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Abstract 

The complexity of today’s data centers has led researchers to investigate ways in which 

autonomic methods can be used for data center management. Autonomic managers try to 

monitor and manage resources to ensure that the components they manage are self-

configuring, self-optimizing, self-healing and self-protecting (so called “self-*” properties).   

In this research, we consider autonomic management systems for data centers with a 

particular focus on making data centers more energy-aware.  In particular, we consider a 

policy based, multi-manager autonomic management systems for energy aware data centers. 

Our focus is on defining the foundations – the core concepts, entities, relationships and 

algorithms - for autonomic management systems capable of supporting a range of 

management configurations.  Central to our approach is the notion of a “topology” of 

autonomic managers that when instantiated can support a range of different configurations of 

autonomic managers and communication among them.  The notion of “policy” is broadened 

to enable some autonomic managers to have more direct control over the behavior of other 

managers through changes in policies. The ultimate goal is to create a management 

framework that would allow the data center administrator to a) define managed objects, their 

corresponding managers, management system topology, and policies to meet their operation 

needs and b) rely on the management system to maintain itself automatically.  A data center 

simulator that computes its energy consumption (computing and cooling) at any given time is 

implemented to evaluate the impact of different management scenarios. The management 

system is evaluated with different management scenarios in our simulated data center. 
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Chapter 1  

      Introduction 

Data centers at the core of Internet-scale applications consume about 1.3% of the 

worldwide electricity supply and this fraction is predicted to be 8% by 2020 [1].  Google 

alone, for example, consumed 2.26*106 MW in 2010 [3].  Carbon emissions from data 

centers alone in November 2008 were 0.6% of the global total and predicted to be 2.6% 

by 2020, which is more than the total carbon emission of Germany [2].  Given these 

statistics, reducing energy consumption of data centers and making them work in energy-

aware manners is a central topic in research into data center management. 

 There is broad range of research efforts investigating techniques and approaches to try to 

minimize energy consumption. Broadly, research in the energy optimized data center 

field could be categorized as follows:  

1) Server level energy management: Taking advantage of several 

power/performance states defined in components, e.g. CPU and memory. 

2) Cluster level management: Using optimization and control approaches to optimize 

the number of required compute nodes for running an application. 

3) Virtualization: Reducing the number of active physical servers by multiplexing 

them as virtual machines (VM) with the aim of using fewer physical servers and 

taking advantage of turning off underutilized servers.  Another aspect of 

virtualization is considering VM migration and consolidation based on thermal 

output. 

4) Scheduling: Job scheduling that can take into consideration energy consumption 

criteria, for instance, the temperature of servers, electricity prices and CO2 

emission in the case of geographically distributed data center.  

5) Using renewable energy sources. 

Research in each of these categories is trying to address a part of the energy management 

of a complex distributed system, i.e., a data center. To date, there is little research 
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involving holistic approaches that look at trying to optimize data center energy 

consumption based on overall governing strategies.  The complexities of data centers do 

not make it feasible for individuals to manage all aspects; instead data centers need 

automated methods to be able to make management decisions about their operations.   In 

this regard, one broad approach to consider is autonomic management approach to help 

automate the management of a data center, particularly, policy-based autonomic 

management, where the role of the administrator would be codifying management policy 

for data center operations. 

Autonomic Computing (AC) [13] addresses self-management in distributed and complex 

systems. AC tries to minimize administrator intervention in system management by, 

instead, automating as much of the management activities as possible and enabling the 

administrator to define the overall policy and strategy for system management according 

to business and operational objectives. Self-management based on defined policies is 

called policy-based management; it is a promising approach for developing autonomic 

management in complex distributed systems.  

In this research, we advocate for multiple autonomic managers rather than having a 

single centralized autonomic manager that can be a single point of failure and a potential 

performance bottleneck in a distributed environment. Our research focuses on how to 

develop a management model based on a number of defined autonomic managers which 

can be connected together with any defined topology. The management system aims to 

reduce energy consumption of the data center while still maintaining adequate throughput 

levels.  

 Motivation 

Managing today’s data centers has become increasingly complex with large scale 

applications, heterogeneous computing platforms, varying workloads, and service level 

agreements.  This complexity has led researchers to investigate approaches where many 

of the aspects of data center management can be automated and the day-to-day tasks of 

system administrators simplified. While data center administrators continue to face 
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increasing challenges, the operators of data centers must deal with energy and costs and, 

hence, energy management. While there has been and continues to be research into 

means of reducing energy consumption in data centers, the overall challenge is to balance 

the efficiency of computing with energy conservation.  

 Problem statement 

In this research, we consider the use of policy-based autonomic management for data 

center management systems. Our goal is to develop a framework for management 

systems – an abstraction - that can be used to define and create (instantiate) management 

systems comprised of diverse autonomic managers. Using the model, or more precisely, 

the associated tools, specifications, etc., the data center administrator would be able to 

instantiate a specific management system, including the managers to deploy and their 

configuration according to the physical layout of the data center, the applications, etc. 

The challenge is diversity: different data centers will have different computing equipment 

in different configurations, there are different applications, workloads and, for 

management, different autonomic managers and ways in which the managers could 

interact. For example, for a given data center the administrator might define a 

hierarchical arrangement of managers or perhaps a peer-to-peer arrangement or even an 

ad hoc combination of these two.  Obviously, in some circumstances one of these 

arrangements may work better than others. We aim to define an abstraction of a 

management system that gives the administrator the ability to define different 

management topologies for a given data center. With this abstraction as a foundation, we 

can define basic algorithms for the deployment and operation of an instantiated 

management system. 

Our approach to management is, as noted, based on autonomic managers.  Managers, in 

turn, need information about the entities they must manage, i.e., the managed objects.  

Managed objects are defined based on the actual entities in the data center.  We formalize 

these concepts through a model of a data center.  
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Central to the framework, however, are the notions of “classes of managed objects” and 

“classes of autonomic managers”.  This allows for abstraction away from the specific 

details of objects.   Based on the classes, we define a “topology” of management classes 

which imposes constraints on which managers are to communicate with which other 

managers and which can be used to introduce a variety of different management 

configurations.   

Figure 1-1 illustrates the abstract entities of our envisioned framework for management 

systems. Configuration files (defining the data center, managed objects and their classes, 

managers and their classes, topological constraints) are inputs to the management system.  

 

 

Figure 1-1. Abstract Model of envisioned management system 

The definition of the details of objects, etc. in the framework allows us to address other 

necessary aspects of the actual management system: the way they communicate, the time 

for communication, and, finally, the associated algorithms for initialization, ongoing 

operation; we define these as well. 
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 Contributions 

The main contributions of this research are the development of an abstract framework, 

and associated concepts and algorithms, that can be used to specify an autonomic 

management system for diverse data centers that is able to support, deploy and manage 

different configurations of autonomic managers.  

In the proposed management system model, a data center administrator is able to define 

managed object classes with their internal configuration parameters and for each class of 

managed objects, defining whether there needs to be a manager or not and, if a manager 

is needed, then defining the manager for the managed object class. Connections between 

managers are defined via the specification of a management topology defined among 

classes of managers.  In our model we also consider relations among managers where 

some managers may have privileges over other managers in the system. Privileged 

managers may have more or broader information in comparison to their subordinate 

managers and may be able to impose changes on the other managers.  

Basic algorithms to set up the management system and initialize the managers have been 

defined as part of this research. Moreover, algorithms to handle messages, handle events, 

initiate and terminate the operation of the managers are also presented in this research.  

Secondary contribution of this research is the development of a data center simulator that 

is able to run web based and HPC jobs. To the best of our knowledge, this simulator is 

unique since it computes cooling and energy consumption of a data center and handles 

the simulation of running different types of applications, e.g. HPC, web- based. This 

simulator is available in Github [45]. 

The main goal of this thesis is the development of a management system built on policy-

based autonomic computing concepts for data centers. The proposed management system 

should work with minimum administrator intervention. To evaluate proposed 

management system, we need to have reliable and configurable environment that is able 

to simulate the behavior of a data center. This leads us to the secondary output of this 
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thesis, which is developing a data center simulator. The simulator can be configured with 

different data center layouts and workloads. 

 Road map 

The focus of this research is on developing a generic framework for autonomic 

management systems for data centers trying to minimize data center energy consumption 

while maximizing the throughput. The administrator defines the managed objects, 

classes, their corresponding managers and their classes  and a topology of the managers, 

afterwards, the management system initializes itself and takes care of it on-the-fly. To 

develop the management model, several issues need to be addressed:  

1. How do we model a data center?   

-What are the managed objects from static and physical object to workload 

in a data center?  

-What type of applications run in a data center and how to describe them? 

2. How to model the managers? 

-What is the granularity of managers? (i.e. which object/s need to have 

manager). 

-What are possible actions that a manager might be able to do to adjust the 

behavior of its managed object/s?  

-What kind of information should a manager know about the managed 

object/s?  

3. How are the configurations of autonomic managers specified? 

-How to specify the topology of the managers?  

-How is communication between autonomic managers done? 

4. How to deploy the management system model (initialization, management cycle)? 

Chapter 2 provides a review of related work in the areas of data center energy 

consumption, autonomic computing, and policy based management. Chapter 3 covers 

general aspects of a data center and its management. Chapter 4 describes the formal 

model of data center, and managed objects and their classes. Chapter 5 defines abstract 

model of the management system i.e. managers, their classes, connections between 
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managers and topology of the management system. Algorithms for deployment and 

operations of the of a management system in Chapter 6; these algorithms must ensure that 

constraints created using the framework for specifying a management system are 

enforced. In Chapter 7 the performance of the management system is illustrated using 

different scenarios which are executed and evaluated using our own data center 

simulator. Conclusion and future aspects are considered in Chapter 8. 
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Chapter 2  

Related Work 

With the objectives of our research in mind, related work can be categorized into 

different categories: 

- Previous research on approaches for data center energy conservation; 

- Autonomic computing  and policy based management; 

- Coordination and collaboration of computational agents;  

Review related works in these areas are discussed in the following. 

2.1. Data center energy conservation 

These days data centers use raised floors and lowered ceilings for cooling air circulation, 

with the computing equipment organized in rows of racks arranged in an aisle-based 

layout, typically done with interleaved cold aisles and hot aisles (see Figure 2-1).  Server 

racks may have chiller doors that function as radiators to cool down hot air coming out of 

servers.  The cooling of the data center room is commonly done through computer room 

air conditioning (CRAC) units.  In this case, cool air comes into the data center through 

raised floor vents [18].  More recent designs have racks of computers cooled by liquids 

that are pumped through the racks, servers and even chips.  There may or may not be 

CRAC units as well.  

Data centers consume electrical power mainly for their server operations (computing 

power) and for the cooling system, which removes heat generated by running servers. 

Power Usage Efficiency (PUE) is a data center management parameter that indicates the 

energy efficiency of a data center. PUE is defined as total power consumed divided by 

power consumed by the computational equipment; where total power [30] is the sum of 

the power used for computational equipment plus the power used for cooling. Generally, 

normal data centers have PUE value around 2, however newer data centers are much 
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more efficient; to date the greenest data center is owned by Facebook [29] with a PUE of 

1.07. 

 

Figure 2-1.  Data center thermal aspect architecture [15]. 

Approaches to manage or control energy consumption in data centers have encompassed 

broad areas of research - from managing dynamic changes in hardware settings in servers 

to developing management frameworks for whole clusters of servers and complete data 

centers. Previous studies can be classified into several categories: 1) options for 

controlling power: dynamic provisioning of servers by turning off idle servers and 

turning on servers on demand, scaling the voltage or frequency of servers, creating idle 

servers by using virtual machines and consolidating them; 2) optimization approaches 

that try to use compromise between user satisfaction and power budget; 3)  

methodologies that deal with scheduling and workload, such as thermal workload 

scheduling, virtual machine migration, workload prediction, 4) scheduling to take 

advantage of renewable energy, like wind to run data center. We review research in these 

areas in the following.  

Many early solutions for reducing energy consumption focused on managing a single 

node server by using Dynamic Voltage and Frequency Scaling (DVFS) [27].  The main 

assumption for this idea is that CPU is the main sink for absorbing power in a server [26]  

Other research [27] has shown that there is a linear relationship between power 

consumption of a CPU and its utilization (refer to Figure 2-2 ).  
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Figure 2-2. Power Profile for various server platform [44]. 

The use of low power consumption levels of the hardware idle state (CPU and memory) 

is another target of research for reducing energy consumption. In [24], Meisner et.al. 

have introduced a new state for the whole server i.e. called the Power Nap: minimum 

power usage for all components in the server like laptops that support ACPI1 in which the 

CPU is in sleeping state and self-refresh state for DRAM. By having power nap, rather 

than having components with fine-grain power and performance trade off, the focus 

would be designing just one low power state and one high performance active state where 

the main consideration would be fast transition between these two states. In their paper, 

they illustrate requirements and mechanisms to develop the Power Nap concept in high 
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density blade server systems. They collected different traces of several servers with 

different workloads. They observed that the majority of idle periods are shorter than 1 

second with the mean length hundreds of milliseconds (ms) and busy periods are even 

shorter than 100ms for some workloads. They tried to estimate the characteristics of the 

hardware suitable for the idea i.e. leveraging the short idle period due to workload 

change. They constructed a queuing model based on characteristics of their traces. They 

found that if the transition time was less than 10ms, then power saving varies linearly 

with utilization.  But with the increase in the transition time, the power saving and 

performance decrease. The problem is that with current hardware technology, achieving 

transition time in less than 10ms is hard to achieve. 

Data center provisioning algorithms attempt to provide the number of servers that 

guarantee the response time specified in service level agreements, which often specifies 

the maximum load.  In practice, most of the times data centers are operated far less than 

their maximum load, e.g. 30-70% of their maximum load [31].  The over provisioning 

causes a lot of servers with no load or partial load to run, which consume power.  Some 

research has looked at server elasticity based on the volume of predicted workload and 

trying to consolidate all the workload in a number of servers at a given time [32][50] and 

powering off unused servers or at least making them work in low power mode.  

As another effort in this approach, Chen et al. [50] and Chen et.al. [17] proposed dynamic 

server provisioning for long-lived TCP-based services. They used data traces of Windows 

Live Messenger, and built a prediction model for estimating the number of required 

servers, (every 30 minutes). Their algorithm saves energy by turning off the unnecessary 

servers. They balance the load among active servers. While this approach reduces power 

consumption it has its own concerns: increasing cooling power since by having number 

of servers with maximum utilization causes hot spots (even if the server are chosen to be 

distributed across the data center) and this is usually not desirable for cooling systems. 

Another concern is degradation in response time, since peak workloads need to wait until 

new serves become active.  A combination of active server provisioning and workload 

prediction could provide better results. 
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Another approach to decrease number of active servers is through the use of 

virtualization. By moving services to virtual machines, several servers can be time-

multiplexed on a physical machine and increase the CPU utilization of that physical 

machine. Basically, through virtualization, the number of running physical machine can 

be reduced and this reduces energy consumption [33][24][56].  Kephart et.al [38] have 

investigated a power and performance efficient resource management in a virtualized 

computing environment. Specifically, they try to tackle dynamic provisioning of VMs for 

web applications based on the current state of the workload, which is defined as the 

number of incoming requests.  The SLA for each application is specified as the desired 

request-processing rate.  Clients pay for the provided service and in case of a SLA 

violation they would get refunded as penalty by the data center providers. The main idea 

is to maximize the provider’s profit by minimizing both power consumption and SLA 

violations. They posed the problem as a sequential optimization and used a limited 

lookahead control (LLC) to solve it. The goal was to optimize the following parameters: 

the number of allocated VMs to each service; the CPU share of each VM; the number of 

active servers. A Kalman filter was used to estimate the future workload. The complexity 

of solving the optimization problem is a challenge in this approach.  With just 15 physical 

hosts, their algorithm takes 30 munities to run. In a real data center with thousands of 

physical nodes, resource management needs to be timely.   

Some research has looked at workload scheduling strategies to reduce server uses.  

Thermal aware scheduling looks to determine placement of jobs on servers which are 

“cool” or has minimum thermal effect on others.[20][31] [32]. 

Mukherjee et.al and Tang et al. [15][50] have modeled the heat that is circulated among 

the servers; using this model, they suggest spatio-temporal thermal-aware job scheduling 

algorithms for HPC batch job data centers. One of their proposed spatial scheduling is the 

least recirculated heat (LRH). In LRH they rank and sort servers according to how much 

of their produced heat is recirculated and has thermal affects on others, and they assign 

the jobs to the low-ranking servers. To develop the thermal aware scheduling algorithms 
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we need to have a model of the thermal behavior of data center.  Obviously, in order to 

meet the SLA requirements, the number of active servers must be carefully chosen. The 

main challenge is the determination of each application’s resource demands.   

Chase et.al. [33] have applied an economic framework in the way that management 

system allocates resources to a service in order to maximize the profit from the service 

based on the cost of resource and amount of estimated utility. Each service bids for 

resources. The cost for the resource here is energy cost. 

Another type of research on energy aware data centers can be called environmentally-

conscious which assumes that there are number of data centers which are geographically 

distributed over the globe. The idea is that in job scheduling, the system considers the 

price of electricity, CO2 emission rate, and amount of renewable energy that can be used 

in a location and tries to maximize the profit of different locations [34][35].    

Google, Microsoft and Yahoo! have started to use forms of the renewable energy 

resources to power their data centers [37][38]. 

2.2. Autonomic computing   

Autonomic Computing (AC) refers to the idea of a computing system or application 

being self managing, that is, a system that can manage itself in such a way that it is 

adaptable to any changes in the system environment [21].  In autonomic computing, a 

management module which controls the behavior of a managed element (MO) is called 

an autonomic manager (AM).   IBM initially introduced the idea of autonomic 

management, and suggested that an AM continually goes through a cycle of monitoring, 

analysis, planning, and execution [13].  The idea in AC is that different AMs control 

different resources in distributed manner. This management could be done individually, 

i.e., each AM is responsible for its own MOs.  More generally, in computing systems it is 

necessary that AMs interoperate. There may be heterogeneous types of AMs and AMs 

with different objectives.  The research presented in [19] Kephart et.al. demonstrates the 

coordination between two independent AMs. In this work, the first AM deals with SLA 
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management and resource allocation to reduce SLA violations.  The second AM deals 

with minimizing power consumption by turning off unused servers. This work showed 

that without interaction between the managers there might be a failing to achieve their 

goals. 

Another work on the interaction between AMs is presented in [5]. Anthony et.al develop 

distributed management framework to meet SLA requirements; different AMs interact 

with one another indirectly and upon the failure of one of the AMs, the others notice the 

failure via a shared repository and will take over the responsibility of the failed AM.  

Khargharia et al. [4] introduced a three-level hierarchy for optimizing energy 

consumption and SLA violations. The hierarchy starts from the device level inside a 

server, proceeds to the server level and then encompasses the cluster level.  Decisions are 

based on the power status of each managed element at each level. Their idea illustrates 

the value of a hierarchical approach, but needs some modification to be applicable for 

large scale data centers which have many different types of applications and services 

running at the same time and are highly dynamic. 

Mola et al. [52] developed a management model for multiple AM collaboration and 

communication based on their active policies. They considered a hierarchical AM model 

and developed a message passing communication model between AMs, and also 

developed algorithms for handling the dynamic nature of AMs: their arrival/initiation, 

registration, and departure. Evaluation of algorithms is done on Eucalyptus [59] virtual 

cloud.  

Keller et al. [60] introduced a hierarchical approach for dynamic resource management 

for cloud systems in data centers. They leverage the topology of network to design the 

management system which makes use of autonomic managers to manage the placement 

and migration of virtual machines to optimize resources.  

In an autonomic data center, there may be hundreds of executing AMs with different 

goals (QoS, energy, security, and configuration). Kennedy et.al. [8] argues that the 

mechanism that defines interoperability between autonomic elements must be reusable 

and generic enough to prevent complexities. A standard means must be defined to 
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exchange context between autonomic elements. They have proposed a social 

metacognition level for AMs which monitors and controls the AM objectives. For 

example, this level determines what data should be collected about the MO and how 

often.   This meta level evaluates policies currently being applied by the AM.  

Anthony et.al. [5] identify collaboration as a key aspect of and suggest that AMs should 

be deigned-for-collaboration and that the lack of collaboration is a problem. Then they 

attempt to tackle the AM interoperability issues and define an interoperability service. 

The interoperability service keeps a database of registered AMs along with corresponding 

resources they manage and the scope of their management operation. A standard 

description language is defined for registered AMs to provide details on their 

management capabilities.  In addition, the interoperability service will detect potential 

conflicts and send messages to related AMs to, e.g. suspend or stop their activities. The 

proposed service has a hierarchical architecture, enabling conflict detection at global 

level (such as system wide security management) and local level (VM level resource 

management). 

2.3 Policy Based Management 

Policy Based Management (PBM) is a management paradigm that separates governing 

rules from the main functionality of the managed system.  The aim of PBM is to reduce 

management cost while making it adaptive. Administrative objectives are defined as 

policies, so that each AM has its own set of policies specifying how it is to manage its 

components. According to [12], a policy is a rule that defines a choice in the behavior of 

a system. A comprehensive review on policy based management system, its standards, 

and relevant techniques can be found in [12].  

A simple policy format is based on the Event-Condition-Action paradigm. 

  
On Event:  E1 

{ 

If (Condition: C1…Ci) 

      Do Action: A1,A2,…,Aj  

} with priority Pi 
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Such a policy means that when the event E1 occurs, if the set of conditions (C1,…,Ci) are 

verified, and if all policy with priority more than Pi have been run then execute the action 

set A1,…,Aj . The policies are provided to the AM at the time that the AM is initialized, 

but can be changed during the time that an AM is running.  This provides a level of 

dynamic management. 

In [22], some of the advantages of policy-based management over hard-coded 

management have been reviewed. First, PBM eases administration and maintenance (e.g. 

change). Management policies can be maintained in a repository, reviewed, and changed 

rather than trying to trace the hard-coded management logic spread across system. 

Second, the separation of policies and application logic makes for easier implementation 

since the policy author can focus on modeling policies without considering the specific 

application implementation. On the other side, the application developers do not have to 

be worried about how to implement management logic and application developers just 

need to provide hooks to make their system manageable, i.e. to enable self-management. 

Third, it is easier to share and reuse the same policy across multiple different applications 

and to change the policy. 

Bahati et al. [54] described architecture for autonomic management and demonstrated 

how policies are defined and mapped to their corresponding elements. In the context of 

policy based autonomic management, they categorized policies as: configuration policies, 

e.g. setting static configuration parameters, expectation policies, i.e. making sure that 

operational requirements are met, and management policies, i.e. dealing with action and 

information for managing the management system. They also defined architecture for the 

policy-based autonomous management system, in particular an Apache server. 

Mukhrejee et.al in [18] propose a Model-driven Coordinated Management architecture 

to make dynamic management decisions based on the energy benefits of different policies 

to handle events. They used a workload model, power model, and thermal model to 

predict the impact of different management policies. They defined a state-based model to 

dynamically decide the correct management policy to handle events, such as a new 
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workload arrival or failure of a cooling unit, which can trigger an increase in the ambient 

temperature. They considered the data center as a state machine, which has two states, 

normal (no SLA violation) and critical (happening of any critical events, like the ambient 

temperature reaching the redline temperature). A central management unit monitors 

events, chooses the best policy and makes decisions.  

 

2.4 Collaborative management  

One of the main questions arising in the proposed research is developing a model for 

collaboration and coordination between different autonomic managers; in this regard we 

dedicate part of literature review on research on collaboration between agents.  

Schneeweiss et.al in [41] has categorized coordination between distributed agents (in 

general and not limited to AMs) that are engaged in a distributed decision making process 

in different levels: 

 Data integration: A smooth exchange of state information between agents, in 

order to guarantee the data consistency between agents. Each agent makes 

decisions by considering the updated information they have about each other. 

 Reactive negotiation: A market style interaction between agents, which needs to 

have a coordinator agent, which has superior rights to set and control negotiation 

rules and facilitate the communication process between all other agents.  Every 

other agent reacts to the behavior of its neighbors based on rules regulated by the 

coordinator agent.  

 Integration through planning activities:  Hierarchical-like coordination between 

agents through top-down and feed forward bottom—up influence. A top-level 

agent determines top-down effects to agents beneath it.  The overall objective of 

an agent is defined by the top-level agent. This coordination model could be 

implemented in our proposed research in the way that the top-level AM could 

affect the behavior of the AMs beneath it. 
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As seen in Schneeweiss’s categories, the nature of coordination between agents increases 

through the levels.  In the first level, agents just share status information and in the last 

level, one agent can even change the behavior of other around agents. 

In [46], Baldassari et.al. described an autonomic cluster management framework. They 

defined three different types of agents: general agents (implemented per node), 

optimization agents, and configuration agents (implemented per implementation of the 

management framework). Each agent has a specific purpose and was designed to 

collaborate with others to achieve maximum performance of the cluster through load 

balancing.  The proposed management infrastructure is a hybrid of centralized and 

decentralized management and communication between agents is done via message 

passing. Generally, they investigated what the four key properties of self-management 

(self-healing, self-protection, self-optimization, and self-configuration) would be 

involved in a cluster management system.  A drawback of this approach is the complexity 

of task distribution between agents, which leads to much work for the optimization and 

configuration agents, which makes them un-scalable for large-scale environments. 

Thomas et.al [42] presented a management framework for the automated maintenance 

cycle in the computing cluster. This project was part of the Data Grid project [43]. The 

management framework tries to address the self-configuration and self-healing features 

of self-management. A number of management module e.g. job management, monitoring, 

fault recovery, and configuration management, have been defined where each has 

information as an output which is used as input for others. Their system gets 

configuration states from an administrator. On each machine different sensors collect 

monitoring information periodically; monitoring agents controls sensors.  Each machine 

has a goal state, which is stored in a configuration database and also has an actual state 

which comes from the monitoring agent.  These states are compared within the fault 

detection and recovery system for any mismatch, which then applies any necessary 

actions to fix them. The fault detection system has its set of rules (policy) on each node 

that these rules are checked. The fault detection system is very limited in policy-based 

functionality. In this work they try to address self-configuration and self-healing 

properties of general self-management features. Generally, there are a finite number of 
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hardware and software configuration states. The current state of hardware and software 

should been checked with these states. At the conceptually high level, there are numbers 

of non-autonomous management modules pipelined together that the actions are taken by 

just the installation module and the others just provide proper information. Therefore, 

there is no coordination between managers. 

A decentralized architecture, Unity, was introduced in [52].  Unity introduces a two level 

management model that tries to allocate optimized resources (servers) to different types 

of application environments running both batch type and interactive workload across the 

whole data center. A management element in each application (first management level) 

computes a resource level utility function based on the degree of adherence to an 

application specified SLA.  Resource level utility function data from all applications are 

sent to the second management level (central coordinator), which makes global decision 

(global utility function) on how much resource should be allocated to each application. 

Each application manager sends the U(R) resource utility vector to central resource 

arbiter to inform it the current status of the application. These values are in common 

values and comparable. They have deployed their framework for a prototype data center 

with two type of application with different utility function. The first application is 

transactional workload and second one handles long running batch workload. The 

resource arbiter allocates proper number of compute server to these applications 

according to their claimed current utility. The main goal of resource arbiter is to 

maximizing summation of all utility functions. Their work has scalability issues, since 

there is one global controller, which decides about all the other local controllers.  Adding 

a new application (new management agent) introduces challenges, e.g. changes in the 

coefficients of utility functions.  The authors even extended their research to encompass 

optimization over application performance and power consumption, by including a power 

cost model in the utility function and extending the central coordinator to calculate the 

optimal number of servers to be off [53].   
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2.5 Conclusion from the literature review 

Research on data center energy management has become an important area.  The large 

scale and dynamic nature of a data center cannot rely on management solely by 

administrators.  Instead, management needs to be done more automatically or, as we 

propose, more autonomically and leaving administrators to focus on defining behavioral 

policy.  Developing policy based autonomic management framework with focus on 

energy consumption is cornerstone objective of this research.    

A review of previous research in this area suggests that several issues require additional 

study:  

1. What are possible scalable management frameworks that deal with data center 

energy management and are also capable of dealing with dynamic nature of 

running systems, servers and applications? 

2. What are the characteristics of a management model, i.e. positioning of managers, 

topology of managers, and AM granularity across a data center? 

3. What constitutes an effective communication protocol model among managers all 

over a data center considering the dynamic changes in systems, i.e., elements to 

be managed. 

In this research we developed a general, configurable, and physical layout independent 

management system model. We specify the basic requirement for define the model and 

also major requirement to develop the management system for a data center. In Chapter 6 

we investigate the deployment and operation model of the management system.  

Generally speaking, the data center administrator as the developer of the management 

system needs to focus on managed object definition and autonomic manager granularity  

(where we need to put an autonomic manager), the topology of managers, and 

communication between managers.  Since this research focuses on policy based 

management system, the corner stone of the model is consistent set of policies for each 

managed object in the data center.  
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Chapter 3  

Logical Aspects of a Data Center Management Model 

There are many different objects in a data center, memory modules, network cards, 

servers, racks, virtual machines, applications, clusters of servers, etc.  These objects need 

to be managed.  In this Chapter we provide an overview of the management requirements 

of data centers and describe the essential elements of a management model. 

A common approach within the autonomic computing paradigm is to define a 

management component, as an agent, that is attached logically to each object as its 

manager.  In a policy-based approach, each autonomic manager (AM) would have its 

own policies and a control loop that monitors parameters of the object and enforces the 

policies in its policy set.  The ultimate goal of an AM is to make sure that its policies are 

enforced. Within the context of a data center, then, we would have multiple autonomic 

managers to manage diverse elements.  These AMs need to interact with each other; to 

cooperate together in order to meet the objectives of the data center.  One can think of the 

AMs and their relationships as a kind of management overlay network on top of the 

elements of the data center; this is illustrated in Figure 3-1. The actual position of a 

manager might be on single physical server or even distributed over number of servers. 

 

 

Figure 3-1. Autonomic Manager Overlay. 
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Key questions that must be addressed include: what metrics about the object should or 

can be monitored and what are possible actions that the management system could take.  

In Table 3-1 we illustrate some examples for number of common objects in a data center 

and identify some possible parameters and actions (keeping in mind that our interest is on 

energy aware data centers). Ultimately, these parameters and actions are useful for 

defining policies and steps that autonomic managers can take.   

Table 3-1. Example manageable objects and associated monitoring parameters and 

actions. 

Object 
Possible monitoring 

parameters 
Possible type of actions 

VM 
 Throughput 

 CPU utilization 

 Migration 

 Blocking 

RDRAM 
 Power state (active, nap, 

standby, power down) 
 Changing power state 

Server 

 CPU utilization 

 CPU power state 

 Server queue job length 

 Changing power state 

 Shutting server down; 
bringing it up 

 Invoking admission control 

Cluster 
 Node utilization 

 Number of waiting job  

 Shutting down nodes 

 Workload manipulation  

Rack  

 Number of available nodes 

 Number of running 
applications  

 Number of running system 

 Shutting down some nodes 

 Changing node CPU 
frequency is applicable 
 

Application 

 SLA violations 

 Number of active allocated 
servers 

 Percentage of idle servers 

 Number of jobs/requests in 
the application queue 

 Make a number of serves 
idle 

 Activating a number of 
servers 

 Blocking application (stop 
running and just queueing 
workload) 

 Change frequency of 
allocated servers 

Data center 

  Current power 
consumption 

 Current electricity rate 

 Current temperature  

 Data center utilization  

 Shutting down racks 

 Activate racks 

 Turning on/off a cooler 
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3.1 Data center management system requirements  

A distributed autonomic management framework for a data center entails a number of 

challenging questions.  We review these below and identify those that we focus on in our 

work:  

 Topology of the Autonomic Managers:  If we view AMs as an overlay network on the 

physical layout of data center, then in specifying the AMs we need mechanisms that will 

enable an administrator to specify the topology among the AMs when they are deployed.  

We will also need algorithms to ensure that the logical connectivity as specified by the 

administrator. For deployment, there will need to be a specific protocol to enable the 

AMs to communicate and exchange information e.g. SOAP [14].  There are, of course, a 

number of questions that arise in the definition of a topology of AMs.  How to 

decompose the management tasks between AMs? Is one AM arrangement better than 

others?  Can part of this be done automatically?  These questions are beyond the scope of 

this thesis, and likely will depend on the specific details and characteristics of each data 

center, its systems and the applications it runs.  Our goal is to provide the means whereby 

the administrator can specify a particular topology and the management operations to 

support those activities. However, beyond this model there are possibilities to examine 

the different management topologies and different management task decompositions. 

  

 Collaboration Strategies among the Autonomic Managers. Depending on the topology, 

the next question is how do AMs influence other AMs in the management system? How 

much information do they need to share?  What kind of information?  One AM may be 

privileged over some set of other AMs because its management scope is wider than the 

others or it has more information about its surrounding environment. Alternatively, all 

AMs could be acting the same, e.g. as in a peer-to-peer topology.  

 

 Life Cycle of Autonomic Managers. An autonomic manager has its own life cycle, which 

obviously corresponds to the life cycle of its associated MO/s. For example, for a cloud 

user renting compute nodes and running an application for a period of time, the 

corresponding AM is born and dies along with the application life cycle. One of the 

issues in multilevel management systems is that each level of the management model has 
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to have the ability to create AMs based on the respective MO life cycle, then introduce it 

to the management system, and then to destroy it at the end. 

Concerns to be addressed are around how an administrator can specify the topology of 

the autonomic managers, how strategies for coordination/cooperation can be specified 

and the algorithms needed to handle deployment.  We consider this, in particular, in 

managing a data center where there may be conflicting objectives around ensuring that 

performance SLAs are met while trying to save energy.  

3.2 Topologies and Coordination of Autonomic Managers 

If AMs are to have their own overlay network, the topology has implications on the 

coordination and communication among AMs and the decomposition of management 

tasks among AMs.  Since a data center is dynamic, there will be changes in the 

applications, systems, etc. that are running and so it is important that such changes are 

reflected appropriately in the topology of managers to ensure ongoing and consistent 

management.  Generally, one can consider a variety of topologies. 

 Hierarchical means that some AMs can monitor and influence or control the 

behavior of other AMs. In this case, lower AMs are considered as managed 

elements for the higher AMs.  AMs at different levels usually work at different 

time scales. In this topology the upper layer AM regulates and orchestrates the 

system by monitoring parameters of all of its lower level AMs (see Figure 3-2). 

The upper layer AM is privileged over lower layer AMs, and has the authority to 

control or manipulate some parameters of the lower level AMs. 

 Peer to peer entails AMs that can directly communicate with one another, 

exchange information, and have policies that take into account the information 

of other AMs. In this paradigm, all AMs are often equally privileged. 

 Indirect coordination between AMs involves an AM making changes in its 

MO/s which these changes are then sensed by other AMs causing them to 

perform actions. This case needs multiple AMs to be assigned to the MO/s. 

There is no direct communication between the AMs.  Since the MOs (e.g. 

application, services, and virtual machine) may change over time (e.g. is 
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finished or started), therefore topologies of corresponding AMs change on the 

go.  

 

 

Figure 3-2. AM Coordination: a) Peer to peer, b) Hierarchical, c) Indirect [40]. 

In our work, we are concerned about topologies of AMs that can support hierarchical and 

peer-to-peer organizations and variants.  We are not interested in supporting indirect 

types of interactions since these are very dependent upon the specific of the managed 

objects. 

3.3 Management system operating features  

An important property of our management system is that it arranges itself in automatic 

fashion based on information and constraints specified by the administrator. The 

administrator specifies a number of features, e.g. description for each managed element 

class, type of cooperation between managers, and configuration of the management 

system. After the initial start-up phase, the system should be able to configure itself 

dynamically. To do so, upon receiving a new request for running an application, the 

central scheduling algorithm needs to initialize a new autonomic manager, create 

associated operational information, deploy the application and configure the manager 

appropriately in the management system.  
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We aim to develop policy based management system, so the system needs to be designed 

in a way that the administrator can alter policies anytime, and be able to update the 

policies of any manager at any time within the data center. Communication between the 

management system and administrator’s policies is another required feature. 

Considering the above operational and configuration requirements, autonomic managers 

will need to have a core set of modules: policy handling, event handling, decision-making 

and communication. Managers will need to be able to handle policies, including updating 

a policy list as well as operating with policies, which will require some form of event 

handling.  Decision-making will need to carry out the analysis of events and policies and 

decide on actions.  Finally, managers will need to collaborate/coordinate among one 

another and will need to communicate with administrator components, and so a 

communication component is required.  
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Chapter 4  

Abstract Data Center Model 

In this Chapter, we introduce an abstract model of a data center considering different 

types of systems and workloads. Using this model, we then introduce the model of 

manageable objects that could fall within the scope of our management model. 

4.1. Data center model 

We can think of a data center abstractly as consisting of a number of compute nodes, and 

coolers laid out in some spatial configuration pattern with some network connections 

among them (multiple separate clusters are each collections of racks, with perhaps no 

communication between the racks in different clusters).  Each rack is comprised of a 

number of chassis, and within each chassis there are numbers of servers (compute 

nodes).2    

On top of this physical infrastructure, we have defined a System; our notion for a number 

of computes nodes inside a number of racks, which are capable of running the same type 

of jobs.  We assume that systems are defined in terms of a set of racks.  All compute 

nodes inside racks can be shared between different applications that run on that system. 

At any time, a node inside the system is either assigned to an application, is ready to be 

assigned to one or is idle (at rest or powered down).  We assume that we could have 

computer nodes that may have different computing power, and that some CPUs may have 

multiple frequency levels. Managers can use dynamic frequency scaling to manage 

energy consumption. 

                                                 

2 This is the level of granularity of hardware that we will assume, but it is straightforward to extend the 

mode to include additional elements, such as network switches, network interface cards, processors, 

memory, etc. 
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Application behavior and workloads are key elements in data center operations and have 

a direct impact on the energy consumed by a system and, hence, the data center.  In our 

model, we consider three broad classes of applications:  

1) Interactive Applications: provide access to users across the Internet/intranet, such as 

web servers, transactional servers, etc.  These applications typically process short 

requests (transactions) and fast response time is main objective of these types of 

applications.  We model this as an InteractiveSystem.  

2) Enterprise Applications:  applications associated with different business units where 

the applications may require large amounts of secure, reliable data transfer and high 

availability, running 24/7, e.g. a human resources system. Workloads in these kinds of 

application vary – from short requests/jobs to much longer activities, e.g. report 

generation.  The key characteristic is that these systems typically run for long periods. 

3) High performance computing (HPC) Applications: scientific or other applications 

which mostly need multiple CPUs to do highly computational tasks. 

With these concepts in mind, we can think of a data center as a set of systems running 

different type of workloads, so our logical view of a data center is modeled as in Figure 

4-1. 
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Figure 4-1. Data Center Abstract Model 

We make these notions more precise in the following. 

Definition  1.  A Data Center, DC, is defined as DC = <Systems, Racks, 

ThermalModel> 

 where: 

 Systems = { Sys1, Sys ,… , Sysq} is a finite set of systems in the data center; 

 Racks = {R1 , R2 , …,  Rk}, where Ri = {ri1, ri2 , ri2 ,…, rir}; each Ri is a distinct type 

of rack, and each rack is a set of chassis ri= {ch1, ch2, ch3, … ,chn}  and each 

chassis chj={n1, n2, n3..., nB} is a set of compute nodes. 

Definition  2.  The ThermalModel for a data center is defined as <coolerList, RedTemp, 

ThermalMap> 

where: 

 coolerList= {cl1, cl2…,cln} each cooler is represented as an CoP_Equ equation. 

Cop_Equ is an equation modeling the coolers. [15] The output of the equation is 
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the CoP (Coefficient of Performance) parameter of the coolers which indicates 

how much cooler removes heat by consuming a one Joule heat. Therefore, the 

higher the COP value is, the more efficient the cooling system is. The input to the 

CoP equation is the inlet temperature to the cooler. 

 RedTemp: is an integer that represents the maximum temperature that the data 

center can tolerate, which depends on type of hardware and servers in the data 

center. 

 ThermalMap: is an n*n matrix of number of chassis and each entry determines 

heat recirculation of that entry to other chassis (see Data Center Energy 

Consumption). 

 

The Thermal Model models the thermal behavior of the data center. Our thermal model is 

based on the work illustrated in [15]. 

4.2. System Definition 

A system represents a number of compute nodes running the same type of workload 

belonging to specific applications or users. Our data center model defines different types 

of systems based on general categorization of workloads. Three different types of 

systems are defined: enterprise systems, interactive systems, and high performance 

computing systems (HPC).   

Each system needs to have its own resource allocation algorithm in order to allocate 

nodes to workload and also its own scheduling algorithm for job scheduling. First, we 

need to define different types of jobs and workloads and the required parameters for 

representing them.  

4.2.1  Jobs and Workloads 

We introduce our definitions of jobs and workloads for each of the systems in the 

following.  
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HPC jobs require a number of nodes to run and are commonly CPU intensive. The 

service level agreement (SLA) parameter for each HPC job, if it has one, is its deadline, 

which is its maximum waiting time before it starts to run plus its required running time.  

We define an HPC job as follows. 

Definition  3.  An HPC job, h, is defined as <duration, utilization, nodes, deadline>. 

where,  

 duration is the expected length of execution, 

 nodes is the number of compute nodes needed, 

 utilization is average node utilization, 

 terminationTime is the target time that the job should be in the system more than 

this time means this job has SLA violation.  

 

 In an HPC system we consider an SLA to be violated if a job finishes past its deadline.  

We can then define the workload associated with an HPC system as follows: 

Definition  4.  An HPC Workload, HPCW, is defined as HPCW = {( job1, t1) (job2, t2),…, } 

where  

 HPC jobi is an HPC job  

 ti is its arrival time. 

 

Enterprise and interactive systems run similar types of jobs which are composed of 

number transaction-type requests. 

Definition  5.  A webJob is defined as <arrivalTime, numberOfRequests>, 

where: 

 arrivalTime is the arrival time of the job, 
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 numberOfRequests is the  number of requests within that job. 

 

We assume that enterprise applications can run on varying number of compute nodes and 

can expand on number of nodes depending on workload and SLA.  We assume that there 

are a maximum and minimum number of compute nodes that can be used to run the 

enterprise application; these may vary dynamically depending on the application’s 

workload and SLA requirements. Note that unlike an HPC system, each enterprise 

application has its own work.  Enterprise applications may differ depending on how 

computationally intensive their workload is. To model this feature of workload, we use 

computeIntensity parameter. As an example of “compute intensity”, a computeIntensity = 

(1000,1) means that the application will consume one compute node, i.e., fully utilize (at 

its primary frequency level or MIPS value) in order to execute 1000 requests. 

 

Definition  6.  An enterprise application is defined as < startTime, duration, 

computeNodes, computeIntensity, workload, SLA, terminationTime > 

where: 

 startTime is the time to start running the application. 

 duration is the length of time that the application is set to run; we assume that 

if duration is 0, then the application is to run indefinitely. 

 compute Nodes= <min, max>, where min is the minimum number of compute 

nodes needed to run this application and max is the maximum number that can 

be used.  We assume that the management system can dynamically increase or 

decrease the compute nodes it uses for an enterprise application; this is done 

through the resource manager (see below).  If min = max, then the application 

makes use of a fixed number of compute nodes and is assumed not able to 

change. 

 computeIntensity = <maxNumberOfRequests, numberofBasicNode>,  which 

defines the CPU intensity of the workload of this application. The 

maxNumberOfRequests and the numberofBasicNode are used for performance 
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modeling where maxNumberOfRequests defines the number of requests that 

fully utilize a numberofBasicNode of basic computes node. In our terminology 

a basic compute node refers to a server whose computational power has been 

benchmarked. We prorate the computing power of other servers with this 

basic node according to their CPU power comparison. 

 workload = { w1, w2 , w3,…} , where wi  is a webJob. 

 SLA = <timeThreshold, percentage, EpochTime> if the percentage of 

webJobs requests completed within a EpochTime has response time greater 

than the timeThreshold, then an SLA violation will be reported. 

 terminationTime: it could be 0 if there is no expected time to end, else it is 

expected duration of running application. 

Therefore, an Enterprise Workload is a number of enterprise applications, in which they 

start at their own start times and their workload may have different arrival times. Each 

application has its duration. 

Definition  7.  An Enterprise Workload is defined as < app1, app2,  app3, …, appn  ,…,  > 

Where 

 appi: is an Enterprise application. 

 

An interactive system has the same type of workload as an enterprise system (transaction 

type workload). Unlike an Enterprise System, where the applications to run are 

“defined”, an Interactive System has a workload which describes the arrival time, 

duration and characteristics of each of the applications that are to be executed on the 

system (stream of applications).   

Definition  8.  An Interactive Application is defined as <startTime, duration, 

computeIntensivity, nodes, appWorkload, SLA > 

where:  

 startTime is the time to start running the application. 
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 duration is the expected length of execution of the application. 

 computeIntensity = < maxNumberOfRequests , numberofBasicNode > is the 

maximum number of requests that fully utilize numberofBasicNode of the 

basic compute node. 

 nodes= <min , max> where min is the minimum number of compute nodes 

needed to run this application and max is the maximum number that can be 

used.  If min = max, then the application makes use of a fixed number of 

compute nodes and is assumed not able to change. 

 appWorkload = {w1, w2 , w3,…} , where wi  is a webJob. 

 SLA= <ERT, percentage,EpochTime> ERT is the maximum expected 

response time for a request.  If the percentage of requests completed within a 

EpochTime has response time greater than the ERT, then an SLA violation 

will be reported. 

To define Interactive system we need to define the workload of interactive applications. 

Interactive Workload describes the sequence of interactive application. 

Definition  9.  An Interactive Workload is defined as <app1, app2, app3,…,appn …> 

 where  appi  is an Interactive application. 

4.2.2 Systems 

Now that we have defined our types of workload, we can define a system. As mentioned, 

a system will have its own scheduler and resource allocator and racks to run its 

workloads. 

Definition  10.  A system Sys is defined as <Type, Workload, Queue, ResManagers, 

Schedulers, Racks> 

where 

 Type defines the kind of system: HPC, Interactive or Enterprise.  
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 Workload defines the workload of the system:  Workload ε {Interactive 

Workload, Enterprise Workload, HPC Workload}.  The workload for a type 

of system is comprised of jobs/applications to run on that system; these are 

described in the next section. 

 Queue is the queue holding jobs to be executed by the system. 

 ResManagers: is a set of system level resource allocation/management 

modules, each of which embodies a resource management strategy.  Each RM 

ε ResManagers is in charge of managing and allocating compute resources in 

the system and there must be at least one.  We assume that an RM has the 

following capabilities: 

o Resource offering: allocates compute resources to the applications, 

o Resource discovery and monitoring: handles requests from the 

management system to increase or decrease the computational nodes 

assigned to an application, assuming that the application allows it (min 

< max),  

o  Resource selection: decides on the compute nodes, chassis, and racks 

that are to become idle (sleep) or make active depending requests from 

the management system. 

o Informing management system: informing the management system 

about the arrival of a new job. 

Hence, we assume that the RM active in each system interacts with the 

management system.  We assume that one or more resource managers are 

defined by the administrator at the initialization phase of the system. A system 

may have more than one resource manager, though only one can be active at 

any time.  The management system can change which resource manager is 

active in a system.  Each system has its own resource management strategies. 

 Schedulers is a set of schedulers, Sched ∈ Schedulers, where Sched 

implements a scheduling algorithm used for choosing applications or jobs to 

run, typically those that have been queued, i.e., in Queue, and are waiting to 

execute.  We assume that a system can have more than one scheduler and the 
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management system can change which scheduler to use.  Again, only one 

scheduler can be active at a time. 

 Racks {R1 , R2 , …,  Rk} is the list of racks that comprise  the system. 

A resource manager is associated with each system.  We assume that it runs on one of the 

compute nodes in the system. Upon arrival/departure of any application/job, the system 

invokes its associated resource allocation algorithm.  The primary tasks that a resource 

manager, and in general any resource allocation algorithm faces, can be divided into four 

categories: resource modeling and description, resource offering and treatment, resource 

discovery and monitoring, and resource selection. A resource allocation algorithm must 

take into consideration the application’s requirements e.g.  its SLA requirements. Having 

this in mind, we can expect that resource manager is given some description or 

characteristics of the application in order to allocate servers to it; we elaborate on this in 

Chapter 6.  

We also assume that any resource change in the system associated with any application 

resident in the system is done through the resource manager.  Resource allocation also 

means allocating/releasing compute nodes, racks, and chassis at the request of the 

management system.  Any application in the system may also ask for resource 

allocation/release.  Figure 4-2 illustrates the resource manager module associated with a 

system. A resource allocation request from an application is sent to the resource manager, 

which then allocates a number of compute nodes to the application. 

Upon arrival of new application inside a system and resource allocation for that 

application by resource manager; information regarding new arrival application (see 

Chapter 6 for more detail) will be sent to the management system.  The management 

system will use this information first to set up an autonomic manager for the new MO 

and then, if necessary, to configure the manager as an example configuring SLA sensors 

(definition of will be explained in Definition  13. ) 
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Figure 4-2.  Resource management in a system. 

The following illustrates two resource allocation algorithms; the first one chooses a node 

with minimum temperature and the second one chooses a node with minimum thermal 

effects on the other nodes of the system according to data center thermal model. In doing 

so, we need to have the list of available compute nodes and their CPU utilizations; the 

node with minimum CPU utilization is the coolest place.  

Algorithm 1. Resource Allocation Algorithm: Choose Coolest Node. 

Input parameters: NodeList 

1. begin 

2.    return findMinCPU(NodeList) //Find the node with minimum CPU utilization 

3. End 

 

To choose the node with minimum thermal effects on others; we need to have the thermal 

model of data center (i.e. layout specific model) based on the model we compute thermal 

effect of all available nodes and then choose the one with minimum thermal effect on the 

others is the candidate compute node. 
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Algorithm 2. Resource Allocation Algorithm: Choose Node with Least Thermal 

Effect. 

Input parameters: NodeList 

1. begin 

2.         for (Node n:NodeList) 

3.         begin 

4.               therm = thermalEffect(n, thermalModel) // compute thermal effect of 

5.                 // node n 

6.              //update the minEffectNode to point to minimum thermal effect node so far 

7.               updateMin(therm, minEffectNode, n)   

8.         end 

9.         return minEffectNode 

10. End 

There can be other types of resource allocation algorithms which the administrator can 

define with definition of a system. 

We assume that resource managers in any of the data center systems inform the 

management system about any new application (job) object in the system. In doing so, a 

resource manager needs to have an extra service besides its core task (i.e. resource 

allocation) in order to inform the management system about the arrival of new object or 

even departure of an object.  

A scheduler is also assumed to be associated with each system. In our model, we assume 

that any job scheduling in the system is done through the scheduler. The scheduler 

decides on the job in queue of the system that is to run next.  Figure 4-3 illustrates the 

scheduling module within a system. 

 



 

39 

 

Figure 4-3.  Scheduling in a System. 

There can be a variety of scheduling algorithms (First Come First Served, Short Job First 

Served) and they can vary from system to system.   

4.3. Manageable Objects in a Data Center 

Given above definitions, we can now define the managed elements in the data center 

relevant to our model. Each element in the model can be seen as an object, which is 

potentially manageable – not that all have to be managed. In practice, the different kinds 

of managed objects and classes will depend on the administrator; the management system 

should be able to let the administrator define his/her own managed object classes and 

corresponding sensors and actuators; the definition and creation of sensors and actuators 

is beyond the scope of this thesis, but we will assume a number of sensors and actuators 

in order to help define our management model and for use in our simulator and examples. 

Before getting to the managed objects definition, we review our definition (Definition 1) 

of a data center. 

 

A Data Center, DC, is defined as DC = <Systems, Racks, ThermalModel> 

 where: 

 Systems = { Sys1, Sys ,… , Sysq} is a finite set of systems in the data center; 



 

40 

 Racks = {R1 , R2 , …,  Rk}, where Ri = {ri1, ri2 , ri2 ,…, rir}; each Ri is a distinct 

type of rack, and each rack is a set of chassis ri= {ch1, ch2, ch3, … ,chn}  and 

each chassis chj={n1, n2, n3..., nB} is a set of compute nodes. 

 ThermalModel = <coolerList, RedTemp, ThermalMap> 

 

Given our definition of a data center, and our definitions of systems, we can define 

different classes of managed objects. Each category of managed object in a data center 

would have their own set of sensors and actuators, for example, given two different kinds 

of racks with different architectures we would define two different classes of managed 

objects with different sets of sensors and actuators. So, for a data center DC, we can 

define the associated sets of manageable objects. The Data Center Set of Manageable 

Objects (DCSMO or SMO) is defined as follows:  

Definition  11.  For a given Data Center, DC, the Set of Manageable Objects MODC = 

{MODC, MORacks, MOChasses, MONodes , MOSystems, MOApps}. 

 where: 

 MODC = {moDC },  moDC  is a managed object representing the entire data 

center; 

 MORacks = MOR1 U MOR2 U … U MORk  , where 

o MORi =   {mori1, …, morir }, where Ri = {ri1, ri2 , ri2 ,…, rir}, and morij is 

the managed object for rack rij. 

o We assume that the sensors and actuators are the same for all racks of 

the same type, i.e., all of the racks in Ri have the same sensors and 

actuators. 

 

 MOChasses = MOCh1 U MOch2 U … U MOChk  , where 

o MOChi =   {mochi1, …, mochir },  and where Ri = {ri1, ri2 , ri2 ,…, rir} 

and rij = {chi1, chi2, chi3, … ,chiCi} and mochij  is the managed object 

for  chij. 
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o We assume that the sensors and actuators are the same for all the 

chasses in the same kind of rack, i.e., all of the chasses in the racks in 

Ri have the same sensors and actuators. 

 

 MONodes = MOn1 U MOn2 U … U MOnN  , where 

o MOni =   {moni1, …, monir }, and 

o where nij ∈ cht  for cht  ∈ ri∈Ri and monij is the managed object for 

node   nij. 

o We assume that the sensors and actuators are the same for all compute 

nodes in racks of the same type, i.e., all of the compute nodes in racks 

in Ri have the same sensors and actuators. 

 MOSystems = {moSys1, …, moSysq }; defines a set of manageable objects for all 

type of systems in the data center. Sysi ε Systems = {Sys1, Sys2,… , Sysq}, set of 

all systems in the data center; we also assume that moSysi  manages the queue 

in system Sysi. 

  MOApps = MOASys1 U MOASys2 U … U MOASysv, where for each Sysi ε Systems = 

{Sys1, Sys ,… , Sysq},  MOASysi is defined as follows: 

 

o If Sysi is an HPC System, then MOASysi = {}; that is, there are no 

managed applications in an HPC system3.   

o If Sysi is an Enterprise System, with manageable applications 

EnterpriseAppsi = {EntApi1, … EntApin, …} , then MOASysi = {moEntApi1  

…, moEntApiq  } where moEntApij is the managed object for application  

EntApij.  That is, the managed objects associated with an enterprise 

system are the managed objects for any of the applications it can run 

that are manageable.  . 

                                                 

3
 In the current model, we assume that none of the HPC applications are managed since it is not clear what 

“managing” an HPC job would entail.  This does not have to be the case and this definition can be extended 

in a fashion similar to Enterprise and Interactive applications 
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If Sysi is an Interactive System with a set of manageable applications, 

InteractiveAppsi = {IntApi1, … IntApin, …} , then MOASysi = {moIntApi1  …, 

moIntApiq  } where moIntApij is the managed object for application  IntApij.  

That is, the managed objects associated with an interactive system are the 

managed objects for any of the applications it can run that are 

manageable.   

 MOcoolers =  {mocl1, …, mocln }; defines a set of manageable objects for all 

type of coolers in the data center. 

 

 

The previous definition describes the manageable objects within our data center model. 

Compute nodes are smallest supported object in the data center model. Considering that 

the focus of this research is management and  energy consumption, in order to model a 

compute node, beside the computing capabilities of the compute node, i.e. MIPS4, we 

need to consider its power features and in any supported alternative CPU frequencies (if 

any). The following defines the characteristics of a compute node definition in our model. 

Definition  12.  A Compute Node object is defined as <MIPS, FullLoadPowerConsumption,  

ZeroLoadPowerConsumption, StandbyPower> 

where  

 MIPS = {mips1, mips2,…,mipsL} are the MIPS levels for each processing 

frequency level of the CPU; we assume L levels. 

 FullLoadPowerConsumption  =  {powFul1, powFul 2,…, powFul L} is the full 

load power (i.e. power consumption when CPU is 100% utilized) for each level of 

CPU frequency.  

 ZeroLoadPowerConsumption =  {powZero1,  powZero 2,…, powZero L} is the 

zero load power (i.e. power consumption when CPU is 0% utilized) for each level 

of CPU frequency.  

                                                 

4
 Million Instructions per Second. 
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 StandbyPower: Compute node standby power consumption. 

 

While one can deal with individual managed objects in a management system, it can 

quickly become overwhelming in handling many different managed objects and, in turn, 

potentially many different managers.  We prefer to consider classes of managed objects, 

that is, managed objects in the same class have similar characteristics and in terms of 

management, can be dealt with in a similar fashion, e.g. the same5 sensors, actuators, 

autonomic manager.  We define a managed object class is as follows: 

Definition  13.  A Managed object class MO_Class is defined as <MOs, Events, Sensors, 

Actuators, MOProperties>  

where: 

 MOs is a set of managed objects. 

 Events = {evn1, evn2 ,…., evnn} is a set of events for the managed object class 

that can be raised by each of the managed objects in MOs. 

 Sensors = {sen1, sen2 ,….,senn} is a list of sensors for the managed object class 

that are available in each of the managed objects in MOs. 

 Actuators = {act1 , act2,…, actm} is a list of actuators (list of functions) for the 

managed object class that are available in each of the managed objects in 

MOs. 

 MOProperties: is a finite list of tuples <Paramameter, Value> 

where:  

 Parameter: is the name of a property or parameter  

 Value: is an associated value of the parameter which can be 

changed or set. 

                                                 

5
 “Same” in this context means that identical properties and behaviors, not the same executable; e,g, to 

objects may have the “same” manager where each has its own executable from the same image and so 

specifics to each object may be different. 
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The above is a general definition of a managed object class.  

Our definition of each type of application is included specification of service level 

agreement (SLA). We assume that for each type of application (MO class); there are 

sensors that provide an evaluation of the SLA for that application. To evaluate SLA 

violations we define parameters that are used to determine whether there is an SLA 

violation or not.  The parameters for each type of application are:  

 HPC:  duration, arrival time, termination time: the SLA for an HPC job is 

violated when duration plus arrival time of that job is greater than its 

termination time.  

 Enterprise: timeThreshold, percentage, epochTime:  An SLA violation 

happens for an enterprise application when the percentage percent of webJobs 

of the application workload response time exceeds the timeThreshold 

expected response time in last epochTime.   

 Interactive: expected response time (ERT), percentage, epochTime: the SLA 

for an interactive application is violated if for the percentage percent of jobs 

the response time exceed the ERT in last epochTime. 

Considering our model of data center and the classes of manageable objects, we can 

define a set of classes associated with each set of manageable objects, for the data center. 

Following definition defines the set of managed object classes. 

Definition  14.  For a given Data Center, DC, and Set of Manageable Objects MODC = 

{MODC, MORacks, MOChasses, MONodes , MOSystems, MOApps, MOcoolers }, the Set of 

Managed Object Classes, MOClassesDC, of DC is defined as = CMODC U CMORacks  

U CMOChasses  U CMOnodes  U CMOSystems  U CMOApps U CMOcoolers. 

 where: 

 CMODC = <MODC, EventDC, SensorDC, ActuatorDC, PropertiesDC> is a class 

representing  data center objects; where SensorDC, ActuatorDC and 

PropertiesDC are, respectively, the set of sensors, actuators and properties 

associated with a managed data center. 
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 CMORacks= CMOR1 U  CMOR2  U … U  CMORk  where CMORi = <MORi, 

EventRi, SensorRi, ActuatorRi, PropertiesRi>  is the class representing MORi 

={mori1, …, morir }, and where  MORacks = MOR1 U MOR2 U … U MORk . That 

is, each set of managed objects representing the same kinds of racks are 

instances of the same class, 

 CMOChasses = CMOCh1  U CMOch2  U … U CMOChk}  where CMOChi = <MOChi, 

EventChi, SensorChi, ActuatorChi, PropertiesChi>  is the class representing MOChi 

=   {mochi1, …, mochir } in which MOchi ε MOChasses. 

 CMONodes  = CMOn1  U CMOn2 U …  U CMOnN where CMOni  = = <MOni, 

Eventni, Sensorni, Actuatorni, Propertiesni>  is the class    representing MOni 

={moni1, …, monir }in which MOni ε MONodes.  

 CMOSystems = CMOSys1  U CMOSys2 U …  U CMOSysv  where CMOSysi  = 

<MOSysi, EventSysi, SensorSysi, ActuatorSysi, PropertiesSysi> is the  class 

representing moSysi  ∈ MOSystems = {moSys1, …, moSysq }.  We assume that 

there is a class for each of the managed objects representing each of the 

systems, i.e., that each system corresponds to a single class.  This can be 

broadened to where there are fewer classes and multiple systems have 

managed objects in the same class. 

 CMOApps=  CMOApp1  U CMOApp2  U …  U CMOAppz  where CMOAppi = 

<MOAppi, EventAppi, SensorAppi, ActuatorAppi, PropertiesAppi> is the class 

representing  MOAppi where  MOAppi is a subset of MOApps = MOASys1 U 

MOASys2 U … U MOASysv, which are the managed objects for managed 

applications in each of the systems (Sysi).  For MOApp1, …, MOAppy we have 

MOAppi ∩ MOAppi  = ∅, that is, the managed object representing a managed 

application is from a single class and no managed application objects are from 

more than one class.  Note as well, that this definition does not require all 

applications to be managed. 

 CMOcoolers= CMOcl1 U  CMOcl2  U … U  CMOclk  where CMOcli = <MOcli, 

Eventcli, Sensorcli, Actuatorcli, Propertiescli>  is the class representing MOcli 

={mocl1, …, moclr }, and where  MOclooers = MOcl1 U MOcl2 U … U MOclk . That 
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is, each set of managed objects representing the same kinds of cooler are 

instances of the same class. 

 

Notation: We will often refer to an object or component of the data center as belonging to 

a class rather than specifically referring to its corresponding managed object.  As well, 

for a given data center DC we will let EventsDC denote the set of events from all classes of 

managed objects in DC, let SensorsDC denote the set of sensors from all classes of 

managed objects in DC and let ActuatorsDC denote the set of actuators from all classes of 

managed objects in DC.  

 

The classes of managed objects are important since in our management model we will 

assume the existence of an autonomic manager associated with each class; more 

precisely, one that can be instantiated with the details of a managed object from that 

class.  This means that rather than a multitude of autonomic managers, e.g. for each 

managed object, we have classes and managers for groups of objects.  For example, a 

particular kind of virtual machine would be associated with a class and on deployment an 

autonomic manager with the necessary sensors, actuators and properties of that virtual 

machine would be deployed.  Other virtual machines of the same type would also be able 

to have a manager formed similarly. 

4.4. Summary 

In this Chapter we have provided our abstract model of a data center and corresponding 

to that model we have related managed objects and for each class of managed object we 

have defined a corresponding class with the definition of a finite set of sensors and 

actuators. By having this model of data center and classes of managed objects, we will be 

able to define our management model which we do so in the next Chapter.   
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Chapter 5  

Management System Model 

In Chapter 4, an abstract model of data center was presented. Our focus in this Chapter is 

on the development of a framework for specifying policy based autonomic management 

systems for data centers that is based on the model introduced in Chapter 4.  In this 

Chapter, we introduce our management framework; we first discuss the principles of the 

management system and then define our model.  

5.1. Management System Principles 

We assume that the management system can operate in any data center, with various 

management levels and different locations of autonomic managers (AMs). The 

management system is policy based; this means that each manager has its own set of 

management policies governing associated managed objects and has policies for dealing 

with the rest of management system. 

We assume that policies are defined as Event-Condition-Action (ECA) policies and the 

set of policies associated with an AM are referred to as its Policy Profile; an AM may 

have multiple policy profiles associated with it, but only one is active at a time.  A set of 

policies can be altered by an administrator or could change based on a particular system 

situation.  

When a system starts or when applications or jobs are deployed, autonomic managers 

may also be initiated or existing autonomic managers could be assigned to manage that 

application.  The conditions on which systems and applications are managed is part of the 

configuration information provided by the administrator to the management system.  The 

models in the previous Chapter and in this Chapter provide the core of this configuration 

information required in our management system.  This Chapter specifically focuses on 

the management system model. 
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When autonomic managers (AMs) need to be deployed, the management system must 

ensure a number of things.  Each AM in the management system first needs to be 

initialized, including getting its associated set of active policies and knowing the other 

AMs that it needs to communicate with, e.g. in a hierarchical organization this could be 

the parent.  Once an AM is initialized, it can activate its sensors and actuators, establish 

its communications with other AMs and start to execute based on the MAPE loop.  The 

management system must also terminate AMs when applications end.  It must also ensure 

that communication among the remaining AMs takes place according to the overarching 

AM topology or identify a problem.  In Chapter 6, we describe algorithms to support 

these activities consistent with our models.    

5.2. Definition of a Managed Data center 

A managed data center is a data center (as defined in Chapter 4) which has a management 

system associated with it. To form the management system, first we need to know which 

objects need to have a manager.  From Chapter 4 we have a definition of a “data center” 

and the kinds of “managed objects” in the data center. Again, these “managed objects” 

are assumed to be the kinds of objects that can be managed within the scope of that data 

center model; the objects that are actually managed are specified by the administrator and 

are assumed to be a subset of the “managed objects” defined. 

In this section we aim to define the model of our management system. Our first step is to 

associate a manager class with a class of managed objects.  

Definition  15.  For a given Data Center, DC, and MOClassesDC of DC = CMODC U 

CMORacks  U CMOChasses  U CMOnodes  U CMOSystems  U CMOApps U CMOcoolers, we 

define the set of Autonomic Manager Classes of DC, AMClassesDC, to be = {Ami | 

Ami is a class of autonomic managers associated with CMOi where cmoi ε 

MOClassesDC}. 

Abstractly, we associate a class of autonomic managers with each class of managed 

objects.  Instantiating a managed object would (assuming that the object was to be 
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managed) result in the instantiation of an autonomic manager.  Pragmatically, one can 

think of a class of managers to be a parameterized autonomic manager that is assigned 

specific details about an object to manage when it is initialized.  As well, the 

management system may or may not contain managers for all MO classes; this depends 

on the administrator and the architecture of the management system.  

Managers in the management system can be configured to interact with one another. We 

could leave the administrator to explicitly define the communication among managers, 

but this is intractable in a data center where there may be hundreds of managers.  Further, 

we would like to automate this as much as possible.  This is the notion of an autonomic 

manager topology.   For a specific set of managers their communication represents a 

single topology. As managers change, so does the topology.  Hence, we need a general 

model of topologies for a data center; we do this in terms of manager classes. 

A management pair in the management system has two manager classes and priority. The 

pair of classes means that managers in those classes can communicate with each other. 

The priority determines which Autonomic Manager Class (AM class) in the pair is a 

privileged, if there is one. AMs of the privileged class can be thought of as “managing” 

AMs of the other AM class. If there is no privileged AM class, then AMs in the two 

classes are essentially peers. A privileged AM can, in essence, take actions to influence 

the behavior of an AM in the other class, including, for example, changing the policies of 

the subordinate AM.  These actions are done through communications between the 

managers; we will elaborate on this later.  

Definition  16.  For a given Data Center, DC, the Set of Managed Object Classes, 

MOClassesDC,, and a Set of Autonomic Manager Classes, AMClassesDC, a 

Management Pair set, AMP, is defined as:  

AMP= {(Ai, Aj, priority)| (Ai and Aj  ∈ AMClassesDC  and priority ∈ {0,1}} 
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For example, if (AM1, AM2, priority) is a management pair, then if the priority=1 that 

means that AMs of AM1 class are privileged can change the settings or behavior of AMs 

of AM2. 

 

A management topology is then defined as a set of manager classes and the management 

pair set corresponds to vertexes and edges in a graph. 

Definition  17.  For a given Data Center, DC, Set of Managed Object Classes 

MOClassesDC and a Set of Autonomic Manager Classes, AMClassesDC, a 

Management Topology TDC for DC is a graph G of <V, E>  

Where: 

 V= {vi| vi ∈ AMClassesDC }. 

 E = {e| e = {(Ai, Aj, priority)| Ai and Aj  ∈ AMClassesDC }}  

A management topology actually defines the relationship between different management 

classes attached to managed object classes.  In specifying the topology, one specifies 

constraints on the relationships that can occur between different managers.  In practice, 

this topology will be instantiated during data center administration and operations 

resulting in a graph connecting managers that is consistent with this topology.  

Having defined a management topology, data center, classes of managed objects, and 

classes of managers, we can define a managed data center, as follows: 

Definition  18.  A managed data center MDC is defined as <DC, T> 

Where: 

 DC = <Systems, Racks, ThermalModel>, is a data center with Set of 

Managed Object Classes, MOClassesDC, Set of Autonomic Manager Classes, 

AMClassesDC, 

 TDC is a management topology for DC.  
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The definition of a Managed Data Center defines the management framework.  In 

practice, depending on the administrator, within that framework not all managed objects 

need to be considered.  That is, one can think of the framework as defining what can be 

managed and relationships among management elements, while what is actually managed 

can be dictated by the administrator. Abstraction level in the management system is 

illustrated in Figure 5-1. At the first level, we have set of possible manageable objects; 

here we assume that these are objects which are to be managed as well as autonomic 

managers that have been or could be defined.  We assume that these are grouped into 

classes (the second level).  This allows objects with similar management properties, e.g. 

sensors, actuators, to have a single definition and that properties of a specific object can 

be instantiated.  Third level is the autonomic management class level; each AM class 

corresponds to one or more MO classes.  This allows an autonomic manager to be 

instantiated, i.e., its properties specified, when an object is instantiated.  Allowable 

connections among autonomic managers are defined as autonomic manager pairs at the 

next level.  The connections between classes of autonomic managers define the 

autonomic manager topology of the management system. 

 

 

Figure 5-1. Abstraction Level in the Management System. 
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5.3. Policy based management 

Our aim is to have a policy-based management system.  In a policy-based management 

system, decisions regarding actions are expressed as a policy. In this section we define 

policies associated with a managed data center.   

For our definitions of policies, we need relational and conditional expressions.  For this 

thesis we adopt the general notion of these expressions as in many programming 

languages.  We assume that a relational expression is a Boolean expression of the form 

op1 or of the form op1 relop op2, where opi is an expression that evaluates to a common 

value (integer, float, Boolean, etc.) and relop is a common relational operator (e.g., =, <, 

>, etc.); we assume that a single expression without a relational operator evaluates to a 

Boolean value.  A conditional expression is then a finite set of relational expressions, 

which we interpret as a conjunction of those relational expressions.   More general forms 

of conditional expressions can be accommodated, but this suffices for our current model.  

As described earlier, we assume that we have Event-Condition-Action policies.  We 

define a policy to be: 

Definition  19.  For a given Data Center, DC, Set of Managed Object Classes 

MOClassesDC and Set of Autonomic Manager Classes, AMClassesDC,  a policy Plcy is 

defined as < E, C, A>  

        where: 

 E: is a list of events, <event1, …, eventn>, where eventi ε EventsDC. 

 C: is a condition expression  {c1, …,cm}, where if ci = op1 or ci = op1 relop 

op2, then op1, op2  ∈  SensorsDC.  

 A: is a list of actions, <act1, …, actp>, where acti ∈ ActuatorsDC. 

While we can represent a policy as a triple (<E,C,A>), policies are often written in some 

stylized language, e.g. Ponder [47].  This provides a useful human-oriented form for 
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expression (and can often be used to provide other additional information).  We adopt a 

stylized form for expression of policies in this text to aid readability: 

Given a policy <E,C,A> = <<event1, …, eventn>, {c1, …,cm}, <act1, …, actp>>, we can 

represent it as: 

On Event: event1 or …or eventn  

If (c1 & … & cm) 

 Begin 
  act1, …, actp 

 End 

 

There may be some precedence in invoking actions; Table 5-1 illustrates number of 

ponder6 operator assumed in this thesis, and their explanations, e.g. operators for defining 

concurrent actions and events evaluation.  

Table 5-1. Examples of Ponder Operators 

Operator Explanation 

a1 -> a2 a2 must follow a1. If any of the actions fail or is not 

allowed by a refrain policy, the execution stops. 

a1 | a2 a1 is performed. If it fails or is not allowed by a refrain 

policy, a2 is performed. If a1 succeeds, execution 

stops. (action operation) 

e1 | e2 Occurs when either e1 or e2 occurs irrespective of their 

order (event operation) 

 

We refer to a finite set of policies as a policy profile.  The notion of a policy profile is a 

useful management concept in the context of  a management system in that frequently a 

number of policies are group together to achieve a broader goal.  

 In this context, given a managed data center, there are policies that can be formed to 

manage the objects in the data center.  The policies are dependent on the managed classes 

                                                 

6
 A description language for specifying policies is not the focus of this thesis. We write policies in pseudo 

code based on Ponder. 
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associated with that data center and, of course, can be altered by the administrator and, as 

we shall show, by other autonomic managers.  We refer to the management system 

associated with a managed data center as a policy based management system.  

5.4. Communication in the Management Model  

Our management system assumes that multiple autonomic managers cooperate by 

exchanging messages.  In our definition of a managed data center, we defined a topology 

of managers where the topology defines the AMs that can communicate.  We also 

introduced the notion of “privilege” – that one manager has privileges over another.  This 

is realized in the kinds of messages that can be exchanged and the implications of those 

messages. Each manager in the management system can communicate with a number of 

other AMs as defined in a pair relationship among AM Classes (Definition  16. ). When 

an AM is initialized (see Chapter 6, section 6.4) it is given a list of its “peers”, that is the 

list of AMs that it can communicate with, including those that have privileges over it, 

those that it has privileges over, and others (peers). 

How does an AM know when it is time to send a message? The answer is “sending 

messages should be specified in the policy.”   Assume that an AM needs to change 

profile policy of another AM, this change should be specified in the action part of a 

policy. In this case, the action is “Send message” with a new profile policy Id.  “Send 

message” is assumed one of the actions that are part of an AM class. 

While there are many possible kinds of messages that can be exchanged between 

managers, we define a core set for our work; the types of messages can always be 

extended.   

Table 5-2. Management System Core Messages Set 

Message 
taxonomy  

Type of message Description 

AM life 
cycle 

Destroy/Initialize A new AM sends an initialize message to AMs 
that is in any relationship with itself 
(privileged or not privileged). 
An AM that has finished sends a message to 
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AMs is in relationship with itself (privileged or 
not privileged) to let them know that it is 
leaving the management system. 

Update 
information 

ReqForHeartbeat An AM asks for heartbeat values from 
another AM. 

UpdateHeartbeat An AM updates its heartbeat values and sends 
them to a requesting AM. 

Policy 
change 

ChangeProfilePolicy 
A privileged AM updates the policy set of 
another AM 

 

We have envisioned a basic set of messages for management system operations; details 

are presented as follows: 

 

 <Initialize, AMId, PrivilegedCode> A new AM sends an initialize message to any 

AM in its neighbor list announcing that it is active (born) along with its identifier,  

AMId .   An AM has three different types of relations with its neighbors; it can be 

their parent, their child, or their peer. The type of relationship is determined by the 

last parameter of the message, PrivilegedCode.  PrivilegedCode can be 

IAMCHILD, IAMPARENT, and IAMPEER. The receiver AM will register the AM 

with that specified AMId in its internal registry.  

 <Destroy, AMId>: When a managed element finishes, for instance when an 

application is done, the corresponding AM needs to be removed from the 

management system.  For instance, for a user that uses number of compute nodes to 

run an application, when that application has completed, the AM managing that 

application needs to be removed.  When the AM determines that its application has 

terminated, the AM will send a message to its neighbor list and afterward will 

terminate. The receiver AMs will delete the AM (AMId) from their neighbor list. 

This message will be sent to all AMs in the neighbor list of the AM. 

 
 <ReqForHeartbeat, info, AMId>: When an AM wants to get information about a 

neighbore.g., sensor information, the AM will send this message to that specific 
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neighbor with AMId. Such information, for example, may be needed to evaluate a 

condition in a policy. 

 

 <UpdateHeartbeat, AMId, info, eventFlag>: In response to a ReqForHeartbeat 

message, an AM will send back  the sensor values that are specified in the request 

message to its peer encapsulated in the info part of the message. Obviously, the info 

part is AM specific and may be different for each AM.  The last parameter 

eventFlag is a flag to specify that if this message is a response to a 

ReqForHeartbeat message or the AM wants to trigger an event inside the other AM.  

If eventFlag has the value “EventCode” then that means that the sender AM 

wants to notify the receiver AM of its need and  triggers an event inside the receiver 

AM otherwise the intention of this message is just updating heartbeat values. In this 

way message passing is used to trigger an event outside of an AM in our 

management system. In case of triggering an event, the receiver AM should have 

this event in its event list and also have a related policy that will be triggered by this 

event. Otherwise, we assume that the event the triggered event will not have any 

impact on the receiver AM. In section 6.6 event handling is explained with an 

example.  

 <ChangePolicyProfile, AMId, profileId>: When a privileged AM wants to change 

the active policy profile of a child, it encapsulates identifier of the policy profile 

and the child AMId into a message and sends it to the AM. Upon receiving this 

message from the parent AM, the AM contacts the policy repository for the policy 

profile with profileId and downloads the corresponding policies. Once the policies 

are downloaded, the AM will invoke the new policies on the next management 

cycle. This message can be sent to all AM in the peer list that have privileged 

relation with the AM and AM is the privileged AM on that relation.  

 



 

57 

5.5. Summary 

In this Chapter, the principles of our management framework have been presented. The 

management system framework considers each component in the data center as an MO 

which potentially may have an AM that manages it specifically. The AMs in the data 

center know their neighbors and communicate with them to share status information and 

any configuration information regarding operational aspects of managed objects or 

manager behavioral.  The cooperation between managers is done through policies. At any 

time, the active set of policies for an AM defines the behavior of the manager.  

Based on the discussion of collaboration models among agents as discussed in Chapter 2, 

our management model would be considered a data integration model.  

In the next Chapter, we will focus on the algorithms that a management system requires 

for deployment and operations.  
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Chapter 6  

Management System Deployment and Operation 

After defining the management model in previous Chapter, the next step is to define the 

how to instantiate a specific management system and its operation. This Chapter presents 

the algorithms that are needed to deploy the management system and to instantiate 

objects from the management system model. 

In a data center there are static managed objects (MOs) (e.g. racks, computers, coolers) 

and dynamic MOs, e.g. various types of applications that may come and go, so we may 

have a dynamic number of MOs and respectively, a dynamic number of AMs.  Therefore, 

the management system is first configured to know the classes of static MOs and possible 

dynamic MOs.  Upon arrival of an MO – for example a new application - in the data 

center environment (assume that the management system needs to have an AM attached 

to the application), the AM initiation module is invoked for the new AM in order to 

connect it into the management system.  

The administrator defines MOs, their classes, the associated AM classes and their 

topology before the management system startup.  This could be done in a variety of ways 

– through configuration files and scripts, through some interactive tool, etc.  We also 

assume that any changes to the management system, e.g. specification of a new policy, 

will be done through some such interface; details of this are beyond the scope of this 

thesis. Before the entire systems are booted (i.e. started) the administrator have to specify 

the classes, MOs, managers, AM classes needed prior to starting up the management 

system. 

We assume that there are separate spaces of computing and management in our model.  

That is, there are number of compute nodes dedicated to running the management system 

and the policy repository. So, before any of systems from computing space in the data 

center come online, the management system compute nodes should be active and 

running. The management space is represented as one separate system, which has its own 

resource manager and set of servers, i.e. servers that will be allocated to autonomic 
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managers and the management system controller (explained below). It is also important 

to realize that AMs can run as different processes inside a server; therefore, we primarily 

need  servers in the management space for running the core of the  management system. 

To decrease the overhead of communication between managers and MOs, managers need 

to be located close to the MOs.  In this case managers could be running on one of the 

same systems as the MOs. To figure out where is good place to place the manager 

considering the communication load (communication with other managers and its 

associated MOs) is the key, but is beyond the scope of this thesis.  

The primary algorithms for deploying and maintaining the management system are:  

 Initializing the management system; i.e., start-up. 

 Setting up an AM when a new managed object arrives and determining how it is 

connected within the management topology. 

 Defining the management loop in an AM.  

 Handling messages. 

 Termination of an AM. 

The management system has one or number of nodes that we shall refer to as the 

management system controller; we refer to the nodes restricted to management services 

as the management space. The controller is located in management space and is up before 

any of managers in the data center come online. The management system controller is 

responsible for:   

 Starting up the management system based on the administrator configuration 

scripts; 

 Maintaining information necessary for the operation of the management system. 

i.e. AM table, instance table, topology table and MO table (all  explained later in 

this Chapter). 

 Handling the arrival of a new object to manage and AM instantiation. 
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 Providing the interface between the management system and the administrator.  If 

the administrator aims to make any changes in the configuration of the 

management system, they would have to log in to the management system and 

define the new configuration, which would then be processed by the management 

system controller. 

6.1. Management System Instantiation  

The administrator must log into the management computing system and specify the 

details of the management system model for the data center.   The specific management 

system can then be instantiated, initialized and made operational.  At this point, the 

management system is in a state prepared for the start of the systems and applications.  

Note that this process is likely only done when all systems are to be started.  In practice, 

the management system will be running and as new systems come on-line and others are 

taken down, changes to the management system would happen through the administrator. 

To instantiate an instance from the management system model, the administrator needs to 

specify: 

 The set of MO objects and their associated classes that are to be managed (recall 

that not all objects included in the framework need to be managed); this would 

include specifying the events, sensors, actuators associated with each class of 

managed objects. 

 The set of AM classes that correspond to the MO classes whose objects are 

meant to be managed; this also assumes that an actual manager (i.e. executable) 

is defined and associated with that class. 

 The AM Topology. 

 A Policy repository where policies will be stored and managed. 

We expect that administrator defines these and the management system takes over setting 

up the system and maintaining it.  In practice, of course, these definitions may have 
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already been defined and the administrator simply selects classes of objects, etc. that are 

to be managed. Figure 6-1 illustrates the interaction between the administrator, the 

management system, the data center, and the policy repository.  

 

Figure 6-1. Administrator, Management System, and Data Center at Runtime. 

As shown, there is a separate system for the management system beside the production 

computing systems in the data center. Suppose that the administrator interacts with 

management system through a configuration panel (alternative approaches for interaction 

are also possible).  The administrator describes the classes of managed objects and 

associated classes of AMs for them. The topology of the AM classes is defined by 

administrator in a configuration file. The management system reads these configuration 

files, processes them and puts them in internal tables. These tables will be explained later 

in this Chapter.  
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The management system communicates with the policy repository; upon any change in a 

policy or changes in the policy profile of any managers in the management system. For 

instance, if the profile policy of a manager needs to be changed, the manager needs to 

communicate with policy repository to get a new set of policies.  Upon the arrival of any 

new MO to a system in the data center, the resource manager on that system (as the first 

node to get informed about new arrival MO) must inform the management system 

controller about the new MO. As explained in Chapter 4, a resource manager 

(ResManagers refer to Definition  10. ) in the system is in charge of allocating node/s for 

new application inside a system.  Thus, the resource manager that knows about new  MO 

needs to inform the management system upon arrival of a new application, then the 

management system will decide whether to dedicate a manager to that or not. How does 

the resource manager inform the management system about the new MO?  

The resource manager on the system needs to send information about new MO e.g. its 

system.  But where does the resource manager get the information about the new MO? 

The primary tasks that a resource manager, and in general any resource allocation 

algorithm faces, can be divided into four categories: resource modeling and description, 

resource offering and treatment, resource discovery and monitoring, and resource 

selection. A resource allocation algorithm must take into consideration the application’s 

requirements e.g. its SLA requirements. Having this in mind, we can expect that resource 

manager is given some description or characteristics of the application in order to allocate 

servers to it. Such information is very common, e.g. number of compute nodes, memory 

requirements, etc., and we assume that additional information can be provided.  So, after 

initialization, it can forward this description to the management system. This information 

is just a description of the new MO and the resource manager has no idea about the new 

MO’s class in the management system. It is the management system’s responsibility to 

figure out the class of managed object for this new MO according to the information it 

gets from the resource managers. What type of information is needed? For our purposes, 

we assume that a resource manager will provide:  
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 Runtime Details: Details on the application’s runtime requirements, e.g., number 

of compute nodes requested, memory, expected execution time, compute nodes 

allocated, primary compute node, etc.  

 Description: A “description” of the new MO e.g. application, VM. This 

description will be used to identify the class of MO. For instance for an 

application running inside an enterprise system this field will be just application 

management system will figure out which class of enterprise application should 

be used by putting all information coming from resource manager. 

 System Info: The system that the object will execute on, e.g. system identifier or 

address, type of system (e.g. HPC). System info will be used to identify the class 

of MO since we know all MO applications inside the system have the same type 

of workload. 

 SLA Info: Its SLA description parameters.  

The management system will use this information to first figure out the MO class for this 

new MO, and second whether the management system needs a manager for it or not.  If 

the management system cannot determine the MO Class of the MO from the provided 

information, we assume that it can treat the MO as a “non-managed” object (i.e. there is 

no AM) or can request information from the administrator.  In this latter case, the 

management can accumulate information about new applications and the classes they 

belong to (presumably, the administrator could also define a new MO Class and AM 

Class for a new application if required). 

If there is to be a manager, then it must determine the neighbors of the MO’s manager in 

the management system (assuming that the new MO is supposed to have an AM). We 

refer to this information as MOPhysicalInfo (a record of information about the new MO) 

in our proposed model.   

The management system stores the information about managed objects and their classes, 

managers and their classes, topological constraints among managers, etc. Each MO class 
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has its set of sensors, actuators and events.  As noted, the managed object class 

configuration file describes the list of managed object classes; the autonomic manager 

configuration file describes the list of manager classes. The topology configuration file 

holds AM pairs (AM topology) in the management system.   

Algorithm 3 (MS_StartUp) illustrates the pseudo code for starting up the management 

system and configures it based on given configuration files. For static managed objects in 

the system there is a configuration file (entered by the administrator) which is read and 

their AMs will be instantiated. Note that AM instantiation for static objects is the same as 

AM instantiation for dynamic objects; instantiation will be explained later in this 

Chapter.  The management system is then started.  

Algorithm 3.  Management System Start up. 

MS_StartUp: 

Input parameters:  

1. begin 

2.    Read Managed Object Classes and Autonomic Manager Classes 

   from configuration files and construct Table 6-1;  table of correspondences 

   between the Manager Classes and Managed Object Classes. 

3.    Read the management system topology configuration file and construct Table 6-3. 

4.    Read the static managed objects configuration file and deploy associated AMs for 

   the static objects. 

5. End 

 

6.2. Policy repository 

The proposed management system is policy-based which means that each AM has its 

own set of ECA policies referred to as a policy profile.  This set can be altered according 

to the system situation or even a direct change from the data center administrator. We 

assume the existence of a policy repository which holds the policy profiles associated 

with each of the managed element classes. Figure 6-2 illustrates the relationship among 

the MO classes, policy profiles and individual policies. Each class of MOs could have 

multiple different associated policy profiles which could involve different sets of ECA 

policies.  Generally, though, we expect that there would be much overlap, e.g., a policy 
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for managing an application during a work day would be very similar to the policies for 

managing it at night or on a weekend except perhaps for some parameters.  

 

Figure 6-2. Information flow to determine policy. 

The Policy repository server contains the policies for the AMs in the management 

system. The policy repository could be a database server, an LDAP server or a Directory 

Enabled Network (DEN) device. All AMs during their life cycle have access to this 

server, to read their respective policies. The first time that an AM has access to the policy 

repository is at its initialization, although during its life cycle the AM may access the 

repository to get updated policies. 

6.3. Arrival of a New Managed Object 

The arrival of new MO starts from when the resource managers in the system inform the 

management system the arrival of new object at a system in the data center.7 The 

resource manager of the system sends information about the new object (MOPhysicalInfo) 

to the management system controller; which includes information about the type of the 

object and the system on which the object will run. This information is received by the 

                                                 

7
 Note that there might be number of new object arrival notifications in the management system, i.e., for 

each of the system; these requests will be queued and processed by the management system. 
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management system controller which maintains a list of MOs and their associated 

information. Now, if an AM is needed for the new object, the management system asks 

its own resource allocator (as earlier explained management system has its own resource 

allocator) to assign a node for its AM. 8Afterward, the management system will initialize 

the AM. This flow of work is shown in Figure 6.3. 

Note that the focus of this thesis is on automating management activities, so the 

administrator specifies MO classes that should have AM and the management system 

create a manager for that. In our experiment, we focus on having one manager per MO 

though it is not a requirement for the management system. AMs can manage more than 

one MO at the time and it can address each of them based on their ids. 

 

 Figure 6-3. Management Work Flow for the Arrival of a New Managed Object. 

The management system will associate an AM for the new MO if the administrator had 

specified AMs for that class of MOs. The administrator needs to specify the MO classes 

that need to have AMs and a manager object class for that class of MOs.   

                                                 

8
 Considering overhead of communication between a manager and its MO another approach for allocating 

node to run the manager is asking the system that MO is resident there to allocate a node for the manager. 

In this case, the manager is not located in the management system’s system instead the manager is in 

system associated its MO. 
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The management system has internal tables to save information about MOs, AMs and 

associated classes. Table 6-1 (we name it AM Table) exemplifies how the management 

system stores AM classes and the corresponding AM class needed for instantiating the 

new AM. The administrator specifies what manager class should be allocated to each MO 

class and the table is constructed upon startup of the management system (refer to 

Algorithm 3). The management system refers to this table upon the arrival of a new MO 

to check whether an AM is needed or not and if so which class of AMs should be 

instantiated.  

Table 6-1. AM Table: Correspondences between AM Classes and MO Classes.  

MO class List Associated AM Class 

VM VM_AM 

Cluster clustreAM 

Rack rackAM 

Application.Interactive1 InteractiveApp1 

Application.Interactive2 InteractiveApp2 

Application.Enterprise1 EnterpriseApp 

System.HPC SysHPC 

System.Enterprise SysEnterprise 

System.Interactive SysInteractive 

… … 

 

So far, the deployment algorithm has figured out the necessity of having an AM for the 

new MO in the management system.  

The management system controller maintains update information about what exists in the 

data center so it will store the information about new MOs. The MO Table (refer to Table 

6-2) is another internal table in the management system that for each class of MOs has a 

list of all available MO objects with their corresponding received MOPhysicalInfo 

(received from corresponding resource managers) regardless of having manager for it or 

not. In other word, this table actually shows the object of each class of MOs. 

Management system will figure out the class of managed object according to the 
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information in MOPhysicalInfo.  MOPhysicalInfo is the same for each MO class with 

different parameters.  

This table gets updated upon arrival of new MO from a MO class. 

Table 6-2. MO Table: MO Classes and their Information. 

MO Class MOPhysicalInfo List 

App App1Info, App2Info,.. 

System-HPC Sys1Info, Sys2Info 

… … 

  

 

 Now, the AM initialization algorithm needs to get the list of AMs to be connected to the 

new AM.  To do this, the management system needs to refer to the topology model 

(illustrated in previous Chapters) to figure out the AMs associated with the new AM. 

Table 6-3 (i.e. named the Topology Table) is formed from the topology specification 

provided by the administrator. For instance, according to this table, an AM attached to an 

application of class “App” needs to connect to AMs attached to other applications of 

class “App” with the same privilege and also to the AM attached to the system class 

“System”, where that AM  is privileged over an AM from class “App”.  Also, the AM 

connected to an HPC-system needs to be connected to just the data center AM.  Table 6-3 

shows the connection between classes of AMs, to deploy this connection we need to 

know the instance of each class. 

Table 6-3. Topology Table: AM Class Pairs.  

AM class AM Class Pair  List 

App  (System,1) , (App,0) 

System-HPC (Data Center,1) 

…. …. 

Another necessary mapping to completely describe the runtime picture of the 

management system, is a mapping from any AM class to a list of all instances from that 

AM class (note that this is table gets updated at run time by the management system).  

The Management System refers to Table 6-4 (i.e. called the Instance Table) to get all of 
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the neighbor instances and records their IDs in the neighbor list of the new AM. 

Afterwards, the new AM, in its initialization module, will send messages to these AM 

instances to inform them of its existence.  

Table 6-4. Instance Table: AM Class and their Instances. 

AM Class AM Instance ID 

App AMApp1,AMApp2,.. 

System-HPC AMSys1, AMSys2 

… … 

  

Table 6-5 contains the list AM IDs and its associated  MOs.  Given the information about 

an MO, by referring to Table 6-5 the ID of its corresponding manager can be determined. 

Note that information about the managed object is all the information that we have from 

its MOPhysicalInfo. 

Table 6-5. AM ID and Corresponding MO information 

AM Instance 
ID 

MO  

AMApp1 App1Info 

AMSys1 Sys1Info 

AMApp2                App2Info 

… … 

 

6.4. Autonomic Manager Set-up and Initialization for a new 
Managed Object 

How does the management system get informed about a new object, e.g. a new started 

application? As described, the resource manager in each system is  first to know about the 

arrival of a new object in the system.  After resource allocation to the new object, the 

resource manager has information about the new object which is then shared with the 

management system. The resource manager in each system sends information about new 

object arrival to the management system (this information is named as MOPhysicalInfo in 

Algorithm 4).  
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Upon arrival of new MO, the management system updates its internal tables and prepares 

required information for initialization of the new manager. (Refer to Algorithm 4. 

AM_Incarnation)  Algorithm 4 specifies the steps that the management system must take 

to deal with the new MO.   

The management system can definitely have multiple MOs per AM in that case upon 

arrival of the MO in Algorithm 4 the management system can be extended to pass the id 

of the AM (i.e. already in the system); then the management system  puts the current new 

MO in the list of MO of that AM. In our experiments and algorithms we are assuming 

that there is one MO per AM.  

Algorithm 4; it first obtains the related AM class for the new MO (getNewAM) according 

to information in MOPhysicalInfo (i.e. type of new MO, MO id). Then management 

controller checks the topology to obtain neighbor AM objects for the MO’s AM. (In the 

topology definition we define classes but internal tables contain objects of each class).  

AMs that are neighbors of the new AM are captured in lists: called AM_Peer_List, AM-

Children_List, and AM_Parent. Afterwards, the management controller asks the 

management system resource allocation module for a new node on which to run the new 

AM,  i.e. AMnodeIP in the algorithm. Now that we have our AM node ready to use, it is 

time to update internal tables, i.e. the MO Table and Instance Table.  

Algorithm 4.  AM Incarnation for a New Managed Object 

AM_Incarnation  

Input parameters: MOPhysicalInfo 

1. begin 

2. if isAMRequested(MOPhysicalInfo) = true 

3. begin  

4.      //configure parameters of the AMclass 

5.       newAMclass = getNewAM(MOPhysicalInfo) 

6.       AM_Peer_List = getPeerFromTopology(MOPhysicalInfo) 

7.       AM_Parent = getParentFromTopology(MOPhysicalInfo) 

8.       AM_Children_List= getChildrenListFromTopology(MOPhysicalInfo) 

9.       //RA allocates a compute node and instantiate a new AM of AMclass on 

10.         the AMnode  

11.      AMnodeIP=resourceAllocation(newAMclass);  

12. //Update internal tables (refer to Table 6-4) update the MO table and instance 

table with the newArrival AM information 
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13. updateTables() 

14. end 

15. end 

 

The management system internal tables are updated and a new manager at address 

AMnodeIP is ready to be initialized as an AM for the new MO. The next step is to 

configure the new AM.   

After AM incarnation; the AM needs to be configured to know its associated MO 

configuration parameters. There is  specific information  for all MO instances from  the 

specific Class that the  MO belongs to and this information needs to be passed to its AM 

as input parameters or configuration parameters; this information is passed via a vector 

configVector or the form <(param1, value1), … (paramn,valuen)>, i.e., a vector of pairs of 

parameter names and values.  

The most important parameters of a manager that need to initialize are MO id and SLA 

sensors related parameters. As explained in the model, each type of application has its 

own definition of SLA sensors. Now the question is where does this value comes from? 

And when is this information passed to the associated application AM?  

SLA sensor parameters are related to the MO specifications and at MO instantiation time 

in the system this information gets determined. We assumed that resource manager in 

each system sends information about SLA parameters of the new MO to the management 

system as part of MOPhysicalInfo.  If this information is not provided, then we assume 

that there may be default values defined as part of the MO class; if not, then this 

application has no SLA requirements.  This information will be passed to the AM 

initialization algorithm via configVector. So for each type of interactive and enterprise 

workload the SLA sensor related parameters are as follows:  

 Interactive: (ERT, percentage, EpochTime)  

 Enterprise: (timeThreshold , percentage, EpochTime)   
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Note that MOPhysicalInfo is MO dependent and is different from one MO class to 

another. 

The management system controller initializes the AM process on the node (AMnodeIP). 

The AM first executes the  AM_initialization algorithm with the information passed to it 

from the management controller:  address of the policy repository, peer list, parent AM, 

child list, and new AM initial profile policy.  Algorithm 5 depicts the initialization code 

for the new AM when it first runs. 

 

Algorithm 5. AM Initialization.  

AM_Initialization: 

Input parameters:  ProfilePolicyId, AM_Parent, AM_Peer_List , AM_ChildList, 

configVector, PolicyRepositoryId  

1. begin 

2.     call AM_SetPolicySet 

3.      AMID=ManagementController.generatingIDforNewAM() 

4.      initialize MOProperties with (configVector) 

5.      initialize SLA Sensor parameter with (configVector) 

6.     //Sending initialize message to AM_Parent. 

7.      SendMsg (Initialize, AMID, IAMCHILD ) 

8.     //Sending initialize message to AM_ChildList. 

9.      SendMsg (Initialize, AMID, IAMPARENT ) 

10.     //Sending initialize message to AM_Peer_List. 

11.      SendMsg (Initialize, AMID, IMPEER ) 

12.     // creating threads for planning and management of the A 

13.     call Mng_Loop 

1. end  

 

Algorithm 6. Setting AM Policy Set  

AM_SetPolicySet: 

Input parameters:  ProfilePolicyId  

1. begin 

2.     AM_PolicySet= QuesryPolicyRepository(ProfilePolicyId)  

3. end  
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The initialization module first queries policy repository (Algorihtm 6. AM_SetPolicySet) 

to get the policy set of the initial policy profile (i.e. given as ProfilePolicyId).  The AM 

initialization module invokes a service in management controller to get a unique ID 

(AMID) for identifying  the AM in the management system; the management controller 

updates Table 6-4, e.g. for future use, such as for  AM termination.  This identifier is then 

use to inform the parent and peers about the new AM.  

The AM initialization module sends messages to AMs on the parent, children and peer 

lists to inform them about the new AM in the management system. Note that the AM 

sends an initialization message to its parent, children, and peer as specified in its input 

parameters. After this, the AM is ready for its management task. Management loop 

(Mng_Loop) will be last step in AM initialization. 

 

6.5. AM Management Loop 

After AM initialization, all the environment variables are initialized and the management 

loop starts to run. The AM management loop checks for incoming messages and events 

then takes actions. An AM can take different actions upon the occurrence of an event 

according to its active policy profile.  The management loop is the thread inside the AM 

which runs during the life cycle of the AM. Note that the management loop updates its 

sensors at the beginning to make sure the MO is alive. Note that in it just asks for one of 

the sensors value not all of them.  If for any reason the sensor update failed, the AM tries 

for a number of times and after that the AM considers its MO to be no longer alive and it 

has finished its job. The AM will then terminate itself. In the Mng_Loop algorithm, the 

number of failed tries is compared with maxTry values, this value is one of configuration 

parameters of the management system that should be specified by the administrator. 

Details on AM termination is discussed in Section  6.8. 
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 Algorithm 7. AM Management Loop 

Mng_Loop 

Input parameters:  AM_Parent, AM_Peer_List, AM_ChildList 

1. while(true) 

2. begin 

3.  update status = Update sensor values 

4.  if update status is failed and FailedTry >  maxTry 

5.       invoke AM Termination Algorithm 

6.  end 

7.  if update status is failed and FailedTry <  maxTry 

8.       increase FailedTry 

9.  end 

10.  while (!messageQue.isEmpty()) 

11.   begin 

12.         msg=messageQue.dequeue 

13.         Call Handle_message 

14.   end 

15. //all triggered event are put in a queue 

16.   while(!eventQu.isEmpty() ) 

17.   begin 

18.         EV= eventQu.dequeue 

19.        for (all PL ∈ PolicySet) 

20.         begin 

21.              If(PL.Event=EV)  

22.                 Update sensor PL.condition 

23.                 If(PL.Condition = True)  

24.                            for( all A ∈ PL.ActionList)  

25.                         begin 

26.                              Execute A  

27.                         end 

28.                 end 

29.              end 

30.         end 

31.   end 

32.  end 

33. end 

 

The list of peer, children, and parents are given to the management loop algorithm. The 

algorithm first checks its message queue and fetches messages and then does something 

based on message type. The Handle_message algorithm presents the details of the 
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message handling. Before evaluating a policy, the specified sensor in the policy needs to 

be updated, which is done in the management loop.  

For each type of message (refer to Table 5-2) there is a corresponding action. If the 

message is an initialization message, then depending on its privilege value the new node 

will be added to the appropriate list. If the message is a destroy message, the AM will 

remove the AM identified in the destroy message from all of its internal lists. If the 

message is a request for updating a heartbeat, then a reply message will be sent back to 

the requesting AM with updated values of the heartbeat variables. If the message is an 

update heartbeat message, then depending on its eventFlag part of the message (for 

details refer to 5.4 ) the receiver AM will send back the heartbeat values or update its 

event queue.  If the message is a “ChangeProfilePolicy”, then the policy repository is 

queried to obtain the new set of policies.   

Algorithm 8. Handling Messages 

Handle_message: 

Input parameters:  message 

1. begin 

2.   Switch(message.Type) 

3.   Case Initialization 

4.           If message. PrivilegedCode =IAMCHILD  

5.                 ChildList.Add(message.getSender()) 

6.          If message. PrivilegedCode =IAMPEER 

7.                 PeerList.Add(message.getSender()) 

8.          If message. PrivilegedCode =IAMPARENT 

9.                 Parent=message.getSender() 

10.    Case Destroy 

11.             RemoveFromAllList(message.getSender()) 

12.   Case ReqForHeartbeat 

13.            //update heartbeat value 

14.            SendMsg (UpdateHeartbeat,message.getSender(),heartbeatValue) 

15.   Case UpdateHeartbeat 

16.         If message.getEventFlag()= EventCode  

17.              //means that sender wants to inform the AM 

18.                      Update the event queue. 

19.         If message.getEventFlag() != EventCode  

20.            Update the heartbeat value for the specified sensor  

21.     Case ChangeProfilePolicy 

22.            profilePolicyId=message.getProfileId() 



 

76 

23.            Call AM_SetPolicySet algorithm 

24. End 

6.6. Event Handling 

Event handling is done in the management loop. Inside each AM there is an event queue. 

There are two kinds of events in an AM: internal events and external events. Internal 

events are timer triggers. External events are those that happen in other managers and the 

manager is notified by messages will help the manager to notify each other about the 

events.  

How does a manager will trigger an event in another manager? The AM in need or the 

AM that wants to trigger an event sends an UpdateHeartbeat message with eventFlag 

equals to EventCode (code to show that the intention of this message is event trigger not 

just updating heartbeat based on request) to other AM/s. When an AM receives the event 

notification message, it will put the received event in the event queue and upon running 

the management loop the event will be de-queued and will be processed.  The 

management loop goes through each event in the queue and checks its policy set and 

invokes policies associated with each event.  

The next question is when should a manager trigger an event in another manager? The 

answer is that the notification of an event should be specified in a policy as an action. For 

example consider an interactive application in which there is an SLA violation.  One 

action may be to inform its system level AM about its SLA violation, the assumption 

being that the system level AM should have a related policy to handle the application’s 

SLA violation.  The following policy shows this logic (interactive application policy). 

On Event: Timer Trigger  

If (reponseTime >ERT) 

     Send (UpdateHeartbeat, responseTime, SystemAM, EventCode) 

end 

 

As explained in our model for interactive applications, the SLA sensor is responseTime if 

it is greater than an expected response time (ERT) for specific percent of jobs during last 

epoch time there is SLA violation. The action in the policy is to send UpdateHeartbeat 
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message with responseTime value and putting EventCode in the message, specifying the 

intention of the message is event trigger not just updating its heart beat values. 

 

6.7. Changes in Management System Configuration 

This section illustrates how the management system handles any on-the-go changes in the 

configuration of the management system.  For instance, the administrator may decide to 

not have manager for a class of MOs anymore in the system, or needs to define a new 

AM for the MO class that did not have a manager.  In this case, all objects of this type of 

MO class are running without manager and now the management system needs to 

recognize them and then assign a manager to them. 

The administrator can change the AM configuration in terms of changing the information 

of AM table and Topology table. These changes then will be translated to the following 

changes in the topology of the AMs: 

1. Instantiating new AMs for MOs previously configured and were started before, 

but with no AM created. In doing so, the management system will extract all MOs 

addresses that exist in the system obtained from MO Table (refer to Table 6-2) 

and create a manager for each of them, with the same procedure as we had for the 

arrival of a new MO, the only difference is that we already have MOPhysicalInfo. 

(refer to Table 6-2) 

2. Terminating the AMs of previously configured MOs.  In this case, the 

management system needs to get the AMs associated with the MO class by 

referring to the AM Table (refer to Table 6-1).  It can then terminate all the AMs 

of that AM class. This information can be extracted by referring to the Instance 

Table (refer to Table 6-4). Terminating one specific AM will be done by invoking 

the termination algorithm remotely on that AM (refer to Section 6.8).  
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6.8. AM Termination 

The management system must be able to terminate an AM. Algorithm 8 illustrates the 

algorithm for the termination of an AM; the input parameter is the identifier for the AM 

as explained earlier these identifier are stored in Table 6-5.  The termination algorithm 

could be invoked directly by administrator (it means that the associated MO no longer 

needs to be managed e.g. for performance reasons) or by the AM itself when its 

corresponding MO finishes its job. In either case the id of the AM will be extracted from 

Table 6-5.  

In most cases, however, the AM will terminate when the MO that it is managing 

disappears.  How is the AM informed that its MO is done? The answer is that in the 

management loop, the first thing that AM does is checking its MO sensors(it can be one 

sensor of the MO sensors list), if nothing is returned  from the MO, then  after a number 

of tries, the AM can assume that the MO is gone and can terminate itself. 

 Termination of an AM means informing all of its neighboring AMs in the management 

system that the AM is terminating.  If the terminated AM is a parent of other managers in 

the system, then after the AM termination they will continue working based on their 

policy and nothing will change with respect to their other neighbors. The management 

system may have its own strategy to somehow reconnect the children to the rest of the 

management system topology, e.g. to other “parents”; this is a topic for future work. 

Algorithm 9. AM Termination 

AM_Termination: 

Input parameters:  AMID 

1. begin 

                    For all node in AM_Parent,  AM_ChildList, AM_Peer_List  

2.         SendMsg(Destroy,AMID) 

3.   end 
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6.9. Administrator and management system 

After the management system start-up, the next aspect is considering the intervention of 

the administrator on the behavior of the management system.  The administrator should 

be able to change the behavior of management system.  The following describes a 

number of activities that the administrator may undertake. 

 Changing the policy profile of any AM or set of AMs in the management system. 

 Terminating an AM in the management system topology. 

 Defining a new set of policies/changing the current available policies and 

updating the policy repository. 

One can imagine that the interface between the management system and the administrator 

can be some kind of “management” panel or “configuration” panel.   

The following table provides some suggested configuration commands from the 

administrator to change the management system.  

Table 6-6. Administrator commands  

Administrator Command  Description  Back end instructions to run 
the command 

ChangeProfPolc(AMID,ProfPlcID) Change the policy profile   
of AM with AMID to 
ProfPlcID. 

- Update profile policy ID of 
the AM with AMID id. 
- Connect to the policy 
repository 
- Request policy repository to 
get the new set of policies 
- The AM downloads the new 
set of policies. 

Terminate AMID Terminate the AM and 
return its associated 
compute nodes to the data 
center resource pool 

- invoke termination module 
on AMID 

addNewPlcy newPolicy 
 profilePolicyID   

Administrator defines a 
new policy to be inserted 
to profilePolicyID profile 
policy 
 

- connect to the policy 
repository  

- insert new policy  to the data 
base 
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6.10. Summary 

Implementation and operation of the management system had covered in this Chapter. 

The administrator defines MO classes, AM classes and the topology of the management 

system. The administrator runs the start-up management system code on the management 

system root node; then the root initially reads configuration file and initiates managers for 

each class of management system. Upon arrival of a new MO in the data center the 

management system instantiates a manager for it. The management system root maintains 

the list of current MO from all defined class in the data center. In the next Chapter we 

evaluate the management system in our simulated environment. 
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Chapter 7  

Management System Evaluation 

To evaluate the capabilities of our proposed management system and to illustrate its 

potential impact, in this Chapter we consider the use of the management system in a 

hypothetical data center.  We consider a number of scenarios with different management 

configurations, scenarios with and without management, and compare them.  

We need to simulate the data center behavior and then evaluate the impact of the 

management model on it.  To do this we make use of a data center simulator.  We first 

described our data center simulator and then explain the different management scenarios 

in terms of the logical configuration of systems, applications, sets of managed objects 

(MOs), autonomic manager (AM) classes, the topology of AMs and then describe the 

policies.  

Our goal in the designing the scenarios are:  

 Demonstrating the simulator and the impact of using simple policies to achieve 

management goals (Scenario #1). 

 Demonstrating the impact of multiple AMs in a hierarchical arrangement 

(Scenario #2).  

 Demonstrating the impact of multiple AMs operating in a combined hierarchical 

and peer to peer arrangement and where the management system adapts 

dynamically (Scenarios #3).  

The scenarios are compared in terms of energy consumption and SLA violations. 

Computing data center energy consumption depends on its thermal model and is data 

center layout. In this research we have used one data center physical layout and its 

corresponding thermal model for our simulated scenarios. Note that any changes in the 

data center layout, directly impact the thermal model. 
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7.1. Data Center Physical Layout 

The thermal model used in this research is the Arizona State University thermal model[7] 

, which is a well-known thermal model in the literature. The data center has two rows of 

industry standard 42U racks arranged in a typical cold aisle and hot aisle layout. The cold 

air is supplied by one computer room air conditioner. There are ten racks and each rack is 

equipped with five 7U (12.25-inch) chassis, totally there are 50 chassis; each of them has 

a server inside. 

 The number and specification of servers in each chassis in terms of number of cores and 

its CPU parameters is configurable.  The physical layout of the ASU HPC datacenter is 

shown in Figure 7-1.  The ASU datacenter’s physical dimensions are 9.6m  8.4m  

3.6m. 

 

Figure 7-1. Physical layout of ASU datacenter. 

The cooler used in our model is HP research cooler, which is high cited cooler in the 

literature. Before getting to specification of the cooler, we need to look at how cooler 

performance is calculated. 

The efficiency of a Computer Room Air Conditioner (CRAC) depends on air flow 

velocity and conductivity of materials which is quantified as the Coefficient of 

Performance (COP). In other words, the COP measures how much heat is removed by 

consuming a unit amount of heat (heat as energy).  Therefore, the higher the COP value 
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means more efficient the cooling system [15].  The COP for a cooling system is not 

constant and will increase with increasing the air temperature. Figure 7-2 shows how the 

COP changes over temperature as published by Hewlett-Packard (HP) laboratories [15]. 

This is a well-known graph in the simulation of energy consumption. 

 

 

Figure 7-2. COP-Temperature of HP Lab CRAC Units. 

For COP changes over temperature, we have used the HP water-chilled CRAC unit 

change rate which is:    

                         COP = 0.0068*T2+0.0008*T+0.458. 

where: 

 T is the outlet temperature of the cooler. 

Based on this formula, it is better to maintain the temperature of the air coming into the 

CRAC as high as possible. But how high?  For an upper limit on the CRAC output 

temperature, the nominal temperature at which devices work reliably is a suitable bound 

(also called the redline temperature).  The redline nominal value is between 25C-35C. 
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7.2 Data Center Energy Consumption 

The next issue to address is how to compute the power consumption of the data center 

having its Thermal Model and the COP.     

In the CFD modeling of a data center [1, 3], heat distribution between computing nodes is 

modeled as a Heat Recirculation Matrix (HRM) D= {dij} N×N.  Each entry in the matrix 

shows the coefficient of distributed heat from node i to node j. Figure 7-3 shows an HRM 

with the coefficient of re-circulated heat for each i and j server.  Note that large values are 

observed along diagonal and that there is strong recirculation among neighboring servers. 

 

Figure 7-3. Rrecirculation Factor Between Servers. 

Next figure shows how the temperature of a node can be calculated: 

 

Figure 7-4. Node temperature calculation. 
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For the total system:                      

  PComputing= ∑ i all nodes Pi                           (3) 

                           PCooling=                 (4) 

where: 

 Pi : Power consumption of node i 

PComputing: Total computing power of all nodes 

 PCooling: Total cooling power of all nodes 

 

For calculating the COP, the maximum temperature of computing nodes and red line 

temperature are needed, here they are computed as follows [7]: 

{Ti
in } < Tred  for all chassis’s 

Or  max {Tin  } < Tred   Tsup +max{DPi} < Tred 

1. Tsup < Tred - max{DPi} 

 

 

where: 

 Tred: Maximum tolerable temperature of nodes. 

 Ti
in: Inlet temperature of node i. 

 Tsup: Cooler supply temperature. 



 

86 

 D: heat recirculation matrix. 

 Pi : Power consumption of node i. 

 

Since CPU is the main power consuming component of a compute node, our simulator is 

designed in such a way that it calculates the CPU utilization of all compute nodes in the 

data center. The simulator calculates cooling and computing power of the whole data 

center given the CPU utilization of all the compute nodes and thermal mode. 

For each server, the computing power is proportional to CPU utilization. To compute the 

energy consumption of the data center, we just consider the summation of power 

consumption during the simulation time.  

Figure 7-5 shows the black box model of the thermal model which the simulator is 

designed to deal with. Thermal specifications of coolers, the physical specification of 

servers, and the data center are inputs.  

 

 

Figure 7-5. Thermal model. 
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7.3 Scenario #1: Single Manager and Scalable Data Center 

In this scenario, our simulated data center has the same layout as explained in previous 

section, except each chasses has five compute node (in total our data center has 250 

compute nodes); simulated servers are Proliant HP DL320. This server has a standby 

power consumption of 5Watts; when its idle power consumption is 100 Watts and with a 

fully utilized the CPU consumes 300 Watts.  The DL320 has an Intel® Xeon® E3-

1200v2 processor which has frequency scaling levels which are 3.07, 3.2, and 4.2 GHz, 

which when normalized to the “base level” are 1, 1.07 and 1.37 (refer to the definition of 

compute nodes in Definition  12. ) 

 

Figure 7-6. Data Center Layout in Scenario # 1 (Each chassis has five servers). 

 

7.3.1 Managed Objects and Classes in Scenario #1 

Table 7-1 shows the configuration of the physical layout of the data center. This layout 

will also be used for all scenarios in this Chapter. 

Table 7-1. Physical Data Center Set of Manageable Objects  

dataCenterT SysList={entSys} 
Racks={RackT} 
RackT={r1,r2,r3,r4,r5,r6,r7,r8,r9,10} 
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r1 = {ch11,ch12,ch13,ch14,ch15} 
r2 = {ch21,ch22,ch23,ch24,ch25} 
r3 = {ch31,ch32,ch33,ch34,ch35} 
r4 = {ch41,ch42,ch43,ch44,ch45} 
r5 = {ch51,ch52,ch53,ch54,ch55} 
r6 = {ch61,ch62,ch63,ch64,ch65} 
r7 = {ch71,ch72,ch73,ch74,ch75} 
r8 = {ch81,ch82,ch83,ch84,ch85} 
r9 = {ch91,ch92,ch93,ch94,ch95} 
r10 = {ch101,ch102,ch103,ch104,ch105} 
ch11= {n111,n112,n113,n114,n115} 
ch12= {n121,n122,n123,n124,n125} 
ch13= {n131,n132,n133,n134,n135} 
ch14= {n141,n142,n143,n144,n145} 
ch15= {n151,n152,n153,n154,n155} 
ch21= {n211,n212,n213,n214,n215} 
ch22= {n221,n222,n223,n224,n225} 
ch23= {n231,n232,n233,n234,n235} 
ch24= {n241,n242,n243,n244,n245} 
ch25= {n251,n252,n253,n254,n255} 
ch31= {n311,n312,n313,n314,n315} 
ch32= {n321,n322,n323,n324,n325} 
ch33= {n331,n332,n333,n334,n335} 
ch34= {n341,n342,n343,n344,n345} 
ch35= {n351,n352,n353,n354,n355} 
ch41= {n361,n362,n363,n364,n365} 
ch42= {n421,n422,n423,n424,n425} 
ch43= {n431,n432,n433,n434,n435} 
ch45= {n441,n442,n443,n444,n445} 
ch45= {n451,n452,n453,n454,n455} 
ch51= {n511,n512,n513,n514,n515} 
ch52= {n521,n522,n523,n524,n525} 
ch53= {n531,n532,n533,n534,n535} 
ch54= {n541,n542,n543,n544,n545} 
ch55= {n551,n552,n553,n554,n555} 
ch61= {n611,n612,n613,n614,n615} 
ch62= {n621,n622,n623,n624,n625}} 
ch63= {n631,n632,n633,n634,n635} 
ch64= {n641,n642,n643,n644,n645} 
ch65= {n651,n652,n653,n654,n655} 
ch71= {n711,n712,n713,n714,n715} 
ch72= {n721,n722,n723,n724,n725} 
ch73= {n731,n732,n733,n734,n735} 
ch74= {n741,n742,n743,n744,n745} 
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ch75= {n751,n752,n753,n754,n755} 
ch81= {n811,n812,n813,n814,n815} 
ch82= {n821,n822,n823,n824,n825} 
ch83= {n831,n832,n833,n834,n835} 
ch84= {n841,n842,n843,n844,n845} 
ch85= {n851,n852,n853,n854,n855} 
ch91= {n911,n912,n913,n914,n915} 
ch92= {n921,n922,n923,n924,n925} 
ch93= {n931,n932,n933,n934,n935} 
ch94= {n941,n942,n943,n944,n945} 
ch95= {n951,n952,n953,n954,n955} 
ch101= {n1011,n1012,n1013,n1014,n1015} 
ch102= {n1021,n1022,n1023,n1024,n1025} 
ch103= {n1031,n1032,n1033,n1034,n1035} 
ch104= {n1041,n1042,n1043,n1044,n1045} 
ch105= {n1051,n1052,n1053,n1054,n1055} 
where ni, is a nodeT 
ThermalModel =< coolerList, RedTemp, ThermalMap > =  <{coolerT}, 35, 
DMatrix> 

nodeT 

MIPS={1 1.04 1.4 } 
FullLoadPowerConsumption= {300, 336, 448} 
ZeroLoadPowerConsumption={100, 100, 128} 
StandbyPower= 5 

coolerT CoP_Equ= 0.0068*T2+0.0008*T+0.458 

In this experiment, a web server is hosted in the data center and 90 compute nodes are 

allocated to the web server.  The workload for this web server is a scaled up workload 

based on the web server workload for the world cup 1999 traffic [20]. Note that original 

workload log has 9500 http request arrivals per second; in our experiment we scaled up 

the workload to have, an average 10 times of the original workload i.e. 95000 http 

requests per second. The workload is specified via file of jobs (see Table 7-2, a sample of 

the workload (Workload.txt) is provided in Appendix B). 

We consider the system to be one enterprise system, which contains one enterprise 

application – a web server. A manager is attached to the web server which monitors its 

SLA and takes actions (see Table 7-8) based on its active policies. For this web server, 

we consider an SLA violation to occur when the response time is more than two seconds 

for 90% of workload that has been done in last epoch time (here 60 seconds). Two 

different profile policies (SLA and Green) have been defined and are compared in terms 
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of the total number of SLA violations and total energy consumption. The following tables 

contain configuration parameters to set up the management system. 

On top of the physical objects, we have modeled an Enterprise system and Enterprise 

application. Table 7-2 shows the definition of this system and application based on our 

definitions in previous chapters. The enterprise system has a single resource manager 

with MHR is its resource allocation algorithm (Minimum Heat Recirculation; see 

Algorithm 2.) which utilizes all nodes of the system. First come first served (FCFS) is the 

scheduling algorithm in the system. The application makes use of all 90 nodes. 

Table 7-2. Manageable Objects Scenario#1. 

 

 

In this scenario we have EntAppClass and NodeClass (refer to Table 7-3) as classes of 

managed objects in this scenario. NodeClass  is defined since the actuators of application 

need access to change the status of nodes belonging to the application.  Therefore, we 

define a class for nodes which just has actuators and there is no manager attached to it. 

The managed object associated with EntAppClass and NodeClass are application entApp 

and nodeT. EntAppClass has sensors, events, and actuators. NodeClass just has a set of 

actuators for changing the CPU working frequency and status (sleep or active).  

Manageable Object  

entSys 

Id=1 
Type=Enterprise 
Workload= {entApp} 
Queue 
ResManagers= {MHR) } 
Sched= {FCFS} 
Racks= {r1,r2,r3,r4} 

entApp 

Id=1 
startTime=1 
duration=0 
computeNodes:<90,90> 
computeIntensity=(1,1000) 
workload=WorkLoad1.txt 
SLA=(2,90%,60s) 
terminationTime=0 
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Application level MO class EntAppClass actuators are as follows:  

 increaseFreqFullyUtilized(id):  which increases the frequency of all fully utilized 

nodes of application with given id. 

 activateAllSleepNodes(id):  which activates all sleeping nodes of application with 

given id. 

 activateHalfSleepNodes(id):   which activates half of the sleeping nodes of 

application with given id. 

 increaseFreqBusyNodes(id):  which increases the frequency of all busy nodes of 

application with given id. 

 decreaseFreqAllBusyNodes(id),in which decrease frequency of all busy nodes of 

application with given id. 

 sleepAllidleNodes(id): which puts to  sleep  all idle nodes of application with 

given id. 

EntAppClass has an internal timer (Timer1) when triggered causes the managed object 

class event. Note that this experiment shows one of the implications of MOProperties; 

timer value is one of MOProperties variable. 

According to our model, for an enterprise application with given id, the response time for 

the last epoch time window is defined as an SLA sensor i.e. reponseTimeInLastEpoch(id) 

in the definition of EntAppClass. 

Table 7-3. Managed Object Classes (EntAppClass, NodeClass) for Scenario#1  

En
tA

p
p

C
la

ss
 

MOs= {entApp} 
Event= {Timer1TriggerEvent}  
Sensor={ reponseTimeInLastEpoch(id)} 
Actuator={ increaseFreqFullyUtilized, activateAllSleepNodes, activateHlafSleepNodes, 
increaseFreqBusyNodes, decreaseFreqAllBusyNodes, sleepAllidleNodes} 
MOProperties={ (Timer1Vlaue,60s)} 

N
o

d
e

C
la

ss
 MOs= {nodeT} 

Event= { }  
Sensor={ } 
Actuator={ increaseFreq(id), activateNode(id),SleepNode(id),decreaseFreq(id)} 
MOProperties={ } 
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Table 7-3 shows managed object class in the simulation scenario i.e. EntAppClass and 

NodeClass. The list of all instances of AM classes which, in this case, are associated with 

managed object classes is illustrated in Table 7-6. In this scenario, we just have one AM 

i.e. AMEntAppClass and no pair. The manager, in this scenario has two policy sets. 

Following tables show data center set of manageable objects and classes and their 

associated AM classes, and the topology of the management system in this scenario. 

 

Table 7-4. Data Center Set Of Manageable Object. 

Set of Manageable object 

MODC={dataCenterT} 

MORacks={ rackT} 

MOnode= {nodeT} 

MOEntrpriseSys= { EntSys} 

MOApps= {entApp} 

Table 7-5. Data Center Managed Object Class. 

Managed Object Class 

MOClassesDC= { EntAppClass, NodeClass } 

 

Table 7-6. AM Classes and MO Classes.  

AM  Class MO class 

AMEntAppClass EntAppClass, NodeClass 

 

Table 7-7. AM Pairs and Management Topology.  

AMPair {} 

TDC V={ AMEntAppClass }  
E=AMPair 
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Our managed data center is then defined as:  

MDC < dataCenterT , TDC > 

 with  

                           AMClassesDC  and MOClassesDC. 

7.3.2 Scenario #1 Policies 

Table 7-8 defines the policies for manager AMEntAppClass attached to the application 

EntApp. EntAppClass1 policies are time-triggered policies. Timer1TriggerEvent is the 

event of policy. Timer1 gets initialized in time of initialization of AM for the MO class 

via the management system controller and as shown in Table 7-3 the timer is set to 60 

seconds.  

There are two sets of policies defined for AMEntAppClass, (Green and SLA).  The Green 

policy profile aims to minimize energy consumption while the SLA policy profile tries to 

minimize SLA violations. In the SLA policy profile, the autonomic manager AMEntAppClass 

checks for any SLA violations and tries to increase CPU clock frequency and also 

activate all sleeping nodes. If the frequency scaling is not supported by the compute 

nodes this part (frequency scaling  activating nodes) fails and the second part of the 

action (which comes after “|” operator) of the policy is executed, namely, activating 

sleeping nodes (refer to Table 5-1 for operator details) .  

The Green policy profile also does dynamic frequency scaling and activation/deactivation 

of compute nodes if SLA violations happen. This policy simply checks to see if there is 

an SLA violation and then increases the clock frequency of the fully utilized nodes and 

activates half of sleeping nodes assigned to the application. If there is no SLA violation it 

decreases clock frequency of all nodes that running jobs.  

SLAViolationCheck is a function that checks if 90% of reponseTimeInLastEpoch vector is 

less than 2 seconds and returns 1 otherwise 0. Epoch time is one of enterprise application 

defined parameters (refer to Definition  6. and Table 7-2). 
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Note that reponseTimeInLastEpoch is defined in the list of EntAppClass MO class 

sensors. Last argument of SLAViolationCheck function is application id, in our scenario 

we just have one application with id=1.  

 

Table 7-8. Policy definition for Scenario#1 

SLA Profile For 
AM Attached to 
Enterprise App 

PL0: 
On Event: Timer1TriggerEvent 
 If ( SLAViolationCheck (90%,reponseTimeInLastEpoch,2, id)>0)  
   begin            
      increaseFreqBusyNodes(id)  activateAllSleepNodes(id) | 
activateAllSleepNodes(id)  
 End 

Green Profile 
For AM 
Attached to 
Enterprise App 

PL1: 
On Event: Timer1trigger 
 If (SLAViolationCheck(90%,reponseTimeInLastEpoch,2, id)>0)  
        begin  
   increaseFreqFullyUtilized(id) activateHalfSleepNodes 
|activateHalfSleepNodes(id)           
         end 
PL2: 
On Event: Timer1trigger  
 If (SLAViolationCheck(90%,reponseTimeInLastEpoch,2, id)<0) 
       begin 
           decreaseFreqAllBusyNodes(id)  sleepAllidleNodes(id)| 
sleepAllidleNodes(id) 
       End 

 

The simulation results are shown in Table 7-9.  Even with these trivial policies, there is 

improvement in computing; the application with Green policies consumes less power 

than the SLA based policies. With the SLA based polices, the total energy consumption 

(cooling and computing power) is not available through the simulation since the inlet 

temperature exceeded the red temperature 475 times and as a result the simulator could 

not calculate the power consumed. In a real data center, the temperature should not 

exceed the red temperature; in the simulator higher than red temperature causes the 

cooling power to be negative value. 



 

95 

 

Table 7-9. Results for Scenario #1 

Profile Policy Green SLA 

Computing power of Web server (Watt) 7.7 * 10^8 9.6*10^8 

total energy consumption 

(Watt ˟ Simulation Time) 

1.9*10^9 N/A 

Mean power consumption (Watt) 26982 N/A 

Number of times crossing red temperature 0 475 

SLA Violation  132 38 

 

The main objective of this experiment was to introduce in some detail how the abstract 

model introduced previously can be used to model a data center, applications, 

management objects and classes and to illustrate the scalability of data center simulator; 

it also illustrates the impact of policy based management to manage energy consumption 

and SLA violations.  

7.4 Scenario #2: Hierarchical Autonomic Manager 
Arrangement  

In this scenario, we develop and illustrate a hierarchical arrangement of managers.  A 

hierarchy of managers corresponds well with the expected managed elements in the data 

center.  By having multiple levels of AMs, we aim to get better performance in terms of 

total energy consumption of the whole data center while trying to minimize the violations 

to service level agreements (SLA).  Prior to getting to discussing details of the second 

scenario simulation, we illustrate hierarchical data center management. 

7.4.1 Hierarchical Management System 

A hierarchical management structure can be based on the physical arrangement of 

elements, from blade server, to rack, to cluster.  For instance, a manager (AM) at the 

cluster level can manage the layer below it, namely the racks.  In each rack, a particular 

AM could then make decisions about, for example, the number of active servers. The 
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hierarchical management system could have AMs at the cluster level, the server level, 

and the device level manager; at each level, the AM would have its own set of policies.  

The hierarchical structure of managers is not confined to the physical environment; it can 

be based on the arrangement of applications running in the datacenter, regardless of the 

physical location of their related compute nodes.  For instance, one type of application 

may be hosted on different racks in the data center, and one AM could be in charge of 

controlling all compute nodes used by that application. Managers could be assigned to 

applications with similar workload or even applications with similar user agreements. 

Given that the AM arrangement is hierarchical, the placement and number of levels in the 

hierarchy is administrator dependent. Figure 7-7 illustrates a possible hierarchical 

arrangement of AMs. 

We have modeled our prototype management system (illustrated in Figure 7-7), using a 

three level hierarchy.  At the bottom level, we have local AMs. Each local AM is attached 

to a number of compute nodes.  The second level of AMs are called aggregate AMs; they 

logically aggregate management responsibility from the local level to the data center 

level.  AMs at this level have the AMs at the first level as their managed elements. At the 

top level, there is one (or more for replication) Data Center AM which acts as the 

coordinator among all aggregate AMs.  
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Figure 7-7.  Prototype Hierarchical Management System 

AMs in our management system exchange information with the other AMs in the levels 

above or below or with peers (same level AMs).  Information is exchanged via messages 

(refer to Table 5-2), this information is called heartbeat and configVector data that is the 

sensor and actuator information. Aggregate level or data center level AMs may inquire of 

their children for heartbeat updates to make better decisions.  Any changes in 

configuration parameters or policies of the child are then sent from the parent AM as 

configuration parameters.  

7.4.2 Hierarchical HPC System 

In this experiment, we have hierarchical arrangement of managers for an HPC type 

workload. The layout of the data center in this experiment is the same as in scenario one 

except that in each chassis we assume that we have one HP server and so there are 50 

physical servers in total in the system. In terms of systems, the data center in this scenario 

has two HPC type systems. Table 7-10 illustrates data center set of manageable objects 

and their configuration parameters in this scenario (the list of systems will be defined in 

the following). Note that the physical layout of this scenario is used in other scenarios in 
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this Chapter, so we have the same data center manageable objects for the remaining 

scenarios except that the system list may change.  

Table 7-10. Data Center Set of Manageable Objects  

dataCenterT SysList={ hpcSys1, hpcSys2} 
Racks={RackT} 
RackT={r1,r2,r3,r4,r5,r6,r7,r8,r9,10} 

r1 = {ch11,ch12,ch13,ch14,ch15} 
r2 = {ch21,ch22,ch23,ch24,ch25} 
r3 = {ch31,ch32,ch33,ch34,ch35} 
r4 = {ch41,ch42,ch43,ch44,ch45} 
r5 = {ch51,ch52,ch53,ch54,ch55} 
r6 = {ch61,ch62,ch63,ch64,ch65} 
r7 = {ch71,ch72,ch73,ch74,ch75} 
r8 = {ch81,ch82,ch83,ch84,ch85} 
r9 = {ch91,ch92,ch93,ch94,ch95} 
r10 = {ch101,ch102,ch103,ch104,ch105} 
ch11= {n11} 
ch12= {n12} 
ch13= {n13 } 
ch14= {n14} 
ch15= {n15 } 
ch21= {n21 } 
ch22= {n22 } 
ch23= {n23 } 
ch24= {n24 } 
ch25= {n25 } 
ch31= {n31 } 
ch32= {n32 } 
ch33= {n33 } 
ch34= {n34} 
ch35= {n35 } 
ch41= {n41 } 
ch42= {n42 } 
ch43= {n43 } 
ch45= {n45 } 
ch51= {n51 } 
ch52= {n52 } 
ch53= {n53} 
ch54= {n54} 
ch55= {n55} 
ch61= {n61 } 
ch62= {n62} 
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ch63= {n63} 
ch64= {n64} 
ch65= {n65} 
ch71= {n71} 
ch72= {n72} 
ch73= {n73} 
ch74= {n74} 
ch75= {n75} 
ch81= {n81} 
ch82= {n82} 
ch83= {n83} 
ch84= {n84} 
ch85= {n85} 
ch91= {n91} 
ch92= {n92} 
ch93= {n93} 
ch94= {n94} 
ch95= {n95} 
ch101= {n101} 
ch102= {n102} 
ch103= {n103} 
ch104= {n104} 
ch105= {n105} 
 
where ni, is a nodeT 
 
ThermalModel =< coolerList, RedTemp, ThermalMap > =  <{coolerT}, 35, 
DMatrix> 

nodeT 

Id 
MIPS={1 1.04 1.4 } 
FullLoadPowerConsumption= {300, 336, 448} 
ZeroLoadPowerConsumption={100, 100, 128} 
StandbyPower= 5 

coolerT CoP_Equ= 0.0068*T2+0.0008*T+0.458 

  

We assume that these 50 physical servers are divided into two separate HPC systems; one 

with 30 compute nodes (HPC2) and the other system has 20 compute nodes (HPC1).  
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Each of our HPC systems runs an HPC workload9 consisting of long and short batch jobs 

(refer to Table 7-11 for more detail about jobs). Each job in the workload has an arrival 

time, duration, needed CPU utilization (will be used for the thermal model to calculate 

the power) and deadline (maximum waiting time in the system).  The workload file is 

presented in Appendix B. 

Table 7-11. HPC Jobs Specification.  

 
HPC1 HPC2 

Number of jobs 200 730 

Average duration 500 1098 

Average number of compute nodes 2 4 

Average CPU utilization 44% 56% 

 

Note that each system has a queue in which jobs are queued upon arrival.  Jobs then get 

dispatched to compute nodes and are executed. The time that a job stays in the queue is 

the waiting time. An SLA violation occurs when a deadline is passed for a job in the 

workload. 

 

Figure 7-8.  Scenario#2: System and Managers Arrangement 

                                                 

9 This log has been used for evaluating resource allocation and scheduling algorithms by the Los Alamos laboratory.[15]    
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7.5.3 Managed Objects in Scenario #2 

Besides the physical objects in this scenario, we have deployed HPC systems as well. 

Table 7-8 shows the configuration of both HPC systems as manageable objects in the 

data center. Each of the HPC systems has a single resource manager with the Minimum 

Heat Recirculation (MRH see Algorithm 2) as its resource allocation algorithm. First 

come first served (FCFS) is the scheduling algorithm in the systems. The workload data is 

presented in Appendix B. 

Table 7-12. Manageable Objects for HPC Systems in Scenario#2  

Manageable Object 

hpcSys1 

Id=1 
Type=HPC 
SysWorkload= {WorkLoad1.txt} 
Queue 
ResManagers= {MHR} 
Sched= {(FCFS)} 
Racks= {r1,r2,r3,r4} 

hpcSys2 

Id=2 
Type=HPC 
SysWorkload= {WorkLoad2.txt} 
Queue 
ResManagers= {MHR)} 
Sched= {(FCFS)} 
Racks= {r5,r6,r7,r8,r9,r10} 

Our set of manageable objects are shown in Table 7-13 and the managed object classes 

are shown in Table 7-14 .  

Table 7-13. Data Center Set Of Manageable Objects. 

Manageable Objects  

MODC={dataCenterT} 

MORacks={ rackT} 

MOnode= {nodeT} 

MOhpcSys= { hpcSys1, hpcSys2} 

MOcooler={coolerT} 

Table 7-14. Data Center Managed Object Classes. 
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MOClassesDC 

DataCenterClass 

HPCSys1Class 

HPCSys2Class 

CoolerClass 

NodeClass 

We have two classes for our HPC systems, HPCSys1Class and HPCSys2Class.  For this 

scenario we have separate classes because we treat one of the systems as a “high priority” 

system and one as a “low priority” system.  This will result in differences in policies and 

how they are managed.  Table 7-15 provides details on the managed object classes 

HPCSys1Class, HPCSys2Class and DataCenteClass. 

Table 7-15. Managed Object Classes: Scenario#2  

Managed Object Class 

H
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MOs= {hpcSys1} 
Event= { Timer1trigger} 
Sensor={ SLAViolation(id)} 
Actuator={ increaseFreqFullyUtilized(id), activateAllSleepNodes(id), 
activateHlafSleepNodes(id), 
increaseFreqBusyNodes(id), decreaseFreqAllBusyNodes(id), sleepAllidleNodes(id) } 
MOProperties={ (Timer1,60s)} 

H
P

C
Sy

s2
C

la
ss

 

h
p

cS
ys

C
la

ss
 

h
p

cS
ys

C
la

ss
2 

MOs= {hpcSys2} 
Event= { Timer1trigger} 
Sensor={ SLAViolation(id)} 
Actuator={ increaseFreqFullyUtilized(id), activateAllSleepNodes(id), 
activateHlafSleepNodes(id), 
increaseFreqBusyNodes(id), decreaseFreqAllBusyNodes(id), sleepAllidleNodes(id) } 
MOProperties={ (Timer1,60s)} 

D
at
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en
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ss

 MO= {dataCenterT}  
Event= {SLAViolationSys1, SLAViolationSys2, SysBlockTimer-Trigger, RedTemeratureEvent } 
Sensor={ } 
Actuator={ blockSys(id), unblockSys(id)} 
MOProperties={(SysBlockTimer ,120)} 

C
o

o
le

rC
la

ss
 MO= {coolerT} 

Event= 
Sensor={inletTemperature} 
Actuator={} 
MOProperties={} 
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N
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 MOs= {nodeT} 

Event= { }  
Sensor={ } 
Actuator={ increaseFreq(id), activateNode(id),SleepNode(id),decreaseFreq(id)} 
MOProperties={ } 

The classes of HPC systems has SLAViolation(id) sensors. This sensor checks every 

Timer1Trigger if there is an SLA violation for HPC job runs inside the system (with 

given id) since last Timer1Trigger (recall that an SLA violation for HPC jobs means  

terminationTime is less than the  time the  job actually finished).  SLAViolation(id) will 

return one if there was a violation. Otherwise, if there is no SLAViolation for jobs run 

since last timer1Trigger event then SLAViolation will be zero. To understand better how 

SLAViolation gets valued, consider what is happening in each management cycle: the 

manager will just ask for one sensor value to make sure that the MO is still alive. The 

manager also checks the event queue (in this case time1Trigger will be in the queue) and 

updates all sensors related to policies that their events has triggered which in this case is 

SLAViolation(id). So, SLAViolation(id) will get called upon trigger of Timer1.  

  There are also actuators defined as part of the classes; their descriptions are as follows:  

 increaseFreqFullyUtilized(id):  which increases the processor frequency of all fully 

utilized nodes of the system with given id (if possible). 

 activateAllSleepNodes(id):  which activates all sleeping nodes of the system with 

given id. 

 activateHalfSleepNodes(id):   which activates half of the sleeping nodes of the 

system with given id. 

 increaseFreqBusyNodes(id):  which increases the frequency of all busy nodes of 

the system with given id. 

 decreaseFreqAllBusyNodes(id),in which decrease frequency of all busy nodes of 

the system with given id. 

 sleepAllidleNodes(id): which puts to  sleep  all idle nodes of the system with given 

id. 
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The HPC system managed object class has a MOProperties parameter: Timer1 with a 

given value of 60 seconds; this is the value for the timer trigger event.  

The data center managed object class has four associated events; three of them are raised 

in the data center AM through messages from other managers in the system:  one from 

the AM connected to the cooler, two others from managers of the HPC systems; these are 

specified in the following.  

Note that in the Event Handling section, we explained that if a manager wants to inform 

another manager in the system about its need or its critical situation it sends an 

UpdateHeartbeat message with an EventCode in it. Usually, the receiver should define 

an event corresponding to this type of messages. In this scenario, upon an SLA violation 

in either system their AM sends an EventCode message to the data center AM. Note that 

SLAviolation is checked every Time1Trigger time. The data center AM will handle that as 

an event and will check to see if there is a related policy. There is another EventCode 

message for the data center MO class which comes from the AM attached to the cooler 

i.e. RedTemeratureEvent. Another event for the data center MO class is its internal timer 

which is set when a system is blocked; its trigger is an internal event. 

The data center class actuators are for blocking the system (blockSys (id)) and unblocking  

a system (unblockSys(id)); Id is the identifier of the HPC system. “Blocking” a system 

means that the system should queue arriving jobs and not start running any additional 

ones; there is no change in the existing workload, i.e., jobs already executing would 

continue to execute. Blocking/Unblocking a system is done through the system scheduler; 

this means that the scheduler starts to queue jobs upon receiving blocking request. Note 

that the communication with scheduler is not the focus of this thesis.  

The Data Center class has an SLA sensor for each of its HPC systems which obtain its 

values from HPC system sensors.  

The cooler class sensor provides its inlet temperature (inletTemperature).  
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The managed object classes are illustrated in Table 7-15. There are two managed object 

classes for the HPC systems, HPCSys1Class and HPCSys2Class (hpcSys1 and hpcSys2 as 

their MOs), one DataCenterClass, and CoolerClass. 

For the management of this data center, we assume that we have an AM to manage each 

HPC system and that we have a data center level AM. We also have an AM attached to 

the cooler that directly communicates with data center level AM.   

Table 7-17 shows the AM classes and the classes of objects that they are associated with, 

the AM pairs and topology. 

Table 7-16. AM and MO Classes  

AM  Class MO class 

HPCSys1AM HPCSys1Class, NodeClass 

HPCSys2AM HPCSys2Class, NodeClass 

DataCenteAM DataCenterClass, 
HPCSys1Class, 
HPCSys2Class 

CoolerAM CoolerClass 

 

Table 7-17. AM Pair and Management Topology Scenario#2 

AMPair (DataCenterAM, HPCSys1AM,1), (DataCenterAM, HPCSys2AM,1), 
(DataCenterAM, CoolerAM,1) 

TDC V={ HPCSys1AM, HPCSys2AM, DataCenteAM, CoolerAM} 
E=AMPair 

For Scenario #2, we consider two policy profiles, Green and SLA, similar to Scenario #1. 

These respectively try to minimize energy consumption and minimize SLA violations.  

Table 7-18. Policy Definitions for Scenario#2  

Policy 
Profile 
Name 

AM Policy Definition  

SLA HPCSys1AM 
and  
HPCSys2AM 

PL0: 
 On Event: Timer1trigger 
 If (SLAVilation(id))  
   begin                
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    Send  message (UpdateHeartbeat, DataCenterAM, SLAViolation,  
                                EventCode) 
 End 
 
PL1: 
 On Event: Timer1trigger 
 If (SLAViolation(id))  
   begin            
       increaseFreqBusyNodes(id)  activateAllSleepNodes(id) | 
activateAllSleepNodes(id)  
End 

Green HPCSys1AM 
and 
HPCSys2AM 

PL2: 
On Event: Timer1trigger 
 If (SLAViolation(id))  
   begin            

Send  message10 (UpdateHeartbeat, DataCenterAM, 
SLAViolation,EventCode) 
End 
 
PL3: 
On Event: Timer1trigger 
 If (SLAViolation(id))  
        begin  
increaseFreqFullyUtilized(id)activateHalfSleepNodes(id)|activateHalf
SleepNodes(id)           
       End  
PL4: 
On Event: Timer1trigger  
 If (SLAViolation(id)==0) 
       Begin 
decreaseFreqAllBusyNodes(id) sleepAllidleNodes(id)| 
sleepAllidleNodes(id) 
       End  
 

 Cooler Policy PL5: 
On Event: true 
If (Max temperature is greater than Red temperature )  
        begin            
              Send  message (UpdateHeartbeat, DataCenterAM, 
,RedTepmeratureEvent,EventCode) 
       End 

 Data Center PL6: 
On Event: SysBlockTimerTrigger 

                                                 

10
 Each AM as part of the management system has an interface to send and receive message. 
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if (true) 
begin  
           unblock(1) 
end 
 
PL7: 
On Event: (SLAViolationSys1 | SLAViolationSys2) 
if (SLAViolation(1)) 
begin 
     Send  message (ChangePolicyProfile , hpcSysAM1, SLA based)  
end 
else 
begin 
   Send  message (ChangePolicyProfile , hpcSysAM1, Green) 
end 
 
PL8: 
On Event: (SLAViolationSys1 | SLAViolationSys2) 
if (SLAViolation(2)) 
begin 
     Send  message (ChangePolicyProfile , hpcSysAM2, SLA based) 
end 
else 
begin 
   Send  message (ChangePolicyProfile , hpcSysAM1, Green) 
end 
 
PL9: 
On Event: RedTemperatureEvent 
if (true) 
begin 
        block(1) 
End 

 

System level SLA policy profile has time-triggered policies (every 60 seconds) PL0 and 

PL1.  Upon timer trigger, the AM checks for SLA violations of its associated system and 

if there is, it tries to do dynamic CPU frequency scaling and activate sleeping compute 

nodes. If compute nodes do not support the frequency scaling, this policy just activates 

sleep nodes.  PL0 reports SLA violation to the data center level AM as an event. Data 

center AM has policies using this event (PL7 and PL8). 
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System level Green policy profile has time-triggered policies (every 60 seconds) PL2, 

PL3, and PL4. Policies tries to do dynamic frequency scaling and activation/deactivation 

of compute nodes if SLA violations happen. With this profile, the AM tries to keep active 

compute nodes and CPUs at moderate frequency levels based on whether there are SLA 

violations or not. 

In both policy profiles, on any SLA violation, the manager at the system level will inform 

the manager at the data center level about the situation by sending the update heart beat 

message with EventCode. The data center AM, upon receiving the EventCode message, 

will  queue it and then process policies in data center level AM that depend on this event 

(refer to PL7, PL8 in Table 7-18). 

The data center level policy depends on events, i.e. from the HPC systems (refer to 

policies PL7 and PL8: SLAViolationSys1 and SLAViolationSys2). According to our model to 

have status of a MO as a sensor for its AM; corresponding managed object should be in 

the list of MO of the manager. Therefore, we define hpcSys1 and hpcSys2 as managed 

objects for data center managed object class.  

The data center AM changes the system level AM's policy profile based on their SLA 

violation status. In each HPC system AM, upon Timer1trigger event if there is SLA 

violation, the system AM will send an event message to the data center AM. In data 

center AM (PL7 and PL8) if still there is SLA violation (the condition of the policies) the 

data center AM changes the policy profile of the system based on whether they have an 

SLA violation (changes it to SLA base) or not (changes to Green). We expect that by 

changing policy profile of system dynamically we get better results in terms of total 

energy consumption and still limit the number of SLA violations. 

The data center level AM has four policies: make a system SLA based or make it Green 

(policy profile). There is also a policy to deal with the Cooler - if the AM in the cooler 

detects a red temperature then that triggers an event in data center AM, and in response 

the data center AM “blocks” an HPC system for a period of time (SysBlockTimer block 

timer one of  MOProperties of the data center class is set to 120) to relieve data center 
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load. What we have simulated for blocking HPC system is not running any jobs from the 

workload and in case of new arrival jobs just queuing them and not dispatching them to 

the compute nodes. 

 

7.5.4 Experimental Scenarios 

In this Scenario we consider five different experiments have been considered to evaluate 

the performance of having multiple autonomic managers with varying sets of policies.   

Experiment 2.1. No management: The data center has the two running HPC systems, one 

with 30 compute nodes, one with 20 compute nodes.. 

Experiment 2.2 There is a manager at the HPC system level, which has an SLA policy 

profile (see Table 7-18). This scenario runs for the small HPC system of 20 compute 

nodes (we assume that the large HPC system is not running in the data center). The goal 

here is to evaluate the impact of the SLA policy profile on power and performance.  

Experiment 2.3. There is a manager at the HPC system level, which has a Green policy 

profile i.e. Green (see Table 7-18). Again, this scenario runs for the small HPC system 

(the large HPC system is not running in the data center). The goal here is to evaluate the 

impact of the Green policy profile on power and performance.  

Experiment 2.4. In this experiment we have two managers: one AM at the system level 

(the small HPC system is running) and the data center level.  We are aim to evaluate the 

impact of dynamically changing policy profiles of the HPC system on the power and 

performance.  

Experiment 2.5.  In this experiment we have both HPC systems with their AMs running, 

an AM at the data center level and the cooler has its own manager that just checks for its 

maximum inlet temperature.  If the inlet temperature is greater than the red temperature 

of hardware in the data center (specified in the data center configuration), the cooler AM 

sends a message (UpdateHeartbeat message) to the data center AM asking it to do 

something (refer to Table 7-18).   In this experiment, the policy available to the AM in 
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the data center directly indicates that hpcSys1 should be “blocked” – essentially decrease 

processing by not executing additional jobs. Obviously, the blocked system will suffer 

from more SLA violations but the gain is that this decision addresses exceeding the red 

temperature for the whole data center. System priority is defined with the HPC system 

configuration.  

7.5.5 Results of Experiments 

The results of running these experiments are shown in Table 7-19. The first experiment 

does not have a management module and has two HPC systems. All compute nodes are 

running with their basic MIPS level.  Running these systems under the workloads results 

in the inlet temperature of the cooler exceeding the red temperature 91 times; as a result, 

the simulator is not able to calculate the total energy consumed.  

Experiment 2.2 and 2.3 involve a single HPC system with a manager.  The Green policy 

profile consumes less energy and power than the same HPC system with the SLA policy 

profile while the number of SLA violations is about the same. This scenario shows how a 

small difference in policies can affect the overall behavior.   

In experiment 2.4, we consider an AM at the data center level and its policy profile is 

Green (see Table 7-18). The data center AM with the Green policy profile is configured 

to dynamically change the policy profile of system level AMs in accordance with the 

system’s  SLA violations;  if there are SLA violations at the system level, its policy 

profile is  altered to be SLA based in order to put more priority on achieving SLAs than 

on energy conservation. The result shows that by having a data center level manager able 

to dynamically switch between a Green policy profile and an SLA policy profile, both 

energy conservation can be achieved while limiting the number of SLA violation. 

Table 7-19. Comparison between different scenarios 

 

Experiment 

No 
management 
system 
(experiment 

Single AM 
in system level 
(experiment 2.2 and 
2.3) 

Multiple AMs 
( data center level and 
system level) 
(experiment 2.4 and 2.5) 
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2.1) 

Policy Profile N/A Green SLA DC AM Policy Profile is 
Green 

Num. of HPC systems 
in DC 

2 1 1 2 

Number of SLA 
Violations 

448 189 187 189 454 

Total energy 
consumption 

(Watt ˟ Simulation 
Time) 

N/A 8,000,000 9,800,000 8,318,000 23,171,143 

Mean power 
consumption (Watt) 

N/A 6,430 7,287 6,518 11,956 

Number of times 
crossing red 
temperature 

91 0 0 0 3 

Number of 
exchanged messages 

0 226 22 253 2,764 

 

Table 7-19 summarizes the result of conducting different scenarios. The parameters are 

the number of SLA violations, total energy consumption and average power consumption 

during each experiment conducting time. Energy is calculated based on total power 

consumption multiply to total experiment conducting time (Watt ˟ Sec= Joule).  Another 

parameter is number of time the temperature of room is exceeded the red temperature. In 

total, we see that by policy based management can manage to decrease the energy 

consumption while maintaining the SLA level. 

7.6 Scenario #3 Peer to Peer and Hierarchy AMs 

In this scenario we look at a management strategy that relies on AMs as neighbors of 

each other. To do so, we configure one enterprise system with three applications hosted 

on it.  The applications are different in terms of their computing intensity, the number of 

compute nodes and workloads.  The original workload are from worldcup99 [20] which 

is web based requests with an average 9500 requests per second.  In our experiment, we 

scaled up the workload for each of the applications. The scaling factor for each 
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application depends on the number of compute nodes assigned to the application and 

compute intensity of application. 

This scenario also focuses on autonomic managers for an Enterprise system and for 

applications.  The topology of managers is as follows: the manager at the level of the 

Enterprise system has priority over the managers for the applications; the application 

managers have the same priority, i.e. are peers. 

Figure 7-9 shows the AM topology for in this scenario and focus of the policies for each 

AM.  The AM at the system level elastically allocates/releases compute nodes from 

applications according to their need which is inferable from their SLA violation status 

and their compute node CPU frequency level.  Moreover, the AM at the system level can 

change the policy profile of its application level AMs.  The AMs attached to each 

application adjusts the CPU frequency of its compute nodes (if possible) and makes the 

compute nodes idle or active depending on SLA violations. 

 

Figure 7-9. Topology of Managers and Policy Goals. 

In this scenario, peers can also cooperate by releasing resources in favor of each other if 

and only if the AM at the system level lets them do that. The implementation of this idea 

is illustrated in the policy definitions. If the system level AM does not have available 

compute nodes for an application that has an SLA violation, it broadcasts a message to its 

peer applications requesting help for the violated application (UpdateHeartbeat). The 

message contains the buffer length of the application with the violation. Each application 

AM upon receiving the message, checks to see if its status (in terms of number of jobs in 
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their queue) is better than the violated application and if so they will release a node, 

otherwise they will do nothing.  

Following tables shows the configuration of data center and its set of manageable objects. 

Table 7-20. Data Center Set of Manageable Objects  

dataCenterT SysList={ Ent_Sys1} 
Racks={RackT} 
RackT={r1,r2,r3,r4,r5,r6,r7,r8,r9,10} 

r1 = {ch11,ch12,ch13,ch14,ch15} 
r2 = {ch21,ch22,ch23,ch24,ch25} 
r3 = {ch31,ch32,ch33,ch34,ch35} 
r4 = {ch41,ch42,ch43,ch44,ch45} 
r5 = {ch51,ch52,ch53,ch54,ch55} 
r6 = {ch61,ch62,ch63,ch64,ch65} 
r7 = {ch71,ch72,ch73,ch74,ch75} 
r8 = {ch81,ch82,ch83,ch84,ch85} 
r9 = {ch91,ch92,ch93,ch94,ch95} 
r10 = {ch101,ch102,ch103,ch104,ch105} 
ch11= {n11} 
ch12= {n12} 
ch13= {n13 } 
ch14= {n14} 
ch15= {n15 } 
ch21= {n21 } 
ch22= {n22 } 
ch23= {n23 } 
ch24= {n24 } 
ch25= {n25 } 
ch31= {n31 } 
ch32= {n32 } 
ch33= {n33 } 
ch34= {n34} 
ch35= {n35 } 
ch41= {n41 } 
ch42= {n42 } 
ch43= {n43 } 
ch45= {n45 } 
ch51= {n51 } 
ch52= {n52 } 
ch53= {n53} 
ch54= {n54} 
ch55= {n55} 
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ch61= {n61 } 
ch62= {n62} 
ch63= {n63} 
ch64= {n64} 
ch65= {n65} 
ch71= {n71} 
ch72= {n72} 
ch73= {n73} 
ch74= {n74} 
ch75= {n75} 
ch81= {n81} 
ch82= {n82} 
ch83= {n83} 
ch84= {n84} 
ch85= {n85} 
ch91= {n91} 
ch92= {n92} 
ch93= {n93} 
ch94= {n94} 
ch95= {n95} 
ch101= {n101} 
ch102= {n102} 
ch103= {n103} 
ch104= {n104} 
ch105= {n105} 
 
where ni, is a nodeT 
 
ThermalModel =< coolerList, RedTemp, ThermalMap > =  <{coolerT}, 35, 
DMatrix> 

nodeT 

Id 
MIPS={1 1.04 1.4 } 
FullLoadPowerConsumption= {300, 336, 448} 
ZeroLoadPowerConsumption={100, 100, 128} 
StandbyPower= 5 

coolerT CoP_Equ= 0.0068*T2+0.0008*T+0.458 

 

Table 7-21 illustrates configuration parameters of manageable objects for this scenario. 

Table 7-21. Manageable Object definition for Scenario#3 

Manageable Object 
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Ent_System1  
 

Type=Ent_Sys1 
SysWorkload={Ent_Application1, Ent_Application2, Ent_Application3} 
Queue 
ResManagers= {MHR) } 
Sched= {(FCFS)} 
Racks= {r1,r2,r3,r4} 

Ent_Application1  
 

Id=1 
startTime=1 
computeNodes :<2,10> 
computeIntensity=(1,1000) 
workload=WorkLoad1 
SLA= (2, 90%,60s) 
terminationTime=0 

Ent_Application2  
 

Id=2 
startTime=1 
computeNodes :<2,10> 
computeIntensity=(2,1000) 
workload=WorkLoad2 
SLA= (2, 90%,60s) 
terminationTime=0 

Ent_Application3  
 

Id=3 
startTime=1 
computeNodes :<3,15> 
computeIntensity=(3,1000) 
workload=WorkLoad3 
SLA= (2, 90%,60s) 
terminationTime=0 

 

Configuration of managed object classes and their associated sensors, events and 

actuators are illustrated in Table 7-22. The enterprise system object class has an 

SLAViolation event corresponding to each application which are triggered when the 

application has SLA violation. For its sensors, we have defined compPwrPercent 

(explained in the following) for each application and a queue length sensor for each 

applications (queueLengt(applicationId)).  The system level AM has an SLA violation 

sensor for each application. The system level AM has a sensor for the response time of an 

applications, i.e. reponseTimeInLastEpoch(applicationId) and also has a sensor 

idleNode(id) that returns number of idle nodes in the system. 
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The actuators for the enterprise system object class include allocating a node to an 

application (allocateNode(application)) and, releasing a node from an application 

(releaseANode(applicationID)). 

For the enterprise applications, we have two events: triggerTimer1 (i.e. defined as its 

MOProperties) and CooperationEvent. CooperationEvent is triggered by the system level 

AM in the management system. When, the system level AM wants to allocate a node to 

an application in need and there is no node available to allocate, the system level AM 

needs to notify all applications inside the system. This is done via an event trigger in our 

management system. As explained in section 6.6, the system level AM needs to send an 

UpdateHeartbeat message with EventCode to all of its application AMs. This event 

(message) is named as CooperationEvent in application managers. 

There are also actuators for then enterprise application class (EntAppClass) which their 

descriptions are as follows:  

 increaseFreqFullyUtilized(id):  which increases the frequency of all fully utilized 

nodes of the application with given id (if possible). 

 activateAllSleepNodes(id): which activates all sleeping nodes of application with 

given id. 

 activateHalfSleepNodes(id): which activates half of the sleeping nodes of 

application with given id. 

 increaseFreqBusyNodes(id): which increases the frequency of all busy nodes of 

the application with given id. 

 decreaseFreqAllBusyNodes(id): in which decrease frequency of all busy nodes of 

the application with given id. 

 sleepAllidleNodes(id): which puts to  sleep  all idle nodes of the application with 

given id. 

Upon arrival of any application in the data center it gets its own id and this id will be sent 

to the AM as configuration parameter i.e. explained in Chapter 6 Algorithm 5. Table 21 

illustrates the MO classes in this scenario. EntAppClass has Ent_Application as its 



 

117 

managed object.   Our set of manageable objects and the managed object classes are 

defined in Table 7-23 and Table 7-24.  

Table 7-22. Configuration Managed Object Class Scenario#3  

Managed Object Class  

En
tS

ys
C

la
ss

 

MOs= {Ent_Sys1}  
Event={SLAViolation1, SLAViolation2,SLAViolation3} 
Sensor={ compPwrPercent(id), queueLengt(id), reponseTimeInLastEpoch(id), 
idleNode(id)} 
Actuator={ allocateNode(applicationID), releaseANode(applicationID)} 
MOProperties={} 
 

En
tA

p
p

cl
as

s 

MOs= {Ent_Application}  
Event= {CooperationEvent, trigger Timer1} 
Sensor={ reponseTimeInLastEpoch(id) , queueLength(id)} 
Actuator={ increaseFreqFullyUtilized(id), activateAllSleepNodes(id), 
activateHlafSleepNodes(id),increaseFreqBusyNodes(id), decreaseFreqAllBusyNodes(id), 
sleepAllidleNodes(id), releaseAnIdleNode(applicationID)} 
MOProperties={ (Timer1 Value,60s)} 

Table 7-23. Data Center Set Of Manageable Object. 

Set of Manageable object 

MODC={dataCenterT} 

MORacks={ rackT} 

MOnode= {nodeT} 

MOEntrpriseSys= { Ent_System1} 

MOApps= { Ent_Application1, Ent_Application2, Ent_Application3} 

Table 7-24. Data Center Managed Object Class. 

Managed Object Class 

EntSysClass 

EntAppClass 

NodeClass 

AM classes, their associated MO classes, and AM pair and topology of management 

system are illustrated in following tables. As mentioned in earlier in Chapter 6. 

(Algorithm 5) our model if flexible to determine which AM should manage the current 

new arrival MO, but in our experiments without losing generality, we assume that each 

AM has only one MO in its list of MO. So, in this experiment we assume that we have 3 

different AM object for three different enterprise applications.  
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Table 7-25. AM Classes and MO Classes  

AM  Class Associated MO class 

AMEntSys EntSysClass, EntAppClass 

AMEntApp EntAppClass, NodeClass 

SLAViolationCheck is a function that checks if 90% of the response in the last  

reponseTimeInLastEpoch  is less than 2 seconds and returns 1 otherwise returns 0 for 

application with given id. Note that reponseTimeInLastEpoch is defined in the list of 

EntApp1Class, EntApp2Class, and EntApp3Class sensors. 

Table 7-26. AM Pair and Management Topology 

AMPair (AMEntSys, AMEntApp ,1), (AMEntApp, AMEntApp,0) 

TDC V={ AMEntSys, AMEntApp } 
E=AMPair 

Table 7-27. Policy definition Scenario#3  

SLA Policy 
Profile For AM 
Attached to 
AMEntApp 

PL0: 
On Event: Timer1trigger 
 If (SLAViolationCheck (90%,reponseTimeInLastEpoch,2,id)>0)  
   begin        
  increaseFreqBusyNodes(id)  activateAllSleepNodes(id) | 
activateAllSleepNodes(id)     
End 

Green Policy 
Profile For AM 
Attached to 
EntAppid 

PL1: 
On Event: Timer1trigger 
 If (SLAViolationCheck(90%,reponseTimeInLastEpoch,2,id)>0)  
        begin  
   increaseFreqFullyUtilized(id)activateHalfSleepNodes(id) 
|activateHalfSleepNodes(id)           
         end 
PL2: 
On Event: Timer1trigger  
 If (SLAViolationCheck(90%,reponseTimeInLastEpoch,2,id)<0) 
       Begin 
           decreaseFreqAllBusyNodes(id)  sleepAllidleNodes(id)| 
sleepAllidleNodes(id) 
  end 
 
PL3: 
On Event:  CooperationEvent 
 If (queueLength(id)<ReceiveMessage.getInfo()) 
   begin            
                releaseAnIdleNode(id) 
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   end 

AMEntSys 
Policy Set 

PL411: 
On Event: (SLAViolation1 | SLAViolation2 |SLAViolation3) 
if (SLAViolationCheck(90%,reponseTimeInLastEpoch(1),2,1)>0)  
/*SLA1 is violated*/ 
begin 

       Send  message (ChangePolicyProfile , AMEntApp1, SLA based)    
end 
else 
begin 

      Send  message (ChangePolicyProfile , AMEntApp1,Green) 
end 
 
PL5: 
On Event: (SLAViolation1 | SLAViolation2|SLAViolation3) 
if (SLAViolationCheck(90%,reponseTimeInLastEpoch(2),2,2)>0)  
/*SLA2 is violated*/ 
begin 

       Send  message (ChangePolicyProfile , AMEntApp2, SLA based)    
end 
else 
begin 

      Send  message (ChangePolicyProfile , AMEntApp2,Green) 
end 
 
 
PL6: 
On Event: (SLAViolation1 | SLAViolation2|SLAViolation3) 
if (SLAViolationCheck(90%,reponseTimeInLastEpoch(3),2,3)>0) 
 /*SLA3 is violated*/ 
begin 

       Send  message (ChangePolicyProfile , AMEntApp3, SLA based)    
end 
else 
begin 

      Send  message (ChangePolicyProfile , AMEntApp3,Green) 
end 
 
PL7: 
On Event: (SLAViolationid) 
if (compPwrPercent(id)>0.5 & idleNode() >0) 
begin 

                                                 

11
 The idea in policyPL4, PL5,and PL6 is that upon any application SLA violation, the violated application 

policy profile is changed to SLA based and rest changed to Green.  



 

120 

       allocateANode(id) 
end 
 
PL8: 
On Event: (SLAViolationK|SLAViolationL) 
if (compPwrPercent(J) <0.5 ) 
begin 
       releaseANode(J) 
end 
 
PL9: 
On Event: (SLAViolationid) 
if (compPwrPercent(id)>0.5 & idleNode() = 0) 
begin 

  Send  message (UpdateHeartbeat, Boradcast, queueLength(id), 
EventCode) 
end 
 

EntSysAM  
PolicyProfile1 

PL7,PL8 

EntSysAM 
PolicyProfile2 

PL4,PL5,PL6, PL7,PL8 

EntSysAM  
PolicyProfile3 

PL4,PL5,PL6, PL7,PL8,PL9 

 

Note that an enterprise system has SLA sensors for its applications in its sensors list.  

Four different cases have been conducted and compared in this scenario:  

 Experiment 3.1. The system level AM uses profile policy PolicyProfile1 and all 

applications make use of the policy profile that is SLA based. Briefly, the system 

level AM just allocates/releases resources to/from an application according to 

their SLA violation status. The application level AM adjusts the frequency level 

of application’s compute nodes.  

 Experiment 3.2. The system level AM uses policy profile PolicyProfile1 and all 

applications use the  policy profile Green. The system level AM just 

allocates/releases resource to/from an application according to their SLA violation 

status. The application level AM adjusts the frequency level of application’s 

compute nodes.  This experiment is identical to Experiment 3.1 except that the 

policy profile used the application AMs make use the Green profile instead of an 

SLA based one. 
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 Experiment 3.3. The system level AM profile policy is PolicyProfile2, which 

changes the profile policy of all of its applications based on their SLA violation 

status. If the application has an SLA violation, then the system level AM changes 

the application’s profile policy to the SLA based policy profile, otherwise it will 

be changed to Green policy profile.  Initially, each application AM starts with the 

Green policy profile. Moreover, it allocates/releases resources to/from 

applications according to their SLA violation status. The application level AM 

adjusts the frequency level of application’s compute nodes.  

 Experiment 3.4. The system level AM policy profile is PolicyProfile3. In this 

situation, the system level AM changes resources and the policy profile of its 

application level AMs (according to the status of the application SLA violations, 

the application  policy profile  will be changed to an SLA based or Green policy). 

The only difference here is that if the system level AM does not have an available 

node to allocate, it will broadcast a message to all other AMs at the application 

level to try to obtain resources (compute nodes) for the application with the SLA 

violation. An application AM upon receiving the message will compare their 

queue length with the queue length of the AM with the SLA violation.  If they are 

in better shape in terms of queue length, they will release a node so that the 

system level AM can allocate that released node to the AM with the violation 

(through resource manager in system level). After the node is released, since the 

system level AM has a new node available to allocate, the system level AM will 

use this node. 

 

Release/Allocation of compute node to the application in this scenario is straightforward. 

We just check how busy are the nodes allocated to the application are. To do so, we need 

to know if there is room for frequency scaling (if the CPU supports that) and in which 

frequency level their CPUs are. If all of them are at full CPU frequency then this 

application cannot run more effectively, and the application needs to be allocated to a 

new node.  The parameter compPwrPercent is an indicator, shows how much the 

applications (with given id) utilizes its compute nodes frequency scaling. An AM at the 
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level of an application calculates this; compPwrPercent is one of system level AM 

sensors. Upon initialization of an application, the resource manager at the system level 

allocates the minimum requested compute nodes to the application and in each epoch 

time according to SLA violation of the application and its compPwrPercent level; it will 

allocate/release nodes to/from the application. 

Table 7-28. Comparison between different scenarios 

 

Profile Policy 
System Level 

Experiment 3.1 
PolicyProfile1 

Experiment 3.2 
PolicyProfile1 

Experiment 3.3 
PolicyProfile2 

Experiment 3.4 
PolicyProfile3 

Profile Policy 
Application Level SLA Green Initial: Green          

Num. of SLA 
violation in 
entApp1 

3 114 17 68 

Num. of SLA 
violation in 
entApp2 

6 12534 8070 4020 

Num. of SLA 
violation in 
entApp3 

31 873 1062 770 

total energy 
consumption 

(Watt ˟ Simulation 
Time) 

2.9*10^8 1.95*10^8 2*10^8 2.08*10^8 

Mean power 
consumption 
(Watt) 

4451 2976 3113 3180 

 

In Table 7-28, we illustrate the result of running these different scenarios. As shown, 

aside from the better performance with the SLA policy profile compared to the Green 

policy profile in terms of SLA violation, we see that making the application level AMs 

share resources with each other (policy profile 3) results in fewer total SLA violations 

and the  power consumption has not changed much.   
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Chapter 8  

Conclusion and Future Work 

Administrator independent and autonomous management of systems in a data centers is 

the central focus of this research. In this work, a policy based management system has 

been developed for managing a data center and its systems with a focus on managing data 

center energy consumption. Considering the inherent nature of data centers, which are 

heterogeneous, complex, distributed and dynamic the management system needs to be 

flexible enough to be applicable for this environment. Our main assumption here is that 

we can use all available approaches and techniques for energy and power management 

that have been proposed in the literature.  

The main contributions of this research are: 

 A general management model has been developed which lets the administrator 

define the management model by defining managed objects, autonomic managers, 

and the topology of interaction among the managers.  The model also captures the 

definition and creation of policies for each class of autonomic managers. In this 

model, the administrator can change the behavior of the management system by 

defining new managed objects, new managers and even defining new sets of 

policies.  

 The notion of a management topology has been introduced which can be used to 

model the communication among autonomic managers within a management 

system. There is no limitation on the granularity of managers or connection 

between managers in the data center.  

 The communication between managers is a loosely coupled communication and is 

done through message passing. A set of primary message types for manager 

communication has been defined. 
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 Given the configuration of a management system and the definition of managers, 

a number of algorithms for the deployment of an instance of a management 

system have been introduced.  

 The proposed management system has been evaluated with number of scenarios 

and has shown promising results; which means that with management system we 

can get better energy consumption and reduced impact on the performance of the 

data center. 

 To develop the scenarios, we have implemented a data center simulator which 

simulates the data center behavior under different types of systems and 

workloads.  The simulator is able to compute the energy consumption of the data 

center as well. We can define different type of hardware (servers, chassis, and 

racks) and applications. The simulator is scalable which means that we can 

increase the number of nodes. The simulator is the secondary outcome of this 

research.  

 Another path for future work on improving the flexibility and generality of the 

data center simulator: 

o It should be able to support a number of “common” data center topologies, 

e.g. fat trees; 

o As the trend of virtualization is going toward containers, the simulator 

needs to support containers within systems; 

o The current thermal model used in the simulator does not consider 

humidity as one of the factors in calculating the power consumption of 

data center. One of the goals for future is working on comprehensive 

thermal model that is closed to the thermal behavior of a data center. Refer 

to that proposed in [61]; 

o Given that alternative energy sources are becoming common, it would be 

useful to include a power model in the simulator that accounted for the use 
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of  renewable energy sources and how they could be taken  into account in 

the management system.  

To fully leverage, the notion of an autonomous management system there are additional 

areas of research that are needed:  

1. Conflicts in manager decisions can originate in the action of their policies. So, 

whenever the administrator defines the policy sets for managed objects and 

managers, there needs to be a sanity phase which checks for the potential conflict.   

2. The overhead of message passing and communication with policy repository is a 

potential issue in the management system. This could be addressed by defining 

management for the management system.  This means that management system 

could have manager that monitors the heartbeat of management system (in which 

the number of messages could be an indicator) and based on that makes decision 

regarding any potential changes in the management system. 

3. Part of the management system could be imbedded in the application context and 

as a management layers being part of application protocol stack. 

4. The collaboration between managers could evolve based on how the system and 

policies change; further work on how policies can be used for this needs to be 

explored.  

5. Evolving the management system algorithms for dealing with sudden changes in 

the management system e.g. disconnection of a manager and security. 

6. Evolving the simulator to include more automated means of specifying systems, 

policies, etc. and creating a more sophisticated user interface.  

The proposed autonomic management system has vast application in management of 

cloud environment and distributed data center due to its administrator independent and 

policy based attributes. 
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Appendix A: Overview of Simulator 

Simulation versus real experiments.  Running a data center (with compute nodes and 

cooling equipment together) which is capable of supporting different configurations of 

applications and different types of hardware is the preliminary step. Simulation of such 

environment, rather than working with a small, toy data center, is the best solution for our 

purpose for several reasons. First, running a real data center, even a small one, is costly 

because providing a thermal insulation environment with chillers and several servers in it 

is expensive. Second, evaluation of different management ideas need to be evaluated in 

different types of computing loads on several hundreds of compute nodes, possibly 

heterogeneous, which may be hard to attain in a real data center. Third, examining a 

specific policy for different data center layouts (different placement of chillers and 

compute nodes or different cold/hot aisle plan) is more feasible with simulation. A 

simulator opens up the possibility of evaluating different scenarios; this is most important 

at this stage. 

Other simulators. Several other data center simulators have been proposed and exist. 

CLOUDSIM tries to simulate the dynamic behavior of applications on virtual machines 

running on a cloud [57]. This simulator has powerful modules for evaluating 

virtualization policies.  An energy management module for CLOUDSIM has been 

developed and they now take into account the computing power of the host running the 

virtual machine workload; they do not take into consideration the cooling power 

consumption which obviously gets affected by the physical layouts of the data center. 

GDCSIM [58] is another simulator which provides simulation of the thermal behavior of 

a data center with a given physical layout. GDCSIM does not provide a framework that 

can support different types of applications/users running jobs nor does it provide a 

mechanism for considering different SLA. 

Key Features. The first objective behind the design of the simulator was the 

development of a platform for evaluation of different arrangement of autonomic 

computing agents across the abstract model of data center and to explore the influence of 

the granularity of managers on minimizing energy consumption of a data center with 
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compliance to SLAs. To the best of our knowledge, this simulator is the only simulator 

which tries to simulate the management of energy consumption of a data center inspired 

by autonomic computing.  The thermal models used in the simulator are validated model 

based on the BlueSim thermal data center simulator [55]. Another key feature of the 

simulator is that it supports different types of computing systems (enterprise, interactive 

and high performance computing) and different types of workloads with various SLA 

parameter definitions. Likewise, its hierarchical abstraction model aims to accommodate 

monitoring and management modules. 

Key challenges. CPU utilization is assumed to be the primary parameter in determining 

energy consumption of a server.  This is a general assumption in the literature and so our 

focus has been on the timely calculation of server CPU utilization while jobs are running. 

Dependency of this simulator on BlueSim (to get thermal model) can also be considered a 

challenge since such a model is needed, although without having thermal model of the 

data centre computing power calculations and other features can still be done. 

 

 Overview 

The initial objective in designing this simulator was to develop a platform to evaluate 

different collaboration models between different autonomic computing agents and to 

explore the influence of different collaboration architectures on energy consumption of a 

data center while considering compliance with SLAs.  The simulator is basically an 

infrastructure for this research.  The novelty of this approach lies in considering the 

datacenter as an entity managed by autonomic agents.  In our case, we assume that these 

agents make use of defined policies, often defined at various levels, in order to manage a 

variety of aspects of a data center, from allocation of jobs to management or workload.  

 

A.1.1 General features  

Given our objectives, the simulator needed to support a number of features and 

capabilities: 
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 Support heterogeneous servers: the ability to support different types of servers 

with different levels of energy consumption and computing power. 

 Support different workload models: the ability to define several types of 

workloads, e.g., compute intensive or interactive jobs.  

 Support dynamic resource allocation for dynamically allocating server to different 

meet application requirements under changing workloads.   

 Support different workload scheduling algorithms. 

 Support different types of SLAs: the ability to define different kinds of SLA for 

each type of workload and also keep tracking of SLA violations.  

 The ability to record energy consumption of the data center (computing and 

cooling). 

 The ability to change CPU working frequency of servers. 

 

The main assumption in our simulator is that the thermal model of the data center is 

given.   

 

A.1.2 Architecture 

Figure 2 shows the overall structure of the simulator.  The simulator gets the thermal 

profile of the data center and simulator inputs, e.g. configuration of systems and 

computing loads.  During the simulator run, the results are output to a logfile which 

includes data on the thermal behavior of the system and SLA violations.  

The front-end configures the simulator and records outputs.  The back-end runs the 

workload and simulates the system.  Dynamic changes in the system configuration based 

on policies is done in the autonomic manager module,  which may contain several 

modules, e.g. representing several layers autonomic mangers  The thermal profile of the 

data center is extracted from the BlueSim package. The basic objective of BlueSim is to 

generate a Heat Recirculation Matrix (HRM) for a given topology of data center. 
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Figure 2. Overall structure of the simulator. 

A.2. The Simulator Operation 

The main processes in the simulator after the configuration step, are running the 

workload, resource management, and timely calculation of energy consumption. Energy 

consumption is calculated using the thermal model which is defined in the configuration 

module (configurePysicalLayout). Overall pseudo code of the simulator is shown in 

following table. 

 

 

Table 1. The simulator lifecycle pseudo code 

Data center life cycle procedure  

procedure DClifeCycle() 

begin 

dataCenterInitialization(); 
while(jobs are not finished) 

begin 

for each systems  i in the data center 
SysList.get(i).RunACycle(); 

 

procedure System ::RunACycle() 

begin 
   for each application app in the system 

                   app.runAcycle(); 

   end for 
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end for 

Compute power consumption(); 
 

if( managerIsAttached) 

          runManagementCycle(); 
end if 

 

       end while 

end procedure 

 

procedure dataCenterInitialization () 

begin 

      configurePysicalLayout(); 

      configureAMTopology() 
      for  all number of requested system 

      begin 

Read confing file(); 
initialize systems();  

//insert current system in data center system list 

SysList.add(sys) ; 
     end for 

end procedure 

 

    if( managerIsAttached) 

          runManagementCycle(); 
   end if 

 

end procedure 

 

procedure application::RunACycle() 

begin 

            readJob(); 

            dispatchJobToComputeNode(); 

            for each computeNode node in the application 
                         node.calculateCPUutilization(); 

            end for  

check&SetViolation(); 
if managerIsAttached() 

          runManagementCycle(); 

end if 

end procedure 

 

 

 

For each system there is an output file which records each time a SLA violation occurs 

and the information recorded depends on type of system: 

For interactive and enterprise applications, each time an SLA is violated, based on the 

SLA definition for an application, the violation is recorded in output file of corresponding 

system. 

Finally, another output file will record power consumption of whole data center during 

simulation time. Each record of this file includes: computing power, cooling power, and 

time. 

A.3. Evolving the simulator for new data center 

Now, the question is that what would be the action plan for using the simulator for a new 

data center?  

 Define the physical configuration of data center . 

 Get a thermal map for given data center using BlueSim as described in the section 

on the thermal map. 

 Define the systems, applications, SLAs, and workloads. 

 Defining the position of autonomic managers and management scenarios: to do 

so, programming is needed. 
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 Developing management policies and scenarios. 

A.4. Extracting thermal map 

The Arizona State datacenter team introduced a package -BlueSim- which aims to 

generate HRM for any given description of datacenter.  BlueSim is a simulation package, 

which integrates various software for geometry generation, CFD simulation, and post 

processing. The main idea behind BlueSim is to generate an Heat Recirculation Matrix 

(HRM) for different configurations of the data centers. There are three main 

subcomponents in BlueSim:  

 Pre-processing: The input to BlueSim is a high level XML-based data center 

description in Computer Infrastructure Engineering Language (CIELA). It has a 

range of elements that capture the generic layout of a data center: (i) equipment 

configuration, i.e. how is the arrangement of servers into chassis and chassis into 

racks, likewise the arrangement of these racks into rows (ii) physical datacenter 

layout, i.e. presence of raised floors, lowered ceilings. A parser parses the given 

XML specification to create a geometry file which depicts the layout of 

datacenter. The layout is then converted to a mesh file using GMSH, a standalone 

open source meshing software. Note that for getting thermal model of a new data 

center, just defining the physical description of data center in CIELA is needed, 

the rest is done by BlueSim. 

 Processing: This component runs a series of offline CFD simulation of the 

specified data center to enable determination of HRM. The simulation scenarios 

aim to extract the effect of each chassis on others by fully utilizing the node and 

getting thermal information of other nodes from the CFD model. 

 Post-processing: This component generates an array of different HRMs with 

different active server sets. Having number of HRMs based on different situations 

gives better thermal model precision. The current version generates only a single 

HRM with all the servers active. The claim they have plan for future releases of 

BlueSim that will generate an array of HRMs for different active server sets. 



 

138 

 

Appendix B: Examples of Workloads for Experiments 

 

B.1 Sample HPC type workload used in Scenario #2.   

Arrival Time Duration CPU estimation 
# of requested 
CPU Deadline 

1 1 41.07 2 1 

1 1 51.19 2 1 

1 1 48.33 1 1 

1 8 45.16 1 1 

1 9 52.78 1 1 

1 7 57.89 3 1 

1 13 48.89 3 1 

1 6 48 3 1 

1 7 38.46 3 1 

1 8 40.63 3 1 

2 370 27.72 2 1 

4 8 58.46 2 1 

4 17 37.5 2 1 

4 1 49.23 2 1 

4 1 50 2 1 

4 8 53.08 3 1 

4 7 40.74 1 1 

4 411 10.9 1 1 

5 10 35.8 1 1 

5 9 56.06 1 1 

5 12 40.21 1 1 

5 12 40.63 1 1 

5 8 44.44 3 1 

5 7 49.77 3 1 

5 8 45.31 3 1 

5 460 39.74 3 1 
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B.2 Sample of Enterprise workload used in Scenarios  #1, #3. 
 

Arrival Time # of request 

1 225 

2 272 

3 241 

4 215 

5 249 

6 240 

7 266 

8 265 

9 269 

10 262 

11 241 

12 288 

13 246 

14 267 

15 304 

16 223 

17 243 

18 266 

19 222 

20 255 
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