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ABSTRACT 

 With worldwide fossil fuel resources dwindling and greenhouse gas emissions 

rising, it is urgent to find renewable liquid fuel alternatives from e.g. biomass to meet the 

world’s growing energy demand. Lipid feedstocks and pyrolysis oils from woody 

biomass can be utilized for the production of second-generation biofuels via a catalytic 

hydrodeoxygenation (HDO) process. The conversion of fatty acids and esters plays an 

important role in the activity and selectivity of these processes. Understanding the HDO 

reaction mechanism of organic acids and esters on metal surfaces is a prerequisite for the 

rational design of new HDO catalysts specifically designed for upgrading pyrolysis oils 

or lipid feedstocks. 

 We theoretically studied the HDO of propionic acid and methyl propionate, our 

model acid and ester molecules, on flat and step metal surfaces in the absence and 

presence of solvents. Our theoretical results suggest that the activity of palladium flat and 

step surfaces are very similar under typical reaction conditions. Decarbonylation was 

identified to be the dominant mechanism, and in our sensitivity analysis, CH3CH2CO-OH 

bond dissociation as well as dehydrogenation of the α-carbon were found to be the most 

rate-controlling steps in all reaction media. Finally, with the help of an experimental 

kinetic isotope study on propionic acid, we confirmed the results of our sensitivity 

analysis. 
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CHAPTER 1 

 

INTRODUCTIONS  

 
 

1.1 OVERVIEW 

 Developments in society, major changes in agriculture, manufacturing, mining, 

transportation and technology, have had a profound effect on economic conditions in 

recent centuries. By changing from a labor and animal based economy to machine and 

industrial based economy, energy demand has increased dramatically. Fossil fuel fueled 

the industrial revolution and formed the foundation of modern industrial economies; 

however, the slow rate of the fossil fuels regeneration cycle makes them non-renewable 

recourses. Fossil fuel recourses such as coal, petroleum, and natural gas, take millions of 

years to be formed, and over the recent centuries, they have been consumed at a rate that 

is orders of magnitude higher than their natural regeneration cycle [1, 2]. 

     Recent statistical energy reviews indicate that most of the countries in the world 

are strongly dependent on fossil fuels. Fossil fuels supplied 83 % of the total energy of 

the United States[2, 3] and almost 80 percent of energy produced in the European Union 

in different energy sectors[2, 4]. For example in the US, Petroleum provides 94 percent 

of transportation, 40 percent of Industrial, 18% of residential and 1 percent of electric 

power sector [5]. 

      According to the increase in consumption rate of fossil fuels, it is obvious that the 

dependency of the world on fossil fuel resources increases every year. Last year, the 
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world oil consumption rate grew by 2.7%, also, natural gas consumption increased by 

7.4%, which is the most rapid increase since 1984 [6]. 

 Continuous and rapid over exploitation of fossil fuels brings up serious concerns 

about the depletion of fossil fuel resources. The reserve-to-production ratio (R/P), which 

indicates the remaining amount of non-renewable energy recourses, has dropped at a 

dramatic rate over the last 3 decades all around the world[6].   

     R/P ratios by region are shown in Figure 1.1, 1.2 and 1.3 for oil, natural gas and 

coal resources. 

 Currently available world reserves of  fossil fuel resources are sufficient to meet 

46.2 years for oil, 58.6 years for natural gas and 118 years for global coal production [6]. 

Research continues to be concentrated  on depletion of oil and other resources. A group 

of scientists are pessimistic and claim an imminent peak at 2020 and subsequent terminal 

decline in the global production of conventional oil[7]. On the other side, optimists 

believe that liquid fuels production is sufficient to meet global demand in the 21
st
 

century[7]; however, it is imminent that fossil fuels will continue to diminish as time 

progresses.  

            Next, cogeneration of CO2 in stoichiometric ratio to carbon used in fossil fuels is 

another main societal concern. Carbon dioxide is a greenhouse gas. Greenhouse gases are 

those that can absorb and emit radiation within the thermal infrared light. High 

concentration of greenhouse gases in the atmosphere can cause the greenhouse effect. 

The greenhouse effect is a process by which thermal radiation from a planetary surface is 

absorbed by atmospheric greenhouse gases, and is re-radiated in all directions. Since part 

of this re-radiation is back towards the surface, energy is transferred to the surface and 
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the lower atmosphere. As a result, it can alter the energy of the climate system and 

consequently, rises the average temperature of earth which is known as global 

warming[1, 8, 9].  

               As a result of the rapid growth in the usage of fossil fuels, CO2 emissions have 

exponentially increased in the last century. The accumulated global CO2 emissions from 

fossil resources have grown by 600 % from 1925 to 2000 [1]. Consequently, the global 

average temperature has increased over the last century and scientists believe that most of 

the observed increase in global average temperature is due to increases in greenhouse gas 

concentration produced from human activities.[1, 9]  

 Fig 1.4 shows observed continental and global changes in surface temperature for 

the period 1906-2005. 

  Global warming is likely one of the most dangerous threats that human will face 

in the future. Effects of global warming are difficult to completely predict because of the 

complexity of the climate. However it is known that it will have a large effect on water, 

resources, food supplies, economy and health.  

 Environmental impacts of fossil fuel utilization not only can affect the atmosphere 

and temperature but also, the water recourses all around the globe. Oil may accidently 

release to the environment especially in marine areas, from tankers, offshore platforms, 

drilling rigs and wells due to human activities. Oil can poison the animals and sea bird 

bodies and damage the wildlife species. Oil spill disasters change the ecosystem of 

marine and coastal areas and the cost of the consequent effects on the environment is 

very large. One of the worst recent oil spills in the world is the Gulf of Mexico disaster in 
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2010. Most recent data show that approximately 6,000 sea turtles, 26,000 dolphins and 

whales, 82,000 birds, and countless fish and invertebrates may have been harmed.[10] 

  Fig1.5 gives an idea that how much oil was released in the Gulf of Mexico. 

   Concerns about non-renewable resources are not limited to availability and 

environmental issues. Considering that fossil fuels are not equally distributed in the world 

and also, the high dependency of the US and Europe on fossil fuels, clearly shows the 

importance of fossil fuels in the stability and political situation of the world. 

  According to concerns and issues mentioned above, it is clear that society needs 

new sources of energy. New alternative energy resources need to be renewable and eco-

friendly. Equally important, efficient production of new potential resources should be 

technologically possible and economically viable.   

 The most reliable candidates for alternative energy resources are: Solar, hydro, 

wind, geothermal and biomass[1, 11]. The amount of renewable energy resources on 

earth is much more than fossil resources but there are facts that limit the large 

exploitation of these resources. The availability of these resources is limited to location, 

seasonal and climate changes. For example, cloudy days reduce solar power and calm 

days reduce wind power. Also, these resources might be located in remote areas like a 

desert. Next, the lack of a cheap technology required for production, conversion, storage 

and transportation is the current challenge in utilization of renewable resources. Research 

continues to achieve a sustainable and efficient production of renewable resources.  

            Among those potential alternative sources mentioned above, solar energy and 

biomass have received significant attention in recent years and it is expected that we will 

see the dominance of biomass as a renewable energy resource[1, 11]. 
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            Biomass is organic material made from plants and animals. All water and land-

based organisms, vegetation, trees, algae, municipal solid waste, animal waste, sewage, 

forestry and agricultural residues are biomass resources[12]. Energy stored in biomass 

comes from carbohydrates from the photosynthesis reaction which is of the same origin 

as fossil fuels. Consequently, biomass is more compatible with existing conversion 

technology in comparison to other renewable resources [13, 14]. Existing facilities can 

convert biomass to fuel with small adaption costs which is of key importance for the 

growth of biomass utilization. 

             Biomass resources include different types of chemical compounds including 

oxygenated lipids and different types of carbohydrates such as sugars and lignocelluloses.  

Food crops such as sugar cane and corn grains constitute the first generation of biomass 

feed stock. Fermentation of sugars to ethanol by microorganism was the first bioprocess 

to make biofuels. Later, another biofuel was produced by tranesterification of vegetable 

oil and animal fats with methanol to long chain alkyl esters, which is called biodiesel. 

Ethanol and biodiesel implemented successfully in the energy system. The U.S. Annual 

energy review report 2011 shows that the biodiesel and ethanol share is 23 % of the total 

renewable energy consumption[5]. Recent data show that ethanol production has 

increased from 331 to 1.22 Trillion BTU in the period of 2005-2010 [5]. Also, the 

international energy outlook predicts the growth of ethanol production [15]; however, 

first generation biofuels are not ideal alternatives for fossil fuels because of compatibility 

issues and expensive sourcing. That is why they have been mostly used as a blend with 

hydrocarbon fuels[2, 16, 17]. 
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           Utilization of corn and sugar cane biomass for large scale production can increase 

the price of these edible sources due to competition with food and land. Also, biodiesel 

production from vegetable oils derived from food sources is limited by the expensive 

price of vegetable oils. This is one of the reasons for a decrease in biodiesel production in 

the last 2-3 years[5, 18, 19]. 

           The oxygenated structure of ethanol and biodiesel makes them much more 

miscible in water in comparison to hydrocarbon fuels which can cause serious damage to 

the vehicle engine. Next, ethanol can cause corrosion to some metals. So compatibility of 

first generation fuels with the infrastructure is not complete and large scale utilization of 

ethanol in the transportation system needs an expensive modification in many parts such 

as vehicle engines, pipe lines, and storage tanks [2, 16, 17].  

             Regardless of the compatibility problem with current infrastructure, the energy 

density of biodiesel and ethanol is less than that of fossil fuels. The energy density of 

biomass is on average 15-20 MJkg
-1

 which is considerably lower than crude oil (42 

MJkg
-1

)[20]. 

              Issues in large scale utilization of first generation biofuels have driven 

researchers to develop technologies to convert non-edible and inexpensive biomass 

resources to biofuels that are more similar to liquid hydrocarbon fuels[21].  

              Lignocelluloses and non-edible oils have received attention recently and 

research continues to develop processes to convert them to ethanol and green fuels (e.g. 

green gasoline and green diesel) so called second generation biofuels. Green fuels are 

often chemically identical to current hydrocarbon fuels[21]. 
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              Lignocelluloses resources are cheap and abundant in comparison to edible 

resources[22]. Agricultural residues, wood and municipal paper wastes are available, and 

mostly composed of cellulose, hemicelluloses and lignin[1].  

                Fats and oils contain a glycerol molecule bonded to three fatty acid chains. This 

structure is called triglyceride[1, 23]. Biodiesel and green fuel can be made from any oil 

lipid resource (edible and non-edible)[24]. Most used sources of edible vegetable oils are: 

Canola, soybean, palm, sunflower seeds, corn, peanut, coconut, and safflower. Also 

microalgae oil, Jatropha Curcas, Pongamia Pinnata, Neem oil and Castor oils are non-

edible biomass sources [25-28]. Among all the edible and non-edible sources, algae offer 

great promise due to high oil yield per acre of cultivation. (1000-6500 gallons/acre/year 

compared to 48 for soybean and 102 for sunflower); however, a commercially viable 

system and technology has not yet immerged, but academia and industry are increasing 

their focus on algal biofuels research [29-33]. 

               Different thermal, biological, and catalytic processes for utilization of 

lignocelluloses, sugars and vegetable oil, have been developed over the recent years. 

There are four main types of processes: microbial processing, liquid phase processing, 

pyrolysis, and gasification [1, 2, 22]. Fig. 1.6 shows the typical routes for conversion of 

biomass into liquid hydrocarbon fuels. 

             Gasification of biomass to syngas (H2/CO) at high temperature (1100-1500 K), 

followed by the Fischer-Tropsch process of syngas can convert lignocellulosic biomass to 

different sized hydrocarbons[1, 2, 34]. 

              Also, lingnocellulosic biomass can be treated at temperatures of 648-800 K 

under different processing condition to dehydrate, depolymerize and break the C-C bond 
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to form a bio-oil. Bio-oil is highly oxygenated and includes, organic acids, esters, 

aldehydes, alcohols, ketones and aromatics. Bio-oil needs another upgrading process to 

remove oxygen which is often a liquid-phase hydrodeoxygenation process[1, 35-37].  

 Gasification and F-T are highly sensitive to impurities and might produce 

contaminants and toxics in the outlet stream[38, 39]. In contrast, liquid phase routes are 

catalytic reactions at mild reaction conditions which allow for better control of 

conversion and selectivity.  

             Due to the importance of mild reaction conditions for low cost production, 

aqueous-phase processing has recently received attention. Aqueous-phase processing of 

biomass derivatives includes different types of catalytic reactions. Different pathways are 

discovered and they are named by the intermediates produced during the process. After 

dehydration of aqueous sugars, it is possible to produce levulinic acid, γ-valerolactone,  

and hydroxymethylfulfural via catalytic reactions over different metal and metal oxide 

catalysts. All of these intermediates can be converted to fuels by different catalytic 

reactions [40-46]. 

            Fig.1.7 shows the different routes of aqueous phase processing of biomass into 

liquid hydrocarbon fuels.         

            Lignocellulosic resources are the main focus in biomass research due to 

availability and the low price; however, complexity of lignocellulosic biomass feedstock 

is a barrier in large scale utilization. Various types of reactions such as hydrolysis, 

gasification, pyrolysis and upgrading are required to convert the raw material to the 

desired hydrocarbons. While the lipids have simple structures such as triglyceride, fatty 

acids and esters, which do not need pre-treatment[1, 2, 22] 
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             As research on production of algae is making progress, the dream of having 

cheap lipid feed stock is coming true. It is expected that algae, waste oil and plant oil will 

produce a significant fraction of biofuels in the future[29-33]. 

 Current technology and science for lipid treatment is mostly dedicated to 

transesterification. Transesterification of vegetable oils with ethanol and methanol has 

been widely studied and has been successfully implemented in bio-refineries to produce 

bio-diesel. While, the transesterifaction process has been widely implemented, it needs 

important improvements such as: increasing thermal stability, avoiding soap formation, 

enhancement of mass transfer, milder operation conditions, decreasing the waste stream 

and lowering the cost. Also, in addition to these difficulties, there are several issues in 

compatibility of fatty acid methyl esters (FAMEs) used in diesel due to low stability and 

corrosion problems[47-51].                   

                  Also, regardless of reaction condition and limitations, biodiesel as the main 

product of the transesterification process, has many unfavorable properties such as bad 

thermal, oxidation, and storage stability because of double bonds, sensibility to 

hydrolysis because of the ester bond, bad cold properties, etc[47-51]. 

                  The above mentioned limitations, are the reason that alternative routes for 

lipid treatment have become an area of interest. Recently, a promising liquid phase 

processing route has been developed to upgrade aqueous glycerol obtained from 

transesterification, to liquid hydrocarbon fuels (it is shown in Fig. 1.7)[52]. In this respect 

glycerol will convert to syngas through aqueous phase reformation. This reaction can 

produce syngas at low temperature. Integration of this reaction with Fischer-Tropsch can 
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produce liquid hydrocarbons [2, 52]; however, this process still suffers from 

transesterification difficulties. 

                 Other than transesterification, lipid based biomass can be treated in aqueous 

phase which is known as hydroprocessing. Hydroprocessing is a series of reactions such 

as, hydrogenation, hydrogenolysis, deoxygenation, desulfurization and denitrogeneration 

which uses high pressure hydrogen to remove S, O, and N heteroatoms of the 

feedstock[47, 53, 54]. 

                Hydrodeoxygenation(HDO) is an example of hydroprocessing with the ultimate 

goal to  eliminate all oxygen atoms from the feedstock molecules at moderate reaction 

conditions while minimizing bi-products and waste[47]. 

                 Since the oxygen in petroleum is typically less than 3000 ppmw, traditionally 

less attention has been paid to HDO compared to hydrodesulfurization and 

hydrodenitrogenation in the petroleum industry[55]. However, this process is very critical 

in hydroprocessing of biomass since a neat biomass feed stock may contain up to 500,000 

ppmw oxygen with minimal amount of sulfur[55]. 

                 In contrast to transesterification, liquid phase processing can be operated at 

milder reaction conditions. Also, it has the potential to produce fuels that are identical to 

gasoline. From an environmental point of view, this process releases less greenhouse 

gases per energy equivalent in comparison to the transesterification process or in other 

word, it is more eco-friendly. Consequently, HDO can be one of the candidate routes to 

convert triglyceride based feeds to liquid hydrocarbons[56, 57]. 

                In addition, developments in science and technology of HDO can be useful for 

various parts of a future bio-refinery because applications of this process are not limited 
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to lipids and triglycerides based feed stocks. It can also be used in lignocellulosic 

biomass refineries, to upgrade the bio-oil obtained from pyrolysis or even as an extra 

process after transesterification to convert the bio-diesel to Green diesel [2, 47, 58]. 

                   Currently, triglyceride based biomass feed stocks can be hydroprocessed in 

the presence (―co-processing‖) or absence (―stand-alone‖) of petroleum fractions [47, 54, 

55, 59]. Both processes need large amounts of hydrogen and reduction of hydrogen 

consumption is one of the challenges in this area. Stand-alone mode offers the advantage 

of high process flexibility while, from an economic point of view, co-processing seems to 

be more reasonable due to the existence of petroleum refinery units. However the sulfur 

content of the final product, effect of water and carbon oxides on the catalyst life time 

and separation of carbon oxides from the recycle gas are the main issues that have to be 

dealt with [54, 59]. As a result, there is an apparent need for new catalytic processes for 

this new industry.  

                  In this respect, as most of the oxygen containing species of vegetable oils and 

triglyceride, have high reactivity, attention should be paid to achieve high product 

selectivity with the least consumption of hydrogen. A correct understanding of the 

reaction mechanisms and pathways of the hydrodeoxygenation can help to develop 

catalysts which can target the rate limiting steps and overcome the barriers to decrease 

the hydrogen consumption and facilitate this process.  

                 Three different pathways have been proposed for HDO: hydrogenation, 

decarboxylation, and decarbonylation. HDO research continues and scientists have 

studied effects of different reaction conditions, feed stock composition, catalyst and 

support on activity of reactants and selectivity of products. However, there is not enough 
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knowledge about the details of the pathways and it is clear that more theoretical and 

experimental research are needed in this area in order to develop a reasonable HDO 

process which can be used at an industry scale. 

          It is believed that a systematic computational and theoretical investigation of the 

HDO mechanism of fatty acids and esters, which are the main compounds of a 

triglyceride feed stocks, permits the identification of descriptors that determine the: 

(a) HDO activity and (b) the selectivity of different possible pathways. Reaction 

pathways and important descriptors of activity and selectivity will let us to develop a new 

selective low-cost HDO process which has the potential to be used in industry to 

transform the renewable triglyceride based feed stock to hydrocarbon fuels.  

               This study has mainly focused on the computational investigation of the 

hydrodeoxygenation of acids and esters over Palladium. The hypothesis is that results of 

the Pd pathways are applicable to other noble metals and bimetallics similar to Pd.  Also, 

methyl propionate and propanoic acid were purposely chosen as model molecules. A 

study of smaller molecules is obviously more convenient but we decided not to choose a 

model molecule smaller than three and four carbon atoms, since the effects of a beta 

carbon on C-O and C-C cleavages were unknown. So the smallest molecules which have 

two carbon atoms (alpha and beta carbons) next to carbonyl function, Methyl propionate 

and Propionic acid, were selected.  Fig 1.8 shows our model molecules. 

 To summarize, the objectives and tasks of this study are:  

 Theoretical investigation of the reaction mechanisms and key reaction 

intermediates of the HDO of propionic acid and methyl propionate on Pd. 
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 Identification of activity and selectivity descriptors for the decarboxylation, 

decarbonylation and hydrogenation/dehydration of organic acids and esters. 

 Investigation of the effect of surface structure on the activity and selectivity 

 Identification of the effect of a liquid solvent on activity and selectivity 

descriptors. 

 

1.2 CURRENT STATE OF KNOWLEDGE 

        Hydrodeoxygenation reactions of fatty acids and esters have been studied widely, 

and investigations have focused on the effects of temperature, pressure, catalysts and 

supports on conversion and selectivity of the HDO. However, a promising HDO process 

has not yet been developed. Recently, with development of ever faster computers, 

chemists and chemical engineers have been able to investigate every single elementary 

reaction in a network of reactions involved in a complex chemical process. 

Computational studies allow the researchers to understand the fundamental science 

behind, e.g., the HDO to develop and design new and reliable catalysts for utilization of 

biomass. In the following section, the current science and knowledge of the HDO for 

triglyceride based feed stocks will be discussed. 

            The simplest example of methyl esters is methyl formate (C2H4O2). This molecule 

has been widely investigated in the 70s and 80s. Different reactions and catalysts have 

been proposed for activation of this molecule toward deoxygenation processes. Methyl 

formate can decomposed and undergo different decomposition pathways [60, 61] which 

release different amounts of CO, CO2, methane and methanol. The best catalyst to 

deoxygenate methyl formate is reported to be Ru based catalysts at 180-230
o
C. It has also 
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been shown that methyl formate can easily convert to acid, aldehydes, and alchohols 

which again can decompose to CO and CO2 [60]. This result is consistent with Murzin et 

al., who report that ethyl stearate mainly converts to acids[62]. This study shows that 

aldehydes and alchohols are the most likely intermediates in the HDO process. Formation 

and stability of these intermediates determines the dominancy of different pathways 

involved the hydrodeoxygenation pathways. The HDO process can be operated under 

different reaction conditions and over different catalysts such as, transition metals and 

bimetallic and also different supports, so multiple studies have specifically focused on 

effects of all of these parameters in activity and selectivity of the HDO process. The most 

recent studies in this area will be discussed in the following sections starting, with 

supported noble metal followed by bimetallic catalysts. 

            Murzin et al. widely studied the decarboxylation and decarbonylation of different 

fatty acids and esters[62-66]. Activity and selectivity of steric acid and ethyl stearate over 

Pd/C catalysts for the production of linear hydrocarbons has been one of the focuses of 

the Murzin studies. The effects of support, acidity and reaction atmosphere have also 

been studied. The highest yields of n-heptadecane (97%) were obtained for the 

decarboxylation of steric acid over Pd/C at 300
o
C under a helium atmosphere in a batch 

reactor. While ethyl stearate showed less conversion and selectivity towards linear 

hydrocarbons due to the conversion of ethyl stearate to steric acid. They conclude that, 

depending on the atmosphere, there are different reaction pathways for catalytic 

transformation of ethyl stearate and steric acid illustrated in figure 1.9. As is shown, ethyl 

stearate can convert to stearic acid or n-heptadecane, ethylene and CO2 or n-heptadecane, 

ethanol and CO[62].  
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         Another study by Lestari and Murzin reports 95% and 98% conversion of stearic 

acid and palmetic acid (C16 and C18) to aliphatic hydrocarbons containing one carbon 

less than the corresponding acids at 17 bar of 5 % H2 in argon and 300
o
C over 4% Pd/C. 

They also report that the reaction rates of different fatty acids were independent of the 

fatty acid length[67]. 

  Other than saturated acids and esters, Snare and Murzin also investigated 

unsaturated renewables like oleic acid, linoleic acid and methyl oleate over 5% Pd/C. 

Reactions were carried out at constant pressure and temperature in the following domain, 

15-17 bar and 300-360
o
C , respectively[65]. Conversion of Linoleic acid to Oleic, elaidic 

and stearic acid can produce heptadecane. Another possible mechanism involves 

formation of cis and trans Vaccenic acid to produce heptadecane. The main product of 

both mechanisms was n-heptadecane but minor amounts of unsaturated isomers, C17 

aromatic and heavy oxygenate products have been detected as well. Figure 1.10 shows 

the mechanism proposed for oleic and linoleic acids. 

 Resasco and co-workers investigated deoxygenation of methyl octanoate and 

methyl stearate over Pt on Al2O3 and TiO2 supports. They report that the conversion of 

both methyl esters results in hydrocarbons with one carbon less than the fatty acid of the 

corresponding ester as the main products. The most interesting result in this study is the 

observation of ketonization reaction and formation of heavy oxygenates. With 97.8 % 

conversion of pure methyl octanoate at T=603 K an d p =101 kPa, the products were 

distributed as: 89.5% of C7, 5% of C8, 0.2 % of octanol and octanal, and 1 % of octanoic 

acid. They conclude that the formation of C7 products comes from direct decarboxylation 
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and decarbonylations of esters and acids, and alchohol and C8 produced comes from 

direct C-O hydrogenolysis of alchohol and aldehydes[68].  

 Fig.1.11 shows the proposed process for methyl octanoate. 

 To achieve maximum conversion of C7 and C8 which are the desired 

hydrocarbons, the condensation of the intermediate and production of heavy oxygenates 

should be minimized. Heavy ketone is formed via the interaction of two adjacent 

carboxylate species on the surface[68, 69]. Ketonization reactions are favored only under 

a hydrogen-deficient environment. That’s why the yield of ketones and heavy oxygenates 

over Pt/Al2O3 decreases in presence of hydrogen[68]. Also, since none of the 

hydrogenated ketones and secondary alcohols have been found, the heavy hydrocarbons 

have likely been formed via hydrogenolysis of the C-O bond. In this context, Barteau et 

al. also observed propane, obtained by  hydrogenolysis of acetone over Pd/CeO2 and 

Co/CeO2 catalysts [70]. 

 In addition, support materials can significantly change the functionality of the 

noble metal. For example the study of methyl octanoate on Pt/TiO2  shows less selectivity 

toward C8 and higher yields of heavy oxygenates in comparison to Pt/Al2O3. It is 

hypothesized that the reason for this behavior is related to spilled-over hydrogen effects. 

In this case, some hydrogen atoms diffuse to some of the support materials and reduce the 

oxide support. As a result the availability of hydrogen decreases and the rate of 

ketonization and formation of heavy oxygenates increases[70]. 

 Finally in another study of Rassaco et. al, on Pt, Pd, and Cu catalysts over silica 

support, it is reported that Pt was the most active for hydrogenation of the C=C bond at 
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473 K However, Cu was a good catalyst for oxygen removal by hydrogenation of  the 

C=O bond[71]. 

        Kubica et al. mainly studied Co/Mo and Ni/Mo bimetallics over different 

supports such as Al2O3 and silica in different sizes and shapes [59, 72-76]. In one of the 

studies by Kubric et al[59], deoxygenation of triglyceride (rape seed) over organized 

mesoporous-alumina-supported CoMo and MCM-41 supported CoMo have been 

considered. The alumina supported catalysts have shown better performance than the 

silica supported one with respect to conversion and selectivity. Selective conversion was 

achieved at 310
o
C and 7 MPa. Main products were hydrocarbons with a different number 

of carbons (C17 and C18). The number of carbons in the products is related to the 

reaction pathways. Since they barely saw carbon monoxide in the products and since the 

origin of the produced CO could not be identified, they could not rule out or confirm the 

decarbonylation pathways. In addition, it is interesting that undesirable aromatic or other 

hydrocarbon products were not formed over both alumina and silica Co/Mo supported 

catalysts. Figure 2.3 shows the suggested reaction mechanism. 

           In another study of this group[72], Ni/Mo over alumina were compared to Ni 

and Mo monometallics over Al2O3. The experiment was performed at 260-280 
o
C and 3.5 

MPa in a fixed bed reactor. The activity of the catalyst decreased in the order NiMo/ 

Al2O3 > Mo/ Al2O3 > Al2O3. C17 and and C18 were again the main products and a 

reaction mechanism similar to Fig. 1.12 was proposed. 

           In addition to common sulfided bimetallics, Ru-Sn has shown promising activity 

toward hydrogenation of fatty acids and ester. Ferrero et al [77] in the early 90s studied 

the reduction of carboxylic acids over alumina supported Sn-Ru  and they claimed that 
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hydrogenation to aldehydes on Sn-Ru occurs at 513 K which is lower than the common 

hydrogenation temperature on Ni-Mo(573-673). 

 Tahara et al. [78-80] studied the hydrogenation of methyl laurate, methyl oleate, 

methyl cyclohexane-carboxylate, methyl iso-butylate and methyl benzoate over alumina 

supported Sn-Ru. Methyl oleate and methyl laurate showed high activity toward 

hydrogenation of the C=O group; however, the main products were alcohol with a 

selectivity of 96% and 98%, respectively. Moreover, alumina was the most effective 

support for Sn-Ru compared to silica-alumina, zirconia, magnesia and titania(MC-90). 

             Finally, Miyake et al.[81] investigated the effect of Pt addition to a Ru/Sn/Al2O3 

catalyst. The main product was lauryl alcohol which is consistent with previous studies; 

however, lauryl laurate and lauric acid were formed as well. 5%Ru-7%Sn-2%Pt/γAl2O3 

has shown the highest conversion and selectivity compared to different compositions of 

Ru-Sn-Pt, Ru-Sn and Sn-Pt bimetallics and Pt monometallic catalysts.  

 Pallasana and Neurock have studied a large network of elementary reactions for 

the hydrogenation of acetic acid on Pd(111). They performed DFT calculations with the 

Becke and Pedrew functional (BP) for cluster calculations, and the Pedrew-Wang(PW-91 

functional) for periodic slab calculations. Fig.1.13 shows the proposed  reaction 

mechanism; however, a microkinetic model has not been developed to determine rate 

determining steps and the plausible pathways but, it has been reported that the C-O bond 

activation is likely the rate limiting step (ΔH= 68 kJ/mol and Ea (activation barrier)=142 

kJ/mol)[82]. 

 In another study by Tysoe and Neurock[83], the surface chemistry of vinyl acetate 

on clean Pd(111) is explored experimentally and computationally. Temperature 
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programmed desorption (TPD) and reflection adsorption infrared spectroscopy (RAIRS) 

combined with DFT calculation have been used to calculate the reaction energies, 

activation barriers, and vibrational frequencies. The calculated heat of adsorption (63.4 

kJ/mol) is in agreement with measured one (65 KJ/mol). Figure 1.14 shows the proposed 

mechanism for the activation of vinyl acetate on Pd(111). 

 Santiago et el.[84] studied the reduction of methyl acetate and ethyl acetate on 

silica supported copper experimentally and computationally. DFT calculations were 

performed on a Cu13 cluster and for both methyl acetate and ethyl acetate they observed 

the activation via the C-O bond close to the carbonyl group. Table 1.1 shows elementary 

reactions, heat of reactions, and activation barriers for the suggested reaction mechanism. 

 Next, Gurshani et al. [85] studied the activation of ethanol, acetic acid and ethyl 

acetate on silica-supported Pt. The periodic DFT calculations were performed on a 2×2×2 

slab with PW-91 functional. Both the ethyl acetate and methyl acetate activate starting 

from the C-O bond cleavage on the surface. Also, a kinetic model has been developed 

and it is reported that CH4 and CO are expected to be the main products of the reactions. 

They also conclude that the reason CO is the main product is because the C-C bond 

activation on Pt is 50 kJ/mol easier than on Cu. Table 1.2 and figure 1.15, show the 

details in  the mechanism.  

 As computer resources have become more available, DFT calculation can be 

carried out for larger molecules over larger slabs and clusters and recently, Xu et al. 

carefully investigated various pathways for the activation of methyl acetate. they report 

that the activation of methyl acetate on Pd(111) is limited by the dehydrogenation of the 

alpha, beta and methoxy  carbons. Dehydrogenation from the methoxy end leads to a 
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selective C-O dissociation to produce methoxy and acetaldehyde; however, 

dehydrogenation of the alpha and beta carbon was shown to be an unselective pathway 

which goes through further dehydrogenation. Unfortunately, a thorough microkinetic 

model has not been developed[86]. 
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1.3 TABLES 

  

Table 1.1 ΔH and activation barriers of elementary reactions involved reduction of Ethyl 

acetate and Methyl acetate on supported Cu[84]. 
 

 

 

 

Table1.2  Summary of heats of reaction for the reactions on Pt as estimated from DFT 

for ethanol, acetic acid and ethyl acetate[85]. 
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1.4 FIGURES 

                          

                 Figure 1.1 Oil Reserve-to-production ratios by region(1980-2010)[6] 

 

                          

                      Figure 1.2 Natural Gas reserve-to-production ratios by region(1980-2010)[6] 

 

                               

                        Figure 1.3 Coal reserve-to-production ratios by region(1990-2010)[6]        
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  Figure 1.4 Continental and global changes in surface temperature(1906-2005)[9] 

 

                      

Figure 1.5 NASA released image of the oil reaching the shore in the Gulf of    

Mexico[87] 
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Figure 1.6. Different routes of biomass conversion to liquid hydrocarbons [2].  

            

         Figure 1.7  Heterogeneous catalytic routes of biomass conversion[2] 
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                             Figure 1.8 Methyl propionate and propianic acid  

 

        

    Figure 1.9 proposed mechanism of ethyl stearate and steric acid by Murzin et al. [62]. 

      

Figure 1.10 Linoleic and oleic acid conversion to C17 and C18 hydrocarbons over 

Pd/C[65] 
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   Figure 1.11 Methyl octanoate HDO mechanism over Pt/Al2O3 [68] 

 

 

 

Figure 1.12 Decarboxylation and hydrodeoxygeneation of triglyceride[59, 72] 
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Figure 1.13 Acid acetic hydrogenolysis on Pd(111) [82] 

 

 

Figure 1.14 Two different mechanism for vinyl acetate HDO on Pd(111)[83] 
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Figure 1.15 Ethyl acetate, acetic acidand ethanol HDO over silica supported Pd[85] 
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CHAPTER 2 

 

METHODOLOGY  

 

 
2.1 THEORETICAL BACKGROUND 

2.1.1 DENSITY FUNCTIONAL THEORY (DFT) 

 The basis of Density functional theory (DFT) is the proof by Hohenberg and 

Kohn[88, 89] that the ground state electronic energy is determined completely by the 

electron density (ρ)[88]. The significance of the Hohenberg-Kohn Theory is perhaps best 

illustrated by comparison to the wave function approach. A wave function for an N-

electron system contains 3N coordinates while, density only depends on three 

coordinates. The term ―functional‖ refers to a function of a function, which means that 

the energy has a functional dependence on , and then  is the function of the coordinates 

of the electrons[90]. In the following section, the fundamental of density functional 

theory and Kohn-Sham theory are described briefly.  

 The foundation for the use of DFT in computational chemistry was the Kohn-

Sham theory[91]. To understand the Kohn-Sham Theory first, the total electronic energy 

should be defined. Total energy can be divided into three parts: kinetic energy T[ρ], 

attraction between nuclei and electrons Ene[ρ], and electron-electron repulsion Eee[ρ]. The 

term Eee[ρ] may be divided into a Coulomb and an exchange part, J[ρ] and K[ρ]. 

  In Kohn-Sham theory the Ene[ρ] and J[ρ] are given by their classical 

expressions[88]: 
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Also kinetic energy is calculated under the assumption of non-interacting electrons from 

the equation below:  
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For example for an electron in a boxlike potential the kinetic energy is: 

                                                     dT 3

5

3

2

2 )3(
10

3
                                                 (2.4) 

In reality the electrons are interacting and equation 2.1 does not provide the total kinetic 

energy however, it provides ~99% of the correct answer[88]. The difference between the 

exact kinetic energy and calculated by assuming non-interacting electrons, is adsorbed 

into an exchange-correlation term. So, the general DFT energy expression can be written 

as[88]: 

                                            EDFT = TS[ρ] + Ene[ρ] +J[ρ] + EXC[ρ]                                 (2.5) 

 

 There is no exact expression for EXC; however, several approximate expressions 

have been developed in order to describe the exchange correlation energy[90].  

 The simplest DFT approximation is the local density approximation (LDA) which is    

                                 
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                            (2.6) 

where  is unity when a free-electron gas model is used and values of about 0.7 are 
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generally used for molecules. In LDA it is assumed that the density can locally be treated 

as a uniform electron gas, or equivalently, density is a slowly varying function[88]. The 

LDA is not generally of high enough accuracy to be useful for determining structural 

properties and dissociation energies of molecules. One obvious way to improve the 

correlation functional is to make it depend not only on the local value, but also on the 

extent to which the density is changing, i.e., the gradient of the density[92]. This 

approach is known as ―generalized gradient approximation‖. Most gradient corrected 

functionals are constructed with the correction being a term added to the LDA functional, 

i.e.,  
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 Another class of approximations to exchange-correlation functionals, are hybrid 

methods. Using the Hellmann-Feyman theorem, the exchange-correlation energy can be 

computed as   

                                               EXC=  dVXC )()()(

1

0

                              (2.8) 

where   describes the extent of interelectronic interaction, ranging from 0 (none) to 1 

(exact)[92]. This equation is an exact connection between the exchange correlation 

energy and corresponding potential energy which is known as Adiabatic Connection 

Formula. Different approximations have been developed to find an expression for EXC by 

evaluating the integral in equation 2.8. Exchange functional models which are derived 

from equation 2.8 usually include exact Hartree-Fock exchange and exchange and 

correlations from other sources such as LDA, GGA and empirical functionals and they 
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are often called hybrid methods[88]. Eq. 2.9 shows one of the famous hybrid functionals, 

B3LYP. 
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 In recent years different types of approximation have been developed to modify 

the kinetic energy term and exchange functional terms; however, there is no systematic 

approach for achieving the exact solution for the Schrodinger equation through the use of 

a more accurate exchange functional or kinetic energy expressions.  

As it shown before, all the terms in total electronic energy depend on density, 

which means there is no need to determine the wave function. However, it is difficult to 

obtain high accuracy on the basis of this approach, so in practice it is common to 

determine the density from the wave functions that are obtained from self-consistent field 

calculations[90]. These self-consistent field calculations in DFT are similar to Hartree-

Fock calculations.  

Figure 2.1 shows the flowchart for self-consistent field (SCF) DFT calculations 

 

 
2.1.1.1 TRANSITION STATE SEARCH 

 An important problem in theoretical chemistry is understanding the transition 

process of chemical reactions. The system of atoms and molecules is more likely to move 

along the paths with the lowest intermediate free energy maximum, and especially the 

one that minimizes the total action along the path[93]. This pathway is the so-called 

minimum energy path (MEP). The MEP describes the mechanism of reaction, and the 

energy barrier along the path can be used to calculate the reaction rate[94]. There are 

several approaches for finding MEPs. In this study, nudge elastic band (NEB) and dimer 
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methods have been used to locate the transition state. In the following section these 

methods are described briefly. 

 The NEB is a method to find a MEP between a pair of stable states[94]. In the 

context of reaction rates, this pair has an initial and a final state, both of which are local 

minima on the potential energy surface[94]. The NEB is a chain-of-states method[95, 96] 

in which a string of images (geometric configurations of the system) is used to describe a 

reaction pathway. These configurations are connected by spring forces to ensure equal 

spacing along the reaction path. Upon convergence of the NEB to MEP, the images 

describe the reaction mechanism. (See figure 2.2) 

 The NEB force on image i contains two independent components, 

                                                      | |S
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i FFF                                                      (2.10) 

where 

iF  is the component of the force due to the potential perpendicular to the band, 
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 is the spring force parallel to the band, 
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where Ri is the position of the ith image and k is the spring constant[94]. 

 

 

 While the NEB method is robust and has been successful, there are situations 

where the elastic band does not converge well to the MEP. When the force parallel to the 

MEP is large compared to the force perpendicular to the MEP, kinks can form and as the 

minimization is applied, they can continue oscillate back and forth, preventing the band 

from converging to the MEP[97]. Another approach, to avoid this problem is climbing 

image NEB (CI-NEB). In this method, the highest energy image l feels no spring forces 

and climbs to the saddle via a reflection in the force along the tangent[94],  
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 Finding the precise value of the energy at the transition state, can be tedious with 

the NEB method. Enough images need to be included to get high enough resolution  near 

the maximum for the interpolation to give an accurate value. Also, many force 

evaluations can be wasted converging images far from the transition state. So it can be 

advantageous to first use only a few iterations of the NEB method, enough to get a rough 

estimate of the shape of the MEP, and then turn to another method which can efficiently 

converge to the transition state[94]. 

 The dimer method is a good candidate for this co-operative strategy. Similar to 

NEB methods, it requires only forces to find the transition state[94];however, dimer 

method involves just two images of the system ―dimer‖ refers to these images[98]. 

 The dimer method, depicted in Fig. 2.3 is a pair of images separated from their 

common midpoint R by a distance R . The vector N̂ which defines the dimer orientation 

is a unit vector pointing from one image at R2 to the other image at R1. When a transition 

state launched from an initial configuration, with no prior knowledge of what N̂ might 

be, a random unit vector is assigned to N̂  and the corresponding dimer images are 

formed  

                               R1=R + R N̂          and         R2= R - R                                      (2.14) 

Initially, and whenever the dimer is moved to a new location, the forces acting on the 

dimer and the energy of the dimer are evaluated. These quantities are calculated from  the 

energy and the force (E1, F1, E2 and F2) acting on the two images, 

                               NFF
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 The advantage of dimer method is that all the properties of dimer are derived from 

the forces and energy of two images and there is no need to evaluate the energy and force 

at the midpoint between two images which consequently decreases the number of 

required force evaluations[98].  

 
2.1.1.2 VIBRATIONAL FREQUENCY CALCULATIONS 

 Atoms vibrate around their equilibrium positions. From a quantum mechanic 

perspective, the vibrations that are possible around an atom’s equilibrium position 

contribute to the material’s energy even at 0K via zero-point energies. Frequencies of 

vibrations usually are measured experimentally using spectroscopy. These frequencies 

are often of great interest. In our study zero-point energies are taken into account and also 

vibrational frequencies have been used to calculate the rate of elementary reactions. Here, 

the theory behind the DFT calculation of vibrational frequency will be explained. 

 For a set of N atoms, a vector with 3N components, r=(r1,…,r3N) can define the 

Cartesian coordinate of the system of atoms. If locating the atoms at r0 is a local 

minimum in the energy of atoms, then it is convenient to define a new coordinate x= r-r0. 

The Taylor expansion of the atoms about the minimum at r0 is to second order, 
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The term, in this expression involving the first derivatives is zero because the system is at 

equilibrium. The second derivatives can be defined as a 3N3N matrix known as hessian 

matrix, 
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Also, the matrix form of equation of motion is,  
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Where the elements of matrix A are 
mjmi

H
A

ij

ij
.

 . The matrix A is known as mass-

weighted Hessian matrix. The special solutions of equation of motions are called normal 

modes and the general solution of the equation of motion and frequencies can be 

calculated as,  
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where i  and ie  are eigenvalues and eigenvectors of Matrix A and ai and bi are a  

collection of constants that are uniquely determined by the initial position and velocity of 

atoms[99]. 

 To calculate the vibrational frequencies using DFT, we first have to find the bond 

length and minimize the molecule’s energy. Then the hessian matrix should be 

calculated. Unfortunately, it is not easy to evaluate the second derivatives of the energy 

with respect to atomic position. However, a good estimate of the second  derivative is 

using a finite-difference approximation: 
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As b 0 the values of second derivative becomes more accurate. b = 0.001  Å   has 

shown a reasonable accuracy. With this approximation, the elements of the Hessian 

matrix can be estimated and eigenvalues and eigenvectors can be calculated to find 

frequencies[99]. 

 

 
2.1.2 SOLVATION MODELS 

2.1.2.1 CONTINUUM MODELS 

 In the previous sections DFT and its applications, have been reviewed briefly. 

Despite the tremendous progress made in this field, there is a severe draw-back. The 

quantum chemistry developed by theoretical chemists is primarily suited for vacuum and 

dilute gases. Taking the advantages of periodic boundary conditions, different DFT codes 

have been developed for crystalline systems by solid-state physicists. However, most 

industrially relevant chemical processes do not happen in gas phase or in crystals, but 

mainly in the liquid phase or amorphous solid phase where the quantum chemical 

methods are not suitable. Since, the representation of condensed liquid systems by large 

ensembles of molecules converges very slowly with an increase in ensemble size[100].  

 The major approaches in Computational Chemistry in treating of solvent effects 

are:  

supermolecule, continuum models, Molecular Mechanics, and recently appeared various 

hybrid constructions.  

 In the supermolecule approach one places some number of solvent molecules 

together with the solute in the QM calculation.  While, in many cases, it can give some 

insights on solvent effects even with a limited number of solvent molecules, quantitative 
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results require a large number of solvent molecules to be included increasing the 

computational cost beyond the present day limits[100, 101]. 

 Molecular Mechanics methods, due to the simplicity of the atom-centred force 

field, allow us to include quite a large number of solvent molecules into consideration. 

However, the simplicity of the MM approach does not allow the MM methods to get an 

adequate description of many processes, such as bond breaking in chemical reaction. 

Regarding solvent effects, accounting for the mutual polarization of the solute and 

solvent molecules requires a considerable complication in the MM theory which again 

increases the cost of such calculations[101]. 

 Hybrid QM/MM methods are quite a fresh branch on the tree of Computational 

Chemistry. It is a promising approach. However, QM/MM calculations are not easy to 

setup and they are costly[101]. 

 Finally, continuum solvation models, the combination of QM methods with 

continuum solvation theory, have proven to be successful. The basic idea of the 

continuum models is the Max Born equation for the free energy of solvation of ions, 

ion

SG  [102] 
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Here, S  is the dielectric constant of the solvent, 
ionQ  is the total charge of the ion. ionR  

is the effective ion-radius which is the radius of  a spherical boundary between the solute 

and solvent[102]. The boundary around the solute is the so-called cavity and as is shown 

in Eq. 2.22 the free energy of solvation is essentially dependent on the cavity size.Later 

Born’s idea was taken up by Kirkwood and Onsager [103-105] by taking into account 
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electrostatic multiple moments. Born-like models have become able to treat typical 

molecular shapes reasonably well; however, they are always in danger of generating 

electrostatic artifacts as soon as less-common shapes of solutes are involved[100]. 

 Another class of continuum solvation models, use the Poison equation of classical 

electrostatics to express the electrostatic potential as a function of the charge density and 

dielectric constant. 
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where    is the dielectric constant of the medium[92].  

The most widely used scheme for the self-consistent reaction field 

implementation of the Poison equation is the surface area boundary element approach. 

This was first formalized by Miertus, Scrocco and Tomassi, and these authors referred to 

their construction as the polarized continuum model[92].  

Surely, it has limitations in applicability, but where it works it allows us to get an 

estimate of solvent effects at a cheap computational price. The cheap price is achieved by 

exclusion of information on explicit configurations of the solvent molecules because the 

solvent is described as a uniform medium characterized by some macroscopic 

properties[101]. 

 Recently another class of continuum models, so-called conductor-like screening 

models (COSMO), have been developed by Andreas Klamt. These models approximate 

the surrounding space of the solute by an infinite dielectric constant. Such a situation 

considerably simplifies the necessary electrostatic equations. Also, these models seem to 

be more computationally robust[92]. In this study, COSMO and COSMO-RS calculations 
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have been used to calculate the solvent effect. In the following section, COSMO and 

COSMO-RS models will be explained. 

  
2.1.2.2 COSMO AND COSMO-RS 

 The idea of the COSMO model originates from a simple question: What is the 

interaction energy of an arbitrary charge distribution within a surrounding conducting 

sphere of radius R? 

 Andreas Klamt found a general exact expression for this question by the method 

of mirror changes. 
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Here, ir denotes the position vector of the charges iq  with respect to the center of the 

sphere, and ir is the distance from the center. The boundary condition is also different 

from previous continuum methods because it is assumed that spherical cavities are 

conductors[100], 

                                             Aqq XX  )(0                                              (2.25) 

where X  denotes the surface potential arising from the charge distribution of a solute X 

inside the cavity, and A is the Coulomb interaction matrix. After scaling the solute 

potential with a dielectric scaling factor,  

                                                        
XfAq  )(                                                       (2.26) 

this equation can be solved by inversion of the symmetric matrix A [100]. So the solute-

conductor energy can be expressed as, 
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and the total free energy, X

SG  is X

SE
2

1
. Also, in all quantum mechanic codes, there is an 

operator (B) which generate the potential X  from the charge density[100]. This 

operator can be used to express the free energy of solvation as a function of charge 

density, 

                                   XXXtXX

S DQQBQABQfG
2

1
)(

2

1 1      (2.28) 

With definition of matrix D in the last equation, this expression is similar to the Coulomb 

interaction, 

XXX

Coulomb CQQE
2

1
 .     (2.29) 

This formal analogy is helpful since the COSMO model can now be easily implemented 

in a DFT code as an addition to the Coulomb interaction[100].  

 The COSMO accuracy can be improved by using more realistic cavity structures. 

Different types of cavities such as, icosahedron, pentakisdodecahedron and iso-density 

cavities have been used in the COSMO codes. Basically the cavity structures in COSMO 

model are similar to PCM and isodensity PCM (IPCM)[100]. 

 Overall, this model has shown promising results for water however it seems that 

COSMO fails to predict the behavior of non-polar solvents and polar solutes in polar 

solvents. The reason is that this model is unable to take Vander Waals and hydrogen 

bondig interactions into account. Also, the cavity structures lead to a misfit error in the 

contact surfaces between cavities[100]. Fig. 2.4 shows this electrostatic misfit due to 

cavity structure.   
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     Next generation of conductor-like models incorporate, the COSMO result with 

the statistical thermodynamics of interacting surfaces to calculate a more accurate and 

realistic solution properties. First model was developed by Klamt and it is so-called 

COSMO-RS( COSMO for real solvent). In the next section, this model will be described 

briefly. 

 COSMO-RS is a theory which describes the interactions in a fluid as local contact 

interaction of molecular surfaces. (see Fig. 2.4) Interaction energies are quantified by the 

values of the two screening charge densities σ and σ' which can be calculated by COSMO 

calculation. Klamt et al. claim that interaction energies can be described by the formula, 

)0,'min()'(
2

'
)',()',()',( 2

int bondHbondHbondHmisfit CeeE   



      (2.30)

 

' and bondHC   are parameterized based on DFT/COSMO calculation with Becke-Perdew 

(BP) functional and a triple-zeta valence polarization[100]. 

 The key of this statistical thermodynamic approach used in COSMO-RS is the 

reduction of interacting molecules to pairs of interacting surface pieces. An expression 

for the Chemical potential of a unit piece of surface of kind σ in the solvent S was 

developed by Klamt, 

            









KT

E
PdTk S

SbS

)'()',(
exp)('ln)( int 

             (2.31) 

where )(SP is the profile of σ. The difference between the value of real chemical 

potential and ideal chemical potential (without interaction) can be found by summation of 

the chemical potentials of a segment i, 

         


 dpTSnTS i

ii

R

i )()();();(      (2.32) 
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 Consequently, with calculation of Chemical potential, free energy of solvation of 

compound i in solvent S and also all of the arbitrary liquid-liquid equilibrium properties 

such as activity coefficient, heat of mixing, solubility etc, can be calculated[100]. 

 

2.2 COMPUTATIONAL METHOD 

2.2.1 GAS-PHASE CALCULATIONS 

 All density functional theory calculations have been conducted using the Vienna 

Ab Initio Simulation Package (VASP).[106-108]  The Kohn-Sham valence states are 

expanded in a plane wave basis sets with the energy cut-off of up to 400eV. The 

interaction between core electrons is described with projector-augmented wave 

(PAW)[107, 109] methods. The exchange correlation energy is calculated within the 

generalized gradient approximation (GGA) using the functional form proposed by 

Perdew and Wang which is known as Perdew-Wang 91 (PW91).[110, 111]  The lattice 

constant, obtained from the optimization of the fcc-Pd bulk, is 3.953 Å which is in 

reasonable agreement with the experimental value of 3.891 Å.  The surface Brillouin zone 

is sampled with 441 Monkhorst-pack kpoint grid.  Pd (111) is modeled by a four 

layer slab with a (34) surface unit cell and the palladium layers separated by a 15 Å 

vacuum. The 12 Pd atoms in each layer allow for a coverage of 1/12 ML for adsorbates.   

 Pd(211) is modeled by an 8 atomic layer slab (corresponding to approximately 

four layers in closed packed (111) direction) with a (23) surface unit cell and a 15 Å 

vacuum gap between palladium layers. The Pd (211) surface Brillouin zone is sampled 

with 351 Monkhorst-pack k-point grid The bottom four Pd layers were fixed to their 

bulk configuration during all calculations while the top four atomic layers were free to 
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relax in all directions. We note that we did not consider Pd hydride formation since at the 

investigated reaction conditions of low hydrogen pressure of 0.2 bar and 473 K hydride 

formation is thermodynamically not favorable.  All self-consistent field (SCF) 

calculations for geometry optimizations were converged to 1×10
-3

 kJ/mol and for 

transition state identification the convergence criterion was set to be 1×10
-5

 kJ/mol. 

 The bottom two Pd layers were fixed to their bulk configuration during all 

calculations while top two layers were free to relax in all directions. Adsorption energies 

of all intermediates were calculated at their most stable geometry by the following 

equation: 

                                        gas)adsorbate(slabadsorbateslabads EEEE      (2.33) 

where Eslab+adsorbate is the total energy of the adsorbed intermediate on the Pd slab, Eslab is 

the total energy of the Pd slab and Eadsorbate(gas) is the total energy of the adsorbate in the 

gas phase.  Transition states are located by combination of CI-NEB[112] and dimer[98, 

113] methods and finally, vibrational frequency calculations have been performed to 

clearly identify stable intermediate and transition state structures. The zero-point energy 

correction for all the structures was taken into account by using the following equation: 

                                            


i

iZPE hE 
2

1

        (2.34)    

where h is the Plank constant and i is the vibrational frequency of mode i. We note that 

all the energy values in this paper are zero-point energy corrected. 

 For surface reactions, the forward rate constant (kfor) of each reaction is calculated 

using harmonic transition state theory (hTST)[114] 
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where kB is the Boltzmann constant, T denotes the reaction temperature, h is the Planck 

constant, Ea_for stands for the zero-point energy-corrected activation barrier for the 

forward reaction derived from DFT calculations, and qTS,vib and qIS,vib are the (harmonic) 

vibrational partition functions for the transition state and the initial state, respectively, 

i.e., qvib is calculated as 
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           (2.36) 

where νi is the vibrational frequency of each vibrational mode of the adsorbed 

intermediate derived from our DFT calculations. 

The reverse rate constant (krev) is calculated similarly and the thermodynamic equilibrium 

constant K is given as 

rev

for

k

k
K 

          

 (5) 

 For an adsorption reaction A(g)+*→A*, the equilibrium constant K is defined as 

Tk
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gA

A Be
qqq

q
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
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        (2.37) 

where (qvib)A* is the vibrational partition function of adsorbed A, and qvib, qrot, qtrans stand 

for vibrational, rotational, and translational partition functions, respectively. ΔEads 

represents the zero-point corrected adsorption energy.  For an adsorption reaction 

A(g)+*→A*, the forward rate is given by collision theory with a sticking probability of 

1. 
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where N0 is the number of sites per area (1.478×10
19

 m
2
) and mA denotes the molecular 

weight of A.  The reverse rate constant is again given as 

K

k
k for

rev 
          (2.39) 

With the forward and reverse rate constants defined, we solve the full set of steady-state 

rate equations to obtain the surface coverages of all possible reaction intermediates and 

the fraction of free sites using the BzzMath library[115] developed by Buzzi-Ferraris.  No 

assumptions were made regarding rate-limiting steps. 

  

2.2.2 LIQUID-PHASE CALCULATIONS 

 Cluster model DFT calculations were carried out using TURBOMOLE 6.0.[116-

118] The Pd (111) cluster model surfaces have been modeled by a two layered cluster 

with a 55 surface. These structures were constructed by removal of the periodic 

boundaries from the periodic slabs that were obtained from our previous plane-wave  

(VASP)[107, 108] calculations.[119] All adsorbates were represented by all-electron  

TZVP[120-122] basis sets while for Pd we used a relativistic small core potential (ECP) 

together with a basis set of same quality as the adsorbates for the valence electrons. The 

Coulomb potential was approximated with the RI-J approximation with auxiliary basis 

sets [123-125].. Single point energy calculations were performed with a self-consistent 

field energy convergence criterion of 1.010
-6

. Finally, for each cluster model energy 

calculations on  various  spin surfaces were performed to identify the lowest energy spin 

state for  further calculations. 
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 For cluster models in the liquid phase, COSMO calculations were performed on 

the same  spin surface as for the vacuum cluster calculations. The dielectric constant was 

set to infinity to provide the input for the COSMO-RS calculations. For cavity 

construction, the default radii-based cavities were used.  

 For surface reactions, the forward rate constant (kfor) of each reaction is calculated 

as, 

Tk

G

e
h

Tk
k B

‡

B

for





         (2.40) 

where kB is the Boltzmann constant, T denotes the reaction temperature, h is the Planck 

constant, and ∆G
‡ 

represents the free energy of activation for a specific temperature and 

reaction environment. I.e., in the presence of solvents, the free energy of activation 

(∆G
‡

solvent) and free energy of reaction (∆Grxn-solvent) were calculated as, 

)()(‡

Gas

‡

Solvent solvGsolvGGG ISTS 
,         (2.41) 

and                                  

)()(Gassolvent-rxn solvGsolvGGG ISFS 
                (2.42) 

where, GIS(solv), GFS(solv), and GTS(solv) are the solvation energies of the initial, final, 

and transition states, respectively, that were obtained from the difference in energy of the 

COSMO-RS and gas-phase cluster calculations, and 
‡

GasG
and GasG

are the free energy 

of activation and  reaction under gas phase conditions, respectively.  

 In the presence of a solvent, the free energy of adsorption for A(g)+*→A* is 

calculated as, 

)()(* solvGsolvGGG PdAgasadssolventads        (2.43) 
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where gasadsG 
is the free energy of adsorption under gas phase conditions and 

)(* solvGA  and 
)(solvGPd  are as before the solvation energies of the adsorbed molecule A 

and Pd surface immersed in the solvent, respectively. 

 With the forward and reverse rate constants defined, rates of the elementary 

reactions can be expressed by mean-field rate laws. Considering that some of the 

adsorbed intermediates occupy multiple active sites,  the rate expressions and steady state 

molecular balance equations are highly nonlinear. To solve the set of steady state 

differential reactor equations and to obtain the surface coverages of the intermediates, we 

used the BzzMath library[115] developed by Buzzi-Ferraris. No assumptions were made 

regarding rate-limiting steps. 
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2.3 FIGURES 

 

 

Figure 2.1 Calculation of KS- ground-state energy from SCF DFT[126] 
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    Figure 2.2 Two components make up the nudged elastic band force F
NEB

: the spring 

force Fi
S||

, along the tangent i̂ , and the perpendicular force 

iF [94].  

 

                                     

Figure 2.3 Definition of the various position and force vectors of the dimer[98] 

 

    

Figure 2.4 Schematic picture of the interactions of solute and solvent. Adapted 

from[100]



51 

 

CHAPTER 3 

 

INVESTIGATION OF THE REACTION MECHANISM OF GAS-PHASE, CATALYTIC 

HYDRODEOXYGENATION OF PROPANOIC ACID
1
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3.1 INTRODUCTION 

 The increasing consumption of fossil fuels in the last decades has caused a rapid 

depletion of easily accessible, non-renewable, fossil resources.  As a result, fuels derived 

from renewable raw materials such as biomass are of significant academic and industrial 

interest.  First generation biofuels (fatty acid methyl esters, FAMEs) are typically 

produced by transesterification of triglycerides (the main constituent of vegetable oils and 

animal fats) with methanol or ethanol, and are usually used as an additive to petroleum 

diesel.  Unfortunately, FAMEs suffer from disadvantages such as higher viscosity, higher 

cloud point temperature, poor oxidation stability, and lower energy density.[127, 128] 

Therefore, there is interest in the conversion of triglycerides and fatty acids to oxygen 

free hydrocarbons identical to diesel, also known as 1.5
th

 generation biofuels.   

 During the deoxygenation of esters and in the presence of hydrogen, fatty or 

carboxylic acids form as intermediates whose conversion is often found to be particularly 

slow.  As a result, we study here the hydrodeoxygenation (HDO) of carboxylic acids in 

the form of propionic acid.  Three plausible mechanisms for HDO of carboxylic acids 

have been identified – decarbonylation (DCN), decarboxylation (DCX), and reductive 

deoxygenation without C-C cleavage (RDO).  In the DCN and DCX mechanism, oxygen 

atoms are removed in the form of CO and CO2 which leads to products one carbon atom 

shorter than the acid molecule.  In contrast, in the RDO mechanism oxygen atoms are 

removed in the form of water without carbon loss.  However, more hydrogen is 

consumed in the RDO mechanism. 

 As one of the early efforts, Maier and colleagues have found that Pd/SiO2 

catalysts are highly selective for the deoxygenation of carboxylic acids[129].  Recently, 
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Murzin’s group has conducted an extensive investigation on the liquid phase 

deoxygenation of various long chain fatty acids on Pd/C catalysts, e.g., lauric acid[130], 

palmitic acid[66, 131], and stearic acid[131, 132].  Overall, they suggest that the DCX is 

preferred over the DCN and RDO.  Similarly, Ford et al.[133] found in the study of the 

deoxygenation of C18-C10 fatty acids that the DCX is preferred but that the CO2 

selectivity decreases with decreasing fatty acid carbon number.  In contrast, Boda et 

al.[134] Recently studied the catalytic hydroconversion of octanoic acid to hydrocarbons 

over a similar Pd/C catalyst and suggested that the DCN is the favored reaction 

mechanism.  The occurrence of the water-gas shift under reaction conditions makes it 

difficult to specify whether the observed CO and CO2 are produced by DCX or DCN. 

 Mean-field microkinetic modeling permits extrapolating atomistic DFT 

information to describe a catalysts behavior under realistic temperatures and partial 

pressures and therefore allows a ―first-principles‖ determination of the dominant reaction 

pathways, rate-limiting elementary steps, surface coverages, reaction orders.  Although, 

the uncertainties in DFT-derived rate parameters and mean-field catalyst models are not 

insignificant, microkinetic modeling often provides significant insights into the reaction 

mechanism of a catalytic reaction under realistic temperatures and pressures.  For 

example, microkinetic models have successfully been developed for various industrial 

reactions, such as the water-gas shift [135-137], ammonia synthesis[138], and methanol 

decomposition[139]. 

 In this chapter, we present a detailed microkinetic model based on parameters 

exclusively derived from first-principles DFT calculations for two HDO reaction 

mechanisms - DCN and DCX - of propanoic acid to ethane over Pd(111). [119, 140] 
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 All of the elementary steps and intermediates involved in DCN and DCX of 

propanoic acid are shown in Figure 3.1. The DFT-derived parameters for the reactions 

are  listed in Table 3.1. Although the DCN and DCX mechanisms are interconnected, key 

steps in each mechanism are distinguishable. For example, C-OH bond dissociations in 

propanoic acid and its derivatives (CHxCHyCOOH, x=[1,2,3], y=[0,1,2]) form 

CHxCHyCO intermediates which produce CO and C2 hydrocarbons  after a C-C bond 

dissociation  and are therefore key steps in the DCN mechanism. Similarly, key steps 

unique to the DCX mechanism are  O-H bond dissociations to form CHxCHyCOO 

intermediates followed by C-C cleavage to form CO2. Also, we grouped C-C bond 

dissociations to form CHxCHy and COOH on the surface in the DCX mechanism 

considering that COOH dissociates on Pd (111) easier to CO2 and hydrogen than to CO 

and OH.  

 

3.2 MICROKINETIC MODELING 

 We developed a microkinetic model for all elementary steps involved in both the 

DCX and DCN networks (previously the networks were studied independently) with 

forward and reverse rate parameters shown in Table 3.2.  

 All calculations were carried out at 473K which is a typical experimental 

temperature[62, 67, 141-145] and we selected partial pressures of propanoic acid, water, 

and CO2 of 1 bar and a CO partial pressure of 0.1 bar which corresponds to a condition of 

about 10% conversion.  Additionally, all simulations were carried out under low (0.001 

bar) and medium (1 bar) hydrogen partial pressures to investigate the effect of hydrogen 

partial pressure on the reaction mechanism. For simplicity, all results corresponding to 
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the low partial pressure of hydrogen environment are displayed in this paper in [ ] bracket 

next to the results of the medium hydrogen partial pressure.  Finally, for all simulations 

we employed a method similar to Grabow et al.[146] for determining coverage 

dependent adsorption energies of CO, H, and CH3C.[140] 

 Figure 3.2 illustrates the turnover frequencies of all elementary steps under gas-

phase conditions. The overall TOF was calculated to be 1.30×10
-6

 s
-1

 at medium 

hydrogen partial pressure [2.13×10
-5

 s
-1

 at low hydrogen partial pressure]. The TOF of 

the DCN pathways are 1.28×10
-6

 s
-1

 [2.11×10
-5

 s
-1

] and the TOF of DCX pathways are 

2.26×10
-8

 s
-1

 [1.43×10
-7

 s
-1

], illustrating that the rate of the DCN is two orders of 

magnitude higher than the DCX. Next, we find the dominant reaction mechanism to be 

independent of the partial pressure of hydrogen to involve propanoic acid to undergo 

three dehydrogenation steps of α and β-carbons to form CHCHCOOH, followed by C-

OH cleavage, and C-CO bond dissociation to produce C2 products (CH3CH2COOH  

CH3CHCOOH  CH2CHCOOH  CHCHCOOH  CHCHCO  CHCH). 31% [43% 

in the low hydrogen scenario] of the surface was free of adsorbed intermediates and the 

coverages of the most abundant surface species are adsorbed hydrogen, CO, and CH3C 

were calculated to be 23% [7%], 34% [35%], and 12% [14%], respectively. 

 

3.3 APPARENT ACTIVATION BARRIER, REACTION ORDERS, AND SENSITIVITY ANALYSIS 

 Apparent activation barriers were computed in the temperature range of 423 to 

523 K in all reaction environments and hydrogen partial pressures. 
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 Next, the reaction order with respect to hydrogen was calculated at 473 K for the 

low hydrogen partial pressure in the range of 0.0005 to 0.002 bar and for the medium 

hydrogen partial pressure in the range of 0.5 to 2 bar using equation 3.10. Similarly, the 

reaction order of propanoic acid and CO were calculated at 473 K and a pressure range of 

0.5 to 2 bar and 0.0001 to 1 bar, respectively. 
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 Finally, Campbell’s degrees of rate and thermodynamic control[147-149], XRC 

and XTRC, were used to determine the rate controlling steps and intermediates in the 

mechanism.  Rate controlling steps and intermediates are those transition states and 

intermediates that most strongly influence the reaction rate and are potential activity 

descriptors. 
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where r is the overall rate of reaction, ki is the forward rate constant for step i, Ki 

equilibrium constant for step i, R is the gas constant, T denotes the reaction temperature, 

and Gn
0
 is the free energy of adsorbate n. 

 

Medium partial pressure of hydrogen (pH2 = 1 bar) 

 At a reaction temperature of 473 K and a hydrogen partial pressure of 1 bar, our 

model predicts an apparent activation energy of 0.84 eV in a gas phase environment. The 

reaction order with respect to propanoic acid is +1.0, with respect to CO it is +0.31, and 
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finally with respect to H2 it is -0.80. These results are in good agreement to our previous 

study[140].  Next, the C-OH bond dissociation as well as α- and β-carbon 

dehydrogenation steps are found to be rate-controlling.  For example, the XRC values for 

the C-OH cleavage reactions 17 (CHCHCOOH*** + 2*→ CHCHCO**** + OH*), 

reaction 5 (CH3CHCOOH** + *→ CH3CHCO** + OH*), and reaction 11 

(CH2CHCOOH*** + *→ CH2CHCO*** + OH*) were calculated to be 0.49, 0.23, and 

0.17, respectively.  The XRC value of the dehydrogenation of the α-carbon in propanoic 

acid (reaction 2) is rate controlling with XRC = 0.32 and the first and second 

dehydrogenation steps of the β-carbon in CH3CHCOOH are rate controlling with XRC = 

0.09 (reaction 6) and XRC = 0.06 (reaction 12), respectively.  We note that the sum of the 

degree of rate control is larger one due to numerical inaccuracies of our nonlinear 

equation solver; however, the trends should not be affected by these numerical issues. 

 Also, these results are in agreement with previous calculations[82, 150] from 

Pallassana and Neurock and Olcay et al. who found that the C-OH bond cleavage is rate 

controlling for the HDO of acetic acid.  Our model in addition highlights the importance 

of dehydrogenation steps.  Finally, the thermodynamic rate control analysis suggests that 

the adsorption free energy of H* and CO* have a significant effect on the overall rate 

with XTRC = -1.52 and 0.21, respectively, such that destabilizing the adsorbed hydrogen 

or stabilizing CO improves the overall reaction rate. CO is generally known to be a 

surface poison; however, due to repulsive lateral interactions with adsorbed H* and the 

negative reaction order with respect to hydrogen we observe that destabilizing adsorbed 

H* is more important than stabilizing CO*.   
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Low partial pressure of hydrogen (pH2 = 0.001bar) 

 At a low partial pressure of hydrogen, the coverage of hydrogen drops from 23% 

(pH2 = 1 bar) to 7%.  Also, the available free sites increased from 31% to 42%. However, 

the coverage of CO is not significantly affected and in fact, slightly increases from 34% 

to 35%. Now, the thermodynamic rate control analysis suggests that destabilizing both 

CO* and H* improves the overall rate with XTRC = -0.03 and -0.33, respectively. Also, 

the dehydrogenation of the α-carbon in propanoic acid is clearly the most rate controlling 

step with XRC = 1.0 and C-OH bond dissociation becoming less important with XRC = 

0.05 for reaction 17.  

 Finally, our model predicts an apparent activation barrier of 0.62 eV (which is 

lower than at higher hydrogen partial pressures) and orders of reaction for CO and H2 that 

are close to zero (i.e., -0.02 and -0.13, respectively).  The calculated propanoic acid 

reaction order is again 1. 

 

3.4 CONCLUSION 

 We performed a systematic investigation of both the decarbonylation and 

decarboxylation mechanisms of propanoic acid over Pd catalysts and developed a 

microkinetic model with parameters derived from DFT calculations and transition state 

theory.  We incorporated the coverage dependence of the CO and H adsorption energies 

and the lateral interactions of CO and H, CO and CH3C, and CH3C and H in the 

microkinetic models. 

 Under all conditions is the decarbonylation the dominant HDO mechanism with 

the most favored pathway following dehydrogenation steps prior to C-OH and C-CO 
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bond cleavages, i.e., CH3CH2COOH  CH3CHCOOH  CH2CHCOOH  

CHCHCOOH  CHCHCO  CHCH     CH3CH3 / CH2CH2.  Finally, a sensitivity 

analysis suggests that at a low hydrogen partial pressure is the dehydrogenation of α-

carbon in propanoic acid most rate controlling. With increasing hydrogen partial 

pressure, the C-OH bond dissociation becomes most rate controlling and the importance 

of C-H bond cleavages is diminished. As a result, both C-H and C-OH bond dissociations 

are likely activity descriptors for a future computational catalyst discovery and design 

study. 
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3.5 TABLES 

Table 3.1  Reaction free energies in eV for all elementary reaction steps in the hydro-

deoxygenation of propanoic acid over Pd (111) model surfaces at a temperature of 473 

K. 

 

 

 

 

  

# Reaction 
Gas 

∆Grxn ∆G
‡ 

0 CH3CH2COOH+*→CH3CH2COOH* 0.94 N/A 

1 CH3CH2COOH* + 3*→ CH3CH2CO*** + OH* 0.35 0.89 

2 CH3CH2COOH* + 2*→ CH3CHCOOH** + H* -0.11 0.61 

3 CH3CH2CO*** → CH3CH2* + CO* + * -0.66 1.01 

4 CH3CH2CO*** → CH3CHCO** + H* 0.02 0.83 

5 CH3CHCOOH** + *→ CH3CHCO** + OH* 0.47 0.86 

6 CH3CHCOOH** + 2*→ CH2CHCOOH*** + H* -0.35 0.57 

7 CH3CHCOOH** + 2*→ CH3CCOOH*** + H* -0.06 1.14 

8 CH3CHCO** + * → CH3CH** + CO* -0.84 1.00 

9 CH3CHCO** + 2*→ CH3CCO*** + H* -0.39 0.61 

10 CH3CHCO** + 2*→ CH2CHCO*** + H* -0.29 0.57 

11 CH2CHCOOH*** + *→ CH2CHCO*** + OH* 0.53 1.20 

12 CH2CHCOOH*** + *→ CHCHCOOH*** + H* 0.04 0.89 

13 CH3CCOOH*** + *→ CH3CCO*** + OH* 0.14 0.77 

14 CH3CCO***→ CH3C* + CO* + * -1.37 0.47 

15 CH2CHCO*** + *→ CH2CH*** + CO* -0.80 0.80 

16 CH2CHCO*** + 2*→ CHCHCO**** + H* 0.02 0.68 

17 CHCHCOOH*** + 2*→ CHCHCO**** + OH* 0.51 1.07 

18 CHCHCO**** → CHCH*** + CO* -1.13 0.19 

19 CHCH*** + H*→ CH2CH*** + * 0.31 0.95 

20 CH2CH*** + H* → CH2CH2** + 2* -0.03 0.87 

21 CH2CH***→ CH2C** + H* -0.43 0.45 

22 CH2C** + H*→ CH3C* + 2* -0.24 0.87 

23 CH2CH*** + H* → CH3CH** + 2* -0.26 0.79 

24 CH3C* + H* → CH3CH** 0.92 1.09 

25 CH3CH** + H* → CH3CH2* + 2* 0.16 0.87 

26 CH3CH2* + H* → CH3CH3* + * 0.05 0.64 

27 CH3CH2* + 2* → CH2CH2** + H*  -0.45 0.42 

28 CH3CH2COOH* + 2* → CH3CH2COO** + H* -0.40 0.35 

29 CH3CH2COO** → CH3CH2* + CO2* 0.18 1.40 

30 CH3CH2COO** + 2* → CH3CHCOO*** + H* 0.39 1.22 

31 CH3CHCOOH** + * → CH3CHCOO** + H* 0.10 0.79 

32 CH3CHCOOH** + * → CH3CH ** + COOH* 0.28 1.37 

33 CH3CHCOO*** → CH3CH** + CO2* -0.37 0.94 

34 CH3CHCOO*** + * → CH3CCOO*** + H* -0.07 0.85 

35 CH3CCOOH*** + * → CH3CCOO*** + H* 0.04 0.89 

36 CH3CCOOH*** → CH3C* + COOH** -0.58 0.90 

37 CH2CHCOOH*** + * → CH2CH*** + COOH* 0.70 2.07 

38 CH3CCOO*** → CH3C* + CO2* + * -1.12 0.63 

39 COOH** → CO2* + H* -0.55 0.35 

40 COOH** → CO* + OH* -0.65 0.40 

41 OH* + H* → H2O* + * -0.20 0.69 
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# Reaction 
Gas 

∆Grxn ∆G
‡ 

42 CH3CH3*→ CH3CH3 + *  -0.79 N/A 

43 CH2CH2**→ CH2CH2 + 2*  0.01 N/A 

44 H2O*→ H2O + *  -0.49 N/A 

45 CO2* → CO2 + *  -0.81 N/A 

46 CHCH*→ CHCH + *  1.16 N/A 

47 CO* → CO + * -1.19 N/A 

48 H2 + 2* → 2H* -0.58 N/A 
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Table 3.2  Equilibrium and forward rate constants for the elementary steps in the HDO of 

propanoic acid over Pd (111) model surfaces at a temperature of 473 K. 
 

 

  

Reaction 

# 
Gas 

Keq kforward (s
-1

)  

0 8.98×10-11 9.52×107 

1 2.10×10-4 3.14×103 

2 1.39×101 3.04×106 

3 1.01×107 1.76×102 

4 6.05×10-1 1.34×104 

5 9.14×10-6 6.16×103 

6 5.81×103 8.43×106 

7 4.06 6.85 

8 8.58×108 2.03×102 

9 1.32×104 3.51×106 

10 1.33×103 8.80×106 

11 2.09×10-6 1.68 

12 4.16×10-1 3.31×103 

13 2.98×10-2 6.70×104 

14 3.95×1014 9.98×107 

15 3.52×108 2.91×104 

16 6.61×10-1 5.57×105 

17 3.32×10-6 4.33×101 

18 1.12×1012 8.65×1010 

19 4.76×10-4 8.33×102 

20 2.28 4.99×103 

21 3.39×104 1.73×108 

22 3.30×102 5.89×103 

23 5.46×102 1.94×107 

24 1.64×10-10 2.51×101 

25 1.95×10-2 5.46×103 

26 3.17×10-1 1.46×106 

27 6.40×104 3.26×108 

28 1.92×104 1.99×109 

29 1.08×10-2 1.13×10-2 

30 6.55×10-5 9.39×10-1 

31 9.04×10-2 3.95×104 

32 9.80×10-4 2.33×10-2 

33 8.49×103 1.05×103 

34 6.23 8.87×103 

35 3.43×10-1 3.29×103 

36 1.47×106 2.84×103 

37 3.33×10-8 7.99×10-10 

38 9.13×1011 1.76×106 

39 7.28×105 1.63×109 

40 8.00×106 4.84×108 

41 1.48×102 4.20×105 
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Reaction 

# 
Gas 

Keq kforward (s
-1

)  

42 2.44×108 3.65×1016 

43 7.22×10-1 1.12×108 

44 1.73×105 3.35×1013 

45 2.50×108 3.24×1016 

46 1.60×10-6 9.98×10-15 
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Figure 3.1  Network of elementary reaction steps considered in the hydrodeoxygenation of  propanoic acid over Pd (111). The 

elementary reactions which are involved in DCN mechanism are shown with the blue color arrows, DCX reactions are 

illustrated with the red color arrows, and those reaction which are involved in both of the mechanisms such as, 

dehydrogenation of propionaic acid and its derivatives, and removal of hydrocarbon pool are shown with the gray color 

arrows. 
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Figure 3.2 TOFs (s
-1

) for various elementary steps in the HDO of propanoic acid in absence of any solvents at a temperature of 

473 K and a propanoic acid gas phase pressure of 1 bar and a hydrogen partial pressure of 1 bar or 0.001 bar (numbers inside 

the square brackets []).  All other reaction conditions are given in section 3.3. The elementary reactions which are involved in 

DCN mechanism are shown with the blue color arrows, DCX reactions are illustrated with the red color arrows, and those 

reactions which are involved in both of the mechanisms such as, dehydrogenation of propionaic acid and its derivatives, and 

removal of hydrocarbon pool are shown with the gray color arrows. The reactions that are involved in the most dominant 

pathway are illustrated with a double-line arrow. The TOFDCN was calculated to be 1.28×10
-6 

s
-1

 [2.11×10
-5 

s
-1

] while the 

TOFDCX was 2.26×10
-8 

s
-1 

[1.43×10
-7 

s
-1

] (TOFDCN/TOFDCX = 56.4 [148] ) 
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CHAPTER 4 

 

INVESTIGATION OF THE REACTION MECHANISM OF GAS-PHASE, CATALYTIC 

HYDRODEOXYGENATION OF METHYL PROPIONATE 
1
 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
1
 Behtash, S.; Lu, J.; Heyden, A. Catalysis Science & Technology 2014, 4, 3981. 

 Reprinted here with permission of publisher. 
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ABSTRACT 

 
 Esters are one of the key components of lipid-rich biomass feedstocks that are 

potential raw materials for production of green fuels. We present a thorough density 

functional theory and microkinetic modeling study of the hydrodeoxygenation (HDO) of 

organic esters over Pd (111) model surfaces. Methyl propionate was chosen as our model 

molecule since it permits the study of the effect of both α- and β-carbon 

dehydrogenations on the HDO of esters while still being computationally accessible. An 

extensive network of elementary reactions was investigated and a microkinetic model 

was developed at reaction conditions of 473K, a methyl propionate partial pressure of 

0.01 bar, and a hydrogen partial pressure of 0.2 bar to identify the dominant pathway and 

surface abundant species. Our microkinetic model suggests that decarbonylation 

pathways of methyl propionate are favored over decarboxylation pathways. We found the 

most dominant pathway to involve methyl propionate to undergo two dehydrogenation 

steps of both α- and β-carbons to form CH2CHCOOCH3, followed by C-O and C-C 

cleavages to produce C2 hydrocarbons and methoxy that eventually get hydrogenated to 

ethane and methanol (CH3CH2COOCH3CH3CHCOOCH3CH2CHCOOCH3 

CH2CHCO+OCH3…CH3CH3+CO+CH3OH). The most abundant surface 

intermediates were identified to be H and CO and CH3C. Finally, a sensitivity analysis of 

our models suggests that the dehydrogenation of α-carbon of methyl propionate, as well 

as propanoyl-methoxy bond dissociation control the overall rate on Pd (111). 

KEYWORDS: biomass; lipids; triglyceride; ester; methyl propionate; palladium; density 

functional theory; hydrodeoxygenation; decarbonylation; decarboxylation;  
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4.1 INTRODUCTION 

 
 Energy demand continues to significantly increase due to societal developments. 

As a result, fossil fuels have been overused and nowadays most countries are strongly 

dependent on fossil fuel imports.[151, 152]  Rising concerns over depletion of current 

fossil fuel resources and also environmental impacts of fossil fuel utilization have drawn 

substantial attention to conversion of biomass to biofuels to at least partially meet the 

world’s growing energy demand. First generation biofuels such as bio-ethanol and 

biodiesel have been implemented successfully in the energy system. However, they 

generally suffer from compatibility issues and low energy density.[2, 127, 128, 153]  

Recently, biofuels research has been focused on the development of the science and 

technology for conversion of biomass into second-generation biofuels that are identical to 

gasoline and diesel and which are often called green diesel or green gasoline.[22]  

Lipid-rich biomass feedstocks such as vegetable oils are one potential raw 

material for production of green fuels. In spite of their current relatively high price,[154] 

it is expected that the availability of lipid feedstocks will increase in the near future due 

to recent progress in large-scale production of non-edible lipid-rich biomass such as 

algae,[29, 31, 33] Jatropha and Camelina oils.[25, 26, 28]  Lipids contain considerable 

amounts of oxygenates such as triglycerides/organic esters and fatty acid. To convert the 

lipids into hydrocarbons identical to fossil-derived transportation fuels, removal of 

oxygen atoms from the feedstock molecules is required. Significant research efforts have 

been done to convert vegetable oils into liquid hydrocarbons employing a hydroprocess 

with conventional hydrotreating catalysts such as sulfided NiMo/Al2O3 and 

CoMo/Al2O3.[47, 54, 59]  However, by using conventional, sulfided hydrotreating 
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catalysts, the sulfur content of the final products is remarkable. Additionally, other 

disadvantages such as short catalyst life time and problems in separation of carbon oxides 

from the recycle gas have been reported.[54, 59]  Consequently, there is an apparent need 

for new hydrodeoxygenation (HDO) catalysts for triglycerides/organic esters and fatty 

acids. 

To rationally design a metal catalyst for hydrotreating of lipids, it is necessary to 

obtain a fundamental understanding of the reaction mechanisms on the catalyst surface. 

Previously, various reaction routes such as decarbonylation (DCN), decarboxylation 

(DCX), and reductive deoxygenation (RDO) have been proposed for the catalytic 

hydrodeoxygenation (HDO) of triglycerides to alkanes.[54] There is a consensus that 

RDO is not the dominant reaction mechanism over most metal catalysts;[54]
,
[62]

,
[155] 

however, it is currently not clear whether DCX or DCN are the dominant pathways.  A 

thorough theoretical investigation of the catalytic HDO of fatty acids and esters can 

provide the required knowledge about the activity of the oxygen functionality in organic 

acids and esters. Also, the results of such studies can be used for the design of new metal 

catalysts for upgrading wood-derived bio-oils that contain considerable amounts of acids 

and esters.[156]  In our recent publications,[119, 157] we investigated the HDO of 

organic acids in the absence and presence of solvents. In this study, we focused on 

understanding the reaction mechanism for the catalytic HDO of organic esters under gas 

phase condition with the help of first principles calculations. Previously, the activation of 

esters over various metal catalysts has been investigated by a number of research groups.  

For example, Murzin et al. investigated the HDO of ethyl stearate over Pd/C catalysts in a 

detailed experimental study.[62]  Their observations suggested that the reaction 
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mechanism is complex and the DCN is the dominant catalytic cycle in the presence of 

hydrogen while DCX is favored in the absence of hydrogen. Similar results have been 

obtained in a study[155] of methyl stearate and methyl octanoate over Pd/Al2O3.  Next, 

the catalytic conversion of methyl acetate to alcohols over palladium was theoretically 

investigated by Xu et al.[86]  They reported that the activation of methyl acetate over Pd 

(111) is limited by the dehydrogenation of the alpha, beta and methoxy carbons. 

Dehydrogenation from the methoxy end leads to a selective C-O dissociation to produce 

methoxy and acetaldehyde; however, dehydrogenation of the alpha and beta carbon was 

shown to be an unselective pathway, i.e., further activation of the dehydrogenated species 

could not be determined without a detailed microkinetic modeling analysis.  

In this paper, we present a thorough density functional theory (DFT) and 

microkinetic modeling study of the HDO of organic esters over Pd (111) model surfaces.  

Methyl Propionate was purposefully chosen as our model molecule. Methyl Propionate is 

the smallest organic ester that has two carbon atoms (alpha and beta carbons) next to the 

carbonyl function that allows us to investigate whether dehydrogenation of alpha and beta 

carbons can affect C-O and C-C bond dissociations and overall activity. All possible C-C, 

C-O and dehydrogenation/hydrogenation steps for methyl propionate and derivatives 

have been investigated in detail to obtain an extensive chemical reaction network. Next, 

the results of the DFT calculations were used to obtain reaction rate parameters such as 

elementary reaction rate constants. Finally, these parameters were incorporated in a 

microkinetic model to obtain the overall turnover frequency, dominant reaction pathway, 

and most abundant species on the surface. 
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4.2 METHODS 
 

4.2.1 DFT CALCULATIONS 

 All density functional theory calculations have been conducted using the Vienna 

Ab Initio Simulation Package (VASP).[106-108]  The Kohn-Sham valence states are 

expanded in a plane wave basis sets with the energy cut-off of up to 400eV. The 

interaction between core electrons is described with projector-augmented wave 

(PAW)[107, 109] methods. The exchange correlation energy is calculated within the 

generalized gradient approximation (GGA) using the functional form proposed by 

Perdew and Wang which is known as Perdew-Wang 91 (PW91).[110, 111]  The lattice 

constant, obtained from the optimization of the fcc-Pd bulk, is 3.953 Å which is in 

reasonable agreement with the experimental value of 3.891 Å.  The surface Brillouin zone 

is sampled with 442 Monkhorst-pack kpoint grid.  Pd (111) is modeled by a four 

layer slab with a (34) surface unit cell and the palladium layers separated by a 15 Å 

vacuum. The 12 Pd atoms in each layer allow for a coverage of 1/12 ML for adsorbates.  

The bottom two Pd layers were fixed to their bulk configuration during all calculations 

while top two layers were free to relax in all directions. Adsorption energies of all 

intermediates were calculated at their most stable geometry by the following equation: 

                                        gas)adsorbate(slabadsorbateslabads EEEE        (4.1) 

where Eslab+adsorbate is the total energy of the adsorbed intermediate on the Pd slab, Eslab is 

the total energy of the Pd slab and Eadsorbate(gas) is the total energy of the adsorbate in the 

gas phase.  Transition states are located by combination of CI-NEB[112] and dimer[98, 

113] methods and finally, vibrational frequency calculations have been performed to 
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clearly identify stable intermediate and transition state structures. The zero-point energy 

correction for all the structures was taken into account by using the following equation: 

                                            
i

iZPE hE 
2

1
        (4.2)                                                         

where h is the Plank constant and i is the vibrational frequency of mode i. We note that 

all the energy values in this paper are zero-point energy corrected. 

4.2.2 MICROKINETIC MODELING 

For surface reactions, the forward rate constant (kfor) of each reaction is calculated using 

harmonic transition state theory (hTST)[114] 

Tk

E

e
q

q

h

Tk
k B

a_for

vibIS,

vibTS,B
for



         (4.3) 

where kB is the Boltzmann constant, T denotes the reaction temperature, h is the Planck 

constant, Ea_for stands for the zero-point energy-corrected activation barrier for the 

forward reaction derived from DFT calculations, and qTS,vib and qIS,vib are the (harmonic) 

vibrational partition functions for the transition state and the initial state, respectively, 

i.e., qvib is calculated as 

 




i Tk

hvi

e

q

B1

1
vib           (4.4) 

where νi is the vibrational frequency of each vibrational mode of the adsorbed 

intermediate derived from our DFT calculations. 

 The reverse rate constant (krev) is calculated similarly and the thermodynamic 

equilibrium constant K is given as 

rev

for

k

k
K            (4.5) 
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 For an adsorption reaction A(g)+*→A*, the equilibrium constant K is defined as 

Tk

E

gA

A Be
qqq

q
K

ads

)(transrotvib

*vib

)(

)(


        (4.6) 

where (qvib)A* is the vibrational partition function of adsorbed A, and qvib, qrot, qtrans stand 

for vibrational, rotational, and translational partition functions, respectively. ΔEads 

represents the zero-point corrected adsorption energy.  For an adsorption reaction 

A(g)+*→A*, the forward rate is given by collision theory with a sticking probability of 

1. 

TkmN
k

BA2

1

0

for          (4.7) 

where N0 is the number of sites per area (1.478×10
19

 m
2
) and mA denotes the molecular 

weight of A.  The reverse rate constant is again given as 

K

k
k for

rev            (4.8) 

 With the forward and reverse rate constants defined, we solve the full set of 

steady-state rate equations to obtain the surface coverages of all possible reaction 

intermediates and the fraction of free sites using the BzzMath library[115] developed by 

Buzzi-Ferraris.  No assumptions were made regarding rate-limiting steps. 

  

4.3 RESULTS 

4.3.1 ADSORPTION AND DESORPTION REACTIONS 

 Methyl propionate (MP) adsorbs weakly on Pd (111) (Eads=-0.52 eV). In the most 

stable cis configuration of adsorbed methyl propionate the carbonyl oxygen binds to a 

single Pd atom (atop-site) with the molecular plane perpendicular to the surface (Figure 
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4.1.1). In the trans configuration (Figure 4.1.2), the two oxygen atoms of methyl 

propionate are located above a pair of adjacent Pd atoms (bridge-site) with an zero-point 

corrected adsorption energy of Eads=-0.50 eV. Another possible configuration is the chair 

configuration, (Figure 4.1.3) in which the two oxygen atoms and the carbonyl carbon 

atom bind to three palladium atoms (Eads=-0.50 eV).  The weak π-bonded interactions of 

the C=O group with the surface[82] explains the quite small adsorption energy of MP 

(the three adsorption configurations of MP and all intermediates involved in the 

hydrodeoxygenation of MP are shown in Figure 4.1). 

We will later show in our microkinetic analysis (Section 4.4.1), that we identified 

methanol, CO, ethane and ethene to be the main products of HDO of methyl propionate 

over Pd (111) model surfaces. Methanol adsorbs weakly on Pd (111) with zero-point 

corrected adsorption energy of -0.32 eV. In the adsorption configuration, the oxygen 

atom binds to one Pd atom (atop site). Ethane also physisorbs on palladium and 

adsorption energy of this intermediate is -0.17 eV. However, ethene and CO adsorb 

stronger with adsorption energies of -0.98 and -1.97 eV respectively. Additionally, the H2 

that was fed to the reactor with methyl propionate adsorbs dissociatively with an 

adsorption energy of -1.13 eV.  Finally we note that the reaction parameters for all of the 

adsorption and desorption reactions, as well as their correspondent rate constants that 

were used in our microkinetic model, are presented in Table 4.1 and 4.2 (Step 65-73).  

 

4.3.2 ELEMENTARY SURFACE REACTIONS 

 The investigated elementary reactions in the HDO of methyl propionate can be 

grouped into three different types of bond dissociations: C-O bond dissociations (e.g. 
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CH3CH2COOCH3CH3CH2CO + OCH3), C-H bond dissociations (e.g. 

CH3CH2COOCH3CH3CHCOOCH3), and C-C bond dissociations (e.g. 

CH3CH2COCH3CH2 + CO). The Zero-point corrected DFT-derived reaction energies, 

activation barriers, transition state (TS) imaginary frequencies, and TS bond lengths for 

all types of the elementary reactions investigated in HDO of methyl propionate, are listed 

in Table 4.1. Additionally, a schematic of the transition state geometry configurations are 

illustrated in Figure 4.2. 

 

 C-O BOND DISSOCIATIONS: 

 Adsorbed methyl propionate can go through two different C-O bond dissociations 

to either form propionate and methyl (Step 1: CH3CH2COOCH3** + 1* ↔ 

CH3CH2COO** + CH3*) or propanoyl and methoxy (Step 2: CH3CH2COOCH3** + 2*↔ 

CH3CH2CO*** + CH3O*). Our DFT result suggests that the propanoyl-methoxy bond is 

easier to cleave as the activation barrier of this step (Eact-step2= 0.73 eV) is remarkably 

smaller than the activation barrier of the methyl-propionate bond dissociation (Eact-step1= 

1.54 eV). The trend in the activation barriers stays the same for other dehydrogenated 

derivatives of methyl propionate, such as CH3CHCOOCH3, CH2CH2COOCH3, 

CH2CH2COOCH3, and CH2CHCOOCH3 (Table 4.1). Consequently, propanoyl-methoxy 

type C-O bond dissociations are expected to be more favored in comparison to 

propionate-methyl type C-O bond dissociations.  

Next, propanoyl (CH3CH2CO) goes through dehydrogenation and C-C bond 

cleavages to produce CO, and is one of the key intermediates in the decarbonylation 

(DCN) mechanism, while propionate undergoes dehydrogenation and C-C dissociation 
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steps to produce CO2 and is essential to decarboxylation (DCX) reactions. Considering 

that production of propanoyl from methyl propionate and its dehydrogenated 

intermediates is more favored than production of propionate, we predict the DCN to be 

the dominant mechanism. In section 4.4.1, we verified our prediction by a microkinetic 

modeling analysis under realistic reaction conditions. 

 

C-H BOND DISSOCIATIONS: 

 Adsorbed methyl propionate can be dehydrogenated via its α-, β-, and methoxy-

end carbon. The dehydrogenation of the α-carbon (Step 3: CH3CH2COOCH3** + 2* ↔ 

CH3CHCOOCH3*** + H*) is slightly exothermic (∆E0= -0.07 eV) and the activation 

barrier for this reaction is relatively small (0.70 eV). Dehydrogenation of the β-carbon 

(Step 4: CH3CH2COOCH3** + 2* ↔ CH2CH2COOCH3*** + H*) is slightly 

endothermic (∆E0=0.12 eV) and the activation barrier of this step is 0.78 eV. Finally, 

dehydrogenation of the methoxy-end carbon (Step 5: CH3CH2COOCH3** + 2* ↔ 

CH3CH2COOCH2*** + H*) is an almost thermoneutral process (∆E0=0.02 eV) with an 

activation barrier of 0.72 eV. We found that all dehydrogenations of α-, β-, and methoxy-

end carbon have similarly small activation barriers and consequently, it is not possible to 

determine the dominant dehydrogenation pathway without developing a microkinetic 

model. However, all of these steps are less endothermic than the propanoyl-methoxy 

dissociation (∆E0=0.19) and consequently, we expect the dehydrogenation of methyl 

propionate to be slightly more favored than the propanoyl-methoxy dissociation. 

The dehydrogenated derivatives of methyl propionate, CH3CHCOOCH3, 

CH2CH2COOCH3, and CH3CH2COOCH2, can go through C-O bond dissociations or 
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further dehydrogenation steps. All possible elementary reactions for these intermediates 

are identified and the reaction parameters of these elementary steps are listed in Table 

4.1. Our DFT results (as well as our microkinetic modeling analysis in section 4.4.1) 

suggest that both CH2CH2COOCH3 and CH3CHCOOCH3 go through further 

dehydrogenation to form CH2CHCOOCH3, as Step 8 (CH3CHCOOCH3*** + 1* ↔ 

CH2CHCOOCH3*** + H*, ∆E0= -0.47 eV and Eact=0.46 eV), and Step 18 

(CH2CH2COOCH3*** + 1* ↔ CH2CHCOOCH3*** + H*, ∆E0= -0.67 eV and Eact=0.34 

eV) are exothermic and have very small activation barriers. We again considered various 

possible elementary reactions for further activation of CH2CHCOOCH3, but we will 

show below that these intermediates will go through C-O bond dissociation to form 

methoxy and CH2CHCO where it next goes through C-C bond dissociation to form 

CH2CH and CO. 

In contrast to CH2CH2COOCH3 and CH3CHCOOCH3, we predict that 

CH3CH2COOCH2 undergoes a C-O bond dissociation to form propanoyl and OCH2 (Step 

28: CH3CH2COOCH2*** + 3* ↔ CH3CH2CO*** + OCH2***) since this step is 

exothermic by -0.31 eV and has a small activation barrier of 0.15 eV.  

 

C-C BOND DISSOCIATIONS: 

 Propanoyl (CH3CH2CO) and other dehydrogenated derivatives of propanoyl, such 

as CH3CHCO, CH3CCO, CH2CHCO, and CHCHCO can go through C-C bond 

dissociations to produce C2 fragments and CO on the surface (Step30, 32, 34, 36, and 37). 

Dissociation of the C-C bond in propanoyl (Step 30) is exothermic, ∆E0= -0.60, but this 

step has a large activation barrier of 1.01 eV. Dehydrogenation of the α- and β- carbon of 
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propanoyl facilitate the C-C bond dissociation. For instance the dissociation of the C-C 

bond of CH3CCO (Step 37: CH3CCO*** ↔ CH3C* + CO* + 1*) has an activation 

barrier of 0.44 eV. So it is expected that propanoyl will go through further 

dehydrogenation steps of the α- and β- carbons prior to C-C bond cleavages. In the 

microkinetic modeling analysis of the investigated reaction network of the HDO of 

methyl propionate we included various C-C bond dissociations, such as propionate 

decomposition to CH3CH2 and CO2 (Step 61); however, as we explained before, our DFT 

results indicates that it is not probable that other C-C bond cleavages play an important 

role in the HDO of methyl propionate (Reaction parameters of all investigated C-C bond 

cleavages are listed in Table 4.1). 

 

4.4DISCUSSIONS 

4.4.1MICROKINETIC MODELING 

 We previously[158] developed mean-field microkinetic models for the reaction 

mechanism of the decarboxylation and decarbonylation of propionic acid over Pd (111) 

model surfaces under realistic experimental gas phase conditions. In this study, we used 

the same methodology for developing a microkinetic model for the HDO of methyl 

propionate. All calculations were carried out at 473 K and partial pressures of methyl 

propionate and hydrogen of 0.01 and 0.2 bar, respectively, which are typical experimental 

conditions.[62, 67, 141-145, 159]  Since we did not include a water-gas shift model in 

our microkintic model, we had to set the partial pressures of CO and CO2 to 0.001 bar 

which correspondents to approximately 10% conversion. Computed turnover frequencies 

(TOF) of all elementary steps are summarized in Table 4.2. 
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The most abundant surface intermediates were adsorbed hydrogen, CO, and CH3C 

with surface coverages of 67%, 20%, and 7% respectively. We note that we used a 

method similar to Grabow et al.[160] for determining coverage dependent adsorption 

energies of CO, H, and CH3C. More details about adsorbate-adsorbate interactions can be 

found in our previously published paper.[158]  A schematic of the most dominant 

reaction pathways is illustrated in Figure 4.3. The overall TOF is calculated to be 

3.42×10
-7

 s
-1

 on Pd (111). As shown in Figure 4.3, the adsorbed methyl propionate 

molecule can be dehydrogenated from the α, β or methoxy-end (Step 3, 4, and 5 

respectively) or it can go through propanoyl-methoxy bond dissociations (Step 2). 

Accordingly, there are four competing pathways and this study can only suggest that the 

most dominant pathway might involve methyl propionate to undergo two 

dehydrogenation steps of first α- and then β-carbon to form CH2CHCOOCH3 followed by 

C-O bond dissociation to form CH2CHCO and OCH3. CH2CHCO goes through C-C bond 

cleavage to produce C2 hydrocarbons (Step 34) while the methoxy group gets 

hydrogenated to form methanol (Step 57). The TOF of methanol formation (Step 57: 

CH3O + H CH3OH) is TOFStep57=2.47×10
-7

 s
-1

, which is one order of magnitude larger 

than the competing dehydrogenation of methoxy to formaldehyde (Step 54: CH3O 

CH2O + H, TOFStep57=1.45×10
-8 

s
-1

). According to our DFT results (Table 4.1), 

formation of methanol from methoxy (Step 57) and decomposition of methoxy to CO 

(Step 54-56) are thermodynamically competitive; however, our microkinetic modeling 

result shows that methanol formation is favored due to an excess of hydrogen on the 

surface (dominant pathway: 
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CH3CH2COOCH3CH3CHCOOCH3CH2CHCOOCH3CH2CHCO+OCH3…CH

3CH3+CO+CH3OH, TOF=1.85×10
-7 

s
-1

,
 
red pathway in Figure 4.3). 

In the second competitive pathway, methyl propionate gets dehydrogenated at the 

methoxy end to form CH3CH2COOCH2 followed by C-O bond dissociation to form 

propanoyl (CH3CH2CO) and formaldehyde. Next, propanoyl gets dehydrogenated prior 

to C-C bond cleavage to form C2 hydrocarbons and CO. Formaldehyde again can be 

further dehydrogenated to produce CO 

(CH3CH2COOCH3CH3CH2COOCH2CH3CH2CO+OCH2… CH3CH3+2CO, 

green pathway in Figure 4.3). The computed TOF of the dominant pathway is only 2.4 

times larger than for this pathway. 

In the third pathway, methyl propionate directly dissociates to form methoxy and 

propanoyl (CH3CH2COOCH3CH3CH2CO…CH3CH3+CO+CH3OH, 

TOF=6.43×10
-8

 s
-1

, black pathway in Figure 4.3). Later, the methoxy group gets 

hydrogenated to form methanol and the propanoyl species gets dehydrogenated followed 

by C-C bond cleavage to produce C2 hydrocarbons and CO.  

In the last competitive pathway, methyl propionate first undergoes a 

dehydrogenation via its β-carbon, followed by another dehydrogenation from its α-carbon 

to produce CH2CHCOOCH3.  This intermediate goes through C-O bond dissociation to 

form CH2CHCO and methoxy. We note that the only difference of this pathway and the 

most dominant pathway is in the order of dehydrogenation steps. In the dominant 

pathway, first α-carbon and then β-carbon gets dehydrogenated while in this pathway first 

the β-carbon and then the α-carbon get dehydrogenated. However, it is less probable that 

methyl propionate first goes through dehydrogenation of the β-carbon as the TOF of this 
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pathway is an order of magnitude smaller than the most dominant pathway 

(CH3CH2COOCH3CH2CH2COOCH3CH2CHCOOCH3 

CH2CHCO+OCH3…CH3CH3+CO+CH3OH, TOF=1.39×10
-8 

s
-1

,
 

blue pathway in 

Figure 4.3). 

Finally, the most dominant decarboxylation pathway is: 

CH3CH2COOCH3CH3CH2COOCH2CH3CH2COO+CH2…CH3CH3+CO2+CH4 

(TOF=3.49×10
-10

) where the rate of this pathway is 3 orders of magnitude smaller than 

competing decarbonylation pathways. Overall, we conclude that the dominant catalytic 

cycles are decarbonylation pathways and in all of these pathways, dehydrogenation of α- 

and β-carbon play an important role in further activity of adsorbed intermediates. In the 

next section, we investigate the importance of the dehydrogenation steps in the overall 

activity. 

 

4.4.2 APPARENT ACTIVATION BARRIER, REACTION ORDERS, AND SENSITIVITY 

ANALYSIS 

 

 The apparent activation barrier was computed in the temperature range of 423 to 

523 K. 
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)ln(2         (4.9) 

Our model predicts an apparent activation energy of 1.01 eV. Next, the reaction order 

with respect to hydrogen was calculated at 473 K in the range of 0.05 to 0.4 bar. 

Similarly, the reaction order of propanoic acid and CO were calculated at 473 K and a 

pressure range of 0.005 to 0.1 bar and 0.0001 to 0.1 bar, respectively. 
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Our model predicts a reaction order with respect to methyl propionate of +1.0, with 

respect to CO of -0.49, and finally with respect to H2 of -0.07.   

 To understand the sensitivity of our model and to determine rate controlling steps 

and intermediates in the mechanism, we computed Campbell’s degrees of rate and 

thermodynamic control,[147-149] XRC and XTRC.  Rate controlling steps and 

intermediates are those transition states and intermediates that most strongly influence the 

reaction rate and are potential activity descriptors. 
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where r is the overall rate of reaction, ki is the forward rate constant for step i, Ki 

equilibrium constant for step i, R is the gas constant, T denotes the reaction temperature, 

and Gn
0
 is the free energy of adsorbate n.  The result of our Campbell’s degree of rate 

control analysis suggests that the most controlling steps are propanoyl-methoxy type C-O 

bond dissociation and dehydrogenation of α-, β-, and methoxy-end carbons of methyl 

propionate. Reaction 2 (CH3CH2COOCH3** + 2*↔ CH3CH2CO*** + CH3O*), 

propanoyl-methoxy dissociation, is the most rate-controlling C-O bond dissociation step 

with the XRC of 0.17. Additionally, Reaction 12 (CH2CHCOOCH3*** + 1* ↔ 

CH2CHCO*** +CH3O*) and Reaction 28 (CH3CH2COOCH2*** + 3* ↔ 

CH3CH2CO*** + OCH2***) are also rate-controlling with the XRC of 0.09 and 0.02 

respectively, such that the sum of C-O rate-control is 0.28.  
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 Under the investigated reaction conditions of 473 K and excess of hydrogen, we 

found that dehydrogenation steps are even more rate-controlling than C-O bond 

dissociations. Dehydrogenation of the α-carbon of methyl propionate (Reaction 2) is the 

most rate-controlling dehydrogenation step with an XRC of 0.35. Dehydrogenation of the 

methoxy-end carbon of methyl propionate (Reaction 5) has an XRC of 0.19, and finally, 

dehydrogenation of the β-carbon of methyl propionate (Reaction 4) and also 

dehydrogenation of the β-carbon of CH3CHCOOCH3*** (Reaction 8: 

CH3CHCOOCH3***  + 1* ↔ CH2CHCOOCH3*** + H*) have a XRC of 0.05 and 0.03 

respectively.  We note that the sum of the degrees of rate control is slightly smaller than 

one (0.9) due to numerical inaccuracies of our nonlinear equation solver; however, the 

trends should not be affected by these numerical issues. 

The analysis above suggests the following: Considering that all of the rate-

controlling dehydrogenation steps are chemically similar and involve bonding of a 

hydrogen and carbon atom to the metal surface, we expect that all of these dissociations 

can be described by one independent activity descriptor, e.g., the dehydrogenation of the 

α-carbon of methyl propionate. Similarly, all of the rate-controlling C-O bond 

dissociations are chemically similar and involve bonding of both an oxygen and carbon 

atom to the metal surface, such that we expect all of these dissociations can be described 

by another independent activity descriptor, e.g., the C-O dissociation of the propanoyl-

methoxy bond.   

Finally, the thermodynamic rate control analysis suggests that the adsorption free 

energy of CO* has a significant effect on the overall rate with XTRC = -0.57 such that 

destabilizing the adsorbed CO improves the overall reaction rate. 
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4.4.3 BEP Relationships 

 In our effort to provide correlations for predicting activation barriers without 

having to perform expensive transition state searches and also to better understand the 

accuracy of these correlations, we show in Figure 4.4 Brønsted-Evans-Polanyi (BEP) 

relations that aim at linearly correlating the activation barrier of all C-H, C-C, and C-O 

bond dissociations to their reaction energies on Pd (111).[161, 162]  The obtained BEP 

relation for C-H dissociation is Eact=0.43×∆E0+0.76. The mean absolute error (MAE) of 

this relation is 0.10 eV and the largest error in all the data point is 0.27 eV which 

originates from CH2O dissociation to CHO and H.  Next, the BEP relation for all C-C 

bond cleavage steps is Eact=0.26×∆E0+1.03 with a MAE of 0.11 eV and a maximum error 

of 0.23 eV. The dissociation of CH3CCO to CH3C and CO has the maximum absolute 

error among all C-C bond cleavage steps.  Finally, the C-O bond dissociation data points 

can be fitted to Eact=0.42×∆E0+0.58 with a MAE of 0.12 eV. The largest error is 0.29 eV 

which comes from the dissociation of CH3CH2COOCH2 to CH3CH2CO and OCH2.  

 

4.5 CONCLUSIONS 

 The hydrodeoxygenation of methyl propionate was investigated over a Pd (111) 

surface model from first principles. An extensive network of elementary reactions was 

studied and a microkinetic model was developed to study the reaction mechanism at a 

reaction temperature of 473K. We found the most dominant pathway to involve methyl 

propionate to undergo two dehydrogenation steps of both its α and β-carbon to form 

CH2CHCOOCH3 followed by a C-O bond dissociation to form CH2CHCO and OCH3, 

next, CH2CHCO goes through C-C bond cleavage to produce C2 hydrocarbons. Surface 
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methoxy species get hydrogenated to form methanol, i.e., the most dominant pathway is 

CH3CH2COOCH3CH3CHCOOCH3CH2CHCOOCH3CH2CHCO+OCH3… 

CH3CH3+CO+CH3OH, TOF=1.85×10
-7 

s
-1

. Decarbonylation is the dominant mechanism 

and methanol, CO, and C2 hydrocarbons are predicted to be the main reaction products of 

the HDO of methyl propionate over Pd (111). H, CO, and CH3C were identified to be the 

most abundant surface intermediates. The apparent activation barrier was calculated to be 

1.01 eV.  Finally, our sensitivity analysis suggests that dehydrogenation of α-carbon of 

methyl propionate and the propanoyl-methoxy bond dissociation are rate-controlling 

steps and possible activity descriptors. 
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4.7 TABLES 

 

TABLE 4.1 Zero-point energy corrected activation barriers, reaction energies, transition-state imaginary frequencies, and TS 

bond lengths of all elementary steps investigated for the HDO of methyl propionate. * symbolizes an active site and ** 

symbolizes two occupied active sites, etc. 
 

# 
Reaction 

Eact 

(eV)   

∆E0 

(eV) 

     
ν (cm

-

1
) 

TS bond             

(Å ) 

Step 1 CH3CH2COOCH3** + 1* ↔ CH3CH2COO** + CH3*   1.54 -0.45 521 i 2.08 

Step 2 CH3CH2COOCH3**  + 2*↔ CH3CH2CO*** + CH3O*   0.73 0.19 161 i 2.05 

Step 3 CH3CH2COOCH3**  + 2* ↔ CH3CHCOOCH3*** + H* 0.70 -0.07 950 i 1.55 

Step 4 CH3CH2COOCH3**  + 2* ↔ CH2CH2COOCH3*** + H* 0.78 0.12 776 i 1.59 

Step 5 CH3CH2COOCH3**  + 2* ↔ CH3CH2COOCH2*** + H* 0.72 0.02 844 i 1.56 

Step 6 CH3CHCOOCH3***  + 1* ↔ CH3CHCOO*** + CH3* 1.63 0.00 539 i 2.02 

Step 7 CH3CHCOOCH3***  + 1* ↔ CH3CHCO*** + CH3O* 0.74 0.27 187 i 2.08 

Step 8 CH3CHCOOCH3***  + 1* ↔ CH2CHCOOCH3*** + H* 0.46 -0.47 1019 i 1.51 

Step 9 CH3CHCOOCH3***  + 1* ↔ CH3CHCOOCH2*** + H* 0.75 -0.02 856 i 1.53 

Step 10 CH2CHCOOCH3***  + 2* ↔ CH2CHCOOCH2**** + H* 0.96 0.13 958 i 1.54 

Step 11 CH2CHCOOCH3***  + 2* ↔ CHCHCOOCH3**** + H* 0.85 0.03 743 i  1.79 

Step 12 CH2CHCOOCH3***  + 1* ↔ CH2CHCO*** +CH3O*  0.91 0.41 241 i 2.09 

8
8
 



 

   

Step 13 CH3CHCOOCH2***  + 2* ↔ CH2CHCOOCH2**** + H* 0.38 -0.33 951 i 1.54 

Step 14 CH3CHCOOCH2***  + 3* ↔ CH3CHCO*** + OCH2*** 0.47 -0.19 252 i 1.97 

Step 15 CHCHCOOCH3****  + 2* ↔  CHCH*** + COOCH3*** 0.91 -0.06 453 i 2.00 

Step 16 CH2CHCOOCH2**** + 3*  CH2CH*** + COOCH2**** 0.93 0.01 335 i 2.09 

Step 17 CH2CHCOOCH2****  + 2* ↔ CH2CHCO*** + OCH2*** 0.47 -0.20 222 i 2.06 

Step 18 CH2CH2COOCH3***  + 1* ↔ CH2CHCOOCH3*** + H* 0.34 -0.67 965 i 1.49 

Step 19 CH2CH2COOCH3***  + 1* ↔ CH2CH2COOCH2*** + H* 0.83 0.00 1037 i 1.54 

Step 20 CH2CH2COOCH3***  + 2* ↔ CH2CH2** + COOCH3*** 0.98 -0.42 429 i 2.04 

Step 21 CH2CH2COOCH3***  + 1* ↔ CH2CH2CO*** + CH3O* 0.58 0.20 190 i 2.05 

Step 22 CH2CH2COOCH2***  + 1* ↔ CH2CHCOOCH2**** + H* 0.67 -0.54 993 i 1.61 

Step 23 CH2CH2COOCH2***  + 3* ↔ CH2CH2** +COOCH2**** 0.91 -0.55 453 i 2.05 

Step 24 CH2CH2COOCH2***  + 3* ↔ CH2CH2CO*** + OCH2*** 0.26 -0.30 244 i 1.88 

Step 25 CH3CH2COOCH2***  + 1* ↔ CH3CHCOOCH2*** + H* 0.59 -0.11 750 i 1.59 

Step 26 CH3CH2COOCH2***  + 1* ↔ CH2CH2COOCH2*** + H* 0.89 0.10 670 i 1.64 

Step 27 CH3CH2COOCH2***  + 1* ↔ CH3CH2COO** + CH2**  0.70 -0.57 217 i 2.30 

Step 28 CH3CH2COOCH2***  + 3* ↔ CH3CH2CO*** + OCH2***  0.15 -0.31 259 i 1.82 

Step 29 CH3CH2CO***  + 1* ↔ CH3CHCO*** + H*  0.81 0.01 901 i 1.57 

Step 30 CH3CH2CO***  ↔ CH3CH2* +  CO* + 1* 1.01 -0.60 372 i 2.34 
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Step 31 CH3CHCO*** + 1* ↔ CH2CHCO*** + H* 0.46 -0.34 766 i 1.47 

Step 32 CH3CHCO*** ↔ CH3CH** + CO* 1.02 -0.81 410 i 2.30 

Step 33 CH3CHCO***  + 1* ↔ CH3CCO*** + H* 0.52 -0.38 848 i 1.66 

Step 34 CH2CHCO***  + 1* ↔ CH2CH*** + CO* 0.78 -0.74 491 i 1.98 

Step 35 CH2CHCO*** + 2* ↔ CHCHCO**** + H* 0.68 0.01 631 i 1.59 

Step 36 CHCHCO**** ↔ CHCH*** + CO* 0.57 -1.09 462 i 2.05 

Step 37 CH3CCO***  ↔ CH3C* + CO* + 1* 0.44 -1.37 396 i 1.73 

Step 38 CH2CH2CO***  ↔ CH2CH2** + CO* 0.76 -1.22 471 i 2.13 

Step 39 CH2CH2CO***  + 1* ↔ CH2CHCO *** + H* 0.66 -0.46 942 i 1.61 

Step 40 COOCH3***  + 2* ↔ COOCH2*** + H* 0.58 -0.13 900 i 1.56 

Step 41 COOCH3***  ↔ CO* + CH3O* + 1* 0.56 -0.60 205 i 2.04 

Step 42 COOCH3***  ↔ CO2* + CH3* + 1* 1.48 -0.38 554 i 1.92 

Step 43 COOCH2****  ↔ CO* + OCH2*** 0.29 -0.95 345 i 1.78 

Step 44 COOCH2****  ↔ CO2* + CH2** + 1* 0.89 -0.35 432 i 2.03 

Step 45 CHCH*** + H*  ↔ CH2CH*** + 1* 0.82 0.30 1025 i 1.57 

Step 46 CH2CH*** ↔ CH2C** + H* 0.46 -0.43 970 i 1.48 

Step 47 CH2C**+H* ↔ CH3C** + 2* 0.88 -0.23 966 i 1.70 

Step 48 CH2CH*** + H*  ↔ CH2CH2** + 2* 0.88 -0.02 787 i 1.75 

9
0
 



 

   

Step 49 CH2CH*** + H*  ↔ CH3CH** + 2* 0.79 0.26 982 i 1.55 

Step 50 CH3C*** + H*  ↔ CH3CH** + 2* 1.11 0.94 196 i 1.13 

Step 51 CH3CH** + H*  ↔ CH3CH2* + 2* 0.86 0.21 801 i 1.69 

Step 52 CH2CH2** + H*  ↔ CH3CH2* + 2* 0.88 0.48 924 i 1.53 

Step 53 CH3CH2* + H*  ↔ CH3CH3* + 1* 0.60 0.04 941 i 1.59 

Step 54 CH3O* + 3*  ↔ CH2O*** + H* 0.44 -0.48 914 i 1.46 

Step 55 CH2O*** + 1*  ↔ CHO*** + H* 0.67 -0.87 603 i 1.64 

Step 56 CHO*** ↔ CO* + H* + 1* 0.16 -1.42 684 i 1.36 

Step 57 CH3O* + H*  ↔ CH3OH* + 1* 0.60 0.01 726 i 1.61 

Step 58 CH2** + H*  ↔ CH3* + 2* 0.78 0.10 788 i 1.84 

Step 59 CH3* + H*  ↔ CH4* + 1* 0.58 -0.03 938 i 1.57 

Step 60 CH3CH2COO** ↔ CH3CH2* + CO2*  1.43 0.24 435 i 1.93 

Step 61 CH3CH2COO** + 2* ↔ CH3CHCOO*** + H* 1.22 0.38 811 i 1.64 

Step 62 CH3CHCOO*** + ↔ CH3CH** + CO2* 0.96 -0.32 449 i 2.10 

Step 63 CH3CHCOO*** + 1* ↔ CH3CCOO*** + H* 0.85 -0.08 784 i 1.75 

Step 64 CH3CCOO*** ↔ CH3C* + CO2* + 1* 0.65 -1.17 575 i 2.09 

Step 65 CH3CH2COOCH3 + 2* ↔ CH3CH2COOCH3** N/A -0.52 N/A N/A 

Step 66 CH3CH3 + 1* ↔ CH3CH3* N/A -0.17 N/A N/A 

9
1
 



 

   

Step 67 CH2CH2 + 2* ↔ CH2CH2** N/A -0.98 N/A N/A 

Step 68 CHCH + 3* ↔ CHCH*** N/A -1.67 N/A N/A 

Step 69 CH4 + 1* ↔ CH4* N/A -0.08 N/A N/A 

Step 70 CH3OH + 1* ↔ CH3OH* N/A -0.32 N/A N/A 

Step 71 CO + 1* ↔ CO* N/A -1.97 N/A N/A 

Step 72 CO2 + 1* ↔ CO2* N/A 0.02 N/A N/A 

Step 73 H2 + 2* → 2H* N/A -1.13 N/A N/A 
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TABLE 4.2 Equilibrium, forward rate constants, and calculated net rate (turnover frequency) for the elementary steps in the 

HDO of methyl propionate over Pd (111) model surfaces at a temperature of 473 K. 

 

 Reaction Keq kf (s
-1

) TOF (s
-1

) 

Step 1 CH3CH2COOCH3** + 1* ↔  CH3CH2COO** + CH3*   1.08×10
-5 

2.08×10
-4

 6.17×10
-15

 

Step 2 CH3CH2COOCH3**  + 2*↔  CH3CH2CO*** + CH3O*   7.63×10
-3

 3.96×10
4
 6.43×10

-8
 

Step 3 CH3CH2COOCH3**  + 2* ↔  CH3CHCOOCH3*** + H* 1.52 1.37×10
5
 1.85×10

-7
 

Step 4 CH3CH2COOCH3**  + 2* ↔  CH2CH2COOCH3*** + H* 1.91×10
-2

 1.01×10
4
 1.39×10

-8
 

Step 5 CH3CH2COOCH3**  + 2* ↔  CH3CH2COOCH2*** + H* 9.81×10
-2

 5.02×10
4
 7.85×10

-8
 

Step 6 CH3CHCOOCH3***  + 1* ↔  CH3CHCOO*** + CH3* 2.41 4.00×10
-5

 1.35×10
-18

 

Step 7 CH3CHCOOCH3***  + 1* ↔  CH3CHCO*** + CH3O* 2.49×10
-3

 1.30×10
5
 4.37×10

-9
 

Step 8 CH3CHCOOCH3***  + 1* ↔  CH2CHCOOCH3*** + H* 3.98×10
4
 4.64×10

7
 1.80×10

-7
 

Step 9 CH3CHCOOCH3***  + 1* ↔  CH3CHCOOCH2*** + H* 4.89×10
-1

 3.04×10
4
 9.07×10

-10
 

Step 10 CH2CHCOOCH3***  + 2* ↔  CH2CHCOOCH2**** + H* 1.27×10
-2

 2.69×10
2
 1.39×10

-9
 

Step 11 CH2CHCOOCH3***  + 2* ↔  CHCHCOOCH3**** + H* 1.90×10
-1

 5.29×10
3
 1.25×10

-11
 

Step 12 CH2CHCOOCH3***  + 1* ↔  CH2CHCO*** +CH3O*  1.28×10
-4

 1.98×10
3
 1.92×10

-7
 

Step 13 CH3CHCOOCH2***  + 2* ↔  CH2CHCOOCH2**** + H* 1.03×10
3
 2.69×10

8
 1.76×10

-9
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Step 14 CH3CHCOOCH2***  + 3* ↔  CH3CHCO*** + OCH2*** 3.77×10
2
 1.10×10

8
 5.01×10

-11
 

Step 15 CHCHCOOCH3****  + 2* ↔  CHCH*** + COOCH3*** 1.24×10
1
 2.77×10

3
 1.25×10

-11
 

Step 16 CH2CHCOOCH2**** + 3* ↔  CH2CH*** + COOCH2**** 2.59 6.95×10
2
 3.12×10

-16
 

Step 17 CH2CHCOOCH2****  + 2* ↔  CH2CHCO*** + OCH2*** 7.51×10
2
 3.84×10

8
 3.15×10

-9
 

Step 18 CH2CH2COOCH3***  + 1* ↔  CH2CHCOOCH3*** + H* 3.17×10
6
 8.55×10

8
 1.30×10

-8
 

Step 19 CH2CH2COOCH3***  + 1* ↔  CH2CH2COOCH2*** + H* 1.14×10
-1

 1.93×10
3
 7.42×10

-13
 

Step 20 CH2CH2COOCH3***  + 2* ↔  CH2CH2** + COOCH3*** 3.87×10
4
 9.87×10

1
 2.09×10

15
 

Step 21 CH2CH2COOCH3***  + 1* ↔  CH2CH2CO*** + CH3O* 7.44×10
-3

 2.41×10
6
 9.34×10

-10
 

Step 22 CH2CH2COOCH2***  + 1* ↔  CH2CHCOOCH2**** + H* 3.52×10
5
 8.95×10

5
 -3.23×10

-15
 

Step 23 CH2CH2COOCH2***  + 3* ↔  CH2CH2** +COOCH2**** 5.74×10
6
 3.30×10

3
 2.85×10

-19
 

Step 24 CH2CH2COOCH2***  + 3* ↔  CH2CH2CO*** + OCH2*** 8.44×10
3
 1.18×10

10
 1.02×10

-12
 

Step 25 CH3CH2COOCH2***  + 1* ↔  CH3CHCOOCH2*** + H* 7.56 3.86×10
6
 9.06×10

-10
 

Step 26 CH3CH2COOCH2***  + 1* ↔  CH2CH2COOCH2*** + H* 2.22×10
-2

 5.89×10
2
 2.73×10

-13
 

Step 27 CH3CH2COOCH2***  + 1* ↔  CH3CH2COO** + CH2**  2.74×10
6
 7.28×10

5
 3.49×10

-10
 

Step 28 CH3CH2COOCH2***  + 3* ↔  CH3CH2CO*** + OCH2***  8.01×10
3
 5.37×10

10
 7.72×10

-8
 

Step 29 CH3CH2CO***  + 1* ↔  CH3CHCO*** + H*  3.08×10
-1

 7.47×10
3
 1.05×10

-7
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Step 30 CH3CH2CO***  ↔  CH3CH2* +  CO* + 1* 4.73×10
6
 1.36×10

2
 3.61×10

-8
 

Step 31 CH3CHCO*** + 1* ↔  CH2CHCO*** + H* 2.06×10
3
 5.51×10

7
 -6.17×10

-8
 

Step 32 CH3CHCO*** ↔  CH3CH** + CO* 6.68×10
8
 3.55×10

2
 6.62×10

-11
 

Step 33 CH3CHCO***  + 1* ↔  CH3CCO*** + H* 1.05×10
4
 1.68×10

7
 1.71×10

-7
 

Step 34 CH2CHCO***  + 1* ↔  CH2CH*** + CO* 6.37×10
7
 3.06×10

4
 5.85×10

-8
 

Step 35 CH2CHCO*** + 2* ↔  CHCHCO**** + H* 9.03×10
-1

 5.54×10
5
 5.83×10

-8
 

Step 36 CHCHCO**** ↔  CHCH*** + CO* 7.59×10
11

 5.57×10
6
 5.83×10

-8
 

Step 37 CH3CCO***  ↔  CH3C* + CO* + 1* 1.00×10
15

 1.76×10
8
 1.71×10

-7
 

Step 38 CH2CH2CO***  ↔  CH2CH2** + CO* 2.19×10
13

 1.81×10
5
 9.85×10

-10
 

Step 39 CH2CH2CO***  + 1* ↔  CH2CHCO *** + H* 5.46×10
4
 3.89×10

5
 -4.99×10

-11
 

Step 40 COOCH3***  + 2* ↔  COOCH2*** + H* 1.69×10
1
 1.42×10

6
 3.02×10

-15
 

Step 41 COOCH3***  ↔  CO* + CH3O* + 1* 4.20×10
6
 1.77×10

7
 1.25×10

-11
 

Step 42 COOCH3***  ↔  CO2* + CH3* + 1* 1.21×10
5
 1.87×10

-3
 1.33×10

-21
 

Step 43 COOCH2****  ↔  CO* + OCH2*** 1.85×10
10

 1.75×10
10

 3.36×10
-15

 

Step 44 COOCH2****  ↔  CO2* + CH2** + 1* 1.11×10
4
 3.62×10

3
 7.89×10

-21
 

Step 45 CHCH*** + H*  ↔  CH2CH*** + 1* 8.26×10
-4

 2.03×10
4
 5.83×10

-8
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Step 46 CH2CH*** ↔  CH2C** + H* 3.07×10
4
 1.73×10

8
 -2.39×10

-7
 

Step 47 CH2C**+H* ↔  CH3C** + 2* 8.27×10
2
 5.44×10

3
 -2.39×10

-7
 

Step 48 CH2CH*** + H*  ↔  CH2CH2** + 2* 6.28 5.64×10
3
 2.08×10

-7
 

Step 49 CH2CH*** + H*  ↔  CH3CH** + 2* 5.10×10
-3

 3.71×10
4
 1.48×10

-7
 

Step 50 CH3C*** + H*  ↔  CH3CH** + 2* 6.32×10
-11

 3.50 -1.12×10
-7

 

Step 51 CH3CH** + H*  ↔  CH3CH2* + 2* 2.30×10
-2

 1.74×10
4
 3.60×10

-8
 

Step 52 CH2CH2** + H*  ↔  CH3CH2* + 2* 2.05×10
-5

 3.54×10
3
 -2.31×10

-8
 

Step 53 CH3CH2* + H*  ↔  CH3CH3* + 1* 2.18 3.67×10
6
 1.10×10

-7
 

Step 54 CH3O* + 3*  ↔  CH2O*** + H* 7.42×10
4
 1.02×10

8
 1.45×10

-8
 

Step 55 CH2O*** + 1*  ↔  CHO*** + H* 1.20×10
9
 9.66×10

6
 9.49×10

-8
 

Step 56 CHO*** ↔  CO* + H* + 1* 9.35×10
14

 1.24×10
12

 9.49×10
-8

 

Step 57 CH3O* + H*  ↔  CH3OH* + 1* 5.74×10
-2

 4.23×10
5
 2.47×10

-7
 

Step 58 CH2** + H*  ↔  CH3* + 2* 6.45×10
-1

 1.12×10
5
 3.49×10

-10
 

Step 59 CH3* + H*  ↔  CH4* + 1* 4.38×10
1
 1.50×10

7
 3.49×10

-10
 

Step 60 CH3CH2COO** ↔  CH3CH2* + CO2*  1.75×10
-2

 2.49×10
-2

 6.09×10
-8

 

Step 61 CH3CH2COO** + 2* ↔  CH3CHCOO*** + H* 2.14×10
-5

 2.46×10
-1

 3.49×10
-10

 

9
6
 



 

   

Step 62 CH3CHCOO*** + ↔  CH3CH** + CO2* 1.50×10
4
 1.41×10

3
 2.67×10

-10
 

Step 63 CH3CHCOO*** + 1* ↔  CH3CCOO*** + H* 8.51 7.97×10
3
 8.25×10

-11
 

Step 64 CH3CCOO*** ↔  CH3C* + CO2* + 1* 1.04×10
13

 1.65×10
6
 8.25×10

-11
 

Step 65 CH3CH2COOCH3 + 2* ↔ CH3CH2COOCH3** 1.81×10
-5

 8.73×10
7
 3.42×10

-7
 

Step 66 CH3CH3 + 1* ↔ CH3CH3* 2.79×10
-7

 1.50×10
8
 1.10×10

-7
 

Step 67 CH2CH2 + 2* ↔ CH2CH2** 2.79×10
1
 1.55×10

8
 2.32×10

-7
 

Step 68 CHCH + 3* ↔ CHCH*** 2.59×10
12

 1.61×10
8
 5.29×10

-14
 

Step 69 CH4 + 1* ↔ CH4* 8.51×10
-6

 2.05×10
8
 3.49×10

-10
 

Step 70 CH3OH + 1* ↔ CH3OH* 5.89×10
-5

 1.45×10
8
 2.47×10

-7
 

Step 71 CO + 1* ↔ CO* 5.33×10
12

 1.55×10
8
 Equilibrium 

Step 72 CO2 + 1* ↔ CO2* 2.79×10
-6

 1.30×10
8
 3.49×10

-10
 

Step 73 H2 + 2* → 2H* 1.65×10
6
 5.80×10

8
 Equilibrium 
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Figure 4.1   Side and top view of most stable adsorption structure of intermediates involved in HDO of methyl propionate over 

Pd (111). (1) Methyl Propionate-Cis (CH3CH2COOCH3); (2) Methyl Propionate-Trans (CH3CH2COOCH3); (3) Methyl 

Propionate-Chair (CH3CH2COOCH3); (4) Methylene Propionate (CH3CH2COOCH2); (5) Methylcarboxylethyledene 

(CH3CHCOOCH3); (6) Methylcarboxylethene (CH2CH2COOCH3); (7) Methylenecarboxylethyledne (CH3CHCOOCH2); (8) 

Methylcarboxylvinyl (CH2CHCOOCH3); (9) Methylenecarboxylethene (CH2CH2COOCH2); (10) Methylenecarboxylvinyl 

(CH2CHCOOCH2); (11) Methylcarboxylethyne (CHCHCOOCH3); (12)Propionate (CH3CH2COO); (13) Carboxylethylidene 

1
0
0
 



 

   

(CH3CHCOO); (14) Carboxylethenyl (CH3CCOO); (15) Propanoyl (CH3CH2CO); (16) Carbonylethylidene (CH3CHCO); (17) 

Carbonylethene (CH2CH2CO); (18) Carbonylvinyl (CH2CHCO); (19) Carbonylethenyl (CH3CCO); (20) carboxylmethyl 

(COOCH3); (21) carboxylmethylene (COOCH2); (22) Ethane (CH3CH3); (23) Ethyl (CH3CH2); (24) Ethene (CH2CH2); (25) 

Ethylidene (CH3CH); (26) Ethenyl (CH3C); (27) Vinyl CH2CH; (28) Ethyne (CHCH); (29) CH2C; (30) Methanol (CH3OH); 

(31) Methoxy (CH3O); (32) Formaldehyde (CH2O); (33) Formyl (CHO); (34) Methane (CH4); (35) Methyl (CH3); (36) 

Methylene (CH2); (37) Carbon dioxide (CO2); (38) Carbon monoxide(CO); (39)Hydrogen atom(H); 
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         (64)                   

Figure 4.2  Snapshots of transition states of the elementary reactions involved in hydrodeoxygenation of methyl propionate on 

Pd (111) surface. Upper panels are for side views and lower ones for top views. Numbers correspond to the reaction numbers 

shown in Table 4.1. 
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Figure 4.3  Schematic representation of the most important reaction pathways in the network considered in the HDO of methyl 

propionate over Pd (111). We note that in our microkinetic calculations, we included all the elementary steps illustrated in 

Table 4.1; however, this Figure is a schematic of elementary steps involved in the dominant pathways of the HDO of methyl 

propionate. TOFs (s
−1

) shown for various elementary steps are computed at a temperature of 473 K, a methyl propionate gas 

phase pressure of 0.01 bar and a hydrogen partial pressure of 0.2 bar. TOFs (s
-1

) for elementary reactions not shown in this 

figure are illustrated in Table 4.2. The most dominant pathway is shown in red color 

(CH3CH2COOCH3CH3CHCOOCH3CH2CHCOOCH3CH2CHCO+OCH3…CH3CH3+CO+CH3OH). Other 

competitive pathways are shown in black, blue, and green. Reaction pathways of the intermediates shown in rectangles are 

explained in detail in sections 4.3.2. 
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Figure 4.4  Brønsted-Evans-Polanyi (BEP) correlation for C-O (green line), C-C (blue line) and C-H (red line) bond 

dissociations. The zero-point energy corrected activation barriers of investigated reactions have been plotted vs. zero-point 

energy corrected reaction energies.  
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CHAPTER 5 

 

UNRAVELING THE MECHANISM OF PROPANOIC ACID HYDRODEOXYGENATION 

USING DEUTERIUM KINETIC ISOTOPE EFFECTS
1
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
1
 Y. K. Lugo-José, S. Behtash, M. Nicholson, J. R. Monnier, A. Heyden, and C. T. 

Williams To be submittedto Journal of Molecular Catalysis A . 
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ABSTRACT 
 

 A combined experimental and computational kinetic isotope effect (KIE) study 

was performed for the catalytic hydrodeoxygenation (HDO) of deuterium-labeled 

propanoic acid (PAc-2, 2-D2) over Pd catalyst. For the experimental study, the kinetics 

were measured in a plug flow reactor over a 5 wt% Pd/C catalyst at 200ºC and 1 atm 

under differential conversion using a reactor feed consisting of 1.2% PAc and 5% or 20% 

H2, with the balance of He. The Pd/C catalyst had a dispersion of 16.9% and a mean 

particle size of 6.8 nm, suggesting a very high percentage of exposed Pd(111) facets. 

Different experimental KIE values for the high (kH/kD = 1.16 ± 0.07) and low (kH/kD = 

1.62 ± 0.05) partial pressures of hydrogen were observed. Density functional theory 

calculations were performed to obtain the reaction parameters of the elementary steps 

involved in the HDO of PAc on Pd (111), and a microkinetic model was developed to 

estimate the KIE for the low hydrogen partial pressure case from first principles. The 

computed result (kH/kD = 1.49) is in good agreement with the experiment. In addition, the 

product distribution showed to be C2H6 and CO suggesting decarbonylation (DCN) is the 

main reaction pathway. This provides strong evidence for the proposed mechanism for 

the formation of C2H6 on Pd(111) and supported Pd with a high percentage of that 

exposed crystal face presented in the nanoparticles. 
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5.1 INTRODUCTION 

 
 An extensive amount of research has explored the catalytic performance for the 

hydrodeoxygenation (HDO) of biomass-derived carboxylic acids and acid esters[163, 

164]. Supported palladium is one of the most investigated catalysts in the area of catalytic 

hydrodeoxygenation of biomass derived platform molecules[165-176].  For instance, 

early studies showed that supported palladium offers a strong activity and selectivity for 

the HDO of PAc[177-181]. While kinetic studies reveal overall reaction rates, reaction 

orders, and apparent activation barriers, they do not provide enough information for 

determining the fundamental elementary steps involved in the reaction mechanism[182, 

183]. For HDO reactions, the network of these underlying steps is complex and not yet 

fully understood. 

 In our previous DFT studies,[119, 158, 184] the HDO of PAc was investigated 

over Pd (111) model surfaces. The elementary reaction steps involved in the 

decarbonylation (DCN) and decarboxylation (DCX) were identified from first principles. 

A microkinetic model was developed to determine the dominant pathway and rate-

controlling steps under realistic reaction conditions of 200 ºC and low, medium, and high 

partial pressures of hydrogen (0.001, 1 and 30 bar) in the presence and absence of 

solvents. Our results suggest that under gas phase reaction conditions, DCN is favored 

over the DCX, while in the presence of water, DCN and DCX mechanisms become 

essentially competitive.[184]  This is in agreement with our experimental study of the 

gas-phase HDO of PAc over supported group VIII noble metals, where we found that on 

various metals the DCN pathway dominates.[159] 
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 Additionally, computations found that in all reaction environments, and at a low 

hydrogen partial pressure, dehydrogenation of the α-carbon in PAc is the most rate-

controlling step. With increasing hydrogen partial pressure, C-OH bond dissociation 

becomes most rate-controlling and the importance of C-H bond cleavage is 

diminished.[184] The dissociation of the C-OH bond is one of the key reactions in the 

DCN and was previously also identified as the rate-determining step for the HDO of 

acetic acid.[82, 150] Our studies, however, clearly suggest that at all conditions, 

dehydrogenation steps of the α-carbon of the acid have at least some importance for the 

HDO to hydrocarbons. Barteau et al. and Zhong et al. have also examined the 

deoxygenation of carboxylic acids over Pd[163, 185, 186]. They suggest that a 

carboxylate intermediate dehydrogenates, which is accompanied by C-O bond cleavage, 

resulting in CO and hydrocarbon formation by C-C bond cleavage. 

 The present study explores the deuterium kinetic isotope effect (KIE) [187-

192]
,
[193, 194] for the HDO of PAc in order to further confirm the importance of C-H 

bond cleavage in the reaction pathway. PAc substituted with deuterium at the α-carbon 

position (CH3CD2COOH) was deoxygenated over 5wt% Pd/C catalyst and its reaction 

rate compared with that obtained from unlabeled PAc (CH3CH2COOH). From these data, 

experimental rate constant ratio (kH/kD) was determined under various hydrogen partial 

pressures. Density functional theory (DFT) calculations were performed for labeled PAc 

and its intermediates on Pd (111) to obtain the reaction parameters of all the elementary 

steps involved. The DFT-derived parameters were then implemented in a microkinetic 

model that allowed prediction of kH/kD under the same conditions used for the 

experiments. The experimental and computational results are consistent with each other, 



113 

 

and confirm the importance of C-H bond cleavage in governing the rates of HDO of PAc 

on Pd. 

 

5.2 METHODS 

 

5.2.1 MATERIAL AND CATALYST CHARACTERIZATION 

 
 The experimental conditions have been previously reported in detail and thus will 

only be discussed briefly[178]. Propanoic Acid (CH3CH2COOH, 99%) and propanoic 

acid-2, 2-d2 (CH3CD2COOH, 98%) were purchased from Alfa Aesar and Cambridge 

Isotope Laboratories, respectively, and used without further purification. The gases for 

the reactor studies were H2 (UHP), He (UHP), and Ar (UHP) supplied by Airgas National 

Welders. The 5wt% Pd/C catalyst (CP-97, SABET = 615 m
2/

g) was supplied by BASF and 

reduced in-situ at 350ºC. The dispersion and particle size of 5wt% Pd/C was determined 

by pulsed hydrogen titration of oxygen pre-covered sites utilizing a Micromeritics 2920 

AutoChem II Analyzer.  

 

5.2.2 REACTION EVALUATION 
 

 The reaction rate experiments were performed in a single pass, packed bed, plug 

flow reactor system connected to a GC system [178]. The experiments were carried out 

under differential (<5%) conversion at 200ºC under atmospheric pressure.  Two sets of 

experiments were conducted: (1) 1.2% PAc/20%H2/balance He and (2) 1.2% 

PAc/5%H2/balance He in a total flow of 50 sccm. This catalyst under these reaction 

conditions has previously been shown to be free of both external and internal mass 

transfer effects [178]. The reaction rate was determined based on the formation of 
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product (which is proportional to the rate of acid disappearance) in μmol product 

formed/min·gcat. The TOF was determined based on the reaction rate per active site of 

the 5wt% Pd/C catalyst.  Unlabeled and labeled PAc were kept in separate vapor-liquid 

equilibrium (VLE) saturators and the concentrations of the both acids (e.g. labeled and 

unlabeled) in the gas feed were set equal prior to starting the reaction. Once the reaction 

with unlabeled PAc reached steady-state, the reactor feed was switched to the labeled 

PAc. This process was cycled until steady state reaction was attained for each species.  In 

this way, the KIE can be determined as the ratio between the unlabeled and labeled 

reaction rates (i.e., kH/kD). 

 Measurements of the isotopic composition of the products were conducted by 

mass spectroscopy. To ensure only the products were analyzed by MS, the PAc 

(unreacted) was condensed in a cold trap (-55ºC). This was verified by analyzing the gas 

effluent with gas chromatography to confirm only products such as C2H6 and CO were 

detected. The gas products were diluted with argon carrier gas before being sampled by a 

Stanford Research Systems RGA100 mass spectrometer with an electron multiplier. The 

detailed description of this apparatus and sampling procedure is included in the 

Supplemental Information. The masses 29, 30 and 31 were monitored to track various 

ethane species, while water, nitrogen, oxygen, hydrogen and argon were also monitored.  

For the MS study the PAc conversion was increased (~10%) by adjusting the catalyst 

loading (0.9g). 
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5.2.3 COMPUTATIONAL METHODOLOGY 
  

 All density functional theory calculations have been conducted with the Vienna 

Ab Initio Simulation Package (VASP).[106, 107, 195] The Kohn-Sham valence states are 

expanded in a plane wave basis sets with an energy cut-off of up to 400 eV. The 

interaction between core electrons is described with projector-augmented wave 

(PAW)[107, 109] method. The exchange correlation energy is calculated within the 

generalized gradient approximation (GGA) using the functional form proposed by 

Perdew and Wang, which is known as Perdew-Wang 91 (PW91).[88, 110, 111]  Similar 

pseudopotentials were used for hydrogen and deuterium atoms with only the mass 

modified for deuterium atoms. 

 The lattice constant obtained from the optimization of the fcc-Pd bulk is 3.953 Å, 

which is in reasonable agreement with the experimental value of 3.891 Å. The surface 

Brillouin zone is sampled with 4 4 2 Monkhorst-pack k-point grid. Pd (111) is 

modeled by a 4-layer slab with a (3 4) surface unit cell and the palladium layers 

separated by a 15 Å vacuum. 

 The bottom two layers were fixed to their bulk configuration during all 

calculations while the top two layers were free to relax in all directions. Adsorption 

energies of all intermediates were calculated at their most stable geometry by the 

following equation: 

                                     ( )                                         (5.1) 

where Eslab+adsorbate is the total energy of the adsorbed intermediate on the Pd slab, Eslab is 

the total energy of the Pd slab and Eadsorbate(g) is the total energy of the adsorbate in the 

gas phase. 

 


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 Transition states were obtained from our previous DFT studies[119, 158, 184] on 

PAc and finally, vibrational frequency calculations have been performed to obtain the 

frequency modes for all labeled intermediates and transition state structures.  

The zero-point energy correction for all the structures was taken into account by using the 

following equation: 

               ∑
 

                                                                    (5.2)                                      

where   is the Plank constant and is the vibrational frequency of mode i. 

 

5.2.4 MICROKINETIC MODELING 

 
 For surface reactions, the forward rate constant (kfor) of each reaction is calculated 

as: 

     
   

 

       

       
 

       

                      (5.3) 

where kB is the Boltzmann constant, T denotes the reaction temperature, h is the Planck 

constant, Ea_for stands for the zero-point-energy-corrected activation barrier for the 

forward reaction derived from DFT calculations, and qTS,vib and qIS,vib are the (harmonic) 

vibrational partition functions for the transition state and the initial state, respectively, 

i.e., qvib is calculated as: 

     ∏
 

   

    
   

                       (5.4) 

where νi is the vibrational frequency of each vibrational mode of the adsorbed 

intermediate derived from our DFT calculations. 

The reverse rate constant (krev) is calculated similarly and the thermodynamic equilibrium 

constant K is given by: 

h i
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                             (5.5) 

 For an adsorption reaction A(g)+*→A*, the equilibrium constant K is defined as: 

  
(    )  

(            ) ( )
 

      
                                (5.6) 

where (qvib)A* is the vibrational partition function of adsorbed A, and qvib, qrot, qtrans stand 

for vibrational, rotational, and translational partition functions, respectively. ΔEads 

represents the zero-point corrected adsorption energy, R is the ideal gas constant, and T 

denotes temperature. 

 For an adsorption reaction A(g)+*→A*, the forward rate is given by collision 

theory with a sticking probability of 1. 

     
 

  √       
                                  (5.7) 

where N0 is the number of sites per area (1.478×10
19

 m
-2

) and mA denotes the molecular 

weight of A. 

 The reverse rate constant is again given as: 

     
    

 
                                          (5.8) 

 With the forward and reverse rate constants defined, we solve the full set of 

steady-state rate equations to obtain the surface coverage of all possible reaction 

intermediates and the fraction of free sites using the BzzMath library[115] developed by 

Buzzi-Ferraris.  No assumptions were made regarding rate-limiting steps. 
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5.3 RESULT 
 

5.3.1 KINETIC ISOTOPE EFFECT MEASUREMENTS 

 
 Figure 5.1A shows the results of the reaction rate over time during switching 

between unlabeled (CH3CH2COOH) and labeled (CH3CD2COOH) PAc at 200ºC and 1 

atm with a reactor feed of 1.2% PAc/20% H2/balance He. The reaction resulted in 

differential conversion (<5%) with a 100% selectivity toward C2H6, with CO indicating 

decarbonylation (DCN) as the major reaction pathway as described previously[178].  The 

reaction rates based on the products formed and TOF are summarized in Table 5.1. The 

labeled PAc reaction rate (1.39±0.05 μmol/min·gcat) was calculated from the average of 

measurements between 45 and 50 hr on stream, while the unlabeled PAc reaction rate 

(1.61±0.16 μmol/min·gcat) was calculated from the average of measurements between 37 

and 44 hrs on stream. Taking the ratio of these two values, the KIE effect was found to be 

kH/kD = 1.16 ±0.07. Given this small value, as a comparison, Figure 5.1B shows the 

measurement of acid feed concentration (labeled and unlabeled PAc) as a function of 

time during the same experiment. The feed concentration analysis were conducted every 

2 hours to verify there was no change. The variability from labeled to unlabeled feed 

composition is around 3.0% and a mass balance between 0.99-1.01 is obtained. Given 

that the reaction order with respect to PAc is ~0.5 order under these conditions [178], 

such variability does not account for the observed rate difference. Nevertheless, this small 

ratio of kH/kD = 1.16 ±0.07, indicates that the isotopic substitution at the α-carbon 

position had little effect under these conditions. 

 In our previous DFT study, we performed a sensitivity analysis on HDO of 

propionic acid over Pd (111) model surfaces, [184]. Our model suggested that by 
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lowering the partial pressures of hydrogen, the influence of the dehydrogenation of α-

carbon on the overall TOF will increase. To further explore the KIE effect and trend in its 

relationship with partial pressure of hydrogen, steady-state measurements at 200ºC and 1 

atm total pressure were conducted at lower hydrogen partial pressure. Figure 5.2A shows 

reaction rate data as a function of time during switching between unlabeled and labeled 

PAc using a feed consisting of 1.2% PAc/5% H2/balance He, The labeled PAc reaction 

rate (0.80±0.09 μmol/min·gcat) was calculated from the average of measurements 

between 16 and 19 hr on stream, while the unlabeled PAc reaction rate (1.28±0.15 

μmol/min·gcat) was calculated from the average of measurements between 19.5 and 22 

hrs on stream. A kH/kD ratio of 1.62 ±0.05 is obtained, suggesting that a significant KIE is 

present at this lower partial pressure of hydrogen. Once again, Figure 5.2B shows the 

measurement of acid feed concentration as a function of time during the same experiment 

revealing negligible variation. The significant KIE therefore indicates that the rate 

controlling step involves dehydrogenation of the α-carbon (i.e., C-H bond breaking). 

Indeed, a lower partial pressure of hydrogen should allow for the dehydrogenation of the 

α-carbon to occur to a greater extent, accounting for the increased KIE. 

 

5.3.2 KINETIC ISOTOPE EFFECT CALCULATIONS 
 

 The positive experimental KIE values obtained above point to the kinetic 

importance of α-carbon dehydrogenation in the HDO of PAc. According to our previous 

DFT studies[158, 184], we know that the dehydrogenation of the α-carbon is not the only 

rate-controlling step under the investigated reaction conditions of 200ºC and partial 

pressures of 0.01 bar of acid and 0.05 bar of H2. Indeed, the observation that the kH/kD 
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ratio varies under different reaction conditions appears to be similar to the changes in the 

computed degree of rate control[196] of the α-carbon dehydrogenation. Thus, the 

interpretation of the observed KIE is not straightforward. To initially obtain a meaningful 

range for the KIE in our system, two limiting theoretical cases were considered.  In 

Section 5.3.2.1, an upper limit for the KIE is predicted for the case where α-carbon 

dehydrogenation is the only rate-controlling step. Next, in Section 5.3.2.2, it is shown 

that the kH/kD ratio is expected to be approximately 1 when C-H bond dissociation is not 

rate controlling.  While labeling PAc could in principle affect other rate-controlling steps 

through a so-called secondary kinetic isotope effect, this is also shown to be negligible in 

this system for the limiting case of C-OH bond dissociation being the rate limiting step. 

Finally, Section 5.3.2.3 presents a detailed DFT and microkinetic modeling study to 

estimate the KIE under reaction conditions for a Pd (111) surface from first principles. 

 

5.3.2.1 UPPER LIMIT FOR PRIMARY KINETIC ISOTOPE EFFECT 
 

 Assuming that the dehydrogenation of the α-carbon is the only rate controlling 

step in the HDO of PAc, the ratio of the turn over frequencies of CH3CH2COOH and 

CH3CD2COOH can be approximated using transition state theory[114, 197, 198] as: 
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 (        )
   

  
  

    
  (

  
  

  )
     (5.9) 

where Ea is the activation barrier, ∆ZPEH is the zero-point energy correction to the 

activation barrier for the unlabeled PAc, ∆ZPED is the zero-point energy correction to the 

activation barrier for the labeled PAc, kB is the Boltzmann constant, T denotes the 
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temperature, h is the Planck constant, and νH and νD are the Cα -H and Cα-D vibrational 

frequencies, respectively, in PAc. 

The maximum C-H frequency observed in carboxylic acids[199] is 3000 cm
-1

. In 

addition,  
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      (5.10) 

where µD and µH are the reduced masses for CH3CDCOOH--D and CH3CHCOOH—H, 

respectively, and mH, mD, mCH3CHCOOH, mCH3CDCOOH are the molecular masses in g mol
-1

 

of H (1), D (2), CH3CHCOOH (73), and CH3CDCOOH (74), respectively. Combining 

equations (5.10) with equation (5.9) then yields the the maximum KIE = 
             

             
  

is calculated to be 3.73. This value is considerably (by over a factor of two) than that 

observed experimentally, suggesting that α-carbon dehydrogenation is not the only rate 

controlling step. 

 

5.3.2.2 SECONDARY KINETIC ISOTOPE EFFECT 
 

 To estimate the maximum secondary KIE effect for labeled PAc assuming C-OH 

bond dissociation, we use Equation 5.9 with a C-OH bond frequency of 1360 cm
-1

 (which 

is the largest frequency observed in experimental studies[199] for carboxylic acids which 

ranges from 1000 to 1360 cm
-1

). Next, the ratio of νD over νH can be approximated as: 

 

  
 

 

   
   

 

         
            

 

  
 

 

   
   

 

         
     (5.11)  

where mOH, mCH3CH2CO, mCH3CD2CO are the molecular masses of OH, CH3CH2CO, and 

CH3CD2CO which are 17, 57 and 59 g/mol, respectively.  As a result, the KIE for the 

secondary kinetic isotope effect is calculated to be 1.01 which is negligible. 
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5.3.2.3 DFT AND MICROKINETIC MODELING STUDY 
 

 Our previous[119, 158, 184] study analyzed the elementary reaction steps 

involved in the DCN and DCX of PAc on Pd (111) from first principles. To 

computationally investigate the activity of labeled PAc, the adsorption and TS geometries 

obtained previously for unlabeled PAc [119, 158, 184] were used. DFT frequency 

calculations were performed for all intermediates involved in the HDO of labeled PAc to 

obtain the frequencies of the labeled intermediates needed to compute the zero-point 

energy corrections and vibrational partition functions of the labeled species. The 

calculated free energies of reaction (∆Grxn) and free energies of activation (G
‡
) for all the 

labeled elementary reactions, as well as the reaction parameters for the corresponding 

unlabeled reactions, are listed in Table 5.2. 

 Previously, it was found[158, 184] that the dehydrogenation of the α-carbon of 

PAc (CH3CH2COOH* + 2*→ CH3CHCOOH** + H*) is one of the rate-controlling 

steps. At 200ºC, this step has a free energy of reaction, ∆Grxn, of -0.02 eV and a free 

energy of activation of 0.70 eV. The correspondent labeled reaction, i.e., the de-

deuteriation of the α-carbon of labeled PAc (Reaction 2: CH3CD2COOH* + 2*→ 

CH3CHCOOH** + D*), has a free energy of reaction, ∆Grxn, of -0.01 eV and a free 

energy of activation of 0.77 eV indicating that the overall turnover frequency (TOF) of 

labeled PAc will be slightly slower than that of unlabeled PAc as the barrier of this step 

was increased by nearly 0.1 eV. 

 To investigate the overall effects of changes in the reaction parameters on the 

TOFs, previously[157, 158, 200] developed microkinetic models for the HDO of PAc 

over Pd (111) were applied to labeled and unlabeled PAc under the reaction conditions 
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identical to the above experimental study (Section 5.3.1). Accordingly, simulations were 

carried out at 200ºC and partial pressures of H2 and PAc of 0.05 (5% H2) and 0.01 (1% 

PAc) bar, respectively. The partial pressures of H2O, CO2 and CO were set to 10
-3

; 

however, the analysis shows that the microkinetic modeling result is insensitive to the 

partial pressures of these intermediates in the range of 10
-4

 to 10
-2

 bar.  In doing so, the 

partial pressures of these products are fixed, which is necessary since the model does not 

contain a reaction network for the water-gas shift reaction. Finally, the primary kinetic 

isotope effect, KIE = 
             

             
  was calculated to be 1.49 under the experimental 

reaction conditions. This value is in very good agreement with our experimental result of 

1.62 under the same reaction conditions. Table 5.3 summarizes and compare the KIE 

obtained based on the computational, calculated and experimental approach. 

 

5.3.3 EXTENT OF DEHYDROGENATION  

 

 Given the confirmation of α-carbon dehydrogenation as an important rate 

controlling step, the extent of this step under actual reaction conditions was further 

probed experimentally. Mass spectrometric analysis was performed on the reaction 

products formed for the HDO of labeled and unlabeled PAc, since GC cannot distinguish 

between various deuterium-labeled ethane products. Masses corresponding to CH3CH3 

(m/e = 30), CH3CDH2 (m/e = 31), and CH3CD2H (m/e = 32) were considered. If one C-D 

bond is broken at the rate-determining step, the product CH3CDH2 should be detected. 

Similarly, if two C-D bonds are broken at the rate-determining step, the product CH3CH3 

is detected. Lastly, if there is no C-D bond broken at the rate determining step, the 
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product CH3CD2H is detected. The latter, however, was not able to be detected since it 

overlapped with a background of signal at m/e = 32 arising from oxygen in the MS 

chamber. Nevertheless, it is highly unlikely that this species was formed, given that it 

requires C-C bond breaking to occur to form a CH3CD2 fragment before H addition, 

which is not favorable. According to our DFT calculations (Table 5.2), the C-C bond 

dissociation in deuterated propanoyl (Reaction 3: CH3CD2CO*** → CH3CD2* + CO* + 

*) has the activation barrier of 0.99 eV, while the activation barrier of C-C bond 

dissociation in Reaction 14 (CH3CCO***→ CH3C* + CO* + *) was lowered to 0.47 eV. 

This suggests that propionic acid or propanoyl most likely go through dehydrogenation 

steps prior to C-C bond dissociations. In this context, if CH3CD2 would be a dominant 

product, no KIE would be observed; however, we observe a clear primary KIE. It is 

assumed that there is no H-D exchange between H2 and CH3CD2COOH in the 

chemisorbed state. 

 Analysis of the mass spectrum recorded for the HDO of labeled PAc shows that 

both CH3CDH2 and CH3CH3 are produced. As can be seen from Table 5.3, the 

CH3CDH2:CH3CH3 ratio is 1:2. Thus, C-C bond rupture in CH3-CH2-COOH is favored 

by a factor of two after both hydrogens of the α-C-H have been broken. These results also 

strongly support the idea that C-H bond-breaking occurs before C-C rupture.  

 

5.4 CONCLUSIONS 
 

 Kinetic isotope effects in the HDO of deuterated PAc over Pd catalyst were 

examined with both experimental and computational approaches. Excellent agreement 

was found between the KIE found experimentally over Pd/C (kH/kD = 1.62) versus that 
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estimated by DFT calculations coupled with microkinetic models for Pd(111) (kH/kD = 

1.49). The results confirm that the dehydrogenation of the α-carbon in PAc is one of the 

rate-controlling steps, especially under lower partial pressures of hydrogen. In addition, 

measurements of product distribution suggest that the reaction proceeds through the 

decarbonylation pathway, and that the associated C-C rupture is most favorable if both of 

the α-C-H bonds are broken. These results reaffirm the advantage of isotope labeling 

experiments for elucidation of kinetically important steps in catalytic reactions.  In 

particular, the coupling of experiments with modern computational modeling allows for a 

more detailed and deeper analysis than was previously possible. Further research will 

focus on similar types of combined studies to elucidate the reaction mechanism of HDO, 

as well as other reactions important to catalytic biomass conversion. 
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5.6 TABLES 

 
Table 5.1  Deuterium isotope effect for PAc HDO over 5wt% Pd/C, 16.9%, 6.8nm. Reaction conditions: 200ºC and 1 atm, 

Total flow: 50 sccm. <5% conversion, 100% selectivity C2H6. 
a
 Rxn rate - μmol/min·gcat.  

Rxn 1- CH3CH2COOH/H2, Rxn 2= CH3CD2COOH/H2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 XH2/bal. He: 

20% H2/balance He 5% H2/balance He 

Rxn 

Feed conc. 

(%PAc) 

Rxn rate
a
  

TOF 

(min
-1

) 

kH/kD 

Exp. 

Feed conc. 

(%PAc) 

Rxn rate
a
  

TOF 

(min
-1

) 

kH/kD 

Exp. 

1 1.19±0.02 1.61±0.16 0.020±0.002 

1.16±0.07 

1.22±0.02 1.28±0.15 0.016±0.002 

1.62±0.05 

2 1.16±0.03 1.39±0.05 0.018±0.002 1.23±0.01 0.80±0.09 0.010±0.001 

1
2
6
 



 

   

Table 5.2 Reaction free energies (eV), equilibrium and forward rate constants for all elementary reaction steps in the 

hydrodeoxygenation of labeled PAc over Pd (111) model surfaces at a temperature of 200ºC.  For comparison reaction free 

energies and free energies of activation are also shown for unlabeled PAc.  

Note: * symbolizes a free site. 

 

 

# Reaction 
Labeled PAc 

Unlabeled 

PAc 

Labeled 

PAc 

Labeled 

PAc 

∆Grxn    G
‡ 

∆Grxn    G
‡          

 Keq kforward (s
-1

) 

1 CH3CD2COOH* + 3*→ CH3CD2CO*** + OH* 0.45 0.95 0.45 0.97 1.78×10
-5

 7.30×10
2
 

2 CH3CD2COOH* + 2*→ CH3CHCOOH** + D* -0.01 0.77 -0.02 0.70 1.25 6.95×10
4
 

3 CH3CD2CO*** → CH3CD2* + CO* + * -0.68 0.99 -0.68 1.02 1.85×10
7
 2.58×10

2
 

4 CH3CD2CO*** → CH3CDCO** + D* 0.07 0.89 0.04 0.84 1.99×10
-1

 3.63×10
3
 

5 CH3CDCOOH** + *→ CH3CDCO** + OH* 0.23 0.88 0.23 0.87 2.83×10
-6

 3.89×10
3
 

6 CH3CDCOOH** + 2*→ CH2CDCOOH*** + H* -0.35 0.57 -0.36 0.57 5.64×10
3
 7.61×10

6
 

7 CH3CDCOOH** + 2*→ CH3CCOOH*** + D* 0.01 1.21 -0.03 1.16 7.88×10
-1

 1.20 

8 CH3CDCO** + * → CH3CD** + CO* -0.83 0.99 -0.84 0.98 7.64×10
8
 2.81×10

2
 

9 CH3CDCO** + 2*→ CH3CCO*** + D* -0.34 0.61 -0.37 0.57 3.73×10
3
 2.90×10

6
 

10 CH3CDCO** + 2*→ CH2CDCO*** + H* -0.26 0.58 -0.27 0.58 6.57×10
2
 6.69×10

6
 

11 CH2CDCOOH*** + *→ CH2CDCO*** + OH* 0.61 1.22 0.61 1.22 3.30×10
-7

 9.51×10
-1

 

12 CH2CDCOOH*** + *→ CHCDCOOH*** + H* 0.06 0.91 0.06 0.91 2.17×10
-1

 1.98×10
3
 

13 CH3CCOOH*** + *→ CH3CCO*** + OH* 0.18 0.82 N/A N/A 1.34×10
-2

 1.75×10
4
 

14 CH3CCO***→ CH3C* + CO* + * -1.39 0.47 N/A N/A 5.76×10
14

 1.01×10
8
 

15 CH2CDCO*** + *→ CH2CD*** + CO* -0.79 0.84 -0.76 0.87 2.52×10
8
 1.03×10

4
 

16 CH2CDCO*** + 2*→ CHCDCO**** + H* 0.01 0.68 0.00 0.68 8.79×10
-1

 5.10×10
5
 

17 CHCDCOOH*** + 2*→ CHCDCO**** + OH* 0.55 1.10 0.55 1.09 1.34×10
-6

 2.03×10
1
 

18 CHCDCO**** → CHCD*** + CO* -1.11 0.59 -1.11 0.57 7.16×10
11

 4.93×10
6
 

19 CHCH*** + H*→ CH2CH*** + * 0.32 0.93 N/A N/A 4.27×10
-4

 1.34×10
3
 

20 CH2CH*** + H* → CH2CH2** + 2* -0.11 0.86 N/A N/A 1.40×10
1
 7.10×10

3
 

21 CH2CH***→ CH2C** + H* -0.42 0.45 N/A N/A 3.07×10
4
 1.73×10

8
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22 CH2C** + H*→ CH3C* + 2* -0.27 0.87 N/A N/A 8.27×10
2
 5.44×10

3
 

23 CH2CH*** + H* → CH3CH** + 2* 0.22 0.78 N/A N/A 4.27×10
-3

 4.81×10
4
 

24 CH3C* + H* → CH3CH** 0.92 1.11 N/A N/A 1.68×10
-10

 1.59×10
1
 

25 CH3CH** + H* → CH3CH2* + 2* 0.12 0.85 N/A N/A 5.45×10
-2

 8.85×10
3
 

26 CH3CH2* + H* → CH3CH3* + * -0.03 0.64 N/A N/A 2.20 1.64×10
6
 

27 CH3CH2* + 2* → CH2CH2** + H*  -0.44 0.45 N/A N/A 4.87×10
4
 1.72×10

8
 

28 CH3CD2COOH* + 2* → CH3CD2COO** + H* -0.35 0.35 -0.34 0.43 5.10×10
3
 1.68×10

9
 

29 CH3CD2COO** → CH3CD2* + CO2* 0.17 1.41 0.16 1.37 1.62×10
-2

 9.46×10
-3

 

30 CH3CD2COO** + 2* → CH3CDCOO*** + D* 0.47 1.33 0.44 1.28 9.30×10
-6

 6.79×10
-2

 

31 CH3CDCOOH** + * → CH3CDCOO** + H* 0.13 0.85 0.12 0.84 3.79×10
-2

 8.74×10
3
 

32 CH3CDCOOH** + * → CH3CD ** + COOH* 0.31 1.40 0.40 1.38 4.64×10
-4

 1.26×10
-2

 

33 CH3CDCOO*** → CH3CD** + CO2* -0.39 0.89 -0.39 0.92 1.43×10
4
 3.16×10

3
 

34 CH3CDCOO*** + * → CH3CCOO*** + D* -0.05 0.89 -0.09 0.85 3.84 2.99×10
3
 

35 CH3CCOOH*** + * → CH3CCOO*** + H* 0.07 1.01 N/A N/A 1.85×10
-1

 1.55×10
2
 

36 CH3CCOOH*** → CH3C* + COOH** -0.58 0.98 N/A N/A 1.65×10
6
 3.29×10

2
 

37 CH2CDCOOH*** + * → CH2CD*** + COOH* 0.45 1.79 0.75 2.10 1.78×10
-5

 9.12×10
-7

 

38 CH3CCOO*** → CH3C* + CO2* + * -1.13 0.64 N/A N/A 1.15×10
12

 1.65×10
6
 

39 COOH** → CO2* + H* -0.57 0.37 N/A N/A 1.09×10
6
 1.07×10

9
 

40 COOH** → CO* + OH* -0.63 0.39 N/A N/A 4.66×10
6
 6.64×10

8
 

41 OH* + H* → H2O* + * -0.28 0.66 N/A N/A 1.06×10
3
 9.00×10

5
 

42 CH3CD** + H* → CH3CDH* + 2* 0.12 0.84 0.12 0.85 5.64×10
-2

 1.05×10
4
 

43 CH3CDH* + H* → CH3CDH2* + * -0.03 0.63 -0.03 0.64 2.35 1.79×10
6
 

44 CH2CD*** + H* → CH2CDH** + 2* -0.10 0.86 -0.11 0.86 1.15×10
1
 7.46×10

3
 

45 CH2CD*** + H* → CH3CD** + 2* 0.22 0.78 0.22 0.78 4.62×10
-3

 4.71×10
4
 

46 CH3CDH* + 2* → CH2CDH** + H* -0.44 0.45 -0.44 0.45 4.40×10
4
 1.49×10

8
 

47 CH2CDH2* + 2* → CH2CDH** + H* -0.43 0.46 -0.44 0.45 4.05×10
4
 1.25×10

8
 

48 CH2CDH2* + H* → CH3CDH2* + * -0.03 0.64 -0.03 0.64 2.16 1.80×10
6
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49 CHCD*** + H*→ CH2CD*** + * 0.32 0.93 0.32 0.93 4.00×10
-4

 1.35×10
3
 

50 CHCD*** + H*→ CHCDH*** + * 0.32 0.93 0.32 0.93 4.25×10
-4

 1.29×10
3
 

51 CHCDH*** + H* → CHCDH2** + 2* 0.22 0.78 0.22 0.78 4.89×10
-3

 4.84×10
4
 

52 CHCDH2** + H* → CH2CDH2* + 2* 0.12 0.85 0.12 0.85 5.46×10
-2

 9.14×10
3
 

53 CH3CD2* + H* → CH3CD2H* + * -0.03 0.63 -0.03 0.64 2.29 1.88×10
6
 

54 CH3CD2* + 2*  → CH3CD** + D* -0.09 0.77 -0.12 0.73 8.20 6.22×10
4
 

55 CH3CD2H* + * → CH3CDH* + D* 0.07 0.72 0.03 0.67 2.02×10
-1

 2.33×10
5
 

56 CH2CD2** + 2*  →  CH2CD*** + D* 0.99 0.13 0.11 0.97 3.96×10
-2

 2.56×10
2
 

57 CH2CD***→ CH2C** + D* -0.39 0.49 -0.42 0.45 1.57×10
4
 5.71×10

7
 

58 CH3CD** → CH3C* + D*  -0.89 0.19 -0.92 0.19 2.81×10
9
 8.73×10

10
 

59 CH3CD2COOH+*→CH3CD2COOH* 0.76 N/A 0.74 N/A 8.85×10
-9

 9.40×10
7
 

60 CH3CH3 + * →  CH3CH3* 0.63 N/A N/A N/A 2.09×10
-7

 1.50×10
8
 

61 CH2CH2 + 2* →  CH2CH2** -0.08 N/A N/A N/A 7.74 1.55×10
8
 

62 H2O + *  → H2O* 0.41 N/A N/A N/A 4.14 1.93×10
8
 

63 CO2 + *  → CO2* 0.74 N/A N/A N/A 1.33×10
-8

 1.24×10
8
 

64 CO* → CO + * -1.19 N/A N/A N/A 828.13 1.55×10
8
 

65 H2 + 2* → 2H* -0.58 N/A N/A N/A 6.04 5.80×10
8
 

66 CH3CDH2 + * →  CH3CDH2* -0.63 N/A 0.63 N/A 2.19×10
-7

 1.47×10
8
 

67 CH3CD2H + * →  CH3CD2H* -0.63 N/A 0.63 N/A 1.76×10
-7

 1.45×10
8
 

68 CH2CDH + 2* →  CH2CDH** -0.08 N/A -0.08 N/A 6.81 1.52×10
8
 

69 CH2CD2 + 2* →  CH2CD2** -0.08 N/A -0.08 N/A 6.90 1.50×10
8
 

70 CHCD + * → CHCD* -1.15 N/A -1.16 N/A 1.87×10
12

 1.58×10
8
 

71 HD + 2* → H* + D* -0.57 N/A -0.58 N/A 1.24×10
6
 4.73×10

8
 

1
2
9
 



 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gas phase comp. 

1.2% PAc/5% H2/balance He 

 kH/kD 

Experimental 
 kH/kD 

Theoretical(comp.) 

 kH/kD 

Calculated* 

1.62 1.49 3.73 

Table 5.3  Comparison of KIE values based on experimental, calculated and theoretical approach.  

* based on the Upper Limit for the Primary Kinetic Isotope Effect calculations.  
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Figure 5.1 A) Reaction rate measurements as a function of time on stream for HDO during 

switching between unlabeled (C-H) and labeled (C-D) PAc.  B) Feed analysis as a function of 

time on stream during the same experiment. Reaction conditions: 200ºC, 1 atm, ~1.2% PAc, 

20% H2, balance He. 
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Figure 5.2 A) Reaction rate measurements as a function of time on stream for HDO during switching between unlabeled (C-H) 

and labeled (C-D) PAc.  B) Feed analysis as a function of time on stream during the same experiment. Reaction conditions: 

200ºC, 1 atm, ~1.2% PAc, 5% H2, balance He. 
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Figure 5.3 Network of elementary reaction steps considered in the 

hydrodeoxygenation of PAc over Pd (111). Elementary reactions involved in the 

DCX mechanism are shown with blue color arrows, DCN reactions are illustrated 

with red color arrows, and those reactions involved in both mechanisms such as 

dehydrogenation reactions and removal of the hydrocarbon pool are shown with gray 

color arrows. 
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CHAPTER 6 

 

EFFECTS OF SURFACE STRUCTURE ON HYDRODEOXYGENATION OF PROPANOIC 

ACID OVER PALLADIUM CATALYSTS
1
 

 

 

 

 

 

 

  

 

 

                                                 
1
 S. Behtash, J. Lu, J. R. Monnier, C. T. Williams , and A. Heyden.  

To be submittedto Journal of Physical Chemistry C. 
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ABSTRACT 

 
  The effect of palladium surface structure on the hydrodeoxygenation of 

propionic acid has been investigated by studying the mechanism over Pd(111) and 

Pd(211) model surfaces. We developed a microkinetic model based on parameters 

obtained from density functional theory and harmonic transition state theory and studied 

the reaction mechanism at a characteristic experimental reaction temperature of 473 K. 

The activity of active sites on flat surface models was found to be 3-8 times higher than 

the activity of stepped surface models, suggesting that the hydrodeoxygenation of 

propionic acid over a palladium catalyst is not very sensitive to surface structure.  Very 

good agreement between computations and experiments could be obtained for our 

Pd(111) model if we include dispersion interactions between the gas species and the 

metal surface approximately by using the PBE-D3 functional for adsorption/desorption 

processes.  Our model calculations predict that on both stepped and flat surfaces, the 

dominant deoxygenation mechanism proceeds by a decarbonylation pathway; however, 

on stepped surface models decarboxylation and decarbonylation are essentially 

competitive.  A sensitivity analysis of our models suggests that C-OH and C-H bond 

cleavages control the overall rate over both Pd(111) and (211) catalyst surface models.  

In addition, on Pd(211) the C-C bond dissociation of propionate to CH3CH2 and CO2―a 

key step in the decarboxylation mechanism―is also partially rate controlling.   

 

KEYWORDS: 

 
Surface structure; organic acids; palladium; density functional theory; step; terrace; 

decarbonylation; decarboxylation; microkinetic modeling 
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6.1 INTRODUCTION 

 
 The energy demand continues to increase due to the world’s development, leading 

to an overexploitation of fossil fuels.[151, 201] Rising concerns over dwindling fossil 

fuel resources and realization of the environmental impact of fossil fuel utilization have 

drawn substantial attention to the conversion of biomass to biofuels as an alternative 

process for meeting the world’s growing energy and liquid fuels demand.  

Lipids are one promising biomass feedstock for production of biofuels that are identical 

to gasoline and diesel, and are therefore often called green diesel or green gasoline.[22] 

Practical lipids for fuel production consist of oxygenates such as triglycerides, organic 

esters and fatty acids. To convert these lipids into hydrocarbon fuels identical to fossil-

derived transportation fuels, at least some of the oxygen atoms have to be removed from 

the feedstock molecules. Significant research efforts have been invested to convert 

vegetable oils into liquid hydrocarbons using a hydrodeoxygenation (HDO) process with 

conventional hydrotreating catalysts such as sulfided NiMo/Al2O3 and CoMo/Al2O3.[47, 

54, 59]  However, these hydrotreating catalysts increase the sulfur content in the final 

products. Also, the catalyst life-time is relatively short and problems in separating carbon 

oxides from the recycle gas have been reported.[54, 59] Consequently, there is an 

apparent need for new catalysts for the HDO of triglycerides, organic esters and fatty 

acids. 

 To design a metal catalyst for the HDO of organic acids and esters, it is necessary 

to first obtain a fundamental understanding of the reaction mechanism for the HDO of 

organic acids and esters on the catalyst surface.  In our previous studies,[119, 158, 184, 

202] we investigated the HDO of organic acids and esters over Pd(111) model surfaces 
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from first principles and obtained results that agreed qualitatively with experimental 

observations.[159, 203]  Our model reactant for organic acids has been propionic acid 

that we found to possess a long enough hydrocarbon chain to obtain results that can likely 

be extrapolated to longer chain hydrocarbons.  We found two major mechanisms for the 

HDO which are the decarbonylation (DCN) and the decarboxylation (DCX) pathways. 

Our results suggested that under gas phase reaction conditions DCN is favored over the 

DCX, while in the presence of water both DCN and DCX mechanisms are 

competitive.[184] In all reaction environments and at a low hydrogen partial pressure, a 

dehydrogenation of the α-carbon in propanoic acid is the most rate controlling step. With 

increasing hydrogen partial pressure, the C-OH bond dissociation becomes most rate 

controlling and the importance of C-H bond cleavages is reduced.[184]  

 While our previous studies[119, 158, 184] on the HDO of propionic acid on flat 

surface models agreed qualitatively with experimental observations, computed turnover 

frequencies have been low and predicted acid reaction orders have been too high.  

Considering furthermore that there is some consensus in the literature[15, 162, 204-209] 

that step surfaces are more active than flat surfaces, we decided to investigate the effect 

of Pd surface structure on the HDO activity of Pd catalysts and to test if better agreement 

between experiment and theory can be achieved.  According to the d-band theory,[210] 

the binding energy of adsorbates can be correlated to the d-band center of the metal 

catalysts.  The closer the d-band center to the Fermi level, the stronger the chemisorption 

and (following transition state scaling relations[211]) the lower the elementary activation 

barrier.  Since the d-band center of the more open Pd(211) surface is closer to the Fermi 

level than its flat surface, active sites on steps and kinks are expected to possess a higher 
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activity.[212]  However, while many elementary steps might possess a lower activation 

barrier on Pd(211) than on Pd(111), a ―too active‖ surface is poisoned in which case the 

removal of the reaction products is the rate controlling step.  For example, for NO 

dissociation and acetylene hydrogenation on Pd catalysts, steam reforming and graphite 

formation on Ni, ammonia synthesis and decomposition on Ru catalysts, stepped surface 

sites have been identified to be the most active sites,[15, 162, 204-209] while for methane 

dissociation on Ni, synthesis of H2O2 from H2 and O2 over Pd catalysts, flat, closed-

packed surface sites have been reported[213-215] to be more active.   

 Considering the difficulty in predicting the active sites in heterogeneous catalysis, 

it is often necessary to study various active site models.  It is the objective of this paper to 

investigate the effect of stepped, low-coordinated Pd sites on the activity and reaction 

mechanism of the HDO of propionic acid.  In particular, we present a detailed density 

functional theory (DFT) and microkinetic modeling study of the HDO of propanoic acid 

over a Pd (211) surface model that has previously been found to be an active surface for a 

number of catalytic reactions such as, NO dissociation, and ethylene decomposition.[162, 

205, 206, 209]   

 

6.2 METHODS 

 

6.2.1 DFT CALCULATIONS 

 
 All density functional theory calculations have been conducted using the Vienna 

Ab Initio Simulation Package (VASP).[106, 107, 195] The Kohn-Sham valence states are 

expanded in a plane wave basis sets with an energy cut-off of 400 eV.  The interaction 

between core electrons is described with the projector-augmented wave (PAW)[107, 109] 
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method.  The exchange correlation energy is calculated within the generalized gradient 

approximation (GGA) using the functional form proposed by Perdew and Wang which is 

known as Perdew-Wang 91 (PW91).[88, 110, 111] The lattice constant obtained from the 

optimization of the fcc-Pd bulk is 3.953 Å, which is in reasonable agreement with the 

experimental value of 3.891 Å.  The surface Brillouin zone is sampled with 351 

Monkhorst-pack k-point grid.  Pd(211) is modeled by an 8 atomic layer slab 

(corresponding to approximately four layers in closed packed (111) direction) with a (2

3) surface unit cell and a 15 Å vacuum gap between palladium layers.  The bottom four 

Pd layers were fixed to their bulk configuration during all calculations while the top four 

atomic layers were free to relax in all directions. We note that we did not consider Pd 

hydride formation since at the investigated reaction conditions of low hydrogen pressure 

of 0.2 bar and 473 K hydride formation is thermodynamically not favorable.  All self-

consistent field (SCF) calculations for geometry optimizations were converged to 1×10
-3

 

kJ/mol and for transition state identification the convergence criterion was set to be 1×10
-

5
 kJ/mol. Adsorption energies of all intermediates were calculated at their most stable 

geometry using the following equation: 

                                        gas)adsorbate(slabadsorbateslabads EEEE                          (6.1) 

where Eslab+adsorbate is the total energy of the adsorbed intermediate on the Pd slab, Eslab is 

the total energy of the Pd slab and Eadsorbate(gas) is the total energy of the adsorbate in the 

gas phase.  Transition states are located by a combination of the CI-NEB[112] and 

dimer[216-218] methods. Vibrational frequency calculations have been performed for all 

stable intermediates and transition state structures.  All energies reported in this paper 

have been zero-point corrected using the following equation: 
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

i

iZPE hE 
2

1

                   (6.2)                                      

where  h  is the Plank constant and i is the vibrational frequency of mode i. 

Frequencies below 100 cm
-1

 are shifted to 100 cm
-1

 during the partition function 

calculations to minimize errors associated with the harmonic approximation for small 

frequencies.[219] 

 

6.2.1  MICROKINETIC MODELING 
  

 For surface reactions, the forward rate constant (kfor) of each reaction is calculated 

as 

Tk

E

e
q

q

h

Tk
k B

a

vibIS,

vibTS,B
for



             (6.3) 

where kB is the Boltzmann constant, T denotes the reaction temperature, h is the Planck 

constant, Ea stands for the zero-point energy corrected activation barrier for the forward 

reaction derived from DFT calculations, and qTS,vib and qIS,vib are the (harmonic) 

vibrational partition functions for the transition state and the initial state, respectively.  

I.e., qvib is calculated as 

 




i Tk

hvi

e

q

B1

1
vib

                 (6.4) 

where νi is the vibrational frequency of each vibrational mode of the adsorbed 

intermediate derived from our DFT calculations.  The reverse rate constant (krev) is 

calculated similarly and the thermodynamic equilibrium constant K is given as 
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for

k
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K 

            (6.5) 

For an adsorption reaction A(g)+*⇌ A*, the equilibrium constant K is computed as 

Tk
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qqq
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



                                                                (6.6) 

where (qvib)A* is the vibrational partition function of adsorbed A, and qvib, qrot, qtrans stand 

for vibrational, rotational, and translational partition functions of the gas molecule A, 

respectively. ΔEads represents the zero-point corrected adsorption energy.  For an 

adsorption reaction, A(g)+*⇌ A*, the forward rate is given by collision theory with a 

sticking probability of 1. 

TkmN
k

BA2

1

0

for 

                                                         (6.7) 

where N0 is the number of sites per area (1.75×10
19

 m
-2

) and mA denotes the molecular 

weight of A.  The reverse rate constant is again given as 

K

k
k for

rev 
                                                          (6.8) 

All rate parameters computed from DFT are listed in Table 6.3. 

 With the forward and reverse rate constants defined, we solve the full set of 

steady-state rate equations at a given set of gas phase partial pressures to obtain the 

surface coverages of all possible reaction intermediates, the fraction of free sites, and the 

turnover frequency using the BzzMath library[115] developed by Buzzi-Ferraris.  No 

assumptions were made regarding rate-controlling steps. 
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6.3 RESULTS AND DISCUSSION 
 

 The reaction network investigated in this study is identical to the one from our 

previous study on the mechanism of the DCN and DCX of propanoic acid over Pd(111) 

model surfaces.[184] All elementary steps and intermediates involved in the DCN and 

DCX of propanoic acid are shown in Figure 6.1.  The adsorption energies, chemical 

formula, and binding modes of all intermediates are given in Table 6.1 for both the 

Pd(111) and (211) surfaces. We have employed the nomenclature ηiμj to designate that i 

atoms of the adsorbate are binding to j atoms of the metal surface. Also, a schematic of 

the adsorption and transition state configurations of all stationary points on the Pd(211) 

surface are shown in Figure 6.2 and 6.3, respectively.  Finally, DFT-derived reaction 

energies, activation barriers, transition state (TS) imaginary frequencies, and the length of 

the dissociating bond in the TS structure for the elementary reactions are listed in Table 

6.2 and 6.3.  

 

6.3.1 ADSORPTION ENERGIES 
 

 As expected, Table 6.1 shows that most intermediates adsorb stronger on Pd(211) 

than on Pd(111).  The only exceptions are H and CH3C whose adsorption energies 

decrease by 0.06 and 0.07 eV, respectively.  The maximum change in adsorption energies 

was obtained for OH whose adsorption strength increases by 0.53 eV on Pd (211). In the 

remainder of this section, the changes in adsorption energies are discussed for all classes 

of intermediates. 
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CH3CH2COOH AND ITS DEHYDROGENATED DERIVATIVES:  

 The reaction network of the HDO of propionic acid (Figure 6.1) consists of 

various dehydrogenated derivatives of CH3CH2COOH such as, CH3CHCOOH, 

CH2CHCOOH, CH3CCOOH, and CHCHCOOH.  These intermediates adsorb relatively 

strong on Pd(211). The binding energy of propionic acid increased by 0.37 eV on 

Pd(211) relative to the Pd(111) surface. CH3CHCOOH, CH2CHCOOH and CH3CCOOH 

are also more stable on Pd(211) by 0.46, 0.28, and 0.21 eV, respectively. 

 

CH3CH2COO AND ITS DEHYDROGENATED DERIVATIVES:  

 CH3CH2COO and its dehydrogenated derivatives, which are the products of 

CH3CH2COO—H bond dissociations, are key intermediates in the DCX mechanism. 

These intermediates go through C-C bond dissociations to form C2 hydrocarbon 

fragments and CO2 on the surface.  CH3CH2COO, CH3CHCOO, and CH3CCOO are 

stabilized on Pd(211) relative to Pd(111) by -0.51, -0.35, and -0.41 eV, respectively. 

 

CH3CH2CO AND ITS DEHYDROGENATED DERIVATIVES:  

 CH3CH2CO and its dehydrogenated derivatives are the products of CH3CH2CO—

OH bond dissociations and are key intermediates in the DCN mechanism prior to C-C 

bond cleavage to produce CO and C2 hydrocarbons.  Since these intermediates have one 

oxygen atom less than propionic acid their interaction with steps is smaller. In 

comparison to the Pd(111) surface they are on average only more stabilized by 0.24 eV 

on the Pd(211) surface. The least stabilized adsorbate was CH3CH2CO where its binding 
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energy on the Pd(211) surface is just 0.09 eV larger than on Pd(111). The most stabilized 

intermediate on step surfaces was CHCHCO were it adsorbs stronger by -0.38 eV. 

CH3CH3 AND ITS DEHYDROGENATED DERIVATIVES:  

 CH3CH3 and all other C2 hydrocarbon fragments are the products of C-C bond 

dissociations of propionic acid.  As expected these intermediates are less stabilized in 

comparison to the oxygenates.  On average these intermediates were stabilized by only 

0.20 eV with a maximum for CH2CH2 by 0.33 eV. According to the result of our 

previous study,[184] CH3C is one of the most abundant surface intermediates on Pd(111); 

however, CH3C was destabilized by 0.07 eV over the Pd(211) surface. Considering that 

all other C2 fragments where stabilized on average by 0.20 eV, we conclude that the 

HDO will likely proceed via other reaction intermediates on Pd(211) and the coverage of 

CH3C is smaller.  In Section 6.3.3, we will discuss the surface coverages of the most 

abundant surface intermediates.  

 

H, CO, OH, CO2, H2O, AND COOH: 

 H and CO have previously[184] been identified as the most abundant surface 

intermediates on the Pd(111) model surface.  Interestingly, H is destabilized on Pd(211) 

by 0.06 eV while CO is stabilized on Pd(211) by 0.05 eV relative to the (111) surface. 

These results are in agreement to Ye Xu et al.[220] who also found that H adsorbs 

slightly weaker on a step surface model.  In contrast, OH adsorbs significantly stronger 

on a Pd(211) surface and the binding energy of this intermediate is increased by 0.53 eV.  

This observation can likely explain why intermediates containing OH groups were 

stabilized significantly more than other intermediates.  Finally, H2O, CO2, and COOH (a 
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reaction product of the CH3CH2—COOH bond dissociation) were stabilized by 0.14, 0.20 

and 0.35 eV, respectively. 

 

6.3.2 REACTION RATE PARAMETERS 
 

 All elementary reactions investigated can be grouped into four different types of 

bond dissociations: C-C (e.g. CH3CH2COCH3CH2 + CO), C-OH (e.g. 

CH3CH2COOHCH3CHCO + OH), C-H (e.g. CH3CH2COOH  CH3CHCOOH + H), 

and O-H bond dissociations (e.g. CH3CH2COOHCH3CHCOO + H).  O-H bond 

dissociations are essential to the decarboxylation mechanism while C-OH bond 

dissociations are key reactions in the decarbonylation mechanism. According to our 

sensitivity analysis[184] for the Pd(111) surface, C-H bond cleavages also play an 

important role in the DCN mechanism and it is unlikely that propionic acid goes through 

a C-OH bond dissociation prior to dehydrogenation steps of the α-carbon.  Finally, C-C 

bond dissociations are important for both DCX and DCN mechanisms to produce C2 

hydrocarbon fragments from propionate (CH3CH2COO), propanoyl (CH3CH2CO), and 

their dehydrogenated derivatives.  Dependent on how these elementary reactions are 

surface structure sensitive will the (211) surface favor the DCN or DCX mechanism 

relative to the (111) surface.  

 

C-C BOND DISSOCIATIONS: 

 Elementary activation barriers and reaction energies can often not be considered 

independent reaction parameters, since at least on transition metal surfaces, linear 

relationships between activation and reaction energies can be found, i.e., Brønsted-Evans-
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Polanyi (BEP) relations.[161, 162]  BEP relations for C-C bond dissociations over 

Pd(211) and Pd(111) are shown in Figure 6.4a.  In the BEP plot, the activation barriers of 

C-C bond cleavages are plotted against their reaction energies. The calculated mean 

absolute errors (MAE) of the fitted lines for C-C bond dissociations on Pd(211) and 

Pd(111) are both 0.12 eV.  The BEP correlation parameters are similar for both surfaces, 

although the BEP line of the Pd(211) surface is located slightly below the Pd(111) line 

which suggests that Pd(211) is generally more active for C-C bond dissociations.  

Notable exception is reaction 18 (CHCHCO**** ⇌ CHCH*** + CO*) whose barrier is 

around 0.5 eV larger on Pd(211) than on Pd(111) (See Table 6.3). This observation can 

be explained by the fact that CHCHCO adsorbs significantly stronger (0.4 eV) on 

Pd(211) than on Pd(111), and accordingly the reaction energy of this step on Pd(211) is 

by 0.23 eV less exothermic than on Pd(111) (Table 6.3), and consequently a larger 

amount of energy is needed to break this C-C bond. 

Based on our previous microkinetic modeling study of the Pd(111) surface, the three 

dominant pathways are: 

Pathway1: 

CH3CH2COOHCH3CHCOOHCH2CHCOOHCH2CHCOCH2CH+CO 

CH3CH3+CO 

Pathway2: 

CH3CH2COOHCH3CHCOOHCH2CHCOOHCHCHCOOHCHCHCO  

CHCH+COCH3CH3+CO 

Pathway3: CH3CH2COOHCH3CHCOOHCH3CHCOCH3CCOCH3C+CO 

CH3CH3+CO 
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The C-C bond cleavage in the first DCN pathway (reaction15: CH2CHCO*** + *⇌ 

CH2CH*** + CO*) is facilitated on the stepped surfaces, as its barrier is decreased by 

0.26 eV (the reaction is also more exothermic by 0.1 eV). In contrast, on the Pd(211) 

surface, reaction 18 (CHCHCO**** ⇌  CHCH*** + CO*), which is the C-C bond 

dissociation step in pathway 2, has a significantly higher activation barrier and reaction 

energy on steps (Eact-Pd(211) - Eact-Pd(111) = 0.55 eV). Additionally, the reaction energy of 

reaction 14 (CH3CCO*** ⇌  CH3C* + CO* + *), i.e., the C-C bond dissociation in 

pathway 3, is more endothermic by 0.25 eV (the corresponding activation barrier is 

increased by 0.05 eV compared to Pd(111)).  Consequently, the C-C bond dissociations 

in pathway 3 and 2 were inhibited. This suggests that while on Pd(111) there are various 

competing pathway, on Pd(211) the reaction will probably proceed via the first pathway 

and the other decarbonylation pathways are of lesser importance. 

 

C-OH BOND DISSOCIATIONS: 

 C-OH bond cleavages are essential to the DCN mechanism which we previously 

identified to be the dominant reaction mechanism on Pd(111). Also, our sensitivity 

analysis of Pd(111) suggested that C-OH bond dissociations are rate-controlling at 

common hydrogen partial pressures.  Figure 6.4b illustrates BEP relations for stepped and 

flat surfaces for C-OH bond dissociations.  This figure suggests that the Pd(211) surface 

is in general less active for C-OH bond cleavages than the Pd(111) surface.  The fitted 

BEP lines for C-OH bond cleavages on Pd(111) and Pd(211) have MAEs of 0.08 and 

0.18 eV, respectively. Almost all of the C-OH bond dissociations have a higher barrier on 

Pd(211) except reaction 11 (CH2CHCOOH*** + * ⇌  CH2CHCO*** + OH*) where the 
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barrier for this step decreased by 0.37 eV due to an ―ideal‖ transition state geometry with 

interaction of the OH bond with the stepped atoms in the TS configuration (Figure 6.3).  

Considering furthermore that reaction 11 is also on the first reaction pathway described 

above, the importance of this pathway for DCN becomes apparent.  

 

C-H BOND DISSOCIATIONS: 

 The BEP relationships shown in Figure 6.4c suggest that for C-H bond 

dissociations, stepped surface models are slightly more active than Pd(111) terrace sites. 

The MAEs of the BEP relations for C-H bond dissociations on Pd(111) were found to be 

0.12 eV, while on Pd(211) the MAE was 0.11 eV.  Previously, we found for the Pd(111) 

surface that dehydrogenation steps can at least be partially rate controlling since they 

facilitate C-C and C-OH bond dissociations.[184]  Considering that C-OH bond 

dissociations are inhibited on Pd(211) surfaces, while C-H cleavages are facilitated, it is 

difficult to determine the impact of surface structure on the decarbonylation rate and we 

will discuss this topic in Section 6.3.3 together with our microkinetic modeling results.  

 Finally, we note that hydrogenation steps are also facilitated on stepped surfaces. 

These elementary reactions are essential for removing the C2 hydrocarbon fragments 

from the surface to close the catalytic cycle. For example, on Pd(111) it is difficult to 

hydrogenate the CH3C species and consequently, it is one of the most abundant surface 

intermediates at low hydrogen partial pressures. The removal of this intermediate from 

stepped surfaces, reaction 24 (CH3C* + H* ⇌  CH3CH**), is significantly facilitated, as 

the activation barrier of this elementary reaction decreases by 0.19 eV and the reaction is 

less endothermic by 0.43 eV.  
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O-H BOND DISSOCIATIONS: 

 O-H bond dissociations are key elementary reactions in the DCX mechanism. 

BEP relationships of O-H bond dissociations on Pd(111) and Pd(211) have MAEs of 0.09 

eV and 0.11 eV, respectively. As shown in Figure 6.4d, the activity of the Pd(211) 

surface is lower for O-H bond dissociations than the Pd(111) surface, suggesting that the 

DCN mechanism remains dominant on Pd(211).  Finally, we note that while most 

barriers of O-H bond dissociations were increased by at least 0.1 eV on Pd(211), the 

activation barrier of reaction 28 (CH3CH2COOH* + 2* ⇌  CH3CH2COO** + H*) is 

equivalent to the barrier on Pd(111). Also, reaction 28 is more exothermic by 0.08 eV on 

Pd(211) such that if the dominant DCX mechanism involves reaction 28, a higher DCX 

reaction rate will be observed on Pd(211) relative to Pd(111).  In the next section, the 

importance of the DCX and DCN mechanism in the deoxygenation of propionic acid will 

be investigated by analyzing a mean-field microkinetic model. 

 

6.3.3 MICROKINETIC MODELING 
 

 We previously [140, 184] developed mean-field microkinetic models for the 

reaction mechanism of the DCX and DCN of propanoic acid over Pd(111) model 

surfaces. Analysis of the models at a temperature of 473 K and partial pressures of 

propanoic acid, H2, CO2, and H2O of 1 bar and a CO partial pressure in the range of 0.001 

to 0.1 bar suggested that the DCN pathway is preferred over the DCX mechanism.  The 

mechanism and turnover frequencies (TOF) were found to be not sensitive to the partial 

pressures of H2O, CO2, and CO (in the range of 10
-4

 to 10
-1

 bar). The most abundant 
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surface intermediates under gas phase conditions were adsorbed hydrogen, CO, and 

CH3C.   

 In this study, we have developed a mean-field microkinetic model for the HDO of 

propionic acid over our Pd(211) model surface under reaction conditions equivalent to 

the conditions of our experimental collaborators[159] and we compare these results to 

mean-field modeling results on the Pd(111) surface.  All calculations were carried out at 

473 K and partial pressures of propionic acid and H2 of 0.01 and 0.2 bar, 

respectively.[159]  The partial pressures of H2O, CO2, and CO were set to 0.001 bar 

which corresponds to approximately 10% conversion.  It is noted that our results and 

conclusions seem to be insensitive to the reaction conditions.  Also, we note that since 

our model does not contain a water-gas shift model, the product partial pressures had to 

be fixed in the calculation of turnover frequencies. 

 Next, we note that a method similar to Grabow et al.[146] was used for 

determining coverage dependent adsorption energies of CO and H.  More details about 

the lateral interactions used in the microkinetic model for this study can be found in the 

supporting information and in our previous study[158]. All DFT-derived rate constants 

for all elementary reactions considered in the HDO of priopionic acid over Pd(111) and 

Pd(211) model surfaces are listed in Table 6.4. In the following, we first discuss our 

results for the (111) surface model, followed by (211) surface model results. 

 

PD(111): 
 

 The overall turnover frequency (TOF) on Pd(111) surfaces was calculated to be 

1.70×10
-7

 s
-1

 which is by 3 orders of magnitude lower than the experimental TOF of 
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1.67×10
-4 

s
-1

 over carbon supported palladium catalysts.[159]  The sum of the TOFs of 

the DCN pathways are 1.65×10
-7

 and the sum of the TOFs of the DCX pathways are 

4.79×10
-9

, illustrating that the rate of the DCN is approximately two orders of magnitude 

higher than the rate of the DCX.  Next, we find the dominant mechanism to involve 

propanoic acid to undergo three dehydrogenation steps of α and β-carbons to form 

CHCHCOOH, followed by C-OH cleavage, and C-CO bond dissociation to produce C2 

products (CH3CH2COOH  CH3CHCOOH  CH2CHCOOH  CHCHCOOH  

CHCHCO  CHCH , TOFDominant-Pathway=7.18×10
-8

 s
-1

). 33.9% of the surface was free of 

adsorbed intermediates and the coverage of the most abundant surface species are 

adsorbed hydrogen (26.1%), CO (30.9%), and CH3C (9.0%).   

Other competitive pathways are, CH3CH2COOHCH3CHCOOH CH2CHCOOH 

CH2CHCO  CH2CH+COCH3CH3+CO , with a TOF of 3.22×10
-8

 s
-1

, and 

CH3CH2COOH  

CH3CHCOOHCH3CHCOCH3CCOCH3C+COCH3CH3+CO, with a TOF of 

3.43×10
-8

 s
-1

.  -carbon dehydrogenation 

steps precede the C-OH and C-C bond dissociations.  The most dominant DCX pathway 

(CH3CH2COOHCH3CHCOOHCH3CHCOOCH3CCOOCH3C+CO2  

CH3CH3 + CO2) possesses a TOF of 1.8×10
-9

 s
-1

.  This reaction pathway also involves α-

carbon dehydrogenation steps prior to O-H and C-C bond scissions.  

 

PD(211): 

 
 The overall turnover frequency on Pd(211) was calculated to be 6.20×10

-8
 s

-1
 

which is 2.7 times smaller than the TOF over Pd(111).  We conclude that within the 

accuracy of our DFT calculations and the mean-field models the activity of both surface 
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structures is essentially equivalent.  The sum of the TOFs of the DCN pathways are 

5.35×10
-8

 s
-1

 which is approximately one order of magnitude larger than the sum of the 

TOFs of the DCX pathways which is 8.47×10
-9

 s
-1

.  Compared to the (111) surface the 

DCX pathways become relatively more competitive to the DCN on the (211) surface 

model.  As discussed in Section 6.3.2, reaction 28 (CH3CH2COOH* + 2* ⇌  

CH3CH2COO** + H*) is facilitated on Pd(211) and our microkinetic model confirms our 

prediction that the DCX follows reaction 28 and direct C-C bond dissociation 

(CH3CH2COOH CH3CH2COO+HCH3CH2+CO2CH3CH3+CO2).  However, the 

TOF of the DCN mechanism is still greater than the TOF of the DCX by a factor 6.3.  

 Next, the microkinetic model of the (211) surface suggests that the dominant 

DCN pathway is: CH3CH2COOHCH3CHCOOH CH2CHCOOH  CH2CHCO 

CH2CH+CO  CH3CH3+CO, with a TOF of 5.32×10
-8

 s
-1

, i.e., it again involves 

dehydrogenation steps prior to C-OH and C-C bond scissions.  Finally, the most abundant 

surface intermediates are CO, H, and free sites with surfaces coverages of 52.1%, 42.9% 

and 5.0%, respectively.  Interestingly, the surface coverage of CH3C which covered 9.0% 

of the Pd(111) is essentially not present on Pd(211), θCH3C* = 4.2×10
-8

.  

 

6.3.4 APPARENT ACTIVATION BARRIER, REACTION ORDERS, AND SENSITIVITY 

ANALYSIS 
 

 Apparent activation barriers were computed in the temperature range of 423 to 

523 K in all reaction environments and hydrogen partial pressures. 

 ip
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 Next, the reaction order with respect to hydrogen was calculated at 473 K in the 

range of 0.05 to 0.4 bar. Similarly, the reaction order of propionic acid and CO were 

calculated at 473 K and a pressure range of 0.005 to 0.1 bar and 0.0001 to 0.1 bar, 

respectively. 
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 Finally, Campbell’s degrees of rate and thermodynamic control,[147-149] XRC 

and XTRC, were used to determine the rate controlling steps and intermediates in the 

mechanism.  Rate controlling steps and intermediates are those transition states and 

intermediates that most strongly influence the reaction rate and are potential activity 

descriptors. 
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where r is the overall rate of reaction, ki is the forward rate constant for step i, Ki is the 

equilibrium constant for step i, R is the gas constant, T denotes the reaction temperature, 

and Gn
0
 is the free energy of adsorbate n.  

 

PD(111): 

 
 At a reaction temperature of 473 K, our model predicts an apparent activation 

energy of 0.85 eV which is in reasonable agreement to the experimental apparent 

activation energy of ~12-19 kcal/mol (0.52-0.78 eV).[159]  The reaction order with 
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respect to propionic acid, CO and H2 are +1.0, +0.22, and -0.81, respectively, which is in 

good agreement to our previous studies[140, 158, 184] at different reaction conditions.  

Next, Campbell’s degree of rate control analysis suggests that the most rate controlling 

steps on the surface are C-OH bond dissociations. Reaction 17 (CHCHCOOH*** + 2*⇌  

CHCHCO**** + OH*) is the C-OH bond dissociation step in the dominant reaction 

pathway and has the largest rate control of 0.42.  Additionally, C-OH bond dissociation 

steps of other competing pathways, such as reaction 5 (CH3CHCOOH** + *⇌  

CH3CHCO** + OH*) and reaction 11 (CH2CHCOOH*** + *⇌  CH2CHCO*** + OH*) 

are also rate controlling with XRC values of 0.37, and 0.24 respectively.  Finally, 

dehydrogenation steps of the α- and β-carbons are also found to be partially rate-

controlling under the chosen reaction rate conditions.  For example, the XRC of the 

dehydrogenation of the α-carbon of propionic acid (reaction 2) was calculated to be 0.24 

and the XRC for the dehydrogenation of the β-carbon of CH3CHCOOH (reaction 6) and 

CH2CHCOOH (reaction 12) were calculated to be 0.07 and 0.05, respectively.  We note 

that the sum of the degree of rate control is larger than one due to numerical inaccuracies 

of our nonlinear equation solver; however, the trends should not be affected by these 

numerical issues. 

 Finally, the thermodynamic rate control analysis suggests that the adsorption free 

energy of H* and CO* have a significant effect on the overall rate with XTRC = -1.66 and 

0.26, respectively, such that destabilizing the adsorbed hydrogen or stabilizing CO 

slightly improves the overall reaction rate (due to lateral interactions a stabilization of CO 

leads to a significant destabilization of adsorbed hydrogen). 
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PD(211): 

 
 For the Pd(211) surface our model predicts an apparent activation energy of 0.86 

eV which is essentially equivalent to the (111) surface.  Also, the reaction order with 

respect to propionic acid, CO and H2 are very similar to the (111) surface with +1.0, 0.0, 

and -3.2, respectively.  The very negative reaction order with respect to hydrogen can be 

explained by the strong hydrogen adsorption energy on the stepped surface.   

 Campbell’s degree of rate control suggests that the C-OH bond dissociation step 

in reaction 11 (CH2CHCOOH*** + * ⇌ CH2CHCO*** + OH*) is rate controlling with 

XRC = 0.92.  Additionally, the dehydrogenation of the α-carbon of propionic acid 

(reaction 2) and the β-carbon of CH3CHCOOH (reaction 6) are partially rate controlling 

dehydrogenation steps with XRC = 0.12 and 0.15, respectively.  Considering that we 

found that the DCX mechanism is nearly competitive to the DCN mechanism on Pd(211), 

our sensitivity analysis identified the C-C bond scission in the DCX pathway, reaction 29 

(CH3CH2COO** ⇌  CH3CH2* + CO2*), to be partially rate controlling with XRC = 0.12. 

 We note that this reaction is not rate controlling on flat surface sites since the 

DCX mechanism is significantly slower than the DCN pathway on Pd(111).  Finally, the 

degree of thermodynamic rate control of H* was calculated to be -6.08 implying that 

adsorbed hydrogen atoms inhibited the reaction significantly.  In contrast, the XTRC of CO 

was calculated to be 0.08 which shows that the impact of CO coverage on the overall rate 

is very small. 
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6.3.5 DISPERSION INTERACTIONS 

 Considering that the predicted turnover frequencies are three orders of magnitude 

smaller than our experimentally observed turnover frequencies and also that the acid 

reaction order is systematically too high,[159] we tested if neglect of dispersion 

interactions in the PW91 functional used in this study could at least partially explain this 

discrepancy.  We used the PBE-D3 method[221] to calculate adsorption/desorption 

energies of propanoic acid, H2, CO, CO2, H2O, CHCH, CH2CH2, and CH3CH3 over the 

Pd(111) and Pd(211) surfaces, and we implemented the obtained reaction parameters in a 

similar microkinetic model to the one that used the PW91 functional.  We note that the 

PBE and PW91 functional predict very similar adsorption and reaction energies.  Also, 

for surface reactions the PBE and PBE-D3 functional usually predict very similar 

reaction energies.  However, hydrocarbon adsorption energies on metal surfaces 

computed with PW91 and PBE-D3 functional are quite different.  The computational 

setup for the PBE-D3 calculations is identical to the one for the PW91 calculations. The 

PBE-D3 and PW91 adsorption energies are listed in Table 6.3.  In the following, we 

show that inclusion of dispersion interactions increases the TOFs for both the Pd(111) 

and Pd(211) surface models; however, the trend in the activity stays the same and our 

results suggest that flat surfaces are the active sites for the HDO of propanoic acid.  In the 

following, we call the model that used the PBE-D3 functional for adsorption processes 

the ―dispersion-corrected‖ model and the model that uses the PW91 functional for 

adsorption processes the PW91 model.  
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PD(111) – PBE-D3: 

 After including dispersion forces propanoic acid adsorbs stronger on Pd(111) by 

0.35 eV. Our ―dispersion-corrected‖ microkinetic model suggests that the dominant 

reaction mechanism is identical to our previous prediction obtained with PW91 

functional (CH3CH2COOH  CH3CHCOOH  CH2CHCOOH  CHCHCOOH  

CHCHCO  CHCH). However, the overall TOF is now higher, TOFOverall-D3-

Pd(111)=3.81×10
-5

 s
-1

, which is more than two orders of magnitude larger than the TOF 

computed with PW91 functional, 1.70×10
-7

 s
-1

. We note that the TOF computed in the 

―dispersion-corrected‖ model is significantly closer to the experimental TOF over Pd/C 

under the same reaction conditions (1.67×10
-4 

s
-1

); although, it is still smaller than the 

experimental TOF by a factor 4 which we consider to be within the accuracy of DFT and 

mean-field models. The most abundant surface intermediates are θCO=34.0%, θH=22.2%, 

θCH3C=12.0%, and the coverage of free sites, θ*=31.9%. This is similar to the coverages 

predicted with the PW91 model (θCO=30.9%, θH=26.1%, θCH3C=9.0%, and θ*=33.9%). 

However, as a result of the stronger adsorption, the propanoic acid reaction order 

computed with the ―dispersion-corrected‖ model is slightly smaller than in the PW91 

model (nPAc-PW91=1.0 vs. nPAc-PBE-D3=0.95).  We note that this is the first time we were 

able to obtain acid reaction orders smaller than 1 which is in better agreement with the 

experimental reaction order (~ 0.5 to 0.7).[159] Next, the reaction order of CO decreased 

from, nCO-PW91= +0.22 to nCO-PBE-D3=0.19, and finally, the reaction order of H2 was less 

negative in the ―dispersion-corrected‖ model (nH2-PW91= -0.81 to  

nH2-PBE-D3= -0.67), since the dispersion effect on adsorption of hydrogen is relatively 

smaller than of the hydrocarbon molecules (Table 6.3). The rate-controlling steps and 
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species are the same in both models.  A schematic of the TOFs of all elementary steps in 

the HDO of propanoic acid in both models are illustrated in Figure 6.5A and 6.5B. 

 

PD(211) – PBE-D3: 

 Similar to the Pd(111) surface the inclusion of dispersion forces does not affect 

the dominant reaction mechanism over Pd(211) (CH3CH2COOH  CH3CHCOOH  

CH2CHCOOH  CH2CHCO  CH2CH     CH3CH3 / CH2CH2); however, the 

―dispersion-corrected‖ model predicts a TOF that is increased by more than 2 orders of 

magnitude compared to the previous PW91 model (TOFD3-PBE-Pd(211)=4.69×10
-6

 s
-1 

vs. 

TOFPW91-Pd(211)= 6.20×10
-8 

s
-1

). We conclude that stepped surface models remain slightly 

less active than flat surface models independent of the functional used for adsorption 

processes. The most abundant surface intermediates in the ―dispersion-corrected‖ model 

are θCO=58.8%, θH=38.1%, and the coverage of free sites, θ*=2.3%. These results are 

quite similar to the previous modeling results with PW91 functional (θCO=52.1%, 

θH=42.9%, and θ*=5.0%).  A key difference between the models is that the coverage of 

propionate (CH3CH2COO) dramatically increased in the ―dispersion-corrected‖ model to 

0.4 % (the PW91 model predicts a coverage of only 10
-5 

for propionate).   

 The reaction order with respect to propionic acid, CO, and H2 are +0.7, +0.18 and 

-3.73 in the ―dispersion-corrected‖ model.  Similarly to the Pd(111) surface, we observe 

that the reaction order of the organic acid dropped from 1.0 (PW91 model) to 0.7 

(dispersion-corrected model) due to the stronger adsorption.  The reaction order of CO 

slightly increased in the ―dispersion-corrected‖ model relative to the PW91 model where 

the CO reaction order was essentially zero. The positive CO reaction order can be 
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explained by our lateral interaction model between H and CO where an increase in the 

coverage of CO leads to a decrease in the coverage of hydrogen on the surface which 

results in a slightly higher TOF. Finally, the reaction order of hydrogen is significantly 

more negative on Pd(211) than on Pd(111) independent of functional and the rate-

controlling steps and species are the same in both models. 

 

6.3.6 ACTIVE SITES FOR THE HDO OF PROPANOIC ACID OVER PD CATALYSTS 

 We showed that in the PW91 models the TOF of the HDO of propionic acid over 

Pd(111) is 3 times larger than over Pd(211) (TOFPW91-Pd(111) = 1.70×10
-7

 s
-1 

 vs. TOFPW91-

Pd(211) = 6.20×10
-8

 s
-1

). This trend does not change after inclusion of dispersion forces for 

adsorption/desorption steps with PBE-D3 functional and the TOF over Pd(111) is 8 times 

larger than over Pd(211) (TOF PBE-D3-Pd(111)= 3.81×10
-5

 s
-1 

 vs. TOFPBE-D3-Pd(211) = 4.69×10
-

6
 s

-1
). Consequently, our result suggests that flat surfaces are slightly more active than 

stepped surface models for the HDO of propionic acid over palladium catalysts.  

 In a previous experimental work,[203] the particle size effect on the HDO of 

propionic acid was investigated over silica supported palladium catalysts at identical 

reaction conditions to this computational study (473K, partial pressures of propanoic acid 

and hydrogen of 0.01 and 0.2 bar). The observed activity for the Pd/SiO2 catalysts over 

the entire particle size range studied (1.9-12.4 nm) is shown in Figure 6.6. 

 Smaller particle sized catalysts are slightly less active than the larger ones.  

Smaller particles have more low-coordinated sites such as steps, edges, and corners. By 

performing a van Hardeveld and Hartog statistical analysis,[222] we showed[203] that 

the surface of the largest particles (12.4 nm) consists of 75% Pd (111) facets and 18% Pd 
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(100) facets, while the smallest one (1.9 nm) has 47% Pd(111) facets and 6% Pd(100) 

surface sites. The larger particle size catalysts have an activity (TOF) of 0.8 min
-1

, while 

the activity of the smallest catalyst (1.9 nm) is reported to be 0.46 min
-1

.[203]  

Accordingly, with decreasing particle size and decreasing ratio of Pd(111) sites to low-

coordinated sites, the observed activity is decreased. These observations are in very good 

agreement with our computational results were we found out that the TOF on flat 

surfaces is by a factor 3 higher than on stepped surface sitess (factor 8 in the ―dispersion-

corrected‖ model). Consequently, the computational and experimental results suggest that 

flat surfaces are the active sites for the HDO of propanoic acid over Pd catalysts. 

 

6.4 CONCLUSIONS 

 The effect of palladium catalysts surface structure on the hydrodeoxygenation of 

propionic acid has been investigated by studying both Pd(211) and Pd(111) model 

surfaces using periodic DFT calculations. We developed a mean-field microkinetic model 

at a temperature of 473 K and propionic acid and hydrogen partial pressures of 0.01 and 

0.2 bar, respectively, which correspond to the experimental reaction conditions 

investigated by some of us. Activity on stepped surfaces was slightly lower than on flat 

surface models; however, the difference between the TOFs of flat and stepped surfaces is 

not remarkable, suggesting that the hydrodeoxygenation of propionic acid over palladium 

catalyst is nearly insensitive to surface structure.  Nevertheless, we predict that Pd(111) 

surface sites are the main active sites of this reaction.  Decarbonylation was the dominant 

reaction mechanism over Pd(111) model surfaces, while on Pd(211) decarbonylation and 

decarboxylation are essentially competitive.  The most dominant decarbonylation 
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pathway on Pd(211) involves propionic acid undergoing dehydrogenation of both α- and 

β-carbons prior to C-OH and C-C bond dissociation, i.e., CH3CH2COOH  

CH3CHCOOH  CH2CHCOOH  CH2CHCO  CH2CH     CH3CH3 / CH2CH2. 

In contrast, over Pd(111) an even deeper dehydrogenation is predicted with a reaction 

sequence of CH3CH2COOH  CH3CHCOOH  CH2CHCOOH  CHCHCOOH  

CHCHCO  CHCH     CH3CH3 / CH2CH2.   

On flat surface sites, the calculated turnover frequencies of the decarboxylation 

mechanism are two orders of magnitude smaller than those of the decarbonylation 

mechanism.  In contrast, over Pd(211) model surfaces decarboxylation is facilitated and 

the turnover frequency of decarboxylation is very close to the turnover frequencies of 

decarbonylation.  While on Pd(111), CH3C, H, and CO are the most abundant surface 

intermediates, the formation of CH3C is not favored on Pd(211) as this intermediate is 

destabilized on the stepped surface models. Consequently, adsorbed hydrogen and CO 

are the main intermediates on stepped surface models. The apparent activation energies 

on Pd(211) and Pd(111) are calculated to be 0.86 and 0.85 eV, respectively.  Our 

sensitivity analysis suggests that on both surfaces C-OH bond dissociations and 

dehydrogenation steps of both α- and β-carbons are rate-controlling.  In addition, on 

Pd(211) the C-C bond dissociation of propionate to CH3CH2 and CO2―a key step in the 

decarboxylation mechanism―was also found to be partially rate controlling.   

Finally, to improve the accuracy of our models we included dispersion interactions 

approximately by using the PBE-D3 functional for adsorption/desorption processes.  

Overall, a very good agreement with the experimental turnover frequencies and reaction 

orders could be obtained.  
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6.6 TABLES 

Table 6.1 Binding modes, zero-point energy corrected adsorption energies (Eads, in eV)  

of reaction intermediates on Pd(211) and Pd(111) model surfaces. 

 
Species Stoichiometry Figure 

6.3 

species 

Binding 

mode 

On Pd(211) 

Eads (eV) 

Pd(211) 

Eads (eV) 

Pd(111)[119] 

Propanoic acid CH3CH2COOH 1 η1μ1 (O) -0.57 -0.20 

Ethylidene-1-ol-1-olate CH3CHCOOH 2 η2μ2 (C,O) -1.86 -1.40 

Ethenyl-1-ol-1-olate CH3CCOOH 3 η2μ3 (C,O) -3.43 -3.22 

Propanoyl CH3CH2CO 4 η2μ3 (C,O) -2.57 -2.48 

Carbonylethylidene CH3CHCO 5 η2μ2 (C,O) -1.49 -1.20 

Carbonylethenyl CH3CCO 6 η2μ3 (C,C) -3.21 -2.98 

Vinyl-1-ol-1-olate CH2CHCOOH 7 η2μ2 (C,C) -1.16 -0.88 

Carbonylvinyl CH2CHCO  8 η2μ2 (C,C) -2.64 -2.45 

Ethyne-1-ol-1-olate CHCHCOOH 9 η3μ3 (C,C,O) -3.20 -2.84 

Carbonylethyne CHCHCO 10 η3μ3 (C,C,C) -3.87 -3.49 

Propanoate CH3CH2COO 11 η2μ2 (O,O) -2.72 -2.21 

Carboxylethylidene CH3CHCOO 12 η3μ3 (C,O,O) -1.66 -1.31 

Carboxylethenyl CH3CCOO 13 η2μ3 (C,O) -2.12 -1.71 

Carboxylic COOH 14 η2μ2 (C,O) -2.42 -2.07 

Ethyne CHCH 15 η2μ3 (C,C) -2.14 -1.94 

ethen-1,1-diyl CH2C 16 η2μ4 (C,C) -4.21 -3.91 

Vinyl CH2CH 17 η2μ2 (C,C) -2.98 -2.74 

Ethene CH2CH2 18 η2μ2 (C,C) -1.20 -0.87 

Ethenyl CH3C 19 η1μ3 (C) -5.51 -5.58 

Ethylidene CH3CH 20 η1μ2 (C) -3.95 -3.64 

Ethyl CH3CH2 21 η1μ1 (C) -1.79 -1.63 
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Ethane CH3CH3 22 η1μ1 (H) -0.14 -0.05 

Hydrogen H 23 η1μ3 (H) -2.65 -2.71 

Hydroxyl OH 24 η1μ2 (O) -3.12 -2.59 

Water H2O 25 η1μ1 (O) -0.35 -0.21 

Carbon monoxide CO 26 η1μ3 (C) -2.02 -1.97 

Carbon dioxide CO2 27 η2μ2 (O,C) -0.21 -0.01 

 

 



 

   

Table 6.2  Zero-point corrected reaction and activation energies in eV for all elementary reaction steps considered in the HDO 

of propionic acid over Pd(111) and (211).  For Pd(211) imaginary transition state frequencies and the bond length of the 

dissociating fragment are also given. 

# Reaction 
Pd(111)[119] Pd(211) Pd(211) Pd(211) 

∆Erxn    E
‡ 

∆Erxn    E
‡          

ν (cm
-1

) TS bond ( Å ) 

1 CH3CH2COOH* + 3*⇌  CH3CH2CO*** + OH* 0.41 0.91 0.17 1.16 318 i 2.01 

2 CH3CH2COOH* + 2*⇌  CH3CHCOOH** + H* -0.11 0.62 -0.14 0.49 730 i 1.55 

3 CH3CH2CO*** ⇌  CH3CH2* + CO* + * -0.63 1.01 -0.75 0.55 377 i 1.95 

4 CH3CH2CO*** ⇌  CH3CHCO** + H* 0.01 0.82 -0.14 0.79 756 i 1.58 

5 CH3CHCOOH** + *⇌  CH3CHCO** + OH* 0.53 0.88 0.17 1.16 246 i 2.20 

6 CH3CHCOOH** + 2*⇌  CH2CHCOOH*** + H* -0.38 0.54 -0.14 0.64 952 i 1.54 

7 CH3CHCOOH** + 2*⇌  CH3CCOOH*** + H* -0.06 1.16 0.24 0.72 772 i 1.70 

8 CH3CHCO** + * ⇌  CH3CH** + CO* -0.81 1.02 -0.88 0.73 438 i 1.94 

9 CH3CHCO** + 2*⇌  CH3CCO*** + H* -0.38 0.61 -0.26 0.61 790 i 1.64 

10 CH3CHCO** + 2*⇌  CH2CHCO*** + H* -0.32 0.55 -0.16 0.36 771 i 1.45 

11 CH2CHCOOH*** + *⇌  CH2CHCO*** + OH* 0.58 1.23 0.86 0.86 259 i 2.24 

12 CH2CHCOOH*** + *⇌  CHCHCOOH*** + H* 0.03 0.89 0.01 0.58 715 i 1.75 

13 CH3CCOOH*** + *⇌  CH3CCO*** + OH* 0.20 0.79 -0.34 0.77 277 i 2.00 

14 CH3CCO***⇌  CH3C* + CO* + * -1.36 0.47 -1.11 0.51 473 i 1.78 

15 CH2CHCO*** + *⇌  CH2CH*** + CO* -0.76 0.82 -0.86 0.56 409 i 1.97 

16 CH2CHCO*** + 2*⇌  CHCHCO**** + H* 0.01 0.68 -0.13 0.47 739 i 1.71 

17 CHCHCOOH*** + 2*⇌  CHCHCO**** + OH* 0.56 1.08 0.02 1.10 281 i 1.82 

18 CHCHCO**** ⇌  CHCH*** + CO* -1.09 0.38 -0.96 0.93 458 i 1.88 

19 CHCH*** + H*⇌  CH2CH*** + * 0.32 0.94 0.23 0.77 638 i 1.48 

20 CH2CH*** + H* ⇌  CH2CH2** + 2* -0.04 0.88 -0.18 0.55 691 i 1.78 

21 CH2CH***⇌  CH2C** + H* -0.43 0.46 -0.43 0.64 936 i 1.49 

22 CH2C** + H*⇌  CH3C* + 2* -0.23 0.88 0.08 1.02 995 i 1.67 

23 CH2CH*** + H* ⇌  CH3CH** + 2* 0.27 0.79 0.14 0.77 983 i 1.59 

24 CH3C* + H* ⇌  CH3CH** 0.93 1.09 0.50 0.90 390 i 1.36 

25 CH3CH** + H* ⇌  CH3CH2* + 2* 0.18 0.88 0.28 0.70 759 i 1.70 

26 CH3CH2* + H* ⇌  CH3CH3* + * 0.06 0.65 0.07 0.62 896 i 1.61 

1
6
7
 



 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

27 CH3CH2* + 2* ⇌  CH2CH2** + H*  -0.23 0.52 -0.60 0.18 536 i 1.38 

28 CH3CH2COOH* + 2* ⇌  CH3CH2COO** + H* -0.40 0.35 -0.48 0.35 447 i 1.50 

29 CH3CH2COO** ⇌  CH3CH2* + CO2* 0.24 1.43 0.38 1.51 563 i 2.01 

30 CH3CH2COO** + 2* ⇌  CH3CHCOO*** + H* 0.38 1.22 0.59 1.05 665 i 1.63 

31 CH3CHCOOH** + * ⇌  CH3CHCOO** + H* 0.09 0.78 0.25 0.87 342 i 1.57 

32 CH3CHCOOH** + * ⇌  CH3CH ** + COOH* 0.32 1.39 0.11 1.23 409 i 1.95 

33 CH3CHCOO*** ⇌  CH3CH** + CO2* -0.32 0.96 -0.48 0.83 442 i 1.90 

34 CH3CHCOO*** + * ⇌  CH3CCOO*** + H* -0.08 0.85 -0.08 0.69 760 i 1.68 

35 CH3CCOOH*** + * ⇌  CH3CCOO*** + H* 0.06 0.93 -0.07 1.02 411 i 1.57 

36 CH3CCOOH*** ⇌  CH3C* + COOH** -0.55 0.92 -0.63 0.74 444 i 1.89 

37 CH2CHCOOH*** + * ⇌  CH2CH*** + COOH* 0.71 2.07 0.11 0.94 357 i 2.00 

38 CH3CCOO*** ⇌  CH3C* + CO2* + * -1.08 0.65 -0.81 0.72 480 i 2.08 

39 COOH** ⇌  CO2* + H* -0.55 0.36 -0.34 0.55 674 i 1.49 

40 COOH** ⇌  CO* + OH* -0.60 0.41 -0.82 0.55 259 i 1.96 

41 OH* + H* ⇌  H2O* + * 0.17 0.69 0.17 0.97 740 i 1.62 
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Table 6.3 ZPE-corrected adsorption energies (Eads, in eV) in eV of all stable gas phase 

species in the decarbonylation and decarboxylation of propanoic acid to ethane on 

Pd(111) and Pd(211) computed using the PW91 functional and the PBE-D3 method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

# Reaction 
Pd(111)-∆Erxn Pd(211)-∆Erxn 

PW91 PBE-D3
 

PW91 PBE-D3
 

42 CH3CH2COOH+*⇌ CH3CH2COOH* -0.20 -0.45 -0.57 -0.85 

43 CH3CH3 + * ⇌   CH3CH3* -0.05 -0.39 -0.14 -0.41 

44 CH2CH2 + 2* ⇌   CH2CH2** -0.87 -1.22 -1.20 -1.50 

45 H2O + *  ⇌  H2O* -0.21 -0.39 -0.35 -0.57 

46 CO2 + *  ⇌  CO2* -0.01 -0.27 -0.21 -0.43 

47 CHCH + * ⇌  CHCH* -1.94 -2.15 -2.14 -2.40 

48 CO* ⇌  CO + * -1.97 -2.13 -2.02 -2.18 

49 H2 + 2* ⇌  2H* -1.13 -1.19 -1.02 -1.08 
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Table 6.4 Equilibrium and forward reaction rate constants for all elementary 

steps considered in the HDO of propionic acid over Pd (211) and Pd (111) 

model surfaces at a temperature of 473 K. 

 

  
Reaction 

# 
Pd(211) Pd(111)[158, 184] 

Keq kforward (s
-1

)  Keq kforward (s
-1

)  

1 1.56×10-2 2.61 1.77×10-5 4.36×102 

2 1.39×101 1.36×107 1.79 3.68×105 

3 3.38×108 8.07×106 1.64×107 1.36×102 

4 2.94×101 1.60×104 3.54×10-1 1.01×104 

5 3.31×10-2 2.02 3.51×10-6 5.52×103 

6 1.35×101 6.04×105 6.72×103 9.34×106 

7 7.39×10-4 1.43×105 2.30 4.56 

8 7.79×109 7.77×104 8.52×108 3.25×102 

9 8.20×102 1.40×106 8.79×103 8.08×106 

10 1.99×101 3.91×108 6.83×102 6.77×106 

11 4.88×10-2 7.16×103 3.57×10-7 9.95×10-1 

12 3.91×10-1 3.43×106 2.37×10-1 2.09×103 

13 3.67×104 1.28×105 1.34×10-2 1.75×104 

14 1.92×1012 1.83×107 5.71×1014 1.01×108 

15 3.40×109 7.41×106 2.93×108 5.11×104 

16 1.14×101 3.10×107 9.03×10-1 5.54×105 

17 1.42 1.04×101 1.36×10-6 2.13×101 

18 5.27×1010 8.52×102 7.59×1011 4.87×1010 

19 5.68×10-3 5.71×104 4.27×10-4 1.34×103 

20 2.37×102 1.74×107 1.13×101 7.10×103 

21 1.89×104 1.14×106 3.07×104 1.73×108 

22 1.24 1.15×102 8.27×102 5.44×103 

23 8.67 7.23×104 2.34×102 3.15×104 

24 4.95×10-6 1.00×103 1.70×10-10 1.61×101 

25 1.48×10-3 3.08×105 5.06×10-2 8.23×103 

26 1.48 2.92×106 2.20 1.64×106 

27 1.60×106 8.66×1010 8.31×102 2.25×107 

28 6.85×104 9.69×108 4.18×103 2.64×108 

29 1.55×10-4 6.63×10-4 1.75×10-2 2.49×10-2 

30 1.91×10-7 9.52 2.14×10-5 2.46×10-1 

31 9.46×10-4 1.08×103 5.00×10-2 1.07×104 

32 9.13×10-2 2.76×10-1 6.41×10-4 1.73×10-2 

33 5.48×105 3.00×104 1.50×104 1.41×103 

34 4.64 2.68×105 8.51 7.97×103 

35 5.94 1.22×102 2.24×10-1 1.10×103 

36 2.50×107 1.95×105 1.65×106 1.20×103 

37 5.88×10-2 4.65×102 9.34×10-9 4.43×10-10 

38 2.62×109 4.87×105 1.14×1012 1.65×106 

39 5.67×103 1.10×107 1.09×106 1.07×109 

40 2.82×109 2.28×107 4.66×106 6.64×108 

41 1.78×10-1 9.05×102 1.06×103 9.00×105 
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42 4.61×10-5 8.04×107 1.32×10-8 9.52×107 

43 2.44×108 3.65×1016 4.54×108 6.79×1016 

44 7.22×10-1 1.12×108 1.17 1.81×108 

45 1.73×105 3.35×1013 9.36×103 1.81×1012 

46 2.50×108 3.24×1016 4.11×108 5.32×1016 

47 1.60×10-6 9.98×10-15 1.30×10-6 8.09×10-15 

48 5.33×1013 1.31×108 5.33×1012 1.39×108 

49 1.20×105 4.89×108 1.65×106 5.18×108 
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Figure 6.1 Network of elementary reaction steps considered in the hydrodeoxygenation of propionic acid over Pd(211). 

Elementary reactions involved in the DCX mechanism are shown with blue color arrows, DCN reactions are illustrated with 

red color arrows, and those reaction involved in both mechanisms such as dehydrogenation reactions and removal of the 

hydrocarbon pool are shown with gray color arrows. 
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Figure 6.2  Side (upper panel) and top view (lower panel) of preferred adsorption structure of various intermediates in 

the reaction networks of the decarbonylation and decarboxylation of propionic acid over Pd(211). (1) propionic acid  

(CH3CH2COOH); (2) ethylidene-1-ol-1-olate (CH3CHCOOH); (3) ethenyl-1-ol-1-olate (CH3CCOOH); (4) propanoyl 

(CH3CH2CO); (5) carbonylethylidene (CH3CHCO); (6) carbonylethenyl (CH3CCO); (7) vinyl-1-ol-1-olate 

(CH2CHCOOH); (8) carbonylvinyl (CH2CHCO); (9) ethyne-1-ol-1-olate (CHCHCOOH); (10) carbonylethyne 

(CHCHCO); (11) propionate (CH3CH2COO); (12) carboxylethylidene (CH3CHCOO); (13) carbonylethenyl 

(CH3CCOO); (14) carboxylic (COOH); (15) ethyne (CHCH); (16) ethen-1,1-diyl (CH2C); (17) vinyl (CH2CH); (18) 

ethene (CH2CH2); (19) ethenyl (CH3C); (20) ethylidene (CH3CH); (21) ethyl (CH3CH2); (22) ethane (CH3CH3); (23) 

hydrogen (H); (24) hydroxyl (OH); (25) water (H2O); (26) carbon monoxide (CO); (27) carbon dioxide (CO2). 
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Figure 6.3 Snapshots of transition states of various elementary reactions involved in hydrodeoxygenation of propionic acid 

over Pd (211). Upper panels are for side views and lower ones for top views. 
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Figure 6.4. Brønsted-Evans-Polanyi (BEP) relations for (a) C-C, (b) C-OH, (c) C-H, and (d) O-H bond cleavage in the HDO 

of propionic acid over Pd(111) and Pd(211), i.e., zero-point energy corrected activation barriers versus reaction energies.  
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Figure 6.5A TOFs (s
-1

) for various elementary steps in the HDO of propionic acid at a temperature of 473 K and a propionic 

acid gas phase pressure of 0.01 bar and a hydrogen partial pressure of 0.2 bar over Pd(211) and Pd(111) model surfaces 

(numbers inside the square brackets [] are the TOFs over Pd(111)).  All other reaction conditions are given in Section 6.3.3. 

Elementary reactions involved in the DCN mechanism are shown with blue color arrows, DCX reactions are illustrated with 

red color arrows, and those reactions which are involved in both mechanisms such as dehydrogenation of propionic acid and its 

derivatives and removal of the hydrocarbon pool are shown with the gray color arrows. Elementary reactions involved in the 

most dominant pathway on Pd(211) are illustrated with a double-line arrow.  
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Figure 6.5B ―Dispersion-corrected‖ model TOFs (s
-1

) for various elementary steps in the HDO of propionic acid at a 

temperature of 473 K and a propionic acid gas phase pressure of 0.01 bar and a hydrogen partial pressure of 0.2 bar over 

Pd(211) and Pd(111) model surfaces (numbers inside the square brackets [] are the TOFs over Pd(111)). To include dispersion 

interaction for adsorption/desorption processes, the PBE-D3 functional was used to compute the adsorption energetics of 

CH3CH2COOH, H2, CO, CO2, H2O, CH2CH2, CH3CH3. 

 

 

 

Figure 6.6 Experimental TOF of C2 formation as a function of particle size of Pd/SiO2 catalysts for the HDO of propionic 

acid. Reactor conditions: T = 473 K; P = 1 atm; ~1% propanoic acid, 20% H2 balanced with He; catalyst mass =200 mg; total 

flow rate = 200 sccm. Adapted from ref. [203]. 
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CHAPTER 7 

 

EFFECTS OF SOLVENTS ON CATALYTIC HYDRODEOXYGENATION OF 

PROPANOIC ACID
1
  

 

 

 

                                                 
1
 Behtash, S.; Lu, J. M.; Faheem, M.; Heyden, A. Green Chemistry 2014, 16, 4427. 

1
 Behtash, S.; Lu, J. M.; Faheem, M.; Heyden, A. Green Chemistry 2014, 16, 605. 

This article was featured inside the front cover of the Journal of Green Chemistry and 

reprinted with the permission of publisher.  
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ABSTRACT 

 
 The effects of liquid water, n-octane, and n-butanol on the hydrodeoxygenation of 

propanoic acid over Pd (111) model surfaces have been studied from first principles. We 

developed a microkinetic model for the hydrodeoxygenation and studied the reaction 

mechanism at a temperature of 473 K. Our model predicts that for all reaction media, 

decarbonylation pathways are favored over decarboxylation pathways. However, in the 

presence of polar solvents like water, decarboxylation routes become competitive to 

decarbonylation routes. The activity of the Pd surface various as a function of 

environment as follows: water > n-butanol > octane ≈ gas phase. Finally, a sensitivity 

analysis of our models suggests that both C-OH and C-H bond cleavages control the 

overall rate of the catalyst in all environments and are likely activity descriptors for the 

hydrodeoxygenation of organic acids. 

 

KEYWORDS: 

 
Solvent effects; organic acids; palladium; density functional theory; COSMO; 

decarbonylation; decarboxylation; microkinetic modeling 
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7.1 INTRODUCTION 
 

 In the past two centuries, fossil fuels have been overused and currently, most 

countries are extremely dependent on combustion of fossil fuels.[151, 223] Considering 

the environmental impact of fossil fuel utilization, there is a substantial need for the 

development of renewable resources such as solar, wind, geothermal, hydropower and 

biomass for meeting the world’s growing energy demand. Biomass is one of the most 

promising renewable resources and first generation biofuels such as bioethanol and 

biodiesel have been successfully implemented in the energy system. However, the energy 

efficiency of 1
st
 generation biofuels is low and there are substantial infrastructure 

compatibility issues.[2, 16, 127, 128, 224] Therefore, there is a need for the development 

of second-generation biofuels that are identical to current liquid fuels and that can be 

produced at low cost and high energy conversion efficiency.[22] 

 Lipid-rich biomass feedstocks, such as vegetable oils, waste fats, and algal lipids 

are one potential class of raw materials for the production of green fuels. Recently, 

research efforts[47, 54, 59] have been directed to convert these fatty esters and acids into 

liquid hydrocarbons with the help of a hydroprocess, i.e., the hydrodeoxygenation (HDO) 

of the feeds over conventional hydrotreating catalysts such as sulfided NiMo/Al2O3 and 

CoMo/Al2O3. However, considering the low level of sulfur in biomass and the higher 

activity of oxygenated feeds versus sulfide feeds conventional hydrotreating catalysts 

display a short catalyst life time. Also, humin formation and difficulties in separation of 

carbon oxides from the recycle gas have been reported.[54, 59, 225, 226] Consequently, 

there is an apparent need for new catalysts for the HDO of organic acids and esters.  In 
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this context, we note that the HDO of lipids and triglyceride feedstocks is also relevant to 

upgrading of the bio-oils obtained from pyrolysis of lignocellulosic biomass.[2, 47, 58] 

 To rationally design a metal catalyst for the HDO of these feeds, it is necessary to 

obtain a fundamental understanding of the reaction mechanism for the HDO of organic 

acids and esters on the catalyst surface.  

 In our previous studies[119, 140], two major mechanisms for the HDO, 

decarbonylation (DCN) and decarboxylation (DCX), of propanoic acids, our model 

molecule for organic acids, were investigated over Pd (111) model surfaces. The 

elementary reaction steps involved in the DCN and DCX were identified from first 

principles and a microkinetic model was developed to determine the dominant pathway 

and rate-controlling steps under realistic gas phase reaction conditions of 473 K and low, 

medium, and high partial pressures of hydrogen (0.01, 1 and 30 bar).  Our results suggest 

that the DCN is favored over the DCX and the C-OH bond dissociation of the acid 

functionality is rate controlling in the DCN mechanism.   

 Previously, Murzin et al. reported[62, 141, 143] that for long chain fatty acids 

over Pd/C catalysts the  DCN is favored over the DCX in the presence of hydrogen and 

only in the absence of hydrogen is the DCX pathway dominant.[145] These results agree 

with observations from Boda et al.[227] who identified the DCN as the most dominant 

pathway for the HDO of caprylic acid in a hydrogen atmosphere. However, recently Ford 

et al[228].  reported that even in the presence of hydrogen, the deoxygenation of stearic, 

lauric, and capric acids follows a decarboxylation mechanism over Pd/C.  In this context, 

it is noted that the experimental studies used different solvents as reaction medium and 

the effect of solvents on the preferred reaction pathway of the HDO of organic acids 
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remains unknown. For example, Murzin et al.  mostly used dodecane as  solvent in their 

studies;[62, 67, 141, 143, 144, 229] however, in one of their studies[62], the effect of  

two different solvents, dodecane and mesitylene, was studied on the decarboxylation of 

ethyl stearate. According to their results, in dodecane the formation of n-heptadecane was 

favored while in mesitylene the intermediate product stearic acid was not further reacting 

to n-heptadecane. Also, it was reported that the initial rates of the decarboxylation are 

slightly higher in dedocane than in mesitylene. Finally, Hoelderich et al.[230] reported 

for the catalytic deoxygenation of oleic acid (C18) over Pd/C that the presence of water 

can change the selectivity towards C17 hydrocarbons by up to 20%.  

 Considering the lack of fundamental understanding of the effects of solvents on 

heterogeneous metal catalysts, we investigated in this study the reaction mechanism of 

the HDO of propanoic acid over Pd (111) from first principles with our novel implicit 

solvation model for solid surfaces (iSMS).  

 Since industrial hydrotreatment processing often occurs in a complex liquid 

environment, we have purposefully selected water, octane and n-butanol as solvents that 

might mimic this complex environment. In many experimental studies of the HDO of 

fatty acids, remarkable amounts of water have been produced during the deoxygenation 

process[145, 224, 228, 229] and also pyrolysis bio-oils contain 25-50 wt%  water[231],  

justifying the study of water effects on the HDO of organic acids. Similarly, the study of 

nonpolar octane is justified considering that the chemically similar dedocane is used in 

most experimental studies of the HDO of fatty acids. Finally,  n-butanol has been selected 

for this study as a solvent with a moderate polarity that might mimic the reaction 

environments in some bio-oils that contain various  alcohols.[231] 
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7.2 METHODS 

 

7.2.1 SOLVATION MODEL 

 
 In this study, the approximate effect of a solvent is investigated with the help of 

the iSMS method.[232] iSMS is a new approach for modeling reactions at metal-liquid 

interfaces with implicit solvation models. More information about iSMS and a validation 

of this method has recently been published by some of us.[232] Basically, the free energy 

of an adsorbed intermediate on a periodic metal slab at the solid-liquid interface,

liquid

ermediatesurfaceG int , is defined  using a subtraction scheme 

)( intintintint

vacuum

ermediatecluster

liquid

ermediatecluster

vacuum

ermediatesurface

liquid

ermediatesurface EGGG  
    (7.1) 

where, 
vacuum

ermediatesurfaceG int , is the free energy in the absence of a solvent (plane-wave DFT 

energy of the periodic slab model  including vibrational contributions to the free energy), 

liquid

ermediateclusterG int  is the free energy  of a metal cluster in the liquid (without explicitly 

considering vibrational contributions) constructed by removing selected metal atoms 

from the periodic-slab model and removing the periodic boundary conditions, and 

vacuum

ermediateclusterE int  is the DFT energy of the same cluster in the absence of the solvent. 

Combinations of COSMO and COSMO-RS[233, 234] implicit solvation models have 

been used to calculate
liquid

ermediateclusterG int .  COSMO-RS calculations have been performed 

using COSMOtherm.[235] Thermodynamic properties of the solvents are obtained from 

the COSMOtherm database, based on the results of quantum chemical COSMO 

calculations at the BP-TZVP level of theory. For all other structures, COSMO-RS input 

files have been generated from COSMO calculations at the same level of theory. We note 
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that as a first approximation we did not include the solvent degrees of freedom in the 

reaction coordinate.  

7.2.2 DFT CALCULATIONS 

 Cluster model DFT calculations were carried out using TURBOMOLE 6.0.[116-

118] The Pd (111) cluster model surfaces have been modeled by a two layered cluster 

with a 55 surface. These structures were constructed by removal of the periodic 

boundaries from the periodic slabs that were obtained from our previous plane-wave  

(VASP)[107, 108] calculations.[119] All adsorbates were represented by all-electron  

TZVP[120-122] basis sets while for Pd we used a relativistic small core potential (ECP) 

together with a basis set of same quality as the adsorbates for the valence electrons. The 

Coulomb potential was approximated with the RI-J approximation with auxiliary basis 

sets[123-125]. Single point energy calculations were performed with a self-consistent 

field energy convergence criterion of 1.010
-6

. Finally, for each cluster model energy 

calculations on  various  spin surfaces were performed to identify the lowest energy spin 

state for  further calculations. 

 For cluster models in the liquid phase, COSMO calculations were performed on 

the same  spin surface as for the vacuum cluster calculations. The dielectric constant was 

set to infinity to provide the input for the COSMO-RS calculations. For cavity 

construction, the default radii-based cavities were used.  

7.2.3 MICROKINETIC MODELING 

 For surface reactions, the forward rate constant (kfor) of each reaction is calculated 

as, 
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Tk

G

e
h

Tk
k B

‡

B

for





         (7.2) 

where kB is the Boltzmann constant, T denotes the reaction temperature, h is the Planck 

constant, and ∆G
‡ 

represents the free energy of activation for a specific temperature and 

reaction environment. I.e., in the presence of solvents, the free energy of activation 

(∆G
‡

solvent) and free energy of reaction (∆Grxn-solvent) were calculated as, 

)()(‡

Gas

‡

Solvent solvGsolvGGG ISTS 
,         (7.3) 

and                                  

)()(Gassolvent-rxn solvGsolvGGG ISFS 
                (7.4) 

where, GIS(solv), GFS(solv), and GTS(solv) are the solvation energies of the initial, final, 

and transition states, respectively, that were obtained from the difference in energy of the 

COSMO-RS and gas-phase cluster calculations, and 
‡

GasG
and GasG

are the free energy 

of activation and  reaction under gas phase conditions, respectively. The reverse rate 

constant (krev) is calculated similarly from the thermodynamic equilibrium constant K is 

given as 

K

k
k for

rev 
          (7.5) 

 For an adsorption reaction A(g)+*→A*the  rate of adsorption is given by 

collision theory with a sticking probability of 1 independent of solvent. 

TkmN
k

BA2

1

0

for 

         (7.6) 
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where N0 is the number of sites per area (1.478×10
19

 m
-2

) and mA denotes the molecular 

weight of A. The desorption rate constant is again given by the equilibrium constant, i.e., 

equation 7.5. 

In the presence of a solvent, the free energy of adsorption for A(g)+*→A* is calculated 

as, 

)()(* solvGsolvGGG PdAgasadssolventads        (7.7) 

where gasadsG 
is the free energy of adsorption under gas phase conditions and 

)(* solvGA  and 
)(solvGPd  are as before the solvation energies of the adsorbed molecule A 

and Pd surface immersed in the solvent, respectively. 

With the forward and reverse rate constants defined, rates of the elementary reactions can 

be expressed by mean-field rate laws. Considering that some of the adsorbed 

intermediates occupy multiple active sites (the number of occupied sites by each 

adsorbate is shown in Table 7.1), the rate expressions and steady state molecular balance 

equations are highly nonlinear. To solve the set of steady state differential reactor 

equations and to obtain the surface coverages of the intermediates, we used the BzzMath 

library[115] developed by Buzzi-Ferraris. No assumptions were made regarding rate-

limiting steps. 

 

7.3 RESULT AND DISCUSSION 

 The reaction network investigated in this study was obtained from our previous 

study on the mechanism of the DCN and DCX of propanoic acid.[119, 140] All of the 

elementary steps and intermediates involved in DCN and DCX of propanoic acid are 
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shown in Figure 7.1. The DFT-derived parameters for the reactions are listed in Table 

7.1. Although the DCN and DCX mechanisms are interconnected, key steps in each 

mechanism are distinguishable. For example, C-OH bond dissociations in propanoic acid 

and its derivatives (CHxCHyCOOH, x=[1,2,3], y=[0,1,2]) form CHxCHyCO intermediates 

which produce CO and C2 hydrocarbons  after a C-C bond dissociation  and are therefore 

key steps in the DCN mechanism. Similarly, key steps unique to the DCX mechanism are  

O-H bond dissociations to form CHxCHyCOO intermediates followed by C-C cleavage to 

form CO2. Also, we grouped C-C bond dissociations to form CHxCHy and COOH on the 

surface in the DCX mechanism considering that COOH dissociates on Pd (111) easier to 

CO2 and hydrogen than to CO and OH.  

 Table 7.1 illustrates the effect of solvents on the free energy of reactions and 

activation barriers of all elementary steps.  Solvents can stabilize or destabilize the 

reactant, product, and transition states. 

 For the DCX mechanism, the presence of water affects the following elementary 

reaction steps most significantly: C-H cleavage in 

 reaction 30 (CH3CH2COO** + 2* → CH3CHCOO*** + H*, ∆Grxn-water-∆Grxn-gas = -0.l7 

eV and ∆G
‡-water

-∆G
‡-Gas

=-0.24 eV), and  

reaction 34 (CH3CHCOO*** + * → CH3CCOO*** + H* , ∆Grxn-water-∆Grxn-gas = -0.08 eV 

and ∆G
‡-water

-∆G
‡-Gas

=-0.10 eV), C-CO2 cleavage in  

reaction 33 (CH3CHCOO*** → CH3CH** + CO2*, ∆Grxn-water-∆Grxn-gas = +0.l7 eV and 

∆G
‡-water

-∆G
‡-Gas

= +0.05 eV) and  

reaction 38 (CH3CCOO*** → CH3C* + CO2* + *, ∆Grxn-water-∆Grxn-gas = +0.23 eV and 

∆G
‡-water

-∆G
‡-Gas

=+0.19 eV), and O-H bond cleavage in 
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 reaction 35 (CH3CCOOH*** + * → CH3CCOO*** + H*, ∆Grxn-water-∆Grxn-gas = -0.11 eV 

and ∆G
‡-water

-∆G
‡-Gas

=-0.03 eV).  

Clearly, in the presence of water, the formation of a (negatively charged) CH3CCOO 

species is facilitated and further C-C bond cleavage is inhibited.  

 For the DCN mechanism, the presence of water affects the following elementary 

steps most significantly: C-OH bond dissociations become slightly  more difficult, e.g., 

reaction 5 (CH3CHCOOH** + * → CH3CHCO** + OH*, ∆Grxn-water-∆Grxn-gas = +0.08 

eV, and ∆G
‡-water

-∆G
‡-Gas

=+0.07) and C-CO bond cleavages become more exergonic, e.g., 

reaction 3 (CH3CH2CO*** → CH3CH2* + CO* + *, ∆Grxn-water-∆Grxn-gas = -0.09 eV) and 

reaction 8 (CH3CHCO** + * → CH3CH** + CO*, ∆Grxn-water-∆Grxn-gas = -0.07 eV).  Also, 

we observe that C-H dissociates relevant for both DCN and DCX pathways become 

generally more exergonic, while the corresponding removal of the hydrocarbon pool from 

the surface, e.g. CHCH +4H → CH3CH3(g), ∆Grxn-water-∆Grxn-gas = +0.12 eV, becomes 

more endergonic. 

 Overall, the effect of water is more pronounced for the DCX mechanism than the 

DCN pathways and while the effect on elementary reaction rates seems to be small, we 

will show in section 7.3.1 that the overall effect is quite significant.  

 Next, the effect of the presence of n-butanol on DCX reactions follows a similar 

trend to the effect of water with diminished intensity. E.g., C-H bond cleavage in reaction 

30 and 34 become more exergonic by -0.06 and -0.07 eV, respectively, while C-CO2 

bond cleavages in e.g. reaction 38 become more endergonic by 0.13 eV (the activation 

barrier increases by 0.16 eV). So again, production of CHxCHyCOO intermediates is 

facilitated. Also, activation barriers for C-OH bond dissociations such as in reaction 5 
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(CH3CHCOOH*** + *→ CH3CHCO*** + OH*) and reaction 13 (CH3CCOOH*** + 

*→ CH3CCO*** + OH*) are increased by 0.11 eV and 0.10 eV, respectively. 

 Finally, in the presence of n-octane reaction free energies are not significantly 

affected by the solvent. The most remarkable change occurs in the C-CO bond cleavage 

of reaction 15 (CH2CHCO*** + *→ CH2CH*** + CO*) with ∆Grxn-octane-∆Grxn-gas = -

0.06 eV and C-CO2 bond cleavage of reaction 38 (CH3CCOO*** → CH3C* + CO2* + *) 

with ∆Grxn-Octane-∆Grxn-gas = +0.08 eV and ∆G
‡-water

-∆G
‡-Gas

=+0.12 eV. 

 In the following sections the effect of solvents on the turnover frequency (TOF) 

and the coverage of the most dominant surface species will be studied by mean-field 

microkinetic modeling. 

 

7.3.1 MICROKINETIC MODELING 

 We previously[140] developed mean-field microkinetic models for the reaction 

mechanism of the DCX and DCN of propanoic acid over Pd (111) surfaces under 

experimental gas phase conditions. Analysis of the models at a temperature of 473 K and 

partial pressures of propanoic acid, H2, CO2, and H2O of 1 bar and a CO partial pressure 

of 0.001 bar (the C2 product partial pressures were set to zero) suggested that the DCN is 

slightly preferred over the DCX.  Also, the mechanism and turnover frequencies (TOF) 

were found to be not sensitive to the partial pressures of H2O and CO2, as well as CO (in 

the range of 10
-4

 to 10
-1

 bar). The most abundant surface intermediates under gas phase 

conditions were adsorbed hydrogen atom, CO, and CH3C. We note that we used a 

method similar to Grabow et al.[146] for determining coverage dependent adsorption 

energies of CO, H, and CH3C. 
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 In this study, we developed a microkinetic model for all elementary steps 

involved in both the DCX and DCN networks (previously the networks were studied 

independently) with forward and reverse rate parameters shown in Table 7.2.  

 Again, all calculations were carried out at 473K which is a typical experimental 

temperature[62, 67, 141-145] and we selected partial pressures of propanoic acid, water, 

and CO2 of 1 bar and a CO partial pressure of 0.1 bar which is larger than in our previous 

study and corresponds to a condition of about 10% conversion.  Additionally, all 

simulations were carried out under low (0.001 bar) and medium (1 bar) hydrogen partial 

pressures to investigate the effect of hydrogen partial pressure on the reaction mechanism 

in the presence of various solvents. For simplicity, all results corresponding to the low 

partial pressure of hydrogen environment are displayed in this paper in [ ] bracket next to 

the results of the medium hydrogen partial pressure.  Finally, for all simulations in all 

solvents we employed the same coverage dependent adsorption energies of CO, H, and 

CH3C as in our previous study.[140] 

Figure 7.2 illustrates the turnover frequencies of all elementary steps under gas-phase 

conditions. The overall TOF was calculated to be 1.30×10
-6

 s
-1

 at medium hydrogen 

partial pressure [2.13×10
-5

 s
-1

 at low hydrogen partial pressure]. The TOF of the DCN 

pathways are 1.28×10
-6

 s
-1

 [2.11×10
-5

 s
-1

] and the TOF of DCX pathways are 2.26×10
-8

 s
-

1
 [1.43×10

-7
 s

-1
], illustrating that the rate of the DCN is two orders of magnitude higher 

than the DCX. Next, we find the dominant reaction mechanism to be independent of the 

partial pressure of hydrogen to involve propanoic acid to undergo three dehydrogenation 

steps of α and β-carbons to form CHCHCOOH, followed by C-OH cleavage, and C-CO 

bond dissociation to produce C2 products (CH3CH2COOH  CH3CHCOOH  
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CH2CHCOOH  CHCHCOOH  CHCHCO  CHCH). 31% [43% in the low 

hydrogen scenario] of the surface was free of adsorbed intermediates and the coverages 

of the most abundant surface species are adsorbed hydrogen, CO, and CH3C were 

calculated to be 23% [7%], 34% [35%], and 12% [14%], respectively. 

 In the following, the effects of various solvent on reaction mechanism and TOF of 

the DCN and DCX mechanism will be discussed. 

 

7.3.1.1 LIQUID WATER EFFECTS 

 Water itself is one of the products of our reaction network as well as a relevant 

reaction environment.  In the presence of water, calculations were again carried out at 

473 K and chemical potentials corresponding to the same gas phase partial pressures of 

the gas-phase study described above (except for water). For the water chemical potential 

we assumed gas-liquid equilibrium, i.e., the water partial pressure is computed as, 

watertotalwater

L

waterwater PPyfx 
                             (7.8)  

where waterx
 is the mole fraction of water in the solvent mixture, 

L

waterf
is the fugacity of 

pure water at 473 K, watery
 is the mole fraction of water in the vapor, Ptot is the total 

pressure of the system, and Pwater denotes the partial pressure of water. Assuming the 

solution is dilute, the mole fraction of water in solution ( waterx
) is 1. Also, the fugacity of 

pure water at 473 K can be obtained from a steam table[236] and is 
L

waterf
=14.17 bar. 

Finally, the partial pressure of water is calculated to be 14.17 bar and this value was used 

for all further microkinetic simulations. However, for the other solvents, the partial 

pressure of water was set to 1 bar. 
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 In liquid water, we find again that the most abundant surface species are H, CO, 

CH3C and free (water covered) sites with coverages of 22% [7%], 35% [38%], 13% 

[14%], and 30% [41%], respectively. The overall TOF increased by a factor of 28 [31 in 

the low hydrogen partial pressure scenario] from TOFoverall-gas=1.30×10
-6 

s
-1

 [2.13×10
-5 

s
-

1
] to TOFoverall-water=3.62×10

-5 
s

-1 
[6.61×10

-4 
s

-1
]. The calculated TOFs for all elementary 

steps are shown in Figure 7.3.  

 As we expected, the DCX is significantly more affected by liquid water than the 

DCN. TOFs of DCX pathways increased by more than two orders of magnitude from 

TOFDCX-gas= 2.26×10
-8 

s
-1 

[1.43×10
-7 

s
-1

] to TOFDCX-water= 6.21×10
-6 

s
-1

 [7.86×10
-5 

s
-1

] 

while the TOFs of DCN pathways only increased by one order of magnitude from 

TOFDCN-gas= 1.28×10
-6 

s
-1

 [2.11×10
-5 

s
-1

] to TOFDCN-water= 3.00×10
-5 

s
-1

 [2.94×10
-4 

s
-1

]. 

Clearly, in liquid water DCX and DCN pathways are very competitive and our 

calculations suggest that the DCN is dominant with a TOFDCN to TOFDCX ratio of only 

4.8 [3.7] which is most likely within the accuracy of our calculations and models. As a 

result of the dominance of the DCN, the predicted most favorable pathway does not 

change in the presence of water from our previous gas phase results.  The dominant DCX 

pathway starts with a dehydrogenation step of the α-carbon to form CH3CHCOOH, 

followed by O-H bond cleavage and further α-carbon dehydrogenation prior to C-CO2 

bond cleavage and hydrogenation to C2 products (CH3CH2COOH  CH3CHCOOH  

CH3CHCOO  CH3CCOO  CH3C     CH3CH3 / CH2CH2).   

7.3.1.2 LIQUID OCTANE EFFECTS 

 Simulations in liquid octane were performed at reaction conditions similar to the 

gas-phase simulations. The results of our DFT calculations in liquid octane already 
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suggested that octane has only a minor effect on the reaction parameters and 

consequently, we did not expect any significant effect on the reaction mechanism and 

overall TOF in comparison to our gas-phase results. Indeed, Figure 7.4 illustrates that the 

DCX and DCN mechanisms are hardly affected and the dominant pathway remains under 

all studied hydrogen environments: CH3CH2COOH  CH3CHCOOH  CH2CHCOOH 

 CHCHCOOH  CHCHCO  CHCH.  Also, the overall TOF values in the presence 

and absence of Octane are almost the same (TOFoverall-Octane=1.77×10
-6 

s
-1

 [2.23×10
-5 

s
-1

] 

vs. TOFoverall-gas=1.30×10
-6 

s
-1

[2.13×10
-5 

s
-1

]). The most abundant species were free sites, 

CO, H, and CH3C with surface coverages of 30% [42%], 35% [37%], 23% [7%], and 

13% [13%], respectively. 

 

7.3.1.3 LIQUID N-BUTANOL EFFECTS 

 Simulations in liquid n-butanol were performed at reaction conditions similar to 

the gas-phase simulations. The overall TOF was calculated to be 5.75×10
-6

s
-1 

[1.23×10
-4 

s
-1

] which is relatively larger than the gas phase and octane TOFs and smaller than the 

water TOFs.  The dominant mechanism at both low and medium hydrogen partial 

pressures is again the DCN with the most favorable pathways staying the same as under 

gas-phase conditions. However, in the presence of n-butanol, the TOF of the DCX 

increased by a factor of 28 [47] from TOFDCX-gas=2.26×10
-8 

s
-1

 [1.43×10
-7 

s
-1

] to TOFDCX-

Butanol=6.26×10
-7 

s
-1

 [6.76×10
-6 

s
-1

].  Figure 7.5 illustrates that the dominant pathway of the 

DCX is similar to the pathway in liquid water (CH3CH2COOH  CH3CHCOOH  

CH3CHCOO  CH3CCOO  CH3C     CH3CH3 / CH2CH2).  The most abundant 
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surface species are free sites, CO, H, and CH3C with the coverages of 30% [42%], 35% 

[37%], 22% [7%], and 13% [13%], respectively. 

 As already predicted from the solvation free energies, in the presence of n-butanol 

the TOFs are similar but lower than the TOFs in liquid water. We observe that as the 

polarity of the solvents increases from octane to n-butanol to water, the DCX and to a 

lower degree the DCN are facilitated such that the overall TOF in the presence of liquid 

octane is about the same as in the gas-phase, increases for butanol by a factor of 4.4 [5.8] 

and finally increases for water by a factor of 27.9 [31.1].   

 

7.3.2 APPARENT ACTIVATION BARRIER, REACTION ORDERS, AND SENSITIVITY 

ANALYSIS 
 

 Apparent activation barriers were computed in the temperature range of 423 to 

523 K in all reaction environments and hydrogen partial pressures. 

 ip

a
T

r
RTE 














)ln(2

        (7.9) 

 Next, the reaction order with respect to hydrogen was calculated at 473 K for the 

low hydrogen partial pressure in the range of 0.0005 to 0.002 bar and for the medium 

hydrogen partial pressure in the range of 0.5 to 2 bar using equation 7.10. Similarly, the 

reaction order of propanoic acid and CO were calculated at 473 K and a pressure range of 

0.5 to 2 bar and 0.0001 to 1 bar, respectively. 

ijpTi

i
p

r


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


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








,
)ln(

)ln(


         (7.10) 

Finally, Campbell’s degrees of rate and thermodynamic control [147-149], XRC and XTRC, 

were used to determine the rate controlling steps and intermediates in the mechanism.  
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Rate controlling steps and intermediates are those transition states and intermediates that 

most strongly influence the reaction rate and are potential activity descriptors. 
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 (11) 

where r is the overall rate of reaction, ki is the forward rate constant for step i, Ki 

equilibrium constant for step i, R is the gas constant, T denotes the reaction temperature, 

and Gn
0
 is the free energy of adsorbate n. 

 

7.3.2.1 GAS PHASE 

Medium partial pressure of hydrogen (pH2 = 1 bar) 

 At a reaction temperature of 473 K and a hydrogen partial pressure of 1 bar, our 

model predicts an apparent activation energy of 0.84 eV in a gas phase environment. The 

reaction order with respect to propanoic acid is +1.0, with respect to CO it is +0.31, and 

finally with respect to H2 it is -0.80. These results are in good agreement to our previous 

study[140].  Next, the C-OH bond dissociation as well as α- and β-carbon 

dehydrogenation steps are found to be rate-controlling.  For example, the XRC values for 

the C-OH cleavage reactions 17 (CHCHCOOH*** + 2*→ CHCHCO**** + OH*), 

reaction 5 (CH3CHCOOH** + *→ CH3CHCO** + OH*), and reaction 11 

(CH2CHCOOH*** + *→ CH2CHCO*** + OH*) were calculated to be 0.49, 0.23, and 

0.17, respectively.  The XRC value of the dehydrogenation of the α-carbon in propanoic 

acid (reaction 2) is rate controlling with XRC = 0.32 and the first and second 

dehydrogenation steps of the β-carbon in CH3CHCOOH are rate controlling with XRC = 
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0.09 (reaction 6) and XRC = 0.06 (reaction 12), respectively.  We note that the sum of the 

degree of rate control is larger one due to numerical inaccuracies of our nonlinear 

equation solver; however, the trends should not be affected by these numerical issues. 

Also, these results are in agreement with previous calculations[82, 150] from Pallassana 

and Neurock and Olcay et al. who found that the C-OH bond cleavage is rate controlling 

for the HDO of acetic acid.  Our model in addition highlights the importance of 

dehydrogenation steps.  Finally, the thermodynamic rate control analysis suggests that the 

adsorption free energy of H* and CO* have a significant effect on the overall rate with 

XTRC = -1.52 and 0.21, respectively, such that destabilizing the adsorbed hydrogen or 

stabilizing CO improves the overall reaction rate. CO is generally known to be a surface 

poison; however, due to repulsive lateral interactions with adsorbed H* and the negative 

reaction order with respect to hydrogen we observe that destabilizing adsorbed H* is 

more important than stabilizing CO*.   

 

Low partial pressure of hydrogen (pH2 = 0.001bar) 

 At a low partial pressure of hydrogen, the coverage of hydrogen drops from 23% 

(pH2 = 1 bar) to 7%.  Also, the available free sites increased from 31% to 42%. However, 

the coverage of CO is not significantly affected and in fact, slightly increases from 34% 

to 35%. Now, the thermodynamic rate control analysis suggests that destabilizing both 

CO* and H* improves the overall rate with XTRC = -0.03 and -0.33, respectively. Also, 

the dehydrogenation of the α-carbon in propanoic acid is clearly the most rate controlling 

step with XRC = 1.0 and C-OH bond dissociation becoming less important with XRC = 

0.05 for reaction 17.  
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Finally, our model predicts an apparent activation barrier of 0.62 eV (which is lower than 

at higher hydrogen partial pressures) and orders of reaction for CO and H2 that are close 

to zero (i.e., -0.02 and -0.13, respectively).  The calculated propanoic acid reaction order 

is again 1. 

 

7.3.2.2 LIQUID WATER 

Water - Medium partial pressure of hydrogen (PH2 = 1 bar) 

 In the presence of liquid water and at a hydrogen partial pressure of 1 bar, C-OH 

bond dissociations are in agreement with our gas-phase simulations the most rate 

controlling steps (e.g., XRC = 0.43 for reaction 17, XRC = 0.28 for reaction 11, and XRC = 

0.09 for reaction 5).  Next, α and β-carbon dehydrogenation steps have some influence on 

the net reaction rate (XRC = 0.25 for reaction 2, XRC = 0.09 for reaction 6, and XRC = 0.05 

for reaction 12).  As discussed above, in the presence of water the DCX becomes 

competitive with the DCN.  As a result, our sensitivity analysis finds that O-H and C-H 

cleavage steps involved in the DCX become rate controlling, e.g., reaction 31 

(CH3CHCOOH** + * → CH3CHCOO** + H*) with XRC = 0.03, reaction 34 

(CH3CHCOO*** + * → CH3CCOO*** + H*) with XRC = 0.06, and reaction 30 

(CH3CH2COO** + 2* → CH3CHCOO*** + H*) with XRC = 0.05.  Thermodynamic rate 

control analysis suggests again that destabilizing H* and stabilizing CO* improves the 

reaction rate with XTRC = -1.55 and +0.18, respectively. Finally, the reaction orders with 

respect to CO, hydrogen, and propanoic acid are -0.77, 0.28 and 1.0, respectively, and the 

apparent activation energy is calculated as 0.68 eV which is 0.16 eV smaller than the gas-

phase activation barrier.  
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Water - Low partial pressure of hydrogen (PH2 = 0.001 bar) 

 At a hydrogen partial pressure of 0.001 bar, dehydrogenation steps of the α-

carbon of propanoic acid are the most rate controlling steps, e.g., for reaction 2 XRC = 

0.79 and for reaction 30 XRC = 0.11, while the C-OH bond dissociation in reaction 17 

becomes less influential with XRC = 0.08.  Again, in agreement with the gas-phase 

simulations thermodynamic rate control analysis suggests that destabilizing both CO* 

and H* improves the reaction rate with XTRC = -0.03 and XTRC = -0.39.  Finally, the 

reaction orders of propanoic acid, CO and H2 are calculated to be 1.0, -0.02, and -0.17 

respectively, and the apparent activation barrier is predicted as 0.48 eV. 

 

7.3.2.3 LIQUID OCTANE 

Octane - Medium partial pressure of hydrogen (PH2 = 1 bar) 

 In the presence of liquid octane changes in the reaction parameters, TOF, and 

surface coverages are negligible in comparison to our gas-phase results. As a result, our 

model predicts an activation barrier of 0.84 eV and reaction orders of propanoic acid, H2 

and CO of 1.0, -0.74, and 0.28, respectively, that are very similar to our gas-phase 

simulations. Finally, C-OH bond dissociations in reaction 17, 11, and 5 are most rate 

controlling with XRC’s of 0.48, 0.20 and 0.20, respectively. Next, dehydrogenation steps 

in reaction 2, 6, and 12 (XRC = 0.34, XRC = 0.09, and XRC = 0.06, respectively) and the 

stability of adsorbed CO* and H* (XTRC = +0.19 and XTRC = -1.44, respectively) have 

some influence on the overall reaction rate. 
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Octane – Low partial pressure of hydrogen (PH2=0.001 bar) 

 At a hydrogen partial pressure of 0.001 bar, the dehydrogenation of the α-carbon 

of propanoic acid (reaction 2) is most rate controlling (XRC=0.89) and the C-OH bond 

dissociation in reaction 17 is less influential (XRC=0.05).  The thermodynamic degree of 

rate control for CO* and H* are calculated as -0.03 and -0.34, respectively.  Finally, very 

similar to our gas-phase simulations our model predicts an apparent activation barrier of 

0.63 eV and propanoic acid, hydrogen and CO reaction orders of 1.0, -0.15, and -0.02 

respectively. 

 

7.3.2.4 LIQUID N-BUTANOL 

Butanol – Medium partial pressure of hydrogen (PH2 =1 bar) 

 The presence of liquid n-butanol leads to qualitatively similar changes to the 

reaction mechanism and TOF as the presence of liquid water. C-OH bond dissociations 

are still the most rate controlling steps, i.e., reaction 17 (XRC = 0.48), reaction 11 (XRC 

=0.27), and reaction 5 (XRC =0.15), followed by α and β-carbon dehydrogenations 

(reaction 2 with XRC = 0.25, reaction 6 with XRC = 0.10, reaction 12 with XRC = 0.06, and 

reaction 34 with XRC-R34=0.06) and O-H bond dissociations relevant for the DCX 

(reaction 31 with XRC = 0.02 and reaction 30 with XRC = 0.01).  Thermodynamic rate 

control analysis suggests again that destabilizing H* and stabilizing CO* improves the 

reaction rate with XTRC = -1.61 and +0.21, respectively.  Finally, the reaction orders with 

respect to propanoic acid, H2 and CO are 1.0, -0.82, and +0.31, respectively, and the 

apparent activation energy is calculated as 0.76 eV which is 0.1 eV smaller than the gas-

phase activation barrier and 0.08 eV larger than the activation barrier in liquid water.  
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Butanol – Low partial pressure of hydrogen (PH2 = 0.001 bar) 

 At a hydrogen partial pressure of 0.001 bar, dehydrogenation steps of the α-

carbon in propanoic acid are the most rate controlling steps, e.g., for reaction 2 XRC= 0.80 

and for reaction 30 XRC = 0.06, while the C-OH bond dissociation in reaction 17 becomes 

less influential with XRC = 0.10. Again, in agreement with both water and gas-phase 

simulations thermodynamic rate control analysis suggests that destabilizing both CO* 

and H* improves the reaction rate with XTRC = -0.03 and XTRC = -0.41.  Finally, the 

reaction orders of propanoic acid, CO and H2 are calculated to be 1.0, -0.01, and -0.18, 

respectively, and the apparent activation barrier is predicted to be 0.47 eV which is 

essentially equivalent to the activation barrier in liquid water. 

 

7.4 CONCLUSION 

 The effect of three different solvents, liquid water, n-octane, and n-butanol has 

been investigated on the decarbonylation and decarboxylation of propanoic acid over Pd 

(111) model surfaces with the help of periodic DFT calculations, COSMO-RS implicit 

solvation with iSMS scheme and microkinetic modeling. We developed mean-field 

microkinetic models for each solvent at a temperature of 473 K and low (0.001 bar) and 

medium (1 bar) hydrogen partial pressures. Under all conditions is the decarbonylation 

the dominant HDO mechanism with the most favored pathway following 

dehydrogenation steps prior to C-OH and C-CO bond cleavages, i.e., CH3CH2COOH  

CH3CHCOOH  CH2CHCOOH  CHCHCOOH  CHCHCO  CHCH     

CH3CH3 / CH2CH2.  In nonpolar solvents such as octane, we do not observe any 

significant solvent effects on the elementary surface reactions and overall turnover 
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frequency.  However, with increasing polarity of the solvent, e.g., n-butanol and protic 

water, does the overall turnover frequency increase by up to a factor 30 from the gas-

phase turnover frequency. Also, the apparent activation barrier decreases in the presence 

of liquid water by up to 0.16 eV.  Another significant effect of a polar solvent such as 

water is that it stabilizes key intermediates in the decarboxylation mechanism such that 

the decarboxylation rate increases by two orders of magnitude and the decarbonylation 

and decarboxylation pathways become essentially competitive.  Finally, a sensitivity 

analysis suggests that in all reaction environments and at a low hydrogen partial pressure 

is the dehydrogenation of α-carbon in propanoic acid most rate controlling. With 

increasing hydrogen partial pressure, the C-OH bond dissociation becomes most rate 

controlling and the importance of C-H bond cleavages is diminished. As a result, both C-

H and C-OH bond dissociations are likely activity descriptors for a future computational 

catalyst discovery and design study. 
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7.6 TABLES 

Table 7.1. Reaction free energies in eV for all elementary reaction steps in the hydro-deoxygenation of propanoic acid over Pd 

(111) model surfaces at a temperature of 473 K. 

 

 

 

# Reaction 

Gas Water Octane Butanol 

∆Grxn ∆G
‡ 

∆Grxn ∆G
‡ 

∆Grxn ∆G
‡ 

∆Grxn ∆G
‡ 

0 CH3CH2COOH+*→CH3CH2COOH* 0.94 N/A 0.88 N/A 0.95 N/A 0.89 N/A 

1 CH3CH2COOH* + 3*→ CH3CH2CO*** + OH* 0.35 0.89 0.40 0.86 0.36 0.88 0.39 0.90 

2 CH3CH2COOH* + 2*→ CH3CHCOOH** + H* -0.11 0.61 -0.20 0.53 -0.13 0.60 -0.13 0.59 

3 CH3CH2CO*** → CH3CH2* + CO* + * -0.66 1.01 -0.75 1.00 -0.70 1.03 -0.71 1.03 

 CH3CH2CO*** → CH3CHCO** + H* 0.02 0.83 -0.04 0.77 0.01 0.85 0.00 0.83 

5 CH3CHCOOH** + *→ CH3CHCO** + OH* 0.47 0.86 0.56 0.94 0.50 0.87 0.52 0.92 

6 CH3CHCOOH** + 2*→ CH2CHCOOH*** + H* -0.35 0.57 -0.31 0.57 -0.35 0.60 -0.34 0.60 

7 CH3CHCOOH** + 2*→ CH3CCOOH*** + H* -0.06 1.14 -0.05 1.15 -0.08 1.15 -0.09 1.15 

8 CH3CHCO** + * → CH3CH** + CO* -0.84 1.00 -0.91 1.01 -0.88 1.00 -0.89 1.00 

9 CH3CHCO** + 2*→ CH3CCO*** + H* -0.39 0.61 -0.41 0.58 -0.40 0.60 -0.41 0.60 

10 CH3CHCO** + 2*→ CH2CHCO*** + H* -0.29 0.57 -0.32 0.51 -0.29 0.58 -0.29 0.56 

11 CH2CHCOOH*** + *→ CH2CHCO*** + OH* 0.53 1.20 0.54 1.14 0.56 1.17 0.56 1.18 
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12 CH2CHCOOH*** + *→ CHCHCOOH*** + H* 0.04 0.89 -0.03 0.83 0.03 0.89 0.01 0.87 

13 CH3CCOOH*** + *→ CH3CCO*** + OH* 0.14 0.77 0.19 0.77 0.18 0.78 0.20 0.81 

14 CH3CCO***→ CH3C* + CO* + * -1.37 0.47 -1.43 0.46 -1.41 0.48 -1.42 0.48 

15 CH2CHCO*** + *→ CH2CH*** + CO* -0.80 0.80 -0.86 0.79 -0.86 0.80 -0.87 0.80 

16 CH2CHCO*** + 2*→ CHCHCO**** + H* 0.02 0.68 -0.01 0.67 0.00 0.67 0.00 0.67 

17 CHCHCOOH*** + 2*→ CHCHCO**** + OH* 0.51 1.07 0.57 1.11 0.53 1.06 0.55 1.10 

18 CHCHCO**** → CHCH*** + CO* -1.13 0.19 -1.19 0.24 -1.18 0.20 -1.18 0.21 

19 CHCH*** + H*→ CH2CH*** + * 0.31 0.95 0.34 0.97 0.31 0.96 0.32 0.96 

20 CH2CH*** + H* → CH2CH2** + 2* -0.03 0.87 0.00 0.87 -0.02 0.88 -0.01 0.88 

21 CH2CH***→ CH2C** + H* -0.43 0.45 -0.45 0.44 -0.43 0.44 -0.44 0.44 

22 CH2C** + H*→ CH3C* + 2* -0.24 0.87 -0.21 0.86 -0.23 0.88 -0.22 0.87 

23 CH2CH*** + H* → CH3CH** + 2* -0.26 0.79 -0.27 0.78 -0.27 0.79 -0.27 0.79 

24 CH3C* + H* → CH3CH** 0.92 1.09 0.93 1.09 0.93 1.10 0.94 1.10 

25 CH3CH** + H* → CH3CH2* + 2* 0.16 0.87 0.20 0.88 0.17 0.88 0.18 0.88 

26 CH3CH2* + H* → CH3CH3* + * 0.05 0.64 0.05 0.65 0.04 0.64 0.04 0.64 

27 CH3CH2* + 2* → CH2CH2** + H*  -0.45 0.42 -0.43 0.40 -0.44 0.41 -0.44 0.41 

28 CH3CH2COOH* + 2* → CH3CH2COO** + H* -0.40 0.35 -0.34 0.38 -0.44 0.32 -0.39 0.37 

29 CH3CH2COO** → CH3CH2* + CO2* 0.18 1.40 0.22 1.34 0.22 1.40 0.23 1.39 
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30 CH3CH2COO** + 2* → CH3CHCOO*** + H* 0.39 1.22 0.22 0.98 0.37 1.18 0.34 1.12 

31 CH3CHCOOH** + * → CH3CHCOO** + H* 0.10 0.79 0.08 0.84 0.06 0.78 0.09 0.82 

32 CH3CHCOOH** + * → CH3CH ** + COOH* 0.28 1.37 0.29 1.40 0.30 1.38 0.29 1.38 

33 CH3CHCOO*** → CH3CH** + CO2* -0.37 0.94 -0.20 0.99 -0.32 0.95 -0.29 0.96 

34 CH3CHCOO*** + * → CH3CCOO*** + H* -0.07 0.85 -0.15 0.75 -0.12 0.81 -0.14 0.78 

35 CH3CCOOH*** + * → CH3CCOO*** + H* 0.04 0.89 -0.06 0.86 -0.01 0.88 0.00 0.90 

36 CH3CCOOH*** → CH3C* + COOH** -0.58 0.90 -0.60 0.88 -0.55 0.92 -0.56 0.92 

37 CH2CHCOOH*** + * → CH2CH*** + COOH* 0.70 2.07 0.65 2.02 0.70 2.07 0.68 2.06 

38 CH3CCOO*** → CH3C* + CO2* + * -1.12 0.63 -0.89 0.82 -1.05 0.70 -1.00 0.74 

39 COOH** → CO2* + H* -0.55 0.35 -0.41 0.33 -0.56 0.27 -0.49 0.31 

40 COOH** → CO* + OH* -0.65 0.40 -0.64 0.40 -0.68 0.37 -0.66 0.40 

41 OH* + H* → H2O* + * -0.20 0.69 -0.15 0.68 -0.20 0.67 -0.18 0.69 

42 CH3CH3*→ CH3CH3 + *  -0.79 N/A -0.81 N/A -0.78 N/A -0.78 N/A 

43 CH2CH2**→ CH2CH2 + 2*  0.01 N/A -0.01 N/A 0.00 N/A 0.00 N/A 

44 H2O*→ H2O + *  -0.49 N/A -0.37 N/A -0.50 N/A -0.44 N/A 

45 CO2* → CO2 + *  -0.81 N/A -0.83 N/A -0.81 N/A -0.81 N/A 

46 CHCH*→ CHCH + *  1.16 N/A 1.17 N/A 1.14 N/A 1.15 N/A 

47 CO* → CO + * -1.19 N/A -1.27 N/A -1.24 N/A -1.25 N/A 

48 H2 + 2* → 2H* -0.58 N/A -0.61 N/A -0.60 N/A -0.61 N/A 
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Table 7.2 Equilibrium and forward rate constants for the elementary steps in the HDO of propanoic acid over Pd (111) model 

surfaces at a temperature of 473 K. 

 

 

  

Reaction 

# 

Gas Water Octane Butanol 

Keq kforward (s
-1

)  Keq kforward (s
-1

)  Keq kforward (s
-1

)  Keq kforward (s
-1

)  

0 8.98×10-11 9.52×107 4.45×10-10 9.52×107 8.46×10-11 9.52×107 3.68×10-10 9.52×107 

1 2.10×10-4 3.14×103 5.18×10-5 6.36×103 1.45×10-4 4.66×103 7.83×10-5 2.37×103  

2 1.39×101 3.04×106 1.30×102 2.08×107 2.17×101 3.75×106 2.59×101 4.87×106 

3 1.01×107 1.76×102 9.71×107 1.99×102 2.54×107 1.07×102 3.37×107 1.17×102 

4 6.05×10-1 1.34×104 2.76 6.66×104 7.41×10-1 9.57×103 9.90×10-1 1.35×104 

5 9.14×10-6 6.16×103 1.10×10-6 1.02×103 4.94×10-6 5.78×103 2.99×10-6 1.70×103 

6 5.81×103 8.43×106 1.87×103 8.74×106 4.96×103 3.70×106 3.87×103 4.41×106 

7 4.06 6.85 3.03 6.08 7.88 5.21 8.24 5.86 

8 8.58×108 2.03×102 5.22×109 1.66×102 2.28×109 2.04×102 2.75×109 1.98×102 

9 1.32×104 3.51×106 2.52×104 5.78×106 2.00×104 4.17×106 2.17×104 4.39×106 

10 1.33×103 8.80×106 2.68×103 3.82×107 1.11×103 6.29×106 1.33×103 1.05×107 

11 2.09×10-6 1.68 1.57×10-6 6.52 1.11×10-6 3.20 1.03×10-6 2.55 

12 4.16×10-1 3.31×103 2.15 1.57×104 4.58×10-1 3.40×103 7.55×10-1 5.52×103 

13 2.98×10-2 6.70×104 9.13×10-3 6.96×104 1.26×10-2 4.53×104 7.88×10-3 2.18×104 

14 3.95×1014 9.98×107 1.71×1015 1.15×108 1.03×1015 7.62×107 1.23×1015 8.07×107 
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15 3.52×108 2.91×104 1.57×109 3.59×104 1.61×109 3.08×104 1.74×109 3.22×104 

16 6.61×10-1 5.57×105 1.28 7.05×105 9.61×10-1 6.46×105 1.09 6.96×105 

17 3.32×10-6 4.33×101 9.37×10-7 1.35×101 2.33×10-6 4.77×101 1.48×10-6 1.95×101 

18 1.12×1012 8.65×1010 4.63×1012 3.07×1010 3.38×1012 7.58×1010 3.86×1012 6.36×1010 

19 4.76×10-4 8.33×102 2.65×10-4 4.63×102 4.96×10-4 6.37×102 4.14×10-4 6.02×102 

20 2.28 4.99×103 9.49×10-1 4.97×103 1.48 3.86×103 1.26 3.96×103 

21 3.39×104 1.73×108 6.28×104 2.10×108 4.21×104 1.99×108 4.72×104 2.05×108 

22 3.30×102 5.89×103 1.63×102 6.28×103 2.74×102 4.46×103 2.45×102 5.09×103 

23 5.46×102 1.94×107 8.06×102 3.68×107 7.86×102 2.73×107 8.41×102 3.19×107 

24 1.64×10-10 2.51×101 1.21×10-10 2.31×101 1.10×10-10 1.87×101 1.03×10-10 1.81×101 

25 1.95×10-2 5.46×103 6.75×10-3 3.93×103 1.50×10-2 4.65×103 1.24×10-2 4.62×103 

26 3.17×10-1 1.46×106 2.65×10-1 1.29×106 4.01×10-1 1.37×106 3.62×10-1 1.36×106 

27 6.40×104 3.26×108 3.61×104 5.39×108 5.30×104 3.74×108 4.80×104 4.10×108 

28 1.92×104 1.99×109 3.83×103 8.79×108 4.64×104 3.62×109 1.33×104 1.25×109 

29 1.08×10-2 1.13×10-2 4.28×10-3 5.41×10-2 4.29×10-3 1.25×10-2 3.88×10-3 1.57×10-2 

30 6.55×10-5 9.39×10-1 4.50×10-3 3.29×102 1.07×10-4 2.84 2.38×10-4 1.04×101 

31 9.04×10-2 3.95×104 1.33×10-1 1.11×104 2.29×10-1 5.08×104 1.22×10-1 1.89×104 

32 9.80×10-4 2.33×10-2 8.03×10-4 1.22×10-2 5.97×10-4 1.90×10-2 8.03×10-4 1.96×10-2 

33 8.49×103 1.05×103 1.41×102 3.13×102 2.66×103 7.34×102 1.32×103 5.81×102 
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34 6.23 8.87×103 4.27×101 1.11×105 1.89×101 2.40×104 3.02×101 4.54×104 

35 3.43×10-1 3.29×103 4.60 7.30×103 1.36 3.96×103 1.10 2.27×103 

36 1.47×106 2.84×103 2.19×106 4.52×103 6.88×105 1.58×103 9.46×105 1.72×103 

37 3.33×10-8 7.99×10-10 1.25×10-7 2.79×10-9 3.42×10-8 9.18×10-10 6.30×10-8 1.20×10-9 

38 9.13×1011 1.76×106 3.01×109 1.68×104 1.40×1011 3.60×105 4.66×1010 1.32×105 

39 7.28×105 1.63×109 2.16×104 3.18×109 9.49×105 1.45×1010 1.86×105 4.57×109 

40 8.00×106 4.84×108 7.13×106 5.36×108 1.89×107 1.23×109 1.02×107 5.54×108 

41 1.48×102 4.20×105 3.75×101 5.44×105 1.53×102 7.96×105 8.07×101 4.23×105 

42 2.44×10
8
 3.65×10

16
 4.54×10

8
 6.79×10

16
 1.94×10

8
 2.91×10

16
 2.12×10

8
 3.17×10

16
 

43 7.22×10
-1

 1.12×10
8
 1.17 1.81×10

8
 9.66×10

-1
 1.50×10

8
 9.53×10

-1
 1.48×10

8
 

44 1.73×10
5
 3.35×10

13
 9.36×10

3
 1.81×10

12
 2.12×10

5
 4.10×10

13
 4.54×10

4
 9.45×10

12
 

45 2.50×10
8
 3.24×10

16
 4.11×10

8
 5.32×10

16
 2.75×10

8
 3.56×10

16
 2.48×10

8
 3.21×10

16
 

46 1.60×10
-6

 9.98×10
-15

 1.30×10
-6

 8.09×10
-15

 2.73×10
-6

 1.70×10
-14

 2.10×10
-6

 1.31×10
-14

 

2
1
6
 



 

   

7.7 FIGURES 
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Figure 7.1. Network of elementary reaction steps considered in the hydrodeoxygenation of  propanoic acid over Pd (111). The 

elementary reactions which are involved in DCN mechanism are shown with the blue color arrows, DCX reactions are 

illustrated with the red color arrows, and those reaction which are involved in both of the mechanisms such as, 

dehydrogenation of propionaic acid and its derivatives, and removal of hydrocarbon pool are shown with the gray color 

arrows. 
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Figure 7.2. TOFs (s
-1

) for various elementary steps in the HDO of propanoic acid in absence of any solvents at a temperature 

of 473 K and a propanoic acid gas phase pressure of 1 bar and a hydrogen partial pressure of 1 bar or 0.001 bar (numbers 

inside the square brackets []).  All other reaction conditions are given in section 7.3.1. The elementary reactions which are 

involved in DCN mechanism are shown with the blue color arrows, DCX reactions are illustrated with the red color arrows, 

and those reactions which are involved in both of the mechanisms such as, dehydrogenation of propionaic acid and its 

derivatives, and removal of hydrocarbon pool are shown with the gray color arrows. The reactions that are involved in the most 

dominant pathway are illustrated with a double-line arrow. The TOFDCN was calculated to be 1.28×10
-6 

s
-1

 [2.11×10
-5 

s
-1

] while 

the TOFDCX was 2.26×10
-8 

s
-1 

[1.43×10
-7 

s
-1

] (TOFDCN/TOFDCX = 56.4 [148] ) 
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Figure 7.3. TOFs (s
-1

) for various elementary steps in the HDO of propanoic acid in the presence of liquid water at a 

temperature of 473 K and a chemical potential corresponding to a propanoic acid gas phase pressure of 1 bar and a hydrogen 

partial pressure of 1 bar or 0.001 bar (numbers inside the square brackets []).  All other reaction conditions are given in section 

7.3.1. The elementary reactions which are involved in DCN mechanism are shown with the blue color arrows, DCX reactions 

are illustrated with the red color arrows, and those reactions which are involved in both of the mechanisms such as, 

dehydrogenation of propionaic acid and its derivatives, and removal of hydrocarbon pool are shown with the gray color 

arrows. The reactions that are involved in the most dominant pathway are illustrated with a double-line arrow. The TOFDCN 

was calculated to be 3.00×10
-5 

s
-1

 [2.94×10
-4 

s
-1

] while the TOFDCX was = 6.21×10
-6 

s
-1

 [7.86×10
-5 

s
-1

] (TOFDCN/TOFDCX = 4.8 

[3.7] ) 
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Figure 7.4. TOFs (s
-1

) for various elementary steps in the HDO of propanoic acid in the presence of n-octane at a temperature 

of 473 K and a chemical potential corresponding to a propanoic acid gas phase pressure of 1 bar and a hydrogen partial 

pressure of 1 bar or 0.001 bar (numbers inside the square brackets []).  All other reaction conditions are given in section 7.3.1. 

The elementary reactions which are involved in DCN mechanism are shown with the blue color arrows, DCX reactions are 

illustrated with the red color arrows, and those reactions which are involved in both of the mechanisms such as, 

dehydrogenation of propionaic acid and its derivatives, and removal of hydrocarbon pool are shown with the gray color 

arrows. The reactions that are involved in the most dominant pathway are illustrated with a double-line arrow. The TOFDCN 

was calculated to be 1.64×10
-6 

s
-1

 [2.23×10
-5 

s
-1

] while the TOFDCX was 1.28×10
-7 

s
-1 

[1.14×10
-6 

s
-1

] (TOFDCN/TOFDCX = 12.8 

[19.6]) 
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Figure 7.5. TOFs (s
-1

) for various elementary steps in the HDO of propanoic acid in the presence of n-butanol at a temperature 

of 473 K, a chemical potential corresponding to a propanoic acid gas phase pressure of 1 bar and a hydrogen partial pressure of 

1 bar or 0.001 bar (numbers inside the square brackets []).  All other reaction conditions are given in section 7.3.1. The 

elementary reactions which are involved in DCN mechanism are shown with the blue color arrows, DCX reactions are 

illustrated with the red color arrows, and those reactions which are involved in both of the mechanisms such as, 

dehydrogenation of propionaic acid and its derivatives, and removal of hydrocarbon pool are shown with the gray color 

arrows. The reactions that are involved in the most dominant pathway are illustrated with a double-line arrow. The TOFDCN 

was calculated to be 5.12×10
-6 

s
-1

 [5.86×10
-5 

s
-1

] while the TOFDCX was 6.26×10
-7 

s
-1

 [6.76×10
-6 

s
-1

] (TOFDCN/TOFDCX = 8.2 

[8.7]) 
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CHAPTER 8 

 

EFFECTS OF SOLVENTS ON CATALYTIC HYDRODEOXYGENATION OF  

METHYL PROPIONATE 
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ABSTRACT 

 
 The effects of liquid water and 1,4-dioxane on the hydrodeoxygenation of methyl 

propionate over Pd (111) model surfaces have been studied from first principles. We 

developed a microkinetic model and studied the effects of solvents on the reaction 

mechanism in different reaction media. Our model predicts that for all reaction media, 

decarbonylation pathways are favored over decarboxylation pathways. However, in the 

presence of water, the decarboxylation mechanism was slightly facilitated due to the 

stabilizing effects of water on propionate and its dehydrogenated derivatives. The overall 

activity of 1,4-dioxane was higher than water. The kinetic parameters in the presence of 

1,4-dioxane are quite similar to gas-phase conditions, while in the presence of water they 

deviated.  Finally, a sensitivity analysis of our models suggests that both propanoyl-

methoxy type dissociations and dehydrogenation steps control the overall rate of the 

catalyst in all environments and are likely activity descriptors for the hydrodeoxygenation 

of organic esters. 
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Solvent effects; organic esters; methyl propionate; palladium; density functional theory; 

COSMO; decarbonylation; decarboxylation; microkinetic modeling 
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8.1 INTRODUCTION 

 
 Lipid-rich biomass feedstocks, such as vegetable oils, waste fats, and algal lipids 

are one potential class of raw materials for the production of green fuels. The content of 

lipid feedstock’s are oxygenates such as: triglyceride, fatty acid, and esters. The 

conversion of these molecules to liquid hydrocarbons, have been greatly investigated 

using hydrotreatment processes and conventional hydrodesulphurization catalysts such as 

sulfided NiMo/Al2O3 and CoMo/Al2O3.[47, 54, 59] However, considering the low level 

of sulfur in biomass and the higher activity of oxygenated feeds versus sulfide feeds, 

conventional hydrotreating catalysts display a short catalyst lifetime. Also, difficulties in 

the separation of carbon oxides from the recycle gas have been reported.[54, 59] In order 

to rationally design a catalyst for hydrodeoxygenation of fatty acids and esters, we 

previously investigated the kinetic and reaction mechanism of propionic acid[119, 158] 

and methyl propionate[202] under gas-phase conditions; however, as the industrial 

hydrotreatment processes often occurs in a complex liquid environment, our 

understanding of the mechanism cannot be completed without studying the solvent 

effects, as it can influence the kinetic of hydrodeoxygenation of organic acids and esters. 

Solvent effects in heterogeneous catalysis have been rationalized by correlating reaction 

rates and product distribution with polarity or dielectric constant and activity 

coefficient[237-240]. It has been observed that a polar solvent enhances the adsorption of 

the non-polar reactant, while a non-polar solvent enhances the adsorption of a polar 

reactant.[240-243] For example in competitive hydrogenation of acetone and 

cyclohexene, polar solvents enhanced the reaction rate of conversion of cyclohexene to 

cyclohexane while, presumably strong interaction between polar solvent and acetone in 
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the bulk reduced the adsorption of acetone.[241, 242] Similar behavior has been also 

reported for hydrogenation of 1-hexene and 2-methyl-3buten-2-ol over silica supported 

Pt[243] or hydrogenation of o-nitrotolene where the authors[244] were also able to 

correlate their reaction rates with the activity coefficients.  

 While solvent properties can qualitatively explain the changes in the kinetic of 

reactions or products distribution, much more work remains to be done to explain and 

characterize the solvent effects quantitatively. With recent developments in the 

application of density functional theory for characterization of the properties of 

molecules at heterogeneous interfaces, a better understanding of the interactions of 

solvent, intermediates, and catalyst surface is obtainable. The effects of solvent on the 

reaction parameters of the elementary reactions in a chemical process can be quantified 

using solvation models. We previously[232] developed a solvation scheme (iSMS) to 

implicitly investigate the properties of liquid/solid interfaces, and we utilized[157, 200] 

our solvation scheme to investigate the solvent effects on HDO of propionic acid over Pd 

catalysts. We found that while non-polar solvents such as octane do not change the 

kinetic of the HDO of propionic acid, polar solvents such as water can influence the 

mechanism to some level. For example, in water the overall activity was enhanced, and 

the turn over frequency of the decarboxylation pathway, which is not favored under gas-

phase condition, was significantly increased in the presence of water, and essentially 

become as competitive as decarbonylation pathway, the dominant mechanism.[157, 200] 

Considering that solvents can influence the activity and the mechanism of the reactions, 

to further investigate the catalytic HDO of organic esters,  in this study, we investigated 

the solvent effect on HDO of methyl propionate over Pd (111) surfaces in the presence of 
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water and 1,4-dioxane. In our studies[119, 157, 158, 200, 202] on HDO of methyl 

propionate and propanoic acid over Pd(111) under gas-phase condition, we found quite 

similar results where decarbonylation was the dominant mechanism, and H, CO, CH3C 

were the most abundant surface intermediates. Additionally, many of the reaction 

intermediates involved in the HDO of methyl priopionate are identical to intermediates 

involved in HDO of priopionic acid, and since we previously[157, 200] found that the 

polar solvents have more effects on these intermediates and the overall mechanism, in 

this study, we focused on investigation of a polar protic solvent, water, and a polar 

aprotic solvent, 1,4-dioxane. We investigated the effect of solvents on the 

adsorption/desorption energies, activation barriers, and reaction energies of elementary 

steps. We implemented the reaction parameters into a microkinetic model to study the 

effects of solvent, reaction conditions on the kinetics, and reaction mechanism of HDO of 

methyl propionate. 

 

8.2 METHODS 

 

8.2.1 SOLVATION MODEL 
 

 In this study, the approximate effect of a solvent is investigated with the help of 

the iSMS method.[232] iSMS is a new approach for modeling reactions at metal-liquid 

interfaces with implicit solvation models. More information about iSMS and a validation 

of this method has recently been published .[232] Basically, the free energy of an 

adsorbed intermediate on a periodic metal slab at the solid-liquid interface,

liquid

ermediatesurfaceG int , is defined  using a subtraction scheme 
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    (8.1) 

where, 
vacuum

ermediatesurfaceG int , is the free energy in the absence of a solvent (plane-wave DFT 

energy of the periodic slab model  including vibrational contributions to the free energy), 

liquid

ermediateclusterG int  is the free energy  of a metal cluster in the liquid (without explicitly 

considering vibrational contributions) constructed by removing selected metal atoms 

from the periodic-slab model and removing the periodic boundary conditions, and 

vacuum

ermediateclusterE int  is the DFT energy of the same cluster in the absence of the solvent. 

Combinations of COSMO and COSMO-RS[233, 234] implicit solvation models have 

been used to calculate
liquid

ermediateclusterG int .  COSMO-RS calculations have been performed 

using COSMOtherm.[235] Thermodynamic properties of the solvents are obtained from 

the COSMOtherm database, based on the results of quantum chemical COSMO 

calculations at the BP-TZVP level of theory. For all other structures, COSMO-RS input 

files have been generated from COSMO calculations at the same level of theory. We note 

that as a first approximation we did not include the solvent degrees of freedom in the 

reaction coordinate.  

 

8.2.2 DFT CALCULATIONS 

 Cluster model DFT calculations were carried out using TURBOMOLE 6.0.[116-

118] The Pd (111) cluster model surfaces have been modeled by a two layered cluster 

with a 55 surface. These structures were constructed by removal of the periodic 

boundaries from the periodic slabs that were obtained from our previous plane-wave  

(VASP)[107, 108] calculations.[119] All adsorbates were represented by all-electron  
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TZVP[120-122] basis sets while for Pd we used a relativistic small core potential (ECP) 

together with a basis set of same quality as the adsorbates for the valence electrons. The 

Coulomb potential was approximated with the RI-J approximation with auxiliary basis 

sets[123-125]. Single point energy calculations were performed with a self-consistent 

field energy convergence criterion of 1.010
-6

. Finally, for each cluster model energy 

calculations on various spin surfaces were performed to identify the lowest energy spin 

state for further calculations. 

 For cluster models in the liquid phase, COSMO calculations were performed on 

the same spin surface as for the vacuum cluster calculations. The dielectric constant was 

set to infinity to provide the input for the COSMO-RS calculations. For cavity 

construction, the default radii-based cavities were used.  

 

8.2.3 MICROKINETIC MODELING 

 For surface reactions, the forward rate constant (kfor) of each reaction is calculated 

as 

Tk

G

e
h

Tk
k B

‡

B

for





         (8.2) 

where kB is the Boltzmann constant, T denotes the reaction temperature, h is the Planck 

constant, and ∆G
‡ 

represents the free energy of activation for a specific temperature and 

reaction environment. I.e., in the presence of solvents, the free energy of activation 

(∆G
‡

solvent) and free energy of reaction (∆Grxn-solvent) were calculated as, 

)()(‡

Gas

‡

Solvent solvGsolvGGG ISTS 
,         (8.3) 

and                                  
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)()(Gassolvent-rxn solvGsolvGGG ISFS 
                (8.4) 

where, GIS(solv), GFS(solv), and GTS(solv) are the solvation energies of the initial, final, 

and transition states, respectively, that were obtained from the difference in energy of the 

COSMO-RS and gas-phase cluster calculations, and 
‡

GasG
and GasG

are the free energy 

of activation and  reaction under gas phase conditions, respectively. The reverse rate 

constant (krev) is calculated similarly from the thermodynamic equilibrium constant K is 

given as 

K

k
k for

rev 
          (8.5) 

 For an adsorption reaction A(g)+*→A*the  rate of adsorption is given by 

collision theory with a sticking probability of 1 independent of solvent. 

TkmN
k

BA2

1

0

for 

         (8.6) 

where N0 is the number of sites per area (1.478×10
19

 m
-2

) and mA denotes the molecular 

weight of A. The desorption rate constant is again given by the equilibrium constant, i.e., 

equation 8.5. 

 In the presence of a solvent, the free energy of adsorption for A(g)+*→A* is 

calculated as, 

)()(* solvGsolvGGG PdAgasadssolventads        (8.7) 

where gasadsG 
is the free energy of adsorption under gas phase conditions and 

)(* solvGA  and 
)(solvGPd  are as before the solvation energies of the adsorbed molecule A 

and Pd surface immersed in the solvent, respectively. 



235 

 

With the forward and reverse rate constants defined, rates of the elementary reactions can 

be expressed by mean-field rate laws. Considering that some of the adsorbed 

intermediates occupy multiple active sites (the number of occupied sites by each 

adsorbate is shown in Table1), the rate expressions and steady state molecular balance 

equations are highly nonlinear. To solve the set of steady state differential reactor 

equations and to obtain the surface coverages of the intermediates, we used the BzzMath 

library[115] developed by Buzzi-Ferraris. No assumptions were made regarding rate-

limiting steps. 

 

8.3 RESULTS AND DISCUSSIONS 

8.3.1 SOLVENT EFFECTS ON INTERMEDIATES ADSORPTION STRENGTH 

 The investigated intermediates in the network of reaction for HDO of methyl 

propionate are listed in Table 8.1. The 41 intermediates in Table 8.1 can be classified as 7 

different structural classes: Methyl propionate and its hydrogenated derivatives are 

CH3CH2COOCH3 such as, CH3CHCOOCH3, etc.; Propanoyl (CH3CH2CO) and its 

dehydrogenated intermediates such as CH3CHCO, etc. which are the product of 

propanoyl-methoxy type dissociations (CH3CH2CO—OCH3); Propionate (CH3CH2COO) 

and its intermediates such as, CH3CHCOO, etc.; Methanol (CH3OH) and its 

intermediates such as, methoxy, etc.; Ethane (CH3CH3) and its dehydrogenated 

derivatives such as, CH3CH2, etc. which are the products of C-C bond cleavages in the 

propanoyl (CH3CH2CO) class; Methane (CH4) and its dehydrogenated intermediates such 

as methyl (CH3) which are the product of propionate-methyl bond cleavages; COOCH3 

and COOCH2 which are the products of C-C bond cleavages in methyl propionate 
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(CH3CH2—COOCH3) or CH3CH2—COOCH2 . We will later show that the two latter 

groups do not participate in the dominant reaction mechanism, since C-C bond 

dissociation in methyl propionate, as well as propionate-methyl bond dissociations are 

less favored both thermodynamically and kinetically. Finally, there are small molecules 

or atoms such as, CO2, CO, and H. 

 The presence of solvent may vary the strength of the adsorption of all classes of 

intermediates due to adsorbate-solvent interactions or solvent-metal interactions. To 

investigate the effects of the presence of water and 1,4-dioxane on the adsorption strength 

of the intermediates involved in the HDO of methyl propionate, for all intermediates, we 

assumed adsorption processes in the absence and presence of solvents as, 

                                                             ( )   ( )    ( )                       (8.8)  

                                                              ( )   ( )    ( )                                       (8.9) 

and to measure the changes in the strength of adsorption in different reaction media, we 

calculated the effects of solvent on the free energy of adsorption of intermediates, 

    (      )         ( )        ( )      ( )     ( )     ( )    ( )       (8.10) 

where,       ( ) and        ( ) are the free energy of adsorption of a gas molecule of 

intermediate A in the presence and absence of solvent.    ( ) and    ( ) are the free 

energy of adsorbed A in the presence and absence of solvent, and similarly   ( ) and 

  ( ) are the free energy of the free active sites of the catalyst in the presence and 

absence of solvent. 

 We note that while the above adsorption/desorption process does take place for 

the stable reactants and products such as methyl propionate, ethane, methanol, CO, CO2, 

and H2, perhaps for unstable and unsaturated intermediates, this process does not occur, 
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because unstable intermediates may not exist in the gas-phase. However, with calculating 

the changes in the adsorption energy of all intermediates in the presence of solvents, we 

can gain an insight on the effects of solvent on the adsorbed intermediates and clean 

surface of the Pd. 

 We calculated changes in the free energy of adsorption in the presence of water 

and 1,4-Dioxane for all the intermediates in the HDO of methyl propionate (Table 8.1). 

As shown in Table 8.1, Methyl propionate adsorbs stronger in the presence of water and 

1,4-dioxane by 0.09 and 0.14 eV respectively. Similarly, the adsorption strength of other 

dehydrogenated species is enhanced in the presence of solvents. For example, in water, 

CH2CH2COOCH2 , CH3CHCOOCH2 , and CH3CH2COOCH2 adsorbs stronger by 0.17, 

0.13, and 0.12 eV respectively. Likewise, in the presence of 1,4-dioxane, adsorbed 

CH2CH2COOCH2 , CH2CHCOOCH2 , CH3CHCOOCH3 interacts stronger with the Pd 

surface by 0.10, 0.09 and 0.06 eV.  

 Propanoyl and its dehydrogenated derivatives such as CH3CHCO, CH2CH2CO are 

not affected remarkably in the presence of both water and 1,4-dioxane. Similarly, non-

polar hydrocarbons such as ethane, ethene, acethylene, methane, methyl and their 

dehydrogenated fragments are not affected by the presence of polar solvents.  

 However, propionate type species, such as, CH3CHCOO , and CH3CCOO , are 

the most affected species in both water and 1,4-dioxane. Propionate (CH3CH2COO) 

itself, is not significantly affected by solvents; however, for example CH3CHCOO , and 

CH3CCOO adsorbs stronger by 0.15 and 0.21 eV in water, and 0.07 and 0.12 in 1,4-

dioxane. Propionate type intermediates later go through C-C bond dissociation and form 

CO2 and consequently, are the important intermediates in the decarboxylation 
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mechanism. Considering that these intermediates were stabilized significantly, an 

increase in the activity of decarboxylation mechanism is expected. 

 Finally, CO adsorbs quite stronger in water by 0.08 eV and 0.07 eV in 1,4-

dioxane, and our model predicts that adsorbed H atoms adsorb stronger by just 0.01 eV in 

both water and 1,4-dioxane. 

 The overall effects of the changes in the stability of adsorbed intermediates on the 

kinetic of the HDO of methyl propionate, can be understood better by calculating the 

changes in the reaction parameters such as reaction energy and activation barrier. In the 

following section, we will explain the effects of solvents on elementary processes. 

 

8.3.2 SOLVENT EFFECTS ON REACTIONS 

 Uneven effects of solvent on the free energy of reactant and product states of an 

elementary reaction can change the free energy of reaction (∆Grxn) of that elementary 

step. Similarly, for reactions with reactant-like transition states we do not expect to see a 

change in the activation barriers; however, uneven changes in the free energy of reactant 

and transition states results in an alteration of the activation barrier. 

 The solvent effects on the free energy of activation and free energy of reaction for 

all elementary steps involved in the HDO of methyl propionate, at temperature of 473 K 

are presented in Table 8.2. 

 We previously[202] studied the network of reactions, shown in Table 8.2, under 

gas-phase conditions, where with the help of sensitivity analysis, we found out that the 

rate-controlling step are dehydrogenation steps such as, dehydrogenation of α-, β-, and 

methoxy-end carbons in methyl propionate (Step 3, 4, and 5 respectively), as well as 
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propanoyl-methoxy type dissociations such as, Step2 (CH3CH2COOCH3**  + 2*↔  

CH3CH2CO*** + CH3O* ) and Step 12 (CH2CHCOOCH3***  + 1* ↔  CH2CHCO*** 

+CH3O*). 

 In the previous section, we showed that some of the intermediates involved in the 

rate-controlling steps have been affected in the presence of water and 1,4-dioxane, and 

we expect some changes in the free energy of activation and reaction of rate-controlling 

steps that perhaps will affect the overall  kinetic of the reaction. Additionally, it is 

possible that in water or 1,4-dioxane, some reactions that are not kinetically important in 

the absence of solvent, become competitive and consequently, influential in the overall 

kinetic. 

 The free energy reaction and activation in methyl propionate dehydrogenation 

steps (Step 3-5), were not affected in the presence of water, since methyl propionate 

(reactant state), the dehydrogenated products, and transition states for these steps, are 

stabilized uniformly. However, in 1,4-dioxane, we showed that methyl propionate 

adsorbs stronger by 0.14 eV (Table 8.1), while the adsorption strength of its 

dehydrogenated intermediates such as CH3CHCOOCH3 , CH2CH2COOCH3 , and 

CH3CH2COOCH2 were enhanced by 0.06, 0.06, and 0.05 eV respectively. The unalike 

changes in the free energy of methyl propionate and its dehydrogenated derivatives 

resulted in an increase in the free energy of reaction for the dehydrogenation steps. For 

example, the ∆Grxn of the dehydrogenation of α-carbon (Step 3) increased by 0.07 eV , 

and the activation barrier of this step became greater by 0.08 eV. Dehydrogenation of β-

carbon (Step4) in the presence of 1,4-dioxane, is also less exothermic by 0.06 eV, and has 

a higher barrier by 0.05 eV. Similarly, the ∆Grxn and activation barrier of 
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dehydrogenation of the methoxy-end carbon (Step 5) have increased by 0.08 and 0.06 eV 

respectively. 

Propanoyl-methoxy type dissociations are also rate-controlling, and in these reactions, 

methyl propionate type reactants decompose to propanoyl-type reactants and methoxy 

(E.g. Step 2: CH3CH2COOCH3**  + 2*↔  CH3CH2CO*** + CH3O*) . We showed that 

methyl propionate and its derivative were stabilized in the presence of both water and 

1,4-dioxane, while propanoyl type intermediates were rarely affected by the presence of 

solvents. Additionally, methoxy is destabilized (adsorbs weaker on Pd surface) in the 

presence of water and 1,4-dioxane by 0.04 and 0.01 eV respectively. The overall changes 

show that the reactant states of Propanoyl-methoxy type dissociations is stabilized while 

the product states are destabilized which leads to an increase of the ∆Grxn  of these 

reactions. For example in water, the endergonicity of Step2 (CH3CH2COOCH3** + 2*↔ 

CH3CH2CO*** + CH3O* ) was increased by 0.17 eV , and its barrier became greater by 

0.01 eV. 

 Similarly, in 1,4-dioxane, this step has become more endergonic by 0.16 eV and 

the its activation barrier has increased by 0.10 eV. 

 The ∆Grxn of Step 12 (CH2CHCOOCH3*** + 1* ↔ CH2CHCO*** +CH3O*) in 

water, has increased by 0.09 eV, and its barrier became greater by just 0.01 eV. However, 

in 1,4-dioxane the ∆Grxn  was increased by just 0.04 eV, because, CH2CHCOOCH3 in 

water was more stabilized than 1,4-dioxane and additionally, methoxy of the product 

states is more destabilized in water. Overall, we can see in Table 8.2 that this trend stays 

the same for all propanoyl-methoxy type dissociation such as, Step 2, Step12, Step 17, 

Step 21, that are more affected in water than1,4-dioxane. 
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 The increase in the endergonicity and activation barriers of the rate-controlling 

steps, such dehydrogenation steps and propanoyl-methoxy type dissociations can lower 

the overall activity; while, in contrast, the stronger adsorption of methyl propionate in 

water and 1,4-dioxane can improve the activity. With the aim of a microkinetic model, 

the overall effects of these opposite changes on the turnover frequencies and reaction 

mechanism are discussed in the section 8.3.3. 

 Finally, we see that dehydrogenation of propionate to CH3CHCOO and eventually 

CH3CCOO (Step 61 and Step 63) are facilitated significantly both in water and 1,4-

dioxane. For example, The activation barrier of Step 61 is decreased by 0.24 eV, and its 

exergonicity increased by 0.17 eV. Similarly, the ∆Grxn  of this step decreased by 0.05 eV 

and its barrier was lowered by 0.09 eV in 1,4-dioxane. These steps play an important role 

in the decarboxylation mechanism, as propionate and its dehydrogenated derivatives will 

finally go through C-C bond cleavage to form CO2. However, our previous results 

suggests that decarboxylation mechanism are not the dominant mechanism, since the 

propionate-methyl type bond dissociations which are the most important step in the DCX 

mechanism, are very difficult and have a remarkably higher barrier than propanoyl-

methoxy bond dissociations which are the essential reaction for decarbonylations. 

Consequently, even though further activation of propionate is facilitated on the Pd 

surface, probably reaction will not proceed via production of propionate, and 

consequently, we do not expect that Step 61 or 63 become influential in the kinetic. 
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8.3.3 MICROKINETIC MODEL 

 We previously[202] developed a mean-field microkinetic model for the reaction 

mechanism of HDO of methyl propionate over Pd (111) model surface under gas-phase 

conditions. In this study, we have developed a similar mean-field microkinetic model for 

the HDO of methyl propionate over Pd (111) model surfaces in the presence of 1,4-

dioxane and water and under the reaction conditions equivalent to the conditions of our 

previous study. All calculations were carried out at 473 K and partial pressures of 

propionic acid and H2 of 0.01 and 0.2 bar, respectively.[159]  The partial pressures of 

CO2, and CO were set to 0.001 bar which corresponds to approximately 10% conversion.  

It is noted that our results and conclusions seem to be insensitive to the reaction 

conditions.  Next, we note that a method similar to Grabow et al.[146] was used for 

determining coverage dependent adsorption energies of CO, H, and CH3C.  More details 

about the lateral interactions used in the microkinetic model for this study can be found in 

the supporting information of our previously published paper. 

 In the absence of solvent, we found out that the most abundant surface 

intermediates were adsorbed hydrogen, CO, and CH3C with surface coverages of 67%, 

20%, and 7% respectively (the free site coverage is 6%).  The overall TOF was calculated 

to be 3.42×10
-7

 s
-1

. Decarbonylation was identified to be the dominant mechanism 

(dominant pathway: 

CH3CH2COOCH3CH3CHCOOCH3CH2CHCOOCH3CH2CHCO+OCH3…CH

3CH3+CO+CH3OH), and the TOF of decarboxylation pathways were at least 3 orders of 

magnitude smaller than decarbonylation pathways. A schematic of our previous result is 
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shown in Figure 8.1, and TOFs of all elementary steps in the presence and absence of 

solvents are presented in Table 8.3. 

The calculated rate constants and turnover frequency of all elementary steps in the HDO 

of methyl propionate over Pd (111) model surfaces, in the absence and presence of 

solvents are presented in Table 8.3 and 8.4. 

 

LIQUID WATER EFFECTS: 

 The overall turnover frequency was calculated to be 1.64×10
-8

 s
-1 

which is an 

order of magnitude smaller than the gas-phase TOF (3.42×10
-7

 s
-1

). In the most dominant 

pathway, methyl propionate goes through dehydrogenation of α-, and β-carbon to form 

CH2CHCOOCH3. CH2CHOOCH3 will go through C-O bond dissociation to form 

CH2CHO and methoxy (CH3O). Next, methoxy gets hydrogenated to methanol and 

CH2CHO goes through hydrogenation and finally C-C cleavage to form C2 hydrocarbons 

and CO 

(CH3CH2COOCH3CH3CHCOOCH3CH2CHCOOCH3CH2CHCO+OCH3…C

H3CH3+CO+CH3OH). This pathway is identical to the dominant pathway in the absence 

of water. A schematic of the TOFs of the important reaction pathways in the presence of 

water is shown in Figure 8.1.  

The most abundant surface intermediates were hydrogen, CO, and CH3C with surface 

coverages of 70%, 19%, and 10% respectively.  

 The decrease in the rate of the reaction in the presence of water can be explained 

by not only the fact that some of the rate-controlling steps are inhibited in water, but also 

the decrease in the availability of free sites. We saw that adsorption strength of single 
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hydrogen atom was barely affected in the presence of water, while according to Table 

8.1, CO is stabilized by 0.07 eV. One at first might expect an increase in the coverage of 

CO and decrease in the coverage of H. In contrast, our results show that the coverage of 

H is increased by 3% and the coverage of CO slightly decreased to 19% (from 20% in the 

absence of solvent). Additionally, the coverage of CH3C is increased to 10%  (from 7% 

in the absence of water).  The increase in the coverage of CH3C was expected, since the 

formation of CH3C was enhanced due to increase in the exergonicity of Step 37 

(CH3CCO***  ↔  CH3C* + CO* + 1*) by 0.06 eV in water . The opposite behavior of H 

and CO can be explained by the fact that adsorption energy of these intermediates is 

dependent on the coverage of these intermediates and other surface abundant 

intermediates. We note that Table 8.1 shows the adsorption energy of single 

atoms/molecules; however, the adsorption energy of surface abundant intermediates is 

different than single adsorbates due to lateral interactions between adsorbed molecules. 

Our previous adsorption energy analysis for coverage dependent intermediates shows that 

there are attractive interactions between CH3C and H while there are repulsive forces 

between CH3C and CO. As the result of attractive forces between H and CH3C, an 

increase in the coverage of CH3C, makes the adsorption of hydrogen more favored 

thermodynamically and that’s why the coverage of H was increased. However, due to 

repulsive interactions between CO and CH3C the coverage of CO molecules was not 

increased. 

 Finally, in the presence of water, DCN mechanism is the dominant mechanism. In 

the absence of water the ratio of the TOF of the dominant decarboxylation pathway 

(CH3CH2COOCH3CH3CH2COOCH2 
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CH3CH2COO+CH2…CH3CH3+CO2+CH4) to the overall TOF was 0.001, but  as we 

expected due to facilitation of dehydrogenation of propionate and its derivative, 

decarboxylation pathway are now more competitive and this ratio in the presence of 

water was increased to 0.013. However, it shows that the TOF of decarboxylation 

mechanisms are still 2 orders of magnitude smaller than decarbonylation pathways. 

 

LIQUID 1,4-DIOXANE EFFECTS: 

 The overall turnover frequency of the HDO of methyl propionate over Pd (111) in 

the presence of 1,4-dioxane was calculated to be 2.86×10
-7

 s
-1

.  The most abundant 

surface intermediates were hydrogen, CO, and CH3C with surface coverages of 66%, 

21%, and 8% respectively, and the coverage of free sites was 4%.  

A schematic of the TOFs of the important reaction mechanisms in the presence of 1,4-

dioxane is shown in Figure 8.2. The dominant reaction mechanism is the same as gas-

phase and water 

(CH3CH2COOCH3CH3CHCOOCH3CH2CHCOOCH3CH2CHCO+OCH3…C

H3CH3+CO+CH3OH). The TOF in 1,4-Dioxane is an order of magnitude larger than 

water which emphasizes that, perhaps stronger adsorption of methyl propionate in 

dioxane, as well as a lesser increase in the endergonicity and activation barriers of 

propanoyl-methoxy bond dissociation led to a higher activity in dioxane. The solvent 

effects on the elementary reactions were more significant in water which led to a 

remarkable deviation from the gas-phase.  

 Finally, as we explained in section, in 1,4-dioxane , influential reactions in the 

DCX mechanism, such as dehydrogenation of propionate or CH3CHCOO (Step 61and 
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63) were less facilitated thermodynamically; hence,  in contrast to water, the TOF of 

DCX mechanism was not increased remarkably, and the ratio of the TOF of the most 

dominant DCX mechanism to the overall TOF in 1,4-dioxane was calculated to be 0.004. 

This ratio in the presence of water and absence of solvent was 0.013 and 0.004 

respectively.  

 

8.3.4 APPARENT ACTIVATION BARRIER, REACTION ORDERS, AND SENSITIVITY 

ANALYSIS 
 

ABSENCE OF SOLVENT: 
 

 The following information for the apparent activation barrier, reaction orders and 

sensitivity analysis of the HDO of methyl propionate over Pd (111) in the absence of 

water and 1,4-dioxane, have been thoroughly discussed in our previous work. However, 

in order to investigate the effects of solvents on these kinetic parameters, we briefly 

present the gas-phase information and compare them with the results of water, and 1,4-

dioxane.  

 The apparent activation barrier was computed in the temperature range of 423 to 

523 K. 
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 In the absence of solvent, our model predicts an apparent activation energy of 

1.01 eV.  

 The reaction order with respect to hydrogen was calculated at 473 K in the range 

of 0.05 to 0.4 bar. Similarly, the reaction order of methyl propionate and CO were 
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calculated at 473 K and a pressure range of 0.005 to 0.1 bar and 0.0001 to 0.1 bar, 

respectively. 
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 Reaction order with respect to methyl propionate was calculated to be +1.0, which 

can be explained by the small methyl propionate coverage in our model.  The reaction 

order with respect to CO is -0.49.  Finally, the reaction order of H2 is -0.07, which 

indicates that under the investigated reaction conditions the hydrogen coverage is 

balanced with the free site coverage such that the dehydrogenation rates prior to 

decarbonylation are balanced with the hydrogenation processes required for desorption of 

the reaction products. 

 To understand the sensitivity of our model and to determine rate controlling steps 

and intermediates in the mechanism, we computed Campbell’s degrees of rate and 

thermodynamic control,[147-149, 245] XRC and XTRC.   
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where r is the overall rate of reaction, ki is the forward rate constant for step i, Ki 

equilibrium constant for step i, R is the gas constant, T denotes the reaction temperature, 

and Gn
0
 is the free energy of adsorbate n. We note that that the degree of rate control for a 

single rate-determining step in a reaction mechanism is one; and, for transition and 

intermediate states that do not influence the overall activity, the degrees of 

thermodynamic and rate control are zero. The most controlling steps were identified to be 
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propanoyl-methoxy type bond dissociation and dehydrogenation of α-, β-, and methoxy-

end carbons of methyl propionate. Reaction 2 (CH3CH2COOCH3** + 2*↔ 

CH3CH2CO*** + CH3O*), propanoyl-methoxy dissociation, is the most rate-controlling 

C-O bond dissociation step with the XRC of 0.17. Additionally, Reaction 12 

(CH2CHCOOCH3*** + 1* ↔ CH2CHCO*** +CH3O*) and Reaction 28 

(CH3CH2COOCH2*** + 3* ↔ CH3CH2CO*** + OCH2***) are also rate-controlling 

with the XRC of 0.09 and 0.02 respectively, such that the sum of C-O rate-control is 0.28.  

Dehydrogenation of the α-carbon of methyl propionate (Reaction 2) is the most rate-

controlling dehydrogenation step with an XRC of 0.35. Dehydrogenation of the methoxy-

end carbon of methyl propionate (Reaction 5) has an XRC of 0.19, and finally, 

dehydrogenation of the β-carbon of methyl propionate (Reaction 4) and also 

dehydrogenation of the β-carbon of CH3CHCOOCH3*** (Reaction 8: 

CH3CHCOOCH3***  + 1* ↔ CH2CHCOOCH3*** + H*) have a XRC of 0.05 and 0.03 

respectively. 

 

LIQUID WATER 

 

 In the presence of water, our model predicts an apparent activation energy of 2.40 

eV for the HDO of methyl propionate over Pd (111) model surfaces. In the absence of 

water, the apparent activation barrier was calculated to be 1.01 eV. In both the presence 

and absence of water, the apparent activation barrier is higher than the activation barrier 

of the rate-controlling steps which are in the range of 0.8 to 0.9 eV. This can be explained 

with a crowded surface that becomes less crowded at higher temperatures, leading to a 

further increase in the reaction rate. Considering that in the presence of water, surface is 
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even more crowded with hydrogen and CH3C, the apparent activation energy is 

significantly higher than gas-phase condition. 

 In the presence of water our model still predicts a reaction order of +1.0 with 

respect to methyl propionate. This can be expected due to endergonicity of adsorption of 

methyl propionate, (∆Gads-water= 0.36) and consequently, week adsorption and low 

coverage of methyl propionate on Pd. Reaction order with respect to CO was calculated 

to be -0.19. This value in the absence of water was -0.49 which emphasizes that in water, 

the poisoning effects of CO was reduced. We also previously showed that in the presence 

of water, the coverage of CO slightly decreased. In the absence of water, the reaction 

order with respect to hydrogen was -0.07. Due to an increase in the errors/noises in our 

model at very small values of TOFs in water (~10
-20

- 10
-8

 s
-1

), we were not able to obtain 

a converged value for the reaction order of H2. However, we expect that the reaction 

order of hydrogen in water to be even more negative than the gas-phase value, -0.07, 

because, in the presence of water, the coverage of hydrogen was increased to 70%, and 

due to abundance of hydrogen, a smaller reaction order of hydrogen is expected.  

 The rate-controlling steps in the presence of water are still dehydrogenation steps, 

as well as, propanoyl-methoxy type dissociation. However, the values of the degree of 

rate control of these steps, which indicates the importance of a step in the overall kinetic, 

were altered in water.  

 For the convenience in comparison with gas-phase values, in the following the 

degrees of rate control of controlling steps in gas-phase are shown in [ ] next to the water 

values. 
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 The rate-controlling dehydrogenation steps in water are Step 3 

(CH3CH2COOCH3**  + 2* ↔  CH3CHCOOCH3*** + H*) with XRC of 0.14 [0.35], Step 

4 (CH3CH2COOCH3**  + 2* ↔  CH2CH2COOCH3*** + H*) with XRC of 0.04 [0.05], 

and Step5 (CH3CH2COOCH3**  + 2* ↔  CH3CH2COOCH2*** + H*) with XRC of 0.07 

[0.19]. Clearly, in the presence of water, the importance of the dehydrogenation steps in 

the kinetic and activity of HDO of methyl propionate was decreased significantly. This 

can be explained by the fact that the propanoyl-methoxy type dissociations were inhibited 

in water, and the activity of methyl propionate in water is more limited by activation of 

propanoyl-methoxy type C-O bond dissociation than dehydrogenation steps.  

 Degree of rate-control analysis also confirms that propanoyl-methoxy type 

dissociations are more influential in water. Step 2 (CH3CH2COOCH3**  + 2*↔  

CH3CH2CO*** + CH3O*) has an XRC of 0.21 [0.17]. The XRC of Step12 

(CH2CHCOOCH3***  + 1* ↔  CH2CHCO*** +CH3O*) was calculated to be 0.23 

[0.09], and finally Step 28 (CH3CH2COOCH2***  + 3* ↔  CH3CH2CO*** + OCH2***) 

has the XRC of 0.13 [0.02]. 

 Finally, the degree of thermodynamic rate-control for CO was calculated to be -

0.20 [-0.57] which indicates that the CO is less important in the overall activity and 

perhaps, hydrogen, is limiting the activity due to higher coverage on the surface. 

However, due to the same reason explained for calculation of hydrogen reaction order, 

we were not able to calculate the degree of thermodynamic rate-control of H. 
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LIQUID WATER 

 

 In contrast to water, 1,4-dioxane shows a very similar activity to gas-phase 

condition. In the presence of 1,4-dioxane, dehydrogenation steps were inhibited (Section 

8.3.3) and the propanoyl-methoxy type dissociations were not affected as significant as 

water. Consequently, the overall kinetic is limited by the dehydrogenation step. For 

example, dehydrogenation steps such Step 3 (CH3CH2COOCH3**  + 2* ↔  

CH3CHCOOCH3*** + H*), Step 4 (CH3CH2COOCH3**  + 2* ↔  CH2CH2COOCH3*** 

+ H*), and Step5 (CH3CH2COOCH3**  + 2* ↔  CH3CH2COOCH2*** + H*) have the 

XRC of 0.29 [0.34], 0.07 [0.05], and 0.18 [0.19] respectively (the numbers in the [ ] are 

the XRC values in the absence of solvent). 

 Additionally, propanoyl-methoxy type dissociations such as Step 2 

(CH3CH2COOCH3**  + 2*↔  CH3CH2CO*** + CH3O*) , Step12 (CH2CHCOOCH3***  

+ 1* ↔  CH2CHCO*** +CH3O*), and Step 28 (CH3CH2COOCH2***  + 3* ↔  

CH3CH2CO*** + OCH2***) have the XRC of 0.10 [17], 0.09 [0.12], and 0.04[0.02] 

respectively. 

  We see that in the presence of 1,4-dioxane, similar to gas-phase condition, 

dehydrogenation steps are more kinetically influential than C-O bond dissociations, and 

overall, the important parameters in the kinetic are very similar in presence and absence 

of 1,4-dioxane. 

 Similar to gas-phase and water results, the reaction order with respect to methyl 

propionate was calculated to be +1.0, while the reaction orders of CO and H2 were 

predicted to be -0.48 [ -0.49], and -0.11 [0.07] which are very similar to the results for the 
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absence of solvent.  Additionally, an apparent activation energy of 1.49 eV was obtained 

in the presence of 1,4-dioxane. 

 Finally, the XTRC of CO and H shows also a similar trend to the gas-phase, where 

CO with XRC of -0.75 is one of the influential intermediates in the activity while 

stabilizing or destabilizing adsorbed H atoms does not change the overall TOF 

remarkably as the XRC of this intermediate is -0.05. We note that while the trend of the 

thermodynamic degrees of rate-control in1,4-dioxane is very similar to gas-phase results, 

it is in contrast with water results where adsorbed H plays a more important role in the 

activity and CO is less influential. 

 

8.4. CONCLUSION 

 

 The effects of water and 1,4-dioxane on the hydrodeoxygenation of methyl 

propionate was investigated over Pd (111) model surfaces. The effects of solvent on the 

adsorption strength of intermediates, and also reaction parameters of elementary steps 

were quantified by using an implicit solvation scheme, and a microkinetic model was 

developed to study the reaction mechanism in different reaction media. The overall 

activity of 1,4-Dioxane was higher than water. Decarbonylation mechanism was 

identified to be the most dominant mechanism in all reaction media; however, in the 

presence of water, propionate and its hydrogenated derivatives that are the key 

intermediates of decarboxylation mechanism were stabilized and consequently, 

decarboxylation mechanism was slightly facilitated. CH3C, H, and CO were the most 

abundant surface intermediates in all reaction environments. In water, the coverage of 

hydrogen was increased which resulted in a decrease in the coverage of free sites and 
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consequently, a lower turnover frequency. In both the presence and absence of solvents, 

dehydrogenation steps, as well as propanoyl-methoxy type dissociations were identified 

as the rate-controlling steps. In water, propanoyl-methoxy type dissociations have 

become more endergonic and their activation barriers were increased, and as a result, the 

overall activity was more limited by propanoyl-methoxy dissociations, and the 

importance of the dehydrogenation steps was diminished.  In contrast, in 1,4-dioxane, and 

under gas-phase condition, dehydrogenation steps were more rate-controlling than 

propanoyl-methoxy type dissociations.  
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8.6. TABLES 
 

Table 8.1. Effects of water and 1,4-dioxane on the adsorption strength of intermediates in 

the HDO of methyl propionate over Pd (111) model surfaces at a temperature of 473 K. 

∆(∆G) is the difference in the adsorption free energy of intermediate A,  in the presence 

( ( )   ( )    ( ))and absence of solvents ( ( )   ( )    ( )). 

 

Reaction 
Water 1,4-Dioxane 

∆(∆G) ∆(∆G) 

CH3CH2COOCH3**  
-0.09 -0.14 

CH3CHCOOCH3*** 
-0.08 -0.06 

CH3CH2COOCH2*** 
-0.12 -0.05 

CH2CH2COOCH3***  
-0.09 -0.06 

CH2CHCOOCH3***   
-0.09 -0.05 

CH3CHCOOCH2*** 
-0.13 -0.06 

CH2CH2COOCH2*** 
-0.17 -0.10 

CH2CHCOOCH2**** 
-0.17 -0.09 

CHCHCOOCH3**** 
-0.11 -0.06 

CH3CH2CO***   
0.04 0.00 

CH3CHCO*** 
-0.01 -0.01 

CH2CH2CO***   
0.00 0.00 

CH3CCO*** 
-0.02 -0.02 

CH2CHCO*** 
-0.03 -0.02 

CHCHCO**** 
-0.04 -0.01 

CH3CH2COO** 
0.01 -0.03 

CH3CHCOO*** 
-0.15 -0.07 

CH3CCOO*** 
-0.21 -0.12 

CH3OH* 
-0.07 -0.06 

CH3O* 
0.04 0.01 

CH2O*** 
-0.03 -0.02 
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CHO*** 
0.01 0.01 

COOCH3***   
-0.05 -0.03 

COOCH2****   
-0.02 -0.02 

CH3CH3* 
0.03 0.00 

CH3CH2* 
0.03 0.01 

CH3CH** 
0.00 0.00 

CH2CH2** 
0.02 0.01 

CH2CH*** 
0.00 0.00 

CH3C*** 
0.00 -0.01 

CH2C** 
-0.02 -0.01 

CHCH*** 
-0.02 0.00 

CH4* 
0.04 0.02 

CH3* 
0.03 0.02 

CH2** 
0.02 0.02 

CO* 
-0.08 -0.07 

CO2* 
0.02 0.00 

H* 
-0.01 -0.01 

OH* 
-0.05 -0.03 

H2O* 
-0.12 -0.07 

 

 

 



 

   

Table 8.2. Reaction free energies in eV for all elementary reaction steps in the hydro-deoxygenation of methyl propionate over 

Pd (111) model surfaces at a temperature of 473 K,  in the presence and absence of water and 1,4-dioxane.  

 

 
Reaction 

Gas Water 1,4-Dioxane 

∆Grxn ∆G
‡ 

∆Grxn ∆G
‡ 

∆Grxn ∆G
‡ 

1 
CH3CH2COOCH3** + 1* ↔  CH3CH2COO** + CH3*   

-0.47 1.57 -0.35 1.55 -0.35 1.61 

2 
CH3CH2COOCH3**  + 2*↔  CH3CH2CO*** + CH3O*   

0.20 0.79 0.37 0.80 0.35 0.89 

3 
CH3CH2COOCH3**  + 2* ↔  CH3CHCOOCH3*** + H* 

-0.02 0.74 -0.02 0.74 0.05 0.82 

4 
CH3CH2COOCH3**  + 2* ↔  CH2CH2COOCH3*** + H* 

0.16 0.84 0.14 0.80 0.22 0.89 

5 
CH3CH2COOCH3**  + 2* ↔  CH3CH2COOCH2*** + H* 

0.09 0.78 0.05 0.75 0.17 0.84 

6 
CH3CHCOOCH3***  + 1* ↔  CH3CHCOO*** + CH3* 

-0.04 1.63 -0.08 1.58 -0.03 1.61 

7 
CH3CHCOOCH3***  + 1* ↔  CH3CHCO*** + CH3O* 

0.24 0.74 0.35 0.80 0.30 0.78 

8 
CH3CHCOOCH3***  + 1* ↔  CH2CHCOOCH3*** + H* 

-0.43 0.50 -0.46 0.46 -0.44 0.49 

9 
CH3CHCOOCH3***  + 1* ↔  CH3CHCOOCH2*** + H* 

0.03 0.80 -0.04 0.75 0.01 0.79 

10 
CH2CHCOOCH3***  + 2* ↔  CH2CHCOOCH2**** + H* 

0.18 0.99 0.08 0.91 0.13 0.97 

11 
CH2CHCOOCH3***  + 2* ↔  CHCHCOOCH3**** + H* 

0.07 0.87 0.03 0.82 0.05 0.84 

2
5
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12 
CH2CHCOOCH3***  + 1* ↔  CH2CHCO*** +CH3O*  

0.37 0.91 0.46 0.92 0.41 0.92 

13 
CH3CHCOOCH2***  + 2* ↔  CH2CHCOOCH2**** + H* 

-0.28 0.43 -0.33 0.42 -0.32 0.44 

14 
CH3CHCOOCH2***  + 3* ↔  CH3CHCO*** + OCH2*** 

-0.24 0.46 -0.15 0.52 -0.21 0.49 

15 
CHCHCOOCH3****  + 2* ↔  CHCH*** + COOCH3*** 

-0.10 0.90 -0.02 0.89 -0.06 0.88 

16 
CH2CHCOOCH2**** + 3* ↔  CH2CH*** + COOCH2**** 

-0.04 0.95 0.07 0.99 0.02 0.97 

17 
CH2CHCOOCH2****  + 2* ↔  CH2CHCO*** + OCH2*** 

-0.27 0.41 -0.16 0.44 -0.22 0.43 

18 
CH2CH2COOCH3***  + 1* ↔  CH2CHCOOCH3*** + H* 

-0.61 0.38 -0.62 0.36 -0.61 0.38 

19 
CH2CH2COOCH3***  + 1* ↔  CH2CH2COOCH2*** + H* 

0.09 0.91 0.00 0.86 0.04 0.90 

20 
CH2CH2COOCH3***  + 2* ↔  CH2CH2** + COOCH3*** 

-0.43 1.03 -0.34 1.04 -0.37 1.04 

21 
CH2CH2COOCH3***  + 1* ↔  CH2CH2CO*** + CH3O* 

0.20 0.62 0.33 0.67 0.27 0.66 

22 
CH2CH2COOCH2***  + 1* ↔  CH2CHCOOCH2**** + H* 

-0.52 0.66 -0.54 0.65 -0.52 0.66 

23 
CH2CH2COOCH2***  + 3* ↔  CH2CH2** +COOCH2**** 

-0.63 0.89 -0.50 0.96 -0.55 0.94 

24 
CH2CH2COOCH2***  + 3* ↔  CH2CH2CO*** + OCH2*** 

-0.37 0.27 -0.24 0.33 -0.29 0.32 

25 
CH3CH2COOCH2***  + 1* ↔  CH3CHCOOCH2*** + H* 

-0.08 0.60 -0.11 0.62 -0.11 0.60 
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26 
CH3CH2COOCH2***  + 1* ↔  CH2CH2COOCH2*** + H* 

0.16 0.96 0.09 0.92 0.09 0.94 

27 
CH3CH2COOCH2***  + 1* ↔  CH3CH2COO** + CH2**  

-0.60 0.67 -0.46 0.70 -0.57 0.67 

28 
CH3CH2COOCH2***  + 3* ↔  CH3CH2CO*** + OCH2***  

-0.37 0.21 -0.24 0.26 -0.34 0.23 

29 
CH3CH2CO***  + 1* ↔  CH3CHCO*** + H*  

0.05 0.86 -0.01 0.79 0.02 0.85 

30 
CH3CH2CO***  ↔  CH3CH2* +  CO* + 1* 

-0.63 1.02 -0.72 1.01 -0.68 1.03 

31 
CH3CHCO*** + 1* ↔  CH2CHCO*** + H* 

-0.31 0.49 -0.35 0.43 -0.33 0.48 

32 
CH3CHCO*** ↔  CH3CH** + CO* 

-0.83 0.98 -0.90 0.99 -0.88 0.98 

33 
CH3CHCO***  + 1* ↔  CH3CCO*** + H* 

-0.38 0.54 -0.40 0.52 -0.40 0.53 

34 
CH2CHCO***  + 1* ↔  CH2CH*** + CO* 

-0.73 0.80 -0.79 0.80 -0.78 0.80 

35 
CH2CHCO*** + 2* ↔  CHCHCO**** + H* 

0.00 0.68 -0.01 0.68 0.00 0.69 

36 
CHCHCO**** ↔  CHCH*** + CO* 

-1.11 0.59 -1.16 0.63 -1.16 0.60 

37 
CH3CCO***  ↔  CH3C* + CO* + 1* 

-1.41 0.45 -1.47 0.44 -1.46 0.45 

38 
CH2CH2CO***  ↔  CH2CH2** + CO* 

-1.25 0.73 -1.31 0.72 -1.30 0.71 

39 
CH2CH2CO***  + 1* ↔  CH2CHCO *** + H* 

-0.44 0.69 -0.48 0.66 -0.47 0.68 
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40 
COOCH3***  + 2* ↔  COOCH2*** + H* 

-0.12 0.64 -0.16 0.61 -0.13 0.64 

41 
COOCH3***  ↔  CO* + CH3O* + 1* 

-0.62 0.54 -0.65 0.57 -0.65 0.55 

42 
COOCH3***  ↔  CO2* + CH3* + 1* 

-0.48 1.48 -0.41 1.40 -0.44 1.46 

43 
COOCH2****  ↔  CO* + OCH2*** 

-0.96 0.26 -1.02 0.24 -1.02 0.25 

44 
COOCH2****  ↔  CO2* + CH2** + 1* 

-0.38 0.89 -0.29 0.86 -0.34 0.87 

45 
CHCH*** + H*  ↔  CH2CH*** + 1* 

0.29 0.82 0.31 0.84 0.30 0.83 

46 
CH2CH*** ↔  CH2C** + H* 

-0.42 0.45 -0.45 0.44 -0.44 0.44 

47 
CH2C**+H* ↔  CH3C** + 2* 

-0.27 0.87 -0.24 0.87 -0.26 0.87 

48 
CH2CH*** + H*  ↔  CH2CH2** + 2* 

-0.07 0.87 -0.04 0.87 -0.05 0.88 

49 
CH2CH*** + H*  ↔  CH3CH** + 2* 

0.22 0.79 0.23 0.78 0.24 0.79 

50 
CH3C*** + H*  ↔  CH3CH** + 2* 

0.96 1.17 0.97 1.17 0.98 1.18 

51 
CH3CH** + H*  ↔  CH3CH2* + 2* 

0.15 0.82 0.20 0.84 0.18 0.83 

52 
CH2CH2** + H*  ↔  CH3CH2* + 2* 

-0.44 0.45 -0.42 0.43 -0.43 0.43 

53 
CH3CH2* + H*  ↔  CH3CH3* + 1* 

-0.03 0.60 -0.02 0.61 -0.03 0.61 
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54 
CH3O* + 3*  ↔  CH2O*** + H* 

-0.46 0.47 -0.54 0.43 -0.50 0.46 

55 
CH2O*** + 1*  ↔  CHO*** + H* 

-0.85 0.56 -0.83 0.58 -0.83 0.58 

56 
CHO*** ↔  CO* + H* + 1* 

-1.41 0.08 -1.50 0.09 -1.50 0.08 

57 
CH3O* + H*  ↔  CH3OH* + 1* 

0.12 0.69 0.02 0.65 0.06 0.68 

58 
CH2** + H*  ↔  CH3* + 2* 

0.02 0.75 0.04 0.76 0.03 0.76 

59 
CH3* + H*  ↔  CH4* + 1* 

-0.15 0.55 -0.12 0.56 -0.13 0.56 

60 
CH3CH2COO** ↔  CH3CH2* + CO2*  

0.16 1.37 0.20 1.31 0.21 1.35 

61 
CH3CH2COO** + 2* ↔  CH3CHCOO*** + H* 

0.44 1.28 0.26 1.04 0.39 1.19 

62 
CH3CHCOO*** + ↔  CH3CH** + CO2* 

-0.39 0.92 -0.22 0.97 -0.32 0.94 

63 
CH3CHCOO*** + 1* ↔  CH3CCOO*** + H* 

-0.09 0.85 -0.17 0.75 -0.15 0.79 

64 
CH3CCOO*** ↔  CH3C* + CO2* + 1* 

-1.22 0.64 -0.99 0.83 -1.11 0.73 

65 
CH3CH2COOCH3 + 2* ↔ CH3CH2COOCH3** 

0.45 N/A 0.36 N/A 0.31 N/A 

66 
CH3CH3 + 1* ↔ CH3CH3* 

0.62 N/A 0.64 N/A 0.61 N/A 

67 
CH2CH2 + 2* ↔ CH2CH2** 

-0.14 N/A -0.12 N/A -0.13 N/A 
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68 
CHCH + 3* ↔ CHCH*** 

-1.17 N/A -1.18 N/A -1.17 N/A 

69 
CH4 + 1* ↔ CH4* 

0.48 N/A 0.52 N/A 0.50 N/A 

70 
CH3OH + 1* ↔ CH3OH* 

0.40 N/A 0.33 N/A 0.34 N/A 

71 
CO + 1* ↔ CO* 

-1.19 N/A -1.27 N/A -1.25 N/A 

72 
CO2 + 1* ↔ CO2* 

0.52 N/A 0.54 N/A 0.52 N/A 

73 
H2 + 2* → 2H* 

-0.58 N/A -0.61 N/A -0.61 N/A 
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Table 8.3. Equilibrium and forward rate constants for the elementary steps in the HDO of methyl propionate over Pd (111) 

model surfaces at a temperature of 473 K, in the presence and absence of water and 1,4-dioxane. 

 
 

# 
 

Reaction 
Gas Water 1,4-Dioxane 

Keq kf (s
-1) Keq kf (s

-1) Keq kf (s
-1) 

1 
CH3CH2COOCH3** + 1* ↔  CH3CH2COO** + CH3* 1.08×105 2.08×10-4 4.95×103 3.03×10-4 4.91×103 6.46×10-5 

2 
CH3CH2COOCH3**  + 2*↔  CH3CH2CO*** + CH3O* 7.63×10-3 3.96×104 1.20×10-4 2.77×104 1.69×10-4 3.14×103 

3 
CH3CH2COOCH3**  + 2* ↔  CH3CHCOOCH3*** + H* 1.52 1.37×105 1.58 1.31×105 2.66×10-1 2.04×104 

4 
CH3CH2COOCH3**  + 2* ↔  CH2CH2COOCH3*** + H* 1.91×10-2 1.01×104 2.89×10-2 2.80×104 4.06×10-3 2.95×103 

5 
CH3CH2COOCH3**  + 2* ↔  CH3CH2COOCH2*** + H* 9.81×10-2 5.02×104 2.77×10-1 1.03×105 1.50×10-2 1.11×104 

6 
CH3CHCOOCH3***  + 1* ↔  CH3CHCOO*** + CH3* 2.41 4.00×10-5 7.54 1.61×10-4 2.16 6.64×10-5 

7 
CH3CHCOOCH3***  + 1* ↔  CH3CHCO*** + CH3O* 2.49×10-3 1.30×105 1.73×10-4 3.00×104 5.82×10-4 5.10×104 

8 
CH3CHCOOCH3***  + 1* ↔  CH2CHCOOCH3*** + H* 3.98×104 4.64×107 7.06×104 1.11×108 4.66×104 6.20×107 

9 
CH3CHCOOCH3***  + 1* ↔  CH3CHCOOCH2*** + H* 4.89×10-1 3.04×104 2.55 1.07×105 7.52×10-1 3.45×104 

10 
CH2CHCOOCH3***  + 2* ↔  CH2CHCOOCH2**** + H* 1.27×10-2 2.69×102 1.31×10-1 1.84×103 4.48×10-2 5.09×102 

11 
CH2CHCOOCH3***  + 2* ↔  CHCHCOOCH3**** + H* 1.90×10-1 5.29×103 4.75×10-1 1.99×104 3.26×10-1 1.07×104 

12 
CH2CHCOOCH3***  + 1* ↔  CH2CHCO*** +CH3O* 1.28×10-4 1.98×103 1.25×10-5 1.44×103 4.38×10-5 1.46×103 

13 
CH3CHCOOCH2***  + 2* ↔  CH2CHCOOCH2**** + H* 1.03×103 2.69×108 3.62×103 3.52×108 2.77×103 2.20×108 

14 
CH3CHCOOCH2***  + 3* ↔  CH3CHCO*** + OCH2*** 3.77×102 1.10×108 3.75×101 3.19×107 1.84×102 6.58×107 

15 
CHCHCOOCH3****  + 2* ↔  CHCH*** + COOCH3*** 1.24×101 2.77×103 1.75 2.89×103 4.92 3.98×103 

16 
CH2CHCOOCH2**** + 3* ↔  CH2CH*** + COOCH2**** 2.59 6.95×102 1.61×10-1 2.95×102 6.20×10-1 4.66×102 
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17 
CH2CHCOOCH2****  + 2* ↔  CH2CHCO*** + OCH2*** 7.51×102 3.84×108 5.29×101 2.08×108 2.33×102 2.78×108 

18 
CH2CH2COOCH3***  + 1* ↔  CH2CHCOOCH3*** + H* 3.17×106 8.55×108 3.85×106 1.59×109 3.06×106 8.40×108 

19 
CH2CH2COOCH3***  + 1* ↔  CH2CH2COOCH2*** + H* 1.14×10-1 1.93×103 9.67×10-1 6.45×103 3.62×10-1 2.83×103 

20 
CH2CH2COOCH3***  + 2* ↔  CH2CH2** + COOCH3*** 3.87×104 9.87×101 3.80×103 8.60×101 9.87×103 7.51×101 

21 
CH2CH2COOCH3***  + 1* ↔  CH2CH2CO*** + CH3O* 7.44×10-3 2.41×106 3.30×10-4 6.42×105 1.18×10-3 1.03×106 

22 
CH2CH2COOCH2***  + 1* ↔  CH2CHCOOCH2**** + H* 3.52×105 8.95×105 5.22×105 1.07×106 3.78×105 9.89×105 

23 
CH2CH2COOCH2***  + 3* ↔  CH2CH2** +COOCH2**** 5.74×106 3.30×103 2.18×105 5.81×102 7.25×105 1.07×103 

24 
CH2CH2COOCH2***  + 3* ↔  CH2CH2CO*** + OCH2*** 8.44×103 1.18×1010 3.30×102 2.90×109 1.35×103 4.01×109 

25 
CH3CH2COOCH2***  + 1* ↔  CH3CHCOOCH2*** + H* 7.56 3.86×106 1.46×101 2.29×106 1.33×101 3.58×106 

26 
CH3CH2COOCH2***  + 1* ↔  CH2CH2COOCH2*** + H* 2.22×10-2 5.89×102 1.01×10-1 1.66×103 9.78×10-2 1.03×103 

27 
CH3CH2COOCH2***  + 1* ↔  CH3CH2COO** + CH2** 2.74×106 7.28×105 7.46×104 3.13×105 1.16×106 7.94×105 

28 
CH3CH2COOCH2***  + 3* ↔  CH3CH2CO*** + OCH2*** 8.01×103 5.37×1010 3.32×102 1.81×1010 3.72×103 3.49×1010 

29 
CH3CH2CO***  + 1* ↔  CH3CHCO*** + H* 3.08×10-1 7.47×103 1.42 3.77×104 5.72×10-1 8.50×103 

30 
CH3CH2CO***  ↔  CH3CH2* +  CO* + 1* 4.73×106 1.36×102 4.63×107 1.54×102 1.75×107 9.26×101 

31 
CH3CHCO*** + 1* ↔  CH2CHCO*** + H* 2.06×103 5.51×107 5.10×103 2.42×108 3.50×103 8.45×107 

32 
CH3CHCO*** ↔  CH3CH** + CO* 6.68×108 3.55×102 4.13×109 2.89×102 2.35×109 3.52×102 

33 
CH3CHCO***  + 1* ↔  CH3CCO*** + H* 1.05×104 1.68×107 2.02×104 2.77×107 1.79×104 2.08×107 

34 
CH2CHCO***  + 1* ↔  CH2CH*** + CO* 6.37×107 3.06×104 2.35×108 3.17×104 2.15×108 2.91×104 

35 
CH2CHCO*** + 2* ↔  CHCHCO**** + H* 9.03×10-1 5.54×105 1.44 5.74×105 1.03 4.66×105 

36 
CHCHCO**** ↔  CHCH*** + CO* 7.59×1011 5.57×106 2.52×1012 1.96×106 2.27×1012 3.92×106 
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37 
CH3CCO***  ↔  CH3C* + CO* + 1* 1.00×1015 1.76×108 4.40×1015 2.03×108 3.53×1015 1.48×108 

38 
CH2CH2CO***  ↔  CH2CH2** + CO* 2.19×1013 1.81×105 8.90×1013 1.95×105 7.55×1013 2.41×105 

39 
CH2CH2CO***  + 1* ↔  CH2CHCO *** + H* 5.46×104 3.89×105 1.46×105 9.30×105 1.14×105 5.46×105 

40 
COOCH3***  + 2* ↔  COOCH2*** + H* 1.69×101 1.42×106 5.55×101 3.06×106 2.66×101 1.49×106 

41 
COOCH3***  ↔  CO* + CH3O* + 1* 4.20×106 1.77×107 7.73×106 9.10×106 9.02×106 1.29×107 

42 
COOCH3***  ↔  CO2* + CH3* + 1* 1.21×105 1.87×10-3 2.60×104 1.24×10-2 5.35×104 2.83×10-3 

43 
COOCH2****  ↔  CO* + OCH2*** 1.85×1010 1.75×1010 7.71×1010 2.58×1010 8.07×1010 2.33×1010 

44 
COOCH2****  ↔  CO2* + CH2** + 1* 1.11×104 3.62×103 1.22×103 6.98×103 4.46×103 5.87×103 

45 
CHCH*** + H*  ↔  CH2CH*** + 1* 8.26×10-4 2.03×104 4.58×10-4 1.12×104 6.51×10-4 1.42×104 

46 
CH2CH*** ↔  CH2C** + H* 3.07×104 1.73×108 5.72×104 2.11×108 4.55×104 2.09×108 

47 
CH2C**+H* ↔  CH3C** + 2* 8.27×102 5.44×103 4.07×102 5.81×103 1.23×103 6.58×103 

48 
CH2CH*** + H*  ↔  CH2CH2** + 2* 6.28 5.64×103 2.59 5.62×103 3.09 4.43×103 

49 
CH2CH*** + H*  ↔  CH3CH** + 2* 5.10×10-3 3.71×104 3.44×10-3 4.77×104 3.12×10-3 4.16×104 

50 
CH3C*** + H*  ↔  CH3CH** + 2* 6.32×10-11 3.50 4.64×10-11 3.22 3.70×10-11 2.41 

51 
CH3CH** + H*  ↔  CH3CH2* + 2* 2.30×10-2 1.74×104 7.89×10-3 1.25×104 1.30×10-2 1.48×104 

52 
CH2CH2** + H*  ↔  CH3CH2* + 2* 2.05×10-5 3.54×103 3.65×10-5 1.05×104 2.91×10-5 6.67×103 

53 
CH3CH2* + H*  ↔  CH3CH3* + 1* 2.18 3.67×106 1.82 3.24×106 2.34 3.40×106 

54 
CH3O* + 3*  ↔  CH2O*** + H* 7.42×104 1.02×108 5.54×105 2.55×108 2.38×105 1.10×108 

55 
CH2O*** + 1*  ↔  CHO*** + H* 1.20×109 9.66×106 6.98×108 6.93×106 7.44×108 6.03×106 
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56 
CHO*** ↔  CO* + H* + 1* 9.35×1014 1.24×1012 1.05×1016 1.01×1012 8.78×1015 1.33×1012 

57 
CH3O* + H*  ↔  CH3OH* + 1* 5.74×10-2 4.23×105 6.35×10-1 1.06×106 2.38×10-1 5.54×105 

58 
CH2** + H*  ↔  CH3* + 2* 6.45×10-1 1.12×105 3.84×10-1 8.14×104 4.51×10-1 8.29×104 

59 
CH3* + H*  ↔  CH4* + 1* 4.38×101 1.50×107 2.07×101 9.54×106 2.74×101 9.98×106 

60 
CH3CH2COO** ↔  CH3CH2* + CO2* 1.75×10-2 2.49×10-2 6.83×10-3 1.21×10-1 6.49×10-3 3.82×10-2 

61 
CH3CH2COO** + 2* ↔  CH3CHCOO*** + H* 2.14×10-5 2.46×10-1 1.52×10-3 9.06×101 7.41×10-5 2.12 

62 
CH3CHCOO*** + ↔  CH3CH** + CO2* 1.50×104 1.41×103 2.40×102 4.14×102 2.84×103 9.04×102 

63 
CH3CHCOO*** + 1* ↔  CH3CCOO*** + H* 8.51 7.97×103 5.93×101 1.02×105 3.94×101 3.67×104 

64 
CH3CCOO*** ↔  CH3C* + CO2* + 1* 1.04×1013 1.65×106 3.24×1010 1.51×104 7.24×1011 1.65×105 

65 
CH3CH2COOCH3 + 2* ↔ CH3CH2COOCH3** 1.81×10-5 8.73×107 1.50×10-4 8.73×107 5.61×10-4 8.73×107 

66 
CH3CH3 + 1* ↔ CH3CH3* 2.79×10-7 1.50×108 1.49×10-7 1.50×108 3.03×10-7 1.50×108 

67 
CH2CH2 + 2* ↔ CH2CH2** 2.79×101 1.55×108 2.01×101 1.55×108 2.47×101 1.55×108 

68 
CHCH + 3* ↔ CHCH*** 2.59×1012 1.61×108 3.76×1012 1.61×108 2.65×1012 1.61×108 

69 
CH4 + 1* ↔ CH4* 8.51×10-6 2.05×108 2.88×10-6 2.05×108 4.82×10-6 2.05×108 

70 
CH3OH + 1* ↔ CH3OH* 5.89×10-5 1.45×108 3.36×10-4 1.45×108 2.38×10-4 1.45×108 

71 
CO + 1* ↔ CO* 5.33×1012 1.55×108 3.87×1013 1.55×108 2.64×1013 1.55×108 

72 
CO2 + 1* ↔ CO2* 2.79×10-6 1.24×108 1.69×10-6 1.24×108 3.04×10-6 1.24×108 

73 
H2 + 2* → 2H* 1.65×106 5.80×108 3.05×106 5.80×108 3.14×106 5.80×108 
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Table 8.4. Calculated net rate (turnover frequency) for the elementary steps in the HDO 

of methyl propionate over Pd (111) model surfaces at a temperature of 473 K, in the 

presence and absence of water and 1,4-dioxane. 

 
 

# 
 

Reaction 
Gas Water 1,4-Dioxane 

TOF (s-1) TOF (s-1) TOF (s-1) 

1 
CH3CH2COOCH3** + 1* ↔  CH3CH2COO** + CH3* 6.16×10-15 2.39×10-15 1.39×10-14 

2 
CH3CH2COOCH3**  + 2*↔  CH3CH2CO*** + CH3O* 6.43×10-8 3.79×10-9 2.94×10-8 

3 
CH3CH2COOCH3**  + 2* ↔  CH3CHCOOCH3*** + H* 1.85×10-7 6.94×10-9 1.46×10-7 

4 
CH3CH2COOCH3**  + 2* ↔  CH2CH2COOCH3*** + H* 1.39×10-8 1.50×10-9 2.12×10-8 

5 
CH3CH2COOCH3**  + 2* ↔  CH3CH2COOCH2*** + H* 7.84×10-8 4.21×10-9 8.93×10-8 

6 
CH3CHCOOCH3***  + 1* ↔  CH3CHCOO*** + CH3* 1.34×10-18 5.31×10-19 2.55×10-18 

7 
CH3CHCOOCH3***  + 1* ↔  CH3CHCO*** + CH3O* 4.35×10-9 9.90×10-11 1.96×10-9 

8 
CH3CHCOOCH3***  + 1* ↔  CH2CHCOOCH3*** + H* 1.80×10-7 6.79×10-9 1.43×10-7 

9 
CH3CHCOOCH3***  + 1* ↔  CH3CHCOOCH2*** + H* 9.01×10-10 5.91×10-11 1.01×10-9 

10 
CH2CHCOOCH3***  + 2* ↔  CH2CHCOOCH2**** + H* 1.39×10-9 9.37×10-11 2.36×10-9 

11 
CH2CHCOOCH3***  + 2* ↔  CHCHCOOCH3**** + H* 1.25×10-11 5.84×10-14 1.77×10-11 

12 
CH2CHCOOCH3***  + 1* ↔  CH2CHCO*** +CH3O* 1.91×10-7 8.15×10-9 1.61×10-7 

13 
CH3CHCOOCH2***  + 2* ↔  CH2CHCOOCH2**** + H* 1.76×10-9 4.62×10-10 3.73×10-9 

14 
CH3CHCOOCH2***  + 3* ↔  CH3CHCO*** + OCH2*** 4.99×10-11 1.67×10-12 5.64×10-11 

15 
CHCHCOOCH3****  + 2* ↔  CHCH*** + COOCH3*** 1.25×10-11 5.84×10-14 1.77×10-11 

16 
CH2CHCOOCH2**** + 3* ↔  CH2CH*** + COOCH2**** 3.12×10-16 1.37×10-17 4.44×10-16 

17 
CH2CHCOOCH2****  + 2* ↔  CH2CHCO*** + OCH2*** 3.14×10-9 5.56×10-10 6.08×10-9 

18 
CH2CH2COOCH3***  + 1* ↔  CH2CHCOOCH3*** + H* 1.30×10-8 1.46×10-9 2.06×10-8 

19 
CH2CH2COOCH3***  + 1* ↔  CH2CH2COOCH2*** + H* 7.41×10-13 1.66×10-13 1.58×10-12 

20 
CH2CH2COOCH3***  + 2* ↔  CH2CH2** + COOCH3*** 2.09×10-15 8.92×10-17 1.88×10-15 

21 
CH2CH2COOCH3***  + 1* ↔  CH2CH2CO*** + CH3O* 9.33×10-10 3.84×10-11 5.93×10-10 

22 
CH2CH2COOCH2***  + 1* ↔  CH2CHCOOCH2**** + H* -3.22×10-15 2.53×10-15 -3.88×10-15 

23 
CH2CH2COOCH2***  + 3* ↔  CH2CH2** +COOCH2**** 2.85×10-19 1.43×10-19 7.63×10-19 

24 
CH2CH2COOCH2***  + 3* ↔  CH2CH2CO*** + OCH2*** 1.02×10-12 7.16×10-13 2.86×10-12 

25 
CH3CH2COOCH2***  + 1* ↔  CH3CHCOOCH2*** + H* 9.07×10-10 4.05×10-10 2.78×10-9 

26 
CH3CH2COOCH2***  + 1* ↔  CH2CH2COOCH2*** + H* 2.73×10-13 5.52×10-13 1.27×10-12 
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27 
CH3CH2COOCH2***  + 1* ↔  CH3CH2COO** + CH2** 3.49×10-10 2.07×10-10 1.03×10-9 

28 
CH3CH2COOCH2***  + 3* ↔  CH3CH2CO*** + OCH2*** 7.71×10-8 3.60×10-9 8.54×10-8 

29 
CH3CH2CO***  + 1* ↔  CH3CHCO*** + H* 1.05×10-7 5.88×10-9 9.15×10-8 

30 
CH3CH2CO***  ↔  CH3CH2* +  CO* + 1* 3.60×10-8 1.50×10-9 2.33×10-8 

31 
CH3CHCO*** + 1* ↔  CH2CHCO*** + H* -6.40×10-8 -6.98×10-9 -6.09×10-8 

32 
CH3CHCO*** ↔  CH3CH** + CO* 6.71×10-11 7.78×10-12 6.00×10-11 

33 
CH3CHCO***  + 1* ↔  CH3CCO*** + H* 1.74×10-7 1.30×10-8 1.54×10-7 

34 
CH2CHCO***  + 1* ↔  CH2CH*** + CO* 5.95×10-8 1.99×10-9 5.45×10-8 

35 
CH2CHCO*** + 2* ↔  CHCHCO**** + H* 5.89×10-8 -2.76×10-10 3.79×10-8 

36 
CHCHCO**** ↔  CHCH*** + CO* 5.89×10-8 -2.76×10-10 3.79×10-8 

37 
CH3CCO***  ↔  CH3C* + CO* + 1* 1.74×10-7 1.30×10-8 1.54×10-7 

38 
CH2CH2CO***  ↔  CH2CH2** + CO* 9.86×10-10 5.09×10-11 6.67×10-10 

39 
CH2CH2CO***  + 1* ↔  CH2CHCO *** + H* -5.23×10-11 -1.19×10-11 -7.15×10-11 

40 
COOCH3***  + 2* ↔  COOCH2*** + H* 3.02×10-15 9.22×10-18 3.87×10-15 

41 
COOCH3***  ↔  CO* + CH3O* + 1* 1.25×10-11 9.09×10-14 1.77×10-11 

42 
COOCH3***  ↔  CO2* + CH3* + 1* 1.33×10-21 1.24×10-22 3.89×10-21 

43 
COOCH2****  ↔  CO* + OCH2*** 3.31×10-15 -9.49×10-17 4.32×10-15 

44 
COOCH2****  ↔  CO2* + CH2** + 1* 7.88×10-21 5.55×10-22 6.81×10-21 

45 
CHCH*** + H*  ↔  CH2CH*** + 1* 5.90×10-8 -2.76×10-10 3.79×10-8 

46 
CH2CH*** ↔  CH2C** + H* -2.98×10-7 -1.42×10-8 -1.99×10-7 

47 
CH2C**+H* ↔  CH3C** + 2* -2.98×10-7 -1.42×10-8 -1.99×10-7 

48 
CH2CH*** + H*  ↔  CH2CH2** + 2* 3.28×10-8 5.03×10-9 3.27×10-8 

49 
CH2CH*** + H*  ↔  CH3CH** + 2* 3.83×10-7 1.09×10-8 2.59×10-7 

50 
CH3C*** + H*  ↔  CH3CH** + 2* -1.12×10-7 -1.26×10-9 -6.17×10-9 

51 
CH3CH** + H*  ↔  CH3CH2* + 2* 2.72×10-7 9.65×10-9 2.53×10-7 

52 
CH2CH2** + H*  ↔  CH3CH2* + 2* 3.22×10-8 4.89×10-9 8.20×10-9 

53 
CH3CH2* + H*  ↔  CH3CH3* + 1* 3.40×10-7 1.63×10-8 2.85×10-7 

54 
CH3O* + 3*  ↔  CH2O*** + H* 1.44×10-8 1.06×10-11 4.53×10-9 

55 
CH2O*** + 1*  ↔  CHO*** + H* 9.47×10-8 4.17×10-9 9.61×10-8 

56 
CHO*** ↔  CO* + H* + 1*` 9.47×10-8 4.17×10-9 9.61×10-8 
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57 
CH3O* + H*  ↔  CH3OH* + 1* 2.47×10-7 1.21×10-8 1.89×10-7 

58 
CH2** + H*  ↔  CH3* + 2* 3.49×10-10 2.07×10-10 1.03×10-9 

59 
CH3* + H*  ↔  CH4* + 1* 3.49×10-10 2.07×10-10 1.03×10-9 

60 
CH3CH2COO** ↔  CH3CH2* + CO2* 3.47×10-10 2.04×10-10 1.02×10-9 

61 
CH3CH2COO** + 2* ↔  CH3CHCOO*** + H* 1.99×10-12 2.18×10-12 1.24×10-11 

62 
CH3CHCOO*** + ↔  CH3CH** + CO2* 1.52×10-12 4.39×10-13 4.49×10-12 

63 
CH3CHCOO*** + 1* ↔  CH3CCOO*** + H* 4.71×10-13 1.74×10-12 7.90×10-12 

64 
CH3CCOO*** ↔  CH3C* + CO2* + 1* 4.71×10-13 1.74×10-12 7.90×10-12 

65 
CH3CH2COOCH3 + 2* ↔ CH3CH2COOCH3** 3.42×10-7 1.64×10-8 2.86×10-7 

66 
CH3CH3 + 1* ↔ CH3CH3* 3.40×10-7 1.63×10-8 2.85×10-7 

67 
CH2CH2 + 2* ↔ CH2CH2** 1.56×10-9 1.89×10-10 3.39×10-10 

68 
CHCH + 3* ↔ CHCH*** 5.29×10-14 3.08×10-15 1.53×10-15 

69 
CH4 + 1* ↔ CH4* 3.49×10-10 2.07×10-10 1.03×10-9 

70 
CH3OH + 1* ↔ CH3OH* 2.47×10-7 1.21×10-8 1.89×10-7 

71 
CO + 1* ↔ CO* Equilibrium Equilibrium Equilibrium 

72 
CO2 + 1* ↔ CO2* 3.49×10-10 2.07×10-10 1.03×10-9 

73 
H2 + 2* → 2H* Equilibrium Equilibrium Equilibrium 
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Figure 8.1. Schematic representation of the most important reaction pathways in the network considered in the HDO of methyl 

propionate over Pd (111) in the presence of water. We note that in our microkinetic calculations, we included all the 

elementary steps illustrated in Table 8.2; however, this Figure is a schematic of elementary steps involved in the dominant 

pathways of the HDO of methyl propionate. TOFs (s
−1

) shown for various elementary steps are computed at a temperature of 

473 K, a methyl propionate gas phase pressure of 0.01 bar and a hydrogen partial pressure of 0.2 bar. For convenience in 

comparison, the calculated values of TOFs (s
-1

) in the absence of solvent are shown in [ ] next to the obtained values of 

TOFs(s
-1

) in the presence of water. TOFs (s
-1

) for elementary reactions not shown in this figure are illustrated in Table 8.4. The 

most dominant pathway is shown in red color 

(CH3CH2COOCH3CH3CHCOOCH3CH2CHCOOCH3CH2CHCO+OCH3…CH3CH3+CO+CH3OH). Other 

competitive pathways are shown in black, blue, and green.  
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Figure 8.2. Schematic representation of the most important reaction pathways in the network considered in the HDO of methyl 

propionate over Pd (111) in the presence of 1,4-dioxane. We note that in our microkinetic calculations, we included all the 

elementary steps illustrated in Table 8.1; however, this Figure is a schematic of elementary steps involved in the dominant 

pathways of the HDO of methyl propionate. TOFs (s
−1

) shown for various elementary steps are computed at a temperature of 

473 K, a methyl propionate gas phase pressure of 0.01 bar and a hydrogen partial pressure of 0.2 bar. For convenience in 

comparison, the calculated values of TOFs (s
-1

) in the absence of solvent are shown in [ ] next to the obtained values of 

TOFs(s
-1

) in the presence of 1,4-dioxane. TOFs (s
-1

) for elementary reactions not shown in this figure are illustrated in Table 

8.4. The most dominant pathway is shown in red color 

(CH3CH2COOCH3CH3CHCOOCH3CH2CHCOOCH3CH2CHCO+OCH3…CH3CH3+CO+CH3OH). Other 

competitive pathways are shown in black, blue, and green.  
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CHAPTER 9 

 

EFFECTS OF ADSORBATE-ADSORBATE INTERACTIONS ON THE KINETICS AND 

DEGREES OF RATE AND THERMODYNAMIC CONTROL OF SURFACE CATALYZED 

REACTIONS: A NEW THERMODYNAMIC MODEL
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ABSTRACT 

 
 Heterogeneous catalytic reactions take palace on the surface of solid particles, 

where the adsorbed molecules are in close proximity of each other. The repulsive and 

attractive forces between the adsorbed molecules (direct and indirect interaction, e.g., by 

changing the electronic structure of the metal particle) can stabilize or destabilize the 

relative free energies of adsorbed species. If the lateral interactions between adsorbed 

species change the relative free energies of transition or intermediate states that are 

kinetically relevant, the overall rate of a reaction can decrease or increase remarkably. 

Important kinetic parameters can be identified by the degrees of rate and thermodynamic 

control that are powerful tools for quantifying the extent to which a differential change in 

the standard-state free energy of any given transition or intermediate state influences the 

net reaction rate. We show in this paper how lateral interactions between adsorbed 

species can change the degrees of rate and thermodynamic control such that e.g. the 

influence of an intermediate species that plays an important role on a thermodynamically 

ideal surface disappears when lateral interactions between intermediates at higher surface 

coverage become important. Overall, we aim at developing conceptual analogies between 

the thermodynamics of molecules in mixtures and the behavior of surface intermediates. 

We propose a thermodynamic model that can take the interaction between surface 

intermediates into account by using surface activity coefficients of intermediates that are 

conceptually equivalent to the activity coefficients of molecules in solutions. By 

implementing such a model in microkinetic simulations based on parameters obtained 

from first principles, it can provide a reliable transition from the quantum molecular to 

the reactor scale. 
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KEYWORDS: Degree of rate control; Lateral interactions; Kinetics; Heterogeneous 

catalysis; Thermodynamic model 
 

9.1 INTRODUCTION 

 
 Catalytic processes typically involve a multistep reaction mechanism. The aim of 

chemical kinetics studies is to understand the complex relation of the overall rate of a 

process with the rate constants of all of the elementary steps involved in its reaction 

mechanism. However, all of the reaction parameters are not independent of each other, 

and often, the overall rate can be described by few kinetic parameters. The overall rate 

expression can get as simple as the rate of an elementary step, when under specific 

reaction conditions, the net rate of a reaction mechanism is controlled by one elementary 

step which is known as rate determining steps (RDS). However, a single rate determining 

step only exists under limited conditions and perhaps several steps usually control the net 

rate. Identifying the rate-controlling elementary steps and kinetic parameters not only 

provides a simplified description of the net rate, but also information of the intermediates 

and transition state which can possibly be adjusted to improve the overall rate. Ideally, 

with modification of the reactant structure, or using a catalyst or a solvent that can target 

and stabilize or destabilize specific rate-controlling intermediates and transition states, we 

can achieve a higher rate of desired and lower rate of undesired products. Therefore, 

finding those rate-controlling steps and intermediates is of great interest. Identifying the 

rate-controling steps in a mechanism has been a long standing problem in the catalysis 

community. However, with the rapid advances in the application of quantum chemical 

calculations in catalysis, and growing use of microkinetic models, a greater 
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understanding of the kinetic of complex reaction mechanisms is achievable. Now that all 

the reaction rate constants are obtainable, the challenge is to determine rate-controlling 

kinetic parameters. Various methods have been suggested for assessing which step in a 

reaction scheme limit the overall rate. Christiansen[246], Boudart[247] and 

Dumesic[248] made great efforts by simplifying the description of the net rate, and 

identifying the important kinetic parameters for simple reaction schemes by using De 

Donder relations. However, it was shown that situations exist for which the proposed 

methods lack universality and may fail in prediction of the RDS and important 

parameters[148]. To our knowledge, the most powerful tool that has been introduced is 

the degree of rate control which quantifies the extent to which a differential change in the 

standard-state free energy of any given transition state or intermediates influences the net 

reaction rate. Campbell[147-149] defined the degree of the rate control for elementary 

reaction step i (XRC,i) to be the dimensionless partial derivatives of the overall rate with 

respect to the forward rate constant of the step i while all other rate constants but the 

backward rate constants of step i are held constant. Considering that the forward and 

backward rate constant of any elementary reaction can be correlated to the free energy of 

the transition state by transition state theory[197], the definition of the XRC,i  is then 

equivalent to taking the dimensionless partial derivative of the overall rate with respect to 

the free energy of the transition state of the step i, while the free energy of all other 

intermediates and transition states are kept constant. Similarly, the degree of the 

thermodynamic rate-control for intermediate n (XRC,n), was defined[149, 245] as the 

partial derivative of the overall rate with respect to the free energy of the intermediate n, 

while the free energy of all other intermediates and transition states are hold constant. 
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 Although we found the concept of degree of rate-control to be unrestricted and 

universal, we have noticed that a great understanding and interpretation of the quantities 

of the degrees of the rate controls XRC and XTRC is not available in the literature. Since 

the degrees of rate controls have been used in analysis of simple reaction networks under 

idealistic reaction conditions where the description of the overall rate is simple and 

predictable. However, in our previous density functional theory and microkinetic 

modeling studies[157, 158], we used the degree of rate-control analysis for more complex 

reaction networks and under more realistic reaction conditions without any simplifying 

assumptions, where our results were in contradiction to some not scientifically proved 

relationships in the literature[149] that link the thermodynamic degree of rate control to 

the surface coverage. The proposed relationship by Campbell―the authors note[149] that 

there is no mathematical proof for their relationship―suggested that XTRC of an 

intermediate is proportionate with the coverage of that intermediate by a negative 

constant which typically varies between -2 and -1 depending on the required number of 

sites in the rate-controling process. Accordingly, the XTRC values are suggested to be 

always negative and that means if we destabilize the most abundant surface intermediates 

to decrease their adsorption strength, the overall rate will increase. This statement at first, 

sounded logical, and unrestricted so, we tried to find the source of errors in our results 

were we found zero or positive thermodynamic degrees of rate control for some of the 

most abundant surface intermediates, which means that with increasing the poisoning 

effects of some intermediates we will be able to improve the overall rate. As we failed to 

find any errors in our simulations we tried to conceptually investigate the possibility of 

such phenomenon that stabilizing a surface poisoning intermediate yields a higher net 
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rate that can possibly be of great interest. This led us to find some universal and 

unrestricted mathematical proofs for the relationships between the degrees of the rate 

control that we call conservations of the degrees of rate control. While, previously, 

Dumesic[249], Baranski[250], Shaik[251], and Campbell[149] have shown for specific 

and simple reaction schemes, the sum over the rate-control degrees of elementary steps is 

one. In this article we present a solid mathematical proof, without any assumption for the 

overall rate expression, that the summation of the rate control of all intermediates and 

transition states is equal to zero. More specifically, we will prove that the sum over the 

degrees of the rate control of all elementary steps in a mechanism should be one, while 

the summation of the thermodynamic degrees of rate-control for all intermediates is equal 

to minus one. We will show that under realistic reaction conditions where there are lateral 

interactions between surface intermediates, it is possible to stabilize an abundant surface 

intermediate and as a result increase the net rate. With the understanding of the 

importance of non-ideal thermodynamic behavior of the surface intermediates in the 

kinetic of the reaction mechanisms and overall rate, it is necessary to develop a 

thermodynamic model that can predict and take into account the interaction and real 

behavior of surface intermediates. With the aim of the conceptual analogies between the 

thermodynamics of molecules in a mixture, and behaviors of the surface intermediates, 

we propose a thermodynamic mean-field model that can take the interaction between 

surface intermediates into account by using catalytic activity coefficients of an 

intermediate that is conceptually equivalent to the activity coefficients of molecules in 

solutions. The impact of such a model can be enormous in understanding the kinetic of 

chemical processes. This can be the transition from the idealistic surface intermediates 
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behavior to the more realistic conditions where the microkinetic models will be able to 

predict the turnover frequencies, dominant pathways, and surface coverages, and provide 

the understanding of the kinetics of reaction mechanisms under real conditions that are 

quantitatively more compatible with real conditions and experimental results. 

 

9.2 CONSERVATION OF XRC AND XTRC 
 

i) Summation over all degrees of rate-controls is zero: 

 The total differential of a function, f, of several variables (e.g. xi) is defined by the 

following expression: 

   ∑ (
  

   
)
     

                                                                                    (9.1) 

where,  (
  

   
)
     

is the partial derivatives of the function, f, with respect to xi while other 

arguments are constant. 

 At constant temperature and partial pressures, the net rate of a network of surface 

reactions is a function of the free energies of all intermediates and transition states. If we 

assume our function is the natural logarithm of the overall rate (ln r), and our variables 

are the dimensionless free energies of the intermediate and transition states (e.g. for 

intermediate i: 
   

  
 ), according to equation 9.1, the following expression holds for any 

reaction: 
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)                                        (9.2) 
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Re-arranging the equation 9.2 and separating all free energies of transitions states and 

stable intermediates we can re-write equation as,      
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where (
      

  
   

    

  

)

    
         

 is the partial derivative of ln r with respect to the dimensionless 

free energy of the transition state of elementary step i, while the free energy of all other 

transition states and intermediates are constant, and similarly, .
      

  
   

  

  

/

    
     

     

 is the 

partial derivative of ln r with respect to the dimensionless free energy of intermediate n, 

while the free energy of all other transition states and intermediates are constant. Now, 

assuming we stabilize or destabilize all intermediate and transition states uniformly by a 

constant dG. The elementary reaction free energies and barriers, and consequently 

elementary forward, backward and equilibrium rate constants, as well as TOF, remain 

unchanged. A schematic of this is shown in Figure 9.1a for the Langmuir-Hinshelwood 

mechanism). Therefore, d(ln r) is equal to zero or, 
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The degrees of rate and thermodynamic control of elementary step i, and intermediates n 

are defined as, 

          (
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            (9.5) 
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                (9.6) 

and equation 9.4 actually states that the summation of the both degrees of rate and 

thermodynamic controls is conserved and equal to zero. 

 ∑         ∑                                                   (9.7) 

 

ii) ∑          

 Campbell’s insightful definition for the rate-determining step states that an 

elementary step in a reaction mechanism is the RDS when it has a degree of the rate-

control of 1, while the degrees of rate-control for all other elementary steps are zero, 

implying that the summation of the degrees of rate-control in a mechanism with a single 

RDS is equal to one. Dumesic[249], Baranski[250], and Shaik[251] also showed that the 

summation of the degrees of the rate control of all of the elementary steps is equal to one 

for some simple reaction schemes where an expression for the TOF of the overall rate is 

available; however, there is no mathematical proof in the literature for conservation of the 

XRC for more general reaction mechanisms with multiple rate-controlling steps where an 

expression for the overall rate is not available. 
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 Let’s assume that in a reaction mechanism, we uniformly stabilize all the 

transition states by dG (Figure 9.1b), while the free energies of all intermediates are held 

constant. Then, equation 9.4 can be simplified as,  

 

 (    )
  

  

 [∑ (
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 ]   ∑                                                                                          (9.8) 

If we can show that 
 (    )

  

  

  is equal to one then we proved that the summation of the 

degrees of rate-control for all the elementary steps are equal to 1. 

 The overall rate for an elementary step (rj) is a product of rate-constants and 

coverages and can generally be expressed in mean-field models as, 

       ∏   

          ∏   

                              (9.9) 

where kf,j, and kb,j are forward and backward rate-constants of elementary reaction j, and 

  

    
 and   

    
  are the coverages of the intermediates (or the partial pressures for 

adsorption/desorption processes) involved in the forward and backward rates of the 

reaction j.  

Under steady-state condition, the mole balance for any given intermediate (e.g. 

intermediate n) can be written as the linear combination of the elementary reactions 

which produce or consume intermediate n,  

   

  
 ∑         ∑ (    ∏   

          ∏   

       )                        (9.10) 

where      is the stoichiometric coefficient of the reactions for production of intermediate 

n. Solving the nonlinear algebraic mole-balance equations for all intermediates on the 

surface, we can calculate the surface coverages and rate of every elementary reaction. 
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 Now let’s go back to our first assumption that we uniformly stabilized all the 

transition states by dG while the free energies of all intermediates are held constant. 

Similarly, we can write the mole-balance equations for the new condition as (rates, rate-

constant and coverages for the new condition are shown with prime symbols), 

   
 

  
 ∑        
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         )                                      (9.11) 

where, 

       
   

  

                 and         
   

  

                                                                (9.12) 

Now, if replace all the     
 

 and     
  by equation 9.12 we can re-write the equation 9.11 as, 
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By dividing both sides of the equation 9.13 by  
  

    we see that the governing equation for 

   and   
  are exactly the same which result in, 
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Now, that coverages stay the same, we can show that,   
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 Additionally, the overall rate of a network of elementary reactions is equal to the 

summation of all the elementary reactions which consume the reactant or the summation 

of those steps which produce the products. Generally the overall rate can be expressed as 

a linear combination of the reaction rate of the elementary steps, 

  ∑                            (9.16) 
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where    is a stoichiometric constant. Considering that all the rates of the elementary 

steps were increased by a factor  
  

   (   
   

  

      ), then a linear combination of the rate 

of the elementary steps will also increase by a factor  
  

  . As a result, the overall rate will 

increase by a factor  
  

  , 

          
  

            (9.17) 

Consequently the infinitesimal change in the free energy of the transition state, will 

change ln r by 
  

  
 , 

 (    )      
        

  

  
 or  

 (    )
  

  

           (9.18)  

and consequently, the summation of the degrees of rate control  of all the elementary 

step in a reaction mechanism is exactly equal to 1. We again note that we did not use any 

expression for the overall rate of the reaction mechanism and this rule is valid for any 

reaction mechanism under any reaction conditions.  

 

iii)  ∑            

We proved that the summation of all degrees of rate control of elementary steps and 

surface intermediates is zero, and the sum over the degrees of rate control of elementary 

steps is equal to 1. Consequently, the thermodynamic degrees of the rate control are also 

conserved and add up to -1, 

∑                         (9.19) 

 We again note that the above equation is independent of the reaction mechanism 

and the overall rate-expression, and no assumptions have been made regarding to reaction 

conditions. 
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9.3 IS IT POSSIBLE TO STABILIZE AN ABUNDANT SURFACE INTERMEDIATE AND 

INCREASE THE NET RATE? 
 

 To demonstrate the effects of non-ideal thermodynamic behavior of adsorbed 

intermediates on the reaction rate in a reaction mechanism, we used a simple Langmuir-

Hinshelwood (L-H) mechanism for solid-catalyzed reactions, with one irreversible RDS 

and all other steps quasi equilibrated. We note that Campbell[149] also used L-H 

mechanism for explanation of the concept of the degrees of rate-control, and our aim is to 

show how under realistic thermodynamic conditions, degrees of rate-control  deviate 

from ideal values in this simple reaction mechanism. 

(    )       ⇌   
 

(    )       ⇌   
 

(     )        ⇌       

 In the above L-H scheme, the asterisk (*) denotes a free site, intermediates with 

an asterisk are adsorbed on the surface, and those without asterisk are gas-phase species. 

The overall rate of the mechanism above can be obtained by applying the RDS and quasi-

equilibrium approximations, 

  
          

(           )                                                    (9.20) 

where k3 is the forward rate constant of step 3, Ki is the equilibrium constant of step i, 

and pi is dimensionless partial pressure of species i (partial pressure of species i divided 

by the reference pressure of 1 bar).  
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i) No lateral interaction: Thermodynamically ideal adsorbates 

 Now if we assume that there is no lateral interaction between the adsorbed 

intermediates one can show that, 
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 We see that the degree of rate-control for the step 3 is one and for other steps it is 

0, which verifies our assumption that step 3 is RDS. Also, the thermodynamic degree of 

rate-control for A, and B are equal to       , and       respectively. By investigating 

simple catalytic reaction mechanisms Campbell suggested[149] that there is a simple link 

between the degree of thermodynamic rate-control for any intermediate n and its 

coverage    as, 

                         (9.24) 

where σ is the average number of sites required in the rate-limiting steps that typically 

varies between 1 and 2. We see that for L-H mechanism, at ideal thermodynamic 

conditions, Campbell’s proposed relationship is valid. At limiting cases where the surface 

is mostly covered by A or B and the coverages of    or    are 1, we can see that the 

degrees of rate-control, for the most abundant surface intermediate, becomes -2. While at 

first, it sounds like a violation of the conservation of the thermodynamic degrees of rate-

control that states the summation over all XRTC should be -1, we note that the 
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conservation of XRTC is held over all energy states in the reaction mechanism including 

the energies of reactant and product states. The reactant energy state in L-H mechanism is 

the energy of the gas-phase A and B molecules, and the clean surface of the catalyst. 

Similarly, the product energy state is the energy of the gas-phase AB molecule and clean 

surface. Now we have to also take into account the degree which the rate will change if 

we infinitesimally stabilize or destabilize the free energies of reactant and product states. 

 We can change the energy of the gas-phase molecules by modification in their 

molecular structures or using a solvent. However, let’s assume that the energies of our 

gas-phase molecules are constant and we want to just try different catalysts. 

Consequently, just the energy of the clean surface (free sites) is changing. Now if we 

calculate the degree of rate control for the energy of the clean surface,        can be 

calculated as, 
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                                               (9.25) 

where we see  that the sum over the degrees of rate control is exactly -1.    

 

ii) Effects of the presence of lateral interactions between the adsorbed intermediates 

 If we assume that there are lateral interactions between adsorbed A and B 

molecules, using the rate-expression in equation 9.20, the degrees of rate and 

thermodynamic control are,  

          (
      

  
   

    

  

)

    
         

                                         (9.26) 
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 Because, there are lateral interactions between the adsorbed A and B molecules, 

the free energies of adsorbed A and B molecules are dependent of each other, and in the 

above expressions for the degree of rate controls,  
  

    
  

  

  
    

  

  

  is the partial derivative of the 

free energy of adsorbed B molecules with respect the free energy of adsorbed A 

molecules, while the free energy of other intermediates are held constant. When there is 

no lateral interaction this term will disappear and then the above equations are equivalent 

to those expressions (equation 9.21-9.25) that we derived for the L-H mechanism in the 

absence of lateral interaction. 

Now if we re-arrange equations 9.28 and 9.29 one can show that the below inequalities 

are held, 

 If    
  

  
 

  
    

  

  

  
    

  

  

    , then                                                                  (9.30) 

If    
  

  
 

  
    

  

  

  
    

  

  

    , then                                                                                    (9.31) 
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 So, we could show that for L-H mechanism under the above condition, an 

adsorbed intermediate can have positive degree of rate control. But what is the physical 

meaning of this? To provide a better understanding of the above equations, in the 

following paragraphs we will discuss two example cases where we have interaction and 

repulsion between the adsorbed A and B intermediates. 

 If there is attraction between adsorbed A and B molecules, then  
  

    
  

  

  
    

  

  

   is greater 

than zero. Consequently, equation 9.31 is then true, and the thermodynamic degree of 

rate control of intermediate B is positive while the thermodynamic degree of rate-control 

for A is negative. Now if we assume there are repulsive forces between A and B, then 

  
    

  

  

  
    

  

  

  is smaller than zero. Now both of  
  

    
  

  

  
    

  

  

  and  
  

  
  have negative values, and 

without the exact values of the partial derivatives and the ratio of the coverages, it is 

difficult to determine the sign of the degrees of rate control and under specific conditions, 

either A or B can have positive or negative degrees of rate control.  

 Apparently, if lateral interactions between the adsorbed molecules are not 

negligible then Campbell’s proposed relation (            )  is not valid anymore. 

However, we note that the conservation of the degrees of rate-control is universal and 

still holds regardless of the thermodynamics of the adsorbed intermediates, and the 

degrees of thermodynamic control (equation 9.27-9.29) add up to -1 and the sum of the 

degree of kinetic rate control add to 1 (equation 9.26). 

 We saw that the kinetics of the reactions can be strongly dependent on the 

thermodynamics of the adsorbed intermediates. The degree of the thermodynamic rate-

control can be used as a tool to quantify the extent to which the lateral-interaction 
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between molecules can affect the overall kinetic of the reactions; however, it is not trivial 

to obtain the complex relations of the free energies of the adsorbed intermediates without 

a thermodynamic model that take the interaction between molecules into account.  

 

9.4 MODEL FOR THERMODYNAMICALLY NON-IDEAL SURFACES 
 

 The Gibbs free energy for substance i and its variation with pressure, temperature, 

and number of molecules of substance i is given as, 

                                                                                      (9.32) 

Often, the molar partial derivatives of             are assumed to be constant and equal to 

molar values of these parameters,  ̃    ̃    ̃ . If we suppose for a system this assumption is 

true, then by taking the molar partial derivatives of equations 9.32 and applying this 

assumption we can write,  

      ̃    ̃     ̃                                                               (9.33) 

 The above equation is extensively used in thermodynamic studies of gas-phase 

molecules. Now what if under specific condition the chemical potential itself is a function 

of the quantity of the substance i? E.g. when the molecules of substance i are adsorbed on 

a surface of a catalyst and in close proximity of each other and therefore, there are lateral 

interactions between the molecules. Then, 
   

   
 is not zero anymore, and should be taken 

into account in the derivation as,  

      ̃     ̃     ̃                                                                         (9.34) 

where,  ̃  is molar partial derivative of chemical potential (
   

   
). 

Chemical potential can be also expressed in terms of activity as, 
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                                (9.35) 

where    is the activity of substance i. Now, for a catalytic reaction, we define the 

catalytic activity of substance i,    to be,  

   
  

  
                                                                             (9.36) 

Where we name    , the surface fugacity of the substance i, and    is a reference fugacity 

and constant. 

Now at constant temperature and pressure we can say, 

       (    )     (    )    ̃                                          (9.37) 

Now, if we define a surface fugacity coefficient as,  
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Then, one can show that, 
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                                                           (9.39) 

 Now we define a surface thermodynamically ideal for the adsorption of substance 

i, when the chemical potential of the adsorbed molecules of i can be expressed as, 

          
  

  
                                                                                                                (9.40) 

where Ni is the number of moles of adsorbed i per surface area , and N0 is a reference 

number.  Then on the ideal surface,  ̃  for substance i, is equal to partial derivation of the 

chemical potential which is 
 

  
 . Consequently, according to equation 9.39 the surface 

fugacity coefficient for substance i on an ideal surface is one.  

 Similar to ideal-gas or solution mixtures, we can define the chemical potential of 

substance i in an ideal and regular mixture of adsorbed molecules as, 
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 ̂ 
  

  
                                                                              (9.42) 

where,    is the coverage of intermediate i on the surface of the catalyst,  ̂  is the fugacity 

of substance i in the mixture, and   is the surface fugacity of pure substance i. One can 

show that the Lewis/Randall rule[252] for solutions is also hold in our model for the 

fugacity of an ideal mixture as, 

 ̂ 
                                                                                    (9.43) 

Now let’s define the catalytic activity coefficient for adsorbate i as,  

   
 ̂ 

 ̂ 
                                                                                                                   (9.44) 

then the chemical potential of adsorbed intermediate i in a mixture of adsorbed molecules 

can be written as,  

     
                                                                                                         (9.45) 

Comparing equation 35 and the above equation, the activity of the adsorbed intermediate 

i, can be expressed as,  

                                                                                                                    (9.46) 

Now we have all the tools that we need to calculate the equilibrium, forward, and 

backward rate-constant, and consequently obtain an expression for the rate of an 

elementary reaction. 

 The chemical potential of a reaction can be written as, 

  ∑       ∑   (  
          )                                                   (9.47) 

where    is the stoichiometry coefficient of intermediate i. At equilibrium the chemical 

potential is equal to zero, and the equilibrium constant can be obtained as, 
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 According to transition state theory, the reactant state and the transition-state 

complex are in an equilibrium for any given elementary reaction such as,        

  , and the forward reaction rate and turnover frequency(TOF) of the reaction can be 

written as, 

            
   

 
        ,    and             

   

 
                                (9.49) 

where,    is the Boltzmann constant, h is the Planck constant, T denotes the temperature, 

   is the number of the  transition-state molecules on the surface, and    is the coverage 

of transition-state adsorbates. Because there is equilibrium between the reactant and 

transition-state, we can calculate    as, 

       

                                                                                                              (9.50) 

where    is the equilibrium constant between the reactant and transition-state and 

calculated by     
      

  ,     and     are the activity coefficient for transition-state and 

reactant, and    is the coverage of the reactant molecules. 

By replacing the    in the TOF expression for the forward reaction, and similarly 

calculating the backward TOF, we can show that the turnover frequency of a reversible 

elementary reaction      
 , can be expressed as, 

                    
 ( 

  

   )      
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   )                                               (9.51) 

where   
  

   

 
  

          
   

   , and   
  

   

 
  

           
   

   are the ideal forward and 

backward rate-constants, and   , and    are non-ideal rate-constants where the 

relationship of these rates can be shown as, 
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  ( 

  

   )                                                  (9.52) 

 Finally, we want to show how De Donder relation, will change when using the 

definition of the activities of our thermodynamic model. According to the De Donder 

formulation, the rate of the elementary reaction step i, is expressed in terms of forward 

rate, rf, and the affinity of step i, Ai, 

    *      (
   

  
)+                                                                   (9.53) 

where affinity is given as, 

    ∑   (  
        )   ∑   (  

          )                                (9.54) 

 Consequently, the De Donder relation can be expressed in terms of coverages and 

activity coefficient, 

    [  
∏   

  
 

    
]  0  

∏ (    )
  

 

    
1 

where, at equilibrium the, 
∏ (    )

   

    
  is one and consequently the net rate is zero. Also, by 

using the definition of the forward rate, and replacing it in the De Donder relation one 

can show that a similar expression to equation 9.51 for the reaction rate of an elementary 

step can be obtained. 

 

MICROKINETIC MODELS: 

 By implementing the more thermodynamically realistic definition of elementary 

rate-reactions, more realistic results are expected to be obtained, and this model can be a 

more accurate bridge between the molecular scale calculations and reactor-scale. The 

turnover frequencies, coverages, and the predicted dominant pathways that are obtained 
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by this model are more reliable, and finally, the degrees of rate-control analysis can assist 

to identify the realistically important kinetic parameters. 

 Admittedly, while our model sheds light on the thermodynamic of the adsorbed 

intermediate, the main remaining challenge in extensive application and implementation 

of our proposed model in microkinetic simulations, is finding the values or expressions 

for the catalytic fugacity and activity coefficient. More often in the catalytic reactions, 

just few or one surface intermediate poison the surface, and consequently the    for many 

of the intermediates is expected to be 1. But how can we obtain these few needed 

coefficients? 

 Fugacity and activity coefficient have been extensively studied in solutions. 

Various relationships have been derived/proposed for predicting the activity coefficients, 

and correlations of these parameters. We note that, by analogy, the scientifically proved 

correlations between the activity parameters in solutions are also applicable to our model 

for catalyst surface. E.g. by using correlations such as Gibbs/Duhem equations[253], the 

activity coefficients can be correlated. Also, by using power series expansion, such as 

Redlich/Kister[254] expansion for excess properties, modules similar to Margules 

equation[253] or even more complicated modules such as Van Laar[253], and 

Wilson[255] equations can be obtained for systems with binary abundant intermediates or 

UNIFAC[253, 256, 257] or UNIQUAC[253, 258] methods for greater complexity for 

systems with multiple abundant surface intermediates. Also, in the catalysis community, 

various efforts have been made for quantifying the self-interaction and cross interaction 

between the adsorbed molecules. By using the analogy, comparison, and learning, from 

the already developed modules for the calculations of activity in solution, new efforts can 
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be more focused on developing analogous modules for the calculations of the catalytic 

activity coefficients of adsorbed intermediates. A combination of DFT calculations and 

experimental studies can ideally provide an extensive data base/software for the fugacity 

and activity coefficient of different intermediates on different surfaces, similar to what is 

currently available for various substances in different solvents and solutions. 

 

9.5. CONCLUSION 

 The degree of rate control analysis is a powerful tool for identifying the rate 

limiting elementary steps and intermediates. By applying the rate-degree of control 

analysis in our studies for more complex reaction schemes, we faced positive values for 

rate-controlling intermediates, which means with stabilizing the poisoning intermediates 

we can improve the net rate. Since, at first, it sounds irrational to us, we conceptually and 

mathematically investigated the possibility of such phenomenon which led us to find 

some universal and unrestricted correlations for degrees of rate-control. We presented a 

solid mathematical proof that the degrees of rate-control, regardless of the reaction 

mechanism and conditions, are conserved through all elementary steps and intermediates 

such that, the summation of the degrees of rate-controls for all the elementary steps is 

equal to 1, and the sum over the degrees of rate-control of all the intermediates, is equal 

to -1, and consequently the degrees of rate-control for all the energy states in a reaction 

scheme is equal to zero. Next, we showed that the thermodynamic of adsorbed 

intermediates on the surface plays an important role in the kinetic of reaction 

mechanisms. The presence of the lateral interaction between the intermediates on the 

surface of the catalyst, can significantly impact the kinetic of the reaction process. E.g. 
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for Langmuir-Hinshelwood mechanism we showed that the importance of the abundant 

surface intermediates that we identified to be the rate-controlling on ideal surfaces (In the 

absence of lateral interaction), under specific conditions, can fade when there are lateral 

interactions between adsorbed molecules. Finally, with the aim of the conceptual 

analogies between the thermodynamics of molecules in a mixtures, and behaviors of the 

surface adsorbates, we proposed a thermodynamic model that can take the interaction 

between surface intermediates into account by using catalytic activity coefficients of 

intermediate that is conceptually equivalent to the activity coefficients of molecules in 

solutions. The impact of such model can be enormous in understanding of the kinetic of 

chemical processes. By providing an extensive data base/software for the fugacity and 

activity coefficient of different intermediates on various catalysts, similar to what is 

currently available for various substances in different solvents and solutions, the 

proposed model can provide a reliable and accurate transition from the molecular scale 

calculations to macro-scale reactors. 
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9.7. FIGURES 

    (a)                                                                                  (b) 

Figure 9.1 A schematic of a mechanism, where in (a) all intermediates are stabilized by 

dG , and in (b) just the transition state is stabilized by dG while the free energy of all 

other states remains the same. 
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CHAPTER 10 

SUMMARY 

  Lipid feedstocks and pyrolysis oils from woody biomass can be utilized for the 

production of second-generation biofuels via a catalytic hydrodeoxygenation (HDO) 

process. The conversion of fatty acids and esters plays an important role in the activity 

and selectivity of these processes. Understanding the HDO reaction mechanism of 

organic acids and esters on metal surfaces is a prerequisite for the rational design of new 

HDO catalysts specifically designed for upgrading pyrolysis oils or lipid feedstocks.  

 The aim of this thesis is to provide insight into the reaction mechanism and 

kinetic of catalytic hydrodeoxygenation of organic acids and esters. 

 Heterogenity is the essential challenge in the field of catalysis where the reactions 

take place at interfaces of gas, solid, and liquid phases. So, rational design of a catalyst 

for a chemical process such as hydrodeoxyegnation of acids and esters requires 

identifying the active interfaces, and understanding the reaction mechanism, activity, and 

selectivity descriptors at relevant interfaces.  

 In this thesis, we addressed these challenges, and identified the active sites, 

reaction mechanism, and activity descriptors of the hydrodeoxygenation of propionic acid 

and methyl propionate which are model ester and acid molecules. Additionally, since 

industrial hydodeoxygenation of acids and esters usually takes place in complex liquid 

environments, we thoroughly investigated the effects of solvents on activity descriptors 

of the hydrodeoxygenation of organic acids and esters. 
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 We performed a systematic investigation of the elementary reactions involved in 

the hydrodeoxygenation of propanoic acid and methyl propionate over Pd catalysts and 

developed a microkinetic model with parameters derived from DFT calculations and 

transition state theory. Under all conditions, we found that decarbonylation mechanism is 

the dominant mechanism in hydrodeoxygenation of acids and esters. With the help of a 

sensitivity analysis, we identified both dehydrogenation steps and C-O bond 

dissociations, such as propanoyl-hydroxyl in propionic acid, and propanoyl-methoxy in 

methyl propionate to be the activity descriptors. C-O bond dissociations were previously 

also identified as the rate-determining step for the hydrodeoxygenation of acetic acid.[82, 

150] However, the importance of dehydrogenation steps such as dehydrogenation of α-

carbon in both methyl propionate and propionic acid was not clearly addressed in the 

literature. Consequently, we designed an experiment and performed a kinetic isotope 

study on deuteriated propionic acid, where we were able to verify the importance of the 

dehydrogenation steps on the overall activity and obtained a very good agreement 

between computational and experimental results. 

 To identify the active sites, we investigated the effect of palladium catalysts 

surface structures on the hydrodeoxygenation of propionic acid over Pd (211) and Pd 

(111) model surfaces with the help of periodic DFT calculations. We found that the 

activity on stepped surfaces was slightly lower than on flat surfaces; however, the 

difference between the TOFs of flat and stepped surfaces was not remarkable, suggesting 

that the hydrodeoxygenation of propionic acid over palladium catalyst is nearly 

insensitive to surface structure. 
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 Finally, the effect of different solvents on hydrodeoxyegnation of propanoic acid 

and methyl propionate over Pd catalyst was investigated by using an implicit solvation 

scheme. We saw that in the presence of a polar solvent such as water that it stabilizes key 

intermediates in the decarboxylation mechanism, the decarboxylation rate increases by 

two orders of magnitude and the decarbonylation and decarboxylation pathways become 

essentially competitive. Furthermore in the presence of solvents, C-H and C-O bond 

dissociations were still the rate-determining steps and are likely activity descriptors for a 

future computational catalyst discovery and design study. 

 Additionally, during the sensitivity analyses for the reaction mechanisms of 

hydrodeoxygenation of acids and esters, we faced amazing mathematical relationships 

between the degrees of rate-controls. We were able to theoretically prove the 

conservation relationships between the degrees of rate-controls which led us to a better 

understanding of the thermodynamics of the adsorbates on the surface of the catalyst. 

While we are still developing our ideas, the last chapter of this thesis was dedicated to 

this new way of looking at thermodynamics of adsorbate-catalyst interfaces. 
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