
Western University
Scholarship@Western

Electronic Thesis and Dissertation Repository

December 2017

Error Correction and de novo Genome Assembly
of DNA Sequencing Data
Michael Z. Molnar
The University of Western Ontario

Supervisor
Dr. Lucian Ilie
The University of Western Ontario

Graduate Program in Computer Science

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of Philosophy

© Michael Z. Molnar 2017

Follow this and additional works at: https://ir.lib.uwo.ca/etd

Part of the Bioinformatics Commons

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis
and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact tadam@uwo.ca.

Recommended Citation
Molnar, Michael Z., "Error Correction and de novo Genome Assembly of DNA Sequencing Data" (2017). Electronic Thesis and
Dissertation Repository. 5050.
https://ir.lib.uwo.ca/etd/5050

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fetd%2F5050&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F5050&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F5050&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=ir.lib.uwo.ca%2Fetd%2F5050&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/5050?utm_source=ir.lib.uwo.ca%2Fetd%2F5050&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tadam@uwo.ca

Abstract

The ability to obtain the genetic code of any species has caused a revolution in biological

sciences. Current technologies are capable of sequencing short pieces of DNA with very high

quality. These short pieces of DNA determint the sequence of bases in the genome of any

species. This information is key in understanding many of the aspects of how life functions.

The accuracy of sequencing is extremely important since the differences between individ-

uals of the same species are caused by very few changes. All sequencing technologies make

errors, and before the data can be used for downstream applications it is usually best to correct

the errors first. I present an error correction program called RACER that is an error correction

program that aims to correct substitution sequencing errors.

There are many substitution error correction programs available for DNA sequencing tech-

nologies, so it is important for biologists to know which program is best to use for their se-

quencing technology. I present a comprehensive survey of substitution error correction pro-

grams for DNA sequencing data to address this issue. I also present two programs to evaluate

the performance of error correcting programs.

Since the current dominant platform in the market can only obtain small pieces of DNA,

software is needed to assemble these pieces to determine the full sequence of the sampled

genome. Current genome assembly programs are not capable of assembling the entire genome

of most species due to the repetitive nature of genomes and the uneven coverage of the sampled

genome. I present a genome assembly program called SAGE2 that improves upon the current

state-of-the-art.

Keywords: de novo genome assembly, substitution error correction, Illumina, next-generation

sequencing, bioinformatics, HiSeq, MiSeq, RACER, SAGE2

i

It has been a long and difficult path to complete my education, and I could not have done it

without the support of my family. I dedicate this work to them. Thank you Mom, Dad, and my

sisters Debby and Judy. I could not have completed this work without the support of my wife

Kimber-Lee and our four children; Kallie, Cooper, Cole, and our new baby Kamryn.

ii

Acknowlegements

My path to a PhD. was long and difficult but it would not have been possible without the

guidance of my supervisor Dr. Lucian Ilie. Without his commitment to me I would not be

where I am today. I owe my deepest gratitude to him for taking a chance on me as a graduate

student and guiding me throughout the years. I am also grateful to Dr. Roberto Solis-Oba for

accepting me as a graduate student and providing guidance through my time at the University

of Western Ontario.

I am thankful to Dr. Md. Bahlul Haider for his guidance and advise in the beginning of

my graduate career, and helping me understand genome assembly. I would like to thank Ehsan

Haghshenas for helping me with the development of SAGE2. I would also like to thank Nilesh

Khiste for helping me with parts of SAGE2 and for our great talks about school and life.

I would like to thank the staff in the Computer Science department at the University of

Western Ontario for all their help through my graduate studies. In particular the support of

Janice Wiersma and Cheryl McGrath whom I bothered many times, and they were always

there to help.

Finally I would like to thank the University of Western Ontario for providing me with

the Western Graduate Research Scholarship, and the Ontario government for awarding me the

Queen Elizabeth II Graduate Scholarships in Science and Technology. Without the financial

support I would not have been able to complete my studies.

iii

Contents

Abstract i

Dedication ii

Acknowlegements iii

List of Figures viii

List of Tables xii

List of Appendices xiv

1 Introduction 1

1.1 DNA sequencing . 2

1.1.1 Sanger method . 3

1.1.2 Next generation sequencing . 6

1.2 Error correction . 8

1.3 Genome assembly . 9

1.4 Overview of my work . 13

2 Error Correction: RACER 15

2.1 RACER algorithm . 15

2.2 Automated parameter selection . 17

2.3 Efficient k-mer storage and retrieval . 18

2.4 Hash table and hashing function . 23

iv

2.5 Counting bases adjacent to the k-mers . 24

2.6 Correcting the reads . 26

2.7 Results . 27

2.7.1 Evaluation . 28

2.7.2 Results of the unmapped data sets . 28

2.7.3 Results of the mapped data sets . 31

2.7.4 Time and space . 33

2.8 Conclusions . 36

3 Evaluation of Error Correcting Software 37

3.1 Introduction . 37

3.2 Problems with existing approaches . 38

3.3 Goals for the survey . 39

3.4 Coverage depth and breadth . 39

3.4.1 Coverage . 40

3.4.2 Gain in depth of coverage . 41

3.4.3 Gain in breadth of coverage . 44

3.5 Evaluation tools . 45

3.5.1 The readSearch algorithm . 45

3.5.2 The kmerSearch algorithm . 48

3.6 Illumina HiSeq and MiSeq machines . 48

3.7 Data sets used for evaluation . 50

3.8 Results . 52

3.9 Recommendations for biologists . 60

3.10 Conclusions . 61

4 Genome Assembly: SAGE2 62

4.1 Introduction . 62

v

4.2 Goals for SAGE2 . 63

4.3 SAGE2 algorithm . 64

4.4 Error correction . 66

4.5 Inputing the reads . 67

4.6 Building the hash table . 68

4.7 Parallel overlap graph construction . 68

4.8 Serial overlap graph construction . 72

4.9 Graph simplification . 74

4.9.1 Contracting composite paths . 75

4.9.2 Removing dead-ends . 76

4.9.3 Popping bubbles . 77

4.10 Genome size estimation . 78

4.11 Estimating insert size distribution . 79

4.12 Minimum cost flow . 80

4.13 Resolving ambiguous nodes . 81

4.13.1 Introduction . 81

4.13.2 Overview . 83

4.13.3 Resolving single ambiguous nodes with paired-end reads 84

4.13.4 Resolving ambiguous nodes by path search 86

4.13.5 Merging short overlapping contigs . 87

4.14 Scaffolding . 88

4.14.1 Merging contained contigs . 89

4.14.2 Merging contained contigs with multiple support 90

4.14.3 Merging contained contigs with low support 90

4.14.4 Merging short contigs . 91

4.15 Results . 91

4.15.1 Medium sized genome results . 92

vi

4.15.2 Human genome results . 95

4.15.3 Time and space usage . 97

4.16 Conclusions . 99

5 Conclusions and Future Research 101

5.1 Conclusions . 101

5.2 Future research . 102

5.2.1 RACER . 102

5.2.2 Error correction evaluation . 102

5.2.3 SAGE2 . 103

Bibliography 105

A Complete LASER Alignment Results For Genome Assemblies 110

Curriculum Vitae 126

vii

List of Figures

1.1 An example of the structure of DNA. The sugar-phosphate backbone links de-

oxyribonucleotides together on each strand which run in opposite directions.

The two strands are held together by hydrogen bonds between complementary

base pairs on opposite strands [31]. 3

1.2 The image on the left is an example of the Sanger method of DNA sequenc-

ing using the gel-electrophoresis ladder. The order of the deoxyribonucleotides

from the bottom to the top represents the sequence of the DNA fragment. The

image on the right is the automated Sanger method of DNA sequencing using

florescent labels through a capillary tube. Similarly, the order of the deoxyri-

bonucleotides from the bottom to the top represents the sequence of the DNA

fragment [36]. 4

1.3 Bridge amplification of DNA fragments in the Illumina technologies. Primers

are attached to single stranded DNA fragments, which then attach to the cluster

station. Many copies of the fragment are made into a cluster of the same DNA

fragment which can then be sequenced. [25]. 7

1.4 Imaging of incorporated bases in the fragment clusters of the Illumina technolo-

gies. Each deoxyribonucleotide is added one at a time and then the fluorescent

label is excited and an image is taken of the incorporated deoxyribonucleotide.

The chemical block is removed so the next deoxyribonucleotide can be added,

and then the process is repeated. [3]. 8

viii

1.5 An example of the OLC and DBG methods for building a graph from overlaps

the reads. (A) The layout of overlaps between the reads. (B) The overlap graph

from the reads in (A), with transitive edges represented by the curved lines. (C)

The de Bruijn graph of the reads in (A). [34]. 11

1.6 Overlaps in the reads or k-mers are used to build contiguous sequences called

contigs. Paired-end reads or mate-pairs are used to link and orient the contigs

to build scaffolds. Unknown gaps between contigs are filled with N’s in the

scaffolds.[15]. 12

2.1 An example of two reads from a FASTA file. The first line for each read starts

with the “>” symbol followed by the identifier for the read and the second line

for each read is the DNA sequence of the read. 19

2.2 An example of two reads from a FASTQ file. The first line for each read starts

with the “@” symbol followed by the identifier. The second line for each read

is the DNA sequence of the read. The third line for each read starts with either

the “+” or “-” symbol followed by the same identifier from the first line for

the read. The forth line for each read are ASCII characters that represent the

quality scores for each base in the read. 19

2.3 An example of the 2-bit encoding used in RACER of the DNA bases TACGTCGA.

The letter T is stored as 11, the letter A is stored as 00, the letter C is stored

as 01, and the letter G is stored as 10. An 8-bit integer array stores the 2-bit

encoding of the bases in each read, and another array stores the index to keep

track of the locations of the bases in each read. 22

2.4 An example of finding and correcting adjacent bases for each k-mer in a read.

(a) shows the k-mer window and bases before and after the k-mer window in

the read and its reverse complement. (b) shows the k-mer window and bases

before and after the k-mer window after the first k-mer was corrected. This

process is repeated for every k-mer in each of the reads. 26

ix

4.1 The current read is searched for extensions by reads that overlap both the left

and right side of the current read. A hash table with the prefixes and suffixes of

each read is used to find overlapping reads. If the extending reads overlap the

current read (blue), and the extending reads also overlap with each other (green

and red), then the current read is considered to be a contained read. Contained

reads are added to the overlap graph with edges connected to the extending

reads with the longest overlap to the left and right of the current read (r1 and r3). 69

4.2 An example of an overlap graph before transitive edge reduction. The string

spelled by the edge e2 and the string spelled by the edges e1 and e3 is the same.

We call the edge e2 a transitive edge since it can be removed without losing

information about the string. 73

4.3 An example of the overlap graph in Figure 4.2 after transitive edge reduction.

The edge e2 has been removed from Figure 4.2 resulting in an overlap graph

without a transitive edge. 73

4.4 An example of an overlap graph before contracting composite paths. Nodes

with only one incoming edge and one outgoing edge are considered to have a

composite path. The edges are combined into one edge and the information in

the node is added to the new edge. 75

4.5 The overlap graph from Figure 4.4 after contracting composite paths. The re-

sulting graph only contains nodes with more than two edges connected to them,

or only one edge connected to them. 76

4.6 A example of a dead end in the overlap graph caused by an erroneous read.

Reads with only one edge connected to them are considered dead ends and

removed from the overlap graph. 76

4.7 An example of a bubble in the overlap graph. There are two paths from r1 to r6

that form the bubble. The path with the least amount of reads is removed from

the graph. 77

x

4.8 The overlap graph in Figure 4.7 after removing the bubble. The node r3 is

removed if there are no more edges connected to it. If there are still edges

connect to the nodes in the path that was removed then they remain in the

overlap graph. 78

4.9 Ambiguous node r3 in Figure 4.9a resolved using paired-end information, as-

suming the flow on each of the edges is 1. There are paired-end reads sup-

porting the merge between edges e1 and e3, and between edges e2 and e4. The

resulting graph after merging the edges is shown in Figure 4.9b 81

4.10 Edges merged using paired-end support, assuming the flow on edge e2 is > 1.

There are paired-end reads supporting a merge between edges e1 and e3, and

between edges e4 and e5. The resulting graph is shown in Figure 4.10b 82

4.11 An example of an ambiguous node resolved using flow and paired-end support.

The edges must have unambiguous support by the paired-end reads, and the

flow must balance properly for the edges to be merged. 83

4.12 Plot comparing NGA50 to mis-assemblies of the contigs for the medium sized

genome data sets. The best performing programs are in the top left, and the

worst performing programs are in the bottom right. 94

4.13 Plot comparing NGA50 to mis-assemblies of the scaffolds for the medium sized

genome data sets. The best performing programs are in the top left, and the

worst performing programs are in the bottom right. 94

4.14 Plot comparing NGA50 to mis-assemblies of the contigs for the human genome

data sets. The best performing programs are in the top left, and the worst

performing programs are in the bottom right. 96

4.15 Plot comparing NGA50 to mis-assemblies of the scaffolds for the human genome

data sets. The best performing programs are in the top left, and the worst per-

forming programs are in the bottom right. 97

xi

List of Tables

1.1 Output information for Illumina large scale sequencing platforms. (a) Run in

high-output mode. (b) Run in rapid run mode. 6

2.1 Data sets used for testing in the RACER publication. 27

2.2 Accuracy percentage of the unmapped data sets. 30

2.3 Accuracy percentage of the mapped data sets. 32

2.4 Run time and space for unmapped data sets in seconds/Mbp. 34

2.5 Run time and space for mapped data sets in seconds/Mbp. 35

3.1 HiSeq data sets used for evaluation. 50

3.2 MiSeq data sets used for evaluation. 51

3.3 Depth and breadth coverage for the HiSeq data sets. 51

3.4 Depth and breadth coverage for the MiSeq data sets. 52

3.5 HiSeq ReadDepthGain . 53

3.6 HiSeq KmerDepthGain . 53

3.7 HiSeq ReadBredthGain . 54

3.8 HiSeq KmerBreadthGain . 55

3.9 MiSeq ReadDepthGain . 56

3.10 MiSeq KmerDepthGain . 56

3.11 MiSeq ReadBreadthGain . 57

3.12 MiSeq KmerBreadthGain . 57

3.13 Run time in seconds for all of the data sets tested. 58

3.14 Memory usage in MB for all of the data sets tested. 59

xii

4.1 Comparison of overlap graph construction time in hours between SAGE and

SAGE2 for three human data sets. 73

4.2 Data sets used for genome assembly results. 92

4.3 Alignment results for the medium sized genomes. 93

4.4 Alignment results for 101 bp read length human data sets. 95

4.5 Alignment results for 150 bp read length human data sets. 95

4.6 Run time in hours for all data sets tested. 98

4.7 Space used in MB for all data sets tested. 98

A.1 LASER results for M1 contigs. 111

A.2 LASER results for M1 scaffolds. 112

A.3 LASER results for M2 contigs. 113

A.4 LASER results for M2 scaffolds. 114

A.5 LASER results for H1 contigs. 115

A.6 LASER results for H1 scaffolds. 116

A.7 LASER results for H2 contigs. 117

A.8 LASER results for H2 scaffolds. 118

A.9 LASER results for H3 contigs. 119

A.10 LASER results for H3 scaffolds. 120

A.11 LASER results for H4 contigs. 121

A.12 LASER results for H4 scaffolds. 122

A.13 LASER results for H5 contigs. 123

A.14 LASER results for H5 scaffolds. 124

A.15 LASER results for H6 contigs. 125

xiii

List of Appendices

Appendix A . 110

xiv

Chapter 1

Introduction

Biological sciences have been revolutionized by the information obtained from DNA sequenc-

ing technologies over the last two decades. The enormous amounts of data that can now be

produced in a short amount of time and at a relatively low cost needs advanced algorithms to

make use of the information. With the amount of data that needs to be processed, it is important

that these algorithms not only be highly accurate but also time efficient. In this work I present

fast and accurate algorithms for processing DNA sequencing data. There is a great deal of data

that needs to be searched quickly, and the algorithms I have developed rely heavily on hash

tables to find information at near constant time.

My work has addressed three main problems with DNA sequence analysis. The first prob-

lem is the correction of errors that are produced by DNA sequencing platforms. Accuracy is

extremely important when working with DNA sequencing data, and much of the information

produced by sequencing machines contain some errors. It is important for most applications

to have the DNA sequencing data corrected before using it in order to achieve a high degree of

accuracy.

The second problem is the need to determine the best error correction application for differ-

ent types of genomes and sequencing platforms. There are many error correction applications

available now, and researchers do not have the time or domain knowledge needed to deter-

1

2 Chapter 1. Introduction

mine the best application to use to correct their data. I present a comprehensive analysis of

the best available applications, for the most frequently used sequencing platforms, from a wide

range of genomes. I also present two applications I have developed for researchers to asses the

performance of their own error correction.

The final problem is that of de novo genome assembly, which is the process of assembling

the sequence of a sampled genome from sequencing data without a reference genome to assist

the assembly process. Genome assembly is one of the most important problems in bioinfor-

matics, and one of the main uses of DNA sequencing data in biological sciences.

The remainder of this chapter will give an overview of DNA sequencing technologies, DNA

error correcting software, and de novo genome assembly software. The following chapters

will outline my work on error correction, evaluation of error correcting software, and de novo

genome assembly.

1.1 DNA sequencing

One of the most important discoveries in biological sciences was the description of the DNA

double-helix by James Watson and Francis Crick in 1953. This discovery led to our under-

standing of how organisms are able to store the information needed to build and sustain the

cells that make up their structure. DNA is composed of four different deoxyribonucleotidess

that are linked together by a sugar-phosphate backbone, as shown in Figure 1.1. DNA is

double-stranded, and the two strands are held together by hydrogen bonds between the de-

oxyribonucleotides on each strand. Two complementary deoxyribonucleotides on opposite

strands that are hydrogen bonded are referred to as base pairs (bp). The deoxyribonucleotide

adenine (A) always pairs with its complement deoxyribonucleotide thymine (T), and the de-

oxyribonucleotide cytosine (C) always pairs with its complement deoxyribonucleotide guanine

(G). The genome sequence of a species is the order of all the DNA bases on each of the chro-

mosomes. Our ability to determine the genome sequence of any species has revolutionized our

1.1. DNA sequencing 3

Figure 1.1: An example of the structure of DNA. The sugar-phosphate backbone links deoxyri-
bonucleotides together on each strand which run in opposite directions. The two strands are
held together by hydrogen bonds between complementary base pairs on opposite strands [31].

understanding of biology.

1.1.1 Sanger method

The Sanger method [33] of DNA sequencing, developed by Frederick Sanger in the 1970’s, was

the first widely used method to determine the genome of a species. This method relies on copy-

ing DNA fragments with a mixture of regular deoxyribonucleotides, and chain-terminating

deoxyribonucleotides initiated from a defined starting point. When the chain-terminating de-

4 Chapter 1. Introduction

oxyribonucleotides are incorporated into a DNA fragment it stops the fragment from being

copied. This leaves a mixture of DNA fragments with varying lengths that are copies from the

original DNA fragment, which can then be separated by their lengths with a technique called

gel-electrophoresis. This procedure is performed four times for each fragment of DNA, with

each experiment using a single chain-terminating deoxyribonucleotide from the four deoxyri-

bonucleotides in DNA. The separation of the fragments creates a ladder of DNA fragments

from largest to smallest, and it is then possible to determine the DNA sequence of the original

DNA fragment. An example of this ladder is shown in the image on the left of Figure 1.2.

Figure 1.2: The image on the left is an example of the Sanger method of DNA sequencing
using the gel-electrophoresis ladder. The order of the deoxyribonucleotides from the bottom to
the top represents the sequence of the DNA fragment. The image on the right is the automated
Sanger method of DNA sequencing using florescent labels through a capillary tube. Similarly,
the order of the deoxyribonucleotides from the bottom to the top represents the sequence of the
DNA fragment [36].

The Sanger method was an expensive and time consuming technique, so the initial se-

quencing projects were limited to small RNA viruses, and bacteria with very small genomes.

The technique was eventually improved by automating much of the process [39]. The gel-

electrophoresis and radioactive chain-terminated deoxyribonucleotides were replaced by a cap-

1.1. DNA sequencing 5

illary tube and florescent chain-terminated deoxyribonucleotides. This allows computers to

capture the images of the florescent dyes as they passed through the capillary tube to determine

the sequence of the DNA fragment. An example of the output from this procedure is shown in

the image on the right of Figure 1.2.

The automated Sanger method ushered in a new era of genome sequencing projects. The

first free-living organism to have the complete genome sequenced was Haemophilus influenzae

in 1995 [5], with a genome length of approximately 1.8 million bp. The first unicellular eu-

karyotic genome sequenced was that of Saccharomyces cerevisiae in 1996 [6], with a genome

length of approximately 12 million bp. The first multicellular eukaryotic genome sequenced

was that of Caenorhabditis elegans in 1998 [41], with a genome length of approximately 100

million bp. All of this work would eventually lead to the determination of the human genome,

which is approximately 3.2 billion bp long.

The projects mentioned above, and many other similar projects, had significant impacts

in our understanding of biology and the process of evolution. During this time two projects

were proposed to sequence the human genome. One project was an international consortium

of government and educational resources, and the other was a privately funded project from

the Celera corporation. Although they had the same goal, they took different approaches to

achieving their goals. The publicly funded Human Genome Project used bacterial artificial

chromosomes to sequence DNA fragments, and then tried to find overlaps in the sequences.

The privately funded project used the newest sequencing techniques to determine short piece

of DNA, and then tried to find overlap in the short DNA sequences. In 2001 both projects

published their initial drafts of the human genome [19, 40].

Recently, the use of Next Generation Sequencing (NGS) technologies has replaced Sanger

sequencing as the preferred method of DNA sequencing. NGS technologies have a much lower

cost per DNA base than the Sanger method, and produces much more information per run. The

dominant technology is the Illumina platform which can sequence fragments of DNA, called

reads, that are between 100 bp to 300 bp long. New technologies have been developed that

6 Chapter 1. Introduction

produce much longer reads than the Illumina technology, but at a much higher cost, and there

are many more errors in the reads.

1.1.2 Next generation sequencing

NGS technologies have provided an immense increase in DNA sequencing throughput over

the last few years. Although there have been many technologies produced over the last two

decades, the Illumina technology has taken over as the dominant sequencing platform due to

its low cost per base, high throughput, and high quality of reads. The details of the current

Illumina technologies are listed in Table 1.1.

Table 1.1: Output information for Illumina large scale sequencing platforms. (a) Run in high-
output mode. (b) Run in rapid run mode.

Sequencing Maximum Maximum Maximum
Platform Read Length Reads Per Run Output

NextSeq 2 x 150 bp 400 million 120 Gb
HiSeq 2000 2 x 100 bp 2 billion 200 Gb
HiSeq 2500 (a) 2 x 125 bp 4 billion 1000 Gb
HiSeq 2500 (b) 2 x 250 bp 600 million 300 Gb
HiSeq 3000 2 x 150 bp 2.5 billion 750 Gb
HiSeq 4000 2 x 150 bp 5 billion 1500 Gb
HiSeqX Ten 2 x 150 bp 6 billion 1800 Gb
NovaSeq 2 x 150 bp 20 billion 6000 Gb

The Illumina technologies rely on an adapter library that is attached to a surface called a

cluster station. The fragments are amplified in a process called bridge amplification, which

uses DNA polymerase to make copies of the DNA fragments. Each cluster of a DNA fragment

contains approximately one million copies of the original fragment. An example of the bridge

amplification process is depicted in Figure 1.3. This is needed in order to produce an image

that is strong enough to detect with a camera.

The system tries to add any of the four deoxyribonucleotides simultaneously to the frag-

ments in each step. Three of the four deoxyribonucleotides contains a unique fluorescent label,

and a chemical that blocks any other base from being incorporated. An image is taken of the

1.1. DNA sequencing 7

Figure 1.3: Bridge amplification of DNA fragments in the Illumina technologies. Primers are
attached to single stranded DNA fragments, which then attach to the cluster station. Many
copies of the fragment are made into a cluster of the same DNA fragment which can then be
sequenced. [25].

incorporated base before the next deoxyribonucleotide is added. After each imaging step, the

chemical block is removed so that the next deoxyribonucleotide can be added. An example

of the imaging process is depicted in Figure 1.4. This procedure is repeated to determine the

sequence of the fragment.

Another important feature of NGS technologies is the use of paired-end reads. Two reads

are paired-end reads when they are sequenced from a single fragment of DNA from opposite

ends of the fragment. The fragments will vary slightly in length, but the length of the reads

taken from each side of the fragment will be known, and the DNA that is between the two reads

is unknown. Repetitive regions in genomes are difficult to assemble, and paired-end reads are

used in genome assembly to resolve the assembly around the repetitive regions.

8 Chapter 1. Introduction

Figure 1.4: Imaging of incorporated bases in the fragment clusters of the Illumina technologies.
Each deoxyribonucleotide is added one at a time and then the fluorescent label is excited and
an image is taken of the incorporated deoxyribonucleotide. The chemical block is removed so
the next deoxyribonucleotide can be added, and then the process is repeated. [3].

1.2 Error correction

There are two types of errors that are predominant in NGS technologies; substitution errors

happen when a single base has been changed to a different base, and indels are bases in a

read that have been inserted or deleted. Correcting errors in the reads can greatly increase the

performance of applications that use NGS data such as genome assembly and variant calling.

The Illumina platform predominantly makes substitution errors, and since it is the dominant

technology most software developed for correcting errors focuses on substitution errors. Some

of the most successful error correction programs that correct substitution errors include BLESS

[10], Coral [32], HiTEC [13], Musket [23], RACER [12], SGA [37], and SHREC [35].

All error correction programs make use of “k-mers” in a read to find and correct errors. A

k-mer is a subsequence of a read with length k. For example, consider a read with the DNA

sequence ATCTCTG. If we chose a k value of 3, then this read would have five 3-mers (ATC,

TCT, CTC, TCT, CTG), and four unique 3-mers (ATC, TCT, CTC, CTG).

1.3. Genome assembly 9

All read error correction programs require a certain level of coverage in order to make

accurate corrections. If G is the length of the genome being sequenced, and N is the total

number of bases in the data set, then the coverage of the data set is the integer value of N/G.

Theoretically, if the coverage of a data set is c, then each DNA base in the genome should be

represented c times in the data set, assuming the coverage is uniform. Although, real data sets

do not have a uniform coverage of the sample genome, some regions will be covered more than

others, and some regions may not have any coverage at all.

There are three main approaches that are used to correct substitution errors; k-mer spec-

trum, k-mer counting, and multiple sequence alignment. k-mer spectrum correction algorithms

correct errors in reads by trying to maximize the k-mers in a read to those that appear most

often in the data set. Both BLESS and Musket use the k-mer spectrum approach to correct

errors. k-mer counting algorithms count the number of times each k-mer appears in the data

set, and they correct the low frequency k-mers in a read to k-mers that appear more than a set

threshold. HiTEC, SGA, SHREC, and RACER all use the k-mer counting approach to correct

errors. The multiple sequence alignment approach relies on aligning multiple reads that are

similar, and correcting each read based on which base appears most often in the alignment at a

particular position in each read. Coral uses the multiple sequence alignment method to correct

errors in reads, which is also capable of correcting indels. SGA has an option to use inexact

overlaps in reads to correct errors, but it is not the default method used.

1.3 Genome assembly

Current DNA sequencing technologies are not capable of sequencing the entire genome of a

species, only small pieces of the genome can be sequenced, and these pieces must be assembled

to determine the genome of the sampled species. It is possible to use a reference genome to map

the reads to the reference genome. Although, many genomes do not have a reference genome

yet, and some that have a reference genome are not reliable. Using de novo genome assembly

10 Chapter 1. Introduction

is important in finding the sequence of genomes that have no reference, and to identify the

genome sequences of individuals without the bias of a reference genome.

The first de novo genome assemblers used a greedy method to assemble genomes from

reads. In this method overlaps are found between reads and scored based on the number of

bases that overlap. The overlapping reads with the highest score would be merge first and then

the process would be repeated. This approach makes many mistakes if there are a large amount

of errors in the reads, or if there are many repeat regions in the genome.

A method was proposed by Kececioglu and Myers [16] to make more accurate assemblies

that was a variation of the shortest common substring problem. Their approach made use

of an overlap graph where each read is represented by a vertex in the graph, and each edge

between two vertices represents an overlap between the reads of each vertex. The algorithm

had four phases of assembly; graph construction from overlapping reads, assigning orientation

of the reads, finding sets of overlaps that form a consistent layout with the orientated reads, and

merging the reads based on a consensus multiple sequence alignment. This approach is called

the overlap-layout-consensus (OLC) model of de novo genome assembly.

The first program developed to deal with whole genome assembly of mammalian sized

genomes was the Celera assembler [29]. The Celera assembler was first used to assemble the

Drosophila melanogaster genome, and it was used to assemble the first draft of the human

genome. The Celera assembler has been updated to use different sequencing technologies and

released under the name CABOG [26]. Other de novo assemblers that use the OLC method

include ARACHNE [1], Edena [11], SGA [37], and SAGE [14].

For over 20 years the OLC approach was the only method used for de novo assembly until

a new approach was proposed by Pavel Pevzner [30] that was based on k-mers in reads. The

vertices in the graph are the k-mers in the reads, and the edges between the vertices are k-mers

with exact overlaps of k − 1. This method is referred to as the de Bruijn graph (DBG) method

of de novo genome assembly because it is based on graphs used by Nicolaas de Bruijn [4].

Figure 1.5 illustrates the difference between the OLC and DBG methods. For the given

1.3. Genome assembly 11

Figure 1.5: An example of the OLC and DBG methods for building a graph from overlaps the
reads. (A) The layout of overlaps between the reads. (B) The overlap graph from the reads in
(A), with transitive edges represented by the curved lines. (C) The de Bruijn graph of the reads
in (A). [34].

12 Chapter 1. Introduction

Figure 1.6: Overlaps in the reads or k-mers are used to build contiguous sequences called
contigs. Paired-end reads or mate-pairs are used to link and orient the contigs to build scaffolds.
Unknown gaps between contigs are filled with N’s in the scaffolds.[15].

set of reads in Figure 1.5 (A), the overlap graph in Figure 1.5 (B) is build by finding overlaps

between reads of at least a minimum length of 6 bases. The curved edges in Figure 1.5 (B) are

called transitive edges. Transitive edges in the overlap graph are redundant because the strings

spelled by the straight edges in Figure 1.5 (B) can be used to find the strings in the sampled

genome without the transitive edges. OLC assemblers remove transitive edges in order to

significantly reduce the space needed to store the overlap graph.

Figure 1.5 (C) shows the DBG approach for a k-mer length of 3 given the set of reads in

Figure 1.5 (A). k-mers that overlap by k−1 have an edge in the DBG, and it should be noted that

there are no transitive edges in a DBG. Since its inception the DBG has been the main strategy

used by de novo genome assemblers including ABySS [38], ALLPATHS [2], SOAPdenovo

[21], and Velvet [45].

Both approaches try to build contiguous sequences of overlapping reads or k-mers, which

are referred to as contigs. The contigs are then orientated and connected with gaps between

them using paired-end reads, with each of the two reads appearing in different contigs. The

linked and oriented contigs are referred to as scaffolds. This process is shown in Figure 1.6.

The more paired-end reads that connect two contigs, the more likely the two contigs should

be linked into a scaffold. The length of the gaps between contigs in a scaffold are estimated

1.4. Overview of my work 13

using the average distance between the paired-end reads on each contig.

1.4 Overview of my work

In chapter 2 I describe the implementation of an error correction program for DNA sequencing

data called RACER. The algorithm uses binary storage of the DNA bases using two bits per

base into 8-bit integer arrays to reduce space usage. Bitwise operations are used to correct

a data set to reduced the runtime of the program, and a hash table is used to quickly access

information about the k-mers in a data set. I show an evaluation of RACER against leading

error correction programs using real sequencing data from a variety of organisms.

In chapter 3 I explain the details of an evaluation of error correction software, the methods

used, and the implementation of two programs to perform the evaluation. I explain the need

for a standardized methodology for comparing the results from error correction software, and

the four measures introduced in the evaluation which provide a thorough and unbiased way to

compare error correction programs. I outline the algorithms of the two programs that perform

the evaluation. One program evaluates the k-mers in the reads using a hash table to find k-mers

in a reference genome, and the other program evaluates whole reads using a suffix array to find

the reads in a reference genome. The programs are evaluated using a variety of data sets from

both Illumina HiSeq and MiSeq machines, including three human data sets from the Illumina

HiSeq machine.

In chapter 4 I describe the implementation of a de novo genome assembly program for

DNA sequencing data called SAGE2. It is a reimplementation of a previous program called

SAGE, which addresses some of the key issues of the SAGE algorithm. The bottleneck in

the assembly process of SAGE is the building of the overlap graph in serial, and I outline the

details of a parallel implantation of overlap graph construction. I explain the details of the

new algorithm for graph cleaning and merging of edges in the overlap graph. I then show the

results of the new implementation compared to leading de novo genome assembly programs,

14 Chapter 1. Introduction

including the assemblies of six whole human DNA sequencing data sets.

Finally, in chapter 5 I summarize the conclusions of the work outlined in this paper, and

the possibilities for future research for the programs detailed throughout this work.

Chapter 2

Error Correction: RACER

The work outlined in this chapter is a continuation of the work from our previously published

program called RACER [12]. RACER is an error correction program designed to correct sub-

stitution errors from NGS technologies. The previous implementation of RACER was unable

to correct high coverage data sets from large genomes, such as the human genome. I first intro-

duce the RACER algorithm, and the details of its automatic parameter selection. I then outline

the details of the methods used to store the information in a data set in binary, the bitwise

operations used to correct k-mers in the reads, and the implementation of a hash table which

can store an retrieve information about the k-mers in the reads quickly and efficiently. Next, I

explain the algorithm to detect and attempt to correct errors in the k-mers of reads for a data

set. Finally, I show the results of RACER compared to leading error correcting programs using

real DNA sequencing data sets from a variety of organisms for reads that are both mapped and

unmapped to a reference genome. Due to the work outlined in this chapter RACER is now

capable of correcting high coverage data sets from large genomes.

2.1 RACER algorithm

The algorithm for RACER has remained the same from the published version. The modifi-

cations since the publication have been made to the implementation of the functions and the

15

16 Chapter 2. Error Correction: RACER

automated parameter selection for correction. The algorithm for RACER is listed in Algorithm

1. The following sections will outline how RACER works and the changes that have been

made.

RACER detects errors in reads by utilizing a time and space efficient hash table. This allows

RACER to search for information about each k-mer in near constant time. The hash table stores

the k-mers in each read, and the total number of times each base appears before and after each

k-mer. The optimal k-mer lengths and threshold values are calculated automatically so that

users do not have to determine them on their own. After the k-mers and their occurrences have

been calculated, the reads are corrected based on the parameters that were calculated.

Algorithm 1 RACER: Correct errors in reads.
1: Input: Uncorrected data set U, estimated genome length L.
2: Output: Corrected reads.
3: BRA← BinaryReadsArray(U) . Store the reads in binary.
4: MaxReadLength← FindMaxReadLength(U) . Find maximum read length.
5: KmerLengths(k,K, L,MaxReadLength) . Compute k-mer lengths k and K.
6: for 1 ≤ i ≤ 10 do
7: if i = 1 || i = 2 then
8: kmerLength = k + 1
9: if i = 3 || i = 4 then

10: kmerLength = K + 1
11: if i = 5 || i = 6 then
12: kmerLength = k − 1
13: if i = 7 || i = 8 then
14: kmerLength = K − 1
15: if i = 9 || i = 10 then
16: kmerLength = K + 1
17: if i = 1 || i = 3 || i = 5 || i = 7 || i = 9 then
18: T ← ComputeThreshold(L, kmerLength,MaxReadLength)
19: HT ← BuildHashTable(BRA,MaxReadLength)
20: CorrectErrors(HT, BRA,T, kmerLength,MaxReadLength)
21: OutputCorrectedReads(BRA)

To save space RACER encodes the input sequences using two bits to represent each base.

Storing the bases as characters would require eight bits per base, so this approach is up to

four times more space efficient at storing the reads. A k-mer and its reverse complement are

2.2. Automated parameter selection 17

considered the same so we only need to store one of them, and in RACER only the k-mer with

the smaller encoding key is stored. This decreases the amount of space used in the hash table

by half.

To save even more space in the hash table, RACER splits high coverage data sets into

equal sections of a coverage cutoff of 45. This value was experimentally determined to be high

enough that each split would have enough information to properly correct each split. Data sets

with a coverage level at or below 45 are corrected all at once without splitting the data.

RACER begins correcting the reads after finding the k-mers in the reads and counting the

number of times the bases appear before and after each k-mer. Correction starts by finding the

k-mers in a read with the same technique described previously. The counters for each k-mer

are used to determine if a correction needs to be made in the base before and after the k-mer,

and to decide what is the correct base. If the count for the before or after base is less than

the threshold then it is considered an error, and the counters are searched for a base that is

above the threshold. If there is another base above the threshold then the erroneous base is

replaced with the correct base. If there is more than one base that is above the threshold then

no corrections are made, since this is likely from a heterozygous part of the sampled genome.

If the total count for the before or after base is above the threshold it is considered correct.

The hash table and the corrected read are updated before the next k-mer in a read is con-

sidered for correcting. An advantage of this implementation is that once an erroneous base

is corrected, the next k-mer that is considered will contain the corrected base. This allows

RACER to correct more than one error in a read in one iteration.

2.2 Automated parameter selection

In order to correct the reads with high accuracy RACER requires three parameters to be cal-

culated; a threshold for determining if an error should be corrected, a k-mer length K that will

minimize the number of false positives, and a k-mer length k that will maximize the number

18 Chapter 2. Error Correction: RACER

of corrections. RACER uses statistical analysis similar to HiTEC to determine the best possi-

ble values of the parameters. Unlike HiTEC, all statistical computations used in RACER are

performed by the program itself, eliminating the need for additional software to be installed.

The reader is referred to [13] for the details of the statistical analysis used for the parameter

selection.

One of the main reasons that RACER is able to produce such high accuracy is that it varies

the k-mer lengths used to correct the reads. The combination of k-mer lengths was chosen

experimentally based on extensive testing on a wide range of data sets. The combination of

k-mer length values has been modified since the publication of RACER to optimize all genome

lengths and coverage levels. The order of the k-mer lengths that are used is listed in Equation

2.1. The original version of RACER would stop any time after four iterations of corrections

if the number of corrections for any iteration was below a set threshold. The latest version of

RACER uses ten iterations of corrections regardless of how many corrections are made in each

iteration.

k + 1, k + 1,K + 1,K + 1, k − 1, k − 1,K − 1,K − 1,K + 1,K + 1 (2.1)

One thing to note about the selected k-mer lengths is that RACER performs two iterations

of correction for each k-mer length. This is because RACER has been implemented so that

the hash table can be used repeatedly without rebuilding it if the k-mer length stays the same.

RACER uses the same k-mer length for two iterations to reduce the number of times it builds

the hash table in half. Rather than building the hash table ten times for each iteration of cor-

rection, RACER only needs to build the has table five times.

2.3 Efficient k-mer storage and retrieval

RACER requires that the input files are either in FASTA or FASTQ format. If the reads are in

FASTA format then there are two lines for each read. The first line of each read always begins

2.3. Efficient k-mer storage and retrieval 19

with the “>” symbol, followed by a string that identifies the read. The second line contains the

DNA letters of the read that was sequenced. An example of a FASTA file with two reads is

shown in Figure 2.1.

If the reads are in FASTQ format then each read will occupy four lines. The first two lines

for each read are similar to FASTA files, except that the first character of the first line is the

“@” symbol instead of the “>” symbol. The first character in the third line of each read in a

FASTQ file is either a “+” or “-” symbol to indicate if the read has been sequenced in either

the 5′ → 3′ direction, or the 3′ → 5′ direction. The fourth line for each read is the quality

score of each base and can start with any character above the ASCII offset of the read quality.

The quality score is a quantitative way of determining how likely the base at that position is

correct. RACER does not use quality values to correct reads, so this information is not stored.

An example of a FASTQ file is shown in Figure 2.2.

>SRR065202.1 length=42

GAGCGTTAATCGGAATAACTGGGNGTNAAGGGCACGCAGGCG

>SRR065202.2 length=42

CTAATCCTGTTTGCTCCCCACGCTTTCGCACATGAGCGTCAG

Figure 2.1: An example of two reads from a FASTA file. The first line for each read starts with
the “>” symbol followed by the identifier for the read and the second line for each read is the
DNA sequence of the read.

@SRR065202.1 length=42

GAGCGTTAATCGGAATAACTGGGNGTNAAGGGCACGCAGGCG

+SRR065202.1 length=42

7BBC>CCBCCBBB>>CCCBC@@B!A@!BB2;3AAB>@;>+@#

@SRR065202.2 length=42

CTAATCCTGTTTGCTCCCCACGCTTTCGCACATGAGCGTCAG

+SRR065202.2 length=42

BCBACBCBB=BAABBA@BBBBABC>BB@BBB>B?=+A>?=A@

Figure 2.2: An example of two reads from a FASTQ file. The first line for each read starts with
the “@” symbol followed by the identifier. The second line for each read is the DNA sequence
of the read. The third line for each read starts with either the “+” or “-” symbol followed by the
same identifier from the first line for the read. The forth line for each read are ASCII characters
that represent the quality scores for each base in the read.

20 Chapter 2. Error Correction: RACER

The reads that are sequenced from NGS technologies contain the four letters of the DNA

alphabet, and bases that could not be determined are represented by the letter N. Because of the

encoding used in RACER only the four letters in the DNA alphabet can be stored in the hash

table. For this reason, any character in the reads that is not from the DNA alphabet is randomly

replaced by a letter from the DNA alphabet. This allows RACER to correct all of the data in

the data set, and since the ambiguous base must be one of the four bases in the DNA alphabet,

RACER has a 1/4 chance of randomly selecting the correct base at that position. If it is not the

correct base that is replaced then it will most likely be changed to the correct base during the

correction process.

To save space RACER encodes the reads in two bits per base instead of a string of charac-

ters. The 2-bit encoding of the DNA bases in RACER represents A as 00, T as 11, C as 01,

and G as 10. As mentioned previously, any ambiguous base is randomly converted to one of

the four DNA bases before encoding it. We performed testing of RACER to replace ambigu-

ous bases with a non-random DNA letter, but it was determined that this can create problems

when correcting, and when using downstream applications. If there are many long stretches of

ambiguous bases in the reads, then replacing them by all A’s can cause a k-mer with all A’s to

be above the set threshold. Therefore, the stretch of A’s will not be corrected even when they

should, causing problems for programs that use the corrected data, such as de novo genome

assemblers. This is avoided by randomly replacing the ambiguous bases before correction.

Not only does using 2-bit encodings save space, it also increases the speed of the program.

This is because performing bit operations on data is much faster than using operations on

characters. The logical bit operations used in RACER are AND, OR, and NOT. The AND

operation is used in RACER with a mask to extract k-mers from the reads. A mask is a sequence

of bits used to filter out unwanted bits from another sequence of bits. A mask contains zeros in

positions that are not wanted, since the results will always be zero regardless of what is in the

other sequence of bits. A mask is set to one in positions that are wanted, since the results will

be whatever was in that position in the sequence of bits.

2.3. Efficient k-mer storage and retrieval 21

The bases are encoded in such a way that finding the reverse complement of a k-mer can be

found quickly by using the NOT logical operation. A NOT operation flips all the bits so that

0’s become 1’s, and 1’s become 0’s. The DNA letter A is the complement of T, so performing

a NOT on 11 will results in 00, and from 00 to 11. The same is true for G and C, which

flips the bits from 10 to 01, and from 01 to 10. After the bits are flipped the bits just need to

be reversed to give the reverse complement. This implementation is more time efficient than

using a character array, since bit operations are faster than comparing characters to determine

the reverse complement.

The reads are stored sequentially in an unsigned 8-bit integer array, which is initialized

to zero for each element. This means that each unsigned 8-bit integer array can store up to

four DNA bases from a read. Most machines are byte addressable, which means the smallest

number of bits they can access is eight bits, so storing each 2-bit base requires a mask and bit

shifting.

To understand this concept consider a read that contains the DNA letters TACGTCGA.

Each element in the array that will contain the encoded read initially contains all 0’s. The first

letter is a T and is encoded to 11, then shifted left 6 positions and logically OR’d with the array

element. The OR operation will put a 1 in the result if either of the operands contains a 1, and

0 otherwise. This array element will now contain 1100 0000. The next base is an A and is

encoded to 00, then shifted left four positions and logically OR’d with the array element. This

array element will now contain 1100 0000. The next base is a C and is encoded to 01, then

shifted left two positions and logically OR’d with the array element. This array element will

now contain 1100 0100. The next base is a G and is encoded to 10, then logically OR’d with

the array element. This array element will now contain 1100 0110.

At this point the first 8-bit integer array holds four bases and is now full, so the index value

for the array of 8-bit integer arrays is incremented to the next 8-bit integer array. The process

is repeated until all the bases in the read are encoded. If the read length is not a multiple of

eight then the last index of the array will not be filled. The rest of the bits of that element will

22 Chapter 2. Error Correction: RACER

DNA read: TACGTCGA

1 1 0 0 0 1 1 0

1 1 0 1 1 0 0 0

0

1

Binary Reads Array Array Index

Figure 2.3: An example of the 2-bit encoding used in RACER of the DNA bases TACGTCGA.
The letter T is stored as 11, the letter A is stored as 00, the letter C is stored as 01, and the letter
G is stored as 10. An 8-bit integer array stores the 2-bit encoding of the bases in each read, and
another array stores the index to keep track of the locations of the bases in each read.

be left as 0’s. At most there will be six unused bits for each read, which is still a much more

space efficient way to store reads compared to using a character array. An integer array is used

to store the length of each read so that the number of bits not used in the last array element

for each read can be calculated. The result of storing TACGTCGA in the binary reads array is

shown in Figure 2.3.

Many data sets contain reads that are mostly ambiguous bases. These reads do not contain

much reliable information from the sampled genome, so correcting them would waste time and

space. To deal with these types of reads in a data set, RACER does not correct reads if more

than half the bases in the read are ambiguous bases. In order to mark these reads in the data

set, the integer array that is used to store the read lengths of each read is set to a positive value

if the read has < 50% ambiguous bases, and a negative value if the read has ≥ 50% ambiguous

bases. The read is not removed from the final output, leaving the decision to use it or not to the

downstream applications.

2.4. Hash table and hashing function 23

2.4 Hash table and hashing function

In order to make corrections to the reads RACER needs to find information about the k-mers

quickly. A hash table is used to find information about each k-mer in near constant time. A

hash table uses a key for each element that is input to a hashing function to find the element

in the hash table. The 2-bit representation of each k-mer is used as a unique binary number

that represents the input key for the hashing function used in RACER. The hashing function in

RACER takes the input key modulo the hash table size, and the result is the index in the hash

table to store the k-mer. RACER uses a hash table size that is a prime number selected from

a precomputed list of prime numbers. The initial size of the hash table in RACER is set to

the first prime number that is greater than eight times the genome size. This was determined

experimentally in order to optimize both the run time and memory usage.

Hash tables with good hashing functions can store and retrieve elements in near constant

time. The main problem with hash tables is when a hashing function maps different keys to the

same location in the hash table. When this happens we call it a collision, and it is a common

issue with hash tables. One way to deal with collisions is by using open addressing, which

requires a search of the hash table for an empty entry to store the element being inserted into

the hash table. The three most common open addressing solutions to collisions are linear

probing, quadratic probing, and double hashing. The most successful hashing techniques try

to distribute values evenly throughout the hash table to avoid collisions.

Linear probing is the simplest way to find an empty location to store a new element, and

it was the fist type of collision resolution used in RACER. The way it resolves collisions is to

look at the next index in the hash table, or any constant value of index values, until an empty

location is found. This approach is fast because of cache effects, but it tends to cluster elements

in the hash table which can dramatically increase the search time when the clustering gets too

large.

Quadratic probing is similar to linear probing, except that instead of searching the next

index, or constant value of indexes in the hash table, a quadratic formula determines the next

24 Chapter 2. Error Correction: RACER

index searched. This method is slower than linear probing, since it does not take advantage

of cache effects. Although, there is usually less clustering than the linear method, which can

improve performance for bad hash functions.

Double hashing requires a second hash function to handle collisions. If there is a collision

using the main hashing function, then the second hashing function is used repeatedly until an

empty location is found. This is the technique that is used in the current version of RACER.

Another issue that must be handled when using hash tables is the load factor. If e is the

number of elements inserted into the hash table, and n is the number of indexes in the hash

table, then the load factor is e/n. If the load factor gets too large then the search time for

elements in the hash table increases such that it is no longer close to a constant time search.

Conversely, if the load factor is near zero then the search time will be near constant time, but

there will be a large amount of wasted space.

RACER does not allow the load factor to go above 50%. Once the load factor of the hash

table is greater than 50% RACER stops building the hash table, and then increases the size of

the hash table to the prime number closest to twice the previous hash table size. The original

hash table is deleted before creating the larger hash table to save space, and the k-mers and

counters are recalculated.

2.5 Counting bases adjacent to the k-mers

The counters for the bases appearing before and after each k-mer are stored in an 8-bit unsigned

integer array. Each block of eight elements in the counters array stores the number of times

each of the four DNA bases appears before and after each k-mer. The first four elements

represent the four possible bases before the k-mer, and the next four elements represent the

four possible bases after the k-mer. Since the counters array is 8-bits, the maximum k-mer

occurrences that can be counted is 255, which is well above any threshold that would be set for

a base to be considered correct.

2.5. Counting bases adjacent to the k-mers 25

The process of finding k-mers and incrementing the counters starts by copying the current

read into a temporary array. The size of the array is set to twice the size of the longest read,

since two bits are needed for each letter in the read. The last 64 bits of the current read are

loaded into the current 64-bit window. Another 64-bit window is used to store the reverse

complement of the current 64-bit window. Once the end of the 64-bit window is reached, the

next 64 bits of the read and its reverse complement are loaded into the temporary arrays.

Another k-mer window is created which is twice the k-mer length, since each base is en-

coded using two bits. This k-mer window is then aligned with the rightmost end of the 64-bit

window. The k-mer is obtained with a logical AND operation between the k-mer mask and

the 64-bit window. The k-mer mask contains bit values of 1 inside the k-mer window and 0

elsewhere.

A similar procedure is used for the reverse complement of the current 64-bit window. The

bases that are before and after the k-mer are extracted using a similar masking procedure. Each

mask is set to all 0’s, except for the 2-bit locations where the bases before or after the k-mer

are located. An example of this procedure is shown in Figure 2.4. After storing a k-mer and

incrementing its counters, as shown in Figure 2.4(a) , the k-mer windows shifts two bits to find

the next k-mer in the read, as shown in Figure 2.4(b). The hash function is then used to store

or find the k-mer in the hash table. If the k-mer already exists then the appropriate counters are

incremented, if it is not in the hash table it is added and the counters for the bases before and

after the k-mer are set to 1.

The next k-mer in the read is found by shifting the k-mer window two bits to the left in the

current 64-bit window, and two bits to the right in the reverse complement. The k-mer is stored

if it is not in the hash table and the counters are incremented, then the window is shifted two

bits again. This continues until all of the k-mers in the read are found. If l is the read length

and k is the k-mer length, then the number of k-mers in a read is l − k + 1.

26 Chapter 2. Error Correction: RACER

A C G T C A G T A T T A C

00 01 10 11 01 00 10 11 00 11 11 00 01
Current Read

k-mer window before after

G T A A T A C T G A C G T

10 11 00 00 11 00 01 11 10 00 01 10 11
Reverse
Complement

k-mer window before after

(a)

A C G T C A G T A T T A C

00 01 10 11 01 00 10 11 00 11 11 00 01
Current Read

k-mer window before after

G T A A T A C T G A C G T

10 11 00 00 11 00 01 11 10 00 01 10 11
Reverse
Complement

k-mer window before after

(b)

Figure 2.4: An example of finding and correcting adjacent bases for each k-mer in a read.
(a) shows the k-mer window and bases before and after the k-mer window in the read and its
reverse complement. (b) shows the k-mer window and bases before and after the k-mer window
after the first k-mer was corrected. This process is repeated for every k-mer in each of the reads.

2.6 Correcting the reads

Once the k-mers have been stored in the hash table and the counters have calculated, the final

step is to correct the errors based on the counts. The correction process begins by finding the

k-mers in each read with the same procedure described in the previous section. The counters

for each k-mer are used to determine if a correction needs to be made in both the base before

and after each k-mer, and to decide what is the correct base.

If the total count for the base before or after the k-mer is above the threshold then it is con-

sidered correct. If the count for the base before or after the k-mer is less than the threshold then

it is considered an error, and the counters are searched for a base that is above the threshold. If

there is another base above the threshold then the erroneous base is replaced with the correct

base. If there is more than one base that is above the threshold then no corrections are made

since it is likely a heterozygous region of the sampled genome.

The hash table and the corrected read are updated before the next k-mer in the read is

considered for correcting. An advantage of this implementation is that once an erroneous base

is corrected, the next k-mer that is considered will contain the corrected base. This allows

RACER to correct more than one error in a read in one iteration.

2.7. Results 27

2.7 Results

To test the performance of RACER for the publication we obtained fifteen data sets from the

Sequence Read Archive (http://trace.ncbi.nlm.nih.gov/Traces/sra/). The information for each

data set is listed in Table 2.1. We choose data sets that varied in read length, coverage, and

genome size. There was also a large variation in the error rates, most notably the high error

rate of D7.

Table 2.1: Data sets used for testing in the RACER publication.

Genome Read Estimated
Data Set Organism Length Length Coverage Per-Base Error

D1 Lactococcus lactis 2,600,000 36 61 0.52%
D2 Treponema pallidum 1,100,000 35 219 0.89%
D3 Escherichia coli 4,600,000 75 56 0.65%
D4 Bacillus subtilis 4,200,000 75 63 0.58%
D5 Escherichia coli 4,600,000 75 70 0.62%
D6 Pseudomonas aeruginosa 6,300,000 36 53 0.09%
D7 Escherichia coli 4,700,000 47 142 3.65%
D8 Leptospira interrogans 4,300,000 100 163 0.26%
D9 Leptospira interrogans 4,300,000 100 167 0.21%
D10 Escherichia coli 4,700,000 36 157 0.46%
D11 Haemophilus influenzae 1,800,000 42 549 0.39%
D12 Staphylococcus aureus 2,900,000 76 669 1.75%
D13 Saccharomyces cerevisiae 12,400,000 76 319 0.72%
D14 Caenorhabditis elegans 102,300,000 100 66 0.35%
D15 Drosophila melanogaster 120,200,000 45,75,95 57 1.12%

Many of the publications from the competing software include correction of mapped data

sets. Mapping a data set requires the reference genome of the species from which the reads

were obtained. Each read is aligned to the reference genome with a certain number of mis-

matches allowed per read. The reads that were able to align to the reference are kept, and the

reads that did not align are removed. This procedure filters out reads with many errors, which

improves the performance of the error correction software. This is not usually done in practice,

but for completeness we corrected both the unmapped and mapped data sets. We used a pro-

gram called Burrows-Wheeler Aligner [20] to map the reads to their reference genomes using

28 Chapter 2. Error Correction: RACER

the default parameters.

2.7.1 Evaluation

RACER was compared to the top performing error correction software at that time. This in-

cluded Coral [32], HiTEC [13], Quake [17], Reptile [43], and SHREC [35]. All programs were

tested on the raw and mapped data sets. The competing programs were run according to the

specifications in their respective manuals, websites, and readme files. All tests were run on

the Shared Hierarchical Academic Research Computing Network (SHARCNET), with a HP

24 core 2.1 GHz AMD Opteron with 98GB RAM running Linux Red Hat, CentOS 5.6.

The data sets are measured in time, space, and accuracy. The time is measured in sec-

onds, and space is the peak space reported by SHARCNET. The accuracy is calculated using

the number of reads corrected (TP - true positives), the number of correct reads made incor-

rect (FP - false positives), and the number of reads with errors that were not corrected (FN -

false negatives). The formula used to calculate the accuracy is listed in Equation 2.2, and the

accuracy has been multiplied by 100 to represent it as a percentage.

T P − FP
T P + FN

(2.2)

Both HiTEC and Reptile could only run in serial mode, so we have tested all programs in

serial to get a fair comparison of time and space used. We have also provided the results of the

programs run in parallel to show how each performs using multiple processors.

2.7.2 Results of the unmapped data sets

The accuracy results of the unmapped data sets is listed in Table 2.2. The best performing

programs are highlighted in dark green and the worst performing programs are highlighted

in white. The previous error correction software with the highest accuracy was HiTEC. The

results of our testing clearly shows that RACER outperforms all other programs in accuracy

2.7. Results 29

in most cases. HiTEC corrects more reads for some of the unmapped data sets, but it is by

less than 1%. RACER had much higher accuracy results than HiTEC for the data sets D12 and

D13 because HiTEC stopped after one iteration of corrections, whereas this version of RACER

used eight iterations of corrections.

30 Chapter 2. Error Correction: RACER

Ta
bl

e
2.

2:
A

cc
ur

ac
y

pe
rc

en
ta

ge
of

th
e

un
m

ap
pe

d
da

ta
se

ts
.

Se
ri

al
Pa

ra
lle

l
D

at
a

Se
t

C
or

al
H

iT
E

C
Q

ua
ke

R
ep

til
e

SH
R

E
C

R
A

C
E

R
C

or
al

Q
ua

ke
SH

R
E

C
R

A
C

E
R

D
1

65
.5

4
80

.6
1

71
.6

5
60

.2
7

-
80

.4
9

65
.5

0
71

.4
0

-
80

.4
9

D
2

38
.5

5
84

.4
5

59
.4

6
2.

65
61

.7
9

85
.7

5
38

.5
4

59
.9

4
61

.7
7

85
.7

5
D

3
26

.0
4

82
.7

2
1.

50
21

.8
2

72
.6

1
83

.5
8

26
.0

4
1.

54
72

.5
9

83
.5

8
D

4
59

.7
6

80
.5

9
53

.5
9

64
.2

5
41

.1
9

82
.1

2
59

.7
6

53
.6

0
41

.1
2

82
.1

2
D

5
9.

80
76

.3
8

2.
51

54
.5

5
38

.5
8

76
.3

2
9.

80
1.

48
37

.7
3

76
.3

2
D

6
79

.7
8

78
.6

8
7.

08
68

.4
4

63
.4

0
85

.3
2

79
.7

5
13

.4
4

63
.4

0
85

.3
2

D
7

0.
00

19
.3

5
8.

53
0.

00
-

56
.5

0
0.

00
8.

48
-

56
.5

0
D

8
48

.2
5

60
.2

3
49

.7
5

35
.5

5
55

.9
9

59
.8

7
48

.2
5

49
.7

6
55

.9
0

59
.8

7
D

9
44

.1
6

54
.2

6
44

.9
7

38
.4

6
48

.0
9

53
.9

1
44

.1
6

44
.9

4
48

.0
8

53
.9

1
D

10
58

.0
2

85
.8

9
81

.3
8

0.
06

77
.4

9
86

.3
2

58
.0

2
81

.4
6

77
.4

6
86

.3
2

D
11

28
.3

9
73

.3
3

60
.5

2
10

.6
4

53
.4

5
78

.3
5

28
.3

9
61

.1
1

53
.4

5
78

.3
5

D
12

0.
02

0.
03

15
.3

6
0.

03
-

25
.9

6
0.

02
15

.3
8

-
25

.9
6

D
13

2.
85

0.
23

6.
81

11
.3

8
-

12
.2

5
2.

85
6.

81
-

12
.2

5
D

14
-

-
38

.8
8

0.
21

-
56

.5
4

-
38

.8
6

-
56

.5
4

D
15

-
-

35
.3

5
0.

56
-

42
.9

5
-

35
.4

1
-

42
.9

5

AV
E

R
A

G
E

43
.6

4
75

.1
7

40
.0

9
32

.9
4

56
.9

6
76

.8
4

43
.6

4
40

.8
1

56
.8

4
76

.8
4

2.7. Results 31

HiTEC was not able to correct D15 due to the varying read sizes. Quake was not able to

correct D11 and D12 due to a failed cut off value. SHREC was not able to correct D1 and D7

because of an error while reading the input. The rest of the missing results were due to the

programs running out of space with 98GB of RAM.

2.7.3 Results of the mapped data sets

The accuracy results of the mapped data sets is listed in Table 2.3. The results for the mapped

data sets is similar to the unmapped data sets. The difference is that the programs run faster,

use less space, and have much better accuracy results. This is because the mapped data sets

have less reads, with a minimal amount of errors per read. Reptile was the only program that

had a lower accuracy with the mapped data sets compared to the unmapped data sets.

32 Chapter 2. Error Correction: RACER

Ta
bl

e
2.

3:
A

cc
ur

ac
y

pe
rc

en
ta

ge
of

th
e

m
ap

pe
d

da
ta

se
ts

.

Se
ri

al
Pa

ra
lle

l
D

at
a

Se
t

C
or

al
H

iT
E

C
Q

ua
ke

R
ep

til
e

SH
R

E
C

R
A

C
E

R
C

or
al

Q
ua

ke
SH

R
E

C
R

A
C

E
R

D
1

75
.2

2
92

.1
6

81
.6

7
0.

11
84

.8
7

92
.0

2
75

.2
1

81
.7

6
84

.8
7

92
.0

2
D

2
50

.8
1

91
.7

2
68

.7
7

0.
77

70
.7

2
92

.3
5

50
.8

1
69

.5
5

70
.7

2
92

.3
5

D
3

26
.4

9
83

.0
8

1.
51

0.
07

73
.0

5
83

.9
1

26
.5

0
1.

51
73

.0
5

83
.9

1
D

4
73

.9
3

92
.6

4
63

.9
0

32
.2

5
47

.9
3

93
.5

5
73

.9
3

63
.9

1
47

.9
3

93
.5

5
D

5
11

.6
5

78
.2

2
1.

42
0.

07
40

.3
5

77
.8

0
11

.6
5

0.
83

40
.3

5
77

.8
0

D
6

84
.2

8
82

.9
2

60
.5

4
3.

26
66

.7
4

89
.5

1
84

.2
6

7.
71

66
.7

4
89

.5
1

D
7

3.
78

77
.0

0
45

.7
9

0.
02

56
.4

4
82

.6
7

3.
78

45
.7

9
56

.4
4

82
.6

7
D

8
75

.1
8

91
.5

8
76

.0
7

0.
12

85
.4

4
90

.8
1

75
.1

7
76

.0
8

85
.4

4
90

.8
1

D
9

75
.3

5
90

.0
5

75
.3

3
1.

61
80

.3
1

89
.2

7
75

.3
5

75
.2

0
80

.3
1

89
.2

7
D

10
67

.7
4

90
.7

4
90

.7
3

0.
07

86
.6

5
90

.8
0

67
.7

4
90

.8
8

86
.6

5
90

.8
0

D
11

48
.6

5
80

.0
4

69
.6

0
8.

32
60

.6
6

84
.3

3
48

.4
1

69
.0

2
60

.6
6

84
.3

3
D

12
0.

25
0.

43
32

.7
5

0.
07

40
.4

9
47

.0
0

0.
25

32
.7

5
-

47
.0

0
D

13
5.

97
0.

30
8.

92
0.

30
11

.9
4

14
.6

8
5.

98
8.

92
11

.9
4

14
.6

8
D

14
27

.5
3

-
47

.9
0

0.
26

-
65

.9
6

27
.4

9
47

.8
9

-
65

.9
6

D
15

40
.1

2
-

47
.0

1
0.

00
-

57
.0

4
40

.1
1

47
.0

1
-

57
.0

4

AV
E

R
A

G
E

57
.1

2
86

.7
8

56
.4

3
5.

17
67

.9
8

88
.0

4
57

.0
9

50
.5

2
67

.9
8

88
.0

4

2.7. Results 33

2.7.4 Time and space

The run time and space usage for the testing is listed in Table 2.4 for the unmapped data sets,

and in Table 2.5 for mapped data sets. The time and space is listed in seconds per mega

base pair (Mbp) to give an indication of which programs perform best in both time and space

usage. The best programs at time and space usage are highlighted in dark green and the worst

performing programs are highlighted in white. It is clear from these tables that RACER is the

best performing program at time and space usage.

RACER was the fastest program in both serial and parallel modes for both the unmapped

and mapped data sets. Quake was the second fastest in serial mode, but RACER completed

the task in half the time in serial mode. RACER was one order of magnitude faster than all

programs in parallel mode. Coral was much faster between serial and parallel modes, but also

required 12 times the amount of space. RACER was significantly faster in parallel, but the

increase in space was minimal. RACER used the least amount of space overall. Quake was the

next best program at space usage, but it still used >50% more space than RACER in parallel

mode.

34 Chapter 2. Error Correction: RACER

Ta
bl

e
2.

4:
R

un
tim

e
an

d
sp

ac
e

fo
ru

nm
ap

pe
d

da
ta

se
ts

in
se

co
nd

s/
M

bp
.

Se
ri

al
Pa

ra
lle

l
D

at
a

Se
t

C
or

al
H

iT
E

C
Q

ua
ke

R
ep

til
e

SH
R

E
C

R
A

C
E

R
C

or
al

Q
ua

ke
SH

R
E

C
R

A
C

E
R

D
1

11
.6

0
5.

68
9.

64
4.

15
-

1.
16

2.
75

4.
90

-
0.

39
D

2
30

.7
6

11
.0

7
14

.1
8

9.
52

22
.5

7
3.

28
5.

55
6.

01
3.

66
0.

89
D

3
25

.6
2

12
.4

4
2.

91
9.

10
27

.0
1

5.
53

4.
02

3.
27

5.
27

1.
53

D
4

24
.6

0
12

.3
7

4.
37

7.
90

25
.1

1
4.

24
4.

37
3.

27
5.

22
0.

73
D

5
27

.1
4

12
.8

9
2.

81
10

.6
5

27
.3

9
4.

26
5.

42
2.

71
6.

40
0.

88
D

6
11

.4
6

2.
87

4.
58

14
.8

5
17

.6
9

1.
28

2.
25

3.
60

3.
68

0.
33

D
7

6.
13

12
.1

7
32

.1
9

6.
98

-
4.

32
1.

67
7.

41
-

1.
05

D
8

95
.4

8
11

.6
3

2.
66

4.
95

26
.8

8
3.

37
13

.0
5

2.
05

5.
22

0.
60

D
9

10
1.

94
12

.9
9

3.
26

4.
84

27
.5

5
2.

99
15

.2
0

2.
41

5.
42

0.
62

D
10

26
.7

7
13

.4
5

13
.3

1
6.

01
19

.1
4

2.
12

4.
53

6.
08

3.
78

0.
84

D
11

88
.3

7
14

.1
5

6.
05

10
.7

5
19

.5
4

2.
22

10
.6

6
3.

53
3.

48
0.

51
D

12
76

.8
0

2.
03

7.
84

15
.9

3
-

4.
60

9.
32

2.
68

-
1.

13
D

13
95

.1
7

2.
14

2.
32

7.
73

-
3.

64
15

.2
6

1.
70

-
1.

26
D

14
-

-
3.

11
16

.1
3

-
5.

30
-

1.
77

-
0.

87
D

15
-

-
8.

61
19

.5
9

-
7.

06
-

2.
80

-
1.

91

AV
E

R
A

G
E

48
.0

2
11

.5
4

6.
01

8.
73

23
.6

5
3.

25
7.

23
3.

66
4.

68
0.

77

2.7. Results 35

Ta
bl

e
2.

5:
R

un
tim

e
an

d
sp

ac
e

fo
rm

ap
pe

d
da

ta
se

ts
in

se
co

nd
s/

M
bp

.

Se
ri

al
Pa

ra
lle

l
D

at
a

Se
t

C
or

al
H

iT
E

C
Q

ua
ke

R
ep

til
e

SH
R

E
C

R
A

C
E

R
C

or
al

Q
ua

ke
SH

R
E

C
R

A
C

E
R

D
1

11
.1

1
5.

49
8.

40
11

.7
3

17
.5

0
1.

05
2.

10
5.

49
3.

17
0.

31
D

2
30

.9
4

7.
01

9.
11

10
.7

7
16

.6
5

1.
94

6.
02

4.
08

18
.2

9
0.

55
D

3
24

.3
6

12
.4

2
2.

87
9.

59
26

.0
8

3.
85

3.
88

2.
57

5.
23

0.
76

D
4

24
.7

8
11

.6
2

4.
37

7.
27

20
.9

4
3.

50
3.

98
2.

79
4.

12
0.

73
D

5
27

.4
8

12
.9

7
2.

79
8.

59
29

.0
9

3.
82

4.
09

2.
98

6.
35

1.
14

D
6

11
.1

8
2.

71
3.

56
13

.1
1

17
.9

2
1.

56
2.

14
3.

60
3.

28
0.

30
D

7
2.

64
3.

68
14

.0
2

4.
96

8.
10

1.
27

0.
71

5.
46

1.
85

0.
26

D
8

91
.5

8
10

.5
1

2.
28

6.
50

25
.0

5
2.

47
15

.5
5

1.
98

4.
79

0.
53

D
9

96
.5

3
11

.8
6

2.
61

4.
42

24
.2

1
1.

94
15

.2
1

2.
41

4.
93

0.
48

D
10

26
.1

5
7.

15
6.

57
8.

41
18

.0
1

1.
32

5.
01

3.
46

3.
57

0.
28

D
11

28
.0

3
7.

72
4.

77
9.

38
18

.1
8

1.
32

14
.7

0
5.

59
3.

50
0.

34
D

12
4.

98
2.

12
3.

01
5.

14
16

.9
9

2.
65

11
.3

2
1.

56
-

0.
43

D
13

94
.7

5
1.

87
2.

07
9.

14
22

.3
6

3.
15

14
.3

9
1.

61
4.

56
0.

57
D

14
40

.7
2

-
2.

46
16

.1
3

-
5.

13
7.

31
1.

56
-

0.
85

D
15

23
.1

8
-

7.
02

22
.5

0
-

4.
57

4.
48

3.
20

-
0.

94

AV
E

R
A

G
E

40
.1

2
9.

33
4.

33
8.

67
21

.7
9

2.
41

7.
84

3.
27

6.
01

0.
57

36 Chapter 2. Error Correction: RACER

2.8 Conclusions

RACER was capable of correcting many errors in sequencing when data sets were derived from

small and medium sized genomes, but it was not able to correct large genomes due its imple-

mentation. The main problems with RACER was the implementation of the hash table, and the

automatic parameter selection for large genomes. We have reimplemented the hash table so

that it can quickly and efficiently manage the information needed to make error corrections for

any sized genome and coverage level. We have also performed extensive testing to determine

the proper automatic parameter selection for all genome sizes and coverage levels. Our testing

showed that RACER performed as good or better than the state-of-the-art for all genome sizes,

coverage levels, and sequencing technologies from Illumina.

Chapter 3

Evaluation of Error Correcting Software

3.1 Introduction

Professionals that work with NGS data must often correct the errors in their data sets before

running any applications that use the data. The problem is that there are many error correction

programs that are capable of correcting errors in NGS data. Determining the best software to

use for a particular genome or sequencing machine is difficult since there is no standard way

of measuring the accuracy of the error correction. A survey was published that evaluated the

performance of current technologies [44], but the results were biased by the methods used for

evaluation, and more accurate programs have been released since its publication. There was a

need for a better evaluation of error correction software that was not biased, more comprehen-

sive, and one that evaluated the current state-of-the-art software.

In this chapter I first present the problems with the previous methods for evaluating error

correction programs, and the goals for the survey. Next, I outline some notation and details

of the methodology developed to standardize the evaluation of error correction programs in a

thorough and unbiased manner. Then I explain the implantation of two programs developed to

perform the evaluation of error correction programs. The first program uses a suffix array to

find reads that align to a reference genome, and the second program uses a hash table to find k-

37

38 Chapter 3. Evaluation of Error Correcting Software

mers in the reads that align to a reference genome. Next, I show the results of our comparisons

using a variety of data sets from both the Illumina HiSeq and MiSeq machines, including three

whole human data sets from the Illumina HiSeq machine. Finally, I explain recommendations

for professionals that would be in need of correcting data from NGS machines, and outline the

conclusions from this chapter.

3.2 Problems with existing approaches

One of the previous methods used for evaluating the accuracy of error correction software was

to use alignment software to map reads to a reference genome, and then mark the bases that

were erroneous. The corrected data was then mapped to the reference, and the differences were

used to determine the accuracy of the programs [10, 23, 32]. The problem with this method

is that many reads map to multiple regions in a genome, and many cannot be mapped at all.

These reads would be removed from the data sets before being corrected in order to evaluate

the performance of the correcting software. This approach makes it much easier for error

correcting software to correct the data sets, and it does not reflect what happens in practice.

Also, the mapping of the reads is biased by the alignment software, and can differ significantly

depending on the parameters used for the alignments.

Another method used for evaluating the performance of error correction software was to

use genome assembly software before and after correcting the data set, and the N50 or NGA50

would be used to evaluate the performance of the error correction [10, 23, 32]. The problem

with this method is that many genome assembly programs have their own error correction mod-

ules, and it is difficult to determine how correcting the data before will affect the performance.

Also, genome assembly programs may have many parameters that can be changed, and trying

all combinations of parameters to find the best is impractical. For these reasons it is unac-

ceptable to evaluate error correction software based on the performance of genome assembly

programs.

3.3. Goals for the survey 39

3.3 Goals for the survey

The lack of standardization for measuring the performance of error correcting software and the

limited resources for evaluation were the main motivating factors for us to conduct this survey.

We set a goal of standardizing the evaluation of error correction software, and to provide the

tools for comparing current and future error correction programs.

3.4 Coverage depth and breadth

Previous methods of evaluating error correction performance relied on a measure of the gain

in corrected base pairs in a data set [44]. This was considered an acceptable measure of per-

formance, but the methods used to calculate the gain were biased by the approaches mentioned

previously. To provide a thorough and unbiased evaluation we introduced the concepts of gain

in coverage depth and breadth for both whole reads and k-mers. Most applications that use

NGS data will either use the entire reads in a data set, or k-mers from each read in a data set,

so it was important to evaluate both whole reads and k-mers for our evaluation.

Consider a reference genome G with length L. We will denote the ith deoxyribonucleotide

of G using G[i], and the subsequence starting at position i, and ending at position j in the

genome using G[i... j]. Therefore, the entire sequence of the genome would be denoted G =

G[1...L].

Consider a data set D, with R representing the reads in D, and the total number of reads

in D is equal to N, then D = {Ri|1 ≤ i ≤ N}. The length of a read R is denoted |R|, and it is

the total number of deoxyribonucleotides in R; e.g. |ACGT A| = 5. We will distinguish a read

R from its sequence of deoxyribonucleotides seq(R), since different reads can have the same

sequence. We can then denote the sequence of reads in D as seq(D) = {seq(R)|R ∈ D}.

To distinguish between k-mers and their sequences we will introduce the concept of a “po-

sitional k-mer,” which is the k-mer starting at position j in read Ri, Ri[j... j + k−1], and denoted

(k, i, j). The set of positional k-mers is denoted pos-k-mers = {(k, i, j)|1 ≤ i ≤ N, 1 ≤ j ≤

40 Chapter 3. Evaluation of Error Correcting Software

|Ri| − k + 1}. The set of k-mers occurring in D or G is denoted k-mer(D) and k-mer(G) respec-

tively. For example, if we consider a data set D = {ACCT, ACCT,GGGG}, then it contains

three reads, two sequences seq(D) = {ACCT,GGGG}, nine pos-2-mers, and four 2-mers 2-

mer(D) = {AC,CC,CT,GG}.

3.4.1 Coverage

We have introduced four new measures of gain with the goal of providing a thorough and

unbiased evaluation of the performance of error correction software. Correcting a data set can

improve either the depth of coverage, which is the average number of times each base pair

in the genome is covered, as shown in Equation 3.1, or the breadth of coverage, which is the

proportion of the genome that is covered by the reads or k-mers.

1
L

N∑
i=1

|Ri| (3.1)

In order to understand the breadth of coverage more clearly it is important to understand

what it means to have a position in the genome covered by a read or k-mer. We consider all

reads or k-mers starting at every position in the genome. For reads of length l, or in the case of

k-mers we can replace l with k, we define the breadth of coverage as the ratio of the l-mers in

the reference genome that appear in the data set, which is shown in equation 3.2.

|l − mer(G) ∩ l − mer(D)|
|l − mer(G)|

(3.2)

Since the reads of a data set can be used as whole reads or broken into k-mers, we chose to

evaluate the error correction performance with respect to each type of coverage. The four mea-

sures of evaluation we have introduced are: ReadDepthGain, KmerDepthGain, ReadBreadth-

Gain, and KmerDepthGain.

The evaluation approaches we have introduced consider both the correction of whole reads

and k-mers, but it does not evaluate the point correction of single errors. Although, counting

3.4. Coverage depth and breadth 41

point corrections of single errors is not necessarily relevant in practice, and this can be shown

by considering two scenarios of error correction. In the first scenario, assume there are five

errors that are corrected in a read that only has five errors. In the second scenario, assume there

are five errors corrected in a read that has ten errors. While both scenarios correct a total of

five errors each, the read in the first scenario becomes error free after correction. This is an

important aspect of error correction because error free reads are much more useful in down-

stream applications than reads with errors. This is why we chose to evaluate error correction

performance based on whole reads and k-mers instead of point corrections.

3.4.2 Gain in depth of coverage

In this section we will consider both the ReadDepthGain and KmerDepthGain measures of

performance. A read R is considered to be correct if it is found in the reference genome:

seq(R) = seq(G)[i...i + |R| − 1] for some 1 ≤ i ≤ L − |R| + 1. Otherwise, R is considered to

be erroneous. Based on this definition, we can define a binary classifier on any data set; T P is

the number of reads that are erroneous before correction but correct after correction, T N is the

number of reads that are correct both before and after correction, FP is the number of reads

that are correct before correction but erroneous after correction, and FN is the number of reads

that are erroneous both before and after correction. The gain in depth of coverage for whole

reads can then be defined by Equation 3.3. This represents the total number of correct whole

reads gained, which is T P − FP, as a fraction of the total number of erroneous reads before

correction, which is P = T P + FN.

ReadDepthGain =
T P − FP

P
(3.3)

The ReadDepthGain measures the gain in depth of coverage given by the correct reads, but

the quality of reads in the corrected data set is inversely proportional to the quality of the reads

in the uncorrected data set. The proportion of the new correct reads out of the total number of

42 Chapter 3. Evaluation of Error Correcting Software

reads is shown in Equation 3.4.

T P − FP
P + N

=
P

P + N
ReadDepthGain (3.4)

To properly evaluate correction we introduce Equation 3.5, which is the ratio between the

number of correct reads in the original data set, and the total number of reads.

OrigReadDepth =
N

P + N
(3.5)

We also introduce Equation 3.6, which is the ratio between the number of correct reads

in the corrected data set, and the total number of reads. The relation between the original

and corrected read depth, and the read depth gain is shown in Equation 3.7, which can be

represented as shown in Equation 3.8.

CorrReadDepth =
T P + T N

P + N
(3.6)

CorrReadDepth = OrigReadDepth +
P

P + N
ReadDepthGain (3.7)

This works if all the reads in the data set have the same length, but to deal with data sets

that have varying read lengths we have modified the above definitions. The modified version

counts the contribution of each read R toward each of the values TP, TN, FP, FN as |R| instead

of 1. This produces the same values as Equation 3.8 when all the reads have the same length.

CorrReadDepth = OrigReadDepth + ReadDepthGain(1 − OrigReadDepth) (3.8)

Correcting whole reads is important, but it is also difficult, which is why the percentage of

the errors corrected becomes important. However, the ratio of errors corrected is not acceptable

by itself to determine the quality of correction. Consider two reads with ten errors each, and

both have five of the errors corrected. If we only consider error correction as a percentage, then

3.4. Coverage depth and breadth 43

both reads will have the same percentage of errors corrected. Assume that the first read has the

five leftmost errors corrected, and the second read has every other error corrected. It is most

likely that the first read will have a longer error free subsequence than the second read, which

will make the first read much more useful in downstream applications.

The main point is that a corrected error becomes more useful when it creates a sufficiently

long error free subsequence. To accommodate this situation we consider correction of k-mers,

where the value of k is chosen to be the smallest possible value that guarantees, with a high

probability, that there is a unique position in the reference genomes for each k-mer. The total

number and length of the repeat regions in a genome varies significantly for each genome, so

it is not possible to find a value of k that will allow for all of the k-mers in every genome to be

unique. For the evaluation in our survey we chose k = 20, but the evaluation program that we

have provided allows for the evaluation of any value of k between 5 and 32.

KmerDepthGain =
T P − FP

P
(3.9)

To evaluate KmerDepthGain we use a similar approach as ReadDepthGain, but we must

define it in terms of positional k-mers instead of whole reads. A positional k-mer (k, i, j) is

called correct if it can be found in the reference genome: seq(Ri[j... j + k − 1]) = seq(G[l...i +

k − 1]), for some 1 ≤ l ≤ L− k + 1. Otherwise, the positional k-mer (k, i, j) is called erroneous.

We can now define a binary classifier on pos-k-mers(D), similar to the one for whole reads.

The depth of coverage for positional k-mer gain is defined as shown in Equation 3.9. The

KmerDepthGain quantifies the gain in depth of coverage as given by correct positional k-mers.

As we did for whole reads, to evaluate correction on the quality of the k-mers, we introduce

Equation 3.10 and Equation 3.11 that satisfy Equation 3.8 with the appropriate modifications

as shown in Equation 3.12.

OrigKmerDepth =
N

P + N
(3.10)

44 Chapter 3. Evaluation of Error Correcting Software

CorrKmerDepth =
T P + T N

P + N
(3.11)

CorrKmerDepth = OrigKmerDepth + KmerDepthGain(1 − OrigKmerDepth) (3.12)

3.4.3 Gain in breadth of coverage

The depth of coverage is a property of the data set, whereas the breadth of coverage is a property

of the genome. To illustrate this point we will consider two programs that correct two different

unique reads R1 and R2. Assume that R1 has twenty copies in the data set, ten of which are

erroneous, and R2 has ten copies in the data set, five of which are erroneous. Assume that the

first program P1 corrects all copies of R1, but destroys all copies of R2. Assume that the second

program P2 corrects two copies of R1, and one copy of R2, without destroying anything. Then

the ReadDepthGain of P1 is 0.33 and the ReadDepthGain of P2 is 0.20. Therefore, based on

ReadDepthGain alone, P1 would be judged as the better of the two programs for correction.

However, P2 preserves copies of both reads, which results in a better breadth of coverage of

the genome. Therefore, based on the breadth of coverage, P2 would be judged as the better

of the two programs for correction. This example demonstrates the need for both measures of

performance in order to have a thorough evaluation of error correction.

We will introduce two measures for the gain in breadth coverage that complements the gain

in read coverage. First, we need to define a binary classification on k-mer(D), similar to the

whole read classifier. A k-mer K of the reference genome is considered “covered” if K ∈ k-

mer(G). Otherwise, the k-mer is considered to be “not covered.” The classifier TP becomes

the number of k-mers that are not covered before correction but covered afterward, etc. The

new measure is called KmerBreadthGain and is shown in Equation 3.13. The impact on the

breadth of coverage is assessed using OrigKmerBreadth and CorrKmerBreadth defined as

before, and satisfying Equation 3.12.

KmerBreadthGain =
T P − FP

P
(3.13)

3.5. Evaluation tools 45

For whole reads, if all reads have the same length l, then seq(D) = l−mer(D), and the

definition of ReadBreadthGain is similar to KmerBreadthGain but with k replaced by l. If

the reads are not the same length, then TP becomes the number of elements of seq(D) that

do not occur in G before, but do after correction, FP represents the opposite of TP, and TN

represents those that appeared both before and after correction. For FN, we use |l−mer(G)|,

where l is the weighted average read length. As above, we also introduce OrigReadBreadth

and CorrReadBreadth satisfying Equation 3.8.

Defining the breadth of coverage in this way, KmerBreadthGain measures the gain in the

breadth of coverage as given by correct k-mers, and ReadBreadthGain measures the gain in

breadth of coverage as given by correct whole read sequences.

3.5 Evaluation tools

We have provided two programs to calculate the four measures of performance for users

that would like to evaluate error correction performance based on our methodology. The

program that calculates the gain in depth and breadth of coverage for whole reads is called

readS earch. This program that calculates the gain in k-mer depth and breadth of coverage is

called kmerSearch.

3.5.1 The readSearch algorithm

The readSearch algorithm uses a suffix array and longest common prefix (LCP) array to store

and search the reference genome. A suffix array is an alternative implementation of a suffix tree

that stores the locations of the suffixes of a string in an array instead of using pointers. Consider

the DNA string AGAAGAT, which can be stored in a character array with the first letter stored

in location 0 of the array, and the last letter stored in location 6 of the array. A special character

is added to the end of the string to mark the end point of the string. The special character is

considered to have the largest lexicographical ordering so that it is always at the end of the

46 Chapter 3. Evaluation of Error Correcting Software

suffix array for a string. A suffix array stores the starting locations of the lexicographically

sorted suffixes of the string in the suffix array. If the special character for the above example is

$, then the lexicographical ordering of the suffixes in the above example would be: AAGAT$,

AGAAGAT$, AGAT$, AT$, GAAGAT$, GAT$, T$, and $. Therefore, the suffix array for this

example would contain: 2, 0, 3, 5, 1, 4, 6, 7.

The LCP array is used to improve the search time for finding strings in the suffix array,

and the algorithm was introduced by Udi Manber and Gene Myers [24]. This array stores the

longest common prefix between an element in the suffix array, and the next element in the

suffix array. For example, the longest common prefix between the first element in the above

suffix array AAGAT$, and the second element in the suffix array AGAAGAT$ is 1. Therefore,

the value in location 1 of the LCP array would be 1, and it should be noted that location 0 of

the LCP array would contain 0 since there is no previous element to compare against. The full

LCP array for the above example would contain: 0, 1, 3, 1, 0, 2, 0, 0.

The algorithm for readSearch is listed in Algorithm 2. The implementation of readSearch

requires that the reads in the original and corrected data sets are in the same order. The imple-

mentation of readSearch also requires that none of the reads have been removed, but it does

allow for reads to be trimmed. If a read has been trimmed then it is considered to not be found

in the reference genome.

Two integer arrays are used to store the lengths of each read in the original and corrected

data sets to determine if any of the reads have been trimmed. Two boolean arrays are used to

store which reads are found in the original and corrected data sets. These arrays are set to false

initially, and if the read is found in the reference genome then the corresponding array element

for that read is set to true. Two more boolean arrays that are set to the length of the reference

genome are used to mark the locations in the genome that are covered by the reads for both the

original and corrected data sets. The positions are all set to false initially and set to true if the

position in the genome is covered by a read. All of these arrays are used to calculate the gain

results for the depth and breadth of coverage for whole reads.

3.5. Evaluation tools 47

Algorithm 2 readSearch: Calculate whole read depth and breadth gain.
1: Input: Reference genome RG, original data set O, corrected data set C.
2: Output: Whole read depth and breadth gain results.
3: NR← Number of reads in O.
4: G ← Array(RG) . Store the reference genome in an array.
5: GS A← S u f f ixArray(G) . Build the suffix array.
6: LCP← LongestCommonPre f ix(G,GS A) . Compute the LCP array.
7: for 1 ≤ i ≤ NR do
8: FO[i]= false . Array to store which reads from original data set are found in G.
9: FC[i] = false . Array to store which reads from corrected data set are found in G.

10: GO[i] = false . Array to store positions in G covered by original reads.
11: GC[i] = false . Array to store positions in G covered by corrected reads.
12: T PD = T ND = FPD = FND = 0 . Initialize depth gain binary classifiers.
13: T PB = T NB = FPB = FNB = 0 . Initialize breadth gain binary classifiers.
14: for each read ri ∈ O do
15: if Occurs(ri,RG,GS A, LCP, pos) then
16: FO[i] = true
17: GO[pos] = true . Marks each position in the genome that is covered by the read.
18: for each read ri ∈ C do
19: if Occurs(ri,RG,GS A, LCP, pos) then
20: FC[i] = true
21: GC[pos] = true . Marks each position in the genome that is covered by the read.
22: for 1 ≤ i ≤ NR do
23: if FO[i] = false and FC[i] = true then
24: T PD + +

25: else if FO[i] = true and FC[i] = false then
26: FPD + +

27: else if FO[i] = true and FC[i] = true then
28: T ND + +

29: else
30: FND + +

31: for 1 ≤ i ≤ NR do
32: if GO[i] = false and GC[i] = true then
33: T PB + +

34: else if GO[i] = true and GC[i] = false then
35: FPB + +

36: else if GO[i] = true and GC[i] = true then
37: T NB + +

38: FNB = (genomeLength − averageReadLength) − (T PB + FPB + T NB)
39: ReadDepthGain = (T PD − FPD)/(T PD + FND)
40: ReadBreadthGain = (T PB − FPB)/(T PB + FNB)
41: return ReadDepthGain, ReadBreadthGain

48 Chapter 3. Evaluation of Error Correcting Software

3.5.2 The kmerSearch algorithm

The kmerSearch algorithm uses a hash table to store the k-mers that are found in the reference

genome. The implementation of the hash table is similar to the one used in RACER, and

described in Section 2.4. The kmerSearch algorithm uses the hash table to quickly determine

if the k-mers in the original and corrected data sets are in the reference genome. The algorithm

for kmerSearch is listed in Algorithm 3.

The kmerSearch algorithm can search a data set for k-mers with a length of k between 5 and

32. The implementation requires that none of the reads have been removed or trimmed by the

correcting program. The implementation also requires the reads to be in the same order in the

original and corrected data sets for purposes of calculating the binary classifiers for the depth

and breadth of coverage. The k-mers in the reference genome that contain any ambiguous bases

are not stored in the hash table. The k-mers in the original or corrected data sets that contain

any ambiguous bases are considered to not be found in the reference genome.

Two boolean arrays are used to calculate the breadth of coverage gain results. The arrays

are set to the length of the hash table and the values are initially set to false. When a k-mer

is found in the genome for the original or corrected data set then the corresponding location

in the boolean arrays is set to true. When kmerSearch is finished processing the original and

corrected data sets the values in the boolean arrays are used to calculate the breadth classifiers

TP, TN, and FP. To calculate the FN value for the breadth classifier we subtract the total values

for TP, TN, and FP from the total number of unique k-mers in the hash table for the reference

genome.

3.6 Illumina HiSeq and MiSeq machines

The data sets we have selected are all real data sets that have not been altered in any way. At the

time of the publication the main platforms from Illumina were the HiSeq 2000, HiSeq 2500,

and MiSeq machines. HiSeq machines have large amounts of output and low error rates. MiSeq

3.6. Illumina HiSeq andMiSeq machines 49

Algorithm 3 kmerSearch: Find all k-mers that align to a reference genome.
1: Input: Reference genome RG, original data set O, corrected data set C, k-mer length k.
2: Output: k-mer depth and breadth gain.
3: NR← Number of reads in O.
4: totalUniqueKmers = 0 . Variable to count the total unique k-mers in G.
5: G ← Array(RG) . Store the reference genome in an array.
6: for each k-mer K ∈ G do
7: HT ← Hash(K) . Store each k-mer in G in the hash table HT .
8: if first occurrence found of K in HT then
9: totalUniqueKmers + +

10: T PD = T ND = FPD = FND = 0 . Initialize depth gain binary classifiers.
11: T PB = T NB = FPB = FNB = 0 . Initialize breadth gain binary classifiers.
12: for 1 ≤ i ≤ NR do
13: FO[i] = false . Array for breadth gain binary classifiers of the original file.
14: FC[i] = false . Array for breadth gain binary classifiers of the corrected file.
15: for 1 ≤ i ≤ NR do . Searches k-mers in O and C simultaneously.
16: for each k-mer K in read ri do
17: foundOriginal = false
18: foundCorrected = false
19: if Occurs(O, ri,K,HT, pos) then
20: foundOriginal = true
21: FO[pos] = true
22: if Occurs(C, ri,K,HT, pos) then
23: foundCorrected = true
24: FC[pos] = true
25: if foundOriginal = false and foundCorrected = true then
26: T PD + +

27: else if foundOriginal = true and foundCorrected = false then
28: FPD + +

29: else if foundOriginal = true and foundCorrected = true then
30: T ND + +

31: else
32: FND + +

33: for 1 ≤ i ≤ NR do
34: if FO[i] = false and FC[i] = true then
35: T PB + +

36: else if FO[i] = true and FC[i] = false then
37: FPB + +

38: else if FO[i] = true and FC[i] = true then
39: T NB + +

40: FNB = totalUniqueKmers − (T PB + FPB + T NB)
41: KmerDepthGain = (T PD − FPD)/(T PD + FND)
42: KmerBreadthGain = (T PB − FPB)/(T PB + FNB)
43: return KmerDepthGain, KmerBreadthGain

50 Chapter 3. Evaluation of Error Correcting Software

machines are bench top computers that are cheaper, have much lower amounts of output, and

significantly higher error rates. Correcting errors in data sets produced by these three machines

poses different challenges. This is the first work to make such a comparison.

3.7 Data sets used for evaluation

We used a variety of data sets from reference genomes ranging from bacteria to humans. They

provide a good assessment of the actual performance of the correcting programs in practice,

and the testing provides a clear indication of the current state-of-the-art in correcting Illumina

data. We did not include simulated data sets because correction is much easier for simulated

data sets, which gives the false impression that a high percentage of errors, often more than

99%, can be corrected.

Table 3.1: HiSeq data sets used for evaluation.

Genome Read Estimated
Data Set Organism Length Length Coverage Per-Base Error

H1 Mycobacterium tuberculosis 4,400,000 151 72 0.15%
H2 Salmonella enterica 4,900,000 100 67 0.20%
H3 Saccharomyces cerevisiae 12,400,000 100 40 0.20%
H4 Legionella pneumophila 3,400,000 100 260 0.40%
H5 Escherichia coli 4,600,000 101 255 0.73%
H6 Escherichia coli 4,600,000 100 465 0.68%
H7 Caenorhabditis elegans 102,300,000 100 32 0.38%
H8 Caenorhabditis elegans 102,300,000 101 58 0.36%
H9 Drosophila melanogaster 120,200,000 100 52 0.77%
H10 Drosophila melanogaster 120,200,000 101 64 0.90%
H11 Homo sapiens 3,210,000,000 100-102 43 0.73%
H12 Homo sapiens 3,210,000,000 100-102 52 0.70%
H13 Homo sapiens 3,210,000,000 101 54 0.23%

We have included 13 HiSeq data sets, and 9 MiSeq data sets, from a wide variety of refer-

ence genomes and with varying coverage levels. The details of the HiSeq data sets are listed in

Table 3.1, and the details of the MiSeq data sets are listed in Table 3.2. We have included three

whole human data sets, H11 - H13. The data sets H1, H4, H5 and H11 are from HiSeq 2500

3.7. Data sets used for evaluation 51

Table 3.2: MiSeq data sets used for evaluation.

Genome Read Estimated
Data Set Organism Length Length Coverage Per-Base Error

M1 Escherichia coli 4,600,000 251 43 1.67%
M2 Mycobacterium tuberculosis 4,400,000 50-250 79 0.18%
M3 Salmonella enterica 4,900,000 35-250 89 0.60%
M4 Salmonella enterica 4,900,000 35-251 97 0.27%
M5 Listeria monocytogenes 3,000,000 35-251 171 1.60%
M6 Pseudomonas syringae 6,100,000 35-251 105 0.87%
M7 Bifidobacterium dentium 2,600,000 35-251 373 0.15%
M8 Escherichia coli 4,600,000 251 605 1.43%
M9 Orientia tsutsugamushi 2,100,000 301 1,460 1.92%

machines, and the rest are from HiSeq 2000 machines.

Table 3.3: Depth and breadth coverage for the HiSeq data sets.

Read 20-mer Read 20-mer
Data Set Depth % Depth % Breadth % Breadth %

H1 80.15 93.80 30.36 98.54
H2 89.65 92.99 39.68 93.90
H3 82.01 90.76 26.46 98.26
H4 66.73 88.41 80.38 98.94
H5 47.83 71.53 50.59 84.08
H6 50.56 86.16 79.67 99.96
H7 68.13 90.98 18.08 96.38
H8 69.70 78.96 31.34 99.45
H9 46.23 77.33 19.28 93.19
H10 40.07 75.36 19.97 95.41
H11 47.51 94.23 19.79 98.86
H12 49.09 94.21 23.23 98.96
H13 78.90 95.08 35.05 98.54

The quality of the original data sets is evaluated with respect to each of the four measures, as

given by OrigReadDepth, OrigKmerDepth, OrigReadBreadth, and OrigKmerBreadth. The

quality of the original HiSeq data sets is listed in Table 3.3, and the quality of the original

MiSeq data sets is listed in Table 3.4. A significant ratio of reads and k-mers contain errors,

which makes correction an essential step to improving the usefulness of the data sets. HiSeq

data sets have fewer errors, yet up to 60% of the reads can contain one or more positions with an

52 Chapter 3. Evaluation of Error Correcting Software

error. This percentage can be as high as 99% for MiSeq data sets. The percentage of erroneous

20-mers is lower, but it can still reach 30% for HiSeq data sets, and 60% for MiSeq data sets.

For M1, M5, M8 and M9, almost all of the reads are erroneous.

Table 3.4: Depth and breadth coverage for the MiSeq data sets.

Read 20-mer Read 20-mer
Data Set Depth % Depth % Breadth % Breadth %

M1 1.46 50.57 0.25 100.00
M2 64.92 93.21 18.27 98.60
M3 23.21 72.79 5.78 83.16
M4 52.60 84.77 14.15 97.51
M5 2.35 41.01 0.87 50.16
M6 11.40 67.48 3.62 78.50
M7 69.35 94.36 58.28 99.99
M8 2.71 62.11 5.92 100.00
M9 0.29 42.90 1.01 74.95

The breadth of coverage depends on both the quality of the data set, and the depth of

coverage. The OrigReadBreadth is not expected to be very high, but the OrigKmerBreadth is

expected to be high. This is true for the HiSeq data sets, where most have an OrigKmerBreadth

that is more than 90%, but MiSeq data sets have a wide range of values from 50% to 100%.

3.8 Results

We compared seven programs that have performed the best in recent studies; BLESS, Coral,

HiTEC, Musket, RACER, SGA and SHREC. All tests were run on the Shared Hierarchical

Academic Research Computing Network (SHARCNET), with a DELL PowerEdge R820 32

core Intel Xeon at 2.2 GHz with 1 TB of RAM, running Linux Red Hat CentOS 6.3. All

programs have been tested in parallel, except BLESS and HiTEC, which do not have parallel

modes. All programs were run with default parameters as indicated in their manuals, since this

is typically what would happen in practice. It should be noted that not all data sets could be

run by some of the programs for a variety of reasons.

3.8. Results 53

Table 3.5: HiSeq ReadDepthGain

Data Set BLESS Coral HiTEC Musket RACER SGA SHREC

H1 61.72 51.85 58.41 58.30 59.05 51.16 51.28
H2 44.30 41.16 43.37 42.77 42.72 40.14 42.64
H3 34.07 28.41 33.42 33.09 34.13 32.73 31.56
H4 91.64 55.66 92.01 86.56 92.27 86.94 88.90
H5 13.52 12.32 13.70 13.08 13.35 12.35 -
H6 86.16 4.37 84.46 79.08 82.84 55.60 65.96
H7 51.65 46.49 - 41.56 52.43 52.89 -
H8 25.14 24.21 - 23.68 26.77 25.97 -7.12
H9 18.14 10.96 - 16.79 17.91 17.03 14.80
H10 26.13 24.10 - 26.04 25.92 25.63 24.44
H11 - - - 53.28 57.49 61.66 -
H12 - - - 55.67 61.30 65.46 -
H13 - - - 21.25 26.53 27.86 -

AVG. H1-10 45.25 29.95 54.23 42.10 44.74 40.04 39.06

AVG. ALL 45.25 29.95 54.23 42.40 45.59 42.72 39.06

Table 3.6: HiSeq KmerDepthGain

Data Set BLESS Coral HiTEC Musket RACER SGA SHREC

H1 51.14 34.08 51.00 51.28 51.11 34.20 41.84
H2 31.36 26.92 33.03 30.03 31.18 26.29 32.45
H3 17.86 14.45 18.22 18.55 19.26 15.96 16.79
H4 83.20 46.92 85.83 80.72 84.82 75.42 82.91
H5 8.79 7.13 9.27 8.41 8.74 7.14 -
H6 79.52 2.92 82.83 72.04 78.45 41.68 67.72
H7 42.21 36.79 - 38.92 47.35 42.46 -
H8 9.92 8.51 - 10.72 11.92 8.95 2.01
H9 14.43 7.81 - 15.40 16.19 12.90 14.24
H10 18.24 16.60 - 19.64 19.55 17.55 18.62
H11 - - - 36.73 38.11 31.79 -
H12 - - - 37.73 42.42 35.93 -
H13 - - - 31.38 35.49 28.26 -

AVG. H1-10 35.67 20.21 46.70 34.57 36.86 28.25 34.57

AVG. ALL 35.67 20.21 46.70 34.73 37.28 29.12 34.57

54 Chapter 3. Evaluation of Error Correcting Software

For readability purposes, all gain measures have been multiplied by 100 to represent the

gain as a percentage. Also, a heat map has been used to easily determine the better performing

programs; on each row the darker the green the better the performance. The error correction

comparison on HiSeq data sets is presented in Table 3.5 for the ReadDepthGain and Table 3.6

for the KmerDepthGain measures. Table 3.7 shows the results for the ReadBreadthGain, and

Table 3.8 shows the results for the KmerBreadthGain measures for the HiSeq data sets.

Table 3.7: HiSeq ReadBredthGain

Data Set BLESS Coral HiTEC Musket RACER SGA SHREC

H1 5.66 4.42 5.00 4.99 5.04 4.36 4.37
H2 4.54 4.15 4.19 4.35 4.32 4.06 4.11
H3 2.28 1.88 2.16 2.13 2.23 2.13 2.03
H4 49.49 31.05 44.96 47.05 49.15 47.10 43.63
H5 4.63 4.09 4.35 4.37 4.43 4.08 -
H6 82.87 1.32 80.77 77.59 79.37 59.38 68.67
H7 4.69 4.10 - 3.63 4.62 4.63 -
H8 4.06 3.63 - 3.43 4.06 3.96 -2.96
H9 4.50 2.49 - 3.71 4.13 3.95 3.26
H10 7.98 7.12 - 7.60 7.82 7.77 7.16
H11 - - - 11.17 12.05 12.92 -
H12 - - - 13.76 15.10 16.15 -
H13 - - - 2.42 3.02 3.18 -

AVG. H1-10 17.07 6.43 23.57 15.89 16.52 14.14 16.28

AVG. ALL 17.07 6.43 23.57 14.32 15.03 13.36 16.28

Only Musket, RACER and SGA were able to run the human data sets. To provide a fair

comparison of the HiSeq data sets, we show the average gain for all the data sets and for data

sets H1 - H10. The results are very close for all four measures. For ReadDepthGain, BLESS

is first for H1 - H10, and RACER is the best overall, with HiTEC, Musket, SGA, and SHREC

close behind. SGA was first for the human data sets, RACER was second, and Musket was

third.

For KmerDepthGain HiTEC was first, but RACER, BLESS, Musket and SHREC were all

very close behind HiTEC. RACER was first for the human data sets, then Musket, and finally

3.8. Results 55

Table 3.8: HiSeq KmerBreadthGain

Data Set BLESS Coral HiTEC Musket RACER SGA SHREC

H1 -3.08 -1.74 -6.22 -4.02 -3.00 -2.09 -4.16
H2 -1.91 -1.92 -1.90 -1.85 -1.89 -1.73 -1.89
H3 -1.07 -5.09 -1.26 -0.93 -1.12 -0.88 -1.02
H4 -0.36 -1.65 -1.72 -1.72 -1.72 -1.73 -1.72
H5 -11.60 -9.98 -11.75 -11.36 -11.69 -9.83 -
H6 -2.20 0.00 -4.92 -10.63 -2.88 -0.21 -5.71
H7 -5.10 -2.68 - -13.46 -7.69 -1.99 -
H8 -38.17 -10.96 - -180.53 -86.13 -2.84 -285.54
H9 -30.27 -16.51 - -33.87 -17.15 -5.70 -33.27
H10 -24.62 -39.15 - -30.01 -19.22 -6.49 -33.34
H11 - - - -6.30 -6.06 -4.89 -
H12 - - - -7.15 -7.15 -5.63 -
H13 - - - -5.00 -5.60 -4.32 -

AVG. H1-10 -11.84 -8.97 -4.63 -28.84 -15.25 -3.35 -45.83

AVG. ALL -11.84 -8.97 -4.63 -23.60 -13.18 -3.72 -45.83

SGA. For ReadBreathGain BLESS was first, but RACER, HiTEC, SHREC, Musket, and SGA

were not far behind BLESS. SGA was first for the human data sets, RACER was second, and

Musket was third. For KmerBreadthGain SGA was first, followed by Coral, BLESS, RACER

and HiTEC. For the human data sets SGA was first, Musket second, and RACER was third.

As mentioned previously, all of the programs tested decreased the k-mer breadth of coverage.

The programs that decreased the k-mer breadth of coverage the least were BLESS, RACER,

and SGA.

The error correction comparison on MiSeq data is presented in Table 3.9 for the ReadDepthGain

and Table 3.10 for the KmerDepthGain measures. Table 3.11 shows the results for the ReadBreadthGain,

and Table 3.12 shows the results of the KmerBreadthGain measures for the MiSeq data sets.

BLESS and HiTEC could not run six of the nine data sets because they contain reads with

different lengths. Musket did not do well on the MiSeq data sets, and the T P values of Musket

were several orders of magnitude lower than those of the best programs, and they were equal

to zero for four of the MiSeq data sets. This means that Musket basically did not correct the

56 Chapter 3. Evaluation of Error Correcting Software

Table 3.9: MiSeq ReadDepthGain

Data Set BLESS Coral HiTEC Musket RACER SGA SHREC

M1 22.04 0.06 25.27 0.00 26.10 26.30 13.38
M2 - 30.65 - -0.02 58.06 55.10 53.43
M3 - 10.23 - 0.06 13.09 11.56 -12.36
M4 - 61.32 - 0.70 74.96 66.16 -39.56
M5 - 0.42 - 0.06 0.88 0.64 -1.27
M6 - 13.03 - 0.00 16.46 14.60 -1.31
M7 - 77.71 - 0.00 86.11 67.74 -33.41
M8 33.61 0.01 37.78 0.00 20.19 22.72 19.95
M9 0.37 0.00 0.39 0.00 0.39 0.18 0.33

AVERAGE 18.67 21.49 21.15 0.09 32.92 29.44 -0.09

Table 3.10: MiSeq KmerDepthGain

Data Set BLESS Coral HiTEC Musket RACER SGA SHREC

M1 21.22 0.04 36.29 0.00 37.42 9.50 23.81
M2 - 22.32 - -0.16 49.48 41.22 42.80
M3 - 11.78 - 0.07 19.05 12.20 8.93
M4 - 34.36 - 0.46 58.72 33.33 22.66
M5 - 2.81 - 0.12 4.00 2.81 -1.72
M6 - 11.40 - 0.01 21.09 11.28 16.42
M7 - 48.40 - 0.00 65.59 38.27 59.46
M8 32.74 0.91 47.65 0.00 30.67 11.82 35.55
M9 4.28 0.61 6.71 0.00 6.19 1.61 5.74

AVERAGE 19.42 14.74 30.22 0.06 32.47 18.00 23.74

3.8. Results 57

MiSeq data sets at all.

Table 3.11: MiSeq ReadBreadthGain

Data Set BLESS Coral HiTEC Musket RACER SGA SHREC

M1 6.75 0.01 4.22 0.00 4.36 4.39 2.26
M2 - 3.38 - -0.02 6.31 5.99 5.81
M3 - 1.50 - 0.00 1.94 1.70 1.70
M4 - 6.29 - 0.02 7.73 6.81 6.67
M5 - 0.07 - 0.01 0.10 0.09 0.09
M6 - 2.76 - 0.00 3.47 3.14 2.57
M7 - 25.48 - 0.00 28.41 22.60 26.72
M8 67.96 0.01 54.46 0.00 33.65 37.29 33.82
M9 0.97 0.00 0.47 0.00 0.46 0.28 0.42

AVERAGE 25.22 4.39 19.72 0.00 9.60 9.14 8.90

Table 3.12: MiSeq KmerBreadthGain

Data Set BLESS Coral HiTEC Musket RACER SGA SHREC

M1 -187.97 0.00 -1206.02 0.00 -12.78 0.00 -110.53
M2 - -1.57 - 0.01 -6.60 -3.98 -6.41
M3 - -2.61 - -0.01 -3.76 -2.91 -3.61
M4 - -0.35 - 0.00 -0.60 -0.36 -0.91
M5 - -7.49 - -0.95 -12.43 -6.56 -11.71
M6 - -3.06 - 0.00 -5.12 -3.33 -4.77
M7 - -0.51 - 0.00 -6.15 -1.54 -6.67
M8 -6.67 0.00 5.00 0.00 -5.00 -0.83 -2.50
M9 -39.71 -1.70 -40.69 0.00 -42.11 -15.28 -37.07

AVERAGE -78.12 -1.92 -413.90 -0.11 -10.51 -3.87 -20.46

For ReadDepthGain RACER was first, and was followed by SGA. BLESS and HiTEC

could only correct three data sets, but they performed well on what they could run. For

KmerDepthGain RACER was first, and no other program close to it. Although, HiTEC was

first on two out of three data sets that it was able to run.

For ReadBreadthGain RACER was first, but SGA and SHREC were not far behind. How-

ever, BLESS was the best for all three data sets it could run, and HiTEC was second for two of

the three data sets it could run. For KmerBreadthGain Coral was the best with SGA in second.

58 Chapter 3. Evaluation of Error Correcting Software

Our testing shows that there is no single program that is best at correcting all types of

data sets. BLESS, Musket, RACER and SGA performed the best overall, with each having its

own advantages and disadvantages for different data sets. Despite the amount of research in

this area there is still significant room for improvement with respect to gain in both depth and

breadth of coverage. In particular, all of the programs we tested actually decreased the breadth

of coverage for the k-mers, which resulted in negative values for the KmerBreadthGain.

Table 3.13: Run time in seconds for all of the data sets tested.

Data Set BLESS Coral HiTEC Musket RACER SGA SHREC

H1 2,716 453 1,711 100 47 187 570
H2 2,518 455 1,244 82 99 187 344
H3 1,971 400 2,391 95 70 249 416
H4 7,469 2,139 6,013 258 325 670 1,244
H5 9,517 3,446 7,981 251 350 732 -
H6 17,843 4,671 14,673 1,099 705 1,602 3,924
H7 39,179 5,654 - 923 949 2,343 -
H8 74,957 8,267 - 1,576 1,612 4,322 12,397
H9 77,361 11,320 - 2,891 2,284 4,888 12,811
H10 111,554 12,254 - 2,556 2,466 6,040 15,600
H11 - - - 39,777 109,169 148,642 -
H12 - - - 52,066 82,326 175,667 -
H13 - - - 46,054 85,068 177,643 -
M1 2,495 208 1,123 17 171 265 684
M2 - 605 - 63 61 202 257
M3 - 6,563 - 45 145 313 597
M4 - 986 - 45 175 373 714
M5 - 1,540 - 63 61 202 676
M6 - 5,407 - 56 227 521 982
M7 - 9,787 - 71 292 699 1,038
M8 47,437 5,692 17,831 218 1,268 3,539 14,375
M9 44,701 5,707 21,947 222 1,062 3,746 7,959

The run time for each of the data sets is listed in Table 3.13, and the peak memory usage

for each program is listed in Table 3.14. As mentioned before, BLESS and HiTEC cannot run

in parallel mode, so their time and memory reported is for running in serial mode.

For the data sets H1 - H10 RACER was the fastest, followed closely by Musket, and finally

SGA. Musket was the fastest when considering all the data sets, and RACER was second.

3.8. Results 59

Table 3.14: Memory usage in MB for all of the data sets tested.

Data Set BLESS Coral HiTEC Musket RACER SGA SHREC

H1 13 71,712 5,987 3,077 3,094 2,863 1,002,668
H2 13 71,406 6,205 3,049 3,155 2,863 1,002,733
H3 26 73,152 9,533 3,057 3,317 2,888 1,002,668
H4 20 79,922 9,377 3,057 3,871 3,052 1,002,668
H5 13 80,763 9,080 3,054 3,662 3,119 -
H6 47 97,732 10,792 3,081 4,633 3,469 1,002,732
H7 163 105,409 - 3,122 8,791 3,780 -
H8 190 139,211 - 4,713 14,602 4,747 1,002,690
H9 213 145,579 - 4,723 17,778 4,937 1,002,795
H10 228 164,131 - 6,377 18,219 5,370 1,002,923
H11 - - - 60,915 231,930 49,107 -
H12 - - - 67,059 390,971 58,183 -
H13 - - - 60,915 237,682 58,857 -
M1 24 74,338 4,085 1,402 6,159 2,878 1,002,668
M2 - 71,906 - 3,115 2,761 2,854 1,002,668
M3 - 70,226 - 2,681 3,663 2,881 1,002,668
M4 - 75,552 - 2,681 3,610 2,915 1,002,668
M5 - 74,310 - 3,115 3,369 2,978 1,002,668
M6 - 77,771 - 3,121 3,912 2,872 1,002,668
M7 - 79,262 - 3,122 3,127 2,975 1,002,668
M8 177 136,933 11,694 1,585 7,112 3,816 1,002,732
M9 73 105,178 10,158 1,610 4,268 3,572 1,002,668

BLESS is by far the slowest because it only runs in serial mode, and it required a significant

amount of time to read and write files in order to reduce memory usage. BLESS did not finish

correcting the human data set H13 after running for 7 days. Although, the peak memory of

BLESS is by far the lowest and it was two orders of magnitude lower than second best which

was SGA. Coral, SHREC, and HiTEC cannot run large data sets due to memory usage.

For MiSeq data sets the space is usually not an issue since they are usually much smaller

than HiSeq data sets. The order of performance for memory usage is similar to that for the

HiSeq data sets with BLESS two orders of magnitude ahead, then Musket, SGA, and RACER.

The fastest programs for the MiSeq data sets were Musket, RACER and then SGA.

60 Chapter 3. Evaluation of Error Correcting Software

3.9 Recommendations for biologists

This survey was a thorough comparison of the current state-of-the-art error correction pro-

grams, and it is clear that there is no single winner. For HiSeq data sets BLESS, Musket,

RACER and SGA generally resulted in the greatest increase in the metrics. BLESS has the

lowest memory requirements, but it has the longest running time and cannot run data sets with

different read lengths. Musket did not finish on top very often, but it was not usually far from

the best, and it runs fast with low memory usage. RACER often has the highest gain and lowest

run time, but it uses a large amount of memory for human data sets. SGA usually has one of

the top gain results and low space usage, but it is much slower than RACER and Musket. Using

any of the four programs will provide good results, but only Musket, RACER and SGA can

run on human data sets.

For MiSeq data sets RACER was the best in gain for depth and breadth of read coverage,

and k-mer coverage depth. For k-mer coverage breadth SGA provides the smallest decrease.

BLESS and HiTEC produced good results for the few data sets they could run.

Error correction can significantly increase the number of correct reads in a data set as

shown in the corrected unmapped data sets in Table 2.2 and the corrected mapped data sets in

Table 2.3. The overall improvement of the corrected data sets is very important, in spite of the

slight decrease in k-mer coverage breadth. There is room for improvement in all aspects of

coverage. The read coverage depth can be more than doubled for HiSeq data sets, and can be

increased by over five times for MiSeq data sets. The k-mer coverage depth can be increased

three times for HiSeq data sets, and six times for MiSeq data sets. The increase in coverage

breadth depends both on the quality of the correction, and on the coverage depth, so it is more

difficult to determine how much it can be improved.

It may be too difficult to design a program that improves the current state-of-the-art with

respect to all four measures. If it is not possible then future programs may need to become

more specialized, and target improvements for only some aspects of the original data sets.

An important problem that requires further investigation is that of the biological signifi-

3.10. Conclusions 61

cance of the correction of data sets. There is important information in uncorrected data sets

that may be removed by correction. Also, we have shown that all programs reduce the k-mer

breadth of coverage, and further investigation is necessary to determine if the information lost

was important and can be prevented.

3.10 Conclusions

We have provided the scientific community with a comprehensive assessment of the current

state-of-the-art error correction software available for the Illumina technologies. We have also

introduced a methodology of standardizing the assessment of the quality of the corrections

that is thorough and unbiased. We have determined that there is no single program that per-

formed best overall. This information is extremely important for any researcher that uses DNA

sequencing technologies.

Chapter 4

Genome Assembly: SAGE2

4.1 Introduction

The information outlined in this chapter is the continuation of our work on a previously pub-

lished de novo genome assembly program called SAGE [14]. SAGE uses the OLC method for

building an overlap graph using overlaps in reads from NGS machines. SAGE uses informa-

tion about the flow through the overlap graph to estimate the number of times each edge in the

graph should be used. This flow information, along with the paired-end information from the

reads, is used to extend the contiguity of the edges in the overlap graph. Our results from [14]

showed that SAGE was an improvement over the state-of-the-art de novo genome assemblers

for small and medium sized genomes. SAGE had not been tested on large genomes, and many

changes were necessary for it to assemble large genomes accurately and efficiently. We have

reimplemented and improved SAGE so that it can assemble large genomes as good or better

than the current state-of-the-art; the new program is called SAGE2.

In this chapter I first outline the goals for SAGE2, and provide an overview of the SAGE2

algorithm. Next, I explain the methods used to store the reads, and build the hash table of the

prefixes and suffixes of the reads. I then outline the new algorithm for building the overlap

graph in parallel, and the rest of the overlap graph construction and cleaning methods. Next, I

62

4.2. Goals for SAGE2 63

describe the new implementation of the edge merging process used in SAGE2, and the new im-

plementation of the scaffold building process. Finally, I show the results of SAGE2 compared

to leading de novo genome assembly programs.

4.2 Goals for SAGE2

There were three main problems with SAGE that needed to be addressed in SAGE2, and this

required a complete reimplementation of the program. The first problem was that SAGE can

only run in serial, and to be able to assemble large genomes with high coverage would require

parallelization, so we have developed a new algorithm and implementation of the overlap graph

construction that works in parallel, and we have parallelized most of the pipeline in SAGE2.

The second problem was that the assembly process in SAGE was very aggressive, which re-

sulted in longer contigs and scaffolds, but also caused many mis-assemblies. SAGE2 required

a new algorithm for assembling genomes with less mis-assemblies, while maintain the conti-

guity of the contigs and scaffolds. The final problem with SAGE was that it can only assemble

data sets that have reads with the same length. SAGE2 has been implemented so that it can

assemble reads with any length and from multiple data sets, assuming all the data sets are from

the same sampled genome.

The bottleneck in run time for SAGE is the building of the overlap graph. The new parallel

overlap graph construction used in SAGE2 significantly reduces the run time for large genomes

with high coverage. To reduce the run time even more we have reimplemented many of the

functions in SAGE2 so that they can run in parallel, most notably the merging of contigs and

scaffolds. The parallel implementation used in SAGE2 runs nearly as fast as the current state-

of-the-art de novo genome assemblers for all genomes sizes and coverage levels.

The algorithm of SAGE resulted in many mis-assemblies for all of the genomes that were

tested in [14]. Large genomes, such as the human genome, are more complex and have many

more repeat regions, which makes them much more difficult to assemble. To assemble large

64 Chapter 4. Genome Assembly: SAGE2

genomes accurately would require new algorithmic approaches to reduce mis-assemblies and

increase the contiguity of the assemblies. The new algorithms introduced in SAGE2 have

significantly reduced mis-assemblies, while also significantly increasing the contiguity of the

assemblies compared to SAGE. We have performed comprehensive testing that shows these

improvements have made SAGE2 perform as good or better than the current state-of-the-art

for all genomes sizes and coverage levels.

4.3 SAGE2 algorithm

An overview of the SAGE2 algorithm is listed in Algorithm 4. A general description of the

algorithm will be given here, and the following sections will give detailed explanations of the

algorithm. Some of the differences in the algorithms of SAGE and SAGE2 will be explained

in the respective sections.

Algorithm 4 Overview of the SAGE2 algorithm.
1: Read the error corrected data set.
2: Build the hash table of read prefixes and suffixes.
3: Build the overlap graph in parallel.
4: Build the remaining overlap graph in serial.
5: Simplify the overlap graph.
6: Estimate the genome size.
7: Compute the minimum cost flow through the overlap graph.
8: Map paired-end reads to the edges in the overlap graph.
9: Estimate the mean and standard deviation of paired-end insert size.

10: Merge contigs using flow and paired-end read support.
11: Merge contigs into scaffolds using paired-end read support.

Before inputting a data set for de novo genome assembly SAGE2 requires that the data set

have the errors corrected by an external program. SAGE2 can assemble an uncorrected data

set, but the results will be significantly better if the data set is corrected first. We suggest that

RACER be used to correct the data set, but any error correction program can be used.

SAGE2 begins by reading the data set and storing all of the unique reads from the data set.

To build the overlap graph from the reads requires a search of all the reads for overlaps. If there

4.3. SAGE2 algorithm 65

are n unique reads in the data set then it would require in the worst case O(n2) comparisons.

For large data sets this is an unreasonable amount of time to spend searching for overlaps. To

reduce the search time for finding overlaps in the reads SAGE2 uses a hash table to store the

prefixes and suffixes of the unique reads. The hash table is used to quickly find reads that

overlap each other by a minimum amount of bases in order to build the overlap graph.

The parallel overlap graph construction finds all reads that have no ambiguous extensions,

which we call “contained” reads. This parallel overlap graph procedure typically finds 70% to

80% of the reads in a data set to be contained reads. The remaining reads are inserted into the

overlap graph using the serial implementation from SAGE that reduces transitive edges while

the graph is being built.

Once the overlap graph has been built it must be simplified to reduce its size and remove er-

roneous edges. There are three components to the simplification process; contracting compos-

ite paths, removing dead-ends, and removing bubbles. These three procedures are performed

repeatedly until there are no more simplifications made.

Once the graph has been simplified we can estimate the size of the genome based on the

length of the edges in the overlap graph, and the number of reads on each of the edges. The

estimation of the genome size is needed for the next step in the SAGE2 algorithm, which is

finding the minimum cost flow through the overlap graph. The flow through the edges of the

overlap graph gives us a highly accurate estimation of the number of times each edge should

appear in the sequenced genome. This information is used in the merging process, along with

the paired-end support, to accurately merge edges in the overlap graph.

In order to merge edges in the overlap graph we need the flow and the paired-end support.

To find the paired-end support we first need to map each of the paired-end reads to the edges in

the overlap graph. Once this is finished we can then use paired reads that map uniquely to the

same edge to get an estimate of the insert size, mean, and standard deviation of the paired-end

reads for the data set. This improves the accuracy of the merging process by verifying the

distance between paired-end reads for support, and helps set limits on the distance searched

66 Chapter 4. Genome Assembly: SAGE2

along edges for paired-end support.

Multiple rounds of merging are performed to build the final contigs from the overlap graph.

After the final contigs have been built, the paired-end support is used to merge contigs into

scaffolds. The estimated insert size and standard deviation of the paired-end reads are used

to assist the merging process and to fill the gaps with the proper length between contigs. The

following sections will give a detailed explanation of the each of these steps in the SAGE2

algorithm.

4.4 Error correction

Uncorrected data sets usually contain many errors, and these errors cause problems when build-

ing an overlap graph. Genome assemblers that use the OLC method usually require that the

reads are corrected before assembly because they use the entire read for building and modi-

fying the graph. The more errors there are in the reads, the less likely there will be overlaps

between the reads, which means there will be fewer edges that are inserted into the overlap

graph. SAGE2 expects that the reads have been corrected before the assembly process, but it

will still work even if the reads have not been corrected.

The DBG genome assemblers usually input the uncorrected data sets because they only re-

quire the length of the k-mer to match, and any errors before or after the k-mer can be corrected

using the topology of the DBG graph. This is a problem if the reads have many errors spread

evenly throughout the reads, but the Illumina technology mainly introduces errors at the ends

of the reads or at positions that can be idiosyncratic to the particular run.

We use RACER to correct the reads before assembly because it is fast, memory efficient,

and it is one of the top performing error correction programs available [27]. SAGE2 will work

with reads corrected by any error correction software, and even uncorrected data sets will still

work, but the assembly will not be as good as using a corrected data set.

4.5. Inputing the reads 67

4.5 Inputing the reads

SAGE2 accepts reads that are either in FASTA or FASTQ format. The reads can either be in

one file with the paired-end reads interlaced, or a text file can be provided with the paired-end

read files listed one after the other. SAGE2 also accepts interlaced files to be incorporated in

the list of files. If the reads are in FASTQ format, the quality values are ignored since they are

not used in the SAGE2 algorithm. Reads that are shorter than the minimum overlap length, and

reads that contain any bases that are not A, C, G, or T are not used in SAGE2.

To save memory the reads are stored in 8-bit arrays that encode the bases in 2-bits per base.

This reduces the amount of space required to store a read by as much as four times compared

to storing the reads in a character array. The deoxyribonucleotide A is stored as 00, and its

complement deoxyribonucleotide T is stored as 11. The deoxyribonucleotide G is stored as 10,

and its complement deoxyribonucleotide C is stored as 01. This encoding allows SAGE2 to

quickly find the reverse complement of a sequence by flipping the bits of each deoxyribonu-

cleotide in the reverse order of the forward sequence. This is much faster than reading each

character and then replacing it with the appropriate complement deoxyribonucleotide using a

character array.

Since a read and its reverse complement are considered the same read, only the lexico-

graphically smaller of the two is kept initially in order to organize the reads properly. After all

the reads have been processed, they are then sorted lexicographically so that we can remove

duplicate reads. SAGE2 only stores one copy of each unique read in a data set, and a counter is

used to keep track of the number of times each unique read is present in the data set, which is

needed in the downstream functions. After the reads have been stored and sorted the next step

is to build a hash table of the read prefixes and suffixes.

68 Chapter 4. Genome Assembly: SAGE2

4.6 Building the hash table

To build the overlap graph we must find all of the reads that overlap with each other by a

minimum overlap length. As mentioned previously, comparing all reads to each other for

overlaps is impractical, so to reduce the number of reads searched we use a hash table to

quickly find reads that overlap with each other.

The hash table stores the prefixes and suffixes of each read for both the forward and reverse

orientations of each read. The length of the prefix and suffix used is the minimum overlap

length, or 64 bases if the minimum overlap length is greater than 64. The limit is set to 64

because we store the prefixes and suffixes in two 64-bit words to reduce space and search time.

Using a longer hash element for the hash table would increase the complexity of the hash

function, increase space usage, and increase the time needed to search the hash table. Also,

reads that overlap by at least 64 base pairs is specific enough to find all of the reads that overlap

quickly and efficiently.

Large genomes typically have many repetitive regions that are less than or equal to our

maximum hash element length of 64 bases. These repetitive regions can significantly increase

the search time needed to find overlaps between reads, and they typically cause the assemblies

to be less optimal. To minimize the impact of highly repetitive hash elements we have set

a limit on the number of times a hash element is found. If a hash element is found more

than the set threshold then it is marked and not used during the overlap graph construction.

The default threshold to mark a hash element in SAGE2 has been set to 100. This threshold

was experimentally determined to increases run time, reduce mis-assemblies, and increase the

contiguity of the assemblies.

4.7 Parallel overlap graph construction

Building the overlap graph in serial is a bottleneck in the run time to assemble larger genomes

with high coverage in SAGE. We have resolved this issue by implementing a new algorithm

4.7. Parallel overlap graph construction 69

for building an overlap graph in parallel for SAGE2. The information in this section outlines

the implementation for parallel overlap graph construction used in SAGE2.

The parallel overlap graph in SAGE2 is built using OpenMP, and the set of reads is divided

into equal sized chunks for each thread. Each thread searches the reads in their chunk for

unambiguous extensions on both sides of the read. A read has unambiguous extensions if at

any position in the read there is no more than one left overlapping read or one right overlapping

read that overlaps the current read at that position. SAGE2 also requires that each of the reads

that overlap in previous positions also overlaps with any reads found at subsequent positions.

If there are no ambiguous extensions at any position along a read then it is considered to be a

contained read.

Figure 4.1 shows a simplified example of a contained read. In this example the current read

is being searched for overlapping reads. The first left overlapping read that would be found that

overlaps the current read would be r1, and the first right overlapping read that would be found

to overlap the current read is r3. The overlapping regions with the current read are highlighted

in blue.

Read r1 : AGCTAAGCAACGATAGCCGATAGCTAAATTAC
Read r2 : TAAGCAACGATAGCCGATAGCTAAATTACGTT

Current Read : GCAACGATAGCCGATAGCTAAATTACGTTATA

Read r3 : CAACGATAGCCGATAGCTAAATTACGTTATACTC

Read r4 : ACGATAGCCGATAGCTAAATTACGTTATACTCATC

Figure 4.1: The current read is searched for extensions by reads that overlap both the left and
right side of the current read. A hash table with the prefixes and suffixes of each read is used to
find overlapping reads. If the extending reads overlap the current read (blue), and the extending
reads also overlap with each other (green and red), then the current read is considered to be a
contained read. Contained reads are added to the overlap graph with edges connected to the
extending reads with the longest overlap to the left and right of the current read (r1 and r3).

The next left overlapping read that would be found is r2, and SAGE2 requires that it also

overlaps with the previously found left overlapping read r1, which is highlighted in green. The

next right overlapping read that would be found is r4, and SAGE2 requires that it also overlaps

with the previously found right overlapping read r3, which is highlighted in red. This process

70 Chapter 4. Genome Assembly: SAGE2

is continued until all of the overlapping reads at each position in the current read have been

found. The algorithm for building the overlap graph in parallel to find the contained reads is

listed in Algorithm 5.

SAGE2 uses two arrays to store the information about the overlapping reads for each of

the unique reads in the data set. One array stores the information for the left overlapping read

with the largest overlap for each unique read, and the other array stores the information for the

right overlapping read with the largest overlap for each unique read. For data sets with varying

read lengths there can be more than one read that overlaps at each position in the read being

searching. SAGE2 only stores the longest read at any particular position, as long as it also

overlaps with the shorter reads found at that position. In Figure 4.1 read r2 would be the final

read stored in the left overlapping array for the current read, and read r3 would be the final read

stored in the right overlapping array for the current read.

SAGE2 searches each read starting at the first position in the read, and finds all the reads

that overlap at that position using the hash table. If there is only one read overlapping the left

or right then we save it in the respective tables. We then move to the next position in the read

and check that there is only one read that overlaps in either direction, and that read must also

overlap with the previous read that was found, as shown in the green and red highlighted areas

in Figure 4.1. This process is continued until we have searched for the overlapping reads at

each position of the current read.

Highly connected reads cause a great deal of branching in the overlap graph and it is difficult

to resolve these highly branching nodes. Removing these reads from the graph breaks the

branching, which allows for the edges that are connected to these highly connected reads to

be resolved easier, with less chance of making mis-assemblies. If a read has more than 300

reads that overlap it, then we mark the read as highly connected and it is not used in the overlap

graph. This threshold has been experimentally determined.

After searching the reads for overlaps the two arrays will contain the incoming and outgoing

reads with the longest overlaps for each read. If the read had any ambiguous extensions then

4.7. Parallel overlap graph construction 71

Algorithm 5 Parallel overlap graph construction.
1: Input: Set of unique reads R, hash table H of read prefixes and suffixes.
2: Output: Overlap graph G.
3: L← 0 . Initialize array to store left overlapping read with maximum overlap.
4: R← 0 . Initialize array to store right overlapping read with maximum overlap.
5: for each read r ∈ R do . Parallel for loop using OpenMP.
6: totalOverlappingReads← 0 . Variable to count the number of overlapping reads.
7: for each position i ∈ r do
8: for each read s ∈ H that overlaps r starting at position i do
9: if s is left overlapping then

10: if s is the first left overlapping read found then
11: L← s
12: totalOverlappingReads + +

13: else
14: if s overlaps with the previous left overlapping read Ls then
15: L← s
16: totalOverlappingReads + +

17: else
18: Mark r as ambiguous
19: if s is right overlapping then
20: if s is the first right overlapping read found then
21: R← s
22: totalOverlappingReads + +

23: else
24: if s overlaps with the previous right overlapping read Rs then
25: R← s
26: totalOverlappingReads + +

27: else
28: Mark r as ambiguous.
29: if totalOverlappingReads ≥ 300 then
30: Mark r as highly connected.
31: for each read r ∈ R do
32: if r is not marked as highly connected or ambiguous then
33: if r has reciprocal maximum extensions then
34: G ← edge(Ls, r) . Add longest left overlapping read to the overlap graph.
35: G ← edge(r,Rs) . Add longest right overlapping read to the overlap graph.
36: Mark r as contained.
37: return G

72 Chapter 4. Genome Assembly: SAGE2

it is marked so that it is not considered for the following step of the parallel overlap graph

construction.

Next SAGE2 checks each read to see if it has reciprocal maximum extensions for both the

incoming and outgoing reads. A read has a reciprocal maximum extension if the read that

extends the current read also has the current read as its maximum extension in the respective

array location. In Figure 4.1 we would require that r2 and r3 have the current read in their

respective arrays locations for it to be a reciprocal maximum extension. If a read has reciprocal

maximum extensions for both the incoming and outgoing reads then we add the respective

edges in the overlap graph, and then mark the current read as contained so that it is not used

in the serial overlap graph construction step. The remaining reads that do not have reciprocal

maximum extensions, or have ambiguous extensions, are added to the overlap graph using the

serial procedure from SAGE.

Experimental results show that typically between 70% to 80% of the reads in a data set

are contained reads for Illumina data sets. The remaining reads that are not contained are

searched for overlaps in serial mode using the same procedure that is implemented in SAGE.

The parallel construction of the overlap graph has the biggest impact on large genomes with

high coverage. Table 4.1 shows the time need to build the overlap graph for both SAGE and

SAGE2 on three human genome data sets with varying coverage levels. H1 has a coverage

of 41x, H2 has a coverage of 50x, and H3 has a coverage of 54x. This table shows that the

parallel overlap construction can significantly reduce the run time for building the overlap

graph for large genomes with high coverage. This is important because the newest sequencing

technologies from Illumina have much higher coverage levels and longer read lengths.

4.8 Serial overlap graph construction

After adding all of the contained reads to the overlap graph the remaining reads that were not

marked as contained, or highly connected, are used in the serial overlap graph construction

4.8. Serial overlap graph construction 73

Table 4.1: Comparison of overlap graph construction time in hours between SAGE and SAGE2
for three human data sets.

Data SAGE SAGE2
Set Serial Parallel Serial Total Difference
H1 12.6 5.2 3.5 8.7 3.9
H2 29.6 5.8 3.3 9.1 20.5
H3 33.4 7.7 3.6 11.3 22.1

with transitive edge reduction. This algorithm has not been modified from SAGE so only the

important points of the algorithm will be mentioned here. The reader is referred to [9, 14] for

a more detailed explanation of the serial overlap graph construction algorithm used in SAGE

and SAGE2.

u

v w

e1

e2

e3

Figure 4.2: An example of an overlap graph before transitive edge reduction. The string spelled
by the edge e2 and the string spelled by the edges e1 and e3 is the same. We call the edge e2 a
transitive edge since it can be removed without losing information about the string.

u v w
e1 e3

Figure 4.3: An example of the overlap graph in Figure 4.2 after transitive edge reduction. The
edge e2 has been removed from Figure 4.2 resulting in an overlap graph without a transitive
edge.

Assume there are three overlapping reads u, v, and w with edges e1 = (u, v), e2 = (u,w),

and e3 = (v,w). Assume the string spelled by the edge e2 and the string spelled by the edges

e1 and e3 is the same. We call the edge e2 a transitive edge because it is redundant, and it

can be removed from the graph without losing information about the string. Figure 4.2 shows

this graph before transitive edge reduction, and Figure 4.3 shows the graph after transitive

74 Chapter 4. Genome Assembly: SAGE2

edge reduction. Removing transitive edges from the overlap graph is important because it

significantly reduces the amount of space used to store the overlap graph.

SAGE builds the overlap graph using a modified version of an algorithm proposed by Eu-

gene Myers [28]. The problem with the algorithm proposed by Myers is that it requires the

entire overlap graph to be built before removing the transitive edges. For large genomes this is

impractical since it would require a large amount of memory to build the entire overlap graph.

The algorithm in SAGE significantly reduces the memory used to build the overlap graph by

removing the transitive edges for a node before adding the edges for another node. Once the

serial overlap graph construction step has finished then the complete overlap graph has been

built. The next step in the SAGE2 algorithm is to simplify the overlap graph to reduce its size

and remove erroneous edges that were inserted during the overlap graph construction.

4.9 Graph simplification

After the overlap graph has been built it must be simplified to reduce its size and remove

erroneous edges. SAGE2 goes through multiple iterations of the simplification steps to simplify

the overlap graph. In each iteration of simplification we contract composite paths first, then

we remove dead-ends, and finally we pop bubbles in the overlap graph. The details of each

procedure will be explained in the following subsections.

The graph simplification process has significantly changed from SAGE to SAGE2. Some

of the simplification steps used in SAGE have been eliminated from SAGE2 because it was

found that they caused many mis-assemblies, while only extending the contiguity of the edges

in the overlap graph by a small amount or not at all. Two of the three simplification functions

that were kept from SAGE have been modified to provide better assemblies in SAGE2.

4.9. Graph simplification 75

4.9.1 Contracting composite paths

Many of the nodes in the transitively reduced overlap graph only have one incoming edge and

one outgoing edge. Since there is no ambiguity in the path through these types of nodes we

can condense it without losing any information about the genome. We call this type of path a

composite path because we are taking two edges in the overlap graph and combining them into

one edge. The information about the node along the path is stored on the new edge.

For each node v that only has one incoming edge e1 = (u, v), and one outgoing edge e2 =

(v,w), we remove the node v along with edges e1 and e2, and insert an edge e3 = (u,w) in the

overlap graph. The edge e3 stores the information about node v and the edges e1 and e2.

An example of an overlap graph before contracting composite paths is shown in Figure 4.4.

The nodes r2, r4, and r6 all have one incoming edge and one outgoing edge, so this function

will contract them and put their information in the appropriate edges. The resulting graph after

contracting composite paths is shown in Figure 4.5.

r1 r2 r3

r4

r5

r6

r7

Figure 4.4: An example of an overlap graph before contracting composite paths. Nodes with
only one incoming edge and one outgoing edge are considered to have a composite path. The
edges are combined into one edge and the information in the node is added to the new edge.

76 Chapter 4. Genome Assembly: SAGE2

r1 r3

r5

r7

r2

r 4

r6

Figure 4.5: The overlap graph from Figure 4.4 after contracting composite paths. The resulting
graph only contains nodes with more than two edges connected to them, or only one edge
connected to them.

4.9.2 Removing dead-ends

Even though we correct the reads before building the overlap graph there are still reads that

contain errors. These erroneous reads may still overlap with another read but their nodes will

likely only have a single edge connected to them. This creates a dead-end in the overlap graph,

as shown by r4 in Figure 4.6, which can be removed from the graph to reduce the branching

from erroneous connections. Some dead-ends in the graph may not be errors, but instead are

low coverage regions that extend for more than one read. We remove these from the graph

because they maintain splits in the graph that can prevent merging of many of the edges with

higher coverage.

r1 r2 r3

r4

Q

Figure 4.6: A example of a dead end in the overlap graph caused by an erroneous read. Reads
with only one edge connected to them are considered dead ends and removed from the overlap
graph.

Dead-ends with many reads on the edge are likely not errors, but instead are regions of the

sampled genome that do not connect to another portion of the graph. This could either be a

4.9. Graph simplification 77

region of the genome that has low coverage or the end of a chromosome. We use a threshold

for the number of reads on an edge that can be deleted to distinguish these types of dead-ends

from those with errors.

The threshold for the number of reads on an edge used in SAGE is 5 for all iterations of the

dead-end removal function. After extensive testing of SAGE2 on multiple genomes we found

that we can reduce errors in the assembly by starting with a low threshold and then increasing it

after each iteration. SAGE2 starts with a threshold of 0 reads on an edge, which is most likely

an error, and we increase the threshold by one after every iteration of simplification, until the

maximum threshold of 4 is reached.

4.9.3 Popping bubbles

Bubbles in an overlap graph can be created either by erroneous overlaps in the graph, or by

heterozygous regions in a diploid genome. Erroneous overlaps will create a bubble with a path

that has many reads along one path, and very few reads along the other path. In both SAGE

and SAGE2, if the two paths have very similar strings and one of the paths has less than half

the reads as the other path, then we remove the path with less reads. An example of bubble

popping is shown in Figures 4.7 and 4.8.

r1 r6

r7

r2, r3, r4, r5

Q S

Figure 4.7: An example of a bubble in the overlap graph. There are two paths from r1 to r6 that
form the bubble. The path with the least amount of reads is removed from the graph.

SAGE only pops bubbles that have lengths on the edges that are different by ≤ 50 bp. After

extensive testing of SAGE2 on multiple genomes it was determined that popping bubbles with

more similar lengths in the first iteration, and then less similar lengths in subsequent iterations,

reduces the number of mis-assemblies. SAGE2 starts with a threshold of similarity between

78 Chapter 4. Genome Assembly: SAGE2

r1 r6
r2, r3, r4, r5

Figure 4.8: The overlap graph in Figure 4.7 after removing the bubble. The node r3 is removed
if there are no more edges connected to it. If there are still edges connect to the nodes in the
path that was removed then they remain in the overlap graph.

the length of the edges that is ≤ 10 bp, and increases the threshold by 10 bp after each iteration,

until the maximum threshold of 50 bp is reached.

4.10 Genome size estimation

In de novo genome assembly the size of the sampled genome is unknown, but the length of

the genome is needed to find the assembly that most likely represents the sampled genome.

In previous testing of SAGE the genome size estimation was always very close to that of the

sampled genome, so we have not changed the algorithm used for genome size estimation in

SAGE2, and the reader is referred to [9, 14] for a detailed explanation of the algorithm and it

is briefly explained below.

SAGE and SAGE2 use an algorithm to estimate the size of the sampled genome that was

proposed by Eugene Myers [28]. Assume that L is the length of the sampled genome and there

are n reads in the data set, and the average length of the reads is l. If we assume the reads were

sampled randomly and uniformly, then each position of the genome should have been sampled

on average nl
L times. Similarly, we can take an edge from the overlap graph with length m that

has k reads on the edge, and assuming it is a unique sequence in the genome, then each position

in the sequence will have been sampled on average kl
m times. If m is long enough then it is most

likely a unique sequence in the genome, and the two estimations will be very similar.

For the first estimation of the length of the sampled genome we find the sum of the lengths

of all edges L in the overlap graph that are longer than 500 bp. We also count the total number

of reads R that appeared on those edges. Assuming the edges over 500 bp appear only once in

the genome, and the total number of reads in the data set is N, we can estimate the length of

4.11. Estimating insert size distribution 79

the sampled genome to be approximately N
RL .

This estimation will be incorrect if some of the edges considered in the estimation appear

multiple times in the genome. To find a more accurate estimate of the genome length we

only want to include long edges that are likely to be unique in the genome. To determine

if a sequence is unique in the sampled genome we compute the ratio of the probability that

the sequence represented by an edge in the graph appears only once in the genome, and the

probability that it appears twice in the genome.

We iteratively estimate the genome size until the previous estimate is the same as the current

estimate, or until we have tried 10 iterations of estimation. Our testing shows that SAGE2

typically only requires 3 or 4 iterations until the prior and posterior probabilities converge.

4.11 Estimating insert size distribution

In order to properly use the paired-end reads in the following steps we need to have an ap-

proximation of the distribution of the insert size for the data set. If we know the mean µ and

the standard deviation σ of the distribution, then we can set limits for how far we search in

the overlap graph to find paths between paired-end reads. The calculations and thresholds for

finding the insert size are the same in both SAGE and SAGE2, and the reader is referred to

[9, 14] for a detailed explanation of the algorithm and the approach is outlined below.

We find the initial estimates of µ and σ by finding paired-end reads for which both of the

reads map uniquely to the same edge in the overlap graph. For each of those paired-end reads

we find the distance between them on that edge, and add it to the set of all of the distances we

find. We use this set of distances to calculate the first approximation for the values of µ and σ.

The initial calculation of µ and σ can be skewed a little by any outliers, and we would like

to have an estimation that is closer to the majority of the insert sizes. To account for outliers

we recalculate the values of µ and σ again, but we only consider insert sizes that are ≤ 4µ. We

repeat this process for a maximum of 10 iterations, or until the value of µ is > 1% different

80 Chapter 4. Genome Assembly: SAGE2

than the previous estimation. It typically takes 3 iterations of the above procedure for the prior

and posterior estimates to converge.

The minimum and maximum lengths we set for searching for paired-end reads on a edge

are µ− 3σ and µ+ 3σ respectively. These thresholds are used because the distribution of insert

sizes will most likely follow a normal curve, and more than 99% of the insert sizes will fall

within this range.

4.12 Minimum cost flow

To assemble a genome from a set of edges in the overlap graph that best represents the actual

genome sampled it is important to know the number of times each edge appears in the genome.

The number of times that an edge in the overlap graph appears in the sampled genome is called

its copy count. It was shown in [9, 14] that SAGE performs very well at estimating the copy

counts, so we use the same approach in SAGE2, and the reader is referred to [9, 14] for a

detailed explanation of the algorithm that is explained briefly below.

To obtain accurate estimates of the copy counts of the edges in the overlap graph we convert

the overlap graph into a flow network, and then we solve the minimum cost flow problem on

the flow network. We use an external program called CS2 [7] for solving the flow problem.

We use CS2 because it has been shown to be one of the top performing programs for solving

minimum flow cost problems [7]. The total amount of flow through an edge in the overlap

graph approximates the number of times that the reads on that edge appear in the sampled

genome. We estimate copy counts of the edges by setting a cost in the edges that approximates

the number of times the reads are present. Our initial estimates are based on the number of

times each read appears in the data set.

CS2 returns an estimate of the number of times each edge should be represented in the

actual genome. We use these estimates when merging edges in the overlap graph to increase

the accuracy and contiguity of the edges in the overlap graph.

4.13. Resolving ambiguous nodes 81

4.13 Resolving ambiguous nodes

4.13.1 Introduction

After simplifying the overlap graph there are still many ambiguous nodes, where the edges

could be merged in more than one way. To accurately resolve an ambiguous node we use

paired-end reads that span across the ambiguous node as support for which way to merge the

edges.

Consider the ambiguous node r3 in Figure 4.9a, for which we will assume has a flow of 1

on all four edges connected to r3. If we only consider the flow in the edges then we will not

be able to find the correct merging through r3, since all of the edges have the same amount of

flow. If there are enough paired-end reads that uniquely support a pair of edges, such as e1 with

e3, then we merge those edges. The same applies for the edges e2 with e4, assuming they also

have enough paired-end read support for merging.

r1

r2

r3

r4

r5

—
—

—e1

—
—

—e 2

—
—

—

e3

—
—

—

e4

(a) Ambiguous node r3.

r1

r2

r4

r5

e1, r3, e3

e2, r3, e4

(b) Node r3 resolved..

Figure 4.9: Ambiguous node r3 in Figure 4.9a resolved using paired-end information, assuming
the flow on each of the edges is 1. There are paired-end reads supporting the merge between
edges e1 and e3, and between edges e2 and e4. The resulting graph after merging the edges is
shown in Figure 4.9b

Assume that e1 and e3 are uniquely supported by paired-end reads above the threshold

for merging, and assume that e2 and e4 are uniquely supported by paired-end reads above the

threshold for merging. We can then merge the edge e1 with e3 and e2 with e4. The resulting

82 Chapter 4. Genome Assembly: SAGE2

graph after merging the edges is shown in Figure 4.9b, with the ambiguous node r3 now located

on both of the merged edges.

This procedure only works when the paired-end reads span a single ambiguous node, but

many paired-end reads will span multiple nodes when the edges are short and have very few

reads on them. These types of ambiguous nodes require a path search through the overlap

graph to find the proper edges to merge.

r1

r2 r3

r4

r5 r6

—
—

—e1
e2

—
—

—

e 3

—
—

—e 4
—

—
—

e5

(a) Paired-end support using path search.

r1

r5

r4

r6

e1, r2, e2, r3, e3

e4, r2, e2, r3, e5

(b) Edges merged using paired-end sup-
port.

Figure 4.10: Edges merged using paired-end support, assuming the flow on edge e2 is > 1.
There are paired-end reads supporting a merge between edges e1 and e3, and between edges e4

and e5. The resulting graph is shown in Figure 4.10b

Consider the example shown in Figure 4.10. Nodes r2 and r3 are ambiguous nodes, and

assume that the short edge e2 between them has no support to merge with any other edges. For

this example we will also assume that the flow on edge e2 is > 1. Using a path search through

the overlap graph shows that there is paired-end support to merge edge e1 with e3 and edges e4

with e6 as shown in Figure 4.10a. The resulting graph from resolving the ambiguous nodes r2

and r3 is shown in Figure 4.10b. Note that the edge e2 and the nodes r2 and r3 appear in both

of the new edges in Figure 4.10b.

In SAGE2 we use the flow on the edges to assist the merging process. The flow tells us

how many times an edge is represented in the sampled genome. Consider the example shown

in Figure 4.11a in which we are trying to resolve the ambiguous node r3. Assume that there

is paired-end support to merge edge e1 with e3 and e2 with e3. If we only consider paired-end

4.13. Resolving ambiguous nodes 83

r1

r2

r3 r4

—
—

—
e1 , flow=1

—
—

—
e2,

flow=1

— — — e3

— — — flow=2

(a) Ambiguous node r3.

r1

r2

r4

e1 , r3 , e3 , flow=1

e2, r3, e4, flow=1

(b) Node r3 is resolved.

Figure 4.11: An example of an ambiguous node resolved using flow and paired-end support.
The edges must have unambiguous support by the paired-end reads, and the flow must balance
properly for the edges to be merged.

support then we would not be able to merge either of the edge pairs because there would be

more than one way to merge edge e3. We can merge the two pairs of edges if we know that the

flow on edge e3 is greater than 1 and the flow on edges e1 and e2 is at least 1. The paired-end

support and the flow allows us to resolve the ambiguous node as shown in Figure 4.11b.

4.13.2 Overview

One of the biggest differences between SAGE and SAGE2 is how ambiguous nodes are re-

solved. The algorithmic changes to the resolution of ambiguous nodes significantly reduces

the mis-assemblies and increases the contiguity of the edges in the overlap graph in SAGE2.

SAGE2 relies on paired-end support and the flow through the overlap graph to resolve ambigu-

ous nodes. Many of the functions in SAGE merged edges based on the topology of the overlap

graph, but did not consider paired-end information or the flow. This is what caused many of

the mis-assemblies in the contigs and scaffolds produced by SAGE.

For the remaining merging functions from SAGE we have changed the algorithm to deal

with certain aspects of the overlap graph in a different order. Most notably, SAGE2 merges

edges based on paired-end support through single nodes before merging edges based on a path

search. This was changed in order to reduce mis-assemblies by merging the edges that were

84 Chapter 4. Genome Assembly: SAGE2

connected by a single node first, and then merge the remaining edges based on a path search

through the graph. This merges edges that are connected by one or more nodes in the overlap

graph based on paired-end support.

A new merging function has been implemented in SAGE2 that merges edges that contain

a short overlap at the ends of the contigs that is less than the minimum overlap length. These

types of edges would not be merged in the previous steps because there would not have been a

connection in the graph between them. This is because the overlap length between the terminal

nodes is less than the minimum overlap length. All of these changes together have resulted in

a better overall assembly of all the data sets that were tested.

The merging process in SAGE2 first tries to merge all ambiguous nodes that have paired-

end support on the edges that only span across a single ambiguous node. After all of the single

ambiguous nodes have been resolved with paired-end support, SAGE2 then tries to resolve

ambiguous nodes using a search through the overlap graph. After all the ambiguous nodes

have been resolved with a path search using paired-end support, SAGE2 then tries to merge

edges that overlap with each other by 10 bp or more. The details of all the merging functions

will be outlined in each of the following subsections.

4.13.3 Resolving single ambiguous nodes with paired-end reads

The first step in the contig merging process for SAGE2 is to resolve single ambiguous nodes.

We first calculate the support of all the paired-end reads in edges that are connected to the same

node in the overlap graph. For each of these edges we limit the search between the two reads

of each pair to a distance along the edges between µ − 3σ and µ + 3σ, where µ is the mean of

the insert size, and σ is the standard deviation of the insert size that we estimated previously.

After finding the support for all of the edges connected to a single node in the overlap graph,

we merge the edges that have support above the threshold. Thresholds are needed to determine

if there is enough support to merge two edges, and edges are not merged if there is multiple

pairs of edges that support a merge.

4.13. Resolving ambiguous nodes 85

The algorithm for resolving single ambiguous nodes by paired-end support is described in

Algorithm 6. A queue is used to store the support totals for all of the edge pairs, and it is sorted

from highest to lowest after all the support values have been calculated. A hash table is used

to store the information about which edges are connected to each of the edges in the overlap

graph. This allows us to quickly determine if there are any other edges with support over the

threshold for any edge in the graph.

Algorithm 6 Resolve single ambiguous nodes by paired-end support.
1: Input: Overlap graph G, threshold t
2: Q← ∅ . Queue to store the support for edge pairs.
3: for each node v ∈ G do
4: for each incoming edge ei connected to v do
5: for each outgoing edge eo connected to v do
6: Q← support for each edge pair (ei, eo) .
7: Sort Q from highest to lowest
8: for each edge pair (ei, eo) ∈ Q with support ≥ t do
9: if no other edges with support ≥ t connected to ei or eo then

10: Merge(ei, eo)
11: else if flow on ei or eo > 1 then
12: Merge(ei, eo)
13: return Number of edges merged

In SAGE the threshold used for all iterations of merging single ambiguous nodes was set

to 5. In SAGE2 we have performed extensive testing to determine thresholds that are adjusted

for different coverage levels, genome lengths, and read lengths. For the threshold formulas

throughout the rest of this chapter assume that the coverage level is c and the average read

length is r.

For merging single ambiguous nodes the threshold value for the first three iterations is 20 c
r ,

the next three iterations use a threshold of 10 c
r if the estimated genome length is greater than

one billion, and the threshold for the remaining iterations is reduced to 5 c
r if the estimated

genome length is greater than one billion. If the genome size is less than one billion the

threshold stays at 20 c
r . We use a genome length threshold of one billion because testing on

human data sets showed better results with a lower threshold, but the lower threshold resulted

86 Chapter 4. Genome Assembly: SAGE2

in many mis-assemblies for the small and medium sized genomes. The iterations are repeated

until the number of resolved nodes in an iteration is 0.

4.13.4 Resolving ambiguous nodes by path search

In the previous step SAGE2 merged all pairs of edges with paired-end support that span a single

ambiguous node. What is left in the overlap graph are ambiguous nodes that span multiple

nodes, single ambiguous nodes that do not have enough paired-end support for merging any

edges that span them, and single ambiguous nodes that do not have unique paired-end support

for merging edges that span them. The next step is to find the paired-end support for edges that

span multiple nodes. The algorithm for resolving ambiguous nodes by path search is described

in Algorithm 7.

To find support between all pairs of edges in the overlap graph we need to search all of the

paths in the overlap graph for all paired-end reads that map to different edges. For a node v in

the overlap graph we find all paths from v of length ≤ µ + 3σ and store them in a list. For each

read r in the edges of v, we check if the paired read s of r is on any of the paths in the list. If

there is a path in the list then we mark that path. We then check if there are any other paths

between the reads in the list of paths, and we only mark the pair of edges that are adjacent on

all of the paths found for v. For each pair of supported edges (e1, e2) we store the pair of edges

in a hash table and set the support of the pair of edges to 1. If the pair of edges is already in the

hash table then we increment the support of the pair of edges in the hash table by 1. We do this

for all of the paired-end reads that are on the edges incident to v. This is repeated for all of the

nodes in the overlap graph.

We have set threshold limits based on coverage, genome length, and average read length

similar to the previous merging step. The first three iterations of the merging process have a

threshold value of 20 c
r , the next three iterations use a threshold of 10 c

r if the estimated genome

length is greater than one billion, and the threshold for the remaining iterations is reduced to

5 c
r if the estimated genome length is greater than one billion. If the genome size is less than

4.13. Resolving ambiguous nodes 87

Algorithm 7 Resolve ambiguous nodes by path search.
1: Input: Overlap graph G, threshold t
2: Q← ∅ . Queue to store the support for edge pairs.
3: for each node v ∈ G do
4: for each incoming edge ei connected to v do
5: for each read r ∈ ei do
6: for each outgoing edge eo connected to v do
7: if path found for the paired read s of r then
8: Q← support for each edge pair (ei, eo) .
9: for each edge pair (ei, eo) ∈ Q with support ≥ t do

10: if no other edges with support ≥ t connected to ei or eo then
11: Merge(ei, eo)
12: else if flow on ei or eo > 1 then
13: Merge(ei, eo)

one billion the threshold stays at 20 c
r . The iterations are repeated until the number of resolved

nodes is 0, or less than 100 if the estimated genome length is greater than one billion. The

iterations stop at less than 100 for large genomes because testing showed that merging after

this resulted in little extension in the larger edges, but a significant increase in mis-assemblies.

4.13.5 Merging short overlapping contigs

Some of the remaining edges in the overlap graph may have support to merge, but they will not

be connected in the overlap graph if the terminal reads of the edges do not overlap more than

the minimum overlap length. The previous two merging functions would not consider these

edges for merging since they are not connected in the overlap graph. To resolve these types of

edges we search for overlaps between the ends of the edges in the overlap graph. If there is a

overlap that is greater than 10 bp between two edges then we check to see if there is enough

paired-end support to merge the edges. Similar to the previous two functions, we limit the

search for paired-end reads to a distance along the edges of µ+ 3σ. The algorithm for merging

short overlapping contigs is listed in Algorithm 8.

After calculating the support for all such pairs of edges, we merge each pair of edges if

there are no other edges that have support above the threshold. The threshold for merging short

88 Chapter 4. Genome Assembly: SAGE2

Algorithm 8 Merge short overlapping contigs.
1: Input: Overlap graph G, threshold t
2: Q← ∅ . Queue to store the support for edge pairs.
3: for each edge e ∈ G do
4: for each read r ∈ e do
5: if edge found for the paired read s of r then
6: Q← support for each edge pair (e1, e2) .
7: Sort Q from highest to lowest
8: for each edge pair (e1, e2) ∈ Q with support ≥ t do
9: if no other edges with support ≥ t connected to e1 or e2 then

10: Merge(e1, e2)

overlapping edges is set to 5 c
r for all iterations, and SAGE2 stops when there are no more edges

merged.

4.14 Scaffolding

After SAGE2 has finished merging all of the edges in the overlap graph that represent the

contigs, the next step is to connect and orient the contigs into scaffolds. Since we have already

merged all of the connected edges as much as possible, we must consider edges in the graph

that are not connected in the overlap graph. To do this we consider a new graph based on the

overlap graph, and this new graph is called a scaffold graph.

The procedure in SAGE2 for merging contigs into scaffolds considers the contigs to be

nodes in the scaffold graph, and the paired-end reads that link contigs are considered to be

edges in the scaffold graph. The weight of the edges in the scaffolds graph is the number of

paired-end reads that support a link between contigs. Since the contigs in the scaffold graph

are not connected there will be a gap between the contigs. To determine the length of the gap

between contigs we use the estimation of the insert size of the paired-end reads connecting

contigs to estimate the distance between contigs. We fill the gaps between contigs with the

letter “N” to indicate that the information in that gap is unknown.

The scaffolding procedure has been reimplemented in SAGE2 in order to reduce mis-

4.14. Scaffolding 89

assemblies and extend the contiguity of the scaffolds. In SAGE, the contigs are merged only by

their paired-end support. The contigs are merged in the order of the highest supported edges

to the lowest supported edges that are above the support threshold. In SAGE2 we not only

consider the paired-end support, but we also consider the topology of the scaffold graph when

merging contigs. This has resulted in a significantly better scaffolds assembly compared to

SAGE.

SAGE2 goes through multiple stages of merging to build the scaffolds from the scaffold

graph. For each stage of merging SAGE2 sets varying thresholds for the number of paired-end

reads needed to consider two contigs for merging. The first four stages of the merging process

in SAGE2 only considers contigs that are longer than 200 bp. The final stage of merging only

considers contigs that are shorter than 500 bp.

4.14.1 Merging contained contigs

For the first stage of merging contigs into scaffolds, SAGE2 only considers contigs that have

one incoming edge and one outgoing edge. This procedure is similar to contracting composite

paths in the overlap graph, except we are contracting composite edges in the scaffold graph

instead. For this stage of merging the paired-end support threshold is set to to 10 c
r for the first

five iterations, and then it is reduced to 5 c
r for the remaining iterations until no more contigs

are merged into scaffolds.

Algorithm 9 Merging contained contigs.
1: Input: Scaffold graph G, threshold t
2: Q← ∅ . Queue to store the support for contig pairs.
3: for each contig c ∈ G do
4: for each contig ci with support to merge with c do
5: Q← support for each contig pair (c, ci) .
6: Sort Q from highest to lowest
7: for each contig pair (c1, c2) ∈ Q with support ≥ t do
8: if no more than one other contig with support ≥ t connected to c1 or c2 then
9: Merge(c1, c2)

The algorithm for this function is listed in Algorithm 9. The scaffold graph does not need

90 Chapter 4. Genome Assembly: SAGE2

to be built since we can use the modified overlap graph from the previous steps to infer the

scaffold graph. The flow and paired-end information from the overlap graph are also used in

the scaffold graph for the entire scaffolding procedure. The contigs are merged from those with

the highest support to the lowest support.

4.14.2 Merging contained contigs with multiple support

After merging all of the contained contigs what is left are contigs in the scaffold graph that have

multiple edges of support for merging. For this next stage of merging SAGE2 only considers

contigs that have two or less incoming edges and two or less outgoing edges. The contigs

are merged from those with the highest support to the lowest support. The algorithm for this

procedure is listed in Algorithm 10.

For this stage of merging the support threshold is set to to 10 c
r for the first five iterations,

and then it is reduced to 5 c
r for the remaining iterations until no more contig pairs are merged

into scaffolds.

Algorithm 10 Merging contained contigs with multiple support
1: Input: Scaffold graph G, threshold t
2: Q← ∅ . Queue to store the support for contig pairs.
3: for each contig c ∈ G do
4: for each contig ci with support to merge with c do
5: Q← support for each contig pair (c, ci) .
6: Sort Q from highest to lowest
7: for each contig pair (c1, c2) ∈ Q with support ≥ t do
8: if no more than two other contigs with support ≥ t connected to c1 or c2 then
9: if flow on c1 and c2 ≥ t then

10: Merge(c1, c2)

4.14.3 Merging contained contigs with low support

For the third stage of merging the support threshold is set to to 2 for all iterations of merging

until no contigs are merged. For this stage of merging only contigs that have one incoming

edge and one outgoing edge will be merged. This is the same procedure as Section 4.14.1, but

4.15. Results 91

with a lower threshold. SAGE2 then does another stage of merging contained contigs with a

threshold of 1. Extensive testing on genomes of all sizes showed that lowering the thresholds to

these low levels at this point increases the contiguity of the scaffolds with a negligible increase

in mis-assemblies.

4.14.4 Merging short contigs

The final stage of contig merging only considers contigs that are less than 500 bp long. This

final stage of merging attempts to build larger scaffolds from the remaining short contigs. For

this stage of merging only contigs that have two or less incoming edges and two or less outgoing

edges will be merged. The support threshold for this stage of merging is set to 1. After this

stage of merging the final scaffolds are completed.

4.15 Results

The main goals for SAGE2 were to reduce the number of mis-assemblies and increase the

length of the contigs and scaffolds compared to SAGE. This is difficult because there is usually

a trade-off between the number of mis-assemblies and the length of the contigs and scaffolds.

Reducing mis-assemblies usually results in shorter contigs and scaffolds, and an increase in the

the length of the contigs and scaffolds typically results in an increase in the mis-assemblies.

We were able to significantly reduce the mis-assemblies in SAGE2 compared to SAGE, while

also increasing the length of the contigs and scaffolds. Our results show that SAGE2 performs

as good or better than the current state-of-the-art.

We have tested SAGE2 against three of the top performing de novo genome assembly

programs; ABySS [38], SGA [37], and SOAPdenovo2 [22]. We have also included the results

of SAGE for the data sets that we were able to obtain results. We have done comparisons on

two medium sized genomes (M1 and M2) and six human data sets (H1-H6). The details of

each data set are listed in Table 4.2.

92 Chapter 4. Genome Assembly: SAGE2

Table 4.2: Data sets used for genome assembly results.

Accession Read Estimated
Data Set Organism Number Length Coverage Per-Base Error

M1 Caenorhabditis elegans SRX218989 100 32 0.38%
M2 Drosophila melanogaster SRR823377 100 52 0.77%
H1 Homo sapiens SRR1302280 101 41 0.23%
H2 Homo sapiens ERR194147 101 50 0.24%
H3 Homo sapiens ERX069505 101 54 0.23%
H4 Homo sapiens SRR5279717 150 36 0.24%
H5 Homo sapiens SRR5282272 150 38 0.24%
H6 Homo sapiens GIAB 35-250 60 0.32%

C.elegans (M1) and D.melanogaster (M2) are the two medium sized genomes with genome

lengths of approximately 100 million bp and 120 million bp respectively. These genomes

were chosen because they are highly studied genomes, and both have very reliable reference

genomes. The human genome is also highly studied, and the reference genome currently avail-

able is very reliable. The human genome is considered a large genome and is approximately

3.2 billion bp in length.

Data sets M1, M2, H2, and H3 were sequenced using the Illumina HiSeq 2000 machine.

Data sets H1 and H6 were sequenced using the Illumina HiSeq 2500 machine. Data sets H4

and H5 were sequenced using the Illumina HiSeq X Ten machine. Data sets M1, M2, and H1

to H5 were downloaded from the Sequence Read Archive (https://www.ncbi.nlm.nih.

gov/sra) website, and H6 was downloaded from the Genome in a Bottle website (http:

//jimb.stanford.edu/giab/).

4.15.1 Medium sized genome results

All of the alignment results for the contigs and scaffolds have been computed using the align-

ment software called LASER [18]. The results of the mis-assemblies (Mis) and NGA50 for

each data set are listed in the following sections, and the complete LASER results are listed in

Appendix A.

The results of the contigs and scaffolds for the two medium sized genomes are listed in

https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
http://jimb.stanford.edu/giab/
http://jimb.stanford.edu/giab/

4.15. Results 93

Table 4.3: Alignment results for the medium sized genomes.

M1 M2

Mis NGA50 Mis NGA50

Contigs

ABySS 128 7,457 596 10,983
SAGE 356 9,315 640 5,715
SGA 477 8,862 1,333 7,630
SOAPdenovo2 138 7,578 1,543 5,295
SAGE2 208 9,844 676 13,772

Scaffolds

ABySS 438 11,495 1,114 38,540
SAGE 973 18,191 2,696 40,249
SGA 526 12,767 1,805 20,706
SOAPdenovo2 296 17,607 1,980 23,552
SAGE2 435 17,584 1,489 48,671

Table 4.3. For the contigs of the M1 data set ABySS and SOAPdenovo2 had the fewest

mis-assemblies, but SAGE and SAGE2 both had a significantly longer NGA50. Although,

SAGE2 had approximately 40% less mis-assemblies and a slightly longer NGA50 than SAGE.

SAGE2 had a slightly lower NGA50 for the scaffolds than SAGE, but SAGE also had more

than 50% more mis-assemblies than SAGE2. SOAPdenovo2 had the second best NGA50 for

the M1 scaffolds but only slightly lower than the best, yet it had by far the least amount of

mis-assemblies.

For the contigs of the M2 data set SAGE2 had the third fewest mis-assemblies, but it had

by far the largest NGA50. SAGE2 had less than half the mis-assemblies of both SGA and

SOAPdenovo2, but it also had an NGA50 that was more than double that of SAGE and SOAP-

denovo2, and nearly double that of SGA. For the scaffolds of the M2 data set SAGE2 had the

second fewest mis-assemblies, and a significantly larger NGA50 than all other programs.

Figure 4.12 shows a plot that compares the NGA50 to the mis-assemblies of the contigs

for data sets M1 and M2. The best performing programs will appear in the upper left of the

figure, and the worst performing programs will appear in the bottom right of the figure. This

figure shows that SAGE2 is the best performing program since it is in the upper left of the

94 Chapter 4. Genome Assembly: SAGE2

chart, followed by ABySS. SOAPdenovo2 is the worst performing program because it is in the

bottom right of the figure, followed by SAGE and SGA.

 6000

 8000

 10000

 12000

 14000

 0 200 400 600 800 1000 1200 1400 1600

N
G

A5
0

Mis-assemblies

ABySS
SAGE
SGA

SOAPdenovo2
SAGE2

Figure 4.12: Plot comparing NGA50 to mis-assemblies of the contigs for the medium sized
genome data sets. The best performing programs are in the top left, and the worst performing
programs are in the bottom right.

Figure 4.13 shows a plot that compares the NGA50 to the mis-assemblies of the scaffolds

for data sets M1 and M2. This chart shows that SAGE2 is the best performing program since

it is in the upper left of the figure, followed by ABySS. SGA is the worst performing program

because it is in the bottom right of the figure, followed by SOAPdenovo2 and SAGE.

 10000

 20000

 30000

 40000

 50000

 60000

 500 1000 1500 2000 2500

N
G

A5
0

Mis-assemblies

ABySS
SAGE
SGA

SOAPdenovo2
SAGE2

Figure 4.13: Plot comparing NGA50 to mis-assemblies of the scaffolds for the medium sized
genome data sets. The best performing programs are in the top left, and the worst performing
programs are in the bottom right.

4.15. Results 95

4.15.2 Human genome results

Table 4.4 shows the mis-assemblies and NGA50 results for the human data sets with a read

length of 101 bp, and Table 4.5 shows the mis-assemblies and NGA50 results for the human

data sets with a read length of 150 bp. For the contig results SAGE2 had the largest NGA50

results for four of the five human data sets, and SGA had a higher NGA50 than SAGE2 for H1

but SGA had nearly twice the mis-assemblies. SAGE2 also had the lowest, or was close to the

lowest, in mis-assemblies for H1 to H5.

Table 4.4: Alignment results for 101 bp read length human data sets.

H1 H2 H3

Mis NGA50 Mis NGA50 Mis NGA50

Contigs

ABySS 1,196 3,285 1,677 4,713 1,646 4,532
SGA 1,908 4,006 2,108 4,405 2,028 4,399
SOAPdenovo2 1,012 2,594 1,650 3,224 1,862 3,260
SAGE2 959 3,458 1,616 5,632 1,675 5,804

Scaffolds

ABySS 6,315 4,531 17,656 38,012 17,897 40,955
SGA 3,433 5,364 12,152 15,379 13,488 15,440
SOAPdenovo2 26,342 9,826 105,209 38,774 104,593 37,070
SAGE2 3,399 8,138 21,370 41,082 24,629 43,230

Table 4.5: Alignment results for 150 bp read length human data sets.

H4 H5

Mis NGA50 Mis NGA50

Contigs

ABySS 2,126 9,932 2,032 9,258
SGA 2,653 6,629 2,689 6,568
SOAPdenovo2 2,328 4,964 2,353 4,815
SAGE2 2,125 13,025 2,215 12,756

Scaffolds

ABySS 11,957 42,858 13,609 47,667
SGA 9,994 24,249 3,188 12,745
SOAPdenovo2 94,817 51,178 100,925 53,583
SAGE2 45,534 39,803 46,187 47,051

96 Chapter 4. Genome Assembly: SAGE2

For the scaffolding results SAGE2 had the largest NGA50 for H1 - H3, and the lowest mis-

assemblies for the H1 data set. For H2 and H3 the mis-assemblies for SAGE2 were comparable

to ABySS, but SAGE2 had a much larger NGA50. ABySS had the best scaffolding results

for H4 and H5. SGA had the lowest mis-assemblies for H2 - H5, but a very low NGA50.

SOAPdenovo2 had relatively good NGA50 results but made between 5 to 8 times the number

of mis-assemblies compared to ABySS and SAGE2.

Figure 4.14 shows a plot that compares the NGA50 to the mis-assemblies of the contigs

for data sets H1 to H5. This chart shows that SAGE2 is the best performing program since it

is in the upper left of the figure, followed by ABySS. SOAPdenovo2 is the worst performing

program, followed closely by SGA.

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1000 1500 2000 2500

N
G

A5
0

Mis-assemblies

ABySS
SGA

SOAPdenovo2
SAGE2

Figure 4.14: Plot comparing NGA50 to mis-assemblies of the contigs for the human genome
data sets. The best performing programs are in the top left, and the worst performing programs
are in the bottom right.

Figure 4.15 shows a plot that compares the NGA50 to the mis-assemblies of the scaffolds

for data sets H1 to H5. This chart shows that there is mixed results for ABySS, SGA, and

SAGE2 for the scaffolds of H1 to H5, but it is clear that SOAPdenovo2 is very poor at scaf-

folding for the human genome data sets due to the large number of mis-assemblies.

Data set H6 is from an Illumina HiSeq 2500 machine run in “Rapid Run Mode” which

outputs reads with a length of 250 bp. We tested H6 with ABySS, SGA, SOAPdenovo2,

SAGE2, and a program called DISCOVAR [42] from the Broad Institute, which is a program

4.15. Results 97

 10000

 20000

 30000

 40000

 50000

 20000 40000 60000 80000 100000

N
G

A5
0

Mis-assemblies

ABySS
SGA

SOAPdenovo2
SAGE2

Figure 4.15: Plot comparing NGA50 to mis-assemblies of the scaffolds for the human genome
data sets. The best performing programs are in the top left, and the worst performing programs
are in the bottom right.

that is designed specifically for data sets with read lengths of 250 bp. SOAPdenovo2 and

DISCOVAR were not able to assemble this data set because they ran out of space when using

1TB of RAM. SGA was able to assemble the data set, but LASER was not able to obtain the

alignment results with 1 TB of RAM. Only ABySS and SAGE2 were capable of assembling

H6 well enough to obtain the alignment results of the contigs.

For the H6 contigs ABySS had the longest NGA50 and the lowest mis-assemblies com-

pared to SAGE2. The NGA50 for ABySS was 9,913bp and 5,844bp for SAGE2. ABySS made

4,181 mis-assemblies compared to 5,159 for SAGE2. It was not possible to obtain the results

of the scaffolds for either program because LASER ran out of available memory with 1 TB of

RAM.

4.15.3 Time and space usage

Table 4.6 shows the time in hours for each program to assemble all of the data sets tested. All

testing was completed using the SHARCNet (www.sharcnet.ca) cluster Goblin with a 32 core

Intel Xeon processor at 2.2 GHz and 1 TB of RAM. SOAPdenovo2 was not able to assemble

H6 within the memory limits. The time for DISCOVAR is not listed since it was not able to

assemble the one data set it was designed for.

98 Chapter 4. Genome Assembly: SAGE2

Table 4.6: Run time in hours for all data sets tested.

Data Set ABySS SGA SOAPdenovo2 SAGE2

M1 1.20 2.04 0.47 0.64
M2 2.43 7.89 0.73 1.40
H1 53.96 123.66 19.53 31.07
H2 54.30 183.87 13.19 36.08
H3 71.02 205.59 15.46 43.15
H4 58.46 201.09 17.97 38.06
H5 47.21 184.17 16.52 38.38
H6 39.07 449.76 - 58.04

Table 4.7: Space used in MB for all data sets tested.

Data Set ABySS SGA SOAPdenovo2 SAGE2

M1 16,943 4,143 31,593 11,115
M2 21,579 5,966 52,493 18,488
H1 205,415 64,762 344,193 350,668
H2 222,751 80,750 344,270 448,624
H3 169,044 92,092 344,302 462,999
H4 375,848 56,808 464,869 238,363
H5 347,756 53,232 423,641 237,811
H6 866,506 76,443 - 282,262

4.16. Conclusions 99

SOAPdenovo2 was by far the quickest at assembling the human genome data sets, and was

able to assemble H1 to H5 in less than one day each. SAGE2 was the next fastest program

and was able to assemble H1 to H5 in less than two days each, and less than three days for H6.

ABySS was able to assemble H5 and H6 in just under two days, and H1 to H4 in less than three

days. SGA was by far the slowest program to assemble the human data sets and took over one

week to assemble data sets H2 to H5, and took over three weeks to assemble H6.

Table 4.7 shows the space used in MB for each program to assemble all of the data sets

tested. SGA used by far the least amount of memory, but still required between 56GB to 92GB

of RAM to assemble the human data sets. ABySS was the next best at memory usage for H1 to

H3, but SAGE2 used less memory than ABySS for H4 to H6. This is because H4 to H6 have

longer read lengths which requires less memory for SAGE2 to store the information about the

reads on each of the edges in the overlap graph. This is clearly an issue for ABySS in the H6

data set, which ABySS needed 866GB of RAM to assemble compared to 282GB of RAM for

SAGE2.

4.16 Conclusions

The main problems with SAGE have been addressed in our new implementation called SAGE2.

The largest bottleneck in run time was building the overlap graph in serial, and we have imple-

mented a parallel approach to building the overlap graph that is both time and space efficient.

This allows SAGE2 to build the overlap graph from any sized genome and any coverage level

nearly as fast as the DBG assemblers. We have also parallelized many of the functions in

SAGE2 so that it can assemble large genomes with high coverage levels in a similar amount of

time as the current state-of-the-art de novode novo genome assemblers.

The changes made in SAGE2 has significantly reduced the mis-assemblies, while also ex-

tending the length of the contigs and scaffolds compared to SAGE. The biggest difference is in

the quality of the assemblies for large genomes. SAGE2 is able to assemble the human genome

100 Chapter 4. Genome Assembly: SAGE2

as good or better than the current state-of-the-art for all of the sequencing technologies from

Illumina, except the Illumina HiSeq 2500 machine run in Rapid Run Mode. SAGE2 is also ca-

pable of assembling data sets with varying read lengths so that multiple data sets with different

read length can be used in a single assembly, or one data set with varying read lengths.

Chapter 5

Conclusions and Future Research

5.1 Conclusions

We have reimplemented the hash table in RACER so that it can quickly and efficiently perform

error corrections for any sized genome and coverage level. We have also determined appro-

priate automatic parameter selection for a wide range of genome sizes and coverage levels.

RACER now performs as good or better than the state-of-the-art for all genome sizes, coverage

levels, and sequencing technologies from Illumina.

We have performed a comprehensive assessment of the current state-of-the-art error correc-

tion software available for the Illumina technologies, and we have introduced a methodology

of standardizing the assessment of the quality of the corrections that is thorough and unbiased.

The information we have provided is extremely important for any researcher that uses DNA

sequencing technologies.

The main problems with SAGE have been addressed in SAGE2. The new parallel imple-

mentation of overlap graph construction is both time and space efficient. The new algorithmic

changes to the merging process in SAGE2 has significantly reduced the mis-assemblies, while

also extending the length of the contigs and scaffolds compared to SAGE. SAGE2 is also ca-

pable of assembling data sets with varying read lengths so that multiple data sets with different

101

102 Chapter 5. Conclusions and Future Research

read length can be used in a single assembly, or one data set with varying read lengths.

5.2 Future research

5.2.1 RACER

RACER has been designed to correct substitution errors from the Illumina technologies. The

Illumina technologies produce short reads between 100 bp to 300 bp, and the errors tend to be

at the 3′ ends of the reads. The newest sequencing technologies produce very long reads, from

the tens of thousands to hundreds of thousands of bases per read. Although, the error rate is

much higher than the Illumina technologies. RACER can still correct this type of data, but it

will require extensive testing to determine the proper automatic parameter selection in order to

correct this type of data well.

RACER assumes that the data that is provided is from a single genome, but the Illumina

technologies can also produce data sets for metagenomic data. Metagenomic data contains

reads from many different species, and the coverage levels from each species can vary signif-

icantly. This type of data may have many similar k-mers since many of the species may be

closely related. RACER may assume that many of the low coverage k-mers are errors, but they

are actually low coverage genomes. This will cause RACER to change k-mers from the low

coverage genomes to k-mers from the higher coverage genomes, which will cause problems

for metagenomic assemblers. RACER will need to be modified to correct metagenomic data

properly.

5.2.2 Error correction evaluation

Both readSearch and kmerSearch were designed for the Illumina technologies. The newest se-

quencing technologies produce reads that are much longer, and it would be extremely difficult

to correct any of the whole reads from these technologies. Since readSearch requires whole

5.2. Future research 103

reads to be correct, it is not suitable for error correction evaluation from these technologies.

The kmerSearch software only requires short segments of length k to be correct, and therefore

it can still be used to asses the performance of correction from the newest sequencing technolo-

gies. Testing of kmerSearch on the newest technologies would be required to check for any

unforeseen problems with assessing the performance of correction from these technologies.

5.2.3 SAGE2

Extensive testing has shown that SAGE2 produces long contigs with few mis-assemblies com-

pared to the state-of-the-art. One area of the assemblies that can be improved upon for the

contigs produced by SAGE2 is the percent of the genome that is covered in the longer contigs.

This may require either a modification to the current functions that resolve ambiguous nodes,

or it may require a new implementation that tries to merge the smaller contigs together, or into

the longer contigs. Care will be needed to merge them correctly so that the genome fraction

covered will increase, but the number of mis-assemblies stays low.

Another problem that needs to be addressed is the number of mis-assemblies of the scaf-

folds produced by SAGE2. The current implementation only checks the relation of contig pairs,

and the other contigs that they have support with. SAGE2 does not search any paths along the

scaffold graph to check the topology of a larger region before merging. SAGE2 will require a

new implementation to the scaffold graph that can search paths along the scaffold graph, or to

incorporate long read sequence data to scaffold the contigs. This could significantly decrease

the number of mis-assemblies in the scaffolds produced by SAGE2, and proper merging could

also increase the length of the scaffolds as well.

Finally, the newest sequencing technologies produce reads that are very long and have

many errors, even after correcting the errors. SAGE2 is not capable of assembling genomes

from these technologies because it requires that there be exact overlaps between whole reads

for there to be an edge in the overlap graph between them. To assemble genomes from these

sequencing technologies would require that SAGE2 be able to handle overlaps between reads

104 Chapter 5. Conclusions and Future Research

that are not exact. This is a difficult problem and would require a new implementation to be

able to build an overlap graph from reads that do not overlap exactly.

Bibliography

[1] Serafim Batzoglou, David B Jaffe, Ken Stanley, Jonathan Butler, Sante Gnerre, Evan

Mauceli, Bonnie Berger, Jill P Mesirov, and Eric S Lander. Arachne: a whole-genome

shotgun assembler. Genome research, 12(1):177–189, 2002.

[2] Jonathan Butler, Iain MacCallum, Michael Kleber, Ilya A Shlyakhter, Matthew K Bel-

monte, Eric S Lander, Chad Nusbaum, and David B Jaffe. Allpaths: de novo assembly of

whole-genome shotgun microreads. Genome research, 18(5):810–820, 2008.

[3] German Cancer Research Center. The illumina hiseq 2000 sequencing technology, 2015.

URL https://www.dkfz.de/gpcf/hiseq_technology.html.

[4] Nicolaas Govert De Bruijn. A combinatorial problem. 1946.

[5] Robert D Fleischmann, Mark D Adams, Owen White, Rebecca A Clayton, et al. Whole-

genome random sequencing and assembly of haemophilus influenzae rd. Science, 269

(5223):496, 1995.

[6] André Goffeau, Bart G Barrell, Howard Bussey, RW Davis, et al. Life with 6000 genes.

Science, 274(5287):546, 1996.

[7] Andrew V Goldberg. An efficient implementation of a scaling minimum-cost flow algo-

rithm. Journal of algorithms, 22(1):1–29, 1997.

[8] Alexey Gurevich, Vladislav Saveliev, Nikolay Vyahhi, and Glenn Tesler. Quast: quality

assessment tool for genome assemblies. Bioinformatics, 29(8):1072–1075, 2013.

105

https://www.dkfz.de/gpcf/hiseq_technology.html

106 BIBLIOGRAPHY

[9] Md Bahlul Haider. A new algorithm for de novo genome assembly. PhD thesis, The

University of Western Ontario, 2012.

[10] Yun Heo, Xiao-Long Wu, Deming Chen, Jian Ma, and Wen-Mei Hwu. Bless: bloom

filter-based error correction solution for high-throughput sequencing reads. Bioinformat-

ics, page btu030, 2014.

[11] David Hernandez, Patrice François, Laurent Farinelli, Magne Østerås, and Jacques

Schrenzel. De novo bacterial genome sequencing: millions of very short reads assem-

bled on a desktop computer. Genome research, 18(5):802–809, 2008.

[12] Lucian Ilie and Michael Molnar. Racer: Rapid and accurate correction of errors in reads.

Bioinformatics, page btt407, 2013.

[13] Lucian Ilie, Farideh Fazayeli, and Silvana Ilie. Hitec: accurate error correction in high-

throughput sequencing data. Bioinformatics, 27(3):295–302, 2011.

[14] Lucian Ilie, Bahlul Haider, Michael Molnar, and Roberto Solis-Oba. Sage: string-overlap

assembly of genomes. BMC bioinformatics, 15(1):302, 2014.

[15] Marc TJ Johnson, Eric J Carpenter, Zhijian Tian, Richard Bruskiewich, Jason N Burris,

Charlotte T Carrigan, Mark W Chase, Neil D Clarke, Sarah Covshoff, Patrick P Edger,

et al. Evaluating methods for isolating total rna and predicting the success of sequencing

phylogenetically diverse plant transcriptomes. PloS one, 7(11):e50226, 2012.

[16] John D Kececioglu and Eugene W Myers. Combinatorial algorithms for dna sequence

assembly. Algorithmica, 13(1-2):7, 1995.

[17] David R Kelley, Michael C Schatz, and Steven L Salzberg. Quake: quality-aware detec-

tion and correction of sequencing errors. Genome biology, 11(11):R116, 2010.

[18] Nilesh Khiste and Lucian Ilie. Laser: Large genome assembly evaluator. BMC research

notes, 8(1):709, 2015.

BIBLIOGRAPHY 107

[19] Eric S Lander, Lauren M Linton, Bruce Birren, Chad Nusbaum, Michael C Zody, Jen-

nifer Baldwin, Keri Devon, Ken Dewar, Michael Doyle, William FitzHugh, et al. Initial

sequencing and analysis of the human genome. Nature, 409(6822):860–921, 2001.

[20] Heng Li and Richard Durbin. Fast and accurate short read alignment with burrows–

wheeler transform. Bioinformatics, 25(14):1754–1760, 2009.

[21] Ruiqiang Li, Yingrui Li, Karsten Kristiansen, and Jun Wang. Soap: short oligonucleotide

alignment program. Bioinformatics, 24(5):713–714, 2008.

[22] Ruiqiang Li, Chang Yu, Yingrui Li, Tak-Wah Lam, Siu-Ming Yiu, Karsten Kristiansen,

and Jun Wang. Soap2: an improved ultrafast tool for short read alignment. Bioinformat-

ics, 25(15):1966–1967, 2009.

[23] Yongchao Liu, Jan Schröder, and Bertil Schmidt. Musket: a multistage k-mer spectrum-

based error corrector for illumina sequence data. Bioinformatics, 29(3):308–315, 2013.

[24] Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches.

siam Journal on Computing, 22(5):935–948, 1993.

[25] Michael L Metzker. Sequencing technologiesthe next generation. Nature reviews genet-

ics, 11(1):31–46, 2010.

[26] Jason R Miller, Arthur L Delcher, Sergey Koren, Eli Venter, Brian P Walenz, Anushka

Brownley, Justin Johnson, Kelvin Li, Clark Mobarry, and Granger Sutton. Aggressive

assembly of pyrosequencing reads with mates. Bioinformatics, 24(24):2818–2824, 2008.

[27] Michael Molnar and Lucian Ilie. Correcting illumina data. Briefings in bioinformatics,

16(4):588–599, 2015.

[28] Eugene W Myers. The fragment assembly string graph. Bioinformatics, 21(suppl 2):

ii79–ii85, 2005.

108 BIBLIOGRAPHY

[29] Eugene W Myers, Granger G Sutton, Art L Delcher, Ian M Dew, Dan P Fasulo, Michael J

Flanigan, Saul A Kravitz, Clark M Mobarry, Knut HJ Reinert, Karin A Remington, et al.

A whole-genome assembly of drosophila. Science, 287(5461):2196–2204, 2000.

[30] Pavel A Pevzner, Haixu Tang, and Michael S Waterman. An eulerian path approach to

dna fragment assembly. Proceedings of the National Academy of Sciences, 98(17):9748–

9753, 2001.

[31] Leslie Pray. Discovery of dna structure and function: Watson and crick. Nature Educa-

tion, 1(1):100, 2008.

[32] Leena Salmela and Jan Schröder. Correcting errors in short reads by multiple alignments.

Bioinformatics, 27(11):1455–1461, 2011.

[33] Frederick Sanger, Steven Nicklen, and Alan R Coulson. Dna sequencing with chain-

terminating inhibitors. Proceedings of the national academy of sciences, 74(12):5463–

5467, 1977.

[34] Michael C Schatz, Arthur L Delcher, and Steven L Salzberg. Assembly of large genomes

using second-generation sequencing. Genome research, 20(9):1165–1173, 2010.

[35] Jan Schröder, Heiko Schröder, Simon J Puglisi, Ranjan Sinha, and Bertil Schmidt. Shrec:

a short-read error correction method. Bioinformatics, 25(17):2157–2163, 2009.

[36] Let’s Talk Science’s Education Services. Sanger sequencing, 2012. URL https://

explorecuriocity.org/Explore/ArticleId/2027/sanger-sequencing-2027.

aspx.

[37] Jared T Simpson and Richard Durbin. Efficient de novo assembly of large genomes using

compressed data structures. Genome research, 22(3):549–556, 2012.

[38] Jared T Simpson, Kim Wong, Shaun D Jackman, Jacqueline E Schein, Steven JM Jones,

https://explorecuriocity.org/Explore/ArticleId/2027/sanger-sequencing-2027.aspx
https://explorecuriocity.org/Explore/ArticleId/2027/sanger-sequencing-2027.aspx
https://explorecuriocity.org/Explore/ArticleId/2027/sanger-sequencing-2027.aspx

BIBLIOGRAPHY 109

and Inanç Birol. Abyss: a parallel assembler for short read sequence data. Genome

research, 19(6):1117–1123, 2009.

[39] Lloyd M Smith, Jane Z Sanders, Robert J Kaiser, Peter Hughes, Chris Dodd, Charles R

Connell, Cheryl Heiner, Stephen BH Kent, and Leroy E Hood. Fluorescence detection in

automated dna sequence analysis. 1986.

[40] J Craig Venter, Mark D Adams, Eugene W Myers, Peter W Li, Richard J Mural,

Granger G Sutton, Hamilton O Smith, Mark Yandell, Cheryl A Evans, Robert A Holt,

et al. The sequence of the human genome. science, 291(5507):1304–1351, 2001.

[41] I VIIEW. Genome sequence of the nematode c. elegans: a platform for investigating

biology. 1998.

[42] Neil I Weisenfeld, Shuangye Yin, Ted Sharpe, Bayo Lau, Ryan Hegarty, Laurie Holmes,

Brian Sogoloff, Diana Tabbaa, Louise Williams, Carsten Russ, et al. Comprehensive

variation discovery in single human genomes. Nature genetics, 46(12):1350, 2014.

[43] Xiao Yang, Karin S Dorman, and Srinivas Aluru. Reptile: representative tiling for short

read error correction. Bioinformatics, 26(20):2526–2533, 2010.

[44] Xiao Yang, Sriram P Chockalingam, and Srinivas Aluru. A survey of error-correction

methods for next-generation sequencing. Briefings in bioinformatics, 14(1):56–66, 2013.

[45] Daniel R Zerbino and Ewan Birney. Velvet: algorithms for de novo short read assembly

using de bruijn graphs. Genome research, 18(5):821–829, 2008.

Appendix A

Complete LASER Alignment Results For

Genome Assemblies

110

111

Table A.1: LASER results for M1 contigs.

Program: ABySS SGA SOAPdenovo2 SAGE2
Overlap/k-mer Length: 53 74 57 58

contigs (>= 0 bp) 105,099 172,597 197,613 38,356
contigs (>= 1000 bp) 15,248 14,395 15,258 13,305
Total length (>= 0 bp) 98,514,187 111,083,146 106,535,818 94,721,723
Total length (>= 1000 bp) 83,706,934 87,209,296 84,651,899 86,532,900
contigs 21,743 20,110 21,765 18,498
Largest contig 103,434 111,003 84,339 113,941
Total length 88,376,057 91,270,378 89,300,027 90,229,438
Reference length 100,286,070 100,286,070 100,286,070 100,286,070
GC (%) 35.46 35.53 35.47 35.47
Reference GC (%) 35.44 35.44 35.44 35.44
N50 9,556 10,671 9,505 12,307
NG50 7,614 9,112 7,760 10,148
N75 3,593 4,270 3,701 4,706
NG75 2,065 2,893 2,241 2,976
L50 2,281 2,166 2,381 1,892
LG50 2,977 2,624 3,020 2,343
L75 6,069 5,566 6,153 4,870
LG75 9,351 7,490 9,024 6,876
misassemblies 128 477 138 208
misassembled contigs 120 445 129 188
Misassembled contigs length 1,076,875 2,485,018 1,074,403 1,744,887
local misassemblies 759 931 798 924
unaligned contigs 974+586part 509+771part 936+696part 719+802part
Unaligned length 1,920,483 1,998,366 1,981,410 2,031,497
Genome fraction (%) 85.95 88.44 86.72 87.39
Duplication ratio 1.00 1.01 1.01 1.01
N’s per 100 kbp 0.00 0.00 0.00 0.00
mismatches per 100 kbp 80.22 83.61 79.75 83.41
indels per 100 kbp 28.08 29.07 28.34 29.36
Largest alignment 103,384 111,003 84,338 113,941
NA50 9,425 10,439 9,373 12,007
NGA50 7,457 8,862 7,578 9,844
NA75 3,402 3,956 3,476 4,412
NGA75 1,874 2,588 2,037 2,661
LA50 2,304 2,196 2,407 1,925
LGA50 3,011 2,665 3,058 2,387
LA75 6,222 5,760 6,321 5,038
LGA75 9,766 7,868 9,431 7,241

112 Chapter A. Complete LASER Alignment Results For Genome Assemblies

Table A.2: LASER results for M1 scaffolds.

Program: ABySS SGA SOAPdenovo2 SAGE2
Overlap/k-mer Length: 53 74 57 58

contigs (>= 0 bp) 76,775 26,823 48,098 29,008
contigs (>= 1000 bp) 12,555 11,568 9,799 9,694
Total length (>= 0 bp) 98,348,326 94,832,897 98,367,265 95,571,402
Total length (>= 1000 bp) 88,415,420 88,458,304 89,959,162 89,545,218
contigs 16,767 15,833 13,682 13,315
Largest contig 137,054 137,087 214,293 197,631
Total length 91,453,545 91,499,103 92,707,527 92,118,625
Reference length 100,286,070 100,286,070 100,286,070 100,286,070
GC (%) 35.52 35.52 35.46 35.49
Reference GC (%) 35.44 35.44 35.44 35.44
N50 13,905 15,327 21,007 21,022
NG50 11,920 13,269 18,620 18,357
N75 5,371 6,079 7,953 8,021
NG75 3,644 4,065 5,530 5,507
L50 1,646 1,527 1,097 1,111
LG50 1,991 1,835 1,289 1,320
L75 4,310 3,888 2,880 2,865
LG75 5,807 5,206 3,735 3,783
misassemblies 438 526 296 435
misassembled contigs 389 450 251 357
Misassembled contigs length 3,446,069 3,920,434 3,864,799 5,716,638
local misassemblies 1,184 1,364 4,013 1,456
unaligned contigs 624+615part 374+623part 1607+1382part 460+587part
Unaligned length 2,020,022 1,955,963 4,888,210 2,000,931
Genome fraction (%) 88.39 88.86 86.15 88.97
Duplication ratio 1.01 1.01 1.02 1.01
N’s per 100 kbp 34.93 25.56 1,482.59 0.00
mismatches per 100 kbp 92.46 84.83 78.92 87.62
indels per 100 kbp 31.36 30.04 39.82 32.10
Largest alignment 137,054 137,087 213,479 197,397
NA50 13,469 14,876 19,883 20,207
NGA50 11,495 12,767 17,607 17,584
NA75 4,949 5,572 6,676 7,269
NGA75 3,221 3,580 4,237 4,792
LA50 1,683 1,562 1,143 1,153
LGA50 2,039 1,881 1,346 1,371
LA75 4,490 4,074 3,118 3,033
LGA75 6,143 5,552 4,182 4,074

113

Table A.3: LASER results for M2 contigs.

Program: ABySS SGA SOAPdenovo2 SAGE2
Overlap/k-mer Length: 46 80 67 60

contigs (>= 0 bp) 192,784 404,378 354,153 77,409
contigs (>= 1000 bp) 15,407 20,587 24,779 13,447
Total length (>= 0 bp) 131,724,039 166,674,311 152,449,213 129,584,414
Total length (>= 1000 bp) 112,697,396 111,924,801 106,863,222 114,429,019
contigs 19,143 27,895 35,598 18,352
Largest contig 147,335 104,592 92,987 145,646
Total length 115,355,075 117,086,387 114,617,818 117,876,112
Reference length 120,381,546 120,381,546 120,381,546 120,381,546
GC (%) 42.51 42.43 42.48 42.42
Reference GC (%) 42.41 42.41 42.41 42.41
N50 12,347 8,517 6,085 15,129
NG50 11,636 8,157 5,625 14,725
N75 5,734 3,695 2,599 6,921
NG75 5,039 3,409 2,230 6,468
L50 2,438 3,443 4,709 2,044
LG50 2,648 3,640 5,202 2,129
L75 5,877 8,696 12,002 4,908
LG75 6,579 9,392 13,797 5,189
misassemblies 596 1,543 1,333 676
misassembled contigs 566 1,437 1,274 628
Misassembled contigs length 9,607,977 11,168,381 7,846,455 11,783,345
local misassemblies 1,164 1,236 1,169 1,282
unaligned contigs 2525+987part 2731+1801part 3009+1983part 3093+1129part
Unaligned length 4,255,261 6,584,207 5,778,387 6,169,296
Genome fraction (%) 92.05 91.12 89.84 92.04
Duplication ratio 1.00 1.01 1.01 1.01
N’s per 100 kbp 0.00 0.00 0.00 0.00
mismatches per 100 kbp 536.55 529.96 516.71 539.91
indels per 100 kbp 122.50 117.04 116.50 127.14
Largest alignment 147,335 104,537 82,615 133,959
NA50 11,661 7,959 5,716 14,171
NGA50 10,983 7,630 5,295 13,772
NA75 5,314 3,233 2,316 6,175
NGA75 4,631 2,914 1,937 5,745
LA50 2,583 3,662 4,967 2,186
LGA50 2,805 3,874 5,490 2,276
LA75 6,236 9,436 12,909 5,305
LGA75 6,998 10,240 14,950 5,620

114 Chapter A. Complete LASER Alignment Results For Genome Assemblies

Table A.4: LASER results for M2 scaffolds.

Program: ABySS SGA SOAPdenovo2 SAGE2
Overlap/k-mer Length: 46 80 67 60

contigs (>= 0 bp) 148,586 35,839 106,133 62,942
contigs (>= 1000 bp) 6,537 9,788 9,039 5,349
Total length (>= 0 bp) 133,003,932 126,032,492 136,929,581 130,894,591
Total length (>= 1000 bp) 120,403,787 117,603,937 120,064,923 117,886,146
contigs 7,725 12,484 11,924 8,867
Largest contig 419,589 182,862 391,195 518,070
Total length 121,254,060 119,456,571 122,072,236 120,338,872
Reference length 120,381,546 120,381,546 120,381,546 120,381,546
GC (%) 42.46 42.37 42.38 42.38
Reference GC (%) 42.41 42.41 42.41 42.41
N50 45,012 22,988 29,265 66,932
NG50 45,538 22,789 29,696 66,932
N75 20,158 10,738 12,894 27,813
NG75 20,549 10,476 13,450 27,790
L50 740 1,383 1,093 493
LG50 730 1,403 1,064 493
L75 1,734 3,258 2,664 1,176
LG75 1,702 3,323 2,568 1,177
misassemblies 1,114 1,805 1,980 1,489
misassembled contigs 873 1,452 1,348 852
Misassembled contigs length 36,550,041 27,443,425 33,876,149 50,469,631
local misassemblies 1,865 3,529 4,265 2,421
unaligned contigs 1998+604part 1688+1424part 2485+2719part 2366+789part
Unaligned length 5,772,573 6,987,597 15,058,979 6,983,406
Genome fraction (%) 93.74 92.60 85.23 93.18
Duplication ratio 1.02 1.01 1.04 1.01
N’s per 100 kbp 148.07 334.64 1,688.81 9.53
mismatches per 100 kbp 547.92 542.80 499.29 539.70
indels per 100 kbp 131.74 129.06 143.29 131.04
Largest alignment 320,267 175,542 217,716 462,403
NA50 38,194 20,946 23,022 48,671
NGA50 38,540 20,706 23,552 48,671
NA75 17,021 9,280 6,908 21,502
NGA75 17,422 9,078 7,541 21,455
LA50 891 1,548 1,336 683
LGA50 879 1,571 1,300 683
LA75 2,072 3,652 3,641 1,597
LGA75 2,034 3,728 3,466 1,599

115

Table A.5: LASER results for H1 contigs.

Program: ABySS SGA SOAPdenovo2 SAGE2
Overlap/k-mer Length: 71 78 65 68

contigs (>= 0 bp) 3,807,863 7,475,987 9,232,099 2,929,342
contigs (>= 1000 bp) 654,426 595,224 720,840 601,226
Total length (>= 0 bp) 2,948,618,719 3,426,420,918 3,352,005,758 2,966,355,413
Total length (>= 1000 bp) 2,379,169,532 2,443,974,781 2,281,485,489 2,334,034,418
contigs 895,450 780,169 1,029,543 924,627
Largest contig 64,639 79,480 54,595 66,911
Total length 2,553,429,133 2,577,142,475 2,504,557,120 2,565,458,628
Reference length 3,209,286,105 3,209,286,105 3,209,286,105 3,209,286,105
GC (%) 40.69 40.66 40.51 40.57
Reference GC (%) 40.99 40.99 40.99 40.99
N50 4,545 5,391 3,654 4,772
NG50 3,288 4,014 2,598 3,463
N75 2,301 2,788 1,908 2,348
NG75 922 1,135 721 835
L50 157,734 137,359 195,364 150,465
LG50 242,708 205,366 309,866 229,699
L75 355,457 303,281 432,696 341,367
LG75 683,369 560,513 867,869 680,971
misassemblies 1,196 1,908 1,012 959
misassembled contigs 1,190 1,894 1,005 913
Misassembled contigs length 3,905,048 7,943,176 2,507,040 3,385,961
local misassemblies 2,454 2,710 2,243 5,474
unaligned contigs 2538+3129part 3219+11042part 2479+17096part 2666+24838part
Unaligned length 2,435,127 3,520,374 2,550,340 3,021,762
Genome fraction (%) 79.07 79.78 77.46 77.50
Duplication ratio 1.01 1.01 1.01 1.03
N’s per 100 kbp 0.00 0.00 0.00 0.00
mismatches per 100 kbp 89.81 89.21 87.66 90.72
indels per 100 kbp 16.29 13.30 14.04 18.54
Largest alignment 64,639 79,480 54,593 64,677
NA50 4,542 5,382 3,650 4,765
NGA50 3,285 4,006 2,594 3,458
NA75 2,298 2,780 1,904 2,342
NGA75 918 1,126 714 829
LA50 157,840 137,554 195,512 150,621
LGA50 242,882 205,690 310,159 229,971
LA75 355,740 303,840 433,204 341,871
LGA75 684,382 562,277 870,475 683,306

116 Chapter A. Complete LASER Alignment Results For Genome Assemblies

Table A.6: LASER results for H1 scaffolds.

Program: ABySS SGA SOAPdenovo2 SAGE2
Overlap/k-mer Length: 71 78 65 68

contigs (>= 0 bp) 2,611,361 976,253 1,895,367 2,452,948
contigs (>= 1000 bp) 567,371 496,167 339,466 345,357
Total length (>= 0 bp) 2,880,697,724 2,696,673,489 3,058,311,846 2,995,888,780
Total length (>= 1000 bp) 2,500,013,739 2,505,114,340 2,780,623,371 2,463,556,480
contigs 735,696 618,811 422,048 576,878
Largest contig 75,147 105,368 193,249 126,183
Total length 2,622,166,536 2,593,289,067 2,839,672,455 2,627,513,351
Reference length 3,209,286,105 3,209,286,105 3,209,286,105 3,209,286,105
GC (%) 40.79 40.64 40.68 40.68
Reference GC (%) 40.99 40.99 40.99 40.99
N50 6,077 7,150 13,824 10,984
NG50 4,551 5,387 11,805 8,189
N75 2,997 3,701 6,864 5,146
NG75 1,350 1,523 4,471 1,488
L50 119,642 104,327 58,213 67,041
LG50 175,539 154,006 72,689 97,748
L75 273,490 230,019 130,817 153,820
LG75 487,616 417,512 180,496 298,491
misassemblies 6,315 3,433 26,342 3,399
misassembled contigs 5,603 3,317 15,557 2,627
Misassembled contigs length 23,052,332 18,810,546 149,392,224 29,528,307
local misassemblies 18,014 10,059 1,435,344 49,817
unaligned contigs 3026+3127part 3577+8657part 4978+8724part 3213+7697part
Unaligned length 3,241,866 4,198,603 10,562,533 3,650,560
Genome fraction (%) 81.17 80.50 81.10 79.21
Duplication ratio 1.01 1.00 1.09 1.03
N’s per 100 kbp 41.54 27.89 7,084.89 0.00
mismatches per 100 kbp 93.60 92.56 91.65 93.99
indels per 100 kbp 17.48 15.98 15.12 23.48
Largest alignment 75,147 105,368 189,474 126,151
NA50 6,051 7,121 11,767 10,915
NGA50 4,531 5,364 9,826 8,138
NA75 2,981 3,681 5,034 5,108
NGA75 1,334 1,505 2,552 1,457
LA50 120,078 104,671 65,735 67,463
LGA50 176,221 154,564 82,922 98,379
LA75 274,645 230,953 156,723 154,851
LGA75 490,485 419,870 232,183 301,310

117

Table A.7: LASER results for H2 contigs.

Program: ABySS SGA SOAPdenovo2 SAGE2
Overlap/k-mer Length: 77 82 75 78

contigs (>= 0 bp) 3,504,232 9,575,174 7,464,012 1,787,707
contigs (>= 1000 bp) 556,078 568,900 674,014 493,543
Total length (>= 0 bp) 3,015,950,088 3,718,556,270 3,381,038,091 2,866,766,284
Total length (>= 1000 bp) 2,504,611,265 2,480,254,464 2,396,831,742 2,528,435,349
contigs 724,989 743,040 936,513 655,647
Largest contig 80,842 78,375 65,608 117,620
Total length 2,626,277,625 2,605,274,187 2,586,140,270 2,644,017,639
Reference length 3,209,286,105 3,209,286,105 3,209,286,105 3,209,286,105
GC (%) 40.70 40.64 40.62 40.66
Reference GC (%) 40.99 40.99 40.99 40.99
N50 6,245 5,864 4,372 7,376
NG50 4,725 4,419 3,233 5,653
N75 3,114 2,989 2,216 3,661
NG75 1,388 1,288 973 1,611
L50 119,382 124,989 165,154 102,316
LG50 173,101 184,357 248,148 146,090
L75 268,087 280,288 373,175 229,059
LG75 473,641 504,524 684,289 398,740
misassemblies 1,677 2,108 1,650 1,616
misassembled contigs 1,646 2,041 1,625 1,523
Misassembled contigs length 7,007,899 9,485,460 5,001,004 7,941,798
local misassemblies 3,178 3,161 2,841 6,153
unaligned contigs 4259+3540part 5190+8219part 4325+13881part 6440+16543part
Unaligned length 6,321,919 7,469,597 6,048,074 8,580,397
Genome fraction (%) 81.20 80.55 79.85 81.38
Duplication ratio 1.01 1.01 1.01 1.01
N’s per 100 kbp 0.00 0.00 0.00 0.00
mismatches per 100 kbp 91.22 88.98 86.90 95.00
indels per 100 kbp 17.84 12.90 14.69 20.32
Largest alignment 80,842 78,375 65,608 117,620
NA50 6,232 5,848 4,363 7,356
NGA50 4,713 4,405 3,224 5,632
NA75 3,103 2,974 2,206 3,642
NGA75 1,372 1,268 959 1,585
LA50 119,574 125,287 165,399 102,562
LGA50 173,406 184,829 248,584 146,471
LA75 268,671 281,151 374,038 229,803
LGA75 475,590 507,433 687,708 401,134

118 Chapter A. Complete LASER Alignment Results For Genome Assemblies

Table A.8: LASER results for H2 scaffolds.

Program: ABySS SGA SOAPdenovo2 SAGE2
Overlap/k-mer Length: 77 82 75 78

contigs (>= 0 bp) 1,405,048 596,920 1,976,491 1,007,596
contigs (>= 1000 bp) 132,387 238,250 109,724 118,681
Total length (>= 0 bp) 2,981,605,214 2,753,368,704 3,012,050,220 2,898,086,669
Total length (>= 1000 bp) 2,807,622,942 2,638,523,252 2,713,555,250 2,707,799,231
contigs 154,890 284,743 145,926 178,086
Largest contig 428,603 222,828 538,085 476,393
Total length 2,823,798,350 2,671,451,186 2,738,907,589 2,749,246,560
Reference length 3,209,286,105 3,209,286,105 3,209,286,105 3,209,286,105
GC (%) 40.85 40.67 40.72 40.77
Reference GC (%) 40.99 40.99 40.99 40.99
N50 46,715 20,290 57,014 51,908
NG50 39,683 15,726 46,576 42,419
N75 23,321 9,932 28,490 25,654
NG75 14,668 4,540 15,143 13,418
L50 17,618 37,091 13,914 15,183
LG50 22,096 52,161 18,482 20,086
L75 38,870 83,958 30,745 33,874
LG75 54,360 142,428 47,408 52,144
misassemblies 17,656 12,152 105,209 21,370
misassembled contigs 11,502 8,671 30,027 11,549
Misassembled contigs length 267,107,043 100,471,573 941,127,839 226,572,802
local misassemblies 63,265 72,885 183,498 147,165
unaligned contigs 5364+3396part 6410+4959part 7755+19228part 7230+5135part
Unaligned length 13,991,254 13,171,146 55,380,962 16,178,675
Genome fraction (%) 85.20 82.41 80.89 84.18
Duplication ratio 1.03 1.01 1.03 1.01
N’s per 100 kbp 338.57 492.22 2,157.12 98.97
mismatches per 100 kbp 102.54 97.36 101.95 106.13
indels per 100 kbp 28.84 25.87 63.55 31.29
Largest alignment 427,174 222,443 536,132 476,249
NA50 44,812 19,848 48,412 50,228
NGA50 38,012 15,379 38,774 41,082
NA75 22,203 9,638 22,363 24,628
NGA75 13,775 4,295 9,397 12,682
LA50 18,293 37,752 16,078 15,664
LGA50 22,966 53,160 21,504 20,730
LA75 40,533 85,806 36,676 35,027
LGA75 56,888 146,687 59,970 54,169

119

Table A.9: LASER results for H3 contigs.

Program: ABySS SGA SOAPdenovo2 SAGE2
Overlap/k-mer Length: 78 82 77 78

contigs (>= 0 bp) 3,433,810 10,083,067 7,143,688 1,831,159
contigs (>= 1000 bp) 569,265 567,367 673,574 480,482
Total length (>= 0 bp) 3,010,873,530 3,774,427,245 3,376,035,748 2,877,999,967
Total length (>= 1000 bp) 2,498,815,487 2,477,272,963 2,406,225,742 2,525,918,443
contigs 744,694 741,582 935,582 648,603
Largest contig 70,592 74,646 61,855 97,109
Total length 2,625,264,380 2,602,300,170 2,595,036,781 2,645,240,454
Reference length 3,209,286,105 3,209,286,105 3,209,286,105 3,209,286,105
GC (%) 40.67 40.62 40.62 40.65
Reference GC (%) 40.99 40.99 40.99 40.99
N50 6,015 5,883 4,399 7,615
NG50 4,543 4,413 3,268 5,825
N75 3,006 2,992 2,226 3,759
NG75 1,351 1,278 998 1,624
L50 123,913 124,444 164,174 98,556
LG50 179,825 184,070 245,295 140,906
L75 278,190 279,424 371,830 221,722
LG75 490,574 505,349 674,314 387,905
misassemblies 1,646 2,028 1,862 1,675
misassembled contigs 1,616 1,964 1,834 1,574
Misassembled contigs length 7,024,951 8,980,285 5,411,377 8,462,601
local misassemblies 3,215 3,150 2,950 6,245
unaligned contigs 4455+3832part 5299+7391part 4705+15059part 6737+17189part
Unaligned length 6,644,111 7,557,260 6,483,978 9,026,923
Genome fraction (%) 81.17 80.46 80.09 81.33
Duplication ratio 1.01 1.01 1.01 1.01
N’s per 100 kbp 0.00 0.00 0.00 0.00
mismatches per 100 kbp 91.30 88.96 87.39 95.22
indels per 100 kbp 17.24 12.71 14.90 20.62
Largest alignment 70,592 74,646 61,847 97,109
NA50 6,003 5,867 4,391 7,592
NGA50 4,532 4,399 3,260 5,804
NA75 2,994 2,977 2,216 3,737
NGA75 1,335 1,258 983 1,594
LA50 124,125 124,733 164,428 98,801
LGA50 180,161 184,536 245,740 141,288
LA75 278,827 280,280 372,722 222,471
LGA75 492,702 508,248 677,770 390,406

120 Chapter A. Complete LASER Alignment Results For Genome Assemblies

Table A.10: LASER results for H3 scaffolds.

Program: ABySS SGA SOAPdenovo2 SAGE2
Overlap/k-mer Length: 78 82 77 78

contigs (>= 0 bp) 1,316,103 588,861 2,041,534 1,046,111
contigs (>= 1000 bp) 128,518 237,695 120,610 116,209
Total length (>= 0 bp) 2,983,450,141 2,753,129,326 3,041,613,982 2,913,957,318
Total length (>= 1000 bp) 2,817,601,458 2,640,226,727 2,723,536,763 2,709,056,387
contigs 151,308 284,654 162,994 186,641
Largest contig 560,030 277,348 540,433 513,158
Total length 2,833,989,654 2,673,491,079 2,753,368,917 2,758,031,648
Reference length 3,209,286,105 3,209,286,105 3,209,286,105 3,209,286,105
GC (%) 40.82 40.65 40.70 40.76
Reference GC (%) 40.99 40.99 40.99 40.99
N50 50,197 20,438 54,262 54,990
NG50 42,755 15,828 44,247 44,869
N75 24,676 9,960 26,334 26,554
NG75 15,518 4,570 13,995 13,901
L50 16,299 36,695 14,423 14,279
LG50 20,344 51,606 19,080 18,828
L75 36,259 83,349 32,472 32,154
LG75 50,529 141,336 49,978 49,388
misassemblies 17,897 13,488 104,593 24,629
misassembled contigs 11,876 9,459 29,928 12,747
Misassembled contigs length 290,769,241 108,494,521 894,303,559 265,221,745
local misassemblies 66,350 72,453 188,601 152,169
unaligned contigs 5669+3571part 6689+5162part 8995+20294part 7751+5453part
Unaligned length 14,919,882 13,954,741 63,020,257 17,527,084
Genome fraction (%) 85.30 82.43 80.67 84.22
Duplication ratio 1.03 1.01 1.04 1.01
N’s per 100 kbp 356.61 497.15 2,473.54 100.37
mismatches per 100 kbp 103.04 98.07 103.53 107.26
indels per 100 kbp 29.85 25.94 59.68 31.75
Largest alignment 559,292 277,134 535,906 513,027
NA50 48,209 19,995 46,246 52,796
NGA50 40,955 15,440 37,070 43,230
NA75 23,410 9,641 20,450 25,408
NGA75 14,603 4,306 8,355 13,109
LA50 16,981 37,372 16,592 14,828
LGA50 21,207 52,640 22,098 19,556
LA75 37,893 85,293 38,670 33,453
LGA75 52,968 145,864 63,562 51,585

121

Table A.11: LASER results for H4 contigs.

Program: ABySS SGA SOAPdenovo2 SAGE2
Overlap/k-mer Length: 95 105 95 85

contigs (>= 0 bp) 2,090,332 5,947,202 5,295,504 1,000,590
contigs (>= 1000 bp) 345,728 465,340 542,293 281,249
Total length (>= 0 bp) 2,985,812,932 3,743,802,253 3,389,518,869 2,878,436,768
Total length (>= 1000 bp) 2,648,848,342 2,620,519,797 2,529,980,097 2,662,902,138
contigs 430,157 614,197 732,452 359,302
Largest contig 134,504 172,299 129,492 203,677
Total length 2,708,111,910 2,724,191,459 2,665,648,222 2,717,533,904
Reference length 3,209,286,105 3,209,286,105 3,209,286,105 3,209,286,105
GC (%) 40.82 40.78 40.77 40.79
Reference GC (%) 40.99 40.99 40.99 40.99
N50 12,473 8,353 6,575 16,332
NG50 9,965 6,652 4,978 13,091
N75 6,268 4,100 3,117 8,132
NG75 3,214 2,184 1,479 4,165
L50 62,286 89,328 107,523 47,141
LG50 84,772 121,872 155,107 63,965
L75 138,527 205,704 255,106 105,865
LG75 220,557 325,364 441,756 167,998
misassemblies 2,126 2,653 2,328 2,125
misassembled contigs 1,968 2,413 2,187 1,859
Misassembled contigs length 16,003,022 15,748,128 10,182,145 21,927,574
local misassemblies 4,033 4,070 3,524 7,324
unaligned contigs 5086+3360part 7443+4943part 5693+8789part 5086+4891part
Unaligned length 7,871,276 10,274,608 7,904,530 9,058,906
Genome fraction (%) 83.76 83.96 82.31 83.62
Duplication ratio 1.01 1.01 1.01 1.01
N’s per 100 kbp 0.00 0.00 0.00 0.00
mismatches per 100 kbp 96.28 95.40 86.95 98.67
indels per 100 kbp 21.79 15.94 17.70 24.68
Largest alignment 134,502 172,299 129,486 203,677
NA50 12,436 8,324 6,559 16,254
NGA50 9,932 6,629 4,964 13,025
NA75 6,238 4,078 3,102 8,084
NGA75 3,179 2,156 1,458 4,109
LA50 62,463 89,602 107,756 47,341
LGA50 85,019 122,261 155,463 64,249
LA75 138,979 206,481 255,817 106,388
LGA75 221,572 327,199 443,981 169,101

122 Chapter A. Complete LASER Alignment Results For Genome Assemblies

Table A.12: LASER results for H4 scaffolds.

Program: ABySS SGA SOAPdenovo2 SAGE2
Overlap/k-mer Length: 95 105 95 85

contigs (>= 0 bp) 1,105,427 1,530,395 2,940,191 1,219,875
contigs (>= 1000 bp) 123,211 174,783 101,206 123,678
Total length (>= 0 bp) 2,986,522,925 3,120,864,494 3,248,261,172 3,130,442,764
Total length (>= 1000 bp) 2,816,772,758 2,722,727,585 2,781,574,681 2,723,610,005
contigs 148,566 230,523 145,563 357,221
Largest contig 450,136 328,004 647,153 511,459
Total length 2,834,716,067 2,759,831,626 2,812,117,028 2,876,483,297
Reference length 3,209,286,105 3,209,286,105 3,209,286,105 3,209,286,105
GC (%) 40.85 40.79 40.81 40.85
Reference GC (%) 40.99 40.99 40.99 40.99
N50 51,478 30,587 75,171 47,515
NG50 43,934 24,917 62,773 40,836
N75 25,416 14,938 35,750 21,404
NG75 16,233 8,297 21,026 13,120
L50 15,771 25,163 10,699 16,811
LG50 19,713 33,314 13,592 20,589
L75 35,206 57,375 24,183 39,145
LG75 48,901 87,218 34,903 53,906
misassemblies 11,957 9,994 94,817 45,534
misassembled contigs 8,253 6,744 26,754 27,055
Misassembled contigs length 174,189,232 120,646,106 1,011,516,226 163,393,558
local misassemblies 35,234 192,948 249,213 154,550
unaligned contigs 4907+2888part 7386+5466part 9985+17478part 30572+24164part
Unaligned length 12,415,493 16,035,711 56,287,399 37,064,037
Genome fraction (%) 85.84 84.48 81.88 85.05
Duplication ratio 1.03 1.01 1.05 1.04
N’s per 100 kbp 130.44 413.98 2,568.61 149.75
mismatches per 100 kbp 103.99 99.95 104.66 107.81
indels per 100 kbp 26.32 29.93 44.40 27.53
Largest alignment 449,930 328,004 643,390 511,425
NA50 50,116 29,844 62,031 46,361
NGA50 42,858 24,249 51,178 39,803
NA75 24,732 14,405 27,042 20,792
NGA75 15,701 7,772 13,226 12,699
LA50 16,177 25,658 12,571 17,250
LGA50 20,218 34,014 16,096 21,124
LA75 36,136 58,839 29,549 40,164
LGA75 50,247 90,172 44,879 55,374

123

Table A.13: LASER results for H5 contigs.

Program: ABySS SGA SOAPdenovo2 SAGE2
Overlap/k-mer Length: 90 105 90 85

contigs (>= 0 bp) 2,389,267 6,619,070 5,920,123 1,752,129
contigs (>= 1000 bp) 365,963 474,155 554,370 271,826
Total length (>= 0 bp) 3,013,395,723 3,870,912,558 3,445,435,878 3,066,749,378
Total length (>= 1000 bp) 2,645,790,974 2,631,647,246 2,528,901,821 2,618,000,286
contigs 456,508 631,181 748,510 397,597
Largest contig 140,640 115,971 116,964 194,702
Total length 2,709,602,256 2,740,913,281 2,667,422,165 2,705,466,683
Reference length 3,209,286,105 3,209,286,105 3,209,286,105 3,209,286,105
GC (%) 40.81 40.77 40.76 40.79
Reference GC (%) 40.99 40.99 40.99 40.99
N50 11,652 8,198 6,328 16,141
NG50 9,281 6,592 4,828 12,816
N75 5,805 4,017 3,039 7,935
NG75 2,981 2,206 1,462 3,820
L50 66,000 91,775 112,497 47,251
LG50 90,060 123,682 161,555 64,779
L75 148,116 211,108 264,792 106,746
LG75 236,494 327,510 454,171 173,471
misassemblies 2,032 2,689 2,353 2,215
misassembled contigs 1,911 2,457 2,238 1,918
Misassembled contigs length 13,788,203 15,743,727 9,444,381 21,016,146
local misassemblies 3,991 4,157 3,474 6,295
unaligned contigs 5214+3092part 7984+5032part 5876+8367part 5905+5459part
Unaligned length 7,770,535 10,736,211 7,918,912 8,156,392
Genome fraction (%) 83.80 84.44 82.37 82.95
Duplication ratio 1.01 1.01 1.01 1.01
N’s per 100 kbp 0.00 0.00 0.00 0.00
mismatches per 100 kbp 95.89 95.06 86.30 95.71
indels per 100 kbp 21.91 15.76 17.13 24.67
Largest alignment 140,640 115,971 116,964 194,702
NA50 11,624 8,170 6,313 16,070
NGA50 9,258 6,568 4,815 12,756
NA75 5,782 3,994 3,026 7,890
NGA75 2,951 2,179 1,444 3,766
LA50 66,154 92,062 112,729 47,451
LGA50 90,276 124,080 161,913 65,055
LA75 148,525 211,912 265,520 107,237
LGA75 237,463 329,331 456,365 174,553

124 Chapter A. Complete LASER Alignment Results For Genome Assemblies

Table A.14: LASER results for H5 scaffolds.

Program: ABySS SGA SOAPdenovo2 SAGE2
Overlap/k-mer Length: 90 105 90 85

contigs (>= 0 bp) 1,251,442 2,010,126 2,791,956 1,883,890
contigs (>= 1000 bp) 121,232 297,873 99,014 99,279
Total length (>= 0 bp) 3,009,785,847 3,184,095,416 3,240,808,403 3,289,299,138
Total length (>= 1000 bp) 2,827,746,712 2,636,743,305 2,793,843,276 2,660,520,753
contigs 146,669 442,000 142,958 421,934
Largest contig 506,699 243,456 597,474 558,430
Total length 2,845,815,092 2,735,779,854 2,824,281,366 2,872,290,895
Reference length 3,209,286,105 3,209,286,105 3,209,286,105 3,209,286,105
GC (%) 40.84 40.78 40.81 40.85
Reference GC (%) 40.99 40.99 40.99 40.99
N50 58,074 16,353 79,889 56,539
NG50 49,060 12,850 67,230 48,512
N75 27,048 7,393 37,804 25,168
NG75 16,700 3,424 22,568 14,749
L50 13,868 44,406 10,065 14,231
LG50 17,274 60,745 12,693 17,453
L75 31,739 106,432 22,831 33,014
LG75 44,436 175,147 32,607 45,943
misassemblies 13,621 3,188 100,925 46,187
misassembled contigs 9,091 2,684 27,372 27,238
Misassembled contigs length 212,666,717 38,060,420 1,129,083,987 180,324,857
local misassemblies 33,503 36,605 220,347 141,062
unaligned contigs 5342+2986part 7385+3804part 10711+19087part 37672+22460part
Unaligned length 12,444,183 10,442,541 62,967,105 38,679,758
Genome fraction (%) 86.12 84.44 82.07 84.33
Duplication ratio 1.03 1.01 1.05 1.05
N’s per 100 kbp 152.81 134.84 2,620.33 169.99
mismatches per 100 kbp 105.21 95.67 103.81 103.89
indels per 100 kbp 26.66 21.12 46.61 27.12
Largest alignment 506,508 243,429 544,568 542,673
NA50 56,410 16,238 64,798 54,919
NGA50 47,667 12,745 53,583 47,051
NA75 26,105 7,315 28,079 24,398
NGA75 16,112 3,342 13,980 14,249
LA50 14,301 44,748 12,153 14,654
LGA50 17,812 61,219 15,420 17,972
LA75 32,752 107,326 28,556 34,018
LGA75 45,912 177,145 42,769 47,375

125

Table A.15: LASER results for H6 contigs.

Program: ABySS SAGE2
Overlap/k-mer Length: 118 130

contigs (>= 0 bp) 1,895,662 2,072,442
contigs (>= 1000 bp) 356,617 515,217
Total length (>= 0 bp) 3,044,475,902 3,216,215,947
Total length (>= 1000 bp) 2,691,900,342 2,611,345,144
contigs 448,202 757,933
Largest contig 142,396 119,663
Total length 2,755,904,160 2,776,930,276
Reference length 3,209,286,105 3,209,286,105
GC (%) 40.82 40.73
Reference GC (%) 40.99 40.99
N50 12,101 7,233
NG50 9,958 5,874
N75 6,164 3,382
NG75 3,511 1,915
L50 65,756 103,293
LG50 86,417 136,502
L75 145,168 243,514
LG75 217,199 369,545
misassemblies 4,181 5,159
misassembled contigs 3,892 4,821
Misassembled contigs length 23,083,598 17,181,841
local misassemblies 4,532 5,440
unaligned contigs 8063+5384part 11844+30453part
Unaligned length 11,756,418 17,394,649
Genome fraction (%) 85.20 83.26
Duplication ratio 1.00 1.03
N’s per 100 kbp 0.00 0.00
mismatches per 100 kbp 96.69 101.11
indels per 100 kbp 19.32 20.23
Largest alignment 142,396 119,663
NA50 12,052 7,202
NGA50 9,913 5,844
NA75 6,128 3,350
NGA75 3,469 1,874
LA50 65,979 103,645
LGA50 86,726 137,009
LA75 145,778 244,783
LGA75 218,445 372,658

Curriculum Vitae

126

Michael Molnar
EDUCATION University of Western Ontario, London, Ontario, Canada

■ Doctor of Philosophy (PhD) in Computer Science Jan 2013 – Dec 2017
● Thesis: Genome Assembly from Next Generation DNA Sequencing Data
● Adviser: Dr. Lucian Ilie
● Research area: Bioinformatics.

■ Master of Science (MSc) in Computer Science Sep 2011 – Dec 2012
● Thesis: Error Correction in Next Generation DNA Sequencing Data
● Adviser: Dr. Lucian Ilie
● Research area: Bioinformatics.

■ Bachelor of Science (BSc) in Bioinformatics (Biochemistry Concentration) Sep 2001 – Aug 2011
● Graduated with Honors.

Fanshawe College, London, Ontario, Canada
■ Diploma in Business Information Systems Sep 1997 – Aug 1999

PUBLICATIONS JOURNALS

[1] Molnar, M., Haghshenas, E., and Ilie, L. (2017). SAGE2: Parallel Human Genome Assembly.
Bioinformatics, btx648.

[2] Molnar, M., and Ilie, L. (2014). Correcting Illumina data. Briefings in Bioinformatics, 16(4),
588-599.

[3] Ilie, L., Haider, B., Molnar, M., and Solis-Oba, R. (2014). SAGE: string-overlap assembly of
genomes. BMC Bioinformatics, 15(1), 302.

[4] Ilie, L., and Molnar, M. (2013). RACER: Rapid and accurate correction of errors in reads.
Bioinformatics, 29(19), 2490-2493.

JOURNAL
REVIEWS

■ Bioinformatics Nov 2013 – Present
● Impact factor 7.307.

■ Briefings in Bioinformatics May 2015 – Present
● Impact factor 5.134.

WORK
EXPERIENCE

University of Western Ontario, London, Ontario, Canada
■ Guest Lecturer Feb 2016

● CS 2124/2125 - Medical Computing.
● Presentation: Next-Generation DNA Sequencing and De Novo Genome Assembly.

■ Guest Speaker Nov 2015
● Topical Research In Computer Science Seminar.
● Presentation: Genome Assembly using DNA Sequencing Data.

■ Teaching Assistant Sep 2013 – Apr 2017
● Taught and prepared labs.
● Consulted with students.
● Graded assignments and exams.
● Proctored exams.

SCHOLARSHIPS
AND GRANTS

■ Queen Elizabeth II Graduate Scholarship in Science and Technology 2015 – 2016
■ Queen Elizabeth II Graduate Scholarship in Science and Technology 2012

PUBLISHED
PROGRAMS

■ SAGE2: String-overlap Assembly of GEnomes
● De novo genome assembly from Next-Generation DNA sequencing data.

■ RACER: Rapid and Accurate Correction of Errors in Reads
● Corrects errors in Next-Generation DNA sequencing data.

■ kmerSearch
● Error correction evaluation of k-mers in reads.

■ readSearch
● Error correction evaluation of whole reads.

Page 1 of 2

AWARDS ■ UWO Research in Computer Science Conference, University of Western Ontario Apr 2016
● 2nd place.

■ UWO Research in Computer Science Conference, University of Western Ontario Apr 2015
● 2nd place.

■ UWO Research in Computer Science Conference, University of Western Ontario Apr 2013
● 1st place.

■ Dean’s List, Fall 2001 through Spring 2002, University of Western Ontario 2001 – 2002

SKILLS Unix, Linux, C++, OpenMP, JAVA, Python, Perl, Visual Basic, HTML, LATEX, MATLAB, R, Microsoft
Office, Photoshop, Dreamweaver.

LANGUAGES ■ English: Native language.

[CV compiled on 2017-11-28]

Page 2 of 2

	Western University
	Scholarship@Western
	December 2017

	Error Correction and de novo Genome Assembly of DNA Sequencing Data
	Michael Z. Molnar
	Recommended Citation

	Abstract
	Dedication
	Acknowlegements
	List of Figures
	List of Tables
	List of Appendices
	Introduction
	DNA sequencing
	Sanger method
	Next generation sequencing

	Error correction
	Genome assembly
	Overview of my work

	Error Correction: RACER
	RACER algorithm
	Automated parameter selection
	Efficient k-mer storage and retrieval
	Hash table and hashing function
	Counting bases adjacent to the k-mers
	Correcting the reads
	Results
	Evaluation
	Results of the unmapped data sets
	Results of the mapped data sets
	Time and space

	Conclusions

	Evaluation of Error Correcting Software
	Introduction
	Problems with existing approaches
	Goals for the survey
	Coverage depth and breadth
	Coverage
	Gain in depth of coverage
	Gain in breadth of coverage

	Evaluation tools
	The readSearch algorithm
	The kmerSearch algorithm

	Illumina HiSeq and MiSeq machines
	Data sets used for evaluation
	Results
	Recommendations for biologists
	Conclusions

	Genome Assembly: SAGE2
	Introduction
	Goals for SAGE2
	SAGE2 algorithm
	Error correction
	Inputing the reads
	Building the hash table
	Parallel overlap graph construction
	Serial overlap graph construction
	Graph simplification
	Contracting composite paths
	Removing dead-ends
	Popping bubbles

	Genome size estimation
	Estimating insert size distribution
	Minimum cost flow
	Resolving ambiguous nodes
	Introduction
	Overview
	Resolving single ambiguous nodes with paired-end reads
	Resolving ambiguous nodes by path search
	Merging short overlapping contigs

	Scaffolding
	Merging contained contigs
	Merging contained contigs with multiple support
	Merging contained contigs with low support
	Merging short contigs

	Results
	Medium sized genome results
	Human genome results
	Time and space usage

	Conclusions

	Conclusions and Future Research
	Conclusions
	Future research
	RACER
	Error correction evaluation
	SAGE2

	Bibliography
	Complete LASER Alignment Results For Genome Assemblies
	Curriculum Vitae

