
Western University
Scholarship@Western

Electronic Thesis and Dissertation Repository

January 2017

Fast Fourier Transforms over Prime Fields of Large
Characteristic and their Implementation on
Graphics Processing Units
Davood Mohajerani
The University of Western Ontario

Supervisor
Dr. Marc Moreno Maza
The University of Western Ontario

Graduate Program in Computer Science

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science

© Davood Mohajerani 2016

Follow this and additional works at: https://ir.lib.uwo.ca/etd

Part of the Theory and Algorithms Commons

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis
and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact tadam@uwo.ca.

Recommended Citation
Mohajerani, Davood, "Fast Fourier Transforms over Prime Fields of Large Characteristic and their Implementation on Graphics
Processing Units" (2016). Electronic Thesis and Dissertation Repository. 4365.
https://ir.lib.uwo.ca/etd/4365

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fetd%2F4365&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F4365&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F4365&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ir.lib.uwo.ca%2Fetd%2F4365&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/4365?utm_source=ir.lib.uwo.ca%2Fetd%2F4365&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tadam@uwo.ca

Abstract

Prime field arithmetic plays a central role in computer algebra and supports computa-
tion in Galois fields which are essential to coding theory and cryptography algorithms.
The prime fields that are used in computer algebra systems, in particular in the imple-
mentation of modular methods, are often of small characteristic, that is, based on prime
numbers that fit on a machine word. Increasing precision beyond the machine word size
can be done via the Chinese Remainder Theorem or Hensel’s Lemma.

In this thesis, we consider prime fields of large characteristic, typically fitting on n ma-
chine words, where n is a power of 2. When the characteristic of these fields is restricted to
a subclass of the generalized Fermat numbers, we show that arithmetic operations in such
fields offer attractive performance both in terms of algebraic complexity and parallelism.
In particular, these operations can be vectorized, leading to efficient implementation of
fast Fourier transforms on graphics processing units.

Keywords: Fast Fourier transforms, finite fields of large characteristic, graphics pro-
cessing units

i

Acknowlegements
First and foremost, I would like to offer my sincerest gratitude to my supervisor Professor
Marc Moreno Maza, I am very thankful for his great advice and support.

It is my honor to have Professor John Barron, Professor Dan Christensen, and Professor
Mark Daley as the examiners. I am grateful for their insightful comments and questions.

I would like to thank the members of Ontario Research Center for Computer Algebra
and the Computer Science Department of the University of Western Ontario. Specially,
I am thankful to my colleagues Dr. Ning Xie, Dr. Masoud Ataei, and Egor Chesakov for
proofreading chapters of my thesis.

Finally, I am very thankful to my family and friends for their endless support.

ii

Contents

List of Algorithms vi

List of Figures viii

List of Tables x

1 Introduction 1

2 Background 8
2.1 GPGPU computing . 8

2.1.1 CUDA programming model . 8
2.1.2 CUDA memory model . 11
2.1.3 Examples of programs in CUDA 13
2.1.4 Performance of GPU programs 16
2.1.5 Profiling CUDA applications . 19
2.1.6 A note on psuedo-code. 20

2.2 Fast Fourier Transforms . 21

3 Arithmetic Computations Modulo Sparse Radix Generalized Fermat
Numbers 24
3.1 Representation of Z/pZ . 25
3.2 Finding primitive roots of unity in Z/pZ 27
3.3 Addition and subtraction in Z/pZ . 28
3.4 Multiplication by a power of r in Z/pZ 29
3.5 Multiplication in Z/pZ . 29

4 Big Prime Field Arithmetic on GPUs 31
4.1 Preliminaries . 31

4.1.1 Parallelism for arithmetic in Z/pZ 32
4.1.2 Representing data in Z/pZ . 32

iii

4.1.3 Location of data . 33
4.1.4 Transposing input data . 35

4.2 Implementing big prime field arithmetic on GPUs 38
4.2.1 Host entry point for arithmetic kernels 38
4.2.2 Implementation notes . 41
4.2.3 Addition and subtraction in Z/pZ 42
4.2.4 Multiplication by a power of r in Z/pZ 45
4.2.5 Multiplication in Z/pZ . 46

4.3 Profiling results . 55

5 Stride Permutation on GPUs 60
5.1 Stride permutation . 60

5.1.1 GPU kernels for stride permutation 62
5.1.2 Host entry point for permutation kernels 67

5.2 Profiling results . 68

6 Big Prime Field FFT on GPUs 70
6.1 Cooley-Tukey FFT . 70
6.2 Multiplication by twiddle factors . 71
6.3 Implementation of the base-case DFT-K 73

6.3.1 Expanding DFT-K based on six-step FFT 73
6.3.2 Implementation of DFT-2 . 73
6.3.3 Computing DFT-16 based on DFT-2 75

6.4 Host entry point for computing DFT . 86
6.4.1 FFT-K2 . 86
6.4.2 FFT-general based on K . 87

6.5 Profiling results . 89

7 Experimental Results: Big Prime Field FFT vs Small Prime Field FFT 90
7.1 Background . 90
7.2 Comparing FFT over small and big prime fields 92

7.2.1 Benchmark 1: Comparison when computations produce the same
amount of output data . 93

7.2.2 Benchmark 2: Comparison when computations process the same
amount of input data . 93

7.3 Benchmark results . 93
7.3.1 Performance analysis. 94

iv

7.4 Concluding remarks . 97

Bibliography 99

Appendix A Table of 32-bit Fourier primes 102

Appendix B Hardware specification 103
B.1 GeforceGTX760M (Kepler) . 103

Appendix C Source code 105
C.1 Kernel for computing reverse mixed-radix conversion 105

Curriculum Vitae 108

v

List of Algorithms

2.1 Radix K Fast Fourier Transform in R . 23
3.1 Primitive N -th root ω ∈ Z/pZ s.t. ωN/2k = r 27
3.2 Computing x + y ∈ Z/pZ for x, y ∈ Z/pZ 28
3.3 Computing xy ∈ Z/pZ for x, y ∈ Z/pZ . 29
4.1 DeviceAddition(~x,~y, k, r) . 43
4.2 DeviceSubtraction(~x,~y, k, r) . 44
4.3 DeviceRotation(~x, k) . 45
4.4 DeviceMultPowR(~x, s, k, r) . 46
4.5 DeviceMultFinalResult(~l,~h,~c, k, r) . 48
4.6 DeviceIntermediateProduct1([a, b], k := 8, r := 263 + 234) 49
4.7 KernelSequentialPlainMult(~X,~Y,~U, N, k, r) . 51
4.8 DeviceSequentialMult(~x,~y, k, r) . 52
4.9 KernelParallelPlainMult(~X,~Y,~U,~L,~H,~C, N, k, r) 54
4.10 DeviceParallelMult(~x,~y, k, r) . 55
5.1 KernelBasePermutationSingleBlock(~X,~Y, K, N, k, s, r) 65
5.2 KernelBasePermutationMultipleBlocks(~X,~Y, K, N, k, s, r) 66
5.3 HostGeneralStridePermutation (~X,~Y, K, N, k, s, r, b) 68
6.1 KernelTwiddleMultiplication(~X,~Ω, N, K, k, s, r) 72
6.2 DeviceDFT2(~X, i, j, N, k, r) . 74
6.3 DeviceDFT16Step1(~X, N, k, r) . 76
6.4 DeviceDFT16Step2(~X, N, k, r) . 78
6.5 DeviceDFT16Step3(~X, N, k, r) . 79
6.6 DeviceDFT16Step4(~X, N, k, r) . 80
6.7 DeviceDFT16Step5(~X, N, k, r) . 81
6.8 DeviceDFT16Step6(~X, N, k, r) . 83
6.9 DeviceDFT16Step7(~X, N, k, r) . 84
6.10 DeviceDFT16Step8(~X, N, k, r) . 85

vi

6.11 KernelBaseDFT16AllSteps(~X, N, k, r) . 86
6.12 HostDFTK2(~X,~Ω, N, K, k, s, r, b) . 87
6.13 HostDFTGeneral(~X,~Ω, N, K, k, s, r, b) . 88

vii

List of Figures

2.1 Example of a 2D thread block with 2 rows and 6 columns. 9
2.2 Example of a 2D grid with 2 rows and 4 columns. 10
2.3 Host and device in the CUDA programming model. 10
2.4 CUDA memory hierarchy for CC 2.0 and higher. 11
2.5 A CUDA example for computing point-wise addition of two vectors. 14
2.6 A CUDA example for transposing matrices by using shared memory. 15
2.7 Four independent instructions. 18
2.8 An example of ILP. 19

4.1 The non-transposed input matrix M0. 35
4.2 Indexes of digits in the non-transposed matrix M0. 35
4.3 Threads inside a warp reading from the non-transposed input. 36
4.4 The transposed input matrix M1. 36
4.5 Indexes of digits in the transposed matrix M1. 37
4.6 Threads inside a warp reading from the transposed input. 37
4.7 Diagram of running-time for N = 217. 57
4.8 Diagram of instruction overhead for N = 217. 58
4.9 Diagram of memory overhead for N = 217. 58
4.10 Diagram of IPC for N = 217. 58
4.11 Diagram of occupancy percentage for N = 217. 59
4.12 Diagram of memory load efficiency for N = 217. 59
4.13 Diagram of memory store efficiency for N = 217. 59

5.1 Profiling results for stride permutation LKJ
K for K = 256 and J = 4096. 69

5.2 Profiling results for stride permutation LKJ
K for K = 16 and J = 216. 69

6.1 Running-time for computing DFTN with N = K4 and K = 16. 89

7.1 Speed-up diagram of Benchmark 1 for K = 16. 96
7.2 Speed-up diagram of Benchmark 2 for K = 16. 97

viii

B.1 Hardware specification for NVIDIA GeforceGTX760M. 103
B.2 The bandwidth test from CUDA SDK (samples/1 Utilites/bandwidthTest). 104

ix

List of Tables

2.1 The maximum number of warps per streaming multiprocessor. 11
2.2 The number of 32-bit registers per streaming multiprocessor. 12
2.3 A short list of performance metrics of nvprof. 20

3.1 SRGFNs of practical interest. 25

7.1 Running time of computing Benchmark 1 for N = K2 with K = 16. 95
7.2 Running time of computing Benchmark 1 for N = K3 with K = 16. 95
7.3 Running time of computing Benchmark 1 for N = K4 with K = 16. 95
7.4 Running time of computing Benchmark 1 for N = K5 with K = 16. 95
7.5 Running time of computing Benchmark 2 for N = Ke with K = 16. 95

A.1 Table of 32-bit Fourier primes. 102

x

Chapter 1

Introduction

Prime field arithmetic plays a central role in computer algebra and supports computation
in Galois fields which are essential to coding theory and cryptography algorithms. In
computer algebra, the so-called modular methods are the main application of prime field
arithmetic. Let us give a simple example of such methods.

Consider a square matrix A of order n with coefficients in the ring Z of integers. It is well-
known that det(A), the determinant of A, can be computed in at most 2n3 arithmetic
operations in the field Q of rational numbers, by means of Gaussian elimination. However
the cost of each of those operations is not the same and, in fact, depends on the bit size of
the rational numbers involved. It can be proved that, if B is the maximum absolute value
of a coefficient in A then computing the determinant of A directly (that is, over Z) can be
done within O(n5 (logn+ logB)2) machine-word operations, see the landmark book [24].
If a modular method is used, based on the Chinese Remainder Theorem (CRT), one can
reduce the cost to O(n4 log2(nB) (log2n+ log2B)) machine-word operations.

Let us explain how this works. Let d be the determinant of A and let us choose a prime
number p ∈ Z such that the absolute value | d | of d satisfies

2 | d |< p.

Let r be the determinant of A regarded as a matrix over Z/pZ and let us represent the
elements of Z/pZ within the symmetric range [−p−1

2 · · ·
p−1

2]. Hence we have

− p

2 < r <
p

2 and − p

2 < d <
p

2 (1.1)

1

2

leading to
− p < d− r < p (1.2)

Observe that det(A) is a polynomial expression in the coefficients of A. For instance with
n = 2 we have

det(A) = a11 a22 − a12 a21. (1.3)

Denoting by xp the residue class in Z/pZ of any x ∈ Z, we have

x+ yp = xp + yp and xyp = xpyp, (1.4)

for all x, y ∈ Z. It follows for n = 2, and using standard notations, that we have

det(A)p = a11
p a22

p − a12
p a21

p. (1.5)

More generally, we have
det(A)p = det(A mod p), (1.6)

that is, d ≡ r mod p. This with Relation (1.2) leads to

d = r. (1.7)

In summary, the determinant of A as a matrix over Z is equal to the determinant of
A regarded as a matrix over Z/pZ provided that 2 | d |< p holds. Therefore, the
computation of the determinant of A as a matrix over Z can be done modulo p, which
provides a way of controlling expression swell in the intermediate computations. See the
introduction of Chapter 5 in [23] for a discussion of this phenomenon of expression swell
in the intermediate computations.

But if d is what we want to compute, the condition 2 | d |< p is not that helpful for
choosing p. However, Hadamard’s inequality tells us that, if B is the maximum absolute
value of an entry of A, then we have

| d | ≤ nn/2Bn. (1.8)

One can then choose a prime number p satisfying 2nn/2Bn < p. Of course, such prime
may be very large and thus the expected benefit of controlling expression swell may be
limited.

An alternative approach is to consider pairwise different prime numbers p1, . . . , pe such
that their product exceeds 2nn/2Bn, and each of them fits on a machine-word. Then,

3

computing the determinants of A regarded as a matrix over Z/p1Z, . . . ,Z/peZ leads to
values r1, . . . , re, respectively. Finally, applying the CRT yields d.

The advantage of this alternative approach is that for a prime number p fitting on the
machine-word of computer, arithmetic operations modulo p can be implemented effi-
ciently using hardware integer operations.

However, using machine-word size, thus small, prime numbers has also serious incon-
veniences in certain modular methods, in particular for solving systems of non-linear
equations. Indeed, in such circumstances, the so-called unlucky primes are to be avoided,
see for instance [1, 9].

For an example of a modular method incurring unlucky primes, let us consider the simple
problem of computing a Greatest Common Divisor (GCD) of two univariate polynomials
with integer coefficients. Let f = fnx

n + · · ·+ f0 and g = gmx
m + · · ·+ g0 be polynomials

in x, with respective degrees n and m, and with coefficients in a unique factorization
domain (UFD) R. The following matrix is called the Sylvester matrix of f and g.

Sylv(f, g) =

f0 g0
...

fn−i f0
... . . .

... gm−i
. g0

fn fn−i f0
...

. gm
.

fn fn−i
. . . gm−i

.
fn gm

(1.9)

Its determinant is an element of R called the resultant of f and g. This determinant is
usually denoted by res(f, g) and enjoys the following property: a GCD h of f and g has
degree zero (that is, h is simply an element of R) if and only the res(f, g) 6= 0 holds. In
other words, f and g have a non-trivial GCD (that is, a GCD of positive degree) if and
only the res(f, g) = 0 holds.

Assume now that R is the ring Z of the integer numbers and that res(f, g) 6= 0 holds.
Suppose that this latter fact is not known and that one is computing a GCD of f and g by
means of a modular method based on the CRT. More precisely, we are computing GCDs
of f and g modulo sufficiently many prime numbers p1, . . . , pe, obtaining polynomials

4

h1, . . . , he in Z/p1Z[x], . . . ,Z/peZ[x]. If none of the prime numbers p1, . . . , pe divides
res(f/h, g/h), nor the leading coefficients of fn and gm, then combining h1, . . . , he by
CRT yields a GCD of f and g (which, under the assumption res(f, g) 6= 0 turns out to be
a constant). However, if one of the prime numbers p1, . . . , pe, say pi, divides res(f/h, g/h)
(even if it does not divide fn nor gm) then hi has a positive degree. It follows that hi is
not a modular image of a GCD of f and g in Z[x]. Therefore, this prime pi should not
be used in our CRT scheme and for this reason is called unlucky.

Note that as the coefficients of f and g grow, so will res(f, g). As a consequence, small
primes are likely to be unlucky for input data with large coefficients. While there are
tricks to overcome the noise introduced by unlucky primes, this become a serious com-
putational bottleneck, as raised in [2], in an application of polynomial system solving
to Hilbert’s 16-th Problem. To summarize, certain modular methods, when applied to
challenging problems, require the use of prime numbers that do not necessarily fit on a
machine-word. This observation motivates the work presented in this thesis.

In this thesis, we consider prime fields of large characteristic, typically fitting on k ma-
chine words, where k is a power of 2. For those modular methods in polynomial system
solving that require such big prime numbers, one of the most fundamental operations
is the Discrete Fourier transform (DFT) of a polynomial. Here again, we refer to the
book [24].

Consider a prime field Z/pZ and N , a power of 2, dividing p − 1. Then, the finite field
Z/pZ admits a N -th primitive root of unity; let us denote by ω such an element of
Z/pZ. Let f ∈ Z/pZ[x] be a polynomial of degree at most N − 1. Then, computing
the DFT of f at ω produces the values of f at the successively powers of ω, that is,
f(ω0), f(ω1), . . . f(ωN−1). Using an asymptotically fast algorithm, namely a fast Fourier
transform (FFT), this calculation amounts to:

1. N log(N) additions in Z/pZ,
2. (N/2) log(N) multiplications by a power of ω in Z/pZ.

If the bit-size of p is k machine words, then

1. each addition in Z/pZ costs O(k) machine-word operations,
2. each multiplication by a power of ω costs O(k2) machine-word operations.

Therefore, multiplication by a power of ω becomes a bottleneck as k grows.

To overcome this difficulty, we consider the following trick proposed by Martin Fürer

5

in [12, 13]. We assume that N = Ke holds for some “small” K, say K = 256 and an
integer e ≥ 2. Further, we define η = ωN/J , with J = Ke−1 and assume that mul-
tiplying an arbitrary element of Z/pZ by ηi, for any i = 0, . . . , K − 1, can be done
within O(k) machine-word operations. Consequently, every arithmetic operation (addi-
tion, multiplication) involved in a DFT of size K, using η as a primitive root, amounts
to O(k) machine-word operations. Therefore, such DFT of size K can be performed with
O(K log(K) k) machine-word operations. As we shall see in Chapter 3, this latter result
holds whenever p is a so called generalized Fermat number.

Considering now a DFT of size N at ω. Using the factorization formula of Cooley and
Tukey,

DFTJK = (DFTJ ⊗ IK)DJ,K(IJ ⊗DFTK)LJK
J , (1.10)

see Section 2.2, the DFT of f at ω is essentially performed by:

1. Ke−1 DFT’s of size K (that is, DFT’s on polynomials of degree at most K − 1),
2. N multiplications by a power of ω (coming from the diagonal matrix DJ,K) and
3. K DFT’s of size Ke−1.

Unrolling Formula (2.4) so as to replace DFTJ by DFTK and the other linear operators
involved (the diagonal matrix D and the permutation matrix L) one can deduce that a
DFT of size N = Ke reduces to:

1. eKe−1 DFT’s of size K, and
2. (e− 1)N multiplication by a power of ω.

Recall that the assumption on the cost of a multiplication by ηi, for 0 ≤ i < K, makes the
cost for one DFT of size K to O(K log2(K) k) machine-word operations. Hence, all the
DFT’s of size K together amount to O(eN log2(K)k) machine-word operations, that is,
O(N log2(N) k) machine-word operations. Meanwhile, the total cost of the multiplication
by a power of ω isO(eN k2) machine-word operations, that is, O(N logK(N) k2) machine-
word operations. Indeed, multiplying an arbitrary element of Z/pZ by an arbitrary
power of ω requires a long multiplication at a the cost O(k2) machine-word operations.
Therefore, under our assumption, a DFT of size N at ω amounts to

O(N log2(N) k + N logK(N) k2) (1.11)

machine-word operations. When using generalized Fermat primes, we have K = 2k.
Hence, the second term in the big-oh notation, dominates the first one.

6

Without our assumption, as discussed earlier, the same DFT would run inO(N log2(N) k2)
machine-word operations. Therefore, using generalized Fermat primes brings a speedup
factor of log(K) w.r.t. the direct approach using arbitrary prime numbers.

At this point, it is natural to ask what would be the cost of a comparable compu-
tation using small primes and the CRT. To be precise, let us consider the following
problem. Let p1, . . . , pk pairwise different prime numbers of machine-word size and let
m be their product. Assume that N divides each of p1 − 1, . . . , pk − 1 such that the
each of fields Z/p1Z, . . . ,Z/peZ admits a N -th primitive roots of unity, ω1, . . . , ωk. Then,
ω = (ω1, . . . , ωk) is an N -th primitive root of Z/mZ. Indeed, the ring Z/p1Z⊗· · ·⊗Z/peZ
is a direct product of fields. Let f ∈ Z/mZ[x] be a polynomial of degree N − 1. One can
compute the DFT of f at ω in three steps:

1. Compute the images f1, . . . , fk of f in Z/p1Z[x], . . . ,Z/pkZ[x].
2. Compute the DFT of fi at ωi in Z/piZ[x], for i = 1, . . . , k,
3. Combine the results using CRT so as to obtain a DFT of f at ω.

The first and the third above steps will run within O(k×N×k2) machine-word operations
meanwhile the the second one amount to O(k ×N log(N)) machine-word operations.

These estimates seem to suggest that the big prime field approach is slower than the
small prime fields approach by a factor of k/log(K). However, we should keep in mind
that k and K are small constants meanwhile N is the only quantity which is arbitrary
large. Thus, the factor k/log(K) does not mean much, at least theoretically. Moreover,
the big prime field FFT approach and the above second step in the small prime field
FFT approach have similar memory access patterns and costs. Indeed, they use the
same 6-step FFT algorithm. Hence, the above first and third steps are overheads to the
small prime field FFT approach in terms of memory access costs.

Therefore, it is hard to compare the computational efficiency of the two approaches by
using theoretical arguments only. In other words, experimentation is needed and this is
what this thesis is about.

The contributions of this thesis are as follows:

1. We present algorithms for arithmetic operations in the “big” prime field Z/pZ,
where p is a generalized Fermat number of the form p = rk + 1 where r fits a
machine-word and k is a power of 2.

2. We report on an a GPU (Graphics Processing Units) implementation of those
algorithms as well as a GPU implementation of an FFT over such big prime field.

7

3. Our experimental results show that
(a) computing an FFT of size N , over a big prime field for p fitting on k 64-bit

machine-words, and
(b) computing 2k FFTs of size N , over a small prime field (that is, where the prime

fits a 32-bit half-machine-word) followed by a combination (i.e. CRT-like) of
those FFTs

are two competitive approaches in terms of running time. Since the former approach
has the benefits mentioned above (in the area of polynomial system solving), we
view this experimental observation as a promising result.

The reasons for a GPU implementation are as follows. First, the model of computations
and the hardware performance provide interesting opportunities to implement big prime
field arithmetic, in particular in terms of vectorization of the program code. Secondly,
highly optimized FFTs over small prime fields have been implemented on GPUs by Wei
Pan [17, 18] and we use them in our experimental comparison.

This thesis is organized as follows:

• Chapter 2 gathers background materials on GPU programming and FFTs.
• Chapter 3 presents algorithms for performing additions and multiplications in the

big prime field Z/pZ.
• Chapter 4 contains our GPU implementation of the algorithms of Chapter 3.
• Chapter 5 discusses how to efficient implement on GPUs the permutations that are

required by FFT algorithms.
• Chapter 6 explains how to take advantage of Coolye-Tukey factorization formula

in the context of the trick of Martin Fürer for computing FFTs over the big prime
field Z/pZ. A GPU implementation of those ideas follows.
• Chapter 7 reports on the experimental comparison “big vs small” that was men-

tioned above.

Chapter 3 is based on a preliminary work by Svyatoslav Covanov, a former student
of Professor Marc Moreno Maza. A first GPU implementation of the algorithms in
Chapters 3 together with a GPU implementation of FFTs over the big prime field Z/pZ
was attempted by Dr. Liangyu Chen1 (a former visiting scholar working with Professor
Marc Moreno Maza) but yielded unsatisfactory experimental results.

1http://faculty.ecnu.edu.cn/s/187/t/1487/main.jspy

http://faculty.ecnu.edu.cn/s/187/t/1487/main.jspy

Chapter 2

Background

In this chapter, we review the basic principles of GPGPU computing and fast Fourier
transforms. First, in Section 2.1, we explain GPGPU computing, and specifically, how
we can develop parallel programs in the NVIDIA CUDA programming model. Then, in
Section 2.2, we explain fast Fourier transform and its related definitions.

2.1 GPGPU computing
Parallel programming has always been considered as a difficult task. Among many avail-
able platforms, general purpose graphics processing unit (GPGPU) computing has proven
to be a cost-effective solution for scientific computing. GPUs are parallel processors that
can handle huge amounts of data. This makes GPUs the suitable type of platform for
data parallel algorithms. Data-parallelism refers to a type of computation in which the
work can be distributed to lots of smaller tasks, with little or no dependency between
them. In less than a decade, GPGPU computing has evolved from a cutting edge tech-
nology to one of the mainstream solutions for high-end computing, specifically NVIDIA
corporation has played a huge role in developing and promoting the CUDA program-
ming model (see [19] for more details). In this section, we explain preliminary definitions
and keywords that will be frequently used in relation to the CUDA programming model.
Definitions and examples of this chapter are based on [7] and [8].

2.1.1 CUDA programming model

Compute Unified Device Architecture, or CUDA, is a programming model and language
extension that is developed and supported by NVIDIA corporation. The CUDA platform

8

GPGPU computing 9

provides language extensions in C/C++ and a number of other languages. The main
purpose of the CUDA platform is to provide a simplified interface for writing scalable
parallel programs that can be easily recompiled on GPU cards of different architectures.

Thread. A thread is the smallest computational unit in the CUDA programming model.
At the time of execution, every thread will be assigned to one scalar processor. Also,
each thread belongs to a thread block. Finally, each thread has a unique index inside
its respective thread block, which depending on dimensions of the thread block can be
accessed via

1. threadIdx.x,
2. threadIdx.y (only if the thread belongs to a 2D or 3D thread block),
3. threadIdx.z (only if the thread belongs to a 3D thread block).

Thread block. A group of threads together form a thread block. Each thread block
belongs to a grid. Finally, each thread block has a unique index inside its respective grid,
which depending on the dimensions of the grid can be accessed via

1. blockIdx.x,
2. blockIdx.y (only if the thread block block belongs to a 2D or 3D grid),
3. and blockIdx.z (only if the thread block belongs to a 3D grid).

Figure 2.1 illustrates an example of a two dimensional thread block with 2 rows and 6
columns.

Figure 2.1: Example of a 2D thread block with 2 rows and 6 columns.

Grid. A group of independent thread blocks together form a grid. CUDA-capable GPUs
can support 2D or 3D grids (depending on their architecture). Figure 2.2 illustrates an

GPGPU computing 10

example of a two dimensional block with 2 rows and 4 columns.

Figure 2.2: Example of a 2D grid with 2 rows and 4 columns.

Kernel. At the time of execution, all threads in all thread blocks will run the same
function. which is known as Kernel.

Device. In the CUDA programming model, device refers to the GPU that executes
kernels on threads.

Host. In the CUDA programming model, host refers to the CPU that initializes kernels.
Figure 2.3 shows the relationship between the host and the device.

Figure 2.3: Host and device in the CUDA programming model.

Compute capability (CC). Every CUDA device is built on a core architecture with
some specific capabilities. Each device is numbered by a Compute capability (CC), which
is of the form A.B. This numbering makes it easier to distinguish architectures from each
other. In this presentation, A as the major part, specifies the architecture series, and B,
as the minor part, relates to the special improvements to each architecture. For example,
devices of compute capability 3.0, 3.1, and 3.2 have the same architecture core, however,
they have different hardware optimizations.

Warp. Every 32 threads inside a thread block form a warp.

Streaming multiprocessor. Streaming multiprocessors (SMs) are building blocks of
GPUs. Each streaming multiprocessor has a number of scalar processors, registers, warp

GPGPU computing 11

schedulers, and cache. At the time of execution, the device driver will assign each thread
block to one streaming multiprocessor. After being scheduled by the warp scheduler,
each thread of the thread block will run the kernel on one processing core.

Warp scheduler. At the time of execution, each streaming multiprocessor partitions
threads into warps. In the next step, warps will be scheduled by a warp scheduler for
execution on scalar processors. Table 2.1 shows the maximum number of warps that can
reside on streaming multiprocessors of different compute capabilities.

Compute capability 1.0/1.1 1.2/1.3 2.x 3.x and higher
The maximum number of threads per SM 768 1024 1536 2048

The maximum number of warps 24 32 48 64

Table 2.1: The maximum number of warps per streaming multiprocessor.

2.1.2 CUDA memory model

The CUDA platform has multiple levels of memory. As a programmer, it is critical to
use different types of GPU memory properly. In other words, each level of GPU memory
should be used for a specific type of application. Figure 2.4 shows levels of GPU memory
for devices of compute capability 2.0 and higher.

Figure 2.4: CUDA memory hierarchy for CC 2.0 and higher.

On-chip memory. This type of memory is located on the streaming multiprocessor.
Registers, shared memory, and L1 cache are examples of on-chip memory. All other
levels of GPU memory are considered as off-chip memory.

GPGPU computing 12

Registers. Registers are fastest type of memory on GPUs. Accessing to a register has
almost no cost, because it is placed on the streaming multiprocessor. Each streaming
multiprocessor has a limited number of registers. Table 2.2 shows the number of available
registers on one streaming multiprocessor for CUDA-capable NVIDIA GPUs.

Compute capability 1.x 2.x 3.x 4.x 5.x 6.x
The number of 32-bit registers/SM 124 63 255 255 255 255

Table 2.2: The number of 32-bit registers per streaming multiprocessor.

Global memory. This type of memory is available to all threads in all thread blocks.
Global memory is the slowest type of GPU memory.

Coalesced accesses to global memory. Inside a warp, consecutive threads can have
access to consecutive words in global memory in a coalesced way. For doing so, the GPU
driver translates multiple read or write memory calls into a single memory call. For
current CUDA-enabled GPUs,

L1 Cache. This type of on-chip GPU memory is accessible by all threads inside a warp.
GPUs have comparably less amount of L1 cache per multiprocessor than CPUs have.
Depending on the GPU architecture (CC), the programmer can enable or disable the L1
caching.

L2 Cache. This type of off-chip GPU memory is available on devices of compute capa-
bility 2.0 and higher. If L1 cache is enabled, all read requests to global memory will first
go through the L1 cache, and then through the L2 cache. However, if the L1 cache is
disabled, all read transactions will go directly through the L2 cache.

Local memory. Each thread can have a private off-chip memory, known as local mem-
ory. Local memory is allocated on global memory, therefore, accesses to local memory
will be slow. However, accesses to local memory will be coalesced if adjacent threads
of the same warp will have access to the same index of an array. Devices of compute
capability 1.x have 16 KB of local memory. Finally, devices of other compute capabilities
have 512 KB of local memory.

Shared memory. This type of memory is available to all threads inside the thread
block. It can be used

1. for communicating between threads inside the thread block, and
2. as a low cost memory (similar to registers) for storing temporary variables of each

thread.

GPGPU computing 13

On the positive side, accesses to shared memory have almost no cost, because, compared
to registers, it only takes a few more cycles. On the negative side, shared memory accesses
can go through bank conflicts, meaning that all accesses will be serialized.

Constant memory. This type of read-only memory is accessible to all threads of a grid
and can be used for storing constant data. In order to use constant memory efficiently,
all accesses should be to the same memory address at the same time. Otherwise, memory
requests will be serialized. Currently, the total amount of constant memory for GPUs of
all compute capabilities is equal to 64 KB.

Texture memory. This is another type of read-only memory and similar to constant
memory, can be used for storing constant data. However, unlike constant memory, scat-
tered to constant memory will not be serialized.

2.1.3 Examples of programs in CUDA

In this section, we present two simple examples of programming in the CUDA-C/C++.

Simple vector addition in CUDA. Figure 2.5 presents a pseudo-code for computing
vector addition on GPUs in the following way:

1. First, the program allocates host memory for host a, host b as input array, and
for host c as the output array. (L16:L18)

2. The program reads input data from files into host a and host b, respectively
(L21:L22).

3. In next step, the program allocates device memory for device a, device b, device c
(L25:L27).

4. Then, the program copies input vectors from host memory to device memory.
5. The program sets dimensions of the thread block and grid block, respectively (L34

and L37).
6. At this point, the program invokes the CUDA kernel simpleVectorAddition (L40).
7. Now, inside the kernel, each thread computes its index with respect to its thread

block index and size of the thread block, and then, it computes the result of addition
for two elements of the same relative index from each input array (L4:L5).

8. After completing the computation by the device, the program copies back the result
of computation into the output array, host c (L44).

Naive matrix transposition in CUDA. In this example, we explain how we can
transpose a 16 × 16 matrix by using shared memory of GPUs. For an input array of

GPGPU computing 14

1 __global__ void simpleVectorAddition
2 (int* device_a , int* device_b , int* device_c , int n)
3 { /* computing the thread index */
4 int tid = blockIdx.x*blockDim.x + threadIdx.x;
5 if (tid < n) { device_c[tid] = device_b[tid] + device_a[tid];}
6 }
7 int main (int argc , char**argv)
8 {
9 /* pointers to host memory */

10 int *host_a , *host_b , *host_c;
11 /* pointers to device memory */
12 int *device_a , *device_b , *device_c;
13 /* size of input vector */
14 int n = 1024*1024;
15 /* allocating arrays on the host memory */
16 host_a = (int*) malloc(sizeof(int)*n);
17 host_b = (int*) malloc(sizeof(int)*n);
18 host_c = (int*) malloc(sizeof(int)*n);
19 /* reading input vectors from files a.dat and b.dat ,

respectively.*/
20 host_a = readInputFromFile("a");
21 host_b = readInputFromFile("b");
22 /* allocating arrays on the device memory */
23 cudaMalloc((void **)&device_a , n*sizeof(int));
24 cudaMalloc((void **)&device_b , n*sizeof(int));
25 cudaMalloc((void **)&device_c , n*sizeof(int));
26 /* copy data from the host to the device memory */
27 cudaMemcpy(device_a , a, sizeof(int)*n, cudaMemcpyHostToDevice)

;
28 cudaMemcpy(device_b , b, sizeof(int)*n, cudaMemcpyHostToDevice)

;
29 // setting up dimensions of a thread block
30 dim3 blockDim = (512 ,1 ,1);
31 // setting up dimensions of the grid
32 dim3 gridDim = (n/blockDim.x,1,1);
33 // invoking the kernel from host
34 simpleVectorAddition <<< gridDim , blockDim >>>
35 (device_a , device_b , device_c ,n);
36 //copy back the results from device memory to host memory
37 cudaMemcpy(host_c , device_c , sizeof(int)*n,

cudaMemcpyDeviceToHost);
38 return 0;
39 }

Figure 2.5: A CUDA example for computing point-wise addition of two vectors.

GPGPU computing 15

1 #define BLOCK_SIZE 512
2 // tranposing an array of matrices ,
3 // each of size 16x16
4 __global__ void matrix_transposition_16
5 (int* device_x , int* device_y , int n)
6 { /* computing the thread index */
7 int tid = blockIdx.x*blockDim.x + threadIdx.x;
8 __shared__ int sharedMem[BLOCK_SIZE];
9 int total =0;

10 if (tid < n) { sharedMem[threadIdx.x] = device_x[tid];}
11 __syncthreads ();
12 if (tid <n){
13 i = threadIdx /16;
14 j = threadIdx % 16;
15 offsetOut= i + 16j;
16 device_y[tid]= sharedMem[offsetOut]; //y(j,i):=x(i,j)
17 }
18 }

Figure 2.6: A CUDA example for transposing matrices by using shared memory.

size n, our example computes transposition for n/256 matrices. We assume that the
kernel configuration is similar to that of the previous example. This kernel computes the
transposition in the following way.

1. Each thread computes its index with respect to its thread block index and size of
the thread block (L7).

2. In the next step, a shared array of size BLOCK SIZE is allocated for all threads of
the thread block (L8).

3. Then, each thread reads its corresponding value from the input vector into its
respective shared memory address (L10).

4. The barrier syncthreads() synchronizes all threads of the thread block (L11).
5. At this step, each thread computes the row number and the column number of its

corresponding value in the input vector, namely, (i, j) (L13 and L14).
6. In the next step, each thread computes the offset for its corresponding memory

address in output vector, namely, (j, i) (L15).
7. Finally, each thread writes its corresponding value to the output vector (L16).

Notice that this kernel does not result in an efficient transposition, because it will have
shared memory bank conflicts. It is only mentioned as an illustrative example.

GPGPU computing 16

2.1.4 Performance of GPU programs

Bandwidth. Bandwidth refers to the rate of transferring data between two memory
addresses (that might be in different levels). Theoretical bandwidth is the maximum
value for the GPU memory bandwidth which can be calculated by BT = f ×w× 2 with

1. f as the clock frequency of the GPU memory, and
2. w as the width of memory interface (in terms of number of bytes).

For example, for a GPU memory with the clock rate of 1 GHZ and the memory interface
of 384 bits wide, we have

BT = 1× 109 × 384
8 × 2 = 96 GB/s.

Practical bandwidth. Practical (effective) bandwidth is the bandwidth that can be
achieved on a GPU in practice. Practical bandwidth can be computed by

BE = (dr + dw)
t

(2.1)

where

1. dr is the amount of data that is being read from the memory,
2. dw is the amount of data that is written to the memory, and
3. t is the elapsed time for reading from the memory and writing to the memory.

For example, if the program spends 4 milliseconds for copying a vector of N = 220 long
integers (each of size of 8 machine-words) to another vector, then effective bandwidth is

BE = ((220 × 8× 8)× 2)
(4× 10−3) = 33.5 GB/s.

Value of practical bandwidth is always less than the value of theoretical bandwidth. Also,
enabling some error correction features (like Error-Correcting-Code in NVIDIA cards)
can further reduce the effective bandwidth.

Occupancy. Occupancy refers to the ratio of the total number of running warps to
the maximum number of warps that can be concurrently executed on each streaming
multiprocessor. Following factors can affect the percentage of achieved occupancy:

1. the amount of shared memory per each streaming multiprocessor,
2. the number of registers per each thread,
3. the occurrence of register spilling, and finally,

GPGPU computing 17

4. the size of a thread block (which we would prefer to be a multiple of 32).

Data latency. This term refers to the time spent between requesting the data by a warp
and when the data is ready to be processed by the warp. During this time, the warp
scheduler executes another warp, therefore, the requesting warp should be waiting. We
try to hide the data latency by increasing the occupancy percentage.

Register spilling. As long as there are enough registers left to be allocated, single
variables and constant values will always be stored in registers. However, an array inside
a thread will not always be stored in registers. In fact, the compiler makes the decision to
store an array in registers of the streaming multiprocessor only if the following conditions
are met:

- the compiler should be able to determine the indexes of the array, and
- there should be enough number of registers to allocate to the array.

Otherwise, the array will be stored in local memory, which will result in register spilling.
As we explained before, accesses to local memory is costly, therefore, register spilling
will have a negative impact on the memory bandwidth. Also, even if the register spilling
does not happen, allocating too many registers to each thread will lower the number of
concurrent warps, and consequently, will lower the overall occupancy of the application.

Shared memory bank conflicts. Shared memory is divided into partitions of the
same size, namely, shared memory banks. The default size of a shared memory bank is
32 bits, however, for devices of compute capability 2.0 and higher, size of shared memory
banks can be configured to 64 bits. Inside a warp, multiple accesses to the same address
of shared memory will result in shared memory bank conflicts. As a result, conflicted
accesses will be serialized, and therefore, will lower the bandwidth.

Arithmetic bound kernels. Arithmetic bound kernels spend most of the computation
time for issuing arithmetic instructions. In other words, performance is limited by the
high number of arithmetic instructions that should be issued at each clock cycle. For
an arithmetic bound kernel, we would prefer to lower warp divergence and therefore,
avoid using if-else statements as much as possible. Also, we can balance the computation
among arithmetic units of each streaming multiprocessor. For example, we can compute
part of the integer arithmetic to the floating point arithmetic units and Special Function
Units (SFUs).

Memory bound kernels. A kernel is memory bound if it spends most of the time for
issuing memory requests. As a result, performance will be limited by memory overheads.

GPGPU computing 18

An effective solution for increasing performance of memory bound kernels is to make sure
the data latency is minimized and more warps will be concurrently executed. In other
words, occupancy should be increased to hide the latency. Also, we must ensure that
accesses to global memory are minimized by

1. storing data in a data structure that facilitates coalesced accesses, and
2. (if possible) reusing the same data for more computations.

As a final note, for a memory bound GPU kernel, the practical bandwidth is usually
close to the peak of the theoretical bandwidth.

Arithmetic intensity. Arithmetic intensity is defined as the ratio of the number of
arithmetic instructions to the total amount of processed data. More importantly, this
term does not have a unique definition. For example, we can define the total amount of
processed data

1. as the total number of memory instructions, or
2. as the amount of data in terms of bytes.

Instruction level parallelism (ILP). This term refers to the parallelization of in-
dependent instructions at the level of hardware. For example, assume that ai, bi, ci

(0 ≤ i < 4) are pointers to non-overlapping addresses in the memory. Then, as shown in
Figure 2.7, we can concurrently compute 4 additions ai := bi + ci by using 4 threads.

tid 0 1 2 3
Instruction a0 = b0 + c0 a1 = b1 + c1 a2 = b2 + c2 a3 = b3 + c3

Figure 2.7: Four independent instructions.

On the other hand, as shown in Figure 2.8, one thread can be used for computing all four
additions. However, in practice, it is very difficult to exploit the ILP, mostly because the
programmer does not have direct control over it. In fact, it is the compiler that makes the
decision for using ILP. Depending on the architecture of the device, 2 or 4 instructions
might be parallelized in this way.

GPGPU computing 19

tid 0
a0 = b0 + c0

Instruction a1 = b1 + c1

a2 = b2 + c2

a3 = b3 + c3

Figure 2.8: An example of ILP.

2.1.5 Profiling CUDA applications

Profiler. A profiler is software that is used for inspecting the performance of an ap-
plication. As part of the software development kit (CUDA-SDK), NVIDIA corporation
provides nvprof as the official command-line profiler for CUDA applications. In next
step, we explain a number of the most important metrics that can be measured by this
profiler. Moreover, Table 2.3 shows a list of the nvprof metrics that will be used for
measuring the performance of our implementation.

Instruction per cycle (IPC). This metric measures the total number of instructions
that are issued on each streaming multiprocessor at each clock cycle.

Achieved occupancy. This metric represents the ratio of the total number of run-
ning warps to the maximum possible number of the warps that can be executed on the
multiprocessor.

Instruction replay overhead. This metric represents the following ratio:

N(issued) −N(requested)

N(requested)
(2.2)

where:

1. N(issued) is the total number of issued instructions, and
2. N(requested) is the total number of requested instructions.

There are similar ”replay overhead” metrics for some other instructions, for example,
global memory replay overhead and shared memory replay overhead measure overheads
of global memory and shared memory instructions, respectively.

Global memory load and store throughput. This metric measures the throughput
for all global memory load and store transactions, including accesses to the L1 cache and
to the L2 cache.

GPGPU computing 20

DRAM read and write throughput. This metric measures the memory throughput
for memory read transactions between the device memory and the L2 cache.

Metric name description
achieved occupancy Percentage of occupancy for all SMs

ipc Instruction per cycle
gst throughput Global memory store throughput
gld throughput Global memory load throughput
gst efficiency Global memory store efficiency
dram utilization Device memory utilization (a value between 0 and 10)

Table 2.3: A short list of performance metrics of nvprof.

2.1.6 A note on psuedo-code.

We present our algorithms in pseudo-codes similar to the CUDA programming model.

Host functions. Name of this type of function begins with the keyword Host. Host
functions can only be called from the host (CPU). Moreover, this type of function are
used for

1. initializing the input data, and
2. invoking GPU kernels.

Kernel functions. The name of this type of function begins with the keyword Kernel.
Kernel functions will be loaded on each streaming multiprocessor, then, all threads will
execute the same code. Kernel functions can only be called from host functions. Fi-
nally, this type of function never returns any values, instead, they only depend on global
memory for communicating to the host.

Device functions. The name of this type of function begins with the keyword Device.
Device functions can only be called from kernel functions. However, device functions can
return values to their invoker kernel.

Size of a machine-word. We assume that a machine-word (register) is 64-bits wide.

Fortran style arrays. In this thesis, we present arrays in the following way:

1. ~x refers to vector of digits, each of size of of a machine-word,
2. ~x[i] refers to i-th digit of ~x, and
3. ~x[i : j] refers to i-th, . . ., j-th digits of ~x.

Fast Fourier Transforms 21

2.2 Fast Fourier Transforms
In this section, we review the Discrete Fourier Transform over a finite field, and its related
concepts.

Primitive and principal roots of unity. Let R be a commutative ring with units. Let
N > 1 be an integer. An element ω ∈ R is a primitive N -th root of unity if for 1 < k ≤ N

we have ωk = 1 ⇐⇒ k = N . The element ω ∈ R is a principal N -th root of unity if
ωN = 1 and for all 1 ≤ k < N we have

N−1∑
j=0

ωjk = 0. (2.3)

In particular, if N is a power of 2 and ωN/2 = −1, then ω is a principal N -th root of unity.
The two notions coincide in fields of characteristic 0. For integral domains every primitive
root of unity is also a principal root of unity. For non-integral domains, a principal N -th
root of unity is also a primitive N -th root of unity unless the characteristic of the ring
R is a divisor of N .

The discrete Fourier transform (DFT). Let ω ∈ R be a principal N -th root of unity.
The N-point DFT at ω is the linear function, mapping the vector ~a = (a0, . . . , aN−1)T to
~b = (b0, . . . , bN−1)T by ~b = Ω~a, where Ω = (ωjk)0≤j,k≤N−1. If N is invertible in R, then
the N -point DFT at ω has an inverse which is 1/N times the N -point DFT at ω−1.

The fast Fourier transform. Let ω ∈ R be a principal N -th root of unity. Assume that
N can be factorized to JK with J,K > 1. Recall Cooley-Tukey factorization formula [6]

DFTJK = (DFTJ ⊗ IK)DJ,K(IJ ⊗DFTK)LJK
J , (2.4)

where, for two matrices A,B over R with respective formats m×n and q× s, we denote
by A⊗B an mq× ns matrix over R called the tensor product of A by B and defined by

A⊗B = [ak`B]k,` with A = [ak`]k,` (2.5)

In the above formula, DFTJK , DFTJ and DFTK are respectively the N -point DFT at
ω, the J-point DFT at ωK and the K-point DFT at ωJ . The stride permutation matrix
LJK

J permutes an input vector x of length JK as follows

x[iJ + j] 7→ x[jJ + i], (2.6)

Fast Fourier Transforms 22

for all 0 ≤ j < J, 0 ≤ i < K. If x is viewed as an K × J matrix, then LJK
J performs a

transposition of this matrix. The diagonal twiddle matrix DJ,K is defined as

DJ,K =
J−1⊕
j=0

diag(1, ωj, . . . , ωj(K−1)), (2.7)

Formula (2.4) implies various divide-and-conquer algorithms for computing DFTs effi-
ciently, often refered as fast Fourier transforms (FFTs). See the seminal papers [20]
and [11] by the authors of the SPIRAL abd FFTW projects, respectively. This formula
also implies that, if K divides J , then all involved multiplications are by powers of ωK .

In the factorization of the matrix DFTJK , viewing the size K as a base case and assuming
that J is a power of K, Formula (2.4) translates into Algorithm 2.1. In this algorithm, as
in the sequel of this section, ω ∈ R be a principal N -th root of unity and (α0α1...αN−1)
is a vector whose coefficients are in R.

Fast Fourier Transforms 23

Algorithm 2.1 Radix K Fast Fourier Transform in R
procedure FFTradix K((α0α1...αN−1), ω, N = J ·K)

for 0 ≤ j < J do . Data transposition
for 0 ≤ k < K do

γ[j][k] := αkJ+j

end for
end for
for 0 ≤ j < J do . Base case FFTs

c[j] := FFTbase−case(γ[j], ωJ , K)
end for
for 0 ≤ k < K do . Twiddle factor multiplication

for 0 ≤ j < J do
δ[k][j] := c[j][k] ∗ ωjk

end for
end for
for 0 ≤ k < K do . Recursive calls

δ[k] = FFTradix K(δ[k], ωK , J)
end for
for 0 ≤ k < K do . Data transposition

for 0 ≤ j < J do
α[jK + k] := δ[k][j]

end for
end for
return (α0α1...αN−1)

end procedure

The recursive formulation of Algorithm 2.1 is not appropriate for generating code tar-
geting many-core GPU-like architectures for which, formulating algorithms iteratively
facilates the division of the work into kernel calls and thread-blocks.

To this end, we shall unroll Formula (2.4). This will be done in Chapter 6.

Chapter 3

Arithmetic Computations Modulo
Sparse Radix Generalized Fermat
Numbers

The n-th Fermat number, denoted by Fn, is given by Fn = 22n + 1. This sequence
plays an important role in number theory and, as mentioned in the introduction, in the
development of asymptotically fast algorithms for integer multiplication [21, 13].

Arithmetic operations modulo a Fermat number are simpler than modulo an arbitrary
positive integer. In particular 2 is a 2n+1-th primitive root of unity modulo Fn. Unfor-
tunately, F4 is the largest Fermat number which is known to be prime. Hence, when
computations require the coefficient ring be a field, Fermat numbers are no longer inter-
esting. This motivates the introduction of other family of Fermat-like numbers, see, for
instance, Chapter 2 in the text book Guide to elliptic curve cryptography [14].

Numbers of the form a2n + b2n where a > 1, b ≥ 0 and n ≥ 0 are called generalized
Fermat numbers. An odd prime p is a generalized Fermat number if and only if p is
congruent to 1 modulo 4. The case b = 1 is of particular interest and, by analogy with
the ordinary Fermat numbers, it is common to denote the generalized Fermat number
a2n + 1 by Fn(a). So 3 is F0(2). We call a the radix of Fn(a). Note that, Landau’s fourth
problem asks if there are infinitely many generalized Fermat primes Fn(a) with n > 0.

In the finite ring Z/Fn(a)Z, the element a is a 2n+1-th primitive root of unity. However,
when using binary representation for integers on a computer, arithmetic operations in
Z/Fn(a)Z may not be as easy to perform as in Z/FnZ. This motivates the following.

24

Representation of Z/pZ 25

Definition 1 We call sparse radix generalized Fermat number, any integer of the form
Fn(r) where r is either 2w + 2u or 2w − 2u, for some integers w > u ≥ 0. In the former
case, we denote Fn(r) by F+

n (w, u) and in the latter by F−n (w, u).

Table 3.1 lists a few sparse radix generalized Fermat numbers (SRGFNs, for short) that
are prime. For each p among those numbers, we give the largest power of 2 dividing
p − 1, that is, the maximum length N of a vector to which a radix-K FFT algorithm
(like Algorithm 2.1) where K is an appropriate power of 2.

p max{2e s.t. 2e | p− 1}
(263 + 253)2 + 1 2106

(264 − 250)4 + 1 2200

(263 + 234)8 + 1 2272

(262 + 236)16 + 1 2576

(262 + 256)32 + 1 21792

(263 − 240)64 + 1 22500

(264 − 228)128 + 1 23584

Table 3.1: SRGFNs of practical interest.

Notation 1 In the sequel of this section, we consider p = Fn(r), a fixed SRGFN. We
denote by 2e the largest power of 2 dividing p−1 and we define k = 2n, so that p = rk +1
holds.

As we shall see in the sequel of this section, for any positive integer N which is a power
of 2 such that N divides p − 1, one can find an N -th primitive root of unity ω ∈ Z/pZ
such that multiplying an element a ∈ Z/pZ by ωi(N/2k) for 0 ≤ i < 2k can be done
in linear time w.r.t. the bit size of a. Combining this observation with an appropriate
factorization of the DFT transform on N points over Z/pZ, we obtain an efficient FFT
algorithm over Z/pZ.

3.1 Representation of Z/pZ
We represent each element x ∈ Z/pZ as a vector ~x = (xk−1, xk−2, . . . , x0) of length k and
with non-negative integer coefficients such that we have

x ≡ xk−1 r
k−1 + xk−2 r

k−2 + · · ·+ x0 mod p. (3.1)

This representation is made unique by imposing the following constraints

1. either xk−1 = r and xk−2 = · · · = x1 = 0,

Representation of Z/pZ 26

2. or 0 ≤ xi < r for all i = 0, . . . , (k − 1).

We also map x to a univariate integer polynomial fx ∈ Z[T] defined by fx = ∑k−1
i=0 xit

i

such that x ≡ fx(r) mod p.

Now, given a non-negative integer x < p, we explain how the representation ~x can be
computed. The case x = rk is trivially handled, hence we assume x < rk. For a non-
negative integer z such that z < r2i holds for some positive integer i ≤ n = log2(k), we
denote by vec(z, i) the unique sequence of 2i non-negative integers (z2i−1, . . . , z0) such
that we have 0 ≤ zj < r and z = z2i−1r

2i−1 + · · ·+ z0. The sequence vec(z, i) is obtained
as follows:

1. if i = 1, we have vec(z, i) = (q, s),
2. if i > 1, then vec(z, i) is the concatenation of vec(q, i− 1) followed by vec(s, i− 1),

where q and s are the quotient and the remainder in the Euclidean division of z by r2i−1 .
Clearly, vec(x, n) = ~x holds.

We observe that the sparse binary representation of r facilitates the Euclidean division
of an non-negative integer z by r, when performed on a computer. Referring to the
notations in Definition 1, let us assume that r is 2w + 2u, for some integers w > u ≥ 0.
(The case 2w − 2u would be handled in a similar way.) Let zhigh and zlow be the quotient
and the remainder in the Euclidean division of z by 2w. Then, we have

z = 2w zhigh + zlow = r zhigh + zlow − 2uzhigh. (3.2)

Let s = zlow +−2uzhigh and q = zhigh. Three cases arise:

(S1) if 0 ≤ s < r, then q and s are the quotient and remainder of z by r,
(S2) if r ≤ s, then we perform the Euclidean division of s by r and deduce the desired

quotient and remainder,
(S3) if s < 0, then (q, s) is replaced by (q + 1, s+ r) and we go back to Step (S1).

Since the binary representations of r2 can still be regarded as sparse, a similar procedure
can be done for the Euclidean division of an non-negative integer z by r2. For higher
powers of r, we believe that Montgomery algorithm is the way go, though this remains
to be explored.

Finding primitive roots of unity in Z/pZ 27

3.2 Finding primitive roots of unity in Z/pZ

Notation 2 Let N a power of 2, say 2`, dividing p − 1 and let g ∈ Z/pZ be a N-th
primitive root of unity.

Recall that such an N -th primitive root of unity can be obtained by a simple probabilistic
procedure. Write p = qN + 1. Pick a random α ∈ Z/pZ and let ω = αq. Little Fermat
theorem implies that either ωN/2 = 1 or ωN/2 = −1 holds. In the latter case, ω is an N -th
primitive root of unity. In the former, another random α ∈ Z/pZ should be considered.
In our various software implementation of finite field arithmetic [16, 3, 15], this procedure
finds an N -th primitive root of unity after a few tries and has never been a performance
bottleneck.

In the following, we consider the problem of finding an N -th primitive root of unity ω

such that ωN/2k = r holds. The intention is to speed up the portion of FFT computation
that requires to multiply elements of Z/pZ by powers of ω.

Proposition 1 In Z/pZ, the element r is a 2k-th primitive root of unity. Moreover, the
following algorithm computes an N-th primitive root of unity ω ∈ Z/pZ such that we
have ωN/2k = r in Z/pZ.

Algorithm 3.1 Primitive N -th root ω ∈ Z/pZ s.t. ωN/2k = r

procedure PrimitiveRootAsRootOf(N, r, k, g)
α := gN/2k

β := α

j := 1
while β 6= r do

β := αβ

j := j + 1
end while
ω := gj

return (ω)
end procedure

Proof Since gN/2k is a 2k-th root of unity, it is equal to ri0 (modulo p) for some
0 ≤ i0 < 2k where i0 is odd. Let j be an non-negative integer. Observe that we have

gj2`/2k = (gi g2 k q)2`/2k = gi2`/2k = ri i0 , (3.3)

Addition and subtraction in Z/pZ 28

where q and i are quotient and the remainder of j in the Euclidean division by 2k. By
definition of g, the powers gi2`/2k, for 0 ≤ i < 2k, are pairwise different. It follows
from Formula (3.3) that the elements ri i0 are pairwise different as well, for 0 ≤ i < 2k.
Therefore, one of those latter elements is r itself. Hence, we have j1 with 0 ≤ j1 < 2k
such that gj1N/2k = r. Then, ω = gj1 is as desired and Algorithm 3.1 computes it. �

3.3 Addition and subtraction in Z/pZ
Let x, y ∈ Z/pZ represented by ~x, ~y, see Section 3.1 for this latter notation. Algorithm 3.2
computes the representation −−−→x+ y of the element (x+ y) mod p.
Algorithm 3.2 Computing x + y ∈ Z/pZ for x, y ∈ Z/pZ

procedure BigPrimeFieldAddition(~x, ~y, r, k)
1: compute zi = xi + yi in Z, for i = 0, . . . , k − 1,
2: let c0 = 0 and zk = 0,
3: for i = 0, . . . , k−1, compute the quotient qi and the remainder si in the Euclidean

division of zi by r, then replace (zi+1, zi) by (zi+1 + qi, si),
4: if zk = 0 then return (zk−1, . . . , z0),
5: if zk = 1 and zk−1 = · · · = z0 = 0, then let zk−1 = r and return (zk−1, . . . , z0),
6: let i0 be the smallest index, 0 ≤ i0 ≤ k−1, such that zi0 6= 0, then let zi0 = zi0−1,

let z0 = · · · = zi0−1 = r − 1 and return (zk−1, . . . , z0).
end procedure

Proof At Step (1), ~x and ~y, regarded as vectors over Z, are added component-wise.
At Steps (2) and (3), the carry, if any, is propagated. At Step (4), there is no carry
beyond the leading digit zk−1, hence (zk−1, . . . , z0) represents x+ y. Step (5) handles the
special case where x+ y = p− 1 holds. Step (6) is the overflow case which is handled by
subtracting 1 mod p to (zk−1, . . . , z0), finally producing −−−→x+ y. �

A similar procedure computes the vector −−−→x− y representing the element (x− y) ∈ Z/pZ.
Recall that we explained in Section 3.1 how to perform the Euclidean divisions at Step
(S3) in a way that exploits the sparsity of the binary representation of r.

In practice, the binary representation of the radix r fits a machine word, see Table 3.1.
Consequently, so does each of the “digit” in the representation ~x of every element x ∈
Z/pZ. This allows us to exploit machine arithmetic in a sharper way. In particular, the
Euclidean divisions at Step (S3) can be further optimized.

Multiplication by a power of r in Z/pZ 29

3.4 Multiplication by a power of r in Z/pZ
Before considering the multiplication of two arbitrary elements x, y ∈ Z/pZ, we assume
that one of them, say y, is a power of r, say y = ri for some 0 < i < 2k. Note that
the cases i = 0 = 2k are trivial. Indeed, recall that r is a 2k-th primitive root of unity
in Z/pZ. In particular, rk = −1 in Z/pZ. Hence, for 0 < i < k, we have rk+i = −ri

in Z/pZ. Thus, let us consider first the case where 0 < i < k holds. We also assume
0 ≤ x < rk holds in Z, since the case x = rk is easy to handle. From Equation (3.1) we
have:

xri ≡ xk−1 r
k−1+i + · · ·+ x0 r

i mod p

≡
j=k−1∑

j=0
xjr

j+i mod p

≡
h=k−1+i∑

h=i
xh−ir

h mod p

≡
h=k−1∑

h=i
xh−ir

h −
h=k−1+i∑

h=k
xh−ir

h−k. mod p

The case k < i < 2k can be handled similarly. Also, in the case i = k we have xri =
−x in Z/pZ. It follows, that for all 0 < i < 2k, computing the product x ri simply
reduces to computing a subtraction This fact, combined with Proposition 1, motivates
the development of FFT algorithms over Z/pZ.

3.5 Multiplication in Z/pZ
Let again x, y ∈ Z/pZ represented by ~x, ~y and consider the univariate polynomials fs, fy ∈
Z[T] associated with x, y; see Section 3.1 for this notation. To compute the product x y
in Z/pZ, we proceed as follows.
Algorithm 3.3 Computing xy ∈ Z/pZ for x, y ∈ Z/pZ

procedure BigPrimeFieldMultiplication(fx, fy, r, k)
1: We compute the polynomial product fu = fxfy in Z[T] modulo T k + 1.
2: Writing fu =

k−1∑
i=0

uiT
i, we observe that for all 0 ≤ i ≤ k− 1 we have 0 ≤ ui ≤ kr2

and compute a representation −→ui of ui in Z/pZ using the method explained in
Section 3.1.

3: We compute uir
i in Z/pZ using the method of Section 3.4.

4: Finally, we compute the sum
k−1∑
i=0

uir
i in Z/pZ using Algorithm 3.2.

end procedure

Multiplication in Z/pZ 30

For large values of k, fxfy mod T k + 1 in Z[T] can be computed by asymptotically fast
algorithms (see the paper [4]). However, for small values of k (say k ≤ 8), using plain
multiplication is reasonable.

Chapter 4

Big Prime Field Arithmetic on
GPUs

This chapter describes our CUDA implementation of the algorithms of Chapter 3. In
the sequel, p is a sparse radix generalized Fermat number, (see Definition 1) given as
p = rk + 1 where

1. r is either 2w + 2u or 2w − 2u, for some integers w > u ≥ 0; moreover, the binary
representation of r fits within a machine-word,

2. k is a power of 2, namely k = 2n, for a positive n.

Our test-examples use p = (263 + 234)8 + 1, thus, k = 8 and r = (263 + 234).

In Section 4.1, we explain principles of computing arithmetic operations in Z/pZ on
GPUs. Then, we explain how we store elements of Z/pZ in the GPU memory. In the
same section, we explain the impact of different levels of GPU memory on the overall
performance of our implementation. Moreover, we describe how transposing the input
vector can facilitate coalesced accesses to the memory. Then, in Section 4.2, we explain
the general structure of our kernels, also, we present algorithms for computing arithmetic
in Z/pZ on GPUs. Finally, in Section 4.3, we explain profiling results for our CUDA
implementation of arithmetic operations in Z/pZ.

4.1 Preliminaries
In this section, we explain how we can use GPUs for faster computation of arithmetic
operations in Z/pZ. Also, we describe how different levels of GPU memory can affect the

31

Preliminaries 32

performance. Finally, we explain how transposing the input data can minimize memory
overheads.

4.1.1 Parallelism for arithmetic in Z/pZ

We have the following possibilities for parallelizing arithmetic in Z/pZ.

Data parallelism. Computing the same operation on elements of an array can be done
in parallel, which is known as data parallelism. Specifically, computing any component-
wise arithmetic operations on vectors over Z/pZ can be considered as a data parallel
problem.

Parallelizing arithmetic operations. A higher degree of parallelism can be achieved
if one arithmetic operation can be computed by using more than one thread. It is
difficult to efficiently parallelize addition and subtraction over Z/pZ, simply because
these operations might need to propagate carry during the intermediate computation.
Also, the same reasoning applies to multiplication by powers of r, which basically is
computed by a simple data movement followed by one addition and one subtraction.
However, as we will see in Section 4.2.5, even though multiplications in Z/pZ can be
computed in parallel, at the end this parallelization will have frequent accesses to the
memory, and therefore, will not improve the overall performance.

Instruction level parallelism (ILP). As we explained in Section 2.1.4, at the low-
est level, it is possible to exploit parallelism that is provided by hardware instructions.
However, if we cannot efficiently parallelize arithmetic operations over Z/pZ by multiple
threads, in the same way, we also cannot parallelize them by using ILP.

Conclusively, we focus on computing arithmetic operations over Z/pZ as a data-parallel
problem. In other words, GPU implementation of arithmetic operations will result in
memory bound kernels. For that purpose, as we explained in Section 2.1.4, it is crucial
to improve the efficiency of memory transactions in order to hide the data latency. Finally,
we assume that in every arithmetic operation over Z/pZ, one thread will compute one
element of the final result.

4.1.2 Representing data in Z/pZ

Every element of Z/pZ can be represented by a vector of k digits of machine-word size.
Our GPU functions work on a batch of elements of Z/pZ. To be precise, such functions
take one or more vectors of N elements of Z/pZ. Thus, the memory space for each of

Preliminaries 33

those vectors is kN machine-words. In practice, N is supposed to be a power of 2 such
that N ≥ 28.

For a vector ~X of N elements of Z/pZ and an non-negative integer j with 0 ≤ j < N ,
we denote by ~Xj or ~X[j] (depending on the context) the j-th element of ~X. Moreover,
~X(j,i) represents the i-th digit of the j-th element of ~X, for 0 ≤ i < k. Therefore, for
0 ≤ i < k and 0 ≤ j < N we have:

~Xj = (~X(j,0), . . . , ~X(j,k−1)).

Note that this representation is independent from the way that the elements of ~X are
stored in the memory.

In the rest of this section, we explain the following concerns with the memory:

- location of data in the memory, and
- minimizing memory overheads.

4.1.3 Location of data

As we explained in Section 2.1.2, GPUs have multiple levels of memory, and each level
should be used for a specific type of application. At the same time, we must take into
account that each streaming multiprocessor has a limited number of on-chip resources,
such as the number of registers and the amount of shared memory for each thread block.

By this assumptions, we explain the impact of the following levels of GPU memory on
the overall performance.

Registers. Using registers can lower the memory efficiency in the following ways:

1. register spilling will increase the data latency (see Section 2.1.4), and
2. using too many registers per thread can lower the occupancy percentage.

It is highly possible that register spilling will happen. For example, some arithmetic
operations (e.g. the multiplication by powers of r) need to store multiple temporary
arrays of k digits, which depending on the value of k, cannot be stored in registers. In
this case, part of the array will be stored in registers, while the rest of it will be moved to
local memory. Consequently, the performance is lowered because of the low occupancy
and the high data latency. However, by limiting the maximum number of registers per
thread, we guarantee that the excessive amount of data will always be stored in local
memory of each thread. That is, all threads will use register to an extent that does
not lower the occupancy, and therefore, performance will only be lowered due to register

Preliminaries 34

spilling. For example, assume that we have a device that has:

- the total number of 64K (65536) registers per streaming multiprocessor,
- the maximum number of 64 resident warps per streaming multiprocessor, and
- the total number of 4 streaming multiprocessors.

Therefore, this device can schedule 4 ∗ 64 active warps for execution. Assume that a
kernel, say d1, uses 20 registers per thread, while another kernel, say d2, uses 60 registers
per thread. Therefore:

- For d1, 64K registers
20 × 32 threads

1 warp = 102 warps will be scheduled. Therefore, the
occupancy percentage will be 102/256 = 39%.

- For d2, 64K registers
60 × 32 threads

1 warp = 34 warps will be scheduled. Therefore, the
occupancy percentage will be 68/256 = 13%.

Now, if both d1 and d2 have the same effective read and write bandwidth, we would
prefer to have d1 as our implementation.

Shared memory. This level of memory can be used in the following ways:

1. for sharing data among threads of a thread block (which is not the case for arith-
metic over Z/pZ), or

2. as a user-managed cache for storing temporary data.

In the latter case, we must take into account that there is a limited amount of shared
memory on each streaming multiprocessor. Therefore, for S bytes of shared memory
on each streaming multiprocessor, we cannot store more than S

8k
elements of Z/pZ per

thread block. Hence:

1. for larger values of k > 16, shared memory cannot be used for storing all digits of
one element of Z/pZ, and

2. for smaller values of k (8 ≤ k ≤ 16), using shared memory will lower the occupancy
percentage.

Conclusively, we would prefer to avoid using shared memory for computing arithmetic
operations, and later, for computing FFTs over Z/pZ.

Texture memory. As we explained in Section 2.1.2, texture memory is used for storing
read-only arrays, also, different addresses of can be accessed at the same time (scattered
access). As we will explain in Chapter 6, using texture memory can only be useful for

Preliminaries 35

computing some multiplications in FFT over Z/pZ.

Constant memory. As we explained in Section 2.1.2, scattered accesses to constant
memory will be serialized. There are no opportunities to use constant memory for com-
puting any of the arithmetic operations, and later, for computing the FFT over Z/pZ.

Finally, we keep whole input data on global memory, and we avoid all other levels of
memory on a GPU. In the rest of this section, we focus on improving the efficiency of
global memory transactions for computing arithmetic operations in Z/pZ.

4.1.4 Transposing input data

We should use a data structure that facilitates coalesced accesses to global memory. For
an input vector ~X that stores N elements of Z/pZ, we assume that consecutive digits of
one element are stored in adjacent machine-words in the memory. To this end, we view
the input vector ~X as the row-major layout of a matrix M0 with N rows and k columns.
We will refer to M0 as non-transposed input. Figures 4.1 and 4.2 show the way ~X is stored
in M0.

M0 =

~X(0,0) ~X(0,1) . . . ~X(0,k−1)
~X(1,0) ~X(2,1) . . . ~X(1,k−1)

...

...
~X(N−1,0) ~X(N−1,1) . . . ~X(N−1,k−1)

(N×k)

Figure 4.1: The non-transposed input matrix M0.

M0 =

M0 [0] M0 [1] . . . M0 [k − 1]
M0 [k] M0 [k + 1] . . . M0 [2k − 1]

...

...
M0 [(N − 1) ∗ k] M0 [(N − 1) ∗ k + 1] . . . M0 [(N − 1) ∗ k + k − 1]

(N×k)

Figure 4.2: Indexes of digits in the non-transposed matrix M0.

Assume that with N threads running in parallel, a thread of index tid will have access to
digits of ~X(tid). Recall that the digit ~X(tid,i) is stored at M[tid ∗ k+ i] in the memory. A
thread of index tid (0 ≤ tid < N) will have access to the following memory addresses:

Preliminaries 36

~X(tid) 7→ (M[tid ∗ k], . . . , M[tid ∗ k + (k− 1)]),
0 ≤ tid < N .

As shown in Figure 4.3, all threads inside a warp will attempt to read i-th digit from
their respective element, ~Xtid, at the same time.

tid = 0 tid = 1 . . . tid = 31

i = 0 [0, 1, . . . , k − 1] [k, k + 1, . . . , 2k − 1] . . . [31k, 31k + 1, . . . , 32k − 1]
i = 1 [0, 1, . . . , k − 1] [k, k+1, . . . , 2k − 1] . . . [31k, 31k+1, . . . , 32k − 1]

...
...

...
...

i = k− 1 [0, 1, . . . , k-1] [k, k + 1, . . . , 2k-1] . . . [31k, 31k + 1, . . . , 32k-1]

Figure 4.3: Threads inside a warp reading from the non-transposed input.

In the context of CUDA programming, this way of handling memory is known as strided
access pattern [7]1. Strided accesses cause tremendous instruction overheads and are
usually handled in the following way:

1. either by using shared memory (which, as we explained before, is not applicable),
or

2. by transposing the input.

By the second solution, we transpose M0 into a matrix M1 with k rows and N columns.
Figures 4.4 and 4.5 show how each element of ~X is stored in M1.

M1 = (M0)> =

X(0,0) X(1,0) . . . X(N−1,0)

X(0,1) X(1,1) . . . X(N−1,1)
...

X(0,k−1) X(1,k−1) . . . X(N−1,k−1)

(k×N)

Figure 4.4: The transposed input matrix M1.

1http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf

http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf

Preliminaries 37

M1 =

M1 [0] M1 [1] . . . M1 [N − 1]
M1 [N] M1 [N + 1] . . . M1 [2N − 1]

...

...
M1 [(k − 1) ∗N] M1 [(k − 1) ∗N + 1] . . . M1 [(k − 1) ∗N +N − 1]

(N×k)

Figure 4.5: Indexes of digits in the transposed matrix M1.

Therefore, digits of the element ~X(tid) (0 ≤ tid < N) are stored at the following memory
addresses:

~X(tid) 7→ (M[0 ∗N + tid], M[1 ∗N + tid], . . . , M[(k − 1) ∗N + tid]).

In other words, digits of the same index i from all elements are stored in consecutive
machine-words in memory. Therefore, each thread can have access to one digit of its
respective element without lowering the memory efficiency.

As shown in Figure 4.6, threads inside a warp read the i-th digit from their respective
element ~Xtid, therefore, all accesses to the memory will be in a coalesced way:

tid = 0 tid = 1 . . . tid = 31

at i = 0 [0*N] [0*N+1] . . . [0*N+31]
at i = 1 [1*N] [1*N+1] . . . [1*N+31]

...
...

...
...

at i = k [k*N] [k*N+1] . . . [k*N+31]

Figure 4.6: Threads inside a warp reading from the transposed input.

The transposition of M0 to M1 can be computed on either the host (CPU) or the device
(GPU). Notice that this transposition will not cause overheads, as it only needs to be
computed once before transferring data to global memory, and once before writing the
results back to the host memory.

Template HostNaiveTranspose(~M, N, k) gives a naive solution for computing transposition
of elements of the input vector. In practice, such a computation is very inefficient as
it has unoptimized accesses to the memory. In Chapter 5, we present algorithms for
efficient transposition of data on GPUs.

Implementing big prime field arithmetic on GPUs 38

Template HostNaiveTranspose(~X, N, k)
input:

- two positive integers N and k, with k as above,
- a vector ~X of N × k machines-words viewed as the row-major layout of a matrix
M0 with N rows and k columns.

output:
- a vector ~X storing the row-major layout of the transposed matrix of M0.

local: vector ~Y viewed as the row-major layout of a matrix M1 with N rows and k
columns.

for (0 ≤ i < N) do
for (0 ≤ j < L) do

~Y[j ∗ N + i] := ~X[i ∗ L + j]
end for

end for
~X[0 : k ∗ N− 1] := ~Y[0 : k ∗ N− 1]
return ~X

4.2 Implementing big prime field arithmetic on GPUs
In this section, we explain the general structure of our kernels. Moreover, we present
algorithms for computing arithmetic in Z/pZ on GPUs.

4.2.1 Host entry point for arithmetic kernels

Assume that input vectors ~X and ~Y , and the output vector ~U , each store N elements of
Z/pZ. For computing a component-wise arithmetic operation, namely, operation (which
can be replaced with any of the arithmetic operations in Z/pZ), for each of input vectors,
one thread will be assigned for computing one element of the final result. Therefore, a
thread of the index tid will compute the following element:

~U(tid) := operation(~X(tid), ~Y(tid)). (4.1)

Template HostGeneralOperation is a general example that presents the sequence of func-
tion calls for computing any of arithmetic operations in Z/pZ on GPUs.

Initially, the host (CPU) function HostGeneralOperation invokes KernelGeneralOperation.

Implementing big prime field arithmetic on GPUs 39

Then, function KernelGeneralOperation uses N threads. Each thread of index tid will
compute the following steps.

1. Each thread reads digits of ~Xtid and ~Ytid, then writes those digits into two vectors
~x and ~y, respectively.

2. Then, each thread calls device function operation(~x, ~y).
3. In the next step, the invoked device function computes and returns the result, which

will be stored in another vector ~u.
4. Finally, kernel KernelGeneralOperation writes back the result ~u to ~Utid.

Template HostGeneralOperation(~X,~Y,~U, N, k, r, b)
Input:

- a positive integer b giving the size of a one dimensional thread block,
- two positive integers k and r as specified in the introduction,
- a positive integer N ,
- two vectors ~X and ~Y, each of them having N elements of Z/pZ with p = rk + 1,

thus each storing N× k machine-words.
Output:

- vector ~U of elements in Z/pZ storing the result (~U := operation(~X,~Y)).
~X := HostTranspose(~X, N, k)
~Y := HostTranspose(~Y, N, k)
KernelGeneralOperation<<< N/b, b >>>(~X,~Y,~U, N, k, r)
return ~U

Implementing big prime field arithmetic on GPUs 40

Template KernelGeneralOperation(~X,~Y,~U, N, k, r)
input:

- two positive integers k and r as specified in the introduction,
- a positive integer N,
- two vectors ~X and ~Y, each of them having N elements of Z/pZ with p = rk + 1,

thus each storing N× k machine-words and viewed as the row-major layout of the
transposition of matrices M0 and M1 with N rows and k columns, respectively.

output:
- vector ~U of elements in Z/pZ storing the result (~U := operation(~X,~Y)), viewed as

the row-major layout of the transposition of a matrix M2 with N rows and k

columns.

local: stride := N
local: offset:=0
local: vectors ~x, ~y, ~u each storing k digits of size of a machine-word, all digits initially
set to 0.
local: tid := blockIdx.x∗blockSize.x+threadIdx.x
for (0 ≤ i < k) do

offset:=tid +i*stride
~x[i] := ~X[offset] . Reading the digit with the index i of element ~Xtid.
~y[i] := ~Y[offset] . Reading the digit with the index i of element ~Ytid.

end for
~u := DeviceGeneralOperation(~x,~y, k, r). . each thread computing one element of the
final result.

for (0 ≤ i < k) do
offset:=tid +i*stride
~U[offset] := ~u[i]

end for
return . End of Kernel

Implementing big prime field arithmetic on GPUs 41

Template DeviceGeneralOperation(~x,~y, k, r)
input:

- two positive integers k and r as specified in the introduction,
- vectors ~x and ~y representing two elements of Z/pZ with p = rk + 1.

output:
- vector ~u representing an element of Z/pZ with p = rk + 1.

local: vector ~u storing k digits of size of a machine-word, all digits initially set to 0.
~u := operation(~x,~y) . each thread computing one element of the final result.
return ~u

4.2.2 Implementation notes

In this section, we discuss two main parameters that can affect the performance of our
CUDA implementation.

Size of the thread block. Recall that our aim is to maximize the memory efficiency.
As we explained before, one thread will compute result of one arithmetic operation over
Z/pZ, therefore, none of arithmetic operations depend on the size of a thread block. So,
we must choose the size of a thread block by considering following metrics:

1. the achieved occupancy percentage,
2. the value of IPC (instruction per clock cycle), and
3. bandwidth-related performance metrics such as the load and store throughput.

Furthermore, we must limit the number of registers that can be allocated to each stream-
ing multiprocessor. As we explain in Section 4.3, we have achieved the best experimental
results for thread blocks of 128 threads and 256 threads.

Chosen prime number. Our current implementation is optimized for the prime p =
r8 + 1 with radix r = 263 + 234. The radix r is 63 bits wide, therefore we rely on 64-bit
instructions on GPUs. As it is explained in [8], even though 64-bit integer arithmetic
is supported on GPUs, at compile time, all arithmetic and memory instructions will
first be converted to a sequence of 32-bit instructions. This might have a negative im-
pact on the overall performance of our implementation. Specially, compared to addition
and subtraction, 64-bit multiplication is computed through a longer sequence of 32-bit
instructions.

Implementing big prime field arithmetic on GPUs 42

4.2.3 Addition and subtraction in Z/pZ

In this section, we present algorithms for computing addition and subtraction in Z/pZ
based on the formulas in Chapter 3. Also, we assume that the input data is transposed
in the way we explained in Section 4.1.4.

Algorithm 4.1 computes addition for two elements of Z/pZ. Using this algorithm with
the higher level function KernelGeneralOperation, the component-wise addition for two
vectors of N elements of Z/pZ can be computed in the following way:

~U := ~X + ~Y.

Therefore, function KernelGeneralOperation goes through the following steps.

1. First, the algorithm reads the input data from ~X and ~Y write them to the local
vectors ~x and ~y.

2. Then, the algorithm passes ~x and ~y to device function DeviceAddition.
3. Finally, the algorithm writes back the result ~u to the transposed output vector ~U.

In a similar way, Algorithm 4.2 computes subtraction for two elements of Z/pZ. Using
this algorithm with the higher level function KernelGeneralOperation, the component-wise
subtraction for two vectors of N elements of Z/pZ can be computed in the following way:

~U := ~X− ~Y.

Implementing big prime field arithmetic on GPUs 43

Algorithm 4.1 DeviceAddition(~x,~y, k, r)
input:

- two positive integers k and r as specified in the introduction,
- vectors ~x and ~y representing two elements of Z/pZ with p = rk + 1.

output:
- vector ~u representing an element of Z/pZ with p = rk + 1, storing result of the

addition (~u := ~x + ~y) in k digits of size of a machine-word.

local: c := 0, sum := 0
local: vector ~u storing k digits of size of a machine-word, set all digits of ~u equal to
zero.

for (0 ≤ i ≤ k− 1) do
sum := (~x[i] + ~y[i] + c); . 0 ≤ sum < 2r
if sum < ~x[i] or sum < ~y[i] then . An overflow has happened here.

c := 1; . The carry flag will be set to 1.
else if sum ≥ r then . There is no overflow but sum is greater than radix.

c := 1; . The carry flag will be set to 1, adding 1 to ~u[i+ 1] in the next step.
sum := sum− r;

end if
~u[i] := sum

end for

if c = 1 then . The sum is greater than rk, so add rk = −1 mod p.
j := −1
Find the index j where ~u[j] is the first non-zero integer in ~u
if j 6= −1 then . This means ~u[0],~u[1], . . . ,~u[j− 1] are zero.

~u[j] := ~u[j]− 1; . the lower borrows r from higher.
for (0 ≤ i ≤ j− 1) do

~u[i] := r− 1;
end for

else . j = −1 which means all elements in ~u are zero.
~u[0] := 264 − 1; . Therefore, set ~u := −1 mod p.
~u[1], . . . ,~u[k − 1] := 0;

end if
end if
return ~u

Implementing big prime field arithmetic on GPUs 44

Algorithm 4.2 DeviceSubtraction(~x,~y, k, r)
input:

- two positive integers k and r as specified in the introduction,
- vectors ~x and ~y representing two elements of Z/pZ with p = rk + 1.

output:
- vector ~u representing an element of Z/pZ with p = rk + 1, storing result of the

addition (~u := ~x− ~y) in k digits of size of a machine-word.

local: c := 0, s := 0
local: vector ~u storing k digits of size of a machine-word, all digits initially set to 0.

for (0 ≤ i ≤ s− 1) do
s := (~y[i] + c); . 0 ≤ s ≤ r

if s <~x[i] then . ~x[i] need to borrow r from ~u[i + 1].
~u[i] := s + r− ~x[i]
c := 1; . The carry flag will be set to 1.

else
~u[i] := ~x[i]− s;

end if
end for
if c = 1 then . The value of u is less than x− y, then add rk to u.

j := −1
Find the index j where ~u[j] is first digit in ~u smaller than r − 1.
if j 6= −1 then . This means ~u[0],~u[1], . . . ,~u[j− 1] are equal to r − 1.

~u[j] := ~u[j] + 1;
for (0 ≤ i ≤ j− 1) do

~u[i] := 0;
end for

else . j = −1 which means all digits in ~u are zero.
~u[0] := 264 − 1; . Therefore, set u := −1 mod p.
~u[1], . . . ,~u[k− 1] := 0;

end if
end if
return ~u

Implementing big prime field arithmetic on GPUs 45

4.2.4 Multiplication by a power of r in Z/pZ

In this section, we present algorithms for computing multiplication by powers of radix
in Z/pZ. As we explained in Section 3.4, a multiplication by a power of radix can be
reduced to a rotation followed by one subtraction over Z/pZ. This multiplication requires
O(k) machine-word operations.

Vector rotation. Rotation is a simple data movement primitive. This operation is used
as a part of the multiplication by powers of radix. As input, the algorithm takes the local
array ~x, which stores k digits of size of a machine-word, then, simply moves all elements
of ~x one unit to the right. Algorithm 4.3 presents a pseudo-code for this operation.
Algorithm 4.3 DeviceRotation(~x, k)

input:
- a positive integers k as specified in the introduction,
- vector ~x storing k digits of size of a machine-word.

output:
- vector ~x storing the result in k digits of size of a machine-word.

local: t := ~x[k− 1]
for (i from (k− 1) to 1 by −1) do

~x[i] := ~x[i− 1] . Each digit of the ~x is moved one unit to the right.
end for
~x[0] := t
return ~x

Algorithm 4.4 presents a solution for computing multiplication of one element of Z/pZ
by a power of r.

At a lower level, function DeviceMultPowR computes ~x ∗ rs in the following steps.

1. First, the algorithm allocates two local vectors ~a and ~b, each of them storing k

digits of size of a machine-word, all digits initially set to 0.
2. Then, the algorithm proceeds by storing the higher k − s digits of ~x into ~a.
3. In the next step, the algorithm stores the lower s digits of ~x into ~b.
4. The algorithm continues by computing DeviceRotation(~b), s times in a row.
5. After that, the algorithm negates ~a by computing ~a := ~0− ~a.
6. Finally, the algorithm computes ~u := ~a + ~b, then, returns the vector ~u.

Implementing big prime field arithmetic on GPUs 46

Algorithm 4.4 DeviceMultPowR(~x, s, k, r)
input:

- two positive integers k and r as specified in the introduction,
- a positive integer s representing power of radix rs (0 < s ≤ k),
- vector ~x representing one elements of Z/pZ with p = rk + 1.

output:
- vector ~x stores result (~x := ~x ∗ rs) in k digits of size of a machine-word.

local: vectors ~a, ~b, ~Z each store k digits of size of a machine-word, all digits initially
set to 0.
~a[k− s : s− 1] := ~x[k− s : s− 1] . Storing upper s digits of ~x in ~a.
~b[0 : k− s− 1] := ~x[0 : k− s− 1] . Storing lower k− s digits of ~x in ~b.
for (0 ≤ i < s) do

~b := DeviceRotation(~b, k) . Shifting elements of ~b one unit to the right.
end for
~a := DeviceSubtraction(~z,~a, k, r) . Negating ~a by computing ~a := ~0− ~a.
~x := DeviceAddition(~a,~b, k, r) . ~x := ~a + ~b.
return ~x

4.2.5 Multiplication in Z/pZ

In this section, we explain algorithms for computing component-wise multiplication of
two vectors of N elements of Z/pZ. This multiplication requires O(k2) machine-word
operations. For example, ~Uj := ~Xj ∗ ~Yj computes component-wise multiplication for j-th
elements of ~X and ~Y , respectively.

This product is computed similar to polynomial multiplication for two polynomials of
degree k. However, it has a few additional steps. Currently, we have implemented plain
multiplication algorithm as the default function for computing multiplications in Z/pZ.

Assume that two elements Xj and Yj are indexed in the following way:

~Xj = (x0, x1, . . . , x(k−1)), ~Yj = (y0, y1, . . . , y(k−1)). (4.2)

In the first step, the multiplication algorithm computes the intermediate products of the
form xiyjr

(i+j), then, adds them together to calculate the intermediate results. Then, the
algorithm computes 2k intermediate results of the form (lm, hm, cm) for 0 ≤ m < 2k in

Implementing big prime field arithmetic on GPUs 47

the following way:

(l2k−1, h2k−1, c2k−1) = 0 × r2k−1

(l2k−2, h2k−2, c2k−2) = (xk−1yk−1) × r2k−2

(l2k−3, h2k−3, c2k−3) = (xk−2yk−1 + xk−1yk−2) × r2k−3

...
...

...
...

...
(lk, hk, ck) = (x1yk−1 + . . . + xk−2y1 + xk−1y0) × rk

(lk−1, hk−1, ck−1) = (x0yk−1 + x1yk−2 + . . . + xk−1y0) × rk−1

(lk−2, hk−2, ck−2) = (x0yk−2 + x1yk−3 + . . . + xk−2y0) × rk−2

(lk−3, hk−3, ck−3) = (x0yk−3 + x1yk−4 + . . . + xk−3y0) × rk−3

...
...

...
...

...
(l0, h0, c0) = (x0y0) × r0

(4.3)

By partitioning intermediate results of power rj and r(j+k) together we have:

(lk−1, hk−1, ck−1) = (x0yk−1 + . . . + xk−1y0)rk−1 + 0.r2k−1

(lk−2, hk−2, ck−2) = (x0yk−2 + . . . + xk−2y0)rk−2 + (xk−1yk−1)r2k−2

(lk−3, hk−3, ck−3) = (x0yk−3 + . . . + xk−3y0)rk−3 + (xk−2yk−1 + xk−1yk−2)r2k−3

...
...

...
(l0, h0, c0) = (x0y0)r0 + (x1yk−1 + . . . + xk−2y1 + xk−1y0)rk

By this arrangement, the triple [l(k−m−1), h(k−m−1), c(k−m−1)] can be computed as follows.

1. First, all digits of ~Xj and ~Yj will be stored in vectors ~x and ~y, respectively.
2. Then, multiplication ~y := ~yrm will be computed by DeviceMultPowR(~y,m, k, r).
3. Also, for 0 ≤ i < k, k independent products will be computed and stored in a

vector of size of 3k machine-words, namely, ~M in the following way:

~M[3i, 3i+ 1, 3i+ 2] := DeviceIntermediateProduct(~xi ∗ ~y(k−i), k, r). (4.4)

4. Finally, the following sum will be computed, initially [l, h, c] := [0, 0, 0]:

[l(k−m−1), h(k−m−1), c(k−m−1)] :=
k∑

i=0
DeviceAddition([l, h, c],~M[3i, 3i+ 1, 3i+ 2], k, r).

(4.5)

This scheme decomposes computation of intermediate results into k independent units
of work. This implies a possibility for parallelizing this computation by using at most k
threads.

Vectors ~L, ~H, and ~C are used for storing N elements of Z/pZ. These vectors store
intermediate results for multiplication ~Xi ∗ ~Yi in ~Li, ~Hi, and ~Ci, respectively. Finally,

Implementing big prime field arithmetic on GPUs 48

Algorithm 4.5 computes the final result of multiplication from intermediate results in the
following way:

~Ui := ~Li + (~Hi)r + (~Ci)r2. (4.6)

Algorithm 4.5 DeviceMultFinalResult(~l,~h,~c, k, r)
input:

- vectors ~l,~h,~c representing three elements of Z/pZ with p = rk + 1, each storing
intermediate results in k digits of size of a machine-word.

output:
- vector ~t representing an element of Z/pZ with p = rk + 1, storing result of

intermediate addition (~t := ~l + ~hr + ~cr2) in k digits of size of a machine-word.

local: vector ~t storing temporary results in k digits of size of a machine-word, all
digits initially set to 0.
~h := DeviceMultPowR(~h, 1, k, r) . ~h := ~hr
~c := DeviceMultPowR(~c, 2, k, r) . ~c := ~cr2

~t := DeviceAddition(~l,~h, k, r) . ~t := ~l + ~hr
~t := DeviceAddition(~c,~t, k, r) . ~t := ~l + ~hr + ~cr2

return ~t

Template DeviceIntermediateProduct computes intermediate products of two digits. A
specific case of this template is presented in Algorithm 4.6, which computes products in
Z/pZ, with p = r8 + 1, and r = 263 + 234.

In the rest of this section, we will explain Algorithms 4.7 and 4.9, which compute inter-
mediate results in sequential and parallel ways, respectively.
Template DeviceIntermediateProduct([a, b], k, r)

input:
- two positive integers k and r as specified in the introduction,
- two digits a and b each of size of of a machine-word.

output:
- three positive integers l, h, and c storing result of intermediate product.

[l, h, c] := (a ∗ b) mod (p)
return [l, h, c]

Implementing big prime field arithmetic on GPUs 49

Algorithm 4.6 DeviceIntermediateProduct1([a, b], k := 8, r := 263 + 234)
a := 0, b := 0
local: x0, x1, y0, y1

local: x1 = a >= r?1 : 0
local: x0 = x1 > 0?a− r : x . x = x0 + x1r
local: y1 = y >= r?1 : 0
local: y0 = y1 > 0?y− r : y . y = y0 + y1r
local: [v1, v2, v3] = [0, x0y1, 0] . x0y1r
local: [v4, v5, v6] = [0, x1y0, 0] . x1y0r
local: [v7, v8, v9] = [0, 0, x1y1] . x1y1r2

local: [c0, c1] = func(x0y0) . x0y0 = c0 + c1264

local: [v10, v11, v12] = func2(c0) . c0 = v10 + v11r + v12r2

local: [v13, v14, v15] = func2(c′1r) . c′1r = v13 + v14r + v15r2;
local: d1 = c′1 >> 29
local: d0 = c′1 − d1 << 29
local: e1 = (d0 − d1) >> 29
local: e0 = (d0 − d1 − e1 << 29)
local: [v16, v17, v18] = [(e0 − e1) << 34, e1 + d1, 0]
local: [l, h, c] = [v1 + v4 + · · ·+ v16, v2 + v5 + · · ·+ v17, v3 + v6 + · · ·+ v18]
return [l, h, c]

Sequential plain multiplication

In this section, we explain how we can compute intermediate results of multiplication in
Z/pZ in a sequential way.

Similar to addition, subtraction, and multiplication by powers of radix, one thread will
be assigned for computing each element of the final result. Therefore, each thread will
compute k triples of the form [l(k−m−1), l(k−m−1), c(k−m−1)] for 0 ≤ m < k. Therefore, we
assign N threads for component-wise multiplication on two input vectors ~X and ~Y of
size N . Every thread of index tid computes multiplication in the following steps.

Step I. First, each thread reads digits of elements ~Xtid and ~Ytid to the vectors ~x and ~y
in the following way:

~x[0 : k − 1] := (~X(tid,0), . . . , ~X(tid,k−1)),
~y[0 : k − 1] := (~Y(tid,0), . . . , ~Y(tid,k−1)).

(4.7)

Implementing big prime field arithmetic on GPUs 50

Step II. Each thread computes k iterations, when at each iteration i (0 ≤ i < k) the
thread goes through the following steps.

1. First, the thread computes ~Ytid ∗ r1.
2. Next, the thread proceeds with computing [l, h, c] = ∑

0≤m<k
(~xm ∗ ~yk−m).

3. Lastly, the thread stores the values of the triple [l, h, c] to the corresponding ad-
dresses in global memory:

~L(tid,k−i−1) = l, ~H(tid,k−i−1) = h, ~C(tid,k−i−1) = c. (4.8)

Step III. Finally, each thread computes the final result in the following way:

~Utid = ~L(tid) + ~H(tid)r + ~C(tid)r
2. (4.9)

Algorithm 4.7 presents a sequential solution for computing intermediate results. This
algorithm depends on Algorithm 4.8 for computing k iterations of Step II.

Implementing big prime field arithmetic on GPUs 51

Algorithm 4.7 KernelSequentialPlainMult(~X,~Y,~U, N, k, r)
input:

- two positive integers k and r as specified in the introduction,
- a positive integer N,
- two vectors ~X and ~Y, each of them having N elements of Z/pZ with p = rk + 1,

thus each storing N × k machine-words, viewed as the row-major layout of the
transposition of two matricesM0 andM1 withN rows and k columns, respectively.

output:
- vector ~U of elements in Z/pZ storing the the result (~U := ~X ∗ ~Y), viewed as the

row-major layout of the transposition of a matrix M2 with N rows and k columns.

local: offset:=0
local: tid := blockIdx.x∗blockSize.x+threadIdx.x
local: vectors ~x, ~y, ~u, ~l, ~h, ~c each storing k digits of size of a machine-word, all digits
initially set to 0.
for (0 ≤ i < k) do

offset := tid + i ∗ N
~x[i] := ~X[offset]
~y[i] := ~Y[offset]

end for
[~l,~h,~c] := DeviceSequentialMult(~x,~y, k, r) . each thread computing k digits.
~u := DeviecMultFinalResult(~l,~h,~c, k, r)
for (0 ≤ i < k) do

offset := tid + i ∗ N
~U[offset] := ~u[i]

end for
return . End of Kernel

Implementing big prime field arithmetic on GPUs 52

Algorithm 4.8 DeviceSequentialMult(~x,~y, k, r)
input:

- two positive integers k and r as specified in the introduction,
- vectors ~x and ~y representing two elements of Z/pZ with p = rk + 1.

output:
- vectors ~l,~h,~c representing three elements of Z/pZ with p = rk + 1, each storing

intermediate results in k digits of size of a machine-word.

local: vectors ~s,~t each storing the result of intermediate additions in k digits of size
of a machine-word.
local: vectors ~l,~h,~c storing result in k digits of size of a machine-word.
for (0 ≤ i < k) do

if i > 0 then
~y := DeviceMultPowR(~y, 1) . ~y := ~yr

end if
set ~s := [0, 0, 0] and ~t := [0, 0, 0]
for (0 ≤ j < k) do

~t := DeviceIntermediateProduct(~x[j],~y[k− j], k, r)
~s := DeviceAddition(~s,~t, k, r) . computing addition for 3 digits.

end for
~l[k− i− 1] := ~s[0] . storing lower part of intermediate result in the output

vector ~l.
~h[k− i− 1] := ~s[1] . storing higher part of intermediate result in the output

vector ~h.
~c[k− i− 1] := ~s[2] . storing carry part of intermediate result in the output

vector ~c.
end for
return [~l,~h,~c]

Parallel plain multiplication using k threads

As we explained before, intermediate results can be computed in a parallel way. For
this purpose, n threads can be utilized (2 ≤ n ≤ k) for computing k triples like
[l(k−m−1), l(k−m−1), c(k−m−1)], with 0 ≤ m < k.

We explain the case of n = k, where each thread computes one triple of intermediate
results. Consequently, for input vectors ~X, ~Y of size N , algorithm assigns k×N threads.

Implementing big prime field arithmetic on GPUs 53

Then, a thread of index tid goes through the following steps.

Step I.

1. First, the thread reads all k digits from element ~Xtid/k to a local vector ~x such that

~x[0 : k − 1] := (~X(tid/k,0), . . . , X(tid/k,k−1)),
~y[0 : k − 1] := (~Y(tid/k,0), . . . , ~Y(tid/k,k−1)).

(4.10)

2. The thread computes the index of its relative digit i := (tid mod k).
3. The thread computes multiplication ~y ∗ ri.
4. The thread computes k intermediate products and adds them together:

[l, h, c] :=
∑

0≤m<k

(~xm ∗ ~yk−m). (4.11)

5. The thread writes intermediate results to vectors ~L, ~H, ~C such that

L(tid/k,k−i−1) := l, H(tid/k,k−i−1) := h,C(tid/k,k−i−1) = c. (4.12)

Step II. At this point, all intermediate results are stored in vectors ~L, ~H, ~C, therefore
the algorithm uses N threads, with each thread computing on element of the final result
by using Algorithm 4.5. At the end

~U = ~Ltid + (~Htid)r + (~Ctid)r2. (4.13)

Algorithm 4.9 presents a parallel solution for computing intermediate results of multi-
plication in Z/pZ. At its core, this algorithm depends on Algorithm 4.10 for computing
Step I.

Implementing big prime field arithmetic on GPUs 54

Algorithm 4.9 KernelParallelPlainMult(~X,~Y,~U,~L,~H,~C, N, k, r)
input:

- two positive integers k and r as specified in the introduction,
- a positive integer N,
- vectors ~X, ~Y, ~L, ~H, and ~C each having N elements of Z/pZ with p = rk+1, thus each

storing N× k machine-words, viewed as the row-major layout of the transposition
of matrices M0, M1, M2, M3, and M4 respectively.

output:
- vector ~U of elements in Z/pZ storing the the result (~U := ~X ∗ ~Y), viewed as the

row-major layout of the transposition of a matrix M5 with N rows and k columns.
local: offset := 0
local: tid := blockIdx.x∗blockSize.x+threadIdx.x
local: vectors ~x, ~y, ~u, ~l, ~h, and ~c, each storing k digits of size of a machine-word, all
digits initially set to 0.
for (0 ≤ i < k) do

offset := tid/k + i ∗ N
~x[i] := ~X[offset]
~y[i] := ~Y[offset]

end for
offset := tid/k + (k− 1− (tid mod k)) ∗ N
(~L[offset],~H[offset],~C[offset]) := DeviceParallelMult(~x,~y, k, r)

. each thread computes one triple [l, h, c].
if tid < N then . first N threads computing the final result.

for (0 ≤ i < k) do . collecting the intermediate results from k− 1 adjacent threads
offset := tid + i ∗ N
~l[i] := ~L[offset]
~h[i] := ~H[offset]
~c[i] := ~C[offset]

end for
~u := DeviceMultFinalResult(~l,~h,~c, k, r) . ~u := ~l + ~hr + ~cr2

for (0 ≤ i < k) do
offset := tid + i ∗ N
~U[offset] := ~u[i]

end for
end if
return . End of Kernel

Profiling results 55

Algorithm 4.10 DeviceParallelMult(~x,~y, k, r)
input:

- two positive integers k and r as specified in the introduction,
- vectors ~x and ~y representing two elements of Z/pZ with p = rk + 1.

output:
- vector ~s representing an element of Z/pZ with p = rk + 1, storing result of

intermediate additions (~s := ∑
0≤j<k

(~xj ∗ ~yk−j)) in k digits of size of a machine-

word.

local: vectors ~s := [0, 0, 0],~t := [0, 0, 0], each storing 3 digits of size of a machine-word.
local: tid := blockIdx.x∗blockSize.x+threadIdx.x
local: i := (tid mod k) . each thread computes the index of its corresponding digit.
~y := DeviceMultPowR(~y, i, k, r) . ~y := ~yri

for (0 ≤ j < k) do
~t := DeviceIntermediateProduct(~x[j],~y[k− j], k, r)
~s := DeviceAddition(~s,~t, k, r) . computing addition only for 3 digits.

end for
return ~s

4.3 Profiling results
In this section, we present profiling results for our CUDA implementation of basic arith-
metic operations in Z/pZ. Our code is optimized for prime p = r8 + 1 with r = 263 + 234.
For each of four arithmetic operations, we compare performance metrics for the following
variants:

1. functions for computing with non-transposed input vectors (based on the code
developed by L. Chen2), and

2. our implementation of functions in this chapter for transposed input.

As we explained in Section 4.1, for computing each of arithmetic operations in Z/pZ, we
assign one thread for computing each element of the final result.

Analysis of functions for non-transposed data. Assuming that the input is not
transposed, a thread of the index tid reads the input vectors ~X and ~Y at the following

2http://faculty.ecnu.edu.cn/s/187/t/1487/main.jspy

http://faculty.ecnu.edu.cn/s/187/t/1487/main.jspy

Profiling results 56

memory addresses:

(~X[8 ∗ tid], . . . ,~X[8 ∗ tid + 7]),
(~Y[8 ∗ tid], . . . ,~Y[8 ∗ tid + 7]).

Therefore, based on what we described in Section 4.1.4, this implementation will be af-
fected by strided access, because each warp is issuing more instructions for the same
amount of data. As we explained in Chapter 2, GPU memory instructions take sig-
nificantly more time than arithmetic instructions. Therefore, by issuing more memory
requests, more warps will be waiting (stalling) for the data to arrive, and as a result,
each warp has less data to process. Therefore, in case of addition, subtraction, and mul-
tiplication by powers of r, it is reasonable to expect very low values of IPC, because
these algorithms do not re-use the input data at all. In comparison, for multiplication
algorithm, we might see an increase in the value of IPC, because this algorithm is more
arithmetic-intensive. At the same time, we expect to see a high value for the device
memory utilization, provided that enough warps are scheduled on each streaming multi-
processor.

Analysis of functions for transposed data. For functions that compute the trans-
posed input vector, we expect memory instruction overheads to be minimized. Moreover,
we expect each thread to issue more arithmetic instructions, simply because the number
of stalled cycles is much less than the other case. Therefore, for all of four arithmetic op-
erations in Z/pZ, we expect the value of IPC to increase, and at the same time, number
of instruction overheads to decrease. At the end, we would expect to see the following
trends for addition, subtraction, and multiplication by power of r in Z/pZ:

1. the global memory throughput (for both load and store) will be closer to its peak,
because as we explained in Chapter 2, that is a main attribute of memory bound
kernels,

2. moreover, the value of IPC will be higher, because more warps are actively issuing
arithmetic instructions at the same time, also, the value of IPC will be even higher
(closer to its theoretical peak) for multiplication by powers of r.

A note on the multiplication algorithm. Similar to the other case, we expect to see
a higher value of IPC for sequential multiplication. Therefore, for the non-transposed
input functions, and for our sequential multiplication, we expect to see the value of IPC
be of the same order. However, we expect the function for non-transposed data to have a
lower memory store throughput (due to strided accesses). At the same time, for parallel
multiplication, we expect to see a higher value of IPC, but a lower value for the memory

Profiling results 57

store throughput. This expectation is reasonable, because parallel multiplication accesses
to global memory (for storing the intermediate results) roughly three times more than
other operations.

Profiling results for non-transposed addition, subtraction, and multiplication by powers
of r confirm our claims about the performance. For these operations, the global memory
throughput (for both loading and storing) is around one third of its practical bandwidth.

Figures 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13 present profiling results for four operations
over Z/pZ, for randomly generated input vectors and with N = 217.

In each diagram, a specific metric for computing addition (represented by Add), sub-
traction (represented by Sub), multiplication by powers of radix (represented by MultR),
and multiplication (represented by Mult) over Z/pZ is presented by red and blue bars
for non-transposed and transposed input, respectively. Profiling results are measured for
the following metrics:

1. running time,
2. instruction overhead,
3. memory overhead,
4. the number of issued instructions per cycle (IPC),
5. the percentage of achieved occupancy,
6. the percentage of memory load efficiency, and
7. the percentage of memory store efficiency.

Finally, the profiling data has been collected on a NVIDIA Geforce-GTX760M card
(hardware specifications are mentioned in Appendix B).

Add Su
b

Mult
R

Mult
0.00

5.00

10.00

2.39 2.40
3.33

13.30

0.50 0.54 0.38

7.91

R
un

ni
ng

ti
m

e
(m

s)

Non-transposed Transposed

Figure 4.7: Diagram of running-time for N = 217.

Profiling results 58

Add Su
b

Mult
R

Mult
0.00

1.00

2.00

3.00

4.00

3.22

3.74

3.19

0.07
0.36 0.50

0.04 0.20In
st

ru
ct

io
n

R
ep

la
y

O
ve

rh
ea

d

Non-transposed Transposed

Figure 4.8: Diagram of instruction overhead for N = 217.

Add Su
b

Mult
R

Mult
0.00

1.00

2.00
1.70

2.08

1.22

0.020.10 0.14
0.01 0.06

G
lo

ba
lM

em
or

y
R

ep
la

y
O

ve
rh

ea
d

Non-transposed Transposed

Figure 4.9: Diagram of memory overhead for N = 217.

Add Su
b

Mult
R

Mult
0.00

2.00

4.00

0.13 0.11 0.18

2.05

0.72
0.47

4.60

2.80

IP
C

Non-transposed Transposed

Figure 4.10: Diagram of IPC for N = 217.

Profiling results 59

Add Su
b

Mult
R

Mult
0.00

0.20

0.40

0.60

0.80

1.00 0.92 0.92 0.91

0.49

0.87 0.86

0.57
0.48

O
cc

up
an

cy
%

Non-transposed Transposed

Figure 4.11: Diagram of occupancy percentage for N = 217.

Add Su
b

Mult
R

Mult
0.00

50.00

100.00

25.00 25.00 25.00 25.00

99.00 94.00
86.00

99.00

G
lo

ba
lM

em
or

y
Lo

ad
E

ffi
ci

en
cy

Non-transposed Transposed

Figure 4.12: Diagram of memory load efficiency for N = 217.

Add Su
b

Mult
R

Mult
0.00

50.00

100.00

25.00 25.00 25.00 25.00

100.00 95.00
87.00

100.00

G
lo

ba
lM

em
or

y
St

or
e

E
ffi

ci
en

cy

Non-transposed Transposed

Figure 4.13: Diagram of memory store efficiency for N = 217.

Chapter 5

Stride Permutation on GPUs

Stride permutation is a basic part of the Cooley-Tukey FFT algorithm. Therefore, it
is crucial to efficiently compute stride permutation on GPUs. In this chapter, first in
Section 5.1, we explain how we can compute stride permutation on GPUs. Furthermore,
in the same section, we discuss factors that affect the efficiency of computing stride
permutations on GPUs. Finally, in Section 5.2, we have profiling results for our CUDA
implementation of functions of this chapter.

5.1 Stride permutation
As we explained in Chapter 4, we would prefer to store the input data in a data structure
that facilitates coalesced accesses to global memory. For this purpose, we assume that a
vector of N elements in Z/pZ will be viewed as the transposition of a matrix M , with N
rows and k columns, where k is the power of radix in the prime p = rk + 1.

For example, two elements Xi and Xj in Z/pZ will be stored in the following way:

~Xi := (~X[i], ~X[i+ 1 ∗N], . . . , ~X[i+ (k − 1) ∗N])
~Xj := (~X[j], ~X[j + 1 ∗N], . . . , ~X[j + (k − 1) ∗N])

Therefore, every two adjacent digits of each element in Z/pZ will be N steps away from
each other in memory. For example, the first and the second digits of Xi are stored in
~X[i] and ~X[i+ 1 ∗N], respectively. As we explained in Chapter 2, for a vector ~x with
mn elements in Z/pZ, stride permutation Lmn

m computes the following permutation:

~x[in+ j] 7→ ~x[i+mj],

60

Stride permutation 61

with 0 ≤ i < m and 0 ≤ j < n.

Based on this definition, if the input is an n×m matrix that is stored in the row-major
layout, then this permutation is equivalent to the transposition:

Lmn
m (Mn×m) = (Mn×m)>.

For example, for a vector ~x = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) of 16 digits, we
have the following stride permutations:

L16
2 (~x) = (0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15)

L16
4 (~x) = (0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15)

L16
8 (~x) = (0, 8, 1, 9, 2, 10, 3, 11, 4, 12, 5, 13, 6, 14, 7, 15).

Template StridePermutation presents a naive solution for computing the stride permuta-
tion LKJ

K for an input vector of N elements in Z/pZ. Notice that this way of computing
stride permutation has low memory efficiency, because it has accesses to memory ad-
dresses that are far away from each other (see Section 4.1.4). This pseudo-code is only
given as an introductory example.

Stride permutation 62

Template StridePermutation(~X,~Y, K, N, k)
input:

- two positive integers k and r as specified in the introduction,
- a positive integer K representing the stride of the permutation,
- a positive integer N,
- vector ~X having N elements of Z/pZ with p = rk + 1, thus storing N× k machine-

words, viewed as the row-major layout of the transposition of a matrix M0 with
N rows and k columns.

output:
- vector ~Y having N elements of Z/pZ with p = rk + 1, thus storing N× k machine-

words, viewed as the row-major layout of the transposition of a matrix M1 with
N rows and k columns, storing result of stride permutation such that ~Y := LN

K(~X).

local: offsetInput := 0, offsetOutput := 0
local: idxInput := 0, idxOutput := 0
local: J := N/K
for (0 ≤ j < J) do

for (0 ≤ i < K) do
idxInputElement := jK + i
idxOutputElement := j + iJ
for (0 ≤ c < k) do

offsetInput := idxInputElement + c ∗ N
offsetOutput := idxOutputElement + c ∗ N
~Y[offsetOutput] := ~X[offsetInput]

end for
end for

end for
return Y

5.1.1 GPU kernels for stride permutation

As we will explain in Chapter 6, every step of computing a DFT requires permutations
of different stride sizes. For example, for computing DFT16 based on DFT2, we should
compute the following permutations:

L4
2, L

8
2, L

16
2 , L

8
4, L

16
8

Stride permutation 63

Therefore, it is critical to have efficiently implemented functions for computing permu-
tations of any stride sizes.

Computing stride permutations on GPUs relies on extensive use of shared memory and
coalesced accesses to global memory. Basically, as we explained in Chapter 2, conflict-
free accesses to shared emory have negligible cost. Therefore, using shared memory can
reduce the cost of computing stride permutations. Stride permutations can be computed
in the following way.

1. First, each thread block reads a portion of the input from global memory in a
coalesced way.

2. In the next step, each thread block stores the data in shared memory.
3. Finally, each thread block writes the permutated data from shared memory to the

output vector in global memory, in a coalesced way.

Assuming that our data is stored in the row-major layout, stride permutation is similar
to the matrix transposition. As we explained in Chapter 2, matrix transposition is a
memory bound kernel with very little arithmetic instructions to carry out. Therefore,
the occupancy percentage will be a determining factor in the overall performance. Most
significantly, the following parameters contribute to the overall percentage of achieved
occupancy:

1. the size of a thread block on GPU, and
2. the the number of active warps per streaming multiprocessor.

We can compute stride permutations in one of the following ways:

1. by assigning multiple thread blocks for computing each stride permutation, or
2. by assigning exactly one thread block to each stride permutation.

For computing a permutation LKJ
K , we have:

1. b is the size of a one dimensional thread block,
2. s is the total number of digits of size of a machine-word that can be stored in shared

memory of a streaming multiprocessor,
3. S is the number of streaming multiprocessors on the target GPU.

By this assumptions, the following assignments are possible.

b = K. In this case, we simply assign one thread block of b threads for computing each
permutation LKJ

K . Algorithm 5.1 present a solution based on this assignment.

Stride permutation 64

b < K. Again, we can assign one thread block of b threads for computing each permu-
tation LKJ

K . Consequently, each thread block will transpose one sub-matrix of s/b rows
and b columns at a time. In total, each thread block computes stride permutation for
T0 := J/[s/b] × K/b sub-matrices. On the other hand, we can assign n = K/b thread
blocks for computing each permutation LKJ

K . In total, each thread computes stride per-
mutation for T1 := J/[s/b]×1 sub-matrices. As a result, there will be a higher utilization
of streaming multiprocessors, and consequently. For a GPU with S streaming multipro-
cessor, we define ratio R in the following way:

R :=
T0

s
T1

s

= K

b
.

This implies that the second approach utilizes the streaming multiprocessor in a compa-
rably more efficient way than the first approach. Algorithm 5.2 presents a solution for
computing LKJ

K using n = K/b thread blocks on GPUs.

Stride permutation 65

Algorithm 5.1 KernelBasePermutationSingleBlock(~X,~Y, K, N, k, s, r)
input:

- two positive integers k and r as specified in the introduction,
- a positive integer K representing the stride of the permutation,
- a positive integer N,
- a positive integer s representing size of shared memory for each thread block,
- vector ~X having N elements of Z/pZ with p = rk + 1, thus storing N× k machine-

words, viewed as the row-major layout of the transposition of a matrix M0 with
N rows and k columns.

output:
- vector ~Y having N elements of Z/pZ with p = rk + 1, thus storing N× k machine-

words, viewed as the row-major layout of the transposition of a matrix M1 with
N rows and k columns, storing result of stride permutation such that ~Y := LN

K(~X).

local: tid := blockIdx.x∗blockSize.x+threadIdx.x
local: offsetDigit:=0
local: j:=threadIdx.x
local: J:=N/K
local: h := s/k
local: c:=0
local: offsetBlock := blockIdx.x ∗ K ∗ J
shared shmem[s] . allocating shared memory, which is visible to all threads of a the

same thread block.
for (0 ≤ c < k) do

offsetDigit := c ∗ N
for (0 ≤ r < J/h) do

for (0 ≤ i < h) do
shmem[j + i ∗ K] = ~X[offsetDigit + offsetBlock + j + i ∗ k]
syncThreads

~Y[offsetDigit + offsetBlock + j ∗ h + i] = shmem[j ∗ h + i]
end for

end for
end for
return . End of Kernel

Stride permutation 66

Algorithm 5.2 KernelBasePermutationMultipleBlocks(~X,~Y, K, N, k, s, r)
input:

- two positive integers k and r as specified in the introduction,
- a positive integer K representing the stride of the permutation,
- a positive integer N,
- a positive integer s representing size of shared memory for each thread block,
- vector ~X having N elements of Z/pZ with p = rk + 1, thus storing N× k machine-

words, viewed as the row-major layout of the transposition of a matrix M0 with
N rows and k columns.

output:
- vector ~Y having N elements of Z/pZ with p = rk + 1, thus storing N× k machine-

words, viewed as the row-major layout of the transposition of a matrix M1 with
N rows and k columns, storing result of stride permutation such that ~Y := LN

K(~X).

local: tid := blockIdx.x∗blockSize.x+threadIdx.x
local: offsetDigit:=0
local: j:=threadIdx.x
local: b:=blockSize.x . b :=Dimension of a 1D thread block
local: J:=N/K
local: h := s/k
local: c:=0
local: offsetPermutation:=0
local: offsetBlock:=0
offsetBlock := blockIdx.x ∗ J ∗ b
shared shmem[s]

for (0 ≤ c < k) do
offsetDigit := c ∗ N
for (0 ≤ r < J/h) do

for (0 ≤ i < h) do
shmem[j + i ∗ K] = ~X[offsetDigit + offsetBlock + j + i ∗ k]
syncThreads

~Y[offsetDigit + offsetBlock + j ∗ h + i] = shmem[j ∗ h + i]
end for

end for
end for
return . End of Kernel

Stride permutation 67

Size of a thread block Basically, stride permutation is a memory bound kernel on
GPUs, as it computes a number of arithmetic instructions, and the overall performance
of the implementation is determined by the way that we have access to the memory.
Therefore, as we explained in Chapter 2, it is crucial to have a high occupancy percentage
to hide the data latency. Consequently, we should choose the size of a thread block, b by
considering three objectives:

1. maximizing the throughput of reading from global memory,
2. maximizing the throughput of writing to global memory, and finally
3. maximizing the occupancy percentage to hide the data latency.

Assume that each streaming multiprocessor can store s digits of size of a machine-wordon
its shared memory. Therefore, each thread block can compute stride permutation for a
sub-matrix of s/b rows and b columns. Based on what we explained in the the previous
section, the larger values of b will restrict us to read less columns from the input. At a
given moment, each block will read s/b rows of size b, which is equivalent of s/b columns
of size b in output. Our goal is to maximize s/b and at the same time, choose b large
enough to achieve a high value of occupancy on each of streaming multiprocessors. Our
experimental results demonstrate that for p = r8+1 and for s = 215

23 digits, we achieve the
best results for threads blocks of 128 threads and 256 threads, respectively (see Section
5.2).

5.1.2 Host entry point for permutation kernels

Finally, we need to have a host function as an entry point for initializing the data and
invoking the GPU kernel functions. Algorithm 5.3 presents a host function that will
initialize data, then will choose a suitable GPU kernel for computing stride permutation.
Moreover, we assume that grids and thread blocks are one dimensional.

Profiling results 68

Algorithm 5.3 HostGeneralStridePermutation (~X,~Y, K, N, k, s, r, b)
input:

- two positive integers k and r as specified in the introduction,
- a positive integer K representing the stride of the permutation,
- a positive integer N,
- a positive integer s representing size of shared memory for each thread block,
- a positive b integer representing size of a 1D thread block,
- vector ~X having N elements of Z/pZ with p = rk + 1, thus storing N× k machine-

words, viewed as the row-major layout of the transposition of a matrix M0 with
N rows and k columns.

output:
- vector ~Y having N elements of Z/pZ with p = rk + 1, thus storing N× k machine-

words, viewed as the row-major layout of the transposition of a matrix M1 with
N rows and k columns, storing result of stride permutation such that ~Y := LN

K(~X).
. In either case, initializing 1D grid of dimension N/b

if b < K then
KernelBasePermutationMultipleBlocks<<< N/b, b >>>(~X,~Y, K, N, k, s, r)

else if b = k then
KernelBasePermutationSingleBlock<<< N/b, b >>>(~X,~Y, K, N, k, s, r)

end if
return . End of Kernel

5.2 Profiling results
In this section, we have the profiling results for the CUDA implementation of Algorithms
5.1 and 5.2, respectively.

Figure 5.1 shows the result of profiling for computing LKJ
K with K = 256 and J = 4096.

For thread blocks of size b = 256, and shared memory of size s = 212 digits of size of
a machine-word, this implementation assigns 8 thread blocks for computing each stride
permutation.

Also, Figure 5.2 shows the profiling result for the implementation that assigns one thread
block for computing the permutation LKJ

K , with K = 16 and J = 216.

The profiling results are measured for the following metrics:

1. the percentage of achieved occupancy,

Profiling results 69

2. the total number of issued instructions per cycle (IPC),
3. instruction overhead,
4. throughput of loading data from global memory,
5. throughput of storing data to global memory, and
6. the efficiency percentage for accessing global memory.

As the final note, we have collected the profiling data on a NVIDIA Geforce-GTX760M
card (hardware specifications are mentioned in Appendix B).

Invocations Metric Name Metric Description Min Max Avg
Device " GeForce GTX 760M (0)"

Kernel : kernel_permutation_256_general_permutated_v0 (__int64 , __int64 *, __int64 *, __int64 *)
1 achieved_occupancy Achieved Occupancy 0.124812 0.124812 0.124812
1 ipc Executed IPC 0.085657 0.085657 0.085657
1 inst_replay_overhead Instruction Replay Overhead 0.710638 0.710638 0.710638
1 gst_throughput Global Store Throughput 3.9570 GB/s 3.9570 GB/s 3.9570 GB/s
1 gld_throughput Global Load Throughput 3.9609 GB/s 3.9609 GB/s 3.9609 GB/s
1 gld_efficiency Global Memory Load Efficiency 99.93% 99.93% 99.93%
1 gst_efficiency Global Memory Store Efficiency 100.00% 100.00% 100.00%

Figure 5.1: Profiling results for stride permutation LKJ
K for K = 256 and J = 4096.

Invocations Metric Name Metric Description Min Max Avg
Device " GeForce GTX 760M (0)"

Kernel : kernel_permutation_16_permutated (__int64 *, __int64 *)
1 achieved_occupancy Achieved Occupancy 0.248948 0.248948 0.248948
1 ipc Executed IPC 0.087653 0.087653 0.087653
1 inst_replay_overhead Instruction Replay Overhead 1.915645 1.915645 1.915645
1 gst_throughput Global Store Throughput 3.9794 GB/s 3.9794 GB/s 3.9794 GB/s
1 gld_throughput Global Load Throughput 3.9872 GB/s 3.9872 GB/s 3.9872 GB/s
1 gld_efficiency Global Memory Load Efficiency 99.85% 99.85% 99.85%
1 gst_efficiency Global Memory Store Efficiency 100.00% 100.00% 100.00%

Figure 5.2: Profiling results for stride permutation LKJ
K for K = 16 and J = 216.

Chapter 6

Big Prime Field FFT on GPUs

In this chapter, we explain how we can compute FFT for vectors of elements in Z/pZ on
GPUs. First, in Section 6.1, we have a quick review of the Cooley-Tukey FFT algorithm.
Then, in Section 6.2, we explain an algorithm for computing multiplication by twiddle
factors on GPUs. Furthermore, in Section 6.3, we explain how by using six-step recursive
FFT, we can compute FFT through a base-case formula that is faster in practice. Next,
in Section 6.4, we explain how we can compute the FFT for vectors of any length in
Z/pZ. Finally, in Section 6.5, we have profiling results for CUDA implementation of
algorithms of this chapter.

6.1 Cooley-Tukey FFT
As we explained in Chapter 2, for computing the FFT for a vector of N = KJ elements
in Z/pZ, and for ωN = 1, the Cooley-Tukey FFT algorithm factorizes the computation
in the following way:

DFTN = (DFTK ⊗ IJ)DK,J(IK ⊗DFTJ)LN
K .

In this notation, DK,J represents the multiplication by the powers of ω. Moreover, the
diagonal twiddle matrix DK,J is defined as

DK,J =
K−1⊕
j=0

diag(1, ωj
i , . . . , ω

j(J−1)
i).

In practice, The Cooley-Tukey FFT algorithm is not a suitable choice for implementation
on GPUs, mostly because of the way that it accesses the memory. Therefore, we need

70

Multiplication by twiddle factors 71

an equivalent equation which is more suitable for structure of GPUs. That is, we must
have an equation that can efficiently exploit block parallelism of GPUs. In terms of tensor
notation, block parallelism can be realized by tensor products of the form IJ⊗DFTK , and
therefore, we should find a solution to convert our computations to the mentioned form.
For this purpose, we use the six-step recursive FFT algorithm [10], which is expressed in
the following way:

DFTN = LN
K(IJ ⊗DFTK)LN

J DK,J(IK ⊗DFTJ)LN
K .

By this formula, we can further expand the left part IJ⊗DFTK to reduce all computations
to a base-case DFTK . Accordingly, by having an efficient implementation for computing
DFTK , we can have a high performance implementation of the FFT.

6.2 Multiplication by twiddle factors
Multiplications by twiddle factors can be computed using the multiplication algorithm
of Section 4.2.5. However, as we explained in Chapter 3, one of our goals is to use the
cheap multiplications by powers of radix, as much as we can. Therefore, for computing
DFTN based on DFTK , we compute twiddle factor multiplications in a different way.
Basically, for computing DFTKe by DFTK , we require the multiplications of the form
DK,Ke−s where ωi = ωK(s−1) (1 ≤ s < e). Also, as we know, ωN = r2k. Therefore, by
choosing K = 2k, result of y := x ∗ ωi(N/K)+j can be computed in the following way:

1. first, y := x ∗ ωi(N/K) = x ∗ ri which can be computed by multiplication algorithm
of Section 4.2.4, then,

2. y := y ∗ωj which can be computed by the multiplication algorithm of Section 4.2.5.

Therefore, for computing the multiplication by the twiddle factors, we should only com-
pute multiplications for ωj with 0 < j < N/K. In this case, we can pre-compute and
store the powers of ω up to ωN/K−1. Conclusively, for computing DFTKe , we need to
store powers of ω up to ωKe−1−1.

In practice, we store the pre-computed powers of ω either in the global memory, or in the
texture memory (preferred) of GPUs. Similar to other arithmetic operations, we assign
exactly one thread for computing element of final result of multiplication by powers of
ω. Algorithm 6.1 presents the solution for computing DK,Ke−s using K(e−s) threads on
GPUs.

Multiplication by twiddle factors 72

Algorithm 6.1 KernelTwiddleMultiplication(~X,~Ω, N, K, k, s, r)
input:

- two positive integers k and r as specified in the introduction,
- a positive integer N,
- a positive integer s representing the step of twiddle factor multiplication,
- vector ~X having N elements of Z/pZ with p = rk + 1, thus storing N× k machine-

words, viewed as the row-major layout of the transposition of a matrix M0 with
N rows and k columns,

- vector ~Ω having K(e−1) elements of Z/pZ with p = rk + 1, thus storing K(e−1)× k
machine-words, viewed as the row-major layout of the transposition of a matrix
M1 with K(e−1) rows and k columns.

output:
- vector ~X storing result of twiddle factor multiplication (DK,K(e−s))

local: i := tid/(Ke − s)
local: j := tid mod (Ke − s)
local: v := (i ∗ j)/(Ke − 1)
local: c := (i ∗ j) mod (Ke − 1)
local: vectors ~x, ~y, ~u, ~l, ~h, ~c each storing k digits of size of a machine-word, all digits
initially set to 0.
local: offset := 0
for (0 ≤ i < k) do

offset := tid + i ∗ N
~x[i] := ~X[offset] . Loading digit of the index i from element ~Xtid.

end for
for (0 ≤ i < k) do

offset := c + i ∗ N
~y[i] := ~Ω[offset] . Loading digit of the index i from element ~Ωc.

end for
~x := DeviceCyclicShift(~x, v, k, r)
[~l,~h,~c] := DeviceSequentialMult(~x,~y, k, r) . Each thread computing k digits.
~u := DeviecMultFinalResult(~l,~h,~c, k, r)
for (0 ≤ i < k) do

offset := tid + i ∗ N
~X[offset] := ~x[i] . Storing digit of the index i to element ~Xtid.

end for
return ~X

Implementation of the base-case DFT-K 73

6.3 Implementation of the base-case DFT-K
In this section, we explain algorithms for computing DFTN based on DFTK . First,
we explain how by using the six-step FFT algorithm, we can further decompose the
base-case DFTK . Moreover, we will describe an algorithm for computing DFT2 for two
elements of Z/pZ on GPUs. Finally, we present algorithms for computing DFT16 based
on 8 intermediate steps that only compute DFT2, or permutations, or multiplications by
powers of radix.

6.3.1 Expanding DFT-K based on six-step FFT

By using the six-step FFT equation, we can further expand the DFTK until we reach to
a point where all of computations are reduced to DFT2. For example, for K = 2`, we
can derive the following equations:

DFT2` = L2`

2 (I2(`−1) ⊗DFT2) L2`

2(`−1) DK,2(`−1) (I2 ⊗DFT2(`−1)) L2`

2 ,

DFT2(`−1) = L2(`−1)
2 (I2(`−2) ⊗DFT2) L2(`−1)

2(`−2) DK,2(`−2) (I2 ⊗DFT2(`−2)) L2(`−1)
2 ,

...
DFT4 = L4

2 (I2 ⊗DFT2) L4
2 DK,2 (I2 ⊗DFT2) L4

2.

Also, by using the algorithms of Chapter 5, we can compute stride permutations of any
sizes on GPUs. However, for vectors that store K elements of Z/pZ, if the value of
K is not large, we compute permutation in a different way. Basically, performing a
permutation on a vector, changes the order of elements in that vector, or in other words,
permutation changes the index of each element. Therefore, we can pre-compute index
of each element after permutation is performed. In other sense, instead of moving the
data inside the memory, we only compute the memory address that will be modified by
a permutation.

6.3.2 Implementation of DFT-2

For two arbitrary elements X0 and X1 in Z/pZ, DFT2 is computed in the following way:

DFT2(X0, X1) := (X0 +X1, X0 −X1).

Algorithm 6.2 presents the solution for computing DFT2 for two elements of Z/pZ on
GPUs. For this algorithm, we assign exactly one thread for computing result of DFT2

for two elements of Z/pZ.

Implementation of the base-case DFT-K 74

Algorithm 6.2 DeviceDFT2(~X, i, j, N, k, r)
input:

- two positive integers k and r as specified in the introduction,
- a positive integer N,
- positive integers i and j, representing the indexes of two elements of input vector,

namely ~Xi and ~Xj with i 6= j,
- vector ~X having N elements of Z/pZ with p = rk + 1, thus storing N× k machine-

words, viewed as the row-major layout of the transposition of a matrix M0 with
N rows and k columns.

output:
- vector ~X with result of DFT2 computed for two digits ~Xi and ~Xj and stored in ~X

such that (~Xi,~Xj) := DFT2(~Xi,~Xj)
local: c:=0, offset:=0
local: tid := blockIdx.x∗blockSize.x+threadIdx.x
local: vectors ~A,~B, ~S0, ~S1 each storing k digits of size of a machine-word
for (0 ≤ c < k) do . ~A := ~Xi

offset := i + c ∗ N
~A[c] := ~X[offset]

end for
for (0 ≤ c < k) do . ~B := ~Xj

offset := j + c ∗ N
~B[c] := ~X[offset]

end for
~S0[0 : k− 1] := DeviceAddition(~A,~B, k, k, r) . ~S0 := ~A + ~B
~S1[0 : k− 1] := DeviceSubtraction(~A,~B, k, k, r) . ~S1 := ~A− ~B
for (0 ≤ c < k) do . ~Xi := ~S0

offset := i + c ∗ N
~X[offset] := ~S0[c]

end for
for (0 ≤ c < k) do . ~Xj := ~S1

offset := j + c ∗ N
~X[offset] := ~S1[c]

end for
return

Implementation of the base-case DFT-K 75

6.3.3 Computing DFT-16 based on DFT-2

For the prime p = r8 + 1, we choose K = 2k = 16 as the size of our base-case DFT.

In the rest of this section, we describe how we can expand the base-case DFT16 to a
number of base-case DFT2 computations. We must take into account that for computing
the multiplication by twiddle factors, each base-case DFT needs different powers of ω in
the following way:

1. DFT16 needs ω0 = ωN/K = r,
2. DFT8 needs ω1 = ω(N/K)2 = r2,
3. and finally, DFT4 needs ω2 = ω(N/K)4 = r4.

Expanding DFT16 based on the six-step FFT algorithm results in the following sequence
of equations:

DFT16 = L16
2 (I8 ⊗DFT2)L16

8 D
16
2,8(I2 ⊗DFT8)L16

2 ,

DFT8 = L8
2(I4 ⊗DFT2)L8

4D
8
2,4(I2 ⊗DFT4)L8

2,

DFT4 = L4
2(I2 ⊗DFT2)L4

2D
4
2,2(I2 ⊗DFT2)L4

2,

which can be re-written as:

DFT16 = L16
2 (I8 ⊗DFT2)L16

8 D
16
2,8,

(I2 ⊗ L8
2(I4 ⊗DFT2)L8

4D
8
2,4(I2 ⊗ L4

2(I2 ⊗DFT2)L4
2D

4
2,2(I2 ⊗DFT2)L4

2L
8
2L

16
2 .

Furthermore, the following twiddle factor multiplications are needed:

D16
2,8 = (1, 1, 1, 1, 1, 1, 1, 1, ω0, ω

1
0, ω

2
0, ω

3
0, ω

4
0, ω

5
0, ω

6
0, ω

7
0),

D8
2,4 = (1, 1, 1, 1, ω0

1, ω
1
1, ω

2
1, ω

3
1),

D4
2,2 = (1, 1, ω2, ω

2
2),

which are equivalent of

D16
2,8 = (1, 1, 1, 1, 1, 1, 1, 1, r0, r1, r2, r3, r4, r5, r6, r7),

D8
2,4 = (1, 1, 1, 1, r0, r2, r4, r6),

D4
2,2 = (1, 1, r0, r4).

We compute the base-case DFT16 on a vector of 16 elements of Z/pZ, namely, ~M :

~M = (X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15)

The computation of DFT16 on ~M can be broken into eight steps.

Implementation of the base-case DFT-K 76

Step 1

In this step, the following sequence of of permutations are needed:

~M = (X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15),
L16

2
~M = (X0, X2, X4, X6, X8, X10, X12, X14, X1, X3, X5, X7, X9, X11, X13, X15),

(I2 ⊗ L8
2)L16

2
~M = (X0, X4, X8, X12, X2, X6, X10, X14, X1, X5, X9, X13, X3, X7, X11, X15),

M0 = (I2 ⊗ I2 ⊗ L4
2)(I2 ⊗ L8

2)L16
2

~M

M0 = (X0, X8, X4, X12, X2, X10, X6, X14, X1, X9, X5, X13, X3, X11, X7, X15).

After that, DFT2 should be computed for every two elements in ~M0. The final result of
this stop will be stored in ~M1.

~M1 := I2 ⊗ I2 ⊗ I2 ⊗DFT2(M0)
:= I8 ⊗DFT2(M0)
:= [DFT2(X0, X8),DFT2(X4, X12),DFT2(X2, X10),DFT2(X6, X14),

DFT2(X1, X9),DFT2(X5, X13),DFT2(X3, X11),DFT2(X7, X15)].

Algorithm 6.3 presents the pseudo-code for computing this step.
Algorithm 6.3 DeviceDFT16Step1(~X, N, k, r)

input:
- two positive integers k and r as specified in the introduction,
- a positive integer N,
- vector ~X having N elements of Z/pZ with p = rk + 1, thus storing N× k machine-

words, viewed as the row-major layout of the transposition of a matrix M0 with
N rows and k columns.

output:
- Step 1 of DFT-16 for ~X.

local: t := 0, offset := 0, idx0 := 0, idx1 := 0
local: tid := blockIdx.x∗blockSize.x+threadIdx.x
t := tid mod (8)
offset := (tid/16) ∗ 8 . each thread computes two elements, 8 threads compute 16
elements.
idx0 := t + offset
idx1 := t + offset + 8
DeviceDFT2(~X, idx0, idx1, N, k, r)

Implementation of the base-case DFT-K 77

Step 2

In this step, the following twiddle factor multiplications for ω2 = r4 should be computed:

~M2 := (I2 ⊗ I2)D2,2(M1) := (I4 ⊗D2,2)(M1)
:= [(X0, X8, X4, X12 ∗ r4), (X2, X10, X6, X14 ∗ r4),

(X1, X9, X5, X13 ∗ r4), (X3, X11, X7, X15 ∗ r4)].

The final result of this step will be stored in vector ~M2. Algorithm 6.4 presents the
pseudo-code for computing this step.

Implementation of the base-case DFT-K 78

Algorithm 6.4 DeviceDFT16Step2(~X, N, k, r)
input:

- two positive integers k and r as specified in the introduction,
- a positive integer N,
- vector ~X having N elements of Z/pZ with p = rk + 1, thus storing N× k machine-

words, viewed as the row-major layout of the transposition of a matrix M0 with
N rows and k columns.

output:
- Step 2 of DFT-16 for ~X.

local: t := 0, offset := 0, idx0 := 0, idx1 := 0
local: tid := blockIdx.x∗blockSize.x+threadIdx.x
local: vector ~A representing one element of Z/pZ with p = rk + 1, storing temporary
values in k digits of size of a machine-word.
local: s := 0
local: t := tid mod (8)
if t < 4 then . power of radix in rs

s := 0 . s := 0 for first four threads
else

s := 4 . s := 4 for last four threads
end if
offset := (tid/16) ∗ 8
idx0 := t + offset . every thread computes two elements
for (0 ≤ c < k) do

~A[c] := ~X[idx0 + c ∗ permutationStride]
end for
~A[0 : k− 1] :=DeviceCyclicShift(~X, s, k, r)
for (0 ≤ c < k) do

~X[idx0 + c ∗ permutationStride] := ~A[c]
end for

Step 3

In this step, the following stride permutation should be computed for ~M2. The result of
this permutation will be stored in vector ~M3.

~M3 := I2 ⊗ L4
2
~M2

:= (X0, X4, X8, X12, X2, X6, X10, X14, X1, X5, X9, X13, X3, X7, X11, X15).

Implementation of the base-case DFT-K 79

Then, DFT2 should be computed for every two elements of ~M3.

~M4 := DFT2 ~M3

:= [DFT2(X0, X4), DFT2(X8, X12), DFT2(X2, X6), DFT2(X10, X14),
DFT2(X1, X5), DFT2(X9, X13), DFT2(X3, X7), DFT2(X11, X15)].

The final result of this step will be stored in ~M3. Algorithm 6.5 presents the pseudo-code
for computing this step.
Algorithm 6.5 DeviceDFT16Step3(~X, N, k, r)

input:
- two positive integers k and r as specified in the introduction,
- a positive integer N,
- vector ~X having N elements of Z/pZ with p = rk + 1, thus storing N× k machine-

words, viewed as the row-major layout of the transposition of a matrix M0 with
N rows and k columns.

output:
- Step 3 of DFT-16 for ~X.

local: t := 0, offset := 0, idx0 := 0, idx1 := 0
local: tid := blockIdx.x∗blockSize.x+threadIdx.x
t := tid mod (8)
offset := (tid/16) ∗ 8
if t > 4 then

t := t + 4
end if . every thread computes two elements
idx0 := t + offset

idx1 := t + offset + 8

DeviceDFT2(~X, idx0, idx1, N, k, r)

Step 4

In this step, first, the following permutation should be computed for ~M4. The result of
this permutation will be stored in vector ~M5.

~M5 := I2 ⊗ L4
2
~M4

:= [X0, X8, X4, X12, X2, X10, X6, X14, X1, X9, X5, X13, X3, X11, X7, X15].

Then, the following twiddle factor multiplication for ω1 = r2 will be computed for ~M5.

Implementation of the base-case DFT-K 80

~M6 : = D2,4(~M5)
:= [(X0, X8, X4, X12), (X2, X10, X6, X14),

(X1, X9 ∗ r0, X5, X13 ∗ r2), (X3, X11 ∗ r4, X7, X15 ∗ r6)].

The final result of this step will be stored in vector ~M6. Algorithm 6.6 presents the
pseudo-code for computing this step.
Algorithm 6.6 DeviceDFT16Step4(~X, N, k, r)

input:
- two positive integers k and r as specified in the introduction,
- a positive integer N,
- vector ~X having N elements of Z/pZ with p = rk + 1, thus storing N× k machine-

words, viewed as the row-major layout of the transposition of a matrix M0 with
N rows and k columns.

output:
- Step 4 of DFT-16 for ~X.

local: t := 0, offset := 0, idx0 := 0, idx1 := 0
local: tid := blockIdx.x∗blockSize.x+threadIdx.x
local: vector ~A representing one element of Z/pZ with p = rk + 1, storing temporary
values in k digits of size of a machine-word.
local: t := tid mod (8)
local: List:=[0,0,0,0,0,4,2,6]
local: s := List[t]
if t > 4 then

t := 2 ∗ t + 1
end if
offset := (tid/16) ∗ 8
idx0 := t + offset . every thread computes two elements.
for (0 ≤ c < k) do

~A[c] := ~X[idx0 + c ∗ permutationStride]
end for
A[0 : k− 1] :=DeviceCyclicShift(X, s, k, r)
for (0 ≤ c < k) do

~X[idx0 + c ∗ permutationStride] := ~A[c]
end for

Implementation of the base-case DFT-K 81

Step 5

In this step, the following permutation will be computed on ~M6. The result of this
permutation will be stored in vector ~M7.

~M7 := I2 ⊗ L8
4
~M6

:= (X0, X2, X8, X10, X4, X6, X12, X14, X1, X3, X9, X11, X5, X7, X13, X15).

Then, DFT2 will be computed for every two elements of ~M7.

~M8 := DFT2 ~M7

:= (DFT2(X0, X2), DFT2(X8, X10), DFT2(X4, X6), DFT2(X12, X14),
DFT2(X1, X3), DFT2(X9, X11), DFT2(X5, X7), DFT2(X13, X15)).

The final result of this step will be stored ~M8. Algorithm 6.7 presents the pseudo-code
for computing this step.
Algorithm 6.7 DeviceDFT16Step5(~X, N, k, r)

input:
- two positive integers k and r as specified in the introduction,
- a positive integer N,
- vector ~X having N elements of Z/pZ with p = rk + 1, thus storing N× k machine-

words, viewed as the row-major layout of the transposition of a matrix M0 with
N rows and k columns.

output:
- Step 5 of DFT-16 for ~X.

local: t := 0, offset := 0, idx0 := 0, idx1 := 0
local: tid := blockIdx.x∗blockSize.x+threadIdx.x
t := tid mod (8)
t := 2 ∗ t− (t mod (2))
offset := (tid/16) ∗ 8 . Every thread computes two elements, 8 threads compute 16
elements
idx0 := t + offset
idx1 := t + offset + 2
DeviceDFT2(~X, idx0, idx1, N, k, r)

Implementation of the base-case DFT-K 82

Step 6

In this step, first, the following permutation will be computed for ~M8:

~M9 := I2 ⊗ L8
2
~M8

:= (X0, X8, X4, X12, X2, X10, X6, X14, X1, X9, X5, X13, X3, X11, X7, X15).

The result of this permutation will be stored in vector ~M9. Then, the following twiddle
factor multiplication for ω0 = r will be computed on ~M9:

~M10 := D2,8(~M9)
:= [(X0, X8, X4, X12, X2, X10, X6, X14),

(X1 ∗ r0, X9 ∗ r1, X5 ∗ r2, X13 ∗ r3, X3 ∗ r4, X11 ∗ r5, X7 ∗ r6, X15 ∗ r7)].

The final result of this step will be stored in vector ~M10. Algorithm 6.8 presents the
pseudo-code for computing this step.

Implementation of the base-case DFT-K 83

Algorithm 6.8 DeviceDFT16Step6(~X, N, k, r)
input:

- two positive integers k and r as specified in the introduction,
- a positive integer N,
- vector ~X having N elements of Z/pZ with p = rk + 1, thus storing N× k machine-

words, viewed as the row-major layout of the transposition of a matrix with N

rows and k columns.
output:

- Step 6 of DFT-16 for ~X.
local: t := 0, offset := 0, idx0 := 0, idx1 := 0
local: tid := blockIdx.x∗blockSize.x+threadIdx.x
local: vector ~A representing one element of Z/pZ with p = rk + 1, storing temporary
values in k digits of size of a machine-word.
local: t := tid mod (8)
local: List:=[0,4,2,6,1,5,3,7]
t := 2 ∗ t + 1
local: s := List[t]
offset := (tid/16) ∗ 8
idx0 := t + offset . Every thread computes two elements
for (0 ≤ c < k) do

~A[c] := ~X[idx0 + c ∗ permutationStride]
end for
~A[0 : k− 1] :=DeviceCyclicShift(~X, s, k, r)
for (0 ≤ c < k) do

~X[idx0 + c ∗ permutationStride] := ~A[c]
end for

Step 7

In this step, first, the following permutation will be computed for ~M10:

~M11 := L16
8
~M10

:= (X0, X1, X8, X9, X4, X5, X12, X13, X2, X3, X10, X11, X6, X7, X14, X15).

Implementation of the base-case DFT-K 84

The result of this step will be stored in vector ~M11. Then, DFT2 will be computed for
every two elements of ~M11 in the following way:

~M12 := I8 ⊗DFT2 ~M11

:= (X0, X1, X8, X9, X4, X5, X12, X13, X2, X3, X10, X11, X6, X7, X14, X15).

The final result of this step will be stored in ~M12. Algorithm 6.9 presents the pseudo-code
for computing this step.
Algorithm 6.9 DeviceDFT16Step7(~X, N, k, r)

input:
- two positive integers k and r as specified in the introduction,
- a positive integer N,
- vector ~X having N elements of Z/pZ with p = rk + 1, thus storing N× k machine-

words, viewed as the row-major layout of the transposition of a matrix M0 with
N rows and k columns.

output:
- Step 7 of DFT-16 for ~X.

local: t := 0, offset := 0, idx0 := 0, idx1 := 0
local: tid := blockIdx.x∗blockSize.x+threadIdx.x
t := tid mod (8)
t := 2 ∗ t
offset := (tid/16) ∗ 8 . Every thread computes two elements, 8 threads compute 16
elements
idx0 := t + offset
idx1 := t + offset + 1
DeviceDFT2(~X, idx0, idx1, N, k, r)

Step 8

This is the final step for computing DFT16 on ~M . In this step, only the following
permutation will be computed for ~M13:

~M13 := L16
2
~M10

:= (X0, X8, X4, X12, X2, X10, X6, X14, X1, X9, X5, X13, X3, X11, X7, X15).

The final result will be stored in ~M13. Algorithm 6.10 presents the pseudo-code for
computing this step.

Implementation of the base-case DFT-K 85

Algorithm 6.10 DeviceDFT16Step8(~X, N, k, r)
input:

- two positive integers k and r as specified in the introduction,
- a positive integer N,
- vector ~X having N elements of Z/pZ with p = rk + 1, thus storing N× k machine-

words, viewed as the row-major layout of the transposition of a matrix M0 with
N rows and k columns.

output:
- Step 8 of DFT-16 for ~X.

local: t := 0, offset := 0, idx0 := 0, idx1 := 0
local: tid := blockIdx.x∗blockSize.x+threadIdx.x
local: vector ~A representing one element of Z/pZ with p = rk + 1, storing temporary
values in k digits of size of a machine-word.
local: t := tid mod (8)
local: List := [0, 2,−2, 0,−7,−5,−9,−7, 7, 9, 5, 7, 0, 2,−2, 0]
local: s := List[t]
offset := (tid/16) ∗ 8
idx0 := t + offset
idx1 := idx0 + s
if s > 0 then

for (0 ≤ c < k) do
tmp := ~X[idx0 + c ∗ permutationStride]
~X[idx0 + c ∗ permutationStride] := ~X[idx1 + c ∗ permutationStride]
~X[idx1 + c ∗ permutationStride] := tmp

end for
end if
idx0 := idx0 + 1
idx1 := idx0 + s
if s > 0 then

for (0 ≤ c < k) do
tmp := ~X[idx0 + c ∗ permutationStride]
~X[idx0 + c ∗ permutationStride] := ~X[idx1 + c ∗ permutationStride]
~X[idx1 + c ∗ permutationStride] := tmp

end for
end if

Host entry point for computing DFT 86

Algorithm 6.11 presents the pseudo-code of the kernel for computing DFT16 for a vector
of 16 elements in Z/pZ. We assign exactly 8 threads for computing this kernel, because
every thread will compute one DFT2 or one multiplication by power of radix.
Algorithm 6.11 KernelBaseDFT16AllSteps(~X, N, k, r)

input:
- two positive integers k and r as specified in the introduction,
- a positive integer N,
- vector ~X having N elements of Z/pZ with p = rk + 1, thus storing N× k machine-

words, viewed as the row-major layout of the transposition of a matrix M0 with
N rows and k columns.

output:
- vector ~X, storing final result of DFT-16 on every sub-vector of 16 elements in ~X

(~X := IN/16 ⊗DFT16(~X)).
local: t := 0, offset := 0, idx0 := 0, idx1 := 0
local: tid := blockIdx.x∗blockSize.x+threadIdx.x
DeviceDFT16Step1(~X, N, k, r)
DeviceDFT16Step2(~X, N, k, r)
DeviceDFT16Step3(~X, N, k, r)
DeviceDFT16Step4(~X, N, k, r)
DeviceDFT16Step5(~X, N, k, r)
DeviceDFT16Step6(~X, N, k, r)
DeviceDFT16Step7(~X, N, k, r)
DeviceDFT16Step8(~X, N, k, r)

6.4 Host entry point for computing DFT
In this section, first, we explain how we compute the FFT-K2 using the base-case DFTK

of previous section. Also, we present a general algorithm for computing the FFT for
N = Ke based on DFTK .

6.4.1 FFT-K2

For N = K2, the six-step recursive FFT algorithm can be expressed in the following way:

DFTK2 = LK2

K (IK ⊗DFTK)LK2

K DK,K(IK ⊗DFTK)LK2

K

Algorithm 6.12 presents the solution for computing DFTK2 using the base-case DFTK .

Host entry point for computing DFT 87

Algorithm 6.12 HostDFTK2(~X,~Ω, N, K, k, s, r, b)
input:

- two positive integers k and r as specified in the introduction,
- a positive integer N,
- a positive integer s representing the step of twiddle factor multiplication,
- a positive integer b representing the size of a one dimensional thread block,
- vector ~X having N elements of Z/pZ with p = rk + 1, thus storing N× k machine-

words, viewed as the row-major layout of the transposition of a matrix M0 with
N rows and k columns,

- vector ~Ω having KN/K elements of Z/pZ with p = rk + 1, thus storing KN/K × k
machine-words, viewed as the row-major layout of the transposition of a matrix
M1 with KN/K rows and k columns.

output:
- vector ~X storing result of FFT-K2 (~X := DFTK2(~X))

local: vector ~B of size N
HostGeneralStridePermutation(~X,~Y, K, N, k, s, b)
~X[0 : kN− 1] := ~Y[0 : kN− 1]
KernelBaseDFTKAllSteps(X̃, N, K, r)
KernelTwiddleMultiplication(~X,~Ω,~L,~H,~C, N, k, r)
HostGeneralStridePermutation(~X,~Y, K, N, k, s, b)
~X[0 : kN− 1] := ~Y[0 : kN− 1]
KernelBaseDFTKAllSteps(~X, N, k, r)
HostGeneralStridePermutation(~X,~Y, K, N, k, s, b)
~X[0 : kN− 1] := ~Y[0 : kN− 1]
return ~X

6.4.2 FFT-general based on K

Algorithm 6.13 presents an algorithm for computing FFTs for vectors of N = Ke elements
in Z/pZ.

Host entry point for computing DFT 88

Algorithm 6.13 HostDFTGeneral(~X,~Ω, N, K, k, s, r, b)
input:

- two positive integers k and r as specified in the introduction,
- a positive integer N,
- a positive integer s representing the step of twiddle factor multiplication,
- a positive integer b representing the size of a one dimensional thread block,
- vector ~X having N elements of Z/pZ with p = rk + 1, thus storing N× k machine-

words, viewed as the row-major layout of the transposition of a matrix M0 with
N rows and k columns,

- vector ~Ω having KN/K elements of Z/pZ with p = rk + 1, thus storing KN/K × k
machine-words, viewed as the row-major layout of the transposition of a matrix
M1 with KN/K rows and k columns.

output:
- vector ~X storing result of FFT-N (~X := DFTN(~X))

local: m := e where N = Ke

local: j = 0
if e mod 2 = 1 then

HostGeneralStridePermutation(~X,~Y, K1, N, k, s, b)
~X[0 : kN− 1] := ~Y[0 : kN− 1]
m := m− 1

end if
for (0 ≤ i < m by 2) do

HostDFTK2(~X,~Ω, N, K, k, s, r)
KernelTwiddleMultiplication(~X,~Ω, N, K, k, s := 2, r)
HostGeneralStridePermutation(~X,~Y, K2, N, k, s, b)
~X[0 : kN− 1] := ~Y[0 : kN− 1]
HostDFTK2(~X,~Ω, N, K, k, s, r)
HostGeneralStridePermutation(~X,~Y, K2, N, k, s, b)
~X[0 : kN− 1] := ~Y[0 : kN− 1]

end for
if (e mod 2 = 1) then

KernelTwiddleMultiplication(~X,~Ω, N, K, k, s := 2, r)
HostGeneralStridePermutation(~X,~Y, K1, N, k, s, b)
~X[0 : kN− 1] := ~Y[0 : kN− 1]
KernelBaseDFTKAllSteps(~X, N, K, r)
HostGeneralStridePermutation(~X,~Y, K1, N, k, s, b)
~X[0 : kN− 1] := ~Y[0 : kN− 1]

end if
return ~X

Profiling results 89

6.5 Profiling results
Our implementation is optimized for the prime p = r8 + 1 with radix r = 263 + 234.
Figure 6.1 presents running-time diagram for computing DFTK4 with K = 16 on a
randomly generated vector over Z/pZ. We have collected the profiling data on a NVIDIA
Geforce-GTX760M card (hardware specifications are mentioned in Appendix B).

tw
idd

le
St

ep
8

Perm
16

HtoD St
ep

3
St

ep
1

St
ep

7
St

ep
5

St
ep

6

Perm
25

6
St

ep
4

DtoD DtoH

mem
set

St
ep

2
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

10.30

6.40 5.60
4.30 4.20 4.20 4.20 4.20 3.30 3.20 3.20 2.70 2.70

1.30

39.50

P
er

ce
nt

ag
e

Figure 6.1: Running-time for computing DFTN with N = K4 and K = 16.

Chapter 7

Experimental Results: Big Prime
Field FFT vs Small Prime Field FFT

In this chapter, we compare our implementation of FFT over a big prime field against
one over a small prime field. Recall that a big prime field refers to a finite field of the form
Z/pZ, where the binary representation of p requires multiple machine-words. Meanwhile
a small prime field refers to the case where the prime characteristic p can be represented
within a single machine-word. In Section 7.1, we explain how the reverse mixed-radix
conversion [22] helps us have a fair comparison between our big prime field FFT and the
small prime field FFT. Then, in Section 7.2, we develop two benchmarks for measuring
the performance of big and small prime field FFTs. Finally, in Section 7.3, we report on
the experimental results of those benchmarks. For the small prime field approach, we
rely on the CUMODP library [15].

7.1 Background
Returning to the discussion of Chapter 1, we are interested in comparing the following
approaches:

Big prime: For a big prime field Z/pZ, for a polynomial f ∈ Z/pZ[x] of degree N − 1,
where N is a power of 2 and p = rk + 1 is a generalized Fermat prime, such that
N divides p− 1 and k is a power of 2, compute the DFT of f at an N -th primitive
root of unity ω such that ωN/2k = r and r is of machine-word size.

Small primes: For pairwise different prime numbers p1, . . . , pk of machine-word size,
for a polynomial f ∈ Z/mZ[x] of degree N − 1, where N is as above and divides

90

Background 91

each of p1 − 1, . . . , pk − 1, compute the DFT of f at ω = (ω1, . . . , ωk) where ωi is
an N -th primitive root of unity in Z/piZ, for i = 1, . . . , k, using the isomorphism
Z/mZ[x] ' Z/p1Z[x]⊕ · · · ⊕ Z/pkZ[x].

The first approach is what we have explained from Chapter 3 to Chapter 6. In the rest
of this section, we discuss the second approach.

We recall from the introduction that the second approach can be done in three steps:

1. projection: compute the image fi of f in Z/p1Z[x], . . . ,Z/pkZ[x], for i = 1, . . . , k,
2. images: compute the DFT of fi at ωi in Z/piZ[x], for i = 1, . . . , k,
3. combination: combine the results using CRT so as to obtain a DFT of f at ω.

We observe that the first and third steps have similar algebraic costs, namely O(k×N ×
k2) machine-word operations and similar memory access patterns. For this reason, our
implementation is based on the second and third steps only. This is sufficient to have
a practical estimate of the overall cost of the small prime field approach. Implementing
the first step is work in progress.

The second step is realized with the code available in the CUMODP library, developed
as part of the work reported in [17] by Wei Pan and Marc Moreno Maza. Hence, from
now on, we focus on the above third step, that is, the recombination. We observe that we
need to combine k vectors component-wise, namely the DFTs of f1, . . . , fk, into a single
vector, namely the DFT of f . However, the prime numbers used in [17] are of half a
machine-word size. Thus, we should use 2k primes in our small prime field approach in
order to obtain a fair comparison with the big prime field approach. For this reason, in
the sequel, we discuss the recombination of s vectors, where s = k in theory and s = 2k
in practice.

So let b1, . . . , bs be elements of Z/p1Z, . . . ,Z/psZ, where p1, . . . , ps are pairwise dif-
ferent prime numbers of machine-word size, or less. We assume that the elements
of Z/p1Z, . . . ,Z/psZ are encoded with a non-negative representation, thus, we have
0 ≤ bi < pi for all i = 1, . . . , s. Then (b1, b2, . . . , b(s)) is the mixed-radix representa-
tion of the integer n ∈ Z given by

n = b1 + b2p1 + b3p1p2 + · · ·+ bsp1 · · · ps−1. (7.1)

Note that we have
0 ≤ n < p1p2 · · · ps. (7.2)

Comparing FFT over small and big prime fields 92

In our recombination step, we use the mixed radix representation map (given by For-
mula (7.1)) rather than the CRT. The latter defines a ring isomorphism between Z/p1Z⊕
· · · ⊕ Z/psZ and Z/mZ where m is the product of the primes p1, . . . , ps. Meanwhile, the
former defines a bijection between Z/p1Z⊕· · ·⊕Z/psZ and the integer range [0, p1p2 · · · ps]
with the property that integers in that range can be compared (in terms of the natural
total order <) simply by comparing lexicographically their mixed-radix representations.
For modular methods dealing with real numbers, say for real root isolation of univariate
polynomials, the mixed radix representation is of great interest, see [5]. This is why, we
chose mixed radix representation in our recombination step. Note that both recombina-
tion schemes have similar algebraic complexity, namely Θ(k2) machine-word operations.

After pre-computing the products m1 := p1, m2 := p1p2, . . . , ms := m, we reconstruct
any integer n from its mixed-radix representation (b1, b2, . . . , bs) using Formula (7.1) as
follows:

1. each product ui := bimi will be computed and stored in i machine-words, for
i = 1, . . . , s, then

2. the sum n := u1 +u2 + . . .+us will be computed as the final result of the conversion.

In our GPU implementation, the precomputed products m1, . . . ,ms will be stored in
global memory. Also, exactly one thread will be assigned for computing each conversion
from a mixed-radix representation (b1, b2, . . . , bs) to the corresponding integer n. Recall
that, in our implementation p = r8 + 1, with r = 263 + 234 and we have s = 2k = 16.
The CUDA source-code shown in Appendix C.1, with precomputed products using the
first 16 primes in Table A.1.

7.2 Comparing FFT over small and big prime fields
In this section, we explain how we compare the performance of FFT computation over
a big prime field against that of FFT computation over a small prime field. We develop
two benchmarks:

1. one comparing the running-time when the two computations produce similar result,
and thus the same amount of output data,

2. one comparing the running-time when the two coomputations process the same
amount of input data.

Benchmark results 93

7.2.1 Benchmark 1: Comparison when computations produce
the same amount of output data

This first benchmark corresponds to the comparison described in Section 7.1. We observe
that the output of the two approaches is a the DFT of a vector of size N over a direct
product R of prime fields where each element of R spans k machine-words. Hence these
two approaches can be equivalent building blocks in a modular method. We observe that
the small prime field approach

1. performs more memory traversal (due to the projection and combination steps) and
clearly has a higher cache complexity, meanwhile,

2. the same small prime field approach has a lower algebraic complexity as explained
in Chapter 1.

7.2.2 Benchmark 2: Comparison when computations process
the same amount of input data

Since memory access patterns play an essential role in the performance of FFT computa-
tions, it is natural to try to compare the big prime field and small prime field calculations
in a situations where they process the same amount of data. So, instead of computing
equivalent results as in Benchmark 1, we simply ensure that the same amount of data
is read. To do so, we simply change the small prime field calculations as follows: we
perform s FFTs of size N over small prime fields, where s = 2k and small primes are of
half of a machine-word in size. Therefore, in both calculations, the same amount of data
is processed, namely k N machine words.

We stress the fact that the results produced by the two approaches are not algebraically
equivalent. The intention is to check whether the big prime field calculation has similar
performance than another (and actually highly optimized) FFT calculation processing
the same amount of data.

7.3 Benchmark results
We use the following algorithms from the CUMODP library for computing the FFT over
a small prime field:

1. the Cooley-Tukey FFT algorithm with precomputed powers of the primitive root,
2. the Cooley-Tukey FFT algorithm without precomputation, and

Benchmark results 94

3. the Stockham FFT algorithm.

See [17] for details. Due to the size of the global memory on a GPU card, the above
algorithms can compute DFTs for input vectors of 2n elements, where n ≤ 26 is typ-
ical. For implementation design reasons, we also have 8 ≤ n. Note that these FFT
implementations use 32-bit Fourier primes from Table A.1.

We observe that the small prime field FFT codes of the CUMODP library are highly
optimized: they have been continuously improved since their initial release [17, 18] until
very recently [15]. The experimental results in those papers show that CUMODP’s small
prime field FFT codes outperform serial small prime field FFT codes by large factors,
typically 30 to 40 on a Tesla 2050 NVIDA GPU card.

For computing DFT over Z/pZ, with p = (263 + 234)8 + 1, we use our CUDA implemen-
tation of the algorithms presented in Chapter 6. The size of the input vectors is N = Ke,
with K = 16 and 2 ≤ e ≤ 5.

Benchmarks are measured on a NVIDA GeforceGTX760M card (hardware specifications
are mentioned in Appendix B). Figures 7.1 (Benchmark 1) and 7.2 (Benchmark 2) show
running-time ratios between the three small prime field FFTs and the big prime field
FFT, for the following 4 values of N , namely N = K2, N = K3, N = K2 and N = K4.
Also, Tables 7.1, 7.2, 7.3, 7.4, and 7.5 present running time (in milliseconds) of computing
Benchmark 1 and Benchmark 2.

7.3.1 Performance analysis.

As it is reported in [17], FFT algorithms of the CUMODP library gain speed-up factors for
vectors of the size 216 and larger. In other words, the input vector should be large enough
to keep the GPU device busy, and therefore, provide a high percentage of occupancy. This
explains the results displayed on Figure 7.1 (Benchmark 1) and 7.2 (Benchmark 2) for
N = K2 and N = K3, that is, why apparently the big prime field FFT approach seems
to outperform the small prime field FFT approach.

For N = K5, the Cooley-Tukey (with precomputation) and Stockham FFT codes are
essentially twice faster than the big prime field FFT (see Benchmark 1). For N = K4,
only the Cooley-Tukey (with precomputation) outperforms the big prime field FFT (see
Benchmark 1) and this is only by a 10% factor.

We view this as a promising result for the big prime field FFT since

Benchmark results 95

1. the small prime field FFT codes have been developed and optimized for more than
8 years,

2. the projection part of the small prime field FFT approach is not implemented yet
which is unfair to the big prime field FFT approach,

3. the small prime field FFT codes rely mostly on 32-bit arithmetic meanwhile the
the big prime field FFT code is implemented in 64-bit arithmetic, for which CUDA
provides less opportunities for optimization such as instruction level parallelism1.

Computation CT-precomp FFT CT FFT Stockham FFT Big FFT
16 FFTs 1.944 (ms) 7.330 (ms) 4.672 (ms) 0.038 (ms)

16 FFTs + M.R.C. 2.192 (ms) 7.595 (ms) 4.824 (ms) 0.038 (ms)

Table 7.1: Running time of computing Benchmark 1 for N = K2 with K = 16.

Computation CT-precomp FFT CT FFT Stockham FFT Big FFT
16 FFTs 5.061 (ms) 9.912 (ms) 7.491 (ms) 0.384 (ms)

16 FFTs + M.R.C. 5.399 (ms) 9.855 (ms) 7.266 (ms) 0.384 (ms)

Table 7.2: Running time of computing Benchmark 1 for N = K3 with K = 16.

Computation CT-precomp FFT CT FFT Stockham FFT Big FFT
16 FFTs 13.764 (ms) 35.952 (ms) 19.001 (ms) 22.414 (ms)

16 FFTs + M.R.C. 19.892 (ms) 40.176 (ms) 24.426 (ms) 22.414 (ms)

Table 7.3: Running time of computing Benchmark 1 for N = K4 with K = 16.

Computation CT-precomp FFT CT FFT Stockham FFT Big FFT
16 FFTs 158.159 (ms) 564.290 (ms) 222.554 (ms) 468.464 (ms)

16 FFTs + M.R.C. 250.736 (ms) 648.196 (ms) 287.315 (ms) 468.464 (ms)

Table 7.4: Running time of computing Benchmark 1 for N = K5 with K = 16.

e CT-precomp FFT CT FFT Stockham FFT Big FFT
2 0.329 (ms) 0.609 (ms) 0.453 (ms) 0.038 (ms)
3 0.841 (ms) 2.130 (ms) 1.147 (ms) 0.384 (ms)
4 9.874 (ms) 34.971 (ms) 11.956 (ms) 22.414 (ms)
5 170.624 (ms) 736.450 (ms) 215.869 (ms) 468.464 (ms)

Table 7.5: Running time of computing Benchmark 2 for N = Ke with K = 16.

1https://en.wikipedia.org/wiki/Instruction-level_parallelism

https://en.wikipedia.org/wiki/Instruction-level_parallelism

Benchmark results 96

CT-pre CT Stockham BigFFT
0.0

50.0

100.0

150.0

200.0

57.7

199.9

126.9

1.014.1 25.7 18.9
1.0

Sp
ee

du
p

K2

K3

CT-pre CT Stockham BigFFT

0.6
0.8
1.0
1.2
1.4
1.6
1.8

0.9

1.8

1.1 1.0

0.5

1.4

0.6

1.0

Sp
ee

du
p

K4

K5

Figure 7.1: Speed-up diagram of Benchmark 1 for K = 16.

Concluding remarks 97

CT-pre CT Stockham BigFFT
0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0

8.7

16.0

11.9

1.0
2.2

5.5

3.0
1.0

Sp
ee

du
p

K2

K3

CT-pre CT Stockham BigFFT

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.4

1.6

0.5

1.0

0.4

1.6

0.5

1.0

Sp
ee

du
p

K4

K5

Figure 7.2: Speed-up diagram of Benchmark 2 for K = 16.

7.4 Concluding remarks
As discussed in Chapter 1, big prime field arithmetic is required by advanced algorithms
in computer algebra (like polynomial system solving). As demonstrated in Chapter 4,
arithmetic modulo a big prime can be efficiently computed on GPUs in the case of
Generalized Fermat primes. Nevertheless, multiplication in Z/pZ (except for the case of

Concluding remarks 98

a multiplication by a power of r) remains a computational bottleneck, as illustrated in
the same Chapter 4. Improving multiplication in Z/pZ is work in progress. Moreover, by
choosing larger primes, say with k = 16 instead of k = 8, we hope to cover other ranges
for the vectors to which big prime field FFT is applied.

Bibliography

[1] E. A. Arnold. Modular algorithms for computing Gröbner bases. J. Symb. Comput.,
35(4):403–419, April 2003.

[2] C. Chen, R. M. Corless, M. Moreno Maza, P. Yu, and Y. Zhang. An application of
regular chain theory to the study of limit cycles. I. J. Bifurcation and Chaos, 23(9),
2013.

[3] C. Chen, S. Covanov, F. Mansouri, M. Moreno Maza, N. Xie, and Y. Xie. The basic
polynomial algebra subprograms. In H. Hong and C. Yap, editors, Mathematical
Software - ICMS 2014 - 4th International Congress, Seoul, South Korea, August
5-9, 2014. Proceedings, volume 8592 of Lecture Notes in Computer Science, pages
669–676. Springer, 2014.

[4] C. Chen, S. Covanov, F. Mansouri, M. Moreno Maza, N. Xie, and Y. Xie. Parallel
integer polynomial multiplication. In International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing. IEEE Society, 2016. To appear.

[5] C. Chen, M. Moreno Maza, and Y. Xie. Cache complexity and multicore imple-
mentation for univariate real root isolation. J. of Physics: Conference Series, 341,
2011.

[6] J. Cooley and J. Tukey. An algorithm for the machine calculation of complex fourier
series. Mathematics of Computation, 19(90):297–301, 1965.

[7] NVIDIA Corporation. CUDA C Best Practices Guide, v8.0, September 2016.

[8] NVIDIA Corporation. CUDA C Programming Guide, v8.0, September 2016.

[9] X. Dahan, M. Moreno Maza, É. Schost, W. Wu, and Y. Xie. Lifting techniques
for triangular decompositions. In M. Kauers, editor, Symbolic and Algebraic Com-

99

100

putation, International Symposium ISSAC 2005, Beijing, China, July 24-27, 2005,
Proceedings, pages 108–115. ACM, 2005.

[10] F. Franchetti and M. Püschel. FFT (fast fourier transform). In D. A. Padua, editor,
Encyclopedia of Parallel Computing, pages 658–671. Springer, 2011.

[11] M. Frigo and S. G. Johnson. The design and implementation of FFTW3. In Pro-
ceedings of the IEEE, volume 93, pages 216–231, 2005.

[12] M. Fürer. Faster integer multiplication. In D. S. Johnson and U. Feige, editors,
Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San
Diego, California, USA, June 11-13, 2007, pages 57–66. ACM, 2007.

[13] M. Fürer. Faster integer multiplication. SIAM J. Comput., 39(3):979–1005, 2009.

[14] D. Hankerson, A. J. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptogra-
phy. Springer-Verlag New York, Inc., 2004.

[15] S. A. Haque, X. Li, F. Mansouri, M. Moreno Maza, W. Pan, and N. Xie. Dense
arithmetic over finite fields with the CUMODP library. In H. Hong and C. Yap, edi-
tors, Mathematical Software - ICMS 2014 - 4th International Congress, Seoul, South
Korea, August 5-9, 2014. Proceedings, volume 8592 of Lecture Notes in Computer
Science, pages 725–732. Springer, 2014.

[16] X. Li, M. Moreno Maza, R. Rasheed, and É. Schost. The modpn library: Bringing
fast polynomial arithmetic into maple. J. Symb. Comput., 46(7):841–858, 2011.

[17] M. Moreno Maza and W. Pan. Fast polynomial arithmetic on a GPU. J. of Physics:
Conference Series, 256, 2010.

[18] M. Moreno Maza and W. Pan. Solving bivariate polynomial systems on a GPU. J.
of Physics: Conference Series, 341, 2011.

[19] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel programming
with CUDA. ACM Queue, 6(2):40–53, 2008.

[20] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong,
F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo.
SPIRAL: Code generation for DSP transforms. Proceedings of the IEEE, special issue
on “Program Generation, Optimization, and Adaptation”, 93(2):232– 275, 2005.

101

[21] A. Schönhage and V. Strassen. Schnelle multiplikation großer zahlen. Computing,
7(3-4):281–292, 1971.

[22] J. Schönheim. Conversion of modular numbers to their mixed radix representation
by matrix formula. Mathematics of Computation, 21(98):253–257, 1967.

[23] J. von zur Gathen and J. Gerhard. Fast algorithms for taylor shifts and certain
difference equations. In ISSAC, pages 40–47, 1997.

[24] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University
Press, New York, NY, USA, 2 edition, 2003.

Appendix A

Table of 32-bit Fourier primes

962592769 957349889 950009857 943718401 940572673 938475521
935329793 925892609 924844033 919601153 918552577 913309697
907018241 899678209 897581057 883949569 880803841 862978049
850395137 833617921 824180737 802160641 800063489 818937857
799014913 786432001 770703361 754974721 745537537 740294657
718274561 715128833 710934529 683671553 666894337 655360001
648019969 645922817 639631361 635437057 605028353 597688321
595591169 581959681 576716801 531628033 493879297 469762049
468713473 463470593 459276289 447741953 415236097 409993217
399507457 387973121 383778817 377487361 361758721 359661569
347078657 330301441 311427073 305135617 290455553 274726913
270532609 257949697 249561089 246415361 230686721 221249537
211812353 204472321 199229441 186646529 185597953 169869313
167772161 163577857 158334977 155189249 147849217 141557761
138412033 136314881 132120577 120586241 113246209 111149057
104857601 101711873 81788929 70254593 69206017 28311553

Table A.1: Table of 32-bit Fourier primes.

102

Appendix B

Hardware specification

B.1 GeforceGTX760M (Kepler)
Device 0: " GeForce GTX 760M"

CUDA Capability Major / Minor version number : 3.0
Total amount of global memory : 2048 MBytes (2147352576 bytes)
(4) Multiprocessors , (192) CUDA Cores /MP: 768 CUDA Cores
GPU Max Clock rate: 719 MHz (0.72 GHz)
Memory Clock rate: 2004 Mhz
Memory Bus Width : 128 - bit
L2 Cache Size: 262144 bytes
Maximum Layered 1D Texture Size , (num) layers 1D =(16384) , 2048 layers
Maximum Layered 2D Texture Size , (num) layers 2D=(16384 , 16384) , 2048 layers
Total amount of constant memory : 65536 bytes
Total amount of shared memory per block : 49152 bytes
Total number of registers available per block : 65536
Warp size: 32

Figure B.1: Hardware specification for NVIDIA GeforceGTX760M.

Theoretical bandwidth. We compute the theoretical memory bandwidth of this device
based on data presented in Figure B.1, and by using the equation that explained in
Chapter 2:

BT := 2.004× 109 × 128/8× 2,
BT := 64.12 GB/s.

Practical bandwidth. As it is presented in Figure B.2, the value of effective bandwidth
(in this case, bandwidth of device to device transfer) is 48.8 GB/s, which is equal to almost
70% of the theoretical bandwidth.

103

GeforceGTX760M (Kepler) 104

Running on ...
Device 0: GeForce GTX 760M
Device to Device Bandwidth , 1 Device (s)
PINNED Memory Transfers

Transfer Size (Bytes) Bandwidth (MB/s)
33554432 48820.3

Figure B.2: The bandwidth test from CUDA SDK (samples/1 Utilites/bandwidthTest).

Appendix C

Source code

C.1 Kernel for computing reverse mixed-radix con-
version

1 typedef unsigned int usfixn32;

2 typedef unsigned long long int usfixn64;

3

4 __device__ void device_sum_17_u32(usfixn32 * s, usfixn32 *r,

usfixn32 step)

5 {

6 usfixn32 i=0, sum=0,carry =0;

7 for(i=0;i<step;i++)

8 {

9 sum=s[i]+r[i];

10 if(sum <s[i]||sum <r[i])

11 r[i+1]++;

12 r[i]=sum;

13 s[i]=0;

14 }

15 }

16 __global__ void kernel_crt_multiplications_v1(vs,

precomputePrimes ,

17 result , parameters)

18 {

19 usfixn32 tid = threadIdx.x + blockIdx.x * blockDim.x;

105

Kernel for computing reverse mixed-radix conversion 106

20 usfixn32 nPrimes = 16;

21 usfixn32 i=0, j=0, c=0, k=0;

22 usfixn32 r[17]={0};

23 j = threadIdx.x & (0xF);

24 usfixn64 mult=0,sum = 0,offset = 0;

25 usfixn32 permutationStride = parameters [5];

26 usfixn32 n = parameters [0];

27 usfixn64 tmp;

28 if (tid >= n)

29 return;

30 usfixn32 m0;

31 usfixn64 carry = 0;

32 if (j > 0)

33 for (i = 0; i < nPrimes; i++)

34 m[i]= precomputePrimes[j][i];

35

36 for (j = 0; j < 16; j++)

37 {

38 tmp = vs[tid + j * permutationStride];

39 if (j == 0)

40 {

41 s[0] = tmp;

42 }

43 carry = 0;

44 m0 = 0;

45 if (j > 0)

46 {

47 for (i = 0; i < j + 1; i++)

48 {

49 mult = usfixn64(tmp * precomputePrimes[j-1][i]);

50 m0 = (mult & 0xFFFFFFFF);

51 sum = s[i] + m0 + carry;

52 s[i] = (sum & 0xFFFFFFFF);

53 mult >>= 32;

54 sum >>= 32;

55 carry = (mult) + sum;

56 }

57 }

Kernel for computing reverse mixed-radix conversion 107

58 device_sum_17_u32(s,r,j);

59 }

60 offset =0;

61 for (i = 0; i < nPrimes; i++)

62 {

63 result[tid + offset] = r[i];

64 offset += permutationStride;

65 }

66 }

Curriculum Vitae

Name: Davood Mohajerani

Post-Secondary University of Western Ontario
Education and London, Ontario, Canada
Degrees: M.Sc. in Computer Science, 2015 - 2016

Isfahan University of Technology
Isfahan, Iran
B.Sc. in Computer Engineering, 2010 - 2015

Related Work Research Assistant/Teaching Assistant
Experience: University of Western Ontario

2015 - 2016

108

	Western University
	Scholarship@Western
	January 2017

	Fast Fourier Transforms over Prime Fields of Large Characteristic and their Implementation on Graphics Processing Units
	Davood Mohajerani
	Recommended Citation

	List of Algorithms
	List of Figures
	List of Tables
	Introduction
	Background
	GPGPU computing
	CUDA programming model
	CUDA memory model
	Examples of programs in CUDA
	Performance of GPU programs
	Profiling CUDA applications
	A note on psuedo-code.

	Fast Fourier Transforms

	Arithmetic Computations Modulo Sparse Radix Generalized Fermat Numbers
	Representation of Z/pZ
	Finding primitive roots of unity in Z/pZ
	Addition and subtraction in Z/pZ
	Multiplication by a power of r in Z/pZ
	Multiplication in Z/pZ

	Big Prime Field Arithmetic on GPUs
	Preliminaries
	Parallelism for arithmetic in Z/pZ
	Representing data in Z/pZ
	Location of data
	Transposing input data

	Implementing big prime field arithmetic on GPUs
	Host entry point for arithmetic kernels
	Implementation notes
	Addition and subtraction in Z/pZ
	Multiplication by a power of r in Z/pZ
	Multiplication in Z/pZ

	Profiling results

	Stride Permutation on GPUs
	Stride permutation
	GPU kernels for stride permutation
	Host entry point for permutation kernels

	Profiling results

	Big Prime Field FFT on GPUs
	Cooley-Tukey FFT
	Multiplication by twiddle factors
	Implementation of the base-case DFT-K
	Expanding DFT-K based on six-step FFT
	Implementation of DFT-2
	Computing DFT-16 based on DFT-2

	Host entry point for computing DFT
	FFT-K2
	FFT-general based on K

	Profiling results

	Experimental Results: Big Prime Field FFT vs Small Prime Field FFT
	Background
	Comparing FFT over small and big prime fields
	Benchmark 1: Comparison when computations produce the same amount of output data
	Benchmark 2: Comparison when computations process the same amount of input data

	Benchmark results
	Performance analysis.

	Concluding remarks

	Bibliography
	Appendix Table of 32-bit Fourier primes
	Appendix Hardware specification
	GeforceGTX760M (Kepler)

	Appendix Source code
	Kernel for computing reverse mixed-radix conversion

	Curriculum Vitae

