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ABSTRACT OF THESIS 
 
 

 
 

UV-LITHOGRAPHIC PATTERNING OF MICRO-FEATURES ON A CONICAL MOLD 
INSERT 

 
 
 In past studies, several techniques have been employed to create microscopic features on 
relatively simple surfaces.  Of these, lithography-based techniques have proven effective at 
manufacturing large fields of deterministic microasperities and microcavities on planar and 
cylindrical substrates.  The present study focuses on adapting UV-lithography to a more complex 
substrate.  Machined from stainless steel, a conical mold insert introduces an interesting geometry 
designed for the injection molding of radial lip seal elastomer.  The distinct shape of this mold 
insert poises unique challenges to a conventional lithography procedure.   Spray application is 
investigated as a feasible means to deposit layers of photoresist on the surface.  An appropriate 
masking element is designed and created to facilitate transfer of a particular pattern via UV 
exposure.  A clamping technique is implemented to align and secure the photomask.  These 
techniques are incorporated into a three-day process, and results are obtained through optical 
microscopy and light interferometry.  By applying Design of Experiments (DOE) and Analysis of 
Variance (ANOVA), significant process variables are indentified.  Based on these findings, 
refinements to the process are enabled and future considerations are made evident. 
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CHAPTER 1 — INTRODUCTION TO UV-LITHOGRAPHY 

 

1.1 Introduction 

 

Dealing on a scale of centimeters & inches, part fabrication becomes a trivial application 

of tools commonplace in a machine shop.  Measuring tapes and squares help translate drawing 

information onto a work piece.  A few revolutions in a lathe create a desired diameter, or a short 

pass with a milling tool produces a straight channel.  As the scale shrinks to the realm of 

millimeters & mils, the demands of accuracy & precision overwhelm the keen eye of a well-

practiced machinist.  Digital sensors and readouts become necessities.  The radius of a drill bit 

now limits part specifications.  Smaller still, components demand sub-micron precision, and 

customary machining methods become obsolete.   

 

Furthermore, creating such parts a thousand times over proves time-intensive and cost-

ineffective.  Extend this logic beyond the manufacture of individual parts to the manufacture of a 

repeating pattern.  Features must be created on a single substrate, side-by-side, and with 

consistent tolerances.  Room for error rapidly constricts.  Moreover, suppose these patterns must 

be applied to non-planar surfaces.  For example, consider a steel work piece exhibiting curved 

edges, sharp chamfers, and other unusual geometries.  Now, machining techniques must cross the 

brink from conventional to experimental. 

 

The present work investigates such an experimental technique to create a pattern of 

micron-sized features on the surface of an unusually shaped substrate.  Specifically, ultraviolet 

lithography serves as the technique, and the micro-texture consists of an array of triangular 

asperities (i.e. posts) with identical dimensions on the order of 10µm to 100µm as shown in 

Figure 1-1.  The substrate of interest is a stainless steel mold.  Depicted in Figure 1-2, the mold 

exhibits sharp corners and chamfered edges.  The specific surface to receive the aforementioned 

micro-texture is more complex than the planar surfaces investigated in previous studies.  

Resembling a frustum, the surface can be appropriately described as conical.  By achieving the 

desired micro-texture on this conical mold, injection molding can be utilized to manufacture 

nitrile rubber elastomers with a corresponding micro-texture as indicated in Figure 1-3. 
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 Ultraviolet lithography shares many similarities with another popular microfabrication 

process – LIGA.  Developed at the Institute for Microstructure Technology in Karlsruhe, 

Germany, this micro-structure fabrication technique comprises three main steps:  X-ray 

lithography, electroforming, and molding [1].  As the name indicates, UV-lithography 

incorporates a more accessible ultraviolet source in place of the relatively expensive X-ray 

synchrotron used in LIGA.  Besides this difference, the two processes dawn essentially the same 

methodology.  Namely, a special chemical is applied to a substrate; when exposed to a specific 

spectrum of light (X-ray or UV), the intermolecular structure of the chemical changes.  In an 

ensuing development step, a solvent is used to exploit this chemical change.  The product can 

then serve as a template for electroplating.  The final result is a substrate incorporating micron-

sized surface features with aspect ratios on the order of 100:1 [1,2].  A basic overview of the 

fabrication process is shown in Figure 1-4 [1]. 

Figure 1-1.  Pattern comprising 

an array of triangles. 

Figure 1-2.  Conical mold insert to 

receive micro-texture. 

Figure 1-3.  Micro-textures on the mold 

insert may be transferred to a radial lip 

seal elastomer via injection molding. 
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1.2 Interesting Aspects of Current Work 

 

 Flat silicon wafers have been popular recipients of UV-lithography in past studies [3].  

Even cylindrical surfaces have been successful candidates, but a conical substrate presents a new 

frontier for this process.  With this challenge come new possibilities.  Creating a micro-texture on 

this conical mold insert pushes the geometric boundaries of UV-lithography beyond simple 

surfaces toward more complex surfaces with broader applications.  For instance, a neurosurgeon’s 

micro-textured probe may penetrate more easily through a patient’s skin [4], or arrays of micro-

features may accelerate heat dissipation from an engine component [5].  Expanding the 

applicability to more diverse substrates has the potential to boost marketability and churn further 

research & development of this technology.   

Figure 1-4
[1]

. Overview of LIGA process.  The chemical structure of 

polymethyl methacrylate (PMMA) changes upon exposure to X-rays (a) 

facilitating its removal during a development step (b).  In UV-lithography, a 

similar chemical may be used, which will experience chemical changes 

during UV-exposure.  Electroforming (c) followed by additional processing 

creates a mold (d), which can be used to create a desired part (e).   
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 To compliment this market growth potential, UV-lithography is already recognized for its 

economic advantage in the field of micro-feature fabrication.  Replacement of an X-ray 

synchrotron device with a more accessible ultraviolet source shrinks costs by improving 

availability [ 6,7]; moreover, the relatively short exposure times translate to fewer processing 

hours [7].  The nature of the lithographic process makes it well suited to a mass production 

application [8].  Although micro-machining provides a means for creating individual parts, 

adapting such techniques for micro-texturing involves extended processing times and costly tool 

maintenance [9].  Laser surface texturing is also disfavored economically [10,11].  No doubt, 

investors attracted to the improving applicability of UV-lithographic patterning will find the 

inherent economic benefits equally appealing.    

 

 Scientific motivations also accompany the financial motivations.  Applying micro-

patterns to a conical mold insert presents a challenge, and such challenges elicit innovation.  The 

present work applies concepts of lithography that have existed for decades, but these concepts are 

implemented through slightly modified techniques.  An aerosol spray distributes a photosensitive 

chemical on a surface instead of a conventional spin-coating method.  An exposure mask dawns a 

peculiar shape to match a peculiar substrate.  A customized screw clamp aligns and secures this 

mask to a conical surface.  These methods may prove remarkable; they may prove to be trivial.  

Regardless, they represent an innovative mindset striving to advance the scientific understanding 

of UV-lithography.  

 

 Moreover, successful lithographic patterning of a conical mold insert may advance 

research opportunities in other fields.  At the University of Kentucky, the Bearing and Seals 

Laboratory has a vested interest in micro-textured surfaces and how such textures affect 

tribological behavior.  Paige studied micro-texturing of a rubber thrust ring as shown in Figure 1-

5, which was manufactured via a similarly textured mold insert [12].  An investigation by Warren 

studied smooth radial lip seals operating against a micro-patterned steel shaft [13].  A foreseeable 

progression of this research is a study of a micro-textured radial lip seal operating against a 

smooth steel shaft.  A conical mold insert would be crucial to advancing these scientific efforts.   
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 Along with a progression of current research, the present work may have immediate 

commercial applications.  The complexity of the mold insert owes to its intended purpose.  That 

is, the work piece has been designed for injection molding of radial lip seals used in a specific 

application for the transportation industry.  Supposing that micro-patterns can be correlated to the 

performance improvement of radial lip seals, a demand for these seals may ensue.  Refinements 

to the present research work could then facilitate an integration into the commercial sector. 

 

1.3 Challenges to Present Research 

 

 A repeatable, reliable UV-lithographic process must preface such commercialization, but 

several obstacles arise when micro-texturing a conical mold insert.  For example, photoresist 

application presents certain challenges.  When dealing with silicon wafers and other planar 

substrates, spin-coating tends to be the preferred coating method [7,14,15].  However, a conical 

mold insert introduces declining surfaces, which inevitably lead to pronounced edge buildup.  

The inability to spin-coat eliminates an obvious means of achieving a uniform coat thickness; 

other means of photoresist application must be refined to minimize thickness variations.  

Otherwise, the quality of ensuing lithography steps suffers.  In particular, thickness variations 

hinder intimate contact between the substrate and an exposure mask, which proves critically 

important to lithography resolution [6].  Additional obstacles to UV-lithography are encountered 

Figure 1-5
[12]

. Array of triangle microasperities molded 

into a nitrile rubber disk. 
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due to the size and mass of the conical mold insert.  Relative to a silicon wafer, the mold insert 

requires greater handling care to accommodate its weight.   The high mass also introduces a 

considerable heat reservoir, which must be accounted for during any baking steps.  Development 

and electroplating parameters must also be optimized for the atypical surface area and geometry.  

Additionally, the non-planarity of the mold insert prohibits polishing the textured surface on a 

conventional lapping machine. 

 

1.4 Key Approaches and Methods 

 

 In light of the aforementioned issues, innovative methods are required to apply the UV-

lithographic process to the conical mold insert.  In place of spin-coating, the present work has 

adopted a relatively new XP Microspray™ offered by Microchem Corporation; this product 

adapts the chemistry of liquid photoresist into an aerosol form.  To create an appropriate exposure 

mask, the 3-dimensional conical surface is translated to a 2-dimensional planar image, which can 

then be printed using the precision services of Infinite Graphics, Incorporated.  Successful mating 

and alignment of this mask is achieved using a clamp plate, which exploits existing threads 

machined into the mold insert.  The Bearing & Seals Laboratory provides a rotating jig developed 

by Daniel Impellizzeri to facilitate uniform UV exposure of the work piece.  In addition, various 

other devices have been fabricated to properly handle the conical mold insert both during the 

lithographic process and during the eventual analysis. 

 

 To refine UV-lithographic texturing techniques, the prior methods are evaluated and 

optimized using successive application of experimental design (DOE) and analysis of variance 

(ANOVA).  Post-exposure development of photoresist provides a key visual indication to the 

success or failure of the overall process.  Poor quality at this stage will only be expounded during 

electroplating.  In contrast, precise pattern geometries and straight sidewalls predict a favorable 

outcome.  The present work attempts to quantify this visual indicator; specifically, the degree of 

photoresist coverage obtained experimentally is compared to an ideal case.  Variations in 

coverage can then be associated with variations in process parameters.  This methodical approach 

reveals that UV-exposure dosage is a significant factor to consider when texturing the conical 

mold insert.  Moreover, the magnitude of this dosage may deviate considerably from the 

manufacturer’s recommendations [16].  
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CHAPTER 2 – PREVIOUS WORK 

 

2.1 Background of LIGA and UV-Photolithography 

 

Developed from German roots, the LIGA process gained popularity as a micro-

fabrication method due to the high aspect ratios it facilitated [10].  Originating at the Nuclear 

Research Center of Karlsruhe, a team of scientists including Erwin Becker and Wolfgang Ehrfeld 

spearheaded efforts to produce extremely small separation nozzles for uranium enrichment [17].  

This work combined steps of synchrotron X-ray lithography, galvanoforming, and plastic 

molding into a single process capable of forming parts with micron-scale dimensions, excellent 

resolution, and immense structural heights.  Prior to this research, few records existed of features 

successfully incorporating all of these characteristics.  The findings from this investigation would 

eventually extend beyond the intended nuclear application and into fields of microelectronics, 

optics, and medicine. 

 

 Upon development of the LIGA process, manufacturing terminology soon welcomed a 

new acronym – HARM (High Aspect Ratio Microstructures).  With heights on the range of 

hundreds of microns and widths in the scope of tens of microns, these structures could be readily 

manufactured with the resources and expertise available in Germany.  However, a broadening 

interest in HARMS eventually culminated with research efforts by the MicroSystems Engineering 

Team (µSET) in Baton Rouge, Louisiana.   

 

  Vikas Galhotra and colleagues at Louisiana State University aimed to mass produce 

large sheets with expansive areas covered by HARM [18].  To progress toward this goal, an 

important step included manufacturing a mold insert.  Applying the same polymethyl 

methacrylate (PMMA) adopted by their German counterparts, the LSU team applied X-ray 

exposure to this photoresist using a wire mesh mask to create a comparable pattern on a nickel 

plated silicon wafer.  The ensuing electrodeposition utilized a modified Watt’s bath.  With 

relatively high current density and deposition rates, this modified bath produced nickel structures 

with desirable heights and a high hardness well-suited for the rigors of molding.  However, this 

investigation revealed issues of photoresist delamination thought to be caused by thermal cycling 

induced during exposure or by swelling of PMMA during submersion in the plating bath.   



8 

 

 The continuing efforts at LSU to create large fields of HARM eventually led to a slightly 

modified LIGA procedure.  The introduction of a clamping mechanism to secure a PMMA 

template to the nickel substrate replaced the chemical bonding necessary in prior studies.  This 

mechanical clamp effectively eliminated the issue of delamination.  Applying this technique, 

mold inserts were successfully covered by nickel HARM with structural heights ranging from 

500µm to 1000µm as shown in Figure 2-1 [19].  A series of injection molding tests supported the 

viability of using such inserts to produce fields of cavities in a thermoplastic polymer as shown in 

Figure 2-2 [19].   However, drawbacks became evident.  Namely, features incorporated into the 

PMMA template had to be self-supporting, which incurred considerable limitations to 

electroplated patterns.  For instance, this approach could produce fields of tall nickel posts on a 

mold insert, but it could not produce fields of cavities within a layer of nickel.   

 

 

 

 

 Having demonstrated the ability of LIGA to create micro-feature arrays on a planar 

macroscopic area, the natural progression was to adapt such methods to nonplanar surfaces.  The 

research group in Baton Rouge would provide further insight.  The mechanical clamping 

technique previously mentioned yielded an interesting approach; namely, by eliminating the need 

for a chemical bond, the process of developing a PMMA template was decoupled from the 

process of electodeposition.  With this notion in mind, Marques and colleagues could develop a 

planar free-standing polymer template via masking and X-ray exposure, and this template could 

then be wrapped around a nonplanar, cylindrical shaft to be electroplated [1].  Resulting from this 

approach, a nickel cylinder measuring 1.6cm in diameter was successfully covered with a field of 

microposts measuring 150µm in diameter and 500µm in height as seen in Figure 2-3 [1]. 

Figure 2-1
[19]

.  A field of nickel posts 

500µm in height created on a nickel 

sheet. 

Figure 2-2
[19]

.  Cavities created in 

thermoplastic polymer via injection 

molding. 
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   Incorporation of LIGA technology into useful applications remains a prerequisite to its 

introduction to commercial markets.  In his dissertation prepared at LSU, Marques demonstrated 

one such application that utilized microposts in a novel surface designed to enhance heat 

exchange at the leading edge of gas turbine blades [5].  With a curvature comparable to that of a 

turbine blade, a nickel cylinder was covered with electroformed nickel microposts, which further 

supported a sheet of nickel.  The space surrounding the microposts and between the surfaces 

hence provided channels for cooling airflow.  Thus, a technology intended for nuclear 

applications was adapted for alternative means, which further supported the growing applicability 

of LIGA as imagined during its German infancy. 

 

 However, a certain characteristic of PMMA prolonged the reception of LIGA into 

mainstream manufacturing.  Though PMMA offered superior resolution and aspect ratios of 

100:1, its relative insensitivity to radiation necessitated long exposure times.  For instance, 

approximately 6 hours were required to adequately expose a layer of photoresist measuring 

500µm in thickness.  This requirement was a sizable drawback when considering mass production 

scales.  Fortunately, Jian Zhang presented a possible alternative in his 2002 thesis defense [20].  

Introduced by IBM, an epoxy resin known as SU-8 exhibited sensitivities to X-ray exposure 

nearly 200 times that of PMMA.  Despite a diminished resolution, this SU-8 compound proved a 

viable option for many applications, and the shorter processing time bode well economically. 

 

Figure 2-3
[1]

.  A nickel cylinder covered by 500µm tall microposts. 
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 Even during the early development at Karlsruhe, researchers acknowledged that the 

limited availability of radiation sources would be detrimental to transitioning LIGA onto a 

commercial scale [17].  Becker and colleagues relied on an X-ray synchrotron stored at the Bonn 

University in western Germany.  Other candidate sites included the BESSY facility located in 

Berlin and the DORIS facility located in northern Germany.  Within the United States, 

researchers at Baton Rouge relied on resources at the nearby CAMD facility [5].  However, with 

only 13 synchrotron stations in North America, availability proved a staunch opponent to the 

commercialization of LIGA [21]. 

 

 A low-cost alternative to synchrotron arrived in the form of ultraviolet photolithography 

wherein a more accessible UV light source replaced the X-ray synchrotron.  The Bearings and 

Seals Laboratory (BSL) at the University of Kentucky successfully incorporated this approach.  

Utilizing the SU-8 resin, Kortikar applied ultraviolet exposure to pattern stainless steel thrust 

bearings with a variety of microfeatures ranging from square asperities (posts) to triangular 

cavities [10].  In later work, Venkatesan incorporated similar geometries into thrust rings by 

utilizing SU-8 as well as a proprietary photoresist offered by Rohm and Hauss® [22].  Yang and 

colleagues in Baton Rouge applied UV-exposure to create microfeatures of different heights on a 

mold insert [7].  More recently, researchers at the University of Kiel in Germany adapted an 

ultraviolet light source to transfer patterns onto a rotating cylindrical substrate [23].        

 

2.2 Microfabrication on Complex Surfaces 

 

 As microfabrication methods have progressed, substrate geometries have gradually 

strayed from the traditional silicon wafer.  Free-standing PMMA templates have facilitated a 

modified LIGA process to texture a nickel cylinder [5].  The inception of ultraviolet exposure and 

new photoresist has permitted lithographic patterning of Ni/Ti-coated glass rods [23].   Still other 

machining techniques attempt to texture ball bearings and the interiors of half-cylinders [24,28].  

As new concepts for fabrication develop, the scope of substrates continues to grow. 

 

Cylinders have become a popular candidate for variations of the lithographic process.  As 

previously mentioned, researchers at LSU successfully implemented a modified LIGA method to 

manufacture microstructures on a nickel shaft [1].  A free-standing planar PMMA template was 

heated via convection oven to approximately 130°C; the resulting flexibility of the polymer was 

then exploited to wrap a nickel shaft measuring 2cm in diameter.  Following electroplating, the 
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nickel substrate acquired the desired micro-texture.  Marques and colleagues also successfully 

applied this technique to a nickel cylinder measuring 1.6cm in diameter and 5.5cm in length as 

well as to a stainless steel tube with 19.1mm diameter (3/4”), 12.1cm length (4-3/4”) , and an 

arbitrary wall thickness of 1.6mm (1/16”) [5].  At the University of Kentucky, members of the 

BSL applied UV-lithography to create fields of micro-cavities on a cylinder; the resulting 

stainless steel shaft then served to elucidate the behavior of radial lip seals [13,25]. Researchers at 

the University of Kiel adapted the UV-lithographic technique to transfer patterns to narrow glass 

rods [23].  In this study, the rotational movement of a glass sample was carefully synchronized 

with the lateral movement of a planar mask; as shown in Figure 2-4, a successful test specimen 

consisted of circular patterns covering a glass tube measuring 1.5mm in diameter [23]. 

 

 

 

 

 The cylindrical substrate has also become a prime focus of laser ablation methods.  

Geiger and colleagues at the University of Erlangen-Nuremberg in Germany successfully applied 

imaging optics to concentrate an excimer laser onto a ceramic work surface [26].  In combination 

with a masking technique, arrays of microstructures were formed onto the exterior surface of 

ceramic disks made from aluminum oxide and silicon carbide.  At the Technion-Israel Institute 

for Technology, Etsion has continually refined techniques to modify substrates with laser surface 

texture (LST).  In a study published in 2008, Etsion and Sher applied LST to the exterior surface 

Figure 2-4
[23]

.  Ni/Ti-plated glass tube measuring 1.5mm in 

diameter and covered with a pattern of circles. 
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of piston rings with outer diameters measuring 93.7mm and face-widths measuring 2.5mm; these 

rings were then incorporated into a functional Fort Transit diesel engine [27].  Chauvy and 

colleagues at the Swiss Federal Institute of Technology focused efforts on three-dimensional 

titanium surfaces.  Combining laser treatment with electrochemical micromachining, researchers 

created a pattern of circular cavities onto a hollow titanium cylinder measuring 1cm in outer 

diameter and 2cm in height as shown in Figures 2-5 and 2-6 [24]. 

 

 

 

 

 Along with the advent of lasers and lithography, still other methods have been 

demonstrated to transfer patterns to complex, nonplanar surfaces.  Pettersson and fellow 

researchers at the Uppsala University in Sweden developed a novel embossing technique.  By 

depositing a diamond film with Hot Filament Chemical Vapor Deposition (HFCVD), a tool with 

diamond micro-structures could be formed.  As depicted in Figure 2-7, this tool could then be 

pressed against the surface of a steel ball bearing to create the desired texture [28].  At the 

Herriot-Watt University in Edinburgh, researchers utilized concepts of electrostatics and 

lithography to form micro-textures.  By administering a high voltage potential, a polymer coat 

applied to a metal surface was manipulated to reflect the texture of an opposing metal electrode.  

The setup illustrated in Figure 2-8 formed a polymer micro-texture on the interior of an aluminum 

half cylinder measuring 9.5mm in diameter [29].    

 

 

Figure 2-5
[24]

.  Hollow 

titanium cylinder covered 

with micro-cavities. 

Figure 2-6
[24]

.  Magnified imagery showing the pattern of micro-

features applied to the titanium cylinder via laser and 

electrochemical micromachining. 
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2.3 Fields of Micro-Structures Applied to Macroscopic Areas 

 

 Advancements in lithography add to the diversity of micro-fabrication methods, and 

researchers exploit this diversity to continually push the limits of micro-texturing.  Requiring a 

high degree of repeatability, these expansive patterns of microscopic features allow little room for 

processing error.  However, techniques such as laser surface texturing, UV-lithography, and novel 

diamond-tool embossing have enabled breakthroughs.  These methods represent the brink of 

research, which continues to reduce measurement scales, improve quality, and expand the 

complexity of micro-patterns. 

 

 Progress in micro-texturing has relied profoundly on improvements in 

MicroElectroMechanical Systems (MEMS).  Though repeatability may be arguably less critical, 

these systems demand high precision and quality.  Efforts by Miyajima and Mehregany focused 

on applying photolithography to create a comb-drive actuator, which drives microscopic linear 

motion using electrostatic forces [6].  This device shown in Figure 2-9 exhibited fingerlike 

projections with dimensions ranging from 2µm to 20µm.  At Louisiana State University, Dai and 

Wang fabricated similar actuation devices shown in Figure 2-10, which facilitated linear 

movements on the scale of 10µm to 40µm [30].  The capabilities of this technology were further 

demonstrated by Wang and colleagues to manufacture the relatively complex power relay shown 

in Figure 2-11 using innovative multi-step, multi-layer UV-photolithography [31]. 

Figure 2-7
[28]

.  Illustration of a novel 

diamond embossing tool used to texture a 

steel ball bearing. 

Figure 2-8
[29]

.  A center electrode is used to 

texture the surrounding electrode via electrostatic 

induced lithography. 
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As shown in Figure 2-12, various other micro-structures have been successfully created 

using a deep X-ray lithography method (DXRL); through collaborative efforts, this research has 

offered insight into improving the economics of MEMS fabrication [2]. 

 

 

 

Figure 2-9
(6)

.  Comb-drive 

actuator with 3µm wide 

fingers spaced 2µm apart. 

Figure 2-10
[30]

.  The MEMS shown (A) provides actuation in 

the range of 10-40µm.  A close up (B) illustrates the required 

precision of the finger-like projections. 

Figure 2-11
[31]

.  The schematic (left) shows the design of a novel micro-relay that relies 

on electrostatic forces in the middle capacitor to close two adjacent switches.  The 

photograph (right) depicts a birds-eye view of the prototyped relay. 

Figure 2-12
[2]

.  With structural heights of 300µm, several patterns (a-c) for MEMS were 

successfully incorporated into nickel mold inserts.  The patterns were then transferred to 

silicone rubber via casting. 
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 To adequately gauge progress in MEMS and micro-texturing technologies, several 

characterization techniques have been developed.  Of these, the concept of aspect ratio has proven 

useful in measuring process capability.  This term refers to the ratio between a feature’s longer 

dimension and its shorter dimension as the following Figure 2-13 illustrates.  The popularity of 

LIGA relied considerably on this concept as numerous studies demonstrated the process’s unique 

ability to attain aspect ratios of 100:1 and higher [1,2].  This basic definition has evolved into 

slight variations, though the general concept remains the same [6].  In addition to aspect ratio, 

surface characterization has welcomed a variety of other terminologies.  Patterns of grooves and 

thin-walled features are often referred to in terms of line-width and line-spacing.  Expansive 

textures necessitate the use of parameters such as average surface roughness, skewness, kurtosis, 

and area fraction ratio.  Collectively, this language of surface characterization enables researchers 

with the analysis tools needed to further the science of micro-fabrication. 

 

  

 

 

 

 

 

 

 

 

 

 In the science of micro-texturing, a logical endeavor has focused on miniaturizing 

conventional machining.  For instance, successful efforts to produce small, high-precision tools 

have advanced research in micro-turning, micro-milling, and micro-grinding.  In a collaborative 

study, Morgan and colleagues demonstrated the capability of micro electro discharge machining 

(µEDM) to fabricate a cylindrical milling tool made from polycrystalline diamond (PCD) 

measuring 50µm in diameter.  The scanning electron microscope (SEM) images in Figure 2-14 

show a few surface features created within a brittle glass substrate using this PCD tool [32].  At 

the University of Singapore, similar research efforts utilized a custom-made PCD tool to machine 

microscopic features into a stainless steel plate [9].  The series of micro-holes shown in Figure 2-

15 provide a glimpse of the micro-texturing capabilities of this process.  However, time and cost 

inevitably hamper such a process.  Creating each micro-hole required approximately 2 minutes; a 

Figure 2-13.  Aspect ratio refers to the ratio between a longer dimension 

(b) and a shorter dimension (a). 

a 
b 
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field with thousands of these features would prove time-intensive.  Additionally, issues of tool 

wear, inaccurate tool re-positioning, and unreliable substrate clamping reduce machining quality.  

Though such micro-machining techniques provide a valuable tool for quick prototypes, the 

current methods would be impractical to micro-texturing applications.  

 

 

 

 

 

 

 

 

 A more practical approach has focused on the established LIGA method.  During early 

development of this process, Becker and colleagues created masks with intricate patterns of gold 

and copper on a beryllium membrane [17].  Pattern transfer via X-ray exposure yielded templates 

for nickel electrodeposition on steel or copper substrates.  The finished micro-texture consisted of 

hexagonal prisms with widths of 80µm, heights of 330µm, and 4µm wide gaps between features.  

This texture is depicted in Figure 2-16 along with a honeycomb pattern produced with 

comparable dimensions. 

  

Figure 2-14
[32]

.  SEM images of a PCD micro-milling tool (left), a 50µm deep groove created in 

soda-lime glass (center), and a 5µm deep pocket machined in ultra low expansion glass (right). 

Figure 2-15
[9]

.  A PCD micro-tool (left) is utilized to machine an array of holes (right) of 

varying diameter in a stainless steel plate. 
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At Louisiana State University, researchers successfully masked a PMMA layer using a 

fine wire-mesh; upon X-ray exposure, the resulting layer provided an adequate template for 

electroplating square protrusions with side lengths of 500µm, heights of 490µm, and spacing of 

14µm between each feature [18].  However, adhesion loss between the PMMA and the nickel-

coated silicon substrate became a recognized issue.  Further efforts relied on mechanically 

clamping the photoresist to a flat nickel substrate.  As shown in Figure 2-17, the resulting micro-

texture comprised a field of rectangular posts measuring 500µm in height [1].  This clamping 

methodology was further exploited to manufacture fields of cylindrical posts measuring 150µm in 

diameter with post-to-post spacing of 1mm.   

 

 

 

 

Figure 2-16
[17]

.  A field of hexagonal nickel prisms (a) and honeycomb structures (b) created 

with few defects.  A single prism was intentionally removed for analysis. 

Figure 2-17
[1]

.  Fields of rectangular nickel posts (left) manufactured on a nickel sheet.  A 

close up (right) lends perspective to the 500µm height of these features. 
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As micro-texturing via LIGA has progressed, its commercial viability has also steadily 

improved.  Marques demonstrated the potential of this technology to augment the heat exchange 

properties of various surfaces [5].  Depicted in Figure 2-18, he manufactured a nickel plate that 

incorporated a staggered array of nickel pin-fins measuring 500µm in diameter and 500µm in 

height.  Additionally, Marques modified this micro-texturing process to create a cylindrical 

surface mimicking the leading edge of a turbine blade.  The surface shown in Figure 2-19 

comprised an in-line array of 200µm OD, 500µm tall posts sandwiched between an inner layer of 

stainless steel and an outer nickel shroud. 

 

 

 

 

 

 

 

In a later study, Turner focused on developing micro-textures to enhance the heat 

exchange properties of a seal [33].  An interesting aspect of this work involved the introduction of 

a draft angle to facilitate the injection molding process.  Using a cutting edge exposure device, the 

resist-coated substrate could be slightly tilted with respect to the X-ray source and fully rotated 

about its axis.  This tilt feature permitted interesting polymer micro-features with non-vertical 

sidewalls, which enabled the desired draft angle.  Turner manufactured the tapered nickel mold 

insert depicted in Figure 2-20, which includes a honeycomb-shaped field of hexagonal cavities 

that forms a circular annulus.  As shown in Figure 2-21, this mold was successfully applied to 

produce seal parts covered by the desired array of hexagonal posts with face-to-face widths of 

320µm, heights of 960µm, and a 3° draft angle. 

Figure 2-18
[5]

.  Array of pin fins measuring 

500µm tall created on the surface of a heat 

exchanger. 

Figure 2-19
[5]

.  A novel heat exchanger 

surface incorporates micro posts within a 

coolant flow channel. 
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 At the University of Kentucky, several research efforts concentrated on micro-texturing 

bearing surfaces for the purpose of improving tribological behavior.  The Bearings and Seals 

Laboratory utilized LIGA to manufacture a hexagonal array of hexagon micro-asperities on a 

28.5mm OD stainless steel thrust ring [34].  Depicted in Figure 2-22, the surface features 

measured approximately 550µm in average diameter with heights of 14µm; the overall micro-

texture exhibited an asperity density of roughly 2.5 asperities per square millimeter. 

 

Figure 2-20
[33]

.  Nickel mold insert (left) incorporates features with a slight taper 

(right) to facilitate part ejection during the molding process. 

Figure 2-21
[33]

.  A micro-texture created on a 

molded seal part consists of hexagonal posts 

measuring 960µm tall with a 3° draft angle. 
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 Dependence on a synchrotron source is an acknowledged pitfall of LIGA; however, by 

incorporating an alternative light source, this pitfall can be surpassed.   Kortikar applied UV-

photolithography techniques to create various patterns on a 3” diameter thrust disk [10].  This 

work demonstrated the process potential to create patterns with a specific area fraction ratio (δ
2
); 

this surface characteristic compares the area of micro-features to the overall substrate area.  In 

Figure 2-23, the bearing surface is covered by a field of 480µm wide square micro-asperities with 

a deliberate area fraction ratio, δ
2 
= 0.40, and heights measuring 15µm.  Additionally, Kortikar 

successfully manufactured fields of triangular asperities and fields of square cavities with area 

fraction ratios ranging from 0.05 to 0.70. 

 

 

  

In addition to the diverse shapes of surface features, Warren demonstrated that these 

shapes could be produced in various orientations [13].  Minor alterations during the masking step 

enabled micro-texturing a stainless steel shaft with triangular cavities oriented in specific 

directions.  This process control became an important aspect to studying micro-pumping—an 

interesting tribological phenomenon that accompanies ongoing developments in micro-texturing. 

Figure 2-23
[10]

.  Thrust disk (left) micro-textured with an array of 

15µm tall square micro-asperities (right). 

Figure 2-22
[34]

.  A stainless steel thrust ring (left) serves as the substrate 

for a hexagonal array of electrodeposited nickel micro-asperities (right). 
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 Besides lithography-based techniques, alternative methods of micro-texturing have 

incorporated lasers.  In a joint effort, Swiss and Russian researchers utilized a pulsating copper-

vapor laser to produce micro-grooves on a sapphire plate.  Emitting light at 510nm wavelength, 

the laser beam required an average power of a few milliwatts to produce two specific patterns.  A 

rough pattern consisted of parallel grooves measuring approximately 11µm wide and 4µm deep, 

and a fine pattern comprised of similar grooves 3µm wide and 2µm deep.  Both patterns exhibited 

a periodicity of about 20µm.  Captured using atomic force microscopy, the image shown in 

Figure 2-24 depicts the rough pattern created in the sapphire plate substrate [35].  Of note, this 

laser technique avoided the usual crater formations that typically accompany laser ablation 

processes.  Moreover, grooves maintained a relatively consistent width.  However, the large 

variations in groove depth presented a considerable drawback. 

 

 

 

 In Bern, Switzerland, Dumitru and colleagues at the Institute of Applied physics 

successfully implemented a Nd:YAG laser to produce micro-craters within stainless steel.  With a 

diameter of approximately 10µm, the depth of the structures could be varied between 5µm and 

8µm by controlling the number of laser pulses administered.  An undesirable consequence of this 

method was the bulge formation around the rim of each micro-crater.  Depicted in Figure 2-25, 

this formation could be minimized to a certain degree; furthermore, a motorized translational 

stage could then facilitate micro-texturing of the stainless steel substrate [11]. 

Figure 2-24
[35]

.  Pattern of grooves etched into 

sapphire plate by pulsating copper-vapor laser. 
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German researchers at the University of Erlangen successfully incorporated a masking 

step into laser micro-texturing.  Using a XeCl excimer laser emitting wavelengths in the UV 

range (308nm), a beam with a cross-sectional area of 2mm by 2mm was introduced onto a 

ceramic work surface.  By applying a mask, relatively large areas of the substrate could be 

patterned with hundreds of micro-structures at the same time.  This method was successfully 

implemented to produce fields of circles, triangles, or rectangles in substrates of alumina oxide 

and silicon carbide; feature depths could be varied from 25µm up to 150µm [26].  The arguably 

low heat transfer involved in this process made it well-suited for materials sensitive to thermal 

shock—an issue that generates undesirable surface micro-cracks and  material embrittlement [36]. 

 

 Extensive development of Laser Surface Texturing (LST) has been practiced at the 

Technion Israel Institute of Technology.  Etsion has contributed significantly to developments in 

the texturing of mechanical seals.  By applying LST, modified seal rings have been produced that 

include fields of micro-dimples with 100µm diameter, 10µm depth, and an area density of 20% 

[37].  In addition, Etsion has implemented this method to piston rings to study the tribological 

effects.  Figure 2-26 illustrates this micro-texturing applied to the outer cylindrical face of a 

piston ring segment measuring 93.7mm in diameter.  Using a 3D optical profilometer scan, the 

actual pattern achieved on the piston ring is also depicted [27]. 

Figure 2-25
[11]

.  A micro-feature (left) formed using an Nd:YAG laser is replicated 

to form a micro-texture in stainless steel (right). 
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Micro-texturing continues to progress down several scientific avenues.  However, these 

avenues are revealing unique obstacles.  Efforts to miniaturize conventional machining methods 

are hampered by issues of tool wear, extensive processing times, and poor quality control.  

Studies utilizing the LIGA technique must confront the scarcity of synchrotron sources; 

moreover, if PMMA is used, long exposure times must be accommodated.  Research involving 

lasers must resolve issues caused by thermal shock:  micro-crack development, material 

embrittlement, and crater formation.  Techniques such as electrostatic induced lithography and 

embossing show potential for micro-texturing but are underdeveloped for commercial 

applications.  In contrast, UV-lithography offers several attractive features.  Initial tooling times 

are relatively short and offset by the mass-production capabilities.  Readily available ultraviolet 

lamps can be used in place of synchrotrons.  Repeatability and dimensional consistency are 

inherent process qualities.  These factors provide motivation to incorporate UV-lithography into 

micro-texturing research, and this paper attempts to exploit these features to pattern a complex, 

conical mold insert.     

 

 

 

 

 

 

 

 

Figure 2-26
[27]

.  Schematic of LST applied to a piston ring segment (left) and a 

scan of the actual texture achieved (right).  
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CHAPTER 3 – MOTIVATIONS BEHIND WORK 

 

3.1 Improving Performance of Bearings and Seals 

 

 Successful incorporation of micro-textures into bearing & seal technologies stands to 

impart significant benefits.  Friction continues to be a plaguing force; in automobile engines, 

studies suggest that 40% of the developed energy is lost due to engine friction [38].  These 

frictional effects may be reduced by integrating microscopic textures into components 

[34,35,37,38,40].  Textures may also considerably lessen lubricant usage [13,39].  Less 

lubrication means optimum bearing performance can be sustained at lowered costs.  In addition, 

bearing and seal life may be substantially extended due to the presence of micro-textures [37].  

This longer life may be coupled with functional improvement; a textured bearing may handle 

more extreme loading conditions compared to its non-textured counterpart [43].  Unlocking this 

potential continues to drive micro-texture research and development. 

 

 Theoretical evidence is growing.  At the University of Kentucky, researchers developed a 

mathematical model to compliment the actual performance of a textured thrust ring [34].  

Exploiting the concept of “unit cell”, the model considered a single hexagonal asperity and its 

surrounding cavity to yield an expression for friction coefficient.  A lower coefficient indicates 

lower frictional forces between interacting surfaces.  Less friction may translate to less wear, 

longer part life, and minimal energy loss.  As Figure 3-1 illustrates, certain characteristics of the 

asperity could be optimized to reduce the frictional coefficient; compared to the theoretical results 

for a plain thrust surface, data suggested as much as a 60% reduction.   

 
Figure 3-1

[34]
.  Model predicts reduced friction in a thrust 

bearing by optimizing surface texture characteristics.  
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 As a progression of this work, the Bearing and Seals Laboratory analyzed a numerical 

model of a radial lip seal.  Simulating a micro-textured steel shaft rotating against a smooth 

elastomer, this model revealed the potential benefits of deterministic microasperities.  The plots 

shown in Figure 3-2 provide insight; optimizing asperity height and geometry may reduce the 

frictional coefficient by 35% as compared to surfaces with naturally occurring microasperities 

[39].  Deterministic asperities may also improve load capacity.  By optimizing asperity height, an 

engineered surface may support up to 45% higher loads.  Moreover, theoretical data suggested 

certain asperity geometries may impart a unique “reverse pumping” phenomenon; rather than 

lubricant leaking from the seal interface, it can be conserved due to dynamic behavior caused by 

the engineered surface texture [39]. 

 

 

 

 

 

 

 Etsion and colleagues provided additional theoretical support behind micro-textures in a 

bearing application.  As previously mentioned, friction within internal combustion engines 

greatly diminishes energy efficiency.  The Israeli research group addressed this issue by modeling 

laser surface textured (LST) piston rings reciprocating against cylinder liners.  The texture 

consisted of hemispherical micro-pores.  As shown in Figure 3-3, the model suggested that micro-

pore geometry may be optimized to reduce friction forces by 30% or more [38]. 

 

Figure 3-2
[39]

.  Compared to the natural undulations that form on radial lip 

seal surfaces,  deterministic microasperities may reduce friction (left) and 

simultaneously improve load capacity (right).    
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 Recalling previous modeling of the radial lip seal, Etsion’s research group developed a 

comparable simulation with one major exception:  the micro-texture resided on the elastomeric 

surface as opposed to the metal shaft [40].  This investigation yielded favorable results.  By 

optimizing the geometry of micro-dimples within the elastomer, frictional forces were shown to 

decrease while load capacity increased.  These findings provide significant motivation to realize 

micro-textures in elastomers—an effort that may rely on an appropriate mold insert. 

 

 Theory continues to uncover potential, but a necessary element to micro-texture 

development has been experimentation.  Using a thrust washer rotary tribometer, Stephens 

provided convincing evidence that engineered surfaces enhance bearing performance.  The test 

setup illustrated in Figure 3-4 introduced a rotating bronze ring to a stationary, micro-textured 

specimen [34].  Specifically, this specimen consisted of a hexagonal array of deterministic nickel 

microasperities manufactured on a stainless steel substrate via LIGA methods.  Operating within 

a non-pressurized oil bath, this setup revealed interesting results.  Displayed in Figure 3-5, the 

microasperity height could be optimized to reduce friction coefficent by 14-22% as compared to a 

conventional plain bearing.   

 

 

 

Figure 3-3
[38]

.  By optimizing micro-pore geometry, ε, and number of 

pores, Np, friction may be considerably reduced using textured piston 

rings as compared to their non-textured counterpart (ε = 0).  
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Figure 3-4
[34]

.  Experimental setup to study interaction between 

a rotating brass ring and a stationary, micro-textured thrust ring.  

Figure 3-5
[34]

.  For various lubricant temperatures, experimental 

findings support reductions in frictional effects due to optimized 

deterministic microasperities.  
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Using a modified tribometer setup, a study also assessed the performance of radial lip 

seals with micro-textured shafts.  Warren investigated fields of triangular micro-cavities applied 

to a stainless steel shaft.  Adopting the test setup shown in Figure 3-6, data suggested a significant 

relationship between cavity orientation and sealing capability [13].   

 

 

 

That is, the apex of the triangular cavities could be directed in such a way to induce 

“reverse pumping”; consequently, lubricant could be retained despite the opposing behavior 

caused by a pressurized oil bath.  Moreover, when adequately lubricated, this micro-texture 

reduced frictional effects by as much as 51%.  In yet another orientation, these triangular cavities 

also improved seal performance during starved lubrication; shown in Figure 3-7, “leading” and 

“lagging” cavities provided friction reductions of 8-13% as compared to a stainless steel shaft.  

The author suggested this behavior resulted from lubricant retention in the cavities—a popular 

theory shared within the research community [26,28,41,42]. 

 

 

Figure 3-6
[13]

.  Modified tribometer to test radial lip seal.  

Figure 3-7
[13]

.  When lubricated, cavities directed toward air show 

exceptional friction reductions.  Under starved conditions, “lead/lag” 

cavities provide noticeable reductions in friction torque. 
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 Laser Surface Textured (LST) substrates have proved interesting specimens for several 

experimental studies.  At the Technion Institute, a research project aimed to incorporate LST into 

a hydrostatic mechanical seal; depicted in Figure 3-8, the setup consisted of a back-to-back 

arrangement of seals within a pressure vessel housing a rotating shaft [43].   Partial texturing was 

applied to the face width of the seal stator rings.  Applying low shaft speeds to avoid 

hydrodynamic effects, the modified seals reduced friction torque over 50% as compared to 

untextured samples.  Moreover, the plot in Figure 3-9 illustrates another marked improvement.   

The operating pressure as designated by the seal manufacturer was effectively doubled from 12 

bars to nearly 24 bars.   

 

 

 

 

 

 

 Another study incorporated LST into a combustion engine.  Using a 2500cm
3
 Ford 

Transit diesel engine, Etsion and Sher applied texturing to specific regions of the piston rings 

[27].  Operating conditions were carefully controlled to attain desired engines speeds and loading 

while measurement systems monitored exhaust gas composition and fuel consumption.  Spanning 

a total of 1800 working hours, the experiment yielded an interesting result.  Though the exhaust 

gases remained relatively unchanged, the fuel consumption decreased by 4% with a repeatability 

of ±0.5%.  Compared to the untextured piston rings, the textured specimens minimized energy 

usage. 

Figure 3-8
[43]

.  A pressure vessel (1) 

with LST seals houses a rotating 

shaft (2) supported by a thrust 

bearing assembly (3). 

Figure 3-9
[43]

.  Textured hydrostatic seals 

perform satisfactorily at nearly twice the 

manufacturer’s recommended operating 

pressure. 
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 Experimentation continues to gain ground.  A pin-on-disk setup revealed that laser-etched 

sapphire plates exhibit reduced friction, decreased wear, and improved test life [35].  Researchers 

concluded that friction torque within ceramic seals could be reduced by as much as 65% by 

applying appropriate textures; a petrochemical company discovered that tungsten carbide seals 

could endure a threefold increase in operating life due to LST [37].  Bearings and seals continue 

to evolve with the addition of micro-texturing technologies, and UV-lithographic patterning 

remains a powerful ally to this ongoing development. 

 

3.2 Improving Applicability of Micro-Texturing 

 

 Bearings and seals represent only a small portion of the potential market for micro-

textures.  A simple flat substrate has progressed toward a non-planar geometry; cylindrical and 

spherical topographies have proved viable candidates for micro-texturing.  Such developments 

have enabled the technology to branch into new disciplines including biochemical research, 

thermal engineering, and medical instrumentation. 

 

At Louisiana State University, UV-lithography has opened doors to advanced genomic 

research.  Past efforts in this field relied on bulky bench-top equipment.  However, lithography 

techniques have prompted a miniaturization of these instruments.  Known as lab-on-a-chip 

systems, these devices offer broad benefits:  reduced manufacturing costs, decreased reagent 

usage, automation capability, and shortened analysis times.  As shown in Figure 3-10, researchers 

at LSU designed a lab-on-a-chip system to purify nucleic acid [44].  To realize this design, the 

high precision and quality of UV-lithography was exploited to produce a nickel large area mold 

insert (LAMI); by applying appropriate heat, this insert was used to emboss a polycarbonate 

sheet.  With a footprint measuring 150mm in diameter, the final device employed an array of 96 

capture beds to separate DNA material from other cell debris 

 

 

Figure 3-10
[44]

.  Schematic for lab-on-a-chip system 

(left) and SEM image of a single capture bed (right). 
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As mentioned in previous chapters, micro-textured surfaces stand to significantly 

improve heat management.  Applying a modified LIGA technique, Marques demonstrated the 

potential of electroformed fields of nickel micro-posts on a cylindrical substrate; the engineered 

surface exhibited a 40% increase in heat transfer coefficient [5,45].  This texture could be applied 

to the surfaces of boiler tubes to enhance performance [46].  Furthermore, these techniques could 

be applied to create novel heat exchangers; as depicted below in Figure 3-11, coolant flow 

channels could be incorporated into the surfaces of gas turbine engine blades to increase 

component life and improve durability [47]. 

 

 

 

 

 

The medical field holds considerable potential for micro-textures.  At Harvard 

University, researchers developed a technique to produce structures comparable in form to a 

coronary stent—a medical device necessary for balloon angioplasty [48,49].  First, patterns 

developed through photolithography were cast into an elastomeric stamp.  This stamp then 

transferred “ink” to a substrate; the “ink” was hexadecanethiolate and the substrate was a glass 

rod coated with a silver/titanium seed-layer.  The ink pattern protected areas of this seed-layer 

during an ensuing etch process.  Following silver electrodeposition, a concentrated hydrofluoric 

acid solution removed the glass substrate.  In Figure 3-12, the final product is shown in its 

unexpanded form and in the expanded form that would result after a balloon angioplasty 

procedure.    

 

Figure 3-11
[47]

.  Potential application of micro-texturing to 

enhance heat transfer in a gas turbine engine blade. 
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 As the medical community tends toward minimally invasive procedures, micro-texturing 

may improve the accuracy and safety of next generation neurosurgical probes [4].   Scientists in 

London have incorporated the technology into surgical needles.  Utilizing SU-8 and UV-

photolithography, strips of triangular and fin-like teeth were manufactured and adhered to needle 

frames.  Experimental findings indicated reduced insertion forces and increased gripping forces.  

Moreover, these micro-textures may permit a novel technology.  Mimicking a biological 

mechanism in wasp, a textured neurosurgical probe with reciprocating halves may provide 

unprecedented directional control to navigate brain tissue along low-risk trajectories.   

 

 The incorporation of micro-texturing into medical applications is hindered by a narrow 

selection of biocompatible materials.  However, recent work has addressed this issue.  At the 

Swiss Federal Institute of Technology, researchers developed an innovative process to create 

patterns on titanium [24].  By selectively irradiating an oxidation layer formed on the metal, a 

template was created for electrochemical treatment.  This study introduced a novel method to 

engineer the surfaces of titanium implants commonly used in dental and orthopedic applications. 

 

 The scope of micro-texture applications continues to expand; however, as form and 

function become more specific, these textures must be applied with increasing attention to 

location and orientation.  Engineered surfaces on a surgical probe are constrained by the width of 

a needle.  To manufacture the medical stent, a planar pattern must be transferred seamlessly onto 

a thin glass rod.  With each new application and process, this aspect of micro-texturing must be 

confronted. 

 

 

Figure 3-12
[48]

.  The unexpanded structure (left) is created using a 

Microcontact Printing (µCP) technique.  The expanded form (right) 

would help unblock a blood vessel following a balloon angioplasty. 
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 An established technique such as photolithography is not immune to this challenge.  At 

Louisiana State University, Kortikar applied a novel method to align a planar mask to a planar 

substrate [10].  Electrical Discharge Machining (EDM) produced a precise reference mark on the 

surface of a stainless steel thrust rung.  A photomask exhibited a similar mark.  Depicted in 

Figure 3-13, these references could then be aligned using a Karl Suss Mask Aligner—an exposure 

station comprising microscope objectives and precise linear stages.  With average deviations less 

than 15µm, the alignment marks proved an effective means to properly locate the micro-texture. 

 

 

 

 

 

 When faced with planar masks and non-planar substrates, alignment becomes a 

formidable task.  However, researchers at the University of Kiel developed a custom rotational 

device to transfer a mask image onto a cylindrical surface via UV-photolithography [23].  By 

synchronizing the angular velocity of this device with the linear travel of a planar mask, a texture 

was successfully applied to a 3.5mm diameter glass tube.  As shown in Figure 3-14, the resulting 

pattern exhibited minimal misalignment; further improvements may be achieved with reduced 

substrate tolerances and finer motor control.   

 

Figure 3-13
[10]

.  Reference marks on the substrate (left) and photomask (center) could be aligned 

with a Karl Suss MJB3 Mask Aligner (right) to ensure proper micro-texture placement. 

 

Figure 3-14
[23]

.  As shown in the schematic (left), a rotational device enable 

micro-texturing of a glass tube (center) with little axial misalignment (right). 
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 Complexity further increases when considering a non-planar mask and a non-planar 

substrate.  The present work faces this challenge.  In an effort to apply micro-textures to a conical 

mold insert, a comparably shaped mask must be mated to the substrate surface.  This task is 

addressed by using an innovative clamping scheme to exploit the conforming geometries of the 

mask and the mold insert.  Shown in Figure 3-15, a plate secured to pre-existing threads 

introduces a distributed clamping force to the entire perimeter of the photomask.  This technique 

provides insight into micro-texturing as the technology continues to permeate new disciplines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-15.  A clamp plate secures a photomask to the conical surface of a mold insert. 
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CHAPTER 4 – METHODS 

 

4.1 Description of Conical Mold Insert 

 

 The core focus of this work rests on a remarkably unusual work piece.  Unlike the silicon 

wafers typical to photolithography studies, the mold insert presents few flat surfaces.  Tracing the 

cross-sectional profile, a brief plateau encounters an abrupt vertical rise that tapers into a precise 

chamfer.  Revolving this profile about a central axis reveals the final form shown in Figure 4-1.  

A cylinder may be the closest comparison; however, the intricacy of the conical mold insert 

presents striking challenges to surface engineering.  The geometry is undoubtedly peculiar.  

Micro-texturing this geometry is an equally peculiar and interesting consideration.  

 

  

 

 Shape of the conical mold insert follows function.  A radial lip seal (Federal-Mogul
®
 

National
®
 Oil Seals) includes an elastomeric component within a metal housing.  As shown in 

Figure 4-2, the elastomer operates against a rotating shaft and provides a barrier between two 

environments; in commercial-vehicle applications, this seal prevents lubricant leakage and offers 

protection against debris contamination [50].  Designed for an interference fit, the elastomer is 

fitted with a garter spring to compensate for shaft imperfections, misalignment, and part wear.  

The elastomer plays a crucial role in overall seal performance.  Injection molded from nitrile 

rubber, the proper specifications of this elastomer depend on the unique shape of the conical mold 

insert.  

Figure 4-1.  Conical mold insert considered for micro-texturing. 
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Element Maximum Percent Composition

Chromium (Cr) 12.0 - 14.0%

Carbon (C) > 0.15%

Manganese (Mn) 1.00%

Silicon (Si) 1.0%

Phosphorus (P) 0.04%

Sulfur (S) 0.03%

 

 

  

 

  

 Since the UV-lithography process irreversibly alters the substrate surface, several mock 

mold inserts were fabricated to preserve the original tooling.  Samples were machined from 6” 

round stainless steel barstock provided by a local metal supplier; designated as SAE type 420, the 

composition of this alloy is outlined in Table 4-1 [51].  To conserve material and reduce 

machining complexity, portions of the original mold insert shape were excluded when fabricating 

the mock versions.  As shown in Figure 4-3, these exclusions did not compromise the relevancy 

of the micro-texturing technique; the surface identified to receive micro-textures remained 

dimensionally accurate.     

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2
[50]

.  The elastomer component of a radial lip seal 

provides a barrier between lubricant and the atmosphere. 

 

Table 4-1 Composition of SAE 420 Stainless Steel
[51]

. 
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 To verify accurate duplication of the original tooling, specifications of the mock mold 

inserts were measured with various instruments.  Using a digital vernier caliper, the bulk 

dimensions were collected for comparison with machinist drawings (Appendix A).  Special 

consideration was paid to the chamfer angle.  Utilizing symmetry and basic trigonometry, this 

angular dimension could be calculated from the bulk dimensions; any excessive deviation from 

spec (±½°) was promptly addressed, and the corrected chamfer angle was verified using a 

machinist’s sine plate.  Referencing the highlighted dimensions in Figure 4-4, the following Table 

4-2 summarizes the measurements acquired for 10 mock mold inserts and the comparative 

measurements from the original tooling.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-3.  Features of the original tooling (left) are excluded from the mock 

mold insert (right) to simplify machining.  

 

Surface receiving 

micro-texture 

Figure 4-4.  Bulk dimensions of the mock mold insert measured (1-5) and the 

chamfer angle verified by applying symmetry and basic trigonometry (6-8).   
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Corrected Chamfer Angle

Original 5.599 5.333 1.531 0.199 1.125 0.207 0.133 32.721 --

1 5.599 5.333 1.531 0.199 1.125 0.207 0.133 32.721 33.000

2 5.597 5.331 1.533 0.199 1.127 0.207 0.133 32.721 33.000

3 5.599 5.333 1.497 0.185 1.095 0.217 0.133 31.504 32.500

4 5.597 5.320 1.514 0.185 1.118 0.211 0.139 33.281 --

5 5.599 5.334 1.531 0.190 1.145 0.196 0.133 34.059 32.500

6 5.599 5.303 1.528 0.175 1.136 0.217 0.148 34.295 32.500

7 5.599 5.313 1.543 0.180 1.148 0.215 0.143 33.629 32.500

8 5.599 5.340 1.543 0.199 1.153 0.191 0.130 34.138 32.500

9 5.606 5.363 1.673 0.210 1.273 0.190 0.122 32.598 --

10 5.604 5.336 1.528 0.198 1.122 0.208 0.134 32.791 --

Sample
1 2 3 6 (in) 7 (in)

Measured Dimension (inches) Calculated Dimension

4 5 8 (deg) 8 (deg)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Surface finish was also an important specification to consider.  If too smooth, 

electroplated metal may bond poorly to the substrate, and any engineered surface features would 

quickly be removed when submitted to the rigors of injection molding.  If too rough, photoresist 

may persist on the surface despite efforts to develop the desired pattern.  Moreover, excessive 

roughness may adversely affect part ejection after molding.  A balance must be satisfied.  

 

 In the case of the conical mold insert, the average surface roughness (Ra) served as the 

primary parameter to consider when specifying surface finish.  This parameter commonly appears 

on part drawings, and machinists typically resort to a set of standard specimens to gauge the 

roughness of a particular surface.  The defining equation for average surface roughness is shown 

below; essentially, this definition accounts for variations in the surface height about a mean plane.   

In Figure 4-5, this concept is illustrated in a three-dimensional representation. 

 

 

�� � �
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Table 4-2 Dimensions of Conical Mold Insert. 

(1) 
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 For the mock mold inserts, the surface to receive micro-textures was machined to match 

the finish of the original tooling within a relatively tight tolerance.  The chosen specification 

designated an average surface roughness ranging from 10-25µinch.  Typically, this spec was 

achieved during the bulk machining performed in a metalworking lathe.  If unsatisfactory, the 

surface was further refined using a grinding wheel.  None of the samples required surface 

roughening; however, if necessary, sandblasting was recognized as a capable technique used in 

previous micro-texturing studies [33]. 

 

 To adequately verify surface roughness, samples were measured using a non-contact 

surface profilometer.  The Zygo
®
 NewView™ 5000 system depicted in Figure 4-6 performs 

measurements by exploiting white light interferometry [52].  Light reflected from the specimen 

surface can be compared to light reflected from a reference surface; processing the data with a 

MetroPro™ software package, the results can be translated into a three-dimensional plot.  

Moreover, the software graphical user interface (GUI) offers access to a variety of powerful 

algorithms including average surface roughness computation and best-fit geometry removal.  As 

shown in Figure 4-7, the latter feature proved a necessary analytical tool to handle the unique 

curvatures of the conical mold insert. 

Figure 4-5.  Three-dimensional representation of parameters 

used to define average surface roughness (Ra).   
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Figure 4-6.  Zygo
®
 NewView™ 5000 system.   

 

Figure 4-7.  Using algorithms integral to MetroPro™ software, a best-fit cylindrical 

geometry could be removed from the acquired data to facilitate more accurate analysis of 

surface characteristics (i.e. Ra). 
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23.9 / -- 20.9 / -- 21.5 / -- 25.6 / -- 22.2 / -- 21.6 / -- 22.4 / -- 25.8 / --

25.8 / -- 27.3 / -- 23.5 / -- 23.2 / -- 26.6 / -- 24.5 / -- 23.3 / -- 24.7 / --

1 24.4 / 24.6 28.3 / 28.5 24.3 / 24.6 23.9 / 24.1 34.2 / 34.8 28.1 / 28.4 24.2 / 24.4 22.2 / 22.5 26.2 ± 3.86 / 26.5 ± 3.96

2 22.0 / 19.0 20.9 / 18.2 19.9 / 17.8 19.2 / 16.7 21.7 / 20.6 20.1 / 16.9 20.6 / 17.5 20.2 / 17.3 20.6 ± 0.93 / 18.0 ± 1.28

3 26.8 / 24.2 21.2 / 18.7 26.1 / 24.5 28.2 / 26.6 28.2 / 26.6 26.5 / 23.4 22.9 / 21.4 25.3 / 24.5 25.7 ± 2.47 / 23.7 ± 2.64

4 18.2 / 18.2 19.0 / 19.0 27.0 / 27.0 23.3 / 23.3 15.9 / 15.9 21.9 / 21.9 25.3 / 25.3 19.1 / 19.1 21.2 ± 3.81 / 21.2 ± 3.81

5 13.7 / 13.8 13.0 / 13.0 14.1 / 14.1 14.2 / 14.2 13.7 / 13.7 14.5 / 14.5 13.6 / 13.6 13.0 / 13.0 13.7 ± 0.54 / 13.7 ± 0.54

6 12.0 / 12.0 13.4 / 13.4 13.7 / 13.6 14.4 / 14.4 13.5 / 13.5 12.6 / 12.6 15.4 / 15.3 12.7 / 12.7 13.5 ± 1.08 / 13.4 ± 1.05

7 14.4 / 14.4 15.7 / 15.8 15.6 / 15.5 15.9 / 15.9 14.1 / 14.1 14.6 / 14.6 16.7 / 16.7 15.3 / 15.3 15.3 ± 0.87 / 15.3 ± 0.87

8 18.2 / 18.2 20.9 / 20.9 18.8 / 18.8 19.8 / 19.8 20.2 / 20.2 22.1 / 22.1 20.3 / 20.3 20.5 / 20.5 20.1 ± 1.21 / 20.1 ± 1.21

11.9 / 11.8 12.7 / 12.7 10.1 / 10.1 9.4 / 9.4 11.6 / 11.6 9.5 / 9.5 11.1 / 11.2 10.8 / 10.8

12.2 / 11.3 10.6 / 10.4 9.1 / 8.9 9.8 / 7.6 7.9 / 9.6 9.8 / 7.7 7.9 / 7.7 9.8 / 9.6

10 25.6 / 25.6 27.6 / 27.5 23.6 / 23.8 20.9 / 21.1 21.3 / 21.2 20.1 / 20.2 23.6 / 23.7 33.1 / 33.2 24.5 ± 4.29 / 24.5 ± 4.28

3 4 5 6 7 8

/ --

10.3 ± 1.41 10.9 ± 1.16/

Average

MetroPro™ / MATLAB® 

Original

9

23.9 ± 1.93

1 2

Sample

Average Surface Roughness, Ra (µ-inches)

The aforementioned surface profilometer facilitated analysis of average surface 

roughness.  For each mock mold insert, a mean value was based on at least 8 separate 

measurements equally spaced around the circumference of the specimen as illustrated in Figure 4-

8.  The original tooling was also inspected for the sake of comparison.  To further improve 

measurement confidence, raw data was exported to MATLAB
®
 for a secondary analysis; 

specifically, a code was written to emulate the algorithms used by MetroPro™ software to 

calculate average surface roughness (Appendix B).  The results from this data collection and 

secondary analysis are displayed in the following Table 4-3.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-8.  Average surface roughness (Ra) 

evaluated at several locations on each specimen. 

 

Table 4-3 Average Surface Roughness of Conical Mold Insert. 
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1 2 3 4 5 6 7 8 Total

1 1 6 2 1 7 10 0 1 28

2 13 13 21 19 27 9 50 7 159

3 15 32 40 19 19 14 14 20 173

4 3 2 5 0 0 0 2 2 14

5 0 0 0 1 0 1 1 0 3

6 2 1 0 9 1 5 6 4 28

7 1 2 0 0 0 52 1 4 60

8 12 1 1 2 1 3 5 6 31

5 2 3 3 1 2 0 0
6 14 3 6 8 19 15 8

10 1 14 1 0 1 1 0 1 19

Missing Data Points

9 95

Sample

Slight discrepancies were noticed when comparing values obtained with MetroPro™ to 

values calculated with the MATLAB
®
 code.  This may have been due to errors in data 

acquisition.  Namely, the Zygo
®
 system collects a matrix of surface heights; each value is 

associated with a particular coordinate in the measured area.  In some instances, a surface height 

was not associated, which resulted in a gap in the matrix.  Although the source of error could not 

be pinpointed, Table 4-4 provides documentation of the occurrences.  The MATLAB
®
 code 

disregarded these gaps when determining average surface roughness.  The manner by which 

MetroPro™ handled these gaps was unknown; the software may have incorporated an 

interpolation scheme to fill missing data points.   Regardless, since the algorithms implemented 

through MATLAB
®
 were known, the results of the secondary analysis were deemed more 

reliable.  This data hence served as a foundation for future analytical work.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For a majority of mock mold inserts, the surface finish fell within the specified limits.  

However, at least one sample approached the upper boundary and one sample the lower 

boundary.  Reworking these samples was considered, but this step might have further exacerbated 

deviations from the specifications.  For the present study, these samples were decidedly 

sufficient; furthermore, these extremes offered insight into designing appropriate dimensional 

tolerances. 

 

 

Table 4-4 Erroneous Data Collection by Zygo
®
 System. 
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Sample
Diameter, d 

(inches )

Gap, y 

(inches )

Thru-Hole Misalignment, θ 

(deg )

Original 5.333 0.000 0

1 5.333 0.009 0.1

2 5.331 0.000 0

3 5.333 0.000 0

4 5.320 0.000 0

5 5.334 0.009 0.1

6 5.303 0.000 0

7 5.313 0.008 0.09

8 5.340 0.000 0

9 5.363 0.000 0

10 5.336 0.000 0

Besides surface finish of the conical mold inserts, alignment of the threaded thru-hole 

was another important consideration.   This hole was a pre-existing feature in the original tooling.  

To facilitate masking during the UV-lithographic process, it was exploited to secure a clamp 

plate.  Ensuring an evenly distributed clamp pressure relied on accurate machining.  In particular, 

the thru-hole axis needed to intersect the mold’s top planar surface at a perpendicular angle.  This 

specification was verified by securing the clamp plate to the mold; if gaps were observed, these 

were measured using digital calipers.  As shown in Figure 4-9, the maximum gap measurement 

(y) was combined with simple trigonometry to evaluate thru-hole alignment (θ). 

 

 

 

 

 

 

 

 

 

 

 

Misalignment was calculated by applying the equation below.  Results are summarized in 

Table 4-5; only three of the samples were found to have a detectable misalignment, and the 

threaded thru-hole was reworked to eliminate this issue. 
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Figure 4-9.  After securing the clamp plate, observed 

gaps enabled calculation of thru-hole misalignment. 

 

Table 4-5 Misaligned Thru-Hole. 

(2) 
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4.2 Description of Photomask 

 

The photomask is a reflection of the desired surface texture; this texture is a reflection of 

progressive studies.  Based on a numerical analysis of radial lip seals, Hadinata demonstrated the 

potential of deterministic microasperities on the shaft [39].  Realizing this setup in an 

experimental study, Warren supplied evidence that specific shaft textures elicited considerable 

friction reductions as well as a preferential pumping phenomenon [13].  Shinkarenko provided 

further innovation; in collaboration with Etsion, a theoretical study suggested the potential of 

microasperities on the elastomer [40].  An appropriate photomask may prove the crucial link to 

actualizing this textured elastomer. 

 

Design of the photomask reflected two scientific pursuits.  First, prove the capability of 

UV-lithography to micro-texture a conical mold insert.  The bulk shape of the mask developed 

from this goal.  Secondly, experimentally demonstrate the potential of a textured elastomer to 

reduce friction and pump preferentially.  The intricate mask pattern emerged from this objective. 

 

When dimensioning the bulk shape of the mask, a simple right circular cone served as the 

foundation to understanding.  As shown in Figure 4-10, a three-dimensional cone is formed from 

a circular section.  The measurements of the required circular section depend on desired cone 

specifications.  Applying basic trigonometry, radius of the circular section (rc) is a function of the 

cone base radius (rb) and the cone pitch angle (α).  Recalling the concept of arc length (s), the 

sweep angle (θ) of the circular section is simply a function of the cone pitch angle.  The following 

equations summarize these relationships.   

 

 

 

 

 

 

 

 

 

 

 

Figure 4-10.  A right circular cone (left) formed from a circular section (right). 
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 In actuality, the mask conformed to a frustum; recognizing this shape as the difference of 

two cones, the previous methods could be extended to determine proper dimensions.  As figure 4-

11 suggests, radii of the circular strip depended on radii of conical sections.  This relationship is 

represented in the following equations.  The sweep angle was unaffected as this value remained 

dependent only on the cone pitch angle.   
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(5) 
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Figure 4-11.  Frustum (left) formed from a circular strip (right). 
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With measurements from the conical mold insert, the previous equations were applied to 

design the planar image of the photomask.   This two-dimensional image could then be 

transformed into a three-dimensional form by attaching the appropriate edges with clear adhesive 

tape.  To improve adhesion, extra material was intentionally added to the mask by slightly 

increasing the outer radius of the planar image.  This modification is portrayed in the final part 

drawing of the photomask’s bulk geometry (Appendix C).   

 

 The overall mask geometry was dictated by shape of the conical mold insert; however, 

the mask pattern offered some design freedom and allowed consideration for the molded 

elastomer’s future potential.  With this in mind, the pattern was engineered towards 

manufacturing micro-cavities as opposed to micro-asperities.  As illustrated in Figure 4-12, this 

decision maximized the integrity of photoresist during the lithography process.  Beyond this 

consideration, the design offered a degree of flexibility.  To exploit this flexibility, effort was 

focused on mimicking the designs used by Warren; her work investigated fields of triangular 

cavities oriented in certain directions to elicit desirable dynamic behavior [13].  The present study 

incorporated a comparable pattern into the photomask.    

 

 

 

 

 

 

 

 

 

Understanding the pattern design requires thoroughly grasping the relationship between 

mask image and the final molded elastomer.  Referring to Figure 4-13, consider first the image of 

triangles printed onto a mask.  When dealing with a negative-acting photoresist, the printed 

regions correspond to areas of resist intended for removal.  Upon photoresist development, the 

resulting template comprises a field of triangular cavities.  These cavities provide access to the 

bare metal substrate beneath, and if submitted to an electrodeposition process, these empty 

cavities are replaced with metal posts.  In subsequent injection molding, a field of these metal 

posts imprints a field of depressions in the elastomer.  Thus, an identical geometry is shared 

between the final elastomer and the initial mask image.   

Figure 4-12.  Micro-textures built from cavities in photoresist (left) 

are preferred to textures built around asperities (right) to maximize 

photoresist integrity and adhesion. 
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Figure 4-13.  Illustration of relationship between mask image 

(top) and the final molded elastomer (bottom), which is mounted 

in a finished radial lip seal.  Patterns not shown to scale. 

 



 

 With proper orientation of a triangular pattern, Warren demonstrated that friction could 

be drastically reduced over 50% and absolute pumpi

[13].  The present study attempted to implement this pattern.  With a base measuring 107

a height of 78µm, dimensions of the isosceles triangles exactly duplicated that used by Warren.  

However, the spacing around the triangles wa

the planar image of the conical mask introduced a curvature.  

circumferential spacing between triangles increased slightly with each successive row of the 

pattern.  Spacing of the initial row resembled that used by Warren; as shown in Figure 

spacing in subsequent rows was dictated by 

 

 

 

 

 

 

 

 

 

Consequently, this modified spacing negated a useful condition

previous numerical studies, the unit cell comprised a 

area, which provided periodic symmetry in the circumferential direction 

simplified modeling.  However, 

triangles in one row are surrounded by 

As a possible remedy, a consistent area ratio might

sizes.  However, such adjustment 

the electroplating step would suffer [18]. S

higher rate than larger ones leading to irregularities in plating thickness.

 

Final design for the mask pattern was documented via CAD software (AutoCAD®

To manufacture a physical mask, 

printing vendor (Appendix 

specializes in creating high-

employed to produce a sufficient inventory of plastic masks for the

displays a sample of the final printed image.

Figure 4-14.  Compared to a straight masking strip (left), spacing was adjusted to 

account for curvature of 
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With proper orientation of a triangular pattern, Warren demonstrated that friction could 

be drastically reduced over 50% and absolute pumping rate could be simultaneously maximized 

.  The present study attempted to implement this pattern.  With a base measuring 107

, dimensions of the isosceles triangles exactly duplicated that used by Warren.  

round the triangles was slightly modified; unlike a straight masking strip, 

the planar image of the conical mask introduced a curvature.  To account for this

circumferential spacing between triangles increased slightly with each successive row of the 

pattern.  Spacing of the initial row resembled that used by Warren; as shown in Figure 

bsequent rows was dictated by radial guidelines. 

Consequently, this modified spacing negated a useful condition—the unit cell.  In 

previous numerical studies, the unit cell comprised a micro-feature surrounded by a consistent 

area, which provided periodic symmetry in the circumferential direction [39].  This greatly 

However, the unit cell does not apply to the present study

triangles in one row are surrounded by a different area compared to features in the 

As a possible remedy, a consistent area ratio might have been achieved by varying the triangle 

, such adjustment would adversely affect downstream processing

the electroplating step would suffer [18]. Smaller triangular features would be deposited at a 

ones leading to irregularities in plating thickness.   

esign for the mask pattern was documented via CAD software (AutoCAD®

o manufacture a physical mask, part drawings were generated and submitted to a precision 

vendor (Appendix D).  Headquartered in Minnesota, Infinite Graphics Incorporated 

-resolution masks for photolithography applications.  Services were 

employed to produce a sufficient inventory of plastic masks for the present study

isplays a sample of the final printed image. 

Compared to a straight masking strip (left), spacing was adjusted to 

account for curvature of the conical mask (right).  Patterns not shown to scale.

With proper orientation of a triangular pattern, Warren demonstrated that friction could 

ng rate could be simultaneously maximized 

.  The present study attempted to implement this pattern.  With a base measuring 107µm and 

, dimensions of the isosceles triangles exactly duplicated that used by Warren.  

s slightly modified; unlike a straight masking strip, 

To account for this, the 

circumferential spacing between triangles increased slightly with each successive row of the 

pattern.  Spacing of the initial row resembled that used by Warren; as shown in Figure 4-14, 

the unit cell.  In 

surrounded by a consistent 

This greatly 

unit cell does not apply to the present study.  That is, 

compared to features in the adjacent rows.  

have been achieved by varying the triangle 

adversely affect downstream processing; in particular, 

be deposited at a 

esign for the mask pattern was documented via CAD software (AutoCAD® R14).  

part drawings were generated and submitted to a precision 

, Infinite Graphics Incorporated 

resolution masks for photolithography applications.  Services were 

present study; Figure 4-15 

Compared to a straight masking strip (left), spacing was adjusted to 

Patterns not shown to scale. 
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 With several full patterns duplicated on a large plastic film, cutting out the mask profiles 

was a critical step toward the finished product.  An imprecise cut would have contradicted any 

prior efforts to design a form-fitting mask.  To avoid this issue, three excision methods were 

developed: (i) hand-cutting by scissors; (ii) cutting with a custom jig; and (iii) cutting with a die.  

As expected, scissors proved highly dependent on the skill of the operator; the resulting parts 

exhibited jagged edges and poor repeatability.  A jig provided improvements.  As shown in 

Figure 4-16, this jig comprised a circular mat cutter purchased from a local craft store and an 

aluminum pressure plate machined to match the mask curvature.  Though this method achieved 

smoother edges, the blade tended to stray from the desired path.  As a final remedy, the precision 

printing vendor offered a die-cut solution.  By translating the mask outline into a continuous 

blade contour, each mask image could be excised with precision and repeatability. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-16.  Jig (left) comprising a mat cutter and aluminum pressure plate (right). 

 

Figure 4-15.  Sample of printed mask 

captured by optical microscopy. 
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4.3 Procedure for UV-Lithographic Patterning 

 

 Since inception, lithography techniques have gradually progressed.  Alternative 

photoresist formulations and exposure sources have allowed major shifts in both the process and 

application [10,20].  The present study adopts this innovative mindset in an effort to further 

expand the technology.  Spanning the course of three-days, a modified manufacturing method 

accommodates the unique geometry of a mold insert in hopes of micro-texturing the conical 

surface.   

 

4.3.1 Day 1 – Surface Cleaning and Photoresist Application  

  

 Surface contamination may negatively impact photoresist adhesion and bond strength of 

electroplated nickel.  To avoid these issues, several cleaning methods were implemented 

including acid treatment, degreasing, and ultrasonic bath.  By eliminating microscopic organic 

debris, these techniques prevented formation of a weak boundary layer that would be detrimental 

to adhesion on the stainless steel substrate [53,54]. 

 

 Using a non-conductive plastic shaft, the mock mold insert was first suspended in a 

solution of acetic acid (71%), chromium trioxide (24%), and water (5%).  The submerged mold 

was surrounded by a stainless steel drum as shown in Figure 4-17.  A wire soldered to the mold 

surface and a wire attached to the drum provided connection points for a potentiostat.  Operating 

in a galvanostat mode, this instrument supplied a constant current (0.5A) between the anode 

(mold insert) and the cathode (steel drum).  This setup drove a movement of metal ions from the 

mold surface to the drum, which effectively removed a thin layer of metal from the mock mold. 

  

   

  

  

  

 

 

 

 

 Figure 4-17.  In preparation for photoresist application, 

the mock mold insert is submerged in an acidic solution. 
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Following acid treatment and a thorough rinse in de-ionized water, the work piece was 

processed through a compilation of degreasing steps.  First, the mold insert was submerged in a 

bath of boiling isopropyl alcohol for approximately 10 minutes, which was immediately followed 

by suspension in alcohol vapors for another 5 minutes.  The next step utilized a proprietary 

cleaner (Caswell SP Degreaser).  Available in powder form, a degreaser solution was prepared 

per the manufacturer’s instructions.  The mock mold was submerged in this solution for 20 

minutes; a solution temperature of roughly 40°C was sustained via hotplate, and light agitation 

was provided by a magnetic stirrer operating at 200rpm.  After submersion, another rinse in de-

ionized water removed any residual solution from the substrate surface. 

 

Ultrasonic cleaning has been shown to improve cleaning efforts [53].  Placing the mold 

insert within a wide-mouth 2000mL glass bowl, approximately 1L of acetone was added to 

completely submerge the work piece.  This setup was then transferred to an ultrasonic bath (Cole-

Palmer Model #8893), and the bowl was surrounded with water.  Providing a 40kHz frequency, 

the ultrasonic bath in acetone continued for 4 minutes.  With gloved hands, the sample was then 

removed and wiped dry using low-lint absorbant cloth (Kimwipes®).  Afterward, a commercial 

cleaner (EZ-Clean™ All Purpose Hand Cleaner) was applied with gentle agitation.  Following a 

de-ionized water rinse, the mold insert dried in a convection oven at a temperature of 110°C for 

20 minutes.  Lastly, an additional 7 minute ultrasonic bath in isopropyl alcohol was followed by 

two successive, 2-minute submersions in acetone ultrasonic bath.   

 

The aforementioned cleaning prepared the conical mold insert for a crucial step—

photoresist application.  Throughout literature, a variety of techniques have been investigated to 

improve the quality and uniformity of deposition.  Spin coating predominates in planar 

applications [7,10,14,15,33].  By adjusting rotational speed and photoresist viscosity, layers can 

be applied with highly predictable and consistent thicknesses.  Alternatively, meniscus and 

capillary coating methods introduce an upside-down substrate directly to a reservoir of 

photoresist, which significantly reduces material waste compared to spin coating [15].  However, 

when considering non-planar applications, gravity presents challenges to these methods.  To 

circumvent this issue, several studies have focused on mechanically clamping a preformed 

polymer template to the substrate [1,5,19].  Post-machining of a cast photoresist layer may also 

compensate for gravity-induced thickness variations [5,17]. 
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 The present work exploited a spray method.  Despite past critics, recent findings support 

the potential of spray application, especially in regards to non-planar substrates [15,55].  To 

achieve this potential, careful attention must be shared among several process variables including 

solids content, solvent evaporation rate, incidence angle, and distance between spray nozzle and 

substrate [55,57].  Successfully balancing these parameters can provide exceptional 

reproducibility and a uniformity that rivals conventional spin-coating [55]. 

 

 Located in Massachusetts, the MicroChem Corporation manufactures Microspray™–a 

line of commercially available photoresist products engineered into aerosol form.  The current 

study employed two such products: (i) a proprietary formulation known as XP Microspray™ 

Negative and (ii) an adapted SU-8 formulation known as XP SU-8 Microspray™.  As negative 

photoresists, both products exhibit similar chemical behavior upon ultraviolet exposure; SU-8 

formulations generate strong acids when irradiated [20].  In subsequent heat treatment, this 

photoacid catalyzes a cross-linking reaction.  Thus, exposed regions become solidified whereas 

unexposed regions are susceptible to chemical removal.   

 

 Photoresist application was performed within a spray booth constructed inside a chemical 

fume hood.  To facilitate coatings, the mock mold insert was placed on a pivoting platform with 

360° rotational motion as shown in Figure 4-18.  Focusing on a single eighth section, the spray 

nozzle was distanced approximately 3” from the surface per the manufacturer’s recommendation 

[16,56].  To avoid the appearance of pinholes within the photoresist, the spray stream was 

administered normal to the desired surface [57].  Spray was dispensed to each eighth section in a 

smooth back and forth sweeping motion.  A full revolution constituted a single coat.  For 

increased thickness, successive coats were applied 5 minutes apart.  

 

 

 

 

 

 

 

 

 

  
Figure 4-18.  Working within a spray booth (left), a pivot platform (center) facilitated 

spray application (right) of Microspray™ photoresist on the conical mold insert. 
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 After spray-coating, the mold insert was stored in a dark location overnight.  Bubbles 

inadvertently created within the photoresist during application were able to dissolve during this 

time.  Otherwise, these pockets of air may have lead to pronounced gaps in coverage; these gaps 

would have translated to undesirable anomalies in the developed photoresist.  The absence of 

ambient light ensured that photoacid generation would not cause premature cross-linking and 

solidification of the resist. 

 

4.3.2 Day 2 – Bake and Exposure 

 

  Processing during the second day represented a culmination of knowledge and experience 

spanning several decades of lithography research.  By precisely controlling the location and 

duration of chemical reactions in the photoresist, a microscopic pattern can be achieved.  

Ultraviolet exposure provokes formation of a catalyst.  This catalyst instigates cross-linking of 

molecular branches.  Finally, heat drives the reaction to completion. 

 

 Prior to irradiation, the resist-coated mold insert received a preliminary heat treatment.  

Several concerns had to be balanced during this prebake step.  Pattern quality may suffer if 

insufficient heat applied, and the photoresist may inadvertently adhere to the masking element 

[14].  However, a shorter prebake may improve aspect ratio and pattern fidelity [6].  Too much 

heat may desensitize the resist to subsequent UV exposure [10].  Applying or removing heat too 

quickly may create thermal stresses that degrade surface adhesion [18].  With proper application, 

a prebake effectively removes solvents, relieves internal stresses, and promotes adhesion of 

photoresist to the substrate [10].  In the present study, a convection oven heated the work piece at 

a temperature of 60°C for a period of 30 minutes followed by 70 minutes at a temperature of 

100°C.  With oven door closed, heat application was then stopped, and the mold insert cooled 

slowly for 3 hours.   

 

 Masking followed this prebake.  As mentioned previously, bulk geometry of the mask 

was designed such that the desired 3-dimensional structure could be created from a planar 2-

dimensional image.  With gloved hands and tweezers, the appropriate edges of the mask were 

joined by a strip of transparent packing tape measuring approximately 1/8” wide.  In addition, 

another tape strip was applied to the non-patterned region of the mask juncture to increase its 

integrity.  Figure 4-19 depicts the mask in its initial planar form and final conical shape. 

 



 

 

 

 

 

 

 

 

 

 

 

 For applying the photomask

modifications to the conical 

the mold—whether they were

could compromise the substrate’s primary 

addition, the success of UV 

substrate [6].  Air gaps due to inadequate contact 

negatively impacts pattern quality 

 

 A clamp plate address

threads in the mold insert, unnecessary machining was avoided.  Fabrication by a 

metal lathe ensured perpendicularity between the clamping surface and the threaded stud

this facilitated an evenly distributed 

tests supported this notion.  However, these tests 

shown in Figure 4-20, if the outer lip of the clamp plate protruded excessively, regions of 

photoresist risked under-exposure due to a shadowing effect.  

simple turning operation, and the clamp plate design was finalized 

 

 

 

 

 

 

 

 

Figure 4-19.  Planar image (left) used to construct the final form of the photomask (right).

 

Figure 4-20

potential shadow cast by protruding lip of clamp plate.
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applying the photomask, several considerations influenced the approach

conical mold insert required thorough scrutiny.  Any features machined into 

were alignment pinholes, tapped machine holes, or reference marks

the substrate’s primary function as a template for injection molding.  

, the success of UV exposure depended on intimate contact between the mask 

Air gaps due to inadequate contact could allow excessive light diffraction, which 

pattern quality [58]. 

A clamp plate addressed the aforementioned considerations.  By exploi

unnecessary machining was avoided.  Fabrication by a 

metal lathe ensured perpendicularity between the clamping surface and the threaded stud

an evenly distributed pressure along the entire photomask perimeter.  

.  However, these tests also revealed an unforeseen conside

, if the outer lip of the clamp plate protruded excessively, regions of 

exposure due to a shadowing effect.  This risk was eliminated with a 

simple turning operation, and the clamp plate design was finalized (Appendix E).

Planar image (left) used to construct the final form of the photomask (right).

20.  Machining step implemented to avoid a 

potential shadow cast by protruding lip of clamp plate. 

approach.  Foremost, 

.  Any features machined into 

alignment pinholes, tapped machine holes, or reference marks—

a template for injection molding.  In 

on intimate contact between the mask and the 

allow excessive light diffraction, which 

the aforementioned considerations.  By exploiting pre-existing 

unnecessary machining was avoided.  Fabrication by a conventional 

metal lathe ensured perpendicularity between the clamping surface and the threaded stud axis; 

ong the entire photomask perimeter.  Preliminary 

revealed an unforeseen consideration.  As 

, if the outer lip of the clamp plate protruded excessively, regions of 

his risk was eliminated with a 

(Appendix E). 

Planar image (left) used to construct the final form of the photomask (right). 
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 Photoresist and mask application precluded one of the most critical factors of 

photolithography—exposure [8].  Ultraviolet light must be delivered at appropriate wavelengths 

to adequately penetrate the resist layer, and the dosage must be selected to optimize quality of the 

desired pattern.  Underexposure decreases the generation of catalytic photoacids required to 

promote molecular cross-linking; photoresist becomes susceptible to degradation during ensuing 

process steps [59].  Overexposure may lead to expanded structures with poor dimensional 

accuracy [60].  Moreover, it may induce easier delamination of resist in subsequent heat 

treatments [61].  However, a negative-acting resist such as SU-8 has been shown to endure 

exceptionally high dosages with little concern for damage [5]. 

 

 With an assortment of specialized equipment, the present study administered varying 

exposure dosages to the substrate.  Furnished by ABM Incorporated, a stand-alone ultraviolet 

exposure station offered adjustable power settings.  Measuring light intensity at a wavelength of 

365nm, power was set to achieve approximately 26.56mW/cm
2
 as sensed directly beneath the 

lamp bulb.  A stage placed beneath the lamp introduced a 0.22cm wide slit to help collimate light.  

When positioning the mold insert beneath the ultraviolet source, care was taken to ensure light 

encountered the desired surface at a normal angle [30].  Accomplishing this feat required use of a 

custom jig fabricated by Daniel Impellezerri for previous work at the Bearing and Seals 

Laboratory.  As shown in Figure 4-21, this jig facilitated the necessary orientation, and it also 

provided a controllable rotation. Using a controls program developed with National 

Instruments™ Labview™ software, the conical mold surface was revolved through the path of 

ultraviolet light at a constant rate of 0.825rpm.   

 

 

 

 

 

 

 

 

 

 

 

 Figure 4-21.  Jig developed by Impellezerri to position and 

rotate conical mold insert beneath ultraviolet source. 
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 With constant light intensity, the dosage depended on the overall time of exposure.  This 

relationship became evident by considering a point (P) on the rotating mold surface.  As shown in 

Figure 4-22, the mold radius (r) and basic trigonometry could be combined to determine the 

angular displacement (θ) necessary to move this point through the width of the collimating slot 

(x).  Recalling the constant rotational speed (ω), this angular displacement could be translated to a 

time interval.  For each revolution of the mold insert, this singular point would pass through light 

of fixed intensity (I) for a determinate length of time.  Thus, energy delivered to that point during 

a single rotation (e) could be calculated with the equations below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin &�2' �

 2(�   *   � � 2 · sin�� +
 2(� , 

 

- � . · & �
2! · /' 

θ 
r 

x 
···· 
P

(6) 

(7) 

Figure 4-22.  Illustration of parameters used to determine angular 

displacement (θ) of conical mold insert during exposure.  
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 Achieving the desired dosage (E) then relied on providing sufficient rotations (rev) to 

repeatedly introduce this single point into the beam of ultraviolet light.  The proper number of 

rotations could be realized by applying the constant angular velocity for a specified duration—

this duration equated to the overall time of exposure (∆t).  The governing relationship is 

summarized by the following expression.   
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 Upon exposure to ultraviolet light, photoacids generated within the photoresist catalyze a 

cross-linking reaction.  This chemical activity occurs relatively slowly at room temperature.  To 

accelerate the process, an additional heat treatment can be applied to drive the reaction forward.  

Several concerns are associated with this post-exposure bake (PEB).  For instance, a suboptimal 

PEB may cause internal stresses within the photoresist.  Rapid heating and cooling could magnify 

mismatches in thermal expansion coefficient; resulting stresses at the substrate-photoresist 

interface could lead to delamination issues [14,59,61].  Moreover, an inappropriate PEB could 

produce unacceptable pattern distortions [6].  Adjusting temperatures and baking duration may 

avoid these issues.  However, lower temperatures may impede the desired chemical reaction, and 

compensating with longer bake times could allow unintended photoacid diffusion [59].  Previous 

research has suggested the benefits of ramping techniques to manage heat and internal stresses, 

but the degree of benefit has been shown to plateau [33,62]. 

 

 In the present work, the exposed mold insert was unmasked and promptly placed in a 

convection oven.  Temperature was increased from ambient to 60°C and held for 20 minutes.  

Next, temperature was increased to 80°C and maintained for another 20 minutes.  Finally, a 

temperature of 100°C was set and maintained for 1 hour and 25 minutes.  With door closed, the 

convection oven was then turned off and the sample cooled overnight.  The temperature profile is 

depicted in the following Figure 4-23.   

 

  

   

(8) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.3 Day 3 – Development, Electroplating, and Removal

 

 The success or failure of previous 

Upon development, a pattern emerge

template for subsequent nickel electroplating.  After removal of 

quality of surface texturing was 

  

 Development relied

light exhibit a cross-linked structure less susceptible to 

structure and dissolve more rapidly.

the action of solvents can be augmented by varying developer temperature and duration.  Low 

temperatures may expand feature size while high temperatures provide the opposite effect; the 

current study utilized room temp

[63].  Time could be increased to 

removing exposed photoresist.  In the present work, the mold insert was submerged in proprietary 

solutions recommended by the manufacturer 

magnetic stirrer operating at 400rpm.  

incrementally removing and inspecting the substrate

 

Figure 4-23
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Development, Electroplating, and Removal 

The success or failure of previous processing became apparent during the final day

Upon development, a pattern emerged from the resist-coated surface.  This pattern provided a 

uent nickel electroplating.  After removal of any remaining photoresist, the 

quality of surface texturing was revealed. 

Development relied on dissolution rates.  Regions of photoresist exposed to ultraviolet 

linked structure less susceptible to solvents.  Unexposed areas lack this 

structure and dissolve more rapidly.  Thus, exposure provides control of dissolution.  Moreover, 

the action of solvents can be augmented by varying developer temperature and duration.  Low 

temperatures may expand feature size while high temperatures provide the opposite effect; the 

study utilized room temperatures to ensure straight sidewalls within the micro

.  Time could be increased to ensure thorough development at the risk of unintentionally 

removing exposed photoresist.  In the present work, the mold insert was submerged in proprietary 

lutions recommended by the manufacturer [16,56].  A slight agitation was applied by a 

magnetic stirrer operating at 400rpm.  The appropriate duration of development was judged by 

incrementally removing and inspecting the substrate surface via optical microscopy.

23.  Temperature profile applied during post-exposure bake.

apparent during the final day.  

This pattern provided a 

remaining photoresist, the 

Regions of photoresist exposed to ultraviolet 

.  Unexposed areas lack this 

es control of dissolution.  Moreover, 

the action of solvents can be augmented by varying developer temperature and duration.  Low 

temperatures may expand feature size while high temperatures provide the opposite effect; the 

to ensure straight sidewalls within the micro-features 

lopment at the risk of unintentionally 

removing exposed photoresist.  In the present work, the mold insert was submerged in proprietary 

A slight agitation was applied by a 

The appropriate duration of development was judged by 

scopy. 

exposure bake.  
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 Following sufficient development, a snapshot of the conical surface was captured using 

the Zygo® system.  Specifically, a total of 8 sample areas were measured on each mold insert.  

As shown in Figure 4-24, the data could then be stored and viewed in bitmap format to facilitate 

qualitative observations.  Various forms of quantitative analysis were available through the 

Metropro™ software package.  In addition, the data could be exported to MATLAB®—a third 

party software program offering an extensive toolset for mathematical analysis. 

 

 

 

 

 

 

 

 

 

 

Electroplating follows development.  In a plating solution, an electric current etches 

positively charged metal ions from a sacrificial anode, and these ions travel down a potential 

gradient until depositing on the target surface of a negatively biased cathode [33].  The stainless 

steel conical mold insert served as cathode in the present study.   Choice of anode depended on 

the choice of plating metal.  Nickel exhibits only minor internal stress upon deposition, which 

improves bond strength with the substrate.  Moreover, it can be deposited at relatively high rates 

[17].  Thus, nickel comprised the sacrificial anode.  

 

 Nickel-plating may be performed in various solutions.  First published in 1916, the 

Watt’s bath achieved considerable popularity due to the increased plating speed it facilitated at 

relatively high temperatures and current densities [64].  Variants of this solution have 

demonstrated further improvement.  At Louisiana State University, a modified Watt’s bath 

allowed even higher current densities and faster deposition, which limited the possible swelling 

and delamination that photoresist may experience during extended submersion.  Moreover, this 

solution fostered finer-grain deposition, which improved hardness of plated nickel—an attractive 

aspect when considering molding [18].  The following Table 4-6 details the composition of the 

aforementioned solutions as well as the nickel-sulfamate bath used in the current work. 

 

Figure 4-24.  After development, a surface measurement captured with Zygo® 

system (left) and visualized in MATLAB® (right). 
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Compound Concentration (g/L) Compound Concentration (g/L) Compound Concentration (g/L)

Nickel Sulfate, 

NiSO4•7H2O
240

Nickel Sulfate, 

NiSO4•6H2O
300

Nickel Fluoborate, 

Ni(SO3HN3)2•4H2O
340-450

Nickel Chloride, 

NiCl2•6H2O
20

Nickel Chloride, 

NiCl2•6H2O
45

Nickel Chloride, 

NiCl2•6H2O
0-20

Boric Acid, H3BO3 20 Boric Acid, H3BO3 45 Boric Acid, H3BO3 30-40

Sodium Lauryl Sulfate 0.3-0.5

Saccharin 0.5-1.0

Coumarin 0.5

Watt's Bath Modified Watt's Bath Nickel-Sulfamate Bath

 

 

 

 

 

 

 

 

 

 

  

 Effectiveness of the nickel-sulfamate bath depended on appropriate temperature, pH, and 

electrode arrangement.  The plastic tub containing the plating solution was placed in a thermostat- 

controlled heated water bath.  Using a digital sensing element, solution temperature was 

maintained at approximately 50°C.  Addition of amidosulfonic acid increased hydrogen content 

(lowering pH), and addition of nickel carbonate reduced hydrogen content (raising pH).   

Measuring with a digital sensing element and adjusting as necessary, a pH level of 4 was attained 

to optimize plating efficiency [33,65].  To distribute metal ions for uniform plating coverage, the 

conical mold insert was surrounded by a cylindrical mesh basket of nickel pellets.  The 

axisymmetric orientation of this sacrificial anode ensured a consistent nickel deposition rate on 

the cathode—the substrate surface [5]. 

 

 To prepare the conical mold insert for electroplating, preliminary measures were taken.  

First, a soldered wire offered a path for current flow.  A threaded plastic shaft was attached to 

facilitate submersion in the nickel-sulfamate bath.  The electrically neutral shaft ensured 

negligible interaction with metal ions.  To prevent unintended plating, areas of the mold insert 

were covered by a layer of liquid electrical tape.  As depicted in Figure 4-25, this layer confined 

metal deposition to the conical surface of interest.  To avoid possible passivation of the stainless 

steel substrate, the work piece was submerged in a proprietary solution for approximately 1 

minute (C-12 Activator by Puma Chemical).  Applying constant potential (2V) between the mold 

insert and a stainless steel counter electrode, this step effectively eliminated a strong oxide layer 

[5].  Lastly, a thin starter layer of nickel was applied using a Wood strike solution.  Upon 

submersion, a constant current (0.5A) was delivered between the mold insert and a surrounding 

nickel shroud for 2½ minutes.  This initial layer of metal increased the bond strength of 

subsequent plating [5].    

Table 4-6 Nickel Plating Solutions Prepared in De-ionized Water
[18,64,65]

. 
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 Electroplating a desired thickness depended on several considerations.  Foremost, the 

surface area (A) receiving nickel needed to be calculated.  Referencing the triangular dimensions 

printed on the mask image, area of a single feature was found using basic geometry.   By 

determining feature population, total area could be computed by simple multiplication.  With this 

figure and the following equation, an appropriate current (I) could be selected to generate the 

desired current density (J) of 10mA/cm
2
. 

 

. � ; · < 

 

 Illustrated in the formula below, the duration of electroplating (∆t) depended on the 

aforementioned current density and the desired plating thickness (h) [66].  An interpretation of 

Faraday’s Law, this equation includes a unique coefficient derived from the molecular weight of 

nickel-sulfamate, density of nickel, transferred electrons, and Faraday’s constant [33]. 

 

∆: � =
1220 · ; 

 

 After the allotted time, the conical mold insert was extracted from the plating bath.  

Following a thorough rinse in de-ionized water, the liquid electrical tape was peeled away, the 

soldered wire detached, and the plastic shaft unscrewed.  The photoresist template was degraded 

using an appropriate remover solution.  Heat and mechanical agitation improved this dissolution 

process.  After additional rinsing with de-ionized water and drying with pressurized air, the mold 

insert underwent final documentation.  Images were captured through optical microscopy and 

snapshots were acquired with the Zygo® system. 

Figure 4-25.  Preparations of the conical mold insert prior to electroplating. 

 

(9) 

(10) 
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CHAPTER 5 – RESULTS AND DISCUSSION 

 

5.1 Overview 

 

 Performing and refining the procedure required a considerable investment.  The mock 

mold inserts necessitated a ready supply of stainless steel, an assortment of machinery, and the 

experience of trained machinists.  High-precision printing services preempted photomask 

development.   Lithography methods depended on a variety of chemicals and laboratory 

instrumentation.  Spanning multiple days, the duration of the overall process demanded 

substantial focus and patience.   

 

 The principles of Design of Experiments (DOE) and Analysis of Variance (ANOVA) 

proved to be critical tools in managing limited resources and achieving meaningful results.  An 

initial fractional factorial experiment revealed sources of process variation while minimizing the 

number of runs [67].  This screening step identified the relative significance of four process 

variables, the influence of interactions, and the contribution of experimental error.  A full 

factorial experiment followed.  With emphasis placed on two factors, this experiment further 

substantiated a data trend observed during the initial screening.  This trend revealed an important 

process parameter to consider when incorporating XP Microspray™ products into 

photolithography. 

 

 An unforeseen complication diverted experimental efforts.  Due to a shortage in 

Microspray™ availability, an alternative photoresist product was introduced into the process.  

This introduction prompted an additional full factorial experiment, which exactly mimicked the 

previous full factorial study.  Although marketed as a comparable aerosol form of photoresist, the 

unique characteristics of this alternative Microchem® product became thoroughly evident during 

experimentation.  Despite the diversion, this additional study complimented overall efforts to 

further refine the photolithography process and to progress the limits of micro-texturing 

applications.    
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5.2 Defining a Measurable Outcome 

 

 Past studies have demonstrated the robustness of nickel deposition techniques [13,34].  

Thus, successfully building micro-textures on the conical mold insert relied primarily on the 

formation of a quality template.  The geometric accuracy of electroplated features directly 

reflected the accuracy of the exposed and developed photoresist layer.  Achieving appropriate 

micro-asperity heights depended on administering photoresist with sufficient thickness.  With this 

recognition, refinements to the lithographic process were accomplished by focusing analysis on 

photoresist quality after UV-exposure and development.  

 

 Analysis was facilitated by two instrumental tools.  With magnifications ranging from 

50X to 1000X, an optical microscope provided key qualitative observations, which could be 

digitally recorded using a supplemental camera and software.  As previously described, the 

Zygo® system offered an added dimension to visual inspection.  Moreover, the data acquisition 

enabled quantitative measurements through both the integrated MetroPro™ software and within 

the MATLAB® environment.  The capabilities of these instruments are illustrated in Figure 5-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d 

e 

f 

Figure 5-1.  To assess photoresist quality, optical microscopy could be applied 

at 50x (a), 100x (b), and 500x (c) magnifications.  Inspection with the Zygo® 

system provided intensity maps (d), surface plots (e), and oblique plots (f). 

 

a 

b 

c 
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 To improve utility and efficiency, measurement efforts were localized to a specific region 

of the mold insert critical to elastomer function.  During operation, a radial lip seal interacts with 

the shaft in locations near the apex of the elastomer.  After proper installation, this apex deflects 

and flattens against the shaft creating a sealing zone as shown in Figure 5-2 [50].  Hydrodynamic 

behavior within this zone has been augmented with shaft micro-textures [13].  A future aim is to 

facilitate elastomeric micro-textures in this sealing zone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 To realize this aim, micro-texturing on the mold insert needed to be guaranteed in a 

particular region.  During injection molding, microasperities within this region will transfer the 

desired pattern to the expected sealing zone of the elastomer.  Per conversations with industry 

representatives, this region was known to fall 0.076” below the top of the conical section [68].  

This location is clarified in Figure 5-3.  Recalling angle specifications for the mold insert, basic 

trigonometry was applied to translate this value to a distance measured parallel to the surface of 

interest (0.0906”). Thus, although the intent was to cover the entire conical surface of the mold 

insert, successful micro-texturing of this region would ensure pattern transfer to the elastomeric 

sealing zone.  Analysis efforts focused on this area. 

 

 

Figure 5-2
[50]

.  Analysis methods aimed to facilitate 

elastomeric micro-textures in the sealing zone. 

 

micro-texture 
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 Quantifying photoresist quality became a challenging task.  Past studies have considered 

various aspects including pattern distortion, sidewall angle, pinhole density, and surface adhesion 

[6,8,14,57,63].  Among the possibilities for measurement, the experimental outcome needed to 

satisfy several key considerations.  It needed to be extractable from data acquired with the Zygo® 

system.  If it relied on assumptions, these needed to be reasonable and defendable.  Moreover, the 

outcome needed to appropriately reflect the scope and objective of the project.   

  

 To satisfy these concerns, a parameter was constructed that emphasized the surface 

coverage achieved following photoresist development.  Termed as coverage ratio (CR), this 

measurement indicated the amount of substrate surface area that successfully received 

photoresist.  By comparing this to an ideal case, the degree of success could be encapsulated by a 

basic percent error calculation.  The concept of CR is expressed in the equation below: 

 

?@6-�AB- �A:C@ 	?� � �-�C�: ?@A:-� <�-A
D@:AE <�-A  

Figure 5-3.  To ensure micro-textures in the sealing zone of the 

elastomer, a corresponding region was identified on the mold 

insert (above).  Analysis efforts focused on this location (below).   

 

(11) 
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Z

X

Threshold

Baseline

Calculating CR depended on the criteria used to distinguish resist-coated areas from 

vacant areas.  With regards to the Zygo® data acquisition, this implied determining which data 

points corresponded to photoresist and which data points corresponded to the bare stainless steel 

substrate.  Inevitably, a numerical approach ensued.  Specifically, an algorithm was developed 

that inspected each unique data point and its associated height (Z-dimension).  The effectiveness 

of this algorithm inherently relied on three conditions:  (i) defining an appropriate baseline; (ii) 

defining a reasonable threshold; and (iii) implementing comparisons in an efficient manner.  This 

methodology is illustrated in the following Figure 5-4. 

 

 

 

 

 

 

 

  

 

 

 Determining the baseline proved exceptionally difficult.  Ideally, after the Zygo® system 

acquired measurements, the distribution of Z-heights revealed a certain minimum, and this value 

reflected a potential base reading.  However, suspect data greatly skewed this ideal situation.  As 

depicted in Figure 5-5, a few data points often exhibited a noticeable difference as compared to 

the remaining sample population.  These readings impacted the range of data and disguised the 

appropriate baseline value.   

 

 Outlier removal represents a substantial branch of statistics beyond the scope of the 

present study.  However, fairly trivial techniques may be applied when filtering suspect data from 

normal distributions.  In the Grubbs method, the acceptance or rejection of data depends on its 

variation from the mean value relative to the standard deviation [69].  An even more basic 

technique uses box plots.  Using such plots, suspect values may be confirmed by noting their 

positions relative to the lower and upper quartiles.  These simple approaches quickly lose 

relevance when facing non-Gaussian distributions.  Due to thickness imparted by photoresist, the 

current work encountered obvious bimodal distributions, which hampered efforts to identify 

suspect data. 

Figure 5-4.  Two-dimensional illustration 

of algorithm to calculate CR.   
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 To accommodate the unique distributions, a histogram-based method was developed.  

This technique concentrated on removing suspect data located near the extremes, which 

consequently improved accuracy of the minimum value and baseline determination.  As the 

terminology suggests, the over 300,000 data points collected during each Zygo® measurement 

were categorized into bins to visualize the frequency distribution.  The identification of erroneous 

data began by inspecting bin sizes near the lower limits of the population.  Bins below a 

prescribed size were removed, which eliminated the data points therein.  Progressing towards the 

distribution mean, eventually bins exceeded the prescribed size and subsequent data was 

preserved.  An analogous progression was administered to upper limits of the population.  Using 

three-dimensional plots to gauge effectiveness, the number of bins and prescribed bin size were 

adjusted until satisfactory removal of suspect data.    Divided into 2000 bins, the finalized 

algorithm removed bins containing fewer than 15 data points, which represented less than 0.005% 

of the entire data.  The following Figure 5-6 depicts an exemplary distribution before and after 

implementing this histogram-based method.  The impact of this filtering scheme is reflected in 

Figure 5-7. 

 

 

 

 

 

 

 

 

 

Suspect Data 

Figure 5-5.  Suspect data acquired by Zygo® system.   

 

Figure 5-6.  Distribution of Z-heights acquired during a single Zygo® 

measurement before (left) and after (right) filtering suspect data. 



68 

 

0
.5

3
%

0
.1

6
%

0
.4

4
%

0
.1

5
%

0
.2

1
%

0
.4

8
%

0
.3

2
%

0
.3

6
%

0
.1

2
%

0
.4

0
%

0
.1

5
%

0
.1

4
%

0
.3

6
%

0
.2

1
%

0
.1

7
%

0
.1

7
%

0
.2

2
%

0
.3

6
%

0
.2

2
%

0
.2

6
%

0
.2

8
%

0
.1

8
%

0
.2

3
%

0
.3

1
%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8

R
e

m
o

v
e

d
 D

a
ta

A
v

e
ra

g
e

 %

Run

1st DOE 2nd DOE 3rd DOE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 With an established baseline, determining an appropriate threshold became the next 

priority.  This task incorporated two components: (1) average surface roughness (Ra) of the 

substrate and (2) photoresist thickness.  The prior element accounted for normal height variations 

inherent to the stainless steel mold insert after machining, and this value was previously 

measured.  The latter element proved more critical due to its relative magnitude and its 

variability.  This variability directly correlated to the number of resist coats administered in each 

unique experimental run, and quantifying this correlation proved crucial. 

 

 To achieve this correlation, data acquired by the Zygo® system was exploited.  Namely, 

each experimental run involved a specified number of photoresist layers.  Noting this discrete 

value and measuring the resulting resist thickness, a collection of 100 data points provided a 

foundation for a linear correlation.  Figure 5-8 and Figure 5-9 illustrate the measurement 

approach and the determined correlation, respectively. 

 

  

 

  

     

 

 

Figure 5-7.  Average percentage of data filtered during each experimental run. 

Figure 5-8.  Zygo® measurements (left) revealed photoresist thickness (right). 
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 A final algorithm encompassed the aforementioned baseline and threshold.  Data 

exported from the Zygo® system was analyzed within a MATLAB® environment to ultimately 

calculate the desired coverage ratio (Appendix F).  First, the histogram-based filter removed 

suspect data from the extremes of the data distribution, and a newly refined minimum represented 

the base reading.  Next, the threshold comprised the substrate’s average surface roughness and the 

photoresist thickness as predicted by the linear model.  With the efficiency of computation, each 

data point could then be categorized based on its associated Z-height.  A final accounting step 

summarized the results into a single numerical value.  The following Figure 5-10 depicts an 

orthogonal plot of filtered data, the threshold plane, and the calculated CR. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-9.  Correlation between photoresist thickness and 

applied coats using Microchem® XP Negative Microspray™. 

Figure 5-10.  Algorithm implemented in MATLAB® to 

compute coverage ratio (CR) for a Zygo® measurement. 
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Method Ideal Coverage Ratio (CR)

Geometric 0.7629

Zygo®/MATLAB® 0.7694
†

†Averaged value

Area Total Area Area Ratio Coverage Ratio 

(μm
2

) (μm
2

) (Triangles:Overall Mask) (CR)

Full Triangles 155980 4173.0 6.5090 · 10
8

Partial Triangles #1 27 2086.5 5.6336 · 10
4

Partial Triangles #2 28 1462.5 4.0950 · 10
4

Overall Mask -- -- 2.7456 · 10
9

0.2371 0.7629

Population

 Ideally, the lithography process transfers the photomask pattern directly to the resist-

coated substrate yielding a specific value of CR.  Determining this ideal CR became crucial to the 

application of ANOVA techniques.  Two methods provided insight.  By extracting dimensions 

from the mask design, a CR value could be calculated by simple geometry.  Table 5-1 displays 

the results of this geometric approach.  Of note, the population of triangles included several 

partial entities, which were managed with CAD software to calculate appropriate areas. 

 

 

 

 

 

 

 

 Alternatively, the photomask was directly analyzed with the Zygo® system to compute 

an ideal CR measurement.  Ink invariably introduced a minute thickness.  This thickness was 

easily detectable using light interferometry, and measurements were exported to MATLAB® for 

analysis.  Applying a trivial algorithm, the printed regions of the plastic film were distinguished 

from the surrounding areas, and an ideal value of CR was obtained (Appendix G).  As Figure 5-

11 shows, the results appeared visually accurate.   

 

 

 

 

 

 

 

Displayed below, Table 5-2 summarizes the values obtained using both techniques.  

Compared to the geometric approach, the Zygo® inspection method provided a decidedly truer 

reflection of the ideal scenario. 

 

 

 

 

 

Table 5-1 Geometric Approach to Determine Ideal CR. 

 

Figure 5-11.  Ideal CR based on Zygo® measurements. 

Table 5-2 Results for Ideal CR. 
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 By comparing experimental CR to ideal CR, photoresist quality could then be quantified.  

As shown in the equation below, a basic percent error calculation facilitated this comparison.  

Thus, larger values suggested poor quality whereas smaller values implied a desirable outcome.  

An accepted pitfall of this technique concerned pattern definition; that is, attaining ideal CR could 

have occurred coincidentally without achieving the desired pattern.  Of course, qualitative 

observations through optical microscopy and light interferometry allowed identification of such 

coincidences, but these subjective assessments offered limited value.  However, this pitfall was 

minimized by averaging 8 separate measurements for each experimental run.  Furthermore, the 

associated standard deviations helped elucidate measurement reliability. 

 

%5��@� � G?�HIJHKLMHNO�P � ?�LQH�PG?�LQH�P  · 100% 

 

5.3 First Design of Experiments 

 

 The initial DOE served as a screening step.  Although conclusive results were unlikely, a 

variety of process variables could be investigated using minimal resources.  Specifically, four 

factors were studied in a 2
4-1 

fractional factorial experiment, which allocated two levels per factor 

by definition.   The study comprised a total of eight unique treatments, and each treatment was 

performed on a dedicated conical mold insert (Sample #1 – #8).    Manufactured by Microchem® 

Corporation, a product marketed as XP Negative Microspray™ served as the negative-acting 

photoresist, which employed a novel aerosol form.  Every mold insert underwent the full 3-day 

lithographic process with documentation facilitated by optical microscopy and the Zygo® system.  

 

The primary drawback of any fractional experiment rests on the creation of aliases and 

confounding.  However, this risk can be managed.  As main effects and lower order interactions 

likely drive the process, higher order interactions become prime candidates for intentional 

confounding [67].  In the present study, the highest order interaction served as the identity, which 

reduced experimental runs at the expense of disguising effects cause by this fourth-order 

interaction.  This design promoted meaningful results by confounding main effects with the 

presumably negligible third-order interactions.  In contrast, this fractional-factorial design 

supplied poor feedback on secondary interactions as these inevitably confounded with other 

second-order interactions.  Of course, suspicions of these effects could easily be expounded with 

ensuing experimental designs. 

(12) 
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 Final considerations for the initial DOE concerned blocking and randomization.  Due to 

time constraints encountered during mask procurement, a blocking scheme separated the full 

study into two subsets of four experimental runs.  This implementation facilitated timely 

completion of the screening process, but it also increased risk.  As the blocked experiments 

occurred on separate days, the delay allowed unforeseen factors to potentially impact results.  For 

example, a convection oven may have inexplicably varied a few degrees, or an experimenter may 

have slightly shifted work habits from one day to the next.  However, this potential risk was 

offset by introducing randomization.  The present study utilized random permutations created by 

MATLAB® to arrange experimental runs in a non-distinct order.  Table 5-3 displays the finalized 

design for the initial fractional-factorial experiment. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5-3 Fractional-Factorial Design of 1
st
 DOE. 

 



73 

 

Source of Variation SS df MS F F' % Contribution

A 

(Layers of Photoresist)

B

(Exposure Dosage)

C

(Pre-Bake Times)

D

(Mask Cutting)

AB 31463.926 1 31463.93 61.34319 2.8 34.75%

AC 1699.0276 1 1699.028 3.312485 2.8 1.88%

AD 2102.8427 1 2102.843 4.099777 2.8 2.32%

Error 28723.316 56 512.9164 31.72%

Total 90556.697 63

2.8 11.59%

6.06%

9567.1409 1 9567.141 18.65244 2.8

1.12%2.81.976294

10.56%

10495.851

5490.9193

1013.6734

1

1

1

10495.85

5490.919

1013.673

10.70529 2.8

20.46309

 Factor selection bore from two motives: (i) the need to investigate process variables 

unique to the present work and (ii) the desire to substantiate findings from previous literature.  

Past research has supported the feasibility of building photoresist thickness through layering 

[6,10]. The current study attempted to develop this technique further and gauge its potential with 

respect to a complex substrate.  Exposure dosage has proven to be a critical element to 

lithography-based methods [8,59,60,61].  Understanding this parameter became especially 

important when considering the relatively novel Microspray™ photoresists.  The prebake step has 

been recognized as a means to remove solvents from deposited resists [6].  However, based on 

surveyed literature, the significance of this heat treatment remained questionable.  Lastly, a 

conical masking element represents a relatively novel approach to micro-texturing non-planar 

surfaces.  Its usefulness would benefit by identifying specifications crucial to its function. 

 

For each experimental treatment, 8 separate measurements were captured by the Zygo® 

system and processed in MATLAB® (Appendix H).  Measurement locations were spaced equally 

around the perimeter of the conical surface and were focused on the regions relevant to the 

elastomeric sealing zone.  Thus, the experimental outcome comprised a total of 64 separate 

calculations of percent error in CR.  To interpret these results, ANOVA techniques were 

performed to identify factors contributing significant process variation (Appendix I).  This 

variance was gauged using Fisher’s F Statistic [67].  The following Table 5-4 summarizes the 

results of this analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5-4 ANOVA Results for 1
st
 DOE. 
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 Results from the initial screening experiment highlighted significant sources of process 

variation.  Photoresist layering and exposure dosage introduced comparable contributions 

(10.56% and 11.59%, respectively).  The secondary interaction of these two factors appeared to 

impact photoresist coverage the greatest (34.75%).  However, this latter observation suffered 

from two shortcomings.  Experimental error proved a prominent detractor (31.72%).  Though 

neglected third-order interactions may have slightly inflated the computed contribution, the 

noticeable presence of error suggested several process variables were not recognized.    

Furthermore, the nature of the fractional-factorial design limited reliable conclusions.  As 

mentioned previously, two-factor interactions were inevitably confounded by other two-factor 

interactions.  Thus, the interactive effect of photoresist layering and exposure dosage may have 

been skewed by the interaction of pre-baking and mask cutting.  Regardless, this screening 

exercise provided direction for an ensuing full factorial experiment. 

 

5.4 Second Design of Experiments 

 

 Results from the initial screening were honed during a subsequent full factorial 

experiment.  Several features of the initial study persisted into the second experimental design.  

The XP Negative Microspray™ remained a core element in the process.  Photoresist layering and 

exposure dosage continued to be interesting factors as alluded by their considerable contribution 

to variation during the 1
st
 DOE.  Their inclusion was further supported due to a perceived 

significant interaction.  As before, the secondary study comprised a total of 8 unique treatments, 

which were executed in a randomized fashion dictated by MATLAB® permutations. 

 

 Despite similarities, the 2
nd

 DOE exhibited key differences.  The elimination of two 

factors represented the most obvious change.  Due to relatively minor contributions, the 

prebaking and mask cutting variables were not considered.  This decision helped further conserve 

limited resources, and it facilitated a more extensive investigation of the remaining factors.  With 

regard to the remaining variables, these also experienced modification.  Slightly different 

photoresist layering schemes reduced material usage.  However, these schemes diversified 

practical experience with the Microspray™ product while continuing themes of the initial study.  

Regarding exposure dosage, the number of levels doubled.  This expansion reflected a desire to 

more fully understand underexposure, overexposure, and the behavior between these extremes.  

Considerable changes also affected the overall lithographic process.  Foremost, nickel deposition 

was neglected.  As parameters for this relatively robust step relied heavily on the recipient surface 
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area, photoresist coverage became a more prominent focus.  Elimination of electroplating 

facilitated another change.  Each treatment no longer required a unique conical mold insert.  

Without permanent nickel features, a pristine substrate surface could be realized by chemically 

removing developed photoresist.  Invariably, this decision implied that no physical specimen 

would be preserved after each treatment; documentation served as the primary means to analyze 

process outcome.  However, by submitting a single mock mold (Sample #9) to repeated 

treatments, the consistent surface characteristics helped improve experimental confidence. 

 

 The finalized 2
nd

 DOE offered several additional advantages.  Characteristic of full-

factorial experiments, aliases were eliminated, which likewise removed concerns about 

confounding.  With adequate resources procured and an abbreviated lithographic process, 

blocking no longer became necessary.  Table 5-5 depicts the final structure of the second 

experimental design. 

 

   

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Table 5-5 Full-Factorial Design of 2
nd

 DOE. 
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Source of Variation SS df MS F F'

A

(Layers of Photoresist)

B

(Exposure Dosage)

AB 28935.277 3 9645.092 44.4084 2.14

Error 12162.679 56 217.1907

Total 48653.558 63

11.48608

2.8

2.14

0.15%

15.38%

25.00%

% Contribution

59.47%

71.592752

7484.0084

1

3

71.59275

2494.669

0.329631

Documentation of each treatment consisted of 8 separate measurements acquired by the 

Zygo® system and processed in MATLAB® (Appendix J).  As before, snapshots were spaced 

equally along the conical surface with emphasis placed on regions relevant to the elastomeric 

sealing zone.  In total, 64 separate calculations of percent error in CR were computed.  Results 

were interpreted using ANOVA to quantify contributions to process variation (Appendix K).  

Fisher’s F Statistic facilitated this analysis of variance, and the following Table 5-6 summarizes 

the results. 

 

 

 

 

 

 

 

 

 

 

 

 The outcome closely mimicked trends observed after the initial screening.  Exposure 

dosage continued to impart significant variation (15.38%).  Furthermore, the interaction of 

exposure dosage and photoresist layering impacted results considerably (59.47%)—an effect 

noted during the previous study.  However, a noticeable gap developed between process 

variables.  That is, differing layers of photoresist provided only minor influence on photoresist 

coverage.  Based on the critical Fisher statistic (F’), this factor proved to be an insignificant 

contributor (0.15%).  Of course, conclusive evidence was combated by error.  Though reduced 

substantially (from 31.72% to 25.00%), the contribution of error remained an indicator of 

uncontrolled experimental factors.  Despite this pitfall, the full factorial study eliminated 

confounding effects, and it localized attention to an important factor.  Exposure dosage played a 

conspicuous role.  Recommendations from the photoresist manufacturer provided a reference 

point, but with regards to an unconventional substrate, these dosage specifications proved to be 

insufficient [16]. 

 

 

 

Table 5-6 ANOVA Results for 2
nd

 DOE. 
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5.5 Third Design of Experiments 

 

 Progress was hampered by an exceptional obstacle.  According to Microchem® 

representatives, the XP Negative Microspray™ was discontinued due to concerns about raw 

material availability.  This photoresist product represented a major component of the developing 

UV-lithographic process.  Its exclusion from progressive work posed serious ramifications.  

However, its continued inclusion also presented considerable risks.  Although a short supply 

remained, this stock pile was inadequate for extensive use.  Moreover, any scientific discoveries 

would be superfluous without the primary ingredient at a user’s disposal. 

 

 In response, alternative photoresists were considered.  Among products marketed by 

Microchem®, two potential replacements were readily available: (i) XP Positive Microspray™ 

and (ii) XP SU8 Microspray™.  Supplied in aerosol form, both products permitted spray 

application.  However, distinct characteristics existed.  As the name suggests, XP Positive 

Microspray™ exhibits fundamentally different chemical behavior.  Upon irradiation, the 

photoresist experiences excisions on a molecular level, which facilitate preferential removal of 

exposed regions.  In contrast, the behavior of XP SU8 Microspray™ resembles the negative-

acting photoresist originally incorporated in the present work.  This chemical reactivity is 

achieved through a different formulation though, which introduces a degree of unpredictably.  

Given the perceived options, the SU8-based photoresist seemed more viable and less disruptive to 

the envisioned process.    

 

Thus, a third experimental design ensued with two objectives.  First, demonstrate the 

feasibility of this alternative product in an effort to promote continued research.  Secondly, 

provide a comparative study to highlight key aspects of XP Negative Microspray™ and XP SU8 

Microspray™.  To realize these objectives, a full factorial experiment was designed with a 

structure identical to the previous.  A majority of the lithographic procedure remained intact with 

a few exceptions.  To accommodate the different molecular structure, an appropriate developing 

solution was prepared per manufacturer’s recommendation.  Moreover, a more aggressive 

remover solution was applied to overcome the strong adhesiveness typical to SU8 formulations 

[20].  This removal step allowed a single conical mold insert to be processed repeatedly (Sample 

#10).   
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(B) Exposure Dosage (mJ/cm
2
)

(A) Layers of 

Photoresist

Source of Variation SS df MS F F'

A

(Layers of Photoresist)

B

(Exposure Dosage)

AB 46881.522 3 15627.17 11.21917 2.14

Error 78002.381 56 1392.9

Total 141242.59 63

3 5450.784 3.913264 2.14 11.58%

55.23%

% Contribution

33.19%

6.3378063 1 6.337806 0.00455 2.8 0.00%

16352.353

As in previous experiments, 8 treatments were performed in a randomized manner.  For 

each treatment, 8 separate measurements were captured with the Zygo® system (Appendix L).  

Percent error in CR was calculated for each measurement, and ANOVA techniques were applied 

to analyze variance (Appendix M).  The overall experimental design and results are displayed in 

Table 5-7 and Table 5-8, respectively. 

 

  

 

 

 

 

 

 

 

 

 

 

 

  

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5-7 Full-Factorial Design of 3
rd

 DOE. 

 

Table 5-8.  ANOVA Results for 3
rd

 DOE. 
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 Results from this final study appeared to corroborate findings from the previous 2
nd

 DOE.  

Layering of photoresist provided negligible impact (0.00%), and exposure dosage persisted as a 

significant factor (11.58%).  As before, a second-order reaction appeared a substantial source of 

variation (33.19%).  However, the contribution of experimental error was profound as evidenced 

by the over two-fold increase (25.00% to 55.23%).  This finding suggested a significant source of 

variability remained unknown. 

 

 Several probable sources were identified.  The XP SU8 Microspray™ exhibited 

drastically different optical properties compared to the XP Negative Microspray™.  Namely, the 

SU8 formulation was noticeably more transparent.  This characteristic may have negatively 

impacted the accuracy of light interferometry readings.  In addition, development of the SU8-

based photoresist revealed another issue.  After prolonged submersion in developer solution, 

unexposed regions of photoresist persisted.  Regardless of the cause, this underdevelopment 

hindered recognition of the stainless steel substrate during documentation.   Consequently, 

algorithms executed in MATLAB® may have misidentified minimums in the surface.  Inflated 

baseline assumptions were the major concern.  Moreover, inaccurate minimums obstructed efforts 

to model thickness of the XP SU8 Microspray™.  Unpredictable thickness translated to unreliable 

threshold values as computed by the MATLAB® routine.  Ultimately, the linear model 

determined for the 2
nd

 DOE was adopted, which implied the Microspray™ products shared 

similar correlations.  This assumption was not ideal, and threshold accuracy suffered.  This 

scenario is apparent in Figure 5-12, which depicts an image captured by optical microscopy and 

the associated analysis. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-12.  Underdevelopment of XP SU8 Microspray™ (left) 

complicated threshold determination during the MATLAB® analysis (right). 



80 

 

5.6 Discussion 

 

Realization of a textured conical mold insert proved elusive.  Despite complications, the 

experimental designs offered insight into a feasible UV-lithographic patterning process.  The 

following discussion highlights several aspects to consider in future research efforts. 

 

5.6.1 Challenges to Micro-texturing 

 

 Successive application of DOE techniques revealed several challenges to achieving the 

micro-textured conical mold insert.  Delamination considerably impeded progress.  Evidence of 

an adhesion loss between the photoresist and substrate emerged during the initial screening study.  

However, conclusive proof was hampered by the limitations of optical microscopy and light 

interferometry.  As depicted in Figure 5-13, magnified images depicted a peculiar phenomenon 

affecting the fringes of developed micro-features.   

 

 

 

 

 

 

 

 

 

 

 

 Early notions focused on the possibility of a degrading photoresist surface.  Namely, the 

fringes might have resulted from an overly aggressive developer solution, which partially 

dissolved the perimeter of micro-cavities.  The edges may have suffered an undesirable rounding 

effect, which would conceivably produce fringes.  However, two observations discounted this 

theory.  First, measurements acquired by the Zygo® did not indicate a curvature forming at the 

upper boundaries of micro-features.  Secondly, results from electroplating shifted attention from 

the upper surface to the basal interface between photoresist and stainless steel.  These 

observations are illustrated in Figure 5-14. 

 

 

Figure 5-13.  Phenomenon observed at fringes of 

micro-features during the initial screening study.  
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 Optical microscopy offered evidence of adhesion loss.  If photoresist detached from the 

substrate, then the resulting gap allowed nickel to deposit beneath, which exacerbated the 

problem.  Indeed, documentation of photoresist coverage provided significant evidence of 

delamination as show in Figure 5-15.  This issue has pervaded several previous studies 

[1,18,19,61].  Although mechanical clamping has been identified as one possible solution, the 

complex conical geometry complicates implementation.  Furthermore, XP Negative 

Microspray™ exhibited a noticeable brittleness after development as determined by a simple 

scratch test.  This charactersistic would prove problematic if excessive pressures were created by 

a clamping technique. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 On the contrary, the XP SU8 Microspray™ presented unique obstacles at the opposite 

spectrum. As past research has shown, this photoresist formulation exhibits high adhesive 

strength [20].  This characteristic contributed to relatively long development times in the current 

work.  Durations on the order of hours were common—a stark contrast compared to the minutes 

required when developing the XP Negative Microspray™.   

Figure 5-14.  Zygo® measurements contradicted a degradation effect at the surface 

(left).  Electroplating results shifted attention to the photoresist-substrate interface (right). 

Steel 

Substrate 

Photoresist 

Adhesion 

Delaminated 

Photoresist 

Figure 5-15.  By observing the substrate-photoresist interface (left), regions of 

successful adhesion (center) are distinguished from regions of delamination (right). 
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Despite longer durations, developer solutions inadequately dissolved unexposed regions 

of SU8 photoresist.  As mentioned earlier, this issue complicated analysis efforts.  Several 

possible explanations emerge.  Diffraction of ultraviolet light might have unintentionally exposed 

areas of masked photoresist.  Glycerin offers a means to combat this effect by eliminating air 

gaps between the mask and substrate [5,62].  However, constraining this liquid on a non-planar 

surface proved a difficult task in the present experimental setup.  Alternatively, 

underdevelopment might have resulted from overexposure.  SU8 gained popularity due to its 

increased sensitivity to light exposure [10].  This characteristic might have amplified the 

undesirable effects of diffraction.  Lastly, the relative transparency of XP SU8 Microspray™ 

could have facilitated reflection [14,70].  Instead of being absorbed or diffused, radiation might 

have reflected from the stainless steel surface causing a drastically increased exposure dosage. 

 

5.6.2 Coverage Ratio and Contributing Factors 

 

 Achieving ideal coverage ratio (CR) required identifying significant process variables.  

Several possible factors were evaluated by DOE and ANOVA methods.  Based on the initial 

screening study, photoresist layering and exposure dosage contributed considerable variation to 

the process.  A noticeable second-order interaction supplemented suspicions.  To further 

elucidate, a 2
nd

 DOE focused on these variables, and correlations were computed with respect to 

the defined process outcome—percent error in CR.  The following Figure 5-16 illustrates the 

findings. 

 

    

  

 

 

 

 

 

 

 

 

 

Figure 5-16.  Based on the 2
nd

 DOE, the photoresist layering (left) exhibited a negligible 

correlation whereas the exposure dosage (right) exhibited a relatively strong correlation. 
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 The computed correlations were not surprising.  With regards to layers of photoresist, the 

poor correlation (R
2
 = 0.0009) reflected its low contribution to variation (0.15%) during the 2

nd
 

DOE.  Considering the impact of exposure dosage, the strong correlation (R
2
 = 0.8522) supported 

legitimacy of the ANOVA analysis (15.38%).  From a qualitative perspective, optical microscopy 

further evidenced this correlation as depicted in Figure 5-17.  Thus, results indicated exposure 

dosage was a significant parameter when applying XP Negative Microspray™ in a UV-

lithographic process.  Moreover, the manufacturer’s recommendation (400mJ/cm
2
) proved an 

underestimate when processing the conical mold insert.   
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Figure 5-17.  For treatments receiving 4 layers of photoresist, images captured 

during the 2
nd

 DOE suggested a trend with respect to exposure dosage. 
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However, with respect to exposure dosage, the aforementioned correlation suffers a 

degree of uncertainty.  Namely, an aspect of the conical mold geometry was overlooked.  Due to 

the angled surface, the mold radius was not a constant value (ro) as assumed in Equation 6.  As 

illustrated in Figure 5-18, the radius varied slightly with respect to the exposed surface.  Applying 

basic trigonometry, this variation in radius (r) can be expressed by the equation below.   

 

�	� � �R S � cos 57° 
 

   

 

 

 

 

 

 

 

 

 

 

 

  

Recalling the exposure durations (∆t), light intensity (I), and exposure slit width (x), the 

following equation provides a more accurate model of exposure dosage.  As displayed in Table 5-

9, the deviations in dosage relative to the intended value were minor (< 4%).      

 

5	� � . · ∆:
! · sin�� + 
 2(�R S � cos 57°, 

 

 

 

 

 

 

Figure 5-18.  With regards to the exposed surface, the 

dosage deviated slightly from the intended value due to 

variations in the mold radius caused by the chamfer angle.  

Table 5-9.  Deviations in Exposure Dosage 
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Figure 5-19.  Alternative PEB temperature profiles applied to investigate 

possible thermally induced delamination of photoresist.
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the selected factors, another variable might have influenced results.  The post

supplied heat to drive the cross-linking reaction in SU8 photoresist to 

completion.  However, this heat might have induced an undesirable effect.  As previously 

thermal expansion coefficient can conceivably create stresses at the 

substrate interface.  Delamination might ensue [14,59,61].  After the final 

experimental design, a brief investigation was performed.  Four successive treatments were 

mold insert, and they shared the following characteristics: (i) 4 layers of XP 

Negative Microspray™ and (ii) an exposure dosage of 1200mJ/cm
2
.  The primary exception was 

a unique PEB temperature profile.  Figure 5-19 illustrates these profiles and presents qualitative 

quality appeared optimal after applying the normal baseline profile.  

remaining PEB temperature profiles offered few perceived advantages.  Furthermore, a lower 

maximum temperature was designed to reduce the effects of thermal stress; however, more 

onounced delamination was observed in these cases, which rendered the theory

Alternative PEB temperature profiles applied to investigate 

possible thermally induced delamination of photoresist. 

results.  The post-

linking reaction in SU8 photoresist to 

As previously 

thermal expansion coefficient can conceivably create stresses at the 

.  After the final 

treatments were 

s: (i) 4 layers of XP 

.  The primary exception was 

illustrates these profiles and presents qualitative 

quality appeared optimal after applying the normal baseline profile.  The 

ffered few perceived advantages.  Furthermore, a lower 

maximum temperature was designed to reduce the effects of thermal stress; however, more 

the theory unrealistic.   

Alternative PEB temperature profiles applied to investigate 
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5.6.3 Challenges to Analysis 

 

 Interpreting the process outcome depended on the analytic methods.  Several challenges 

hampered application of these methods.  For instance, the underdevelopment of SU8 photoresist 

diminished accuracy of the MATLAB® algorithm.  Inappropriate baselines and unpredictable 

photoresist thickness contributed to unreliable threshold values.  As a result, confidence in the 

computed coverage ratio (CR) values was diminished.  This issue was a plausible source of 

variation due to experimental error in the 3
rd

 DOE (55.23%)   

 

 Surface defects introduced a similar obstacle to analysis.  Namely, several defects 

presented extreme heights or depths relative to the average surface roughness.  The MATLAB® 

routines potentially suffered due to these defects.  However, as these anomalies typically occurred 

at a small frequency, the histogram-based filtering method offered a formidable defense.  

Illustrated in Figure 5-20, a Zygo® measurement shows a noticeable surface indentation. 

 

 

 

 

 

 

 

 

 

 

 

 Lastly, incomplete Zygo® measurements persisted throughout the course of the study.  

Initially recognized during inspection of the conical mold inserts, this issue created gaps in the 

acquired data matrix.  Specifically, values of surface height were nonexistent.  Presumably, these 

gaps resulted from miscues during measurement digitization.  Regardless, this missing data 

represented a potential source of experimental error.  The frequency of this issue is reflected in 

the following Figure 5-21.  Except for a single case, all 192 Zygo® measurements exhibited a 

minor data loss (less than 0.05%).  The exception involved drastically higher casualties (with over 

40% data loss).  Due to multiple measurements, its impact on analysis was reduced, but this 

unique instance implores caution in future efforts. 

Surface 

Defect 

Figure 5-20.  Visible defect in the substrate surface. 
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Figure 5-21.  Data loss sustained during Zygo® measurements. 
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CHAPTER 6 – CONCLUSIONS 

6.1 Conclusions  

 

 Extending the limits of UV-lithography will help introduce micro-texturing technology 

into new environments.  Supported by the resources and facilities of the Bearings and Seals 

Laboratory at the University of Kentucky, the present study advanced efforts to manufacture 

fields of micro-features on a complex non-planar surface.  Based on this research, the following 

conclusions have developed: 

 

• The conical mold insert is a feasible candidate for surface engineering via a UV-

lithographic process.  It represents a threshold to new applications of lithography based 

methods. 

•  The commercially available Microchem® XP Microspray™ products offer an alternative 

means to apply photosensitive coatings to non-planar substrates. 

• Exposure dosage is a significant factor to consider when using XP Negative 

Microspray™ to facilitate UV-lithographic patterning on an unconventional substrate. 

•  XP SU8 Microspray™ serves as a plausible solution to the delamination and availability 

issues associated with XP Negative Microspray™. 

• By achieving an appropriate 2-dimensional design, a 3-dimensional masking element can 

be developed to conform to the non-planar surface of a conical mold insert. 

• A clamp plate provides a simple means to secure and align a photomask to a complex 

substrate.  Moreover, this technique minimizes unnecessary machining by exploiting pre-

existing features of the substrate. 

•  Coverage Ratio (CR) is a capable measurement to consider when identifying significant 

process variables by Design of Experiments (DOE) and Analysis of Variance (ANOVA). 

 

6.2 Future Considerations 

 

 The potential of a UV-lithographic patterning process continues to be unveiled.  The 

present work revealed areas for further improvement.  Foremost, certain measures might enhance 

the performance of XP SU8 Microspray™.  Past studies suggest that reflectivity can be reduced 

by applying an appropriate base layer to the substrate surface [70,71].  Eliminating this issue will 

be crucial to refining exposure dosage.  In addition, light diffraction could be minimized by 

developing methods to administer glycerine.  Evidence supports this notion [5,62].  The 
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compensatory effect of glycerine may also relax the precision requirements during mask design 

and application.  With regards to the photomask, design modifications could enhance the 

usefulness of experimental results.  Namely, numerical studies have benefited greatly due the 

incorporation of a unit cell [39].  Realizing this concept in the conical mask design would enable 

critical comparisons between theoretical and experimental findings.  Lastly, adjustments to 

masking and exposure steps might permit the manufacture of a tapered conical mold insert [33].  

The inclusion of draft angles to micro-features could reduce ejection forces needed during 

molding, which could improve efficiency. 

 

 The limits of UV-lithography may be surpassed by investigating alternative methods for 

micro-texturing.  Delamination issues might be circumvented by integrating the clamping 

techniques of previous studies [1,5,18].  These methods depended on development of a free 

standing polymethyl methacrylate (PMMA) pattern, which was secured mechanically to the 

substrate.  With respect to the present work, techniques to create a three-dimensional photomask 

could be adapted to manufacture the appropriate PMMA template.  Diffraction also proved 

problematic to UV-lithography.  Gaps between mask and substrate amplified this diffraction, and 

these gaps indicated non-uniformities in the resist-coated surface.  However, these gaps might be 

eliminated by introducing an intermediate machining step.  In past research, an over-application 

of photoresist allowed a subsequent removal of excess material and a simultaneous planing effect 

[20].  A similar approach might enhance photomask contact with the conical mold insert. 

 

 Some limitations of a complex substrate may be unavoidable.  For instance, post 

processing may be severely hampered.  When manufacturing micro-features by electroplating, a 

polishing step removes characteristic surface variations due to metal deposition [17].  This step is 

trivial when considering planar substrates [34].  The task becomes impractical with respect to a 

conical mold insert.  However, this limitation is not isolated to lithography techniques.  Laser-

based methods also rely on post-processing to remove undesirable bulge formations [11].  Thus, 

despite some limitations, UV-lithography remains a competitive approach to micro-texturing a 

conical mold insert. 
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APPENDIX A – MACHINIST DRAWING FOR MOCK MOLD INSERT 
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APPENDIX B – MATLAB® CODE TO FIND AVERAGE SURFACE ROUGHNESS 
 

%Average Surface Roughness (Ra) 

  
%The following code computes the surface roughness for a surface.  In 
%particular, 8 separate values of Ra are determined for each of the 8  
%separate measurements acquired per mold insert. 

  
%Written by Justin Huber 

  
clear all 
directory=input('Please input the directory & mold number: ','s'); 
Ra=zeros(1,8); 
count=zeros(1,8); 

  
for N=1:8 

     
    filename=[directory,'_m',int2str(N),'_xcylinder.xyz']; 
    [X,Y,Z,x,y,z]=read_zygo_data(filename); 
                                 %Import the Zygo measurement data 

  
    count(N)=0;     %Records the number of missing data points 
    for I=1:640 
        for J=1:480 
            if isnan(Z(I,J))     %The 'isnan' function distinguishes 
                count=count+1;   %between a number and a NaN                   
            end                  %(not-a-number) 
        end 
    end 
    xi_count=0;     %xi_count records the number of data points 
    xi_sum=0;       %xi_sum is a summation of z-heights 
    for I=1:640 
        for J=1:480 
            if ~isnan(Z(I,J)) 
                xi_sum=xi_sum+Z(I,J); 
                xi_count=xi_count+1; 
            end 
        end 
    end 
    xi_bar=xi_sum/xi_count;      %xi_bar is the mean plane 
    eta_count=0;    %eta_count records number of data points 
    eta_sum=0;      %eta_sum is summation of variations  
    for I=1:640     %about mean plane 
        for J=1:480 
            if ~isnan(Z(I,J)) 
                eta_sum=eta_sum+abs(xi_bar-Z(I,J)); 
                eta_count=eta_count+1; 
            end 
        end 
    end 
    Ra(N)=eta_sum/eta_count;     %Calculation of average surface  
end                              %roughness 

  
Ra 
count 
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APPENDIX C – PHOTOMASK BULK GEOMETRY 
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APPENDIX D – PHOTOMASK DETAIL GEOMETRY 
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APPENDIX E – MACHINIST DRAWING FOR CLAMP PLATE 
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APPENDIX F – MATLAB® CODE TO FIND COVERAGE RATIO (CR) 
 

%Coverage Ratio 

  
%The following code computes values of coverage ratio (CR).   
%In particular, 8 separate values of CR are determined for each of   
%the 8 separate Zygo measurements acquired per mold insert. 

  
%Written by Justin Huber 

  
clear all; 

  
%User is prompted to input information relevant to the code 
directory=input('Please input the directory: ','s'); 
mold_number=input('Please input mold number: ','s'); 
run_number=input('Please input run number: ','s'); 
directory_save=input('Please input directory to save results: ','s'); 
coats=... 
    input('Input the #coats of photoresist applied in this sample run: 

'); 
if coats==2 
else if coats==3 
    else if coats==4 
        else if coats==6 
            else 
                disp(sprintf('Input not recognized!!')); 
                return 
            end 
        end 
    end 
end 
base=input('Input "Ra" value of the unprocessed sample (microns): '); 

  

  
area_ratio=zeros(1,8);  %Placeholders to save results of code 
area_perc=zeros(1,8); 
threshold=zeros(1,8); 

  
removed=zeros(1,8);     %Counter for data points removed by filter 
missing=zeros(1,8);     %Counter for data points containing "NaN" 

  

  
for N=1:8 
    filename=[directory,'\mold',num2str(mold_number),'_m',... 
        num2str(N),'_xcylinder.xyz']; 

     

  
    [X,Y,Z,x,y,z,resoln]=read_zygo_data(filename);  
                %Function created by Chris Morgan to read  
                %a Zygo "xyz" file. 
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    %Histogram-based filtering method used to remove suspect data 
    %near the extremes of the distribution 
    edges=min(z):(max(z)-min(z))/1999:max(z); 
    M=histc(z,edges); 
    H=1; 
    while M(H)<15 
        H=H+1; 
    end 
    lower=edges(H);     %Lower limit of accepted data points 
    H=2000; 
    while M(H)<15 
        H=H-1; 
    end 
    upper=edges(H+1);   %Upper limit of accepted data points 

     
    for K=1:length(z);  %Limits applied to vector format of data 
        if z(K)<lower 
            z(K)=nan;       %Values below lower limit removed 
            removed(N)=removed(N)+1; 
        else if z(K)>upper 
                z(K)=nan;   %Values above upper limit removed 
                removed(N)=removed(N)+1; 
            end 
        end 
    end 
    for L=1:640         %Limits applied to mesh format of data 
        for O=1:480 
            if Z(L,O)<lower 
                Z(L,O)=nan; 
            else if Z(L,O)>upper 
                    Z(L,O)=nan; 
                end 
            end 
        end 
    end 

           

              
    threshold(N)=min(z)+base+4.5301*(coats);    
                    %Threshold for covereage determination comprises  
                    %the sum of the min Z-height, Ra value, & coat 
                    %thickness 

                                            
    pixels=0;       %Pixels are data points at which z-height 
                    %exceeds threshold 

                             
    for I=1:640 
        for J=1:480                 %Inspect each point of the "xyz"  
            if Z(I,J)>threshold(N)  %mesh and compare the z-heights  
                pixels=pixels+1;    %to the threshold 
            else if isnan(Z(I,J))    
                missing(N)=missing(N)+1; 
                end                    
            end      
        end 
    end 
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    area=pixels*resoln*resoln;      %Conversion of pixel number to an  
                                    %area value using the resolution  
                                    %indicated in the "xyz" file. 

  
    area_ratio(N)=area/((640*480)*resoln^2); 
    area_perc(N)=100*area_ratio(N);        
                %Approximate percent of area  
                %covered by photoresist 

      
    %Coverage ratio rounded to 4 decimal places 
    CR=area_ratio(N); 
    CR=CR*10000; 
    CR=round(CR); 
    CR=CR/10000; 
    CR_disp=['CR=',num2str(CR)]; 

     
    %Plot created showing surface data, threshold, and calculated CR 
    threshold_plane=threshold(N)*ones(640,480); 
    figure(N),mesh(X,Y,Z),hold on,surf(X,Y,threshold_plane),hold off 
    set(gcf,'Units','normalized','OuterPosition',[0 0.03 1 0.97]); 
    set(gca,'fontsize',30) 
    title('Surface Profile and Threshold Plane','fontsize',30,... 
        'fontweight','bold') 
    xlabel('x [\mum]','fontsize',30) 
    ylabel('y [\mum]','fontsize',30) 
    zlabel('z [\mum]','fontsize',30) 
    zlimit=zlim; 
    zpos=zlimit(1)-(0.4*((zlimit(2)-zlimit(1)))); 
    text(700,100,zpos,CR_disp,'fontsize',50,'color','r',... 
        'fontweight','bold') 

     
    %Plots saved to appropriate file directory 
    save_name=[directory_save,'\mold',num2str(mold_number),'_m',... 
        num2str(N),'_matlab_run',num2str(run_number)]; 
    saveas(N,save_name,'bmp'); 

    
end 

  
area_perc 
threshold           %Results from code 
missing 
removed 

  
close all; 
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APPENDIX G – MATLAB® CODE TO FIND IDEAL COVERAGE RATIO 
 

%Ideal Coverage Ratio 

  
%Ideal coverage ratio determined by inspecting the printed  
%conicalmasks.  That is, the desired value was acquired by  
%distinguishing the inked areas from the non-inked areas. 

  
%Written by Justin Huber 

  
clear all; 

  
%User prompted for information relevant to code 
filename=input('Please input the appropriate directory: ','s'); 

  
[X,Y,Z,x,y,z,resoln]=read_zygo_data(filename);  
            %Function created by Chris Morgan to read a  
            %Zygo "xyz" file. 

                                 
pixels=0;               %Pixels are data points with ink 
missing=0;              %Counter for pixels containing "NaN" 
for I=1:640 
    for J=1:480                 %Each point of the "xyz" mesh inspected 

         
        if Z(I,J)>0             %Positive values of "z" are defined as 
            pixels=pixels+1;    %data points with ink 
        else if isnan(Z(I,J))    
            missing=missing+1; 
            else 
                Z(I,J)=0;       %Negative values assigned "0" to  
            end                 %to clarify the visual plot   
        end      

         
    end 
end 

  
area=pixels*resoln*resoln;      %conversion of pixel number to an area 
                                %using the resolution indicated in the 
                                %"xyz" file. 

  
inked_area_ratio=area/(((640*480)-missing)*resoln^2); 
ideal_CR=(1-inked_area_ratio) 
display=['Ideal CR = ',num2str(ideal_CR)]; 
                                %Since the non-inked areas would be  
                                %equivalent to the areas covered by  
                                %photoresist, then the percentage of  
                                %the mask area that is non-inked is  
                                %the value of interest. 
missing 
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%Data is plotted in an isometric view 
surf(X,Y,Z) 
set(gcf,'Units','normalized','OuterPosition',[0 0.03 1 0.97]); 
shading interp 
view(320,80) 
set(gca,'fontsize',20); 
title('Ideal Coverage Ratio','fontsize',35,'fontweight','bold'); 
xlabel('x [\mum]','fontsize',35); 
ylabel('y [\mum]','fontsize',35); 
zlabel('z [\mum]','fontsize',35); 
zlimit=zlim; 
zpos=zlimit(1)-(1.25*((zlimit(2)-zlimit(1)))); 
text(400,0,zpos,display,'fontsize',40,'color','r','fontweight','bold') 
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