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Abstract
Parallel programming is gaining ground in various domains due to the tremendous com-

putational power that it brings; however, it also requires a substantial code crafting effort to
achieve performance improvement. Unfortunately, in most cases, performance tuning has to be
accomplished manually by programmers. We argue that automated tuning is necessary due to
the combination of the following factors. First, code optimization is machine-dependent. That
is, optimization preferred on one machine may be not suitable for another machine. Second,
as the possible optimization search space increases, manually finding an optimized configura-
tion is hard. Therefore, developing new compiler techniques for optimizing applications is of
considerable interest.

This thesis aims at generating new techniques that will help programmers develop efficient
algorithms and code targeting hardware acceleration technologies, in a more effective manner.
Our work is organized around a compilation framework, called MetaFork, for concurrency
platforms and its application to automatic parallelization. MetaFork is a high-level program-
ming language extending C/C++, which combines several models of concurrency including
fork-join, SIMD and pipelining parallelism. MetaFork is also a compilation framework which
aims at facilitating the design and implementation of concurrent programs through four key
features which make MetaFork unique and novel:

(1) Perform automatic code translation between concurrency platforms targeting multi-core
architectures.

(2) Provide a high-level language for expressing concurrency as in the fork-join model, the
SIMD paradigm and the pipelining parallelism.

(3) Generate parallel code from serial code with an emphasis on code depending on machine
or program parameters (e.g. cache size, number of processors, number of threads per
thread block).

(4) Optimize code depending on parameters that are unknown at compile-time.

Keywords: source-to-source compiler, pipelining, comprehensive parametric CUDA ker-
nel generation, concurrency platforms, high-level parallel programming.
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Chapter 1

Introduction

In the past fifteen years, the pervasive ubiquity of multi-core processors has stimulated a con-
stantly increasing effort in the development of concurrency platforms, such as CilkPlus [22,
98, 78], OpenMP [117, 14] and TBB [77]. While those programming languages are all based
on the fork-join concurrency model [23], they largely differ in their way of expressing paral-
lel algorithms and scheduling the corresponding tasks. Therefore, developing software code
combining libraries written with several of those languages is a challenge.

Nevertheless there is a real need for facilitating interoperability between concurrency plat-
forms. Consider for instance the field of symbolic computation. The DMPMC library 1 pro-
vides sparse polynomial arithmetic and is entirely written in OpenMP, meanwhile the BPAS
library 2 provides dense polynomial arithmetic and is entirely written in CilkPlus. Polynomial
system solvers require both sparse and dense polynomial arithmetic and thus could take advan-
tage of a combination of the DMPMC and BPAS libraries. However, CilkPlus and OpenMP
have different run-time systems. In order to achieve interoperability between them, an auto-
matic source-to-source translation mechanism was desirable, yielding the original objective for
this thesis work.

Another motivation for such a software tool is comparative implementation with the objec-
tive of narrowing performance bottlenecks. The underlying observation is that the same multi-
threaded algorithm, based on the fork-join parallelism model, implemented with two different
concurrency platforms, say CilkPlus and OpenMP, could result in very different performance,
often very hard to analyze and compare. If one code scales well while the other does not, one
may suspect an inefficient implementation of the latter as well as other possible causes such
as higher level of parallelism overheads. Translating the inefficient code to the other language
can help narrowing the problem. Indeed, if the translated code still does not scale, one can
suspect an implementation issue (say the programmer missed to parallelize one critical portion
of the algorithm) whereas if the translated code does scale, then one can suspect a parallelism
overhead issue in the original code (say the grain-size of a parallel for-loop is too small).

In the past decade, the introduction of low-level heterogeneous programming models, in
particular CUDA [5, 116], has brought super-computing to the level of the desktop com-

1From the TRIP project www.imcce.fr/trip developed at the Observatoire de Paris
2 From the Basic Polynomial Algebra Subprograms www.bpaslib.org developed at the University of Western

Ontario

1

www.imcce.fr/trip
www.bpaslib.org
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puter. However, these models bring notable challenges, even to expert programmers. Indeed,
fully exploiting the power of hardware accelerators, in particular Graphics Processing Units
(GPUs) [106], with CUDA-like code often requires significant code optimization effort. While
this development can indeed yield high performance [12], it is desirable for some programmers
to avoid the explicit management of device initialization and data transfer between memory
levels. To this end, high-level models for accelerator programming have become an important
research direction. With these models, programmers only need to annotate their C/C++ code
to indicate which code portion is to be executed on the device and how data maps between host
and device.

As a consequence, it is desirable for our proposed source-to-source translation framework
not to restrict itself to programming languages based on the fork-join concurrency model, but
also to include the low-level heterogeneous programming model of CUDA which mainly relies
on the Single Instruction Multiple Data (SIMD) paradigm, yielding the second motivation of
this thesis work.

As of today, OpenMP and OpenACC [6, 144] are among the most developed accelera-
tor programming models. Both OpenMP and OpenACC are built on a host-centric execution
model. The execution of the program starts on the host and may offload target regions to the
device for execution. The device may have a separated memory space or may share memory
with the host, so that memory coherence is not guaranteed and must be handled by the pro-
grammer. In OpenMP and OpenACC, the division of the work between thread blocks within a
grid and, between threads within a thread block can be expressed in a loose manner, or even
ignored. This implies that code optimization techniques may be applied in order to derive effi-
cient CUDA-like code. Of course, this is a non-obvious task for a variety of reasons. First of
all, for portability reasons, the hardware characteristics of the targeted GPU device should not
be assumed to be known in a source code written with a high-level models for accelerator pro-
gramming. Secondly, and partially as a consequence, program parameters (like grid and thread
block formats) should not be assumed to be known either in that same source code. There-
fore, this source code should depend on parameters which are symbolic entities with unknown
values at compile time.

Being able to generate (say from annotated C/C++) and optimize such parametric CUDA-
like code is the third objective of this thesis work. As we shall see, achieving this objective
leads to manipulate systems of non-linear polynomial constraints, which makes this process
complex and challenging.

1.1 Dissertation Outline
In this thesis, we propose MetaFork which is both a language accommodating several mod-
els of concurrency (fork-join, pipelining, SIMD) and a compilation framework (performing
automatic translation from CilkPlus to OpenMP, from OpenMP to CilkPlus, from annotated
C/C++ to CUDA, etc.)

In Chapter 3, we present MetaFork as a metalanguage for multithreaded algorithms based
on the fork-join parallelism model and targeting multi-core architectures. By its parallel pro-
gramming constructs, the MetaFork language is currently a super-set of CilkPlus and offers
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counterparts for widely used parallel constructs of OpenMP. In Chapter 5, we show how the
MetaFork language supports pipelining, allowing interoperability with Cilk-P [95].

The implementation of MetaFork as a compilation framework is presented mainly in Chap-
ter 6. However, the software framework that allows automatic generation of CUDA code from
annotated MetaFork programs is discussed in Chapter 4. Finally, Chapter 7 is dedicated to the
question of optimizing parametric CUDA kernels and more generally, optimizing programs
depending on parameters whose values are unknown at compile-time.

1.2 Contributions
MetaFork is a high-level programming language extending C/C++, which combines several
models of concurrency including fork-join, SIMD and pipelining parallelism. MetaFork is
also a compilation framework which aims at facilitating the design and implementation of
concurrent programs through four key features which make MetaFork unique and novel:

(1) Perform automatic code translation between concurrency platforms targeting multi-core
architectures.

(2) Provide a high-level language for expressing concurrency as in the fork-join model, the
SIMD paradigm and the pipelining parallelism.

(3) Generate parallel code from serial code with an emphasis on code depending on machine
or program parameters (e.g. cache size, number of processors, number of threads per
thread block).

(4) Optimize code depending on parameters that are unknown at compile-time.
As of today, the publicly available and latest release of MetaFork, see www.metafork.

org, offers the first three features stated above. The latter is implemented as a proof-of-concept
and will be integrated in the public version in a near future.

1.3 Thesis Statement
Chapter 3 is a joint work with Marc Moreno Maza, Sushek Shekar and Priya Unnikrishnan,
published as [35].

Chapter 4 is a joint work with Changbo Chen, Abdoul-Kader Keita, Marc Moreno Maza
and Ning Xie, published as [29].

Chapters 5 and 6 are essentially my work under the supervision of Marc Moreno Maza and
Abdoul-Kader Keita.

Chapter 7 is a joint work with Marc Moreno Maza and Ning Xie.

www.metafork.org
www.metafork.org


Chapter 2

Background

This chapter presents the technical background of our topic. Section 2.1 introduces the concur-
rency platforms that are relevant to better understand our work. Section 2.2 explains the most
commonly used technologies and concepts to give insight into the performance of a parallel al-
gorithm. Finally, a brief overview of directions for compiler research is covered in Section 2.3.

2.1 Concurrency Platforms
Nowadays, more and more promising parallel computing platforms are available for high per-
formance computing. To gain speedup, programmers are expected to identify parallelism and
choose suitable underlying platforms; otherwise, the algorithm developed might not display
speedup, or even run slower than the sequential version. In the following sections, we summa-
rize the basic properties of several concurrency platforms.

2.1.1 CilkPlus

CilkPlus is a language extension to the C/C++ programming language, designed for task-
based parallelism in a multithreaded environment. With the keywords introduced by CilkPlus,
a serial program can be easily converted into a parallel program which models a fork-join par-
allel control pattern that splits control flow into multiple parallel flows that re-join together
later. Precisely, a CilkPlus program is derived from a serial program annotated with CilkPlus
keywords indicating where parallelism is allowed. To boost applications, programmers only
concentrate on developing the algorithm with ample parallelism, while leaving the underlying
CilkPlus run-time system with the responsibility of efficiently scheduling the computation on
the executing processors. CilkPlus uses a work stealing [24] strategy to schedule the compu-
tational tasks. This method can be efficiently implemented to map a large quantity of parallel
tasks onto physical hardware resources at run-time. Moreover, the authors of [59] show that
with its work stealing strategy, CilkPlus programs are guaranteed to be time and space ef-
ficient. In particular, the computational tasks are adaptively load-balanced between worker
threads in the CilkPlus scheduler [99].

Note that CilkPlus keywords only denote the opportunity for parallel computation, but
parallel computation is not mandatory. For example, the cilk spawn keyword which permits

4
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the caller running in parallel with the callee, may not actually result in concurrency execution.
To carry out such concurrency execution, there must be at least one thread that is idle and looks
for computational tasks to steal from other threads. This implies that when a parallel CilkPlus
program runs on a single core machine, the serial semantics of that program is retained.

To ease parallel programming efforts, there are two performance analysis tools, Cilkprof [72,
133] and Cilkscreen [79], designed for programmers that use CilkPlus. The Cilkprof scala-
bility and performance analyzer is used to collect the parallel performance data of a CilkPlus
program. For example, Cilkprof profiles the work, span and burdened span, which allows the
developers to diagnose performance bottlenecks in CilkPlus programs. The Cilkscreen race
detector provides the programmers with any data races which are extremely hard to debug with
serial programming tools.

2.1.2 OpenMP

OpenMP (Open Multi-Processing) is the de-facto standard for programming multithreaded ap-
plications, which is primarily designed for shared memory systems before the release of version
4.0. By annotating a serial program with various OpenMP compiler directives, programmers
can specify fork-join parallelism. Originally, OpenMP only supports implicit tasks for static
parallelism which does not fit well into irregular applications which employ recursive algo-
rithms, pointer chasing or load imbalances computation. To efficiently parallelize applications
similarly to CilkPlus, OpenMP 3.0 extends its programming model, referred as the OpenMP
tasking model [143], by allowing programmers to dynamically create asynchronous units of
work to be scheduled by the run-time. The adoption of this tasking model broadens OpenMP
to parallelize task-based applications as flexibly as CilkPlus.

Furthermore, beyond developing code for single address space parallelism, the OpenMP
language committee has been working on a set of extensions to support heterogeneous compu-
tation model using both CPU and accelerators, and this work leads to the release of version 4.0
of the OpenMP specification in July, 2013. This accelerator model of OpenMP builds on a host-
centric execution model. That is, the execution of an OpenMP program starts on the host (i.e.
CPU) and the host may offload a piece of code to an attached accelerator device (e.g. GPU) for
execution according to the OpenMP directives. The accelerator may have its separated mem-
ory space or may share memory space with the host, so that memory coherence [121] is not
guaranteed.

The accelerator model in OpenMP is similar to OpenACC which also accelerates computa-
tion on an external accelerator by adding OpenACC compiler directives. OpenACC has been
developed for several years, so the programming features of OpenACC are rich and stable.
OpenMP, however, is just starting in the heterogeneous programming field, but it is catching
up.

2.1.3 GPU

In recent years, the use of GPUs as accelerators to offer more opportunities for performance
tuning, has increased exponentially [52, 111, 45]. Contrary to the traditional CPU which is
designed for serial processing, the GPU provides massive parallelism which is specialized for
speeding up intensive computations. Programmers can take advantage of this programming
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model to combine the power of CPU and GPU in order to explore massive parallelism. How-
ever, this model also introduces notable challenges [108], even for expert programmers, due to
the complexity of GPU architectures, including memory hierarchy, thread hierarchy and hard-
ware resource limitations. To exploit the computation capabilities efficiently, programmers are
required to commit significant efforts in optimizing their algorithms with respect to specific
hardware features [135, 84].

Figure 2.1: GPU hardware architecture

GPU Hardware Model. A GPU is made up of an array of streaming multiprocessors (SMs )
that perform computations independently of each other, as well as off-chip device memory, as
shown in Figure 2.1. As GPU architecture is evolving, the configuration and the number of
SMs, and the amount of the device memory vary. Roughly, each SM consists of Scalar Pro-
cessors (SPs), on-chip shared memory and register files. Register files and shared memory of
each SM are statically and evenly allocated among thread blocks as long as they are active,
and when context switching happens, the states of those registers and shared memory do not
need to be saved and restored. This can be viewed as a key basis in achieving high throughput.
A thread block which is composed of threads, is mapped to an SM and the execution of each
thread block is completely independent of every other. Within a thread block, the SM splits
the threads into warps of 32 threads which run in SIMD manner on SPs. In fact, from the per-
spective of GPUs, a warp is the basic scheduling and execution unit for an SM. Different warps
within a thread block are scheduled asynchronously, but can be synchronized if needed. When
one warp is stalled, the SM can quickly switch to other warps if they are ready, thereby effec-
tively tolerating the long latency operations such as memory loads, and maximizing resource
utilization.

GPU Programming Model. Programming GPUs for general-purpose applications is accom-
plished by the Compute Unified Device Architecture (CUDA) programming model. CUDA al-
lows programmers to define functions, called kernels , which are executed with the SIMD mode
by a large mount of threads on GPUs. Figure 2.2 illustrates the heterogeneous programming
model of CUDA through a hybrid CPU/GPU computing approaches. That is, the execution of
a CUDA program starts on the host (i.e. CPU) and the parallel kernel code is executed on the
device (i.e. GPU) either synchronously or asynchronously with respect to the host. After the
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Figure 2.2: Heterogeneous programming with GPU and CPU

completion of kernel calls, control is returned back to the CPU thread. In order to carry out the
computations on the device, the programmer is responsible for organizing the data transfers
between the host and device memory, transfers in both directions being handled by the host.

CUDA abstracts execution on the GPU in the form of thousands of concurrent threads
which are organized into a two-level thread hierarchy composed of the grid as the top level and
thread blocks as the bottom level. The size of the grid and the thread blocks can be configured
in multiple dimensions (one, two, or three dimensions) by the special parameters provided at
kernel launch time. Note that, the configurations are chosen manually by programmers without
the guarantee that they are optimal. CUDA kernels written as a single function, are executed
by all threads in the grid; hence, each thread needs to distinguish itself from others and to
access unique data portions to operate on. To this end, threads are able to query CUDA built-
in variables (e.g. blockId, gridDim and threadIdx) and combine them to compute a unique
identifier.

In addition, to achieve high memory bandwidth [150], GPUs offer a region of memory,
called shared memory, which is private to every SM and can be used to share data at thread
block scope. Compared to the slow off-chip GPU device memory which can be accessed by
all the threads, the on-chip shared memory provides a very fast memory access speed which
is comparable to the speed of register access. From the perspective of programming, pro-
grammers need to explicitly declare variables with the CUDA shared keyword to make
variables resident in shared memory.

2.2 Performance Measurement
Capturing analytically the parallelism overheads (e.g. scheduling costs) that a concurrency
platform imposes on an executing program is a crucial question which has received little at-
tention in the literature. However, establishing the leading cause of a performance issue often
remains a very challenging task in many practical situations. Indeed, low parallelism or high
cache-complexity at the algorithm level, ineffective implementation, hardware limitations and
scheduling overheads are very different possible causes of poor performance. This section is
devoted to discussing research directions to help with this challenge, targeting standard con-
currency platforms on multi-core and many-core architectures.
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2.2.1 Occupancy and ILP

A key motivation [36] of GPUs for massive parallelism is to handle a large mount of active
warps, i.e. groups of threads executing in SIMD fashion, on each SM. An SM maximizes uti-
lization of its SIMD lanes [129] by multiplexing those warps according to their states. That is,
when a warp which is running, stalls due to long memory or ALU operations latency, this warp
is switched out and marked as pending, while another warp which is eligible will be switched in
for execution. When the long latency operations complete, the pending warp that was switched
out early becomes eligible for execution. Ideally, if there are sufficiently many warps at each
cycle to tolerate latency, full computation resource utilization of the SM is achieved. Hence,
utilization of an SM is directly associated with the number of active warps on that SM. The oc-
cupancy metric on GPUs is used to formulate this concept. Occupancy for an SM is defined as
the ratio of the number of active warps to the maximum number of warps. A CUDA occupancy
calculator tool, included in the CUDA toolkit, helps programmers to compute the occupancy
for a kernel, depending on the execution configurations and the nature of the kernel algorithms.

In practice, to improve occupancy, programmers usually configure more thread blocks than
SMs, as well as more threads than SPs. However, not all those thread blocks are concurrently
active on SMs. To be active, the resources, such as register and shared memory usage, requested
by a thread block, must be available. Thus, occupancy for each SM is tightly constrained by the
limited amount of SM resources. As reported in [84, 88, 94] , even a slight increase in resource
usage, like per-thread register usage and per-block shared memory usage, could deliver a sharp
occupancy degradation.

Empirically, occupancy poses a distinctive impact on performance according to the kernel
computation patterns. For memory-intensive applications [51, 112, 145], larger occupancy is
better due to the fact that instruction level parallelism (ILP) [149] within each thread is not
sufficient to mask long memory access latency, and maximizing occupancy allows hiding the
memory access latency by multiplexing the active warps. Nevertheless, optimizing for occu-
pancy does not always equate to gain better performance. As revealed in [114, 149], in the
context of computation-intensive applications, better performance can also be achieved at a
relatively lower occupancy by exploiting more independent work per thread, i.e. ILP. Keep in
mind that GPU threads do not stall on memory access and stall only when any operand is not
ready. So under this circumstance, the memory access latency can be hidden at the overlap-
ping execution of independent instructions. This idea is widely applied by code optimization.
For example, loop unrolling [63, 114] creates a larger number of available independent in-
structions inside the loop body at the expense of increasing register pressure which may lead
to the degradation of occupancy; however, the compiler has more opportunities in scheduling
those instructions to improve ILP which maybe sufficient to offset the loss of thread-level par-
allelism. Hence, the balance between the number of active warps and the hardware resources
available for a thread (or a thread block), is directly related to performance, and by choos-
ing optimal kernel execution configurations as well as re-designing the kernel functions, the
inter-convertibility between ILP and occupancy can be leveraged for performance tuning.
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2.2.2 Work-Span Model

In the work-span model, a program’s execution can be seen as a directed acyclic graph (DAG)
composed of nodes and edges. A DAG node represents a sequence of instructions without any
parallel control instructions, and edges represent dependencies between nodes. The execution
of a DAG follows the prescribed order, where a node of the DAG is eligible to run only if all
its predecessor nodes have completed. In order to measure the parallelism using the work-span
model, two fundamental metrics, work and span, are derived from DAGs. The work, denoted
T1, is the total time needed to execute the DAG serially. The span, denoted T∞, is also called the
critical path length and is the execution time of the DAG on an ideal machine with an infinite
number of processors.

In fact, the work-span model [23] has been used to support the development of the CilkPlus
programming language and its implementation. Two complexity measures, the work T1 and the
span T∞ and one machine parameter, the number P of processors, are combined in results like
the Graham-Brent theorem [23] or the Blumofe-Leiserson theorem (Theorems 13 & 14) [24] in
order to compare algorithm running time estimates. We recall that the Graham-Brent theorem
states that the running time TP on P processors satisfies TP ≤ T1/P + T∞.

When designing a parallel algorithm, it is desirable to systematically integrate the expected
scheduling costs that a given concurrency platform imposes on this algorithm. To this end, a
refinement of the fork-join model was proposed by He et al. [72] together with an enhanced
version of the Graham-Brent theorem, which actually supports the implementation (on multi-
core architectures) of the parallel performance analyzer called Cilkview. In this context, the
running time TP is bounded in expectation by T1/P + 2∆T̂∞, where ∆ is a constant (called the
span coefficient) and T̂∞ is the burdened span. Frigo et al. [59] describe the implementation
of the CilkPlus work-stealing scheduler. They introduce the notions of work overhead and
span overhead. Spoonhower et al. [139] present a theoretical concept of deviation on which
we could rely in order to perform parallelism overhead analysis in the context of schedulers
based on other principles than the randomized work-stealing. In particular, and as mentioned by
Haque [70], analyzing the burden span may help us discover that an algorithm is not appropriate
for an architecture.

2.2.3 Master Theorem

The divide-and-conquer technique, as a classical approach for designing algorithms (either
serial or parallel), is widely used [62, 15]. It applies in the case that a task with input size n,
can be partitioned into smaller sub-tasks recursively, each with input size n/b, until a base-
case problem is reached which is simple enough to be solved directly. Algorithms using this
computational pattern can be parallelized efficiently with fork-join platforms, like CilkPlus
and the tasking model in OpenMP, see [60].

The cost of divide-and-conquer algorithms illustrated above, can be represented as a recur-
rence relationship which is given by

T (n) = aT (n/b) + f (n) (2.1)

where,
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1. n is the input size of the original task.

2. a ≥ 1 and b > 1 are constants. a and n/b present the number of sub-tasks and the size of
each sub-task, respectively.

3. f (n) is the cost of combining the answers of the sub-tasks.

4. T (n) is the cost of the task with input size n.

The complexity of the recurrence relationship in 2.1 can be easily solved by the master theo-
rem [43] in the form of asymptotic notation. More precisely, T (n) is asymptotically bounded
in three common cases as follows:

1. If f (n) = O(nlogb a−ε) for some constant ε > 0, then T (n) = Θ(nlogb a).

2. If f (n) = Θ(nlogb a logk n) for some k ≥ 0, then T (n) = Θ(nlogb a logk+1 n).

3. If f (n) = Ω(nlogb a+ε) for some constant ε > 0, and a f (n/b) ≤ c f (n) for some c < 1 and
sufficiently large n, then T (n) = Θ( f (n)).

Furthermore, the authors in [9] present a method for solving more generalized divide-and-
conquer recurrences which can not be handled by master theorem.

2.3 Compilation Theory
Computer hardware is constantly evolving in order to boost the performance. However, by
improving compiler techniques, we could also gain many benefits. Generally, compilers serve
two purposes: translators which translate programs written in a source programming language
into an equivalent program in an object language, and optimizers which perform optimization
to make programs more efficient to enable high performance and productivity. In the following
sections, we describe a broad range of research into compilers.

2.3.1 The State of the Art of Compilers
We survey two open source compiler frameworks, which are more relevant to industry and
academia.

LLVM/CLANG. LLVM (Low Level Virtual Machine) [93] compiler infrastructure is a re-
search project started in 2000 at the University of Illinois. LLVM is designed modularly and
consists of a front-end, a middle-end optimizer and a target-specific back-end. The front-end
translates high-level language programs to a low-level LLVM intermediate representation (IR)
(in static single assignment (SSA) form [44]) which is not supposed to actually run on a real
machine. The middle-end optimizer which takes the LLVM IR as input, applies on it most of
the optimization in terms of passes [156, 92, 38], then outputs an optimized equivalent LLVM
IR. The LLVM optimizer provides lifetime long optimizations for a program at any possible
stages of optimization [93]. In particular, the LLVM optimizer differs from traditional compi-
lation systems with its own distinguishing features at link-time and run-time [105, 68], which



2.3. Compilation Theory 11

allow it to perform more sophisticated and aggressive inter-procedural optimizations. Finally,
the LLVM back-end transforms the LLVM IR into processor specific binary code, or can be
used as just in time compilation.

Today, LLVM employs Clang [1] as its front-end for the C, C++, Objective-C and Objective-
C++ programming languages. Clang aims to deliver fast compiles, useful error and warning
messages, and to provide a platform for building great source code level tools, such as source
code analysis tools or source-to-source transformation tools. It is designed to offer a complete
replacement to the GNU Compiler Collection (GCC) 1. A major design concept for Clang is its
use of a library-based architecture. In this design, various parts of the front-end can be cleanly
divided into separate libraries which can then be mixed up for different needs and uses. In
addition, the library-based approach encourages good interfaces and reduces the work for new
developers to understand and extend the Clang framework.

ROSE. Unlike traditional compilers, ROSE [2, 126, 125] is designed as a source-to-source
compiler infrastructure, developed at Lawrence Livermore National Laboratory for building ar-
bitrary tools for static analysis, optimization and transformation. ROSE has increasing support
in its front-end for multiple programming languages and extensions, including C/C++, Fortran,
Python, UPC, OpenMP, PHP and Java. Given input programs, the front-end is responsible for
constructing an Abstract Syntax Tree (AST) which is a graph representation of the programs
and lives in memory for fast operations on it. Contrary to Clang, ROSE provides mechanisms
to directly change its AST to facilitate complex code transformation and optimization. Finally,
the back-end generates source code from the transformed AST and calls a vendor’s compiler to
run the generated source code.

2.3.2 Source-to-Source Compiler

Source-to-source is an area of compilation technology dedicated to the automatic translation
of programs written in a high-level language to another such language. The transformation of
an un-optimized C program into an optimized C program is an example of source-to-source
compilation. The translation of LATEX document into HTML is another one.

A source-to-source compiler can be used under various situations. One example is with
legacy code. Some legacy code is well developed and optimized through many years. Devel-
opers can benefit a lot from legacy code if it adapts to modern implementation platforms [118].
Manually rewriting this code is time consuming; what is worse, it may bring potential bugs.
Sometimes fully automatic translation is difficult to achieve, which means some extra work by
hand is needed; however, one can still take advantage of source-to-source compilation for frag-
ments of code. For example, the authors of [120] designed PoCC, a source-to-source compiler,
for parallelizing code fragments in static control parts (SCoP) format for multi-core architec-
ture using OpenMP. With hiCUDA [69], a high-level directive-based sequential code can be
translated to a CUDA program. In [138], the authors propose a source-to-source C compiler,
called Panda, which can automatically generate hybrid MPI + CUDA + OpenMP code that
uses concurrent CPU + GPU computing from annotated sequential stencil C codes.

1The GNU compiler collection https://gcc.gnu.org/

https://gcc.gnu.org/
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A second case is debugging multithreaded code [91]. Nowadays programmers have access
to many concurrency platforms, but debugging parallel code is often a challenge: if any threads
are running concurrently and competing for computer resource acquisition, tracing each thread
may not be realistic. The translation of a parallel program into a serial counterpart may help
in detecting issues such as data races. Thus, source-to-source compilation can be of the great
benefit in such situation.

During the past, source-to-source compilation has been studied by a lot of researchers.
For example, several projects offer automatic one-way translation from a concurrency platform
running on one hardware architecture to another concurrency platform running on another hard-
ware architecture, e.g. OpenMP shared-memory code to MPI distributed-memory code as in
the papers [19] [49] (HOMPI Project). An example of another application of source-to-source
compilation appears in an article by Lee et al. [97], where a compiler framework for automatic
translation of OpenMP shared-memory programs into CUDA-based GPGPU programs is pre-
sented, thus greatly relieving the programming effort, since coding efficient CUDA program
can be quite arduous. Other projects offer extensions of a concurrency platform from one hard-
ware architecture to another hardware architecture, like HOMP [104] or OpenMPC [96] which
allow extended OpenMP code to run on NVIDIA GPUs.

2.3.3 Automatic Parallelization
The polyhedron model [65, 55, 81, 17, 25, 16] is a powerful geometrical tool for analyzing the
relations (w.r.t. data locality or parallelization) between the iterations of nested loop programs.
Let us consider the case of parallelization. Once the polyhedron representing the iteration
space of a loop nest is calculated, techniques in linear algebra and linear programming, can
transform it into another polyhedron encoding the loop steps in a coordinate system based on
time and space (processors). From there, a parallel program can be generated. To be practically
efficient, one should avoid a too fine-grained parallelization; this is achieved by grouping loop
steps into so-called tiles, which are generally trapezoids [75]. These extensions lead, however,
to the manipulation of system of non-linear polynomial equations and the use of techniques
like quantifier elimination by the authors of [67]. They observe, that classical algorithms for
QE are not suitable, since they do not always produce conjunctions of atomic formulas, while
this format is required in order to generate code automatically. This issue is addressed by re-
cent algorithm for computing cylindrical algebraic decomposition [33]. Indeed, this algorithm
supports QE in a way that the output of a QE problem has the form of a case discussion: this
is appropriate for code generation.

Developing automatic parallelization compilers brings notable challenges in order to pro-
duce optimized parallel programs. A key reason is that peak performance of parallel programs
is often dependent on both the hardware and program characteristics, which generally cannot
be estimated based on static code analysis at compile time. Hence, to realize portable perfor-
mance, the produced parallel programs should be presented in a generic and portable way for
adapting performance relevant parameters [90, 113, 64]. With such programs in hand, it is pos-
sible to use auto-tuning [42, 142, 63] which provides many benefits across different hardware
and problem configurations, to pick the optimal parameters with the best performance.



Chapter 3

A Metalanguage for Concurrency
Platforms Based on the Fork-Join Model

In this chapter, we present MetaFork as a metalanguage for multithreaded algorithms based
on the fork-join parallelism model and targeting multi-core architectures. By its parallel pro-
gramming constructs, the MetaFork language is currently a super-set of CilkPlus and offers
counterparts for the widely used OpenMP parallel constructs detailed in Section 3.5.

However, MetaFork does not make any assumptions about the run-time system, in par-
ticular about scheduling strategies (work sharing, work stealing). In fact, MetaFork is not
designed to be a target language, but rather as the internal intermediate representation (IR) of
a source-to-source compiler framework for multithreaded languages.

Section 3.1 is going to explain the execution model of MetaFork based on the fork-join
concurrency model. The syntax and the semantics of MetaFork’s parallel constructs are spec-
ified in Sections 3.2 and 3.4. Since MetaFork is a faithful extension of the C/C++ language,
this is actually sufficient to completely define MetaFork. Further, data attributes of the parallel
constructs in MetaFork are discussed in Section 3.3.

Recall that a driving motivation of the MetaFork project is to facilitate automatic trans-
lation of programs between concurrency platforms. To date, our experimental framework in-
cludes translators between CilkPlus and MetaFork (both ways) and, between OpenMP and
MetaFork (both ways). Hence, through MetaFork, we perform program translations between
CilkPlus and OpenMP (both ways).

Despite the fact that it does not support all features of OpenMP, the MetaFork language is
rich enough to capture the semantics of large bodies of OpenMP code, such as the Barcelona
OpenMP Tasks Suite (BOTS) [53] and translate faithfully to CilkPlus most of the BOTS test
cases. In the other direction, we could translate the BPAS library to OpenMP.

In Section 3.6, we briefly explain how the translators of the MetaFork compilation frame-
work are implemented. In particular, we specify which OpenMP data-sharing clauses are cap-
tured by the MetaFork translators. Simple examples of code translation are provided.

In Section 3.7, we evaluate the benefits of the MetaFork framework through a series of
experiments. First, we show that MetaFork can help narrow down performance bottlenecks
in multithreaded programs by means of comparative implementation, as discussed above. Sec-
ondly, we observe that, if a native CilkPlus (resp. OpenMP) program has little parallelism
overhead, then the same holds for its OpenMP (resp. CilkPlus) counterpart translated by

13
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MetaFork. We tested more than 20 examples in total for which experimental results can be
found in the technical report [34] and for which code can be found on the website of the
MetaFork project. Moreover, the source code of the MetaFork translators can be downloaded
from the same website at http://www.metafork.org.

3.1 Basic Principles and Execution Model
We summarize in this section a few principles that guided the design of MetaFork. First of
all, MetaFork extends both the C and C++ languages into a multithreaded language based
on the fork-join concurrency model. Thus, concurrent execution is obtained by a parent thread
creating and launching one or more child threads so that the parent and its children execute a so-
called parallel region. An important example of parallel regions is for-loop bodies. MetaFork
has the following natural requirement regarding parallel regions: control flow cannot branch
into or out of a parallel region.

Similarly to CilkPlus, the parallel constructs of MetaFork grant permission for concurrent
execution but do not command it. Hence, a MetaFork program can execute on a single core
machine.

As mentioned above, MetaFork does not make any assumptions about the run-time sys-
tem, in particular about task scheduling. Along the same idea, another design intention is to
encourage a programming style limiting thread communication to a minimum so as to

- prevent from data-races while preserving a satisfactory level of expressiveness and,
- minimize parallelism overheads.

To some sense, this principle is similar to one of CUDA’s principles [116] which states that the
execution of a given kernel should be independent of the order in which its thread blocks are
executed.

To understand the implication of that idea in MetaFork, let us return to our concurrency
platforms targeting multi-core architectures: OpenMP offers several clauses which can be used
to exchange information between threads (like threadprivate, copyin and copyprivate)
while no such mechanism exists in CilkPlus. Of course, this difference follows from the fact
that, in CilkPlus, one can only fork a function call while OpenMP allows other code regions to
be executed concurrently. MetaFork has both types of parallel constructs. But, for the latter,
MetaFork does not offer counterparts to the above OpenMP data attribute clauses.

3.2 Core Parallel Constructs
MetaFork has four parallel constructs: function call spawn, block spawn, parallel for-loop and
synchronization barrier. The first two use the keyword meta fork while the other two use
respectively the keywords meta for and meta join. We emphasize the fact that meta fork
allows the programmer to spawn a function call (like in CilkPlus) as well as a block (like in
OpenMP).

As mentioned, the keyword meta fork is used to express the fact that a function call or a
block is executed by a child thread, concurrently to the execution of the parent thread. If the

http://www.metafork.org
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program is run by a single processor, the parent thread is suspended during the execution of
the child thread; when this latter terminates, the parent thread resumes its execution after the
function call (or block) spawn.

If the program is run by multiple processors, the parent thread may continue its execution1

after the function call (or block) spawn, without being suspended, meanwhile, the child thread
executes the function call (or block) spawn. In this latter scenario, the parent thread waits
for the completion of the execution of the child thread, as soon as the parent thread reaches a
synchronization point.

Spawning a function call with meta fork. Spawning a call to the function f, with the
argument sequence args, is done by

meta fork f(args)

The semantics is similar to that of the CilkPlus counterpart

cilk spawn f(args)

In particular, all the arguments in the sequence args are evaluated before spawning the function
call f(args). However, the execution of meta fork f(args) differs from that of cilk -
spawn f(args) on one feature. While there is an implicit cilk sync at the end of the Cilk
block [78] surrounding this latter cilk spawn, no such implicit barriers are assumed with
meta fork. This feature is motivated by the fact that, in addition to the fork-join parallelism,
we plan to extend the MetaFork language to other forms of parallelism such as parallel fu-
tures [139, 21].

Figure 3.1 illustrates how meta fork can be used to define a function spawn. The under-
lying algorithm in this example is the classical divide and conquer quicksort procedure.

Spawning a block with meta fork. The other usage of the meta fork construct is for
spawning a basic block B, which is done as follows:

meta fork { B }

If B consists of a single instruction, then the surrounding curly braces can be omitted. We also
refer to this construction as a parallel region. There is no equivalent in CilkPlus while it is
offered by OpenMP. Similarly to a function call spawn, this parallel region is executed by a
child thread (once the parent thread reaches the meta fork construct) meanwhile the parent
thread continues its execution after the parallel region. Similarly also to a function call spawn,
no implicit barrier is assumed at the end of the surrounding region. Hence synchronization
points have to be added explicitly, using meta join; see the examples of Figures 3.2.

A variable v which is not local to B may be shared by both the parent and child threads;
alternatively, the child thread may be granted a private copy of v. Precise rules about data
attributes, for both parallel regions and parallel for-loops, are stated in Section 3.3.

Figure 3.2 below illustrates how meta fork can be used to define a parallel region. The
underlying algorithm is one of the two subroutines in the work-efficient parallel prefix sum due
to Guy Blelloch [20].

1In fact, the parent thread does not participate to the execution of a function call (or block) spawn, but will
participate to the execution of the iterations of a parallel for-loop.
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#include <algorithm>

#include <iostream>

using namespace std;

void parallel_qsort(int * begin, int * end)

{

if (begin != end) {

--end; // Exclude last element (pivot) from partition

int * middle = std::partition(begin, end,

std::bind2nd(std::less<int>(), *end));

using std::swap;

swap(*end, *middle); // move pivot to middle

meta_fork parallel_qsort(begin, middle);

parallel_qsort(++middle, ++end); // Exclude pivot and restore end

meta_join;

}

}

int main(int argc,char* argv[])

{

int n = 10;

int *a = (int *)malloc(sizeof(int)*n);

srand( (unsigned)time( NULL ) );

for (int i = 0; i < n; ++i)

a[i] = rand();

parallel_qsort(a, a + n);

return 0;

}

Figure 3.1: Example of a MetaFork program with a function spawn
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long int parallel_scanup (long int x [], long int t [], int i, int j)

{

if (i == j) {

return x[i];

}

else{

int k = (i + j)/2;

int right;

meta_fork {

t[k] = parallel_scanup(x,t,i,k);

}

right = parallel_scanup (x,t, k+1, j);

meta_join;

return t[k] + right;}

}

Figure 3.2: Example of a MetaFork program with a parallel region

Parallel for-loops with meta for. Parallel for-loops in MetaFork have the following format

meta for (I, C, S) { B }

where I is the initialization expression of the loop, C is the condition expression of the loop, S
is the stride of the loop and B is the loop body. In addition:

- the initialization expression initializes a variable, called the control variable which can
be of type integer or pointer,

- the condition expression compares the control variable with a compatible expression,
using one of the relational operators <, <=, >, >=, !=,

- the stride uses one the unary operators ++, --, +=, -= (or a statement of the form
cv = cv + incr where incr evaluates to a compatible expression) in order to in-

crease or decrease the value of the control variable cv,
- if B consists of a single instruction, then the surrounding curly braces can be omitted.

The parent thread will share the work of executing the iterations of the loop with the child
threads. An implicit synchronization point is assumed after the loop body. That is, the ex-
ecution of the parent thread is suspended when it reaches meta for and resumes when all
children threads (executing the loop body iterations) have completed their execution. As one
can expect, the iterations of the parallel loop meta for (I, C, S) { B } must execute
independently of each other in order to guarantee that this parallel loop is semantically equiv-
alent to its serial version for (I, C, S) { B }.

Figure 3.3 displays an example of meta for loop, where the underlying algorithm is the
naive (and cache-inefficient) matrix multiplication procedure.

Synchronization point with meta join. The construct meta join indicates a synchroniza-
tion point (or barrier) for a parent thread and its children tasks. More precisely, a parent thread
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void multiply_iter_par(int ii, int jj, int kk, int* A, int* B, int* C)

{

meta_for(int i = 0; i < ii; ++i)

for (int k = 0; k < kk; ++k)

for(int j = 0; j < jj; ++j)

C[i * jj + j] += A[i * kk + k] + B[k * jj + j];

}

Figure 3.3: Example of a meta for loop

reaching this point must wait for the completion of its children tasks but not for those of the
subsequent descendant tasks. When the parent thread resumes, execution starts at the point
immediately after the meta join construct.

Typically, this construct is used as a communication mechanism to exchange information
between different threads. In particular, a meta join construct ensures that all writes to shared
memory performed by the threads preceding this meta join construct are seen in the same
view by the code after it. This natural property of the meta join construct solves the problem
of data inconsistency and contention [54] caused by shared memory programming models.

3.3 Variable Attribute Rules
Variables that are non-local to the block of a parallel region may be either shared by or private
to the threads executing the code paths where those variables are defined. After a terminology
review, we specify the rules that MetaFork uses in order to decide whether such a non-local
variable is shared or private.

Shared and private variables. Consider a parallel region with block Y (or a parallel for-
loop with loop body Y). X denotes the immediate outer scope of Y . We say that X is the parent
region of Y and that Y is a child region of X. A variable v which is defined in Y is said to be
local to Y; otherwise we call v a non-local variable for Y . Let v be a non-local variable for
Y . Assume v gives access to a block of storage before reaching Y . We say that v is shared by
X and Y if its name gives access to the same block of storage in both X and Y; otherwise we
say that v is private to Y . In particular, if Y is a parallel for-loop we say that a local variable
w is shared by Y whenever the name of w gives access to the same block of storage in any
loop iteration of Y , which means that all the threads that execute this parallel for-loop share the
same variable w; otherwise we say that w is private to Y .

Value-type and reference-type variables. In the C/C++ programming language, a value-
type variable contains its data directly as opposed to a reference-type variable, which contains
a reference to its data. Value-type variables are either of primitive types (char, float, int,
double, void) or user-defined types (enum, struct, union). Reference-type variables are
pointers, arrays, functions and reference.
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static and const type variables. In the C/C++ programming language, a static variable
is a variable that has been allocated statically and whose lifetime extends across the entire
run of the program. This is in contrast to automatic variables (local variables are generally
automatic) whose storage is allocated and deallocated on the call stack and, other variables
(such as objects) whose storage is dynamically allocated in heap memory. When a variable is
declared with the qualifier const, the value of that variable cannot typically be altered by the
program during its execution.

/* This file starts here ... */

#include<stdio.h>

#include<time.h>

#include<stdlib.h>

int a;

long par_region(long n){

int b;

int *c = (int *)malloc(sizeof(int)*10);

int d[10];

const int f=0;

static int g=0;

meta_fork{

int e = b;

subcall(c,d);

}

}

/* ... and continues here ... */

void subcall(int *a,int *b){

for(int i=0;i<10;i++)

printf("%d %d\n",a[i],b[i]);

}

int main(int argc,char **argv){

long n=10;

par_region(n);

return 0;

}

/* ... and finishes here. */

Figure 3.4: Various variable attributes in a parallel region

Variable attribute rules of meta fork. A non-local variable v which gives access to a block
of storage before reaching Y is shared between the parent X and the child Y whenever v is: (1)
a global variable, (2) a file scope variable, (3) a reference-type variable, (4) declared static
or const, or (5) qualified shared. In all other cases, the variable v is private to the child. In
particular, value-type variables (that are not declared static or const, or qualified shared
,and that are not global or file scope variables) are private to the child. In Figure 3.4, the
variables a, c, d, f and g are shared, meanwhile the b and e are private.

/* To illustrate variable attributes, three

files (a headerfile "a.h" and two source

files "a.cpp" and "b.cpp") are used.

This file is a.cpp */

#include<stdio.h>

extern int var;

void test(int *array)

{

int basecase = 100;

meta_for(int j = 0; j < 10; j++)

{

static int var1=0;

int i = array[j];

if( i < basecase )

array[j]+=var;

}

}

/* This file is b.cpp*/

#include<stdio.h>

#include<stdlib.h>

#include<time.h>

#include"a.h"

int var = 100;

int main(int argc,char **argv)

{

int *a=(int*)malloc(sizeof(int)*10);

srand((unsigned)time(NULL));

for(int i=0;i<10;i++)

a[i]=rand();

test(a);

return 0;

}

/* This file is a.h*/

void test(int *a);

Figure 3.5: Example of shared and private variables with meta for
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long fib_parallel(long n)

{

long x, y;

if (n < 2)

return n;

else{

x = meta_fork fib_parallel(n-1);

y = fib_parallel(n-2);

meta_join;

return (x+y);}

}

Figure 3.6: Parallel fib code using a function
spawn

long fib_parallel(long n)

{

long x, y;

if (n < 2)

return n;

else{

meta_fork shared(x)

{

x = fib_parallel(n-1);

}

y = fib_parallel(n-2);

meta_join;

return (x+y);}

}

Figure 3.7: Parallel fib code using a block
spawn

Variable attribute rules of meta for. A non-local variable which gives access to a block of
storage before reaching Y is shared between parent and child. A variable local to Y is shared
by Y whenever it is declared static, otherwise it is private to Y . In particular, loop control
variables are private to Y . In the example of Figure 3.5, the variables array, basecase, var
and var1, are shared by all threads while the variables i and j are private.

The shared keyword. Programmers can explicitly qualify a given variable as shared by
using the shared keyword in MetaFork. In the example of Figure 3.6, the variable n is private
to fib parallel(n-1). In Figure 3.7, we specify the variable x as shared and the variable n
is still private. Notice that the programs in Figures 3.6 and 3.7 are semantically equivalent.

3.4 Semantics of the Parallel Constructs in MetaFork

Parallel programming allows any order of the program’s execution, which increases the com-
plexity of reasoning about their behavior. A few research [26, 100, 82, 131] has been under-
taken in the area of modeling the semantics of parallel programming languages so as to avoid
non-deterministic. The basic idea is that if a program executed sequentially satisfies a given
criterion, parallel execution of that program must meet the same criterion.

The goal of this section is to formally define the semantics of each of the parallel constructs
in MetaFork. To do so, we introduce the serial C-elision of a MetaFork programM as a C
program C whose semantics define those ofM. The program C is obtained from the program
M by a set of rewriting rules stated through Algorithm 1 to Algorithm 4.

As mentioned before, spawning a function call in MetaFork has the same semantics as
spawning a function call in CilkPlus. More precisely: meta fork f(args) and cilk -
spawn f(args) are semantically equivalent.

Next, we specify the semantics of the spawning of a block in MetaFork. To this end, we
use Algorithms 2, 3 and 4 which reduce the spawning of a block to that of a function call:

- Algorithm 2 takes care of the case where the spawned block consists of a single instruc-
tion of where a variable is assigned to the result of a function call,



3.5. Supported Parallel APIs of Both CilkPlus and OpenMP 21

- Algorithms 3 and 4 take care of all other cases.

Note that, in the pseudo-code of those algorithms the generate keyword is used to indicate that
a sequence of string literals and variables are written to the medium (file, screen, etc.) where
the output program is being emitted.

A meta for loop allows iterations of the loop body to be executed in parallel. By default,
each iteration of the loop body is executed by a separate thread. However, using the grainsize
compilation directive, one can specify the number of loop iterations executed per thread2:

#pragma meta grainsize = expression

Nevertheless, in order to obtain the serial C-elision of a MetaFork for-loop, we require that
the meta for construct could be replaced by the C-language for - whatever is the grainsize of
this MetaFork for loop - without changing the initialization expression, condition expression
and stride. (Of course, the loop-body must be replaced with its serial C-elision.)

Algorithm 1: Fork region(P, S , R)
Input: R is a statement of the form:

meta fork [shared(Z)] B

where Z is a sequence of variables, B is a piece of code, P and S are lists of shared
variables and private variables to B, respectively, determined by the rules in
Section 3.3.

Output: The serial C-elision of the above MetaFork statement.

1 if B consists of a single statement which is a function call without left-value then
2 generate(B);

3 else if B consists of a single statement which is a function call with left-value then
4 Function with lvalue(P, S , B);

5 else
6 Block call(P, S , B);

3.5 Supported Parallel APIs of Both CilkPlus and OpenMP

Through MetaFork, we perform program translations between CilkPlus and OpenMP (both
ways). Currently, MetaFork is a super-set of CilkPlus, however, MetaFork does not offer
counterparts to all the OpenMP constructs. This section provides an overview of the APIs of
both CilkPlus and OpenMP in our implementation.

2The loop iterations of a thread are then executed one after another by that thread.
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Algorithm 2: Function with lvalue(P, S , B)
Input: B is a statement of the form:

G = F(A);

where G is a left-value, A is an argument sequence, F is a function name, P and S are as
in Algorithm 1.

Output: The serial C-elision of the MetaFork statement below:

meta fork [shared(Z)] G = F(A)

1 /* L is a list consisting of all variables appearing in G */

2 L ← [G]
3 if L is not a sub-set of S then
4 Block call(P, S , B);

5 else
6 generate(B);

Algorithm 3: Block call(P, S , B)
Input: P, S and B are as in Algorithm 1.
Output: The serial C function call of the above input.

1 (E, H, T, P, O) = Outlining region(P, S , B);
2 /* declare the outlined function */

3 generate(E);
4 /* declare an object, say O, to wrap all the parameters */

5 generate(T, O);
6 /* initialize all the members (i.e. parameters) in the object O */

7 generate(P);
8 /* a call to the outlined function */

9 generate(H, “ ( ”, O, “ ) ”);
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3.5.1 OpenMP

Data-Sharing attribute clauses. Some OpenMP constructs accept clauses to control the
data-sharing attributes of variables referenced in the OpenMP construct. Figure 3.8 describes
the clauses supported in the current program translations. Note that for the each OpenMP
construct discussed below, we specify the valid clauses on it.

1. The private clause. The private clause declares variables in its list to be private to
each thread. This clause has the following format:

private (list)

2. The collapse clause. The collapse clause is used to specify how many loops are
associated with the OpenMP loop construct. This clause has the following format:

collapse (expression)

3. The shared clause. The shared clause declares one or more list variables to be shared
by OpenMP tasks. This clause has the following format:

shared (list)

4. The default clause. The default clause explicitly determines the data-sharing at-
tributes of variables that are referenced in a construct and would otherwise be implicitly
determined. This clause has the following format:

default (shared | none)

5. The firstprivate clause. The firstprivate clause combines the behavior of the
private clause with automatic initialization of the variables in its list. This clause has the
following format:

firstprivate (list)

6. The num threads clause. The num threads clause sets the number of threads to use
for the next parallel region. This clause has the following format:

num_threads(integer-expression)

Figure 3.8: OpenMP clauses supported in the current program translations

Parallel construct. This is the fundamental OpenMP parallel construct that starts parallel
execution by defining a parallel region. It has the following format:
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#pragma omp parallel [clause[ [, ]clause] ...] new-line

structured-block

When a thread reaches a parallel directive, it creates a team of threads and becomes the
master of the team. The master thread has the thread number 0. The code is duplicated and all
threads will execute that code defined in the parallel region. There is an implicit barrier at the
end of a parallel region provided by the OpenMP compiler. Only the master thread continues
execution past this point. The parallel directive has five optional clauses that take one or
more arguments: private, shared, firstprivate, default and num threads.

Worksharing constructs. The OpenMP defines three worksharing constructs for C/C++,
that are the loop, sections and single construct.

1. The loop construct. The loop directive specifies that the iterations of the loop imme-
diately following it will be executed in parallel. The loop construct has the following
format:

#pragma omp for [clause[[,] clause] ... ] new-line

for-loops

It has six optional clauses: private, shared, firstprivate, schedule, collapse
and nowait.

2. The sections construct. The sections construct contains a set of enclosed section/-
sections of code that are to be divided among the threads. Independent section con-
structs are nested within a sections construct. Each section is executed once by a
thread. It is possible for a thread to execute more than one section. The format of this
construct is as follows:

#pragma omp sections [clause[[,] clause] ...] new-line

{

[#pragma omp section new-line]

structured-block

[#pragma omp section new-line

structured-block ]

...

}

There are three clauses: private, firstprivate and nowait. There is an implied
barrier at the end of a sections construct unless the nowait clause is used. Figure 3.9
gives an example of OpenMP sections.

3. The single construct. The single construct specifies that the enclosed code is to be
executed by only one thread in the team. Threads in the team that do not execute the
single construct, wait at the end of the enclosed code block unless a nowait clause is
specified. The format of this construct is as follows:
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#pragma omp parallel

{

#pragma omp sections

{

#pragma omp section

for (i=0; i < N; i++)

c[i] = a[i] + b[i];

#pragma omp section

for (i=0; i < N; i++)

d[i] = a[i] * b[i];

} /* end of sections */

} /* end of parallel section */

Figure 3.9: A code snippet of an OpenMP sections example

#pragma omp single [clause[[,] clause] ...] new-line

structured-block

This directive has three optional clauses: private, nowait and firstprivate.

Task construct. This is a new construct with OpenMP version 3.0. The task construct
defines an explicit task, which may be executed by the encountering thread, or deferred for
execution by any other thread in the team. The format of this construct is as follows:

#pragma omp task [clause[[,] clause] ...] new-line

structured-block

It has four optional clauses: default, private, firstprivate and shared.

Master and synchronization constructs. OpenMP realizes several synchronization means
to ensure the consistency of shared data and to coordinate parallel execution among threads.
Currently, we support the following three synchronization constructs.

1. The master construct. The master construct specifies a region that is to be executed
only by the master thread of the team. All other threads on the team skip this section
of code. There is no implied barrier associated with this construct. The format of this
construct is as follows:

#pragma omp master new-line

structured-block

2. The barrier construct. The barrier construct synchronizes all threads in the team.
When a barrier construct is reached, a thread will wait at that point until all other
threads have reached that barrier. All threads then resume executing in parallel the code
that follows the barrier. All threads in a team (or none) must execute the barrier region.
The format of this construct is as follows:
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#pragma omp barrier new-line

3. The taskwait construct. This construct is new with OpenMP version 3.0. The taskwait
construct specifies a wait on the completion of child tasks generated since the beginning
of the current task. The format of this construct is as follows:

#pragma omp taskwait new-line

Combined constructs. OpenMP provides a set of combined constructs for specifying one
construct immediately nested inside another construct. The semantics of these constructs
are identical to an individual parallel directive being immediately followed by a separate
worksharing construct. Currently, we support the following two combined constructs.

1. The parallel loop construct. This construct specifies a parallel construct contain-
ing one or more associated loops. The format of this construct is as follows:

#pragma omp parallel for [clause[[,] clause] ...] new-line

for-loop

The clause can be any of the clauses accepted by the parallel or for directives, except
the nowait clause.

2. The parallel sections construct. This construct illustrates a parallel construct
containing one sections construct and no other statements. The format of this construct
is as follows:

#pragma omp parallel sections [clause[[,] clause] ...] new-line

{

[#pragma omp section new-line]

structured-block

[#pragma omp section new-line

structured-block ]

...

}

The clause can be any of the clauses accepted by the parallel or sections directives,
except the nowait clause.

3.5.2 CilkPlus

CilkPlus offers the following three keywords which are supported by MetaFork translators to
the C/C++ language.
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The cilk for keyword. A cilk for loop allows loop iterations to run in parallel. The general
cilk for syntax is:

cilk_for (declaration and initialization;

conditional expression; increment expression)

loop-body

The cilk for statement divides the loop into chunks containing one or more loop itera-
tions. Each chunk is executed serially and is spawned as a chunk during the execution of the
loop. At the end of the cilk for loop, there is an implicit barrier.

The cilk spawn keyword. The cilk spawn keyword informs the compiler that the preceded
function by cilk spawnmay run asynchronously with the caller. A cilk spawn statement can
take one of the following forms:

type var = cilk_spawn func(args);

var = cilk_spawn func(args);

cilk_spawn func(args);

The cilk sync keyword. This specifies that all spawned calls in a function must complete
before execution continues. After the spawned calls all complete, the current function can
continue. An implicit cilk sync at the end of a function is executed to synchronize the previous
cilk spawn statement if any, after the caller is assigned or initialized to the return value. The
syntax is as follows:

cilk_sync;

The cilk sync only syncs with children spawned by this function. Children of other
functions are not affected.

3.6 Translation
In this section, we briefly explain how the translators of the MetaFork compilation framework
are implemented. Obviously, for each translator, the semantics of each input program are
preserved into the output program. However, scheduling strategies (like an OpenMP clause
schedule(static, chunksize)) are ignored by our translators. In addition, in the case of
the code we want to analyze with include directives, we are not interested in the declarations
from included files, especially from system headers. However, by default, our visitors detailed
in Section 6.4.2, run for all declarations. Thus, the code in Figure 3.10 is realized to avoid
performing our translation algorithms on declarations from included header files.
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const auto& FileID = SourceManager.getFileID(Decl->getLocation());

if (FileID != SourceManager.getMainFileID())

continue;

Figure 3.10: A code snippet showing how to exclude declarations which come from included
header files

3.6.1 Translation from CilkPlus to MetaFork

Translating code from CilkPlus to MetaFork is easy in principle since, up to the vectorization
constructs of CilkPlus, the MetaFork language is a super-set of CilkPlus. For example, a
cilk for loop is faithfully translated to a meta for loop, as can be seen in Figure 3.11. How-
ever, implicit CilkPlus barriers need to be explicitly inserted in the target MetaFork code, see
Figure 3.12. This implies that, during translation, it is necessary to trace the instruction stream
DAG of the CilkPlus program in order to properly insert barriers in the generated MetaFork
code. To be precise, a meta join construct is manually inserted before each return statement
(explicit or implicit), if there has been any spawn invocation since the last sync.

void function()

{

cilk_for ( int j = 0; j < ny; j++ )

{

int i;

for ( i = 0; i < nx; i++ )

{

u[i][j] = unew[i][j];

}

}

}

void function()

{

meta_for ( int j = 0; j < ny; j++ )

{

int i;

for ( i = 0; i < nx; i++ )

{

u[i][j] = unew[i][j];

}

}

}

Figure 3.11: A code snippet showing how to translate a parallel for loop from CilkPlus to
MetaFork

void test()

{

int x;

x = cilk_spawn test1();

}

void test()

{

int x;

x = meta_fork test1();

meta_join;

}

Figure 3.12: A code snippet showing how to insert a barrier from CilkPlus to MetaFork
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3.6.2 Translation from MetaFork to CilkPlus

Since CilkPlus has no constructs for spawning a parallel region (which is not a function call)
we use the widely used outlining technique [102, 103, 80, 132] to wrap the parallel region
as a function, namely outlined function, and then replace that parallel region by a call to the
outlined function concurrently. In addition to the definition of the outlined function, we refer
to the function which encloses a parallel region in a lexical scope, as a host function. Indeed,
the problem of translating code from MetaFork to CilkPlus is equivalent to that of defining
the serial elision of a MetaFork program.

We have designed and implemented our outlining algorithm by taking advantage of Clang
AST, which is used to analyze the data attribute of variables and patch the code in the parallel
region. Algorithm 4 depicts our algorithm in detail.

To clarify, as mentioned in Section 3.4, P and S are lists of shared variables and private
variables to B, respectively, determined by the rules in Section 3.3. The variables in P and S
are candidates to be passed as parameters to the outlined function. However, in order to min-
imize the overheads introduced by outlining, we select the minimal candidates as parameters.
For instance, global variables which can be seen by all the functions including the outlined
function, are not passed as arguments. In addition, a variable which is defined inside the par-
allel region, is not worth being a candidate on the parameter list due to the fact that it is not
live after the parallel region. Moreover, in order to preserve the original semantics after outlin-
ing, a parameter must be passed explicitly either by address or by value, depending on its data
attributes as discussed in Section 3.3. With this view, it is natural that:

1. the shared variables are accessed via pointers by the outlined function. This gives the
visibility of shared variables to the host function as well, so that the intrinsically shared
semantics are kept. On the other hand, it can be profitable to minimize the usage of
pointers to simplify the code complexity for the subsequent program analysis [74, 13,
28]. For that purpose, the C++ reference variables, classified as shared variables in
MetaFork, are treated in an optimized way, that are, reference variables are passed by
reference in C++ conventions. For example, Listing A.5 shows the outlined function,
i.e. taskFunc4, corresponding to the parallel region in Figure 3.13, and the concurrent
call to the outlined function in the host function at Line (42). The reference variable ref
which is used within the parallel region in Figure 3.13, is access by reference at Line
(18) in the outlined function. But as a contrast, the shared variable m is accessed via a
pointer at Line (20) in the outlined function.

2. the private variables, such as the variable j at Line (40) in Listing A.5, are passed by
value. Thus, private variables are stored on the stack of the outlined function and the
private semantics are preserved.

Instead of passing parameters one by one to the outlined function, all of them are wrapped
into a struct type (say, T, as defined in Algorithm 4) which will be passed to the outlined
function as the only parameter in the form of a pointer. Then T is re-declared in the outlined
function and is broken into a sequence of variable declarations, see the outlined function in
Listing A.5. This method solves the following issue we observe. For example, a new date
type (say, A) is declared locally within the host function, and then A is used within the parallel
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Algorithm 4: Outlining region(P, S , B)
Input: P, S and B are as in Algorithm 1.
Output: (E, H, T, P, O) where E is a function definition of the form

static void * H(void *F) { T + U + D}

H is a function name, F is an void pointer name, T is a struct data type, O is an object of
T, D is a function body, P is a sequence of initialization, U is a sequence of declaration,
C is a sequence of formal constructor parameters of T, I is a sequence of actual
constructor parameters of T.

1 Initialize each of T, U, D, P, U, C,I to the empty string
2 /* convert parameter F to type T */

3 append (T + “*” + O + “=” + “(” + T + “*” + “)” + F ) to U
4 foreach variable v in S do
5 /* reference variables are added to the struct constructor */

6 if v is reference variable then
7 append (v.type + v.name) to T
8 append (v.type + v.name + “=” + T→v.name) to U
9 append (v.name + “(” + v.name + “)”) to I

10 append (v.type + v.name) to C

11 else
12 append (v.type + “*” + v.name) to T
13 append (v.type + “*” + v.name + “=” + S→v.name) to U
14 append (O→v.name + “=” + “&” + v.name) to P

15 foreach variable v in P do
16 append (v.type + v.name) to T
17 append (v.type + v.name + “=” + T→v.name) to U
18 append (O→v.name + “=” + v.name) to P

19 /* allocate a new object O of type T */

20 if I is empty then
21 append P to (O + “=” + “(” + T + “*” + “)” + “malloc” + “sizeof(” + T + “))”)

22 else
23 append P to (O + “=” + “new” + T + “(” + I + “)”)
24 /* add a constructor to T */

25 append (T + “(” + C + “)” + “:” + I + “{ }”) to T

26 Translate B verbatim except /* PASS 2 */

27 foreach right-value R within B do
28 if (R is in S ) and R is not reference variable then
29 append (“*” + R.name) to D
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region. In fact, without special treatment of A, A is not visible within the scope of the outlined
function. We admit that there are several different ways to stress the above issue, but with our
method, i.e. by copying A to the outlined function before declaring T in the outlined function,
we are able to keep correct grammar with minor changes of the source program.

Additionally, the value of each struct member is initialized either by its address, e.g. the
variable arry, or by its value, e.g. the variable j. In particular, reference variables are initial-
ized via the struct constructor, e.g. the variable ref, as noted in Listing A.5.

Another key aspect of outlining is to patch the code within the parallel region. This allows
the variables to access the correct memory location according to the parameter passing format,
i.e. by value or by address. We accomplish this in the second pass as shown in Algorithm 4.
The code patching involves simply replacing the variables (except reference variables) which
are passed by address, by its pointer format. To be precise, the accesses to a variable x are
translated to accesses to (*x). Lastly, the generated outlined function is placed immediately
in front of the host function, either being a global function or a member function within a C++

class.
Another problem is related to handle nested parallelism during outlining. As discussed in

Section 6.4.2, the immutable design of Clang AST creates many challenges, as developers can
only perform on the AST textual changes which are not structured. This design does not work
well in the case of complex code transformations, such as an implementation which requires a
chain of transformations, that is the transformation phase tn requires analysis on the output of
the transformation phase tn−1.

To deal with this, a multiple parsing approach which greatly simplifies the design of the
outlining algorithm, is introduced to let the outlining procedure only work on the innermost
parallel region during every single parsing iteration. At the end of each iteration, the back-
end of MetaFork compiler, detailed in Section 6.4.3, generates an output file serving as the
input file for the next iteration in turn, until the out-most parallel region is outlined. The code
(translated from BOTS benchmark) in Listing A.2, taken as an example here, illustrates our
multiple parsing approach. Listing A.3 shows the results of the first running of the outlining
procedure over the code in Listing A.2, and we observe that only the innermost parallel region
at Line (38) in Listing A.2 is outlined. Using the code in Listing A.3 as input, we can now
perform outlining procedure once more and as seen in the results in Listing A.4, the out-most
parallel region at Line (78) in Listing A.3 is replaced by a call to the outlined function (i.e.
taskFunc5) concurrently.

Lastly, a meta for loop is faithfully translated to a cilk for loop, as can be seen in
Figure 3.14.

3.6.3 Translation from OpenMP to MetaFork

We start with providing an abstraction algorithm scheme that models the translated program as
a sequence of subroutines that are invoked when relevant OpenMP constructs are encountered.
With this scheme, we could formalize the extensive translation methods throughout this section
in a more concise way which is easy to follow for readers.

Algorithm 5 visualizes this abstraction algorithm scheme which is sufficiently flexible to
translate the OpenMP constructs as shown in Figure 3.15. The observation is that in the case
that there is no direct one-to-one mapping between OpenMP and MetaFork constructs, we
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void outlining_example(void)

{

int m,j;

int &ref=m;

int arry[10];

meta_fork shared(m)

{

arry;

ref++;

int local_j = j;

m;

}

}

Figure 3.13: A code snippet showing how to handle data attribute of variables in the process of
outlining

void function()

{

meta_for ( int j = 0; j < ny; j++ )

{

int i;

for ( i = 0; i < nx; i++ )

{

u[i][j] = unew[i][j];

}

}

}

void function()

{

cilk_for ( int j = 0; j < ny; j++ )

{

int i;

for ( i = 0; i < nx; i++ )

{

u[i][j] = unew[i][j];

}

}

}

Figure 3.14: A code snippet showing how to translate parallel for loop from MetaFork to
CilkPlus

#pragma omp directive_name [clause[ [, ]clause] ...]

structured-block

Figure 3.15: A general form of an OpenMP construct
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Algorithm 5: Translation scheme(R)
Input: R which represents an OpenMP construct as defined in Figure 3.15.
Output: (E, C, D, B, J) where

E is data environment variables placed before C which is a MetaFork construct, D is a
set of new generated local declarations within C, B is the statement body of C, and J is a
MetaFork synchronization construct or null.

P is the set of private variables, S is the set of shared variables and F is the set of
firstprivate variables.

1 (P, S, F) = DataAttribueAnalysis(R);
2 OuterEnvControl(R); /* outputs E */

3 MetaConstruct(R, S); /* outputs C */

4 InitLocalDataEnv(P, F); /* outputs D */

5 Transform(structured-block); /* outputs B */

6 PotentialSync(R); /* outputs J */

need to abstract away the differences among several OpenMP constructs so that they could be
mapped to a single MetaFork construct. This, in turn, proves the compact design of MetaFork
in the context of a programming language, without losing its diversity for expressing paral-
lelism.

To continue our algorithm scheme, in order to preserve correct program behavior during
transformations, data-sharing attributes of variables referenced within OpenMP constructs are
analyzed and determined according to the rules in Chapter 2.14 of OpenMP application pro-
gram interface [117]. This is done by subroutine DataAttribueAnalysis which is called
initially for each OpenMP construct. Secondly, programmers may use a set of OpenMP clauses
(e.g. num threads) which carry information that controls the behavior of an OpenMP con-
struct before its execution. Those clauses are translated by OuterEnvControl subroutine,
see Algorithm 6, and the translated codes are placed immediately before the execution of
the parallel region. This situation is illustrated in Figure 3.22. In essence, num threads
is the only clause supported so far in this category. The OpenMP directive then is trans-
lated to its counterpart MetaFork construct (including optional clauses) by calling subroutine
MetaConstruct, see Algorithm 7. Examples of this subroutine can be found through List-
ing A.2, Figures 3.22, 3.23 and 3.16.

In connection with the results obtained from the DataAttribueAnalysis function, in the
case of that, there are variables which are local to each thread, we invoke InitLocalDataEnv
subroutine as shown in Algorithm 8 to declare them as local variables at the beginning of the
parallel region. Depending on the type (either private or firstprivate) of each variable, a specific
method is dispatched to handle it. To be precise, the variables of private data attribute are
simply declared as local variables without initialization; in the case of firstprivate vari-
ables, as detailed in Algorithm 8, we translate local declarations and generate the initialization
codes to initialize the firstprivate variables with their original value; regarding the shared
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void test()

{

int sum_a=0, sum_b=0;

int a[5] = {0,1,2,3,4};

int b[5] = {0,1,2,3,4};

#pragma omp parallel sections

{

#pragma omp section

{

for(int i=0; i<5; i++)

sum_a += a[i];

}

#pragma omp section

{

for(int i=0; i<5; i++)

sum_b += b[i];

}

} /* an implicit barrier here*/

}

void test()

{

int sum_a=0, sum_b=0;

int a[5] = {0,1,2,3,4};

int b[5] = {0,1,2,3,4};

meta_fork shared(sum_a)

{

for(int i=0; i<5; i++)

sum_a += a[i];

}

meta_fork shared(sum_b)

{

for(int i=0; i<5; i++)

sum_b += b[i];

}

meta_join;

}

Figure 3.16: Translation of the OpenMP sections construct

Algorithm 6: OuterEnvControl(R)
Input: R is as in Algorithm 5.
Output: (E) where

E is a statement which sets the data environment variable controlling the behavior of an
OpenMP program.

1 Initialize d to a set consisting of all clauses of R
2 if a “num threads” clause is in d then
3 extract sub-expression, namely s, from the num threads clause;
4 /* a function call which sets the number of threads */

generate(“meta set nworkers(”, s, “)”);
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Algorithm 7: MetaConstruct(R, S)
Input: R and S are as in Algorithm 5.
Output: C where C is a MetaFork construct (without body).

1 Initialize t to the construct type of R
2 Initialize b to the structured block of R
3 Initialize d to the clauses appearing in R
4 switch t do
5 case single
6 if a “nowait” clause is in d then
7 generate(“meta fork ”);
8 if S is non-empty then
9 generate(“shared( S) ”);

10 case loop or parallel loop
11 if a “collapse” clause is in d then
12 initialize n to the number of the associated loops;

13 else
14 n = 1;

15 for i = 1 to n do
16 generate(“meta for”) replacing the ith “for” C/C++ keyword appearing in b;

17 case task or master or section
18 if S is non-empty then
19 generate(“meta fork ” + “shared( S) ”);

20 else
21 generate(“meta fork ”);

22 case barrier or taskwait
23 generate(“meta join;”);

24 case parallel or sections or parallel sections
25 do nothing;



36Chapter 3. A Metalanguage for Concurrency Platforms Based on the Fork-JoinModel

variables, they are enclosed in the MetaFork shared clause. For instance, a variable, say v,
is categorized into firstprivate data attribute within an OpenMP construct. If v is an array type
as defined in Figure 3.17, v will be translated to the MetaFork codes in Figure 3.18; however,
if v is a scalar variable as declared in Figure 3.19, its translated counterpart is illustrated in
Figure 3.20.

int x[10];

Figure 3.17: An array type variable

int (*_fip_x)[10]=&x;

int x[10];

memcpy(x,_fip_x,sizeof(x))

Figure 3.18: A code snippet translated from the
codes in Figure 3.17

int x;

Figure 3.19: A scalar type variable

int _fip_x=x;

int x = _fip_x;

Figure 3.20: A code snippet translated from the
codes in Figure 3.19

int a[6] ={2,3,4,5,6,7},m=0;

#pragma omp parallel num_threads(3)

{

#pragma omp for private(m)

for(int i=0;i<6;i++)

{

m = m + a[i];

}

}

Figure 3.21: A code snippet showing the variable m used as an accumulator

Note that if R is a loop construct, a limit is placed on the behavior of the variables which are
in P or F, in order to preserve the correctness in the target MetaFork code. Such variables can
not be used as an accumulator among different iterations, since the concept that each thread
participating the execution of a loop owns a copy of a variable, is not employed by meta -
for. For example, the OpenMP codes in Figure 3.21 describe that each thread participating the
execution of the parallel loop, gets a copy of the variable m, and this piece of codes could not
be translated to MetaFork codes. In contrast, the OpenMP and MetaFork codes of Figure 3.22
are semantically equivalent and produce expected execution.

Further, unlike the outlining technique shown in Algorithm 4, our compiler ensures that
there is no need to modify any references to any variables within the structured-block.

To clarify the meaning of the function Transform, it is worth mentioning that as seen
in Section 6.4.2, we use standard RecursiveASTVisitor method to traverse the AST. This
implies that the translation of an OpenMP construct is deferred until completion of all the trans-
lations, say T, corresponding to its inner OpenMP constructs. Thus, the Transform function
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int a[6] ={2,3,4,5,6,7}, b[6], m=0;

#pragma omp parallel num_threads(3)

{

#pragma omp for private(m)

for(int i=0;i<6;i++)

{

m = a[i];

b[i] = m * m;

}

}

int a[6] ={2,3,4,5,6,7}, b[6], m=0;

meta_set_nworkers(3);

meta_for(int i=0;i<6;i++)

{

int m;

{

m = a[i];

b[i] = m * m;

}

}

Figure 3.22: A MetaFork code snippet (right), translated from the left OpenMP codes

Algorithm 8: InitLocalDataEnv(P, F)
Input: P and F are as in Algorithm 5.
Output: D where D is a set of new generated local variable declarations.

1 Initialize t to the construct type of R
2 foreach variable v in F do
3 if v is an array type then
4 create a pointer (say f ip v) declaration to v, namely tp;
5 generate(tp);
6 generate(tp, “=”, &v);
7 create a declaration of v, namely tv;
8 generate(tv);
9 generate (“memcpy(”, v, “,”, f ip v, “,”, “sizeof(”, v, “))”);

10 if t is loop or parallel loop then
11 if variable v is not the control variable of the associated parallel loop then
12 create the same declaration of v with a different variable name (say f ip v),

namely tp;
13 generate(tp, “=”, v);
14 create a declaration of v, namely tv;
15 generate(tv, “=”, f ip v);

16 foreach variable v in P do
17 create a declaration of v, namely tv;
18 generate(tv);
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represents the changes happened during T. More precisely, these changes are indirectly intro-
duced by other subroutines, i.e. OuterEnvControl, MetaConstruct, InitLocalDataEnv
and PotentialSync, rather than directly made to the C/C++ statements inside the structured-
block.

Algorithm 9: PotentialSync(R)
Input: R is as in Algorithm 5.
Output: J where J is a MetaFork synchronization construct or null.

1 Initialize t to the construct type of R
2 Initialize M to the set of {parallel, sections, parallel sections, single}
3 if t is in M then
4 if there was at least one meta fork call since the last explicit synchronization point

then
5 generate(“meta join”);

Lastly, a barrier after finishing execution of a parallel region, may be required, because
some OpenMP constructs imply an implied barrier at its end. This is achieved by making a
call to PotentialSync which aims to minimize the synchronization points by eliminating
redundant barriers. As shown in Figure 3.23, the translation process of the second OpenMP
single construct introduces an explicit meta join construct in the translated codes; while
the implicit barrier at the end of the OpenMP parallel construct is ignored to avoid allowing
two consecutive meta join constructs in the translated MetaFork codes.

void imp_barrier()

{

int tmp1, tmp2, tmp3;

#pragma omp parallel

{

#pragma omp single nowait

{

tmp1 = tmp1 * tmp2;

}

#pragma omp single

{

tmp3 = tmp2 * tmp3;

} /* an implicit barrier here*/

} /* an implicit barrier here*/

}

void imp_barrier()

{

int tmp1, tmp2, tmp3;

{

meta_fork shared( tmp2, tmp1)

{

tmp1 = tmp1 * tmp2;

}

{

tmp3 = tmp2 * tmp3;

}

meta_join;

}

}

Figure 3.23: A code snippet showing how to avoid adding redundant barriers when translating
the codes from OpenMP to MetaFork
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3.6.4 Translation from MetaFork to OpenMP

This is easy in principle since the MetaFork language can be regarded as a subset of the
OpenMP language. The meta fork construct can have the following forms:

- type var = meta_fork function();
- var = meta_fork function();
- meta_fork [shared(var)]

block

We note that function calls spawned with the meta fork construct are translated using the
task construct of OpenMP. Whereas several concerns related to data attribute guide when to
implement the translations. Adherence to the rules defined in Section 3.3 and in Chapter 2.14
of OpenMP application program interface, array, and reference variables have to be explicitly
qualified in a shared clause in the translated OpenMP program to ensure the safety of the
semantics. In Figures 3.24 and 3.25, there are examples which show how the above forms are
translated to the OpenMP task construct. The array variable arry and the reference variable
ref are explicitly qualified as shared in the translated OpenMP codes, as shown in Figure 3.24.
The translation from MetaFork parallel for loops to OpenMP is straightforward and simple

void foo(int i)

{

int m = 0, arry[10];

int &ref = m;

int f = meta_fork test();

meta_fork shared(f)

{

f = ref;

arry[m] = f;

}

}

void foo(int i)

{

int m = 0, arry[10];

int &ref = m;

int f;

#pragma omp task shared(f)

f = test();

#pragma omp task shared(ref, arry,f)

{

f = ref;

arry[m] = f;

}

}

Figure 3.24: Example of translation from MetaFork to OpenMP

as shown in Figure 3.26. In addition, to allow the parallel execution of the translated OpenMP
program, the creation of a new main function is needed as can be seen in Figure 3.27. The
function taskFunc0 replaces the original main function (on the left) and a new main function
(on the right) is generated. The new main function supports nested parallelism in OpenMP by
invoking a call to omp set nested(1).

3.7 Experimentation
In this section, we evaluate the performance and the usefulness of the four MetaFork trans-
lators (MetaFork to CilkPlus, CilkPlus to MetaFork, MetaFork to OpenMP, OpenMP to
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long fib(long n)

{

long x, y;

if (n<2) return n;

else if (n<BASE)

return fib_serial(n);

else

{

x = meta_fork fib(n-1);

y = fib(n-2);

meta_join;

return (x+y);

}

}

long fib(long n)

{

long x, y;

if (n<2) return n;

else if (n<BASE)

return fib_serial(n);

else

{

#pragma omp task shared(x)

x = fib(n-1);

y = fib(n-2);

#pragma omp taskwait

return (x+y);

}

}

Figure 3.25: Example of translating a parallel function call from MetaFork to OpenMP

void parfor()

{

int n = 10, a[n];

meta_for(int i = 0; i < n; i++)

{

a[i] = i;

}

}

void parfor()

{

int n = 10, a[n];

#pragma omp parallel for

for(int i = 0; i < n; i++)

{

a[i] = i;

}

}

Figure 3.26: Example of translating a parallel for loop from MetaFork to OpenMP

int main(int argc, char **argv)

{

/* body*/

}

int _taskFunc0(int argc, char **argv)

{

/* body*/

}

int main(int argc, char **argv){

omp_set_nested(1);

#pragma omp parallel

#pragma omp single

_taskFunc0(argc, argv);

return 0;

}

Figure 3.27: A code snippet showing how to generate a new OpenMP main function
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MetaFork). To this end, we run these translators on various input programs written either
in CilkPlus or OpenMP, or both. We emphasize the fact that our purpose is not to compare
the performance of the CilkPlus or OpenMP run-time systems. The reader should notice that
the codes used in this study were written by different persons with different levels of exper-
tise. In addition, the reported experimentation is essentially limited to one architecture (Intel
Xeon) and one compiler (GCC). Therefore, it would be delicate to draw any clear conclusions
comparing CilkPlus and OpenMP.

3.7.1 Experimentation Setup
We conducted three sets of experiments. In the first one, we compared the performance of
hand-written codes. The motivation, specified in the introduction, is comparative implementa-
tion. In the second one, motivated by the interoperability question raised in the introduction,
is dedicated to automatic translation of highly optimized code. Now, for each test-case, we
have either a hand-written-and-optimized CilkPlus program or a hand-written-and-optimized
OpenMP program. Our goal is to determine whether or not the translated programs have sim-
ilar serial and parallel running times as their hand-written-and-optimized counterparts. In the
last experiment, we compared the parallelism overheads measured the original codes (either
CilkPlus or OpenMP) and their translated counterparts.

For all experiments, apart from student’s code, we use codes from the following sources:

1. The BPAS library http://www.bpaslib.org,

2. John Burkardt’s Home Page http://people.sc.fsu.edu/˜%20jburkardt/c_src/
openmp/openmp.html,

3. the BOTS [53] and

4. the CilkPlus distribution examples http://sourceforge.net/projects/cilk/.

The source code of those test cases (except BOTS) was compiled as follows:

1. CilkPlus code with GCC 4.8 using -O2 -g -lcilkrts -fcilkplus

2. OpenMP code with GCC 4.8 using -O2 -g -fopenmp

We run all our programs on

1. AMD Opteron 6168 48-core nodes (with 256GB RAM and 12MB L3).

2. Intel Xeon 2.66GHz/6.4GT with 12-cores nodes.

The two main quantities that we measure are:

1. scalability by running our compiled OpenMP and CilkPlus programs on p = 1, 2, 4, 6, 8, . . .
processors; speedup curves (or running time) data are shown in Figures 3.28, 3.29, 3.30,
3.31, 3.32, 3.33, 3.34, 3.35, 3.36a, 3.36b, 3.37a, 3.38, 3.37b, 3.39a and 3.39b are
mainly collected on Intel Xeon’s nodes and repeated/verified on AMD Opteron nodes.

http://www.bpaslib.org
http://people.sc.fsu.edu/~%20jburkardt/c_src/openmp/openmp.html
http://people.sc.fsu.edu/~%20jburkardt/c_src/openmp/openmp.html
http://sourceforge.net/projects/cilk/
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2. parallelism overheads by running our compiled OpenMP and CilkPlus programs on
p = 1 against their serial elisions. This is shown in Table 3.2

Note that through Section 3.7, the speedup of a code being executed using x threads is
defined by

s(x) =
tserial

tparallel(x)
(3.1)

where tserial is the execution time of the sequential code version and tparallel(x) is its parallel
counterpart using x threads.

3.7.2 Correctness

Validating the correctness of our translators was a major requirement of our work. Depending
on the test-case, we could use one of the following strategies.

1. Assume that the original program, say P, contains both a parallel code and its serial eli-
sion (manually written). When program P is executed, both codes run and compare their
results. Let us call Q the translated version of P. Since serial elisions are unchanged
by our translation procedures, then Q can be verified by the same process used for pro-
gram P. This first strategy applies to the Cilk++ distribution examples and the BOTS
examples.

2. If the original program P does not include a serial elision of the parallel code, then
the translated program Q is verified by comparing the output of P and Q. This second
strategy had to be applied to the FSU (Florida State University) examples.

3.7.3 Comparative Implementation

For this first purpose, we use a series of test-cases, each of them consisting of a pair of hand-
written programs: one written in OpenMP and the other in CilkPlus. Within each pair, a
program S , written by a student, has a performance bottleneck; meanwhile its counterpart E,
written by an expert does not. For each pair, we translate one program (either S or E) to
the other language. For these two programs (expressed in the same concurrency platform) we
measure the running time on p processors, for 1 ≤ p ≤ 48, and compare the resulting data so
as to narrow down the performance bottleneck in the inefficient program. Figures 3.28, 3.29,
3.30 and 3.31 illustrate four test-cases.

Parallel mergesort. The original OpenMP code (written by a student) misses to parallelize
the merge phase and simply spawns the two recursive calls using OpenMP sections while the
original CilkPlus code (written by an expert) does parallelize the merge phase. On Figure 3.28,
the running time curve of the translated OpenMP code is as theoretically expected while the
curve of the original OpenMP code shows a limited scalability. This suggests that the original
hand-written OpenMP code should expose more parallelism.
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Matrix inversion. The two original parallel programs are based on different serial algorithms
for inverting a dense matrix. The original OpenMP code uses Gauss-Jordan elimination while
the original CilkPlus code uses a divide-and-conquer approach based on Schur’s complement.
Figure 3.29 shows that the code translated from CilkPlus to OpenMP is more appropriate for
fork-join multithreaded languages targeting multi-cores. In other words the Schur’s comple-
ment approach should be preferred in this context.

Matrix transposition. The two original parallel programs are based on different algorithms
for matrix transposition which is a challenging operation on multi-core architectures. Without
doing complexity analysis, discovering that the OpenMP code (written by a student) runs in
O(n2 log(n)) complexity instead of O(n2) as the CilkPlus (written by Matteo Frigo) is very
subtle. Figure 3.30 shows the running time of both the original OpenMP and the translated
OpenMP code from the original CilkPlus code and it suggests that the code translated from
CilkPlus to OpenMP is more appropriate for fork-join multithreaded languages targeting multi-
cores because of the algorithm used in CilkPlus code.

Naive matrix multiplication. This test-case 3 is the naive three-nested-loops matrix multipli-
cation algorithm, where two loops have been parallelized. The parallelism is O(n2) as for DnC
MM in Section 3.7.4. However, the ratio work-to-memory-access is essentially equal to 2,
which is much less that for DnC MM. This limits the ability to scale and reduces performance
overall on multi-core processors. As you can see from Figure 3.31 both CilkPlus and OpenMP
scale poorly because of algorithmic issues.

Figure 3.28: Parallel mergesort in size 108 Figure 3.29: Matrix inversion of order 4096

3.7.4 Interoperability
Our second experiment is dedicated to automatic translation of highly optimized libraries. The
motivation, presented in the introduction, is to facilitate interoperability between libraries/-

3CilkPlus code was borrowed from https://computing.llnl.gov/tutorials/openMP/samples/C/
omp_mm.c

https://computing.llnl.gov/tutorials/openMP/samples/C/omp_mm.c
https://computing.llnl.gov/tutorials/openMP/samples/C/omp_mm.c
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Figure 3.30: Matrix transpose : n = 32768 Figure 3.31: Naive Matrix Multiplication :
n = 4096

(a) Fibonacci : 40 (b) Fibonacci : 45

Figure 3.32: Speedup curve on Intel node

codes developed for different concurrency platforms, namely CilkPlus and OpenMP. For this
question, we want to determine whether or not the translated programs have similar serial and
parallel running times as their hand-written-and-optimized counterparts.

Fibonacci number computation. This classical example is often used in the literature. The
algorithm computes the integer Fn (given by Fn = Fn−1 + Fn−2, F1 = 1, F0 = 0) for a non-
negative integer n. Results of intermediate recursive calls are not remembered. Thus, the algo-
rithm is a divide-and-conquer “5-line procedure” with high parallelism and no data traversal.
So, a very easy test case for concurrency platforms based on the fork-join parallelism model.
In this example, we have translated the original CilkPlus code to OpenMP. The speedup curve
for computing Fibonacci with inputs 40 and 45 are shown in Figure 3.32(a) and Figure 3.32(b)
respectively. As you can see from Figure 3.32 CilkPlus (original) and OpenMP (translated)
codes scale well.
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(a) DnC MM : 4096 (b) DnC MM : 8192

Figure 3.33: Speedup curve on Intel node

Divide-and-conquer matrix multiplication. This matrix multiplication algorithm [58] (DnC
MM) is another easy case for the fork-join parallelism model. It computes the product of
two dense matrices by means of a divide-and-conquer procedure which recursively divides the
input matrices into blocks, until a base case is reached. When this latter scenario happens,
the naive three-nested-loops matrix multiplication algorithm is applied. DnC MM has a high
theoretical parallelism (namely Θ(n2) in our code) and it is cache-complexity optimal [58]
among all dense matrix multiplication algorithms. To be precise, the ratio work-to-memory-
access is Θ(

√
ZL) where Z and L are the cache size and cache line size, respectively. In this

example, we have translated the original CilkPlus code to OpenMP code. The speedup curve
after computing matrix multiplication with inputs 4096 and 8192 are shown in Figure 3.33(a)
and Figure 3.33(b) respectively. As you can see from Figure 3.33 CilkPlus (original) and
OpenMP (translated) codes scale well.

Parallel prefix sum. This other classical example [20] is often used in research articles deal-
ing with scheduling. Given n items (which could be numbers, matrices, etc.) x1, . . . , xn, this
divide-and-conquer procedure computes all prefixes x1 + · · · + xi for i ∈ {1, . . . , n}. The the-
oretical parallelism is in Θ(n/log(n)) and the ratio work-to-memory-access is constant. This
algorithm is, therefore, more challenging to implement on multi-cores than the previous two.
In this example, we have translated the original CilkPlus code to OpenMP code. The speedup
curves with inputs 5 · 108 and 109 are shown in Figure 3.34(a) and Figure 3.34(b) respectively.
As you can see from Figure 3.34 CilkPlus (original) and OpenMP (translated) codes scale well
at almost the same rate.

Quick sort. This is the classical quick-sort algorithm where the division phase has not been
parallelized, on purpose. Consequently, the theoretical parallelism drops to (log(n)). The ratio
of work-to-memory-access is constant. The speedup curve for quick sort is shown in Fig-
ure 3.35(a) and Figure 3.35(b). As you can see from Figure 3.35 CilkPlus (original) and
OpenMP (translated) codes scale at almost the same rate.
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(a) Prefix sum : n = 5 · 108 (b) Prefix sum : n = 109

Figure 3.34: Speedup curve on Intel node

(a) Quick Sort: n = 2 · 108 (b) Quick Sort: n = 5 · 108

Figure 3.35: Speedup curve on Intel node
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(a) Mandelbrot set (b) Linear system solving (dense method)

Figure 3.36: Running time of Mandelbrot set and Linear system solving

Mandelbrot set. This algorithm 4 does not traverse a large set of data and is compute-intensive.
The running time after computing the Mandelbrot set with grid size of 500 × 500 and 2000 it-
erations is shown in Figure 3.36a. As you can see from Figure 3.36a, both OpenMP (original)
and CilkPlus (translated) codes scale well.

Linear system solving (dense method). In this example, different methods of solving the
linear system A × x = b are compared. In this example there is a standard sequential code and
slightly modified sequential code to take advantage of OpenMP. The algorithm in this example
uses Gaussian elimination.

This algorithm has lots of parallelism. However, minimizing parallelism overheads and
memory traffic is a challenge for this operation. The running time of this example is shown in
Figure 3.36b.

FFT (FSU version). This example demonstrates the computation of a Fast Fourier Transform
in parallel. The algorithm used in this example has low work-to-memory-access ratio which is
challenging to implement efficiently on multi-cores. The running time of this example is shown
in Figure 3.37a. As you can see from the Figure 3.37a both OpenMP (original) and CilkPlus
(translated) codes scale well up to 8 cores.

FFT (BOTS). This example computes the one-dimensional Fast Fourier Transform over n
complex values using the Cooley-Tukey [41] algorithm. It’s a divide and conquer algorithm
that recursively breaks down a Discrete Fourier Transform (DFT) into many smaller DFTs.
The speedup curve for this example is shown in Figure 3.37b. It is clear that the translated
code scales better.

4http://en.wikipedia.org/wiki/Mandelbrot_set

http://en.wikipedia.org/wiki/Mandelbrot_set


48Chapter 3. A Metalanguage for Concurrency Platforms Based on the Fork-JoinModel

(a) FFT (FSU) over the complex in size 225 (b) FFT (BOTS)

Figure 3.37: FFT test-cases : FSU version and BOTS version

(a) OpenMP Single version (b) OpenMP For version

Figure 3.38: Speedup curve of Protein alignment - 100 Proteins

Protein alignment (BOTS). This algorithm is implemented with the Myers and Miller [115]
method. It exposes relatively high parallelism but high communication/synchronization costs.
The original code was heavily tuned to address these latter costs. The speedup curve for this
example is shown in Figure 3.38. As you can see from the Figure 3.38 both OpenMP (original)
and CilkPlus (translated) codes scale at almost the same rate.

Sparse LU matrix factorization (BOTS). This example computes an LU matrix factorization
over sparse matrices. The challenge to efficiently implement this algorithm is to deal with the
load imbalance issue. The speedup curve for this example is shown in Figure 3.39a. As you
can see from the Figure 3.39a both OpenMP (original) and CilkPlus (translated) codes scale at
almost the same rate.
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(a) Sparse LU (OpenMP single version) (b) Strassen matrix multiplication

Figure 3.39: Speedup curve of Sparse LU and Strassen matrix multiplication

Strassen matrix multiplication (BOTS). Strassen algorithm 5 uses hierarchical decomposi-
tion of a matrix for multiplication of large dense matrices [56]. Decomposition is done by
dividing each dimension of the matrix into two sections of equal size. As you can see from the
Figure 3.39b both OpenMP (original) and CilkPlus (translated) codes scale at almost the same
rate.

BPAS library. For this test-case, we have used the BPAS library which counts more than
150,000 lines of CilkPlus code. Half of those lines are dedicated to polynomial multiplication
and we translated those to OpenMP. In Table 3.1, we report on timings of two of the main
algorithms for polynomial multiplication, namely 8-way Toom-Cook and divide-and-conquer
plain multiplication. One can see that the original and translated codes have similar running
times on 1 and 16 cores, for all input data sizes that we tested. Therefore, the OpenMP version
of the BPAS library retains the good performance of the original version written in CilkPlus.

3.7.5 Parallelism Overheads

Our third experiment is devoted to the following question: do the MetaFork translators add
extra parallelism overheads to the generated code w.r.t. the original code? We focus here on
work overhead. By work overhead, we mean the time ratio between a multithreaded program
run on one core and its serial elision. For this experiment, we have considered original pro-
grams using different parallelism patterns (divide-and-conquer, parallel for-loops) and written
in both OpenMP and CilkPlus. Our results are collected in Table 3.2. For all the examples
that we tested, we could observe that, if the original program has little work overhead, then the
same holds for the translated program.

5http://en.wikipedia.org/wiki/Strassen_algorithm

http://en.wikipedia.org/wiki/Strassen_algorithm
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Table 3.1: BPAS timings with 1 and 16 workers: original CilkPlus code and translated
OpenMP code

Test Input size CilkPlus OpenMP
T1 T16 T1 T16

8-way 2048 0.423 0.231 0.421 0.213
Toom-Cook 4096 1.849 0.76 1.831 0.644

8192 9.646 2.742 9.241 2.774
16384 39.597 9.477 39.051 8.805
32768 174.365 34.863 172.562 33.032

DnC 2048 0.874 0.259 0.867 0.299
Plain 4096 3.95 1.264 3.925 1.123
Polynomial 8192 18.196 3.335 18.154 4.428
Multiplication 16384 77.867 12.778 75.885 12.674

32768 331.351 55.841 332.126 55.925

Table 3.2: Timings on AMD 48-core: underlined timings refer to original code and non-
underlined timings to translated code

Test Input size CilkPlus OpenMP
Serial T1 Serial T1

Protein alignment (for) 100 24.82 24.82 25.16 25.15
quicksort 5 · 108 89.72 91.94 89.83 91.61
prefixsum 5 · 108 13.04 14.71 13.19 14.92
Fibonacci 45 8.661 8.666 8.87 8.88
DnC MM 4096 754.11 756.55 754.57 759.09
Mandelbrot 500 × 500 0.64 0.64 0.64 0.65

3.8 Summary
MetaFork allows for rapidly mapping algorithms written for one concurrency platform to an-
other. As we have seen in Section 3.7, MetaFork can be applied for (1) comparing algorithms
written with different concurrency platforms and (2) porting more programs to systems that
may have a highly optimized run-time for one paradigm (say divide-and-conquer algorithms,
or producer-consumer).

The MetaFork translation framework may also avoid the negative interferences of having
multiple interfaces between the different components of a large solver written with various con-
currency platforms. Along the same idea, the MetaFork translators can be used to transform
legacy code into a more adequate concurrency platform.

The experimental results of Section 3.7, as well as those reported in the technical re-
port [34], suggest that our translators can be used to narrow performance bottlenecks down.
By translating a parallel program with low performance, we could suspect the cause of ineffi-
ciency whether this cause was a poor implementation (in the case of Parallel mergesort, where
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not enough parallelism was exposed) or an algorithm inefficient in terms of data locality (in
the case of Matrix inversion) or an algorithm inefficient in terms of work (in the case of Matrix
transposition).

For the second part of our experimentation, our results show that the speedup curves of the
original and translated codes either match or have similar shape. Nevertheless, in some cases,
either the original or the translated program outperforms its counterpart. For John Burkardt’
programs, the speedup curves of the original programs are close to those of the translated
CilkPlus programs. We observe that the only parallel construct used in his source examples are
parallel for-loops. In addition, the results of Table 3.2 show that if a CilkPlus (resp. OpenMP)
program has little work overhead, the same would hold for its OpenMP (resp. CilkPlus) coun-
terpart translated by MetaFork. Last but not least, we think that a great benefit of MetaFork
is the abstraction that it provides. It can be useful for parallel language design (for example in
designing parallel extensions to C/C++) as well as a good tool to teach parallel programming.
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Chapter 4

Applying MetaFork to the Generation of
Parametric CUDA Kernels

In this chapter, we present the accelerator model of MetaFork together with the software
framework that allows automatic generation of CUDA code from annotated MetaFork pro-
grams. One of the key properties of this CUDA code generator is that it supports the generation
of CUDA kernel 2.1.3 code where program parameters (like number of threads per block) and
machine parameters (like shared memory size) are allowed. These parameters need not to be
known at code-generation-time: machine parameters and program parameters can be respec-
tively determined and optimized when the generated code is installed on the target machine.

The need for CUDA programs (more precisely, kernels) depending on program parameters
and machine parameters is argued in Section 4.1. In Section 4.2, following the authors of [67],
we observe that generating parametric CUDA kernels require the manipulation of systems of
non-linear polynomial equations and the use of techniques like quantifier elimination (QE). To
this end, we take advantage of the RegularChains library of Maple [32] and its QuantifierE-
limination command which has been designed to efficiently support the non-linear polynomial
systems coming from automatic parallelization.

Section 4.3 is an overview of the MetaFork language constructs for generating SIMD code.
Section 4.4 reports on a preliminary implementation of the MetaFork generator of parametric
CUDA kernels from input MetaFork programs. In addition to the RegularChains library,
we take advantage of PPCG, the polyhedral parallel code generation for CUDA [147] that
we have adapted so as to produce parametric CUDA kernels. Finally, Section 4.5 gathers
experimental data demonstrating the performance of our generated parametric CUDA code.
Not only these results show that the generation of parametric CUDA kernels helps optimizing
code independently of the values of the machine parameters of the targeted hardware, but also
these results show that automatic generation of parametric CUDA kernels may discover better
values for the program parameters than those computed by a tool generating non-parametric
CUDA kernels.

52
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4.1 Optimizing CUDA Kernels Depending on Program Pa-
rameters

Estimating the amount of computing resource (time, space, energy, etc.) that a parallel pro-
gram, written in a high-level language, required to run on a specific hardware is a well-known
challenge. A first difficulty is to define models of computation retaining the computer hardware
characteristics that have a dominant impact on program performance. That is, in addition to
specify the appropriate complexity measures, those models must consider the relevant param-
eters characterizing the abstract machine executing the algorithms to be analyzed. A second
difficulty is, for a given model of computation, to combine its complexity measures so as to
determine the “best” algorithm among different algorithms solving a given problem. Mod-
els of computation which offer those estimates necessarily rely on simplification assumptions.
Nevertheless, such estimates can deliver useful predictions for programs satisfying appropriate
properties.

In [71], the authors propose a many-core machine (MCM) model for multithreaded com-
putation combining the fork-join and SIMD parallelisms; a driving motivation in this work
is to estimate parallelism overheads (data communication and synchronization costs) of GPU
programs. In practice, the MCM model determines a trade-off among work, span and par-
allelism overhead by checking the estimated overall running time so as to (1) either tune a
program parameter or, (2) compare different algorithms independently of the hardware details.
We illustrate the use of the MCM model with a very classical example: the computation of
Fast Fourier Transforms (FFTs). Our goal is to compare the running times of two of the most
commonly used FFT algorithms: that of Cooley & Tukey [41] and that of Stockham [140].

Let f be a vector over a field K of coefficients, say the complex numbers. Assume that f
has size n where n is a power of 2. Let U be the time (expressed in clock cycles) to transfer one
machine word between the global memory and the private memory of any SM 2.1.3, that is,
U > 0. Let Z be the size (expressed in machine words) of the private memory of any SM, which
sets up an upper bound on several program parameters. Let ` ≥ 2 be a positive integer. For Z
large enough, both Cooley & Tukey algorithm and Stockham algorithm can be implemented
• by calling log2(n) times a kernel using Θ( n

`
) SMs1 each of those SMs executing a thread

block with ` threads,
• with a respective work2 of Wct = n (34 log2(n) log2(`) + 47 log2(n) + 333 − 136 log2(`))

and Wsh = 43 n log2(n) + n
4 ` + 12 ` + 1 − 30 n,

• with a respective span3 of Sct = 34 log2(n) log2(`) + 47 log2(n) + 2223− 136 log2(`) and
Ssh = 43 log2(n) + 16 log2(`) + 3,

• with a respective overhead4 of Oct = 2 n U ( 4 log2(n)
`

+ log2(`) − log2(`)+15
`

) and Osh =

1In the MCM model, the number of SMs is unbounded as well as the size of the global memory, whereas each
SM has a private memory of size Z.

2In the MCM model, the work of a thread block is the total number of local operations (arithmetic operation,
read/write memory accesses in the private memory of an SM) performed by all its threads; the work of a kernel is
the sum of the works of all its thread blocks.

3In the MCM model, the span of a thread block is the maximum number of local operations performed by one
of its threads; the span of a kernel is the maximum span among all its thread blocks.

4In the MCM model, the parallelism overhead (or overhead, for short) of a thread block accounts for the time
to transfer data between the global memory of the machine and the private memory of the SM running this thread
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5 n U log2(n)
`

+ 5 n U
4 ` .

See [71] for details on the above estimates. From those, one observes that the overhead of
Cooley & Tukey algorithm has an extraneous term in O(nUlog2(`)) which is due to higher
amount of non-coalesced accesses. In addition, when n escapes to infinity (while ` remains
bounded over on a given machine since we have ` ∈ O(Z)) the work and span of the algorithm
of Cooley & Tukey are increased by a Θ(log2(`)) factor w.r.t their counterparts in Stockham
algorithm.

These theoretical observations suggest that, as ` increases, Stockham algorithm performs
better than the one of Cooley & Tukey. This has been verified experimentally5 by the authors
of [71] as well as by others, see [109] and the papers cited therein. On the other hand, it
was also observed experimentally that for ` small, Cooley & Tukey algorithm is competitive
with that of Stockham. Overall, this suggests that generating kernel code, for both algorithms,
where ` is an input parameter, is a desirable goal. With such parametric codes, one can choose
at run-time the most appropriate FFT algorithm, once ` has been chosen.

The MCM model retains many of the characteristics of modern GPU architectures and
programming models, like CUDA [116] and OpenCL [141]. However, in order to support
algorithm analysis with an emphasis on parallelism overheads, the MCM abstract machines
admit a few simplifications and limitations with respect to actual many-core devices.

To go further in our discussion of CUDA kernel performance, let us consider now the
programming model of CUDA itself and its differences w.r.t. the MCM model. In CUDA,
instructions are issued per warp; a warp consists of a fixed number S warp of threads. Typically
S warp is 32 and, thus, executing a thread block on an SM means executing several warps in turn.
If an operand of an executing instruction is not ready, then the corresponding warp stalls and
context switch happens between warps running on the same SM.

Registers and shared memory are allocated for a thread block as long as that thread block
is active. Once a thread block is active it will stay active until all threads in that thread block
have completed. Context switching is very fast because registers and shared memory do not
need to be saved and restored. The intention is to hide the latency (of data transfer between the
global memory and the private memory of an SM) by having more memory transactions in fly.
There is, of course, a hardware limitation to this, characterized by (at least) two numbers:
• the maximum number of active warps per SM, denoted here by Mwarp; A typical value for

Mwarp is 48 on a Fermi NVIDIA GPU card, leading to a maximum number of 32 × 48 =

1536 active threads per SM.
• the maximum number of active thread blocks per SM, denoted here by Mblock; A typical

value for Mblock is 8 on a Fermi NVIDIA GPU card.
One can now define a popular performance counter of CUDA kernels, the occupancy of an
SM: it is given by Awarp/Mwarp, where Awarp is the number of active warps on that SM. Since
resources (registers, shared memory, thread slots) are allocated for an entire thread block (as
long as that block is active) there are three potential limitations to occupancy: register usage,
shared memory usage and thread block size. As in our discussion of the MCM model, we
denote the thread block size by `. Two observations regarding the possible values of `:

block, taking coalesced accesses into account; the parallelism overhead of a kernel is the sum of the overheads of
all its thread blocks.

5Our algorithms are implemented in CUDA and publicly available with benchmarking scripts from http:
//www.cumodp.org/.

http://www.cumodp.org/
http://www.cumodp.org/
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• The total number of active threads is bounded over by Mblock `, hence a small value for `
may limit occupancy.

• A larger value for ` will reduce the amount of registers and shared memory words avail-
able per thread; this will limit data reuse within a thread block and, thus, will potentially
increase the amount of data transfer between global memory and the private memory of
an SM.

Overall, this suggests again that generating kernel code, where `, and other program parameters
are input arguments, is a desirable goal. With such parametric code at hand, one can optimize
at run-time the values of those program parameters (like `) once the machine parameters (like
S warp, Mwarp, Mblock, Z (private memory size) and the size of the register file) are known.

4.2 Automatic Generation of Parametric CUDA Kernels
The general purpose of automatic parallelization is to convert sequential computer programs
into multithreaded or vectorized code. Following the discussion of Section 4.1, we are inter-
ested here in the following more specific question.

Given a theoretically good parallel algorithm (e.g. divide-and-conquer matrix multiplica-
tion) and given a type of hardware that depends on various parameters (e.g. a GPGPU with
Z words of private memory per SM and a maximum number Mwarp of warps supported by an
SM, etc.) we aim at automatically generating CUDA kernels that depends on the hardware pa-
rameters (Z, Mwarp, etc.), as well as program parameters (e.g. number ` of threads per block),
such that those parameters need not to be known at compile-time, and are encoded as symbols
in the generated kernel code. For this reason, we call such CUDA kernels parametric.

In contrast, current technology requires that machine and program parameters are special-
ized to numerical values at the time of generating the GPGPU code, see [69, 16, 76, 147].

For example, for the following code computing the product of two univariate polynomials
a and b, both of degree n, and writing the result to c,

for(i=0; i<=n; i++) {c[i] = 0; c[i+n] = 0;}

for(i=0; i<=n; i++) {

for(j=0; j<=n; j++)

c[i+j] += a[i] * b[j];

}

elementary dependence analysis suggests to set t(i, j) = n − j and p(i, j) = i + j, where t and p
represent time and processor respectively [67]. Using Fourier-Motzkin elimination, projecting
all constraints on the (t, p)-plane yields the following asynchronous schedule of the above code:

parallel_for (p=0; p<=2*n; p++){

c[p]=0;

for (t=max(0,n-p); t<= min(n,2*n-p);t++)

c[p] = c[p] + a[t+p-n] * b[n-t];

}

As mentioned in Section2.3.3, we should use a tiling approach [122]: we consider a one-
dimensional grid of thread blocks where each block is in charge of updating at most B coeffi-
cients of the polynomial c. Therefore, we introduce three variables B, b and u where the latter
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two represent a thread block index and a thread index (within a thread block). This brings the
following additional relations: 

0 ≤ b
0 ≤ u < B

p = bB + u,
(4.1)

to the previous system 
0 < n

0 ≤ i ≤ n
0 ≤ j ≤ n
t = n − j
p = i + j.

(4.2)

To determine the target program, one needs to eliminate the variables i and j. In this case,
Fourier-Motzkin elimination (FME) does not apply any more, due to the presence of non-linear
constraints. If all the non-linear constraints appearing in a system of relations are polynomial
constraints, the set of real solutions of such a system is a semi-algebraic set. The celebrated
Tarski theorem [18] tells us that there always exists a quantifier elimination algorithm to project
a semi-algebraic set of Rn to a semi-algebraic set of Rm, m ≤ n. The most popular method
for conducting quantifier elimination (QE) of a semi-algebraic set is through cylindrical alge-
braic decomposition (CAD) [40]. Implementation of QE and CAD can be found in software
such as Qepcad [27], Reduce [73], Mathematica [153] as well as the RegularChains library
of Maple [32]. Using the function QuantifierElimination (with options ’precondition’=’AP’,
’output’=’rootof’, ’simplification’=’L4’) in the RegularChains library, we obtain the follow-
ing: 

B > 0
n > 0

0 ≤ b ≤ 2n/B
0 ≤ u < B

0 ≤ u ≤ 2n − Bb
p = bB + u,
0 ≤ t ≤ n,

n − p ≤ t ≤ 2n − p,

(4.3)

from where we derive the following program:

for (int p = 0; p <= 2*n; p++) { c[p]=0; }

parallel_for (int b = 0; b <= 2*n/B; b++) {

for (int u = 0; u <= min(B-1, 2*n-B*b); u++) {

int p = b * B + u;

for (int t = max(0, n-p); t <= min(n, 2*n-p); t++)

c[p] += a[t+p-n] * b[n-t];

}

}

An equivalent CUDA kernel to the parallel for part is as below:
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int b = blockIdx.x;

int u = threadIdx.x;

if (u <= 2 * n - B * b) {

int p = b * B + u;

for (int t = max(0, n-p); t <= min(n, 2*n-p); t++)

c[p] += a[t+p-n] * b[n-t];

}

We remark that the polynomial system defined by (4.1) and (4.2) has some special structure.
The authors in [66] have exploited this structure to deduce a special algorithm to solve it and
similar problems by implementing some parametric FME. Although the system (4.3) can be
directly processed by QuantifierElimination, we found that it is much more efficient to use the
following special QE procedure. We replace the product bB in system 4.1 by a new variable c,
and thus obtain a system of linear constraints. We then apply FME to eliminate the variables
i, j, t, p, u in sequential. Now we obtain a system of linear constraints in variables c, b, n, B.
Next we replace c by bB and have again a system of non-linear constraints in variables b, n, B.
We then call QuantifierElimination to eliminate the variables b, n, B. The correctness of the
procedure is easy to verify.

4.3 Extending the MetaFork Language to Support Device
Constructs

We enhance the MetaFork language with constructs allowing the programmer to express the
fact that a function call can be executed on an external (or remote) hardware component. This
latter is referred as the device while the hardware component on which the MetaFork program
was initially launched is referred as the host and this program is then called the host code. Both
the host and the device maintain their own separate memory spaces. Such function calls on an
external device are expressed by means of two new keywords: meta device and meta copy.
We call a statement of the form

meta device 〈variable declaration〉

a device declaration; it is used to express the fact that a variable is declared in the memory
address space of the device.

A statement of the form

meta device 〈function call〉

is called a device function call; it is used to express the fact that a function call is executed on
the device concurrently (thus in a non-blocking way) to the execution of the parent thread on
the host. All arguments in the function call must be either device-declared variables or values
from primitive types (char, float, int, double).

A statement of the form

meta copy (〈range〉, 〈variable〉, 〈variable〉)
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void foo()

{

int arry_host[N];

initialize(arry_host, N);

meta_fork bar(arry_host, N);

work();

}

void foo()

{

int arry_host[N];

initialize(arry_host, N);

// declare an array on the device

meta_device int arry_device[N];

// copy 24 bytes of host array

// from host to device

meta_copy(arry_host+8, arry_host+32,

arry_host, arry_device);

meta_device bar(arry_device, N);

work();

}

Figure 4.1: MetaFork examples

copies the bytes whose memory addresses are in range (and who are assumed to be data refer-
enced by the first variable) to the memory space referenced by the second variable6. Moreover,
either one or both variables must be device-declared variables.

The left part of Figure 4.1 shows a MetaFork code fragment with a spawned function call
operating on an array located in the shared memory of the host. On the right part of Figure 4.1,
the same function is called on an array located in the memory of the device. In order for this
function call to perform the same computation on the device as on the host, the necessary
coefficients of the host array are copied to the device array. In this example, we assume that
those coefficients are arry host[2], . . . , arry host[8].

Several devices can be used within the same MetaFork program. In this case, each of the
constructs above is followed by a number referring to the device to be used. Therefore, these
function calls on an external device can be seen as one-sided message passing protocol, similar
to the one of the Julia 7 programming language.

We stress the following facts about function calls on an external device. Any function
declared in the host code can be invoked in a device function call. Moreover, within the body
of a function invoked in a device function call, any other function defined in host code can be:
(1) either called (in the ordinary way, that is, as in the C language) and then executed on the
same device, or (2) called on another device. As a consequence, device function calls together
with spawned function calls and ordinary function calls form a directed acyclic graphs of tasks
to which the usual notions of the fork-join concurrency model can be applied.

The mechanism of function call on an external device can be used to model the distributed
computing model of Julia as well as heterogeneous computing in the sense of CUDA. The
latter is, however, more complex since, as in discussed in Section 4.1, it borrows from both the
fork-join concurrency model and SIMD parallelism. In particular, a CUDA kernel call induces
how the work is scheduled among the available SMs. Since our goal is to generate efficient
CUDA code from an input MetaFork program, it is necessary to annotate MetaFork code in
a more precise manner. To this end, we introduce another keyword, namely meta schedule.

Any block of MetaFork code (like a meta for-loop) can be the body of meta schedule
statement. The semantic of that statement is that of its body and meta schedule is an in-

6The difference between the lower end of the range and the memory address of the source array is used as
offset to write in the second variable.

7Julia web site: http://julialang.org/

http://julialang.org/
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dication to the MetaFork-to-CUDA translator that every meta for-loop nest of the meta -
schedule statement must translate to a CUDA kernel call.

A meta schedule statement generating a one-dimensional grid with one-dimensional thread
block has the structure in Figure 4.2, where the grid (resp. thread block) dimension size is ex-
tracted from the outer (resp. inner) meta for loop upper bound. Similarly, a meta schedule
statement generating a two-dimensional grid with two-dimensional thread blocks has the struc-
ture in Figure 4.3, where the first two outer meta for loops correspond to the grid and the inner
meta for loops to the thread blocks. We skip the other possible configurations since they have
not been implemented yet in the MetaFork compilation framework.

meta_schedule {

// only for loops are supported here

meta_for (int i = 0; i < gridDim.x; i++)

// only for loops are supported here

meta_for (int j = 0; j < blockDim.x; j++) {

... // nested for-loop body

}

}

Figure 4.2: Using meta schedule to define one-dimensional CUDA grid and thread block

meta_schedule {

// only for loops are supported here

meta_for (int u = 0; u < gridDim.y; u++)

meta_for (int i = 0; i < gridDim.x; i++)

// only for loops are supported here

meta_for (int v = 0; v < blockDim.y; v++)

meta_for (int j = 0; j < blockDim.x; j++) {

... // nested for-loop body

}

}

Figure 4.3: Using meta schedule to define two-dimensional CUDA grid and thread block

In order to obtain the serial C-elision of MetaFork programs containing device constructs,
we apply the following rules: (1) similarly to a cilk spawn function call, meta schedule
and meta device keywords are replaced by null, and (2) meta copy keyword is replaced by
null along with its parameters.

We conclude this section with an example, a one-dimensional stencil computation, namely
Jacobi. The original (and naive) C version is shown in Figure 4.4. From this C code fragment,
we apply the tiling techniques mentioned in Section 4.2 and obtain the MetaFork code shown
in Figure 4.5. Observe that the meta schedule statement has two meta for loop nests.
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for (int t = 0; t < T; ++t) {

for (int i = 1; i < N-1; ++i)

b[i] = (a[i-1] + a[i] + a[i+1]) / 3;

for (int i = 1; i < N-1; ++i)

a[i] = b[i];

}

Figure 4.4: Sequential C code computing Jacobi

int ub_v = (N - 2) / B;

meta_schedule {

for (int t = 0; t < T; ++t) {

meta_for (int v = 0; v < ub_v; v++) {

meta_for (int u = 0; u < B; u++) {

int p = v * B + u + 1;

int y = p - 1;

int z = p + 1;

b[p] = (a[y] + a[p] + a[z]) / 3;

}

}

meta_for (int v = 0; v < ub_v; v++) {

meta_for (int u = 0; u < B; u++) {

int w = v * B + u + 1;

a[w] = b[w];

}

}

}

}

Figure 4.5: Generated MetaFork code from the code in Figure 4.4
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4.4 The MetaFork Generator of Parametric CUDA Kernels
In Section 4.2, we illustrated the process of parametric CUDA kernel generation from a se-
quential C program using MetaFork as an intermediate language. In this section, we assume
that, from a C program, one has generated a MetaFork program which contains one or more
meta schedule blocks. Each such block contains parameters like thread block dimension
sizes and is meant to be translated into a CUDA kernel.

Figure 4.6: Overview of the implementation of the MetaFork-to-CUDA code generator

For that latter task, we rely on PPCG [147], a C-to-CUDA code generator, that we have
modified in order to generate parametric CUDA kernels. Figure 4.6 illustrates the software ar-
chitecture of our C-to-CUDA code generator, based on PPCG. Since the original PPCG frame-
work does not support parametric CUDA kernels the relevant data structures like non-linear
expressions in the for-loop lower and upper bounds, are not supported either. Consequently,
part of our code generation is done in a post-processing phase.

Among our adaptation of the PPCG framework, we have added a new node in the PET
(Polyhedral Extraction Tool) [148] phase of PPCG in order to represent the information of
a meta for loop; this is, in fact, very similar to a C for-loop except that we tag the outer
meta for loops as blocks and the inner meta for loops as threads directly.

Taken Figure 4.5 as an example, our MetaFork-to-CUDA translator produces two kernel
functions, a header file (for those two kernels) and a host code file where those kernels are
called. Those two kernel functions are shown in Figure 4.7. In each kernel, we use the shared
memory for those arrays read and use the global memory for those arrays written only once.
Observe that kernel0 and kernel1 take a program parameter, the thread block format B, as an
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argument, whereas non-parametric CUDA kernels usually take parameters a, b, c,N,T, c0 only.
Correspondingly, the generated host code replacing meta schedule and its body is shown in
Figure 4.8. Data transfers between the CPU and GPU global memories are done before those
two kernels launched and after those two kernels completed, respectively. In the case that the
number of thread blocks per grid, aka ub v in the MetaFork code, exceeds the hardware limit,
which is 32768 shown in the host code, each kernel uses 32768 as the grid dimension size,
while inside the kernel code, the amount of work per thread block is incremented via a serial
loop.

__global__ void kernel0(int *a, int *b, int N, int T, int ub_v,

int B, int c0) {

int b0 = blockIdx.x;

int t0 = threadIdx.x;

int private_p;

__shared__ int shared_a[BLOCK_0+2]; // BLOCK_0 = B

for (int c1 = b0; c1 < ub_v; c1 += 32768) {

for (int c2 = t0; c2 <= min(B + 1, N - B * c1 - 1); c2 += B)

shared_a[c2] = a[B * c1 + c2];

__syncthreads();

private_p = (((c1) * (B)) + (t0));

b[private_p + 1] = (((shared_a[private_p - B * c1] +

shared_a[private_p - B * c1 + 1]) +

shared_a[private_p - B * c1 + 2]) / 3);

__syncthreads();

}

}

__global__ void kernel1(int *a, int *b, int N, int T, int ub_v,

int B, int c0) {

int b0 = blockIdx.x;

int t0 = threadIdx.x;

int private_w;

__shared__ int shared_b[BLOCK_0]; // BLOCK_0 = B

for (int c1 = b0; c1 < ub_v; c1 += 32768) {

if (N >= t0 + B * c1 + 2)

shared_b[t0] = b[t0 + B * c1 + 1];

__syncthreads();

private_w = (((c1) * (B)) + (t0));

a[private_w + 1] = shared_b[private_w - B * c1];

__syncthreads();

}

}

Figure 4.7: Generated parametric CUDA kernel for 1D Jacobi

Since the MetaFork code is obtained after computing affine transformation and tiling (via



4.4. TheMetaFork Generator of Parametric CUDA Kernels 63

if (T >= 1 && ub_v >= 1 && B >= 0) {

#define cudaCheckReturn(ret) \

do { \

cudaError_t cudaCheckReturn_e = (ret); \

if (cudaCheckReturn_e != cudaSuccess) { \

fprintf(stderr, "CUDA error: %s\n", \

cudaGetErrorString(cudaCheckReturn_e)); \

fflush(stderr); \

} \

assert(cudaCheckReturn_e == cudaSuccess); \

} while(0)

#define cudaCheckKernel() \

do { \

cudaCheckReturn(cudaGetLastError()); \

} while(0)

int *dev_a;

int *dev_b;

cudaCheckReturn(cudaMalloc((void **) &dev_a, (N) * sizeof(int)));

cudaCheckReturn(cudaMalloc((void **) &dev_b, (N) * sizeof(int)));

if (N >= 1) {

cudaCheckReturn(cudaMemcpy(dev_a, a, (N) * sizeof(int),

cudaMemcpyHostToDevice));

cudaCheckReturn(cudaMemcpy(dev_b, b, (N) * sizeof(int),

cudaMemcpyHostToDevice));

}

for (int c0 = 0; c0 < T; c0 += 1) {

dim3 k0_dimBlock(B);

dim3 k0_dimGrid(ub_v <= 32767 ? ub_v : 32768);

kernel0 <<<k0_dimGrid, k0_dimBlock>>> (dev_a,dev_b,N,T,ub_v,B,c0);

cudaCheckKernel();

dim3 k1_dimBlock(B);

dim3 k1_dimGrid(ub_v <= 32767 ? ub_v : 32768);

kernel1 <<<k1_dimGrid, k1_dimBlock>>> (dev_a,dev_b,N,T,ub_v,B,c0);

cudaCheckKernel();

}

if (N >= 1) {

cudaCheckReturn(cudaMemcpy(a, dev_a, (N) * sizeof(int),

cudaMemcpyDeviceToHost));

cudaCheckReturn(cudaMemcpy(b, dev_b, (N) * sizeof(int),

cudaMemcpyDeviceToHost));

}

cudaCheckReturn(cudaFree(dev_a));

cudaCheckReturn(cudaFree(dev_b));

}

Figure 4.8: Generated host code for 1D Jacobi
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quantifier elimination), we had to bypass the process of computing affine transformation and
tiling that PPCG is performing. By doing this, our prototype C-to-CUDA code generator could
not fully take advantage of PPCG, which explains why post-processing was necessary. Of
course, improving this design is work in progress so as to completely avoid post-processing.

4.5 Experimentation
In this section, we present experimental results on an NVIDIA Tesla M2050. Most of them
were obtained by running times of CUDA programs generated with our preliminary imple-
mentation of our MetaFork-to-CUDA code generator described in Section 4.4, and the original
version of the PPCG C-to-CUDA code generator [147]. We use eight simple examples: array
reversal (Figure4.9, Table 4.1), 1D Jacobi (Table 4.2), 2D Jacobi (Figure 4.10, Table 4.3), LU
decomposition (Figure 4.11, Table 4.4), matrix transposition (Figure 4.12, Table 4.5), matrix
addition (Figure 4.13, Table 4.6), matrix vector multiplication (Figure 4.14, Table 4.7) and ma-
trix matrix multiplication (Figure 4.15, Table 4.8). In all cases, we use dense representations
for our matrices and vectors.

For both the PPCG C-to-CUDA and our MetaFork-to-CUDA code generators, Tables 4.1,
4.2, 4.3, 4.4 4.5, 4.6, 4.7 and 4.8 give the speedup factors of the generated code, as the timing
ratio of the generated code to their untiled C code. Since PPCG determines a thread block
format, the timings in those tables corresponding to PPCG depend only on the input data size.
Meanwhile, since the CUDA kernels generated by MetaFork are parametric, the MetaFork
timings are obtained for various formats of thread blocks and various input data sizes. Indeed,
recall that our generated CUDA code admits parameters for the dimension sizes of the thread
blocks. This generated parametric code is then specialized with the thread block formats listed
in the first column of those tables.

Figures 4.9, 4.5 (with 4.4 and 4.7), 4.10, 4.11, 4.12, 4.13, 4.14 and 4.15 show the MetaFork
code of eight examples with their untiled serial C programs and automatically generated CUDA
kernels. In order to allocate unit sizes of shared memory in the kernel code, we predefine
BLOCK 0 and BLOCK 1 (if applicable) as macros and specify their values at compile time. The
tiled code for each MetaFork program is done by the quantifier elimination (QE) from the
RegularChains library of Maple. These eight examples generated by PPCG are shown in
Appendix B.

Array reversal. Both MetaFork and PPCG generate CUDA code that uses a one-dimensional
kernel grid and the shared memory. We specialize the MetaFork generated parametric code
successively to the thread block size B = 16, 32, 64, 128, 256, 512; meanwhile, PPCG by de-
fault chooses 32 as the thread block size. As we can see in Table 4.1, based on the generated
parametric CUDA kernel, one can tune the thread block size to be 256 to obtain the best per-
formance.

1D Jacobi. Our second example is a one-dimensional stencil computation, namely 1D
Jacobi. The kernel generated by MetaFork uses a 1D kernel grid and the shared memory,
while the kernel generated by PPCG uses a 1D kernel grid and the global memory. PPCG by
default chooses a thread block format of 32, while MetaFork preferred format is 64.

2D Jacobi. Our next example is a two-dimensional stencil computation, namely 2D Jacobi.
Both the CUDA kernels generated by MetaFork and PPCG use a 2D kernel grid and the global
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Table 4.1: Speedup comparison of reversing a one-dimensional array between PPCG and
MetaFork kernel code

Speedup (kernel) Input size
Thread block size 223 224 225

PPCG
32 8.312 8.121 8.204

MetaFork
16 4.035 3.794 3.568
32 7.612 7.326 7.473
64 13.183 13.110 13.058
128 19.357 19.694 20.195
256 20.451 21.614 22.965
512 18.768 18.291 19.512

Serial code

for (int i = 0; i < N; i++)

Out[N - 1 - i] = In[i];

MetaFork code

int ub_v = N / B;

meta_schedule {

meta_for (int v = 0; v < ub_v; v++)

meta_for (int u = 0; u < B; u++) {

int inoffset = v * B + u;

int outoffset = N - 1 - inoffset;

Out[outoffset] = In[inoffset];

}

}

__global__ void kernel0(int *In, int *Out, int N, int ub_v, int B)

{

int b0 = blockIdx.x;

int t0 = threadIdx.x;

int private_inoffset;

int private_outoffset;

__shared__ int shared_In[BLOCK_0]; // BLOCK_0 = B

for (int c0 = b0; c0 < ub_v; c0 += 32768) {

if (N >= t0 + B * c0 + 1)

shared_In[t0] = In[t0 + B * c0];

__syncthreads();

private_inoffset = (((c0) * (B)) + (t0));

private_outoffset = (((N) - 1) - private_inoffset);

Out[private_outoffset] = shared_In[private_inoffset - B * c0];

__syncthreads();

}

}

Figure 4.9: Serial code, MetaFork code and generated parametric CUDA kernel for array
reversal

Table 4.2: Speedup comparison of 1D Jacobi between PPCG and MetaFork kernel code

Speedup (kernel) Input size
Thread block size
kernel0, kernel1 213 + 2 214 + 2 215 + 2

PPCG using the global memory
32, 32 1.416 2.424 5.035

MetaFork
16, 16 1.274 2.660 2.462
32, 32 1.967 3.386 5.268
64, 64 2.122 4.020 7.309

128, 128 1.787 3.234 6.168
256, 256 1.789 3.516 6.218
512, 512 2.193 3.518 6.070
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memory. PPCG by default chooses a thread block format of 16×32, while MetaFork preferred
format varies based on input size.

Table 4.3: Speedup comparison of 2D Jacobi between PPCG and MetaFork kernel code

Speedup (kernel) Input size
Thread block size (212 + 2)2 (213 + 2)2 (214 + 2)2

PPCG
16 * 32 11.230 11.303 9.785

MetaFork
8 * 4 5.000 5.256 4.666

16 * 4 7.867 8.724 7.962
32 * 4 11.607 11.143 9.726

8 * 8 7.209 7.776 6.704
16 * 8 10.499 10.502 7.442
32 * 8 12.236 11.487 9.182

8 * 16 8.859 8.825 5.637
16 * 16 10.774 10.709 7.694
32 * 16 11.969 11.442 10.469

LU decomposition. MetaFork and PPCG both generate two CUDA kernels: one with a
1D grid and one with a 2D grid, both using the shared memory. The default selected thread
block formats for PPCG are 32 and 16 × 32; meanwhile, the preferred formats by MetaFork
are 128 and 16 × 16. Tuning the number of threads per thread block in our parametric code
allows MetaFork to outperform PPCG.

Matrix transpose. Both the CUDA kernels generated by MetaFork and PPCG use a 2D
grid and the shared memory. PPCG by default chooses a thread block format of 16× 32, while
MetaFork preferred format is 8×32. For MetaFork, the allocation unit size of shared memory
for the input matrix is the same as thread block format. However, for PPCG, the allocation unit
size of shared memory for the input matrix is 32× 32, while the thread block format is 16× 32.
Thus, PPCG code transposes two coefficients of the matrix within each thread.

Matrix addition. Both the CUDA kernels generated by MetaFork and PPCG use a 2D
grid and the global memory. The default chosen thread block format for PPCG is 16 × 32,
while MetaFork preferred format is 32 × 8.

Matrix vector multiplication. For both MetaFork and PPCG, the generated kernels use
a 1D grid and the shared memory. The thread block size chosen by PPCG is 32. Table 4.7
shows the speedup factors obtained with the kernels generated by PPCG and MetaFork with
post-processing, respectively. One can see that the performance of the parametric kernel with
coalesced accesses is twice as good as that of the automatically generated kernels by MetaFork
and PPCG.

Matrix matrix multiplication. For both MetaFork and PPCG, the generated kernels use
a 2D grid and the shared memory. The thread block size chosen by PPCG is 16 × 32, while
MetaFork preferred thread block size varies based on input sizes. For MetaFork, the allo-
cation unit size of shared memory for each input matrix is the same as thread block format.
However, for PPCG, the allocation unit size of shared memory for each input matrix is 32×32,
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Serial code

for (int t = 0; t < T; t++) {

for (int i = 1; i < N-1; i++)

for (int j = 1; j < N-1; j++)

b[i][j] = (a[i-1][j] + a[i+1][j]

+ a[i][j-1] + a[i][j+1]) / 4;

for (int i = 1; i < N-1; ++i)

for (int j = 1; j < N-1; j++)

a[i][j] = b[i][j];

}

MetaFork code

int dim0 = (N-2)/B0, dim1 = (N-2)/B1;

meta_schedule {

for (int t = 0; t < T; t++) {

meta_for (int v0=0; v0<dim0; v0++)

meta_for (int v1= 0; v1<dim1; v1++)

meta_for (int u0=0; u0<B0; u0++)

meta_for (int u1=0; u1<B1; u1++)

{

int p = v0 * B0 + u0;

int w = v1 * B1 + u1;

b[p+1][w+1] = (a[p][w+1] +

a[p+2][w+1] + a[p+1][w] +

a[p+1][w+2]) / 4;

}

meta_for (int v0=0; v0<dim0; v0++)

meta_for (int v1=0; v1<dim1; v1++)

meta_for (int u0=0; u0<B0; u0++)

meta_for (int u1=0; u1<B1; u1++)

{

int i = v0 * B0 + u0;

int j = v1 * B1 + u1;

a[i+1][j+1] = b[i+1][j+1];

}

}

}

__global__ void kernel0(int *a, int *b, int N, int T, int dim0,

int dim1, int B0, int B1, int c0) {

int b0 = blockIdx.y, b1 = blockIdx.x;

int t0 = threadIdx.y, t1 = threadIdx.x;

int private_p;

int private_w;

for (int c1 = b0; c1 < dim0; c1 += 256)

for (int c2 = b1; c2 < dim1; c2 += 256) {

private_p = (((c1) * (B0)) + (t0));

private_w = (((c2) * (B1)) + (t1));

b[(private_p + 1) * N + (private_w + 1)] =

((((a[private_p * N + (private_w + 1)] +

a[(private_p + 2) * N + (private_w + 1)])

+ a[(private_p + 1) * N + private_w]) +

a[(private_p + 1) * N + (private_w + 2)]) / 4);

__syncthreads();

}

}

__global__ void kernel1(int *a, int *b, int N, int T, int dim0,

int dim1, int B0, int B1, int c0) {

int b0 = blockIdx.y, b1 = blockIdx.x;

int t0 = threadIdx.y, t1 = threadIdx.x;

int private_i;

int private_j;

for (int c1 = b0; c1 < dim0; c1 += 256)

for (int c2 = b1; c2 < dim1; c2 += 256) {

private_i = (((c1) * (B0)) + (t0));

private_j = (((c2) * (B1)) + (t1));

a[(private_i + 1) * N + (private_j + 1)] =

b[(private_i + 1) * N + (private_j + 1)];

__syncthreads();

}

}

Figure 4.10: Serial code, MetaFork code and generated parametric CUDA kernel for 2D Ja-
cobi

while the thread block format is 16 × 32. In fact, PPCG code computes two coefficients of the
output matrix within each thread, thus increasing index arithmetic amortization and occupancy.

We conclude this section with timings (in seconds) for the quantifier elimination (QE) re-
quired to generate MetaFork tiled code, see Table 4.9. Our tests are based on the latest version
of the RegularChains library of Maple, available at www.regularchains.org. These re-
sults show that the use of QE is not a bottleneck in our C-to-CUDA code translation process,
despite the theoretically high algebraic complexity of quantifier elimination.

4.6 Summary

In this chapter, we have presented enhancements of the MetaFork language so as to support
device constructs, in particular, the SIMD paradigm. For the latter, our objective is to facilitate
automatic code translation from high-level programming models supporting hardware accel-

www.regularchains.org
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Table 4.4: Speedup comparison of LU decomposition between PPCG and MetaFork kernel
code

Speedup (kernel) Input size
Thread block size
kernel0, kernel1 210 ∗ 210 211 ∗ 211

PPCG
32, 16 * 32 10.712 30.329

MetaFork
128, 4 * 4 3.063 15.512
256, 4 * 4 3.077 15.532
512, 4 * 4 3.095 15.572
32, 8 * 8 10.721 37.727
64, 8 * 8 10.604 37.861

128, 8 * 8 10.463 37.936
256, 8 * 8 10.831 37.398
512, 8 * 8 10.416 37.840
32, 16 * 16 14.533 54.121
64, 16 * 16 14.457 54.034

128, 16 * 16 14.877 54.447
256, 16 * 16 14.803 53.662
512, 16 * 16 14.479 53.077

Table 4.5: Speedup comparison of matrix transpose between PPCG and MetaFork kernel code

Speedup (kernel) Input size
Thread block size 213 ∗ 213 214 ∗ 214

PPCG
16 * 32 62.656 103.703

MetaFork
8 * 4 28.626 37.681

16 * 4 40.381 41.403
32 * 4 28.728 30.329
8 * 8 51.889 58.789

16 * 8 44.759 52.137
32 * 8 37.586 43.696
8 * 16 70.716 76.781

16 * 16 64.812 73.657
32 * 16 36.109 59.613
8 * 32 77.327 93.051

16 * 32 62.268 77.399

erator (like OpenMP and OpenACC) to low-level heterogeneous programming models (like
CUDA). As illustrated in Section 4.3, MetaFork has language constructs to help generat-
ing efficient CUDA code. Moreover, the MetaFork framework relies on advanced techniques
(quantifier elimination in non-linear polynomial expressions) for code optimization, in partic-
ular tiling.
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Serial code

for (int k = 0; k < n; ++k) {

for (int i = 0; i < n-k-1; i++) {

// column major representation

// of L and U

int p = i + k + 1;

L[k][p] = U[k][p] / U[k][k];

for (int j = k; j < n; j++)

U[j][p] -= L[k][p] * U[j][k];

}

}

MetaFork code

int ub = n / B, ut = n / Sqrt_T;

meta_schedule {

for (int k = 0; k < n-1; k++) {

meta_for (int bx = 0; bx < ub; bx++)

meta_for (int ux = 0; ux < B; ux++)

if ((k + 1 - bx * B < B) &&

(-B * bx + k < ux) &&

(ux < n - bx * B)) {

int l = bx * B + ux;

L[k][l] = U[k][l] / U[k][k];

}

meta_for (int bx = 0; bx < ut; bx++)

meta_for (int by = 0; by < ut; by++)

meta_for (int ux = 0; ux < Sqrt_T;

ux++)

meta_for (int uy = 0;

uy < Sqrt_T; uy++) {

int i = by * Sqrt_T + uy;

if (i < n - k - 1) {

int j = bx * Sqrt_T + ux;

if (j < n - k) {

U[j+k][i+k+1] -=

L[k][i+k+1] * U[j+k][k];

}

}

}

}

__global__ void kernel0(double *L, double *U, int n, int ut,

int Sqrt_T, int ub, int B, int c0) {

int b0 = blockIdx.x;

int t0 = threadIdx.x;

int private_l;

__shared__ double shared_U_1[1][1];

{

if (t0 == 0)

shared_U_1[0][0] = U[c0 * n + c0];

__syncthreads();

for (int c1 = b0; c1 < ub; c1 += 32768) {

if ((((((c0) + 1) - ((c1) * (B))) < (B)) &&

((((-(B)) * (c1)) + (c0)) < (t0))) &&

((t0) < ((n) - ((c1) * (B))))) {

private_l = ((c1) * (B)) + (t0);

L[c0 * n + private_l] =

(U[c0 * n + private_l] / shared_U_1[0][0]);

}

__syncthreads();

}

}

}

__global__ void kernel1(double *L, double *U, int n, int ut,

int Sqrt_T, int ub, int B, int c0) {

int b0 = blockIdx.y, b1 = blockIdx.x;

int t0 = threadIdx.y, t1 = threadIdx.x;

int private_i;

int private_j;

// BLOCK_0 = BLOCK_1 = Sqrt_T

__shared__ double shared_L[1][BLOCK_1];

__shared__ double shared_U_1[BLOCK_0][1];

for (int c1 = b0; c1 < ut; c1 += 256) {

if (t1 == 0 && n >= t0 + c0 + Sqrt_T * c1 + 1)

shared_U_1[t0][0] = U[(t0 + c0 + Sqrt_T * c1) * n + c0];

for (int c2 = b1; c2 < ut; c2 += 256) {

if (t0 == 0 && n >= t1 + c0 + Sqrt_T * c2 + 2)

shared_L[0][t1] =

L[c0 * n + (t1 + c0 + Sqrt_T * c2 + 1)];

__syncthreads();

private_i = (((c2) * (Sqrt_T)) + (t1));

if (private_i < (((n) - (c0)) - 1)) {

private_j = ((c1) * (Sqrt_T)) + (t0);

if (private_j < ((n) - (c0))) {

U[(private_j + c0) * n + (private_i + c0 + 1)] -=

(shared_L[0][private_i - Sqrt_T * c2] *

shared_U_1[private_j - Sqrt_T * c1][0]);

}

}

__syncthreads();

}

}

}

Figure 4.11: Serial code, MetaFork code and generated parametric CUDA kernel for LU
decomposition

The experimentation reported in Section 4.5 shows the benefits of generating parametric
CUDA kernels. Not only this feature provides more portability but it helps obtaining better
performance with automatically generated code.
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Serial code

for (int v0 = 0; v0 < n; v0++)

for (int v1 = 0; v1 < n; v1++)

c[v0][v1] = a[v1][v0];

MetaFork code

int dim0 = n / B0, dim1 = n / B1;

meta_schedule {

meta_for (int v0 = 0; v0 < dim0; v0++)

meta_for (int v1 = 0; v1 < dim1; v1++)

meta_for (int u0 = 0; u0 < B0; u0++)

meta_for (int u1 = 0; u1 < B1; u1++)

{

int i = u0 + v0 * B0;

int j = u1 + v1 * B1;

c[j][i] = a[i][j];

}

}

__global__ void kernel0(int *a, int *c, int n, int dim0,

int dim1, int B0, int B1) {

int b0 = blockIdx.y, b1 = blockIdx.x;

int t0 = threadIdx.y, t1 = threadIdx.x;

int private_i;

int private_j;

// BLOCK_0 = B0, BLOCK_1 = B1

__shared__ int shared_a[BLOCK_0][BLOCK_1];

for (int c0 = b0; c0 < dim0; c0 += 256)

for (int c1 = b1; c1 < dim1; c1 += 256) {

if (n >= t0 + B0 * c0 + 1 && n >= t1 + B1 * c1 + 1)

shared_a[t0][t1] =

a[(t0 + B0 * c0) * n + (t1 + B1 * c1)];

__syncthreads();

private_i = ((t0) + ((c0) * (B0)));

private_j = ((t1) + ((c1) * (B1)));

c[private_j * n + private_i] =

shared_a[private_i - B0 * c0][private_j - B1 * c1];

__syncthreads();

}

}

Figure 4.12: Serial code, MetaFork code and generated parametric CUDA kernel for matrix
transpose

Table 4.6: Speedup comparison of matrix addition between PPCG and MetaFork kernel code

Speedup (kernel) Input size
Thread block size 212 213

PPCG
16 * 32 13.024 9.750

MetaFork
8 * 4 19.520 20.329

16 * 4 32.971 35.227
32 * 4 54.233 49.734
8 * 8 28.186 30.221

16 * 8 44.783 42.008
32 * 8 56.650 50.547
8 * 16 33.936 32.793

16 * 16 45.015 41.606
32 * 16 54.426 47.930

Table 4.7: Speedup comparison of matrix vector multiplication among PPCG kernel code,
MetaFork kernel code and MetaFork kernel code with post-processing

Speedup (kernel) Input size
Thread block size 211 212 213

PPCG
32 3.954 3.977 5.270

MetaFork with post-processing
16 4.976 6.260 7.794
32 8.698 6.911 10.340
64 4.260 5.567 6.683
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Serial code

for (int v0 = 0; v0 < n; v0++)

for (int v1 = 0; v1 < n; v1++)

c[v0][v1] = a[v0][v1] + b[v0][v1];

MetaFork code

int dim0 = n / B0, dim1 = n / B1;

meta_schedule {

meta_for (int v0 = 0; v0 < dim0; v0++)

meta_for (int v1 = 0; v1 < dim1; v1++)

meta_for (int u0 = 0; u0 < B0; u0++)

meta_for (int u1 = 0; u1 < B1; u1++)

{

int i = u0 + v0 * B0;

int j = u1 + v1 * B1;

c[i][j] = a[i][j] + b[i][j];

}

}

__global__ void kernel0(int *a, int *b, int *c, int n,

int dim0, int dim1, int B0, int B1) {

int b0 = blockIdx.y, b1 = blockIdx.x;

int t0 = threadIdx.y, t1 = threadIdx.x;

int private_i;

int private_j;

for (int c0 = b0; c0 < dim0; c0 += 256)

for (int c1 = b1; c1 < dim1; c1 += 256) {

private_i = ((t0) + ((c0) * (B0)));

private_j = ((t1) + ((c1) * (B1)));

c[private_i * n + private_j] =

(a[private_i * n + private_j] +

b[private_i * n + private_j]);

__syncthreads();

}

}

Figure 4.13: Serial code, MetaFork code and generated parametric CUDA kernel for matrix
addition

Serial code

for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)

c[i] += a[i][j] * b[j];

MetaFork code

int dim = n / B;

meta_schedule {

meta_for (int v = 0; v < dim; v++)

for (int i = 0; i < n / 16; ++i)

meta_for (int u = 0; u < B; u++)

for (int j = 0; j < 16; ++j) {

int p = v * B + u;

c[p] += a[p][i*16+j]*b[i*16+j];

}

}

__global__ void kernel0(int *a, int *b, int *c, int n, int dim, int B) {

int b0 = blockIdx.x;

int t0 = threadIdx.x;

int private_p;

// BLOCK_0 = B

__shared__ int shared_a[BLOCK_0][BLOCK_0];

__shared__ int shared_b[BLOCK_0];

__shared__ int shared_c[BLOCK_0];

for (int c0 = b0; c0 < dim; c0 += 32768) {

if (n >= t0 + B * c0 + 1)

shared_c[t0] = c[t0 + B * c0];

for (int c1 = 0; c1 < n / BLOCK_0; c1 += 1) {

if (n >= t0 + B * c0 + 1)

for (int c3 = 0; c3 < BLOCK_0; c3 += 1)

shared_a[c3][t0] = a[(c3 + B * c0) * n + (B * c1 + t0)];

shared_b[t0] = b[t0 + B * c1];

__syncthreads();

for (int c3 = 0; c3 < BLOCK_0; c3 += 1) {

private_p = (((c0) * (B)) + (t0));

shared_c[private_p - B * c0] +=

(shared_a[private_p - B * c0][c3] * shared_b[c3]);

}

__syncthreads();

}

if (n >= t0 + B * c0 + 1)

c[t0 + B * c0] = shared_c[t0];

__syncthreads();

}

}

Figure 4.14: Serial code, MetaFork code and generated parametric CUDA kernel for matrix
vector multiplication
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Table 4.8: Speedup comparison of matrix multiplication between PPCG and MetaFork kernel
code

Speedup (kernel) Input size
Thread block size 210 ∗ 210 211 ∗ 211

PPCG
16 * 32 129.853 393.851

MetaFork
8 * 4 32.157 96.652

16 * 4 54.578 171.621
32 * 4 53.399 156.493
8 * 8 60.358 182.557

16 * 8 87.919 287.002
32 * 8 84.057 289.930
8 * 16 100.521 299.228

16 * 16 100.264 330.965
32 * 16 85.928 247.220

Serial code

for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)

for (int k = 0; k < n; ++k)

c[i][j] += a[i][k] * b[k][j];

MetaFork code

int dim0 = n / B0, dim1 = n / B1;

meta_schedule {

meta_for (int i = 0; i < dim0; i++)

meta_for (int j = 0; j < dim1; j++)

for (int k = 0; k < n/4; k++)

meta_for (int v = 0; v < B0; v++)

meta_for (int u = 0; u < B1; u++)

{

int p = i * B0 + v;

int w = j * B1 + u;

for (int z = 0; z < 4; z++)

c[p][w] +=

a[p][4*k+z] * b[4*k+z][w];

}

}

__global__ void kernel0(int *a, int *b, int *c, int n, int dim0,

int dim1, int B0, int B1) {

int b0 = blockIdx.y, b1 = blockIdx.x;

int t0 = threadIdx.y, t1 = threadIdx.x;

int private_p;

int private_w;

// BLOCK_0 = B0, BLOCK_1 = B1

__shared__ int shared_a[BLOCK_0][4];

__shared__ int shared_b[4][BLOCK_1];

__shared__ int shared_c[BLOCK_0][BLOCK_1];

for (int c0 = b0; c0 < dim0; c0 += 256)

for (int c1 = b1; c1 < dim1; c1 += 256) {

if (n >= t0 + B0 * c0 + 1 && n >= t1 + B1 * c1 + 1)

shared_c[t0][t1] =

c[(t0 + B0 * c0) * n + (t1 + B1 * c1)];

for (int c2 = 0; c2 < n / 4; c2 += 1) {

if (t1 <= 3 && n >= t0 + B0 * c0 + 1)

shared_a[t0][t1] =

a[(t0 + B0 * c0) * n + (t1 + 4 * c2)];

if (t0 <= 3 && n >= t1 + B1 * c1 + 1)

shared_b[t0][t1] =

b[(t0 + 4 * c2) * n + (t1 + B1 * c1)];

__syncthreads();

private_p = (((c0) * (B0)) + (t0));

private_w = (((c1) * (B1)) + (t1));

for (int c5 = 0; c5 <= 3; c5 += 1)

shared_c[private_p - B0 * c0][private_w - B1 * c1] +=

(shared_a[private_p - B0 * c0][c5] *

shared_b[c5][private_w - B1 * c1]);

__syncthreads();

}

if (n >= t0 + B0 * c0 + 1 && n >= t1 + B1 * c1 + 1)

c[(t0 + B0 * c0) * n + (t1 + B1 * c1)] =

shared_c[t0][t1];

__syncthreads();

}

}

Figure 4.15: Serial code, MetaFork code and generated parametric CUDA kernel for matrix
matrix multiplication
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Table 4.9: Timings (in sec.) of quantifier elimination for eight examples

Example Timing
Array reversal 0.072

1D Jacobi 0.948
2D Jacobi 7.735

LU decomposition 4.416
matrix transposition 1.314

matrix addition 1.314
matrix vector multiplication 0.072
matrix matrix multiplication 2.849



Chapter 5

MetaFork: A Metalanguage for
Concurrency Platforms Targeting
Pipelining

On-line algorithms [10, 37] which are suitable for applications, like signal and image process-
ing, often involve data parallelism. In such algorithms, computations start as soon as part of
the input data is available for processing, and results are returned as soon as part of the out-
put data becomes available. Pipelining [87, 61, 39] has a basic pattern of on-line algorithms.
A pipelining is a sequence of processing stages operating on tasks by partitioning them into
separated units. Stages work independently in the producer-consumer manner.

Pipelining is poorly suited for data parallelism. Indeed, in this model, processing elements
performs simultaneously the same operation on different data regions. Pipelining is also poorly
suited for the fork-join model. Indeed, in case that processing a subset of elements is distributed
to each task, synchronization must take place whenever a processing element needs to be read
or written. With such synchronization in the fork-join model indicated by the implicit or ex-
plicit barrier operation, this could lead to severe parallelism overheads.

In addition, stencil computations [47, 83] are a major pattern in scientific computing. Sten-
cil codes perform a sequence of sweeps (called time-steps) through a given array and each
sweep can be seen as the execution of a pipelining. When expressed with concurrency plat-
forms based (and limited) to the fork-join model, parallel stencil computations incur excessive
parallelism overheads. This problem is studied in [134] together with a solution in the con-
text of OpenMP by proposing new synchronization constructs to enable doacross parallelism.
In Section 5.1, we briefly explain how the pipelining techniques are implemented in the real
life. The syntax and the semantics of MetaFork pipelining parallel constructs are specified in
Sections 5.2 and 5.3.

5.1 Execution Model of Pipelining
As mentioned above, a pipelining is a sequence of processing stages through which data items
flow from the first stage to the last stage. If each stage can process only one data item at a time,
then the pipelining is said to be serial and can be depicted by a (directed) path in the sense of
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graph theory. If a stage can process more than one data item at a time, then the pipelining is
said to be parallel and can be depicted by a directed acyclic graph (DAG), where each parallel
stage is represented by a co-clique, that is, a set of vertices of which no pair is adjacent. From
the perspective of performance, the benefit of pipelining is to improve system throughput, that
is, the number of tasks that can be executed in a unit time. Apparently, the slowest stages
(either parallel or serial) of the pipelining have a significant impact on the throughput.

There are two natural ways of implementing a parallel pipelining:

1. bound-to-stage where a worker is attached to each processing stage, and

2. bound-to-item where a worker carries an item through the pipelining.

TBB’s implementation [127] is based on the latter and, thanks to the so-called parking trick [107]
realizes a greedy scheduler. CilkPlus’s implementation [95] combines the bound-to-item and
randomized work-stealing scheduling strategies.

5.2 Core Parallel Constructs
We enhance the MetaFork language with three constructs: meta pipe, meta wait and meta -
continue to express pipelining parallelism.

The meta pipe construct. The synopsis of meta pipe is

meta pipe([I;]C[;S][;D]) { B }

where I is the initialization expression, C is the condition expression, S is the stride, D is the
dependencies, and B is the pipelining body. In addition:

- the initialization expression initializes variables, called the control variables, which can
be of an integer or pointer type,

- the condition expression compares the control variables with a compatible expression,
using one of the relational operators <, <=, >, >=, !=,

- the stride is used to increase or decrease the value of the control variables,

- the dependencies are used to specify the execution order of the data flow, and

- if B consists of a single instruction, then the surrounding curly braces can be omitted.

The above meta pipe statement specifies that its serial counterpart induces pipelining, that is,
a DAG whose vertices are processing stages through which data items flow from the first stage
to the last stage. Unless dependencies are specified or meta continue is used, the execution
of the loop is sequential, that is, the DAG is linear. If dependencies are used, then they specify
the immediate predecessors of each vertex of the DAG.

Each time before the execution of the pipelining body, the condition expression is evaluated.
If it is true, the body is executed; otherwise, the body terminates. The execution of each
iteration of the meta pipe loop starts from stage zero in the serial manner and the pipelining
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body consists of several stages whose boundaries are delimited by the meta wait or meta -
continue construct. We refer to the stages in each iteration as monotonically increasing non-
negative integers as the iteration executes. The dependencies are a set of dependency which is
defined as the form of (d1 , d2 , ..., dn), where n is the nest-level and di denotes the loop index
of the ith nested loop in the meta pipe C-elision counterpart (see Section 5.3).

Using meta wait and meta continue into a meta pipe body turns each iteration of the loop
into a sub-DAG, as discussed in the following.

The meta continue construct. meta continue has the following format

meta continue(s)

meta continue indicates that the execution advances to stage s without waiting for the stage s
in the previous iteration of the loop to terminate. This implies that stage s could process more
than one computation at a time in parallel.

The meta wait construct. Analogous to the meta continue construct, meta wait is defined
as follows:

meta wait(s)

meta wait also indicates that the execution advances to stage s, but waits for the completion of
stage s in the previous iteration of the loop.

Specifically, unlike traditional pipelining technique that a stream of data flows through the
pipelining at every stage, with our framework, programmers could skip some stages by taking
advantage of the stage argument provided for the meta continue and meta wait constructs, and
even the execution order between stages may be deduced dynamically. This intelligent design
has the potential of exploiting complicated applications. In addition, if the argument of meta -
wait and meta continue is not explicitly specified, the execution implicitly flows into the next
stage.

 

//for-loop or while-loop 

    meta_pipe(cond) 

     { 

      Read data; 

              meta_continue(); 

      Processing data; 

      meta_wait(); 

      Store data; 

     } 

 

Advance to next stage, 

without waiting the previous  

iteration 

Advance to next stage, and 

also waiting the previous  

iteration 

 

Indicates the beginning of the 

pipeline 

 

Stage 0 

Stage 2 

Stage 1 

 

… 
 

 

Input is serial 

meta_wait enforces 

dependent   edge 

Figure 5.1: Pipelining code with meta pipe construct and its DAG

Figure 5.1 illustrates how to use these constructs on a simple example (given as pseudo-
code) for which the corresponding execution DAG is also depicted. On the left side of Fig-
ure 5.1, the code is divided into three stages: reading data, processing data and storing data.
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The meta pipe indicates that the subsequent body represents a pipelining. Then, meta continue
advances work to the next stage without waiting for the completion of the previous iteration. At
last, meta wait moves to the next stage, but waits for the previous iteration to finish. As shown
on the right side of Figure 5.1, stage 1 provides an opportunity for concurrent execution.

5.3 Semantics of the Pipelining Constructs in MetaFork

The semantics of each of the parallel constructs introduced in MetaFork pipelining model, is
defined in this section, following the concept of serial C-elision discussed in Section 3.4.

The meta pipe construct has the same semantics as the sequential execution of nested for-
loops where the ith for-loop is denoted by the ith control variable appearing in the condition
expression. On the other hand, in the C-elision code, the dependencies are safe to be removed
without changing the semantics. Finally, meta continue as well as meta wait is converted into
a goto statement that points to the position of the code according to its stage argument. In
particular, if the argument indicates the execution from stage s to stage s + 1, meta continue
and meta wait are removed directly.

Figures 5.2 and 5.4 give insight into the above ideas. On the left hand side of Figure 5.2, a

int pipe(int n)

{

int k = 0;

meta_pipe(k < n)

{

k++;

stage(0);

meta_wait(1);

stage(1);

meta_continue(2);

stage(2);

meta_wait(3);

stage(3);

}

return 0;

}

int serial(int n)

{

int k = 0;

for ( ; k < n; )

{

k++;

stage(0);

stage(1);

stage(2);

stage(3);

}

return 0;

}

Figure 5.2: MetaFork pipelining code and its serial C-elision counterpart code

valid MetaFork code follows the pipelining pattern defined in Section 5.2. One the right hand
of Figure 5.2, the serial counterpart of that MetaFork pipelining code is displayed by removing
meta wait, meta continue and converting meta pipe to a single for loop. It is obvious to use
the DAG comparing the performance between the pipelining code and its serial code. On the
right side of Figure 5.3, the nodes will be executed sequentially without any parallelism, while
on the left side, stage 2 could run in parallel, which exposes massive parallelism.

Figure 5.4 shows a case of stencil computation code (on the left) written with meta pipe.
In this example, dependencies are specified by listing the adjacent vertices (i.e. iteration) on
the vertex (t,i,j). The serial counterpart of that MetaFork pipelining code is shown on the
right of Figure 5.4. Note that dependencies are ignored and meta pipe is replaced with nested
for-loops.
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Stage 0 

Stage 3 

Stage 2 

Stage 1 

 

… 
 

 

Input is serial 

meta_wait enforces 

dependent   edge 

 

Pipelining parallelism 

 

… 
 

 

Figure 5.3: Computation DAG of algorithms in Figure 5.2

meta_pipe((t,i,j)=(1,1,1); t<T && i<m && j<n;

(t,i,j)++; (t,i-1,j) && (t,i,j-1)

&& (t-1, i,j))

T[i][j] = T[i-1][j] + T[i][j-1] + T[i][j];

for(t=1; t<T; t++)

for(i=1; i<m; i++)

for(j=1; j<n; j++)

T[i][j] = T[i-1][j] + T[i][j-1] + T[i][j];

Figure 5.4: Stencil code using meta pipe and its serial C-elision counterpart code

5.4 Summary
In this chapter, we have enhanced the MetaFork framework with extensions to express pipelin-
ing parallelism. To this end, we introduced three constructs, i.e. meta pipe, meta continue and
meta wait, whose syntax and semantics were detailed in Sections 5.2 and 5.3. With these
high-level constructs, programmers can specify a pipelining program with little programming
efforts. Furthermore, compared to the traditional pipelining technique, our methods could
model applications whose execution DAG is determined during the program’s execution. So
far, we have focused on the syntax and semantics design, but the implementation is not yet
completed.



Chapter 6

MetaFork: The Compilation Framework

The objective of this chapter is to explain the design and the implementation details of the
MetaFork compilation framework. The key concepts of this chapter are arranged into sec-
tions and are presented as follows. In Section 6.1, we present the motivation of the MetaFork
compilation framework and how we will achieve our goal. In Section 6.2, we discuss the
programming specification of MetaFork as a high-level parallel programming language. In
Section 6.3, we provide a high-level view of each software component of the MetaFork com-
pilation framework. In Sections 6.4 and 6.5, we present the key contributions of this chapter,
which are the implementation of each component of the MetaFork compiler, and the details of
the extensions of the MetaFork front-end, respectively. Finally, in Section 6.6, we detail the
implementation of parsing MetaFork and CilkPlus constructs.

6.1 Goals

Over the last two decades, there has been significant progress in the development of promising
parallel platforms for high-performance computing targeting homogeneous and heterogeneous
architectures. CilkPlus, OpenMP and CUDA are examples of these parallel platforms. Ap-
plications that run on these platforms have the potential to gain a huge boost in performance;
however, they incur the cost of a significant programming effort, even for expert programmers.
The challenges of parallel computing arise from the following well-known traits: large amount
of concurrent threads, hierarchical memories, inter-processor communication, and synchro-
nization. In order to take full advantage of the tremendous computing power made available
through hardware accelerators, intricate knowledge of the parallel software platform and the
underlying system hardware is mandatory. Additionally, due to the rapid architectural innova-
tion and the increasing software complexity [85, 110, 46], it is not easy for developers to par-
allelize and optimize their programs manually. Therefore, in order to maximize performance,
productivity, and portability, high-level parallel programming models that transparently adapt
to a wide range of parallel architectures are needed.

In this context, we propose the MetaFork compilation framework which is characterized
by three significant goals:

1. offering high-level parallel programming models with language-level constructs aiming
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to exploit parallelism for homogeneous and heterogeneous architectures in a simple man-
ner as well as,

2. offering productive platforms for researchers to develop new compiler techniques to im-
prove software in terms of performance and resource utilization, and

3. facilitating interoperability between concurrency platforms so as to realize the merits of
the MetaFork compilation framework.

The first goal is driven the observed advantages of high-level parallel programming mod-
els. Based on past experiences [130, 123, 48], parallel programming models with low-level
APIs, like CUDA, offer a great opportunity for performance tuning but limit portability, scal-
ability, and productivity. For instance, the burden of explicitly managing memory hierarchy
(i.e. shared memory, global memory) and multi-level parallelism (e.g. thread blocks within
a grid, threads within a thread block ) placed by CUDA on programmers makes the manual
development of high performance CUDA code rather complicated. Programmers are required
to put much time and efforts to optimize those details.

The development of high-level parallel programming models which provide powerful ab-
straction, has the potential to free the programmers from the burden of handling program de-
tails. Such models abstract details of how a computation will actually be implemented. The
programmers only need to supply annotations which capture the nature of the computation
in the sequential code and the final decision of how to implement the computation rests with
the back-end compiler by means of those annotations. A major feature of these models is to
abstract away from the notion of a thread in the program as well as to make the underlying
hardware features transparent to programmers. For example, these models avoid the explicit
management of the hardware accelerator, i.e. thread and memory management, and the map-
ping of work units to threads; thus these models ease programming.

Moreover, programming with such models also leads to more portability for modern and
future architectures due to the high abstraction which hides the complex details of the parallel
hardware from the programmers. Consider this situation: sometimes implicit assumptions are
made when programs are developed in low-level programming languages. It is possible that
such programs sustain losses in performance if migrated to an architecture for which those
assumptions no longer hold. For instance, hardware resources, like registers, have a crucial
impact on the performance of CUDA kernels while the maximum number of registers available
to each thread differs between GPU generations. Excessive usage of registers per thread, which
causes register spilling, results in substantial performance degradation. By contrast, achieving
high performance for an application written by high-level programming languages becomes the
responsibility of the underlying compiler by performing optimization which should be focused
on by researchers.

Hence, it is convincing that, instead of programming with low-level parallel programming
APIs at the expense of a huge investment of time and efforts, programming with high-level
languages with only minimal efforts, is the most promising technology to increase productivity
and face radical changes in hardware design in the future [155]. On the other hand, observ-
ing the high cost of designing architecture specific back-end optimization from scratch, the
MetaFork compilation framework is designed to make use of existing optimizing compilers.
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In order to carry out such work, source-level compiler infrastructures must be available to per-
form the ability of interoperability between different concurrency platforms. We stress the fact
that our work focuses on optimizing the use of user defined high-level (source code level) ab-
straction rather than on lower-level (machine instruction level) optimization associated with
code generation for specific platforms.

We propose the following tasks so as to meet the goal of the MetaFork compilation frame-
work:

1. defining a high-level language for expressing concurrency,

2. providing source-to-source transformation tools to take advantage of contemporary con-
currency platforms, and

3. developing platforms which are capable of analyzing multiple programming languages.
At the time of writing, CilkPlus, OpenMP and the MetaFork language are supported by
the MetaFork compilation framework.

6.2 MetaFork as a High-Level Parallel Programming Lan-
guage

As described in Section 6.1, it is desirable for the MetaFork compilation framework to be
built around a high-level parallel programming language. Such a language needs to satisfy the
following requirements:

1. enhancing the C/C++ language with minimal language extensions while supporting pop-
ular schemes of parallelism,

2. increasing programming productivity.

3. programmers need to explicitly identify opportunities for concurrent execution.

The MetaFork language extends the C/C++ language with parallel language constructs
that the programmer can express in the form of compiler-directives (i.e. Pragma’s) or key-
words, see Section 6.6.1. Hereafter, we focus on Pragma directives, which are widely sup-
ported by mainstream compilers. MetaFork treats these Pragma directives in the host code
as a set of declarative annotations that guide compilers towards carrying out the concrete code
generation. The design of MetaFork’s Pragma directives is inspired by those of OpenMP, as
illustrated by Figure 6.1 which specifies syntax.

#pragma mf directive-name [clause[ [,] clause] ... ] new-line

statement

Figure 6.1: MetaFork Pragma directive syntax

Basically, the syntax of MetaFork Pragma directives follows the convention of C/C++

standards for compiler directives 1. Directives are case-sensitive and each directive starts with
1The C Preprocessor https://gcc.gnu.org/onlinedocs/cpp/Pragmas.html#Pragmas

https://gcc.gnu.org/onlinedocs/cpp/Pragmas.html#Pragmas
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#pragma mf to represent itself as a MetaFork Pragma directive. For some directive, a clause
which contains a list of variables may be used. It is the programmers responsibility to ensure
that each variable is valid, which implies that not only it is a valid C/C++ identifier, but also
that the variable has been declared before being used. The clauses can appear in any order in a
directive and also the clauses in a directive can be repeated if needed, see Figure 6.2. A Pragma
directive can be attached to any statement within a function body and must be terminated by a
new-line character.

1 void region(int *a, int *b, int N)

2 {

3 int sum_a=0, sum_b=0;

4

5 #pragma mf fork shared(sum_a) shared(a)

6 for(int i=0; i<N; i++)

7 sum_a += a[i];

8

9 for(int i=0; i<N; i++)

10 sum_b += b[i];

11

12 #pragma mf join

13 }

Figure 6.2: A code snippet showing a MetaFork program with Pragma directives

In Figure 6.2, the code snippet is used to illustrate the use of MetaFork Pragma directives
expressing parallelism at the source code level. The Pragma directive shown at Line (5) allows
the for-loop statement at Line (6) to be executed concurrently to the for-loop statement at Line
(9). Details on the meaning of each Pragma directive (e.g. at Lines (5) and (12)) are presented
in Section 3.2.

1 void region(int *a, int *b, int N)

2 {

3 int sum_a=0, sum_b=0;

4

5 meta_fork shared(sum_a) shared(a)

6 for(int i=0; i<N; i++)

7 sum_a += a[i];

8

9 for(int i=0; i<N; i++)

10 sum_b += b[i];

11

12 meta_join;

13 }

Figure 6.3: A code snippet showing a MetaFork program with keywords
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Figure 6.4: Overall work-flow of the MetaFork compilation framework

In addition to the Pragma directive mechanism, MetaFork also features its language with
keywords (similar to CilkPlus) as construct for parallelism. As an example, the programs
annotated with Pragma directives in Figure 6.2 and that annotated with keywords in Figure 6.3
are semantically equivalent; but, unlike Pragma directives which are required to be placed in
a standalone line, the keywords flavor is more flexible. MetaFork keywords could be located
on the same line or on different lines with the statement that they precede. In fact, MetaFork
keywords are turned into Pragma directives with macro definitions. Additional details are
presented in Section 6.6.1.

6.3 Organization of the MetaFork Compilation Framework
The MetaFork compilation framework, as a source-to-source transformation compiler, takes
programs written in high-level parallel programming languages (i.e. CilkPlus, MetaFork and
OpenMP) as input and produces equivalent programs written in another parallel programming
languages (i.e. CilkPlus, MetaFork, OpenMP and CUDA). Figure 6.4 depicts an overview of
the design of the MetaFork compilation framework which highlights the MetaFork compiler
as its core component from the perspective of a source-to-source transformation compiler.

The entire execution of input programs happens in two steps: at the beginning of the pro-
cess, the MetaFork compiler translates the input programs into another format of parallel
programs which are readable by users. Then the generated programs are passed straightly to a
third-party compiler, such as GCC, Clang and NVCC, which compiles the generated programs
into an executable binary file shown as the last step of Figure 6.4.

6.4 MetaFork Compiler
The MetaFork compiler has three main components: (1) the front-end module, (2) the analysis
& transformation module and (3) the back-end module. With the MetaFork compiler, input
programs are converted into an abstract syntax tree (AST) by the first component. This AST
is then used as a common internal representation (IR) format in the next phase, that is, by
the second component, which performs numerous analyses and optimization. Afterward, the
third component translates the IR obtained from the previous phase into output files. More
than one type of input program is handled by the MetaFork compiler. So far, our research
work has focused on applications and libraries written in C/C++ with language extensions (i.e.
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CilkPlus, OpenMP and MetaFork).
In this section, we describe the design and the implementation of the MetaFork compiler,

particularly, the front-end on which Section 6.4.1 gives a complete introduction. Following it,
the other two modules are covered in Sections 6.4.2 and 6.4.3.

6.4.1 Front-End of the MetaFork Compiler
The purpose of the MetaFork compiler front-end is to parse the input programs and build
the corresponding AST’s. To avoid the cumbersome implementation of a family of C-based
languages front-ends and favor a widespread use of the MetaFork framework, we have taken
advantage of the Clang framework as a basis for developing the MetaFork front-end. Clang
is designed with clear interfaces and also considers itself extensible, so as to allow developers
to customize their own tools to interact with Clang. Recall the fact that MetaFork, as a high-
level parallel programming language, uses Pragma directives to expose parallelism. During
the preprocessing phase, the parser of Clang simply treats Pragma directives as sequences of
lexical tokens so as to allow them to be handled by extensions. This feature of Clang fits our
MetaFork project well since it offers the opportunity to implement the MetaFork compiler as
a standalone tool without applying any modifications to the core files or extending any C/C++

grammars of the Clang framework. Moreover, the Clang framework at version 3.6.2, on which
MetaFork is built, includes a complete implementation of OpenMP 3.0 specification. It implies
that we only need to focus on enhancing the Clang front-end to parse the Pragma directives of
MetaFork and CilkPlus. Based on the above considerations, we chose to use LibTooling 2,

1 int main(int argc, const char **argv) {

2 llvm::sys::PrintStackTraceOnErrorSignal();

3

4 std::unique_ptr<CompilationDatabase> Compilations(

5 tooling::FixedCompilationDatabase::loadFromCommandLine(argc, argv));

6

7 cl::ParseCommandLineOptions(argc, argv);

8

9 tooling::RefactoringTool Tool(*Compilations, SourcePaths);

10

11 return

12 Tool.runAndSave(newFrontendActionFactory<OpenMPtoMetaFrontendAction>().get());

13 }

Figure 6.5: A code snippet showing how to create tools based on Clang’s LibTooling

a Clang library that allows users to develop standalone tools as well as to use Clang’s parsing
function. The interfaces among different tasks composed of building tools upon LibTooling
are clearly separated and are detailed as follows:

1. Compilation database setup. To allow a compiler front-end to run properly, apart from
the input programs, it is necessary to pass various kinds of flags that the input programs
are compiled with, such as language-version flags (-std), macro definitions (-D), include

2http://clang.llvm.org/docs/LibTooling.html

http://clang.llvm.org/docs/LibTooling.html
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paths (-I), etc. In particular, without the include paths information, it’s not even pos-
sible to parse the input programs as a complete translation unit. Clang figures out all
these specific options by configuring a compilation database. A compilation database
retrieves a collection of exact compilation options, that programs are compiled with.
For instance, Line (4) of Figure 6.5 declares a compilation database variable and the
ParseCommandLineOptions function at Line (7) will parse all options following the
double dash ”–” on the command line. For instance, the three options in Figure 6.6,
including -include, -D, and -I, are stored in a compilation database.

2. ClangTool instantiation. In the second step, we need to create a ClangTool object which
is the utility to run a FrontendAction discussed in step 3 over input programs. As il-
lustrated at Line (9) of Figure 6.5, we use a specific version called RefactoringTool
which is a subclass of ClangTool that offers a nice way to manipulate source-to-source
transformations. Internally, such a class implements all the logic such that all involved
components of a MetaFork source-to-source compiler can work in coordination with
each other, such as parsing the input programs, performing an action when a match oc-
curs (in our case, matching the Pragma directives), running the AST visitor and applying
all program modifications. This explains why we end our main function in Figure 6.5
with a call to Tool.runAndSave(); in fact, it will perform all these tasks automati-
cally. To create a Refactoring object, the compilation database variable declared in
step 1 and the source programs, for instance, input.cpp in Figure 6.6, are passed as
parameters to initialize its constructor.

3. FrontendAction instantiation. The FrontendAction class, which is a basic abstract
class for several sub-classes, provides various interfaces for performing actions over
input source programs. We use ASTFrontendAction which is a sub-class of Fron-
tendAction because we want to analyze the AST representation of the source programs.
Moreover, this is the place where we can interact with the Clang preprocessor so as
to handle our Pragma directives because building the AST cannot be done by bypassing
the preprocessor. For example, at Line (12) of Figure 6.5, OpenMPtoMetaFron-
tendAction is an instantiation of ASTFrontendAction. It serves as a parameter to
the newFrontendActionFactory function which creates a new FrontendAction in-
stance for a ClangTool object.

metatoopenmp input.cpp -o output.cpp -- -include header.h -Dmacro -Ipath/

Figure 6.6: A general command-line interface of MetaFork tools

6.4.2 Analysis & Transformation of the MetaFork Compiler
Besides the purpose of serving as a high-level parallel programming language, the MetaFork
compilation framework also provides tools for source-to-source transformations via the anal-
ysis performed on the AST. One of the basic functionalities required to navigate the AST is
visiting each of its nodes in a predefined order. As a result, our intention is to modify and
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Figure 6.7: Overall work-flow of the MetaFork analysis and transformation chain

rewrite the AST. There are two methods to traverse the AST in Clang, by using Matchers or
RecursiveASTVisitors. In our implementation, we use the latter which not only provides
access to the nodes of the AST, which is what Matchers does, but also allows us to change the
predefined order in which the AST nodes are traversed.

In this section, we present a general scheme of FrontEndAction operations which perform
recursive visit and editing over the AST. To this end, programmers are responsible for manipu-
lating four procedures, that are: ASTFrontEndAction, ASTConsumer, RecursiveASTVisi-
tor and Rewriter, as depicted in Figure 6.7:

1. ASTFrontEndAction. As illustrated in Section 6.4.1, ASTFrontEndAction is a Clang
interface which is used for writing tools that operate on the AST. In our implementation,
all it does is to provide a method CreateASTConsumer() to create an ASTConsumer
and set up a Clang Rewriter instance which is the main interface to the Clang rewrite
buffers for code transformations.

2. ASTConsumer. ASTConsumer is an abstract interface that should be implemented by de-
velopers. This interface is the entrance to access the AST produced by the Clang parser.
ASTConsumer provides several virtual methods that are called at various points when a
certain type of an AST node has been parsed in the compilation process. For instance,
HandleTranslationUnit, which opts in our project, is called only after Clang fin-
ishes building the AST for entire input programs. HandleTranslationUnit performs a
traversal of the whole AST using RecursiveASTVisitor scheme.

3. RecursiveASTVisitor. The RecursiveASTVisitor which uses curiously recurring tem-
plate pattern 3 is the parent class of all our node visitors. It allows developers to visit any
type of AST nodes, such as FunctionDecl and Stmt , simply by overriding a function
with that name, e.g. VisitFunctionDecl and VisitStmt respectively. To be more
precise, the RecursiveASTVisitor does a preorder depth-first traversal of the entire
Clang AST. Three groups of methods are supplied to visit each node of the AST in a hi-
erarchical manner. Traverse method group, as the first group, dispatches to a concrete
Traverse method which matches the dynamic type of the AST node. From there the
WalkUpFrom method, as the second group, is called which goes up the class hierarchy
of the current node until the top-most class, e.g. Decl, Stmt or Type, is reached. Mean-
while, the WalkUpFrom method calls Visit method to actually visit the node. Those
three methods are assigned to a priority from highest to low : Traverse→ WalkUpFrom
→ Visit, in which a method can only call methods from the same, or lower levels.

To activate RecursiveASTVisitor method, we invoke its TraverseDecl function
from the HandleTranslationUnit method of our ASTConsumer. This function will

3https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern
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traverse all the declarations of a Clang translation unit. More details of the Recur-
siveASTVisitor class could be found in the comments of file 4.

4. Rewriter. Due to the immutable design of the Clang AST once created, direct ASTmanip-
ulations (e.g. insert or delete an AST node) is not allowed so far. Instead, Clang offers a
Rewriter interface which enables developers making textual changes, such as inserting,
removing or replacing text, to the source programs. For developers who are interested in
code refactoring or source-to-source code transformations, the Rewriter interface is a
key component coupled with the above classes.

Using the Rewriter interface, we perform necessary analysis on the input programs
over the AST and make changes accordingly. By taking advantage of Clang’s outstanding
preservation of source locations for all AST nodes, this method could take as inputs Clang
SourceLocations (or SourceRanges) which indicates the location (or the range) in the
input programs where that particular AST node is located, and change the input programs
at specific places to perform the transformations precisely.

6.4.3 Back-End of the MetaFork Compiler

The goal of the MetaFork back-end is to produce programs written in parallel programming
languages (i.e. CilkPlus, MetaFork, OpenMP and CUDA) other than to generate an executable
binary file. In Clang, this is achieved by RewriteBuffer class. RewriteBuffer is a method
of the Rewriter class and stores the source programs. It preserves lots of high-level informa-
tion within the source programs, like comments, formatting and so on, aiming at being capable
of accurately reproducing the input. It is crucial to point out that in order to perform code trans-
formations, an analysis is performed on the Clang AST other than the RewriteBuffer object.
However, Clangmanages a close correspondence between the RewriteBuffer object and the
Clang AST to mirror the modifications in the input programs with the help of Rewriter. So
as modifications are applied on the input programs, a new RewriteBuffer is generated. This
new buffer captures these textual modifications as information used to map between source lo-
cations obtained from the AST in the input programs and outputs in the new RewriteBuffer.
In our work, we redirect this new RewriteBuffer to new files as Clang back-end’s output.
For instance, in Figure 6.6, output.cpp file is the output of the Clang back-end.

6.5 User Defined Pragma Directives in MetaFork

The front-end of the MetaFork compiler is required to be able to preprocess and parse the input
programs written by different parallel programming languages (e.g. CilkPlus, MetaFork and
OpenMP) based on Pragma directives. In order to be recognized as an user defined directive
and not an ordinary comment or another directive, a specification is introduced to take care of
matching Pragma directives for each occurrence in the input programs against the specification
pre-defined by the developers. If a matching between a Pragma directive and the specification
is successfully made, then the message contained in the Pragma directive is recorded and

4http://clang.llvm.org/doxygen/RecursiveASTVisitor_8h_source.html

http://clang.llvm.org/doxygen/RecursiveASTVisitor_8h_source.html
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Figure 6.8: Overall work-flow of the Clang front-end

associated with the corresponding Clang statement to which that Pragma directive is referring,
otherwise, a syntax error is announced. This section outlines how we deal with our high-level
abstractions (i.e. Pragma directives) during the overall processing phase of the MetaFork
compiler.

6.5.1 Registration of Pragma Directives in the MetaFork Preprocessor
Figure 6.8 illustrates the whole process of the Clang front-end in a more delicate manner.
We focus on how it deals with preprocessor directives, in particular, Pragma directives. The
Lexer reads from the input programs and divides the input stream into an individual token for
the Parser. More accurately, the input stream needs to be processed by the Preprocessor
that provides the ability for expanding preprocessor directives while creating tokens. Over
the course of processing the input stream, the Preprocessor is called by the Lexer once
preprocessor directives are detected. The Preprocessor reads all tokens from the Lexer by
the end of that directive. At this point, it is obvious that the Preprocessor is the entry point
of the MetaFork compiler to interact with the Clang front-end since Pragma directives belong
to preprocessor directives.

1 struct PragmaMetaHandler : public PragmaHandler {

2 Sema &S;

3 PragmaLocList &List;

4

5 PragmaMetaHandler(Sema &S, PragmaLocList &List) :

6 PragmaHandler("mf"), List(List), S(S) {}

7

8 void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,

9 Token &FirstToken) override;

10 };

Figure 6.9: A code snippet showing how to create a MetaFork user defined PragmaHandler

The first step is to define user defined Pragma directives which can be recognized by the
Clang front-end. The connection between the user defined Pragma directives and the Clang
front-end is implemented with the help of PragmaHandler class 5 which is the handler in-

5http://clang.llvm.org/doxygen/classclang_1_1PragmaHandler.html

http://clang.llvm.org/doxygen/classclang_1_1PragmaHandler.html
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stance being registered to the Clang front-end to be invoked when Pragma directives are en-
countered in input programs. For the sake of brevity, we take the implementation of MetaFork
Pragma directives as a sample to illustrate how a new Pragma handler is specified and the
same method is applied to realize the implementation of CilkPlus Pragma directives. As
shown in Figure 6.9, a MetaFork Pragma handler class derived from PragmaHandler, namely
PragmaMetaHandler, is defined. Each Pragma handler optionally has a PragmaNamespace
to represent the base name of the Pragma directive. As required of class PragmaHandler, this
base name must be a textual string which immediately follows the #pragma in the same line.
In the example, the base name is defined to be mf at Line (6). The most important function
provided by the Pragma handler is a virtual function HandlePragma which is a callback func-
tion on the preprocessor action. Once a Pragma directive with the base name is being matched,
HandlePragma function is invoked automatically by the Clang Preprocessor.

Then we need to register a Pragma handler instance to the Clang front-end such that it
can take effect. In Figure 6.10, an instance of the PragmaMetaHandler class is registered by
adding it to the Clang Preprocessor (PP) which can be retrieved from the CompilerInstance
instance in the ASTFrontendAction instance. From now on, the Clang Preprocessor is
aware of our user defined Pragma directives and will trigger user defined actions through
HandlePragma function as soon Pragma directives are matched.

PP.AddPragmaHandler(new PragmaMetaHandler(S, List));

Figure 6.10: A code snippet showing how to register a new user defined Pragma handler in-
stance to Clang preprocessor

6.5.2 Parsing of Pragma Directives in the MetaFork Front-End
The Pragma directives are processed in the preprocessing phase ahead of the complete Clang
AST generation. Keep in mind that, within MetaFork framework, Pragma directives are im-
plemented without touching any core classes/functions in Clang/LLVM source files. However,
a minor defect of this method is that the Clang AST can not represent any parallelism informa-
tion carried by Pragma directives. This implies the necessity of building a bridge to easily map
a Pragma directive to the AST node it precedes. Hence, the objective of the Preprocessor
comprises two aspects: (1) parsing the Pragma directives correctly and (2) offering an interface
to match between a Pragma directive and its corresponding AST node.

The procedure to achieve the first objective is straightforward. In the preprocessing phase,
Clang Preprocessor takes ownership of the Lexer in the presence of tok::pp pragma
token, then it consumes the next token which leads to two scenarios. If the token is correctly
matched with mf (i.e. the base name of MetaFork Pragma directives), the Lexer consumes the
input stream until the end of the Pragma directive, that is the tok::eod token is encountered,
and this Pragma directive is stored in a list data structure. Reversely, if the matching cannot be
performed, then the default behavior of the Clang front-end is applied.

Regarding the second objective, the observation is that by the time the PragmaHandler
is called, the corresponding statement attached to that Pragma directive has not been parsed
yet. Thus, the link between the Pragma directive and the AST node associated to that statement
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is futile. To overcome this limitation imposed by the lack of any AST information when the
PragmaHandler is being invoked, we retrieve the only context information available at that
time, i.e. locations. The key point is that, immediately after the tok::eod token, the Lexer
peeks ahead one token without consuming it. The location of this peeked token, namely context
location, is tied to its preceding Pragma directive and as a basic property, this location informa-
tion will also be captured by the AST during the construction. However, if a Pragma directive
does not refer to a statement, like a #pragma mf join directive detailed in Section 6.6.1,
context location is ignored automatically by the MetaFork front-end.

6.5.3 Attaching Pragma Directives to the Clang AST

As stated before, the Clang AST is hidden behind the MetaFork high-level environment anno-
tated at programs through Pragma directives. Without the association between a Pragma di-
rective and its related AST node, a pure AST representation is meaningless from the perspective
of source-to-source compilers, because we can not figure out where to start out the transforma-
tions. Our solution is to use RecursiveASTVisitor to visit each node of the Clang AST. We
query the location of the AST node from where this node was created. If it is identical to the
context location of a Pragma directive, then this Pragma directive gets associated to that AST
node.

6.6 Implementation
To date, the MetaFork compilation framework supports two flavors of annotation in programs
to express parallelism: keywords and Pragma directives. Both flavors are designed to achieve
the same goal to aid the development of compiler supported accelerator technologies. In fact,
keywords flavor, as a supplementary to Pragma directives flavor, is no more than a syntactic
sugar to programmers due to the fact that keywords constructs are turned into Pragma direc-
tives by Preprocessor. In Sections 6.6.1 and 6.6.2, we depict the way in which various
MetaFork and CilkPlus constructs ( both keywords and Pragma directives) are handled by
the MetaFork front-end by the means of discussing a list of example cases, respectively.

6.6.1 Parsing MetaFork Constructs

Table 6.1: MetaFork constructs and clauses

Keywords Pragma directives optional clauses

meta fork #pragma mf fork shared

meta for #pragma mf parallel for

meta join #pragma mf join

meta schedule #pragma mf schedule cache

Table 6.1 summarizes the MetaFork constructs, including both Keywords and Pragma
directives flavors, and clauses, which could be recognized by the MetaFork front-end cur-
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rently. In addition, the first column (resp. second column) in conjunction with the third column
denote the legal combination of Keywords (resp. Pragma directives ) and clauses. Finally,
the MetaFork front-end substitutes the MetaFork Keywords with the corresponding Pragma
directives defined in Figure 6.11 when preprocessing the input programs.

#define meta_fork _Pragma(" mf fork ")

#define meta_schedule _Pragma(" mf schedule ")

#define meta_for _Pragma(" mf parallel for for ")

#define meta_join _Pragma(" mf join ")

Figure 6.11: Convert MetaFork Keywords to Pragma directives

Parsing meta for construct. In Figure 6.12, the MetaFork Pragma directive at Line (1)
annotates the for loop at Line (2) as a parallel for loop. After consuming the tok::pp -
pragma token, as usual, the Preprocessor reads the next token mf which indicates that this
Pragma directive is introduced by the MetaFork programming language. Then the following
two tokens (parallel and for) are consumed to denote this Pragma directive as a parallel
for loop directive. Immediately, a new-line token, tok::eod, terminates the parsing of the
whole Pragma directive at Line (1). In the last step, the Lexer uses a look-ahead technique to
collect the location information of the for token at Line (2). The entire procedure is faithfully
coherent with the steps discussed in Section 6.5.2.

1 #pragma mf parallel for

2 for(int i=0;i<10;i++)

3 {

4

5 }

Figure 6.12: A code snippet showing how to annotate a parallel for loop with MetaFork
Pragma directive

On the other hand, the Keywords version in Figure 6.13 of its Pragma directives coun-
terpart in Figure 6.12 is obtained using the meta for keyword. The code in Figure 6.14 is
obtained after preprocessing the code in Figure 6.13. Note the difference between Figures 6.12

1 meta_for(int i=0;i<10;i++)

2 {

3

4 }

Figure 6.13: A code snippet showing how to annotate a parallel for loop with MetaFork
keyword

and 6.14. Due to the substitution of the meta for construct, the last for token at Line (1),
which should be a part of the C/C++ language keyword at Line (2) to format a valid code,
appears in the same line with the Pragma directive. By default Clang Preprocessor will
consume that last for token as part of the Pragma directive, thus, from the Clang Parser’s
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1 #pragma mf parallel for for

2 (int i=0;i<10;i++)

3 {

4

5 }

Figure 6.14: The code snippet after preprocessing the code in Figure 6.13

1 //comsume the first for

2 PP.Lex(Tok);

3

4 // we end Clang Preprocessor and set end of directive

5 PP.getCurrentLexer()->setParsingPreprocessorDirective(false);

6 Tok.setKind(tok::eod);

Figure 6.15: Setting the tok::eod token

perspective, this results in an invalid code from Line (2). To address this problem, a trick is
applied by the MetaFork Preprocessor. After the Preprocessor consumes the first for
token at Line (1), we set it as a tok::eod token by force. As a result, the Preprocessor ends
and the Lexer advances to the next token, that is the second for, which is associated with Line
(2) to constitute a valid for loop statement now. This trick is done by the code in Figure 6.15.

Parsing meta fork construct. In Figure 6.16, the MetaFork Pragma directive at Line (1)

1 #pragma mf fork shared(...)

2 statement

Figure 6.16: A code snippet showing how to annotate a parallel region with MetaFork Pragma
directive

annotates the statement at Line (2) as a parallel region. The equivalent Keywords version is dis-
played in Figure 6.17 using the meta fork keyword and the shared clause. The preprocessed
code of Figure 6.17 is listed in Figure 6.18. The issue arisen from the code in Figure 6.18 is
that the shared clause, as a component of the Pragma directive, is on a separate line, while
by default the Preprocessor can not reach this point. We use a unified strategy to handle
the cases in Figures 6.18 and 6.16. After the fork token is parsed, we set it as a tok::eod
token by force and terminate the Preprocessor. The Lexer continues and looks ahead to the
next token. If it is a shared token, the Lexer will consume until the end of the token ")"
as described in Figure 6.19 and then collect the context location information. Otherwise, the
Lexer will merely extract the context location information.

Parsing meta join construct. In Figure 6.20, Line (1) annotates a join directive and the
counterpart Keywords version is shown in Figure 6.21 using the meta join keyword. The
preprocessed code of Figure 6.21 is denoted in Figure 6.22. The parsing procedure is almost
coherent with the steps discussed in Section 6.5.2 except that a context location is not needed
since a join directive is a standalone Pragma directive.

Parsing meta schedule construct. In Figure 6.23, the MetaFork Pragma directive at Line
(1) indicates that the statement at Line (2) could be executed on an external device and the
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1 meta_fork shared(...)

2 statement

Figure 6.17: A code snippet showing how to annotate a parallel region with MetaFork
keyword

1 #pragma mf fork

2 shared(...)

3 statement

Figure 6.18: The code snippet after preprocessing the code of Figure 6.17

1 // consume "fork" token

2 PP.getCurrentLexer()->setParsingPreprocessorDirective(false);

3 Tok.setKind(tok::eod);

4

5 while (PP.LookAhead(0).is(tok::identifier) &&

6 PP.LookAhead(0).getIdentifierInfo()->isStr("shared"))

7 {

8 // consume shared

9 PP.Lex(Tok);

10 // consume ’(’

11 PP.Lex(Tok);

12 bool LexID = true;

13

14 while (true) {

15 PP.Lex(Tok);

16

17 if (LexID) {

18 if (Tok.is(tok::identifier)) {

19 Vars.push_back(Tok.getIdentifierInfo()->getName());

20 LexID = false;

21 continue;

22 }

23 }

24 // We are execting a ’)’ or a ’,’.

25 if (Tok.is(tok::comma)) {

26 LexID = true;

27 continue;

28 }

29 if (Tok.is(tok::r_paren)) {

30 enddirective = Tok.getLocation();

31 break;

32 }

33 }

34 }

Figure 6.19: Consuming the shared clause

1 #pragma mf join

Figure 6.20: A code snippet showing how to annotate a join construct with MetaFork Pragma
directive
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1 meta_join;

Figure 6.21: A code snippet showing how to annotate a join construct with MetaFork
Keywords

1 #pragma mf join

2 ;

Figure 6.22: The code snippet after preprocessing the code of Figure 6.21

counterpart Keywords version is shown in Figure 6.24 using the meta schedule keyword to-
gether with the cache clause. The preprocessed code of Figure 6.24 is denoted in Figure 6.25.
The parsing method that parses the meta schedule construct is the same method parsing the
meta fork construct.

1 #pragma mf schedule cache(...)

2 statement

Figure 6.23: A code snippet showing how to annotate device code with MetaFork Pragma
directive

6.6.2 Parsing CilkPlus Constructs
Table 6.2 summarizes the CilkPlus constructs, including both Keywords and Pragma direc-
tives flavors, which could be recognized by MetaFork front-end currently. Note that no clause
is supported yet. In the preprocessing phase, the MetaFork front-end substitutes the CilkPlus
Keywords constructs with the corresponding Pragma directives defined in Figure 6.26. Com-
pared to MetaFork constructs, CilkPlus constructs are defined with another base name, namely
cilk, while the parsing method is almost identical to the way of parsing MetaFork constructs.

Parsing cilk for construct. In Figure 6.27, the CilkPlus Pragma directive at Line (1)
annotates the for loop at Line (2) as a parallel for loop and the counterpart Keywords version
is shown in Figure 6.28 using the cilk for keyword. The preprocessed code of Figure 6.28
is denoted in Figure 6.29. The parsing method that parses the cilk for construct is the same
method parsing the meta for construct as shown in Section 6.6.1.

Parsing cilk spawn construct. In Figure 6.30, the CilkPlus Pragma directive at Line
(1) annotates the statement at Line (2) as a parallel function call. The equivalent CilkPlus
Keywords version is displayed in Figure 6.31 using the cilk spawn keyword. The prepro-
cessed code of Figure 6.31 is listed in Figure 6.32. The parsing method that parses the cilk -
spawn construct is almost the same method parsing the meta fork construct as shown in
Section 6.6.1 except that no clause is parsed here.

Parsing cilk sync construct. In Figure 6.33, Line (1) annotates a sync directive and the
counterpart Keywords version is shown in Figure 6.34 using the cilk sync keyword. The
preprocessed code of Figure 6.34 is denoted in Figure 6.35. The parsing method that parses
the cilk sync construct is the same method parsing the meta join construct as shown in
Section 6.6.1.
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1 meta_schedule cache(...)

2 statement

Figure 6.24: A code snippet showing how to annotate device code with MetaFork Keywords

1 #pragma mf schedule

2 cache(...)

3 statement

Figure 6.25: The code snippet after preprocessing the code of Figure 6.24

Table 6.2: CilkPlus constructs and clauses

Keywords Pragma directives optional clauses

cilk spawn #pragma cilk spawn

cilk for #pragma cilk parallel for

cilk sync #pragma cilk sync

#define cilk_spawn _Pragma(" cilk spawn ")

#define cilk_for _Pragma(" cilk parallel for for ")

#define cilk_sync _Pragma(" cilk sync ")

Figure 6.26: Convert CilkPlus Keywords to Pragma directives

1 #pragma cilk parallel for

2 for(int i=0;i<10;i++)

3 {

4

5 }

Figure 6.27: A code snippet showing how to annotate a parallel for loop with CilkPlus Pragma
directive

1 cilk_for(int i=0;i<10;i++)

2 {

3

4 }

Figure 6.28: A code snippet showing how to annotate a parallel for loop with CilkPlus
keyword

1 #pragma cilk parallel for for

2 (int i=0;i<10;i++)

3 {

4

5 }

Figure 6.29: The code snippet after preprocessing the code Figure 6.28
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1 #pragma cilk spawn

2 function call;

Figure 6.30: A code snippet showing how to annotate a parallel function call with CilkPlus
Pragma directive

1 cilk_spawn funciton call;

Figure 6.31: A code snippet showing how to annotate a parallel function call with CilkPlus
keyword

1 #pragma cilk spawn

2 funciton call;

Figure 6.32: The code snippet after preprocessing the code of Figure 6.31

1 #pragma cilk sync

Figure 6.33: A code snippet showing how to annotate a sync construct with CilkPlus Pragma
directive

1 cilk_sync;

Figure 6.34: A code snippet showing how to annotate a sync construct with CilkPlus Keyword

1 #pragma cilk sync

2 ;

Figure 6.35: The code snippet after preprocessing the code of Figure 6.34
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6.7 Summary
In this chapter, we have presented our MetaFork compilation framework with two objec-
tives: (1) offering high-level parallel programming constructs, and (2) offering source-to-
source transformation tools to utilize this framework. With the first objective, our framework
addresses major challenges, such as performance, portability and scalability, imposed by low-
level parallel programming APIs, and with the later, it builds a bridge between our framework
and contemporary concurrency platforms. Developing such a framework from scratch is stren-
uous. Hence, the MetaFork compilation framework is built on top of modern compiler product
Clang for parsing and generating AST from input programs. To be precise, we could manipulate
mainstream C/C++ language extensions, OpenMP and CilkPlus, as well as MetaFork.

As a part of the MetaFork compilation framework, we defined a general scheme to handle
user defined Pragma directives, since MetaFork, as a parallel programming language, opts
Pragma directives to explicitly expose parallelism in source programs. This scheme lifts our
framework as a standalone tool without editing any Clang source files and eases the burden on
integrating new Pragma directives into our framework if needed. Additionally, we outlined the
methods to steer the Clang AST in an efficient manner for the reason that developing source-
to-source transformation tools needs to query the AST frequently.



Chapter 7

Towards Comprehensive Parametric
CUDA Kernel Generation

In Chapter 4, we demonstrated that, from an annotated C code, it was possible to generate
CUDA kernels that depend on program parameters considered unknown at compile-time. Our
experimental results in Chapter 4 suggest that those parametric CUDA kernels could help with
increasing portability and performance of CUDA code.

In the present chapter, we enhance this strategy as follows. First, we propose an algo-
rithm for comprehensive optimization allowing us to optimize C code (and in particular CUDA
code) depending on unknown machine and program parameters. Then, we use this algorithm
to generate optimized parametric CUDA kernels, in the form of a case distinction based on
the possible values of the machine and program parameters [137]. We call comprehensive
parametric CUDA kernels the resulting CUDA kernels, see Section 7.2.

In broad terms, this is a decision tree, where each edge holds a Boolean expression, given by
a conjunction of polynomial constraints, and each leaf is either a CUDA kernel or the symbol
∅, such that for each leaf K, with K , ∅, we have:

1. K works correctly under the conjunction of the Boolean expressions located between the
root node and the leaf, and

2. K is semantically equivalent to a common input annotated C code P.
In each Boolean expression, the unknown variables represent machine parameters (like hard-
ware resource limits), program parameters (like dimension sizes of thread-blocks) or data pa-
rameters (like input data size). The symbol ∅ is used to denote a situation (in fact, value ranges
for the machine and program parameters) where no CUDA kernel equivalent to P is provided.

The intention, with the concept of comprehensive parametric CUDA kernels, is to auto-
matically generate optimized CUDA kernels from an annotated C code without knowing the
numerical values of some, or all, of the machine and program parameters. This naturally yields
a case distinction depending on the values of those parameters. Indeed, some optimization
techniques (like loop unrolling) can only be applied when enough computing resources are
available, while other optimization techniques (like common sub-expression elimination) can
be applied to reduce computing resource consumption. These case distinctions can be han-
dled by techniques from symbolic computation, for which software libraries are available, in
particular, the RegularChains library freely available at www.regularchains.org.

Other research groups have approached the questions of code portability and code opti-
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mization in the context of CUDA code generation from high-level programming models. They
use techniques like auto-tuning [63, 86], dynamic instrumentation [89] or both [136]. Rephras-
ing [86], “those techniques explore empirically different data placement and thread/block map-
ping strategies, along with other code generation decisions, thus facilitating the finding of a
high-performance solution.”

In the case of auto-tuning techniques, which have been used successfully in the celebrated
projects ATLAS [151], FFTW [57], and SPIRAL [124], part of the code optimization process
is done off-line, that is, the input code is analyzed and an optimization strategy (i.e a sequence
of composable code transformations) is generated, and then applied on-line (i.e. on the targeted
hardware). We propose to push this idea further by applying the optimization strategy off-line,
thus, even before the code is loaded on the targeted hardware.

Let us illustrate, with an example, the notion of comprehensive parametric CUDA kernels,
along with a procedure to generate them. For computing the sum of two matrices a and b of
order N, our input is the meta for-loop nest within the meta schedule statement on the right-
hand portion of Figure 7.1, whereas the serial code without tiling is provided on the left-hand
portion of Figure 7.1.

for (int i = 0; i < N; i++)

for (int j = 0; j < N; j++)

c[i][j] = a[i][j] + b[i][j];

(a) Before tiling, the C program

int dim0 = N/B0, dim1 = N/(2*B1);

meta_schedule {

meta_for (int v = 0; v < dim0; v++)

meta_for (int p = 0; p < dim1; p++)

meta_for (int u = 0; u < B0; u++)

meta_for (int q = 0; q < B1; q++)

{

int i = v * B0 + u;

int j = p * B1 + q;

if (i < N && j < N/2) {

c[i][j] = a[i][j] + b[i][j];

c[i][j+N/2] =

a[i][j+N/2] + b[i][j+N/2];

}

}

}

(b) After tiling, the MetaFork program

Figure 7.1: Matrix addition written in C (the left-hand portion) and in MetaFork (the right-
hand portion) with a meta for loop nest, respectively

We make the following simplistic assumptions for the translation of this meta for-loop
nest to a CUDA program.

1. The target machine has two parameters: the maximum number R2 of registers per thread,
and the maximum number R1 of threads per thread-block; moreover, all other hardware
limits are ignored.

2. The generated kernels depend on two program parameters, B0 and B1, which define the
format of a 2D thread-block.

3. The optimization strategy (w.r.t. register usage per thread) consists in reducing the work
per thread via removing the 2-way loop unrolling.



100 Chapter 7. Towards Comprehensive Parametric CUDA Kernel Generation

The possible comprehensive parametric CUDA kernels are given by the pairs (C1,K1) and
(C2,K2), where C1,C2 are two sets of algebraic constraints on the machine and program param-
eters and K1,K2 are two CUDA kernels that are optimized under the constraints, respectively,
given by C1,C2, see Figure 7.2. The following computational steps yield the pairs (C1,K1) and
(C2,K2).
(S1) Tiling techniques, based on quantifier elimination (QE), are applied to the meta for

loop nest of Figure 7.1 in order to decompose the matrices into tiles of format B0 × B1,
see [29] for details.

(S2) The tiled MetaFork code is mapped to an intermediate representation (IR) say that of
LLVM , or alternatively, to PTX1 code.

(S3) Using this IR (or PTX) code, one can estimate the number of registers that a thread
requires; thus, using LLVM IR on this example, we obtain an estimate of 14.

(S4) Next, we apply the optimization strategy [50], yielding a new IR (or PTX) code, for
which register pressure reduces to 10. Since no other optimization techniques are con-
sidered, the procedure stops with the result shown in Figure 7.2.

Based on the above steps, Figure 7.3 shows the decision tree for generating these two pairs,
each of them consisting of a system of polynomial constraints and a CUDA kernel for matrix
addition. Note that, strictly speaking, the kernels K1 and K2 on Figure 7.2 should be given by
PTX code. But for simplicity, we are presenting them by the CUDA code counterpart.

C1 :
{

B0 × B1 ≤ R1
14 ≤ R2

__global__ void K1(int *a, int *b, int *c, int N,

int B0, int B1) {

int i = blockIdx.y * B0 + threadIdx.y;

int j = blockIdx.x * B1 + threadIdx.x;

if (i < N && j < N/2) {

a[i*N+j] = b[i*N+j] + c[i*N+j];

a[i*N+j+N/2] = b[i*N+j+N/2] + c[i*N+j+N/2];

}

}

dim3 dimBlock(B1, B0);

dim3 dimGrid(N/(2*B1), N/B0);

K1 <<<dimGrid, dimBlock>>> (a, b, c, N, B0, B1);

C2 :
{

B0 × B1 ≤ R1
10 ≤ R2 < 14

__global__ void K2(int *a, int *b, int *c, int N,

int B0, int B1) {

int i = blockIdx.y * B0 + threadIdx.y;

int j = blockIdx.x * B1 + threadIdx.x;

if (i < N && j < N)

a[i*N+j] = b[i*N+j] + c[i*N+j];

}

dim3 dimBlock(B1, B0);

dim3 dimGrid(N/B1, N/B0);

K2 <<<dimGrid, dimBlock>>> (a, b, c, N, B0, B1);

Figure 7.2: Comprehensive translation of MetaFork code to two kernels for matrix addition

1The Parallel Thread Execution (PTX) [7] is the pseudo-assembly language to which CUDA programs are
compiled by NVIDIA’s NVCC compiler. PTX code can also be generated from (enhanced) LLVM IR, using
nvptx back-end [3], following the work of [128].
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K2

K1

R1<B0×B1 B0×B1⩽R1

14⩽R2R2<14

10⩽R2R2<10

Figure 7.3: The decision tree for comprehensive parametric CUDA kernels of matrix addition

One can observe that loop unrolling is applied to K1 so as to increase arithmetic intensity.
This code transformation increases register pressure, which is possible under the constraints of
C1 but not under those of C2.

In general, to achieve a comprehensive translation of the annotated C program P into
CUDA kernels, one could be tempted to proceed as follows:
(S1) Perform a comprehensive optimization of P, as a MetaFork program, by applying the

comprehensive optimization algorithm demonstrated in Section 7.1.
(S2) Apply the MetaFork-to-CUDA code generator introduced in Chapter 4 to each MetaFork

program generated in the first step.
However, since the system of polynomial constraints associated with each optimized MetaFork
program is determined by an IR representation of that program, this system would not be accu-
rate for the CUDA code generated by a source-to-source MetaFork-to-CUDA code generator.

In fact, if PTX is used as IR in Step (S1) then Step (S2) is no longer necessary. However,
Step (S2) will produce code readable by a human being that will give her/him some sense of
the source code transformations performed at Step (S1).

The reason that we choose MetaFork programs as our input programs is because the
MetaFork language can be used to write both “high-level” (in the spirit of OpenMP) and
“lower-level” (closer to CUDA) parallel programs. Indeed, MetaFork is another high-level
heterogeneous programming model like OpenMP, OpenACC and C++ AMP [154]. Hence,
turning an unoptimized MetaFork program into optimized MetaFork programs can be seen as
a first approximation of our final goal, that is, generating optimized parametric CUDA kernels
from input unoptimized annotated C programs. The presented comprehensive optimization
algorithm combined with our previous work in Chapter 4 can be used to complete a compre-
hensive translation of a MetaFork program into parametric CUDA kernels.

Section 7.1 proposes a comprehensive optimization algorithm for optimizing an input code
fragment depending on unknown machine and program parameters. In Section 7.2, we describe
the procedure of comprehensive translation of an annotated C program, namely MetaFork,
into parametric CUDA kernels. An implementation of the comprehensive optimization algo-
rithm is presented in Section 7.3 so as to generate optimized MetaFork programs from a given
MetaFork program. We conduct the experimentation in Section 7.4 for optimizing six sim-
ple test cases: array reversal, matrix vector multiplication, 1D Jacobi, matrix addition, matrix
transpose and matrix matrix multiplication.
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This work is a joint project with Ning Xie and Marc Moreno Maza.

7.1 Comprehensive Optimization
We consider a code fragment written in the C language or in one of its linguistic extensions
targeting a computer device, which can be, for instance, a hardware accelerator or a desktop
CPU. We assume that some, or all, of the hardware characteristics of this device are unknown
at compile time. However, we would like to optimize our input code fragment w.r.t prescribed
resource counters (e.g. memory usage) and performance counters (e.g. clock-cycle per instruc-
tion). To this end, we treat the hardware characteristics of this device as symbols and generate
polynomial constraints (with those symbols as indeterminate variables) ensuring when such
and such code transformation is valid.

Section 7.1.1 states the hypotheses made on the input code fragment. Section 7.1.2 specifies
the notations for the hardware characteristics of the targeted device. In Section 7.1.3, we
describes the evaluation of resource and performance counters. In Section 7.1.4, we define
the optimization strategies that can reduce resource counters or increase performance counters.
Section 7.1.5 formally gives the definition of comprehensive optimization of an input code
fragment. Section 7.1.6 specifies the data structures that are used in our algorithm. Finally, in
Section 7.1.7, we demonstrate our algorithm for comprehensive optimization.

7.1.1 Hypotheses on the Input Code Fragment
We consider a sequence S of statements from the C programming language and introduce the
following.

Definition 1 We call parameter of S any scalar variable that is
(i) read in S at least once and

(ii) never written in S.
We call data of S any non-scalar variable (e.g. array) that is not initialized but possibly over-
written within S. If a parameter of S gives a dimension size of a data of S, then this parameter
is called a data parameter; otherwise, it is simply called a program parameter.

Notation 1 We denote by D1, . . . ,Du and E1, . . . , Ev the data parameters and program param-
eters of S, respectively.

Hypothesis 1 We make the following assumptions on S.
(H1) All parameters are assumed to be non-negative integers.
(H2) We assume that S can be viewed as the body of a valid C function having the parameters

and data of S as unique arguments.

Example 1 S can be the body of a kernel function in CUDA. Recall that the kernel code for
computing matrix vector multiplication in Figure 4.14 of Chapter 4. This kernel code multiplies
a square matrix a of order n with a vector b of length n and stores the result to a vector c of
length n. We note that a, b and c are the data, and that n is the data parameter. Moreover, the
grid and thread-block dimensions of this kernel are specified as dim and B, respectively, which
are then the program parameters.
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7.1.2 Hardware Resource Limits and Performance Measures
We denote by R1, . . . ,Rs the hardware resource limits of the targeted hardware device. Exam-
ples of these quantities for the NVIDIA Kepler micro-architecture are:

- the maximum number of registers to be allocated per thread,
- the maximum number of shared memory words to be allocated per thread-block,
- the maximum number of threads in a thread-block.

We denote by P1, . . . , Pt the performance measures of a program running on the device. These
are dimensionless quantities typically defined as percentages. Examples of these quantities for
the NVIDIA Kepler micro-architecture are:

- the ratio of the actual to the maximum number of words that can be read or written per
unit of time from the global memory,

- the ratio of the actual to the maximum number of floating point operations that can be
performed per unit of time by all streaming processors (SMs),

- the SM occupancy, that is, the ratio of active warps to the maximum number of active
warps,

- the cache hit rate in an SM [11].
For a given hardware device, R1, . . . ,Rs are positive integers, and each of them is the maxi-
mum value of a hardware resource. Meanwhile, P1, . . . , Pt are rational numbers between 0 and
1. However, for the purpose of writing code portable across a variety of devices with similar
characteristics, the quantities R1, . . . ,Rs and P1, . . . , Pt will be treated as unknown and inde-
pendent variables. These hardware resource limits and performance measures will be called
the machine parameters.

Each function K (and, in particular, our input code fragment S) written in the C language
for the targeted hardware device has resource counters r1, . . . , rs and performance counters
p1, . . . , pt corresponding, respectively, to R1, . . . ,Rs and P1, . . . , Pt. In other words, the quan-
tities r1, . . . , rs are the amounts of resources, corresponding to R1, . . . ,Rs, respectively, that K
requires for executing. Similarly, the quantities p1, . . . , pt are the performance measures, corre-
sponding to P1, . . . , Pt, respectively, that K exhibits when executing. Therefore, the inequalities
0 ≤ r1 ≤ R1, . . . , 0 ≤ rs ≤ Rs must hold for the function K to execute correctly. Similarly,
0 ≤ p1 ≤ 1, . . . , 0 ≤ pt ≤ 1 are satisfied by the definition of the performance measures.

Remark 1 We note that r1, . . . , rs, p1, . . . , pt may be numerical values, which we can assume
to be non-negative rational numbers. This will be the case, for instance, for the minimum num-
ber of registers required per thread in a thread-block. The resource counters r1, . . . , rs may also
be polynomial expressions whose indeterminate variables can be program parameters (like
the dimension sizes of a thread-block or grid) or data parameters (like the input data sizes).
Meanwhile, the performance counters p1, . . . , pt may further depend on the hardware resource
limits (like the maximum number of active warps supported by an SM). To summarize, we
observe that r1, . . . , rs are polynomials in Q[D1, . . . ,Du, E1, . . . , Ev] and p1, . . . , pt are ratio-
nal functions where numerators and denominators are in Q[D1, . . . ,Du, E1, . . . , Ev,R1, . . . ,Rs].
Moreover, we can assume that the denominators of those rational functions are positive.

Example 2 For computing the product of a dense square matrix of order N by a dense vector of
length N, consider the serial C code on the left-hand portion of Figure 7.4 and the corresponding
MetaFork code on the right-hand portion of Figure 7.4. The meta schedule statement yields
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the CUDA kernel shown in Figure 4.14 of Chapter 4. The grid of this kernel is one-dimensional
of size dim, and its thread-blocks are also one-dimensional, each counting B threads.

for (int p = 0; p < N; p++)

for (int q = 0; q < N; q++)

c[p] += a[p][q] * b[q];

(a) Before tiling, the C program

int dim = N / B;

meta_schedule {

meta_for (int v = 0; v < dim; v++)

for (int i = 0; i < dim; ++i)

meta_for (int u = 0; u < B; u++)

for (int j = 0; j < B; ++j) {

int p = v * B + u;

int q = i * B + j;

c[p] += a[p][q] * b[q];

}

}

(b) After tiling, the MetaFork program

Figure 7.4: Matrix vector multiplication written in C (the left-hand portion) and in MetaFork
(the right-hand portion), respectively

Observe that, in the process of generating this CUDA kernel, some optimization techniques
(like using the shared memory for arrays a, b and c in Figure 4.14 of Chapter 4) are applied,
while other optimization techniques remain to be applied (like the granularity of threads as
used in Figure 7.9). If R2 and R3 are two machine parameters that define, respectively, the
maximum number of threads in a thread-block and the maximum number of shared memory
words per thread-block, then the following constraints must hold:

B ≤ R2 and B2 + 2B ≤ R3.

Note that, in Figure 4.14 of Chapter 4, each thread-block allocates a unit size B2 of shared
memory words for the array a, and a unit size B of shared memory words, respectively, for
each of arrays b and c. Thus, this leads to the inequality B2 + 2B ≤ R3.

7.1.3 Evaluation of Resource and Performance Counters
Let GC(S) be the control flow graph (CFG) [152] of S. Hence, the statements in the basic
blocks of GC(S) are C statements, and we call such a CFG the source CFG. We also map S
to an intermediate representation, which, itself, is encoded in the form of a CFG, denoted by
GL(S), and we call it the IR CFG. Here, we refer to the landmark textbook [8] for the notion
of the control flow graph and that of intermediate representation.

We observe that S can trivially be reconstructed from GC(S); hence, the knowledge of S
and that of GC(S) can be regarded as equivalent. In contrast, GL(S) depends not only on S but
also on the optimization strategies that are applied to the IR of S.

Equipped with GC(S) and GL(S), we assume that we can estimate each of the resource
counters r1, . . . , rs (resp. performance counters p1, . . . , pt) by applying functions f1, . . . , fs

(resp. g1, . . . , gt) to either GC(S) or GL(S). We call f1, . . . , fs (resp. g1, . . . , gt) the resource
(resp. performance) evaluation functions.
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For instance, when S is the body of a CUDA kernel and S reads (resp. writes) a given
array, computing the total amount of elements read (resp. written) by one thread-block can
be determined from GC(S). Meanwhile, computing the minimum number of registers to be
allocated to a thread executing S requires the knowledge of GL(S).

7.1.4 Optimization Strategies
In order to reduce the consumption of hardware resources and increase performance counters,
we assume that we have w optimization procedures O1, . . . ,Ow, each of them mapping either a
source CFG to another source CFG, or an IR CFG to another IR CFG. Of course, we assume
the code transformations performed by O1, . . . ,Ow preserve semantics.

We associate each resource counter ri, for i = 1 · · · s, with a non-empty subset σ(ri) of
{O1, . . . ,Ow}, such that we have

fi(O(S)) ≤ fi(S) for O ∈ σ(ri). (7.1)

Hence, σ(ri) is a subset of the optimization strategies among O1, . . . ,Ow that have the potential
to reduce ri. Of course, the intention is that for at least one O ∈ σ(ri), we have fi(O(S)) < fi(S).
A reason for not finding such O would be that S cannot be further optimized w.r.t. ri. We also
make a natural idempotence assumption:

fi(O(O(S))) = fi(O(S)) for O ∈ σ(ri). (7.2)

Similarly, we associate each performance counter pi, for i = 1 · · · t, with a non-empty subset
σ(pi) of {O1, . . . ,Ow}, such that we have

gi(O(S)) ≥ gi(S) and gi(O(O(S))) = gi(O(S)) for O ∈ σ(pi). (7.3)

Hence, σ(pi) is a subset of the optimization strategies among O1, . . . ,Ow that have the potential
to increase pi. The intention is, again, that for at least one O ∈ σ(pi), we have gi(O(S)) >
gi(S).

7.1.5 Comprehensive Optimization
Let C1, . . . ,Ce be semi-algebraic systems with P1, . . . , Pt, R1, . . . ,Rs, D1, . . . ,Du, E1, . . . , Ev as
indeterminate variables. Let S1, . . . ,Se be fragments of C programs such that the parameters
of each of them are among D1, . . . ,Du, E1, . . . , Ev.

Definition 2 We say that the sequence of pairs (C1,S1), . . . , (Ce,Se) is a comprehensive opti-
mization of S w.r.t.

- the resource evaluation functions f1, . . . , fs,
- the performance evaluation functions g1, . . . , gt and
- the optimization strategies O1, . . . ,Ow

if the following conditions hold:
(i) [constraint soundness] Each of the semi-algebraic systems C1, . . . ,Ce is consistent, that

is, admits at least one real solution.
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(ii) [code soundness] For all real values h1, . . . , ht, x1, . . . , xs, y1, . . . , yu, z1, . . . , zv of P1, . . . , Pt,
R1, . . . ,Rs, D1, . . . ,Du, E1, . . . , Ev respectively, for all i ∈ {1, . . . , e} such that (h1, . . . , ht,
x1 . . . , xs, y1, . . . , yu, z1, . . . , zv) is a solution of Ci, then the code fragment Si produces
the same output as S on any data that makes S execute correctly.

(iii) [coverage] For all real values y1, . . . , yu, z1, . . . , zv of D1, . . . ,Du, E1, . . . , Ev, respec-
tively, there exist i ∈ {1, . . . , e} and real values h1, . . . , ht, x1, . . . , xs of P1, . . . , Pt, R1, . . . ,Rs,
such that (h1, . . . , ht, x1, . . . , xs, y1, . . . , yu, z1, . . . , zv) is a solution of Ci and Si produces
the same output as S on any data that makes S execute correctly.

(iv) [optimality] For every i ∈ {1, . . . , s} (resp. {1, . . . , t}), there exists ` ∈ {1, . . . , e} such that
for all O ∈ σ(ri) (resp. σ(pi)) we have fi(O(S`)) = fi(S`) (resp. gi(O(S`)) = gi(S`)).

To summarize Definition 2 in non technical terms:
- Condition (i) states that each system of constraints is meaningful.
- Condition (ii) states that as long as the machine, program and data parameters satisfy Ci,

the code fragment Si produces the same output as S on whichever data that makes S
execute correctly.

- Condition (iii) states that as long as S executes correctly on a given set of parameters
and data, there exists a code fragment Si, for suitable values of the machine parameters,
such that Si produces the same output as S on that set of parameters and data.

- Condition (iv) states that for each resource counter ri (performance counter pi), there
exists at least one code fragment S` for which this counter is optimal in the sense that it
cannot be further optimized by the optimization strategies from σ(ri) (resp. σ(pi)).

7.1.6 Data-Structures
The algorithm presented in Section 7.1.7 computes a comprehensive optimization of S w.r.t.
the evaluation functions f1, . . . , fs, g1, . . . , gt and optimization strategies O1, . . . ,Ow.

Hereafter, we define the main data-structure used during the course of the algorithm. We
associate S with what we call a quintuple, denoted by Q(S) and defined as follows:

Q(S) = (GC(S), λ(S), ω(S), γ(S),C(S))

where
1. λ(S) is the sequence of the optimization procedures among O1, . . . ,Ow that have already

been applied to the IR of S; hence, GC(S) together with λ(S) defines GL(S); initially,
λ(S) is empty,

2. ω(S) is the sequence of the optimization procedures among O1, . . . ,Ow that have not
been applied so far to either GC(S) or GL(S); initially, ω(S) is O1, . . . ,Ow,

3. γ(S) is the sequence of resource and performance counters that remain to be evaluated
on S; initially, γ(S) is r1, . . . , rs, p1, . . . , pt,

4. C(S) is the sequence of the constraints (polynomial equations and inequalities) on P1, . . . , Pt,
R1, . . . ,Rs, D1, . . . ,Du, E1, . . . , Ev that have been computed so far; initially, C(S) is
1 ≥ P1 ≥ 0, . . . , 1 ≥ Pt ≥ 0, R1 ≥ 0, . . . ,Rs ≥ 0, D1 ≥ 0, . . . ,Du ≥ 0, E1 ≥ 0, . . . , Ev ≥ 0.

We say that the quintuple Q(S) is processed whenever γ(S) is empty; otherwise, we say that
the quintuple Q(S) is in-process.
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Remark 2 For the above Q(S), each of the sequences λ(S), ω(S), γ(S) and C(S) is imple-
mented as a stack in Algorithms 10 and 11. Hence, we need to specify how operations on a
sequence are performed on the corresponding stack. Let s1, s2, . . . , sN is a sequence.

- Popping one element out of this sequence returns s1 and leaves that sequence with
s2, . . . , sN ,

- Pushing an element t1 on s1, s2, . . . , sN will update that sequence to t1, s1, s2, . . . , sN .
- Pushing a sequence of elements t1, t2, . . . , tM on s1, s2, . . . , sN will update that sequence

to tM, . . . , t2, t1, s1, s2, . . . , sN .

7.1.7 The Algorithm
Algorithm 10 is the top-level procedure. If its input is a processed quintuple Q(S), then it
returns the pair (GC(S), λ(S)) (such that, after optimizing S with the optimization strategies in
λ(S), one can generate the IR of the optimized S) together with the system of constraints C(S).
Otherwise, Algorithm 10 is called recursively on each quintuple returned by Optimize(Q(S)).
The pseudo-code of the Optimize routine is given by Algorithm 11.

Algorithm 10: ComprehensiveOptimization (Q(S))
Input: The quintuple Q(S)
Output: A comprehensive optimization of S w.r.t. the resource evaluation functions f1, . . . , fs, the

performance evaluation functions g1, . . . , gt and the optimization strategies O1, . . . ,Ow

1 if γ(S) is empty then
2 return ((GC(S), λ(S)),C(S));

3 The output stack is initially empty;
4 for each Q(S′) ∈ Optimize(Q(S)) do
5 Push ComprehensiveOptimization(Q(S′)) on the output stack;

6 return the output stack;

Remark 3 We make a few observations about Algorithm 11.
(R1) Observe that at Line (5), a deep copy of the input Q(S′) is made, and this copy is called

Q(S′′). This duplication allows the computations to fork. Note that at Line (6), Q(S′) is
modified.

(R2) In this forking process, we call Q(S′) the accept branch and Q(S′′) the refuse branch. In
the former case, the relation 0 ≤ vi ≤ Ri holds thus implying that enough Ri-resources are
available for executing the code fragment S′. In the latter case, the relation Ri < vi holds
thus implying that not enough Ri-resources are available for executing the code fragment
S′′.

(R3) Observe that vi is either a numerical value, a polynomial in Q[D1, . . . ,Du, E1, . . . , Ev] or
a rational function where its numerator and denominator are in Q[D1, . . . ,Du, E1, . . . , Ev,
R1, . . . ,Rs].

(R4) At Lines (18-20), a similar forking process occurs. Here again, we call Q(S′) the ac-
cept branch and Q(S′′) the refuse branch. In the former case, the relation 0 ≤ vi ≤ Pi

implies that the Pi-performance counter may have reached its maximum ratio; hence, no
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Algorithm 11: Optimize
Input: A quintuple Q(S′)
Output: A stack of quintuples
1 Initialize an empty stack, called result;
2 Take out from γ(S′) the next resource or performance counter to be evaluated, say c;
3 Evaluate c on S′ (using the appropriate functions among f1, . . . , fs, g1, . . . , gt) thus obtaining a

value vi, which can be either a numerical value, a polynomial in Q[D1, . . . ,Du, E1, . . . , Ev] or a
rational function where its numerator and denominator are in Q[D1, . . . ,Du, E1, . . . , Ev,

R1, . . . ,Rs];
4 if c is a resource counter ri then
5 Make a deep copy Q(S′′) of Q(S′), since we are going to split the computation into two

branches: Ri < vi and 0 ≤ vi ≤ Ri;
6 Add the constraint 0 ≤ vi ≤ Ri to C(S′) and push Q(S′) onto result;
7 Add the constraint Ri < vi to C(S′′) and search ω(S′′) for an optimization strategy of σ(ri);
8 if no such optimization strategy exists then
9 return result;

10 else
11 Apply such an optimization strategy to Q(S′′) yielding Q(S′′′);
12 Remove this optimization strategy from ω(S′′′);
13 if this optimization strategy is applied to the IR of S′′ then
14 Add it to λ(S′′′);

15 Push r1, . . . , ri−1, ri onto γ(S′′′);
16 Make a recursive call to Optimize on Q(S′′′) and push the returned quintuples onto

result;

17 if c is a performance counter pi then
18 Make a deep copy Q(S′′) of Q(S′), since we are going to split the computation into two

branches: 0 ≤ vi ≤ Pi and Pi < vi ≤ 1 ;
19 Add the constraint 0 ≤ vi ≤ Pi to C(S′) and push Q(S′) onto result;
20 Add the constraint Pi < vi ≤ 1 to C(S′′) and search ω(S′′) for an optimization strategy of

σ(pi);
21 if no such optimization strategy exists then
22 return result;

23 else
24 Apply such an optimization strategy to Q(S′′) yielding Q(S′′′);
25 Remove this optimization strategy from ω(S′′′);
26 if this optimization strategy is applied to the IR of S′′ then
27 Add it to λ(S′′′);

28 Push r1, . . . , rs, pi onto γ(S′′′);
29 Make a recursive call to Optimize on Q(S′′′) and push the returned quintuples onto

result;

30 Remove from result any quintuple with an inconsistent system of constraints;
31 return result;
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optimization strategies are applied to improve this counter. In the latter case, the rela-
tion Pi < vi ≤ 1 holds thus implying that the Pi-performance counter has not reached
its maximum value; hence, optimization strategies are applied to improve this counter if
such optimization strategies are available. Observe that if this optimization strategy does
make the estimated value of Pi larger then an algebraic contradiction would happen and
the branch will be discarded.

(R5) Line (30) in Algorithm 11 requires non-trivial computations with polynomial equations
and inequalities. The necessary algorithms can be found in [30] and are implemented in
the RegularChains library of Maple.

Remark 4 We make a few remarks about the handling of algebraic computation during the
execution of Algorithm 11:
(R6) Each system of algebraic constraints C is updated by adding a polynomial inequality to

it at either Lines (6), (7), (19) or (20). This incremental process can be performed by the
RealTriangularize algorithm [30] and implemented in the RegularChains library.

(R7) Each of these inequalities can be either strict (using >) or large (using ≤); the left-hand
side is a polynomial of either Q[D1, . . . ,Du, E1, . . . , Ev] or Q[D1, . . . ,Du, E1, . . . , Ev,
R1, . . . ,Rs], and the right-hand side is either one of the variables R1, . . . ,Rs or a poly-
nomial of Q[D1, . . . ,Du, E1, . . . , Ev, R1, . . . ,Rs] times one of the variables P1, . . . , Pt.

(R8) Because of the recursive calls at Lines (16) and (29) several inequalities involving the
same variable among R1, . . . ,Rs, P1, . . . , Pt may be added to a given system C. As a
result, C may become inconsistent. For instance if 10 ≤ R1 and R1 < 10 are both
added to the same system C. Note that inconstancy is automatically detected by the
RealTriangularize algorithm.

(R9) When using RealTriangularize, variables should be ordered. We choose a variable
ordering such that

- any of P1, . . . , Pt is greater than any of the other variables,
- any of R1, . . . ,Rs is greater than any of D1, . . . ,Du, E1, . . . , Ev.

(R10) Then, the RealTriangularize represents the solution of C as the union of the solution
sets of finitely many regular semi-algebraic systems. Each such regular semi-algebraic
system Υ consists of

- polynomial constraints involving D1, . . . ,Du, E1, . . . , Ev only,
- polynomial constraints involving D1, . . . ,Du, E1, . . . , Ev, R1, . . . ,Rs only and of

positive degree in at least one of R1, . . . ,Rs,
- constraints that are linear in P1, . . . , Pt and polynomial in D1, . . . ,Du, E1, . . . , Ev,

R1, . . . ,Rs.
Let us denote by ΥD,E, ΥD,E,R and ΥD,E,R,P these three sets of polynomial constraints,
respectively. It follows from the properties of regular semi-algebraic systems that

(a) ΥD,E is consistent,
(b) for all real values y1, . . . , yu, z1, . . . , zv of D1, . . . ,Du, E1, . . . , Ev such that (y1, . . . , yu,

z1, . . . , zv) solves ΥD,E, there exists real values x1, . . . , xs of R1, . . . ,Rs such that
(y1, . . . , yu, z1, . . . , zv, x1, . . . , xs) solves ΥD,E,R and real values h1, . . . , ht of P1, . . . , Pt

such that (y1, . . . , yu, z1, . . . , zv, x1, . . . , xs, h1, . . . , ht) solves ΥD,E,R,P.
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Figure 7.5: The decision subtree for resource or performance counters

Notation 2 We associate the execution of Algorithm 10, applied to Q(S), with a tree denoted
by T (Q(S)) and where both nodes and edges of T (Q(S)) are labelled. We use the same
notations as in Algorithm 11. We define T (Q(S)) recursively as follows:
(T1) We label the root of T (Q(S)) with Q(S).
(T2) If γ(S) is empty, then T (Q(S)) has no children; otherwise, two cases arise:

(T2.1) If no optimization strategy is to be applied for optimizing the counter c, then
T (Q(S)) has a single subtree, which is that associated with Optimize(Q(S′)) where
Q(S′) is obtained from Q(S) by augmenting C(S) either with 0 ≤ vi ≤ Ri if c is a
resource counter or with 0 ≤ vi ≤ Pi otherwise.

(T2.2) If an optimization strategy is applied, then T (Q(S)) has two subtrees:
(T2.2.1) The first one is the tree associated with Optimize(Q(S′)) (where Q(S′) is de-

fined as above) and is connected to its parent node by the accept edge, labelled
with either 0 ≤ vi ≤ Ri or 0 ≤ vi ≤ Pi; see Figure 7.5.

(T2.2.2) The second one is the tree associated with Optimize(Q(S′′′)) (where Q(S′′′) is
obtained by applying the optimization strategy to the deep copy of the input
quintuple Q(S)) and is connected to its parent node by the refuse edge, labelled
with either Ri < vi or Pi < vi ≤ 1; see Figure 7.5.

Observe that every node of T (Q(S)) is labelled with a quintuple and every edge is labelled
with an inequality constraint.

Remark 5 Figure 7.5 illustrates how Algorithm 11, applied to Q(S′), generates the associated
tree T (Q(S′)). The cases for a resource counter and a performance counter are distinguished
in the sub-figures (a) and (b), respectively. Observe that, in both cases, the accept edges go
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south-east, while the refuse edges go south-west.

Lemma 7.1.1 The height of the tree T (Q(S)) is at most w(s + t). Therefore, Algorithm 10
terminates.

Proof Consider a path Γ from the root of T (Q(S)) to any node N of T (Q(S)). Observe
that Γ counts at most w refuse edges. Indeed, following a refuse edge decreases by one the
number of optimization strategies to be used. Observe also that the length of every sequence
of consecutive accept edges is at most s + t. Indeed, following an accept edge decreases by one
the number of resource and performance counters to be evaluated. Therefore, the number of
edges in Γ is at most w (s + t).

Lemma 7.1.2 Let U := {U1, . . . ,Uz} be a subset of {O1, . . . ,Ow}. There exists a path from the
root of T (Q(S)) to a leaf of T (Q(S)) along which the optimization strategies being applied
are exactly those of U.

Proof Let us start at the root of T (Q(S)) and apply the following procedure:
1. follow the refuse edge if it uses an optimization strategy from {U1, . . . ,Uz},
2. follow the accept edge, otherwise.

This creates a path from the root of T (Q(S)) to a leaf with the desired property.

Definition 3 Let i ∈ {1, . . . , s} (resp. {1, . . . , t}). Let N be a node of T (Q(S)) and Q(SN) be
the quintuple labelling this node. We say that ri (resp. pi) is optimal at N w.r.t. the evaluation
function fi (resp. gi) and the subsetσ(ri) (resp. σ(pi)) of the optimization strategies O1, . . . ,Ow,
whenever for all O ∈ σ(ri) (resp. σ(pi)) we have fi(O(SN)) = fi(SN) (resp. gi(O(SN)) =

gi(SN)).

Lemma 7.1.3 Let i ∈ {1, . . . , s} (resp. {1, . . . , t}). There exists at least one leaf L of T (Q(S))
such that ri (resp. pi) is optimal at L w.r.t. the evaluation function fi (resp. gi) and the subset
σ(ri) (resp. σ(pi)) of the optimization strategies O1, . . . ,Ow.

Proof Apply Lemma 7.1.2 with U = σ(ri) (resp. U = σ(pi)).

Lemma 7.1.4 Algorithm 10 satisfies its output specifications.

Proof From Lemma 7.1.1, we know that Algorithm 10 terminates. So let (C1,S1), . . . , (Ce,Se)
be its output. We shall prove (C1,S1), . . . , (Ce,Se) satisfies the conditions (i) to (iv) of Defi-
nition 2. Condition (i) is satisfied by the properties of the RealTriangularize algorithm.
Condition (ii) follows clearly from the assumption that the code transformations performed by
O1, . . . ,Ow preserve semantics. Observe that each time a polynomial inequality is added to
a system of constraints, the negation of this inequality is also to the same system in another
branch of the computations. By using a simple induction on s + t, we deduce that Condition
(iii) is satisfied. Finally, we prove Condition (iv) by using Lemma 7.1.3.
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7.2 Comprehensive Translation of an Annotated C Program
into CUDA Kernels

Given a high-level model for accelerator programming (like OpenCL [141], OpenMP, OpenACC
or MetaFork), we consider the problem of translating a program written for such a high-level
model into a programming model for GPGPU devices, such as CUDA. We assume that the
numerical values of some, or all, of the hardware characteristics of the targeted GPGPU device
are unknown. Hence, these quantities are treated as symbols. Similarly, we would like that
some, or all, of the program parameters remain symbols in the generated code.

In our implementation, we focus on one high-level model for accelerator programming,
namely MetaFork. However, we believe that an adaptation to another high-level model for
accelerator programming would not be difficult. One supporting reason for that claim is the
fact that automatic code translation between the MetaFork and OpenMP languages can already
be done within the MetaFork compilation framework, see [35].

The hardware characteristics of the GPGPU device can be the maximum number of regis-
ters to be allocated per thread in a thread-block and the maximum number of shared memory
words to be allocated per thread in a thread-block. Similarly, the program parameters can be
the number of threads per thread-block and the granularity of threads. For the generated code
to be valid, hardware characteristics and program parameters need to satisfy constraints in the
form of polynomial equations and inequalities. Moreover, applying code transformation (like
optimization techniques) requires a case distinction based on the values of those symbols, as
we saw with the example in the introduction.

In Section 7.2.1, we specify the required properties of the input code fragment S from the
given MetaFork program, so that the comprehensive optimization algorithm, demonstrated
in Section 7.1, can handle this MetaFork program. Section 7.2.2 discusses the procedure of
comprehensive translation of the MetaFork program into parametric CUDA kernels, which
yields the definition of comprehensive parametric CUDA kernels.

7.2.1 Input MetaFork Code Fragment

Consider a meta schedule statement M and its surrounding MetaFork program P. In this
process of code analysis and transformation, we focus on the meta schedule statement M
and assume that the rest of the program P is serial C code. Hence, our examples, like the
matrix vector multiplication and matrix addition examples, consist simply of a meta schedule
statementM together with a few (possibly none) statements located beforeM and initializing
variables used inM.

Consider the meta schedule statementM, that is, a statement of the form

meta schedule A

where A is a compound statement of the form {A0A1 · · · A`} and each of A0, A1, . . . , A` is a
for-loop nest, such that:

1. each for-loop nest contains 2 or 4 meta for loops; hence, it can be executed in a parallel
fashion,
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2. the body of the innermost loop can be any valid sequence of C statements; in particular,
such a statement can be a for-loop, and

In practice, a parameter (in the sense of Definition 1) of the meta schedule statement M
is either a data parameter (that is, related to data being processed, like a number of rows or
columns in a matrix) or a program parameter (that is, related to the division of the work among
the threads executing the parallel for-loops). In Example 2, the variable N is a data parameter,
whereas the variables dim and B are the program parameters.

Moreover, for the sake of clarity, we shall assume that the meta schedule statement M
counts a single meta for loop nest A. Extending the present section to the case where M
counts several meta for loop nests can be done by existing techniques as we briefly explain
now. Indeed, each meta for loop nest can be handled separately. Then, “merging” the corre-
sponding results can be done by techniques from symbolic computation, see [31, 32]. There-
fore, we consider the serial elision (as defined in [35]) of A in M as the code fragment S.
Turning our attention back to Example 2, Figure 7.6 shows the serial elision of the MetaFork
program on the right-hand portion of Figure 7.4.

int dim = N / B, v, u;

// v is corresponding to the thread-block index

// u is corresponding to the thread index in a thread-block

// The following code is the serial elision

for (int i = 0; i < dim; ++i)

for (int j = 0; j < B; ++j) {

int p = v * B + u;

int q = i * B + j;

c[p] += a[p][q] * b[q];

}

Figure 7.6: The serial elision of the MetaFork program for matrix vector multiplication

7.2.2 Comprehensive Translation into Parametric CUDA Kernels
Now, applying the comprehensive optimization algorithm (described in Section 7.1) on the se-
rial elision S of the meta schedule statementM (with prescribed resource evaluation func-
tions, performance evaluation functions and optimization strategies), we obtain a sequence of
processed quintuples of meta schedule statements Q1(M),Q2(M), . . . ,Q`(M), which forms
a comprehensive optimization in the sense of Definition 2.

If, as mentioned in the introduction of this chapter, PTX is used as intermediate represen-
tation (IR) then, for each i = 1, . . . , `, under the constraints defined by the polynomial system
associated with Qi(M), the IR code associated with Qi(M) is the translation in assembly lan-
guage of a CUDA counterpart ofM. In our implementation, we also translate to CUDA source
code the MetaFork code in each Qi(M), since this is easier to read for a human being.

Therefore, in broad terms, a comprehensive translation of the meta schedule statement
M into parametric CUDA kernels is a decision tree, where each edge holds a Boolean expres-
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sion (given by a polynomial constraint) and each leaf is either a CUDA program in PTX form,
or the symbol ∅, such that for each leaf K, with K , ∅, we have:

1. K works correctly under the conjunction of the Boolean expressions located between the
root node and the leaf, and

2. K is semantically equivalent to P.
The symbol ∅ is used to denote a situation (in fact, value ranges for the machine and program
parameters) where no CUDA program equivalent to P is provided.

7.3 Implementation Details
In this section, we present a preliminary implementation of the comprehensive optimization al-
gorithm demonstrated in Section 7.1. This implementation takes a given MetaFork program as
input and is dedicated to the optimization of meta schedule statements in view of generating
parametric CUDA kernels.

For the algorithm stated in Section 7.1.7 to satisfy its specifications, one should use the PTX
language for the IR. However, for simplicity, in our proof-of-concept implementation here, we
use the IR of the LLVM compiler infrastructure, since the MetaFork compilation framework
is based on Clang.

Two hardware resource counters are considered: register usage per thread and local/shared
memory allocated per thread-block. No performance counters are specified; however, by de-
sign, the algorithm tries to minimize the usage of hardware resources. Four optimization strate-
gies are used: (i) reducing register pressure, (ii) controlling thread granularity, (iii) common
sub-expression elimination (CSE), and (iv) caching2 data in local/shared memory [101]. De-
tails are given hereafter.

Figure 7.7 gives an overview of the software tools that are used for our implementation.
Appendix C shows the implemented algorithms with these two resource counters and these
three optimization strategies.
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Figure 7.7: The software tools involved for the implementation

2In the MetaFork language, the keyword cache is used to indicate that every thread accessing a specified
array a must copy in local/shared memory the data it accesses in a.
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Conversion between source code and CFG. Clang is used as the front-end for pars-
ing the MetaFork source code and generating the source CFG. This latter is converted into
a Maple DAG in order to take advantage of Maple’s capabilities for algebraic computation.
Conversely, given a Maple version of a CFG, we can generate the corresponding MetaFork
code by traversing this CFG.

Register pressure. Given the MetaFork source code, we use LLVM to generate the low-
level machine instructions in the intermediate representation (IR), which are in a static single
assignment (SSA) form [44]. A benefit of using the SSA form is that one can calculate the live-
ness sets3 [152] without data flow analysis [152]. Once the lifetime information is computed,
we use the classical linear scan algorithm [119] to estimate the register usage.

Thread granularity. A common method to improve arithmetic intensity and instruction
level parallelism (ILP) is through controlling the granularity of threads [146], that is, each
thread computing more than one of the output results. One can achieve this goal by adding
a serial for loop within a thread. However, this method may increase the register usage as
well as the amount of required shared memory (see the example in Figure 7.9). In the case
that adding the granularity loop causes the needed resources to exceed the hardware limits, our
algorithm applies an optimized strategy, “Granularity set to 1,” to remove that serial loop from
the generated kernel code. We implement this strategy during the translation phase from the
CFG to the MetaFork code by not generating this loop.

Common sub-expression elimination (CSE). For each basic block in the CFG, built from
the MetaFork source code, we consider the basic blocks with more than one statement. Then,
we use the codegen[optimize] package of Maple, such that CSE is applied to those state-
ments and a sequence of new statements is generated. Finally, we update each basic block with
those new statements. Moreover, the optimization technique has two levels: one using Maple’s
default CSE algorithm and the other using the try-harder option of codegen[optimize].

Cache amount. We take advantage of the PET (polyhedral extraction tool) [148] to collect
information related to the index expression of an array: occurring program parameters (defined
as in Section 7.2), loop iteration counters and inequalities (that give the lower and upper bounds
of those loop iteration counters). We now illustrate with an example for computing the amount
of words that a thread-block requires. Consider the MetaFork program with the granularity
for reversing a 1D array as shown on the left-hand portion of Figure 7.8. Note that w.r.t the
MetaFork code, iteration counters i, j and k of for- (and meta for-) loops are counted as nei-
ther program nor data parameters; thus, we shall consider them as bounded variables. However,
in order to calculate the amount of words required per thread-block in the RegularChains li-
brary of Maple, we treat the iteration counter i, which indicates the thread-block index of
the CUDA kernel, as a program parameter. The function call ValueRangeWithConstra-
intsAndParameters to the RegularChains library, as shown on the right-hand portion of
Figure 7.8, is used to calculate the required words per thread-block for vector c. As a result, a
range [1, s*B+1] is returned, such that we can determine that vector c accesses s*B words
per thread-block.

3https://en.wikipedia.org/wiki/Live_variable_analysis

https://en.wikipedia.org/wiki/Live_variable_analysis
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// Data parameters: a, c, N

// Program parameters: B, s

int dim = N / (B * s);

meta schedule {

meta for (int i = 0; i < dim; i++)

meta_for (int j = 0; j < B; j++)

for (int k = 0; k < s; ++k) {

int x = i * B * s + k * B + j;

int y = N - 1 - x

c[y] = a[x];

}

}

(a) MetaFork program with the granularity

lowerBound := [];

upperBound := [];

fixedVars := [];

boundedVars := [j , k];

params := [i , s , B , N];

x := ((((i)*(B))*(s))+((k)*(B)))+(j);

y := ((N)-(1))-(x);

S := [ j >= 0 , j <= -1 + B , k >= 0 , k <= -1 + s ];

i0 := y;

bounds := ValueRangeWithConstraintsAndParameters

(i0, S, lowerBound, upperBound, fixedVars,

boundedVars, params);

(b) function call to RegularChains library

Figure 7.8: Computing the amount of words required per thread-block for reversing a 1D array

7.4 Experimentation
We present experimental results for the implementation described in Section 7.3. We consider
six simple test cases: array reversal, matrix vector multiplication, 1D Jacobi, matrix addi-
tion, matrix transpose and matrix matrix multiplication. Recall that we consider two machine
parameters: the amount ZB of shared memory per streaming multiprocessor (SM) and the max-
imum number RB of registers per thread in a thread-block.

Three scenarios of optimized MetaFork programs based on different systems of constraints
are generated by our implementation of the comprehensive optimization algorithm.The first
case of optimized MetaFork programs uses the shared memory and a granularity parameter s.
The second case uses the shared memory but sets the granularity parameter s to 1. The third
case removes the cache4 keyword and sets s to 1. In this latter case, the amount of words read
and written per thread-block is more than the maximum amount ZB of shared memory per SM.
However, the cache keyword is not implemented in the MetaFork compilation framework yet,
so that we manually process editing for this keyword. For each of these optimization strategies,
we use a shortened code shown in Table 7.1.

Table 7.1: Optimization strategies with their codes

Strategy name Its code Strategy name Its code
“Accept register pressure” (1) “CSE applied” (2)
“No granularity reduction” (3a) “Granularity set to 1” (3b)
“Accept caching” (4a) “Refuse caching” (4b)

Array reversal. Our comprehensive optimization algorithm applies to the source code the
following optimization strategy codes (1) (4a) (3a) (2) (2). For the first case, it generates the
optimized MetaFork code shown in Figure 7.9.

Applying optimization strategy codes in a sequence either (1) (3b) (4a) (3a) (2) (2) or
(2) (2) (3b) (1) (4a) (3a), the second case generates the optimized MetaFork code shown in
Figure 7.10.

4 In the MetaFork language, the intention of using the keyword cache is to indicate that every thread accessing
a specified array a must copy in local/shared memory the data it accesses in a.
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Constraints:{
2sB ≤ ZB

4 ≤ RB

strategies (1) (4a) (3a) (2) (2) applied

int N, s, B, dim = N/(s*B);

int a[N], c[N];

meta_schedule cache(a, c) {

meta_for (int i = 0; i < dim; i++)

meta_for (int j = 0; j < B; j++)

for (int k = 0; k < s; ++k) {

int x = (i*s+k)*B+j;

int y = N-1-x;

c[y] = a[x];

}

}

Figure 7.9: The first case of the optimized MetaFork code for array reversal

Constraints:{
2B ≤ ZB < 2sB
3 ≤ RB

strategies (1) (3b) (4a) (3a) (2) (2) applied
or{

2B ≤ ZB < 2sB
3 ≤ RB < 4

strategies (2) (2) (3b) (1) (4a) (3a) applied

int N, s = 1, B, dim = N/(s*B);

int a[N], c[N];

meta_schedule cache(a, c) {

meta_for (int i = 0; i < dim; i++)

meta_for (int j = 0; j < B; j++) {

int x = i*B+j;

int y = N-1-x;

c[y] = a[x];

}

}

Figure 7.10: The second case of the optimized MetaFork code for array reversal

Applying optimization strategy codes in a sequence either (1) (3b) (2) (2) (4b) or (2) (2)
(3b) (1) (4b), the third case generates the optimized MetaFork code shown in Figure 7.11.

Constraints:{
ZB < 2B
3 ≤ RB

strategies (1) (3b) (2) (2) (4b) applied
or{

ZB < 2B
3 ≤ RB < 4

strategies (2) (2) (3b) (1) (4b) applied

int N, s = 1, B, dim = N/(s*B);

int a[N], c[N];

meta_schedule {

meta_for (int i = 0; i < dim; i++)

meta_for (int j = 0; j < B; j++) {

int x = i*B+j;

int y = N-1-x;

c[y] = a[x];

}

}

Figure 7.11: The third case of the optimized MetaFork code for array reversal

Matrix vector multiplication. Applying optimization strategy codes in a sequence either
(1) (4a) (3a) (2) (2) or (2) (1) (4a) (3a) (2), the first case generates the optimized MetaFork
code shown in Figure 7.12.

Applying the optimization strategy codes in a sequence either (1) (3b) (4a) (3b) (2) (2),
(2) (1) (3b) (4a) (3a) (2) or (2) (2) (3b) (1) (4a) (3a), the second case generates the optimized
MetaFork code shown in Figure 7.13.

Applying the optimization strategy codes in a sequence either (1) (3b) (2) (2) (4b), (2) (1)
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Constraints:{
sB2 + sB + B ≤ ZB

8 ≤ RB

strategies (1) (4a) (3a) (2) (2) applied
or{

sB2 + sB + B ≤ ZB

8 ≤ RB < 9

strategies (2) (1) (4a) (3a) (2) applied

int N, s, B, dim0 = N/(s*B), dim1 = N/B;

int a[N][N], b[N], c[N];

meta_schedule cache(a, b, c) {

meta_for (int v = 0; v < dim0; v++)

for (int i = 0; i < dim1; i++)

meta_for (int u = 0; u < B; u++)

for (int j = 0; j < B; ++j)

for (int k = 0; k < s; ++k) {

int p = (v*s+k)*B+u;

int q = i*B+j;

c[p] = a[p][q]*b[q]+c[p];

}

}

Figure 7.12: The first case of the optimized MetaFork code for matrix vector multiplication

Constraints:{
B2 + 2B ≤ ZB < sB2 + sB + B
7 ≤ RB

strategies (1) (3b) (4a) (3a) (2) (2) applied
or{

B2 + 2B ≤ ZB < sB2 + sB + B
7 ≤ RB < 9

strategies (2) (1) (3b) (4a) (3a) (2) applied
or{

B2 + 2B ≤ ZB < sB2 + sB + B
7 ≤ RB < 8

strategies (2) (2) (3b) (1) (4a) (3a) applied

int N, s = 1, B, dim0 = N/(s*B), dim1 = N/B;

int a[N][N], b[N], c[N];

meta_schedule cache(a, b, c) {

meta_for (int v = 0; v < dim0; v++)

for (int i = 0; i < dim1; i++)

meta_for (int u = 0; u < B; u++)

for (int j = 0; j < B; ++j) {

int p = v*B+u;

int q = i*B+j;

c[p] = a[p][q]*b[q]+c[p];

}

}

Figure 7.13: The second case of the optimized MetaFork code for matrix vector multiplication

(3b) (2) (4b) or (2) (2) (3b) (1) (4b), the third case generates the optimized MetaFork code
shown in Figure 7.14.

1D Jacobi. Given 1D Jacobi source code written in MetaFork, shown in Figure 7.15,
the CSE strategy is applied successfully for all cases of optimized MetaFork programs. This
example requires post-processing for calculating the total amount of required shared memory
per thread-block, due to the fact that array a has multiple accesses and that each access has a
different index.

Applying the optimization strategy codes in a sequence (1) (4a) (3a) (2) (2), the first case
generates the optimized MetaFork code shown in Figure 7.16.

Applying the optimization strategy codes in a sequence (1) (3b) (4a) (3a) (2) (2), the second
case generates the optimized MetaFork code shown in Figure 7.17.

Applying the optimization strategy codes in a sequence (1) (3b) (2) (2) (4b), the third case
generates the optimized MetaFork code shown in Figure 7.18.

Matrix addition. Due to the limitation in the codegen[optimize] package of Maple, the
CSE optimizer could not handle a two-dimensional array on the left-hand side of assignments.
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Constraints:{
ZB < B2 + 2B
7 ≤ RB

strategies (1) (3b) (2) (2) (4b) applied
or{

ZB < B2 + 2B
7 ≤ RB < 9

strategies (2) (1) (3b) (2) (4b) applied
or{

ZB < B2 + 2B
7 ≤ RB < 8

strategies (2) (2) (3b) (1) (4b) applied

int N, s = 1, B, dim0 = N/(s*B), dim1 = N/B;

int a[N][N], b[N], c[N];

meta_schedule {

meta_for (int v = 0; v < dim0; v++)

for (int i = 0; i < dim1; i++)

meta_for (int u = 0; u < B; u++)

for (int j = 0; j < B; ++j) {

int p = v*B+u;

int q = i*B+j;

c[p] = a[p][q]*b[q]+c[p];

}

}

Figure 7.14: The third case of the optimized MetaFork code for matrix vector multiplication

int T, N, s, B, dim = (N-2)/(s*B);

int a[2*N];

for (int t = 0; t < T; ++t)

meta_schedule {

meta_for (int i = 0; i < dim; i++)

meta_for (int j = 0; j < B; j++)

for (int k = 0; k < s; ++k) {

int p = i * s * B + k * B + j;

int p1 = p + 1;

int p2 = p + 2;

int np = N + p;

int np1 = N + p + 1;

int np2 = N + p + 2;

if (t % 2)

a[p1] = (a[np] + a[np1] + a[np2]) / 3;

else

a[np1] = (a[p] + a[p1] + a[p2]) / 3;

}

}

Figure 7.15: The MetaFork source code for 1D Jacobi

Thus, we use a one-dimensional array to represent the output matrix. Applying the optimiza-
tion strategy codes in a sequence (1) (4a) (3a) (2) (2), the first case generates the optimized
MetaFork code shown in Figure 7.19.

Applying the optimization strategy codes in a sequence either (1) (3b) (4a) (3a) (2) (2) or
(2) (2) (3b) (1) (4a) (3a), the second case generates the optimized MetaFork code shown in
Figure 7.20.

Applying the optimization strategy codes in a sequence either (1) (3b) (2) (2) (4b) or (2)
(2) (3b) (1) (4b), the third case generates the optimized MetaFork code shown in Figure 7.21.

Matrix transpose. Applying the optimization strategy codes in a sequence (1) (4a) (3a)
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Constraints:{
2sB + 2 ≤ ZB

9 ≤ RB

strategies (1) (4a) (3a) (2) (2) applied

int T, N, s, B, dim = (N-2)/(s*B);

int a[2*N];

for (int t = 0; t < T; ++t)

meta_schedule cache(a) {

meta_for (int i = 0; i < dim; i++)

meta_for (int j = 0; j < B; j++)

for (int k = 0; k < s; ++k) {

int p = j+(i*s+k)*B;

int t16 = p+1;

int t15 = p+2;

int p1 = t16;

int p2 = t15;

int np = N+p;

int np1 = N+t16;

int np2 = N+t15;

if (t % 2)

a[p1] = (a[np]+a[np1]+a[np2])/3;

else

a[np1] = (a[p]+a[p1]+a[p2])/3;

}

}

Figure 7.16: The first case of the optimized MetaFork code for 1D Jacobi

Constraints:{
2B + 2 ≤ ZB < 2sB + 2
9 ≤ RB

strategies (1) (3b) (4a) (3a) (2) (2) applied

int T, N, s = 1, B, dim = (N-2)/(s*B);

int a[2*N];

for (int t = 0; t < T; ++t)

meta_schedule cache(a) {

meta_for (int i = 0; i < dim; i++)

meta_for (int j = 0; j < B; j++) {

int p = i*B+j;

int t20 = p+1;

int t19 = p+2;

int p1 = t20;

int p2 = t19;

int np = N+p;

int np2 = N+t19;

int np1 = N+t20;

if (t % 2)

a[p1] = (a[np]+a[np1]+a[np2])/3;

else

a[np1] = (a[p]+a[p1]+a[p2])/3;

}

}

Figure 7.17: The second case of the optimized MetaFork code for 1D Jacobi

(2) (2), the first case generates the optimized MetaFork code shown in Figure 7.22.
Applying the optimization strategy codes in a sequence either (1) (3b) (4a) (3a) (2) (2) or

(2) (2) (3b) (1) (4a) (3a), the second case generates the optimized MetaFork code shown in
Figure 7.23.

Applying the optimization strategy codes in a sequence either (1) (3b) (2) (2) (4b) or (2)
(2) (3b) (1) (4b), the third case generates the optimized MetaFork code shown in Figure 7.24.
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Constraints:{
ZB < 2B + 2
9 ≤ RB

strategies (1) (3b) (2) (2) (4b) applied

int T, N, s = 1, B, dim = (N-2)/(s*B);

int a[2*N];

for (int t = 0; t < T; ++t)

meta_schedule {

meta_for (int i = 0; i < dim; i++)

meta_for (int j = 0; j < B; j++) {

int p = j+i*B;

int t16 = p+1;

int t15 = p+2;

int p1 = t16;

int p2 = t15;

int np = N+p;

int np1 = N+t16;

int np2 = N+t15;

if (t % 2)

a[p1] = (a[np]+a[np1]+a[np2])/3;

else

a[np1] = (a[p]+a[p1]+a[p2])/3;

}

}

Figure 7.18: The third case of the optimized MetaFork code for 1D Jacobi

Constraints:{
3sB0B1 ≤ ZB

7 ≤ RB

strategies (1) (4a) (3a) (2) (2) applied

int N, B0, B1, s, dim0 = N/B0, dim1 = N/(B1*s);

int a[N][N], b[N][N], c[N*N];

meta_schedule cache(a, b, c) {

meta_for (int v0 = 0; v0 < dim0; v0++)

meta_for (int v1 = 0; v1 < dim1; v1++)

meta_for (int u0 = 0; u0 < B0; u0++)

meta_for (int u1 = 0; u1 < B1; u1++)

for (int k = 0; k < s; ++k) {

int i = v0*B0+u0;

int j = (v1*s+k)*B1+u1;

c[i*N+j] = a[i][j] + b[i][j];

}

}

Figure 7.19: The first case of the optimized MetaFork code for matrix addition

Matrix matrix multiplication. Applying the optimization strategy codes in a sequence (1)
(4a) (3a) (2) (2), the first case generates the optimized MetaFork code shown in Figure 7.25.

Applying the optimization strategy codes in a sequence either (1) (3b) (4a) (3a) (2) (2) or
(2) (2) (3b) (1) (4a) (3a), the second case generates the optimized MetaFork code shown in
Figure 7.26.

Applying the optimization strategy codes in a sequence either (1) (3b) (2) (2) (4b) or (2)
(2) (3b) (1) (4b), the third case generates the optimized MetaFork code shown in Figure 7.27.
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Constraints:{
3B0B1 ≤ ZB < 3sB0B1
6 ≤ RB

strategies (1) (3b) (4a) (3a) (2) (2) applied
or

{
3B0B1 ≤ ZB < 3sB0B1
6 ≤ RB < 7

strategies (2) (2) (3b) (1) (4a) (3a) applied

int N, B0, B1, s = 1, dim0 = N/B0, dim1 = N/(B1*s);

int a[N][N], b[N][N], c[N*N];

meta_schedule cache(a, b, c) {

meta_for (int v0 = 0; v0 < dim0; v0++)

meta_for (int v1 = 0; v1 < dim1; v1++)

meta_for (int u0 = 0; u0 < B0; u0++)

meta_for (int u1 = 0; u1 < B1; u1++) {

int i = v0*B0+u0;

int j = v1*B1+u1;

c[i*N+j] = a[i][j] + b[i][j];

}

}

Figure 7.20: The second case of the optimized MetaFork code for matrix addition

Constraints:{
ZB < 3B0B1
6 ≤ RB

strategies (1) (3b) (2) (2) (4b) applied
or

{
ZB < 3B0B1
6 ≤ RB < 7

strategies (2) (2) (3b) (1) (4b) applied

int N, B0, B1, s = 1, dim0 = N/B0, dim1 = N/(B1*s);

int a[N][N], b[N][N], c[N*N];

meta_schedule {

meta_for (int v0 = 0; v0 < dim0; v0++)

meta_for (int v1 = 0; v1 < dim1; v1++)

meta_for (int u0 = 0; u0 < B0; u0++)

meta_for (int u1 = 0; u1 < B1; u1++) {

int i = v0*B0+u0;

int j = v1*B1+u1;

c[i*N+j] = a[i][j] + b[i][j];

}

}

Figure 7.21: The third case of the optimized MetaFork code for matrix addition

Constraints:{
2sB0B1 ≤ ZB

6 ≤ RB

strategies (1) (4a) (3a) (2) (2) applied

int N, B0, B1, s, dim0 = N/B0, dim1 = N/(B1*s);

int a[N][N], c[N*N];

meta_schedule cache(a, c) {

meta_for (int v0 = 0; v0 < dim0; v0++)

meta_for (int v1 = 0; v1 < dim1; v1++)

meta_for (int u0 = 0; u0 < B0; u0++)

meta_for (int u1 = 0; u1 < B1; u1++)

for (int k = 0; k < s; ++k) {

int i = v0*B0+u0;

int j = (v1*s+k)*B1+u1;

c[j*N+i] = a[i][j];

}

}

Figure 7.22: The first case of the optimized MetaFork code for matrix transpose

7.5 Conclusion

In this chapter, we proposed a comprehensive optimization algorithm that optimizes the input
code fragment depending on unknown machine and program parameters; meanwhile, we re-
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Constraints:{
2B0B1 ≤ ZB < 2sB0B1
5 ≤ RB

strategies (1) (3b) (4a) (3a) (2) (2) applied
or

{
2B0B1 ≤ ZB < 2sB0B1
5 ≤ RB < 6

strategies (2) (2) (3b) (1) (4a) (3a) applied

int N, B0, B1, s = 1, dim0 = N/B0, dim1 = N/(B1*s);

int a[N][N], c[N*N];

meta_schedule cache(a, c) {

meta_for (int v0 = 0; v0 < dim0; v0++)

meta_for (int v1 = 0; v1 < dim1; v1++)

meta_for (int u0 = 0; u0 < B0; u0++)

meta_for (int u1 = 0; u1 < B1; u1++) {

int i = v0*B0+u0;

int j = v1*B1+u1;

c[j*N+i] = a[i][j];

}

}

Figure 7.23: The second case of the optimized MetaFork code for matrix transpose

Constraints:{
ZB < 2B0B1
5 ≤ RB

strategies (1) (3b) (2) (2) (4b) applied
or

{
ZB < 2B0B1
5 ≤ RB < 6

strategies (2) (2) (3b) (1) (4b) applied

int N, B0, B1, s = 1, dim0 = N/B0, dim1 = N/(B1*s);

int a[N][N], c[N*N];

meta_schedule {

meta_for (int v0 = 0; v0 < dim0; v0++)

meta_for (int v1 = 0; v1 < dim1; v1++)

meta_for (int u0 = 0; u0 < B0; u0++)

meta_for (int u1 = 0; u1 < B1; u1++) {

int i = v0*B0+u0;

int j = v1*B1+u1;

c[j*N+i] = a[i][j];

}

}

Figure 7.24: The third case of the optimized MetaFork code for matrix transpose

alized a proof-of-concept implementation for generating comprehensive parametric MetaFork
programs, in the form of a case distinction based on the possible values of the machine and
program parameters.

The comprehensive optimization algorithm that we proposed takes optimization strategies,
resource counters and performance counters into account; we implemented two resource coun-
ters and four optimization strategies in this comprehensive optimization algorithm.

With this preliminary implementation, experimentation shows that given a MetaFork pro-
gram, three scenarios of optimized MetaFork programs are generated, each of them with a
system of constraints specifying when the corresponding code is valid.

In addition, from the experimental results, we observe that different sequences of the opti-
mization strategies yield the same optimized MetaFork program. However, since some opti-
mization strategies are applied to the intermediate representation of the source code, the corre-
sponding improvements are not shown in Section 7.4.
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Constraints:{
sB0B1 + sBB1 + B0B ≤ ZB

9 ≤ RB

strategies (1) (4a) (3a) (2) (2) applied

int N, B0, B1, s, dim1 = N/(B1*s);

int dim0 = N/B0, B = min(B0, B1), dim = N/B;

int a[N][N], b[N][N], c[N*N];

meta_schedule cache(a, b, c) {

meta_for (int v0 = 0; v0 < dim0; v0++)

meta_for (int v1 = 0; v1 < dim1; v1++)

for (int w = 0; w < dim; w++)

meta_for (int u0 = 0; u0 < B0; u0++)

meta_for (int u1 = 0; u1 < B1; u1++)

for (int k = 0; k < s; ++k) {

int i = v0*B0+u0;

int j = (v1*s+k)*B1+u1;

for (int z = 0; z < B; z++) {

int p = B*w+z;

c[i*N+j] = c[i*N+j] +

a[i][p] * b[p][j];

}

}

}

Figure 7.25: The first case of the optimized MetaFork code for matrix matrix multiplication

Constraints:{
B0B1 + BB1 + B0B ≤ ZB < sB0B1 + sBB1 + B0B
8 ≤ RB

strategies (1) (3b) (4a) (3a) (2) (2) applied
or

{
B0B1 + BB1 + B0B ≤ ZB < sB0B1 + sBB1 + B0B
8 ≤ RB < 9

strategies (2) (2) (3b) (1) (4a) (3a) applied

int N, B0, B1, s = 1, dim1 = N/(B1*s);

int dim0 = N/B0, B = min(B0, B1), dim = N/B;

int a[N][N], b[N][N], c[N*N];

meta_schedule cache(a, b, c) {

meta_for (int v0 = 0; v0 < dim0; v0++)

meta_for (int v1 = 0; v1 < dim1; v1++)

for (int w = 0; w < dim; w++)

meta_for (int u0 = 0; u0 < B0; u0++)

meta_for (int u1 = 0; u1 < B1; u1++)

{

int i = v0*B0+u0;

int j = v1*B1+u1;

for (int z = 0; z < B; z++) {

int p = B*w+z;

c[i*N+j] = c[i*N+j] +

a[i][p] * b[p][j];

}

}

}

Figure 7.26: The second case of the optimized MetaFork code for matrix matrix multiplication
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Constraints:{
ZB < B0B1 + BB1 + B0B
8 ≤ RB

strategies (1) (3b) (2) (2) (4b) applied
or

{
ZB < B0B1 + BB1 + B0B
8 ≤ RB < 9

strategies (2) (2) (3b) (1) (4b) applied

int N, B0, B1, s = 1, dim1 = N/(B1*s);

int dim0 = N/B0, B = min(B0, B1), dim = N/B;

int a[N][N], b[N][N], c[N*N];

meta_schedule {

meta_for (int v0 = 0; v0 < dim0; v0++)

meta_for (int v1 = 0; v1 < dim1; v1++)

for (int w = 0; w < dim; w++)

meta_for (int u0 = 0; u0 < B0; u0++)

meta_for (int u1 = 0; u1 < B1; u1++)

{

int i = v0*B0+u0;

int j = v1*B1+u1;

for (int z = 0; z < B; z++) {

int p = B*w+z;

c[i*N+j] = c[i*N+j] +

a[i][p] * b[p][j];

}

}

}

Figure 7.27: The third case of the optimized MetaFork code for matrix matrix multiplication



Chapter 8

Concluding Remarks

As of today, the publicly available and latest release of MetaFork, see www.metafork.org,
offers all the features stated in the abstract. To be more specific, MetaFork is a meta-language
for concurrency platforms, based on the fork-join model and pipelining parallelism, which
targets multi-core architectures. This meta-language forms a bridge between actual multi-
threaded programming languages and we use it to perform automatic code translation between
those languages, which, currently consist of CilkPlus and OpenMP. The experimental results
in Section 3.7 show that, first of all, the translators can faithfully translate programs written in
one supported language to another. Secondly, translation can preserve (or improve) the per-
formance of the translated programs for fork-join programs. Third, translators are robust in
the sense that they can translate large projects and not just a simple test file. Indeed, we can
successfully translate the BOTS benchmark.

In Chapter 4, from an input MetaFork program we generate parametric CUDA kernels,
that is, CUDA kernels for which program parameters (like number of threads per block) and
machine parameters (like shared memory size) are symbols. Hence, the values of these pa-
rameters need not to be known at code-generation-time: machine parameters and program
parameters are determined when the generated code is installed on the target machine. The ex-
perimental results show that these parametric CUDA programs can yield higher performance
than non-parametric CUDA programs obtained by other tools (namely PPCG) for C-to-CUDA
automatic parallelization.

Moreover, for the fourth feature as mentioned in the abstract, a proof-of-concept imple-
mentation dedicated to the generation of comprehensive optimized MetaFork programs from
an input MetaFork program is realized. While going from MetaFork to MetaFork is certainly
not our final goal, turning an un-optimized MetaFork program into optimized MetaFork pro-
grams can be seen as a first approximation of our final goal, that is, generating optimized
parametric CUDA kernels from input un-optimized annotated C/C++ programs, in the form
of a case discussion, based on the possible values of the machine and program parameters. In
future, we shall integrate this mechanism into the MetaFork compilation framework.

Finally, in Chapter 6 we have addressed the problem of developing portable high-level pro-
gramming language extensions, by using directive based programming, that take advantage of
novel accelerators. We illustrate the implementation of our MetaFork compilation framework
which is built on top of the modern compiler product Clang for parsing and generating AST
from input programs. We emphasize the fact that the compilation of our MetaFork frame-
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work is independent of that of LLVM/Clang. In other words, our MetaFork framework is a
standalone tool without modifying any LLVM/Clang source code.
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Appendix A

Code Translation Examples

Listing A.1: A parallel region of OpenMP code
1 int pairalign()

2 {

3 int i, n, m, si, sj;

4 int len1, len2, maxres;

5 double gg, mm_score;

6 int *mat_xref, *matptr;

7
8 matptr = gon250mt;

9 mat_xref = def_aa_xref;

10 maxres = get_matrix(matptr, mat_xref, 10);

11 if (maxres == 0) return(-1);

12
13 bots_message("Start aligning ");

14
15 #pragma omp parallel

16 {

17 #pragma omp single private(i,n,si,sj,len1,m)

18 for (si = 0; si < nseqs; si++) {

19 n = seqlen_array[si+1];

20 for (i = 1, len1 = 0; i <= n; i++) {

21 char c = seq_array[si+1][i];

22 if ((c != gap_pos1) && (c != gap_pos2)) len1++;

23 }

24 for (sj = si + 1; sj < nseqs; sj++)

25 {

26 m = seqlen_array[sj+1];

27 if ( n == 0 || m == 0 ) {

28 bench_output[si*nseqs+sj] = (int) 1.0;

29 } else {

30 #pragma omp task untied \

31 private(i,gg,len2,mm_score) firstprivate(m,n,si,sj,len1) \

32 shared(nseqs, bench_output,seqlen_array,seq_array,gap_pos1,

141
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gap_pos2,pw_ge_penalty,pw_go_penalty,mat_avscore)

33 {

34 int se1, se2, sb1, sb2, maxscore, seq1, seq2, g, gh;

35 int displ[2*MAX_ALN_LENGTH+1];

36 int print_ptr, last_print;

37
38 for (i = 1, len2 = 0; i <= m; i++) {

39 char c = seq_array[sj+1][i];

40 if ((c != gap_pos1) && (c != gap_pos2)) len2++;

41 }

42 if ( dnaFlag == TRUE ) {

43 g = (int) ( 2 * INT_SCALE * pw_go_penalty * gap_open_scale

); // gapOpen

44 gh = (int) (INT_SCALE * pw_ge_penalty * gap_extend_scale);

//gapExtend

45 } else {

46 gg = pw_go_penalty + log((double) MIN(n, m)); // temporary

value

47 g = (int) ((mat_avscore <= 0) ? (2 * INT_SCALE * gg) : (2 *

mat_avscore * gg * gap_open_scale) ); // gapOpen

48 gh = (int) (INT_SCALE * pw_ge_penalty); //gapExtend

49 }

50
51 seq1 = si + 1;

52 seq2 = sj + 1;

53
54 forward_pass(&seq_array[seq1][0], &seq_array[seq2][0], n, m, &

se1, &se2, &maxscore, g, gh);

55 reverse_pass(&seq_array[seq1][0], &seq_array[seq2][0], se1,

se2, &sb1, &sb2, maxscore, g, gh);

56
57 print_ptr = 1;

58 last_print = 0;

59
60 diff(sb1-1, sb2-1, se1-sb1+1, se2-sb2+1, 0, 0, &print_ptr, &

last_print, displ, seq1, seq2, g, gh);

61 mm_score = tracepath(sb1, sb2, &print_ptr, displ, seq1, seq2);

62
63 if (len1 == 0 || len2 == 0) mm_score = 0.0;

64 else mm_score /= (double) MIN(len1,len2);

65
66 bench_output[si*nseqs+sj] = (int) mm_score;

67 } // end task

68 } // end if (n == 0 || m == 0)

69 } // for (j)

70 } // end parallel for (i)

71 } // end parallel
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72 bots_message(" completed!\n");

73 return 0;

74 }

Listing A.2: A parallel region of MetaFork code translated from Listing A.1
1 int pairalign()

2 {

3 int i, n, m, si, sj;

4 int len1, len2, maxres;

5 double gg, mm_score;

6 int *mat_xref, *matptr;

7
8 matptr = gon250mt;

9 mat_xref = def_aa_xref;

10 maxres = get_matrix(matptr, mat_xref, 10);

11 if (maxres == 0) return(-1);

12
13 bots_message("Start aligning ");

14
15 {

16 meta_fork shared( gap_pos2, gap_pos1, bench_output, nseqs, seq_array,

seqlen_array) {

17 int len1;

18 int i;

19 int m;

20 int n;

21 int sj;

22 int si;

23
24 for (si = 0; si < nseqs; si++) {

25 n = seqlen_array[si+1];

26 for (i = 1, len1 = 0; i <= n; i++) {

27 char c = seq_array[si+1][i];

28 if ((c != gap_pos1) && (c != gap_pos2)) len1++;

29 }

30 for (sj = si + 1; sj < nseqs; sj++)

31 {

32 m = seqlen_array[sj+1];

33 if ( n == 0 || m == 0 ) {

34 bench_output[si*nseqs+sj] = (int) 1.0;

35 } else {

36
37
38 meta_fork shared( gap_open_scale, pw_ge_penalty, gap_pos2,

dnaFlag, bench_output, gap_extend_scale, gap_pos1,

mat_avscore, nseqs, seq_array, seqlen_array, pw_go_penalty)

{
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39
40 {

41 int se1, se2, sb1, sb2, maxscore, seq1, seq2, g, gh;

42 int displ[2*MAX_ALN_LENGTH+1];

43 int print_ptr, last_print;

44
45 for (i = 1, len2 = 0; i <= m; i++) {

46 char c = seq_array[sj+1][i];

47 if ((c != gap_pos1) && (c != gap_pos2)) len2++;

48 }

49 if ( dnaFlag == TRUE ) {

50 g = (int) ( 2 * INT_SCALE * pw_go_penalty * gap_open_scale )

; // gapOpen

51 gh = (int) (INT_SCALE * pw_ge_penalty * gap_extend_scale);

//gapExtend

52 } else {

53 gg = pw_go_penalty + log((double) MIN(n, m)); // temporary

value

54 g = (int) ((mat_avscore <= 0) ? (2 * INT_SCALE * gg) : (2 *

mat_avscore * gg * gap_open_scale) ); // gapOpen

55 gh = (int) (INT_SCALE * pw_ge_penalty); //gapExtend

56 }

57
58 seq1 = si + 1;

59 seq2 = sj + 1;

60
61 forward_pass(&seq_array[seq1][0], &seq_array[seq2][0], n, m, &

se1, &se2, &maxscore, g, gh);

62 reverse_pass(&seq_array[seq1][0], &seq_array[seq2][0], se1, se2

, &sb1, &sb2, maxscore, g, gh);

63
64 print_ptr = 1;

65 last_print = 0;

66
67 diff(sb1-1, sb2-1, se1-sb1+1, se2-sb2+1, 0, 0, &print_ptr, &

last_print, displ, seq1, seq2, g, gh);

68 mm_score = tracepath(sb1, sb2, &print_ptr, displ, seq1, seq2);

69
70 if (len1 == 0 || len2 == 0) mm_score = 0.0;

71 else mm_score /= (double) MIN(len1,len2);

72
73 bench_output[si*nseqs+sj] = (int) mm_score;

74 }

75 }

76 // end task

77 } // end if (n == 0 || m == 0)

78 } // for (j)
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79 }

80 }

81
82 meta_join;

83 // end parallel for (i)

84 }

85 // end parallel

86 bots_message(" completed!\n");

87 return 0;

88 }

Listing A.3: A parallel region of CilkPlus code translated from Listing A.2
1 static void * _taskFunc4(void * __tdata2)

2 {

3 struct __taskenv__0 {

4 int len1;

5 int i;

6 double gg;

7 double mm_score;

8 int len2;

9 int n;

10 int m;

11 int si;

12 int sj;

13 } ;

14
15 struct __taskenv__0 * _tenv1 = ( struct __taskenv__0 *) __tdata2;

16
17 int len1 = _tenv1->len1;

18 int i = _tenv1->i;

19 double gg = _tenv1->gg;

20 double mm_score = _tenv1->mm_score;

21 int len2 = _tenv1->len2;

22 int n = _tenv1->n;

23 int m = _tenv1->m;

24 int si = _tenv1->si;

25 int sj = _tenv1->sj;

26 {

27 {

28 int se1, se2, sb1, sb2, maxscore, seq1, seq2, g, gh;

29 int displ[10001];

30 int print_ptr, last_print;

31 for (i = 1 , len2 = 0; i <= m; i++) {

32 char c = seq_array[sj + 1][i];

33 if ((c != gap_pos1) && (c != gap_pos2))

34 len2++;

35 }
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36 if (dnaFlag == 1) {

37 g = (int)(2 * 100 * pw_go_penalty * gap_open_scale);

38 gh = (int)(100 * pw_ge_penalty * gap_extend_scale);

39 } else {

40 gg = pw_go_penalty + log((double)((n) < (m) ? (n) : (m)));

41 g = (int)((mat_avscore <= 0) ? (2 * 100 * gg) : (2 * mat_avscore

* gg * gap_open_scale));

42 gh = (int)(100 * pw_ge_penalty);

43 }

44 seq1 = si + 1;

45 seq2 = sj + 1;

46 forward_pass(&seq_array[seq1][0], &seq_array[seq2][0], n, m, &se1, &

se2, &maxscore, g, gh);

47 reverse_pass(&seq_array[seq1][0], &seq_array[seq2][0], se1, se2, &

sb1, &sb2, maxscore, g, gh);

48 print_ptr = 1;

49 last_print = 0;

50 diff(sb1 - 1, sb2 - 1, se1 - sb1 + 1, se2 - sb2 + 1, 0, 0, &

print_ptr, &last_print, displ, seq1, seq2, g, gh);

51 mm_score = tracepath(sb1, sb2, &print_ptr, displ, seq1, seq2);

52 if (len1 == 0 || len2 == 0)

53 mm_score = 0.;

54 else

55 mm_score /= (double)((len1) < (len2) ? (len1) : (len2));

56 bench_output[si * nseqs + sj] = (int)mm_score;

57 }

58 }

59 }

60
61 int pairalign()

62 {

63 int i, n, m, si, sj;

64 int len1, len2, maxres;

65 double gg, mm_score;

66 int *mat_xref, *matptr;

67
68 matptr = gon250mt;

69 mat_xref = def_aa_xref;

70 maxres = get_matrix(matptr, mat_xref, 10);

71 if (maxres == 0) return(-1);

72
73 bots_message("Start aligning ");

74
75
76
77 {

78 meta_fork shared( gap_pos2, gap_pos1, bench_output, seqlen_array, nseqs,
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seq_array) {

79 int i;

80 int len1;

81 int sj;

82 int si;

83 int m;

84 int n;

85
86 for (si = 0; si < nseqs; si++) {

87 n = seqlen_array[si+1];

88 for (i = 1, len1 = 0; i <= n; i++) {

89 char c = seq_array[si+1][i];

90 if ((c != gap_pos1) && (c != gap_pos2)) len1++;

91 }

92 for (sj = si + 1; sj < nseqs; sj++)

93 {

94 m = seqlen_array[sj+1];

95 if ( n == 0 || m == 0 ) {

96 bench_output[si*nseqs+sj] = (int) 1.0;

97 } else {

98 {

99 struct __taskenv__0 {

100 int len1;

101 int i;

102 double gg;

103 double mm_score;

104 int len2;

105 int n;

106 int m;

107 int si;

108 int sj;

109 } * _tenv1;

110
111 _tenv1 = ( struct __taskenv__0*) malloc(sizeof(struct __taskenv__0));

112 _tenv1->len1 = len1;

113 _tenv1->i = i;

114 _tenv1->gg = gg;

115 _tenv1->mm_score = mm_score;

116 _tenv1->len2 = len2;

117 _tenv1->n = n;

118 _tenv1->m = m;

119 _tenv1->si = si;

120 _tenv1->sj = sj;

121
122 cilk_spawn _taskFunc4(_tenv1);

123 }

124 // end task
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125 } // end if (n == 0 || m == 0)

126 } // for (j)

127 }

128 }

129 cilk_sync ;

130 // end parallel for (i)

131 }

132 // end parallel

133 bots_message(" completed!\n");

134 return 0;

135 }

Listing A.4: A parallel region of CilkPlus code translated from Listing A.3
1 static void * _taskFunc4(void * __tdata2)

2 {

3 struct __taskenv__0 {

4 int len2;

5 int sj;

6 double mm_score;

7 double gg;

8 int si;

9 int m;

10 int n;

11 int len1;

12 int i;

13 } ;

14 struct __taskenv__0 * _tenv1 = ( struct __taskenv__0 *) __tdata2;

15
16 int len2 = _tenv1->len2;

17
18 int sj = _tenv1->sj;

19
20 double mm_score = _tenv1->mm_score;

21
22 double gg = _tenv1->gg;

23
24 int si = _tenv1->si;

25
26 int m = _tenv1->m;

27
28 int n = _tenv1->n;

29
30 int len1 = _tenv1->len1;

31
32 int i = _tenv1->i;

33 {

34 {
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35 int se1, se2, sb1, sb2, maxscore, seq1, seq2, g, gh;

36 int displ[10001];

37 int print_ptr, last_print;

38 for (i = 1 , len2 = 0; i <= m; i++) {

39 char c = seq_array[sj + 1][i];

40 if ((c != gap_pos1) && (c != gap_pos2))

41 len2++;

42 }

43 if (dnaFlag == 1) {

44 g = (int)(2 * 100 * pw_go_penalty * gap_open_scale);

45 gh = (int)(100 * pw_ge_penalty * gap_extend_scale);

46 } else {

47 gg = pw_go_penalty + log((double)((n) < (m) ? (n) : (m)));

48 g = (int)((mat_avscore <= 0) ? (2 * 100 * gg) : (2 * mat_avscore *

gg * gap_open_scale));

49 gh = (int)(100 * pw_ge_penalty);

50 }

51 seq1 = si + 1;

52 seq2 = sj + 1;

53 forward_pass(&seq_array[seq1][0], &seq_array[seq2][0], n, m, &se1, &se2

, &maxscore, g, gh);

54 reverse_pass(&seq_array[seq1][0], &seq_array[seq2][0], se1, se2, &sb1,

&sb2, maxscore, g, gh);

55 print_ptr = 1;

56 last_print = 0;

57 diff(sb1 - 1, sb2 - 1, se1 - sb1 + 1, se2 - sb2 + 1, 0, 0, &print_ptr,

&last_print, displ, seq1, seq2, g, gh);

58 mm_score = tracepath(sb1, sb2, &print_ptr, displ, seq1, seq2);

59 if (len1 == 0 || len2 == 0)

60 mm_score = 0.;

61 else

62 mm_score /= (double)((len1) < (len2) ? (len1) : (len2));

63 bench_output[si * nseqs + sj] = (int)mm_score;

64 }

65 }

66 }

67 static void * _taskFunc5(void * __tdata2)

68 {

69 struct __taskenv__0 {

70 double gg;

71 double mm_score;

72 int len2;

73 } ;

74 struct __taskenv__0 * _tenv1 = ( struct __taskenv__0 *) __tdata2;

75
76 double gg = _tenv1->gg;

77 double mm_score = _tenv1->mm_score;
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78 int len2 = _tenv1->len2;

79
80 {

81 int len1;

82 int i;

83 int m;

84 int n;

85 int sj;

86 int si;

87
88 for (si = 0; si < nseqs; si++) {

89 n = seqlen_array[si + 1];

90 for (i = 1 , len1 = 0; i <= n; i++) {

91 char c = seq_array[si + 1][i];

92 if ((c != gap_pos1) && (c != gap_pos2))

93 len1++;

94 }

95 for (sj = si + 1; sj < nseqs; sj++) {

96 m = seqlen_array[sj + 1];

97 if (n == 0 || m == 0) {

98 bench_output[si * nseqs + sj] = (int)1.;

99 } else {

100 {

101 struct __taskenv__0 {

102 int len2;

103 int sj;

104 double mm_score;

105 double gg;

106 int si;

107 int m;

108 int n;

109 int len1;

110 int i;

111 } *_tenv1;

112
113 _tenv1 = (struct __taskenv__0 *)malloc(sizeof(struct __taskenv__0));

114 _tenv1->len2 = len2;

115 _tenv1->sj = sj;

116 _tenv1->mm_score = mm_score;

117 _tenv1->gg = gg;

118 _tenv1->si = si;

119 _tenv1->m = m;

120 _tenv1->n = n;

121 _tenv1->len1 = len1;

122 _tenv1->i = i;

123
124 cilk_spawn _taskFunc4(_tenv1);
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125 }

126 }

127 }

128 }

129 }

130 }

131
132 int pairalign()

133 {

134 int i, n, m, si, sj;

135 int len1, len2, maxres;

136 double gg, mm_score;

137 int *mat_xref, *matptr;

138
139 matptr = gon250mt;

140 mat_xref = def_aa_xref;

141 maxres = get_matrix(matptr, mat_xref, 10);

142 if (maxres == 0) return(-1);

143
144 bots_message("Start aligning ");

145
146 {

147 {

148 struct __taskenv__0 {

149 double gg;

150 double mm_score;

151 int len2;

152 } * _tenv1;

153
154 _tenv1 = ( struct __taskenv__0*) malloc(sizeof(struct

__taskenv__0));

155 _tenv1->gg = gg;

156 _tenv1->mm_score = mm_score;

157 _tenv1->len2 = len2;

158
159 cilk_spawn _taskFunc5(_tenv1);

160 }

161
162 cilk_sync ;

163 // end parallel for (i)

164 }

165 // end parallel

166 bots_message(" completed!\n");

167 return 0;

168 }

Listing A.5: Outlined code of the parallel region in Figure 3.13
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1 static void * _taskFunc4(void * __tdata2)

2 {

3 struct __taskenv__0 {

4 int (*m);

5 int j;

6 int (*arry)[10];

7 int &ref;

8 __taskenv__0 ( int &ref ) : ref(ref) { }

9 } ;

10
11 struct __taskenv__0 * _tenv1 = ( struct __taskenv__0 *) __tdata2;

12 int (*m) = _tenv1->m;

13 int j = _tenv1->j;

14 int (*arry)[10] = _tenv1->arry;

15 int &ref = _tenv1->ref;

16 {

17 ( *arry);

18 ref++;

19 int local_j = j;

20 ( *m);

21 }

22 }

23 void outlining_example(void)

24 {

25 int m,j;

26 int &ref=m;

27 int arry[10];

28
29 {

30 struct __taskenv__0 {

31 int (*m);

32 int j;

33 int (*arry)[10];

34 int &ref;

35 __taskenv__0 ( int &ref ) : ref(ref) { }

36 } * _tenv1;

37
38 _tenv1 = new __taskenv__0( ref);

39 _tenv1->m = &m;

40 _tenv1->j = j;

41 _tenv1->arry = &arry;

42 cilk_spawn _taskFunc4(_tenv1);

43 }

44 }



Appendix B

Examples Generated by PPCG

We present PPCG code with generated CUDA kernels for eight examples: array reversal (Fig-
ure B.1), 1D Jacobi (Figure B.3), 2D Jacobi (Figure B.4), LU decomposition (Figure B.5),
matrix transposition (Figure B.7), matrix addition (Figure B.2), matrix vector multiplication
(Figure B.6), and matrix matrix multiplication (Figure B.8).

#pragma scop

for (int i = 0; i < N; i++)

Out[N - 1 - i] = In[i];

#pragma endscop

__global__ void kernel0(int *In, int *Out, int N) {

int b0 = blockIdx.x;

int t0 = threadIdx.x;

__shared__ int shared_Out[32];

#define floord(n,d) (((n)<0) ? -((-(n)+(d)-1)/(d)) : (n)/(d))

for (int c0 = 32 * b0; c0 < N; c0 += 1048576) {

__syncthreads();

if (N >= t0 + c0 + 1)

shared_Out[-t0 + 31] = In[t0 + c0];

__syncthreads();

if (N + t0 >= c0 + 32)

Out[N + t0 - c0 - 32] = shared_Out[t0];

}

}

Figure B.1: PPCG code and generated CUDA kernel for array reversal

#pragma scop

for (int v0 = 0; v0 < n; v0++)

for (int v1 = 0; v1 < n; v1++)

c[v0][v1] = a[v0][v1] + b[v0][v1];

#pragma endscop

__global__ void kernel0(int *a, int *b, int *c, int n)

{

int b0 = blockIdx.y, b1 = blockIdx.x;

int t0 = threadIdx.y, t1 = threadIdx.x;

#define floord(n,d) (((n)<0) ? -((-(n)+(d)-1)/(d)) : (n)/(d))

#define min(x,y) ((x) < (y) ? (x) : (y))

for (int c0 = 32 * b0; c0 < n; c0 += 8192)

if (n >= t0 + c0 + 1)

for (int c1 = 32 * b1; c1 < n; c1 += 8192)

for (int c3 = t1; c3 <= min(31, n - c1 - 1); c3 += 16)

c[(t0 + c0) * n + (c1 + c3)] =

(a[(t0 + c0) * n + (c1 + c3)] +

b[(t0 + c0) * n + (c1 + c3)]);

}

Figure B.2: PPCG code and generated CUDA kernel for matrix addition
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#pragma scop

for (int t = 0; t < T; ++t) {

for (int i = 1; i < N-1; ++i)

b[i] = (a[i-1] + a[i] + a[i+1]) / 3;

for (int i = 1; i < N-1; ++i)

a[i] = b[i];

}

#pragma endscop

__global__ void kernel0(int *a, int *b, int N, int T, int c0)

{

int b0 = blockIdx.x;

int t0 = threadIdx.x;

#define floord(n,d) (((n)<0) ? -((-(n)+(d)-1)/(d)) : (n)/(d))

for (int c1 = 32 * b0; c1 < N - 1; c1 += 1048576)

if (N >= t0 + c1 + 2 && t0 + c1 >= 1)

b[t0 + c1] = (((a[t0 + c1 - 1] + a[t0 + c1]) +

a[t0 + c1 + 1]) / 3);

}

__global__ void kernel1(int *a, int *b, int N, int T, int c0)

{

int b0 = blockIdx.x;

int t0 = threadIdx.x;

#define floord(n,d) (((n)<0) ? -((-(n)+(d)-1)/(d)) : (n)/(d))

for (int c1 = 32 * b0; c1 < N - 1; c1 += 1048576)

if (N >= t0 + c1 + 2 && t0 + c1 >= 1)

a[t0 + c1] = b[t0 + c1];

}

Figure B.3: PPCG code and generated CUDA kernel for 1D Jacobi

#pragma scop

for (int t = 0; t < T; t++) {

for (int i = 0; i < N-2; i++)

for (int j = 0; j < N-2; j++)

b[i+1][j+1] = (a[i][j+1] +

a[i+2][j+1] + a[i+1][j] +

a[i+1][j+2]) / 4;

for (int i = 0; i < N-2; ++i)

for (int j = 0; j < N-2; j++)

a[i+1][j+1] = b[i+1][j+1];

}

#pragma endscop

__global__ void kernel0(int *a, int *b, int N, int T, int c0)

{

int b0 = blockIdx.y, b1 = blockIdx.x;

int t0 = threadIdx.y, t1 = threadIdx.x;

#define floord(n,d) (((n)<0) ? -((-(n)+(d)-1)/(d)) : (n)/(d))

#define min(x,y) ((x) < (y) ? (x) : (y))

for (int c1 = 32 * b0; c1 < N - 2; c1 += 8192)

if (N >= t0 + c1 + 3)

for (int c2 = 32 * b1; c2 < N - 2; c2 += 8192)

for (int c4 = t1; c4 <= min(31, N - c2 - 3); c4 += 16)

b[(t0 + c1 + 1) * N + (c2 + c4 + 1)] =

((((a[(t0 + c1) * N + (c2 + c4 + 1)] +

a[(t0 + c1 + 2) * N + (c2 + c4 + 1)]) +

a[(t0 + c1 + 1) * N + (c2 + c4)]) +

a[(t0 + c1 + 1) * N + (c2 + c4 + 2)]) / 4);

}

__global__ void kernel1(int *a, int *b, int N, int T, int c0)

{

int b0 = blockIdx.y, b1 = blockIdx.x;

int t0 = threadIdx.y, t1 = threadIdx.x;

#define floord(n,d) (((n)<0) ? -((-(n)+(d)-1)/(d)) : (n)/(d))

#define min(x,y) ((x) < (y) ? (x) : (y))

for (int c1 = 32 * b0; c1 < N - 2; c1 += 8192)

if (N >= t0 + c1 + 3)

for (int c2 = 32 * b1; c2 < N - 2; c2 += 8192)

for (int c4 = t1; c4 <= min(31, N - c2 - 3); c4 += 16)

a[(t0 + c1 + 1) * N + (c2 + c4 + 1)] =

b[(t0 + c1 + 1) * N + (c2 + c4 + 1)];

}

Figure B.4: PPCG code and generated CUDA kernel for 2D Jacobi
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#pragma scop

for (int k = 0; k < n; ++k) {

for (int i = 0; i < n-k-1; i++) {

// column major representation

// of L and U

int p = i + k + 1;

L[k][p] = U[k][p] / U[k][k];

for (int j = k; j < n; j++)

U[j][p] -= L[k][p] * U[j][k];

}

}

#pragma endscop

__global__ void kernel0(double *L, double *U, int n, int c0)

{

int b0 = blockIdx.x;

int t0 = threadIdx.x;

__shared__ double shared_U_1[1][1];

#define floord(n,d) (((n)<0) ? -((-(n)+(d)-1)/(d)) : (n)/(d))

{

if (t0 == 0)

shared_U_1[0][0] = U[c0 * n + c0];

__syncthreads();

for (int c1 = 32 * b0; c1 < n - c0 - 1; c1 += 1048576)

if (n >= t0 + c0 + c1 + 2)

L[c0 * n + (t0 + c0 + c1 + 1)] =

(U[c0 * n + (t0 + c0 + c1 + 1)] / shared_U_1[0][0]);

}

}

__global__ void kernel1(double *L, double *U, int n, int c0)

{

int b0 = blockIdx.y, b1 = blockIdx.x;

int t0 = threadIdx.y, t1 = threadIdx.x;

__shared__ double shared_L[1][32];

__shared__ double shared_U_1[32][1];

#define floord(n,d) (((n)<0) ? -((-(n)+(d)-1)/(d)) : (n)/(d))

#define min(x,y) ((x) < (y) ? (x) : (y))

#define max(x,y) ((x) > (y) ? (x) : (y))

if (n + 30 >= ((32 * b1 + 8191 * c0 + 31) \% 8192) + c0)

for (int c1 = 32 * b0; c1 < n - c0 - 1; c1 += 8192) {

if (t0 == 0)

for (int c3 = t1; c3 <= min(31, n - c0 - c1 - 2); c3 += 16)

shared_L[0][c3] = L[c0 * n + (c0 + c1 + c3 + 1)];

__syncthreads();

for (int c2 = 32 * b1 + 8192 * ((-32 * b1 + c0 + 8160)

/ 8192); c2 < n; c2 += 8192) {

if (t1 == 0 && n >= t0 + c2 + 1)

shared_U_1[t0][0] = U[(t0 + c2) * n + c0];

__syncthreads();

if (n >= t0 + c0 + c1 + 2)

for (int c4 = max(t1, t1 + 16 * floord(-t1 + c0 - c2 - 1,

16) + 16); c4 <= min(31, n - c2 - 1); c4 += 16)

U[(c2 + c4) * n + (t0 + c0 + c1 + 1)] -=

(shared_L[0][t0] * shared_U_1[c4][0]);

__syncthreads();

}

__syncthreads();

}

}

Figure B.5: PPCG code and generated CUDA kernel for LU decomposition
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#pragma scop

for (int i = 0; i < n; i++) {

c[i] = 0;

for (int j = 0; j < n; j++)

c[i] += a[i][j] * b[j];

}

#pragma endscop

__global__ void kernel0(int *a, int *b, int *c, int n)

{

int b0 = blockIdx.x;

int t0 = threadIdx.x;

__shared__ int shared_a[32][32];

__shared__ int shared_b[32];

int private_c[1];

#define floord(n,d) (((n)<0) ? -((-(n)+(d)-1)/(d)) : (n)/(d))

#define min(x,y) ((x) < (y) ? (x) : (y))

for (int c0 = 32 * b0; c0 < n; c0 += 1048576) {

for (int c1 = 0; c1 < n; c1 += 32) {

if (n >= t0 + c1 + 1) {

for (int c2 = 0; c2 <= min(31, n - c0 - 1); c2 += 1)

shared_a[c2][t0] = a[(c0 + c2) * n + (t0 + c1)];

shared_b[t0] = b[t0 + c1];

}

__syncthreads();

if (n >= t0 + c0 + 1 && c1 == 0)

private_c[0] = 0;

if (n >= t0 + c0 + 1)

for (int c3 = 0; c3 <= min(31, n - c1 - 1); c3 += 1)

private_c[0] += (shared_a[t0][c3] * shared_b[c3]);

__syncthreads();

}

if (n >= t0 + c0 + 1)

c[t0 + c0] = private_c[0];

__syncthreads();

}

}

Figure B.6: PPCG code and generated CUDA kernel for matrix vector multiplication

#pragma scop

for (int v0 = 0; v0 < n; v0++)

for (int v1 = 0; v1 < n; v1++)

c[v0][v1] = a[v1][v0];

#pragma endscop

__global__ void kernel0(int *a, int *c, int n)

{

int b0 = blockIdx.y, b1 = blockIdx.x;

int t0 = threadIdx.y, t1 = threadIdx.x;

__shared__ int shared_a[32][32];

#define floord(n,d) (((n)<0) ? -((-(n)+(d)-1)/(d)) : (n)/(d))

#define min(x,y) ((x) < (y) ? (x) : (y))

for (int c0 = 32 * b0; c0 < n; c0 += 8192)

for (int c1 = 32 * b1; c1 < n; c1 += 8192) {

if (n >= t0 + c1 + 1)

for (int c3 = t1; c3 <= min(31, n - c0 - 1); c3 += 16)

shared_a[t0][c3] = a[(t0 + c1) * n + (c0 + c3)];

__syncthreads();

if (n >= t0 + c0 + 1)

for (int c3 = t1; c3 <= min(31, n - c1 - 1); c3 += 16)

c[(t0 + c0) * n + (c1 + c3)] = shared_a[c3][t0];

__syncthreads();

}

}

Figure B.7: PPCG code and generated CUDA kernel for matrix transpose
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#pragma scop

for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)

for (int k = 0; k < n; ++k)

c[i][j] += a[i][k] * b[k][j];

#pragma endscop

__global__ void kernel0(int *a, int *b, int *c, int n)

{

int b0 = blockIdx.y, b1 = blockIdx.x;

int t0 = threadIdx.y, t1 = threadIdx.x;

__shared__ int shared_a[32][32];

__shared__ int shared_b[32][32];

int private_c[1][2];

#define floord(n,d) (((n)<0) ? -((-(n)+(d)-1)/(d)) : (n)/(d))

#define min(x,y) ((x) < (y) ? (x) : (y))

for (int c0 = 32 * b0; c0 < n; c0 += 8192)

for (int c1 = 32 * b1; c1 < n; c1 += 8192) {

if (n >= t0 + c0 + 1 && n >= t1 + c1 + 1) {

private_c[0][0] = c[(t0 + c0) * n + (t1 + c1)];

if (n >= t1 + c1 + 17)

private_c[0][1] = c[(t0 + c0) * n + (t1 + c1 + 16)];

}

for (int c2 = 0; c2 < n; c2 += 32) {

if (n >= t0 + c0 + 1)

for (int c4 = t1; c4 <= min(31, n - c2 - 1); c4 += 16)

shared_a[t0][c4] = a[(t0 + c0) * n + (c2 + c4)];

if (n >= t0 + c2 + 1)

for (int c4 = t1; c4 <= min(31, n - c1 - 1); c4 += 16)

shared_b[t0][c4] = b[(t0 + c2) * n + (c1 + c4)];

__syncthreads();

if (n >= t0 + c0 + 1 && n >= t1 + c1 + 1)

for (int c3 = 0; c3 <= min(31, n - c2 - 1); c3 += 1) {

private_c[0][0] +=

(shared_a[t0][c3] * shared_b[c3][t1]);

if (n >= t1 + c1 + 17)

private_c[0][1] +=

(shared_a[t0][c3] * shared_b[c3][t1 + 16]);

}

__syncthreads();

}

if (n >= t0 + c0 + 1 && n >= t1 + c1 + 1) {

c[(t0 + c0) * n + (t1 + c1)] = private_c[0][0];

if (n >= t1 + c1 + 17)

c[(t0 + c0) * n + (t1 + c1 + 16)] = private_c[0][1];

}

__syncthreads();

}

}

Figure B.8: PPCG code and generated CUDA kernel for matrix matrix multiplication



Appendix C

The Implementation for Generating
Comprehensive MetaFork Programs

In this appendix, we exhibit the pseudocode of the preliminary implementation of the compre-
hensive optimization algorithm demonstrated in Chapter 7. Algorithm 12 is the implemented
algorithm for generating comprehensive MetaFork programs from a given MetaFork program,
while Algorithm 13 and Algorithm 14 comprise the implemented Optimize procedure. In this
implementation, we consider two resource counters: register usage per thread and data amount
per thread block to be cached in the shared memory; meanwhile, we apply three optimization
strategies, including reducing register pressure, controlling thread granularity, and common
sub-expression elimination.

Algorithm 12: MultiParametricCodeOptimizer( f ileName)
Input: f ileName, giving the location of the input program
Output: optimized versions of the input program in the form of a case discussion (depending on

the hardware resource limits)
1 plans := [Create Optimization Plan(fileName)];
2 results := [];
3 while the number of plans <> 0 do
4 plan := plans[1]; plans := plans[2..-1];
5 task := ExtractTask(plan) [1];
6 new plans := Optimize(plan, task);
7 for new plan in new plans do
8 if IsCompleted(new plan) then
9 results := [new plan, op(results)];

10 else
11 plans := [new plan, op(plans)];

12 return results;
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Algorithm 13: Optimize(plan, task)
Input: plan, encoding a program being optimized, and task, an optimization task of plan
Output: A list of new plans obtained by optimizing plan according to task
1 local caching task, granularity task, register task, new plans, optimized plans, current vars, alternative;
2 new plans := [];
3 if task[NAME] = “Register Pressure Control” and task[CURRENTLEVEL] <= task[FINALLEVEL] then
4 alternative := Copy Optimization Plan(plan);
5 r := RegisterPressure(plan,task[CURRENTLEVEL]);

/* Accept case */

6 plan[CONSTRAINTS] := [ ‘<=’(r, R B), op(plan[CONSTRAINTS]) ];
7 if IsConsistent(plan) then
8 register task := FindTask(plan, “Register Pressure Control”);
9 register task[CURRENTLEVEL] := register task[FINALLEVEL] + 1;

10 plan[LOG] := [“Accept register pressure”, op(plan[LOG])];
11 caching task := FindTask(plan, “Caching”);
12 if caching task[CURRENTLEVEL] > caching task[FINALLEVEL] then
13 granularity task := FindTask(plan, “Granularity Control”);
14 granularity task[CURRENTLEVEL] := granularity task[FINALLEVEL] + 1;
15 plan[LOG] := [“No granularity reduction”, op(plan[LOG])];

16 new plans := [plan, op(new plans)];

/* Refuse case */

17 alternative[CONSTRAINTS] := [ ‘<’(R B, r), op(alternative[CONSTRAINTS]) ];
18 if IsConsistent(alternative) then
19 register task := FindTask(alternative, “Register Pressure Control”);
20 if (register task[CURRENTLEVEL] < register task[FINALLEVEL]) then
21 register task[CURRENTLEVEL] := register task[CURRENTLEVEL] + 1;
22 new plans := [alternative, op(new plans)];

23 else
24 optimized plans := Optimize(alternative,FindTask(alternative, “CSE”));
25 if evalb(nops(optimized plans) <> 0) then
26 new plans := [op(optimized plans), op(new plans)];

27 else
28 optimized plans := Optimize(alternative,FindTask(alternative, “Granularity Control”));
29 if evalb(nops(optimized plans) <> 0) then
30 new plans := [op(optimized plans), op(new plans)];

/* No ‘‘else" case since we tried everything we could */

/* to reduce register pressure and we failed! */

/* To be continued in Algorithm 14 */
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Algorithm 14: Optimize(plan, task)
Input: plan, encoding a program being optimized, and task, an optimization task of plan
Output: A list of new plans obtained by optimizing plan according to task
/* continuing Algorithm 13 */

1 else if task[NAME] = “Caching” and task[CURRENTLEVEL] <= task[FINALLEVEL] then
2 alternative := Copy Optimization Plan(plan);
3 z := CacheAmount(plan);

/* Accept case */

4 plan[CONSTRAINTS] := [ ‘<=’(z, Z B), op(plan[CONSTRAINTS]) ];
5 current vars := { op((plan[RING])[variables]) };
6 current vars := (current vars union indets(z)) minus R B, Z B;
7 plan[RING] := RegularChains:∼PolynomialRing([R B, Z B, op(current vars)]);
8 if IsConsistent(plan) then
9 plan[LOG] := [“Accept caching”, op(plan[LOG])];

10 task[CURRENTLEVEL] := task[FINALLEVEL] + 1;
11 register task := FindTask(plan, “Register Pressure Control”);
12 if register task[CURRENTLEVEL] > register task[FINALLEVEL] then
13 granularity task := FindTask(plan, “Granularity Control”);
14 granularity task[CURRENTLEVEL] := granularity task[FINALLEVEL] + 1;
15 plan[LOG] := [“No granularity reduction”, op(plan[LOG])];

16 new plans := [plan, op(new plans)];

/* Refuse case */

17 alternative[CONSTRAINTS] := [ ‘<’(Z B, z), op(alternative[CONSTRAINTS]) ];
18 alternative[RING] := plan[RING];
19 if IsConsistent(alternative) then
20 optimized plans := Optimize(alternative,FindTask(alternative, “Granularity Control”));
21 if evalb(nops(optimized plans) <> 0) then
22 new plans := [op(optimized plans), op(new plans)];

23 else
24 optimized plans := Optimize(alternative,FindTask(alternative, “CSE”));
25 if evalb(nops(optimized plans) <> 0) then
26 new plans := [op(optimized plans), op(new plans)];

27 else
28 task := FindTask(alternative, “Caching”);
29 task[CURRENTLEVEL] := task[FINALLEVEL] + 1;
30 new plan := AbandonCaching(alternative);
31 new plan[LOG] := [“Refuse caching”, op(new plan[LOG])];
32 new plans := [new plan, op(new plans)];

33 else if task[NAME] = “CSE” and task[CURRENTLEVEL] <= task[FINALLEVEL] then
34 task[CURRENTLEVEL] := task[CURRENTLEVEL] + 1;
35 new plan := ApplyCSE(plan, task[CURRENTLEVEL]);
36 new plan[LOG] := [“CSE applied”, op(new plan[LOG])];
37 new plans := [new plan, op(new plans)];

38 else if task[NAME] = “Granularity Control” and task[CURRENTLEVEL] <= task[FINALLEVEL] then
39 task[CURRENTLEVEL] := task[FINALLEVEL] + 1;
40 new plan := SetGranularityToOne(plan);
41 new plan[LOG] := [“Granularity set to 1”, op(new plan[LOG])];
42 new plans := [new plan, op(new plans)];

43 return (new plans);
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