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ABSTRACT

In this thesis, we report on our studies of the transport properties, optical

response and slow dynamical nature of novel room temperature ionic liquids. Using

computer simulations we have demonstrated that the diffusive dynamics of these

systems is in many ways analogous to that of other glassy or supercooled liquids.

These solvents show non-Gaussian rotational and translational diffusion which have

a temporal extent on the order of nanoseconds at room temperature. Our study of

their response upon application of an external mechanical perturbation shows that

even for systems with a box length as large as 0.03 microns the viscosities computed

from perturbation wavenumbers compatible with this box size have not yet reached

the hydrodynamic limit. We found these systems to behave in a non-Newtonian

fashion and we also observe a clear break down of linear response theory on the nano-

or sub-micrometer scale.

Upon photoexcitation of an organic probe with lifetime shorter than the reor-

ganization timescale in these ionic liquids, (which is quite long on the order of several

nanoseconds at least), the emission spectrum is absorption wavelength dependent.

Our computer simulations rationalized this observation in terms of local solvent en-

vironment around individual subensemble probe members. Excitation of different

solute molecules in the liquid gives rise to site-specific optical responses. We revealed

that the origin of this excitation wavelength dependence is the existence of persistent

excited-state environments that do not get solvent averaged on a time scale relevant
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to fluorescence. The computed time resolved fluorescence spectra show that the full

loss of correlation between absorption and emission frequencies for probes in room

temperature ionic liquids occur on a time scale of nanoseconds.

One of the most interesting features of ionic liquids is their uncommonly large

range of dynamical time scales which in turn makes some of their properties to be

quite different from that of most other conventional solvents. We hope that our

understanding of these phenomena will be useful in the future in the development of

tools to harness their potential to control the outcome of chemical and photo-chemical

reactions.
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ABSTRACT

In this thesis, we report on our studies of the transport properties, optical

response and slow dynamical nature of novel room temperature ionic liquids. Using

computer simulations we have demonstrated that the diffusive dynamics of these

systems is in many ways analogous to that of other glassy or supercooled liquids.

These solvents show non-Gaussian rotational and translational diffusion which have

a temporal extent on the order of nanoseconds at room temperature. Our study of

their response upon application of an external mechanical perturbation shows that

even for systems with a box length as large as 0.03 microns the viscosities computed

from perturbation wavenumbers compatible with this box size have not yet reached

the hydrodynamic limit. We found these systems to behave in a non-Newtonian

fashion and we also observe a clear break down of linear response theory on the nano-

or sub-micrometer scale.

Upon photoexcitation of an organic probe with lifetime shorter than the reor-

ganization timescale in these ionic liquids, (which is quite long on the order of several

nanoseconds at least), the emission spectrum is absorption wavelength dependent.

Our computer simulations rationalized this observation in terms of local solvent en-

vironment around individual subensemble probe members. Excitation of different

solute molecules in the liquid gives rise to site-specific optical responses. We revealed

that the origin of this excitation wavelength dependence is the existence of persistent

excited-state environments that do not get solvent averaged on a time scale relevant
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to fluorescence. The computed time resolved fluorescence spectra show that the full

loss of correlation between absorption and emission frequencies for probes in room

temperature ionic liquids occur on a time scale of nanoseconds.

One of the most interesting features of ionic liquids is their uncommonly large

range of dynamical time scales which in turn makes some of their properties to be

quite different from that of most other conventional solvents. We hope that our

understanding of these phenomena will be useful in the future in the development of

tools to harness their potential to control the outcome of chemical and photo-chemical

reactions.
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CHAPTER 1
INTRODUCTION

Ionic Liquids (ILs) have recently attracted significant attention from academic

and industrial sources. These novel solvents are important to chemists for three

reasons. (1) They can dissolve a wide range of polar and nonpolar organic and

inorganic molecules. (2) Although they are liquids at room temperature, their vapor

pressures are negligible. (3) New chemical reactions and industrial processes are being

discovered that can only be carried out in these solvents. As opposed to most other

organic solvents, these liquids have the potential of being greener reaction media

because they are non-volatile.

The number of different ionic liquids that can be made by choosing particular

organic cations and non coordinating anions is enormous[17]. The reason why room-

temperature ionic liquids (RTILs) are liquid at room temperature is still not fully

understood. From recent X-ray crystal structure studies, we know that some tend to

crystallize into disordered solids[46] and, depending upon the rate of cooling, crystal

polymorphism[33] can be observed. On the basis of these observations, it has been

speculated that the gain in energy upon formation of the crystal is not as large as

in traditional inorganic salts and is not enough to compensate for the loss in entropy

that accompanies the formation of the crystal at room temperature[46]. Experiments

show that several of these systems have a tendency toward glassy behavior[58, 75]

and, depending upon the length of alkyl substituents in the cations, their properties

range from those of normal liquids to glassy or even liquid crystals[34]. As recently
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discussed in an interesting review article by MacFarlane and co-workers[17], the pos-

sible number of compounds expected to form RTILs is extremely large. Only a very

small fraction of these have been synthesized. Their selectivity as media for chemical

and photochemical reactions remains terra incognita and invites for a thorough the-

oretical understanding of the trends to be anticipated as molecular modifications are

applied.

In this thesis, we discuss our progress in understanding the dynamics, spec-

troscopy, and fluid dynamics of selected imidazolium- and pyridinium-based ionic

liquids using computational and analytical tools we have developed during the last

four years. All the mathematical tools required to understand our work are provided

either in the corresponding chapters in which the theory and calculations are pre-

sented, or in appendices A and B. Our results and recent experiments indicate that

some of these exciting systems appear to be dynamically heterogeneous at least at

room temperature. Our studies also indicate the existence of locally heterogeneous

environments on a time scale relevant to chemical and photo-chemical reactivity.

When we study the fluid dynamics of these solvents on a nanometer length scale,

we find that flow is non-Newtonian and we observe a clear break down of linear re-

sponse theory. One of the main contributions to this field provided by our work is

the understanding that widely different time scales dominate the dynamics of these

systems[36]. We hope that in the future the tools and insight we have developed will

help the ionic liquids community in the design of liquids and the control of chemical

reactivity in these systems.
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CHAPTER 2
DYNAMICAL VARIABLES AND TIME CORRELATION

FUNCTIONS

The first two chapters provide the theoretical background for the analysis of the

properties of room-temperature ionic liquids. The fundamentals of these statistical

mechanics theories have been developed during the past forty years [30, 8, 27, 16].

In this work we reformulate and apply to the theory of transport properties and

dynamics. The resulting formulation is quite general in the sense that it is always valid

for any material state: gas, liquid or solid without limitation to a specific interaction.

There will be closing remarks at the end of each section summarizing the importance

and the applicability of the material presented. People who are not interested in

fundamental theories of statistical mechanics can simply read the introduction and

jump to the end of the sections of these two chapters.

The first chapter on dynamical variables and time correlation functions (TCFs)

provides a general background on the theory used in our work. In this chapter we will

show how to construct a framework to study dynamical properties of liquids. For our

own purpose, transport properties such as diffusion and shear viscosity are used as

examples to illustrate the use of the theories of TCFs. Excellent books and frequently

cited papers can be found in references [8, 27, 77].

The starting point for our derivations in the first chapter is Hamilton’s equa-

tions of motion in the frame work of classical mechanics. Informative results are

derived by manipulating thermodynamical integrals instead of solving Hamiltonian
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equations directly.

2.1 Time Evolution of Dynamical Variables

In the study of the dynamics of liquids, one usually focuses on experimentally

measurable properties. From a theoretical point of view, one would like to understand

what dynamical variables are associated with the experiment and how these variables

evolve as a function of time. Without any loss of generality, we consider a system

of interest containing N particles (atoms or molecules) with positions and momenta

denoted by (Rj, j = 1, 2, · · · , N) and (pj, j = 1, 2, · · · , N) respectively. The total

volume of this system is V and the mass of each particle is mj (j = 1, 2, · · · , N) The

dynamics of the system is driven by Hamiltonian equations of motion:














ṗj = − ∂H
∂Rj

Ṙj = ∂H
∂pj

j = 1, 2, · · · , N (2.1)

The time evolution of an arbitrary dynamical quantity A(RN ,pN), not explic-

itly depending on time, can be written in terms of Liouville operator:

dA

dt
= iL̂A (2.2)

where L̂ is Liouville operator defined as:

iL̂A =
∑

j

(− ∂H

∂Rj

∂A

∂pj

+
∂H

∂pj

∂A

∂Rj

)

=

N
∑

j=1

pj

mj
· ∇Rj

A(RN ,pN ) +

N
∑

j=1

Fj · ∇pj
A(RN ,pN) (2.3)

where Fj is the force on particle j. Throughout this thesis, we frequently use this

kind of form (RN) as the collective notation of 3N variables (R1,R2, · · · ,RN). The
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Liouville operator is Hermitian in the sense that:

BiL̂C = CiL̂B (2.4)

where B,C are arbitrary dynamical variables. The proof of the Hermitian equal-

ity (2.4) can be found in standard books of statistical mechanics[52] and will not be

repeated here. The solution to equation (2.2) can be formally written as

A(RN(t),pN(t)) = eiL̂tA(RN(0),pN(0)) (2.5)

In general, operator eitL̂ displaces an arbitrary dynamical variable A(pN ,RN) by a

distance t in time. This operator is called time displacement operator of the system.

Though the displacement operator has a simple form, the solution itself is not useful

because of the complicated structure of the Liouville operator (2.3). In principle,

one has to solve the Hamiltonian equations (2.1) to explicitly write out the Liouville

operator. However it is analytically unachievable to solve the set of 3N coupled

equations (2.1) because any macroscopic system has a number of particles on the

order of 1010 or even larger. Fortunately, experimentally observable quantities are

usually ensemble averages of all possible value of A:

< A(t) >≡
∫ ∫

dRNdpNA(RN ,pN)f(RN ,pN , t) (2.6)

where f(RN ,pN , t) is the distribution function or the phase density which determines

the entire dynamical information of the ensemble. Equation (2.6) is an integral over

all 3N degrees of freedom. Therefore, it is possible that we can extract useful infor-

mation of the average by manipulating the integral rather than solving 3N coupled

equations (2.1) directly.
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In all of the cases we discussed in this thesis, the distribution function satisfies

the so called Liouville equation[52]:

∂f(RN ,pN , t)

∂t
= −iL̂f(RN ,pN , t) (2.7)

Similar to the solution of equation (2.2), we have

f(RN ,pN , t) = e−iL̂tf(RN ,pN , t = 0) (2.8)

Note that the time factor t is explicitly included in the distribution function while it

is only implicit in the dynamical variable A. A straightforward manipulation by using

the Hermitian property of the Liouville operator along with Liouville equation (2.7)

leads to another form of ensemble average:

< A(t) > =

∫ ∫

dRNdpNA(RN ,pN)f(RN ,pN , t)

=

∫ ∫

dRNdpNA(RN ,pN)e−iL̂tf(RN ,pN , t = 0)

=

∫ ∫

dRNdpN(eiL̂tA(RN ,pN))f(RN ,pN , t = 0)

≡
∫ ∫

dRNdpNA(RN(t),pN(t))f(RN ,pN) (2.9)

where equations (2.6) and (2.9) are called Schrodinger and Heisenberg representations

respectively. Before we pursue to reformat equation (2.2) in a more informative way,

we introduce an important ensemble average and the definition of projection operator.

It turns out that the most useful ensemble average is the equilibrium time correlation

function (TCF) defined as:

CAB(t) ≡< A∗(0)B(t) >=

∫ ∫

A∗(0)B(t)f(0)dpN dRN
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when A = B, the time correlation function is called auto correlation function (ACF).

A∗ denotes the complex conjugate of A. Clearly, we can project the component of an

arbitrary variable B onto the dynamical variable A using the TCF CAB:

P̂B ≡ A < A∗A >−1< A∗B >

Also, the complementary operator Q̂ is defined as Q̂ ≡ 1− P̂ . We have the following

properties for the projection operator in general:

P̂ 2 = P̂ Q̂2 = Q̂ P̂ Q̂ = 0

for arbitrary dynamical variables B and C,

< C∗(P̂B) >=< (P̂C)∗B > P̂ (B + C) = P̂B + P̂C

With the definition of the time correlation functions and the projection operator, it

is the right time to derive a more powerful and informative formula to describe the

time evolution of a dynamical variable. The idea is to separate the entire driving

force iL̂A in equation 2.2 into a friction force parallel to quantity A and a fluctuating

force orthogonal to quantity A (Q̂A). We start from equation (2.2):

dA(t)

dt
= iL̂A(t) = iL̂eitL̂A(0)

= eitL̂iL̂A(0) = eitL̂(P̂ + 1 − P̂ )iL̂A(0)

= eitL̂P̂ iL̂A(0) + eitL̂Q̂iL̂A(0)

= eitL̂A(0)
< A∗(0)iL̂A(0) >

< A∗A >
+ eitL̂Q̂iL̂A(0)

= iΩA(t) + eitL̂Q̂iL̂A(0) (2.10)
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we further write eitL̂ as:

eitL̂ = eitL̂θ(t) + eitQ̂L̂

Differentiating both sides:

eitL̂(iL̂) = iL̂eitL̂θ(t) + eitL̂θ̇(t) + iQ̂L̂eitQ̂L̂

Insert the expression of eitL̂:

iL̂(eitL̂θ(t) + eitQ̂L̂) = iL̂eitL̂θ(t) + eitL̂θ̇(t) + iQ̂L̂eitQ̂L̂

eitL̂θ̇(t) = iP̂ L̂eitQ̂L̂

θ(t) =

∫ t

0

dτe−iτ L̂iP̂ L̂eiτQ̂L̂

with initial condition θ(t = 0) = 0. Therefore,

eitL̂ = eitL̂

∫ t

0

dτe−iτ L̂iP̂ L̂eiτQ̂L̂ + eitQ̂L̂

eitL̂Q̂iL̂A(0) = eitL̂

∫ t

0

dτe−iτ L̂iP̂ L̂eiτQ̂L̂Q̂iL̂A(0) + eitQ̂L̂Q̂iL̂A(0)

=

∫ t

0

dτei(t−τ)L̂iP̂ L̂f(τ) + f(t)

where

f(t) = eitQ̂L̂Q̂iL̂A(0)

Thus, we get a first order integral differential equation:

dA(t)

dt
= iΩA(t) +

∫ t

0

dτei(t−τ)L̂iP̂ L̂f(τ) + f(t)

the integral kernel is further expressed as

iP̂Lf(τ) = iA(0) < A∗(0)L̂f(τ) >< A∗A >−1

= iA(0) < (L̂A(0))∗f(τ) >< A∗A >−1
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Here, using the properties of projection operator Q̂2 = Q̂, we have

< (L̂A)∗f(τ) > = < L̂A(0))∗eiτQ̂L̂Q̂iL̂A(0) >

= < L̂A(0))∗iQ̂L̂eiτQ̂L̂A(0) >

= < L̂A(0))∗iQ̂2L̂eiτQ̂L̂A(0) >

= < L̂A(0))∗iQ̂f(τ)

= < (Q̂L̂A)∗f(τ) >

= i < (Q̂iL̂A)∗f(τ) >

= i < (f(0))∗f(τ) >

then the integral kernel is reformatted as:

iP̂ L̂f(τ) = iA(0)i < f ∗(0)f(τ) >< A∗A >−1

= −A(0) < f ∗(0)f(τ) >< A∗A >−1

Substitute the integral kernel into the first order integral differential equation, we

eventually get the so called Generalized Langevin Equation (GLE):

dA(t)

dt
= iΩA(t) +

∫ t

0

dτei(t−τ)L̂iP̂ L̂f(τ) + f(t)

= iΩA(t) −
∫ t

0

dτei(t−τ)L̂A(0) < f ∗(0)f(τ) >< A∗A >−1 +f(t)

= iΩA(t) −
∫ t

0

dτA(t− τ)K(τ) + f(t)

= iΩA(t) −
∫ t

0

dτA(τ)K(t− τ) + f(t) (2.11)

where,

iΩ =< A∗A >−1< A∗(0)iL̂A(0) >
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f(t) = eit(1−P̂ )L̂(1 − P̂ )iL̂A(0)

K(τ) =< f ∗(0)f(τ) >< A∗A >−1

Note that

< A(0)f(t) > = < P̂A(0)(1 − P̂ )iL̂eit(1−P̂ )L̂A(0) >

= < A(0)P̂ Q̂B >= 0 (2.12)

The above method to derive the GLE (2.11) follows closely that in the reference[59].

We also present several other alternative methods to derive GLE for the time evolution

of the dynamical variable or the TCF in Appendix A. Clearly, the GLE merely

separates the total driving force into three components. Equation (2.12) ensures that

the correlation between f(t) and A(0) vanishes thus making the variable f(t) an

orthogonal fluctuating force. The first term in the right hand side (rhs) of the GLE

is still a driving force and the second term is a convolution between the dynamical

variable at time τ and the memory kernel K(t− τ). In the Markoffian approximation

we perform a substitution on the convolution integral

∫ t

0

dτA(t− τ)K(τ) '
[
∫ ∞

0

dτK(τ)

]

A(t) = γA(t)

clearly γ plays the role of friction coefficient and the second term is essentially a

frictional force.

Multiplying both sides of the GLE by A∗(0) and taking the ensemble integral,

we can get the GLE of the TCF C(t) =< A∗(0)A(t) >,

dC(t)

dt
= iΩC(t) +

∫ t

0

dτC(τ)K(t− τ) (2.13)
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GLEs (2.11) and (2.13) are powerful starting points for analytical theories of TCFs

(e.g. Mode Coupling Theory).

We shall close this section with the following general remarks. The time cor-

relation functions play an essential role in the area of statistical mechanics. In this

way, TCFs play a role of equal importance to that of partition functions in time inde-

pendent statistical mechanics. This point will be more obvious when we extensively

correlate a variety of nonequilibrium responses to the equilibrium TCFs in chapter

3. Nevertheless, our introductory discussion ending with the GLE provides a gen-

eral background to study the dynamics of liquids. Case study of dynamical variables

(e.g. number density, single particle velocity, transverse current density) relevant to

transport properties are provided in the next sections of this chapter.

2.2 Transport Properties

For the purpose of studying transport properties of liquids, the fundamental

dynamical variables of interest and their spatial Fourier transform are

the number density:

n(r, t) =
1√
N

N
∑

p=1

δ(r − Rp(t)) n(k, t) =
1√
N

N
∑

p=1

eik·Rp(t)

the current density:

j(r, t) =
1√
N

N
∑

p=1

vp(t)δ(r − Rp(t)) jα(k, t) =
1√
N

N
∑

p=1

vpα(t)eik·Rp(t)

longitudinal and transverse part of the current density:

jl(k, t) =
1√
N

N
∑

p=1

k̂ · vp(t)e
ik·Rp(t) jt(k, t) =

1√
N

N
∑

p=1

k̂⊥ · vp(t)e
ik·Rp(t) (2.14)
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the single particle density (particle 1):

ns(r, t) = δ(r− R1(t)) ns(k, t) = eik·R1(t)

the single particle velocity (particle 1):

v1(t)

and

js(r, t) = v1(t)δ(r− R1(t)) js(k, t) = v1(t)e
ik·R1(t)

where, N is the total number of particles, Rp(t) and vp(t) are the position and velocity

of particle p at time t.

By taking the equilibrium ensemble integral as in the equation (2.6), the av-

erage values of these variables are:

< n(r, t) >=
√
N/V < n(k, t) >=

√
Nδk,0

< ns(r, t) >= 1/V < ns(k, t) >= δk,0 < jα(k, t) >=< js(k, t) >= 0

< v1(t) >=< j(r, t) >=< js(r, t) >= 0 < j(k, t) >=< j(k = 0, t) > δk,0

Therefore the ACF of above fundamental variables and the temporal Fourier trans-

formation (power spectra) are:

Density correlation function:

G(|r − r′|, t) = V < δn(r′, 0)δn(r, t) >=
1

n
<
∑

pq

δ(r′ − Rp(0))δ(r − Rq(t)) > −n
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G(r, t) =
1

V

∫

dr′G(|(r + r′) − r′|, t)

=
1

N
<
∑

pq

δ(r′ − Rp(0))δ(r + r′ − Rq(t)) > −n

=
1

N
<
∑

pq

δ(r + Rp(0) − Rq(t)) > −n = Gs(r, t) +Gd(r, t) − n

=
1

N

∑

p

< δ(r + Rp(0) − Rp(t)) > +
1

N
<
∑

p6=q

δ(r + Rp(0) − Rq(t)) > −n

van Hove self-correlation function:

Gs(|r − r′|, t) = V < δns(r
′, 0)δns(r, t) >= V < δ(r′ − R1(0))δ(r − R1(t)) > − 1

V

Gs(r, t) =
1

V

∫

dr′Gs(|(r + r′) − r′|, t) +
1

V
=< δ(r + R1(0) − R1(t)) >

=
1

N

∑

p

< δ(r + Rp(0) − Rp(t)) >

normalized velocity autocorrelation function:

Ψ(t) =
< v1(0) · v1(t) >

< v1(0) · v1(0) >
Ψ(ω) =

∫ ∞

−∞

eiωtΨ(t)

intermediate scattering function:

F (k, t) =< n∗(k, 0)n(k, t) > −n(2π)3δ(k) =

∫ +∞

−∞

eik·rG(r, t)dr

S(k, ω) =

∫ ∞

−∞

eiωtF (k, t)

incoherent intermediate scattering function:

Fs(k, t) =< eik·(R1(t)−R1(0)) >=

∫ +∞

−∞

eik·rGs(r, t)dr Ss(k, ω) =

∫ ∞

−∞

eiωtFs(k, t)

current correlation function:

Jαβ(|r− r′|, t) = V < j∗α(r′, 0)jβ(r, t) > Jαβ(k, t) =< j∗α(k, 0)jβ(k, t) >
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longitudinal current correlation function:

Jl(k, t) =
1

N
<
∑

pq

(k̂ · vp(0))e−ik·Rp(0)(k̂ · vq(t))e
ik·Rq(t) >

Jl(k, ω) =

∫ ∞

−∞

eiωtJl(k, t)

transverse current correlation function:

Jt(k, t) =
1

N
<
∑

pq

(k̂⊥ · vp(0))e−ik·Rp(0)(k̂⊥ · vq(t))e
ik·Rq(t) >

Jt(k, ω) =

∫ ∞

−∞

eiωtJt(k, t)

where V and n are the volume and number density of the system respectively. the

notation δA stands for A− < A >. The direction of k is the longitudinal direc-

tion. k̂ and k̂⊥ denote unit vectors of longitudinal direction and transverse direction

respectively. Recall that any dynamical variable of interest can be expressed as:

A(r, t) = eitLA(r, 0)

where the dependence of t is through Rq = Rq(t) and vq = vq(t). The Liou-

ville operator L is a Hermitian first-order differential operator with the property

of iLfeq(R
N ,vN) = 0. Therefore, we have the identity for any TCF:

< A∗(k, 0)
∂A(k, t)

∂t
>= − <

∂A∗(k, t)

∂t

∣

∣

∣

∣

t=0

A(k, t) >

Further, multiplying the Fourier transform
∫∞

−∞
dteiωt < A∗(k, 0)A(k, t) > by ω2 and
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manipulating the integral by parts, we obtain

ω2

∫ ∞

−∞

dteiωt < A∗(k, 0)A(k, t) > = i2
∫ ∞

−∞

dt

[

∂2eiωt

∂t2

]

< A∗(k, 0)A(k, t) >

= −
∫ ∞

−∞

dteiωt < A∗(k, 0)
∂2A(k, t)

∂t2
>

=

∫ ∞

−∞

dteiωt <
∂A(k, t)

∂t

∣

∣

∣

∣

t=0

∂A(k, t)

∂t
>

The following equalities can be easily obtained from the above equation:

Jl(k, ω) =
ω2

k2
S(k, ω) Ψ(ω) = lim

k→0

(

ω

kv0

)2

Ss(k, ω)

In general, we find the following quantities from static correlation functions:

G(r, t = 0) = δ(r) + ng(r) − n Gs(r, t = 0) = δ(r) Gd(r, t = 0) = ng(r)

F (k, t = 0) = 1 + n

∫

d3reik·r(g(r) − 1) = S(k) (2.15)

Fs(k, t = 0) = 1 (2.16)

Jαβ(k, 0) = v2
0δαβ (2.17)

< v1(0) · v1(0) >= 3 < vα(0)vα(0) >= 3v2
0 (2.18)

where the last line is valid for any arbitrary Cartesian component α. v0 = (kbT/m)1/2

is the thermal speed. g(r) is the equilibrium pair distribution function or called

radial distribution function (RDF). S(k) is called the static structure factor which

can be directly measured by X-ray and neutron diffraction. Equations (2.15) (2.16)

and (2.18) are straight forward to derive, while equation (2.17) is a little bit more

involved. Assuming that the equilibrium distribution function feq(R
N ,vN) is an even
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function of any Rpα and vpα. From the definition of current correlation function:

Jαβ(k, 0) =
1

N
<
∑

pq

vpαvqβe
ik·Rpe−ik·Rq >

=
1

N

∑

p

∑

q

∫

dRNeik·Rpe−ik·Rq

∫

dvNvpαvqβfeq

=
1

N

∑

p

∑

q

∫

dRNeik·Rpe−ik·Rq

∫

dvNvpαvqβδpqfeq

=
1

N

∑

p

∫

dRN

∫

dvNvpαvpβfeq

=
1

N

∑

p

∫

dRN

∫

dvNvpαvpβfeq

=
δαβ

N

∑

p

∫

dRN

∫

dvNvpαvpαfeq

=
δαβ

N

∑

p

< vαvα >= δαβ < vαvα >= δαβv
2
0 (2.19)

Thus we proved the equality in equation (2.17). Integration over r shows that:

∫

Gs(r, t)dr = 1

∫

Gd(r, t)dr = N − 1

Also, at large t, Gs(r, t) and Gd(r, t) become independent of r while the behavior at

large r is clearly the same as that at large t. Therefore,

lim
r→∞

Gs(r, t) = lim
t→∞

Gs(r, t) =
1

V
' 0

lim
r→∞

Gd(r, t) = lim
t→∞

Gd(r, t) =
N

V
' n

The above discussion provides the background involved in order to study two

important transport properties: shear viscosity and diffusion. The rest of this section

aims at deriving a set of equations to link the time correlation functions to transport

properties of liquids.
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2.2.1 Shear Viscosity

We start from the fundamental equation of continuous mechanics, the Navier-

Stokes equation[8]:

ρ
∂u

∂t
+ ρ(u · ∇)u = ρa + η∇2u + (

η

3
+ κ)∇(∇ · u) −∇p

where ρ is the mass density, u is the velocity of a liquid, a is the external force

per unit mass, p is the pressure and η, κ are coefficients of shear and bulk viscosity

respectively. u(r, t) is the macroscopic expression for the current density j(r, t). In

order to calculate the shear viscosity, it is sufficient to consider only the transverse

part of the current. We therefore divide j(r, t) into longitudinal and transverse parts

j(r, t) = jl(r, t) + jt(r, t), where ∇ · jt(r, t) = 0,∇ × jl(r, t) = 0. Thus, we have the

transverse part of Navier-Stokes equation in the absence of external force (a = 0):

∂

∂t
jt(r, t) =

η

ρ
∇2jt(r, t) (2.20)

and the corresponding equation in k space:

∂

∂t
jt(k, t) = −η

ρ
k2jt(k, t) (2.21)

It is worth to denote that this equation has the same form as the diffusion equation:

∂

∂t
ns(k, t) = −Dk2ns(k, t) (2.22)

which can be derived from (1) Fick’s law:

js(k, t) = ikDns(k, t) (2.23)
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and (2) the number density conservation law:

ik · js(k, t) =
∂

∂t
ns(k, t) (2.24)

where D is the diffusion constant. Equation(2.23) is just the Fourier transform of

normal Fick’s law js = −D∇n. It should be kept in mind that equation (2.20) is only

valid at long time and large length scale. The solution to this equation in k space is

jt(k, t) = jt(k, 0)exp(−η
ρ
k2t)

Furthermore, the time correlation function of current density j(r, t) is given by

Jt(k, t) = v2
0exp(−

η

ρ
k2t) (2.25)

Again, this is valid only at long times and small k. For simplicity, we take the

longitudinal direction (direction of k) along the z axis and a transverse direction

along the x axis. Recalling the definition of transverse current correlation function:

Jt(k, t) =
1

N
<
∑

pq

vpx(t)vqx(0)eik(zp(t)−zq(0)) > (2.26)

and comparing to the expansion in powers of k of equations (2.25) and (2.26), we get

the expression for the coefficient of shear viscosity:

η = lim
t→+∞

m2

2tkbTV
<
∑

pq

vpx(t)vqx(0)(zp(t) − zq(t))
2 > (2.27)

Notice that from the conservation of total momentum, the property of stationarity

and the evenness of the equilibrium distribution function in momentum, we have the
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following equalities:

<
∑

p

vpx(t)z
2
p(t)

∑

q

vqx(0) > = <
∑

p

vpx(t)z
2
p(t)

∑

q

vqx(t) >

= <
∑

p

vpx(0)z2
p(0)

∑

q

vqx(0) >

= <
∑

p

v2
px(0)z2

p(0) > (2.28)

The above equation enables us to rewrite equation (2.27) as:

η = lim
t→+∞

1

2tkbTV
< ∆G(t)2 > (2.29)

where

∆G(t) =
∑

q

(zq(t)mvqx(t) − zq(0)mvqx(0)) (2.30)

In order to find the relation between ∆G and transverse current density j(k, t), we

take the first derivative of the definition of jα(k, t):

∂jα(k, t)

∂t
=

1√
N

N
∑

p=1

vpα(t)ik · vp(t)e
ik·Rp(t) +

1

m
√
N

N
∑

p=1

Fpα(t)ik·Rp(t)

where the second term

N
∑

p=1

Fpα(t)eik·Rp(t) = −
N
∑

p=1

N
∑

q 6=p

du(Rpq)

Rpq

Rα
pq

Rpq
eik·Rp(t)

= −1

2

N
∑

p=1

N
∑

q 6=p

du(Rpq)

Rpq

Rα
pq

Rpq

[

eik·Rp(t) − eik·Rq(t)
]

= −1

2
ikβ

N
∑

p=1

N
∑

q 6=p

du(Rpq)

Rpq

Rα
pqR

β
pq

ikβR
β
pqRpq

[

eik·Rp(t) − eik·Rq(t)
]

= −1

2
ikβ

N
∑

p=1

N
∑

q 6=p

du(Rpq)

Rpq

Rα
pqR

β
pq

Rpq

[

eik·Rpq(t) − 1
]

ik · Rpq
eik·Rq(t)

Therefore, we can write the differential equation as

m
∂

∂t
jα(k, t) =

∑

β

ikβσαβ(k, t) (2.31)
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where the αβ component of the stress tensor is written as[63]:

σk
αβ =

1√
N

N
∑

q=1

{

mvqαvqβ − 1

2

∑

p6=q

Rα
pqR

β
pq

Rpq

du(Rpq)

dRpq

eik·Rpq − 1

ik ·Rpq

}

eik·Rq (2.32)

and Rpq = |Rp − Rq|. Equation (2.31) is a momentum conservation law which is an

analogue to the number conservation equation (2.24). The first derivative of ∆G(t)

gives:

d

dt
∆G(t) =

∑

q

(vqz(t)mvqx(t) + zq(t)Fqx(t) (2.33)

where Fqx is the x component of the force acting on particle q. we can write this

result into a more conventional form[63]

∑

q

zqFqx = −
∑

q

zq

∑

p6=q

∂u(Rpq)

∂Rpq

rx
pq

Rpq

=
∑

q

zq

∑

p6=q

∂u(Rpq)

∂rqp

rx
pq

Rpq

= −1

2

∑

q

∑

p6=q

rx
pqr

z
pq

Rpq

∂u(Rpq)

∂Rpq
(2.34)

where rz
pq = zp−zq. Therefore, we relate ∆G to the xz component of the stress tensor

and the transverse current density as:

d

dt
∆G(t) =

√
N lim

k→0
σk

xz(t) =
√
N lim

k→0

{

m

ik

∂jt(k, t)

∂t

}

= σxz(t)

Equation (2.29) can be written as

η = lim
t→+∞

1

2tkbTV

∫ t

0

dτ

∫ t

0

dτ ′ < σxz(τ)σxz(τ
′) > (2.35)
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Manipulating the integral[8] and considering only the long time behavior, we obtain

the desired result

η =
1

kbTV

∫ +∞

0

dt < σxz(0)σxz(t) >

=
N

kbTV

∫ +∞

0

dt lim
k→0

{

m2

k2
<
∂j∗t (k, t)

∂t

∣

∣

∣

∣

t=0

∂jt(k, t)

∂t
>

}

=
N

2kbTV
lim
ω→0

lim
k→0

{

m2

k2

∫ +∞

−∞

dteiωt <
∂j∗t (k, t)

∂t

∣

∣

∣

∣

t=0

∂jt(k, t)

∂t
>

}

=
m2N

2kbTV
lim
ω→0

lim
k→0

ω2

k2

∫ +∞

−∞

dteiωt < j∗t (k, 0)jt(k, t) >

=
m2N

2kbTV
lim
ω→0

lim
k→0

ω2

k2
Jt(k, ω) (2.36)

Note that in equation (2.36), we take the limit of k → 0 before we take the limit of

ω → 0. The order of two limits can not be changed! An alternative way to derive

the last line is to Fourier transform equation (2.25) and then take the limit of low

frequency and low wavenumber[27]. Set ν = η/ρ, where ρ is the mass density and

take Fourier transform of equation (2.25):

Jt(k, w)

Jt(k, t = 0)
=

2

νk2 − iω
= 2

νk2 + iω

(νk2)2 + ω2

If we only consider the real part of the Fourier transform (i.e. the cos series):

lim
k→0

1

k2

Jt(k, w)

Jt(k, t = 0)
= lim

k→0

2

k2

νk2 + iω

(νk2)2 + ω2
= 2 lim

k→0

ν

(νk2)2 + ω2
=

2ν

ω2

lim
ω→0

ω2 lim
k→0

1

k2

Jt(k, w)

Jt(k, t = 0)
= lim

ω→0

2νω2

ω2
= 2ν

Because Jt(k, t = 0) is just the constant v2
0 which is independent of the variable k, we

have

lim
ω→0

ω2 lim
k→0

Jt(k, ω)

k2
= v2

02ν =
2kbT

m
ν =

2kbT

mρ
η =

2kbTV

m2N
η
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This equation is well consistent with equation (2.36). Thus this is another proof for

equation (2.36). Actually, if we take the limit of ω → 0 first, we have

lim
ω→0

ω2

k2

Jt(k, ω)

Jt(k, t = 0)
= lim

ω→0

2ω2

k2

νk2

(νk2)2 + ω2
= lim

ω→0

2ω2ν

(νk2)2
= 0

This is the reason why we can NOT take the limit of ω → 0 before the limit of k → 0.

2.2.2 Diffusion

We have already provided a detailed description of shear viscosity in terms

of time correlation functions. As we have already mentioned, the similarity between

equation (2.21) and (2.22) should make the formulation of diffusion follow exactly

the same path that we have followed in determining shear viscosity. The momentum

conservation law requires the introduction of the stress tensor, while the density

conservation law is a scalar form. Due to its similarity and simplicity, we are not

going to repeat the derivation in detail for the case of diffusion. Instead, we describe

the close relation between diffusion and shear viscosity in Table 2.1. Note that the

diffusion constant D has the same unit as the kinematic viscosity ν . All of the

variables in the table have been previous defined in this section.

This section demonstrated how one can manipulate integrals to get transport

properties. Actual calculations are provided in chapter 5.
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Table 2.1: Comparison between diffusion and shear viscosity

Diffusion Shear viscosity

D = limt→∞
< |R1(t) − R1(0)|2 >

6t ν = limt→∞
< |G(t) − G(0)|2 >

6kbT t

D = 1
2 limω→0 limk→0

ω2Jt(k, ω)
Jt(k, t = 0)

ν = 1
2 limω→0 limk→0

ω2Ss(k, ω)
Fs(k, t = 0)

D = 1
6

∫ +∞

−∞

dt < v1 · v1(t) > ν = 1
2 limω→0 limk→0

ω2Ss(k, ω)
Fs(k, t = 0)

D = 1
6

∫ +∞

−∞

dt < v1 · v1(t) > ν = 1
2NkbT

∫ +∞

−∞

dt < σxzσxz(t) >

v1(t) = limk→0
1
ik
∂ns(k, t)

∂t
σxz(t) = limk→0

m
ik
∂jt(k, t)
∂t

v1(t) = limk→0 js(k, t) σxz(t) = limk→0 σxz(k, t)

∂ns(k, t)
∂t

= ik · js(k, t) m
∂jα(k, t)

∂t

js(k, t) = ikDns(k, t) σαβ = ikβνjt(k, t)

js(r, t) = −D∇ns(r, t) F(r, t) = −η∇u(r, t)
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CHAPTER 3
LINEAR AND NONLINEAR RESPONSE THEORY

In this chapter, we are going to derive a set of equations linking the response

of liquids upon an external perturbation and equilibrium time correlation functions.

In general, this chapter seeks to find a perturbative solution based on equilibrium

dynamics. The fundamental ideas of linear and nonlinear response have been pointed

out as early as in the 1960s in statistical mechanics and nonlinear optics[77, 30]. For

our own purpose, we will rederive these theories in a general fashion and illustrate

them in our own cases of interest.

The construction of response theory can be based on either classical mechanics

or quantum mechanics. Though nature strictly follows quantum mechanics, without

any loss of intuitive information, we start from linear response theory (LRT) based

on the framework of classical mechanics.

3.1 Linear Response Theory (LRT)

Assume at time t = 0, the system is in an equilibrium state and the system

Hamiltonian is H0. At time t = 0, an external perturbation is introduced and the

new Hamiltonian is,

H(t) = H0 − A(pN ,RN)h(t) (3.1)

where H0 = H(t = 0). Recall Livoulle equation (2.7):

∂f(pN ,RN , t)

∂t
= −iL̂f(pN ,RN , t)
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where f(pN ,RN , t) is the number density or distribution function used to get the

averaged value of an arbitrary dynamical variable:

< B(t) >t=

∫

· · ·
∫

B(pN ,RN)f(pN ,RN , t) dpNdRN

where the time information is only included in f(pN ,RN , t). We may clearly write

< B(t) >t=< B >t. LRT deals with how < B(t) > responds under the external

perturbation H ′(t) = −A(pN ,RN)h(t). Therefore solving for f(pN ,RN , t) is the

fundamental task in order to study the response of a dynamical variable under the

external perturbation. Note that the above Liouville equation can not be written as:

f(pN ,RN , t) 6= e−itL̂f(pN ,RN , t = 0)

because H(t) has both explicit and implicit dependence on the time t. We start by

first writing f(pN ,RN , t) as the sum of the original distribution and a perturbed

distribution:

f(pN ,RN , t) = f0(p
N ,RN) + f1(p

N ,RN , t) = f(pN ,RN , t = 0) + f1(p
N ,RN , t)

Recall the definition of the Liouville operator and express

iL̂t = iL̂0 + iL̂t
1

=

N
∑

j=1

(−∂H0

∂Rj

∂

∂pj
+
∂H0

∂pj

∂

∂Rj
) −

N
∑

j=1

(− ∂A

∂Rj

∂

∂pj
+
∂A

∂pj

∂

∂Rj
)h(t)

Insert the expression of iL̂ and f(pN ,RN , t) into the above Liouville equation,

∂f0(p
N ,RN)

∂t
+
∂f1(p

N ,RN , t)

∂t
= −iL̂0f0(p

N ,RN) − iL̂0f1(p
N ,RN , t)

−iL̂t
1f0(p

N ,RN) − iL̂t
1f1(p

N ,RN , t)
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Here,

∂f0(p
N ,RN)

∂t
= −iL̂0f0(p

N ,RN) = 0

therefore,

∂f1(p
N ,RN , t)

∂t
= −iL̂0f1(p

N ,RN , t) − iL̂t
1f0(p

N ,RN) − iL̂t
1f1(p

N ,RN , t) (3.2)

The assumption of LRT is that under weak perturbation (L̂t
1 weak, f1 small),

−iL̂t
1f1(p

N ,RN , t) = 0

Thus,

∂f1(p
N ,RN , t)

∂t
= −iL̂0f1(p

N ,RN , t) − iL̂t
1f0(p

N ,RN) (3.3)

with initial condition f1(p
N ,RN , t = 0) = 0, where the first term of rhs is an unknown

function of pN ,RN , t and the second term of rhs is a known function of pN ,RN ,and

t. This equation has the form of the general first order differential equation:

dy(x)

dx
= P (x)y(x) +Q(x) (3.4)

with solution

y(x) = eP (x)x

[

C +

∫ x

0

dτ e−P (τ)τQ(τ)

]

Therefore, the solution to equation (3.3) is:

f1(p
N ,RN , t) = e−itL̂0

∫ t

0

dτ eiτ L̂0(−iL̂τ
1)f0(p

N ,RN)

Take the canonical ensemble distribution function as the initial distribution function:

f0(p
N ,RN) =

e−βH0(pN ,RN )

Q
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then we have

−iL̂τ
1f0(p

N ,RN) = h(τ)
∑

j

(− ∂A

∂Rj

∂

∂pj
+
∂A

∂pj

∂

∂Rj
)

= h(τ)
∑

j

∂A

∂pj

e−βH0

Q
(−β)

∂H0

∂Rj
− ∂A

∂Rj

e−βH0

Q
(−β)

∂H0

∂pj

= −β e
−βH0

Q
h(τ)

∑

j

(
∂A

∂pj

∂H0

∂Rj
− ∂A

∂Rj

∂H0

∂pj
)

= −β e
−βH0

Q
h(τ)(−iL̂0A) =

βe−βH0

Q
iL̂0A(pN ,RN)h(τ)

Note here the time implicitly contained in A(pN ,RN) directly comes from f(pN ,RN),

no extra or explicit time information is included. Therefore, the solution to equa-

tion (3.3) becomes,

f1(p
N ,RN , t) =

βe−βH0

Q

∫ t

0

dτ e−i(t−τ)L̂0 iL̂0A(pN ,RN)h(τ)
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And the time evolution of a dynamical quantity B of interest becomes,

< B(t) >t =

∫ ∫

B(pN ,RN)f(pN ,RN , t) dpNdRN

=

∫ ∫

Bf0(p
N ,RN) dpNdRN +

∫ ∫

Bf1(p
N ,RN , t) dpNdRN

= < B(0) > +

∫ ∫

B(pN ,RN)f1(p
N ,RN , t) dpNdRN

= B0 +

∫ ∫

dpNdRN βe
−βH0

Q
B(pN ,RN)

∫ t

0

dτ e−i(t−τ)L̂0 iL̂0A(pN ,RN)h(τ)

= B0 +

∫ ∫

dpNdRN βe
−βH0

Q
∫ t

0

dτ B(pN ,RN)e−i(t−τ)L̂0 iL̂0A(pN ,RN)h(τ)

= B0 +

∫ ∫

dpNdRNβf0

∫ t

0

dτ
[

ei(t−τ)L̂0B(pN ,RN)
]

iL̂0A(pN ,RN)h(τ)

= B0 + β

∫ ∫

dpNdRN f0

∫ t

0

dτ B(t− τ)iL̂0A(pN ,RN)h(τ)

= B0 + β

∫ ∫

dpNdRN f0

∫ t

0

dτ (−)Ḃ(t− τ)A(pN ,RN)h(τ)

= B0 − β

∫ t

0

dτ

∫ ∫

dpNdRN Ḃ(t− τ)A(pN ,RN)f0(p
N ,RN)h(τ)

= B0 − β

∫ t

0

dτ

∫ ∫

dpNdRN Ḃ(t− τ)A(0)f0h(τ)

= B0 +

∫ t

0

dτ (−β) < Ḃ(t− τ)A(0) > h(τ)

= B0 +

∫ t

0

dτ φBA(t− τ)h(τ) (3.5)

where the retarded response function is defined as

φBA(t− τ) = −β < Ḃ(t− τ)A(0) >

Thus, equation (3.5) gives us the retarded response function ( after effect function)

in terms of the equilibrium average (unperturbed system average) of two dynamical
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quantities. The result in equation (3.5) is quite striking given that the left hand side

(lhs) is a nonequilibrium quantity while the right hand side(rhs) is a pure thermal

average over the unperturbed equilibrium state.

We limited our discussion to classical mechanics in this section, it turns out

that the generalization to quantum mechanics is also remarkably simple. In the

next section, we will show that under the frame work of quantum mechanics, linear

response theory reads as

< B(t) >t − < B(0) >=
i

~

∫ t

0

dτ <
[

B̃0(t), Ã0(τ)
]

> h(τ)

where < B >= Tr{ρ0B}. For a dynamical variable B which does not explicitly

depend on time, < B(t) >t= Tr{ρ(t)B}. [ , ] represents a commutator. Heisenberg

operators are defined as B̃0(t) = eiH0t/~Be−iH0t/~, and Ã0(τ) = eiH0τ/~Ae−iH0τ/~.

The relation between quantum and classical expressions will be discussed in the next

section.

3.2 Quantum Mechanical LRT

In this section, We are going to derive linear response theory based on the

framework of quantum mechanics.

Assume the total system Hamiltonian is

H(t) = H0 +H ′(t)

where H0 is the unperturbed Hamiltonian and H ′(t) is the external perturbation.

The steady-state solution to an unperturbed state is described by

H0ψn(x) = Enψn(x)
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and the initial probability of observing the system in the state ψn(x) is ρn. An

expectation value of a measurable quantity B is given by

< B >=
∑

n

ρn

∫

ψ∗
n(x)B̂(x)ψn(x)dx

where B̂(x) is the operator corresponding to dynamical variable B. Without loss

of generality, we multiply a coefficient λ ( eventually goes to 1) to the perturbation

Hamiltonian:

H(t) = H0 + λH ′(t)

Therefore, the purpose here is to first solve the time dependent Schrodinger equation

with initial condition Ψ(x, t = 0) = ψn(x) and then take the average over the wave

function followed by another average over the initial probability ρn:














i~
∂Ψ(x, t)

∂t
= HΨ(x, t)

Ψ(x, t = 0) = ψn(x) with probability of ρn

A perturbative solution can be written as

Ψ(x, t) = Ψ(0)(x, t) + λΨ(1)(x, t) + λ2Ψ(2)(x, t) + · · ·+ · · ·

Inserting this solution into the time dependent Schrodinger equation yields the solu-

tion for each order as follows:

λ0 zeroth order:

i~
∂Ψ(0)(x, t)

∂t
= H0Ψ

(0)(x, t)

the solution to zeroth order equation with initial condition Ψ(0)(x, t = 0) = ψn(x) is

straightforward:

Ψ(0)(x, t) = ψn(x)e−iEnt/~
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λ1 first order:

i~
∂Ψ(1)(x, t)

∂t
= H0Ψ

(1)(x, t) +H ′(t)Ψ(0)(x, t)

= H0Ψ
(1)(x, t) +H ′(t)ψn(x)e−iEnt/~

From the unperturbed steady-state solutions we construct the set {ψm(x), m = 1, 2, 3, · · · }

which spans the whole space. The wave function Ψ(1)(x, t) can be written as the com-

bination of basis set functions:

Ψ(1)(x, t) =
∑

m

Cm(t)ψm(x)

where the coefficient Cm(t) =
∫

ψ∗
m(x)Ψ(1)(x, t)dx. Multiplying by ψp(x) and then

integrating over the whole space, we have

i~
dCp(t)

dt
= EpCp(t) + [H ′(t)]pne

−iEnt/~

where [H ′(t)]pn =
∫

ψ∗
p(x)H

′(x, t)ψn(x)dx. Noticing that the initial condition Ψ(1)(x, t =

0) = 0, the solution to λ1 first order equation is:

Cp(t) =
1

i~

∫ t

0

dτ ei(Ep−En)τ/~[H ′(τ)]pn e
−iEpt/~

Ψ(1)(x, t) =
∑

m

ψm(x)
1

i~

∫ t

0

dτ ei(Em−En)τ/~[H ′(τ)]mn e
−iEmt/~
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up to first order, the time evolution of the observable variable B is

< B(t) > '
∑

n

ρn

∫

dxΨ∗(x, t)B̂(x)Ψ(x, t)

=
∑

n

ρn

∫

dxΨ(0)∗(x, t)B̂(x)Ψ(0)(x, t) +

∑

n

ρn

∫

dxΨ(0)∗(x, t)B̂(x)Ψ(1)(x, t) +

∑

n

ρn

∫

dxΨ(1)∗(x, t)B̂(x)Ψ(0)(x, t)

=
∑

n

ρn

∫

dxψ∗
n(x)B̂(x)ψn(x) dx+

∑

n

ρn

∫

dxψ∗
n(x)eiEnt/~B̂(x)

∑

m

ψm(x)
1

i~

∫ t

0

dτ ei(Em−En)τ/~[H ′(τ)]mne
−iEmt/~ +

∑

n

ρn

∫

dxψ∗
m(x)

−1

i~

∫ t

0

e−i(Em−En)τ/~[H ′(τ)]nmdτ

eiEmt/~B̂(x)ψn(x)e−iEnt/~

< B(t) > =
∑

n

ρnBnn +
∑

n

∑

m

ρnBnm
1

i~
ei(En−Em)t/~

∫ t

0

dτ ei(Em−En)τ)/~[H ′(τ)]mn

−
∑

n

∑

m

ρnBmne
i(Em−En)t/~

∫ t

0

dτ ei(En−Em)τ)/~[H ′(τ)]nm

=
∑

n

ρnBnn +

∑

n

∑

m

(ρn − ρm)Bnme
i(En−Em)t/~

1

i~

∫ t

0

dτ ei(Em−En)τ/~[H ′(τ)]mn

=
∑

n

ρnBnn +
∑

n

∑

m

(ρn − ρm)
1

i~

∫ t

0

dτ [B̃(t)]nm[H̃ ′(τ)]mn

=
∑

n

ρnBnn +

∑

n

∑

m

1

i~

∫ t

0

dτ ρn([B̃(t)]nm[H̃ ′(τ)]mn − [H̃ ′(τ)]nm[B̃(t)]mn)

=
∑

n

ρnBnn +
1

i~

∫ t

0

dτ < [B̃(t), H̃ ′(τ)] >
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where we have used [H ′(τ)]∗nm = [H ′(τ)]nm and the average is taken over the equi-

librium wavefunction ψn(x) with initial probability ρn. Variables H̃ and B̃ are the

usual Heisenberg picture operators:

H̃ = eiH0t/~He−iH0t/~

B̃ = eiH0t/~B̂e−iH0t/~

and the matrix element

[B̃(t)]mn =

∫

dxψ∗
m(x)B̃(t)ψn(x)

=

∫

dxψ∗
m(x)eiH0t/~B̂e−iH0t/~ψn(x)

=

∫

dx ei(Em−En)t/~ψ∗
m(x)B̂ψn(x)

= ei(Em−En)t/~Bmn (3.6)

The retarded response function φ is defined as

φAB(t− τ) =
1

i~
< [B̃(t), H̃ ′(τ)] > (3.7)

Hence we have derived linear response theory based on quantum mechanics.

One point we can not avoid now is the relation between the classical and quantum ver-

sions of LRT. The intrinsic similarity is clear if we introduce the Kubo transform[45].

φAB(t) =

∫ β

0

dλ < Ḃ(−i~λ)A(t) >0
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In the classical limit of ~ → 0:

φAB(t) =

∫ β

0

dλ < Ḃ(−i~λ)A(t) >0

= <

∫ β

0

dλ(−i~λ)A(t) >0

= < Ḃ(0)

∫ β

0

dλA(t) >0

= β < Ḃ(0)A(t) >0

which is precisely the classical version of linear response theory. In the case of quan-

tum mechanics:

Ḃ(t) =
1

i~
[B(t), H0] =

1

i~
[eiH0t/~B(0)e−iH0t/~, H0]

=
1

i~
(eiH0t/~B(0)e−iH0t/~H0 −H0e

iH0t/~B(0)e−iH0t/~)

=
1

i~

(

eiH0t/~(B(0)H0 −H0B(0))e−iH0t/~
)
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φAB(t) =

∫ β

0

dλ < Ḃ(−i~λ)A(t) >0

= <
1

i~

∫ β

0

dλ
(

eiH0(−i~λ)/~)(B(0)H0 −H0B(0))e−iH0(−i~λ)/~A(t)
)

>

=
1

i~
<

∫ β

0

dλeH0λ(B(0)H0 −H0B(0))e−H0λA(t) >

=
1

i~

1

Q

∫ β

0

dλ
∑

n

∫

dxψ∗
n(x)e−βH0eH0λ[B(0), H0]e

−H0λA(t)ψn(x)

=
1

i~

1

Q

∫ β

0

dλ
∑

n

∑

m

e−βEneλEne−λEm

∫

dxψ∗
n(x)[B(0), H0]ψm(x)

∫

dxψ∗
m(x)A(t)ψn(x)

=
1

iQ~

∑

n,m

eβ(En−Em) − 1

En − Em

e−βEn

∫

dxψ∗
n(x)[B(0), H0]ψm(x)

∫

dxψ∗
m(x)A(t)ψn(x)

=
1

iQ~

∑

n,m

eβ(En−Em) − 1

En − Em

e−βEn(Em − En)Bnm[A(t)]mn

=
i

Q~

∑

n,m

(e−βEm − e−βEn)Bnm[A(t)]mn

=
i

Q~

∑

n,m

(e−βEm [A(t)]mnBnm − e−βEnBnm[A(t)]mn)

=
i

Q~
(
∑

m

e−βEm [A(t)B]mm −
∑

n

e−βEn [BA(t)]nn)

=
i

Q~

∑

n

e−βEn

∫

dxψ∗
n(x)[A(t)B(0) −B(0)A(t)]ψn(x)

=
i

~

∑

n

∫

dx
e−βEn

Q
ψ∗

n(x)[A(t), B(0)]ψn(x)

=
i

~
< [A(t), B(0)] >0

which is equivalent to the previous definition (3.7) of the retarded response function

given an external perturbation H ′ = −Ah(t) in case of quantum mechanics. There-

fore, using the Kubo transform we see that the classical version of linear response

theory is just the ~ → 0 limit of quantum mechanical theory.
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In order to write the formulation in a simpler form, we introduce the definition

of density matrix. In general, consider a system having a probability ρn in state

Ψ(x, t;n), the density matrix is formed by

ρpm =
∑

n

ρn

∫

dxψ∗
p(x)Ψ(x, t;n)

∫

dxΨ∗(x, t;n)ψm(x)

Furthermore, up to first order in λ, for the case of perturbation just mentioned, we
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have

[ρ(t)]pm '
∑

n

ρn

∫

dxψ∗
p(x)Ψ

(0)(x, t)

∫

dxΨ(0)∗(x, t)ψm(x)

+
∑

n

ρn

∫

dxψ∗
p(x)Ψ

(1)(x, t)

∫

dxΨ(0)∗(x, t)ψm(x)

+
∑

n

ρn

∫

dxψ∗
p(x)Ψ

(0)(x, t)

∫

dxΨ(1)∗(x, t)ψm(x)

=
∑

n

ρn

∫

dxψ∗
p(x)ψn(x)e−iEnt/~

∫

dxψ∗
n(x)eiEnt/~ψm(x) +

+
∑

n

ρn

∫

dxψ∗
p(x)

∑

q

ψq(x)
1

i~

∫ t

0

dτ ei(Eq−En)τ/~[H ′(τ)]qne
−iEqt/~ ·

·
∫

dxψ∗
n(x)eiEnt/~ψm(x)

+
∑

n

ρn

∫

dxψ∗
p(x)ψn(x)e−iEnt/~

∫

dx
∑

q

ψ∗
q(x)

−1

i~
·

·
∫ t

0

dτ e−i(Eq−En)τ/~[H ′(τ)]nqe
iEqt/~ψm(x)

=
∑

n

ρnδpnδnm +
∑

n

∑

q

ρnδpqδnm
1

i~

∫ t

0

dτ ei(Eq−En)τ/~[H ′(τ)]qne
i(En−Eq)t/~

∑

n

∑

q

ρnδpnδqm
−1

i~

∫ t

0

e−i(Eq−En)τ/~[H ′(τ)]nqe
i(Eq−En)t/~

=
∑

n

ρnδpnδnm +
∑

n

∑

q

ρnδpqδnm
1

i~

∫ t

0

dτ ei(Eq−En)τ/~[H ′(τ)]qne
i(En−Eq)t/~

+
∑

n

∑

q

ρqδpqδnm
−1

i~

∫ t

0

dτ ei(Eq−En)τ/~[H ′(τ)]qne
i(En−Eq)t/~

= ρpδpm + ρm
1

i~

∫ t

0

dτ ei(Ep−Em)τ/~[H ′(τ)]pme
i(Em−Ep)t/~

−ρp

∫ t

0

dτ ei(Ep−Em)τ/~[H ′(τ)]pme
i(Em−Ep)t/~

= ρpδpm + (ρm − ρp)
1

i~
ei(Em−Ep)t/~

∫ t

0

dτ ei(Ep−Em)τ/~[H ′(τ)]pm (3.8)
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Therefore, the time evolution of observable variable B is

< B(t) > = Tr(ρoB̂) +
∑

n

∑

m

(ρn − ρm)Bnme
i(En−Em)t/~ ·

· 1

i~

∫ t

0

dτ ei(Em−En)τ/~[H ′(τ)]mn

= Tr(ρoB̂) +
∑

n

∑

m

(ρm − ρn)Bmne
i(Em−En)t/~ ·

· 1

i~

∫ t

0

dτ ei(En−Em)τ/~[H ′(τ)]nm

=
∑

p

∑

m

ρpδpmBmp +
∑

p

∑

m

(ρm − ρp)e
i(Em−Ep)t/~ ·

· 1

i~

∫ t

0

dτ ei(Ep−Em)τ/~[H ′(τ)]pmBmp

=
∑

p

∑

m

[ρ(t)]pmBmp =
∑

p

(
∑

m

[ρ(t)]pmBmp) = Tr[ρ̂(t)B̂]

It turns out that the time evolution of dynamical variable B(t) can be completely

derived from the formulation of density matrix instead of wave functions. Clearly, the

derivation from the density matrix formulation is simpler because the average over

wavefunction on the n-th order involves both Ψ(n)(x, t) and its complex conjugate

Ψ(n)∗(x, t), while the density matrix formulation on the n-th order only has one term

of ρ(n). Thus, construction of nonlinear response theory using the frame work of

quantum mechanics will be purely based on the density matrix. We will also see that

the linear response formulation is just the simplest case where n = 1.

In closing this section of linear response theory, we have derived the response of

the system upon an external weak perturbation based on the framework of quantum

mechanics and the resulting formulation agrees with the classical mechanics version

explained in the previous section by introducing the Kubo transform.
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3.3 Dynamical Susceptibility

We have studied the response of a material upon an external perturbation

based on the time evolution of a time correlation function. Because the usual pertur-

bation is commonly associated with a certain frequency, it is instructive to study the

response in frequency domain. For completeness, we provide this theory and make

the connection to the previously studied time correlation functions. We first denote

the Poisson bracket as,

{A,B} =

N
∑

q=1

(

∂A

∂Rq
· ∂B
∂pq

− ∂A

∂pq
· ∂B
∂Rq

)

=

N
∑

q=1

(

∇Rq
A · ∇pq

B −∇pq
A · ∇Rq

B
)

Through integration by parts, we can prove an important identity,

∫ ∫

dRNdpN {A,B}C =

∫ ∫

dRNdpN {C,A}B (3.9)
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For simplicity, we only write down the two dimension case,

∫ ∫

dpdq {A,B}C =

∫ ∫

dpdq

(

∂A

∂q
· ∂B
∂p

− ∂A

∂p
· ∂B
∂q

)

C

=

∫ ∫

dpdq
∂A

∂q
· ∂B
∂p

C −
∫ ∫

dpdq
∂A

∂p
· ∂B
∂q

C

=

∫

dq

∫

dp
∂A

∂q
· ∂B
∂p

C −
∫

dp

∫

dq
∂A

∂p
· ∂B
∂q

C

=

∫

dq

∫

∂B
∂A

∂q
C −

∫

dp

∫

∂B
∂A

∂p
C

=

∫

dq

[

B
∂A

∂q
C

∣

∣

∣

∣

+∞

−∞

−
∫

dpB
∂A

∂q
· ∂C
∂p

−
∫

dpB
∂2A

∂q∂p
C

]

−

∫

dp

[

B
∂A

∂p
C

∣

∣

∣

∣

+∞

−∞

−
∫

dq B
∂A

∂p
· ∂C
∂q

−
∫

dq B
∂2A

∂q∂p
C

]

=

∫

dq

[

−
∫

dpB
∂A

∂q
· ∂C
∂p

−
∫

dpB
∂2A

∂q∂p
C

]

−
∫

dp

[

−
∫

dq B
∂A

∂p
· ∂C
∂q

−
∫

dq B
∂2A

∂q∂p
C

]

=

∫ ∫

dqdpB

(

∂C

∂q
· ∂A
∂p

− ∂C

∂p
· ∂A
∂q

)

−
∫ ∫

dqdp

(

BC
∂2A

∂q∂p
− BC

∂2A

∂q∂p

)

=

∫ ∫

dqdp

(

∂C

∂q
· ∂A
∂p

− ∂C

∂p
· ∂A
∂q

)

B

=

∫ ∫

dpdq {C,A}B

Therefore, from the last line of equation (3.5), we have the following expression:

φBA(t) = −β < Ḃ(t), A >= β < B(t)Ȧ >= β

∫ ∫

Ȧf0B(t)dRNdpN

= −
∫ ∫

{A, f0}B(t)dRNdpN = −
∫ ∫

{B(t), A}f0dR
NdpN

= − < {B(t), A} >
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where {A, f0} = −βȦf0. By taking f0 as the canonical ensemble distribution function

f0 = e−βH0/Q, the general equality

β < Ḃ(t)A >=< {B(t), A} >

is the generalization of Yvon equation for an arbitrary dynamical variable A and the

potential of the system V (RN) [29]

< A(RN ,vN)
∂V (RN)

∂xq

>=
1

β
<
∂A(RN ,vN)

∂xq

>

Considering h(t) as of the form h(t) = h0e
−i(ω+iε)t, the response defined by equa-

tion (3.5) can be written as:

< δB >t =

∫ t

−∞

φBA(t− τ)h(τ) dτ =

∫ t

−∞

φBA(t− τ)h0e
−i(ω+iε)τ dτ

= h0e
−i(ω+iε)t

∫ t

−∞

φBA(t− τ)ei(ω+iε)(t−τ) dτ

= h0e
−i(ω+iε)t

∫ ∞

0

φBA(t)ei(ω+iε)t dt

= h0e
−i(ω+iε)t

∫ ∞

0

φBA(t)eizt dt = h0e
−i(ω+iε)tχBA(z)

where the last line gives the definition for the complex susceptibility as:

χBA(z) =

∫ ∞

0

φBA(t)eizt dt z = ω + iε (ε > 0).

We can take the limit of ε→ 0+ to get the frequency domain function as,

χBA(ω) = lim
ε→0+

χBA(z) = lim
ε→0+

∫ ∞

0

dtφBA(t)ei(ω+iε)t (3.10)

The integral over the function eiωt may diverge theoretically, that is why we have to

introduce a complex susceptibility and use its analyticity on the upper complex plane
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and real axis. We have already introduced the definition of Fourier transform and

Laplace transform for the time correlation function CBA(t). In general:

CBA(w) =

∫ ∞

−∞

dt CBA(t)eiωt C̃BA(z) =

∫ ∞

0

dt CBA(t)eizt

Here, we use χBA(z) instead of χ̃(z) for simplicity. In case of A = B, the spectrum

of the auto correlation function CAA(t) is always a real, even function of ω,

CAA(ω) = 2 lim
ε→0

ReC̃AA(z) (3.11)

In general, the relation between Fourier transform and Laplace transform is:

C̃AB(z) =

∫ ∞

0

eiztCAB(t)dt =

∫ ∞

0

dt eizt 1

2π

∫ ∞

−∞

e−iω′tCAB(ω′)dω′

=
1

2π

∫ ∞

−∞

dω′CAB(ω′)

∫ ∞

0

ei(z−ω′)t dt

=
1

2π

∫ ∞

−∞

dω′CAB(ω′)
−1

i(z − ω′)

=
i

2π

∫ ∞

−∞

CAB(ω′)

z − ω′
dω′ =

i

2π

∫ ∞

−∞

CAB(ω′)

ω + iε− ω′
dω′ (3.12)

where z = ω + iε with ε > 0.

Now we study the properties of the complex susceptibility. We start from the

retarded response function or after effect function:

φ(t) = −β < Ḃ(t)A >= −β < AḂ(t) >= −βĊAB(t)
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Taking the Laplace transform and using equation (3.12),

χBA(z) = −β(−iz)C̃AB(z) + βCAB(t = 0)

= iβz
i

2π

∫ ∞

−∞

CAB(ω′)

z − ω′
dω′ + βCAB(t = 0)

=
−β
2π

∫ ∞

−∞

zCAB(ω′)

z − ω′
+

β

2π

∫ ∞

−∞

CAB(ω′)dω′

=
−β
2π

∫ ∞

−∞

(z + ω′ − z)CAB(ω′)

z − ω′
dω′ =

−β
2π

∫ ∞

−∞

ω′CAB(ω′)

z − ω′
dω′

=
−β
2π

∫ ∞

−∞

ω′CAB(ω′)

ω − ω′ + iε
dω′

Taking the limit of ε → 0+, using equation (3.10), and considering the standard

relation:

lim
σ→0

1

x− iσ
= P

(

1

x

)

+ iπδ(x) (3.13)

where P denotes the principal part, we have

χAB(ω) =
−β
2π

P
∫ ∞

−∞

ω′CAB(ω′)

ω − ω′
dω′ +

−β
2π

(−iπ)

∫ ∞

−∞

ω′CAB(ω′)δ(ω − ω′)dω′

=
β

2π
P
∫ ∞

−∞

ω′CAB(ω′)

ω′ − ω
dω′ +

βω

2
CAB(ω) = χ′

AB(ω) + iχ′′
AB(ω)

where χ′
BA and χ′′

BA are the real and imaginary parts of χBA(ω) respectively. We

usually call the imaginary part χ′′
BA(ω) the response function based on the following

relations:

χ′′
BA(ω) =

βω

2
CAB(ω) χ′

BA(ω) =
β

2π
P
∫ ∞

−∞

ω′CAB(ω′)

ω′ − ω
dω′ =

1

π
P
∫ ∞

−∞

χ′′
BA(ω′)

ω′ − ω
dω′

Here, I have implicitly used that CAB(ω) is a real function which is the case for sure

when A = B.

From the definition of χBA(ω) (equation (3.10) with eiωt = cos(ωt)+ i sin(ωt),

cos, sin are even and odd function respectively), we know that the real part is an even
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function and the imaginary part is an odd function,

χBA(−ω) = χ′
BA(−ω) + iχ′′

BA(−ω) = χ′
BA(ω) − iχ′′

BA(ω)

Considering that χBA(z) is analytical in the upper half of the complex plane

and in the real axis, the integral

Int =

∫ ∞

−∞

χBA(z′)

z′ − ω
dz ≡ lim

σ→0+

[
∫ ω−σ

−∞

χBA(z′)

z′ − ω
dz +

∫ ∞

ω+σ

χBA(z′)

z′ − ω
dz

]

This is the usual convention in which the integral
∫∞

−∞
is given by taking the Cauchy

principal value of the integral. Following the same steps as in page 57 of reference

[9], we have,

χBA(w) =
1

iπ

∫ ∞

−∞

χBA(ω′)

ω′ − ω
dω′ =

1

π

∫ ∞

−∞

χ′′
BA(ω′)

ω′ − ω
dω′ − i

π

∫ ∞

−∞

χ′
BA(ω′)

ω′ − ω
dω′

therefore, we arrive at the Kramers-Kronig relations:

χ′
BA(w) =

1

π

∫ ∞

−∞

χ′′
BA(ω′)

ω′ − ω
dω′ χ′′

BA(ω) = − 1

π

∫ ∞

−∞

χ′
BA(ω′)

ω′ − ω
dω′

Here the integrals are all principal values resulting from taking a limit at the point

with singularity. The above relation is perfectly consistent with the previous expres-

sion we derived for χ′
BA(w).

In closing this short section, we studied the dynamical susceptibility in the

frequency domain of the retarded response function. Although, we did not explicitly

use the property of dynamical susceptibility in our own research of the response of

ionic liquids to external perturbations, this short section makes the elegant linear

response theory complete and therefore provides a background for future research.
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3.4 Nonlinear Response Theory

The previous sections explained the elegant linear response theory in a variety

of ways. Now we extend the theory to the general nonlinear response case up to n-th

order directly based on the density matrix formulation of quantum mechanics. For

our own case of interest, we use the example of optical perturbation to illustrate the

theory based on the Born-Oppenheimer (B.O.) approximation.

We assume that the system has its total wave function Ψ(x, t; j) with prob-

ability of ρj. The basis set used is that generated by the unperturbed steady-state

solution {ψm(x), m = 1, 2, · · · , }. Therefore, we express the total wavefunction in

terms of a combination of the basis set functions:

Ψ(x, t; j) =
∑

m

Cjm(t)ψm(x)

where the coefficient Cjm(t) is defined as

Cjm(t) =

∫

dxψ∗
m(x)Ψ(x, t; j)

The elements of density matrix are defined as

[ρ̂(t)]nm =
∑

j

ρj

∫

dxψ∗
n(x)Ψ(x, t; j)

∫

dxΨ∗(x, t; j)ψm(x)

=
∑

j

ρjCjn(t)C
∗
jm(t)
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In general, the time evolution of a dynamical variable A can be written as:

< A >t =
∑

j

ρj

∫

dxΨ∗(x, t; j)Â(x)Ψ(x, t; j)

=
∑

j

ρj

∑

m

∑

n

∫

dxC∗
jm(t)ψ∗

m(x)Â(x)

∫

dxCjn(t)ψn(x)

=
∑

j

ρj

∑

m

∑

n

C∗
jm(t)Cjn(t)

∫

dxψ∗
m(x)Â(x)ψn(x)

=
∑

m

∑

n

∑

j

ρjC
∗
jm(t)Cjn(t)Amn

=
∑

m

∑

n

[ρ̂(t)]nmAmn =
∑

n

(

∑

m

[ρ̂]nmAmn

)

=
∑

n

[ρ̂(t)Â]nn = Tr[ρ̂(t)Â]

Note that there is no approximation in deriving the above equation. Therefore, the

time evolution of a dynamical variable can be studied by looking at the trace of

the product of Schrodinger operator Â and the representative density matrix of the

system ρ̂(t). Using the wave function representation of linear response theory, we

have already derived the first order equation

[ρ̂(t)]pm = ρpδpm + (ρm − ρp)
1

i~

∫ t

0

dτei(Ep−Em)τ/~[H ′(τ)]pme
i(Em−Ep)t/~

given an initial condition [ρ̂(t = 0)]pm = ρpδpm. Now we are going to derive the time

evolution of the density matrix without using the wavefunction explicitly. We will

see above result from section 3.2 is just a special case of a first order approximation.

An explicit differentiation of the expansion coefficient gives

dCjn(t)

dt
=

∫

dxψ∗
n(x)

∂Ψ(x, t; j)

∂t

=
1

i~

∫

dxψ∗
n(x)H(x, t)Ψ(x, t; j)
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Thus the first derivative of the density matrix element is:

d

dt
[ρ̂(t)]nm =

∑

j

ρj
1

i~

∫

dxψ∗
n(x)H(x, t)Ψ(x, t; j)C∗

jm(t)

+
∑

j

ρj
−1

i~

∫

dxΨ∗(x, t; j)H(x, t)ψm(x)Cjn(t)

=
∑

j

ρj
1

i~

∫

dxψ∗
n(x)H

∑

p

Cjp(t)ψp(x)C
∗
jm(t)

−
∑

j

ρj
1

i~

∫

dx
∑

p

C∗
jp(t)ψ

∗
p(x)H(x, t)ψm(x)Cjn(t)

=
∑

j

∑

p

ρj

i~
Cjp(t)C

∗
jm(t)

∫

dxψ∗
n(x)H(x, t)ψp(x)

−
∑

j

∑

p

ρj

i~
Cjn(t)C∗

jp(t)

∫

dxψ∗
p(x)H(x, t)ψm(x)

=
1

i~

∑

p

{[ρ̂(t)]pm[H(t)]np − [ρ̂(t)]np[H(t)]pm}

=
−1

i~

∑

p

([ρ̂(t)]np[H(t)]pm − [H(t)]np[ρ̂(t)]pm)

=
−1

i~
([ρ̂(t)H(t)]nm − [H(t)ρ̂(t)]nm)

Therefore, the time evolution of the density matrix is:

ρ̇nm(t) =
−1

i~
[ρ̂(t), H(t)]nm

where [, ] is the communicator operation. This is the general law governing the time

evolution of the density operator for a system in a mixture of states Ψ(x, t; j) with

probability ρj. The role of this equation is equivalent to the Schrodinger equation

for the wavefunction. It is clear that the entire dynamics of the system can be

derived from this density matrix evolution equation instead of solving the Schrodinger

equation. Now we are going to provide the perturbative solution to the density matrix.
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Recall that the equation and the initial condition are



































H(x, t) = H0(x) + λH ′(x, t)

ρ̇nm(t) = 1
−i~

∑

ν

(ρnν(t)Hνm(t) −Hnν(t)ρνm(t))

ρnm(t = 0) = ρnm(0)

The perturbative solution gives

ρnm(t) = ρ(0)
nm(t) + λρ(1)

nm(t) + λ2ρ(2)
nm(t) + λ3ρ(3)

nm(t) + · · ·

Clearly, the zeroth order λ0 gives

ρ̇(0)
nm(t) =

−1

i~

∑

ν

(ρ(0)
nν (t)H0

νm(t) −H0
nν(t)ρ

(0)
νm(t))

=
−1

i~

∑

ν

(ρ(0)
nν (t)Eνδνm − Eνδnνρ

(0)
νm(t))

=
−1

i~
(ρ(0)

nm(t)Em − Enρ
(0)
nm(t))

=
−1

i~
(Em − En)ρnm(t) =

i

~
(Em − En)ρnm(t)

with initial condition ρ
(0)
nm(t = 0) = ρnm(0), it is straightforward to obtain the zeroth

order solution of density matrix:

ρ(0)
nm(t) = ρnm(0)ei(Em−En)t/~
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Considering the first order of λ we have

ρ̇(1)
nm(t) =

i

~

∑

ν

[ρ(0)
nνH

′
νm(t) −H ′

nν(t)ρ
(0)
νm(t)]

+
i

~

∑

ν

[ρ(1)
nν (t)H0

νm −H0
nνρ

(1)
νm(t)]

=
i

~
[ρ(0)(t), H ′(t)]nm

+
i

~

∑

ν

[ρ(1)
nν (t)Eνδνm − Eνδnνρ

(1)
νm(t)]

=
i

~
[ρ(0)(t), H ′(t)]nm +

i(Em − En)

~
ρ(1)

nm(t)

with initial condition ρ
(1)
nm(t = 0) = 0, the solution is given by (see the first order

linear differential equation (3.4))

ρ(1)
nm(t) = ei(Em−En)t/~

∫ t

0

dτ e−i(Em−En)τ/~
i

~
[ρ(0)(τ), H ′(τ)]nm

=
i

~
ei(Em−En)t/~

∫ t

0

dτ e−i(Em−En)τ/~[ρ(0)(τ), H ′(τ)]nm

=
i

~

∫ t

0

dτ ei(Em−En)(t−τ)/~
∑

ν

[ρ(0)
nν (τ)H ′

νm(τ) −H ′
nν(τ)ρ

(0)
νm(τ)]

For the case we deal with in linear response theory, the initial density matrix is

diagonal ρnm(0) = ρnn(0)δnm, therefore, the zero-th order density matrix at time t

stays stationary,

ρ(0)
nm(t) = ρnm(0)ei(Em−En)t/~ = ρnn(0)δnme

i(Em−En)t/~ = ρnn(0)δnm
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and the first order solution goes to

ρ(1)
nm(t) =

i

~

∫ t

0

dτ ei(Em−En)(t−τ)/~
∑

ν

[ρ(0)
nν (τ)H ′

νm(τ) −H ′
nν(τ)ρ

(0)
νm(τ)]

=
i

~

∫ t

0

dτ ei(Em−En)(t−τ)/~
∑

ν

[ρnn(0)δnνH
′
νm(τ) −H ′

nν(τ)ρνν(0)δνm]

=
i

~

∫ t

0

dτ ei(Em−En)(t−τ)/~(ρnn(0) − ρmm(0))H ′
nm(τ)

Combining this with the zeroth order solution, it is easy to obtain the result in

equation(3.8). In general for the j-th (j > 1) order λj, the initial condition is ρ
(j)
nm(t =

0) = 0, and the corresponding equation is

ρ̇(j)
nm(t) =

i

~

∑

ν

(ρ(j−1)
nν (t)H ′

νm(t) −H ′
nν(t)ρ

(j−1)
νm (t))

+
i

~

∑

ν

(ρ(j)
nν (t)H0

νm −H0
nνρ

(j)
νm(t))

=
i

~

∑

ν

(ρ(j−1)
nν (t)H ′

νm(t) −H ′
nν(t)ρ

(j−1)
νm (t))

+
i

~
(Em − En)ρ(j)

nm(t)

=
i

~
[ρ(j−1)(t), H ′(t)]nm +

i

~
(Em − En)ρ(j)

nm(t)

The solution can be directly written as:

ρ(j)
nm(t) =

i

~

∫ t

0

dτ ei(Em−En)(t−τ)/~[ρ(j−1)(τ), H ′(τ)]nm
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Therefore the time evolution of a dynamical variable A(t) is:

< A >t = Tr(ρ̂(t)Â) = Tr(ρ̂(0)(t)Â) +
∑

j=1

Tr(ρ̂(j)(t)Â)

=
∑

n

∑

m

ρ(0)
nm(t)Amn +

∑

j

i

~

∑

n,m

∫ t

0

dτ e−i(Em−En)τ/~[ρ(j−1)(τ), H ′(τ)]nme
i(Em−En)t/~Amn

=
∑

n

∑

m

ρnm(0)e(Em−En)t/~Amn +

∑

j

i

~

∑

n,m

∫ t

0

dτ e−i(Em−En)τ/~[ρ(j−1)(τ), H ′(τ)]nme
i(Em−En)t/~Amn

=
∑

n,m

ρnm(0)Ãmn(t)

+
∑

j

i

~

∑

n,m

∫ t

0

dτ ei(En−Em)τ/~[ρ(j−1)(τ), H ′(τ)]nmÃmn(t)

=
∑

n,m

ρnm(0)Ãmn(t) +
∑

j=1

i

~

∑

n,m

∫ t

0

dτ Kj(τ, t)

where we have defined the kernel

Kj(τ, t) = ei(En−Em)τ/~[ρ(j−1)(τ), H ′(τ)]nmÃmn(t) (3.14)

The first order term of the kernel at j = 1

K1(τ, t) = ei(En−Em)τ/~[ρ(j−1)(τ), H ′(τ)]nmÃmn(t)

= Ãmn(t)ei(En−Em)τ/~ ·

·
∑

ν

[ρnν(0)ei(Eν−En)τ/~H ′
νm(τ) −H ′

nν(τ)ρνm(0)ei(Em−Eν)τ/~]

= Ãmn(t)
∑

ν

[ρnν(0)ei(Eν−Em)τ/~H ′
νm(τ) − ei(En−Eν)τ/~ρνm(0)]

= Ãmn(t)
∑

ν

[ρnν(0)H̃ ′
νm(τ) − H̃ ′

nν(τ)ρνm(0)]
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Manipulating the summation we arrive at

∑

n

∑

m

K1(τ, t) =
∑

n,m,ν

[ρnν(0)H̃ ′
νm(τ)Ãmn(t) − ρνm(0)Ãmn(t)H̃ ′

nν(τ)]

=
∑

n,m,ν

[ρνm(0)H̃ ′
mn(τ)Ãnν(t) − ρνm(0)Ãmn(t)H̃ ′

nν(τ)]

=
∑

n,m,ν

ρνm(0)[H̃ ′
mn(τ)Ãnν(t) − Ãmn(t)H̃ ′

nν(τ)]

=
∑

m

∑

ν

ρνm(0)[H̃ ′(τ), Ã(t)]mν

= Tr(ρ(0)[H̃ ′(τ), Ã(t)]) (3.15)

where we have used the exchange of n → ν → m → n in the first term. In general



53

the j-th order term of the kernel goes to

Kj(τj, t) = ei(En−Em)τj/~[ρ(j−1)(τj), H
′(τj)]nmÃmn(t)

= Ãmn(t)ei(En−Em)τj/~ ·
∑

ν

[ρ(j−1)
nν (τj)H

′
νm(τj) −H ′

nν(τj)ρ
(j−1)
νm (τj)]

= Ãmn(t)ei(En−Em)τj/~
∑

ν

{

i

~

∫ τj

0

dτj−1e
i(Eν−En)(τj−τj−1)/~ ·

·[ρ(j−1)(τj−1), H
′(τj−1)]nνH

′
νm(τj) −H ′

nν(τj) ·

· i
~

∫ τj

0

dτj−1e
i(Em−Eν)(τj−τj−1)/~[ρ(j−1)(τj−1), H

′(τj−1)]νm

}

= Ãmn(t)
∑

ν

{

ei(Eν−Em)τj/~H ′
νm(τj)

i

~

∫ τj

0

dτj−1 ·

ei(En−Eν)τj−1/~[ρ(j−1)(τj−1), H
′(τj−1)]nν − ei(En−Eν)τj/~H ′

nν(τj) ·

· i
~

∫ τj

0

dτj−1e
i(Eν−Em)τj−1 [ρ(j−1)(τj−1), H

′(τj−1)]νm

}

= Ãmn(t)
∑

ν

{

H̃ ′
νm(τj)

i

~

∫ τj

0

dτj−1 ·

ei(En−Eν)τj−1/~[ρ(j−1)(τj−1), H
′(τj−1)]nν − H̃ ′

nν(τj) ·

· i
~

∫ τj

0

dτj−1e
i(Eν−Em)τj−1 [ρ(j−1)(τj−1), H

′(τj−1)]νm

}
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Similar to the case of first order, manipulating the summation, we have

∑

n

∑

m

Kj(τj, t) =
∑

n,m,ν

Ãmn(t)

{

H̃ ′
νm(τj)

i

~

∫ τj

0

dτj−1 ·

ei(En−Eν)τj−1/~[ρ(j−1)(τj−1), H
′(τj−1)]nν − H̃ ′

nν(τj) ·

· i
~

∫ τj

0

dτj−1e
i(Eν−Em)τj−1 [ρ(j−1)(τj−1), H

′(τj−1)]νm

}

=
∑

n,m,ν

[H̃ ′
mn(τj)Ãnν(t) − Ãmn(t)H̃ ′

nν(τj)] ·

·
{

i

~

∫ τj

0

dτj−1 e
i(Eν−Em)τj−1 [ρ(j−1)(τj−1), H

′(τj−1)]νm

}

=
∑

m,ν

[H̃ ′(τj), Ã(t)]mν ·

·
{

i

~

∫ τj

0

dτj−1 e
i(Eν−Em)τj−1 [ρ(j−1)(τj−1), H

′(τj−1)]νm

}

=
∑

n

∑

m

[H̃ ′(τj), Ã(t)]mn ·

·
{

i

~

∫ τj

0

dτj−1 e
i(En−Em)τj−1 [ρ(j−1)(τj−1), H

′(τj−1)]nm

}

Comparing the last line of the above equation with equation (3.14) and replacing Ã

with [H̃ ′(τj), Ã(t)], we can write the kernel as

Kj(τj, t) = [H̃ ′(τj), Ã(t)]mn ·

·
{

i

~

∫ τj

0

dτj−1 e
i(En−Em)τj−1 [ρ(j−1)(τj−1), H

′(τj−1)]nm

}

= [H̃ ′(τj−1), [H̃
′(τj), Ã(t)]]mn ·

(

i

~

)2

∫ τj

0

dτj−1

∫ τj−1

0

dτj−2 e
i(En−Em)τj−2 [ρ(j−2)(τj−2), H

′(τj−2)]nm

= [H̃ ′(τ2), H̃
′(τ3) · · · , [H̃ ′(τj−1), [H̃

′(τj), Ã(t)]] · · · ]]mn ·
(

i

~

)j−1

∫ τj

0

dτj−1

∫ τj−1

0

dτj−2 · · ·
∫ τ2

0

dτ1

ei(En−Em)τ1/~[ρ(1)(τ1), H
′(τ1)]nm
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Manipulating the summation as we did for equation (3.15), we have

∑

n

∑

m

Kj(τj, t) =

(

i

~

)j−1 ∫ τj

0

dτj−1

∫ τj−1

0

dτj−2 · · ·
∫ τ2

0

dτ1Tr{ρ(0)

[H̃ ′(τ1), [H̃
′(τ2), H̃

′(τ3) · · · , [H̃ ′(τj−1), [H̃
′(τj), Ã(t)]] · · · ]]]}

The time evolution of the dynamical variable A(t) corresponds to

< A >t =
∑

n,m

ρnm(0)Ãmn(t) +
∑

j=1

i

~

∑

n,m

∫ t

0

dτ Kj(τ, t)

= Tr{ρ(0)Ã(t)} +
∑

j=1

(

i

~

)j

∫ t

0

dτj

∫ τj

0

dτj−1

∫ τj−1

0

dτj−2 · · ·
∫ τ2

0

dτ1Tr{ρ(0)

[H̃ ′(τ1), [H̃
′(τ2), · · · , [H̃ ′(τj−1), [H̃

′(τj), Ã(t)]] · · · ]]}

Born-Oppenheimer Approximation The above equation of nonlinear re-

sponse theory is powerful but it involves too many degrees of freedom of electrons

and atoms. For dynamical variables calculated when the system is in its ground elec-

tronic state, it is always a good approximation to solve the equations of electronic

degrees of freedom first based on a fixed nuclear configuration and then take average

of all possible nuclear configurations. Therefore, it is necessary to simplify the above

nonlinear response theory based on the so called B.O. Approximation.

In general, for a system of N nuclei and M electrons, the unperturbed total
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Hamiltonian of all degrees of freedom is:

Ĥ0 = −
M
∑

i=1

1

2
∇2

i −
N
∑

j=1

1

2mj
∇2

j −
M
∑

i=1

N
∑

j=1

qj
rij

+
M
∑

i=1

M
∑

s>i

1

xis

+
N
∑

j=1

N
∑

s>j

qjqs
Rjs

=

[

−
M
∑

i=1

1

2
∇2

i −
M
∑

i=1

N
∑

j=1

qj
rij

+

M
∑

i=1

M
∑

s>i

1

xis

]

+

[

−
N
∑

j=1

1

2mj
∇2

j +

N
∑

j=1

N
∑

s>j

qiqs
Rjs

]

= Ĥo
e +

[

−
N
∑

j=1

1

2mj
∇2

j +
N
∑

j=1

N
∑

s>j

qiqs
Rjs

]

where xis is the distance between i-th and s-th electron, rij is the distance between

i-th electron and j-th nucleus, and Rjs is the distance between j-th and s-th nucleus.

mj is the mass of the j-th nucleus. qj is the charge of j-th nucleus. Based on the

B.O. approximation, the problem of solving the Schrodinger equation

Ĥ0ψ = Eψ

can be split into the electronic part

Ĥo
eψe = Eo

eψe

and the nuclear part

Ĥ0
NψN = EψN

where

Ĥ0
N =

[

−
N
∑

j=1

1

2mj
∇2

j +

N
∑

j=1

N
∑

s>j

qiqs
Rjs

]

+ Eo
e
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Note that the electronic wavefunction ψe, nuclear wavefunction ψN , and the electronic

energy Eo
e are

ψe = ψe(x
M ,RN)

ψN = ψN (RN)

Eo
e = Eo

e (R
N)

where xM and RN are collective notations for the coordinates of M electrons and N

nuclei:

xM = (x1,x2, · · · ,xM)

RN = (R1,R2, · · · ,RN)

The total wavefunction corresponding to Ĥ0ψ = Eψ is

ψ(xM ,RN) ' ψe(x
M ,RN)ψN (RN)

Validity of BO approximation Insert the approximated wavefunction into the
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Schrodinger equation, then the left hand side is

Ĥψ(xM ,RN) = Ĥo
e +

[

−
N
∑

j=1

1

2mj

∇2
j +

N
∑

j=1

N
∑

s>j

qiqs
Rjs

]

ψeψN

= ψNE
o
e(R

N)ψe +

N
∑

j=1

N
∑

s>j

qjqs
Rjs

ψeψN

−
N
∑

j=1

1

2mj
∇j · [(ψe∇ψN + ψN∇ψe]

=

[

Eo
e +

N
∑

j=1

N
∑

s>j

qjqs
Rjs

]

ψeψN −
N
∑

j=1

1

2mj

(∇2
jψN)ψe

−
N
∑

j=1

1

2mj
(∇2

jψe)ψN −
N
∑

j=1

1

mj
(∇jψe)(∇jψN )

= ψe

[

−
N
∑

j=1

1

2mj
(∇2

jψN ) + Eo
eψN +

N
∑

j=1

N
∑

s>j

qjqs
Rjs

ψN

]

−ψN

N
∑

j=1

1

2mj
(∇2

jψe) −
N
∑

j=1

1

mj
(∇jψe) · (∇jψN )

= ψe(Ĥ
0
NψN) −

N
∑

j=1

1

mj

[

1

2
ψN (∇2

jψe) + (∇jψe)(∇jψN )

]

= EψeψN −
N
∑

j=1

1

2mj
[ψN (∇2

jψe) + 2(∇jψe)(∇jψN)]

= Eψ(xM ,RN) −
N
∑

j=1

1

2mj
[ψN (∇2

jψe) + 2(∇jψe)(∇jψN )]

' Eψ(xM ,RN)

The validity of B.O Approximation is guaranteed if the term

−
N
∑

j=1

1

2mj
[ψN (∇2

jψe) + 2(∇jψe)(∇jψN )]

is much smaller than Eψ(xM ,RN). The former is on the order of the electronic

kinetic energy and it is usually much smaller than the nuclear kinetic energy part in

Eψ(xM ,RN) which is −ψe

∑N
j=1

1
2mj

(∇2
jψN).
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Application of the B.O approximation to Nonlinear Response theory

By using the B.O. approximation where we assume that the motion of electrons always

follows that of nuclei, we can eliminate the degrees of freedom of electrons for a certain

nuclear configuration and then take average of all possible nuclear configurations

of the ensemble. Therefore the calculation of dynamical properties becomes much

simpler. Recall that the total Hamiltonian of the system considered is

H(t) = H0(x
N ,RN) +H ′(xN ,RN , t)

In case of an electric perturbation, H ′ has both electronic part and nuclear part:

H ′(xM ,RN , t) = H ′
e(x

M , t) +H ′
N(RN , t)

A typical example is that at time t = 0 we turn on a constant external electric field:

E = exEx + eyEy + ezEz:

H ′(xM ,RN , t) = −µ ·E

H ′
e(x

M , t) =

M
∑

i=1

exiαEαh(t)

H ′
N(RN , t) = −

N
∑

i=1

qiRiαEαh(t)

where h(t) is a step function. The normal procedure in the B.O. treatment of dy-

namics requires solving the electronic part first.

HeΨen = (Ho
e +H ′

e)Ψen = EnΨen

The unperturbed state ψen satisfies

Ho
eψen = Eenψen, n = 0, 1, 2, · · · ,
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We assume the response of electrons is very fast when the perturbation is a con-

stant within this time interval (H ′
e(x

M , t) = H ′
e(x

M )). Therefore, the steady-state

of electrons will be achieved during each nuclear configuration. For the nondegen-

erate ground electronic state, the time independent perturbation theory (Rayleigh-

Schrodinger Perturbation Theory) gives the steady-state ground state energy and

wavefunction[62]:

Eo = E(0)
o + E(1)

o + E(2)
o + · · ·+

Ψe0 = Ψ
(0)
e0 + Ψ

(1)
e0 + Ψ

(2)
e0 + · · ·+ · · ·

E(0)
o =

∫

dxMψ∗
e0H

o
eψe0 = Ee0

Ψ
(0)
e0 = ψe0

E(1)
o =

∫

dxMψ∗
e0H

′
e(x

M)ψe0 = −µαEα

Ψ
(1)
e0 =

∑

n6=0

ψen

∫

dxMψ∗
enH

′
e(x

M)ψe0

Ee0 − Een

E(2)
o =

∑

n6=0

|
∫

dxMψ∗
e0H

′
e(x

M)ψen|2
Ee0 − Een

= −1

2
χαβEαEβ

Ψ
(2)
e0 =

∑

n6=0

ψen

∫

dxMψ∗
enH

′
e(x

M)ψ
(1)
e0 − E

(1)
o

∫

dxMψenψ
(1)
e0

Ee0 − Een

E(3)
o = −1

3
ξαβγEαEβEγ

where µα and χαβ are the α component of the dipole moment and αβ component of

the electronic polarizability created by electrons for the fixed nuclear configuration

RN

µα = −
∫

dxMψ∗
e0

M
∑

i=1

exiαψe0
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χαβ = 2
∑

n6=0

∫

dxMψ∗
e0

∑M
i=1 exiαψen

∫

dxMψ∗
en

∑M
j=1 exjβψe0

Een − Ee0

The expression for ξαβγ can also be calculated by following perturbative approach.

This is very tedious and won’t be done explicitly here. The nuclear Hamiltonian

including the external perturbation part is

HN(t) = Ee0 −
N
∑

j=1

1

2mj

∇2
j +

N
∑

j=1

N
∑

s>j

qiqs
Rjs

−
N
∑

i=1

qiRiαEαh(t)

−µαEαh(t) −
1

2
χαβEαEβh(t) −

1

3
ξαβγEαEβEγh(t) + · · ·+

= Ee0 −
N
∑

j=1

1

2mj
∇2

j +

N
∑

j=1

N
∑

s>j

qiqs
Rjs

−
(

µα +

N
∑

i=1

qiRiα

)

Eαh(t)

−1

2
χαβEαEβh(t) −

1

3
ξαβγEαEβEγh(t) + · · ·+

= Ee0 −
N
∑

j=1

1

2mj
∇2

j +
N
∑

j=1

N
∑

s>j

qiqs
Rjs

−
(

MαEα +
1

2
χαβEαEβ +

1

3
ξαβγEαEβEγ

)

h(t) + · · ·+ · · ·

= H0
N(RN) +H ′

N(RN , Eα, t)

where Mα is the total dipole moment in the α direction and we have added the

electronic energy modification to the nuclear perturbation Hamiltonian under the

B.O. approximation. The new perturbation Hamiltonian is

H ′
N(RN , Eα, t) = −

(

MαEα +
1

2
χαβEαEβ +

1

3
ξαβγEαEβEγ

)

h(t) + · · ·+ · · ·

The dynamical variable of interest in the case of external electronic perturbation is

the usual polarization operator:

P =

N
∑

i=1

qiRi −
M
∑

j=1

exj
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under the B.O. approximation, the α component of the polarization vector is

Pα =
N
∑

j=1

qjRjα −
∫

dxNΨ∗
e0

M
∑

i=1

exiαΨe0

=
N
∑

j=1

qjRjα −
∫

dxMψ∗
e0

M
∑

i=1

exiαψe0 −
∫

dxMΨ
(1)
e0

∗
M
∑

i=1

exiαψe0 −

∫

dxMΨ∗
e0

M
∑

i=1

exiαΨ
(1)
e0 −

∫

dxMΨ
(1)
e0

∗
M
∑

i=1

exiαΨ
(1)
e0

−
∫

dxMΨ
(2)
e0

∗
M
∑

i=1

exiαψe0 −
∫

dxMψe0

M
∑

i=1

exiαΨ
(2)
e0 + · · ·+

= P (0)
α + P (1)

α + P (2)
α + · · ·+ · · ·

where the 0-th order value is

P (0)
α =

N
∑

j=1

qjRjα −
∫

dxMψ∗
e0

M
∑

i=1

exiαψe0 = Mα

and the 1-st order value is

P (1)
α = −

∫

dxMΨ∗
e0

M
∑

i=1

exiαΨ
(1)
e0 + c.c.

= −
∑

n6=0

∫

dxMψ∗
e0

∑M
i=1 exiαψen

∫

dxMψ∗
en

∑M
i=1 exiβEβψe0

Ee0 − Een
+ c.c.

=
1

2
χαβEβ + c.c.

= χαβEβ

Following the same procedure, we can also see that

P (2)
α = −

∫

dxMΨ
(1)
e0

∗
M
∑

i=1

exiαΨ
(1)
e0 −

∫

dxMΨ
(2)
e0

∗
M
∑

i=1

exiαψe0

−
∫

dxMψe0

M
∑

i=1

exiαΨ
(2)
e0

= ξαβγEβEγ
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Actually, we can directly derive the above equation by using the relation between

energy and polarization:

Pα = P (0)
α + P (1)

α + P (2)
α + · · · + · · ·

=

N
∑

j=1

qjRjα −
∫

dxNΨ∗
e0

M
∑

i=1

exiαΨe0

=

N
∑

j=1

qjRjα −
∫

dxNΨ∗
e0

∂H ′
e

∂Eα
Ψe0

=
N
∑

j=1

qjRjα − ∂

∂Eα

(Eo − Ee0)

=

N
∑

j=1

qjRjα − ∂

∂Eα

(

−µαEα − 1

2
χαβEαEβ − 1

3
ξαβγEαEβEγ

)

+ · · ·

=

N
∑

j=1

qjRjα + µα + χαβEβ + ξαβγEβEγ + · · ·

= Mα + χαβEβ + ξαβγEβEγ + ζαβγδEβEγEδ · · ·

According to nonlinear response theory, the time evolution of an arbitrary dynamical

variable A under the perturbation H ′ is

< A >t = Tr{ρ(0)Ã(t)} +
∑

j=1

(

i

~

)j

∫ t

0

dτj

∫ τj

0

dτj−1

∫ τj−1

0

dτj−2 · · ·
∫ τ2

0

dτ1Tr{ρ(0)

[H̃ ′(τ1), [H̃
′(τ2), · · · , [H̃ ′(τj−1), [H̃

′(τj), Ã(t)]] · · · ]]}

Replacing A for Pα and H ′ for H ′
N and considering the response to 1st order, 2nd

order, and 3rd order on the external field Eα, we have

< Pα >
(1)
t = Tr[ρ̂(0)χ̃αβ(t)Eβ(t)] +

i

~

∫ t

0

dτ1Tr{ρ̂(0)[−M̃β(τ1)Eβ(τ1), M̃α(t)]}

= Tr[ρ̂(0)χ̃αβ(t)]Eβ(t) +
i

~

∫ t

0

dτTr{ρ̂(0)[M̃α(t), M̃β(τ)]}Eβ(τ) (3.16)



64

where the Heisenberg operator in this B.O. treatment is defined as

M̃α(t) = eiH0
N t/~Mαe

−iH0
N t/~

H0
N = −

N
∑

j=1

1

2mj

∇2
j +

N
∑

j=1

N
∑

s>j

qjqs
Rjs

+ Ee0(R
N)

Mα = µα +

N
∑

j=1

qjRjα

Similarly, we can get the 2nd order polarization:

< Pα >
(2)
t = Tr[ρ̂(0)ξ̃αβγ(t)Eβ(t)Eγ(t)]

+
i

~

∫ t

0

dτ1Tr

{

ρ̂(0)

[

−1

2
χ̃βγ(τ1)Eβ(τ1)Eγ(τ1), M̃α(t)

]}

+
i

~

∫ t

0

dτ1Tr
{

ρ̂(0)
[

−M̃γ(τ1)Eγ(τ1), χ̃αβ(t)Eβ(t)
]}

+

(

i

~

)2 ∫ t

0

dτ2

∫ τ2

0

dτ1

Tr
{

ρ̂(0)[−M̃β(τ1)Eβ(τ1), [−M̃γ(τ2)Eγ(τ2), M̃α(t)]]
}

Because liquids are isotropic systems, 2nd nonlinear optical effects are not detected.

It is common to study the 3rd order nonlinear spectra. The required expression for
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3rd order polarization is:

< Pα >
(3)
t = Tr[ρ̂(0)ζ̃αβγδ(t)Eβ(t)Eγ(t)Eδ(t)] (3.17)

+
i

~

∫ t

0

dτ1Tr

{

ρ̂(0)

[

−1

3
ξ̃βγδ(τ1)Eβ(τ1)Eγ(τ1)Eδ(τ1), M̃α(t)

]}

(3.18)

+
i

~

∫ t

0

dτ1Tr

{

ρ̂(0)

[

−1

2
χ̃βγ(τ1)Eβ(τ1)Eγ(τ1), χ̃αδ(t)Eδ(t)

]}

(3.19)

+
i

~

∫ t

0

dτ1Tr
{

ρ̂(0)
[

−M̃β(τ1)Eβ(τ1), ξ̃αγδ(t)Eγ(t)Eδ(t)
]}

(3.20)

+

(

i

~

)2 ∫ t

0

dτ2

∫ τ2

0

dτ1Tr

{

ρ̂(0)
[

−M̃β(τ1)Eβ(τ1),
[

−M̃γ(τ2)Eγ(τ2), χαδ(t)Eδ(t)
]]}

(3.21)

+

(

i

~

)2 ∫ t

0

dτ2

∫ τ2

0

dτ1Tr

{

ρ̂(0)

[

−M̃β(τ1)Eβ(τ1),

[

−1

2
χγδ(τ2)Eγ(τ2)Eδ(τ2), M̃α(t)

]]}

(3.22)

+

(

i

~

)2 ∫ t

0

dτ2

∫ τ2

0

dτ1Tr

{

ρ̂(0)

[

−1

2
χ̃βγ(τ1)Eβ(τ1)Eγ(τ1),

[

−M̃δ(τ2)Eδ(τ2), M̃α(t)
]

]}

(3.23)

+

(

i

~

)3 ∫ t

0

dτ3

∫ τ3

0

dτ2

∫ τ1

0

dτ1Tr
{

ρ̂(0)
[

−M̃β(τ1)Eβ(τ1),

[

−M̃γ(τ2)Eγ(τ2),
[

−M̃δ(τ3)Eδ(τ3), M̃α(t)
]]]}

(3.24)

In most studied optical experiments, all of the frequencies in polarization and the

external electrical field are “optical”. For those frequencies, it turns out that only

two terms (3.17) and (3.19) are important and the rest six terms are negligible.
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Therefore,

< Pα >
(3)
t = Tr[ρ̂(0)ζ̃αβγδ(t)Eβ(t)Eγ(t)Eδ(t)]

+
i

~

∫ t

0

dτ1Tr

{

ρ̂(0)

[

−1

2
χ̃βγ(τ1)Eβ(τ1)Eγ(τ1), χ̃αδ(t)Eδ(t)

]}

= Tr
[

ρ̂(0)ζ̃αβγδ(t)
]

Eβ(t)Eγ(t)Eδ(t) +
i

2~

∫ t

0

dτ1

Tr {ρ̂(0) [χ̃αδ(t), χ̃βγ(τ1)]Eβ(τ1)Eγ(τ1)Eδ(t)} (3.25)

We assume that initially the system is in its thermal equilibrium state at a given

temperature T , therefore

ρ̂(0) =
e−βH0

N

Tr
[

e−βH0
N

]

ρnn(0) = ρnn(0)δnm

The first term in the first order response of < Pα > (equation (3.16)) is

Tr [ρ̂(0)χ̃αβ(t)] =
∑

n

∑

m

ρ̂(0)nm(χ̃αβ)mn

=
∑

n

∑

m

δnmρnn(0)(χ̃αβ)mn

=
∑

n

∑

m

δnmρnn(0)

∫

dRNφ∗
me

iH0
N

t/~χαβe
−iH0

N
t/~φn

=
∑

n

∑

m

δnmρnn(0)ei(Em−En)t/~

∫

dRNφ∗
mχαβφn

=
∑

n

ρnn(0)

∫

dRNφ∗
nχαβφn

= < χαβ >0

which is the equilibrium expectation value of χαβ. Similarly, the first term in the third

order response of < Pα > (equation (3.25)) is the equilibrium expectation value of

ζαβγδ. The second term of equation (3.25) and (3.16), are equilibrium time correlation
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functions. Equations (3.25) and (3.16) relate the response of the material to an

external optical perturbation in terms of equilibrium quantities and time correlation

functions of the dipole moment or the first order susceptibility. In chapter 7, we

will use third order response theory (equation (3.25)) to study the optical Kerr effect

(OKE) of ionic liquids.

In closing this section, we have derived a complete nonlinear response theory

and explained the use of the B.O. approximation which simplifies the results for the

computation of third order optical processes. The use of B.O. theory makes the

final expression for optical response theory simpler and it is necessary because the

calculation of time correlation functions through classical simulation only tracks the

motion of nuclei and involves no degrees of freedom of electrons.

3.5 Non-Hamiltonian Systems

So far in this thesis linear response theory deals with the fluctuation under

small external perturbations to the system Hamiltonian. However, the perturbation

does not have to be written in a Hamiltonian form. A form of response theory of

non-Hamiltonian case has been studied in the book [16]. This formulation provides

the background to study the shear viscosity of ionic liquids.

In general, for a system subject to an external field Fe(t), the dynamics of the

system obeys the following equation[16]:

Ṙq = vq + CqFe(t) mqv̇q = Fq + DqFe(t) (3.26)

Where Rq, vq and mq are the position, velocity and mass of particle q respectively.
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Fq is the internal force on particle q. The dynamical variables Cq and Dq describe the

coupling of the field to particle q. Note that the definition of Liouville operator (2.3)

in chapter 2 is still valid. Having studied the linear response theory comprehensively

in the previous sections, the derivation of LRT in this non-Hamiltonian case should

be straightforward. This derivation can also be found in the literature[16] and thus

won’t be repeated here. We simply write the result analogous to equation (3.5). The

time evolution of a dynamical variable B, is given by:

< B(t) >=< B(t = 0) > −β
∫ t

0

dτ < B(t− τ)J(t = 0) > Fe(τ) (3.27)

where the dissipative flux J(t) is defined as:

J(t) ≡
∑

q

(−Dq · vq + Cq · Fq) (3.28)

In order to understand this non-Hamiltonian approach clearly in the case of shear

viscosity, we give the following example. Assume an external force of F = exFx =

exmq cos(kzq)a0 is imposed on the system, the equations of motion are






























ẋi =
pxi
mi

ẏi =
pyi
mi

żi =
pzi
mi

(3.29)

and






























ṗqx = Fqx +mq cos(kzq)a0

ṗqy = Fqy

ṗqz = Fqz

(3.30)

where k is the spatial frequency of the force and a0 is the amplitude of the force.

pj is the momentum of particle j. It turns out that no Hamiltonian can be written
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that corresponds to this perturbation! Clearly, the coupled dynamical variable Cq in

equation (3.26) is always zero here. The dynamical variable Dq and the external field

can be taken to be:

Dq(k, t) = exmq cos(kzq) Fe(t) = a0h(t) (3.31)

where the function h(t) is a step function

h(t) =















1 t > 0

0 t < 0

The dissipative flux is:

J(k, t) = −
∑

q

mqa0vqx cos(kzq) (3.32)

The dynamical variable B we are interested in is:

B(z, t) ≡
∑

q

mqvqx(t)δ(z − zq(t)) (3.33)

We first manipulate the integral in equation (3.27) as follows:

< B(z, t) > = < B(z, t = 0) > −
∫ t

0

dτ β < B(z, t− τ)J(k, t = 0) > a0h(τ)

= −
∫ t

0

dτ β < B(τ)J(k, t = 0) > a0h(t− τ)

= −
∫ t

0

dτ βa0 < B(z, τ)J(k, t = 0) >

=

∫ t

0

dτ βa0 <
∑

j

mjvjx(τ)δ(z − zj(τ))
∑

q

mqvqx cos(kzq) >

= βa0

∫ t

0

dτ D(z, τ) (3.34)

where the equilibrium average < B(z, t = 0) > vanishes due to the evenness of the

equilibrium distribution function in momentum space. We have defined,

D(z, τ) ≡<
∑

j

mjvjx(τ)δ(z − zj(τ))
∑

q

mqvqx cos(kzq) > (3.35)



70

We also expand δ(z − zj) in terms of a cos(kz) series in the interval [−lz/2, lz/2],

δ(z − zj) =
2

lz

+∞
∑

n=0

cos(
2nπz

lz
) cos(

2nπzj

lz
) =

2

lz

∑

k′

cos(k′z) cos(k′zj) (3.36)

where k′ = 2nπ/lz. Inserting the above equation into equation (3.34), we obtain,

D(z, τ) =
2

lz

∑

k′

<
∑

j

mjvjx(τ) cos(k′z) cos(k′zj(τ))
∑

q

mqvqxa0 cos(kzq) >

=
2

lz

∑

k′

δkk′ <
∑

j

mjvjx(τ) cos(kz) cos(kzj(τ))
∑

q

mqvqxa0 cos(kzq) >

=
2

lz
cos(kz) <

∑

j

mjvjx(τ) cos(kzj(τ))
∑

q

mqvqx cos(kzq) >

=
2

lz
cos(kz) <

∑

j

mjvjx(τ) sin(kzj(τ))
∑

q

mqvqx sin(kzq) >

=
cos(kz)

lz
<
∑

j

mjvjx(τ)e
−ikzj(τ)

∑

q

mqvqxe
ikzq >

=
M

βlz
cos(kz)

C(k, τ)

C(k, t = 0)
(3.37)

Here, the time correlation function of cross wavenumbers (k 6= k′) vanishes due to

translational invariance. Inserting equation (3.36) into equation (3.34), we obtain the

time evolution of < B(z, t) > as follows:

< B(z, t) >=
M

lz
a0 cos(kz)

∫ t

0

dτ
C(k, τ)

C(k, t = 0)
(3.38)

The above equation is precisely the time evolution of dynamical variable < B(z, t) >

upon external shear perturbation. Recalling the definition of B(z, t)

B(z, t) =
∑

q

mqvqx(t)δ(z − zp(t)) =
∑

q

2mqvqx

lz

∑

k′

cos(k′z) cos(k′zq(t))

and noticing that only the wavenumber k′ = k contributes to the time evolution of

< B(z, t) > while the rest of the terms with k′ 6= k vanish, we define a new function
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only including this k′ = k branch of B(z, t) ∗ lz/(M cos(kz)) as follows:

V (t) =
∑

q

2mqvqx(t)cos(kzq(t))/M (3.39)

It is straightforward to show that,

< V (t) >=
< B(z, t) > lz
M cos(kz)

= a0

∫ t

0

dτ
C(k, τ)

C(k, t = 0)
(3.40)

We have derived the time evolution of two dynamical variable B(t) in equation (3.33)

and V (t) in equation (3.39) which will be used in chapter 5 to study the shear viscosity

of ionic liquids.

Nonlinear Response It turns out that it is necessary to study nonlinear response

theory to obtain the complete response of our ionic liquids under external shear

perturbations. We therefore derive the general n-th order nonlinear response for the

dynamical variable V (t) in equation (3.39) under the same perturbation as we just

proposed. We will see that linear response version of equation (3.40) is just the

simplest case in which n = 1. First we note that the internal energy is

H0 =
∑

j

p2
j

2mj
+ Φ(RN) =

∑

j

p2
j

2mj
+
∑

i<j

φ(Rij)

where RN is a collective notation of (R1,R2, · · · ,RN). The notation xi and Rix are

the same for the ex direction coordinate, and so for ey and ez directions. The rate of
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the change of the total energy after imposing the external force is

dH0

dt
= iL̂H0 = 2

∑

j

pj

2mj
· ṗj +

dΦ(RN)

dt

=
∑

j

pjx

mj

(Fjx +mj cos(kzj)a0) +
∑

j

(
pjy

mj

Fjy +
pjz

mj

Fjz) +
∑

j

∂Φ(RN )

∂Rj

· Ṙj

=
∑

j

pj

mj

· Fj + a0

∑

j

pjx cos(kzj) −
∑

j

Fj · pj

= a0

∑

j

pjx cos(kzj)

In general, the action of the Liouville operator on an arbitrary dynamical variable B

is

iL̂B(pN ,RN) = iL̂0B(pN ,RN) + (iL̂− iL̂0)B(pN ,RN)

= iL̂0B(pN ,RN) + a0

∑

j

mj cos(kzj)
∂B

∂pjx

where the Liouville operator iL̂0 corresponds to that of equilibrium unperturbed

system (i.e. in the absence of external field exa0mq cos(kzq)). For a constant pertur-

bation, the phase space density (phase space distribution function) can be formally

written as

f(pN
0 ,R

N
0 , t) = e−iL̂tf0(p

N
0 ,R

N
0 )

= e−iL̂t e−βH0

∫

dΓe−βH0
=

e−βH̃0(−t)

∫

dΓd−βH0

where Γ is the collective notation for phase space variable (pN ,RN) and˜means the

dynamics is driven by both the internal and the external field. f0(p
N
0 ,R

N
0 ) is the

equilibrium phase density without external perturbations. The partial derivative of
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phase density gives the phase density equation:

∂f(pN
0 ,R

N
0 , t)

∂t
= −β e

−βH̃0(pN
0

,RN
0

;−t)

∫

dΓe−βH0

∂H̃0(p
N
0 ,R

N
0 ;−t)

∂t

= −βf(pN
0 ,R

N
0 , t)

dH̃0(−t)
dt

= βf(pN
0 ,R

N
0 , t)

dH̃0(τ)

dτ

∣

∣

∣

∣

∣

τ=−t

= βf(pN
0 ,R

N
0 , t)

[

a0

∑

j

p̃jx(−t) cos(kz̃j(−t))
]

Here it is important to understand the relation between phase space variables. (pN
0 ,R

N
0 )

denotes a fixed phase space point. Variables (pN
0 ,R

N
0 ;−t) of H̃0 corresponds to the

phase space point evolved from a initial value (pN
0 ,R

N
0 ) for a time −t with the dy-

namics driven by the equations (3.29) and (3.30). The solution to the above phase

density equation can be formally written as

f(pN
0 ,R

N
0 , t) = exp

{

βa0

∫ t

0

ds
∑

j

p̃jx(−s) cos(kz̃j(−s))
}

f(pN
0 ,R

N
0 , t = 0)

= exp

{

βa0

∫ t

0

ds
∑

j

p̃jx(−s) cos(kz̃j(−s))
}

f0(p
N
0 ,R

N
0 )

It is useful to define dynamical variables u(t) to study the response of material under

external shear perturbation in the form of exa0mq cos(kzq).

u(t) =
∑

j

pjx(t) cos(kzj(t))

and then the dynamical variable V (t) can be written as

V (t) =
∑

q

2pqx(t) cos(kzq(t))/M =
2

M
u(t)

where M =
∑

j mj is the total mass of the system. The dynamical variable u(t)
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driven by the presence of the external field is given by

ũ(t) =
∑

j

p̃jx(t) cos(kz̃j(t))

Therefore the non-equilibrium average of V (t) becomes

< V (t) > =

∫

dΓ0V (pN
0 ,R

N
0 )f(pN

0 ,R
N
0 , t)

=
2

M

∫

dΓ0u(0)eβa0

R t

0
dsũ(−s)f0(p

N
0 ,R

N
0 )

=
2

M

∞
∑

n=1

(a0β)n

∫ t

0

ds1 · · ·
∫ t

0

dsn < u(0)ũ(−s1) · · · ũ(−sn) >0

where < u(0) >0= 0 is the average over the equilibrium distribution function f0(p
N
0 ,R

N
0 ).

Up to the order a3
0, we have

< V (t) > ' 2

M

2
∑

n=1

(a0β)n

∫ t

0

ds1 · · ·
∫ t

0

dsn < u(0)ũ(−s1)ũ(−s2) >0

=
2

M
a0β

∫ t

0

ds1 < u(0)ũ(−s1) >0

2

M
(a0β)2

∫ t

0

ds1

∫ t

0

ds2 < u(0)ũ(−s1)ũ(−s2) >0

=
2

M
(a0β)

∫ t

0

ds1 < u(0)u(−s1) >0 +

2

M
(a0β)

∫ t

0

ds1 < u(0)(ũ(−s1) − u(−s1)) >0 +

+
2

M
(a0β)2

∫ t

0

ds1

∫ t

0

ds2 < u(0)ũ(−s1)ũ(−s2) >0 (3.41)

Define the time correlation function

C(k, t) =<
∑

q

pqxe
−ikzq

∑

j

pjx(t)e
−ikzq(t) >

The initial value of C(k, t) is

C(k, t = 0) =<
∑

q

m2
qv

2
qx >=

M

β



75

Therefore the first term in < V (t) > (equation (3.41)) becomes

< V (t) >(1) =
2

M
(a0β)

∫ t

0

ds1 < u(0)u(−s1) >0

=
2

M
(a0β)

∫ t

0

ds < u(0)u(s) >0

= a0

∫ t

0

dτ
C(k, τ)

C(k, t = 0)

which is precisely the linear response part (equation (3.40)). In order to figure out the

nonlinear response part, we have to decompose the dynamical variable ũ(−s) into a

combination of equilibrium variables. For this we introduce the Dyson decomposition

to rewrite ũ(−s) as a function of u(−s) which evolves without the presence of external

field.

In general, the Dyson decomposition is written as[16]:

eiL̂t = eiL̂0t +

∫ t

0

dseiL̂s(iL̂− iL̂0)e
iL̂0(t−s)

= eiL̂0t +
∞
∑

n=1

∫ t

0

ds1

∫ s1

0

ds2 · · ·
∫ sn−1

0

dsne
iL̂0sn(iL̂− iL̂0)e

iL̂0(sn−1−sn)

· · · (iL̂− iL̂0)e
iL̂0(s1−s2)(iL̂− iL̂0)e

iL̂0(t−s1) (3.42)

A straightforward proof of Dyson decomposition is given in the Appendix B. Because

the integration up n-th order corresponds to the order of magnitude an
0 , we need to

consider n = 1 for the second term in equation (3.41) and consider n = 0 for the



76

third term in equation (3.41).

ũ(−t) − u(−t) ' (e−iL̂t − e−iL̂0t)u(0)

= −
∫ t

0

ds1e
−iL̂0s1(iL̂− iL̂0)e

−iL̂0(t−s1)u(0)

= −
∫ t

0

dse−iL̂0(t−s)(iL̂− iL̂0)e
−iL̂0su(0)

= −e−iL̂0t

∫ t

0

dseiL̂0s(iL̂− iL̂0)e
−iL̂0su(0)

= −e−iL̂0t

∫ t

0

dseiL̂0s(iL̂− iL̂0)u(−s)

= −a0e
−iL̂t

∫ t

0

dseiL̂0s

[

∑

j

mj cos(kzj)
∂u(0)

∂pjx

]

= −a0e
−iL̂0tt

∑

j

mj cos(kzj)
∂u(0)

∂pjx

Therefore up to order of magnitude a2
0, we have:

< V (t) > = a0

∫ t

0

dτ
C(k, τ)

C(k, t = 0)

+
2

M
a0β

∫ t

0

ds < u(0)(−a0)e
−iL̂0ss

∑

j

mj cos(kzj)
∂u(0)

∂pjx
>

2

M
(a0β)2

∫ t

0

ds1

∫ t

0

ds2 < u(0)u(−s1)u(−s2) >0

= a0

∫ t

0

dτ
C(k, τ)

C(k, t = 0)

+a2
0

2

C(k, t = 0)

∫ t

0

dss < u(s)
∑

j

mj cos(kzj)
∂u(0)

∂pjx

>

+
2

M
(a0β)2

∫ t

0

ds1

∫ t

0

ds2 < u(0)u(s1)u(s2) >0 (3.43)

Equation (3.43) can be used to predict the nonlinear response behavior upon an

external shear perturbation. We thus have completed the derivation of nonlinear

response theory for our specific case of shear perturbation.

Initial Pulse Perturbation We have considered the case of a constant perturbation
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starting at t = 0 (h(t) is the step function). It is also interesting to study how the

system will relax if initially a non-equilibrium state is created by a pulse perturbation.

We assume an initial velocity profile of the form:

ux(z, t) = w0 cos(kz) (3.44)

is created by a pulse interaction and the external force is zero (a0 = 0). The initial

distribution function can be written as,

f(RN ,vN) = f0(R
N ,v1 − exw0 cos(kz1),v2 − exw0 cos(kz2), · · · ,vN − exw0 cos(kzN ))

where RN ,vN are collective notations for positions and velocities of 1, 2, · · · , N par-

ticles and f0(R
N ,vN) is the equilibrium distribution function. Recalling again the

definition of B(z, t),

B(z, t) =
∑

q

mqvqx(t)δ(z − zq(t)),

we have

< B(z, t = 0) >=

∫ ∫

dvNdRN
N
∑

p=1

mpvpxδ(z − zp)f(RN ,vN , t = 0)

=

N
∑

p=1

∫ ∫

dvNdRN mp(vpx + w0 cos(kzp))δ(z − zp)f0(R
N ,vN)

=
N
∑

p=1

∫ ∫

dvNdRN mpw0 cos(kzp)δ(z − zp)f0(R
N ,vN)

= w0 cos(kz)
M

lz
(3.45)

where M/lz is the length density of the system.

The evolution of the distribution function f(RN ,vN , t) is determined by Li-

ouville’s equation (2.8):

f(RN ,vN , t) = e−itL̂f(RN ,vN , 0) = e−itL̂f0(R
N , {vp − exw0 cos(kzp)}{p=1,··· ,N})
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Assume that the perturbation −exw0 cos(kzp) is small enough such that we only need

to consider the first two terms in the Taylor expansion of f(RN ,vN , 0),

f(RN ,vN , 0) = f0(R
N , {vp − exw0 cos(kzp)}{p=1,··· ,N})

= f0(R
N ,vN) +

N
∑

p=1

∂f0(R
N ,vN)

∂vpx

(−w0) cos(kzp) + · · ·

' f0(R
N ,vN) − w0

N
∑

p=1

∂f0(R
N ,vN)

∂vpx
cos(kzp)

= f0(R
N ,vN) − w0

N
∑

p=1

∂(e−βH/Q)

∂vpx
cos(kzp)

= f0(R
N ,vN) − w0

N
∑

p=1

(−β)
e−βH

Q

∂H(RN ,vN)

∂vpx
cos(kzp)

= f0(R
N ,vN) + βw0

N
∑

p=1

f0(R
N ,vN)

∂H(RN ,vN)

∂vpx
cos(kzp)

= f0(R
N ,vN) + βw0

N
∑

p=1

f0(R
N ,vN)mpvpx cos(kzp)

= f0(R
N ,vN) + βw0f0(R

N ,vN)

N
∑

p=1

mpvpx cos(kzp)

Therefore,

e−itL̂f(RN ,vN , 0) = e−itL̂f0(R
N ,vN) + βw0e

−itL̂

[

f0(R
N ,vN)

N
∑

p=1

mpvpx cos(kzp)

]

= f0(R
N ,vN) + βw0f0(R

N ,vN)e−itL̂

N
∑

p=1

mpvpx cos(kzp) (3.46)
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The average of B(z, t) becomes,

< B(z, t) > =

∫ ∫

dvNdRN B(z, t = 0)f(R, v, t)

=

∫ ∫

dvNdRN B(z, t = 0)e−itL̂f(R, v, 0)

'
∫ ∫

dvNdRN B(z, t = 0)

{

f0 + βw0f0(R
N ,vN)e−itL̂

[

N
∑

p=1

mpvpx cos(kzp)

]}

= βw0

∫ ∫

dvNdRN B(z, t = 0)f0(R
N ,vN)e−itL̂

[

N
∑

p=1

mpvpx cos(kzp)

]

= βw0

∫ ∫

dvNdRN B(z, t)f0(R
N ,vN)

[

N
∑

p=1

mpvpx cos(kzp)

]

= βw0 < B(z, t)
N
∑

p=1

mpvpx cos(kzp) >

= βw0D(z, t) (3.47)

Recalling the expression for D(z, t) from equation (3.37), we have,

< B(z, t) >= βw0
M

βlz
cos(kz)

C(k, t)

C(k, t = 0)
=< B(z, 0) >

C(k, t)

C(k, t = 0)
(3.48)

where we have used equation (3.45). Thus, we complete the theory for the time

evolution of the variable B(t) under an initial pulse perturbation of the form (3.44).

In closing this section, we have derived the linear response and nonlinear the-

ories in detail for the case of shear perturbations. The results in equations (3.38),

(3.40), and (3.48) will be used in chapter 5 to study the response of room temper-

ature ionic liquids upon shear perturbation. The formulation of nonlinear response

theory (3.43) will be useful in future research involving nonlinear response of the ionic

liquids.
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CHAPTER 4
NUMERICAL SIMULATION OF IONIC LIQUIDS

In previous chapters we have derived general formulations for transport prop-

erties and linear and nonlinear response theories for a statical mechanical system

upon external perturbations in terms of time correlation functions. Though the the-

oretical analysis in previous chapters is very informative, it is in general very hard to

compute the required time correlation functions analytically. As we have mentioned

in Chapter 2, people have developed analytical tools such as mode coupling theory

[59] to uncouple GLE (2.13). Most of the applications of such theory are still limited

to simple liquids like hard sphere fluids or atomic liquids with simple interaction[26].

Without any analytical solution available, a direct way to study the dynamics of

complex liquids is to do numerical simulations. The main contribution of the author

of this thesis is his exploration of transport and dynamical properties of ionic liquids

through molecular dynamics (MD) simulations [35, 37, 38, 36]. This chapter will give

a brief introduction to MD simulations and provide the potential energy function used

for all the systems studied. Excellent references on molecular dynamics simulation

are available [1, 19, 72].

4.1 Molecular Dynamics Simulation

Molecular dynamics has extensively enriched the understanding of the behav-

ior of liquids since the middle of last century[1]. Simply speaking, the procedure

of classical simulation is to solve Newton’s equations numerically. For our NVE (
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constant number of particle, constant volume and constant total energy) production

runs, Newton’s equations of motion are:

Ṙj = vj

mjv̇j = aj

One of the most popular algorithms to numerically solving this Newtonian equations

of motion is the Verlet algorithm[74, 1].

Verlet Algorithm At time t, the system has a configuration (RN(t),vN(t)), the

force is determined by the derivative of the potential:

aj(t) = − 1

mj

∇j(URN(t)) (4.1)

Taylor expansions at t = t + ∆t and t = t − ∆t gives the coordinates of next frame

and previous frame respectively:

Rj(t+ ∆t) = Rj(t) + vj(t)∆t+
1

2
aj(t)∆t

2 +
1

6
b(t)∆t3 + O(∆t4)

Rj(t− ∆t) = Rj(t) − vj(t)∆t+
1

2
aj(t)∆t

2 − 1

6
b(t)∆t3 + O(∆t4)

The Verlet algorithm calculates the configuration at the next frame t = t+∆t through:

Rj(t+ ∆t) = 2Rj(t) − Rj(t− ∆t) + aj(t)∆t
2 + O(∆t4)

vj(t) =
Rj(t+ ∆t) − Rj(t− ∆t)

2∆t
+ O(∆t2)

Modifications to the above basic scheme have been proposed in the last thirty years[32,

56, 72]. The algorithm used in our simulation is the leap-frog scheme implemented in

Gromacs software[47, 7, 72].

Rj(t+ ∆t) = Rj(t) + ∆tv(t +
1

2
∆t)
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v(t+
1

2
∆t) = v(t− 1

2
∆t) + ∆ta(t)

Periodic Boundary Condition (PBC) We apply periodic boundary conditions to

minimize edge effects in a finite system. There are no walls at the boundary of the

center box. The properties calculated from the use of periodic boundary condition

for a small system may be different from those of a real macroscopic system. In gen-

eral, as people have already demonstrated in other liquids, properties not depending

on long-wavelength fluctuations can be well reproduced by using a small box with

the implementation of periodic boundary condition[1]. In our simulations, transport

properties corresponding to diffusion and optical response will be independent of typ-

ical simulation boxes, while the shear viscosity computed from different simulation

box sizes are wavelength dependent.

Calculating the force The most time-consuming part of molecular dynamics sim-

ulation is to calculate the force through equation (4.1) In our simulation of ionic

liquids, we use a potential energy function of the form[50]

U = Ustretch + Ubend + Utorsion + ULJ + UCoulomb (4.2)

where

Ustretch =
∑

bonds

Kr(r − req)
2 (4.3)

Ubend =
∑

angles

Kθ(θ − θeq)
2 (4.4)

Utorsion =
∑

dihedrals

5
∑

n=0

Cn(cos(φ))n) (4.5)

ULJ =
∑

i<j

4εij

[

(
σij

rij

)12 − (
σij

rij

)6

]

(4.6)
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UCoulomb =
∑

i<j

qiqj
rij

(4.7)

All of the parameters for the stretch, bend, torsion and, Lennard-Jones terms were

taken from the OPLS/AA force field[39], while partial charges qi were taken from fits

to the electrostatic potential (ESP) by performing ab initio quantum calculations[67].

In the next section, we will provide those parameters in detail for all the molecules

we studied.

4.2 Effective Potential of molecules

The ionic systems we studied are 1-butyl-3-methylimidazolium hexafluophos-

phate ([BMIM+][PF6-]), 1-hexyl-3-methylimidazolium chloride ([HMIM+][CL-]), 1-

methoxy-ethylpyridinium dicyanoamide ([MOEPY+][DCA-]). Representations of these

molecules are drawn in Figure 4.1.

The fluorescence probe used in studying the reorganization time scales of ionic

liquids is 2-amino-7-nitrofluorene (ANF). All of potential parameters required for

equations (4.2) through (4.7) and molecular geometries are listed in the Appendix D.

The geometry of the ANF molecule was provided as an input for ab initio quantum

calculation. The relative connectivity of each atom determines the atom type in the

OPLSAA force field[39]. The ground state charges are obtained from ESP fitting of

the electronic potential by performing an ab initio calculation at the (HF/6-31G∗)

theory level using the GAUSSIAN program[67, 20]. The excited-state charge distribu-

tion was estimated by computing the ground (S0) and first singlet excited (S1) charge

difference using the ZINDO Hamiltonian with configuration interaction[61]. These
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Figure 4.1: Molecular systems

calculations were performed with the software Hyperchem 7(Hypercube, Gainesville,

FL). The charge distribution in the excited state used for our MD calculations was

obtained by adding the charge difference obtained from the ZINDO calculation to the

ground-state charges obtained by the Hartree-Fock method.

Stretching, bending and torsion parameters are all taken from OPLSAA force

field.
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CHAPTER 5
TRANSPORT PROPERTIES OF IONIC LIQUIDS

We have already provided the general theory of transport properties in terms

of time correlation functions. In this chapter, we performed molecular dynamics of

ionic liquid systems [BMIM+][PF6-] and [HMIM+][CL-] to compute the quantities

previously defined in chapter 2 and to investigate the slow dynamical nature of ionic

liquids[35, 38].

5.1 Diffusion and Dynamical Heterogeneity

Simulation Details We performed molecular dynamics simulation for the neat liquid

system [BMIM+][PF6-]. Simulations were carried out using the software GROMACS

[47, 7]. Potential energy parameters are those previously explained in Chapter 4.

Periodic boundary conditions were employed using the particle mesh Ewald (PME)

method to treat long-range electrostatic interactions[15, 50, 49]. All systems were

initially equilibrated for several hundred picoseconds in the NPT ensemble using the

Berendsen method until trending in the volume was no longer observed[7]. This

equilibration time was sufficient since initial liquid configurations were obtained from

previously equilibrated long trajectories from reference[49]. Simulations were per-

formed at 300K, 400K, 500K. Production runs were carried out in the NVE ensemble

using 256 pairs of ions. These NVE runs were 3 ns in duration for the runs at 400K

and 500K and 9 ns in the case of the run at 300K. The time step used is 0.001ps. We

used a cutoff at 1.5nm and the total energy drift is less than 0.1%.
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Results and Discussion We have studied the mean square displacement (MSD) of

cations and anions as a function of time for 3 different temperatures. Fig. 5.1A shows

a logarithmic plot of MSD as a function of time in the case of the center of mass of the

cationic ring. Very similar functions are obtained in the case of the anions indicating

that cationic and anionic diffusive rates are highly correlated. At all temperatures

investigated the MSD displays three typical regions: an initial subpicosecond ballistic

region, an intermediate cage region and a long time diffusive region. The subpicosec-

ond ballistic region (slope=2) is separated from the diffusive region (slope=1) by a

plateau with slope close to zero in which ions are trapped in local cages. The duration

of this cage regime varies with temperature. At 500K this plateau is nearly absent as

in a normal liquid, but close to room temperature the plateau region is of the order of

nanoseconds as can be appreciated in Fig. 5.1A. The fact that the intermediate cage

regime is so long compared to most other liquids at room temperature has significant

consequences in terms of spectroscopy. This point will be discussed in detail in the

following subsection. In order to better understand the translational behavior of the

ionic liquid, we computed the self part of the time dependent van Hove correlation

function [73]:

Gs(r, t) =
1

N
〈

N
∑

j=1

δ(r + rj(0) − rj(t))〉 (5.1)

Here, 4πr2Gs(r, t)dr is the probability of finding at time t an ion in the vicinity dr

of points at the distance r given that initially the particle was located at the origin.

For typical liquids Gs(r, t) has a Gaussian form given by:

Gd
s(r, t) = [3/2π〈r2(t)〉]3/2exp[−3r2/2〈r2(t)〉] (5.2)
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(A) Mean square displacement versus time for the center of mass of the cationic ring
at 300,400 and 500K. (B) Comparison of the non-Gaussian parameter α2 versus time
for the cations at 300, 400 and 500K. At 400K the maximum is at at t∗ = 109ps,
while at 300k it shifts to 2.48ns.

Figure 5.1: MSD and non-Gaussian parameter

where 〈r2(t)〉 is the mean square displacement of the particles. Deviations from

Gaussian behavior can be characterized by the non-Gaussian parameter defined as:

α2(t) = 3〈r4(t)〉/5〈r2(t)〉2 − 1 [57, 42, 41, 43, 22]. Fig. 5.1B shows α2 as a function

of time in the case of the cations at 300 and 400K. At 300K the non-Gaussian pa-

rameter reaches its maximum at time t∗ = 2.48ns where the self van Hove correlation

function has its maximum deviation from Gaussian behavior. Consistent with the

findings of Del Popolo and Voth[12] in a similar ionic liquid, we observe that at 400K

the maximum deviation from Gaussian behavior occurs at 109 ps. Using the data at

300K we computed the self van Hove correlation function Gs(r, t
∗) and the standard

Gaussian function Gd
s(r, t

∗). Fig. 5.2 clearly shows that Gs(r, t
∗) and Gd

s(r, t
∗) inter-
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sect at a distance of about 2.9Å . As we can appreciate, most ions appear to diffuse

slower than expected from Gaussian diffusion but a group of ions exist that diffuse

much faster. This point can be seen from the fact that Gs(r, t
∗) has a much longer

tail than the corresponding Gaussian function Gd
s(r, t

∗). We use the approach previ-

0 2 4 6
r(Å)

0

0.2

0.4

0.6
4πr2Gs(r,t*)
4πr2Gs

d(r,t*)

The self part of the van Hove correlation function for the cations and its standard
Gaussian form at the time t = t∗ for the system at 300K. Because this system is
isotropic we only consider the radial part: 4πr2Gs(r, t

∗).

Figure 5.2: Self van Hove correlation funct.

ously introduced by Kob and coworkers in order to define two cationic and anionic

subensembles[43]. We computed the displacement of all ions during time windows

[t0, t0 + t∗] and defined in each case the set of anions and cations with top 10 percent

maximum mobility as cationic and anionic mobile subensembles. Cations and anions

in the bottom 10 percent mobility range are defined as those belonging to the immo-

bile subensembles. By analyzing Gs(r, t) plotted in Fig. 5.2 A, B, C and D we find that

anions in the mobile subensemble have in average moved further in 200 ps than those
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in the immobile subensemble in 3000ps. The same phenomenon can be appreciated

in the case of the cations where for the mobile subensemble the van Hove correlation

function shows longer tails at 200ps than in the case of the immobile subensemble at

2000ps. Particularly interesting is the appearance of multiple peaks in the van Hove

distribution at longer times. This is indicative of hopping processes[60]. These hop-

ping processes imply that within the mobile subensemble, some particles move much

faster than others. Interestingly these subensembles of “slow” and “fast” diffusing

ions appear to be correlated in space. Proof that mobile ions are clustered in space

and are far removed from the subset of immobile ions is given by corresponding radial

distribution functions (RDFs) displayed in Fig. 5.4IA and IB. We can see from these

plots that the diagonal terms gmobile−mobile and gimmobile−immobile have large first peaks

while the cross terms gmobile−immobile show a depletion of density at short distances.

This means that the correlation between either the mobile or the immobile parti-

cles is much higher than the mobile-immobile cross correlation. Similar correlation

was recently observed in the MD simulations of supercooled water and supercooled

Lennard-Jones liquids[43, 22, 60, 14]. Rotational diffusion of solute and solvent is

important in ILs because in a slow viscous solvent it provides a local mechanism for

energy transfer and “fast” relaxation once a probe molecule has been photo-excited

and its charge distribution distorted. In order to investigate solvent reorientational

dynamics we use an approach previously introduced by Ribeiro in the study of a high

temperature molten salt[60]. We define an orientation analog of the self van Hove

correlation function, G(θ, t): G(θ, t) = 〈δ[θ− θi(t)]〉 where θi(t) = cos−1[ui(t) · ui(0)].
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The self part of the van Hove correlation function Gs(r, t) for anions ((A) and (B))
and cations ((C) and (D)) in the mobile ensemble ((A) and (C)) and the immobile
ensemble ((B) and (D)) at three different times. Mobile and immobile subensembles
are defined in the text.

Figure 5.3: Self van Hove correlation funct. of subensembles

In order to gauge whether translational mobility is decoupled from rotational mobility

we display in Fig. 5.5II G(θ, t) for those anions and cations belonging to the transla-

tionally mobile and translationally immobile subensembles. Fig. 5.5A and Fig. 5.5B

clearly prove that translational mobility is totally decoupled from rotational mobility

in the case of the [PF6-] anions. In both cases, at 5.0ps, G(θ, t) has a primary peak

and a secondary peak. The secondary peak corresponds to an angle of approximately

90 degrees. This peak becomes more prominent at larger times. This behavior is

characteristic of rotational hopping processes that, due to the high degree of symme-

try of the anion, leave the ion in an orientational configuration indistinguishable from

the original one. As opposed to the anionic case, in the case of the cations we see that

rotational and translational mobility are strongly coupled. G(θ, t) at 100ps in the case

of the translationally mobile subensemble of cations is similar to G(θ, t) at 2000ps
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Diagonal (mobile-mobile) (immobile-immobile) and off-diagonal (mobile-immobile)
radial distribution functions in the case of the anions (A) and the cations (B). First
peaks in the case of the diagonal terms are large indicating strong spatial correlation
and clustering. Off-diagonal terms show density depletion at short distances, con-
sistent with the idea that groups of mobile and immobile particles are separated in
space.

Figure 5.4: RDFs of mobile and immobile subensembles and their cross

in the case of the corresponding translationally immobile subensemble. For those

cations in the mobile subensemble we find multiple peaks at large distance indicating

the existence of reorientational hopping processes consistent with those observed for

the same subgroup in our study of translational mobility.

5.2 Shear Viscosity

In this section attention is directed to three related problems; (1) the response

of the Ionic liquid (IL) 1-hexyl-3 methylimidazolium chloride ([HMIM+][CL-]) to

different external perturbations, (2) the calculation of its shear viscosity and (3)
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G(θ, t) in the case of the anions ((A) and (B)) and the cations ((C) and (D)) in the
mobile subensemble ((A) and (C)) and in the immobile subensemble ((B) and (D))
at different times. The units of θ are in radians.

Figure 5.5: Angular distribution in subensembles

the investigation of the range of validity of linear response theory for these types

of systems. Our study shows that even for systems with box length as large as

0.03µm the viscosity computed from perturbation frequencies compatible with this

box size have not yet reached the bulk hydrodynamic limit. This is in sharp contrast

with the case of other solvents such as water in which the hydrodynamic limit can

be achieved by using perturbations on a length scale of typical molecular dynamics

simulation box sizes. In order to achieve our goals, we comprehensively investigated

how the IL relaxed upon weak external perturbations at different wavenumbers. We

also studied the steady state flow created by external shear acceleration fields. Short

time behavior of instantaneous velocity profiles was compared with the results of

linear response theory. The short time response appears to match the prediction

from linear response theory while the long time response deviates as the external
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field becomes stronger. From this study the range on which a perturbation can be

considered “weak” in the linear response sense can be established. The relaxation of

initial velocity profiles was also examined and correlated to the decay of transverse

current auto correlation function. Even though none of our calculations reached the

bulk hydrodynamic limit we are able to make predictions for the bulk viscosity of

this system at different temperatures which qualitatively agrees with experimental

data[23, 38].

Simulation Details We performed molecular dynamics simulation for the system

[HMIM+][CL-]. All of the equilibrium procedures and treatment of long range inter-

action, are the same as those reported in previous subsection. In order to facilitate

equilibration, we initially simulated three different system sizes (343 pairs, 2744 pairs

and 8232 pairs) at temperature T=500 K. For each of these, one NVE production

simulation was run for about 1ns to calculate transverse current auto correlation

functions (TCACs).

For the smallest system (343 ion pairs), non-equlibrium molecular dynamics

(NEMD) simulations were run at three different shear rates. For each of the two larger

systems (2744 and 8232 ion pairs), NEMD simulations were run at two different shear

rates. Each of these NEMD simulations was at least 700 ps in duration in order to

guarantee good statistics. In order to study the transient behavior of instantaneous

velocity amplitude upon perturbation for each shear rate used in the three systems

mentioned before, four independent NEMD simulations were run. The duration of

these runs was 20ps for the two smaller systems and 50 ps for the largest.
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Finally, in the case of our largest system, we imposed an initial cos(kz) shape

velocity profile and ran 200 independent simulations to observe its decay after the

drag is switched off at time zero. Each of these 200 simulations was 10 ps in duration.

All of the above simulations were also performed at T = 400 K but only for

the largest system size (8232 pairs corresponding to 263, 424 atoms). Table 5.1 shows

the characteristics of each different system.



95

Table 5.1: System characterization

Pairs of Ions T (K) Box Size (nm) a0 (nm/ps2) η (cp)

8232 500 lx = ly = 10.26, lz = 30.79
0.005

0.010

8.859± 0.103

6.423± 0.039

2744 500 lx = ly = lz = 10.26
0.03

0.05

7.233± 0.108

3.602± 0.024

343 500 lx = ly = lz = 5.125

0.10

0.20

0.30

3.981± 0.069

1.232± 0.007

0.662± 0.003

8232 400 lx = ly = 10.07, lz = 30.20
0.01

0.02

57.14± 1.669

6.683± 0.068

Characteristics of our different simulation boxes and corresponding viscosity values
from equation (5.12). The error estimates are based on our fit of the corresponding
steady state velocity profile, see Fig. 5.7 through Fig. 5.9 and Fig. 5.11.
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Theoretical Background Here we use the results previously derived in chapters 2

and 3.

Hydrodynamic Equations We consider only the transverse part of Navier-Stokes

equation [8]:

ρ
∂ux(z, t)

∂t
= ρax(z, t) + η

∂2ux(z, t)

∂z2
(5.3)

where we define the z direction as the longitudinal direction, ux(z, t) and ax(z, t) are

the transverse velocity field and external acceleration respectively, ρ is mass density,

and η is the coefficient of shear viscosity. This macroscopic equation is only valid

at long time scale and large length scale (small wavenumbers). We are going to

use this equation as the starting point to discuss three different cases: spontaneous

fluctuation(SF), periodic perturbation(PP) and initial pulse perturbation(IPP).

Spontaneous Fluctuation Here we consider an equilibrium case where the ex-

ternal force is zero in equation (5.3) and define the spatial Fourier transform of the

dynamical variable u(r) as,

u(k, t) =

∫ +∞

−∞

u(r, t)eik·r dr (5.4)

the equilibrium solution to equation (5.3) in k space is,

u(k, t) = u(k, 0)exp(−η
ρ
k2t) (5.5)

Therefore the auto correlation function

C(k, t) =< u∗(k, 0)u(k, t) > (5.6)

evolves exponentially as [8]

C(k, t) = C(k, 0)exp(−η
ρ
k2t) (5.7)
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where C(k, t) is only a function of the magnitude of the wavenumber vector k for

isotropic systems. Further define the Fourier transform of the time correlation func-

tion C(t) as:

C(k, ω) =

∫ +∞

0

C(k, t)eiωt dt (5.8)

and directly integrate both sides of equation (5.7), to obtain,

C(k, ω = 0)

C(k, t = 0)
=

∫ +∞

0

exp(−η
ρ
k2t) dt =

ρ

ηk2
(5.9)

The left hand side of the above equation is just the area under the normalized time

correlation function C(k, t)/C(k, t = 0). The coefficient of shear viscosity η can

be calculated from this normalized area or the zero frequency value of the spectra

(equation (5.8)). This method has been used by Balucani et.al[6] for a water system

and Urahata and Ribeiro [71] for ionic liquid systems.

Periodic Perturbation In the case of PP, we assume an initial velocity and an

acceleration profile as,














ux(z, t = 0) = 0

ax(z, t) = a0 cos(kz)

(5.10)

The solution to equation (5.3) becomes,

ux(z, t) = a0τ(1 − e−t/τ ) cos(kz) = u0 cos(kz) (5.11)

where the relaxation time τ is defined as τ = ρ/ηk2. By fitting the steady-state

velocity profile at sufficiently long time (e−t/τ → 0) to a cos(kz) form and measuring

the amplitude u0, one is able to get the coefficient of shear viscosity as the following:

η =
a0ρ

u0k2
(5.12)
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This method, called the Periodic Perturbation Method (PP), was first developed by

Gosling et. al[25]. Instead of imposing a cos(kz) shape acceleration, Backer and

coworkers have used a step function[5],

ax(z, t) =















a0 if z > 0

−a0 if z < 0

(5.13)

Correspondingly, the resulting velocity profile has to be fitted to a parabolic function

instead of a cos(kz) function.

Without any loss of generality, in this work we only focus on cos(kz) shape

accelerations.

Initial Pulse Perturbation In the case of IPP, an initial velocity profile of the

form:

ux(z, t) = w0 cos(kz) (5.14)

is created by a pulse interaction and the external force is zero (a0 = 0), the solution

to equation (5.3) gives the decay of the velocity profile as a function of time:

ux(z, t) = w0e
−t/τ cos(kz) = w0(t) cos(kz) (5.15)

From this solution, we can see that the velocity profile will decay exponentially at large

time scale and length scale and the relaxation time τ = ρ/ηk2 is inversely proportional

to the coefficient of shear viscosity. Thus, shear viscosity can be determined by

directly measuring this relaxation time.

Linear Response Theory Although most of the simulation methods to compute

viscosity were originally developed from hydrodynamic equations; it is insightful to
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understand them based on a microscopic theory. This is because a real simulation

usually uses a box size corresponding to finite wavenumbers (k 6= 0). We therefore

start from linear response theory which is generally valid for weak perturbations at

arbitrary wavenumbers.

Periodic Perturbation and Spontaneous Fluctuation As we discussed in sec-

tion 3.5 of chapter 3, for the case of PP, the dynamical variable B we are interested

in can be written as:

B(z, t) ≡
∑

q

mqvqx(t)δ(z − zq(t)) (5.16)

and the non-equilibrium ensemble average of the dynamical variable B(z, t) becomes

(see equation (3.38)),

< B(z, t) >=
M

lz
a0 cos(kz)

∫ t

0

dτ
C(k, τ)

C(k, t = 0)
(5.17)

where M is the total mass and lz is the z direction length of the system. M/lz gives

the length density of the system. The transverse current correlation function (TCAC)

is defined as,

C(k, t) =<
∑

q

mqvqxe
−ikz

∑

p

mpvpxe
ikz > (5.18)

Note that we use momentum here instead of velocity as was used in equation (5.6).

Macroscopically these two are only difference by a constant. Equations (5.7) and

(5.9) are still valid given the definition of equation (5.18), while it is only exact

to use equation (5.18) rather than equation (5.6) for multiple component systems.

Obviously, at very long time, the steady state average of B(z, t) goes to,

< B(z, t) >=
M

lz
a0 cos(kz)

∫ ∞

0

dτ
C(k, τ)

C(k, t = 0)
=
M

lz
a0 cos(kz)

C(k, ω = 0)

C(k, t = 0)
(5.19)
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Noticing that <B(z,t)>lz
M

corresponds to ux(z, t) in equation (5.11), replacing u0 with

a0C(k, ω = 0)/C(k, t = 0), we have

η(k) =
a0ρ

u0k2
=

ρ

k2

C(k, t = 0)

C(k, ω = 0)
(5.20)

This equation is exactly consistent with equation (5.9). Therefore Equation (5.12)

and (5.9) are equivalent even in the case of finite wavenumbers (k 6= 0) as long as linear

response theory applies. Another interested dynamical variable is the instantaneous

velocity amplitude:

V (t) =
∑

q

2mqvqx(t)cos(kzq(t))/M (5.21)

we therefore have (see equation 3.40 )

< V (t) >

a0
=

∫ t

0

dτ
C(k, τ)

C(k, t = 0)
(5.22)

Through a comparison with equation (5.20) it is clear that the long time behavior

of < V (t) > /a0 is inversely proportional to the coefficient of shear viscosity. In a

recent article Hess[31] actually used this definition of V (t) in order to compute an

“instantaneous” viscosity.

Equation (5.22) can be used to test the validity of linear response theory since

the left hand side of the equation can be computed from the transient response of an

ensemble of non-equilibrium trajectories under an external periodic perturbation force

such as in equation (5.10) while the right hand side can be obtained from equilibrium

MD simulations. To the best of our knowledge, the use of equations (5.21) and (5.22)

to study the response of liquids to external perturbations at short time has never

been done on any system. For simplicity in notation, we define the right hand side of
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equation (5.22) (i.e. the time integral of the normalized correlation function) as the

“spontaneous response curve” (SRC).

Initial Pulse Perturbation and Spontaneous Fluctuation Considering an initial

velocity profile as in equation (5.14) and zero external field (a0 = 0), using the same

underlying idea as in our linear response derivations but a slightly different approach

(see equation 3.48 ), we have

< B(z, t) >=
M

lz
w0 cos(kz)

C(k, t)

C(k, t = 0)
=< B(z, t = 0) >

C(k, t)

C(k, t = 0)
(5.23)

Therefore, the time evolution of < B(z, t) > matches the decay of the TCAC and

< B(z, t) > preserves its initial cos(kz) shape. In the case of simple liquids at small

wavenumbers (k = 1.0nm−1), the TCAC on the right hand side of equation (5.23)

is found to be close to an exponential form except for a very short initial decay

period[55, 31]. We will show that this is not the case for ionic liquids. The studied

IL is still far from this regime even though the TCAC is examined at a much smaller

wavenumber(k = 0.2nm−1) corresponding to a much larger simulation box.

Instead of using the cos(kz) shape velocity profile in equation (5.14), Maginn

and coworkers have imposed an initial Gaussian shape velocity profile ux(z, t = 0) =

w0e
−b0x2

[3] and then followed the decay of its amplitude. In contrast to the case of

the cos(kz) profile which is limited in wavenumbers by the simulation box size, the

Gaussian shape profile mixes different wavenumbers. This method may provide some

advantages over measuring a single relaxation time from the exponential decay in

equation (5.15). In our work without any loss of generality for simplicity we only

study the case of a cos(kz) shape velocity decay.
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Results and Discussion

Spontaneous Fluctuation We use the following expression to calculate TCACs

defined in equation (5.18)[55],

u(k, t) =

N
∑

q

mqk̂⊥ · vq(t) sin(k ·Rq(t)) (5.24)

u(k, t) =
N
∑

q

mqk̂⊥ · vq(t) cos(k ·Rq(t)) (5.25)

where k can be taken as 2π/lx, 2π/ly, 2π/lz or their linear combinations. Rq and vq are

the position and velocity of particle q respectively. k̂⊥ is a unit vector perpendicular

to k. The summation in equation (5.24) and (5.25) can be done over all molecules or

all atoms. We found that the molecular definition saves considerable computational

time without loss of accuracy. For the smallest k in each of the cubic system in

Table 5.1, the longitudinal direction k is taken to be along the x,y or z direction.

For each of these three directions, there are two independent vertical directions. For

each vertical direction k̂⊥, both sin and cos(kz) forms of the TCAC in equation (5.24)

and (5.25) were calculated. In total, 3×2×2 = 12 separate contributions are averaged

to improve statistics. In the case of the largest system of 8232 pairs, since the box

is not cubic, only the z direction can be counted for the longitudinal direction of the

smallest k, therefore 1 × 2 × 2 = 4 separate contributions are averaged. All reported

time correlation functions are normalized by their initial values.

Fig. 5.6 (A), (B), (C) and (D) show TCACs for the three different systems

at two different temperatures. TCACs for different ILs at much larger wavenumbers

(k ≥ 1.4nm−1) have been previously reported in other papers[76, 71]. Clearly, we
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Figure 5.6: TCACs at different k

observe that negative minima appear at all of the studied frequencies. These short

time oscillations indicate non-hydrodynamic behavior[28]. For simpler liquids such as

water or supercooled argon, frequencies such as k = 1.0nm−1 are quite close to the

hydrodynamic limit. For this IL our shortest wavenumber k = 0.2nm−1 is still far

from the hydrodynamic limit.

Because of the lack of a complete kinetic theory in order to predict the long

time behavior of the time correlation functions at finite wavenumbers, the accuracy

of long time decay of TCACs is limited by computational power. Therefore, it is

hard to obtain a converged C(k, ω = 0) from the integral over time (0 to +∞) of
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TCACs. Noticing that the viscosity is inversely proportional to this zero frequency

number(ω = 0), a small fluctuation in the magnitude of C(k, ω = 0) significantly

affects the value of viscosity. Direct Fourier transform suffers from the same problem

of inaccurate long time decay of the TCACs. We tried the maximum entropy and

linear regularization methods to invert the relation in equation (5.8) to obtain the

zero frequency value. However, both methods proved unstable. We therefore do not

provide viscosities estimated using this method. Nevertheless, the above 3 TCACs

at T =500 K and the one computed at T = 400 K together with their corresponding

integrals at short time provide the basis for our comparison and interpretation of the

dynamics of Ionic liquids under shear perturbations using linear response theory.

Periodic Perturbation We applied several different shear perturbations to the

[HMIM+][CL-] system, see Table 5.1. The steady state velocity profiles at T = 500

K corresponding to different frequencies are shown in Fig. 5.7, Fig. 5.8 and Fig. 5.9.

The viscosities calculated from equation (5.12) are shown in Table 5.1. The viscosity

value from the smallest perturbation and the largest system is supposed to be closest

to the viscosity at the hydrodynamical limit (k = 0).

Fig. 5.7 (A), Fig. 5.8(A) and Fig. 5.9(A) clearly show that the accelerations (a0)

required to impose flow are larger as the systems become smaller even though they all

have similar velocity amplitudes (u0). Our calculations show that in the range we have

studied η(k) is a slowly varying function of wavenumber k. Therefore equation (5.20)

shows that the acceleration a0 is approximately proportional to k2. Hence, the applied

shear force needed to generate a given velocity amplitude dramatically increases as
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Figure 5.7: Velocity profiles for the system of 8232 pairs

the size of system decreases (i.e. the wavenumber k gets larger). This has important

consequences in the case of typically small simulation box sizes of a few hundred

pairs of ions particularly at lower temperatures. For these system sizes, accelerations

required to create a drag may be large enough to significantly perturb liquid structure.

For the most part, velocity amplitudes due to the imposed drags in our simulations

were much smaller than thermal speed (0.8 nm/ps at 500K and 0.7nm/ps at 400 K).

Our largest velocity amplitude is close to 30% of the thermal speed while the rest

are less than 5%. As we analyze the pair distribution functions in Fig. 5.10 for the

three largest accelerations used in our smallest systems at 500 K we notice that the

structure of the liquid appears to be nearly unaffected.

Even though for all our systems at 500 K the shape of the steady state velocity

profile appears to have a cos(kz) form, we notice that as we change the acceleration
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Same as Fig. 5.7, but for a cubic system with 2744 ion pairs. Drag amplitudes (A)
a0 = 0.01 nm/ps2 (B) a0 = 0.02 nm/ps2.

Figure 5.8: Velocity profiles for the system of 2744 pairs

(i.e. the amplitude of the drag force) the amplitude of the velocity profile u0 is not

proportional to a0. This means that Equation (5.19) breaks down and linear response

theory fails. As we will show later in this thesis, this failure of linear response theory

only happens at long times.

A study of our largest system at 400 K reveals that the response to an accel-

eration of a0 = 0.02nm/ps2 deviates from the predictions of linear response theory

both in amplitude and shape of the velocity profile (see Fig. 5.11 (A) and (B)). The

flat shape of the velocity profile in Fig. 5.11 (B) could be interpreted as a mixture of

different wavenumbers. Therefore, a complete nonlinear response theory that couples

different modes is required to deal with this situation.

From a practical perspective, this finding could potentially amount to the

Holy Grail for analytical separations since the shape of flow fronts determine to a

large extent the efficiency of the process and flat flow fronts are ideal. To the best of
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Figure 5.9: Velocity profiles for the system of 343 pairs

our knowledge the potential to create flat velocity profiles in ionic liquid is something

that has not been explored neither computationally nor experimentally.

Even though our largest simulations have not reached the hydrodynamic limit,

from the data in Fig. 5.7(A) and Fig. 5.11 (A) we are able obtain best estimates of

viscosities at two temperatures η(500K) = 8.859cp and η(400K) = 57.14cp. (see

Table 5.1). There is no direct experimental data of shear viscosity currently available

at these two temperatures, however if we fit the existing experimental data from
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Figure 5.10: RDFs of Cl atom and C3 atom

reference [23] to the Vogel-Fulcher-Tammann (VFT) equation η = η0 ∗ exp(B/(T −

T0)[68, 69, 70], we can estimate what the experimental viscosity should be at T = 400

K and T = 500K. Fig. 5.12 shows our fit to the experimental data. Parameters are

η0 = 3.5149 ∗ 10−5 kg/ms, B = 1362.61 K, T0 = 194.539 . From this fit we obtain

values of η(400K) = 26.68 cp, and η(500K) = 3.04 cp. These numbers are about half

the values obtained from our simulations. Given the error in these estimates, and

the fact that none of our simulations have actually reached the hydrodynamic limit,

the agreement between simulations and experiments appear to be quite satisfactory.

Our simulation results can be improved by increasing the size of our already very

large systems and once the results are converged to the hydrodynamic limit potential
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Figure 5.11: Velocity profiles at T=400K

energy parameters could be adjusted or a polarizable force field could be implemented.

Since the instantaneous velocity amplitude < V (t) > shows the response of

the ionic liquid under shear perturbation, it is interesting to follow its transient time

evolution after the drag is switched on. As explained in previous sections this provides

an opportunity for comparison of the short time predictions of linear response theory

against actual non-equilibrium results. Fig 5.13 (A),(B),(C) and (D) shows plots of

<V (t)>
a0

as a function of time for two different temperatures at different shear rates.

The maximum of each of the SRC curves (in black) corresponds to the time at which

the TCAC crosses zero. In all cases studied, it appears that non-equilibrium velocity

amplitudes match the corresponding SRCs very well before this time. In the case of

small accelerations the time evolution of <V (t)>
a0

is still close to that of corresponding

SRCs after this time point while for the larger accelerations used in this work V (t)
a0

start
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Figure 5.12: VFT fit of viscosities

to deviate. Under linear response <V (t)>
a0

should be independent of the drag amplitude

a0. This is not the case as can be appreciated in Fig 5.13. By looking at the long

time value of <V (t)>
a0

in the case of different accelerations it is easy now to explain

why viscosities calculated from the steady-state velocity amplitude profiles decrease

as the accelerations increase. The viscosity predicted from equilibrium SRCs should

correspond to the zero shear rate limit of V (t). However as explained previously

since the integral from zero to infinity of the time correlation functions in Fig. 5.6 is

required, this task is extremely difficult for the size of systems necessary to reach the
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Figure 5.13: Instantaneous velocity amplitudes

correct hydrodynamic limit.

Initial Pulse Perturbation In order to further test the predictions of linear re-

sponse, we also studied systems with an initial cos(kz) shape velocity profile but no

applied drag. We did this for our largest system at two different temperatures. The

velocity amplitude used was 0.02nm/ps close to that created by the larger shear ac-

celerations(see Fig. 5.7 (B) and Fig. 5.11(B)). Fig. 5.14(A) and (B) show the decay of

velocity profile and corresponding equilibrium TCACs. Clearly, the first 10ps decay

through equation (5.23) matches the TCAC very well. This time is consistent with

that on which linear response was successful in the case of the periodic perturba-
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tion method (see Fig. 5.13 (C) and (D)). To converge these results 200 independent

trajectories of 10 ps were run at each temperature. Getting results for longer times

involves huge storage and computational times and is beyond our current computa-

tional capabilities. Nonetheless, our 10ps results are long enough to conclude that at

short time, equation (5.23) is valid. Linear response theory works very well at short

times in the case of initial pulse perturbations.
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our largest 8232 ion pair system. See equation (5.23) and Fig 5.6(C) and (D). (A) T
= 500 K (B) T = 400 K

Figure 5.14: Dissipation of IPP

Important to notice is that if the size of our simulations were at the hydrody-

namic limit of low k, our TCACs would have been exponentials and this ensemble of

short trajectories would have been enough to obtain the time constant corresponding

to the relaxation. Since even our largest simulations are not at this limit and a full
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microscopic theory predicting the shape of TCACs at finite wavenumbers is missing

the non-exponential nature of these curves prevents us from being able to establish

the value of the macroscopic viscosity.
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CHAPTER 6
EXCITATION WAVELENGTH DEPENDENT EMISSION SPECTRA

OF IONIC LIQUIDS

In this chapter we investigate the slow dynamics of 1-butyl-3-methylimidazolium

hexafluorophosphate, a very popular room-temperature ionic solvent[35, 37]. Our

study predicts the existence of heterogeneity in the liquid and shows that this het-

erogeneity is the underlying microscopic cause for the recently reported “Red Edge

Effect” (REE) observed in the study of fluorescence of the organic probe ANF. This

is the first theoretical paper to explain in microscopic terms the relation between

REE and dynamic heterogeneity in a room-temperature ionic liquid. The REE is

typical of micellar or colloidal systems, which are characterized by microscopic envi-

ronments that are structurally very different. In contrast in the case of this room-

temperature ionic liquid, the REE occurs because of the long period during which

molecules are trapped in quasi-static local solvent cages. This trapping time, which

is longer than the lifetime of the excited state probe, together with the inability

of the surroundings to adiabatically relax, induce a set of site-specific spectroscopic

responses. Sub-ensembles of fluorescent molecules associated with particular local

environments absorb and emit at different frequencies. We describe in detail the

absorption wavelength dependent emission spectra of ANF and show that this de-

pendence on the excitation wavelength λex is characteristic of the ionic liquid and, as

is to be expected, is absent in the case of a normal solvent such as methanol. Futher,

from the analysis of our simulated time resolved REE data we are able to derive an
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approximate time scale for reorganization of the solvent around the solute probe[37].

6.1 Steady-state Fluorescence spectra

Methods We performed molecular dynamics simulation for an ANF probe in an

ionic liquid system [BMIM+][PF6-]. Simulations were carried out using the software

GROMACS[47, 7]. Potential energy parameters are those previously explained in

Chapter 4. Periodic boundary conditions were employed using the particle mesh ewald

(PME) method to treat long-range electrostatic interactions[15, 50, 49]. All systems

were initially equilibrated for several hundred picoseconds in the NPT ensemble using

the Berendsen method until trending in the volume was no longer observed [7]. To

compute the absorption and emission spectra of ANF in the IL, we used an ensemble of

12 MD trajectories. Each of these trajectories consisted of an ANF molecule and 125

pairs of [BMIM+][PF6-] solvent ions. In order to compare the absorption wavelength

dependent emission of ANF in the IL with that in a typical organic solvent, we

also studied a system consisting of an ANF solute solvated by 179 methanol solvent

molecules. All trajectories involving ANF in its ground or excited electronic state

were about 1.5 ns in duration.

The ground state charge distribution for ANF was obtained from an ab initio

calculation at the (HF/6-31G*) theory level using the Gaussian program[20]. The

excited state charge distribution was estimated by computing the ground (S0) and

first singlet excited state (S1) charge difference using the ZINDO Hamiltonian with

configuration interaction[61]. These calculations were performed with the software
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Hyperchem 7. The charge distribution in the excited state used for our MD cal-

culations was obtained by adding the charge difference obtained from the ZINDO

calculation to the ground state charges obtained by the HF method. The calculated

ground and excited state dipole moments were 7.73 and 18.73 Debye respectively.

This methodology has already been successfully applied in the past by Maroncelli

and coworkers to study solvatochromism of betaine-30[54]. Lennard-Jones, stretch-

ing, bending and torsional parameters for ANF were taken to be the same in the

ground and excited electronic state. This is a reasonable approximation given that

ANF is a fairly rigid planar molecule. These parameters and those for methanol were

adopted from the OPLS-AA force field [39]. The S0 to S1 state energy gap ∆E can

be expressed as:

∆E = ∆E(g) + ∆Esol (6.1)

where ∆E(g) denotes gas-phase or intramolecular energy difference which is indepen-

dent of the solvent and ∆Esol is the solvent-solute interaction energy difference arising

from the different charge distributions in the ground and excited electronic state. In

our MD calculations ∆E(g) is taken as an arbitrary fixed constant that simply shifts

all points in the spectrum by the same amount. The value of this constant is chosen

so that the energy scale of our calculations coincides with experimental values. Con-

sidering that different trajectories have different contribution to the whole emission

spectrum, we have the following formula to calculate the spectra.

Iab(∆Eex) =
∑

l

I l
ab(∆Eex) (6.2)
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I l
em(∆Eem) =

∫ ∞

0

δ(∆E(t) − ∆Eem) × e−
t
τ dt (6.3)

Iem(∆Eex,∆Eem) =
∑

l

I l
em(∆Eem)I l

ab(∆Eex) (6.4)

Here I l
ab(∆Eex) is the probability distribution of absorption energy gaps ∆Eex in

trajectory l. Iab(∆Eex) denotes the total probability distribution at vertical transition

excitation energy ∆Eex. I
l
em(∆Eem) is the probability distribution of emission energy

gaps ∆Eem weighted by an exponential decay corresponding to the lifetime of the

probe (assumed to be 100 ps as in [BMIM+][BF4-][48]). Iem(∆Eex,∆Eem) denotes

the intensity or joint probability distribution of emission energy ∆Eem when excitation

energy is ∆Eex. No attempt has been made in these classical simulations to take into

account Frank Condon factors or other quantum selection rules. Emission spectra in

this chapter are always reported as area normalized.

Results and Discussion Absorption wavelength dependent emission of a probe

molecule occurs when solvent relaxation is slower than its fluorescence lifetime[13].

This type of phenomenon is very atypical for a normal liquid and is commonly found

in colloidal gels or micelles. Fig. 6.1 describes two possible scenarios. In both cases

one photo-excites a molecule into local excited state 1. If solvent relaxation is slow

compared to fluorescence, then emission occurs from this local environment. If on the

other hand the solvent behaves adiabatically, meaning that it adjusts to the change

in dipole moment of the excited state probe on a time scale much faster than the fluo-

rescence lifetime, then the emission is from the solvent relaxed local state 2. It is clear

that in a solvent that is locally heterogeneous on the time scale of emission one can

selectively photo-excite either local excited state 1 or 2 and therefore guide the out-
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is adiabatic and no REE is observed (hν ′′). In the other case solvent relaxation is
slow and excited state local environments do not interconvert (hν ′). In this case one
can observe REE. Sv. coord. stands for solvent coordinate.

Figure 6.1: Two possible scenarios

come of a photo-chemical reaction given that these two do not interchange. In order

to study this phenomenon from a molecular perspective we performed molecular dy-

namics simulations of ANF in methanol and in [BMIM+][PF6-](see above Methods).

Each trajectory was first equilibrated in the ground electronic state and subsequently

its corresponding absorption spectrum was computed by making a histogram of the

ground to excited state energy gaps along simulation. After 800ps the charge distri-

bution for ANF was changed to that in the first singlet excited electronic state. In
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Overlayed are different curves that correspond to the spectrum of ANF in
[BMIM+][PF6-] computed from each of our 12 molecular dynamics trajectories; (ab-
sorption (IIA) and emission (IIC)) as well as in methanol( absorption (IIB) and
emission (IID)). In the case of the ionic liquid we observe site specific spectra while in
methanol all spectra are superimposable. Each of these individual spectra contributes
to the total signal. (See equations 6.2 and 6.4).

Figure 6.2: Spectra of ANF in ILs and methanol

order to compute the emission spectrum arising from each individual trajectory we

performed the same kind of computation, only in this case the dynamics was driven

by the excited state potential. Fig. 6.2 shows absorption and emission spectra of ANF

computed in the IL and in methanol. It is clear from these plots that in methanol both

in the case of emission and absorption the spectra generated from different trajecto-

ries are nearly superimposable. On the other hand in the ionic liquid, the different

spectra corresponding to different trajectories are widely different. The behavior of
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each of these trajectories gives rise to a site specific response and is the cause for the

observed REE. In each of these trajectories ANF is in a different solvent environment
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∆Emax
em vs ∆Eex both for ANF in [BMIM+][PF6-] (×), in methanol (◦) and experi-

mental data in [BMIM+][PF6-](�). As explained in the text, in order to display all
maxima on the same energy scale as in the experiment, the same constant corre-
sponding to ∆Egas has been added to all points computed in the IL. An arbitrary
constant has also been added to all maxima in methanol. We clearly see from this
graph that while there is a λex dependence in the fluorescence spectra of ANF in the
IL, as is to be expected, this effect is absent in methanol.

Figure 6.3: Fluorescence spectra

that does not adiabatically relax after photo-excitation. By applying equation 6.2

we computed corresponding ensemble averaged absorption spectra. Fig. 6.3 shows

the λex dependent emission maxima of ANF in [BMIM+][PF6-] and methanol. We
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compare our results to Samanta’s experimental data[48] for the maximum in the dif-

ferent emission spectra as a function of excitation wavelength. The slope of ∆Emax
em

as a function of excitation energy is larger than the one experimentally reported.

Nonetheless, these results are in very good agreement with experiments, particularly

taking into account that we only included 12 independent trajectories in our ensem-

ble averages. It is clear that solvent dynamics is not adiabatic in the case of the

IL. In the experiment, subensembles of ANF molecules characterized by their slowly-

relaxing local surrounding are responsible for the different emission spectra obtained

by changing λex. We also show for comparison results of our simulations of ANF in

methanol in which, as expected, no REE is found because solvent relaxation (i.e. av-

eraging) is fast and no locally heterogeneous environments are present. The absence

of REE can be appreciated by noticing that the emission frequency is independent

from the absorption frequency.

The Relation Between REE and Dynamic Heterogeneity (see sec-

tion 5.1 of chapter 5) We have demonstrated that ([BMIM+][PF6-]) shows non Gaus-

sian diffusion patterns with subensembles of ions that can be distinguished by their

mobility. We have also demonstrated that the experimentally observed REE in the

case of ANF can be accounted for by analyzing an ensemble of independent molecular

dynamics trajectories. A very important issue yet remains unanswered. What charac-

terizes these local environments that do not relax on the time scale of emission? Are

we in the presence of a liquid with polar and apolar local domains? Fig. 6.4 sheds

light on this question. For the sake of clarity we may assume that our molecular
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Figure 6.4: Time evolution of electric field

probe ANF is characterized by a dipole moment ~µground in the ground electronic state

and ~µexcited in the excited electronic state. The dipole moment change in going from

ground to excited state is ~∆µ = ~µexcited − ~µground. Fig. 6.4II shows the magnitude

and projection of the electric field only due to the solvent onto ~̂∆µ. This projection

is taken at the location of one of the carbon atoms which is approximately at the

center of mass of ANF. It is clear from Fig. 6.4 that neither the absolute value of
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the electric field nor its projection along ~∆µ significantly vary throughout each of the

two simulations. In fact this is very characteristic of all our MD runs. If we compare

different trajectories the absolute value of the electric field significantly varies from

one to the other but it remains fairly constant as a function of time in each particular

run. The same thing can be said about its projection onto ~∆µ. In our simulations

the gap between ground and excited state is solely determined by electrostatics. We

find the value of the solute-solvent electrostatic energy to be trajectory dependent

but nearly time independent, at least on a nanosecond timescale, for each particular

run. A similar situation occurs for trajectories driven by the excited state ANF po-

tential. After an initial transient behavior neither the electric field due to the solvent

nor ~∆µ appreciably change in magnitude or relative orientation. This phenomenon

is clearly a property of the slow dynamics of the solvent and is related to the fact

that at room temperature the intermediate cage regime spans a duration on the order

of nanoseconds as can be appreciated in Fig.5.1. We conclude that the existence of

locally heterogeneous environments responsible for the REE is mainly due to the fact

that the typical lifetime for fluorescence in ANF is shorter than the time on which

this probe is trapped inside quasi-static solvent cages. Electric field and ~∆µ occur

at particular relative orientations that are site specific and that remain relatively

constant on this time scale.
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6.2 Time Resolved Spectra

In this subsection we further analyze the microscopic origin of the REE and

predict the time resolved spectra[37] which directly provides an estimate for the time

scale of reorganization in this ionic liquid.

Methods A detailed description of the methodology used to collect data from our

molecular dynamics simulations has already been provided in previous section 6.1.

Here we only explain specific detail for the calculation of time resolved emission

spectra of ANF in [BMIM+][PF6-]. We use equations 6.5 through 6.9 in order to

compute time dependent and time independent spectra from an ensemble of molecular

dynamics trajectories initially equilibrated in the ground electronic state and photo-

excited to the corresponding first singlet excited electronic state:

Iab(∆Eex) =
∑

l

I l
ab(∆Eex) (6.5)

I l
em(∆Eem) =

∫ ∞

0

δ(∆E(t) − ∆Eem) × e
− t

τf dt (6.6)

I l
em(∆Eem, t) =

∫ t+∆t

t−∆t

δ(∆E(τ) − ∆Eem) × e
− τ

τf dτ (6.7)

Iem(∆Eex,∆Eem) =
∑

l

I l
em(∆Eem)I l

ab(∆Eex) (6.8)

Iem(∆Eex,∆Eem, t) =
∑

l

I l
em(∆Eem, t)I

l
ab(∆Eex) (6.9)

Here I l
ab(∆Eex) is the probability distribution of absorption energy gaps ∆Eex

in trajectory l. Iab(∆Eex) denotes the total probability distribution at vertical tran-

sition excitation energy ∆Eex computed as a sum over all trajectories. I l
em(∆Eem)

is the corresponding steady-state probability distribution of emission energy gaps
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∆Eem weighted by an exponential decay corresponding to the lifetime (τf ) of the

probe (assumed to be 100 ps as in [BMIM+][BF4-][48]) for trajectory l. I l
em(∆Eem, t)

is the time-dependent intensity of emission computed from trajectory l after initial

photo-excitation. Iem(∆Eex,∆Eem) denotes the intensity or joint probability distri-

bution of emission energy ∆Eem when excitation energy is ∆Eex. Correspondingly

Iem(∆Eex,∆Eem, t) stands for the time-dependent emission spectrum. It should be

noted here that these are purely classical simulations. The gap between the ground

and excited states has a component that is independent of the solvent ∆E(g) and

a component that is due to the difference in interactions between the solvent with

the ground and excited states of the probe molecule. We have made no attempt at

taking into account Frank Condon factors or other quantum selection rules. Emission

spectra in this section are always reported as area normalized.

Results and Discussions Different consequences arise due to the slow dynamics

of the solvent. Figures 6.5(A) and (B) show absorption and steady-state emission

spectra of ANF in 3 typical solvent environments. It is clear that each of these

3 trajectories displays very distinct spectrum with maxima at different frequencies.

The most interesting feature here is the energy ordering of the absorption and cor-

responding emission spectra of individual trajectories. Clearly the trajectory with

maximum of absorption at a higher frequency also displays an emission spectrum at

higher frequency. The opposite is true for the trajectory with absorption spectrum

at lower frequency. This ordering phenomenon which is detected in most of our ionic

liquid trajectories and is absent in our studies of ANF in methanol[35] is the basic
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Absorption and steady-state emission fluorescence spectra. (A) Absorption spectra
of ANF in [BMIM+][PF6-] computed from 3 molecular dynamics trajectories. Each
line corresponds to the spectrum from a different trajectory. (B) Emission spectra
from the same 3 trajectories. (See equations 6.5 and 6.6). (C) Steady-state fluo-
rescence spectra of ANF as a function of excitation energy at room temperature in
[BMIM+][PF6-] (see equation 6.8)

Figure 6.5: Typical local spectra and steady-state fluorescence spectra of ANF

underlying cause for the REE.

The REE can be appreciated more clearly, when the full ensemble of trajecto-

ries is used in order to compute the excitation wavelength dependent emission spectra

using equation 6.8. The set of ensemble averaged spectra which can be compared

with experimental data[48] obtained for the same probe in a slightly different ionic

solvent are displayed in Fig. 6.5 (C). In order to analyze the time dependence of

the REE, we computed using Equation 6.9 the corresponding emission spectra as a

function of λex for different emission times. Figure 6.6 shows how the maximum of

emission shifts as a function of λex and time. This prediction, for which there is still

no experimental data reported, is one of the main results of this chapter. It is clear
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Figure 6.6: Wavelength dependent Stokes shift

from Fig.6.6 that at longer times emission maxima shift to the red. This is simply

because to different extent in each trajectory the solvent surrounding the probe re-

laxes as time evolves. Concurrently, because the dynamics is driven by the excited

state potential, the interaction between the ground electronic state of the probe and

the solvent becomes more unfavorable. It is also clear from Fig.6.6 that at longer

times the dependence of the emission maximum on λex becomes weaker. Of course,

at infinite time no REE should be observed.
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The absorption wavelength dependent emission maxima for the steady state

signal computed from our ensemble of trajectories is also plotted in Fig.6.6. Clearly

the steady state curve and the time dependent data at 100 ps coincide very closely.

This is to be expected given that the lifetime of the probe was assumed to be 100

ps.[48]

From Fig.6.6 we see that the spectrum is still λex dependent at 700 ps. It

is interesting to compare the timescale required for full loss of correlation between

energy of excitation and emission with that of the intermediate cage regime in which

the motion of the solvent is neither ballistic nor diffusive. Our previous simulations

show that the intermediate cage regime at room temperature spans a duration of

nanoseconds. It is likely that solvent and solute motion required to reach full en-

ergy relaxation upon photo-excitation must be compatible with the time scale on

which the solvent abandons the cage regime and enters into the diffusive regime.

Certainly, a large part of the relaxation after photo-excitation occurs on the short

sub-picosecond regime. This has been corroborated both experimentally[11, 4] and

computationally.[64, 44, 49] Our study predicts that the remaining long time relax-

ation, which is the cause for the absorption wavelength dependent emission spectrum,

takes place on a time scale that is much longer at least on the order of nanoseconds.
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CHAPTER 7
OPTICAL KERR EFFECT OF IONIC LIQUIDS

In this chapter, we are going to apply the nonlinear response theory de-

rived in section 3.4 to the case of Optical Kerr Effect in an ionic liquid 1-methoxy-

ethylpyridinium dicyanoamide ([MOEPY+][DCA-] see Fig 4.1) [65].

In the first several sections, we will introduce the basic theory on polarization

spectra and explain how to compute the optical kerr effect (OKE) signal in general.

Simulation details, results and discussion will be given in the following sections.

7.1 Polarization of Molecules

In general, for incident light E = exEx + eyEy + ezEz, the induced dipole

moment is written as:

µ = (ex, ey, ez)
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therefore,

µ = (ex, ey, ez)
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(7.1)

Now, we define a rotational operation R̂(θ, φ, χ) which transform the coordinate sys-

tem (ex, ey, ez) to a new coordinate system (e′
x, e

′
y, e

′
z):

R̂(θ, φ, χ)(ex, ey, ez) = (e′
x, e

′
y, e

′
z) = (ex, ey, ez)R

In this new system, E and µ are represented by:

E = (ex, ey, ez)

















Ex

Ey

Ez

















= (e′
x, e

′
y, e

′
z)R

−1

















Ex

Ey

Ez

















= (e′
x, e

′
y, e

′
z)

















E ′
x

E ′
y

E ′
z

















µ = (e′
x, e

′
y, e

′
z)

















µ′
x

µ′
y

µ′
z
















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Therefore, taking R = A
−1

, we can write the polarization based on the new coordinate

system,

µ = (e′
x, e

′
y, e

′
z)

















µ′
x

µ′
y

µ′
z

















= (ex, ey, ez)A
−1

















α1 0 0

0 α2 0

0 0 α3

















A

















Ex

Ey

Ez

















= (e′
x, e

′
y, e

′
z)

















α1 0 0

0 α2 0

0 0 α3

































E ′
x

E ′
y

E ′
z

















Clearly, the principal axes of polarizability (e′
x, e

′
y, e

′
z) make,

µ′
x = α1E

′
x, µ′

y = α2E
′
y, µ′

z = α3E
′
z

Inversely, if we obtain the rotational operation matrix R which transforms the

current coordinate system into the coordinate system of principal axes of polarization,

we can write down the polarizability tensor as

α = R

















α1 0 0

0 α2 0

0 0 α3

















R
−1

In the new coordinate system, the three principal axes of polarizability are
















1

0

0

















,

















0

1

0

















, and

















0

0

1

















Case study of linear molecule For the case of linear molecules, one of the principal

axis of polarizability is the principal axis of the molecule û = exû1 + eyû2 + ezû3, the
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other two axes are undetermined but perpendicular to this axis. The principal values

of polarizability corresponding to the three principal axes are α1, α2, α2 respectively.

Obviously, we can take

e′
x = (e′

x, e
′
y, e

′
z)

















1

0

0

















= (ex, ey, ez)

















û1

û2

û3

















The other two axes vertical to e′
x are

e′
y = (e′

x, e
′
y, e

′
z)

















0

1

0

















= (ex, ey, ez)
1

√

û2
1 + û2

2

















−û2

û1

0

















and

e′
z = (e′

x, e
′
y, e

′
z)

















0

0

1

















= (ex, ey, ez)
1

√

û2
1 + û2

2

















û1û3

û2û3

−û2
1 − û2

2

















Note that we have used the relation

û2
1 + û2

2 + û2
3 = 1

The internal product of each vector should always be normalized to 1. The transfor-

mation matrix R is:

R =
1

√

û2
1 + û2

2

















û1

√

û2
1 + û2

2 −û2 û1û3

û2

√

û2
1 + û2

2 û1 û2û3

û3

√

û2
1 + û2

2 0 −û2
1 − û2

2
















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The inverse matrix R
−1

is,

R
−1

=
1

û2
1 + û2

2

















û1 − û1û
2
3 û2 − û2û

2
3 û3 − û3

3

−û2

√

û2
1 + û2

2 û1

√

û2
1 + û2

2 0

û1û3

√

û2
1 + û2

2 û2û3

√

û2
1 + û2

2 (−û2
1 − û2

2)
√

û2
1 + û2

2

















= R
T

where R
T

is just the transpose matrix of R. Therefore, the polarizability matrix in

the original coordinate system (ex, ey, ez) for a linear molecule with principal axis

lying in û is given by

α = R

















α1 0 0

0 α2 0

0 0 α2

















R
−1

= α2

















1 0 0

0 1 0

0 0 1

















+ (α1 − α2)

















û1

û2

û3

















(û1 û2 û3)

Define

α =
1

3
(α1 + 2α2)

and

γ = α1 − α2
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The polarizability can be written as

α = (α− γ

3
)I + γûû

= αI + γ(ûû − 1

3
I)

= αI + β (7.2)

where I is the 3 by 3 identity matrix. For CO2 molecule, α = 2.63Å3 and γ =

2.10Å3[10]. Equation (7.2) separates the total polarizability of a molecule into a

spherical part αI and a traceless part β. We will see that the auto correlation of the

spherical part < α(0)α(t) > and that of the traceless part < Trβ(0)β(t) > correspond

to observation observation of a scattering spectrum in two different directions.

7.2 Classical Theory of Light Scattering

Scattering Cross Sections For isotropic systems without preferred orientation in

space, only two geometry independent numbers are necessary to describe the depen-

dence of the scattering cross section on the scattering geometry. Define
(

dσ
dΩ

)

‖
or

(

dσ
dΩ

)

⊥
as the scattering cross section if the polarization of the scattered light es is

parallel or perpendicular to that of the incident light ei. For linearly polarized in-

cident light E = eiE0(k, r, t) the total cross section at direction ks may be written

as

dσ

dΩ
=

(

dσ

dΩ

)

‖

sin2 φ+

(

dσ

dΩ

)

⊥

(1 + cos2 φ) (7.3)

where φ is the angle between the electric polarization vector of the incident radiation,

ei, and the propagation vector of the scattered radiation, ks. In the case where we

observe scattered light in the direction parallel to the incident polarization vector ei,
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the angle φ is 0 and the total cross section is

dσ

dΩ
(obs. ‖) = 2

(

dσ

dΩ

)

⊥

(7.4)

whereas in case of φ = 90,

dσ

dΩ
(obs. ⊥) =

(

dσ

dΩ

)

‖

+

(

dσ

dΩ

)

⊥

(7.5)

When the polarization of the scattered light is perpendicular to that of incident

light, only the depolarized radiation is experimentally observed, which means
(

dσ
dΩ

)

⊥

only includes the depolarized component. For the case of observation of
(

dσ
dΩ

)

‖
, both

polarized and depolarized components appear and the polarized component can be

written as[24]:

dσpol

dΩ
≡
(

dσ

dΩ

)

‖

− 4

3

(

dσ

dΩ

)

⊥

(7.6)

Classical theory of light scattering Classical theory of electrodynamics indicates

that the radiation emitted by an oscillating dipole µ = µ0 cos(ωt) is given by[53]

B = k2(er × µ)
eikr

r

and

E = B × er

where er is the unit vector along the radial direction r and k = ω/c. If we write the

amplitude of the oscillating dipole as

µ0 = exµox + eyµoy + ezµoz

and only look at the radiation in the direction er = ex:

B = k2(ezµoy − eyµoz)
eikr

r
cos(ωt)
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E = k2(eyµoy + ezµoz)
eikr

r
cos(ωt)

The flux of the radiation is given by the Poynting vector S

S =
c

4π
(E × H∗) = ex

ck4

4πr2
(µ2

oy + µ2
oz) cos2(ωt)

(

dI

dΩ

)

x

sin θdθdφ =

∫

Sxr
2 sin θdθdφdt =

2π3ν4

c3
(µ2

oy + µ2
oz) sin θdθdφ

where ν = ω/(2π). The rate of radiation emitted per unit solid angle in the ex

direction is
(

dI

dΩ

)

x

=
2π3ν4

c3
(µ2

oy + µ2
oz)

For incident light E = exE0(k, r) cos(ωt) linearly polarized in the ex direction

and propagating in the ey direction, the induced dipole moment is

µ = (ex, ey, ez)

















µx

µy

µz

















= (ex, ey, ez)

















αxx αxy αxz

αyx αyy αyz

αzx αzy αzz

































E0 cos(ωt)

0

0

















= (ex, ey, ez)

















µox cos(ωt)

µoy cos(ωt)

µoz cos(ωt)

















Therefore, the observed scattering cross section in the ex direction which is parallel

to the polarization direction of incident light is given by,

(

dσ

dΩ

)

(obs. ‖) =
2π3ν4

c3
(µ2

oy + µ2
oz) =

2π3ν4

c3
(α2

yx + α2
zx)E

2
0

If the incident light is still propagating in the ey direction but polarized in the ez

direction E = ezE0(k, r) cos(ωt), then the observed scattered light propagating in the
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ex direction is given by

(

dσ

dΩ

)

(obs. ⊥) =
2π3ν4

c3
(µ2

oy + µ2
oz) =

2π3ν4

c3
(α2

yz + α2
zz)E

2
0

For an isotropic system, the two independent variables
(

dσ
dΩ

)

‖
and

(

dσ
dΩ

)

⊥
are:

(

dσ

dΩ

)

‖

=
2π3ν4E2

0

c3
< α2

xx >=
2π3ν4E2

0

c3
< α2

yy >=
2π3ν4E2

0

c3
< α2

zz >

(

dσ

dΩ

)

⊥

=
2π3ν4E2

0

c3
< α2

yz >=
2π3ν4E2

0

c3
< α2

yx >=
2π3ν4E2

0

c3
< α2

xz >= · · ·

Taking the average over all possible orientations for molecules in gas phase, we

have[53]

< α2
ij > = 1

15
(
∑3

p=1 α
2
p −

∑2
p=1

∑3
q>p αpαq) for i 6= j

< α2
ii > = 1

15
(
∑3

p=1 3α2
p + 2

∑2
p=1

∑3
q>p αpαq) for i = x, y, z

By introducing the spherical part and anisotropic (traceless) part as in equation (7.2),

we can rewrite the above averages as

< α2
ij > ∝ 1

5Tr[β · β] for i 6= j

< α2
ii > ∝ α2 + 4

15Tr[β · β] for i = x, y, z

The polarized and depolarized scattering cross sections are:

dσdepol

dΩ
∝ Tr[β · β] (7.7)

dσpol

dΩ
≡

(

dσ

dΩ

)

‖

− 4

3

(

dσ

dΩ

)

⊥

∝ α2 (7.8)

A real quantum mechanical treatment of the polarization spectra yields the time

correlation for the cross section instead of the simple averages in equations (7.7)

and (7.8)[53, 24]. The relevant time correlation function for depolarized spectra is
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always the time correlation function of β. For depolarized linear Raman scattering

spectra, the cross section at frequency ω is written as[24]

dσdepol

dΩ
∝ 1

2π

∫ ∞

−∞

dt e−iωt < Tr[β(0) · β(t)] >=
1

2π

∫ ∞

−∞

dt e−iωtC2(t) (7.9)

where we have defined the auto correlation of the anisotropic polarizability as

C2(t) ≡< Tr[β(0) · β(t)] >

Recall that equation (3.25) gives the general relation between 3rd order polarization

and external electrical field as

< Pi >
(3)
t = < ζijkl > Ej(t)Ek(t)El(t) +

i

2~

∫ t

0

dτ < [χij(t), χkl(τ)] > Ek(τ)El(τ)Ej(t)

=

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3 < ζijkl >

δ(t− t1)δ(t1 − t2)δ(t2 − t3)Ej(t1)Ek(t2)El(t3)

+
i

2~

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3 < [χij(t1), χkl(t2)] >

δ(t− t1)δ(t2 − t3)Ej(t1)Ek(t2)El(t3)

=

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3Rijkl(t, t1, t2, t3)Ej(t1)Ek(t2)El(t3)

where the general 3rd response function for the system is

Rijkl(t, t1, t2, t3) = < ζijkl > δ(t− t1)δ(t1 − t2)δ(t2 − t3)

+
i

2~
δ(t− t1) < [χij(t1), χkl(t2)] > δ(t2 − t3)

Considering the time interval τ = t1 − t2 and integrating the other time intervals (i.e.
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OKE spectra), we have the response function:

Rijkl(τ) = < ζijkl > δ(τ) +
i

2~
< [χij(t1), χkl(t2)] >

= < ζijkl > δ(τ) +
i

2~
< [χij(τ), χkl(0)] >

Denoting the equilibrium average < ζijkl > as ζijkl and considering only the depolar-

ized component of the 3rd nonlinear spectra (anisotropic component of χ is β), the

response function at time t for the system becomes

Rijkl(t) = ζijklδ(t) +
i

2~
< [βij(t), βkl(t = 0)] >

= ζijklδ(t) −
1

2β
< βij(0)β̇kl(t) >

where we have used the Kubo transform to convert the quantum mechanic time

correlation function to the corresponding classical version (see section 3.2). For an

isotropic system, the 34 = 81 components of Rijkl(t) are not independent and it is

sufficient to consider the Rijij component for depolarized spectra[21]

Rijij(t) = ζijijδ(t) −
1

2β
< βij(0)β̇ij(t) > (7.10)

The second part of Rijij(t) in the above equation is proportional to the first derivative

of C2(t)

Ċ2(t) =
d

dt
< Tr[β(0) · β(t)] > ∝ < βij(0)β̇ij(t) >

Thus the time correlation function C2(t) and its first derivative contain all the dy-

namical information probed by depolarized linear or nonlinear scattering spectra. For

a group of interactive molecules in fluids, the collective polarizability is denoted by

Π with

Π = Π0I + Π2
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and the relevant time correlation function of the anisotropic part of the collective

polarizability is

C2(t) =< Tr[Π2(0) · Π2(t)] >

7.3 TCF of the Collective Polarizability

The collective polarizability Π of a group of molecules is the sum of polarizabil-

ities for all isolated molecules. Each isolated polarizablity is modified by self rotation

of the molecule and the interaction with the surrounding molecules. The standard

point-dipole/induced-point-dipole (DID) model expresses the isolated polarizability

π(j) for molecule j as a sum of a molecular component (gas phase polarizability) and

an interaction-induced component:

π(j) = α(j) + α(j) ·
N
∑

k 6=j

T jk · π(k) (7.11)

where the dipole-dipole tensor between molecule j and k is:

T jk =
1

r3

(

3r̂r̂ − I
)∣

∣

r=rjk

where r̂ = r/r is the unit vector along the direction r. Equation (7.11) can be

solved self-consistently[21] by taking π(k) = α(k) as ansatz. The total collective
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polarizability Π for a system of N particles is

Π = Π0I + Π2 =

N
∑

j

π(j)

=
N
∑

j

α(j) +
N
∑

j

N
∑

k 6=j

α(j) · T jk · π(k)

= M +D

=
1

3
Tr(M)I +

(

M − 1

3
Tr(M)I

)

+
1

3
Tr(D)I +

(

D − 1

3
Tr(D)I

)

=
1

3
Tr(M)I +Q+

1

3
Tr(D)I +K

where the anisotropic component of the molecular polarizability M and interaction-

induced polarizability D are

Q =

(

M − 1

3
Tr(M)I

)

and

K =

(

D − 1

3
Tr(D)I

)

The anisotropic component of the total collective polarizability Π is the sum of that

of the molecular polarizablity and that of the interaction-induced polarizability:

Π2 = Q +K

Thus, the time correlation function of Π can be written as

C2(t) = < Tr[Π2(0) · Π2(t)] >

= < Tr[Q(0) ·Q(t)] > + < Tr[K(0) ·K(t)] > +

< Tr[Q(0) ·K(t) +K(0) ·Q(t)] >

= CM
2 (t) + CI

2 (t) + CMI
2 (t) (7.12)
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where

CM
2 (t) =< Tr[Q(0) ·Q(t)] >

CI
2 (t) =< Tr[K(0) ·K(t)] >

CMI
2 (t) =< Tr[Q(0) ·K(t) +K(0) ·Q(t)] >

The above equation (7.12) separates the TCF C2(t) for the anisotropic collective po-

larizability Π2 into three components: the molecular component CM
2 , the interaction-

induced component CI
2 (t), and the molecular interaction-induced cross correlation

component CMI
2 (t). This separation enables us to distinguish the pure molecular

contribution from the pure interaction-induced contribution. In order to separate out

the fraction of the interaction-induced component that tracks the dynamics of molec-

ular reorientation, it is informative to project the interaction-induced anisotropic

polarizability K onto the molecular anisotropic polarizability Q[18]. The projected

component is

∆Q =
Tr[K ·Q]

Tr[Q ·Q]
Q

where the coefficient ∆ is defined as ∆ ≡ Tr[K·Q]

Tr[Q·Q]
. Therefore the anisotropic collective

polarizability Π2 can be separated into a pure reorientational part and a pure collision-

induced part (without reorientation):

Π2 = Q +K = (1 + ∆)Q + (K − ∆Q) = Π
R

2 + Π
CI

2

The corresponding time correlation functions are

C2(t) = CR
2 (t) + CCI

2 (t) + CRI
2 (t) (7.13)
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CR
2 (t) =< Tr

[

(1 + ∆(0))Q(0) · (1 + ∆(t))Q(t)
]

>

CCI
2 (t) =< Tr

[

(K(0) − ∆(0)Q(0)) · (K(t) − ∆(t)Q(t))
]

>

CRI
2 (t) =< Tr

[

Π
R

2 (0) · ΠCI

2 (t) + Π
CI

2 (0) · ΠR

2 (t)
]

where CR
2 (t), CCI

2 (t) and CRI
2 (t) stand for the reorientational contribution, the collisional-

induced contribution, and the cross term contribution to C2(t) respectively.

A test case of compressed CO2 gas Figure 7.1 shows the time correlation function

of anisotropic collective polarizability for compressed CO2 gas and its components.

From Figure 7.1 (A) we see that the sum of the interaction-induced component C I
2 (t)

and the cross correlation CMI
2 (t) has the opposite sign of the pure molecular com-

ponent. This is because the anisotropic interaction-induced polarizability K has

negative contribution to the total anisotropic collective polarizability Π2. Figure 7.1

(B) shows that the reorientational component CR
2 (t) matches the total TCF very well

and the contributions from CCI
2 (t) and CRI

2 (t) are negligible. This is because CO2 is

a weakly polarizable molecule (α = 2.63Å3 and γ = 2.10Å3 are both small).

7.4 Optical Kerr Effect of an Ionic Liquid

Optical Kerr Effect (OKE) experiment measures the transient anisotropy in

the refractive index ∆n(t) [51, 21]

∆n(t) =

∫ t

−∞

dτ Ipump(τ)R(t− τ)
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(A) (B)

TCF of anisotropic collective polarizability for compressed CO2 gas at temperature
T=313 K and density ρ=1.105g/cm3. All of the TCFs are normalized by the initial
value C2(0). The molecular polarizability is calculated using equation (7.2) with
α = 2.63Å3 and γ = 2.10Å3[10]. CM

2 ,CI
2 ,CR

2 , and CCI
2 stand for the molecular

component, interaction-induced component, reorientation component and collision-
induced component respectively. CMI

2 and CRI
2 are the molecular interaction-induced

cross term and reorientational collision-induced cross term respectively. (A) Total
TCF and their components according to equation (7.12) (B) Total TCF and their
components according to equation (7.13).

Figure 7.1: TCF of anisotropic polarizability

where R is the 3rd order nonlinear response function as in equation (7.10). The

observed hetero-dyne detected transmission of a Kerr cell is approximately given by

IOKE(t) =

∫ ∞

−∞

dτ Iprobe(t− τ)∆n(τ)

=

∫ ∞

−∞

dτ Iprobe(t− τ)

∫ τ

−∞

dt1 Ipump(t1)R(τ − t1)

=

∫ ∞

−∞

dτ Iprobe(τ)

∫ t−τ

−∞

dt1 Ipump(t1)R(t− τ − t1)

=

∫ ∞

−∞

dτ Iprobe(τ)

∫ ∞

0

dt2 Ipump(t− τ − t2)R(t2)

=

∫ ∞

0

dt2R(t2)

∫ ∞

−∞

dτ Iprobe(τ)Ipump(t− t2 − τ)

=

∫ ∞

0

dt2R(t2)G0(t− t2)

=

∫ t

−∞

dτ G0(τ)R(t− τ)
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where G0(t) is the zero background laser pulse intensity autocorrelation:

G0(t) =

∫ ∞

−∞

dτIpump(t)Iprobe(t− τ)

Recall that the 3rd response function R(t) is a combination of a hyperpolarizability

ζδ(t) and a time correlation function Ċ2(t), the instantaneous response of OKE will

resemble the blank convolution signal G0(t) due to the δ function nature of hyperpo-

larizability. Our simulation only tracks the transient signal from the time correlation

function Ċ2(t) which probes the inter- and intra-molecular dynamics of the liquids.

We directly write this part of OKE signal as

IOKE(t) ∝ −
∫ t

−∞

dτ G0(τ)Ċ2(t) (7.14)

In our calculation, the shape of the probe and pump laser pulses is taken to be a

Gaussian function with a 37fs full width at half-maximum[66].

Simulation details In order to understand the interaction and dynamics of ionic liq-

uids, we performed molecular dynamics simulation for the 1-methoxy-ethylpyridinium

dicyanoamide [MOEPY+][DCA-] system which has been recently experimentally stud-

ied [65]. The effective atomic charges distribution obtained from an ab initio cal-

culation are provided in Table D.16 and Table D.19 in Appendix D. Our sim-

ulation box consists of 64 pairs of ions. Periodic boundary conditions are em-

ployed using the particle mesh ewald (PME) method to treat long-range electrostatic

interactions[15, 50, 49]. In order to get better energy conservation for this relatively

small system, we used a switch function for the LJ interactions instead of a direct

cutoff[1]. Five independent trajectories were run at T=400K for 60ns using a time
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step of 0.001ps. This long simulation time is necessary because the calculation of

collective polarizability is extensively biased by the initial configuration. This is con-

sistent with the fact that ionic liquids display local heterogeneity on a time scale of

nanoseconds (see chapters 5 and 6). Data for analysis was recorded every 0.1ps. In

order to catch the short time behavior of the OKE signal, we further collect data at

every 0.01ps and 0.0001ps from 300 simulations each of which has the initial config-

uration extracted from the trajectory at every 1ns point of the 5 independent 60ns

runs. Each of these 300 runs last for 10ps and 2ps for every 0.01ps and every 0.0001ps

data collection respectively.

In order to calculate the collective polarizability, we assigned gas phase point

dipole to each atom in the molecule according to the scheme in reference[40]. A list

of these parameters is provided in Tables 7.1, and 7.2. The calculated spherical

polarizabilities (α) for [MOEPY+] and [DCA-] are 13.36Å3 and 5.4Å3 respectively.

Those values are much larger than that for CO2 indicating that [MOEPY+][DCA-]

system is highly polarizable.
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Table 7.1: Coordinates and polarizabilities of

[MOEPY+]

Atom atom index x (Å) y (Å) z (Å) α (Å) 3

H1 1 4.24938 0.31338 -0.83530 0.01000

H2 2 3.02142 2.22325 0.23835 0.46636

H3 3 0.67940 1.84972 1.03476 0.65773

H4 4 0.73368 -2.10707 -0.21623 0.65773

H5 5 3.07810 -1.89681 -1.06324 0.46636

N6 6 0.64652 -0.13539 0.42806 2.23174

C7 7 2.58598 -1.04349 -0.61148 0.27040

C8 8 3.23154 0.18742 -0.48113 2.04699

C9 9 2.55437 1.25326 0.11422 0.27040

C10 10 1.25823 1.06596 0.56121 0.28044

C11 11 1.28909 -1.17942 -0.14821 0.28044

C12 12 -0.76629 -0.29325 0.86639 0.45371

C13 13 -1.74655 0.05573 -0.26108 1.14150

C14 14 -4.08012 0.13384 -0.61568 0.57427

H15 15 -0.91010 -1.32578 1.18747 0.30893

H16 16 -0.93099 0.35744 1.72632 0.30893

H17 17 -1.56939 -0.59775 -1.13351 0.38490

H18 18 -1.58655 1.09652 -0.59398 0.38490

Continued on next page



148

Table 7.1 – continued from previous page

Atom atom index x (Å) y (Å) z (Å) α (Å) 3

H19 19 -5.00644 -0.04675 -0.07006 0.38490

H20 20 -4.05773 1.17690 -0.95860 0.38490

H21 21 -4.03547 -0.53295 -1.48721 0.38490

O22 22 -3.01373 -0.13368 0.29386 0.56943

Polarizabilities were fit according to reference [40]. Because a
point dipole description is only accurate for larger distances,
1,2- and 1,3-interactions have been omitted in calculating the
gas phase polarizabilities.

Table 7.2: Coordinates and polarizabilities of [DCA-]

Atom atom index x (Å) y (Å) z (Å) α (Å)3

C1 1 0.00000 1.15285 0.05355 1.30551

C2 2 0.00000 -1.15285 0.05355 1.30551

N3 3 0.00000 0.00000 0.68568 0.75419

N4 4 0.00000 2.24667 -0.38873 1.00994

N5 5 0.00000 -2.24667 -0.38873 1.00994

Calculation of the Collective Polarizability: Two-body Approximation As

we discussed in section 7.3, we can solve equation (7.11) self-consistently to get the

collective polarizability for a group of N atoms in the DID model. A more efficient
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way is to construct a 3N by 3N interaction matrix from equation (7.11) and then

invert this matrix[2]. We first rewrite equation (7.11) as

α−1(j) · π(j) −
N
∑

k 6=j

T jk · π(k) = I

This equation can be reformatted as follows:


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




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
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

α−1(1) −T 12 · · · −T 1N

−T 21 α−1(2) · · · −T 2N

· · · · · · · · · · · ·
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where each element of the above 3 × N by 3 ×N is a 3 by 3 matrix. The inverse of

the 3N by 3N matrix is:

B̃ =

























B11 B12 · · · B1N

B21 B22 · · · B2N

· · · · · · · · · · · ·

BN1 BN2 · · · BNN


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



where each component Bij of the 3N by 3N matrix B̃ is a 3 by 3 tensor. The collective

polarizability can be written as:

Π =
N
∑

i

π(j) =
N
∑

i

N
∑

j

Bij

The matrix B̃ is symmetrical because the gas phase polarizability α and dipole-dipole

tensor T ij are both symmetric. Performing the inversion of a symmetrical matrix

to get Π requires more memory but is much more efficient than the self-consistent
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approach. In order to facilitate the calculation and reduce the use of memory, we

developed a two-body approximation to better implement the inversion method. The

number of atoms is N = 64 × (22 + 5) for our simulation box containing 64 ion

pairs. The original inversion method required the inversion of a 3 × 64 × (22 + 5) =

5184 by 5184 atomic interaction matrix. This atomic interaction matrix are made of

64 × 64 + 64 × 64 + 2 × 64 × 64 = 128 × 128 = 16384 blocks among which 64 × 64

3 × 22 by 3 × 22 matrices are cation-cation interactions, 64 × 64 3 × 5 by 3 × 5

matrices are anion-anion interactions, and 2 × 64 × 64 3 × 22 by 3 × 5 matrices are

cation-anion interactions. Under the two-body approximation, each of these 16384

blocks is replaced by the corresponding 3 by 3 molecular interaction matrix. The

total 5184 by 5184 matrix is resolvent to a 3 × 128 by 3 × 128 molecular interaction

matrix. The total collective polarizability is obtained by inversion of this molecular

interaction matrix.

The original inversion method for the DID model expresses the collective po-
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larizability for two interacting molecules a and b as follows:
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where L and M are the number of atoms for molecule a and b respectively. For

convenience, we have used T a1a1 = α−1(1) as the polarizability inverse of the first atom

of molecule a and T a1b1 = −T 1(L+1) as the interaction between atom 1 from molecule
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a and atom L+ 1 from molecule b. The rest of the symbols in the above matrix have

the similar meanings. We first denote the inversion of the above 3 × (L + M) by

3 × (L+M) interaction matrix as H̃:

H̃ =
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The isolated polarizability of molecules a and b are:

π(a) =
aL
∑

i=a1

bM
∑

j=a1

Hij

π(b) =
bM
∑

i=b1

bM
∑

j=a1

H ij

Also, we divide the above 3 × (L +M) by 3 × (L +M) interaction matrix into four

blocks: a 3× L by 3× L matrix, a 3× L by 3×M matrix, a 3×M by 3× L matrix

and a 3 ×M by 3 ×M matrix. Denoting the inverse of the 3 × L by 3 × L matrix
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and the 3 ×M by 3 ×M matrix as F̃ and G̃
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we have the gas phase polarizability for molecules a and b:

α(a) =

aL
∑

i=a1

aL
∑

j=a1

F

α(b) =

bM
∑

i=b1

bL
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G

Thus the 3 × (L +M) by 3 × (L +M) atomic interaction matrix is replaced by the

following 3 × 2 by 3 × 2 molecular interaction matrix:

T̃ab =


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

α−1(a) (I − α−1(a)π(a)) · π−1(b)

(I − α−1(b)π(b)) · π−1(a) α−1(b)
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Obviously, the product of the above 3 × 2 by 3 × 2 matrix and the isolated 3 × 2 by

3 polarizability matrix gives a 3 × 2 by 3 identity matrix:
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In this way, we find the correspond 3 × 3 matrix for each of the four blocks in the

3 × (L + M) by 3 × (L + M) atomic interaction matrix. This ensures that the

assignment of elements in two-body interaction matrix T̃ab is exact for a 2 body

system! Under this two-body approximation, we repeat the above procedure and

replace all of blocks (e.g. 3 × 5 by 3 × 5 matrix for anion-anion, 3 × 22 by 3 × 22

for cation-cation and 3× 22 by 3× 5 for cation-anion) representing atomic two-body

interactions with the corresponding 3 by 3 molecular two-body interaction matrices.

The full atomic interaction matrix (e.g. 3×64× (22+5) = 5184 by 5184 matrix) will

be represented by a molecular interaction matrix (e.g. 3× 128 by 3× 128). From our

test of random configurations in our system, the inverse method based on two-body

approximation is about 6 times more efficient. The relative error is around 1e-3 for

spherical polarizabilities and 1e-2 for anisotropic polarizabilities.

Results and Discussion Figure 7.2 shows the time correlation function C2(t) and

its different components computed according to equation (7.12) and (7.13). From

Figure 7.2 (A) we see that the magnitude of all of the components CM
2 (t), CI

2 (t),

and CMI
2 (t) are much larger than that of the TCF of anisotropic collective polar-

izability C2(t). This indicates that the interaction-induced effect substantially de-

creases the total collective polarizability which is consistent with the fact that liq-

uid [MOEPY+][DCA-] is a highly polarizable fluid (the spherical polarizability of

[MOEPY+] and [DCA-] are 13.36Å3 and 5.4Å3 respectively). Figure 7.2 (B) shows

that the reorientational component CR
2 (t) resembles the total TCF at times larger

than 300ps. The contribution from CCI
2 (t) or CRI

2 (t) becomes negligible at those
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TCF of the anisotropic collective polarizability for [MOEPY+][DCA-] at T=400K
and its components. All of the TCFs are normalized by the initial value C2(0). We
use the matrix inversion method to compute the collective polarizability based on two-
body approximation. The input atomic polarizability is shown in Table 7.1, and 7.2.
Labels are the same as in Figure 7.1. (A) Total TCF and its components according
to equation (7.12) (B) Total TCF and its components according to equation (7.13)

Figure 7.2: TCFs of anisotropic polarizability

times. Figure 7.3 (A) and (B) elaborate on the contribution from different compo-

nents at short times. Clearly, during the first 0.1ps, both reorientational and collision-

induced components are important. The contribution of the collision-induced part

starts to significantly decrease after 10ps. Because C2(t) is proportional to the re-

sponse function of Raman scattering spectra, we can directly conclude that at an

initial short time both reorientational and collision-induced effects are important to

the total time decay of the signal while at a longer time (t > 300ps), only the reori-

entional effect contributes.

In order to compute the total OKE spectra and its components, we fit the
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Labels are the same as in Figure 7.2 (B).

Figure 7.3: TCF of anisotropic polarizability at short times

long time decay of C2(t), C
R
2 (t), and CCI

2 (t) to exponential forms. The result of

fitting is shown in Figure 7.4. We can see that the asymptotic behavior of those

functions are all close to that of exponential decay. The calculated −Ċ2(t) and its

components as well as the corresponding OKE spectra are shown in Figure 7.5. It

is interesting to see that the collision-induced component contributes about 70% of

the total signal while the reorientational and cross terms only play a minor role at

short times in the OKE response. This is in contrast to that of linear Raman spectra

where both reorientational and collision-induced contributions are important to the

short decay of the signal (see Figure 7.3). The asymptotic behavior of the OKE signal

and its component are shown in Figure 7.6. Even though the collision-induced term

dominates the short time signal, the long time signal still resembles its reorientational
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Time correlation function of anisotropic collective polarizability (A) and its reorien-
tational (B) and collisional induced component (C) at long times. Red lines stand for
the fitting to the exponential form a×e−t/b. Fitting parameters are a = 0.355±0.001,
b=368.8 ± 0.9(ps) for C2(t) and a = 0.3319 ± 0.0002, b = 412.1 ± 0.2(ps) for CR

2 (t)
and a = 0.1337 ± 0.0007, b = 161.7 ± 0.8 for CCI

2 (t).

Figure 7.4: Exponential fit of TCFs

component.

The experimentally reported OKE signal at a lower temperature T=300K for

[MOEPY+][DCA-] is replotted in Figure 7.7[66]. Due to the slow dynamical nature

of ionic liquids, our simulation was run at a higher temperature T=400K in order

to get better convergence using relatively short runs. A high temperature enhances

the motion of reorientation and therefore the computed long time decay of OKE

signal in Figure 7.6 is faster than that of experimentally reported spectra at the lower
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Figure 7.5: First derivative of the TCFs at short times

temperature. Nevertheless, our simulation explained the short time collision-induced

nature of OKE signal and confirmed that the long time decay is still caused by the

reorientational process.
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The OKE signal at long times were computed using a combination of short time
functions and the long time fitted functions shown in Figure 7.4. We also computed
the spectra without fitting the long time part TCFs to the exponential form. The
resulting total spectrum has more oscillations at long times but still resembles the
decay of reorientational component.

Figure 7.6: OKE signal at a long time and its reorientational component
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Figure 7.7: Experimental OKE signal at T=300K
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CHAPTER 8
SUMMARY

In this thesis we have demonstrated that the diffusive dynamics of some im-

idazolium based ionic liquids is in many ways analogous to that of other glassy or

supercooled liquids. For example, at 500K [BMIM+][PF6-] behaves like a normal

Gaussian fluid, while at 300K there is a large deviation from Fickian behavior. As

has been observed in other glassy systems, mobile and immobile subsets of ions are

clustered in space. Mobile and immobile subgroups appear to be far apart and within

the mobile subensemble of cations, van Hove correlation functions show secondary

peaks indicating diffusion through hopping mechanisms. Rotationally and transla-

tionally mobile subensembles are highly correlated in the case of the cations but

totally decoupled in the case of the anions. This is due to the higher symmetry of

the [PF6-] anion. Rotational hopping processes are present both in the case of the

cations and the anions.

We have studied the shear viscosity and the response to an applied external

perturbation for a typical room-temperature ionic liquid such as [HMIM+][CL-]. We

have demonstrated that the hydrodynamic limit in which the flow is Newtonian can

not be reached on systems that are on the tens of nanometers scale. This is in contrast

to other systems such as supercooled argon or room temperature water in which the

hydrodynamical limit can be easily observed using nanometer size computer simula-

tions. We tested the validity of linear response theory and the fluctuation dissipation

theorem on this system. Even though the applied perturbation strength was rela-
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tively weak (as compared to other systems studied in which such perturbations are

in the linear regime) the system satisfied the linear response predictions on a several

picoseconds time scale after which large deviations were observed. As a consequence

of this non-linearity we have observed a flat velocity profile reminiscent of polymer

flow. This finding is quite interesting because of its potential applicability in the field

of analytical separations. Since the size of some of our systems is quite large and

pores of these dimensions are commercially available, experimental confirmation of

these results should be at hand.

Experiments and our simulations have shown that electronic photoexcitation

of a typical chromophore such as ANF dissolved in [BMIM+][PF6-] results in an

absorption wavelength dependent emission spectrum. The emission maxima as a

function of excitation wavelength has a positive slope. If excitation is on the blue

(red) end of the absorption spectrum, emission also appears shifted to the blue (red).

Our computer simulations show that this observation can be rationalized in terms of

local solvent environment around individual subensemble probe members. As opposed

to our calculations in a typical organic solvent such as methanol, in the case of the

ionic liquid, the single-molecule absorption spectrum is different for ANF probes in

different local solvent surroundings. As complete solvent relaxation is slow compared

to the lifetime of the probe, only partial relaxation occurs, and memory of the initial

energy gap between ground and excited states remains at the time of fluorescence.

By analyzing our time-dependent data we conclude that even though the excitation

wavelength dependence λex is much more dramatic at short times such as 100ps
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than at long times such as 500ps, the maxima of emission still depends on excitation

wavelength λex on the time scale of nanoseconds.

We hope that our understanding of these phenomena will be useful to the ionic

liquids community in the development of tools to harness their potential, particularly

in order to control the outcome of chemical and photo-chemical reactions.
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APPENDIX A
GENERALIZED LANGEVIN EQUATION

This appendix provides an alternative way to derive GLE for a dynamical

variable A(t) and its time correlation function < A∗(0)A(t) >. We first define TCFs

and their Laplace transformations as the following:

Ψ(t) =< A∗(0)A(t) > / < |A(0)|2 > Ψ̃(s) =

∫ ∞

0

dt e−stΨ(t) (A.1)

ϕ(t) = Ψ̇(t) =< A∗(0)Ȧ(t) > / < |A(0)|2 > ϕ̃(s) = sΨ̃(s) − 1

Φ(t) = −ϕ̇(t) =< Ȧ∗(0)Ȧ(t) > / < |A(0)|2 > Φ̃(s) = −sϕ̃(s) + ϕ(0)

we have,

d2Ψ(t)

dt2
= −Φ(t)

and its Laplace transform:

s2Ψ̃(s) − sΨ(0) − ϕ(0) = −Φ̃(s) (A.2)

Further,

Ψ̃(s) =
sΨ(0) + ϕ(0) − Φ̃(s)

s2

s2Ψ̃(s) − sΨ(0) = ϕ(0) − Φ̃(s)

[s2Ψ̃(s) − sΨ(0)]
sΨ(0) + ϕ(0) − Φ̃(s)

s2
= [ϕ(0) − Ψ̃(s)]Ψ̃(s)

[sΨ̃(s) − Ψ(0)]
sΨ(0) + ϕ(0) − Φ̃(s)

s
= [ϕ(0) − Ψ̃(s)]Ψ̃(s)
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sΨ̃(s) − Ψ(0) =

[

sΨ(0) + ϕ(0) − Φ̃(s)

s

]−1

[ϕ(0) − Ψ̃(s)]Ψ̃(s)

= −
[

sΨ(0) + ϕ(0) − Φ̃(s)

s

]−1

[Ψ̃(s) − ϕ(0)]Ψ̃(s)

= − Φ̃(s) − ϕ(0)

1 − s−1Φ̃(s) + s−1ϕ(0)
Ψ̃(s)

= −K̃(s)Ψ̃(s) + ϕ(0)Ψ̃(s) (A.3)

where,

K̃(s) =
sΦ̃(s) − ϕ(0)Φ̃(s) + ϕ2(0)

s− Φ(s) + ϕ(0)

In order to write down explicitly the inverse transform of K̃(s), we reconsider equa-

tion (2.5) in Laplace space [27]:

Ã(s) = (s− iL̂)−1A(0) = R̃(s)A(0) (A.4)

where R̃(s) is called the resolvent operator. Recall the definition of projection oper-

ation, we have the following equalities:

P̂ Ḃ(t) = A(0) < A∗(0)Ḃ(t) > / < |A(0)| >2 (A.5)

d

dt
P̂B(t) =

d

dt

[

A(0) < A∗(0)B(t) > / < |A(0)|2 >
]

= A(0) < A∗(0)Ḃ(t) > / < |A(0)|2 > (A.6)

therefore, P̂ and d/dt commutes, Note in the above case,

iL̂(P̂B(t)) = Ȧ(0) < A∗(0)B(t) > / < |A(0)|2 >6= d

dt
(P̂B(t)) (A.7)

Because the variable P̂B(t) is not implicitly dependent of time t (or we can say

P̂B(t) is not a dynamical variable any more). Consider a specific case B = A, from



166

equation (A.5) and (A.6), we have

d(P̂A(t))

dt
= A(0)Ψ̇(t) = P̂ Ȧ(t) = P̂ iL̂A(t) = P̂ iL̂P̂A(t) + P̂ iL̂Q̂A(t) (A.8)

also,

P̂ iL̂P̂A(t) = P̂ iL̂A(0)Ψ(t) = P̂ Ȧ(0)Ψ(t)

= A(0)Ψ(t) < A∗(0)Ȧ(0) > / < |A|2 >= A(0)Ψ(t)ϕ(0) (A.9)

P̂ iL̂Q̂A(t) = A(0) < A∗(0)iL̂Q̂A(t) > / < |A|2 > (A.10)

Combining equations (A.8) to (A.10), we have

Ψ̇(t) = Ψ(t)ϕ(0)+ < A∗(0)iL̂Q̂A(t) > / < |A|2 > (A.11)

Manipulating Q̂A(t) in the same way as we did for P̂B(t) in equation (A.5) and (A.6),

we have

d(Q̂A(t))

dt
= Q̂Ȧ(t) = Q̂[iL̂P̂A(t) + iL̂Q̂A(t)]

= (1 − P̂ )iL̂P̂A(t) + Q̂iL̂Q̂A(t)

= Ȧ(0)Ψ(t) − A(0)ϕ(0)Ψ(t) + Q̂iL̂Q̂A(t) (A.12)

Take the Laplace transform of equation (A.11) and (A.12), we have

sΨ̃(s) − 1 = Ψ̃(s)ϕ(0)+ < A∗(0)iL̂Q̂Ã(s) > / < |A|2 > (A.13)

and

sQ̂Ã(s) − Q̂A(0) = Ȧ(0)Ψ̃(s) − A(0)ϕ(0)Ψ̃(s) + iQ̂L̂Q̂Ã(s) (A.14)
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where Q̂A(0) = 0 according to the definition of projection operator, and

Q̂Ã(s) =

∫ ∞

0

dt Q̂A(t)e−st

is the Laplace transform of Q̂A(t). Solving equation (A.14) and (A.13) gives,

Q̂Ã(s) = Ψ̃(s)[s− iQ̂L̂]−1[Ȧ(0) − A(0)ϕ(0)] (A.15)

and

sΨ̃(s) − 1 = Ψ̃(s)ϕ(0) +
Ψ̃(s)

< |A|2 > < A∗(0)iL̂[s− iQ̂L̂]−1Ȧ(0) >

−Ψ̃(s)/ < |A|2 >< A∗(0)iL̂[s− iQ̂L]−1A(0)ϕ(0) >

= −Ψ̃(s)

[

−< A∗(0)iL̂[s− iQ̂L̂]−1Ȧ(0) >

< |A|2 >

]

+Ψ̃(s)

[

ϕ(0)

(

1 − A∗(0)iL̂[s− iQ̂L̂]−1A(0)

< |A|2 >

)]

= −Ψ̃(s)

[

< Ȧ∗(0)[s− iQ̂L̂]−1Ȧ(0) >

< |A|2 >

]

+Ψ̃(s)

[

ϕ(0)

(

1 +
Ȧ∗(0)[s− iQ̂L̂]−1A(0)

< |A|2 >

)]

= −Ψ̃(s)

[

< Ȧ∗(0)[s− iQ̂L̂]−1Ȧ(0) >

< |A|2 >

]

+Ψ̃(s)

[

ϕ(0)

(

1 +
< Ȧ∗(0)[s− iQ̂L̂]−1P̂ Ȧ(0) >

< |A|2 > ϕ(0)

)]

= −Ψ̃(s)

[

< Ȧ∗(0)[s− iQ̂L̂]−1Q̂Ȧ(0) >

< |A|2 > − ϕ(0)

]

= −K̃(s)Ψ̃(s) + ϕ(0)Ψ̃(s) (A.16)

where

K̃(s) =
< Ȧ∗(0)[s− iQ̂L̂]−1Q̂Ȧ(0) >

< |A|2 >
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which gives the direct expression for K̃(s) in equation (A.3). the inverse Laplace

transform gives:

dΨ(t)

dt
= iΩΨ(t) −

∫ t

0

dτ Ψ(τ)K(t− τ) (A.17)

where,

iΩ = ϕ(0)

and K(τ) is the inverse Laplace transform of K̃(s):

K(τ) =< Ȧ∗(0)eiτQ̂L̂Q̂Ȧ(0) > / < |A|2 >

Equation (A.17) is the GLE for the time correlation function Ψ(t). It is easy to obtain

the GLE for the dynamical variable A(t) based on the this equation. We first write

down the following relation from equation (A.15) and (A.16)

Ψ̃(s) = [s− iΩ + K̃(s)]−1

Q̂Ã(s) = Ψ̃(s)[s− iQ̂L̂]−1Q̂iL̂A(0)

Rewriting A(t):

A(t) = P̂A(t) + Q̂A(t) =
< A(0)A(t) >

< |A|2 > A(0) + Q̂A(t) = Ψ(t)A(0) + Q̂A(t)

and its Laplace transform:

Ã(s) = Ψ̃(s)A(0) + Q̂Ã(s)

=
A(0)

s− iΩ + K̃(s)
+

1

s− iΩ + K̃(s)
[s− iQ̂L̂]−1Q̂iL̂A(0)

Reformating the above expression, we have the equation in Laplace space:

sÃ(s) − iΩÃ(s) + K̃(s) = A(0) + [s− iQ̂L̂]−1Q̂iL̂A(0)
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sÃ(s) − A(0) = iΩÃ(s) − Ã(s)K̃(s) + f̃(s)

and the corresponding equation in time domain:

dA(t)

dt
= iΩA(t) −

∫ t

0

dτ A(τ)K(t− τ) + f(t)

with

f(t) = eit(1−P̂ )L̂(1 − P̂ )iL̂A(0)

K(t) =< f ∗(0)f(t) > iΩ =
< A∗(0)iL̂A(0) >

|A|2

Thus we obtained the GLE (2.11) for the dynamical variable A(t) using the projection

operator and Laplace transformation.
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APPENDIX B
DYSON DECOMPOSITION

This appendix is designed to prove Dyson decomposition (3.42):

eiL̂t − eiL̂0t =

∫ t

0

dseiL̂(t−s)i(L̂− L̂0)e
iL̂0s

which is

eiL̂t − eiL̂0t = eiL̂t

∫ t

0

ds e−iL̂siL̂eiL̂0s − eiL̂t

∫ t

0

ds e−iL̂siL̂0e
iL̂0s

eiL̂t − eiL̂tiL̂

∫ t

0

ds e−iL̂seiL̂0s = eiL̂0t − eiL̂t

∫ t

0

ds e−iL̂seiL̂0siL̂0

1 − iL̂

∫ t

0

ds e−iL̂seiL̂0s = e−iL̂teiL̂0t −
∫ t

0

ds e−iL̂seiL̂0siL̂0

1 − e−iL̂teiL̂0t = iL̂

∫ t

0

dse−iL̂seiL̂0s −
∫ t

0

ds e−iL̂seiL̂0siL̂0 (B.1)

The left hand side of above equation is

lhs = 1 −
∞
∑

j=0

1

j!
(−iL̂t)j

∞
∑

n=0

1

n!
(iL̂0t)

n

= 1 −
[

1 +
∞
∑

n=1

(−iL̂)ntn

n!

]

∞
∑

m=0

(iL̂0)
m

m!
tm

= 1 −
∞
∑

m=0

(iL̂0)
m

m!
tm −

∞
∑

n=1

∞
∑

m=0

(−iL̂)n

n!

(iL̂0)
m

m!
tn+m

= −
∞
∑

m=1

(iL̂0)
m

m!
tm −

∞
∑

n=1

(−iL̂)n

n!
tn −

∞
∑

n=1

∞
∑

m=1

(−iL̂)n

n!

(iL̂0)
m

m!
tn+m
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Part of the right hand side of equation (B.1) is

∆ =

∫ t

0

dse−iL̂seiL̂0s

=

∫ t

0

ds
∞
∑

n=0

1

n!
(−iL̂s)n

∞
∑

m=0

1

m!
(iL̂0s)

m

=
∞
∑

n=0

∞
∑

m=0

(−iL̂)n

n!

(iL̂0)
m

m!

∫ t

0

ds snsm

=

∞
∑

n=0

∞
∑

m=0

(−iL̂)n

n!

(iL̂0)
m

m!

1

n+m + 1
tn+m+1

Therefore, the right hand side of equation (B.1) is

rhs = iL̂∆ − ∆iL̂0

= −
∞
∑

n=0

∞
∑

m=0

(−iL̂)n+1

n!

(iL̂0)
m

m!

1

n+m+ 1
tn+1tm

−
∞
∑

n=0

∞
∑

m=0

(−iL̂)n

n!

(iL̂0)
m+1

m!

1

n+m+ 1
tntm+1

= −
∞
∑

p=1

∞
∑

m=0

(−iL̂)p

(p− 1)!

(iL̂0)
m

m!

1

p+m
tptm

−
∞
∑

n=0

∞
∑

q=1

(−iL̂)n

n!

(iL̂0)
q

(q − 1)!

1

q + n
tntq

= −
∞
∑

p=1

(−iL̂)p

p!
tp −

∞
∑

p=1

∞
∑

m=1

(−iL̂)p

(p− 1)!

(iL̂0)
m

m!

1

p+m
tptm

−
∞
∑

q=1

(iL̂0)
q

q!
tq −

∞
∑

n=1

∞
∑

q=1

(−iL̂)n

n!

(iL̂0)
q

(q − 1)!

1

q + n
tntq

= −
∞
∑

m=1

(iL̂0)
m

m!
tm −

∞
∑

n=1

(−iL̂)n

n!
tn

−
∞
∑

q=1

∞
∑

n=1

(−iL̂)n

n!

(iL̂0)
q

(q − 1)!

1

q + n
tntq −

∞
∑

p=1

∞
∑

m=1

(−iL̂)p

(p− 1)!

(iL̂0)
m

m!

1

p+m
tptm

= −
∞
∑

m=1

(iL̂0)
m

m!
tm −

∞
∑

n=1

(−iL̂)n

n!
tn − Π
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where the first two terms are the same with the that of lhs and the third term

Π =

∞
∑

q=1

∞
∑

n=1

(−iL̂)n

n!

(iL̂0)
q

(q − 1)!

1

q + n
tntq +

∞
∑

p=1

∞
∑

m=1

(−iL̂)p

(p− 1)!

(iL̂0)
m

m!

1

p+m
tptm

=

∞
∑

n=1

∞
∑

m=1

(−iL̂)n

n!

(iL̂0)
m

(m− 1)!

1

n+m
tn+m +

∞
∑

n=1

∞
∑

m=1

(−iL̂)n

(n− 1)!

(iL̂0)
m

m!

1

n +m
tn+m

=

∞
∑

n=1

∞
∑

m=1

(−iL̂)n(−iL̂0)
m

n+m

1

(n− 1)!

1

(m− 1)!
(
1

n
+

1

m
)tn+m

=
∞
∑

n=1

∞
∑

m=1

(−iL̂)n(iL̂0)
m

n +m

1

(n− 1)!(m− 1)!

m + n

mn
tn+m

=
∞
∑

n=1

∞
∑

m=1

(−iL̂)n(iL̂0)
m

m!n!
tn+m

=
∞
∑

n=1

∞
∑

m=1

(−iL̂)n

n!

(iL̂0)
m

m!
tn+m

which is the third term of the left hand side of equation (B.1). Thus, we proved the

equality of equation (B.1).
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APPENDIX C
MODIFICATION TO GROMACS SOURCE CODE

In order to save the data from the simulation of a very large system, Gromacs

souce code should be modified to save intermediate variables
∑

q mqvqx cos(kzq) and

∑

q mqvqx sin(kzq) instead of coordinates zq and vqx. Gromacs new version of 3.3 has

the option to apply a cos form acceleration in its .mdp file. To apply differet forms

of acceleration, the source code also has to be modified.

To save intermediate variables, source code md.c and mdrun.c should be mod-

ified. Several subroutines added in source code /src/kernel/md.c are

static void pz_write_traj(FILE *log,t_commrec *cr,

t_nsborder *nsb,

rvec *xx,rvec *vv)

{

if (MASTER(cr)) {

#ifdef DEBUG

// fprintf(log,"Going to open trajectory file: %s\n",traj);

#endif

}

#define MX(xvf) moveit(log,cr->left,cr->right,#xvf,xvf,nsb)
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if (cr->nnodes > 1) {

MX(xx);

MX(vv);

}

}

void pzmdrunner(int *na, int *nb, char *fnout1, char *fnout2,

t_commrec *cr,t_commrec *mcr,int nfile,t_filenm fnm[],

bool bVerbose,bool bCompact,

int nDlb,int nstepout,

t_edsamyn *edyn,int repl_ex_nst,int repl_ex_seed,

unsigned long Flags)

{

double nodetime=0,realtime;

t_inputrec *inputrec;

t_state *state;

rvec *buf,*f,*vold,*vt;

real tmpr1,tmpr2;

real *ener;

t_nrnb *nrnb;

t_nsborder *nsb;

t_topology *top;

t_groups *grps;
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t_graph *graph;

t_mdatoms *mdatoms;

t_forcerec *fr;

t_fcdata *fcd;

time_t start_t=0;

bool bVsites,bParVsites;

t_comm_vsites vsitecomm;

int i,m;

char *gro;

FILE *fxvg1;

FILE *fxvg2;

int nk,nj,ntotal, nmax, n1,n2,n3,knumber,dim;

real rbox1,rbox2,rbox3,vnorm;

rvec *kvect, *vkvect, *nkvect;

rvec temp1, temp2, vtest1,vtest2;

/* Initiate everything (snew sets to zero!) */

snew(ener,F_NRE);

snew(fcd,1);

snew(nsb,1);

snew(top,1);
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snew(grps,1);

snew(inputrec,1);

snew(state,1);

snew(nrnb,cr->nnodes);

if (bVerbose && MASTER(cr))

fprintf(stderr,"Getting Loaded...\n");

if (PAR(cr)) {

/* The master thread on the master node reads from disk,

then passes everything

around the ring, and finally frees the stuff

*/

if (MASTER(cr))

distribute_parts(cr->left,cr->right,cr->nodeid,

cr->nnodes,inputrec,

ftp2fn(efTPX,nfile,fnm),nDlb);

/* Every node (including the master)

reads the data from the ring */

init_parts(stdlog,cr,

inputrec,top,state,&mdatoms,nsb,
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MASTER(cr) ? LIST_SCALARS | LIST_INPUTREC : 0,

&bParVsites,&vsitecomm);

} else {

/* Read it up... */

init_single(stdlog,inputrec,ftp2fn(efTPX,nfile,fnm),

top,state,&mdatoms,nsb);

bParVsites=FALSE;

}

if (inputrec->eI == eiSD) {

/* Is not read from TPR yet, so we allocate space here */

snew(state->sd_X,nsb->natoms);

}

snew(buf,nsb->natoms);

snew(f,nsb->natoms);

snew(vt,nsb->natoms);

snew(vold,nsb->natoms);

if (bVerbose && MASTER(cr))

fprintf(stderr,"Loaded with Money\n\n");

/* Index numbers for parallellism... */

nsb->nodeid = cr->nodeid;
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top->idef.nodeid = cr->nodeid;

/* Group stuff (energies etc) */

init_groups(stdlog,mdatoms,&(inputrec->opts),grps);

/* Copy the cos acceleration to the groups struct */

grps->cosacc.cos_accel = inputrec->cos_accel;

/* Periodicity stuff */

if (inputrec->ePBC == epbcXYZ) {

graph=mk_graph(&(top->idef),top->atoms.nr,FALSE,FALSE);

if (debug)

p_graph(debug,"Initial graph",graph);

}

else

graph = NULL;

/* Distance Restraints */

init_disres(stdlog,top->idef.il[F_DISRES].nr,

top->idef.il[F_DISRES].iatoms,

top->idef.iparams,inputrec,mcr,fcd);

/* Orientation restraints */
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init_orires(stdlog,top->idef.il[F_ORIRES].nr,

top->idef.il[F_ORIRES].iatoms,

top->idef.iparams,state->x,mdatoms,inputrec,mcr,

&(fcd->orires));

/* Dihedral Restraints */

init_dihres(stdlog,top->idef.il[F_DIHRES].nr,

top->idef.il[F_DIHRES].iatoms,

top->idef.iparams,inputrec,fcd);

/* check if there are vsites */

bVsites=FALSE;

for(i=0; (i<F_NRE) && !bVsites; i++)

bVsites = ((interaction_function[i].flags & IF_VSITE) &&

(top->idef.il[i].nr > 0));

/* Initiate forcerecord */

fr = mk_forcerec();

init_forcerec(stdlog,fr,inputrec,top,cr,mdatoms,nsb,

state->box,FALSE,

opt2fn("-table",nfile,fnm),

opt2fn("-tablep",nfile,fnm),FALSE);



180

fr->bSepDVDL = ((Flags & MD_SEPDVDL) == MD_SEPDVDL);

/* Initialize QM-MM */

if(fr->bQMMM){

init_QMMMrec(cr,mdatoms,state->box,top,inputrec,fr);

}

/* Initiate PPPM if necessary */

if (fr->eeltype == eelPPPM)

init_pppm(stdlog,cr,nsb,FALSE,TRUE,state->box,

getenv("GMXGHAT"),inputrec);

if ((fr->eeltype == eelPME) || (fr->eeltype == eelPMEUSER))

(void) init_pme(stdlog,cr,inputrec->nkx,

inputrec->nky,inputrec->nkz,

inputrec->pme_order,

/*HOMENR(nsb),*/nsb->natoms,

mdatoms->bChargePerturbed,

inputrec->bOptFFT,inputrec->ewald_geometry);

/* Make molecules whole at start of run */

if (fr->ePBC != epbcNONE) {

do_pbc_first(stdlog,state->box,fr,graph,state->x);
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}

/* Now do whatever the user wants us to do (how flexible...)*/

switch (inputrec->eI) {

case eiMD:

case eiSD:

case eiBD:

//

// Define a extra variable *fxvg1 and *fxvg2 to

// open the file *fnout1

// and *fnout2

//

fxvg1 = fopen(fnout1,"w");

fxvg2 = fopen(fnout2,"w");

//

// Variables to determine the value of k vector

//

nk = *na ;

nj = *nb ;

nmax = ((nk*2+1)*(nk*2+1)*(nk*2+1) - 1)/2;

ntotal = nmax;

snew(kvect, nmax);
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snew(nkvect,nmax);

snew(vkvect,2*nmax);

temp1[0] = 1.0;

temp1[1] = 0.0;

temp1[2] = 0.0;

temp2[0] = 0.0;

temp2[1] = 1.0;

temp2[2] = 0.0;

rbox1 = state->box[0][0];

rbox2 = state->box[1][1];

rbox3 = state->box[2][2];

knumber = 0;

//

// Determining the value of vectors: kvect , vkvect

//

//for (n1=-nk; n1 < nk + 1; n1++) {

//for (n2=-nk; n2 < nk + 1; n2++) {

//for (n3=-nk; n3< nk + 1; n3++) {

//if ( (n1*n1+n2*n2+n3*n3) != 0 ) {

for (n1=nk; n1 > -1; n1--) {

for (n2=nk; n2 > -nk - 1; n2--) {
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for (n3=nk; n3 > -nk - 1; n3--) {

if ( (n1>0) || ((n1==0)&&(n2>0)) ||

((n1==0)&&(n2==0)&&(n3>0))) {

kvect[knumber][0] = 2.0 * 3.1416 / rbox1 * (float)n1;

kvect[knumber][1] = 2.0 * 3.1416 / rbox2 * (float)n2;

kvect[knumber][2] = 2.0 * 3.1416 / rbox3 * (float)n3;

nkvect[knumber][0] = (float)n1;

nkvect[knumber][1] = (float)n2;

nkvect[knumber][2] = (float)n3;

pznorm(nkvect[knumber],&vnorm);

//

// Actually if we use nkvect instead of kvect,

// we may not use norm again

// This is waiting to be updated

//

(void) cross(kvect[knumber], temp1 , vtest1);

if ( pznorm(vtest1, &vnorm)) {

for (dim =0; dim<3; dim++)

vkvect[knumber][dim] = vtest1[dim];

(void)

cross(kvect[knumber],vkvect[knumber],vkvect[knumber+nmax]);

pznorm(vkvect[knumber+nmax],&vnorm);
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}

else {

(void) cross(kvect[knumber],temp2,vtest2);

if ( pznorm(vtest2,&vnorm)) {

for (dim =0; dim<3; dim++)

vkvect[knumber][dim] =vtest2[dim];

(void)

cross(kvect[knumber],vkvect[knumber],vkvect[knumber+nmax]);

pznorm(vkvect[knumber+nmax],&vnorm);

}

else {

fprintf(stderr,"\n error in getting the vectors\n");

gmx_fatal(FARGS,"can not get correct vectical vectors

...\n" );

}

}

fprintf(fxvg1,"k%1d,%3d%3d%3d ",knumber,n1,n2,n3);

fprintf(fxvg2,"k%1d,%3d%3d%3d ",knumber,n1,n2,n3);

knumber++;

}

}

}
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}

fprintf(fxvg1,"\n");

fprintf(fxvg2,"\n");

if ( knumber > nmax ) {

fprintf(stderr,"\nWARNING:

Number of ntotal are wrong %d .gt. %d \n",

knumber,nmax);

gmx_fatal(FARGS,"Wrong number of the vectors

...%d .gt. %d\n",knumber,nmax );

///stop;

}

else{

ntotal = knumber;

}

start_t=pzdo_md(&nj, fxvg1, fxvg2, kvect, vkvect,

nkvect, ntotal, (&(top->atoms))->nres,

stdlog,cr,mcr,nfile,fnm,

bVerbose,bCompact,bVsites,

bParVsites ? &vsitecomm : NULL,

nstepout,inputrec,grps,top,ener,fcd,state,vold,vt,

f,buf, mdatoms,nsb,nrnb,graph,edyn,fr,

repl_ex_nst,repl_ex_seed,
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Flags);

fclose(fxvg1);

fclose(fxvg2);

sfree(kvect);

sfree(vkvect);

sfree(nkvect);

break;

case eiCG:

start_t=do_cg(stdlog,nfile,fnm,inputrec,top,grps,nsb,

state,f,buf,mdatoms,ener,fcd,

nrnb,bVerbose,bVsites,

bParVsites ? &vsitecomm : NULL,

cr,mcr,graph,fr);

break;

case eiLBFGS:

start_t=do_lbfgs(stdlog,nfile,fnm,inputrec,top,grps,nsb,

state,f,buf,mdatoms,ener,fcd,

nrnb,bVerbose,bVsites,

bParVsites ? &vsitecomm : NULL,

cr,mcr,graph,fr);

break;

case eiSteep:
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start_t=do_steep(stdlog,nfile,fnm,inputrec,top,grps,nsb,

state,f,buf,mdatoms,ener,fcd,

nrnb,bVerbose,bVsites,

bParVsites ? &vsitecomm : NULL,

cr,mcr,graph,fr);

break;

case eiNM:

start_t=do_nm(stdlog,cr,nfile,fnm,

bVerbose,bCompact,nstepout,inputrec,grps,

top,ener,fcd,state,vold,vt,f,buf,

mdatoms,nsb,nrnb,graph,edyn,fr);

break;

case eiTPI:

start_t=do_tpi(stdlog,nfile,fnm,inputrec,top,grps,nsb,

state,f,buf,mdatoms,ener,fcd,

nrnb,bVerbose,

cr,mcr,graph,fr);

break;

default:

gmx_fatal(FARGS,"Invalid integrator (%d)...\n",inputrec->eI);

}
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/* Some timing stats */

if (MASTER(cr)) {

realtime=difftime(time(NULL),start_t);

if ((nodetime=node_time()) == 0)

nodetime=realtime;

}

else

realtime=0;

/* Convert back the atoms */

md2atoms(mdatoms,&(top->atoms),TRUE);

/* Finish up, write some stuff

* if rerunMD, don’t write last frame again

*/

finish_run(stdlog,cr,ftp2fn(efSTO,nfile,fnm),

nsb,top,inputrec,nrnb,nodetime,realtime,

inputrec->nsteps,

EI_DYNAMICS(inputrec->eI));

/* Does what it says */

print_date_and_time(stdlog,cr->nodeid,"Finished mdrun");
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}

static int pznorm(rvec x, real *xnorm)

{

/* RETURNS INPUT VECTOR X NORMALIZED TO UNIT LENGTH.

XNORM IS THE ORIGINAL LENGTH OF X. */

real TEMP, TEMP1, TEMP2;

TEMP = x[0];

TEMP1 = x[1];

TEMP2 = x[2];

*xnorm = TEMP * TEMP + TEMP1 * TEMP1 + TEMP2 * TEMP2;

if (*xnorm <= 1e-5)

return 0;

*xnorm = sqrt(*xnorm);

x[0] /=*xnorm;

x[1] /=*xnorm;

x[2] /=*xnorm;

return 1;

} /* Norm */

static void moveit(FILE *log,
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int left,int right,char *s,rvec xx[],t_nsborder *nsb)

{

if (!xx)

return;

move_rvecs(log,FALSE,FALSE,left,right,xx,

NULL,nsb->nnodes-1,nsb,NULL);

}

The original routine do md should be modified to make the corresponding pzdo md

routine.

time_t pzdo_md(int *na, FILE *fp1, FILE *fp2, rvec

kv[], rvec vkv[], rvec nkv[], int ncount, int

nres,

FILE *log,t_commrec *cr,t_commrec

*mcr,int nfile,t_filenm fnm[],

bool bVerbose,bool bCompact,

bool bVsites, t_comm_vsites

*vsitecomm,

int stepout,t_inputrec

*inputrec,t_groups *grps,t_topology *top,

real ener[],t_fcdata *fcd,

t_state *state,rvec vold[],rvec
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vt[],rvec f[],

rvec buf[],t_mdatoms

*mdatoms,t_nsborder *nsb,t_nrnb nrnb[],

t_graph *graph,t_edsamyn

*edyn,t_forcerec *fr,

int repl_ex_nst,int repl_ex_seed,

unsigned long Flags)

To calculate the current, the following variables are defined:

//

/* define the following variables to calculate

* current */

//

char *fshort = "%11.4e";

int nj;

int mi,mj,mp;

rvec *cmx, *cmv;

real molmass, sqrtn;

real jlcos, jlsin, jtcos1, jtsin1, jtcos2,

jtsin2, vdotpk, rdotpk, vdotpk1,vdotpk2;

nj = *na;

sqrtn =sqrt((float)nres) ;
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After the lines

xx = (do_per_step(step,inputrec->nstxout) ||

bLastStep) ? state->x : NULL;

vv = (do_per_step(step,inputrec->nstvout) ||

bLastStep) ? state->v : NULL;

ff = (do_per_step(step,inputrec->nstfout)) ? f

: NULL;

add

fp_trn =

write_traj(log,cr,traj,nsb,step,t,state->lambda,

nrnb,nsb->natoms,xx,vv,ff,state->box);

//

// output the current to fp1, fp2

//

//nj = *na; see above

if ( do_per_step(step,nj)) {

xx = state->x;

vv = state->v;

pz_write_traj(NULL,cr,nsb,xx,vv);

snew(cmx,nres);

snew(cmv,nres);
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mp = 0;

for (mi=0; mi<nres; mi++) {

for (mj =0; mj<DIM; mj++) {

cmx[mi][mj] = 0.0;

cmv[mi][mj] = 0.0;

}

molmass = 0.0;

while ( (mp < nsb->natoms) &&

(mdatoms->resnr[mp] == mi) ) {

for ( mj=0; mj<DIM; mj++) {

cmx[mi][mj] +=

mdatoms->massT[mp]*xx[mp][mj];

cmv[mi][mj] +=

mdatoms->massT[mp]*vv[mp][mj];

}

molmass += mdatoms->massT[mp];

mp ++ ;

}

for (mj=0; mj<DIM; mj++)

cmx[mi][mj] /= molmass;

}

for (mp=0; mp < ncount; mp++) {
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jlcos = 0.0;

jlsin = 0.0;

jtcos1 = 0.0;

jtsin1 = 0.0;

jtcos2 = 0.0;

jtsin2 = 0.0;

for (mi=0; mi< nres; mi++) {

rdotpk = 0.0;

vdotpk = 0.0;

vdotpk1 = 0.0;

vdotpk2 = 0.0;

for (mj=0; mj<DIM; mj++) {

rdotpk = rdotpk + kv[mp][mj] *

cmx[mi][mj];

vdotpk = vdotpk + nkv[mp][mj] *

cmv[mi][mj];

vdotpk1 = vdotpk1 + vkv[mp][mj] *

cmv[mi][mj];

vdotpk2 = vdotpk2 + vkv[mp+ncount][mj]

* cmv[mi][mj];

}

jlcos += vdotpk * cos(rdotpk);
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jlsin += vdotpk * sin(rdotpk);

jtcos1 += vdotpk1 * cos( rdotpk);

jtsin1 += vdotpk1 * sin( rdotpk);

jtcos2 += vdotpk2 * cos( rdotpk);

jtsin2 += vdotpk2 * sin( rdotpk);

}

jlcos = jlcos / sqrtn;

jlsin = jlsin / sqrtn;

jtcos1 = jtcos1 / sqrtn;

jtsin1 = jtsin1 / sqrtn;

jtcos2 = jtcos2 / sqrtn;

jtsin2 = jtsin2 / sqrtn;

//jlcos /= mdatoms->tmass;

//jlsin /= mdatoms->tmass;

//jtcos1 /= mdatoms->tmass;

//jtsin1 /= mdatoms->tmass;

//jtcos2 /= mdatoms->tmass;

//jtsin2 /= mdatoms->tmass;

if (mp != 0) {

(void) fprintf(fp1,"\n");
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(void) fprintf(fp2,"\n");

}

fprintf(fp1,fshort,jlcos);

fprintf(fp1," ");

fprintf(fp1,fshort,jlsin);

fprintf(fp2,fshort,jtcos1);

fprintf(fp2," ");

fprintf(fp2,fshort,jtsin1);

fprintf(fp2," ");

fprintf(fp2,fshort,jtcos2);

fprintf(fp2," ");

fprintf(fp2,fshort,jtsin2);

}

(void) fprintf(fp1,"\n");

(void) fprintf(fp2,"\n");

sfree(cmx);

sfree(cmv);

}

To call the above routines, the following lines should be added to the file mdrun.c:

At line 184 of the file mdrun.c after
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static int nthreads=1;

add

static int nj = 1000;

static int intk = 2;

At line 215 of the file mdrun.c after

{ "-stepout", FALSE, etINT, {&nstepout},

"HIDDENFrequency of writing the remaining runtime" },

add

{ "-nj",

FALSE, etINT, {&nj}, "frequency to output the current" },

{ "-k",

FALSE, etINT, {&intk}, "maximum number of vectors"}

At line 265 of the file mdrun.c after this line

Flags = Flags | (bGlas ? MD_GLAS : 0);

add

pzmdrunner(&intk,&nj,opt2fn_null("-olc",NFILE,fnm),

opt2fn_null("-otc",NFILE,fnm),

cr,mcr,NFILE,fnm,bVerbose,bCompact,nDLB,nstepout,

edyn,repl_ex_nst,repl_ex_seed,Flags);
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We also modified the routine to apply different acceleration forms. Basically, follow

the applied option cos acceleration in the mdp file and see which routines call this

option and then modify the corresponding acceleration form and boundary conditions.
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APPENDIX D
GEOMETRY AND EFFECTIVE POTENTIAL OF MOLECULES

1-butyl-3-methylimidazolium Cation ([BMIM+])

N
N

Figure D.1: [BMIM+] cation

Table D.1: Coordinates of [BMIM+]

Atom atom index x (nm) y (nm) z (nm)

N1 1 4.4860 3.2432 2.7775

N2 2 4.6471 3.1220 2.8967

C3 3 4.5972 3.1594 2.7735

C4 4 4.4661 3.2636 2.9116

C5 5 4.4173 3.3012 2.6629

C6 6 4.5484 3.1814 2.9860

C7 7 4.7940 3.0161 3.0680

C8 8 4.7686 3.0417 2.9177

H9 9 4.6497 3.1451 2.6787

Continued on next page
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Table D.1 – continued from previous page

Atom atom index x (nm) y (nm) z (nm)

H10 10 4.3786 3.3089 2.9588

H11 11 4.4379 3.4118 2.6772

H12 12 4.3187 3.2744 2.6494

H13 13 4.4851 3.2671 2.5820

H14 14 4.5439 3.1444 3.0896

H15 15 4.7154 2.9574 3.1058

H16 16 4.7975 3.1087 3.1188

H17 17 4.7546 2.9338 2.8819

H18 18 4.8541 3.0695 2.8611

C19 19 4.9256 2.9305 3.0927

H20 20 4.9250 2.8338 3.0360

H21 21 4.9902 3.0302 3.0725

C22 22 4.9538 2.8927 3.2448

H23 23 5.0490 2.8386 3.2518

H24 24 4.9774 2.9832 3.3136

H25 25 4.8686 2.8452 3.2830
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Table D.2: Nonbonding parameters of [BMIM+]

Atom atom type charge (e) σ (nm) ε (kJ/mol)

N1 opls 557 0.24016 3.25000e-01 7.11280e-01

N2 opls 559 0.06881 3.25000e-01 7.11280e-01

C3 opls 558 -0.05841 3.55000e-01 2.92880e-01

C4 opls 561 -0.27761 3.55000e-01 2.92880e-01

C5 opls 905 -0.33178 3.50000e-01 2.76144e-01

C6 opls 560 -0.12324 3.55000e-01 2.92880e-01

C7 opls 136 0.0 3.50000e-01 2.76144e-01

C8 opls 908 -0.16652 3.50000e-01 2.76144e-01

H9 opls 563 0.2376 2.42000e-01 1.25520e-01

H10 opls 565 0.25557 2.42000e-01 1.25520e-01

H11 opls 911 0.16774 2.50000e-01 6.27600e-02

H12 opls 911 0.16774 2.50000e-01 6.27600e-02

H13 opls 911 0.16774 2.50000e-01 6.27600e-02

H14 opls 564 0.24141 2.42000e-01 1.25520e-01

H15 opls 140 0.0 2.50000e-01 1.25520e-01

H16 opls 140 0.0 2.50000e-01 1.25520e-01

H17 opls 911 0.14241 2.50000e-01 6.27600e-02

H18 opls 911 0.14241 2.50000e-01 6.27600e-02

C19 opls 136 0.0 3.50000e-01 2.76144e-01

Continued on next page
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Table D.2 – continued from previous page

Atom atom type charge (e) σ (nm) ε (kJ/mol)

H20 opls 140 0.0 2.50000e-01 1.25520e-01

H21 opls 140 0.0 2.50000e-01 1.25520e-01

C22 opls 135 0.00087 3.50000e-01 2.76144e-01

H23 opls 140 0.0417 2.50000e-01 1.25520e-01

H24 opls 140 0.0417 2.50000e-01 1.25520e-01

H25 opls 140 0.0417 2.50000e-01 1.25520e-01

Table D.3: Dihedral parameters of [BMIM+]

AI AJ AK AL C0 C1 C2 C3

1 4 6 2 45.00810 0.00000 -45.00810 0.00000

1 4 6 14 45.00810 0.00000 -45.00810 0.00000

3 1 4 6 11.72304 0.00000 -11.72304 0.00000

3 1 4 10 13.39776 0.00000 -13.39776 0.00000

3 1 5 11 1.17230 3.51691 0.00000 -4.68922

3 1 5 12 1.17230 3.51691 0.00000 -4.68922

3 1 5 13 1.17230 3.51691 0.00000 -4.68922

3 2 6 4 20.09664 0.00000 -20.09664 0.00000

3 2 6 14 20.09664 0.00000 -20.09664 0.00000

Continued on next page
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Table D.3 – continued from previous page

AI AJ AK AL C0 C1 C2 C3

3 2 8 7 -3.55878 2.09340 1.46538 0.00000

3 2 8 17 0.37053 1.11160 0.00000 -1.48213

3 2 8 18 0.37053 1.11160 0.00000 -1.48213

4 1 3 2 19.46862 0.00000 -19.46862 0.00000

4 1 3 9 19.46862 0.00000 -19.46862 0.00000

4 1 5 11 1.17230 3.51691 0.00000 -4.68922

4 1 5 12 1.17230 3.51691 0.00000 -4.68922

4 1 5 13 1.17230 3.51691 0.00000 -4.68922

5 1 3 2 30.35430 0.00000 -30.35430 0.00000

5 1 3 9 30.35430 0.00000 -30.35430 0.00000

5 1 4 6 30.35430 0.00000 -30.35430 0.00000

5 1 4 10 30.35430 0.00000 -30.35430 0.00000

6 2 3 1 41.86800 0.00000 -41.86800 0.00000

6 2 3 9 41.86800 0.00000 -41.86800 0.00000

6 2 8 7 -3.55878 2.09340 1.46538 0.00000

6 2 8 17 0.37053 1.11160 0.00000 -1.48213

6 2 8 18 0.37053 1.11160 0.00000 -1.48213

7 19 22 23 0.62802 1.88406 0.00000 -2.51208

7 19 22 24 0.62802 1.88406 0.00000 -2.51208

Continued on next page
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Table D.3 – continued from previous page

AI AJ AK AL C0 C1 C2 C3

7 19 22 25 0.62802 1.88406 0.00000 -2.51208

8 2 3 1 30.35430 0.00000 -30.35430 0.00000

8 2 3 9 30.35430 0.00000 -30.35430 0.00000

8 2 6 4 30.35430 0.00000 -30.35430 0.00000

8 2 6 14 30.35430 0.00000 -30.35430 0.00000

8 7 19 20 0.62802 1.88406 0.00000 -2.51208

8 7 19 21 0.62802 1.88406 0.00000 -2.51208

8 7 19 22 2.93076 -1.46538 0.20934 -1.67472

10 4 6 2 45.00810 0.00000 -45.00810 0.00000

10 4 6 14 30.35430 0.00000 -30.35430 0.00000

15 7 8 2 -4.09888 5.09115 2.96844 -3.96071

15 7 8 17 0.62802 1.88406 0.00000 -2.51208

15 7 8 18 0.62802 1.88406 0.00000 -2.51208

15 7 19 20 0.62802 1.88406 0.00000 -2.51208

15 7 19 21 0.62802 1.88406 0.00000 -2.51208

15 7 19 22 0.62802 1.88406 0.00000 -2.51208

16 7 8 2 -4.09888 5.09115 2.96844 -3.96071

16 7 8 17 0.62802 1.88406 0.00000 -2.51208

16 7 8 18 0.62802 1.88406 0.00000 -2.51208

Continued on next page
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Table D.3 – continued from previous page

AI AJ AK AL C0 C1 C2 C3

16 7 19 20 0.62802 1.88406 0.00000 -2.51208

16 7 19 21 0.62802 1.88406 0.00000 -2.51208

16 7 19 22 0.62802 1.88406 0.00000 -2.51208

19 7 8 2 5.77569 -2.67327 0.95878 -4.06120

19 7 8 17 0.62802 1.88406 0.00000 -2.51208

19 7 8 18 0.62802 1.88406 0.00000 -2.51208

20 19 22 23 0.62802 1.88406 0.00000 -2.51208

20 19 22 24 0.62802 1.88406 0.00000 -2.51208

20 19 22 25 0.62802 1.88406 0.00000 -2.51208

21 19 22 23 0.62802 1.88406 0.00000 -2.51208

21 19 22 24 0.62802 1.88406 0.00000 -2.51208

21 19 22 25 0.62802 1.88406 0.00000 -2.51208

2 4 6 14 9.21096 0.00000 -9.21096 0.00000

1 6 4 10 9.21096 0.00000 -9.21096 0.00000

3 4 1 5 8.37360 0.00000 -8.37360 0.00000

1 2 3 9 9.21096 0.00000 -9.21096 0.00000

3 6 2 8 8.37360 0.00000 -8.37360 0.00000

Note: AI,AJ,AK,AL are atom index. The unit of C0, C1, C2, and C3 is
kJ/mol.
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The parameters for strech and bend terms taken from OPLSS force field are also

avaiable on line[39, 50].
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1-hexyl-3-methylimidazolium Cation ([HMIM+])

N
N

Figure D.2: [HMIM+] cation

Table D.4: Coordinates of [HMIM+]

Atom atom index x (nm) y (nm) z (nm)

N1 1 1.7095 -3.7944 -1.2304

N2 2 1.6545 -3.5714 -1.2514

C3 3 1.7405 -3.6734 -1.2774

C4 4 1.5735 -3.7814 -1.1984

C5 5 1.7935 -3.9174 -1.2404

C6 6 1.5405 -3.6474 -1.2034

C7 7 1.6165 -3.3844 -1.4134

C8 8 1.6635 -3.4284 -1.2724

H9 9 1.8295 -3.6454 -1.3324

H10 10 1.5035 -3.8634 -1.1674

H11 11 1.7895 -3.9634 -1.1374

H12 12 1.8955 -3.8754 -1.2554

Continued on next page



208

Table D.4 – continued from previous page

Atom atom index x (nm) y (nm) z (nm)

H13 13 1.7825 -3.9844 -1.3214

H14 14 1.4515 -3.5974 -1.1844

H15 15 1.5155 -3.4164 -1.4254

H16 16 1.6535 -3.4564 -1.4884

H17 17 1.6215 -3.3704 -1.1954

H18 18 1.7695 -3.3964 -1.2564

C19 19 1.6385 -3.2464 -1.4474

H20 20 1.5685 -3.1944 -1.4074

H21 21 1.7285 -3.2074 -1.4004

C22 22 1.6315 -3.2064 -1.5924

H23 23 1.5405 -3.2584 -1.6264

H24 24 1.7285 -3.2454 -1.6374

C25 25 1.6175 -3.0604 -1.6234

H26 26 1.5425 -3.0274 -1.5634

H27 27 1.7055 -3.0074 -1.6074

C28 28 1.6015 -3.0344 -1.7724

H29 29 1.5255 -3.1094 -1.8054

H30 30 1.5685 -2.9294 -1.7784

H31 31 1.6905 -3.0384 -1.8324
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The parameter of [HMIM+] for atom 1-21 are the same with that of cation

[BMIM+], we only provide parameters for the rest atoms in Table D.5.

Table D.5: Nonbonding parameters of [HMIM+]

Atom atom type charge (e) σ (nm) ε (kJ/mol)

C22 opls 136 0.0 3.50000e-01 2.76144e-01

H23 opls 140 0.0 2.50000e-01 1.25520e-01

H24 opls 140 0.0 2.50000e-01 1.25520e-01

C25 opls 136 0.0 3.50000e-01 2.76144e-01

H26 opls 140 0.0 2.50000e-01 1.25520e-01

H27 opls 140 0.0 2.50000e-01 1.25520e-01

C28 opls 135 0.00087 3.50000e-01 2.76144e-01

H29 opls 140 0.0417 2.50000e-01 1.25520e-01

H30 opls 140 0.0417 2.50000e-01 1.25520e-01

H31 opls 140 0.0417 2.50000e-01 1.25520e-01

Note: The nonbonding parameters for atoms 1 to 22 can be
found in the previous Table D.2
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Table D.6: Dihedral parameters of [HMIM+]

AI AJ AK AL C0 C1 C2 C3

8 7 19 22 2.93076 -1.46538 0.20934 -1.67472

15 7 19 22 0.62802 1.88406 0 -2.51208

16 7 19 22 0.62802 1.88406 0 -2.51208

7 19 22 23 0.62802 1.88406 0 -2.51208

7 19 22 24 0.62802 1.88406 0 -2.51208

7 19 22 25 2.93076 -1.46538 0.20934 -1.67472

20 19 22 23 0.62802 1.88406 0 -2.51208

20 19 22 24 0.62802 1.88406 0 -2.51208

20 19 22 25 0.62802 1.88406 0 -2.51208

21 19 22 23 0.62802 1.88406 0 -2.51208

21 19 22 24 0.62802 1.88406 0 -2.51208

21 19 22 25 0.62802 1.88406 0 -2.51208

19 22 25 26 0.62802 1.88406 0 -2.51208

19 22 25 27 0.62802 1.88406 0 -2.51208

19 22 25 28 2.93076 -1.46538 0.20934 -1.67472

23 22 25 26 0.62802 1.88406 0 -2.51208

23 22 25 27 0.62802 1.88406 0 -2.51208

23 22 25 28 0.62802 1.88406 0 -2.51208

24 22 25 26 0.62802 1.88406 0 -2.51208

Continued on next page
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Table D.6 – continued from previous page

AI AJ AK AL C0 C1 C2 C3

24 22 25 27 0.62802 1.88406 0 -2.51208

24 22 25 28 0.62802 1.88406 0 -2.51208

22 25 28 29 0.62802 1.88406 0 -2.51208

22 25 28 30 0.62802 1.88406 0 -2.51208

22 25 28 31 0.62802 1.88406 0 -2.51208

26 25 28 29 0.62802 1.88406 0 -2.51208

26 25 28 30 0.62802 1.88406 0 -2.51208

26 25 28 31 0.62802 1.88406 0 -2.51208

27 25 28 29 0.62802 1.88406 0 -2.51208

27 25 28 30 0.62802 1.88406 0 -2.51208

27 25 28 31 0.62802 1.88406 0 -2.51208

Note: AI,AJ,AK,AL are all atom indices. The parameters for all indices
less than 22 can be found in the previous Table D.3
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hexafluophosphate Anion ([PF6-])

P

F

F F
F

FF

_

Figure D.3: [PF6-] cation

Table D.7: Coordinates of [PF6-]

Atom atom index x (nm) y (nm) z (nm)

P1 1 2.0167 0.7809 2.8044

F2 2 1.9029 0.8738 2.8550

F3 3 2.0545 0.7370 2.9494

F4 4 1.9818 0.8246 2.6580

F5 5 2.1247 0.6820 2.7457

F6 6 2.1174 0.9017 2.8140

F7 7 1.9110 0.6646 2.7907
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Table D.8: Stretching parameters of [PF6-]

Atom index Atom index req (nm) Kr (kJ/(mol·nm2)

1 2 0.156935 4184000.0

1 3 0.156935 4184000.0

1 4 0.156935 4184000.0

1 5 0.156935 4184000.0

1 6 0.156935 4184000.0

1 7 0.156935 4184000.0



214

Table D.9: Bending parameters of [PF6-]

Atom index Atom index Atom index θeq (degree) Kθ (kJ/(mol·rad2)

2 1 3 90.0 836.800

2 1 4 90.0 836.800

2 1 5 180.0 836.800

2 1 6 90.0 836.800

2 1 7 90.0 836.800

3 1 4 180.0 836.800

3 1 5 90.0 836.800

3 1 6 90.0 836.800

3 1 7 90.0 836.800

4 1 5 90.0 836.800

4 1 6 90.0 836.800

4 1 7 90.0 836.800

5 1 6 90.0 836.800

5 1 7 90.0 836.800

6 1 7 180.0 836.800
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2-amino-7-nitrofluorene Probe (ANF)

NO2H2N

Figure D.4: Fluorescent probe ANF

Table D.10: Coordinates of ANF

Atom atom index x (nm) y (nm) z (nm)

C1 1 1.7025 1.7275 2.8325

C2 2 1.6911 1.7827 2.7048

C3 3 1.6796 1.6943 2.5971

C4 4 1.7122 1.5829 2.8498

C5 5 1.6927 1.4948 2.7415

C6 6 1.6760 1.5531 2.6134

N7 7 1.6731 1.3659 2.7578

H8 8 1.6978 1.7842 2.9191

H9 9 1.7009 1.5420 2.9505

H10 10 1.6409 1.4824 2.5351

C11 11 1.6780 2.0387 2.7181

C12 12 1.7017 2.1545 2.6493

Continued on next page
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Table D.10 – continued from previous page

Atom atom index x (nm) y (nm) z (nm)

C13 13 1.7302 2.1484 2.5171

C14 14 1.6896 1.9159 2.6527

C15 15 1.6911 1.9048 2.5126

C16 16 1.7299 2.0235 2.4446

H17 17 1.6610 2.0361 2.8289

H18 18 1.6867 2.2412 2.7143

H19 19 1.7564 2.0271 2.3363

C20 20 1.6754 1.7690 2.4679

N21 21 1.7486 2.2707 2.4433

O22 22 1.7696 2.3654 2.5164

O23 23 1.7433 2.2660 2.3135

H24 24 1.6688 1.3465 2.8570

H25 25 1.5813 1.3366 2.7156

H26 26 1.7487 1.7332 2.3946

H27 27 1.5755 1.7547 2.4263

The excited state charges are calculated based on a INDO Hamiltoain of CI using

Hyperchem and ab initio calculation using Gaussian 03 (see section 4.2 in chapter 4).



217

Table D.11: Nonbonding parameters of ANF

Atom atom type qg(e) qe(e) σ (nm) ε (kJ/mol)

C1 CA -0.098073 -0.077499 0.355 0.293076

C2 CA -0.133973 -0.085986 0.355 0.293076

C3 CA 0.186973 0.223324 0.355 0.293076

C4 CA -0.400764 -0.381327 0.355 0.293076

C5 CA 0.542449 0.609969 0.355 0.293076

C6 CA -0.482755 -0.481454 0.355 0.293076

N7 NT -0.934832 -0.890169 0.33 0.711756

H8 HA 0.161595 0.170777 0.242 0.125604

H9 HA 0.200105 0.208665 0.242 0.125604

H10 HA 0.212443 0.220198 0.242 0.125604

C11 CA -0.206424 -0.188210 0.355 0.293076

C12 CA -0.213081 -0.216435 0.355 0.293076

C13 CA 0.055530 0.164585 0.355 0.293076

C14 CA 0.116735 0.073611 0.355 0.293076

C15 CA 0.135815 0.149327 0.355 0.293076

C16 CA -0.322881 -0.363726 0.355 0.293076

H17 HA 0.163062 0.160752 0.242 0.125604

H18 HA 0.194180 0.199418 0.242 0.125604

H19 HA 0.211855 0.214657 0.242 0.125604

Continued on next page
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Table D.11 – continued from previous page

Atom atom type qg(e) qe(e) σ (nm) ε (kJ/mol)

C20 CT -0.206611 -0.203482 0.35 0.2763288

N21 NO 0.801428 0.644742 0.325 0.502416

O22 ON -0.481254 -0.579920 0.296 0.711756

O23 ON -0.478396 -0.574883 0.296 0.711756

H24 H 0.384169 0.393701 0.0 0.0

H25 H 0.380493 0.389395 0.0 0.0

H26 HC 0.113780 0.117661 0.25 0.125604

H27 HC 0.098432 0.102309 0.25 0.125604

qg and qe stand for the ground and first excited electronic state
respectively.
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Table D.12: Stretching parameters of ANF

Atom index Atom index req (nm) Kr (kJ/(mol·nm2)

1 2 0.14000 392721.8

1 4 0.14000 392721.8

1 8 0.10800 307311.1

2 3 0.14000 392721.8

2 14 0.14000 392721.8

3 6 0.14000 392721.8

3 20 0.15100 265443.1

4 5 0.14000 392721.8

4 9 0.10800 307311.1

5 6 0.14000 392721.8

5 7 0.13400 402770.2

6 10 0.10800 307311.1

7 24 0.10100 363414.2

7 25 0.10100 363414.2

11 12 0.14000 392721.8

11 14 0.14000 392721.8

11 17 0.10800 307311.1

12 13 0.14000 392721.8

12 18 0.10800 307311.1

Continued on next page
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Table D.12 – continued from previous page

Atom index Atom index req (nm) Kr (kJ/(mol·nm2)

13 16 0.14000 392721.8

13 21 0.14600 334944.0

14 15 0.14000 392721.8

15 16 0.14000 392721.8

15 20 0.15100 265443.1

16 19 0.10800 307311.1

20 26 0.10900 284702.4

20 27 0.10900 284702.4

21 22 0.12250 460548.0

21 23 0.12250 460548.0

Table D.13: Bending parameters of ANF

Atom index Atom index Atom index θeq (degree) Kθ (kJ/(mol·rad2)

1 2 3 120.000 527.537

1 2 14 120.000 527.537

1 4 5 120.000 527.537

1 4 9 120.000 293.076

2 3 6 120.000 527.537

Continued on next page
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Table D.13 – continued from previous page

Atom index Atom index Atom index θeq (degree) Kθ (kJ/(mol·rad2)

2 3 20 120.000 586.152

2 14 11 120.000 527.537

2 14 15 120.000 527.537

3 6 5 120.000 527.537

3 6 10 120.000 293.076

3 20 15 109.500 334.944

3 20 26 109.500 293.076

3 20 27 109.500 293.076

4 1 2 120.000 527.537

4 5 6 120.000 527.537

4 5 7 120.100 586.152

5 6 10 120.000 293.076

5 7 24 111.000 293.076

5 7 25 111.000 293.076

7 5 6 120.100 586.152

8 1 2 120.000 293.076

8 1 4 120.000 293.076

9 4 5 120.000 293.076

11 12 13 120.000 527.537

Continued on next page
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Table D.13 – continued from previous page

Atom index Atom index Atom index θeq (degree) Kθ (kJ/(mol·rad2)

11 12 18 120.000 293.076

11 14 15 120.000 527.537

12 13 16 120.000 527.537

12 13 21 120.000 711.756

13 16 15 120.000 527.537

13 16 19 120.000 293.076

13 21 22 117.500 669.888

13 21 23 117.500 669.888

14 2 3 120.000 527.537

14 11 12 120.000 527.537

14 15 16 120.000 527.537

14 15 20 120.000 586.152

15 16 19 120.000 293.076

15 20 26 109.500 293.076

15 20 27 109.500 293.076

17 11 12 120.000 293.076

17 11 14 120.000 293.076

18 12 13 120.000 293.076

20 3 6 120.000 586.152

Continued on next page
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Table D.13 – continued from previous page

Atom index Atom index Atom index θeq (degree) Kθ (kJ/(mol·rad2)

20 15 16 120.000 586.152

21 13 16 120.000 711.756

23 21 22 125.300 669.888

25 7 24 106.400 365.089

27 20 26 107.800 276.329

Table D.14: Dihedral parameters of ANF

AI AJ AK AL C0 C1 C2 C3

1 2 3 6 30.35430 0.00000 -30.35430 0.00000

1 2 3 20 30.35430 0.00000 -30.35430 0.00000

1 2 14 11 30.35430 0.00000 -30.35430 0.00000

1 2 14 15 30.35430 0.00000 -30.35430 0.00000

1 4 5 6 30.35430 0.00000 -30.35430 0.00000

1 4 5 7 30.35430 0.00000 -30.35430 0.00000

2 1 4 5 30.35430 0.00000 -30.35430 0.00000

2 1 4 9 30.35430 0.00000 -30.35430 0.00000

2 3 6 5 30.35430 0.00000 -30.35430 0.00000

2 3 6 10 30.35430 0.00000 -30.35430 0.00000

Continued on next page
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Table D.14 – continued from previous page

AI AJ AK AL C0 C1 C2 C3

2 3 20 15 0.00000 0.00000 0.00000 0.00000

2 3 20 26 0.00000 0.00000 0.00000 0.00000

2 3 20 27 0.00000 0.00000 0.00000 0.00000

2 14 15 16 30.35430 0.00000 -30.35430 0.00000

2 14 15 20 30.35430 0.00000 -30.35430 0.00000

3 2 14 11 30.35430 0.00000 -30.35430 0.00000

3 2 14 15 30.35430 0.00000 -30.35430 0.00000

4 1 2 3 30.35430 0.00000 -30.35430 0.00000

4 1 2 14 30.35430 0.00000 -30.35430 0.00000

4 5 6 3 30.35430 0.00000 -30.35430 0.00000

4 5 6 10 30.35430 0.00000 -30.35430 0.00000

4 5 7 24 8.49920 0.00000 -8.49920 0.00000

4 5 7 25 8.49920 0.00000 -8.49920 0.00000

6 3 20 15 0.00000 0.00000 0.00000 0.00000

6 3 20 26 0.00000 0.00000 0.00000 0.00000

6 3 20 27 0.00000 0.00000 0.00000 0.00000

6 5 7 24 8.49920 0.00000 -8.49920 0.00000

6 5 7 25 8.49920 0.00000 -8.49920 0.00000

7 5 6 3 30.35430 0.00000 -30.35430 0.00000

Continued on next page
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Table D.14 – continued from previous page

AI AJ AK AL C0 C1 C2 C3

7 5 6 10 30.35430 0.00000 -30.35430 0.00000

8 1 2 3 30.35430 0.00000 -30.35430 0.00000

8 1 2 14 30.35430 0.00000 -30.35430 0.00000

8 1 4 5 30.35430 0.00000 -30.35430 0.00000

8 1 4 9 30.35430 0.00000 -30.35430 0.00000

9 4 5 6 30.35430 0.00000 -30.35430 0.00000

9 4 5 7 30.35430 0.00000 -30.35430 0.00000

11 12 13 16 30.35430 0.00000 -30.35430 0.00000

11 12 13 21 30.35430 0.00000 -30.35430 0.00000

11 14 15 16 30.35430 0.00000 -30.35430 0.00000

11 14 15 20 30.35430 0.00000 -30.35430 0.00000

12 11 14 2 30.35430 0.00000 -30.35430 0.00000

12 11 14 15 30.35430 0.00000 -30.35430 0.00000

12 13 16 15 30.35430 0.00000 -30.35430 0.00000

12 13 16 19 30.35430 0.00000 -30.35430 0.00000

12 13 21 22 4.81482 0.00000 -4.81482 0.00000

12 13 21 23 4.81482 0.00000 -4.81482 0.00000

14 2 3 6 30.35430 0.00000 -30.35430 0.00000

14 2 3 20 30.35430 0.00000 -30.35430 0.00000

Continued on next page
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Table D.14 – continued from previous page

AI AJ AK AL C0 C1 C2 C3

14 11 12 13 30.35430 0.00000 -30.35430 0.00000

14 11 12 18 30.35430 0.00000 -30.35430 0.00000

14 15 16 13 30.35430 0.00000 -30.35430 0.00000

14 15 16 19 30.35430 0.00000 -30.35430 0.00000

14 15 20 3 0.00000 0.00000 0.00000 0.00000

14 15 20 26 0.00000 0.00000 0.00000 0.00000

14 15 20 27 0.00000 0.00000 0.00000 0.00000

16 13 21 22 4.81482 0.00000 -4.81482 0.00000

16 13 21 23 4.81482 0.00000 -4.81482 0.00000

16 15 20 3 0.00000 0.00000 0.00000 0.00000

16 15 20 26 0.00000 0.00000 0.00000 0.00000

16 15 20 27 0.00000 0.00000 0.00000 0.00000

17 11 12 13 30.35430 0.00000 -30.35430 0.00000

17 11 12 18 30.35430 0.00000 -30.35430 0.00000

17 11 14 2 30.35430 0.00000 -30.35430 0.00000

17 11 14 15 30.35430 0.00000 -30.35430 0.00000

18 12 13 16 30.35430 0.00000 -30.35430 0.00000

18 12 13 21 30.35430 0.00000 -30.35430 0.00000

20 3 6 5 30.35430 0.00000 -30.35430 0.00000

Continued on next page
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Table D.14 – continued from previous page

AI AJ AK AL C0 C1 C2 C3

20 3 6 10 30.35430 0.00000 -30.35430 0.00000

20 15 16 13 30.35430 0.00000 -30.35430 0.00000

20 15 16 19 30.35430 0.00000 -30.35430 0.00000

21 13 16 15 30.35430 0.00000 -30.35430 0.00000

21 13 16 19 30.35430 0.00000 -30.35430 0.00000

24 5 7 25 8.37360 0.00000 -8.37360 0.00000

22 23 21 13 87.92280 0.00000 -87.92280 0.00000

3 5 6 10 9.21096 0.00000 -9.21096 0.00000

2 4 1 8 9.21096 0.00000 -9.21096 0.00000

1 5 4 9 9.21096 0.00000 -9.21096 0.00000

4 6 5 7 8.37360 0.00000 -8.37360 0.00000

13 15 16 19 9.21096 0.00000 -9.21096 0.00000

12 14 11 17 9.21096 0.00000 -9.21096 0.00000

11 13 12 18 9.21096 0.00000 -9.21096 0.00000

12 16 13 21 8.37360 0.00000 -8.37360 0.00000

Note: AI,AJ,AK,AL are atom index. The unit of C0,C1,C2,and, C3 is
kJ/mol.
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1-methoxy-ethylpyridinium ([MOEPY+])

N
O

Figure D.5: [MOEPY+] cation

Table D.15: Coordinates of [MOEPY+]

Atom atom index x (nm) y (nm) z (nm)

H1 1 -2.0677 1.5989 1.7908

H2 2 -2.1551 1.7735 1.9726

H3 3 -2.0435 1.9651 2.0097

H4 4 -1.7682 1.8809 1.7047

H5 5 -1.8861 1.6849 1.6459

N6 6 -1.9009 1.9546 1.8514

C7 7 -1.9200 1.7419 1.7298

C8 8 -2.0162 1.6950 1.8118

C9 9 -2.0644 1.7838 1.9105

C10 10 -2.0007 1.9060 1.9324

C11 11 -1.8584 1.8693 1.7587

C12 12 -1.8306 2.0832 1.8717

Continued on next page
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Table D.15 – continued from previous page

Atom atom index x (nm) y (nm) z (nm)

C13 13 -1.8595 2.1807 1.7607

C14 14 -1.7602 2.3910 1.6776

H15 15 -1.8611 2.1261 1.9669

H16 16 -1.7199 2.0725 1.8679

H17 17 -1.9637 2.2059 1.7353

H18 18 -1.8218 2.1358 1.6677

H19 19 -1.7013 2.4788 1.7131

H20 20 -1.7215 2.3492 1.5901

H21 21 -1.8560 2.4293 1.6520

O22 22 -1.7797 2.2963 1.7853

Table D.16: Nonbonding parameters of [MOEPY+]

Atom atom index charge(e) σ(nm) ε (kJ/mol)

H1 opls 526 0.09287854 0.242 0.12552

H2 opls 525 0.19239150 0.242 0.12552

H3 opls 524 0.27792361 0.242 0.12552

H4 opls 524 0.27792361 0.242 0.12552

H5 opls 525 0.19239150 0.242 0.12552

Continued on next page
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Table D.16 – continued from previous page

Atom atom index charge(e) σ(nm) ε (kJ/mol)

N6 opls 520 0.61503816 0.325 0.71128

C7 opls 522 -0.09464031 0.355 0.29288

C8 opls 523 0.15873689 0.355 0.29288

C9 opls 522 -0.09464031 0.355 0.29288

C10 opls 521 -0.36933925 0.355 0.29288

C11 opls 521 -0.36933925 0.355 0.29288

C12 opls 908 -0.13478131 0.35 0.276144

C13 opls 182 0.00167019 0.35 0.276144

C14 opls 181 -0.29082167 0.35 0.276144

H15 opls 911 0.07905346 0.25 0.06276

H16 opls 911 0.07905346 0.25 0.06276

H17 opls 185 0.05363432 0.25 0.12552

H18 opls 185 0.05363432 0.25 0.12552

H19 opls 185 0.14694203 0.25 0.12552

H20 opls 185 0.14694203 0.25 0.12552

H21 opls 185 0.14694203 0.25 0.12552

O22 opls 180 -0.16159354 0.29 0.58576
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Table D.17: Dihedral parameters of [MOEPY+]

AI AJ AK AL C0 C1 C2 C3

1 8 9 2 30.33400 0.00000 -30.33400 0.00000

1 8 9 10 30.33400 0.00000 -30.33400 0.00000

2 9 10 3 30.33400 0.00000 -30.33400 0.00000

2 9 10 6 30.33400 0.00000 -30.33400 0.00000

5 7 8 1 30.33400 0.00000 -30.33400 0.00000

5 7 8 9 30.33400 0.00000 -30.33400 0.00000

5 7 11 4 30.33400 0.00000 -30.33400 0.00000

5 7 11 6 30.33400 0.00000 -30.33400 0.00000

6 12 13 17 -4.09614 5.08774 2.96646 -3.95806

6 12 13 18 -4.09614 5.08774 2.96646 -3.95806

6 12 13 22 9.89307 -4.71746 3.67774 -8.85334

7 8 9 2 30.33400 0.00000 -30.33400 0.00000

7 8 9 10 30.33400 0.00000 -30.33400 0.00000

8 7 11 4 30.33400 0.00000 -30.33400 0.00000

8 7 11 6 30.33400 0.00000 -30.33400 0.00000

8 9 10 3 30.33400 0.00000 -30.33400 0.00000

8 9 10 6 30.33400 0.00000 -30.33400 0.00000

10 6 11 4 30.33400 0.00000 -30.33400 0.00000

10 6 11 7 30.33400 0.00000 -30.33400 0.00000

Continued on next page
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Table D.17 – continued from previous page

AI AJ AK AL C0 C1 C2 C3

10 6 12 13 3.80116 -6.95172 -1.01671 4.16726

10 6 12 15 0.37028 1.11085 0.00000 -1.48114

10 6 12 16 0.37028 1.11085 0.00000 -1.48114

11 6 10 3 30.33400 0.00000 -30.33400 0.00000

11 6 10 9 30.33400 0.00000 -30.33400 0.00000

11 6 12 13 3.80116 -6.95172 -1.01671 4.16726

11 6 12 15 0.37028 1.11085 0.00000 -1.48114

11 6 12 16 0.37028 1.11085 0.00000 -1.48114

11 7 8 1 30.33400 0.00000 -30.33400 0.00000

11 7 8 9 30.33400 0.00000 -30.33400 0.00000

12 6 10 3 30.33400 0.00000 -30.33400 0.00000

12 6 10 9 30.33400 0.00000 -30.33400 0.00000

12 6 11 4 30.33400 0.00000 -30.33400 0.00000

12 6 11 7 30.33400 0.00000 -30.33400 0.00000

12 13 22 14 1.71544 2.84512 1.04600 -5.60656

15 12 13 17 0.62760 1.88280 0.00000 -2.51040

15 12 13 18 0.62760 1.88280 0.00000 -2.51040

15 12 13 22 0.97906 2.93717 0.00000 -3.91622

16 12 13 17 0.62760 1.88280 0.00000 -2.51040

Continued on next page
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Table D.17 – continued from previous page

AI AJ AK AL C0 C1 C2 C3

16 12 13 18 0.62760 1.88280 0.00000 -2.51040

16 12 13 22 0.97906 2.93717 0.00000 -3.91622

17 13 22 14 1.58992 4.76976 0.00000 -6.35968

18 13 22 14 1.58992 4.76976 0.00000 -6.35968

19 14 22 13 1.58992 4.76976 0.00000 -6.35968

20 14 22 13 1.58992 4.76976 0.00000 -6.35968

21 14 22 13 1.58992 4.76976 0.00000 -6.35968

6 7 11 4 9.20480 0.00000 -9.20480 0.00000

8 11 7 5 9.20480 0.00000 -9.20480 0.00000

7 9 8 1 9.20480 0.00000 -9.20480 0.00000

8 10 9 2 9.20480 0.00000 -9.20480 0.00000

6 9 10 3 9.20480 0.00000 -9.20480 0.00000

10 11 6 12 8.36800 0.00000 -8.36800 0.00000

Note: AI,AJ,AK,AL are atom index. The unit of C0, C1, C2, and C3 is
kJ/mol.
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dicyanoamide ([DCA-])

N
C

N

N

Figure D.6: [DCA-] anion

Table D.18: Coordinates of [DCA-]

Atom atom index x (nm) y (nm) z (nm)

C1 1 1.3158 -0.1196 0.1265

C2 2 1.5025 -0.2869 0.0737

N3 3 1.4132 -0.1768 0.0248

N4 4 1.2407 -0.0879 0.2110

N5 5 1.5770 -0.3720 0.0946
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Table D.19: Nonbonding parameters of [DCA-]

Atom atom index charge(e) σ(nm) ε (kJ/mol)

C1 opls 261 0.50873113 0.365 0.62760

C2 opls 261 0.50873113 0.365 0.62760

N3 opls 303 -0.60193173 0.325 0.71128

N4 opls 753 -0.70776526 0.320 0.71128

N5 opls 753 -0.70776526 0.320 0.71128

Table D.20: Stretching parameters of [DCA-]

Atom index Atom index req (nm) Kr (kJ/(mol·nm2)

1 3 0.14630 282001.6

1 4 0.11570 543920.0

2 3 0.14630 282001.6

2 5 0.11570 543920.0

Table D.21: Bending parameters of [DCA-]

Atom index Atom index Atom index θeq (degree) Kθ (kJ/(mol·rad2)

1 3 2 123.200 418.400

4 1 3 180.000 585.760

5 2 3 180.000 585.760
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