices of rate and range of the

transmission on such kinds of tracking system is analyzed [49].

The most significant problem of vision based vehicle tracking systems is that these

systems do not have any information about the vehicles or other objects which are not in

camera’s field of vision, especially near intersections. Also, object detection with use of a

camera depends on the lighting in each situation. In contrast, communication among

vehicles can provide position information of the vehicles within communication range or

even propagate that information. But vehicles out of range or without communications

capability are not trackable. In contrast, cooperative vehicle tracking systems can be

considered to overcome these problems. I have combined both vision based systems and

wireless systems and introduced a new vehicle tracking method and tested it in a

simulation environment.

Having a reliable simulation environment is a significant element in the development and

evaluation of an intelligent transportation application. There has been a number of

different simulation environments developed in this area.

Gruyer has presented a cooperative system simulation architecture developed within the

interconnection of the sensors simulation platform SiVIC (“Simulateur Véhicule -

Infrastructure - Capteurs”, Vehicle – Infrastructures - Sensors Simulator) and the

prototyping platform RTMaps (Real Time Multisensor Advanced Prototyping Software)

[5]. The SiVIC simulator is interfaced in real-time with the RTMaps software which

allows prototyping and testing of ADAS (advanced driver assistance systems) and

behavioral analysis applications in a simulated environment.

Eichler has presented a simulation environment which can be used to analyze the effect

of real-time vehicle-to-vehicle warning message distribution applications on road traffic

59

[6]. Three major components of this simulation are: the traffic simulator CARISMA,

developed by BMW to simulate the traffic network; the network simulator NS2 to

simulate mobile vehicle-to-vehicle network; and a comprehensive ad-hoc agent for

vehicle-to-vehicle warning message propagation.

C. Sommer has developed a simulation framework that provides coupled network and

road traffic simulation called Veins (vehicles in network simulation) [7]. For network

simulation, OMNeT++, a simulation environment free for academic use, is implemented

to model realistic communication patterns of VANET nodes and the traffic simulation is

performed by the microscopic road traffic package, SUMO. Veins supports the active

exchange of control and statistics data and also Veins provides a framework for the

interaction between the network simulation and the road traffic micro-simulation. Both

road traffic simulation and network simulation are bi-directionally coupled and

simulations are performed on-line. This way, not only the influence of road traffic on

network traffic can be modeled, but also vice versa. In particular, the influences of inter-

vehicle communication (IVC) on road traffic can be modeled and complex interactions

between both domains examined. I have used Veins as the basis of the current research.

5.3 Vehicle Tracking Method

As noted, both vehicle-to-vehicle communications and using cameras for tracking

vehicles both have plusses and limitations. Cooperative tracking methods can provide

driving assistance systems with more information about vehicles. I present a new vehicle

tracking method which integrates both camera based methods and wireless based

methods to take the advantages of both kinds of systems. Figure 5.1 shows how sharing

camera information can provide more accurate view of road for each vehicle.

My tracking method uses camera technology integrated with wireless technology to

provide information about neighboring vehicles. The camera captures the surrounding

environment and the associated vision system provides the position, direction and speed

60

of all the vehicles which are visible to the camera. In some situations, like reaching an

intersection, it would be helpful if the system had information about other vehicles which

are not in camera’s sight, e.g. the example in Figure 5.1. To do so, wireless technology

can be used.

Each subject vehicle (SV) will send a wireless message to neighboring vehicles (NV) in

the surrounding area and request their position, speed and direction as well as their

camera’s information about other vehicles’ position, speed and direction. Each NV sends

the requested information along with a timestamp.

Figure 5-1. In the right picture the vehicle can detect two other vehicles using its

camera and in left picture another vehicle can detect two other vehicles by its

camera. If these two vehicles share their camera views they can have a more

complete view of road

61

Each wireless message received by an SV contains the positions of detected vehicles by

the sender and the position of the sender vehicle itself. Other than a list of detected

vehicle positions, the message contains a timestamp which shows the time this list was

created. The SV has its own list of the positions of detected vehicles and when it receives

a wireless message, the SV processes the message and adds all the vehicles’ positions in

that list to its own list. Each response message is of the following format:

Response Message = (TimeStamp , ListOfVehicles)

ListOfVehicles = {Vehiclesender, Vehicle1, Vehicle2, … , Vehiclei, … , Vehiclen}

Vehiclei = (Positioni , Speedi , Directioni)

The first triple in the list represents the sender information and the next ones are the

information about the vehicles detected by the sender’s camera.

Figure 5-2. Tracking System Structure

62

SV collects the responses within 2 seconds and ignores the messages received after that.

When the SV receives the NVs’ information, it matches the information to its own list of

detected vehicles and creates a bigger view of surrounding environment. To do so, based

on the estimation of vehicles’ position, the system either finds the match for each vehicle

in its own list provided by its camera, considering an acceptable error, or adds its “view”

of vehicles as a new vehicle (See Figure 5.2).

The error is based on the time at which the request was sent, the timestamp of the

received message, the vehicle speed and direction; it is calculated as follows:

For Each ListOfVehiclesi.Vehiclej from V2V Messagesi

 Errori,j = (CurrentTime – MessageTimeStampi) * Speedi.j

If There is no Vehiclek in ListOfVehicleSv where

 (Vehiclei,j.Position – Error <= Vehiclek.Position <= Vehiclei,j.Position + Error)

Then Add Vehiclei,j to ListOfVehicleSv

If the system can find each vehicle with same position in its list of vehicles or if it can

find one with an error less than or equal to the Error calculated above, consider both the

same vehicle and ignore it. But if it cannot find such a vehicle in its list, it adds the

vehicle information to the list (See Figure 5.3).

The more vehicles that can be detected by the system, the more accurate and reliable the

tracking system can be.

63

Figure 5-3. Vehicle Tracking System adds a new vehicle to the list if it is not already

in the list within an error; Vehiclei,j in 3.a will not be added to the list while

Vehiclei,j in 3.b will be added to the list

Figure 5-4. Map of Erlangen, Germany, as available from the OpenStreetMap

project [7], [36]

64

Figure 5-5. Map of 401 Highway, Canada, as available from the OpenStreetMap

project [36]

I have tested the tracking method with an Erlangen city map (Figure 5.4) and a 401

Highway map (Figure 5.5) in Ontario in light traffic congestion and heavy traffic

congestion and also specifically at intersections.

In order to evaluate the vehicle tracking method, I have used a simulator which consists

of three main components; a vision simulator, a wireless communication simulator and a

traffic simulator. The specification of these components and their connections is

explained in next section.

5.4 Evaluation

I evaluated the vehicle tracking system under different situations when different

percentages of vehicles are equipped with wireless communication or both camera and

wireless (our presented vehicle tracking system). Each subject vehicle (SV) sends a map

request every 100 seconds through a wireless message to neighboring vehicles (NV) in

65

range and asks for their information about other vehicles in their cameras’ sight. When

NVs which have wireless technologies receive the map request message they send the

information about their positions along with the positions of the vehicles identified

through their cameras. In the case that they do not have a camera, they just send their

own positions. The SV collects all the information within two seconds and ignores the

messages received after two seconds. Then the SV combines the collected information

with its own information provided by its camera to form a better view of the road and

vehicles on it.

I calculated the number of messages transferred between vehicles and the number of

tracked vehicles assuming different adoption rates (number of equipped vehicles) in six

different traffic road simulation scenarios; light traffic on highway (150 vehicles

traveling on the roads), heavy traffic on highway(300 vehicles), light traffic in urban area

(90 vehicles), heavy traffic in urban area (180 vehicles, light traffic at intersections (76

vehicles) and heavy traffic at intersections (160 vehicles).

The adoption rate could be different based on the proportion of the vehicles which are: a)

not equipped with tracking technologies; b) are only equipped with wireless

communication technologies and no camera; c) are equipped with the presented tracking

system and d) use both camera and wireless technologies to track neighboring vehicles.

When 100% of the vehicles are not equipped, 0% are equipped with wireless technology

and 0% with wireless and camera technologies, the adoption rate is denoted as 100%-0%-

0%. In other words, the first number shows the proportion of the vehicles which are not

equipped, the second number shows the proportion of the vehicles which only use

wireless technology to track other vehicles and the third number shows the proportion of

the vehicles that use the integrated tracking system. Therefore, a 33%-33%-33% adoption

rate means that 33% of all vehicles traveling on the road are not equipped with any

technology, 33% of the vehicles are equipped with wireless technology, and 33% of the

vehicles are equipped with the tracking system (wireless and camera).

66

Figure 5-6. Normalized number of tracked vehicles in different tracking methods

with various adoption rates in a highway heavy and light traffic; error bars show

the range of one standard deviation

67

Figure 5-7. Normalized number of tracked vehicles in different tracking methods

with various adoption rates in the city of Erlangen with heavy and light traffic;

error bars show the range of one standard deviation

Figure 5.6 illustrates the normalized5 average number of tracked vehicles for different

adoption rates in the different scenarios for highway with heavy and light traffic. The

results show, as expected, that by increasing the adoption rate, the number of tracked

vehicles increases and overall number of tracked vehicles in the tracking method is much

more than just the wireless based method.

5 The normalized average of tracked vehicles was computed by dividing the actual average of tracked vehicles by the

total number of vehicles and multiplied by 100.

68

Figure 5-8. Normalized number of tracked vehicles in different tracking methods

with various adoption rates at intersections with heavy and light traffic; error bars

show the range of one standard deviation

The normalized number of tracked vehicles in both tracking methods using various

adoption rates in an urban area is shown in Figure 5.7. The number of tracked vehicles in

the wireless based tracking method and the integrated tracking method using different

adoption rates at intersections with heavy traffic and light traffic is shown in Figure 5.8.

The number of vehicles which could be recognized and tracked only with camera only

depends on the number of the vehicles in camera’s sight of view. The average numbers of

the vehicles tracked only with cameras in different scenarios are shown in Table 5.1.

69

Table 5-1. Average number of tracked vehicles with camera only

 Number of Tracked vehicles

Highway Heavy Traffic 1.68

Highway Light Traffic 1.77

Urban Heavy Traffic 3.87

Urban Light Traffic 2.80

Intersection Heavy Traffic 2.68

Intersection Light Traffic 1.08

The results show that using the proposed vehicle tracking method can have significant

impact on number of tracked vehicles, especially at intersections where cameras’ sights

are limited. In these scenarios, even with low adoption rates, a vehicle can recognize a

large number of neighboring vehicles. Integrating a vision based system and wireless

technologies is an effective approach to track a larger number of the vehicles on the road

and provide a better view of the surrounding environment. This, in turn, can provide safer

and more reliable intelligent transportation applications.

The other factor which should be considered is the number of messages transferred

between vehicles in order to provide requested information. Figure 5.9 shows the average

number of transferred wireless messages between vehicles for tracking requests with

considering various adoption rates in highway scenarios; the average number of

transferred messages per request for an urban area is shown in Figure 5.10 and for

intersection scenarios in Figure 5.11.

70

Figure 5-9. Number of transferred messages for tracking requests in highway

71

Figure 5-10. Number of transferred messages for tracking requests in urban area

72

Figure 5-11. Number of transferred messages for a tracking request at intersection

Though the numbers of transferred messages in both systems are almost the same, the

sizes of messages are different since the amount of transferred information is different.

Each tracked vehicle location data contains latitude and longitude which is represented as

a float variable with 4 bytes. Therefore, for each tracked vehicle 8 bytes is added to the

size of the wireless message. So in the wireless tracking system, the size of each message

is approximately 8 bytes because it just includes just one vehicle’s location information.

The average size of each message in the integrated wireless-camera tracking system can

be calculated based on the average number of tracked vehicles with cameras plus its own

location information (See Table 5.2).

73

Table 5-2. Average size of each message in integrated wireless-camera tracking

system

Average Size of Each

Message (Bytes)

Highway Heavy Traffic 21.47

Highway Light Traffic 22.13

Urban Heavy Traffic 38.93

Urban Light Traffic 30.36

Intersection Heavy Traffic 29.48

Intersection Light Traffic 16.61

Overall, the size of the messages in an integrated wireless-camera tracking system is

larger than the size of the messages in wireless-only tracking system. The communication

system’s bitrate is 11Mbps, so the overall impact is not so big as to influence the overall

performance of the system. Generally, the integrated camera-wireless vehicle tracking

system has shown great potential in increasing efficiency and accuracy in vehicle

tracking applications.

74

6 An Emergency Message Propagation System

This Chapter is a reformatted version of the following article:

Besat Zardosht, Steven Beauchemin and Michael Bauer, “An Emergency Message

Propagation System Using Roadside Units and Vehicle-To-Vehicle Communication”.

IEEE Smart Vehicles, 2016 (to be submitted)

A message propagation system which uses Vehicle-to-Vehicle (V2V) and Vehicle-to-

Infrastructure (V2I) communication is presented in this chapter. In emergency situations,

wireless technology enables vehicles to share warning messages with other vehicles using

V2V and with emergency services by using V2I. The time that passes before an

emergency service is notified about an emergency situation, such as an accident, is

critical. In this paper I evaluate the effects of traffic density, V2V adoption rates, the

number of hops for messages in V2V communication, location and number of roadside

units on the performance of message propagation for emergency response and network

coverage.

6.1 Introduction

The number of vehicles in service has grown dramatically in the past decades and has led

to increases in the number of accidents. The time between an accident and the arrival of

medical assistance is critical and is often referred to as the golden hour [1]. One of the

largest time fractions of this hour is the time between the occurrence of an accident and

when emergency services are notified of it. If the occupants of a vehicle are injured and

cannot call for assistance, this time may increase and the result can be detrimental to

those involved in the accident. With V2V and V2I capabilities, other vehicles passing by

the accident can inform emergency services about it using wireless communication

75

between vehicles and roadside units. One could rely on V2V or V2I only, but a hybrid

approach using both V2V and V2I communications makes the most sense. With a hybrid

approach, however, there are a number of tradeoffs, including the number of times an

emergency message is propagated and the geographical distribution of roadside units.

The former impacts the volume of V2V communication and the latter impacts the

deployment of roadside units.

In this work, I use a simulation environment to study the effect of vehicle location

(whether it is city or highway), traffic density, V2V adoption rates (percentage of

vehicles with V2V capability), the number of hops emergency messages can be

propagated, and the number of roadside units on the notification time6 for emergency

message propagation. For Simplicity, I have used equidistant square grid for RSU (Road

Side Units) placement. I have used a modified version of Veins [2] as my simulator to

evaluate the emergency message propagation system.

This paper is organized as follows: Section II reviews the related work regarding roadside

unit placements and emergency warning systems; Section III describes my proposed

emergency message propagation system; Section IV introduces the simulation

environment of the system; Section V shows the evaluation results, and Section VI offers

a conclusion and avenues for future work.

6.2 Previous Work

In this Section I discuss pervious work on emergency message propagation systems and

the integration of V2V and V2I communication modes into these systems.

Intelligent Vehicle (IV) systems typically use one or more forms of communication that

can be categorized into three types: Inter-Vehicle Communication (IVC) which uses V2V

6
 Notification time is the time between the occurrence of an accident and the time when emergency services are

notified about it.

76

communication, Roadside-to-Vehicle Communication (RVC) which uses V2I

communication and Hybrid Vehicular Communication (HVC), employing both V2V and

V2I communication [3].

There are several cooperative collision warning systems which use V2V communication

to inform other vehicles about impeding collisions [4]–[7]. In addition, Hybrid Vehicular

communication methods have been introduced for similar purposes [8], [9]. These

systems integrate V2V with V2I in order to improve the performance of various IV

applications.

Martinez et al. present a futuristic architecture of an accident notification system that

combines V2V and V2I communication in order to reduce the notification time after an

accident occurs [10]. In this system, wireless messages are delivered to a control unit

which in turn estimates the severity of the accident and determines the appropriate rescue

resources to be deployed. However, there is yet to be an implementation of these ideas.

A message propagation system protocol for both V2V and V2I communication is

described by Vegni and Little [11]. In this model the lower and upper bound for the

message propagation rate is characterized by factors such as the direction and speed of

vehicles. To prioritize emergency messages over other messages, a dual frequency

channel approach is presented by Maeshima et al. [12].

V2V and V2I communication can be used for purposes other than accident or driving

information. In the case of a natural catastrophe, such as earthquakes or floods, V2V and

V2I communication may be used to spread warning messages about the specific threat

[13]. Alternatively, a model to address security and efficiency issues in Vehicular Ad-

Hoc Networks (VANET) is presented by Zhu et al. [14].

Roadside Units (RSUs) constitute additional hardware that emergency message

propagation systems may use. However, they are expensive to install and maintain in

77

vehicular environments and thus reducing their number is an important aspect of their

deployment [15]. There are many approaches to RSU placement in vehicular networks.

Lochert et al. present an RSU placement model which uses a genetic algorithm aimed at

overcoming problems inherent to limited bandwidth while ensuring minimal deployment.

[16].

Another approach to minimize the number of RSUs in vehicular networks presented by

Abdrabou and Zhuang considers vehicle density, vehicle speed, and warning message

lifespan in the placement of RSUs [17]. Wu et al. present a similar method also based on

vehicle density and speed [19]. Alternatively, Barrachina et al. observe that in areas of

high vehicle density, V2V communication can be used to propagate messages over large

distances and present a placement method that considers fewer RSUs for high vehicle

density areas and vice-versa [18]. The problem of bounded-delay RSU placement is

studied by Li et al. and provides a model in which all the vehicles are able to receive the

messages within a given time window [20].

In this work I use a decision-making module to detect accidents and propagate relevant

messages to other vehicles. The number of times (hops) that an accident message can be

propagated from vehicle to vehicle, the traffic density, the number of RSUs, and the V2V

adoption rate are all important factors in the process of informing emergency services

regarding situations such as accidents. Other than the statistical study of the effect of

these factors on the overall performance of the system, the decision-making module

provides useful information for emergency services such as the location of an accident

and an estimate of its duration.

6.3 Emergency Message Propagation System

The problem of RSU placement is difficult but important in vehicular networks. Too

many RSUs on the road network may result in high installation and maintenance costs

while fewer RSUs may cause low performance of V2I systems. Hence, finding the

78

optimal number of RSUs is crucial. The number of RSUs needed depends on many

factors including traffic location, traffic density, vehicle speed and number of vehicles

equipped with wireless communication systems.

 Once the decision-making system of the vehicle detects that it is in an accident, it

collects location information from the sensor agent, gets the number of lanes in the

current road, and speed and acceleration of the vehicle prior to the accident from the

vehicle agent. Then the decision-making module uses an accident duration model to

predict its duration [22] and, with the use of a wireless agent, sends an accident message

to other nearby vehicles and RSUs.

I have designed an emergency message propagation system which uses both V2V and

V2I communication to inform emergency services about the occurrence of an accident.

With this system I evaluate the effect of traffic location, traffic density, V2V adoption

rates, and the number of hops that an emergency message is propagated. I measure both

the notification time, the time for an emergency message to reach an emergency center,

and the percentage of number of vehicles which are in the range of the communication

network. I have used a uniform, equally spaced RSU placement grid scheme and

considered two different scenarios: one with nine RSUs, and another with four RSUs

only (see Figure 6-1 and Figure 6-2).

79

Figure 6-1 Location of RSUs in City: Red circles are the location of RSUs in a nine

RSU configuration and the circles with blue outlines are the locations of RSUs in a

four RSU configuration

80

Figure 6-2 Location of RSUs in Highway: Red circles are the location of RSUs in a

nine RSU configuration and the circles with blue outlines are the locations of RSUs

in a four RSU configuration

In the configuration with nine RSUs, the distance between them is about one kilometer

and in the other configuration with four RSUs, the distance is approximately two

kilometers. The RSUs are assumed to be connected to each other by a network and to an

emergency centre. When a RSU receives an emergency message, it forwards it to an

emergency response center and the assumption is that the center will then notify the

emergency response units that should proceed to the accident. When a vehicle is involved

in an accident, it propagates a wireless message; for the current study I assume that at

least one vehicle per accident is equipped with V2V. Any vehicle or RSU can receive an

accident message if they are in communication range. If a vehicle receives an accident

message, it will resend it if the hop number is more than one. The first RSU that receives

81

this message will forward it to the emergency response center. The RSU also broadcasts

the accident message to warn other nearby vehicles. When a vehicle receives the message

from the RSU, it stops resending it since the emergency services have already been

notified. The emergency message contains important information about the accident, such

as the time of the accident, its location (GPS), and its predicted duration. The predicted

duration of the accident is calculated with a survival model [22]. Accident duration

predictions can be helpful for emergency systems to estimate the severity of an accident

and to perform necessary actions. In addition, vehicles in proximity to the accident can

provide an estimation of when the road might be cleared, warn other drivers about a

possible traffic jams, and perhaps look for alternative routes.

I assessed the performance of my system by providing different simulation scenarios. The

factors considered in the simulations are shown in Table 6-1. The details of my

simulation are discussed in the next Section.

Table 6-1. Different simulation parameters

Experiment Factors Choices

Vehicle Location Highway or City

Traffic Low (approximately 150 vehicles in four

square kilometers) or High (approximately

750 vehicles in four square kilometers)

Adoption Rate 10, by increments of 10%

Number of Hops 1 or 2

Number of RSUs 9 or 4

6.4 Evaluation

I measured the notification time and average number of vehicles which are within

communication range of the emergency network under different circumstances using my

82

simulation: two different locations (City and Highway), two sets of RSUs (nine and four),

two traffic densities (low traffic: 150 vehicles in 4 square kilometer and high traffic: 750

vehicles in 4 square kilometers), two sets of hops (one and two), and ten adoption rates

(from 10% to 100%). These choices gave us 160 distinct simulations. Every 10 seconds I

compute the notification time of an emergency message propagated from each vehicle

within range of the communication network as if each was sending a message regarding

an accident. This allows us to measure the average notification without running many

more simulations for specific accidents and vehicle travel patterns. It gives us a means of

comparing the impact on notification time of the different criteria.

Figure 6-3. Notification time in city of London ON in high traffic with four roadside

units

83

Figure 6-4. Network coverage for high traffic density with four roadside units in city

area

Figure 6-3 and Figure 6-4 show notification times and average number of vehicles

covered by the network in high density traffic with four RSUs installed on the road

network in a city area. As shown, when the emergency message is propagated for two

hops the number of vehicles covered increases dramatically. Another observation is that

the average response time increases with two hops. The reason is that when the number

of hops increases, more vehicles which had not been covered will be in network range but

for those vehicles the notification time is higher since the message will pass through more

hops to reach a central point. This results in higher average notification time. As

expected, the adoption rate has great impact on the number of covered vehicles since the

number of potential covered vehicles increases when more vehicles are equipped with

wireless technology.

84

Figure 6-5 and Figure 6-6 show the results for the situation with high traffic density and 9

RSUs on the road in the city. The trend for network coverage is almost identical to the

results obtained with fewer RSUs but in this case the average number of covered vehicles

are generally higher. In this set of experiments the notification time is higher with more

hops but it decreases when a higher percentage of vehicles are equipped with wireless

technologies.

Figure 6-5. Notification time in high traffic with nine roadside units in city

environment

85

Figure 6-6 . Average number of covered vehicles in high density traffic with nine

roadside units in city area

For low traffic density in a city environment, Figure 6-7, Figure 6-8, Figure 6-9 and

Figure 6-10 summarize the results. In low traffic density with 4 RSUs, the results for the

notification time are similar to the high density situation, but the number of covered

vehicles is different. When there is low traffic density with 4 RSUs there are many fewer

vehicles covered by the network if with the adoption rate is below 60%; this is the case

for 9 RSUs as well. Interestingly, the lower coverage rate has little impact on the

notification time when there are 4 RSUs (steady at aroun 0.002 seconds) but in the case

of the 9 RSUs the increased coverage when over 60% of the vehicles have V2V, the

notification rate drops.

86

Figure 6-7. Notification time in low traffic with four roadside units in city area

87

Figure 6-8. Average number of covered vehicles in low density traffic with nine

roadside units in city area

88

Figure 6-9. Notification time in low traffic with nine roadside units in city area

89

Figure 6-10. Network coverage in low traffic with nine roadside units in city area

Driving in a highway environment is different than driving in a city area. One might

expect that the notification time in highway environment might be higher than in city

because of less dense traffic or network coverage. However, the notification time and

network coverage trends are almost the same. The results for notification time and

network coverage in highway environment with high traffic and with four RSUs are

shown in Figure 6-11 and Figure 6-12.

90

Figure 6-11. Notification time in high traffic with four roadside units in highway

area

91

Figure 6-12. Network coverage in high traffic with four roadside units in highway

area

The notification time and network coverage for high traffic density with nine roadside

units in a highway environment is shown in Figure 6-13 and Figure 6-14. The notification

time is over half the time with with only four RSUs. However, the number of covered

vehicles is almost the same. These results suggest that adding the number of RSUs in

highway with high traffic density does not have considerable impact on the network

coverage nor has an impact on the notification time. In contrast, in a low traffic density

environment with fewer RSUs (4), since there are fewer vehicles to propagate the

wireless messages, higher notification times and lower network coverage occurs (see

Figure 6-15 and Figure 6-16). Finally, the results for the notification time and network

coverage for highway in low traffic density with nine RSUs, the notification time is lower

when compared the are shown in Figure 6-17 and Figure 6-18. Response time is much

lower comparing to the low traffic density 4 RSU environment; this is not surprising.

92

Figure 6-13. Notification time for highway in high traffic density with nine roadside

units

93

Figure 6-14. Number of covered vehicles for highway in high traffic density with

nine roadside units

94

Figure 6-15. Notification time for highway in low traffic density with four roadside

units

95

Figure 6-16. Number of covered vehicles for highway in low traffic density with four

roadside units

96

Figure 6-17. Notification time for highway in low traffic density with nine roadside

units

97

Figure 6-18. Number of covered vehicles for highway in low traffic density with nine

roadside units

6.5 Conclusion

I have used a decision-making system to design an emergency message notification

system simulation and examined the effects of traffic location, traffic density, V2V

adoption rate, number of hops in V2V, and number of RSUs installed on vehicular

networks on the time to notify emergency services. Generally, the results show that in

higher traffic density the notification time is lower. The results also show that traffic

density, number of RSUs (and likely placement), and V2V/I adoption rate impacts

notification time. The interplay among these factors is not clear. As the adoption rate

increases, the potential value of more RSUs seems to diminish. With two hops, there is

increased coverage. The reason for increasing notification time with use of more hops

may not be clear at first but more precise analysis of result specifies that the reason is

98

higher network coverage. With use of two hops all of the vehicles that have been covered

in the same situation but with use of one hop are covered with same notification time. In

addition, there are some more vehicles that have not been covered with use of one hop

but with use of two hops they are covered and they can communicate with at least one

RSU. The second group of covered vehicles have higher notification time since their

messages should go through more hops to reach a RSU. Having first group of covered

vehicles with same notification time and second group of covered vehicles with higher

notification time results in higher average notification time for the situation with two

hops comparing to one hop. Higher adoption rates have a positive impact on the

notification time. This is not surprising given the increased coverage. The higher number

of RSUs is also associated with decreased notification times. This impact may be more

pronounced if the RSUs were less frequent. One could easily imagine the same level of

performance if the RSUs were further apart and there were more hops. These trade-offs

require further study.

99

7 Conclusion and Future Work

I have implemented a decision making module for vehicles which collects data from

available sources of information and analyses this data to provide the best action to be

taken. The proposed module uses three agents to collect data: vehicle agent, wireless

agent (V2V and V2I) and camera agent. Using this module, I have evaluated the

approach with a cooperative collision warning and rerouting application and a vehicle

tracking system.

The main contributions of this work are:

 A novel in-vehicular decision making system based on blackboard architectural

model which collects raw data from available sources of information using its

agents and process these data and provides the best action to be taken. The

decision making system works in conjunction with one or more IV applications

simultaneously.

 Four intelligent vehicle application which operate using decision making system

 Extend Veins Simulator to accommodate camera simulator and the decision

making system which uses 2D mathematical model of road network obtained

from SUMO and determines if an object is detectable by a camera installed on the

vehicle or not.

The presented cooperative collision warning and rerouting system uses wireless agent’s

data to avoid accidents and to suggest alternative routes in case of an accident. My

application contributes to research in the following ways:

 CCW systems have mostly been used to provide warning information for the driver

and do not suggest possible actions to be taken. These systems inform the following

100

vehicle about the potential collision, but do not provide rerouting choices for the

driver which can help avoid traffic congestion and reduce waiting time. My

decision making algorithm provides an alternative route for vehicles approaching

the accident location in order to decrease waiting and travel time and avoid traffic

using VANET communication.

 My decision making module is the first event based decision making approach for

collision warning and rerouting system based on wireless communication. My

decision making system triggers when an accident happens and the car which has

been in the accident sends accident message(s). In other proposed rerouting

algorithms, vehicles send request messages to other vehicles in order to find out

about traffic congestion based on the responses. In the presented system there is no

need to continue sending redundant messages and this reduces channel bandwidth

by not sending unnecessary messages.

 My decision making module does not need a central management control to collect

the information from vehicles and manage the following traffic. Any equipped

vehicle can provide the necessary warning messages to other vehicles.

 My system uses a specific “resending” accident messages alongside the propagating

messages for one or two hop(s) in order to make sure that all needed vehicles are

aware of the accident and can take action to reroute to avoid the traffic jam caused

by the accident.

 Since driving in highways is different than driving in urban areas, I evaluated my

system in different areas to compare the differences based on driving areas.

 The other factor which can be important is traffic congestion. The decision making

module chooses different scenarios in high traffic and normal traffic. High traffic is

detected based on the speed of the vehicle and the maximum legal speed of the road

it is traveling on.

101

Knowledge of neighboring vehicles can provide useful information for safety intelligent

vehicle (IV) applications, such as collision warning systems. One approach to vehicle

tracking via image processing systems is by mounting cameras on the vehicles. However,

if a vehicle is behind other objects the camera is not able to detect as it would be out of

view. Wireless communications between vehicles could be an alternative to this problem.

Vehicles could exchange information about their location, speed, acceleration, etc.

Having this information gathered from other vehicles, I can locate neighboring vehicles.

However, what if not all the vehicles are equipped with a Dedicated Short Range

Communication (DSRC) transceiver. In that case, using wireless communication alone

among the vehicles for vehicle tracking cannot be a completely effective solution.

To overcome these shortcomings, I have proposed a new method of vehicle tracking as

an application of the decision making module which uses both technologies together to

track the vehicles. In my vehicle tracking method, each vehicle sends a map request via

wireless to other vehicles in range and based on their response updates its own

information. This system does not assume that all the vehicles are equipped. My vehicle

tracking method contributes to research in the following ways:

 All previous tracking methods have used either wireless communication or vision

based systems to detect neighboring objects and provide a view of surrounding

environment. In the proposed tracking system, both of these technologies have been

used to overcome their respective limitations and provide more reliable and more

accurate information about the objects around the vehicle.

 My vehicle tracking method does not rely on other vehicles and it can work in the

situation in which no nearby vehicle is equipped with cameras or wireless

technology. In this case the system just uses its own information obtained from its

cameras. Generally, my system can work if all the vehicles are equipped with both

camera and wireless communication or one of the technologies.

102

 My system works well in specific traffic situations, such as reaching an intersection

or in low light situations, where other tracking methods cannot operate well.

I have proposed a novel emergency message propagation system which uses both V2V

and V2I communications in order to notify emergency services about the the

emergency situations such as an accident. This emergency message propagation

system contributes to research in the following ways:

 This VI application is a novel emergency message propagation system using

decision making system and both V2V and V2I to decrease notification time for

emergency systems.

 My system provides more information about the accident to emergency services

such as the estimated duration of the accident to determine accident severity.

 I have considered traffic location, traffic density, Number of hops, etc. on system

operation.

Research on using a decision making system for vehicles is relatively recent with the

potential for significant results and applications in near future. Here are a few possible

research areas that may be undertaken immediately:

 Driver information such as driver gaze, heartbeat etc. could have major influence on

driving situation. Adding driver behavior data as a new data agent to the proposed

decision making system could improve the overall result with making the whole

system personalized by the driver.

 The first step of each technology could be testing the design on simulation.

However, designing and developing a system on real world could provide more

realistic overview of the system and show possible issues and limitations.

Overall, the results show that using a decision making module shows great potential for

improving performance of vehicular systems by reducing travel time and wait time and

103

providing more accurate information about the surrounding environment for vehicles. In

addition, the safety of vehicles will increase since the vehicles will be informed about the

accident by wireless communication.

104

References

[1] J. Jansson, J. Johansson, and F. Gustafsson, “Decision making for collision

avoidance systems,” Soc. Automot. Eng. SAE, no. 2002–01, p. 0403, 2002.

[2] J. Jansson and F. Gustafsson, “A framework and automotive application of

collision avoidance decision making,” Automatica, vol. 44, no. 9, pp. 2347–2351, 2008.

[3] J. Hillenbrand, A. M. Spieker, and K. Kroschel, “A multilevel collision mitigation

approach—Its situation assessment, decision making, and performance tradeoffs,” Intell.

Transp. Syst. IEEE Trans. On, vol. 7, no. 4, pp. 528–540, 2006.

[4] R. Karlsson, J. Jansson, and F. Gustafsson, “Model-based statistical tracking and

decision making for collision avoidance application,” in American Control Conference,

2004. Proceedings of the 2004, 2004, vol. 4, pp. 3435–3440.

[5] D. Gruyer, S. Demmel, B. d’Andrea-Novel, A. Lambert, and A. Rakotonirainy,

“Simulation architecture for the design of Cooperative Collision Warning systems,” in

Intelligent Transportation Systems (ITSC), 2012 15th International IEEE Conference on,

2012, pp. 697–703.

[6] S. Eichler, B. Ostermaier, C. Schroth, and T. Kosch, “Simulation of car-to-car

messaging: Analyzing the impact on road traffic,” in Modeling, Analysis, and Simulation

of Computer and Telecommunication Systems, 2005. 13th IEEE International Symposium

on, 2005, pp. 507–510.

[7] C. Sommer, R. German, and F. Dressler, “Bidirectionally coupled network and

road traffic simulation for improved IVC analysis,” Mob. Comput. IEEE Trans. On, vol.

10, no. 1, pp. 3–15, 2011.

[8] D. D. Corkill, “Blackboard systems,” AI Expert, vol. 6, no. 9, pp. 40–47, 1991.

105

[9] D. Eckhoff, C. Sommer, and F. Dressler, “On the Necessity of Accurate IEEE

802.11 p Models for IVC Protocol Simulation,” in Vehicular Technology Conference

(VTC Spring), 2012 IEEE 75th, 2012, pp. 1–5.

[10] D. Eckhoff and C. Sommer, “A Multi-Channel IEEE 1609.4 and 802.11 p EDCA

Model for the Veins Framework,” in Proceedings of 5th ACM/ICST International

Conference on Simulation Tools and Techniques for Communications, Networks and

Systems: 5th ACM/ICST International Workshop on OMNeT++.(Desenzano, Italy, 19-23

March, 2012). OMNeT+, 2012.

[11] D. Krajzewicz, G. Hertkorn, C. Rössel, and P. Wagner, “Sumo (simulation of

urban mobility),” in Proc. of the 4th Middle East Symposium on Simulation and

Modelling, 2002, pp. 183–187.

[12] A. Varga, “The OMNeT++ discrete event simulation system,” in Proceedings of

the European Simulation Multiconference (ESM’2001), 2001, vol. 9.

[13] R. Sengupta, S. Rezaei, S. E. Shladover, D. Cody, S. Dickey, and H. Krishnan,

“Cooperative collision warning systems: Concept definition and experimental

implementation,” J. Intell. Transp. Syst., vol. 11, no. 3, pp. 143–155, 2007.

[14] H. S. Tan and J. Huang, “DGPS-based vehicle-to-vehicle cooperative collision

warning: Engineering feasibility viewpoints,” Intell. Transp. Syst. IEEE Trans. On, vol.

7, no. 4, pp. 415–428, 2006.

[15] S. Dashtinezhad, T. Nadeem, B. Dorohonceanu, C. Borcea, P. Kang, and L.

Iftode, “TrafficView: a driver assistant device for traffic monitoring based on car-to-car

communication,” in Vehicular Technology Conference, 2004. VTC 2004-Spring. 2004

IEEE 59th, 2004, vol. 5, pp. 2946–2950.

106

[16] T. Nadeem, S. Dashtinezhad, C. Liao, and L. Iftode, “TrafficView: traffic data

dissemination using car-to-car communication,” ACM SIGMOBILE Mob. Comput.

Commun. Rev., vol. 8, no. 3, pp. 6–19, 2004.

[17] X. Yang, L. Liu, N. H. Vaidya, and F. Zhao, “A vehicle-to-vehicle

communication protocol for cooperative collision warning,” in Mobile and Ubiquitous

Systems: Networking and Services, 2004. MOBIQUITOUS 2004. The First Annual

International Conference on, 2004, pp. 114–123.

[18] S. Biswas, R. Tatchikou, and F. Dion, “Vehicle-to-vehicle wireless

communication protocols for enhancing highway traffic safety,” Commun. Mag. IEEE,

vol. 44, no. 1, pp. 74–82, 2006.

[19] C. L. Huang, Y. P. Fallah, R. Sengupta, and H. Krishnan, “Adaptive intervehicle

communication control for cooperative safety systems,” Netw. IEEE, vol. 24, no. 1, pp.

6–13, 2010.

[20] T. ElBatt, S. K. Goel, G. Holland, H. Krishnan, and J. Parikh, “Cooperative

collision warning using dedicated short range wireless communications,” in Proceedings

of the 3rd international workshop on Vehicular ad hoc networks, 2006, pp. 1–9.

[21] A. Lakas and M. Cheqfah, “Detection and dissipation of road traffic congestion

using vehicular communication,” in Microwave Symposium (MMS), 2009

Mediterrannean, 2009, pp. 1–6.

[22] A. Dogan, G. Korkmaz, Y. Liu, F. Ozguner, U. Ozguner, K. Redmill, O.

Takeshita, and K. Tokuda, “Evaluation of intersection collision warning system using an

inter-vehicle communication simulator,” in Intelligent Transportation Systems, 2004.

Proceedings. The 7th International IEEE Conference on, 2004, pp. 1103–1108.

107

[23] F. Zong, H. Zhang, H. Xu, X. Zhu, and L. Wang, “Predicting Severity and

Duration of Road Traffic Accident,” Math. Probl. Eng., vol. 2013, 2013.

[24] M. P. Gardner, “Highway traffic monitoring,” Transp. Res. Board Transp. New

Millenn., p. 5, 2000.

[25] S. Coleri, S. Y. Cheung, and P. Varaiya, “Sensor networks for monitoring traffic,”

in Allerton conference on communication, control and computing, 2004, pp. 32–40.

[26] C. Li, K. Ikeuchi, and M. Sakauchi, “Acquisition of traffic information using a

video camera with 2D spatio-temporal image transformation technique,” in Intelligent

Transportation Systems, 1999. Proceedings. 1999 IEEE/IEEJ/JSAI International

Conference on, 1999, pp. 634–638.

[27] V. Milanés, J. Villagra, J. Godoy, J. Simó, J. Pérez, and E. Onieva, “An intelligent

V2I-based traffic management system,” Intell. Transp. Syst. IEEE Trans. On, vol. 13, no.

1, pp. 49–58, 2012.

[28] A. F. Santamaria, C. Sottile, A. Lupia, and P. Raimondo, “An efficient traffic

management protocol based on IEEE802. 11p standard,” in Performance Evaluation of

Computer and Telecommunication Systems (SPECTS 2014), International Symposium on,

2014, pp. 634–641.

[29] I. Leontiadis, G. Marfia, D. Mack, G. Pau, C. Mascolo, and M. Gerla, “On the

effectiveness of an opportunistic traffic management system for vehicular networks,”

Intell. Transp. Syst. IEEE Trans. On, vol. 12, no. 4, pp. 1537–1548, 2011.

[30] F. Knorr, D. Baselt, M. Schreckenberg, and M. Mauve, “Reducing traffic jams via

VANETs,” Veh. Technol. IEEE Trans. On, vol. 61, no. 8, pp. 3490–3498, 2012.

108

[31] S. Kaul, M. Gruteser, V. Rai, and J. Kenney, “Minimizing age of information in

vehicular networks,” in Sensor, Mesh and Ad Hoc Communications and Networks

(SECON), 2011 8th Annual IEEE Communications Society Conference on, 2011, pp.

350–358.

[32] Y. S. Sun, L. Xie, Q. A. Chen, S. Lu, and D. Chen, “Efficient Route Guidance in

Vehicular Wireless Networks.”

[33] Y. Chung, “Development of an accident duration prediction model on the Korean

Freeway Systems,” Accid. Anal. Prev., vol. 42, no. 1, pp. 282–289, 2010.

[34] Y. Chung and W. W. Recker, “A methodological approach for estimating

temporal and spatial extent of delays caused by freeway accidents,” Intell. Transp. Syst.

IEEE Trans. On, vol. 13, no. 3, pp. 1454–1461, 2012.

[35] B. Zardosht, S. Beauchemin, and M. A. Bauer, “A decision making module for

cooperative collision warning systems using Vehicular Ad-Hoc Networks,” in Intelligent

Transportation Systems-(ITSC), 2013 16th International IEEE Conference on, 2013, pp.

1743–1749.

[36] M. Haklay and P. Weber, “Openstreetmap: User-generated street maps,”

Pervasive Comput. IEEE, vol. 7, no. 4, pp. 12–18, 2008.

[37] A. Varga, “The OMNeT++ discrete event simulation system,” in Proceedings of

the European Simulation Multiconference (ESM’2001), 2001, vol. 9, p. 185.

[38] D. Krajzewicz, G. Hertkorn, C. Rössel, and P. Wagner, “Sumo (simulation of

urban mobility),” in Proc. of the 4th Middle East Symposium on Simulation and

Modelling, 2002, pp. 183–187.

109

[39] C. Sommer, R. German, and F. Dressler, “Bidirectionally coupled network and

road traffic simulation for improved IVC analysis,” Mob. Comput. IEEE Trans. On, vol.

10, no. 1, pp. 3–15, 2011.

[40] D. Beymer, P. McLauchlan, B. Coifman, and J. Malik, “A real-time computer

vision system for measuring traffic parameters,” in Computer Vision and Pattern

Recognition, 1997. Proceedings., 1997 IEEE Computer Society Conference on, 1997, pp.

495–501.

[41] B. Coifman, D. Beymer, P. McLauchlan, and J. Malik, “A real-time computer

vision system for vehicle tracking and traffic surveillance,” Transp. Res. Part C Emerg.

Technol., vol. 6, no. 4, pp. 271–288, 1998.

[42] M. Bertozzi, A. Broggi, A. Fascioli, and S. Nichele, “Stereo vision-based vehicle

detection,” in Intelligent Vehicles Symposium, 2000. IV 2000. Proceedings of the IEEE,

2000, pp. 39–44.

[43] M. Betke, E. Haritaoglu, and L. S. Davis, “Multiple vehicle detection and tracking

in hard real-time,” in Intelligent Vehicles Symposium, 1996., Proceedings of the 1996

IEEE, 1996, pp. 351–356.

[44] A. Andreas, F. Jannik, and B. Martin, “Improved Tracking and Behavior

Anticipation by Combining Map Information with Bayesian-Filtering,” in Proceedings of

the 16th International IEEE Annual Conference on Intelligent Transportation Systems,

The Hague, The Netherlands, 2013.

[45] B. Gloyer, H. K. Aghajan, K.-Y. Siu, and T. Kailath, “Video-based freeway-

monitoring system using recursive vehicle tracking,” in IS&T/SPIE’s Symposium on

Electronic Imaging: Science & Technology, 1995, pp. 173–180.

110

[46] S. Rezaei, R. Sengupta, H. Krishnan, X. Guan, and R. Bhatia, “Tracking the

position of neighboring vehicles using wireless communications,” Transp. Res. Part C

Emerg. Technol., vol. 18, no. 3, pp. 335–350, 2010.

[47] K. Shafiee and V. Leung, “Connectivity-aware minimum-delay geographic

routing with vehicle tracking in VANETs,” Ad Hoc Netw., vol. 9, no. 2, pp. 131–141,

2011.

[48] C.-L. Huang, Y. P. Fallah, R. Sengupta, and H. Krishnan, “Adaptive intervehicle

communication control for cooperative safety systems,” Netw. IEEE, vol. 24, no. 1, pp.

6–13, 2010.

[49] Y. P. Fallah, C.-L. Huang, R. Sengupta, and H. Krishnan, “Analysis of

information dissemination in vehicular ad-hoc networks with application to cooperative

vehicle safety systems,” Veh. Technol. IEEE Trans. On, vol. 60, no. 1, pp. 233–247,

2011.

[50] J. Barrachina, P. Garrido, M. Fogue, F. J. Martinez, J.-C. Cano, C. T. Calafate,

and P. Manzoni, “Road side unit deployment: A density-based approach,” Intell. Transp.

Syst. Mag. IEEE, vol. 5, no. 3, pp. 30–39, 2013.

[51] M. L. Sichitiu and M. Kihl, “Inter-vehicle communication systems: a survey,”

Commun. Surv. Tutor. IEEE, vol. 10, no. 2, pp. 88–105, 2008.

[52] X. Yang, J. Liu, N. H. Vaidya, and F. Zhao, “A vehicle-to-vehicle communication

protocol for cooperative collision warning,” in Mobile and Ubiquitous Systems:

Networking and Services, 2004. MOBIQUITOUS 2004. The First Annual International

Conference on, 2004, pp. 114–123.

111

[53] T. ElBatt, S. K. Goel, G. Holland, H. Krishnan, and J. Parikh, “Cooperative

collision warning using dedicated short range wireless communications,” in Proceedings

of the 3rd international workshop on Vehicular ad hoc networks, 2006, pp. 1–9.

[54] H.-S. Tan and J. Huang, “DGPS-based vehicle-to-vehicle cooperative collision

warning: Engineering feasibility viewpoints,” Intell. Transp. Syst. IEEE Trans. On, vol.

7, no. 4, pp. 415–428, 2006.

[55] R. Sengupta, S. Rezaei, S. E. Shladover, D. Cody, S. Dickey, and H. Krishnan,

“Cooperative collision warning systems: concept definition and experimental

implementation,” J. Intell. Transp. Syst., vol. 11, no. 3, pp. 143–155, 2007.

[56] J. Santa, A. F. Gómez-Skarmeta, and M. Sánchez-Artigas, “Architecture and

evaluation of a unified V2V and V2I communication system based on cellular networks,”

Comput. Commun., vol. 31, no. 12, pp. 2850–2861, 2008.

[57] A. M. Vegni and T. D. Little, “Hybrid vehicular communications based on V2V-

V2I protocol switching,” Int. J. Veh. Inf. Commun. Syst., vol. 2, no. 3–4, pp. 213–231,

2011.

[58] F. J. Martinez, C.-K. Toh, J.-C. Cano, C. T. Calafate, and P. Manzoni,

“Emergency services in future intelligent transportation systems based on vehicular

communication networks,” Intell. Transp. Syst. Mag. IEEE, vol. 2, no. 2, pp. 6–20, 2010.

[59] A. M. Vegni and T. D. Little, “A message propagation model for hybrid vehicular

communication protocols,” in Communication Systems Networks and Digital Signal

Processing (CSNDSP), 2010 7th International Symposium on, 2010, pp. 382–386.

[60] O. Maeshima, S. Cai, T. Honda, and H. Urayama, “A roadside-to-vehicle

communication system for vehicle safety using dual frequency channels,” in Intelligent

Transportation Systems Conference, 2007. ITSC 2007. IEEE, 2007, pp. 349–354.

112

[61] D. Camara, C. Bonnet, and F. Filali, “Propagation of public safety warning

messages: a delay tolerant network approach,” in Wireless Communications and

Networking Conference (WCNC), 2010 IEEE, 2010, pp. 1–6.

[62] H. Zhu, X. Lin, R. Lu, P.-H. Ho, and X. S. Shen, “AEMA: An aggregated

emergency message authentication scheme for enhancing the security of vehicular ad hoc

networks,” in Communications, 2008. ICC’08. IEEE International Conference on, 2008,

pp. 1436–1440.

[63] J. Barrachina, P. Garrido, M. Fogue, F. J. Martinez, J.-C. Cano, C. T. Calafate,

and P. Manzoni, “Road side unit deployment: A density-based approach,” Intell. Transp.

Syst. Mag. IEEE, vol. 5, no. 3, pp. 30–39, 2013.

[64] C. Lochert, B. Scheuermann, C. Wewetzer, A. Luebke, and M. Mauve, “Data

aggregation and roadside unit placement for a VANET traffic information system,” in

Proceedings of the fifth ACM international workshop on VehiculAr Inter-NETworking,

2008, pp. 58–65.

[65] A. Abdrabou and W. Zhuang, “Probabilistic delay control and road side unit

placement for vehicular ad hoc networks with disrupted connectivity,” Sel. Areas

Commun. IEEE J. On, vol. 29, no. 1, pp. 129–139, 2011.

[66] T.-J. Wu, W. Liao, and C.-J. Chang, “A cost-effective strategy for road-side unit

placement in vehicular networks,” Commun. IEEE Trans. On, vol. 60, no. 8, pp. 2295–

2303, 2012.

[67] J. Barrachina, P. Garrido, M. Fogue, F. J. Martinez, J.-C. Cano, C. T. Calafate,

and P. Manzoni, “D-RSU: a density-based approach for road side unit deployment in

urban scenarios,” in International workshop on ipv6-based vehicular networks (Vehi6),

collocated with the 2012 IEEE intelligent vehicles symposium, 2012, pp. 1–6.

113

[68] P. Li, C. Huang, and Q. Liu, “Delay Bounded Roadside Unit Placement in

Vehicular Ad Hoc Networks,” Int. J. Distrib. Sens. Netw., 2015.

[69] F. Zong, H. Zhang, H. Xu, X. Zhu, and L. Wang, “Predicting Severity and

Duration of Road Traffic Accident,” Math. Probl. Eng., vol. 2013, 2013.

114

Appendices

To simulate camera operations, I have implemented a vision simulator which is defined

for each vehicle. Each camera is defined by three factors; range, angle and direction.

Having these factors and the mathematical model of road network it is possible to figure

out if an obstacle is detectable by a camera or not. Followings are the codes which

provide these calculations.

This code is written in c++ and as an Omnet++ component.

Appendix A: Vision simulator code

Shape TraCIDemo11p::Vehicle_to_Shape(Point Position, double Direction, double

Lenght, double Width)

{

 Shape VehicleShape;

 Point VehiclePoint;

 double r;

 double Teta,Gamma,Alpha;

 r=pow((pow(Width/2,2)+pow(Lenght/2,2)),0.5);

 Gamma=atan(Width/Lenght);

 Teta=(Direction*PI)/180;// degree to radian

 Alpha=Teta-Gamma;

 VehiclePoint.x=cos(Alpha)*r+Position.x;

 VehiclePoint.y=sin(Alpha)*r+Position.y;

 VehiclePoint.Visible=true;

 VehicleShape.PointList.push_front(VehiclePoint);

 Alpha=Teta+Gamma;

 VehiclePoint.x=cos(Alpha)*r+Position.x;

 VehiclePoint.y=sin(Alpha)*r+Position.y;

 VehiclePoint.Visible=true;

 VehicleShape.PointList.push_front(VehiclePoint);

 Alpha=((180*PI)/180)+Teta-Gamma;

115

 VehiclePoint.x=cos(Alpha)*r+Position.x;

 VehiclePoint.y=sin(Alpha)*r+Position.y;

 VehiclePoint.Visible=true;

 VehicleShape.PointList.push_front(VehiclePoint);

 Alpha=((180*PI)/180)+Teta+Gamma;

 VehiclePoint.x=cos(Alpha)*r+Position.x;

 VehiclePoint.y=sin(Alpha)*r+Position.y;

 VehiclePoint.Visible=true;

 VehicleShape.PointList.push_front(VehiclePoint);

 return VehicleShape;

}

bool TraCIDemo11p::Check_Point_Inside(Camera Camera, Point Point)

{

 double Alpha1,Alpha2;

 Alpha1=((Camera.Angle1+Camera.Direction)*PI)/180;

 Alpha2=((Camera.Angle2+Camera.Direction)*PI)/180;

 if (

 (

 (pow((Point.x-Camera.Position.x),2)+pow((Point.y-

Camera.Position.y),2))<=pow(Camera.Distance,2)

)

 and (

 ((cos(Alpha1)==0) and (sin(Alpha1)>0) and (Point.x >= Camera.Position.x))

 or ((cos(Alpha1)==0) and (sin(Alpha1)<0) and (Point.x <= Camera.Position.x))

 or ((cos(Alpha1)>0) and ((Point.y-tan(Alpha1)*Point.x)<=(Camera.Position.y-

tan(Alpha1)*Camera.Position.x)))

 or ((cos(Alpha1)<0) and ((Point.y-tan(Alpha1)*Point.x)>=(Camera.Position.y-

tan(Alpha1)*Camera.Position.x)))

)

 and (

 ((cos(Alpha2)==0) and (sin(Alpha2)>0) and (Point.x <= Camera.Position.x))

 or ((cos(Alpha2)==0) and (sin(Alpha2)<0) and (Point.x >= Camera.Position.x))

 or ((cos(Alpha2)>0) and ((Point.y-tan(Alpha2)*Point.x)>=(Camera.Position.y-

tan(Alpha2)*Camera.Position.x)))

 or ((cos(Alpha2)<0) and ((Point.y-tan(Alpha2)*Point.x)<=(Camera.Position.y-

tan(Alpha2)*Camera.Position.x)))

)

116

)

 {

 return true;

 }

 else

 {

 return false;

 }

}

std::list<Point> TraCIDemo11p::Determine_Outermost_Points(Camera Camera, Shape

Shape)

{

 std::list<Point> TempPointList,Outermosts;

 int ListSize=Shape.PointList.size();

 double MaxAngle;

 Point Point1,Point2,Outermost1,Outermost2;

 double Angle,Angle1,Angle2;

 MaxAngle= -1;

 TempPointList=Shape.PointList;

 Point1=TempPointList.front();

 if (Camera.Position.x==Point1.x)

 {

 if (Camera.Position.y>Point1.y) Angle1=270;

 if (Camera.Position.y<Point1.y) Angle1=90;

 }

 else Angle1=(atan((Camera.Position.y-Point1.y)/(Camera.Position.x-

Point1.x))*180)/PI;

 if (Camera.Position.x>Point1.x) Angle1+=180;

 if ((Angle1<0)and(Camera.Position.x<Point1.x)) Angle1+=360;

 for (int i=0;i<ListSize;i++)

 {

 Point2=TempPointList.front();

 TempPointList.pop_front();

 if (Camera.Position.x==Point2.x)

 {

 if (Camera.Position.y>Point2.y) Angle2=270;

 if (Camera.Position.y<Point2.y) Angle2=90;

 }

117

 else Angle2=(atan((Camera.Position.y-Point2.y)/(Camera.Position.x-

Point2.x))*180)/PI;

 if (Camera.Position.x>Point2.x) Angle2+=180;

 if ((Angle2<0)and(Camera.Position.x<Point2.x)) Angle2+=360;

 Angle=fabs(Angle1-Angle2);

 if (Angle>=180) Angle-=180;

 if (Angle>MaxAngle)

 {

 MaxAngle=Angle;

 Outermost1=Point2;

 }

 }

 TempPointList=Shape.PointList;

 MaxAngle= -1;

 Point1=Outermost1;

 if (Camera.Position.x==Point1.x)

 {

 if (Camera.Position.y>Point1.y) Angle1=270;

 if (Camera.Position.y<Point1.y) Angle1=90;

 }

 else Angle1=(atan((Camera.Position.y-Point1.y)/(Camera.Position.x-

Point1.x))*180)/PI;

 if (Camera.Position.x>Point1.x) Angle1+=180;

 if ((Angle1<0)and(Camera.Position.x<Point1.x)) Angle1+=360;

 for (int i=0;i<ListSize;i++)

 {

 Point2=TempPointList.front();

 TempPointList.pop_front();

 if (Camera.Position.x==Point2.x)

 {

 if (Camera.Position.y>Point2.y) Angle2=270;

 if (Camera.Position.y<Point2.y) Angle2=90;

 }

 else Angle2=(atan((Camera.Position.y-Point2.y)/(Camera.Position.x-

Point2.x))*180)/PI;

 if (Camera.Position.x>Point2.x) Angle2+=180;

 if ((Angle2<0)and(Camera.Position.x<Point2.x)) Angle2+=360;

 Angle=fabs(Angle1-Angle2);

 if (Angle>=180) Angle-=180;

 if (Angle>MaxAngle)

 {

118

 MaxAngle=Angle;

 Outermost2=Point2;

 }

 }

 Outermosts.push_front(Outermost1);

 Outermosts.push_front(Outermost2);

 return Outermosts;

}

std::list<Shape> TraCIDemo11p::Determine_Shape_Visibility(Camera

Camera,std::list<Shape> Shapes)

{

 Shape Shape1, Shape2, TempSahpe;

 int SSize = Shapes.size();

 double y1, y2, y3, y4, x1, x2, x3, x4;

 for (int s = 0; s < SSize; s++) {

 Shape1 = Shapes.front();

 Shapes.pop_front();

 Shape1.OutermostVisiblePoint1 = Shape1.OutermostPoint1;

 Shape1.OutermostVisiblePoint2 = Shape1.OutermostPoint2;

 Shape1.Visibility = 100;

 Shapes.push_back(Shape1);

 }

 for (int i = 0; i < SSize; i++) {

 Shape1 = Shapes.front();

 Shapes.pop_front();

 for (int j = 0; j < SSize - 1; j++) {

 int area1 = 0;

 int area2 = 0;

 double VisibleLenght = 0;

 Shape2 = Shapes.front();

 Shapes.pop_front();

 if (((((Shape2.OutermostVisiblePoint1.y

 - Shape1.OutermostVisiblePoint1.y)

 * (Shape1.OutermostVisiblePoint2.x

 - Shape1.OutermostVisiblePoint1.x))

 - ((Shape1.OutermostVisiblePoint2.y

 - Shape1.OutermostVisiblePoint1.y)

 * (Shape2.OutermostVisiblePoint1.x

119

 - Shape1.OutermostVisiblePoint1.x)))

 * (((Camera.Position.y - Shape1.OutermostVisiblePoint1.y)

 * (Shape1.OutermostVisiblePoint2.x

 - Shape1.OutermostVisiblePoint1.x))

 - ((Shape1.OutermostVisiblePoint2.y

 - Shape1.OutermostVisiblePoint1.y)

 * (Camera.Position.x

 - Shape1.OutermostVisiblePoint1.x))))

 < 0) {

 if (((((Shape2.OutermostVisiblePoint1.y

 - Shape1.OutermostVisiblePoint1.y)

 * (Camera.Position.x - Shape1.OutermostVisiblePoint1.x))

 - ((Camera.Position.y - Shape1.OutermostVisiblePoint1.y)

 * (Shape2.OutermostVisiblePoint1.x

 - Shape1.OutermostVisiblePoint1.x)))

 * (((Shape1.OutermostVisiblePoint2.y

 - Shape1.OutermostVisiblePoint1.y)

 * (Camera.Position.x

 - Shape1.OutermostVisiblePoint1.x))

 - ((Camera.Position.y

 - Shape1.OutermostVisiblePoint1.y)

 * (Shape1.OutermostVisiblePoint2.x

 - Shape1.OutermostVisiblePoint1.x))))

 > 0) {

 if (((((Shape2.OutermostVisiblePoint1.y

 - Shape1.OutermostVisiblePoint2.y)

 * (Camera.Position.x

 - Shape1.OutermostVisiblePoint2.x))

 - ((Camera.Position.y

 - Shape1.OutermostVisiblePoint2.y)

 * (Shape2.OutermostVisiblePoint1.x

 - Shape1.OutermostVisiblePoint2.x)))

 * (((Shape1.OutermostVisiblePoint1.y

 - Shape1.OutermostVisiblePoint2.y)

 * (Camera.Position.x

 - Shape1.OutermostVisiblePoint2.x))

 - ((Camera.Position.y

 - Shape1.OutermostVisiblePoint2.y)

 * (Shape1.OutermostVisiblePoint1.x

 - Shape1.OutermostVisiblePoint2.x))))

 > 0) {

 Shape2.OutermostVisiblePoint1.Visible = false;

120

 Shape2.OutermostPoint1.Visible = false;

 area1 = 0;

 } else

 area1 = 2;

 } else

 area1 = 1;

 } else if (((((Shape2.OutermostVisiblePoint1.y

 - Shape1.OutermostVisiblePoint1.y)

 * (Camera.Position.x - Shape1.OutermostVisiblePoint1.x))

 - ((Camera.Position.y - Shape1.OutermostVisiblePoint1.y)

 * (Shape2.OutermostVisiblePoint1.x

 - Shape1.OutermostVisiblePoint1.x)))

 * (((Shape1.OutermostVisiblePoint2.y

 - Shape1.OutermostVisiblePoint1.y)

 * (Camera.Position.x

 - Shape1.OutermostVisiblePoint1.x))

 - ((Camera.Position.y

 - Shape1.OutermostVisiblePoint1.y)

 * (Shape1.OutermostVisiblePoint2.x

 - Shape1.OutermostVisiblePoint1.x))))

 > 0) {

 if (((((Shape2.OutermostVisiblePoint1.y

 - Shape1.OutermostVisiblePoint2.y)

 * (Camera.Position.x - Shape1.OutermostVisiblePoint2.x))

 - ((Camera.Position.y - Shape1.OutermostVisiblePoint2.y)

 * (Shape2.OutermostVisiblePoint1.x

 - Shape1.OutermostVisiblePoint2.x)))

 * (((Shape1.OutermostVisiblePoint1.y

 - Shape1.OutermostVisiblePoint2.y)

 * (Camera.Position.x

 - Shape1.OutermostVisiblePoint2.x))

 - ((Camera.Position.y

 - Shape1.OutermostVisiblePoint2.y)

 * (Shape1.OutermostVisiblePoint1.x

 - Shape1.OutermostVisiblePoint2.x))))

 > 0)

 area1 = 5;

 else

 area1 = 4;

 } else

 area1 = 3;

121

 if (((((Shape2.OutermostVisiblePoint2.y

 - Shape1.OutermostVisiblePoint1.y)

 * (Shape1.OutermostVisiblePoint2.x

 - Shape1.OutermostVisiblePoint1.x))

 - ((Shape1.OutermostVisiblePoint2.y

 - Shape1.OutermostVisiblePoint1.y)

 * (Shape2.OutermostVisiblePoint2.x

 - Shape1.OutermostVisiblePoint1.x)))

 * (((Camera.Position.y - Shape1.OutermostVisiblePoint1.y)

 * (Shape1.OutermostVisiblePoint2.x

 - Shape1.OutermostVisiblePoint1.x))

 - ((Shape1.OutermostVisiblePoint2.y

 - Shape1.OutermostVisiblePoint1.y)

 * (Camera.Position.x

 - Shape1.OutermostVisiblePoint1.x))))

 < 0) {

 if (((((Shape2.OutermostVisiblePoint2.y

 - Shape1.OutermostVisiblePoint1.y)

 * (Camera.Position.x - Shape1.OutermostVisiblePoint1.x))

 - ((Camera.Position.y - Shape1.OutermostVisiblePoint1.y)

 * (Shape2.OutermostVisiblePoint2.x

 - Shape1.OutermostVisiblePoint1.x)))

 * (((Shape1.OutermostVisiblePoint2.y

 - Shape1.OutermostVisiblePoint1.y)

 * (Camera.Position.x

 - Shape1.OutermostVisiblePoint1.x))

 - ((Camera.Position.y

 - Shape1.OutermostVisiblePoint1.y)

 * (Shape1.OutermostVisiblePoint2.x

 - Shape1.OutermostVisiblePoint1.x))))

 > 0) {

 if (((((Shape2.OutermostVisiblePoint2.y

 - Shape1.OutermostVisiblePoint2.y)

 * (Camera.Position.x

 - Shape1.OutermostVisiblePoint2.x))

 - ((Camera.Position.y

 - Shape1.OutermostVisiblePoint2.y)

 * (Shape2.OutermostVisiblePoint2.x

 - Shape1.OutermostVisiblePoint2.x)))

 * (((Shape1.OutermostVisiblePoint1.y

 - Shape1.OutermostVisiblePoint2.y)

 * (Camera.Position.x

122

 - Shape1.OutermostVisiblePoint2.x))

 - ((Camera.Position.y

 - Shape1.OutermostVisiblePoint2.y)

 * (Shape1.OutermostVisiblePoint1.x

 - Shape1.OutermostVisiblePoint2.x))))

 > 0) {

 Shape2.OutermostVisiblePoint2.Visible = false;

 Shape2.OutermostPoint2.Visible = false;

 area2 = 0;

 } else

 area2 = 2;

 } else

 area2 = 1;

 } else if (((((Shape2.OutermostVisiblePoint1.y

 - Shape1.OutermostVisiblePoint1.y)

 * (Camera.Position.x - Shape1.OutermostVisiblePoint1.x))

 - ((Camera.Position.y - Shape1.OutermostVisiblePoint1.y)

 * (Shape2.OutermostVisiblePoint1.x

 - Shape1.OutermostVisiblePoint1.x)))

 * (((Shape1.OutermostVisiblePoint2.y

 - Shape1.OutermostVisiblePoint1.y)

 * (Camera.Position.x

 - Shape1.OutermostVisiblePoint1.x))

 - ((Camera.Position.y

 - Shape1.OutermostVisiblePoint1.y)

 * (Shape1.OutermostVisiblePoint2.x

 - Shape1.OutermostVisiblePoint1.x))))

 > 0) {

 if (((((Shape2.OutermostVisiblePoint1.y

 - Shape1.OutermostVisiblePoint2.y)

 * (Camera.Position.x - Shape1.OutermostVisiblePoint2.x))

 - ((Camera.Position.y - Shape1.OutermostVisiblePoint2.y)

 * (Shape2.OutermostVisiblePoint1.x

 - Shape1.OutermostVisiblePoint2.x)))

 * (((Shape1.OutermostVisiblePoint1.y

 - Shape1.OutermostVisiblePoint2.y)

 * (Camera.Position.x

 - Shape1.OutermostVisiblePoint2.x))

 - ((Camera.Position.y

 - Shape1.OutermostVisiblePoint2.y)

 * (Shape1.OutermostVisiblePoint1.x

 - Shape1.OutermostVisiblePoint2.x))))

123

 > 0)

 area2 = 5;

 else

 area2 = 4;

 } else

 area2 = 3;

 if ((area1 == 0) and (area2 == 0))

 VisibleLenght = 0;

 else if ((area1 == 0) and (area2 == 1)) {

 y1 = Shape2.OutermostPoint1.y;

 x1 = Shape2.OutermostPoint1.x;

 y2 = Shape2.OutermostPoint2.y;

 x2 = Shape2.OutermostPoint2.x;

 y3 = Camera.Position.y;

 x3 = Camera.Position.x;

 y4 = Shape1.OutermostVisiblePoint1.y;

 x4 = Shape1.OutermostVisiblePoint1.x;

 Shape2.OutermostVisiblePoint1.x =

 (((y2 - y1) * (x4 - x3) * (x1))

 + ((y3 - y1) * (x2 - x1) * (x4 - x3))

 + ((y3 - y4) * (x2 - x1) * (x3)))

 / (((y2 - y1) * (x4 - x3))

 - ((y4 - y3) * (x2 - x1)));

 Shape2.OutermostVisiblePoint1.y = (((y2 - y1)

 * (Shape2.OutermostVisiblePoint1.x - x1)) / (x2 - x1))

 + y1;

 Shape2.OutermostVisiblePoint1.Visible = true;

 y1 = Shape2.OutermostVisiblePoint1.y;

 x1 = Shape2.OutermostVisiblePoint1.x;

 y2 = Shape2.OutermostVisiblePoint2.y;

 x2 = Shape2.OutermostVisiblePoint2.x;

 VisibleLenght = pow(pow((y2 - y1), 2) + pow((x2 - x1), 2), 0.5);

 } else if ((area1 == 0) and (area2 == 2)) {

 y1 = Shape2.OutermostPoint1.y;

 x1 = Shape2.OutermostPoint1.x;

 y2 = Shape2.OutermostPoint2.y;

 x2 = Shape2.OutermostPoint2.x;

 y3 = Camera.Position.y;

 x3 = Camera.Position.x;

 y4 = Shape1.OutermostVisiblePoint2.y;

 x4 = Shape1.OutermostVisiblePoint2.x;

124

 Shape2.OutermostVisiblePoint1.x =

 (((y2 - y1) * (x4 - x3) * (x1))

 + ((y3 - y1) * (x2 - x1) * (x4 - x3))

 + ((y3 - y4) * (x2 - x1) * (x3)))

 / (((y2 - y1) * (x4 - x3))

 - ((y4 - y3) * (x2 - x1)));

 Shape2.OutermostVisiblePoint1.y = (((y2 - y1)

 * (Shape2.OutermostVisiblePoint1.x - x1)) / (x2 - x1))

 + y1;

 Shape2.OutermostVisiblePoint1.Visible = true;

 y1 = Shape2.OutermostVisiblePoint1.y;

 x1 = Shape2.OutermostVisiblePoint1.x;

 y2 = Shape2.OutermostVisiblePoint2.y;

 x2 = Shape2.OutermostVisiblePoint2.x;

 VisibleLenght = pow(pow((y2 - y1), 2) + pow((x2 - x1), 2), 0.5);

 } else if ((area1 == 1) and (area2 == 0)) {

 y1 = Shape2.OutermostPoint1.y;

 x1 = Shape2.OutermostPoint1.x;

 y2 = Shape2.OutermostPoint2.y;

 x2 = Shape2.OutermostPoint2.x;

 y3 = Camera.Position.y;

 x3 = Camera.Position.x;

 y4 = Shape1.OutermostVisiblePoint1.y;

 x4 = Shape1.OutermostVisiblePoint1.x;

 Shape2.OutermostVisiblePoint2.x =

 (((y2 - y1) * (x4 - x3) * (x1))

 + ((y3 - y1) * (x2 - x1) * (x4 - x3))

 + ((y3 - y4) * (x2 - x1) * (x3)))

 / (((y2 - y1) * (x4 - x3))

 - ((y4 - y3) * (x2 - x1)));

 Shape2.OutermostVisiblePoint2.y = (((y2 - y1)

 * (Shape2.OutermostVisiblePoint1.x - x1)) / (x2 - x1))

 + y1;

 Shape2.OutermostVisiblePoint2.Visible = true;

 y1 = Shape2.OutermostVisiblePoint1.y;

 x1 = Shape2.OutermostVisiblePoint1.x;

 y2 = Shape2.OutermostVisiblePoint2.y;

 x2 = Shape2.OutermostVisiblePoint2.x;

 VisibleLenght = pow(pow((y2 - y1), 2) + pow((x2 - x1), 2), 0.5);

 } else if ((area1 == 2) and (area2 == 0)) {

 y1 = Shape2.OutermostPoint1.y;

 x1 = Shape2.OutermostPoint1.x;

125

 y2 = Shape2.OutermostPoint2.y;

 x2 = Shape2.OutermostPoint2.x;

 y3 = Camera.Position.y;

 x3 = Camera.Position.x;

 y4 = Shape1.OutermostVisiblePoint2.y;

 x4 = Shape1.OutermostVisiblePoint2.x;

 Shape2.OutermostVisiblePoint2.x =

 (((y1 - y1) * (x4 - x3) * (x1))

 + ((y3 - y1) * (x2 - x1) * (x4 - x3))

 + ((y3 - y4) * (x2 - x1) * (x3)))

 / (((y2 - y1) * (x4 - x3))

 - ((y4 - y3) * (x2 - x1)));

 Shape2.OutermostVisiblePoint2.y = (((y2 - y1)

 * (Shape2.OutermostVisiblePoint1.x - x1)) / (x2 - x1))

 + y1;

 Shape2.OutermostVisiblePoint2.Visible = true;

 y1 = Shape2.OutermostVisiblePoint1.y;

 x1 = Shape2.OutermostVisiblePoint1.x;

 y2 = Shape2.OutermostVisiblePoint2.y;

 x2 = Shape2.OutermostVisiblePoint2.x;

 VisibleLenght = pow(pow((y2 - y1), 2) + pow((x2 - x1), 2), 0.5);

 } else if ((area1 == 1) and (area2 == 2)) {

 y1 = Shape2.OutermostPoint1.y;

 x1 = Shape2.OutermostPoint1.x;

 y2 = Shape2.OutermostPoint2.y;

 x2 = Shape2.OutermostPoint2.x;

 y3 = Camera.Position.y;

 x3 = Camera.Position.x;

 y4 = Shape1.OutermostVisiblePoint1.y;

 x4 = Shape1.OutermostVisiblePoint1.x;

 Shape2.OutermostVisiblePoint1.x =

 (((y2 - y1) * (x4 - x3) * (x1))

 + ((y3 - y1) * (x2 - x1) * (x4 - x3))

 + ((y3 - y4) * (x2 - x1) * (x3)))

 / (((y2 - y1) * (x4 - x3))

 - ((y4 - y3) * (x2 - x1)));

 Shape2.OutermostVisiblePoint1.y = (((y2 - y1)

 * (Shape2.OutermostVisiblePoint1.x - x1)) / (x2 - x1))

 + y1;

 Shape2.OutermostVisiblePoint1.Visible = true;

 y1 = Shape2.OutermostPoint1.y;

 x1 = Shape2.OutermostPoint1.x;

126

 y2 = Shape2.OutermostPoint2.y;

 x2 = Shape2.OutermostPoint2.x;

 y3 = Camera.Position.y;

 x3 = Camera.Position.x;

 y4 = Shape1.OutermostVisiblePoint2.y;

 x4 = Shape1.OutermostVisiblePoint2.x;

 Shape2.OutermostVisiblePoint2.x =

 (((y2 - y1) * (x4 - x3) * (x1))

 + ((y3 - y1) * (x2 - x1) * (x4 - x3))

 + ((y3 - y4) * (x2 - x1) * (x3)))

 / (((y2 - y1) * (x4 - x3))

 - ((y4 - y3) * (x2 - x1)));

 Shape2.OutermostVisiblePoint2.y = (((y2 - y1)

 * (Shape2.OutermostVisiblePoint1.x - x1)) / (x2 - x1))

 + y1;

 Shape2.OutermostVisiblePoint2.Visible = true;

 y1 = Shape2.OutermostPoint1.y;

 x1 = Shape2.OutermostPoint1.x;

 y2 = Shape2.OutermostPoint2.y;

 x2 = Shape2.OutermostPoint2.x;

 y3 = Shape2.OutermostVisiblePoint1.y;

 x3 = Shape2.OutermostVisiblePoint1.x;

 y4 = Shape2.OutermostVisiblePoint2.y;

 x4 = Shape2.OutermostVisiblePoint2.x;

 VisibleLenght = pow(((pow((y1 - y3), 2)) + (pow((x1 - x3), 2))),

 0.5)

 + pow(((pow((y2 - y4), 2)) + (pow((x2 - x4), 2))), 0.5);

 } else if ((area1 == 2) and (area2 == 1)) {

 y1 = Shape2.OutermostPoint1.y;

 x1 = Shape2.OutermostPoint1.x;

 y2 = Shape2.OutermostPoint2.y;

 x2 = Shape2.OutermostPoint2.x;

 y3 = Camera.Position.y;

 x3 = Camera.Position.x;

 y4 = Shape1.OutermostVisiblePoint1.y;

 x4 = Shape1.OutermostVisiblePoint1.x;

 Shape2.OutermostVisiblePoint2.x =

 (((y2 - y1) * (x4 - x3) * (x1))

 + ((y3 - y1) * (x2 - x1) * (x4 - x3))

 + ((y3 - y4) * (x2 - x1) * (x3)))

 / (((y2 - y1) * (x4 - x3))

 - ((y4 - y3) * (x2 - x1)));

127

 Shape2.OutermostVisiblePoint2.y = (((y2 - y1)

 * (Shape2.OutermostVisiblePoint1.x - x1)) / (x2 - x1))

 + y1;

 Shape2.OutermostVisiblePoint2.Visible = true;

 y1 = Shape2.OutermostPoint1.y;

 x1 = Shape2.OutermostPoint1.x;

 y2 = Shape2.OutermostPoint2.y;

 x2 = Shape2.OutermostPoint2.x;

 y3 = Camera.Position.y;

 x3 = Camera.Position.x;

 y4 = Shape1.OutermostVisiblePoint2.y;

 x4 = Shape1.OutermostVisiblePoint2.x;

 Shape2.OutermostVisiblePoint1.x =

 (((y2 - y1) * (x4 - x3) * (x1))

 + ((y3 - y1) * (x2 - x1) * (x4 - x3))

 + ((y3 - y4) * (x2 - x1) * (x3)))

 / (((y2 - y1) * (x4 - x3))

 - ((y4 - y3) * (x2 - x1)));

 Shape2.OutermostVisiblePoint1.y = (((y2 - y1)

 * (Shape2.OutermostVisiblePoint1.x - x1)) / (x2 - x1))

 + y1;

 Shape2.OutermostVisiblePoint1.Visible = true;

 y1 = Shape2.OutermostPoint1.y;

 x1 = Shape2.OutermostPoint1.x;

 y2 = Shape2.OutermostPoint2.y;

 x2 = Shape2.OutermostPoint2.x;

 y3 = Shape2.OutermostVisiblePoint1.y;

 x3 = Shape2.OutermostVisiblePoint1.x;

 y4 = Shape2.OutermostVisiblePoint2.y;

 x4 = Shape2.OutermostVisiblePoint2.x;

 VisibleLenght = pow(((pow((y1 - y3), 2)) + (pow((x1 - x3), 2))),

 0.5)

 + pow(((pow((y2 - y4), 2)) + (pow((x2 - x4), 2))), 0.5);

 } else if ((area1 == 3) and (area2 == 0)) {

 y1 = Shape2.OutermostPoint1.y;

 x1 = Shape2.OutermostPoint1.x;

 y2 = Shape2.OutermostPoint2.y;

 x2 = Shape2.OutermostPoint2.x;

 y3 = Camera.Position.y;

 x3 = Camera.Position.x;

 y4 = Shape1.OutermostVisiblePoint1.y;

 x4 = Shape1.OutermostVisiblePoint1.x;

128

 Shape2.OutermostVisiblePoint2.x =

 (((y2 - y1) * (x4 - x3) * (x1))

 + ((y3 - y1) * (x2 - x1) * (x4 - x3))

 + ((y3 - y4) * (x2 - x1) * (x3)))

 / (((y2 - y1) * (x4 - x3))

 - ((y4 - y3) * (x2 - x1)));

 Shape2.OutermostVisiblePoint2.y = (((y2 - y1)

 * (Shape2.OutermostVisiblePoint1.x - x1)) / (x2 - x1))

 + y1;

 Shape2.OutermostVisiblePoint2.Visible = true;

 y1 = Shape2.OutermostVisiblePoint1.y;

 x1 = Shape2.OutermostVisiblePoint1.x;

 y2 = Shape2.OutermostVisiblePoint2.y;

 x2 = Shape2.OutermostVisiblePoint2.x;

 VisibleLenght = pow(pow((y2 - y1), 2) + pow((x2 - x1), 2), 0.5);

 } else if ((area1 == 0) and (area2 == 3)) {

 y1 = Shape2.OutermostPoint1.y;

 x1 = Shape2.OutermostPoint1.x;

 y2 = Shape2.OutermostPoint2.y;

 x2 = Shape2.OutermostPoint2.x;

 y3 = Camera.Position.y;

 x3 = Camera.Position.x;

 y4 = Shape1.OutermostVisiblePoint1.y;

 x4 = Shape1.OutermostVisiblePoint1.x;

 Shape2.OutermostVisiblePoint1.x =

 (((y2 - y1) * (x4 - x3) * (x1))

 + ((y3 - y1) * (x2 - x1) * (x4 - x3))

 + ((y3 - y4) * (x2 - x1) * (x3)))

 / (((y2 - y1) * (x4 - x3))

 - ((y4 - y3) * (x2 - x1)));

 Shape2.OutermostVisiblePoint1.y = (((y2 - y1)

 * (Shape2.OutermostVisiblePoint1.x - x1)) / (x2 - x1))

 + y1;

 Shape2.OutermostVisiblePoint1.Visible = true;

 y1 = Shape2.OutermostVisiblePoint1.y;

 x1 = Shape2.OutermostVisiblePoint1.x;

 y2 = Shape2.OutermostVisiblePoint2.y;

 x2 = Shape2.OutermostVisiblePoint2.x;

 VisibleLenght = pow(pow((y2 - y1), 2) + pow((x2 - x1), 2), 0.5);

 } else if ((area1 == 0) and (area2 == 4)) {

 y1 = Shape2.OutermostPoint1.y;

 x1 = Shape2.OutermostPoint1.x;

129

 y2 = Shape2.OutermostPoint2.y;

 x2 = Shape2.OutermostPoint2.x;

 y3 = Camera.Position.y;

 x3 = Camera.Position.x;

 y4 = Shape1.OutermostVisiblePoint2.y;

 x4 = Shape1.OutermostVisiblePoint2.x;

 Shape2.OutermostVisiblePoint1.x =

 (((y2 - y1) * (x4 - x3) * (x1))

 + ((y3 - y1) * (x2 - x1) * (x4 - x3))

 + ((y3 - y4) * (x2 - x1) * (x3)))

 / (((y2 - y1) * (x4 - x3))

 - ((y4 - y3) * (x2 - x1)));

 Shape2.OutermostVisiblePoint1.y = (((y2 - y1)

 * (Shape2.OutermostVisiblePoint1.x - x1)) / (x2 - x1))

 + y1;

 Shape2.OutermostVisiblePoint1.Visible = true;

 y1 = Shape2.OutermostVisiblePoint1.y;

 x1 = Shape2.OutermostVisiblePoint1.x;

 y2 = Shape2.OutermostVisiblePoint2.y;

 x2 = Shape2.OutermostVisiblePoint2.x;

 VisibleLenght = pow(pow((y2 - y1), 2) + pow((x2 - x1), 2), 0.5);

 } else if ((area1 == 4) and (area2 == 0)) {

 y1 = Shape2.OutermostPoint1.y;

 x1 = Shape2.OutermostPoint1.x;

 y2 = Shape2.OutermostPoint2.y;

 x2 = Shape2.OutermostPoint2.x;

 y3 = Camera.Position.y;

 x3 = Camera.Position.x;

 y4 = Shape1.OutermostVisiblePoint2.y;

 x4 = Shape1.OutermostVisiblePoint2.x;

 Shape2.OutermostVisiblePoint2.x =

 (((y2 - y1) * (x4 - x3) * (x1))

 + ((y3 - y1) * (x2 - x1) * (x4 - x3))

 + ((y3 - y4) * (x2 - x1) * (x3)))

 / (((y2 - y1) * (x4 - x3))

 - ((y4 - y3) * (x2 - x1)));

 Shape2.OutermostVisiblePoint2.y = (((y2 - y1)

 * (Shape2.OutermostVisiblePoint1.x - x1)) / (x2 - x1))

 + y1;

 Shape2.OutermostVisiblePoint2.Visible = true;

 y1 = Shape2.OutermostVisiblePoint1.y;

 x1 = Shape2.OutermostVisiblePoint1.x;

130

 y2 = Shape2.OutermostVisiblePoint2.y;

 x2 = Shape2.OutermostVisiblePoint2.x;

 VisibleLenght = pow(pow((y2 - y1), 2) + pow((x2 - x1), 2), 0.5);

 } else {

 Shape2.OutermostVisiblePoint1.Visible = true;

 Shape2.OutermostVisiblePoint2.Visible = true;

 y1 = Shape2.OutermostVisiblePoint1.y;

 x1 = Shape2.OutermostVisiblePoint1.x;

 y2 = Shape2.OutermostVisiblePoint2.y;

 x2 = Shape2.OutermostVisiblePoint2.x;

 VisibleLenght = pow(pow((y2 - y1), 2) + pow((x2 - x1), 2), 0.5);

 }

 Shape2.Visibility = (VisibleLenght

 / (pow(

 (pow(

 (Shape2.OutermostPoint2.y

 - Shape2.OutermostPoint1.y), 2)

 + pow(

 (Shape2.OutermostPoint2.x

 - Shape2.OutermostPoint1.x),

 2)), 0.5))) * 100;

 Shapes.push_back(Shape2);

 }

 Shapes.push_back(Shape1);

 }

 SSize = Shapes.size();

 for (int s = 0; s < SSize; s++) {

 TempSahpe = Shapes.front();

 Shapes.pop_front();

 if (TempSahpe.Visibility > 0)

 Shapes.push_back(TempSahpe);

 }

 return Shapes;

}

std::list<Point> TraCIDemo11p::Determine_Points_Visibility(Camera Camera,

std::list<Shape> Shapes, std::list<Point> Points)

{

131

 Shape SS;

 Point PP;

 int PSize=Points.size();

 int SSize=Shapes.size();

 for (int s=0;s<SSize;s++)

 {

 SS=Shapes.front();

 Shapes.pop_front();

 for (int p=0;p<PSize;p++)

 {

 PP=Points.front();

 Points.pop_front();

 if (

 (PP.Visible!=false)

 and (((((PP.y-SS.OutermostPoint1.y)*(Camera.Position.x-

SS.OutermostPoint1.x))-((Camera.Position.y-SS.OutermostPoint1.y)*(PP.x-

SS.OutermostPoint1.x)))*(((SS.OutermostPoint2.y-

SS.OutermostPoint1.y)*(Camera.Position.x-SS.OutermostPoint1.x))-

((Camera.Position.y-SS.OutermostPoint1.y)*(SS.OutermostPoint2.x-

SS.OutermostPoint1.x))))>0)

 and (((((PP.y-SS.OutermostPoint2.y)*(Camera.Position.x-

SS.OutermostPoint2.x))-((Camera.Position.y-SS.OutermostPoint2.y)*(PP.x-

SS.OutermostPoint2.x)))*(((SS.OutermostPoint1.y-

SS.OutermostPoint2.y)*(Camera.Position.x-SS.OutermostPoint2.x))-

((Camera.Position.y-SS.OutermostPoint2.y)*(SS.OutermostPoint1.x-

SS.OutermostPoint2.x))))>0)

 and (((((PP.y-SS.OutermostPoint1.y)*(SS.OutermostPoint2.x-

SS.OutermostPoint1.x))-((SS.OutermostPoint2.y-SS.OutermostPoint1.y)*(PP.x-

SS.OutermostPoint1.x)))*(((Camera.Position.y-

SS.OutermostPoint1.y)*(SS.OutermostPoint2.x-SS.OutermostPoint1.x))-

((SS.OutermostPoint2.y-SS.OutermostPoint1.y)*(Camera.Position.x-

SS.OutermostPoint1.x))))<0)

)

 {

 PP.Visible=false;

 }

 Points.push_back(PP);

 }

 }

 return Points;

132

}

std::list<Shape> TraCIDemo11p::FindShapeList()

{

 std::list<Shape> TempShapeList;

 TempShapeList.clear();

 std::list<std::string> VehicleIds;

 VehicleIds=traci->commandGetCurrentVehicleIds(CurrentVehicleID);

 int VSize=VehicleIds.size();

 Shape VShape;

 double direction,lenght,width;

 std::string VType,VId;

 std::list<Point> OutermostPointsV;

 for (int i=0;i<VSize;i++)

 {

 VId=VehicleIds.front();

 VehicleIds.pop_front();

 direction=traci->commandGetVehicleAngle(VId);

 if (direction<0) direction+=360;

 VType=traci->commandGetVehicleType(VId);

 lenght=traci->commandGetVehicleLenght(VType);

 width=traci->commandGetVehicleWidth(VType);

 VShape=Vehicle_to_Shape(VShape.Position,direction,lenght,width);

 VShape.ID=VId;

 VShape.Position.Visible=true;

 VShape.Position.x=traci->commandGetVehiclePosition(VId).x;

 VShape.Position.y=traci->commandGetVehiclePosition(VId).y;

 OutermostPointsV=Determine_Outermost_Points(Camera1,VShape);

 VShape.OutermostPoint1=OutermostPointsV.front();

 OutermostPointsV.pop_front();

 VShape.OutermostPoint2=OutermostPointsV.front();

 OutermostPointsV.pop_front();

 VShape.OutermostVisiblePoint1=VShape.OutermostPoint1;

 VShape.OutermostVisiblePoint2=VShape.OutermostPoint2;

 VShape.Type=VType;

 VShape.Visibility=100;

133

 TempShapeList.push_front(VShape);

 }

 std::list<std::string> PolygonIds;

 PolygonIds=traci->commandGetPolygonIds();

 int PSize=PolygonIds.size();

 Shape PShape;

 std::string PType,PId;

 std::list<Point> OutermostPointsP;

 std::list<Veins::TraCICoord> Coords;

 Point TempPoint;

 Veins::TraCICoord TempCoord;

 for (int j=0;j<PSize;j++)

 {

 PId=PolygonIds.front();

 PolygonIds.pop_front();

 PType=traci->commandGetPolygonTypeId(PId);

 PShape.ID=PId;

 PShape.PointList.clear();

 Coords=traci->commandGetPolygonShape(PId);

 int CSize=Coords.size();

 for (int c=0;c<CSize;c++)

 {

 TempCoord=Coords.front();

 Coords.pop_front();

 TempPoint.x=TempCoord.x;

 TempPoint.y=TempCoord.y;

 TempPoint.Visible=true;

 PShape.PointList.push_front(TempPoint);

 }

 OutermostPointsP=Determine_Outermost_Points(Camera1,PShape);

 PShape.OutermostPoint1=OutermostPointsP.front();

 OutermostPointsP.pop_front();

 PShape.OutermostPoint2=OutermostPointsP.front();

 OutermostPointsP.pop_front();

 PShape.OutermostVisiblePoint1=PShape.OutermostPoint1;

 PShape.OutermostVisiblePoint2=PShape.OutermostPoint2;

 PShape.Type=PType;

134

 PShape.Visibility=100;

 TempShapeList.push_front(PShape);

 }

 return TempShapeList;

}

std::list<Shape> TraCIDemo11p::Check_Sahpe_Inside (Camera Camera,

std::list<Shape> Shapes)

{

 int SSize=Shapes.size();

 Shape TempShape;

 for (int s=0;s<SSize;s++)

 {

 TempShape=Shapes.front();

 Shapes.pop_front();

 int PSize=TempShape.PointList.size();

 Point TempPoint;

 bool inside=false;

 for (int p=0;p<PSize;p++)

 {

 TempPoint=TempShape.PointList.front();

 TempShape.PointList.pop_front();

 TempPoint.Visible=Check_Point_Inside(Camera,TempPoint);

 if (TempPoint.Visible) inside=true;

 TempShape.PointList.push_back(TempPoint);

 }

 if (inside)

 {

 TempShape.Visibility=100;

 Shapes.push_back(TempShape);

 }

 else TempShape.Visibility=0;

 }

 return Shapes;

}

std::list<Shape> TraCIDemo11p::FindVisibleShapeList()

135

{

 Veins::TraCICoord TempCoord= traci-

>commandGetVehiclePosition(CurrentVehicleID);

 Camera1.Position.x=TempCoord.x;

 Camera1.Position.y=TempCoord.y;

 ShapeList=FindShapeList();

 ShapeList=Check_Sahpe_Inside(Camera1,ShapeList);

 ShapeList=Determine_Shape_Visibility(Camera1,ShapeList);

 return ShapeList;

}

std::list<Shape> TraCIDemo11p::FindVisibleVehicleList()

{

 ShapeList.clear();

 if (CameraEquipment)

 {

 ShapeList=FindVisibleShapeList();

 int SSL=ShapeList.size();

 Shape TempShape;

 std::list<Shape> TempShapeList;

 for (int i=0;i<SSL;i++)

 {

 TempShape=ShapeList.front();

 ShapeList.pop_front();

 if (TempShape.Type=="vtype0")

 TempShapeList.push_back(TempShape);

 }

 ShapeList=TempShapeList;

 }

 return ShapeList;

}

std::list<TrackingShape> TraCIDemo11p::FindTrackingVehicleList()

{

 std::list<TrackingShape> TempTrackingVehicleList;

 TempTrackingVehicleList.clear();

 int s1=VisibleShapes1.size();

 int s2=VisibleShapes2.size();

 std::list<Shape> TempVisibleShapes2=VisibleShapes2;

136

 double Y,X;

 Shape Shape1,Shape2;

 TrackingShape Shape3;

 for (int i=0; i<s1;i++)

 {

 Shape1=VisibleShapes1.front();

 VisibleShapes1.pop_front();

 for (int j=0;j<s2;j++)

 {

 Shape2=VisibleShapes2.front();

 VisibleShapes2.pop_front();

 if (Shape1.ID==Shape2.ID)

 {

 Y=Shape2.Position.y-Shape1.Position.y;

 X=Shape2.Position.x-Shape1.Position.x;

 Shape3.ID=Shape1.ID;

 if ((Y>0)and(X>0)) Shape3.Direction=((atan(Y/X)*180)/PI);

 else if ((Y>0)and(X<0)) Shape3.Direction=((atan(Y/X)*180)/PI)+180;

 else if ((Y>0)and(X==0)) Shape3.Direction=90;

 else if ((Y<0)and(X>0)) Shape3.Direction=((atan(Y/X)*180)/PI)+360;

 else if ((Y<0)and(X<0)) Shape3.Direction=((atan(Y/X)*180)/PI)+180;

 else if ((Y<0)and(X==0)) Shape3.Direction=270;

 else if ((Y==0)and(X<0)) Shape3.Direction=180;

 else if ((Y==0)and(X>0)) Shape3.Direction=0;

 else if ((Y==0)and(X==0)) Shape3.Direction=0;

 Shape3.Position=Shape2.Position;

 Shape3.Speed=(pow((pow(Y,2)+pow(X,2)),0.5))/TrackingTime;

 TempTrackingVehicleList.push_front(Shape3);

 }

 }

 VisibleShapes2=TempVisibleShapes2;

 }

 return TempTrackingVehicleList;

}

137

Curriculum Vitae

Name: Besat Zardosht

Post-secondary Shahid Beheshti University

Education and Tehran, Iran

Degrees: 2003-2007 B.A.

Amirkabir University of Technology

Tehran, Iran

2007-2009 M.A.

The University of Western Ontario

London, Ontario, Canada

2010-2016 Ph.D.

Related Work Software Developer

Experience Binnj/Breeze Inc

2015-2016

Graduate Teaching Assistant

University of Western Ontario

2010-2015

Graduate Research Assistant

University of Western Ontario

2010-2015

Software Developer

London Employment Help Centre

2012-2015

Software Developer

Granir Inc

2007-2009

Publications:
Besat Zardosht, Steven Beauchemin and Michael Bauer, “An In-Vehicle Tracking Method

Using Vehicular Ad-Hoc Networks with a Vision-Based System”. IEEE International

Conference On Systems, Man, And Cybernetics(SMC'14), 2014

138

Besat Zardosht, Steven Beauchemin and Michael Bauer, “An Emergency Message

Propagation System Using Roadside Units and Vehicle-To-Vehicle Communication”.

29th International Conference on Computer Applications in Industry and Engineering

(CAINE 2016)

Besat Zardosht, Steven Beauchemin and Michael Bauer, “A Decision Making Module

for Cooperative Collision Warning System Using Vehicular Ad-Hoc Network”. The 16th

International IEEE Annual Conference on Intelligent Transportation Systems, 2013

Besat Zardosht and Ahmad Abdollahzadeh Barforoush, “AUT-BLEU: Extending BLUE

with use of Pars Tree”. The 14th Machine Translation Summit, 2013

Besat Zardosht and Ahmad Abdollahzadeh Barforoush, “A New Machine Translation

Evaluation System with new approach in weighting the N-grams, Based on the Words Part

of Speech”. The 15th National CSI Computer Conference, 2010

(This paper is written in Persian)

	Western University
	Scholarship@Western
	September 2016

	A Data Fusion Approach to Automated Decision Making in Intelligent Vehicles
	Besat Zardosht
	Recommended Citation

	tmp.1473526458.pdf.OpYmc

