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Abstract

The large amount of data collected in an mass spectrometry experiment requires effective

computational approaches for the automated analysis of those data. Though extensive research

has been conducted for such purpose by the proteomics community, there are remaining chal-

lenges, among which, one particular challenge is that the identification rate of the MS/MS

spectra collected is rather low. One significant reason that contributes to this situation is the

frequently observed mixture spectra, which result from the concurrent fragmentation of multi-

ple precursors in a single MS/MS spectrum. The ability to efficiently and confidently identify

mixture spectra is essential to alleviate the current bottleneck of low mass spectra identification

rate. However, nearly all the mainstream computational methods still take the assumption that

the acquired spectra come from a single precursor, thus they are not suitable for the identifica-

tion of mixture spectra.

In this research, a mixture spectrum is modelled as linear combination of two single-

precursor spectra and we focused on developing effective algorithms for the purpose of inter-

preting mixture tandem mass spectra. Our research work is mainly comprised of two com-

ponents: mixture spectra de novo sequencing and mixture spectra identification by database

search. For the de novo sequencing approach, we formulated the mixture spectra de novo se-

quencing mathematically, and proposed a dynamic programming algorithm for the problem.

Different from the conventional idea of seeking multiple peptides from a MS/MS spectrum

iteratively, our proposed algorithm considers the problem as a whole and proceeds in a rig-

orously designated pathway to construct two peptide sequences concurrently from a single

mixture spectrum. Additionally, we use both simulated and real mixture spectra datasets to

verify the efficiency of the algorithm described in the research. For the database search iden-

tification, we proposed an approach for matching mixture tandem mass spectra with a pair of

peptide sequences acquired from the protein sequence database by incorporating a special de
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novo assisted filtration strategy. Prior to scoring the query mixture spectrum against the enor-

mous amount of candidate pairs by a stringent scoring function, the de novo assisted filtration

strategy will rank all the peptides that are obtained directly from the theoretical digestion of the

protein sequence database by an initial filtration scoring model and only those higher ranked

peptide sequences are selected and paired up to form candidate pairs that can go through the

subsequent matching procedure with a more stringent scoring function. Besides the filtra-

tion strategy, we also introduced in the research a method to give an reasonable estimation

of the mixture coefficient which represents the relative abundance level of the co-sequenced

precursors. The preliminary experimental results demonstrated the efficiency of the integrated

filtration strategy and mixture coefficient estimating method in reducing examination space and

also verified the effectiveness of the proposed matching scheme.

Keywords: Mass Spectrometry, Computational Proteomics, Mixture Spectra, Peptide De

Novo Sequencing, Database Search
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Chapter 1

Introduction

1.1 Background

Proteins are essential to life. They play key roles in all biological processes. The backbone

structure of a protein is a sequence of amino acids; and there are 20 different amino acids

commonly observed in living things. Because of the significance of proteins for living beings,

proteomics, the subject that systematically studies proteins has gradually become fundamental

in the research related to molecular biology. Its primary objective is to obtain a comprehensive

understanding of disease formation, cellular processes and interaction activities at the protein

level [1]. Efficient analysis of proteomics data will be beneficial for the discovery of biomark-

ers, which will be extremely useful in the diagnostic and therapeutic procedure of several kinds

of diseases in modern clinical treatment and basic medical research [2]. Nowadays, the pro-

teomics research highly depends on the successful identification and quantification of proteins

that are expressed in a specific cell, tissue or organism.

During the past two decades, mass spectrometry has gradually become a standard tech-

nique for the high-throughput characterization of large biomolecules, including peptides and

proteins [3, 4]. In a typical LC-MS/MS experiment, protein sample is digested into peptides
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with proteolytic enzymes to break protein molecules into relatively short peptide sequences,

and the resulting peptide mixtures are separated using Liquid Chromatography (LC) first, and

subsequently ionized using Matrix-Assisted Laser Desorption Ionization (MALDI) [5] or Elec-

trospray Ionization (ESI) [6]. After ionization, the charged peptides are measured in the first

mass analyzer, and then fragmented and followed by a measurement in the second mass ana-

lyzer. Usually two types of spectra are collected, MS spectra (or survey scans) in which the

intensity and m/z are measured for intact peptides and MS/MS spectra where one of the ions

detected in the MS spectra is isolated, fragmented and measured in a high-throughput man-

ner [7]. Equipped with high sensitivity and accuracy, current mass spectrometers can produce

thousands of MS/MS spectra in a single run. The large amount of data collected in an MS

experiment requires effective computational approaches to automate the process of spectra in-

terpretation.

Currently, much efforts have been made to the development of approaches for the com-

putational analysis of mass spectrometry based proteomics data. Generally, the mainstream

computational methods for this purpose fall into two categories: database search and de novo

sequencing. The database search method has been extensively studied, in which the iden-

tification of MS/MS spectra is assisted with a protein sequence database, and the primary

task is to correctly correlate the collected spectra with some amino acid sequences in the pro-

tein database. Many software packages are available for this purpose, including MOWSE [8],

Mascot [9], PEAKS DB [10], SEQUEST [11], X!Tandem [13], OMSSA [12] and Phenyx

[14]. Usually, methods taking this approach make the assumption that all the sequences in the

database are accurate and the proteins in the sample are included in the database. However, the

aforementioned prerequisite that the targeted sequence is contained in the database is often not

satisfied due to many reasons, such as incomplete genome sequencing, inferior gene prediction

from the genome, and the existence of mutations and polymorphisms in the sample. Under this

circumstance, de novo sequencing will serve as a complementary approach for peptide identi-
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fication. In the de novo sequencing, the computation of peptide sequence does not rely on the

protein database, the algorithm directly constructs the peptide sequence that best matches the

spectra. In the earlier days, researchers used to apply a very simple algorithmic approach to

deal with peptide de novo sequencing by enumerating every possible amino acid combinations

for a given molecular mass value, this will result in the exponential increase in computation

time with respect to the sequence length, which makes it infeasible for long peptide sequence.

In the literature [15], a new mathematical strategy for de novo sequencing was introduced. In

this research, an MS/MS spectrum is converted to the corresponding spectrum graph and the

searching for solution is primarily done on the graph. After this publication, other researchers

have proposed various methods for de novo sequencing based on the graph model and its vari-

ations. For the purpose of de novo sequencing, there are also several software packages, in-

cluding Lutefisk [16], PEAKS [17], PepNovo [18], pNovo [19], EigenMS [20], Sherenga [21],

NovoHMM [22], MSNovo [23], AUDENS [24], SEQUIT [25], PPM-Chain [26]. Other reports

regarding the de novo sequencing can be found in [27, 28, 29, 30, 31, 32]. There are also lit-

erature on the review and comparison of the commonly accepted de novo sequencing methods

available to us, in which the research will provide us more comprehensive understanding of the

de novo sequencing approach and the related algorithms [33, 34, 35, 36, 37].

Although much effort has been made to develop new computational approaches for the

analysis of mass spectrometry data, there are still several unsolved problem that are challeng-

ing [38]. One specific challenge is that in a high throughput MS/MS experiment, usually only

a fraction of the acquired spectra can be confidently interpreted by the existent computational

methods. Many factors may contribute to this situation which include: low precursor intensity,

poor fragmentation of the selected precursor, or the existence of modified residues. Moreover,

the gas phase fragmentation may result in MS/MS spectra with unconventional fragment ions

that are not considered by the mainstream computational methods [39], and the sequenced

peptides may not be present in the database or may have unanticipated post-translational mod-
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ifications (PTMs) [40]. Another specific scenario that facilitates the low identification problem

is caused by the ion isolation process in the LC-MS/MS experiment. Recall that the precursor

ion is selected in the first mass analyzer in tandem mass spectrometer based on its m/z value.

Even coupled with High Performance Liquid Chromatography (HPLC) [41], it is still not guar-

anteed that the peptides in the sample are completely separated. There is a chance that peptides

with similar m/z values co-elute, generating a single spectrum that contains a mixture of spec-

tra. The mixture spectra are induced by the isolation and simultaneous fragmentation of two

or more distinct molecular ions within the same isolation window. Fragments from multiple

precursors will be present in a single MS/MS spectrum, increasing the number of unidentified

fragments in database search engines.

A considerable portion of the spectra acquired in the typical Data Dependent Acquisi-

tion (DDA) strategy [42] come from the concurrent fragmentation of multiple precursors in the

same sequencing attempt. Previous research has confirmed that peptides with similar mass val-

ues and chromatographic properties being sequenced together can happen quite frequently and

result in mixture spectra containing ion fragments from multiple precursors [43, 44, 45, 46].

In [43], Hoopmann and Finney examined the frequency of mixture spectra with a software

tool and estimated that 11 percent of MS/MS spectra are chimeras, with an additional 29 per-

cent of MS/MS whose parent isotope distribution inconsistent with peptide analytes. In [44],

Houel et al. investigated the frequency of chimeras in shotgun proteomics and assessed that

in a typical data-dependent acquisition (DDA) of LTQ-Orbitrap profiling analysis of complex

samples, the percentage of chimeras may reach as high as 50 percent of total spectra. These

preliminary estimations of the frequency of mixture spectra justify the necessity of developing

new method for characterizing those spectra. In addition, some new experimental modes also

rendered the increasing necessity for peptide identification from mixture spectra. For instance

in the data-independent acquisition (DIA) strategy [47], precursors over a large mass range are

co-fragmented to avoid the sequencing issues existent in data-dependent acquisition strategy,
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therefore the generation of mixture spectra is unavoidably. Other new acquisition strategies that

tend to generate mixture spectra include the Multi-stage MS technique [48] and the SWATH

acquisition strategy [49]. Peptides with similar masses and chromatographic properties can

occur quite frequently and generates mixture spectra which will significantly reduce the identi-

fication efficiency due to existence of unidentifiable fragment ions derived from the co-eluting

precursors. Most of the mainstream approaches now make the assumption that each MS/MS

spectra comes from only one peptide, therefore they are not suitable for the identification of

mixture spectra. New computational methods are necessary to handle the problem of mixture

spectra identification. Such research will be very beneficial to the general objective of building

proteome profile of a specific species, for instance, the complete human proteome profile.

The identification of mixture spectra is a challenging research topic. The ability to identify

mixture spectra will be useful to alleviate the algorithmic bottleneck that exists in the current

computational analysis of mass spectrometry based proteomics. To the best of our knowledge,

the research on computational analysis of mixture MS/MS spectra remains unexplored. It is

necessary and promising research to develop new algorithms and software tools for this objec-

tive. The work in this thesis focused on developing novel algorithms for peptide identification

from mixture MS/MS spectra.

1.2 Chapter Outlines

The thesis is organized in the following chapters:

In chapter 1, we present a brief introduction to the background and motivation of the

research.

In chapter 2, we provide the necessary fundamentals for mass spectrometry based pro-

5



teomics research, which include the biochemical basic knowledge, and the mass spectrometry

technology. And in this chapter we also give a general summary on the current computational

methods for mass spectra identification.

In chapter 3, we formulate the mixture spectra de novo sequencing problem mathemati-

cally, and propose a dynamic programming algorithm for the problem. Additionally, we use

both simulated and real mixture spectra datasets to verify the merits of the proposed algorithm.

Some materials of this chapter have been published in referred research articles in [50, 51].

In chapter 4, we propose an approach for matching mixture tandem mass spectra with a

pair of peptide sequences acquired from the protein sequence database by incorporating a spe-

cial de novo assisted filtration. The preliminary experimental results demonstrate the efficiency

of the integrated filtration strategy in reducing examination space and verified the effectiveness

of the proposed matching method. Some materials of this chapter have been published in peer

reviewed paper in [52] .

In chapter 5, we conclude the whole thesis by summarizing the major content in the re-

search and giving a discussion about the possible future research work.
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Chapter 2

Fundamentals

2.1 Biochemistry Basics

Proteins are large biological molecules, consisting of one or more long chains of amino acids

residue. Proteins are essential to a variety of biological functions within living organisms. Pro-

tein differs from one another primarily in their sequence of amino acids, which is translated

from the DNA sequences of the species. The amino acids sequence can fold into some specific

three-dimensional structure that will ultimately determine the biological activity of the protein.

After translation, there exists another biological process called post-translational modification

(PTM) which alters the protein sequence by attaching an amino acid residue with some bio-

chemical functional groups. The PTM further extends the range of functions of the proteins in

organisms.

2.1.1 Amino Acid and Protein

Amino acids are molecules containing both amine (−NH2) and carboxylic acid (−COOH)

functional groups, along with a side-chain specific to each amino acid. These molecules are of
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particular importance in biochemistry, where the term amino acid is used to refer specifically

to the alpha-amino acids with a general formula H2NCHRCOOH where R is a side chain. The

general structure of an alpha-amino acid is shown in Figure 2.1.

Figure 2.1: Structure of alpha-amino acid.

An amino acid removing one hydrogen atom (H) from the amine group (N-terminal) and

one hydroxyl group (OH) from the carboxylic group (C-terminal) is referred as the amino acid

residue. The general structure of an amino acid residue is shown in Figure 2.2.

Figure 2.2: General structure of an amino acid residue [53].

There are 20 common alpha-amino acids. The difference of them only lies in the struc-

ture of the side chain groups (R groups). In Table 2.1, it contains the mass and composition

information regarding all the 20 common amino acid residues.
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Table 2.1: Residue Mass and composition of the 20 standard amino acids.

Name
3-letter
Symbol

1-letter
Symbol

Monoisotopic
Mass

Average
Mass

Residue
Composition

Alanine Ala A 71.03711 71.08 C3H5NO

Arginine Arg R 156.10111 156.2 C6H12N4O

Asparagine Asn N 114.04293 114.1 C4H6N2O2

Aspartic Acid Asp D 114.02694 115.1 C4H5NO3

Cysteine Cys C 103.00919 103.1 C3H5NOS

Glutamic Acid Glu E 129.04259 129.1 C5H7NO3

Glutamine Gln Q 128.05858 128.1 C5H8N2O2

Glycine Gly G 57.02146 57.05 C2H3NO

Histidine His H 137.05891 137.1 C6H7N3O

Isoleucine Ile I 113.08406 113.2 C6H11NO

Leucine Leu L 113.08406 113.2 C6H11NO

Lysine Lys K 128.09496 128.2 C6H12N2O

Methionine Met M 131.04049 131.2 C5H9NOS

Phenyalanine Phe F 147.06841 147.2 C9H9NO

Proline Pro P 97.05276 97.12 C5H7NO

Serline Ser S 87.03203 87.08 C3H5NO2

Threonine Thr T 101.04768 101.1 C4H7NO2

Tryptophan Trp W 186.07931 186.2 C11H10N2O

Tyrosine Tyr Y 163.06333 163.2 C9H9NO2

Valine Val V 99.06841 99.13 C5H9NO

And the structures of 20 standard alpha-amino acids are listed in Figure 2.3 [54].
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Figure 2.3: Chemical Structure of 20 standard alpha-amino acids.

Amino acids are the structural units that constitute polypeptides and proteins. They join

together to form short polymer chains called peptides or longer chains called proteins. The
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reaction process that two amino acids to form a peptide bond is called condensation [55].

The peptide bond (amide bond) is a covalent chemical bond formed between two amino acid

molecules. In condensation, two amino acids approach each other, with the acid moiety of

one coming near the amino moiety of the other. One loses a hydrogen and oxygen from its

carboxyl group (COOH) and the other loses a hydrogen from its amino group (NH2). This

reaction produces a molecule of water (H2O) and two amino acids joined by a peptide bond.

The condensation of amino acids to form a peptide bond is shown in Figure 2.4.

Figure 2.4: Condensation of two amino acids to form a peptide bond

The primary structure of a protein is a linear chain of amino acids, and generally proteins

contain at least 40 amino acid residues [56]. Figure 2.5 shows the protein primary structure

contains sequence of a chain of amino acids. Once the chain of amino acids has been assembled

by the ribosome, it tends to fold in on itself. The function of a protein is directly dependent on

its 3-dimensional structure. Remarkably, the higher level of protein structure is determined by

the sequence of amino acids in the protein polymer [57]. The weak hydrogen bonds between

peptide bonds in different parts of the polypeptide will bring the secondary structure to the
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protein. Several types of amino acids contain sulphur in their side chain groups, for instance

the amino acid Cysteine containing a sulphur atom in its R-group, tend to form disulphide

bonds between them. This will result in the complex 3-dimensional tertiary structure of the

protein. More than one polypeptide chains folding and connecting together will eventually

bring the quaternary structure for some proteins.

Figure 2.5: The primary structure of protein

2.1.2 Post-Translational Modifications

Post-translational modifications (PTM) of protein increase the functional diversity of the pro-

teome by the covalent addition of some molecular groups. PTMs are chemical modifications

that play a key role in the biological functions of the altered proteins, because they adjust the

physical and chemical properties, stability and activity of a protein, thus altering the structure

and function of a protein [58, 59, 60]. Most eukaryotic proteins are post-translationally modi-

fied proteins [61], and PTMs have also been frequently reported to be involved in various dis-

eases including cancers and heart disease [62]. Today, there are hundreds of post-translational

modifications reported by previous study, in which, the Unimod PTM database contains more

than 500 entries [63] and the DletaMass database includes over 300 entries [64]. The most fre-

quently observed PTMs includes phosphorylation, glycosylation, methylation, acetylation and
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acylation [65]. Table 2.2 contains the summary of 25 Post-Translational Modifications which

are frequently reported by previous experiments [66].

Table 2.2: Mass and modification residue of some commonly reported PTMs

Entry No. Mass(∆m) Residue Modification Name

1 -48.003372 M@C-term Homoserine lactone

2 -29.992805 M@C-term Homoserine

3 -18.010565 C@N-term Dehydration

4 -18.010565 E@N-term Pyroglutamic Acid from E

5 -17.026548 Q@N-term Pyroglutamic Acid from Q

6 -0.984016 [X]@C-term Amidation

7 0.984016 R,N,Q Deamidation

8 14.01565 E,[X]@C-term Methylation

9 15.994915 W,H,C,M Oxidation or Hydroxylation

10 21.981943 D,[X]@C-term Sodium adduct

11 27.994915 T,[X]@N-term Formylation

12 31.989828 M Dihydroxy(Di-oxidation)

13 42.010567 C,[X]@N-term Acetylation

14 43.005814 K,[X]@N-term Carbamylation

15 44.026215 C Ethanolation

16 45.98772 C Beta-methylthiolation

17 57.021465 C Carbamidomethyl

18 58.005465 C Iodoacetic acid derivative

19 71.03712 C Acrylamide adduct

20 79.95682 Y,T,S O-Sulfonation

21 79, 96633 D,Y,H,T,S Phosphorylation

22 99.06841 C N-sopropylcarboxamidomethyl

23 105.057846 C S-pyridylethylation

24 162.0528 Y,[X]@N-term Hexoses

25 203.0794 S,T,N N-Acetylhexosamine

26 210.1937 K,[X]@N-term Myristoylation

27 226.07759 K,[X]@N-term Biotinylation
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2.2 Mass Spectrometry Technology

Mass spectrometry (MS) is an analytical technique for discovering the composition of a sam-

ple by measuring the mass values of the molecules in it. It has been used for different analyti-

cal purposes, both qualitative and quantitative analysis, including identifying the composition

and structure of the target compounds and measuring the abundances of interested molecules.

Nowadays, mass spectrometry has been widely used to analyze the physical, chemical or bio-

logical properties of a large amount of compounds [67].

2.2.1 Instuments and Configuration

A mass spectrometer typically contains three components: the ionization source, the mass

analyzer and the detector. Figure 2.6 shows the schematic of the basic components of a mass

spectrometer. Molecules are first ionized in the ionizer, then the ions are separated according

to their different m/z in the mass analyzer, and finally the separated ions are detected in the

detector to form an MS spectrum which is comprised of a series of peaks.

Figure 2.6: Schematic of the basic components of a mass spectrometer including Ion Source,
Mass Analyzer and Ion Detector.

Figure 2.7 shows the schematic of a time-of-flight (TOF) mass spectrometer. Charged

ions from the ionization source are accelerated into the TOF tube, which contains an electric

field free flight region. The kinetic energy gained during acceleration decreases with increasing

mass, such that heavier ions will fly slower and have a longer time-of-flight. This is the basis

of TOF mass analysis.
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Figure 2.7: Basic principles of time-of-flight (TOF) mass spectrometry analysis. Following
ionization, sample ions are accelerated into an electric field free region for drift. The larger
the ion, the less energy it will gain during acceleration and as a result it will travel slower than
smaller ions [68].

2.2.1.1 Ionization Source

In the ionizer, compounds in the sample are ionized by some ionization technique, for instance

by impacting the compounds with electron beam, which renders the formation of charged

molecules. Two types of ionizers are commonly used in mass spectrometry based proteomics

study, the MALDI (Matrix-Assisted Laser Desorption/Ionization) and ESI (Electrospray Ion-

ization). In MALDI, the analytes of interest is uniformly mixed with a large quantity of matrix

material which is comprised of certain kind of low molecular weight Ultraviolet absorbing

substance, then a pulsed laser irradiates the matrix-sample spot, triggering desorption and va-

porization of the sample and the matrix. The matrix absorbs the UV laser energy, preventing

the sample from being destroyed, also causes it to dissociate and will typically transfer a proton

to the molecule to facilitate the ionization of the sample before they are accelerated into mass

spectrometers [69]. Figure 2.8 shows how the ionization happens in MALDI.
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Figure 2.8: Matrix-Assisted Laser Desorption/Ionization (MALDI) [70]

In ESI, the liquid containing the analytes of interest is first dispersed into a fine aerosol

before going through a capillary tube carrying high voltage, then the droplet is heated to aid the

solvent evaporation which will subsequently makes itself smaller and denser charged. When

reaching the Rayleigh limit, the surface tension that holds the droplet together will be surpassed

by the electrostatic repulsion of like charges, this will cause the droplet to break into smaller

yet stable droplets. The new droplets undergo similar desolvation and fission process which

will eventually turn into a stream of charged ions [71]. Figure 2.9 shows the principle of

Electrospray Ionization (ESI).

The primary difference is that MALDI produces singly charged ions (z = 1) and ESI

produces singly and multiply charged molecules. One advantage of ESI is that a relatively

large molecule can still be measured and profiled in the mass spectrometers when the charge

state z > 1. Another advantage of ESI over other ionization method is that the instrument can

be calibrated in the low m/z range, because of the multi-charge phenomena of the same ions.

After being ionized, the molecules of interest will be transmitted into the electromagnetic filed

of a mass spectrometer in which particles with different m/z values will demonstrate different

motions when passing through the electromagnetic filed.
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Figure 2.9: General Framework of Electrospray Ionization (ESI) [72]

2.2.1.2 Mass Analyzer

The mass analyzer is the instrument that separates the ions according to their mass-to-charge

ratios(m/z). For mass analyzer, we consider three primary parameters: mass range, mass reso-

lution and mass accuracy. The mass range of a mass analyzer determines the limits of m/z over

which it can measure ions passing through. Only ions that fall into this range can be profiled.

The m/z range used for proteomics analysis is typically from around 100 Da to a few thousand

Da in which one Da is 1
12 of the mass of a carbon atom (12C), and is approximately the mass

of one hydrogen atom. This mass range enables a balance between sensitivity and accuracy. In

some mass spectrometry instruments, the mass range can be configured to span a rather large

m/z range by trading off its resolution and mass accuracy. Also for the ion trap instruments,

ions with low m/z values usually will not form peaks in the MS spectra due to the significant

low m/z cut-off.

Mass resolution evaluates the ability of the mass spectrometer to distinguish two peaks

with a slightly different m/z values. It is conventionally defined as R = M
∆M (also called the
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Resolving Power) in which the mass difference ∆M can be defined in different ways. In the

valley definition, ∆M is the closest spacing between two peaks of equal intensity with the valley

between them less than a specified fraction of the peak height. Typical fraction are 5%, 10%

or 50%. While in the peak width definition, the value of ∆M is the width of the peak measured

at a 50% of the peak height, which is also called the Full Width at Half Maximum (FWHM).

Figure 2.10 shows the two definitions of mass resolution.

Figure 2.10: Examples for mass resolution based on two definition: (a) The valley definition of
measuring peak separation. (b) The peak width definition of ∆M under the Full Width at Half
Maximum (FWHM) scheme.

Larger resolution always indicates a better separation of peaks profiled in a mass spectrum.

High resolution is considered to be with Resolving Power RP ≥ 5000, which will greatly

facilitate high precision measurements. Figure 2.11 shows an example of how the resolving

power can have a dramatic effect on resolving isotopes. The mass spectrum of a protonated

molecule is obtained at different resolving powers of 200, 2000 and 20000 under the FWHM

definition of resolution, from which we can see that more details can be observed under a

higher resolution mode.
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Figure 2.11: Achievable measurement under different resolving power[81]. Drastic difference
exists in the shape of the same signal after measuring under different Resolving Power.

Mass accuracy defines how much accuracy of the mass value a mass analyzer can provide.

It is normally measured by millimass unit (mmu) or parts per million (ppm). A mmu is equiv-

alent to 1/1000 of the uni f ied atomic mass unit (u). Now the uni f ied atomic mass unit (u) is

displaced by the unit dalton, so 1 mmu equals to 1 millidalton (mDa). Mass accuracy expressed

in ppm is calculated in the following way: Appm =
(|m1−m2 |)

m2
× 106 where m1 is the real mass,

and m2 is the mass given by the mass spectrometer. So given the mass accuracy Appm and the

mass value of an ion MW, we can covert the accuracy back to the unit of mDa by the formula

AmDa =
Appm×MW

103 .

Several types of mass analyzers have been developed, including the Quadrupole mass

analyzers [73], Ion trap analyzers (Quadrupole ion trap, QIT [74]; Linear ion trap, LIT/LTQ

[75]), Time-of-flight (TOF) analyzers [76], Fourier transform ion cyclotron resonance (FT-

ICR) [77], and Orbitrap [78]. Each type of mass analyzer has different capabilities in terms

of sensitivity, accuracy, resolution, m/z range and some other properties [79, 80]. Table 2.3

provides a summary of the performance characteristics for each mass analyzer.
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Table 2.3: Comparison of the typical performance characteristics of several types of commonly
used mass analyzers including Resolution(represented by Resolving Power), Accuracy, m/z
range and Scan Rate.

Mass Analyzer Resolving Power Accuracy(ppm) m/z Range Scan Rate
Quadrupole 1,000 100-1,000 50-2,000; 200-4,000 Moderate
QIT 1,000 100-1,000 10-4,000 Moderate
LTQ 2,000 100-500 50-2,000; 200-4,000 Fast
TOF 10,000-20,000 10-100 No upper limit Fast
FT-ICR 100,000-750,000 <2 50-2,000; 200-4,000 Slow
Orbitrap 30,000-100,000 2-5 50-2,000; 200-4,000 Fast

2.2.1.3 Ion Detector

After the ions are separated by the mass analyzer, they reach to the ion detector. The detector

records the current signal produced by an ion impinging event or the charge induced when an

ion passing by. Generally when an ion hits the metal surface of the detector, its charge will be

neutralised by an electron emitted from the surface onto the ion. The kinetic movement of elec-

trons forms an electric current, which will be recorded subsequently. Because the number of

ions leaving the mass analyzer at a specific instant is normally small, therefore it is significant

to apply amplification technique following the detection to get a signal.

The simplest ion detector is the Faraday Cup which consists of a metal cup that collects all

ions leaving the mass filter. The cup-shape metal surface enables itself to capture the secondary

electrons emitted upon an ion impact event. The current flowing away from the Faraday cup

will be recorded as a signal for further analysis. The Faraday cup is relatively low in sensitivity

and slow in response time. Perhaps the most commonly used detector is called the Electron

Multiplier which transfers the kinetic energy of incident ions to a dynode surface that in turn

generates secondary electrons. A electron multiplier is normally comprised of a series of dyn-

odes maintained at increasings potentials. An emission of electrons is caused by an ion striking

the first dynode surface, and these electrons are then attracted to the next dynode with a higher

potential and therefore more secondary electrons are emitted. Ultimately, as more dynodes are
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involved, a cascade of electrons is collected and converted into a voltage signal that is pro-

portional to the number of impinging ions. Another type of electron multiplier contains just

one continuous dynode instead of several discrete dynodes. The principle is similar where the

electrons are multiplied during several consecutive impacts inside one dynode. The advantage

of an electron multiplier in contrast to a Faraday cup is the high amplification factor and the

fast response time. Figure 2.12 shows the schematics of the mentioned ion detectors.

Figure 2.12: Ion detectors: (a) Faraday cup, (b) Electron multiplier with discrete dynodes main-
tained at particular potentials and (c) Electron Multiplier by a series of consecutive impinging
events within one continuous dynode [82].

2.2.1.4 Mass Spectrum

Mass spectrometers are normally connected to computers with software that analyze the ion

detector data and produce graphs that organize the detected ions by their individual m/z values

and relative abundance. Ions with the same m/z will form a peak in the spectrum, and the

intensity of that peak indicates the number of such ions observed by the detector which is

directly related to the abundance of the corresponding ions in the sample. Because of the

existence of element isotopes, there will also be isotopic peaks observed in the spectrum, from
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which the charge state of the ion can be calculated. Figure 2.13 shows an example of a mass

spectrum.

Figure 2.13: Example of a mass spectrum and the isotopic distribution [83]. After zooming in
at a specific peak, the inner image shows more details about the adjacent isotopic distribution.
Particularly, each peak actually spans a width on the m/z axis.

The inner image in Figure 2.13 shows the details of the isotopic distribution when zoom-

ing in a peak with m/z = 1396.64, in which we can find the corresponding monoisotopic peak

with m/z = 1396.14. The charge state of the ion can be determined by the adjacent isotopic

peaks [84, 85]. The adjusted monoisotopic m/z value can be further used to accurately interpret

the mass spectrum [86, 87]. In particular, we can see that each peak indeed spans a bit width

on the horizontal direction. Signal peaks will undergo a special process of centroiding before

they are ready for computational analysis. During such process, each peak is assigned with a

single m/z value, which usually represents the centroid of the peak shape.

2.2.2 Tandem Mass Spectrometry

Tandem mass spectrometry (MS/MS) has become the dominant method for proteomics study

because it provides more information about a peptide than the traditional mass spectrometry
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technique containing only a single round of mass analysis. It involves multiple stages of mass

analysis which offers further information about specific ions. The first analyzer selects ions of

interest at a specific m/z window which is normally a very small window only a few Daltons

wide. They are called the precursor ions (or parent ions). Then the ions are fragmented by

some kind of dissociation method. And in the final step, the fragments are then separated

based on their individual m/z ratios in another mass analyzer. Two types of mass spectra are

generated in the tandem mass spectrometry experiment: survey scan (or MS spectrum) and

tandem mass spectrum (or MS/MS spectrum). Figure 2.14 shows the general outline of tandem

mass spectrometry.

Figure 2.14: General diagram of tandem mass spectrometry. A sample is injected into the
mass spectrometer, ionized and accelerated and then analyzed by the first mass analyzer. Ions
of interests from the survey scan are then selectively fragmented and analyzed in another mass
analyzer to form spectrum of the ion fragments. In the diagram above, it contains two separate
mass analyzers, while in some other instruments it may contain two sequential analysis in the
same mass analyzer.

2.2.2.1 Shotgun Proteomics

The applications of mass spectrometry in proteomics have drastically changed the characteri-

zation of proteins expressed in a cell or tissue from a labour-intensive style to a computational
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assisted high-throughput fashion. Currently, shotgun proteomics refers to the utilization of

bottom-up proteomics techniques in identifying proteins contained in complex mixtures us-

ing a combination of high performance liquid chromatography (HPLC) coupled with mass

spectrometry technology [88, 89]. Figure 2.15 shows the typical procedure of characteriz-

ing peptides by current shotgun proteomics based approaches. The most common method of

Figure 2.15: Workflow of shotgun proteomics by LC-MS/MS experiment. (1) Protein sample
preparation by 2D-Gel and digestion by enzymes; (2) Peptide mixture separation by Liquid
Chromatography; (3) Survey scan generation in tandem mass spectrometer; (4) Peptide frag-
mentation by HCD/ETD; (5) MS/MS spectrum generation in tandem mass spectrometer; (6)
Computational analysis of mass spectrometry based proteomics data.

shotgun proteomics starts with the proteins in the sample being digested by single or multiple

enzymes and the resulting peptides mixture are separated by liquid chromatography (LC), and

then tandem mass spectrometry by nature serves as the prevalent method to identify and quan-

tify peptides. Peptides are characterized from the collected mass spectral data by a variety of
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different computational approaches, and proteins can be then inferred by matching these iden-

tified peptides to known protein sequences or assembling them into novel proteins [90, 91, 92].

Shotgun proteomics nowadays is widely used as the standard analytical approach in proteomics

research.

2.2.2.2 Fragmentation and Ion Type

In a tandem mass spectrometry experiment, selected peptide precursors will be further frag-

mented before they are transferred to the second mass analyzer. Fragment ions observed in an

MS/MS spectrum depend on many different factors including the primary sequence of peptide,

the amount of internal energy, how the energy was introduced, charge state and so on. Theo-

retically, each fraction of the peptide will generate one peak in the resulting MS/MS spectrum.

According to where the cleavage occurs, fragment ions can be classified into six basic types

shown in Figure 2.16. Fragment ions retained with the N-terminus (the amino group) are a−,

b−, and c−ion, while with the C-terminus (the carboxylic acid group) are x−, y−, and z−ion

respectively. The subscript following each label indicates the number of amino acid residue

kept in that fragment. If two backbone cleavages happen at the same time, internal fragment

Figure 2.16: Six basic types of fragment ions, including a−, b−, c−, x−, y−, and z−ions,
generated by cleavages on a peptide backbone structure with four amino acids.

ions will be generated. Two types of internal fragment ions are sometimes observed, including
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the amino-acylium ions which are formed by a combination of b type and y type cleavages

and the amino-immonium ions which are produced when a combination of a type and y type

cleavages. Immonium ion is a special case of internal fragment with just a single side chain

resulted from a combination of a type and y type cleavages. The immonium ions observed at

the low end of some MS/MS spectrum which are usually considered as diagnostic ions that

provide clues to the presence of specific amino acid residues in the peptide sequence. Though

not often observed, the side chains of the precursor might also be fragmented which will gener-

ate several types of satellite ions, including the d−, v− and w−ions. Figure shows the structure

of the internal fragment ions described above.

Figure 2.17: Structures of the internal fragment ions, including the Amino-acylium ion pro-
duced through a combination of b− and y type cleavages, the Amino-immonium ion formed by
a− and y− type cleavages together, and the Immonium ion [93]

There are several fragmentation techniques available for tandem mass spectrometry, and

each of those approaches tend to generate different types of ions. Three commonly used frag-

mentation methods in the current mass spectrometry based shotgun proteomics include the

Collision-Induced Dissociation (CID) [94], the Higher-energy Collisional Dissociation (HCD)

[95], and the Electron-Transfer Dissociation (ETD) [96]. The Collision-Induced Dissociation

is also called Collisionally Activated Dissociation (CAD), in which the precursor ions are first
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accelerated by some electrical potentials to higher energy state and then collided with neutral

molecule such as helium, nitrogen or argon. Part of the kinetic energy of the peptide ions is

transferred to internal energy which induces the breaking of the peptide backbone. b−ion and

y−ion are the most frequently observed ion types in the MS/MS spectra generated from CID

fragmentation. The Higher-energy Collisional Dissociation (HCD) adopts a similar mecha-

nism as CID fragmentation, from which the MS/MS spectra generated are also dominated by

b−ions and y−ions. One advantageous aspect of HCD compared with CID is its ability to

facilitate the generation of more a−ions and other smaller fragments which as a consequence

will provide more information regarding the structure and composition of the molecule being

analyzed. Another aspect worth mentioning is that HCD is specifically deployed with the Or-

bitrap mass spectrometers, therefore the MS/MS spectra obtained from HCD fragmentation

always have more accurate m/z values. The Electron-Transfer Dissociation (ETD), similar to

the Electron-Capture Dissociation [97] induces cleavage of charged molecules, such as pep-

tides or proteins, by transferring electrons to them. The most frequently observed ions from

ETD/ECD fragmentation are c−ions and z−ions resulting from a cleavage at the N −Cα bond,

and other ions derived from them, such as (c − 1)−ions and z′−ions (sometimes referred as

(z + 1)−ions) are also observed frequently in the collected MS/MS spectral data [98].

2.3 Interpreting MS/MS Spectra

Mass spectrometry has been used for many applications, among which protein identification

is by far the most mature application in proteomics study. Successful protein identification is

considered to be the first step of the proteomics data analysis. In such application, the mass

spectra containing the structural information are used to identify the sequenced peptides, in

which the interpretation process always finds the best matching peptide for the target spec-

trum. Then in the following step, those peptides identified with high confidence are further
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Figure 2.18: Example of an annotated spectrum of a successfully identified peptide
LTKVHKE. In the upper spectrum, the theoretical b− and y−ions match well with most of
the significant peaks in the spectrum with small mass errors. In the nether spectrum, intervals
of the explained peaks are labelled with the corresponding amino acids that have the same mass
values.

assembled together to infer the proteins existing in the sample. Figure 2.18 shows an annotated

spectrum of a successful identification. The process of reconstructing peptide sequence from

mass spectral data is used to be done manually by biochemists. However, the amount of mass

spectrometry data collected in the wet-lab experiment is growing drastically in recent years,

which in turn makes it impractical for researchers to manually interpret the mass spectral data

and the necessity of automated approaches to assign peptide sequences to spectra has become

urgent. Till now, extensive research has been made to the development of new computational

approaches for mass spectra interpretation. In general, the computational approaches for mass

spectral data analysis fall into two categories: database search and peptide de novo sequencing.

2.3.1 Database Search

A database search approach requires the assistance of protein sequence database which is sup-

posed to contain all the target proteins, and the computational task is to select the correct
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proteins from the database. Generally, approaches for database search proceed in a very simi-

lar way. The experimental MS/MS spectra are compared with the theoretical spectra generated

by applying certain cleavage rules to the peptide candidates acquired from a protein database.

Peptide candidates are scored in a way that allows the peptide which best matches the spectral

data to be reported. After that the proteins possibly contained in the sample are inferred from

peptide matches. The general outline of a database search method is shown in Figure 2.19.

To find the best matched peptide sequence, normally a Peptide-Spectrum Match (PSM)

score is calculated to describe the quality of a match between a candidate peptide and a given

spectrum, and in this process, an effective scoring function is of primary importance for the

peptide identification accuracy. Usually, the intensities and the number of matched peaks, as

well as the mass errors of the matching are taken into account in the scoring function. Another

factor to be considered in the scoring procedure is the fragment ion types because of the fact

that certain type of mass spectrometer usually produces peaks with higher intensity for certain

ion types.
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Figure 2.19: Workflow of database search approach. (1) Proteins are theoretically digested
and peptide sequences that satisfy the precursor mass value of the input MS/MS spectrum
are retrieved as the potential candidates. (2) Theoretical spectra are predicted from the selected
peptides according to the certain fragmentation rules. (3) The experimental MS/MS spectra are
compared with all the predicated spectra based on an appropriate scoring function. (4) Peptide
candidates are ranked according to the scoring function, and the top-ranked candidates are
outputted as the results. (5) The peptide matches are grouped together to identify the proteins
in the sample.

After the identification results are reported, researchers always want to know the False

Discovery Rate (FDR) at certain score threshold. Even equipped with proper scoring function,

false discoveries still exist in the identification results due to different reasons [99, 100]. The

FDR will provide researchers an extra dimension to evaluate which analysis results are trust-

worthy. Currently, the Target-Decoy Database method is widely used to validate the results by

estimating the FDR. In such method, a decoy database is firstly constructed with similar statis-
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tical properties as the target database, then the query spectra are searched against with both the

target database and the decoy database. The false discovery rate at a specific score threshold

is estimated by the number of matches in the decoy database with score above that threshold.

Currently, there is still no unified method on how to construct the decoy database or even how

to use the decoy database. A commonly used method is to reverse the protein sequences in the

target database to get the decoy[101], while another research suggest that the decoy and the

target database should be concatenated and searched together[102], and recently researchers

have also proposed a two-round database search strategy coupled with a modified target-decoy

database to estimate the FDR [10].

2.3.2 Peptide De Novo Sequencing

In proteomics, de novo sequencing is the process of deriving peptide sequences directly from

tandem mass spectra without the assistance of a sequence database, therefore it is often used for

novel protein identification or in the situation that the target protein or peptide is not included

in the sequence database. It searches for the optimal combination of amino acids to match the

input MS/MS spectra. Figure 2.20 shows the general workflow of peptide de novo sequencing.

Such analysis has traditionally been performed manually by human experts, and more recently

by computer programs that have been developed due to the requirement of high-throughput

data analysis. Unlike the database search approach in which the algorithmic module is fairly

straightforward, it can be as simple as enumerating every possible peptide sequences in the

database with proper mass values, the de novo sequencing on the other hand requires more

sophisticated algorithm component to seek the optimal solution. The naive solution of enu-

merating every possible amino acid combination for a given molecular mass value will take

exponential time. One extensively studied mathematical model for de novo sequencing is to

convert the spectrum to its corresponding spectrum graph, then the solution is to find an optimal

path on the graph [15]. Figure 2.21 shows the general procedure of de novo sequencing by the
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Figure 2.20: Workflow of peptide de novo sequencing. Usually, multiple sequences are con-
structed by the de novo algorithms, and always those sequences share some homologous parts.

spectrum graph model. Peptide de novo sequencing is considered to be a significantly harder

problem than database search based identification, which requires much higher quality data in

order to derive the complete sequence. A major disadvantage the de novo sequencing suffers is

the low accuracy of the reported results, when the complete sequence is not able to obtain, it is

supposed that partially correct sequence tags are also desired [16]. Those sequence tags can be

used in assisting the database search method to reduce the examination space which will sub-

sequently improve the sensitivity and accuracy of the identification. With the new advances in

both algorithmic and instrumental aspects, the de novo sequencing software have made signifi-

cant progresses in recent years, providing higher accuracy in identification and better coverage

in protein sequence. In such scenario, novel protein sequencing becomes possible by combin-

Figure 2.21: Schematic of the graph spectrum model. (1) The target MS/MS spectrum is
converted to a spectrum graph in which each edge corresponds to an occurrence that the m/z
difference of two peaks in the spectrum equals to the mass value of a certain amino acid residue.
(2) Usually dynamic programming algorithms proceed in a carefully designated manner to find
the path that represents the best solution.
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ing the de novo sequencing method together with multiple enzymatic digestions of the proteins

in the sample preparation phase [103, 104, 105, 106]. To alleviate the shortcomings of low

quality spectra, another direction that researchers have been trying recently is to use multiple

spectra of the same peptide generated by different fragmentation methods to improve the de

novo sequencing accuracy [107, 108]. For instance, by combining the CID spectrum and ETD

spectrum of the same peptide during the de novo procedure, the b− and c−ion, as well the y−

and z′−ions can confirm each other and fill out the missing gaps that may occur in each indi-

vidual fragmentation mode [109, 110, 111]. The combination of multiple fragmentation modes

greatly increases the possibility of deriving a complete peptide sequence, as well reduces the

misinterpretation of other peaks as ion ladder peaks.

2.3.3 Mixture Spectra Identification

The existence of mixture spectra significantly complicates the analysis of complex protein mix-

tures, yet their impact on the mass spectrometry based proteomics is still poorly understood.

Now the proteomics research community is at the stage of realizing the significance of mixture

spectra, and literature on interpreting mixture spectra in tandem mass spectrometry have al-

ready appeared. Masselon et al. described a method in [112] to identify the co-fragmented pep-

tides by taking advantage of the extraordinary accuracy and resolution of the newly developed

FT-ICR (Fourier Transform Ion Cyclotron Resonance) mass spectrometers. In this approach,

groups of peptides from database are selected with high accuracy to generate the possible com-

binations from the co-sequenced precursors. Then the theoretical spectra of the co-fragmented

peptides are compared with the acquired spectra to find the best matched combination. Zhang

et al. introduced a database search engine, ProbIDtree [113], to identify co-eluting peptides

from mixture tandem mass spectra. This method works in an iterative process of database

searching in which ions assigned to a tentative peptide are subtracted from the acquired spec-

trum, and the remaining spectrum is used to detect another matched peptide. The software
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then organize the tentative matched peptides in a tree structure and calculate an adjusted prob-

ability score to determine the correct identifications. Wang et al. proposed M-SPLIT [114],

an MS/MS spectral library search software and demonstrated its potential to identify peptides

from mixture spectra by matching the collected spectra with previously identified spectra. This

method is limited in application due to the fact that it can only be used to identify peptide

that has already been observed and confidently interpreted. Because of such dependency, the

effectiveness of this method is highly subject to be impaired when experimental configuration

changes. Recently, Wang et al. proposed another method, a database search tool, MixDB

[115], which has the ability to interpret mixture spectra by using specifically designed scoring

function for matching the mixture spectra with a pair of peptide sequences filtered from the

protein database. The method explicitly formulates the occurrence of co-sequenced peptides

in the same spectrum, and the FDR (False Discovery Rate) of the computational results is es-

timated as well. More recently, Zhang et al. presented a new workflow, DeMix [116], for the

in-depth shotgun analysis of complex proteomics data. By capitalizing on the high resolution

and mass accuracy of Orbitrap-based tandem mass spectrometry, the proposed method con-

verts the unwanted co-fragmenting events into an advantage of interpreting chimeric tandem

spectra generated by the co-fragmented peptides. In the meanwhile, there are several groups

that conducted research on determining the accurate monoisotopic values of the co-sequenced

precursors, and then applied the conventional database method to characterize the collected

mass spectra in an iterative manner [117, 118, 119, 120].
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Chapter 3

De Novo Sequencing of Mixture Spectra

3.1 Introduction

Due to many different reasons, such as incomplete genome sequencing, inferior gene predic-

tion from the genome, or the sequence variations between two individuals of the same species,

the target proteins may not be included in the sequence database, When this happens, de novo

sequencing would become the only choice for identifying the peptides. For solving the prob-

lem of mixture spectra de novo sequencing, a reasonable assumption is that the computational

methods should have the ability to derive multiple peptide sequences from a single mixture

MS/MS spectra.

Besides all the shortcomings the conventional de novo sequencing methods suffer due to

the imperfect data, there will be several new complications when coming up with the task of

mixture spectra. First, we need to establish a valid mathematical model for mixture MS/MS

spectra that are formed from co-fragmentation of multiple peptides. The precursors selected in

the same isolation window in the MS survey scan may have significantly different intensities.

The diversity of their intensities will greatly influence the peak intensities in the corresponding

MS/MS spectra, therefore the model we set up should be able to adapt to the situation of
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precursors co-sequenced with different abundances. Second, we have to design an effective

scoring function to evaluate the similarity between the reconstructed peptides and the input

mixture spectrum. For de novo sequencing, the scoring function must be designed as an inbuilt

module in the efficient algorithm when computing the solution. The corresponding algorithmic

module for mixture spectra de novo sequencing will have to take account of the fragments from

both of the co-sequenced precursors simultaneously. Besides the dominant ions, such as b− and

y−ions present in the spectra, it is always required that other supporting ion types should also

be considered when calculating the corresponding score. Third, we want to apply a reasonable

method to deal with the overlapping peaks in the mixture MS/MS spectra. Theoretically, the

overlapping peaks in MS/MS spectrum come from ions with similar m/z values. A possible

tendency we can foresee is that the overlapping situation will be more complicated with mixture

spectra, they may be induced by fragments from different peptides as well as fragments from

the same peptides. Newly developed mass spectrometers can achieve very high resolution, for

instance FT-ICR or LTQ-Obitrap. The accuracy of the measurement of the mass values could

be as small as 1 ppm. Under such precision scheme, the occurrence of overlapping peaks is

likely to be reduced, but still we can’t neglect the influence of the overlapping peaks. Last

but not least, we have to design efficient algorithm that enables to assign the significant peaks

present in the mixture spectra to the appropriate candidate peptide sequences being constructed.

Normally, dynamic programming is the choice for de novo sequencing algorithm. Particularly,

the computation of one peptide sequence can be interfered by the presence of fragment peaks

from another peptide. To alleviate the confusion of the computational engine, the algorithmic

module should works in an carefully designated pathway to compute the solution.

Prior to this research, no algorithm has been reported for peptide de novo sequencing from

mixture tandem mass spectra. Such study is necessary because the de novo sequencing can be

regarded as a complementary method for spectra interpretation when the target peptide is not

included in the database. Though computational methods for peptides de novo sequencing
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always suffer the problem of low accuracy upon the derived peptide sequences, the partially

correct peptide sequences can be still very useful for a subsequent database search to find the

exact or homologous peptide. For instance, researchers have showed an increasing interest

in combining de novo sequencing method with database search to more efficiently interpret

MS/MS spectra lately [10, 121]. In those research, the de novo sequencing results that contain

only partially correct sequences are searched against a protein database to further interpret the

spectra. In the following section, we will formulate the problem of mixture spectra de novo

sequencing mathematically and propose a dynamic programming algorithm to solve the prob-

lem. Then the effectiveness of the algorithm is evaluated by both simulated and real mixture

spectra datasets.

3.2 Notations and Problem Definition

3.2.1 Basic Notations

Suppose that a mixture spectrumM is generated by the co-fragmentation of peptides P1 and

P2, andM can be represented by a peak listM = {(xi, hi)|i = 1, 2, ..., n}. Each element (xi, hi)

represents a peak in the spectrum, in which xi is the m/z value and hi is the intensity of the peak.

Data preprocessing including deconvolution is done by standard software packages which will

convert the multiply charged peaks to their singly charged equivalents [122]. Therefore, in

our research we assume that the mixture spectrum M only contains ions of charge one and

the mass to charge ratio (m/z) of an ion is indeed equal to its mass value. Meanwhile, we

use two molecular weight MW1 and MW2 to denote the precursor mass values of the two

peptides which satisfy |MW1 − MW2| ≤ ∆. ∆ is a small value predefined by the width of the

mass spectrometer selection window. In the typical Data-dependent Acquisition (DDA) mode,

the selection window of the mass spectrometer is usually a few Dalton(s) wide. The charge

state of precursors is also considered as an influential factor. It is observed in experiment that
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precursors with different charges are selected in the same isolation window and sequenced

together. While in our research, we use a simplified model in the problem formulation that

we assume the co-fragmented precursors take same charge state. In addition, we use Σ to

denote the alphabet of 20 different types of amino acids. For an amino acid a ∈ Σ, we use

‖a‖ to symbolize the mass of the amino acid residue. Here we have maxa∈Σ ‖a‖ = 186.08

and mina∈Σ ‖a‖ = 57.02. It is worth mentioning that the two amino acids Isoleucine(I) and

Leucine(L) have exactly identical mass values, so generally in de novo sequencing method, we

consider them as the same amino acid.

Intuitively, a peak inMwhose position matches with the mass of a fragment ion of peptide

P is a positive evidence thatM resulted from P. Similarly for a mixture spectrum, the more

and higher peaks match with the theoretical fragment ions of P1 and P2, the larger likelihood

that P1 and P2 are correct pair of peptides we are seeking. In this section we will formulate

this intuition and model the mixture spectra de novo sequencing problem.

3.2.2 Mass Representation of Ion Fragments

In tandem mass spectrometry, peptides will be fragmented before they are transferred to the

second mass analyzer. Theoretically, each fraction of the peptide will generate one peak in the

MS/MS spectrum.

According to where the cleavage occurs, fragment ions can be classified into six basic

types shown in Figure 2.16. Fragment ions retained with the N-terminus are a−, b−,and c−ion,

while with the C-terminus are x−, y−,and z−ion respectively. The subscript following each

label indicates the number of amino acid residue kept in that fragment. After fragmentation,

peptide fractions are charged, and then followed by a measurement of the m/z and abundance

values. Figure 3.1 illustrated the charging condition retained by each of the six basic ion types.
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Figure 3.1: Charging condition of the six basic ion types after fragmentation. Particularly, in
order to be properly charged, y−ion and c−ion will have to retain extra protons on some specific
positions of the backbone structure.

Table 3.1 shows how to derive the mass of the fragment ions with respect to the molecular

mass values of the neutral amino acid residues. The notation Mr represents the neutral mass

value of the target ion. [M] is molecular mass of the neutral amino acid residues. Table 3.2

contains the mass values and abundance level of several frequently used elements in calculating

the mass of biomolecules. The mass of the element is represented by u or Da.1

1The unified atomic mass unit (u) or Dalton (Da) is the standard unit that is used for indicating mass on an
atomic or molecular scale. One unified atomic mass unit is approximately the mass of one nucleon (either a single
proton or neutron). It is defined as one twelfth of the mass of an unbound neutral atom of Carbon-12 (12C) and
has a value of 1.660538921 × 10−27kg.
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Table 3.1: Neutral mass values of different ion types. To obtain m/z values, add or subtract
protons as required to obtain the required charge and divide by the number of charges. For
example, to get y+, add 1 proton to the neutral mass value for y, then the actual mass value of
the y − ion with charge one is OH + [M] + H + H.

Ion Type Neutral Mass (Mr)
a H + [M] −CHO
a∗ a − NH3

ao a − H2O
b [M]
b∗ b − NH3

bo b − H2O
c H + [M] + NH2

x OH + [M] + CO − H
y OH + [M] + H
y∗ y − NH3

yo y − H2O
z OH + [M] − NH2

Table 3.2: Mass values of isotopes. All the entries except the last one are the monoisotopic
mass values of the corresponding elements.

Isotopes Mass(u or Da) Abundance(%)
12C 12.000000 98.90
1H 1.007825 99.986
14N 14.003074 99.630
16O 15.994915 99.762
32S 31.972071 95.020
31P 30.973762 100.000
13C 13.003354 1.100

Let P = a1a2...ak be the string of amino acids, we define the residue mass of the peptide

as ‖P‖ = Σ1≤ j≤k‖ai‖ and the actual mass of the peptide as ‖P‖ + ‖H2O‖. Denote bi and yi to be

the mass of the b−ion and y−ion of P with i amino acids respectively. From Figure 3.1, we

know that bi = 1 + Σ1≤ j≤i‖a j‖. Similarly for the corresponding y−ion with the remaining k − i

amino acid residue, the mass can be computed with yk−i = 19.02 + Σi+1≤ j≤k‖a j‖. Therefore we

have bi + yk−i = ‖P‖ + 20.03.

Let Π = {y, b, a, c, x, z, y∗, yo, b∗, bo} be all the ion types that we consider throughout the
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paper. Assume x is the mass value of a b−ion, from Figure 3.1, we know that the masses of

the a−ion and c−ion at the same location are x − 27.99 and x + 17.03 respectively. Meanwhile

a b−ion may lose an ammonia to generate new ion of mass x − 17.03, or lose a water to form

another ion of mass x − 18.01.

we use B(x) to denote the set of all the ion masses corresponding to this b−ion, then we

have:

B(x) = {x, x − 17.03, x − 18.01, x + 17.03, x − 27.99}. (3.1)

Similarly, for each y−ion with mass x, we will have the following notation,

Y(x) = {x, x − 18.01, x − 17.03, x + 25.98}. (3.2)

that represent all the ion masses related to this y−ion. Reason that Y(x) has one fewer element

thanB(x) is because y−ion losing an ammonia and its corresponding z−ion are both ‖y‖−17.03.

Theoretically, the spectrum of the co-fragmented peptides P1 = a1a2...an and P2 = b1b2...bm

should contain a peak at each of the following mass values:

S (P1, P2) =

n−1⋃
i=1

[B(b1
i ) ∪ Y(y1

i ))]
m−1⋃
j=1

[B(b2
j) ∪ Y(y2

j)] (3.3)

, in which b1
i and y1

i are ions generated from P1, b2
j and y2

j are those ions came from P2

3.2.3 Problem Definition

Because of the fact that the mass values acquired from mass spectrometers are not accurate,

we use δ > 0 to represent the maximum error bound of the mass spectrometers. Moreover, for

spectrum S , we denote S̄ = {(xi, hi) ∈ M|∃y ∈ S , s.t. |y − xi| ≤ δ}, in which S̄ is the subset of

M containing all the peaks explained by the mass values in S .2

2The term explained means that a theoretical mass value matches with a peak in the acquired spectrum.
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Let S (P1, P2) be all the possible ion masses of P1 and P2, S (P1, P2) can be computed by

formula 3.3. Then S (P1, P2) contains all the peaks inM that can be explained by the ions of P1

and P2. Intuitively, the more and higher peaks included in S (P1, P2) indicates the more likely

thatM is generated from P1 and P2. Thus, the Mixture Spectra De Novo Sequencing problem

can be formulated as follows: Given a mixture spectrum M, and two precursor mass values

MW1 and MW2, |MW1 − MW2| ≤ ∆ and a predefined error bound δ, we want to construct two

peptides P1 and P2, such that |‖P1‖ + 20.03 − MW1| ≤ δ, |‖P2‖ + 20.03 − MW2| ≤ δ, and the

following summation is maximized:

H(S (P1, P2)) =
∑

(x,h)∈S (P1,P2)

h (3.4)

The equation above is the summation of all the intensity values of the included peaks. It’s

worthy to notice that the scoring function mentioned above is totally replaceable. In practice,

we can apply a more sophisticated scoring function which involves more influential factors

than just the height of peaks.

3.3 Algorithms and Complexity

3.3.1 Formulation of Idea

As mentioned above, there will be new complications when dealing with mixture spectra.

Firstly, the difficulty to design an appropriate scoring function to evaluate the similarity be-

tween the mixture spectra and the constructed candidate peptide pairs. The scoring function

in Equation 3.4 considers the peak intensity of ions from both peptides, providing us an prim-

itive way for such a task. Secondly, the difficulty to establish an efficient method to address

the overlapping peaks. Overlapping peaks occur more frequently for co-sequenced peptides,

which makes the interpretation more complicated and less accurate. Thirdly, the difficulty to

establish an efficient mechanism to construct a pair of peptides simultaneously. By avoiding
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the traditional idea of identifying multiple peptides iteratively, we explicitly model and intend

to construct the co-sequenced peptides concurrently. Our proposed algorithm below can handle

those difficulties effectively by gradually constructing prefix-suffix pairs for both peptides in a

specially designated pathway, and when facing with the overlapping peaks, we only count each

peak once in the scoring function.

Assume that MW1 = ‖P1‖+ 20 and MW2 = ‖P2‖+ 20, and let A = a1a2...ak be a prefix(N-

terminus) of peptide P1 = a1a2...an, the mass of the b−ion produced by a cleavage between

ai and ai+1 is represented as ‖a1a2...ai‖b = Σ1≤x≤i‖ax‖ + 1, thus the mass of the y−ion from the

same cleavage site is MW1 − ‖a1a2...ai‖b. Let B = anan−1...an−(t−1) be the reverse string of a

suffix(C-terminus) of peptide P1, and we denote the mass of the y−ion by a cut between an−i

and an−(i+1) as ‖anan−1...an−i‖y = Σn−i≤x≤n‖ax‖ + 19, thus the mass of the b−ion from the same

cut site is MW1 − ‖anan−1...an−i‖y. Let C = b1b2...bu and D = bmbm−1...bm−(v−1) be a prefix and a

reverse suffix of peptide P2 = b1b2...bm respectively.

In order to simplify the symbolization in the next part, for a given string S , we use S i

to denote the substring of S from its leftmost amino acid to its ith amino acid. For instance,

Ai = a1a2...ai represents a fraction of A with i letters starting from the left terminus, on the other

hand, Bi = anan−1...an−(i−1) represents a fraction of B which contains the leftmost i consecutive

letters. In addition, we use S N(A) to denote the values of all the ions caused from every possible

cleavage in A, then we have

S N(A) =

k⋃
i=1

[B(‖Ai‖b) ∪ Y(MW1 − ‖Ai‖b)]

Similarly, we use S C(B) to denote all the mass values induced by each different cut in the

reverse suffix string B, then we will have the following equation:

S C(B) =

t⋃
i=1

[Y(‖Bi‖y) ∪ B(MW1 − ‖Bi‖y)]

Accordingly, for peptide P2 and its prefix string C and reverse suffix D, we will have the
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equations listed below:

S N(C) =

u⋃
i=1

[B(‖Ci‖b) ∪ Y(MW2 − ‖Ci‖b)]

and

S C(D) =

v⋃
i=1

[Y(‖Di‖y) ∪ B(MW2 − ‖Di‖y)]

Based on the four equations above, if it satisfies that P1 = Aα
←−
B , and P2 = Cβ

←−
D, α ∈

Σ, β ∈ Σ, as shown in Figure 3.2, where
←−
B and

←−
D are the reverse strings of B and D, then the

following equation is easy to obtain:

S (P1, P2) = S N(A) ∪ S C(B) ∪ S N(C) ∪ S C(D) (3.5)

Figure 3.2: Exemplary diagram for peptides P1 , P2 and their prefix-suffix pairs.

This formula indicates that the Mixture Spectra De Novo Sequencing can be achieved by

gradually constructing appropriate prefixes and suffixes of P1 and P2. In the following, we will

describe a method that constructs the appropriate prefix-suffix pairs for both P1 and P2.
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3.3.2 Algorithm for Candidate Computation

Given an amino acid string s = s1s2..sn, we call ‖s‖ = Σn
1‖si‖ the weight of s, and we use

s> = s1s2...sn−1 to denote the string with the the last amino acid removed. We assume MW =

min{MW1,MW2} in the following research. For four strings A, B,C,D, we additionally define

three useful sets Q = {A, B,C,D}, R = {A, B}, and T = {C,D}. For simplicity, we denote

‖A‖ = ‖A‖b, ‖B‖ = ‖B‖y, ‖C‖ = ‖C‖b and ‖D‖ = ‖D‖y in the following section.3

Definition 3.1 A pair of strings E and F are called Peers, if either of the following inequations

holds: ‖F>‖ < ‖E‖ ≤ ‖F ‖ or ‖E>‖ ≤ ‖F ‖ < ‖E‖.

Definition 3.2 The string quadruple Q = {A, B,C,D} is called a Rigid Quartet if it satisfies

the following conditions: (1) ‖A‖ + ‖B‖ ≤ MW1 and ‖C‖ + ‖D‖ ≤ MW2. (2) For any pair of

strings E,F ∈ Q, E and F are Peers. (3) For any string G ∈ Q, the following inequation holds:

‖G‖ < MW − ‖G>‖ − 54.

Definition 3.3 The string quadruple Q = {A, B,C,D} is called a General Quartet if it satisfies

the following conditions: (1) ‖A‖ + ‖B‖ ≤ MW1 and ‖C‖ + ‖D‖ ≤ MW2. (2) A and B are

Peers, and C and D are Peers.(3) For any string G ∈ Q, the following inequation holds:

‖G‖ < MW − ‖G>‖ − 54.

In Definition 3.2, the constraint of either ‖F>‖ < ‖E‖ ≤ ‖F ‖ or ‖E>‖ ≤ ‖F ‖ < ‖E‖ holding

guarantees that the four elements {A, B,C,D} we are constructing have always relatively close

weight/mass values. The weight difference between any two elements are smaller than the

3Notice that ‖A‖b represents the mass value of the corresponding b−ion, it equals to the summation of mass of
amino acid residues and the extra mass of terminus. We denote ‖A‖ = ‖A‖b here for the purpose of simplicity. It
is same reason for denoting ‖B‖ = ‖B‖y, ‖C‖ = ‖C‖b and ‖D‖ = ‖D‖y.
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weight of an amino acid. When satisfying the constraint, we can see that every pair of element

strings in the quadruple are indeed Peers in Definition 3.1. The inequation ‖G‖ < MW−‖G>‖−

54 is also a necessary constraint for the proposed algorithm in the following part. We use an

example to argue for this. Suppose that we have a suffix string B, and want to add another

amino acid/letter to it.

Figure 3.3: The inequation constraint in Definition 1. The mass of the x − ion is ‖Bα‖y + 26,
and the mass of the a − ion is MW1 − ‖B‖y − 28.

We know that B is from the C-terminus, its weight is calculated as ‖B‖y, the corresponding

b−ion generated from the same cleavage site is MW1−‖B‖y. If we add letter α to B, theoretically

there will be a new y−ion and a new b−ion in the spectrum, whose mass values are ‖Bα‖y

and MW1 − ‖Bα‖y. In the computation, we require that at least the inequation ‖Bα‖y + 26 <

MW1 − ‖B‖y − 28 holds. As showed in Figure 3.3, it indicates that after we add amino acid α,

the new y−ion ‖Bα‖y will possibly have overlapping peaks with the new b−ion MW1 − ‖Bα‖y,

but will never have overlapping peaks with the former b−ion MW1 − ‖B‖y.

Corollary 3.1 If Q = {A, B,C,D} is a Rigid Quartet, then it is also a General Quartet.

Proof According to Definition 3.2 and Definition 3.3, we see the difference in the definition

of Rigid Quartet and General Quartet is only the second constraint.
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If a string quadruple Q = {A, B,C,D} is a Rigid Quartet, it indicates that any two strings of

Q are Peers. Meanwhile, if a string quadruple Q = {A, B,C,D} is a General Quartet, it means

that A and B are Peers, at the same time C and D are also Peers. It is easy to conclude that a

Rigid Quartet is also a General Quartet. �

Lemma 3.1 Let Q = {A, B,C,D} be a Rigid Quartet and let a ∈ Σ be an amino acid. If A

has the smallest weight among the quadruple and ‖A‖ + ‖a‖ + ‖B‖ ≤ MW1 and ‖A‖ + ‖a‖ <

MW − ‖A‖ − 54, then the quadruple {Aa, B,C,D} is also a Rigid Quartet.

Proof We have the following inequations hold: ‖B>‖ ≤ ‖A‖ ≤ ‖B‖, ‖C>‖ ≤ ‖A‖ ≤ ‖C‖, and

‖D>‖ ≤ ‖A‖ ≤ ‖D‖. We know that ‖Aa‖ > ‖A‖, so if ‖Aa‖ ≤ ‖B‖, then we have ‖B>‖ < ‖Aa‖ ≤

‖B‖. If ‖Aa‖ > ‖B‖, then we have ‖A‖ ≤ ‖B‖ < ‖Aa‖. So we know that the string pair {Aa, B}

will always satisfy the restrictions in Definition 3.2.

Accordingly, we can easily prove that string pairs {Aa,C} and {Aa,D} also satisfies the

restrictions in Definition 3.2, and we already have‖A‖ + ‖a‖ + ‖B‖ ≤ MW1. Together with the

precondition ‖A‖ + ‖a‖ < MW − ‖A‖ − 54, we will have the conclusion that Q(Aa, B,C,D) is a

Rigid Quartet. �

It also works for the case that B, C or D is the smallest. Lemma 3.1 tells that for a

given Rigid Quartet, if we extend the smallest weighted string with one amino acid, the new

quadruple we get is also a Rigid Quartet.

Lemma 3.2 Let Q(A, B,C,D) be a Rigid Quartet, and Q(Aa, B,C,D), a ∈ Σ also be a Rigid

Quartet, then A has the smallest weight among the quadruple.

Proof If ‖A‖ is not the smallest weight, without losing generality, we assume ‖A‖ > ‖B‖.

Because {A, B,C,D} is a Rigid Quartet, then the following inequation holds: ‖B‖ < ‖A‖ <
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‖Aa‖. it means for the string pair {Aa, B}, neither of the inequations ‖B>‖ < ‖A‖ ≤ ‖B‖ and

‖A>‖ ≤ ‖B‖ < ‖A‖ holds, then Q(Aa, B,C,D) is not a Rigid Quartet. This is a contradiction

with the condition.

Similarly, we can prove that if ‖A‖ > ‖C‖ or if ‖A‖ > ‖D‖, Q(Aa, B,C,D) will not satisfy

the constraints of Rigid Quartet. �

Lemma 3.2 indicates that a Rigid Quartet comes from a former Rigid Quartet by extending

the smallest weighted string with one more amino acid.

Each of the four elements in a Q = {A, B,C,D} represents an amino acid sequence or a

fraction of a peptide sequence. Because A and C are the prefixes retained on the N-terminus of

the corresponding peptides, in computation they have initial weight/mass values. In the initial-

ization, we assume that the prefix is an empty sequence in which its mass value only contains

the mass of the N-terminus(mass of a proton). From Figure 3.1 we know after initialization

‖A0‖ = 1 and ‖C0‖ = 1. Accordingly, B and D are the suffixes retained on the C-terminus of the

corresponding peptides, they also have initial mass/weight values. The initial mass of a suffix

containing empty sequence is the mass of the C-terminus plus the attached protons, based on

Figure 3.1 we know ‖B0‖
0 = 19 and ‖D0‖

0 = 19.

Remark The quadruple Q = {A0, B0,C0,D0)} in which each of the four elements are empty

sequence containing only initial mass value is a Rigid Quartet.

Lemma 3.3 Let Q(A, B,C,D) be a General Quartet, and letters a ∈ Σ, b ∈ Σ, let ‖A‖ be the

smaller weighted one inR, and ‖C‖ be the smaller weighted one inT . If ‖A‖+‖a‖+‖B‖ ≤ MW1,

‖C‖ + ‖b‖ + ‖D‖ ≤ MW2, ‖A‖ + ‖a‖ < MW − ‖A‖ − 54 and ‖C‖ + ‖b‖ < MW − ‖C‖ − 54, then

both Q(Aa, B,C,D) and Q(A, B,Cb,D) are General Quartet(s).
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Proof Because Q(A, B,C,D) is a General Quartet and ‖A‖ < ‖B‖, then we have the following

inequation holds: ‖B>‖ ≤ ‖A‖ ≤ ‖B‖. We know that ‖Aa‖ > ‖A‖, so if ‖Aa‖ ≤ ‖B‖, then we

have ‖B>‖ < ‖Aa‖ ≤ ‖B‖. If ‖Aa‖ > ‖B‖, then we have ‖A‖ ≤ ‖B‖ < ‖Aa‖. In either case, the

two elements A and B are Peers which will satisfy the second constraint of the Definition 3.3.

We already have the conditions ‖A‖ + ‖a‖ + ‖B‖ ≤ MW1 and ‖A‖ + ‖a‖ < MW − ‖A‖ − 54

hold, therefore all the tree constraints of Definition 3.3 are satisfied, which indicates the new

quadruple Q(Aa, B,C,D) is also a General Quartet.

Similar arguments can be applied to prove that the new quadruple Q(A, B,Cb,D) is also a

General Quartet. �

Similar to Lemma 3.1, Lemma 3.3 tells that if we add a amino acid to the smaller element

in the General Quartet, the newly constructed quadruple is also a General Quartet.

Lemma 3.4 Let Q(A, B,C,D) and Q(Aa, B,C,D) both be Rigid Quartets, and |MW1−MW2| ≤

∆. Denote Λ = S N(A>) ∪ S C(B>) ∪ S N(C>) ∪ S C(D>), then we have:

(1) B(‖Aa‖) ∩ Λ = φ

and

(2) Y(MW1 − ‖Aa‖) ∩ Λ = φ

Proof From Lemma 3.2. We know that ‖A‖ ≤ ‖B‖ , ‖A‖ ≤ ‖C‖, and ‖A‖ ≤ ‖D‖. Without losing

generality, we assume MW = MW1 and MW2 = MW1 + ∆.

Let Z be any prefix of A, and Z , A. We know that B(‖Aa‖) is apart from B(‖Z‖).

Indeed we have [B(‖Aa‖) − B(‖Z‖)]min = 2 × mina∈Σ‖a‖ − (28 + 17) > 69. This means that

B(‖Aa‖) ∩ B(‖Z‖) = φ. We have ‖Aa‖ < MW − ‖A‖ − 54 ≤ MW1 − ‖Z‖ − (54 + min ‖a‖a∈Σ).
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this means that B(‖Aa‖) ∩ Y(MW1 − ‖Z‖) = φ. Therefore, we have the following conclusion:

B(‖Aa‖) ∩ S N(A>) = φ.

Similarly, assume Z be any prefix of B, and Z , B, we have the following inequations:

‖Aa‖ ≥ ‖A‖ + min ‖a‖a∈Σ ≥ ‖B>‖ + min ‖a‖a∈Σ ≥ ‖Z‖ + min ‖a‖a∈Σ, this means that B(‖Aa‖) ∩

Y(‖Z‖) = φ. We also know that ‖Aa‖ < MW − ‖A‖ − 54 ≤ MW1 − ‖B>‖ − 54, this indicates that

B(‖Aa‖)∩B(MW1 − ‖Z‖) = φ. Therefore we have the following equation: B(‖Aa‖)∩S C(B>) =

φ.

Similarly, assume Z be any prefix of C, and Z , C, we have the following holds: ‖Aa‖ ≥

‖C>‖ + min ‖a‖a∈Σ ≥ ‖Z‖ + min ‖a‖a∈Σ. This tells that B(‖Aa‖) ∩ B(‖Z‖) = φ. We have ‖Aa‖ <

MW − ‖A‖ − 54 ≤ MW2 − ‖Z‖ − (54 + ∆). This inequation indicates that ‖Aa‖ is apart from

‖MW2‖ − ‖Z‖, B(‖Aa‖) ∩ B(MW2 − ‖Z‖) = φ. Therefore we have B(‖Aa‖) ∩ S N(C>) = φ.

Similarly we can prove that B(‖Aa‖) ∩ S C(D>) = φ. Therefore (1) is proved.

Similar arguments can be applied to Y(MW1 − ‖Aa‖) to prove (2). �

Lemma 3.4 shows that in the step of extending a Rigid Quartet Q(A, B,C,D) by adding an

amino acid to its smallest elements, a new Rigid Quartet Q(Aa, B,C,D) is constructed, and

all the new mass values generated because of this extension behaviour are contained in the

following two sets: B(‖Aa‖) andY(MW1 − ‖Aa‖), and these two sets can only intersect with the

mass values inB(‖A‖),B(‖C‖),Y(‖B‖),Y(‖D‖),Y(MW1−‖A‖),Y(MW2−‖C‖),B(MW1−‖B‖)

and B(MW2 − ‖D‖). It means that in computation, when extending a Rigid Quartet, all the new

peaks we have to count are in B(‖Aa‖) and Y(MW1 − ‖Aa‖), and we also have to exclude

the possible overlapping peaks that are already included in B(‖A‖), B(‖C‖), Y(‖B‖), Y(‖D‖),

Y(MW1 − ‖A‖), Y(MW2 − ‖B‖), B(MW1 − ‖C‖) and B(MW2 − ‖D‖).
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Lemma 3.5 Let Q(A, B,C,D) be a Rigid Quartet, and a letter a ∈ Σ. We denote fv =

B(v) ∪ Y(MW1 − v), fw = Y(w) ∪ B(MW1 − w), fm = B(m) ∪ Y(MW2 − m) and fn =

Y(n) ∪ B(MW2 − n), and we define function Ψ(v,w,m, n) = fv ∪ fw ∪ fm ∪ fn and let Γ =

S N(A) ∪ S C(B) ∪ S N(C) ∪ S C(D).

(1) If Q(Aa, B,C,D) is a Rigid Quartet, and f1(u, v,w,m, n) = H(B(u) ∪ Y(MW1 − u)\Ψ),

in which H is defined in Formula 3.4, then

H(S N(Aa) ∪ S C(B) ∪ S N(C) ∪ S C(D))

= f1(‖Aa‖, ‖A‖, ‖B‖, ‖C‖, ‖D‖) + H(Γ).

(2) If Q(A, Ba,C,D) is a Rigid Quartet, and f2(u, v,w,m, n) = H(B(MW1 − u) ∪ Y(u)\Ψ),

in which H is defined in Formula 3.4, then

H(S N(A) ∪ S C(Ba) ∪ S N(C) ∪ S C(D))

= f2(‖Ba‖, ‖A‖, ‖B‖, ‖C‖, ‖D‖) + H(Γ).

(3) If Q(A, B,Ca,D) is a Rigid Quartet, and f3(u, v,w,m, n) = H(B(u) ∪ Y(MW2 − u)\Ψ),

in which H is defined in Formula 3.4, then

H(S N(A) ∪ S C(B) ∪ S N(Ca) ∪ S C(D))

= f3(‖Ca‖, ‖A‖, ‖B‖, ‖C‖, ‖D‖) + H(Γ).

(4) If Q(A, B,C,Da) is a Rigid Quartet, and f4(u, v,w,m, n) = H(B(MW2 − u) ∪ Y(u)\Ψ),

in which H is defined in Formula 3.4, then

H(S N(A) ∪ S C(B) ∪ S N(C) ∪ S C(Da))

= f4(‖Da‖, ‖A‖, ‖B‖, ‖C‖, ‖D‖) + H(Γ).

Proof (1) Let u = ‖Aa‖, v = ‖A‖, w = ‖B‖, m = ‖C‖, and n = ‖D‖ respectively, and we denote

Λ = S N(A>) ∪ S C(B>) ∪ S N(C>) ∪ S C(D>). We know the fact that Ψ(v,w,m, n) ⊂ Γ. Therefore
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we have the following deductions:

S N(Aa) ∪ S C(B) ∪ S N(C) ∪ S C(D)

= Γ ∪ B(u) ∪ Y(MW1 − u)

= Γ ∪ (B(u) ∪ Y(MW1 − u)\Ψ(v,w,m, n))

According to Lemma 3.4, we have the following equations:

Γ ∩ (B(u) ∪ Y(MW1 − u)\Ψ(v,w,m, n))

= B(u) ∪ Y(MW1 − u) ∩ (Γ\Ψ(v,w,m, n))

⊂ B(u) ∪ Y(MW1 − u) ∩ Λ

= φ

Therefore we have the equations hold that proves (1).

H(S N(Aa) ∪ S C(B) ∪ S N(C) ∪ S C(D))

= H(Γ) + f1(u, v,w,m, n)

Proof of (2), (3), (4) is very similar to those above, therefore omitted. �

Lemma 5 indicates that the set for a newly generated quadruple which contains all the

matched peaks can be calculated from the previous quadruple by adding some new peaks

contained in f . The function H in Formula 3.4 is the summation of all the explained peaks

contained in this new set.

For string pair R = (A, B), and string pair T = (C,D), we define three relations between

R and T : Neighbouring, Crossing, and Nesting. Assuming that ‖A‖ ≤ ‖B‖, and ‖C‖ ≤ ‖D‖.

• If ‖A‖ ≤ ‖B‖ ≤ ‖C‖ ≤ ‖D‖, then we say the two string pairs R and T are Neighbouring.

• If ‖A‖ ≤ ‖C‖ ≤ ‖B‖ ≤ ‖D‖, then we say the two string pairs R and T are Crossing.
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• If ‖A‖ ≤ ‖C‖ ≤ ‖D‖ ≤ ‖B‖, then we say the two string pairs R and T are Nesting.

Suppose that for a Rigid Quartet Q = {A, B,C,D} in which ‖A‖ is the smallest weighted.

When adding letter a ∈ Σ, if it satisfies that ‖A‖ + ‖a‖ < MW − ‖A‖ − 54, and ‖A‖ + ‖a‖ +

‖B‖ < MW1, then the newly constructed quadruple is also a Rigid Quartet, the algorithm

proceeds to the next step. Meanwhile, if it satisfies that ‖A‖ + ‖a‖ < MW − ‖A‖ − 54, and

‖A‖ + ‖a‖ + ‖B‖ = MW1, then the first peptide is already fully constructed. Moreover, if it

satisfies ‖A‖ + ‖a‖ + ‖B‖ < MW1, and ‖A‖ + ‖a‖ ≥ MW − ‖A‖ − 54. In this case, we will have

the following conclusion: 2 × ‖A‖ + ‖a‖ ≥ MW − 54 and 2 × ‖B‖ + ‖a‖ ≥ MW − 54, together

we have ‖A‖ + ‖B‖ + ‖a‖ ≥ MW − 54 ≥ MW1 − ∆ − 54. It tells that if we add letter a to string

A, the remaining weight will not fit in any other letter. We only consider the case that for some

letter b ∈ Σ, that ‖A‖+ ‖B‖+ ‖b‖ = MW1 exactly. After we get one complete peptide sequence,

we will continue to construct the other peptide. Lemma 3.6 below illustrates the details of the

extension of the other peptide.

Figure 3.4: Illustration for growing a Rigid Quartet: Q(A, B,C,D) is a Rigid Quartet in
which ‖A‖ is the smallest weighted, after adding one amino acid to A, the new quadruple
Q(Aa, B,C,D) is also a Rigid Quartet. In each round, we always try to extend the smallest
weighted element. The shadow area surrounding each peak p refers to the distribution of peaks
B(p) orY(p). The blackened area indicates that there might be overlapping peaks located here.

Lemma 3.6 Let Q = (A, B,C,D) be a Rigid Quartet, and let ‖A‖ be the smaller weighted one
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in R, and ‖C‖ be the smaller weighted one in T , and ‖A‖ ≤ ‖C‖. Denote

Λ = S N(A>) ∪ S C(B>) ∪ S N(C>) ∪ S C(D>)

and assume a ∈ Σ is the letter to be added to T . If for an amino acid b ∈ Σ, the following

condition holds: ‖A‖ + ‖b‖ + ‖B‖ = MW1, then we have:

(1) If R and T are neighbouring or crossing, then T can be extended at most 2 times and

we have 4

B(‖Ca‖) ∪ Y(MW2 − ‖Ca‖) ∩ Λ = φ

.

(2) If R and T are nesting, then T can be extended at most 5 times, and we have

B(‖Ca‖) ∪ Y(MW2 − ‖Ca‖) ∩ Λ = φ

.

Proof (1) For the case of Neighbouring, we know that ‖A‖ ≤ ‖B‖ ≤ ‖C‖ ≤ ‖D‖ and we

also have ‖A‖ + ‖a1‖ + ‖B‖ = MW1. Without losing generality, we assume MW = MW1 and

MW2 = MW1 +∆. Then we know that ‖C‖+‖D‖+‖a1‖ ≥ ‖A‖+‖B‖+‖a1‖ = MW1 = MW2−∆.

From this inequation, we can infer MW2 − (‖C‖ + ‖D‖) ≤ ‖a1‖ + ∆ ≤ max ‖a‖a∈Σ + ∆. Thus,

string pair T can be at most extended b(max ‖a‖a∈Σ + ∆)/min ‖a‖a∈Σc − 1 = 2 times. The proof

for both B(‖Ca‖) ∩ Λ = φ and Y(MW2 − ‖Ca‖) ∩ Λ = φ is similar to Lemma 3.4.

For the case of Crossing, the proof is similar and therefore omitted here.

(2) From the relation of R and T , we know that ‖C‖+ ‖D‖ ≥ 2×‖A‖. Meanwhile we know that

‖A‖+ ‖a1‖+ ‖B‖ = MW1 and ‖B‖ ≤ ‖A‖+max ‖a‖a∈Σ. Together, we have 2×‖A‖+max ‖a‖a∈Σ +

4We sayR or T is extended, if we add a letter a ∈ Σ to the smaller weighted string inR or T , the new quadruple
is at least a General Quartet.
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‖a1‖ ≥ MW2 − ∆. It means MW2 − (‖C‖ + ‖D‖) ≤ max ‖a‖a∈Σ + ‖a1‖ + ∆ ≤ 2 ×max ‖a‖a∈Σ + ∆,

then we know that for T , it can be extended at most b(2×max ‖a‖a∈Σ + ∆)/min ‖a‖a∈Σc − 1 = 5

times.

It is easy to get that B(‖Ca‖) ∩ S N(A>) = φ and B(‖Ca‖) ∩ S N(C>) = φ and B(‖Ca‖) ∩

S C(D>) = φ. From the conditions, we know ‖A‖ ≤ ‖C‖ ≤ ‖D‖ ≤ ‖B‖ and ‖Ca‖ < MW−‖C‖−54

and ‖B>‖ ≤ ‖A‖, so we have ‖Ca‖ < MW1 − ‖A‖ − 54 < MW1 − ‖B>‖ − 54. We also have

‖Ca‖ ≥ ‖C‖ + min ‖a‖a∈Σ ≥ ‖B>‖ + min ‖a‖a∈Σ. Together, we get B(‖Ca‖) ∩ S C(B>) = φ.

Therefore, we prove B(‖Ca‖) ∩ Λ = φ. Similarly, we can prove Y(MW2 − ‖Ca‖) ∩ Λ = φ. �

Our basic idea of Peptide De Novo Sequencing from Mixture Spectra is based on our

mathematical model and proof above. As shown in Algorithm 1, we construct four strings

{A, B,C,D} following a specifically designated pathway. They are the N-terminus prefix and

the reverse C-terminus suffix of the targeted peptide P1 and P2 respectively. The algorithm

starts from growing a Rigid Quartet, according to Lemma 3.1, when we add one amino acid to

the smallest weighted string, the newly acquired string quadruple is still a Rigid Quartet. The

extending procedure is illustrated in Figure 3.4. In each step of extending a Rigid Quartet, the

score for the string quadruple is calculated based on Lemma 3.5. Moreover, we can see from

Figure 3.4 that when a peak is matched by two different ions, we are able to identify and locate

the potential overlapping peaks in the computation procedure, and our basic guidelines for

treating a overlapping peak is that we add the height of that peak only once. In every round of

extending, an amino acid is always added to the smallest weighted sequence in the quadruple.

Usually in the last few steps, it will occur that the extending of the quadruple can’t be con-

strained by the definition of Rigid Quartet. This happens when we’ve already found a candidate

sequence for one peptide(or to say that the prefix-suffix pair for one peptide is ready to merge

and the mass summation matches with the total molecular mass value). In such condition, we

consider the quadruple as a General Quartet and continue to extend the second prefix-suffix
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Algorithm 1 De Novo Sequencing of Mixture Spectra
INPUT: Given mixture spectrumM, and two precursor mass values MW1 and MW2, |MW1−MW2| ≤ ∆,
and a predefined error bound δ, and the finest mass spectrometer calibration β
OUTPUT: Constructing two peptides P1 and P2, which satisfies |‖P1‖ + 20 − MW1| ≤ δ, |‖P2‖ + 20 −
MW2| ≤ δ, and H(P1, P2) is maximized.
1: Initializing all DP[i, j, k, l] = −∞. DP[] refers to a table in memory to store values calculated in the

algorithm.
2: Let MW = min{MW1,MW2} and DP[1, 19, 1, 19] = 0
3: for Each possible combination of (x, y,m, n) do
4: if x is the smallest among (x, y,m, n) then
5: for a ∈ Σ do
6: if |x + y + ‖a‖ − MW1| ≤ δ then
7: ProceedToEnd(x,y,m,n)
8: else if x + ‖a‖ < MW − x − 54 then
9: Let loc← (x + ‖a‖, y,m, n)

10: DP[loc] = max
{

DP[loc]
DP[x, y,m, n] + f1

11: else if y or m or n is the smallest then
12: Similar as above by updating the corresponding DP[] score based on Lemma 3.5
13: Compute DP[x, y,m, n] for all x, y,m, n and a1 ∈ Σ and a2 ∈ Σ satisfying |x + y + ‖a1‖ − MW1| ≤ δ

and |m + n + ‖a2‖ − MW2| ≤ δ

14: Backtrack and Output the best matched peptide pairs Aa1
←−
B and Ca2

←−
D or output a candidate pair

list

pair until we obtain the whole sequence. At the same time, from Lemma 3.6, we know that

when this situation happens, the following computation for extending the General Quartet can

be completed in constant time, and we call this procedure ProceedToEnd in Algorithm 2. In

the procedure of extending a General Quartet, the score calculation is the same as to extend

a Rigid Quartet, which is listed in Lemma 3.5. After all the possible amino acid extension is

considered, we then rank all the string quadruples that satisfy the given conditions and output

the highest scored candidate pair in the end.

3.3.3 Complexity Analysis

We give the complexity of the proposed algorithm in the following Theorem 3.1.
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Algorithm 2 ProceedToEnd: Continue to Construct the Second Peptide
ProceedToEnd: This procedure works in an recursive procedure to finish constructing the second pep-
tide.

1: procedure ProceedToEnd(x, y,m, n)
2: if (x, y) completed, to extend (m, n) then
3: if m ≤ n then
4: for a ∈ Σ, s.t. m + ‖a‖ < MW − m − 54 do
5: Let loc← (x, y,m + ‖a‖, n)

6: DP[loc] = max
{

DP[loc]
DP[x, y,m, n] + f3

7: ProceedToEnd(x, y,m + ‖a‖, n)
8: else
9: for a ∈ Σ, s.t. n + ‖a‖ < MW − n − 54 do

10: Let loc← (x, y,m, n + ‖a‖)

11: DP[loc] = max
{

DP[loc]
DP[x, y,m, n] + f4

12: ProceedToEnd(x, y,m, n + ‖a‖)
13: else if (m, n) completed, to extend (x, y) then
14: Similar as above by updating the the corresponding DP[] score based on Lemma 3.5

Theorem 3.1 Algorithm 1 computes the optimal solution of the Mixture Spectra De Novo

Sequencing Problem in time bounded by

O((
maxa∈Σ ‖a‖

β
)3 ×

δ

β
× |Σ| ×

MW
β

)

Proof The procedure ProceedToEnd in Algorithm 2 is a recursive procedure. According to

Lemma 3.6, we know the height of the recursive tree is bounded by a small number. In practice,

we can use an extra data structure to build an index that contains all the possible amino acid

compositions for a given weight. As shown in the proof of Lemma 6, the value is at most

(2 ×maxa∈Σ ‖a‖+ ∆). In this way the time efficiency for this procedure is even more improved.

Lemma 3.5 tells us that the function f (u, v,w,m, n) is to find the possible overlapping peaks

in two sets and to calculate the summation of the height of all the explained peaks, it can

be computed in O( δ
β
). In Algorithm 1, line 3 is a loop which enumerates all the possible

combinations of (x, y,m, n) by step β. Based on Definition 1, we know that the four strings in

the quadruple are bounded by each other. The mass difference between any two of them should

57



be smaller than the mass of an amino acid residue. Thus, the maximum times of steps in the

enumeration is (maxa∈Σ ‖a‖
β

)3 × MW
β

, and in each step algorithm has to try every character in the

alphabet Σ. Overall, the time complexity is indeed linear to the mass of the peptide, MW here

is the larger mass of P1 and P2.

3.4 Experiment Results and Discussion

Mixture spectra can occur quite frequently in a typical wet-lab mass spectrometry experiment.

The ability to identify mixture spectra will be useful for improving the identification rate of the

collected mass spectra. The de novo method for mixture spectra interpretation can be regarded

as a supplementary method for peptide identification with mass spectrometry. It will find its

application in assisting the traditional database search method or spectral library search method

to identify mixture spectra. Because when considering two precursors in a single spectra,

the possible candidate peptide pairs that fall into the required mass error bound is enormous

[115]. In this case, an effective strategy for reducing the examination space is non-trivial, and

a foregoing procedure of de novo sequencing is an useful operation in helping the filtration. In

order to evaluate the effectiveness of the proposed algorithm, we use both simulated and real

mixture spectra datasets to benchmark the performance.

3.4.1 Simulated Dataset

Due to the fact that large datasets of validated mixture spectra are not publicly available now,

thus similar to those mentioned in [114] and [114], we created a dataset of 253 simulated mix-

ture spectra to justify the performance of our algorithm. At the beginning, we selected some of

the confidently identified MS/MS spectra with charge 2 from the PRIDE repository(Accession

No. 17341-17350) [123]. And the two spectra we chose to merge have precursor m/z values
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with difference less than 3 Th5. Precursor intensity has a crucial impact on MS/MS mix-

ture spectra interpretation, and we want to inspect the influence of precursor abundances on

the subsequent MS/MS spectra identification. Thus in the simulation, we use a coefficient to

simulate the fact that two co-sequenced precursors may have different intensities. The linear

combination of two spectra is adjusted byM = A + αB, in which α is the mixture coefficient.

A and B are normalized based on the summation over every intensity value contained in the

spectrum before merging, where α is used to rescale all the included peaks in B, and A always

corresponds to the spectrum with high abundance. By tuning α, it is supposed that different

fragment abundance levels can be simulated. Previous reports indicated that the abundance of

fragments are indeed highly correlated to the abundance of the corresponding precursors, thus

in our research, we use the coefficient α to emulate both precursor and fragments abundance.

Furthermore, when merging two spectrum, we keep all the un-explained peaks to simulate the

noise signals that exist universally in mass spectra. We compare a simple prototype of our al-

gorithm with the notable commercialized software PEAKS [17] de novo online version on the

simulated dataset to evaluate the effectiveness of the proposed algorithm. We use PEAKS 6.0

software to identify two peptides in an iterative manner, first identify the peptide with larger

precursor intensity and then identify the second peptide from the spectra with the explained

peaks of the first peptide subtracted. The experimental results are show in the following tables.

We mainly focus on two meaningful aspects of the experimental results: the number of reported

pairs in which both peptides have less than 4 incorrect characters, shown in Table 3.3, and the

number of reported pairs that both peptides have longer than 3 consecutive correct characters,

shown in Table 3.4.

From the Table 3.3 above, we can see that in the case that both precursors have compa-

rable abundances, our algorithm gives more positive results. This is reasonable because our

proposed algorithm formulates both peptides concurrently and consider the mixture spectra de

5The Th or Thomson is a unit of mass-to-charge ratio that appears in the field of mass spectrometry.
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Table 3.3: Number of reported pairs in which both peptides have less than 4 incorrect charac-
ters.

Coefficient α Our Algorithm PEAKS Denovo Total

1.0 100(39.5%) 89(35.2%)

0.8 95(37.5%) 94(37.1%) (253)

0.6 89(35.2%) 106(41.9%)

novo sequencing problem as a whole, therefore gives this method better performance under

this circumstance. While for PEAKS working in an iterative manner, in case that two peptides

with both relatively high intensities being fragmented together, the relatively higher peaks of

one peptide will confuse the engine when constructing another peptide. However, in case that

one precursor has apparently high intensity than another precursor, PEAKS de novo showed a

vast improvement in identification accuracy. This is perhaps because when the precursor with

higher intensity is reported and all its related fractions are removed, in the remaining spectrum,

there will be much less interfering peaks from the first peptide, and the fraction peaks coming

from the lower intensity precursor will be strong peaks, which is very helpful for the identifica-

tion of the second peptide. A potential scenario for the application of our proposed algorithm is

like this: When analysing the raw dataset collected from mass spectrometers, we look into the

survey scans to check if there are more than one monoisotopic m/z values, because this highly

indicates that the corresponding MS/MS spectra is a mixture spectra. It is supposed that this

task can be done both manually and automatically by software. The objective is to locate the

mixture spectra in the whole dataset and most importantly to find the mass and intensity values

of the selected precursors. The abundance information of the co-sequenced precursors in the

survey scan can help us to make decision whether to apply a traditional de novo sequencing

method, or the proposed mixture spectra de novo method.

The number and ratio of reported pairs that both peptides have consecutive correct letters

longer than 3 are shown in Table 3.4 above. The result shown in Table 3.4 above is consistent

with that in Table 3.3, our algorithm works better for comparable abundance precursors. From
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Table 3.4: Number of reported pairs that both peptides have consecutive correct letters longer
than 3.

Coefficient α Our Algorithm PEAKS Denovo Total

1.0 172(68.0%) 140(55.3%)

0.8 168(66.4%) 153(60.5%) (253)

0.6 161(63.6%) 164(64.8%)

this table, we can see that the ratio that both peptides have tags longer than 3 is quite noticeable,

which depicts another possible scenario of applying the proposed algorithm, to serve in the

filtration process of using database search idea to identify mixture spectra. This application

scenario relies on the traditional idea of integrating de novo sequencing results with database

search method to accurately and sensitively identify MS/MS spectra.

3.4.2 Real Mixture Spectra

To further evaluate the efficiency of the proposed algorithm, we run the published software

package MSPLIT [114] on a tryptic yeast dataset released on PRIDE repository to obtain some

real mixture spectra. The yeast dataset is collected from an Ion Trap mass spectrometer. When

analyzing a spectrum, MSPLIT will always identify some top-scoring peptide pair for any

given query spectrum. To assess whether a match is significant, MSPLIT then applies an

empirical strategy to classify the matched pair into three possible outcomes: No match, Single-

peptide match, and Mixture match. To allow MSPLIT to run in the target/decoy strategy,

we firstly downloaded a yeast spectral library from NIST(Ion Trap/2012.06.20 version), and

then we apply the SpectraST [124] software to generate a concatenated target/decoy spectra

library. By searching against this concatenated spectral library, MSPLIT can filter and report

the identified mixture spectra under a given FDR. In this experiment, the number of MS/MS

spectra analyzed by MSPLIT is 5244 in total, and MSPLIT reported 326 identifications in the

final step, in which 24 are identified as mixture match, this result is to some extent consistent

with the estimated ratio reported in [114] that mixture spectra consist of approximately 5%
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of all identifiable spectra in the yeast dataset. In our experiment, we further filtered those

reported mixture spectra according to our current requirements. We only select those spectra

in which both precursors have charge 2, and contain no Post-translational Modifications due

to the limitation of our current software prototype. The renowned database search software

PEAKS DB [10] is used here to re-confirm those mixture spectra reported by MSPLIT. PEAKS

DB is a popularly accepted software which matches each spectrum with one peptide sequence

from protein database, and it can not automatically report multiple peptides from a mixture

spectrum. Therefore, we use PEAKS DB in the following way for mixture spectra validation:

each individual peptide is searched against the protein database with the other peptide sequence

removed from the database to eliminate the potential interference between two peptides. Only

those mixture spectra in which both peptides can be confirmed by PEAKS DB are kept. After

all those steps, we obtained 7 distinct mixture spectra. Among those mixture spectra, our

proposed algorithm can give useful6 results for 6 of them. The reported results for the six

mixture spectra are listed in Table3.5.

Table 3.5: Six sequence pairs with useful results reported by our algorithm.
m/z DB Confirmed Algorithm Given Pairs

553.321 GLILVGGYGTR WPLVNYGTR
553.7795 GPPGVFEFEK GPPGVHAASGEK
419.724 ASIASSFR ASLASHPR
420.2585 IAGLNPVR LAGLAAAPR
506.78 FHLGNLGVR FHADPNGVR
507.2820 KFPVFYGR QFPVNPVGR
600.2756 GYSTGYTGHTR SSFSGYTGHTR
600.340 DAGTIAGLNVLR NETLAGLNVLR
462.706 DNEIDYR DNEDLYR
463.3077 IVAALPTIK VLAALPTLK
521.253 YSDFEKPR YSDFPGSLR
521.7932 GAIAAAHYIR QLAAAHYLR

6When we say useful, it means that both reported peptides should have consecutive correct letters longer than
3.
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In the reported results, the Isoleucine(I) and Leucine(L) are always treated as identical

amino acids. High resolution/accuracy mass spectrometry data will surely provide great help

for the computational analysis, but currently based on the accuracy of the proteomics data we

use, in this experiment, the error tolerance for fragment peaks we chose is 0.2 Dalton. Though

the Lysine(K) and Glutamine(Q) have slightly different residue mass values, they can not be

separated with the mass tolerance configured in the current experiment, therefore they are also

treated as the same. In Table 3.5, there are some interesting points worth noticing. Some

incorrect results are due to identical mass values. For instance, in the first entry of Table 3.5,

we noticed that the mass value of amino acid ‘N’ is indeed equal to that of ‘GG’. And in the last

entry, the mass value of ‘Q’ is actually equal to the summation of ‘GA’. Some incorrect results

are simply different permutations of the same group of letters. For instance, for both peptides

in the fifth entry, the algorithm gave correct amino acid compositions, only a slight change in

orders for a few letters. This is probably caused by the incomplete fragmentation of the selected

precursors or the parameters configuration in the current experiment. Those kinds of partially

correct or homologous results are very useful for assisting a subsequent database search to

accurately identify peptides. MSPLIT is a library search method which can only report peptides

contained in the spectra library. However, the size of the current spectral library is limited,

which means for some spectra it may not report the best matched peptides. We use an additional

database search process to guarantee that the collected spectra are indeed mixture spectra. Our

proposed method has the potential to extend to more complex situations, for instance, co-

fragmented precursors with different charge states, or precursor peptides containing PTMs.

Mixture spectra identification is a complicated, but promising research topic. The pro-

teomics research community is at a stage of just realizing the significance of the existence of

mixture spectra in tandem mass spectrometry, but still not offering an ideal solution yet. More-

over, the arising of DIA(Data Independent Acquisition) makes such computational approaches

for analyzing mixture spectra more desired. In this chapter, we formulated the Mixture Spec-
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tra De Novo Sequencing problem mathematically, and then proposed a dynamic programming

algorithm for solving the problem. The performance evaluation of the algorithm on both sim-

ulated datasets and real mixture spectra demonstrated the meritorious aspects of our proposed

algorithm. To provide better evaluation for how much help the proposed algorithm can actually

offer is highly dependent on the public availability of confidently validated mixture dataset in

the future. We will focus on seeking better scoring function for matching a pair of peptide

sequences with a mixture spectra, and then we will try to develop database or spectral library

methods by incorporating a de novo procedure to improve identification accuracy in the next

phase. Another thing worth in-depth investigating is the evaluation of the survey scans to find

if there are mixture spectra present, and the utilization of useful information lying behind the

survey scans to assist the subsequent MS/MS spectra interpretation.
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Chapter 4

De Novo Assisted Database Search

4.1 Introduction

Mixture spectra are observed quite frequently in mass spectrometry experiment which result

from the concurrent fragmentation of multiple precursors, and the occurrence of mixture spec-

tra increases as the complexity of the peptide mixture submitted to the mass spectrometer

increases and it also depends on the width of the precursor ion selection window. Roughly, a

mixture spectrum is defined as an MS/MS spectrum generated from the concurrent fragmenta-

tion of two or more peptides, which is theoretically modelled as the linear combination of two

single-peptide spectra.

Although advances have been achieved in the past few years, the research on character-

izing mixture spectra is still far from satisfactory. Despite of the rapid growth of publicly

available spectral libraries, methods based on spectral library search will lose effectiveness

when the target peptides have not been observed or identified before. Meanwhile, the research

of de novo sequencing of mixture spectra is currently in its very primitive phase which suffers

the problem of low accuracy in computation, more research will be necessary before it become

practical for real application. For the large volumes of data generated in proteomics experi-
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ments, sequence database searching combined with statistical validation of the search results

is currently the only realistic method for assigning spectra to peptide sequences with relatively

high confidence. Generally, database searching approach have in common that they attempt

to find the best match between the acquired spectra and the spectra predicted from the peptide

sequence in a protein database that have similar mass values with the precursor ion in the mass

spectrometer.

Most of the mainstream database search engines assume that the acquired spectra orig-

inated from a single precursor, they therefore fail to identify the sequences of concurrently

fragmented precursors, unless the spectra are dominated by fragment ions of one precursor,

making the fragments of the other precursors appear as noise, and in this case only the domi-

nant species can be correctly identified. Similar to the identification of single-peptide MS/MS

spectra by comparison against all peptide entries in a database of know protein sequence, our

general perspective is to compare mixture spectra against a pair of peptides acquired from a

given protein database. However, when considering two precursors in a single spectra, the

number of possible candidate peptides that fall into the required mass error bound is always

enormous[115]. Efficient filtration strategy is highly desired to avoid the huge computational

overload of searching the spectrum against all possible pairs in the protein database. Also,

database search method requires effective scoring function to measure the quality of a match

between a candidate and a given spectrum. Typically, the scoring function will give some re-

ward for matches between observed peaks in the spectrum and theoretical masses from the

candidate peptides, and as well impose penalties for unexplained spectrum peaks or miss-

ing theoretical ion masses from the candidate peptide. Although scoring a peptide against an

MS/MS spectrum is a well studied problem in the research of mass spectrometry based pro-

teomics, very few scoring functions are proposed to deal with the mixture spectra.

In this chapter, we will formulate the mixture spectra identification problem formally,

and propose an approach for matching mixture MS/MS spectra with a pair of peptides from a
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protein database by incorporating a special filtration strategy assisted with the preliminary de

novo sequencing results. Also, in this research we introduced a method to estimate the mixture

coefficient of the two co-sequenced peptides, which represents the relative abundance of the

peptides when appear in the fragmentation cell. Experimental results demonstrated that when

equipped with such filtration process, the correct matches can be found by only considering a

minuscule fraction of all possible pairs.

4.2 Notations and Problem Formulation

4.2.1 Basic Notation

Similar to the notations in Chapter 3, we assume that a mixture spectrumM can be represented

by a peak list M = {(xi, hi)|i = 1, 2, ..., n} in which each element (xi, hi) represents a peak in

the spectrum. For each element (xi, hi) contained in the mixture spectrum M, xi is the m/z

value when going through the mass analyzer and hi is the intensity of the peak denoting the

occurrence of the ions observed in the detector. Assume that associated with the given query

mixture spectrumM, we have two molecular weight MW1 and MW2 to denote the precursor

mass values of the two peptides that satisfy ‖MW1 − MW2‖ ≤ ∆, and ∆ here is a small value

predefined by the width of the mass spectrometer selection window. In current shotgun pro-

teomics conducted with the Data-dependent Acquisition(DDA) strategy, the selection of the

precursor ions are bounded by a very small isolation window usually just a few Daltons wide

which indicates that the molecular weights of the concurrently fragmented precursors are very

similar to each other. A mixture spectrum is conventionally modelled as the linear combina-

tion of two spectra generated by the fragmentation of peptide P1 and P2 respectively. More

formally, we formulated a mixture spectrumM asM = A+αB, where A and B are the MS/MS

spectra generated by the fragmentation of two individual peptides P1 and P2 respectively, and

the mixture coefficient α represents the relative abundance of A and B when being sequenced.
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Without losing generality, we assume that both A and B are scaled to the same magnitude, and

A always corresponds to the peptide with higher abundance level, therefore we have 0 ≤ α ≤ 1.

In addition, we use Σ to denote the alphabet of 20 different types of amino acids. For an amino

acid a ∈ Σ, we use ‖a‖ to symbolize the mass of the amino acid residue. Let P = a1a2...ak be

the string of amino acids, we define the residue mass of the peptide as ‖P‖ = Σ1≤ j≤k‖ai‖ and the

actual mass of the peptide as ‖P‖ + ‖H2O‖.

4.2.2 Problem Formulation

Our primary idea for mixture spectra identification is to search the query mixture spectra

against a protein database to find the best matched peptide pair. Thus, the Mixture Spectra

Database Search Problem can be formulated as follows: Given a mixture spectrumM, two pre-

cursor mass values MW1 and MW2, a predefined error bound δ, and a protein database D, we

want to find a coefficient α and a pair of peptides P1 and P2 from D that maximize the matching

score under a specific scoring function H(M, A + αB), such that |‖P1‖ + ‖H2O‖ − MW1| ≤ δ,

|‖P2‖ + ‖H2O‖ − MW2| ≤ δ. In the calculation, the molecular mass MW1 or MW2 is the neutral

mass of the precursor without extra protons attached. We can obtain this value directly from

the m/z and charge state z reported by the instruments. The scoring function H(M, A + αB)

measures how well the peptide pair (P1, P2) matches with the mixture spectrumM, and A and

B are the theoretical spectra predicted from their peptide sequence P1 and P2 respectively, and

the coefficient α in the scoring function indicates the relative abundance of the co-sequenced

precursors.

We use the normalized dot product of two real-value vectors to measure the spectral sim-

ilarity in this research. When all the spectra are scaled to Norm 1, the normalized dot product

will be simplified to be the calculation of the cosine value between two unit vectors. Such mea-

surement scheme considers no special requirements regarding the real peak intensity values,
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and the spectral similarity is measured based on the shape of the spectra being matched only.

More specifically, we define the following way to convert each spectrum to a real-value vector.

Assume that a spectrum S can be transformed to a real-value vector VS = s1, s2, ...sn, in which

each element si corresponds to the total intensity of peaks falling into the ith mass bin. The

value si is calculated as follows:

si =
∑

(x j,h j)∈S,x j∈[(i−0.5)δ,(i+0.5)δ]

h j (4.1)

The bin size δ in the equation above is chosen according to the resolution of the instruments.

Based on the analysis above, we provide in Algorithm 3 describing details of converting a

MS/MS spectrum to its corresponding vector.

Algorithm 3 Converting an MS/MS spectrum to its vector representation
INPUT: Given a mixture spectrum M = {(xi, hi)|i = 1, 2, ...,m}, a value MW representing the largest
range of molecular mass values of the precursors which is determined by the m/z range of the mass
spectrometer, and the bin size δ which is predefined by the resolution of the mass spectrometer.
OUTPUT: A real value vector VM = s1, s2, ...sn, in which the subscript n symbolizes that the vector has
n dimensions.

1: Calculate the dimension size n of vector according to n = dMW
δ e.

2: Initializing each value si = 0 in VM
3: for Each peak (x j, h j) inM, j from 1 to m do
4: index =

x j
δ

5: if index − bindexc < 0.5 then
6: i = bindexc
7: else
8: i = dindexe
9: Add up the intensity value si = si + h j

10: Report the real value vector VM.

The bin size in Equation 4.1, and the error bound in the Problem Formulation are consis-

tent with each other, both are predetermined by the resolution of the experimental configura-

tions, therefore we use the same symbol δ to denote them. After the conversion, each vector is

normalized to unit vector with each element in the vector divided by its Euclidean Norm, thus

the scoring function can be rewritten in the following way:

H(M, A + αB) =
VM · (VA + αVB)
‖VA + αVB‖

(4.2)
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In the equation above, the vector VM, VA and VB are all unit vectors. The ‖VA + αVB‖ in the

denominator indicates the Euclidean Norm (or Euclidean Distance) of the new vector VA +αVB,

which is the linear combination of two separate unit vectors VA and VB.

4.3 Main Method

Effective computational approaches developed for the purpose of automated identification of

mixture spectra will be beneficial for alleviating the bottleneck of low identification rate im-

peding the current computational analysis of mass spectrometry based proteomics data. Even

though the proposed Mixture SpectraDatabase Search Problem is formulated in a very simple

form, the direct implementation will suffer a major computational disadvantage when consid-

ering multiple precursors in one single spectrum. The number of the possible candidate peptide

pairs that fall into the required mass error range will be very large. The computational burden

for scoring each spectrum against all the possible peptide pairs will make it impractical for its

application onto to large datasets. Moreover, the quadratic explosion in search space will also

dramatically increase the chances of false-positive identifications. Under such circumstance,

efficient filtration strategy is highly necessary for reducing the search space before scoring and

ranking all the candidate peptide pairs.

4.3.1 Filtration Scheme

In the previous chapter, we formulated the problem of peptide de novo sequencing from mixture

MS/MS spectra mathematically, and proposed a dynamic algorithm to report candidate pairs

for each of the query spectrum. The algorithm has the ability to provide partially correct, yet

useful peptide pairs for a given mixture spectrum. We will be utilizing these incomplete results

to screen the peptide pairs acquired from the protein database.
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Assume that for some mixture spectrum M, the de novo algorithm will output the top-

ranked peptide pairs in the following list:

Lm = {(A1, B1), (A2, B2), ..., (Am, Bm)}

in which, the subscript m indicates the number of reported pairs, and it can be adjusted if

required. Each element (Ai, Bi) in the list contains two individual peptides generated for the

two different precursors in the query mixture spectrum respectively.

For each of the molecular mass values MW1 and MW2, we filtered the whole protein

database to find all the theoretically digested peptide sequences that satisfy the required mass

tolerance. We use the following list to include all the tentative peptide sequences after filtered

by precursor mass value MW1:

L1
n = (R1,R2, ...,Rn)

in which, each element Ri satisfy the requirement of mass tolerance δ such that |‖Ri‖+ ‖H2O‖−

MW1| ≤ δ, and n is the number of the filtered sequences. Similarly we put all the possible

peptide sequences for the second molecular mass value MW2 in the following list:

L2
k = (Q1,Q2, ...,Qk)

where for each element Q j, the inequality |‖Q j‖ + ‖H2O‖ − MW2| ≤ δ also holds.

Assuming that we intend to filter the peptide sequence list L1
n: Firstly, for each element Ri,

we compare it with all of its counterpart sequences in list Lm, that is to compare Ri with each

A j in the de novo candidate pairs. As for the filtration of the second sequence list L2
k , similar

comparison procedure also applies. Only difference is that we want to compare the sequence

in L2
k with each sequence B j in the de novo candidate list. Figure 4.1 gives an brief description

of the filtration procedure.

Specifically, in the comparison of two sequences Ri and A j, we use a special alignment

algorithm which takes linear time to count the number of common amino acids N(i, j)
c between
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Figure 4.1: Exemplary illustration of the filtration procedure for database sequence lists L1
n

and L2
k . During such procedure, we compare each element sequence in L1

n or L2
k with their

counterpart sequences in the de novo candidate list Lm.

them. An example to illustrate the comparison is shown in Figure 4.2, and the corresponding

description for the alignment procedure is shown in Algorithm 4. In Algorithm 4, the procedure

in Step 4 to Step 13 will at most be executed in O(v + w) time where v and w are the lengths of

the two input sequence respectively.

Figure 4.2: Comparing a de novo sequence with a database peptide. The alignment ensures
that the mass of the aligned block(letters wrapped by brackets) is equal for both sequences.
Although in this example the masses of [WP] and [GLI] are slightly different, we allow a tiny
error tolerance δ exist, therefore we treat them as equal in comparison. The number of common
amino acids here is Nc = 6.
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Algorithm 4 Comparison between a de novo sequence with a database peptide sequence
INPUT: Given two sequences A = a1a2...av and R = r1r2...rw, and we have the tiny value δ which
represent the predefined error tolerance.
OUTPUT: Find Nc which denotes the number of common amino acids between two input sequences.
During the comparison, we assure that each matched or unmatched block between them are equal in
weight.

1: Initialize W1 = 0 and W2 = 0 in which both are summations of the weight of amino acids.
2: Initialize i = 1 and j = 1 to be the indices in the computation
3: Assign an initial value for Nc = 0
4: if |W1 −W2| ≤ δ then
5: if ai = r j then
6: Nc = Nc + 1
7: W1 = W1 + ‖ai‖, W2 = W2 + ‖r j‖, i = i + 1, j = j + 1
8: else
9: W1 = W1 + ‖ai‖, W2 = W2 + ‖r j‖, i = i + 1, j = j + 1

10: else if W1 < W2 then
11: W1 = W1 + ‖ai‖, i = i + 1
12: else
13: W2 = W2 + ‖r j‖, j = j + 1

14: if i ≤ v and j ≤ w then
15: Repeat the procedure from Step 4
16: Output the value Nc which contains the number of common amino acids based on the special re-

quirements stated above.

Secondly, we calculate an initial score for each Ri according to a Triplet T i = (li
max, l

i
sum,m

i
num)

obtained during the comparison in the previous step. In the Triplet, the notation li
max represents

the largest N(i, j)
c obtained when comparing the target peptide Ri with some sequence A j from

the de novo list Lm. And the notation lsum is calculated as: li
sum =

∑
1≤ j≤n,N(i, j)

c ≥3 N(i, j)
c which

represents the summation over all the N(i, j)
c larger than or equal to 3. And the notation mi

num

denotes how many sequences in the de novo list Lm has common amino acids N(i, j)
c ≥ 3 when

aligning to the current peptide Ri. The initial scoring function we choose in this filtration step

is as follows:

S ini(Ri) = log (li
sum) ∗ li

max (4.3)

The filtration scoring function S ini is chosen empirically and can be adjusted. Each of the three

values contained in the Triplet indicates on some level how much the related peptide should be

considered (or correct). Different scoring functions are evaluated based on the Triplet, however
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we have observed similar performance in search space reduction after the filtration procedure.

Another acceptable scoring function we have evaluated is S ini(Ri) = log ( lisum
mi

num
) ∗ li

max.

Thirdly, we rank all the peptides in Ri based on the filtration score. The score calculated

for each peptide indicates its likelihood of being a correct precursor, at least on some level.

Similar operations can be carried out for the peptide list L2
k . After scoring and ranking both L1

n

and L2
k , we will select a portion of peptides from each list to form the candidate pairs which

will be matched with the query mixture spectrum in the following step with a more rigorous

scoring function. The algorithm for this part is described in Algorithm 5.

Algorithm 5 Filtration: Scoring and Ranking Database Peptides
INPUT: Given mixture spectrum M, the list of de novo sequence pairs: Lm =

{(A1, B1), (A2, B2), ..., (Am, Bm)}, the database peptide list L1
n = (R1,R2, ...,Rn) for MW1, and the

database peptide list L2
k = (Q1,Q2, ...,Qk) for MW2.

OUTPUT: Both lists L1
n and L2

k sorted according to the scoring function S ini

1: Initializing Triplet array T 1[1, ..., n] and T 2[1, ..., k].
2: Initializing the Initial Score array S 1

ini[1, ..., n] and S 2
ini[1, ..., k].

3: for i from 1 to n do
4: for j from 1 to m do
5: Calculate N(i, j)

c between database peptide Ri and de novo sequence A j

6: if N(i, j)
c ≥ limax then

7: limax = N(i, j)
c

8: if N(i, j)
c ≥ 3 then

9: mi
num = mi

num + 1
10: lisum = lisum + N(i, j)

c

11: Calculate the initial score S 1
ini[i] for Ri based on Equation 3

12: Similar operations(line 3 to line 11)are carried out for L2
k to obtain T 2 and S 2

ini.
13: Sort both lists L1

n and L2
k in decreasing order according to the filtration score.

In line 5 of Algorithm 5, given the fact that both peptide Ri and sequence A j have very

limited length, the time complexity for finding the common amino acids between them can be

regarded as a constant. Without losing generality, assume n > k, thus the overall complexity

for Algorithm 5 is O(mn + n log n). m in the complexity denotes the number of candidate pairs

reported by the de novo procedure, it can be easily adjusted according to real requirements of
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balancing results accuracy and computational speed. In line 8 of Algorithm 5, we only count

the case that the number of common amino acids are larger than 3. because larger number

indicates more confidently that those common letters are true matching evidence rather than

random hits between the aligned sequences.

After the database peptides are sorted, we calculate the ratio between the first-ranked and

second-ranked sequences in each database peptide lists. We use ratio r = R1st
R2ed

to determine how

many peptides in each list should go through further examination. A relatively larger value

of r strongly suggests that the top-ranked peptide has a great chance of being one of the co-

fragmented precursors. If r − 1 ≥ β in which β is a threshold value satisfies β ≥ 0, we only

have to take out the very few top-ranked peptides. The threshold we use in this research is

β = 0.3, in case that r−1 ≥ β we only select the top blog nc peptides out of the list, otherwise if

r−1 < β we will take out all the peptides in the list which has mi
num > 0. The threshold β is also

an empirical value in the research. Base on our preliminary experiment on a dataset of limited

size, we found that β = 0.3 is a threshold value large enough to distinguish the first-ranked

peptide from its followers. Peptides with mi
num > 0 means that there is at least one de novo

sequence that has 3 or more common amino acids with the current database peptide. Thus in

case that we can’t rely on the ratio r to reduce the list, we will consider all the peptides with

such de novo matching evidence. This also helps to cut down the number of peptides to be

considered in the next step. After the operations above, we will pair up the peptides selected

from different lists to form peptide pairs and score each peptide pair against the query mixture

spectrum based on Equation 4.2 to report the best matched pair.

4.3.2 Estimation of Mixture Coefficient

In the query mixture spectrumM = A + αB, we assume that α is unknown before the identi-

fication. It is necessary to give a reasonable estimation of the coefficient α prior to scoring the
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query mixture spectrum against the target candidate pair, because a biased mixture coefficient

will compromise the accuracy of calculating the normalized dot product between M and the

correct peptides. We use a similar method as [114] to estimate the mixture coefficient. Assume

that α′ denotes the estimated value of the mixture coefficient, we obtain the optimal value of α′

such that the cosine similarity between VM and VA + α′VB is maximized. Because vectors VM,

VA and VB are all normalized to unit vectors, then V2
M

= V2
A = V2

B = 1. We rewrote the mixture

spectra scoring function in Formula 2 as the following function with respect variable α:

f (α) =
VM · (VA + αVB)√
1 + 2αVA · VB + α2

in which f (α) = cos β, and β is the angle between the vectors VM and VA + αVB.

The function f (α) will have a maximum value at some value α′. In order to achieve

this, the first derivative of f (α) with respect to α will be zero at this specific α′, meanwhile

the second derivative of f (α) at the corresponding α′ is negative. To simplify the following

derivations, we denote VM ·VA = x, VM ·VB = y and VA ·VB = z. The first derivative of function

f (α) is calculated as:

f ′(α) =
y
√

1 + 2αz + α2 − (x + αy)(α + z)(1 + 2αz + α2)−
1
2

1 + 2αz + α2

In which, the denominator will always be greater than zero, therefore to make f ′(α) = 0 is

equivalent to let the numerator be zero, then we will have:

y
√

1 + 2α′z + α′2 − (x + α′y)(α′ + z)(1 + 2α′z + α′2)−
1
2 = 0

y(1 + 2α′z + α′2) − (x + α′y)(α′ + z) = 0

y + 2α′yz + α′2y − α′x − xz − α′2y − α′yz = 0

y − xz + α′yz − α′x = 0

From the induction above, we will obtain the following formula to calculate the estimation of

mixture coefficient:

α′ =
y − xz
x − yz

=
VM · VB − (VM · VA)(VA · VB)
VM · VA − (VM · VB)(VA · VB)

(4.4)
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In our model, the mixture spectrum is modelled as the linear combination of two individ-

ual spectra in the formM = A + αB, therefore the the mixture coefficient that represents the

relative abundance level of two co-sequenced peptides should be at least positive. However,

from Equation 4.4, we cannot guarantee the value α′ calculated here is always positive, theo-

retically it could have three different cases. Figure 4.3 illustrated the three different cases for

α′ followed by the corresponding explanation for each of them.

Figure 4.3: Exemplary figures describing three different cases that the value α′ can be. In (a),
it satisfies α′ ∈ (0, 1). In (b), α′ = 0. In (c), it satisfies α′ < 0.

Without losing generality, we assume that x > y which means
−→
M is more similar to

−→
A

than it is to
−→
B , and it also indicates that the angle Θ1 between

−→
M and

−→
A is smaller than the

angle Θ2 between
−→
M and

−→
B , Θ1 < Θ2. As shown in Figure 4.3, the angle between

−→
A and

−→
B is

denoted as Θ.

In (a) of Figure 4.3, the target vector
−→
M is somewhere between

−→
A and

−→
B , thus we can find

a proper value α′ such that the newly constructed vector
−−−−−−→
A + α′B will parallel with the target

vector
−→
M, and only at this specific value the normalized dot product between

−→
M and

−−−−−−→
A + α′B

is maximized. It is expected that α′ ∈ (0, 1) in this case. This example describes a scenario that

the target spectrumM is highly likely to be a mixture of spectra A and B.

In (b) of Figure 4.3, the target vector
−→
M overlaps with

−→
A which describe a theoretical
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case that vectors
−→
M and

−→
A are indeed identical, and the value for α′ that will maximize the

normalized dot product between between
−→
M and

−−−−−−→
A + α′B is α′ = 0. This example tells that the

target spectrumM is generated from a single precursor instead of any mixture of A and B.

In (c) of Figure 4.3, the target vector
−→
M is outside the sector area enclosed by

−→
A and

−→
B . Theoretically, there also exists a value of α′ such that the newly generated vector

−−−−−−→
A + α′B

parallels with
−→
M which actually maximizes the required normalized dot product. Noticeably,

we can see that this α′ will be a negative value. This example indicates that the target spectrum

M is not any mixture of A and B, and it is more likely to be generated by A.

In practice, when the value for α′ calculated by Equation 4.4 is α′ < 0, or any value that

has the approximation α′ ≈ 0, then we consider the query spectrumM to be a single precursor

spectrum instead of a mixture spectrum. If α′ is in the range (0, 1), then we simply treatM as

a mixture/linear combination of A and B.

Besides calculating the estimation of mixture coefficient, to ensure that at this specific

point α′ computed by Equation 4.4, the original function f (α) obtains the maximum value,

we also need to guarantee that the second derivative of f (α) is negative at α′. This can be

obtained by the following deductions: We know that f (α) = cos β will always be positive,

thus β ∈ (0, π2 ), the second derivative of this function is − cos β. In the domain β ∈ (0, π2 ), it

will ways be negative value for − cos β. Thus, we can conclude that the value α′ calculated by

Equation 4.4 will always make the original function f (α) achieve the maximum value.

4.3.3 Algorithm for Scoring Peptide Pairs

Given an query mixture spectrumM, our proposed method will firstly conduct a preliminary de

novo procedure to report a list of sequence pairs, and then those de novo results possessing only
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limited accuracy will be used to filtrate the database peptides acquired from a protein sequence

database. After filtration of the database peptides, it is expected that the number of potential

peptide sequences that require a more rigorous examination will be reduced. For each peptide

sequence in the shortened lists, we use a similar method as [11] to predict its corresponding

theoretical spectrum. All the fragment types considered in the theoretical spectrum are denoted

Algorithm 6 Scoring Peptide Pairs against Query Mixture Spectrum
INPUT: The query mixture spectrum M and shortened database peptide lists after filtration: L1

x =

(R1,R2, ...,Rx) for precursor molecular value MW1, and Li
y = (Q1,Q2, ...,Qy) for precursor molecular

value MW2.
OUTPUT: The best matched peptide pair (Ri,Q j) and its matching score.

1: Initializing an variable S coremax = 0, and two indices xmax and ymax
2: ConvertM to vector and normalize to unit vector VM.
3: for i from 1 to x do
4: Predict theoretical spectrum S Ri from sequence Ri

5: Convert S Ri and normalize to unit vector VRi

6: for j from 1 to y do
7: Predict theoretical Spectrum S Q j from sequence Q j

8: Convert S Q j and normalize to unit vectors VQ j

9: Estimate coefficient α′ based on Equation 4.4

10: Calculate the cosine value using cos =
VM·(VRi +α

′VQ j )
‖VRi +α

′VQ j ‖

11: if cos > S coremax then
12: S coremax = cos
13: xmax = i and ymax = j
14: Output peptide pair (Rxmax ,Qymax) with its matching score S coremax

in Π = {y, b, a, c, x, z, y∗, yo, b∗, bo}. The theoretical spectrum is furthermore converted to a

spectrum vector using Equation 4.1 and subsequently normalized to a unit vector. Sequences

from two individual lists are paired up to constitute the tentative peptide pairs. Then for each

of the tentative peptide pairs, we will score it against the query mixture spectrum based on

the scoring function in Equation 4.2, and the best matched pair will be outputted in the final

step. Algorithm 6 describes the general outline of seeking the best matched pair among all the

tentative pairs.

The time consumed in Line 2, 5, 8 for converting a vector to its corresponding unit vector

depends on the number of bins considered in the spectra conversion, therefore the complexity
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is O( MW
δ

). The overhead in Line 10 for calculating the normalized dot product between VM and

the linear combined vector VRi + α′VQ j also relies on the number of bins(or dimensions) in the

vector, thus the complexity for this part is the same as above. Meanwhile, we have nested loops

iterative with i and j, therefore the integrated complexity for Algorithm 6 is O(x × y × MW
δ

),

in which x and y are denoted in Algorithm 6 representing the size of the shortened database

peptide lists respectively.

4.4 Experiment Result and Discussion

4.4.1 Experiment Summary

Our previous attempt of de novo sequencing from mixture spectra laid the foundation for the

research in this manuscript. A preliminary de novo sequencing procedure with only partial

correctness is integrated in the filtration strategy to reduce the examination space. Prior to

scoring the query mixture spectra against the enormous amount of candidate pairs by the strin-

gent scoring function in Formula 4.2, the de novo assisted filtration strategy will initially rank

all the peptides that are obtained directly from the theoretical digestion of the protein sequence

database by a preliminary scoring model and only those higher-ranked peptide sequences are

selected and paired up to form candidate pairs that can go through the subsequent stringent

scoring procedure.

To verify the efficiency of the proposed method, we use the published software package

MSPLIT [114] on a tryptic yeast dataset released on PRIDE [123] repository to obtain some

real mixture spectra. The MSPLIT software is run in the target/decoy strategy on the yeast

dataset collected from an Ion Trap mass spectrometer. In our experiment, we further filtered

those reported mixture spectra according to our current requirements. We only select those

spectra in which both precursor peptides in the mixture spectra have charge 2, and contain no
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Post-translational Modifications. Furthermore, we use the renowned database search software

PEAKS DB [10] to re-confirm those mixture spectra reported by MSPLIT. Each individual

peptide is searched against the protein database with the other peptide sequence removed from

the database to eliminate the potential interference between two peptides. Only those mixture

spectra in which both peptides can be confirmed by PEAKS DB are kept. In total, we obtained 7

distinct mixture spectra. We implemented a software prototype based on our proposed method

Table 4.1: Preliminary experiment results on a dataset containing 7 mixture spectra. The
columns Nb and Na represent the number of database peptides before and after the filtration
procedure for each mass value respectively. The column f (in millesimal) shows the ratio be-
tween the number of candidate sequence pairs after filtration and the number of all possible
peptide pairs acquired directly from the protein database. The column α′ is the estimated mix-
ture coefficient. The column cos Θ is the score (normalized dot product) calculated based on
Equation 4.2

m/z Peptides Nb Na f α′ cos Θ

553.321
553.7795

GLILVGGYGTR
GPPGVFEFEK

1853
1924

7
297

0.5831‰ 0.827 0.327

419.724
420.2585

ASIASSFR
IAGLNPVR

1823
1319

7
7

0.0204‰ 1.101 0.444

506.78
507.2820

FHLGNLGVR
KFPVFYGR

1709
1837

7
7

0.0156‰ 0.917 0.365

600.2756
600.340

GYSTGYTGHTR
DAGTIAGLNVLR

976
1476

6
7

0.0292‰ 1.149 0.321

462.706
463.3077

DNEIDYR
IVAALPTIK

1239
743

474
519

267.23‰ 1.347 0.343

521.253
521.7932

YSDFEKPR
GAIAAAHYIR

1434
1880

7
7

0.0182‰ 0.996 0.302

675.364
675.8437

GKPFFQELDIR
ANLGFFQSVDPR

1560
1592

360
7

1.0147‰ 1.847 0.388

and searched those mixture spectra against a yeast protein sequence database. The theoretically

enzymatic peptides acquired from the protein sequence database contain both fully-tryptic and

semi-tryptic peptide sequences, and also contain the peptide sequences with one missing cleav-

age. The mass error tolerance considered throughout the experiment is ±0.1Da. Our software

can successfully identify all the 14 different peptides contained in those mixture spectra above.

The experimental results are listed in Table 4.1.
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From Table 4.1, we can clearly see that the proposed filtration strategy can effectively

reduced the number of candidate peptide pairs to be examined. For most of the entries, the

reduction ratio f is less than 1‰ or we say less than one thousandth. Even with the worst case

in entry 5, the proposed method can still exclude more than two thirds of the sequence pairs

acquired from the protein sequence database after filtration. We noticed that in this entry, the

filtration doesn’t perform as good as others. It is mainly because that after the initial ranking of

both tentative peptide lists, the first ranked peptide has a similar initial score value as the second

ranked peptide in either of the lists, thus they are not easy to be distinguished. In this case, we

use a relatively larger set in order to include the correct peptide for further calculation. To be

more specific, all the peptide candidates that have mi
num > 3 are included in the set which will

be then paired up and matched with the query mixture spectrum. Another point worth noticing

is that in the real mixture spectra, we don’t know which precursor have the higher abundance,

thus the estimated value for α′ can be either larger than 1 or smaller than 1. The correctness of

the identification results demonstrated the effectiveness of the proposed method for matching

a mixture spectrum with a pair of database peptides by using the filtration strategy. In our

future work, we will evaluate the performance of our proposed method on datasets of different

size and different acquisition methods, also we will develop a method for the validation of the

identification results.

4.4.2 Annotation of Identifications

To provide a better view of the mixture spectra identification results, our software prototype

enables generating the graphical annotations for the identified mixture MS/MS spectra. The

simple interface enables users to zoom into (or zoom out) a specific locations on both the

horizontal direction of m/z values. Dynamically, when pointing to a specific peak in the plot,

the corresponding m/z and intensity values of that peak will be simultaneous displayed. In each

annotated spectrum, the matched ion fragments for the two identified peptides are both labelled.
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The software prototype has the ability to report and annotate more than one matched peptide

pairs, and by default the top ranked peptide pair for each query mixture spectrum is outputted

as the identification results. An example of the spectrum annotation is shown in Figure 4.4. The

annotated spectra will provide an extra dimension of information on the identification results

as well as the matched ion fragments in the spectra. From Figure 4.4,we can see there are quite

a few labels that contains multiple annotations which indicates that in the mixture MS/MS

spectra the occurrence of overlapping fragments can be frequent. Appendix A provides the

annotations of the results for all the other identified mixture spectra in the experiment.
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Figure 4.4: Example of the spectrum annotations. The reported identifications for the query
mixture spectrum are GLILVGGYGTR and GPPGVFEFEK shown in (a). In the annotated
spectrum, the blue signs are the matched ion fragments from the first peptide, and the red ones
are the matched ions of the second peptide, in the meanwhile the green ones in the spectrum
are the reported overlapping peaks. When zooming in around the value m/z = 550, we can see
more details in the specific location in (b).
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

Steady progresses have been achieved in the applications of mass spectrometry in proteomics

studies in recent years. However, one frustrating fact that impedes the efficiency of computa-

tional approaches is the low identification rate of the acquired mass spectral data. The existence

of mixture spectra is an influential factor contributing to this situation, which also significantly

complicates the analysis of the mass spectrometry data, yet their effects on peptide and protein

identification in complex mixtures remains unveiled. There is currently an increasing necessity

of developing effective approaches for the characterization of mixture spectra. The successful

identification of mixture spectra will directly contributes to improving the overall throughput of

proteomics experiments, especially when analyzing protein sample with increasing complexity.

Also, along with the arising of new acquisition protocols, the occurrence of mixture spectra is

frequent, even intentional which makes such algorithms and software tools for analyzing mix-

ture spectra more desired. Thus, the almost ubiquitous assumption that every MS/MS spectrum

comes from one precursor becomes unsuitable to identify spectra from co-eluting peptides. In

this manuscript, we conducted research regarding the identification of mixture spectra on two

different yet highly correlated topics: the de novo sequencing of mixture spectra and mixture
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spectra database search.

To the best of our knowledge, our research on the mixture MS/MS spectra de novo se-

quencing is the first effort of its kind. We proposed a sophisticated dynamic programming al-

gorithm for the purpose of reporting a pair of peptide sequences for a query mixture spectrum.

Unlike the previous attempts of seeking multiple peptides from a single mixture spectrum in an

iterative manner, our method modelled the mixture spectrum as the linear combination of ion

fragments from both co-sequences precursors and proceeded in an carefully designated path-

way to reconstruct both peptides concurrently. The effectiveness of the proposed algorithm is

benchmarked on both simulated and real mixture spectra datasets. Additionally, in the research

we provide two scenarios for the possible applications of the proposed method. One scenario

is based on the fact that we formulate the concurrent fragmented precursors together, and as

demonstrated in the simulated mixture spectra, this provides the proposed method the ability to

report better results in the case that the co-sequenced precursors have comparable abundances.

In this scenario, if we can find a mixture spectrum in the dataset in which the co-sequenced

precursors have relatively approximate intensities, our approach can be applied in this situa-

tion to report more useful results. Another scenario relies on the traditional idea of integrating

de novo sequencing results with database search method to accurately and sensitively identify

MS/MS spectra. As shown in the simulated mixture spectra, our proposed method has a good

chance to report useful though partially correct peptide sequences, and those partially correct

results are highly useful in reducing the examination space during the database search.

The second application scenario above laid the foundation for the subsequent research

on mixture spectra database search. In our most recent research, we combined the de novo

results with database search to identify the acquired mixture spectra. The de novo results here

provide a way to score and rank those peptide candidates from the theoretical digestion of pro-

tein database. After ranking against the preliminary de novo sequences, only those database

peptides with larger initial filtration score are filtered out and go through a more stringent
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scoring procedure in which calculating the similarity between the experimental spectrum and

the theoretical spectrum is transformed to computing the normalized dot product of two real-

value vectors. Such unique strategy of filtering the candidate peptide pairs provides us a major

improvement in efficiency by which several magnitudes of reduction in search space is ob-

tained. Besides the filtration strategy, we use the mixture coefficient α to represent the relative

abundance of the precursors, and we also introduced a method to estimate the relative abun-

dance level of the co-sequenced precursors. Previous reports indicate that the abundances of

fragments are indeed highly related to the abundance of the corresponding precursors, thus it

is necessary to give an appropriate estimation of the mixture coefficient prior to the rigorous

scoring procedure and an improper mixture coefficient will surely detriment the accuracy of

identification. This special de novo assisted database search method shows great efficiency on

our preliminary experiment result, in which the correct peptide pairs can be identified for each

query mixture spectra by only searching through a tiny fraction of all the peptides candidate

pairs acquired directly from the protein sequence database.

5.2 Future Work

Even with all the advances accomplished in the thesis, the research on characterizing mixture

spectra remains unsatisfactory. Just like what happened in dealing with simple peptide spectra,

the proteomics community will have to make continuous efforts on the problem of understand-

ing mixture spectra before we are able to unveil the underlying myth. For the specific problem

of mixture spectra identification, we will concentrate on several research topics described in

the following part.

First, we will continue and improve our current work on the de novo sequencing of mixture

spectra and its related applications. More efficient algorithms will be needed to improve the

identification accuracy, as well as to reduce the time and space complexity. The major problem
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that affects the practicability of de novo approach is the low identification accuracy. In order

to alleviate such bottleneck, another promising research work that we want to conduct is to

find the sequence tags instead of whole sequence by de novo approach. The de novo sequence

tags with high confidence level will be more useful in helping the database search to reduce

the examination space. We can also combine such algorithmic solutions with database search

techniques to obtain better identification results of mixture spectra.

Second, we will conduct research on the accurate determination of monoisotopic mass

values of the co-sequenced precursors. The mass spectral peak representing the monoisotopic

mass is sometimes not the most abundant isotopic peak in a spectrum despite it contains the

most abundant isotope for each atom. This is because as the number of atoms in a molecule

increases, the probability that entire molecule contains at least one heavy isotope atom also

increases. Mixture spectra are generated from the co-fragmentation of multiple peptides. One

complication here is to separate the monoisotopic precursors of these peptides from each other.

Conventionally, the identification of MS/MS spectra is closely related to the monoisotopic

masses of the precursors, it is reasonable to conclude that the more accurate the precursor

masses are, the more easily and accurately the spectra can be identified. The monoisotopic

peak is sometimes not observable for two primary reasons. One case is that the monoisotopic

peak may not be resolved from other isotopic peaks or the monoisotopic peak is below the

noise level. The other case is that the monoisotopic peak is not included in the selection win-

dow, this occurs both in the Data Dependent Acquisition and Data Independent Acquisition

modes. All these special circumstances indicate that the precursor mass value we acquired

from the mass spectrometer may not be the monoisotopic value. Correctly determining the

monoisotopic peaks of the co-fragmented precursors in the isotopic clusters will help to in-

crease the identification accuracy of the collected spectra.

Third, we will try to combine our previous research on the de novo sequencing research

with the spectral library search to identify mixture spectra. The advances in high-throughput
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MS/MS have promoted the accelerated growth of publicly available libraries of single peptide

spectra, comprising of large volume collection of peptide MS/MS spectra with validated iden-

tification results. And the availability of these large spectral archives has ignited the research

on developing spectra identification approaches based on spectral matching and alignment al-

gorithms. Prior to the spectral library searching process, we can conduct a preliminary de novo

sequencing procedure to retrieve some useful information regarding the target peptides. On

one hand those information, either sequence tags or partially correct sequences will be benefi-

cial to screen the spectral candidates from the spectral library, on the other hand, if the target

spectrum and peptide is not observed in the library, the selected sequences identified from mass

spectra with good de novo reconstructions will be considered as novel peptides.

Last but not least, solving the problem of peptide identification from mixture spectra rep-

resents an important step toward addressing related and emerging problems in proteomics,

among which a specific topic is to identify the disulphide linked peptides. Similar to the co-

fragmentation of multiple precursors that generates mixture spectra, the covalently linked pep-

tides, such as disulphide bonded peptides also give rise to the generation of non-canonical

MS/MS spectra. The formation of disulphide bonds is critical for stabilizing protein structures

and maintaining protein functions, therefore knowledge of the disulphide linkage will provide a

deeper understanding of the tertiary structure and biological function of proteins. The peptides

linked by disulphide bond are co-sequenced together in the LC-MS/MS, which will produce

the spectra containing fragments from both peptides. A straightforward yet reasonable model

for formulating the problem is to treat the disulphide linked peptides as a tree. We consider the

bonded location between two peptides as the root of the tree, and starting from the root, the

tree has four different branches which corresponds to the prefixes and suffixes of two different

peptides. By isolating the correct peaks in the spectrum that match with the theoretical mass

values of ion fragments, we may be able to reconstruct the covalently linked peptide sequences

and locate the disulphide bonds in a de novo sequencing manner. We can also design efficient
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algorithmic solutions to match the experimental derived spectra with peptide sequences from

database, and to subsequently determine the number and locations of the disulphide bonds, this

is similar to the database search of mixture spectra.
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Appendix A

Annotation of Identifications
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Figure A.1: For this input mixture spectrum, the best matched pair are GYSTGYTGHTR and
DAGTIAGLNVLR.

Figure A.2: For this input mixture spectrum, the best matched pair are ASIASSFR and
IAGLNPVR.

104



Figure A.3: For this input mixture spectrum, the best matched pair are FHLGNLGVR and
KFPVFYGR.

Figure A.4: For this input mixture spectrum, the best matched pair are DNEIDYR and
IVAALPTIK.
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Figure A.5: For this input mixture spectrum, the best matched pair are YSDFEKPR and GA-
IAAAHYIR.

Figure A.6: For this input mixture spectrum, the best matched pair are GKPFFQELDIR and
ANLGFFQSVDPR.
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