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Abstract

Proteins are large, complex molecules that perform a vast array of functions in every liv-

ing cell. A proteome is a set of proteins produced in an organism, and proteomics is the

large-scale study of proteomes. Several high-throughput technologies have been developed in

proteomics, where the most commonly applied are mass spectrometry (MS) based approaches.

MS is an analytical technique for determining the composition of a sample. Recently it has

become a primary tool for protein identification, quantification, and post translational modifi-

cation (PTM) characterization in proteomics research. There are usually two different ways to

identify proteins: top-down and bottom-up. Top-down approaches are based on subjecting in-

tact protein ions and large fragment ions to tandem MS directly, while bottom-up methods are

based on mass spectrometric analysis of peptides derived from proteolytic digestion, usually

with trypsin.

In bottom-up techniques, peptide mass fingerprinting (PMF) is widely used to identify

proteins from MS dataset. Conventional PMF representatives such as probabilistic MOWSE

algorithm, is based on mass distribution of tryptic peptides. In this thesis, we developed a novel

network-based inference software termed NBPMF. By analyzing peptide-protein bipartite net-

work, we designed new peptide protein matching score functions. We present two methods:

the static one, ProbS, is based on an independent probability framework; and the dynamic one,

HeatS, depicts input dataset as dependent peptides. Moreover, we use linear regression to ad-

just the matching score according to the masses of proteins. In addition, we consider the order

of retention time to further correct the score function. In the post processing, we design two

algorithms: assignment of peaks, and protein filtration. The former restricts that a peak can

only be assigned to one peptide in order to reduce random matches; and the latter assumes

each peak can only be assigned to one protein. In the result validation, we propose two new

target-decoy search strategies to estimate the false discovery rate (FDR). The experiments on

simulated, authentic, and simulated authentic dataset demonstrate that our NBPMF approaches

lead to significantly improved performance compared to several state-of-the-art methods.
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Chapter 1

Introduction

1.1 Research Objective and Motivation

Proteins are a class of organic compounds that play many critical roles in all living organ-

isms. Proteins such as skin, hair, and muscles, can hold together, protect, and provide structure

to the body’s tissues and organs. Proteins are made up of hundreds or thousands of amino

acids, which are linked by peptide bonds. Additionally, there are 20 different types of amino

acids that are common in humans and animals [152].

Proteomics is the large-scale study of proteomes, and a proteome is a set of proteins pro-

duced in an organism, system, or biological context [147]. Proteomics can be used to investi-

gate post-translational modifications (PTMs) such as phosphorylation. Moreover, proteomics

can provide significant information for many biological problems. Consequently, several high-

throughput technologies have been developed to investigate proteomes in depth, where mass

spectrometry and micro arrays are the common methods used in proteomics.

Mass spectrometry (MS) is one of the most informative techniques for determining the

composition of a sample. It is true that for obtaining detailed structural information, MS cannot

compete with methods such as nuclear magnetic resonance and X-ray crystallography. How-

ever, MS is much easier to automate and use as a large-scale technique [83]. Recently, MS has

1
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become a primary tool for protein identification, quantification, and PTM characterization in

proteomics research.

There are usually two different approaches by MS to identify proteins: top-down and

bottom-up. In top-down proteomics, intact protein ions can be generated by electrospray mass

spectrometry, then introduced into a mass analyzer and subjected to gas-phase fragmentation.

Top-down MS has the ability to sequence intact proteins, especially for the analysis of PTMs.

In conventional bottom-up method, protein identification is based on mass spectrometric analy-

sis of peptides derived from proteolytic digestion, usually with trypsin. Here, proteolysis is the

breakdown of proteins into smaller peptides. Intact protein sequencing [107] was difficult due

to its large molecular weight, and requires more expensive MS instrumentation, which hinders

the implementation of this technique in a typical academic laboratory. However nowadays,

some top-down approaches are used in proteomics such as analyzing PTMs [65], mapping

intact protein isoforms [124], etc. Some researchers also combined bottom-up and top-down

mass spectrometry analysis of the histone PTMs, and their combinatorial patterns [18].

In traditional bottom-up approach, the proteins may first be purified by gel electrophore-

sis resulting in one or a few proteins in each proteolytic digest. Alternatively, in shotgun

proteomics, the crude protein extract (prepared by removal of cellular debris generated by

cell lysis) is digested directly, followed by one or more dimensions of separation of the pep-

tides by liquid chromatography (LC) coupled to MS [156]. There are usually two modes for

bottom-up approaches, the most widespread one is data-dependent acquisition (DDA), where

selected peptide precursors (usually are the peptide peaks with high intensity) following chro-

matographic separation are fragmented by MS/MS [74]. Another mode is data-independent

acquisition (DIA), where all ions within a selected m/z range (a small window that contains

several peptide peaks) are fragmented and analyzed in tandem MS. DIA is an alternative to

DDA, where a fixed number of precursor ions are selected and analyzed by tandem MS [156].

In wet-lab procedures for protein identification based on the most used DDA mode, a sam-

ple is first digested by enzyme. Then liquid chromatography and tandem mass spectrometry
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(LC-MS/MS) are used for analyzing the resultant peptides. This bottom-up approach attempts

to reconstruct the original protein sample based on identified peptides, since they can be sur-

rogates for their parent proteins (peptides can be used to identify proteins). In order to analyze

the dataset, we should have a protein sequence database that contains all target proteins. Each

MS/MS scan is used to identify a peptide-spectrum match (given a mass tolerance threshold)

from it; finally, these peptides are searched against the database to identify the proteins.

For tandem mass spectra in DDA mode, there are roughly four ways to interpret the dataset

and identify the fragmentation of proteins: sequence database searching, spectral library search-

ing, database-independent approach (de novo sequencing), and the hybrid interpretation algo-

rithms. In the first approach, peptide identification is performed by correlating experimental

MS/MS spectra with theoretical spectra predicted for each peptide contained in a protein se-

quence database (database search approach) [17, 26, 37, 97, 100, 103, 84]. In the second

approach, instead of searching acquired MS/MS spectra against theoretically predicted spec-

tra, one can assign MS/MS spectra to peptides by matching against a spectral library (spectral

library searching) [132, 27, 42, 63]. In the third approach, peptide sequences are extracted

directly from the spectra, i.e., without referring to a sequence database for help (de novo se-

quencing approach) [122, 82, 81]. The forth category is hybrid approaches, such as those based

on the extraction of short sequence tags (a piece of information about a peptide that contains

three to five amino acid residues) followed by “error-tolerant” database searching, where the er-

ror tolerant search of uninterpreted MS/MS data is a powerful way of finding additional peptide

matches [85, 121, 41]. Moreover, the different approaches can get bonus from the combination

of each other. For example, the performance of de novo sequencing can be greatly improved,

with the use of spectra pairs from the same peptide under different fragmentation modes [130].

Each of the approaches has its own strengths and weaknesses. The database searching ap-

proaches are good at “reidentifying” proteins and peptides, which is especially difficult in de

novo interpretation if the ion series are incomplete (some ions are missed). The advantage

of the de novo sequencing approach over the database search method is that it can make new
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discoveries. However, de novo analysis is computationally intensive and requires high-quality

MS/MS spectra. In the high-throughput proteomics environment, researchers are not always

interested in the peptides where there is no exact match in the database. As a result, the com-

putational analysis starts typically with database searching, and only then, if desired, de novo

sequencing tools are used to the remaining unassigned spectra [83]. Therefore, the combina-

tion of database searching and de novo sequencing is often used in some softwares, such as

PEAKS [82].

Certain challenges will arise when the above enzymatic digestion LC-MS/MS work flow

is applied to complex protein samples, such as plasma or a whole-cell lysate. For example,

after digestion a sample of proteins can produce a multitude of peptides, including expected,

missed cleavages (the allowing of internal trypsin cleavage sites), and PTMs. This will lead

to a peptide under-sampling problem, which means not all of the peptides can be identified.

Even with thorough sample preparation and chromatographic separation, the introductions of

peptides into the mass spectrometer are still faster than their isolations and fragmentations.

Therefore, the majority of peptides in the sample are often left unanalyzed. Even in another

alternative DIA mode, such as selected reaction monitoring (SRM) [3, 104] or accurate mass

and time (AMT) tags [116], under-sampling is unlikely eliminated completely.

To avoid the above problems, advances in LC and MS technologies make it possible to

identify peptides solely on their MS masses and retention time (RT) without MS/MS, where

RT is the amount of time a compound spends on the column after it has been injected. These

advances require instrumentation capable of high-accuracy measurements, LC systems with

sufficient RT precision, as well as precise prediction algorithms for relative RT [62, 94, 93].

This technique is analogous to traditional peptide mass fingerprinting (PMF), which has long

been used for protein identification separated by gel-electrophoresis [112]. PMF (also known

as protein fingerprinting) is an analytical technique to identify protein, where the unknown pro-

tein of interest is first cleaved into smaller peptides, whose absolute masses can be accurately

measured with a mass spectrometer [24].
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PMF has some advantages over MS/MS. For example, Matrix-Assisted Laser Desorption

Ionization Time-Of-Flight (MALDI-TOF) MS is significantly less expensive and faster than

MS/MS, followed by PMF in the protein identification [89]. Another application where PMF

is advantageous over MS/MS is in the host cell proteins (HCPs) detection. HCPs are those

produced or encoded by the organisms and unrelated to the intended recombinant product

[127]. These HCPs usually have small number of proteins, and their abundance is too low to

be identified by MS/MS. Therefore, we should use MS and PMF to detect HCPs. Additionally,

for some proteins such as histones, they would be cleaved to short peptides (3-4 amino acid

residues) after digestion, which are hardly to be identified by MS/MS. Consequently, MS and

PMF should be applied for them.

Although PMF has these advantages, due to the lack of specificity with a low-accuracy

dataset in peptide identification, PMF has been limited to low complexity samples. The reason

for the limitation is that each mass used for fingerprinting can typically be assigned to several

peptides from different proteins. Therefore in a complex sample, it becomes impossible to infer

potential presented proteins.

Traditional PMF was first introduced in 1993, and the representative was MOWSE [100].

Until now, the most popular PMF methods are Mascot (1999) [103], MS-Fit (1999) [24], Pro-

Found (2000) [137], and Aldente (2003) [125]. Among them, Mascot performed the best in

several studies [20, 109]. More recently, PMF was tackled as an optimization problem as-

suming each peptide peak can only be assigned to one protein (2010) [50]. In addition to the

peptide mass, the RT was also used to facilitate protein identification (2011) [17].

Mascot uses a proprietary scoring function based on the probabilistic MOWSE algorithm,

which calculates distribution of a tryptic peptide mass across an entire search database. Mascot

also computes a probability for each observed peak for a match (the probability represents that

whether the observed match is a random event), and the lowest one is reported as the best

match. In practice, an event is significant if it would be expected to occur at random with

a frequency of less than 5%. Therefore, whether it is also a significant match depends on
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the size of the database [103]. This means that searches in smaller protein databases, such

as bacterial, will generally have lower threshold scores for confidence than those conducted

in larger databases for higher organisms [86]. As a result, it is worthy of finding other PMF

solutions relies less on whether the size of database.

Another consideration for traditional PMF methods is that they assume the score of pep-

tide to be independent. Additionally, the score for each peptide can be calculated only from

the probability. As we know, statistics is based on the past knowledge, while each time the

MS dataset comes from proteolytic digests of complex protein mixtures. There should be a

relationship between these peptides and proteins. For example, when many peptides in a pro-

tein are matched, these matching peptides will be dependent, consequently all their scores for

this protein could be increased for more accurate computation. Therefore, by mining useful

information from current input datasets dynamically, we could get better performance.

When treating the relationship between peptides and proteins in the database as a bipartite

graph or network (peptides and proteins), we may use network analysis techniques to discover

important peptide-protein information between dependent peptides. Here we present novel

network-based inference methods for PMF, termed NBPMF [69], to carry out such analyses.

We also have two methods: ProbS, which is based on a probability framework; and HeatS, for a

dynamic analysis. We propose that with accurate mass measurements, and suitable RT predic-

tion algorithms, it is possible to identify proteins confidently in a digest of medium complexity

sample (not too complex with several thousand proteins) based on LC-MS characteristics alone.

We also use linear regression to adjust the matching score according to the masses of proteins.

In the post processing, we restrict that a peak can only be assigned to one peptide in order to

reduce random matches. Additionally, we try to filter out false positive proteins, assuming each

peak can only be assigned to one protein. Finally, we use target-decoy strategy for finding a

proper threshold to select the number of identified proteins. The experiments on simulated and

real data demonstrate that our NBPMF approaches lead to significantly improved performance

compared to several state-of-the-art methods [70].
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By avoiding MS/MS, our approaches not only share the advantage of analyzing an identical

set of peptide features like DIA, but also sample peptides more efficiently than DDA. This

software capable of identifying proteins in a yeast digest with results that are comparable to

common LC-MS/MS methods, if the sample is not too complex, such as with several hundred

proteins. Given the increasing prevalence of high mass accuracy instrumentation, this approach

should be widely applicable in the proteomics community, either alone or as a complement to

other techniques.

Our NBPMF software also has the ability to solve protein inference problem [96] with

MS/MS. For those identified peptides by MS/MS, if they are unique peptides, they could have

high weights; otherwise, they would have medium weights and be adjusted by our NBPMF

software. Besides the identified peptides from MS/MS, we also have the mass information for

unidentified peptides from MS, which would have the low weights in our system. Now, we

could combine the unique identified peptides, the other identified peptides, and the uniden-

tified peptides, to infer proteins. Consequently, their scores would be adjusted by NBPMF

approaches. As a result, these adjusted scores could be used for the protein inference, where

the performance has the possibility to be improved.

1.2 Chapter Outlines

This thesis is organized into the following Chapters:

Chapter 1 gives an introduction to our research objective and motivation.

Chapter 2 introduces some basic biology knowledge in bioinformatics, including DNA,

genes, chromosomes, RNA, amino acids, peptides, and proteins. We also give a general

summary on mass spectrometry (MS) instruments. Additionally, we compare several protein

identification methods by mass spectrometry, including top-down, peptide mass fingerprinting

(PMF), and tandem mass spectrometry.

Chapter 3 reviews the development of PMF, and formulates PMF problem mathemati-
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cally. Consequently, we introduce some state-of-the-art PMF methods, especially for MOWSE,

optimization-based PMF, and PMF by the order of retention time.

Chapter 4 presents the concept of recommender systems, and formulates network-based

inference approaches mathematically. We develop two novel network-based inference methods

for PMF: probabilistic spreading (ProbS), which is based on a probability framework; and heat

spreading (HeatS), for a dynamic analysis. Additionally, we did the experiments on simulated,

authentic, and simulated authentic dataset. The results demonstrate that our network based

inference approaches achieved improved performance.

Chapter 5 shows how to adjust the raw scores. The first method used is linear regression,

which is trying to tackle the bias between larger proteins and smaller proteins. The second ap-

proach is using the order of retention time with dynamic programming, for further adjustment

of the protein score.

Chapter 6 designs post processing algorithms to correct the scores with two approaches.

The first method is the assignment of peaks, which restricts that a peak can only be assigned

to one peptide in order to reduce random matches. The second approach is protein filtration,

assuming each peak can only be assigned to one protein.

Chapter 7 uses target decoy search strategy to estimated the false discovery rate (FDR) for

a score threshold. We review target-decoy search strategy for tandem mass spectrometry, and

introduce the concept of decoy database. Moreover, we design two new target-decoy strategies

for PMF, including random dataset and decoy dataset.

Chapter 8 draws the conclusion on this thesis. Finally, we give a discussion about the

possible research work in the future.



Chapter 2

Background

Bioinformatics is an interdisciplinary field that develops approaches and software tools to

understand biological data. As an interdisciplinary field of science, bioinformatics combines

Computer Science, Biology, Mathematics, and Engineering for analyzing and interpreting bi-

ological data [156].

In this chapter, we will review some basic biology knowledge, and hope this would facil-

itate the readers (especially those without a biology degree) to understand the biological data

processed in this thesis. We will introduce the following background knowledge, including

DNA, genes, chromosomes, RNA, amino acids, peptides, proteins. We also give a general

summary on mass spectrometry instruments. Consequently, we review several methods for

protein identification by mass spectrometry, such as top-down, peptide mass fingerprinting,

and tandem mass spectrometry.

2.1 DNA, Genes, and Chromosomes

All organisms consist of cells, and a cell in every multicellular organism has a cell nucleus.

This nucleus contains the deoxyribonucleic acid (DNA), the hereditary material. DNA is made

out of two long, twisted strands that contain complementary genetic information. A gene is

a segment of DNA that is passed down from parents to children and confers a trait to the off-

9
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spring. Genes are organized and packaged in units called “chromosomes”. A chromosome is

a DNA molecule with part or all of the genetic material (genome) of an organism. A genome

is the name for all genetic material that is characteristically present in one organism. There-

fore, all the different chromosomes of an organism together make up that organism’s genome.

Figure 2.1 illustrate the relationship of DNA, genes, and chromosomes, where DNA is neatly

packed into chromosomes. A telomere is a region of repetitive nucleotide sequences at each

end of a chromosome, which protects the end of the chromosome. A centromere is a part of a

chromosome that links sister chromatids or a dyad, where a chromatid is one of two identical

halves of a replicated chromosome. Histones are highly alkaline proteins found in eukaryotic

cell nuclei that package and order the DNA into nucleosomes (basic units of DNA packaging

in eukaryotes). Humans have 46 chromosomes, fruit flies have 8, and the flour beetle has 20.

Most animals are diploid, which means there are two copies of each chromosome. For exam-

ple, human cells have 22 different types of autosome (not a sex chromosome), each present as

two copies, and two sex chromosomes. This gives 46 chromosomes in total, 23 originate from

the mother and 23 originate from the father. These chromosomes contain all the hereditary

information in the form of double stranded DNA [149, 153].

DNA is a molecule that carries the genetic instructions used in the growth, development,

functioning and reproduction of all known living organisms and many viruses [156]. The DNA

in every nucleus of an organism is the same in all cells. The only exceptions are the sperm

cells and the eggs, they only contain half of the DNA that a normal cell contains. For example,

sperm and eggs in humans contain only 23 of the 46 chromosomes.

DNA is made up from four different nucleotides (bases). Nucleotides that compose DNA

are called deoxyribonucleotides, Figure 2.2 illustrates the structure of nucleotides. The three

components of a deoxyribonucleotide are a five-carbon sugar called deoxyribose, a phosphate

group, and a nitrogenous base, a nitrogen-containing ring structure that is responsible for com-

plementary base pairing between nucleic acid strands. The carbon atoms of the five-carbon

deoxyribose are numbered 1’, 2’, 3’, 4’, and 5’. A nucleoside comprises the five-carbon sugar
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Figure 2.1: DNA, genes, and chromosomes [153].
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and nitrogenous base. The deoxyribonucleotide is named according to the nitrogenous bases,

which is shown in Figure 2.3. Each nucleotide is composed of one of four nitrogen-containing

nucleobases — cytosine (C), guanine (G), adenine (A), or thymine (T) — a sugar called de-

oxyribose, and a phosphate group. Watson and Crick proposed the double helix model for

DNA, which is shown in Figure 2.4. In Figure 2.4 (c), the 5’ end is the one where carbon #5 is

not bound to another nucleotide; the 3’ end is the one where carbon #3 is not bound to another

nucleotide. The bases on one strand of DNA form base pairs with a second strand of DNA to

form the double helix. But the base pairs that can be formed are limited, according to base

pairing rules: adenine (A) can only form a base pair with thymine (T) and guanine (G) can

only form a base pair with cytosine (C). Therefore, when we know the sequence of bases on 1

strand of DNA, we also know the sequence of bases on the other strand of DNA. The order of

bases is referred to as the sequence. An example of a short sequence of a single strand of DNA

is: ATTGCTCAT. Because we know the sequence of this strand we also know which bases are

on the other strand: TAACGAGTA [150, 153].

Modern DNA sequencing technology such as Sanger sequencing [110], is the process

of determining the precise order of nucleotides within a DNA molecule. Therefore, we can

know the sequence of all the DNA in all the chromosomes of an organism. Recent advances

such as next-generation DNA sequencing (NGS) [111, 87], refers to non-Sanger-based high-

throughput DNA sequencing technologies. Nowadays, by using NGS an entire human genome

can be sequenced within a single day, although it is not perfect. In contrast, the previous Sanger

sequencing technology, used to decipher the human genome, required over a decade to deliver

the final draft [9]. For analyzing NGS data, some algorithms and software were developed for

genome assembly [54], read correction [91], and short read mapping [31].

Actually DNA is not identical for all individuals of a species, so the human genome that

is available online is not identical to an individual genome. But the most important parts

of the genome vary considerably less than the less important ones, which is influenced by

natural selection. Take for example eye color, it is not important for survival whether you have
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Figure 2.2: The structure of DNA nucleotides [150]. (a) Each deoxyribonucleotide is made
up of a sugar called deoxyribose, a phosphate group, and a nitrogenous base – in this case,
adenine. (b) The five carbons within deoxyribose are designated as 1’, 2’, 3’, 4’, and 5’.

Figure 2.3: The structure of nitrogenous bases [150]. Nitrogenous bases within DNA are
categorized into the two-ringed purines adenine and guanine and the single-ringed pyrimidines
cytosine and thymine. Thymine is unique to DNA.
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Figure 2.4: Watson and Crick proposed the double helix model for DNA [150]. (a) The sugar-
phosphate backbones are on the outside of the double helix and purines and pyrimidines form
the “rung” of the DNA helix ladder. (b) The two DNA strands are antiparallel to each other.
(c) The direction of each strand is identified by numbering the carbons (1 through 5) in each
sugar molecule.
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blue or brown eyes, so this is a less important character. The red blood cells that are able to

transport oxygen on the other hand are very important; people with red blood cells that are

unable to transport oxygen will not survive. Therefore, variation in a character as important as

the ability to transport oxygen is sort of “not tolerate”, which means this gene should be stable

and identical [153].

2.2 RNA

The central dogma of molecular biology is an explanation of the flow of genetic information

within a biological system. It was first stated by Francis Crick in 1958 [28]. To make protein

from DNA we first need to code RNA from DNA. Ribonucleic acid (RNA) is a polymeric

molecule essential in various biological roles in coding, decoding, regulation, and expression

of genes. RNA is synthesized in the nucleus and is very similar to DNA. The synthesis of RNA

also involves the use of bases, but in RNA synthesis no thymine (T) is used but uracil (U) is

used instead [153]. The sequence of RNA corresponds to the sequence of DNA from which

the RNA is synthesized, which is shown in Figure 2.5, where the central dogma is often stated

as“DNA makes RNA and RNA makes protein”.

Figure 2.5: Central dogma [153].

The synthesis of RNA from DNA is called transcription. In Figure 2.5 the RNA is being
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synthesized from the red strand of DNA, which serves as template. This strand of DNA starts

with the base T, and the RNA strand starts with the only base that can form a base pair with

this T, the A. This continues until the complete sequence of RNA is synthesized. Since the

red strand serves as template, the sequence of RNA will be identical to the blue strand of

DNA, only with the base U instead of the base T. Therefore, now we have a RNA strand.

After transcription the RNA is relocated to the cytoplasm of the cell, and the protein will be

synthesized from it. This is called translation, which means RNA is translated into protein

[153].

Recall that, a gene is a segment of DNA which is transcribed into messenger RNA (mRNA)

and then translated into a protein. Messenger RNA is a large family of RNA molecules that

convey genetic information from DNA to the ribosome. Genes consist of different regions,

include untranslated regions (UTRs) on both ends (5’ - end and the 3’ - end), exons and introns.

Figure 2.6 shows this situation. The UTRs are not translated into protein. These regions are

however involved in determining the activity of the gene. The exons are the only parts of the

gene that can be translated into protein, the introns are spliced out of the mRNA before it leaves

the nucleus [153].

Figure 2.6: Gene, untranslated region, exon, and intron [153].

When genes are “transcribed”, it means that the sequences of A,C,G and T’s are being

copied into RNA molecules with the same sequences but a U instead of a T. This process does

not discriminate between the different regions (UTR, exon and intron) of the gene, it simply
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copies. After copying a gene, the resulting RNA sequence is called a pre-mRNA. This is

because it still contains the introns, which are not used to make protein. These are removed

before the mRNA leaves the nucleus in a process called splicing, which is illustrated in Figure

2.7. Splicing is performed by the spliceosome, which is a complex of different RNA molecules

(small nuclear RNA or snRNA) and several proteins. It simply recognizes the boundaries of

exons and introns, folds up the intron, cuts it out and connects the 2 exons together. Next, a

5’ cap is added to the 5’ end of the mRNA, this increases the stability of the molecule once it

leaves the nucleus. Finally, a string of A’s is added to the 3’ end of the mRNA, which is called

the poly-A tail that is between 100 and 250 residues long. The poly-A tail can increase the

stability of the mRNA and prevents its degradation. Additionally, the poly-A tail allows the

mature mRNA molecule to be exported from the nucleus and translated into a protein [153].

Figure 2.7: Splicing [153].

In fact, it is possible to make different proteins by including or leaving out certain exons

of genes. This process is called alternative splicing, and it can produce different proteins from

the same gene. These different protein versions from the same gene are called isoforms. In this

way, our bodies can produce over 100,000 proteins from only 20,000 genes. Here the principle

is the same as splicing. But the only difference is, instead of just splicing the introns out, some

exons might also be spliced out. This leads to different proteins in Figure 2.8, one in which



18 Chapter 2. Background

all 3 exons are used and one in which only exon 1 and 3 are used. Therefore, one gene can

produce two proteins [153].

Figure 2.8: Alternative splicing [153].

Taking the human genome as example, less than 2% of the DNA sequence comprises

protein-coding exons. The rest of the genome is non-coding and was previously regarded

as junk DNA. However, recent studies have unveiled that these regions contain cis-regulatory

elements (CREs), such as promoters, enhancers, silencers, insulators, etc. CREs are regions

of non-coding DNA which regulate the transcription of nearby genes. CREs are vital compo-

nents of genetic regulatory networks, which in turn control morphogenesis, the development of

anatomy, and other aspects of developmental biology [156]. A genome-wide CRE discovery

method based on promoter sequences and gene co-expression networks was introduced in [43],

also some machine learning approaches include deep learning were developed for predicting

CREs [66].

RNA is quite similar to DNA in structure. However, RNA molecules are much shorter and

are typically single stranded, whereas DNA molecules are typically long and double stranded.

RNA is made of ribonucleotides. A ribonucleotide contains ribose (the pentose sugar), one

of the four nitrogenous bases (A, U, G, and C), and a phosphate group. Figure 2.9 shows the

structures of deoxyribose and ribose. Besides the double helix of DNA, the subtle structural

difference between the sugars gives DNA added stability, making DNA more suitable for stor-
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age of genetic information, whereas the relative instability of RNA makes it more suitable for

its more short-term functions. RNA molecules perform a variety of roles in the cell but are

mainly involved in the process of translation and its regulation. Even though RNA is single

stranded, most types of RNA molecules show extensive intramolecular base pairing between

complementary sequences within the RNA strand, creating a predictable three-dimensional

structure essential for their function. Figure 2.10 shows the difference between DNA and RNA

[150].

Figure 2.9: The difference between DNA and RNA [150]. (a) Ribonucleotides contain the pen-
tose sugar ribose instead of the deoxyribose found in deoxyribonucleotides. (b) RNA contains
the pyrimidine uracil in place of thymine found in DNA.

The three main types of RNA directly involved in protein synthesis are mRNA, ribosomal

RNA (rRNA), and transfer RNA (tRNA). In 1961, French scientists Francois Jacob and Jacques

Monod hypothesized the existence of an intermediary between DNA and its protein products,

which they called messenger RNA [108]. Evidence supporting their hypothesis was gathered

soon afterwards showing that information from DNA is transmitted to the ribosome for protein

synthesis using mRNA. The mRNA carries the message from the DNA, If a cell requires a

certain protein to be synthesized, the gene for this product is “turned on” and the mRNA is

synthesized through the process of transcription. In protein synthesis, rRNA and tRNA are

stable types of RNA. In prokaryotes and eukaryotes, tRNA and rRNA are encoded in the DNA,

then copied into long RNA molecules that are cut to release smaller fragments containing the

individual mature RNA species. Ribosomal RNA is the second type of RNA and a major con-
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Figure 2.10: The structures of DNA and RNA [150]. (a) DNA is typically double stranded,
whereas RNA is typically single stranded. (b) RNA can fold upon itself, with the folds sta-
bilized by short areas of complementary base pairing within the molecule, forming a three-
dimensional structure.
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stituent of ribosomes, composing up to about 60% of the ribosome by mass and providing the

location where the mRNA binds. The rRNA ensures the proper alignment of the mRNA, tRNA,

and the ribosomes; the rRNA of the ribosome also has an enzymatic activity and catalyzes the

formation of the peptide bonds between two aligned amino acids during protein synthesis [98].

Figure 2.11 shows how mRNA and tRNA are used in protein synthesis. Here, a ribosome

consists of two major components: the small ribosomal subunit, which reads the mRNA; and

the large subunit, which joins amino acids to form a polypeptide chain. Transfer RNA is the

third main type of RNA and one of the smallest, usually only 70-90 nucleotides long. It carries

the correct amino acid to the site of protein synthesis in the ribosome. The 2-dimensional and

3-dimensional structure of tRNA is shown in Figure 2.12. It is the base pairing between the

tRNA and mRNA that allows for the correct amino acid to be inserted in the polypeptide chain

being synthesized [150].

Figure 2.11: A generalized illustration of how mRNA and tRNA are used in protein synthesis
within a cell [150].

RNA molecules’ secondary structures (2-dimensional structure of RNA) could be repre-

sented as ordered labelled trees, and Figure 2.13 shows an example of the RNA GI:2347024

structure. Ordered labelled trees are trees where each node has a label and the left-to-right order

among siblings is significant. An ordered labelled forest is a sequence of ordered labelled trees.

Algorithms for the edit distance between two forests (trees) [135, 34] could be used to measure
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Figure 2.12: The 2-dimensional and 3-dimensional structure of tRNA [150]. A tRNA molecule
is a single-stranded molecule that exhibits significant intracellular base pairing, giving it its
characteristic three-dimensional shape.
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Figure 2.13: RNA structures and forest representation [102]. (a) A segment of the RNA GI:
2347024 primary structure [151], (b) its secondary structure, (c) its forest representation.

the global similarity of forests (trees). Recently the Forest (tree) Pattern Matching problem and

the Local Forest (tree) Similarity problem attracted much attention [102, 57, 136, 68, 71, 72].

2.3 Amino Acids, Peptides, and Proteins

Proteins, come from the Greek proteios, meaning “primary” or “holding first place”. They

are a class of organic compounds which perform a vast array of functions within every living

cell. Proteins such as skin, hair, and muscles, can hold together, protect, and provide structure

to the body of a multi-celled organism. In a form of enzymes, hormones, and antibodies, they

also catalyze, regulate, and protect the body chemistry. A protein is a polymer of amino acids,

linked by amide bonds. The length and specific amino acid sequence of a protein are major

determinants of its shape, and the shape of a protein is critical to its function. The primary

protein structure is simply the sequence of amino acids that make up the polypeptide chain.

Figure 2.14 depicts the primary structure of a protein.

The translation of RNA to protein is different than the synthesis of RNA from DNA. When
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Figure 2.14: The primary structure of a protein is the sequence of amino acids [150].

the DNA was transcribed into RNA, one base of DNA corresponded to one base of RNA, but

this one to one relation is not used in the translation to protein. During the translation, an

amino acid is added to the protein strand for every three bases in the RNA. Therefore, a RNA

sequence of 48 bases codes for a protein strand of 16 amino acids. A certain combination of

three bases always gives the same amino acids, and the three-nucleotide code means that there

is a total of 64 possible combinations, which is shown in Figure 2.15. This number is greater

than the number of amino acids, and a given amino acid is encoded by more than one codon

(a sequence of three DNA or RNA nucleotides). This redundancy in the genetic code is called

degeneracy. We take the first three bases from Figure 2.5 as example, which are AUG. The

first base is A, we look it up on the left side of the table, which is the 3rd row of the table. The

second base is U, we look it up on the top of the table, which is the 1st column and 3rd row.

There we see our third base and our combination of AUG codes for the amino acid Methionine

(Met or M). In this way we can translate the complete RNA sequence into the protein sequence

[153]. Whereas 61 of the 64 possible triplets code for amino acids, three of the 64 codons

do not code for an amino acid; they terminate protein synthesis, releasing the polypeptide

from the translation machinery. These are called stop codons or nonsense codons. Another
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codon, AUG, typically serves as the start codon to initiate translation, and it also specifies the

amino acid Methionine (Met or M). Then the reading frame, the way nucleotides in mRNA are

grouped into codons, for translation is set by the AUG start codon near the 5’ end of the mRNA.

Each set of three nucleotides following this start codon is a codon in the mRNA message [150].

From above description, DNA codons can be decoded unambiguously into amino acids, but it

is not possible to predict a specific DNA codon from an amino acid. The reason is that there

are 61 different DNA (and mRNA) codons specifying only 20 amino acids.

Figure 2.15: Messenger RNA codons and amino acids [144].

As the name implies, amino acids are organic molecules where a hydrogen atom, an amino

group (-NH2), and a carboxyl group (-COOH), are all bonded to the same carbon atom, the

so-called α carbon. The fourth group bonded to the α carbon varies among the different amino

acids and is called a residue or a side chain, represented in structural formulas by the letter

R. A residue is a monomer that results when two or more amino acids combine and remove

water molecules. The primary structure of a protein is a peptide chain, which is made of amino
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acid residues. The unique characteristics of the functional groups and R groups allow these

components of the amino acids to form hydrogen, ionic, and disulfide bonds, along with po-

lar/nonpolar interactions needed to form secondary, tertiary, and quaternary protein structures.

These groups are composed primarily of carbon, hydrogen, oxygen, nitrogen, and sulfur, in the

form of hydrocarbons, acids, amides, alcohols, and amines. Figure 2.16 provides a few exam-

ples illustrating these possibilities. Amino acids may chemically bond together by reaction of

the carboxylic acid group of one molecule with the amine group of another [150]. This reaction

forms a peptide bond and a water molecule, which is another example of dehydration synthesis.

Figure 2.17 illustrates the formation of a peptide bond, where a molecule of water is released

in this process. The 20 amino acid residue abbreviations, masses, and their compositions are

shown in Table 2.1. For example, amino acid residue alanine (Ala or A) has monoisotopic

mass of 71.03711 and average mass of 71.08, with the composition of C3H5NO.

Figure 2.16: Some amino acid and their structures [150].



2.3. Amino Acids, Peptides, and Proteins 27

Figure 2.17: Peptide bond formation is a dehydration synthesis reaction [150]. The carboxyl
group of the first amino acid (alanine) is linked to the amino group of the incoming second
amino acid (alanine).

A polypeptide is a linear chain of amino acid residues. Proteins are composed of one or

more polypeptides. In other words, peptides are “short” proteins. Short polypeptides, con-

taining less than 20-30 residues, are rarely considered to be proteins and are commonly called

peptides, or sometimes oligopeptides. The individual amino acid residues are bonded together

by peptide bonds and adjacent amino acid residues. The sequence of amino acid residues in a

protein is defined by the sequence of a gene, which is encoded in the genetic code. In general,

the genetic code specifies 20 standard amino acids. Shortly after or even during synthesis, the

residues in a protein are often chemically modified by post-translational modification (PTM),

which alters the physical and chemical properties, folding, stability, activity, and ultimately,

the function of the proteins [156].

In reality complex interactions between amino acids lead to three-dimensional forms, which

are essential for the functioning of the protein. Protein structure is the three-dimensional ar-

rangement of atoms in a protein molecule. Protein structure can be categorized in terms of

four levels: primary, secondary, tertiary, and quaternary. Figure 2.18 describes them. The

summaries below are based on definitions found in [115].

• Primary structure — the linear sequence of residues (amino acids) in a polypeptide

chain.

• Secondary structure — the arrangement of a polypeptide chain into more or less regular
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Table 2.1: The 20 amino acid residue abbreviations, masses, and compositions [146].

Name 3-letter code 1-letter code Monoisotopic Mass Average Mass Composition
Alanine Ala A 71.03711 71.08 C3H5NO
Arginine Arg R 156.10111 156.2 C6H12N4O

Asparagine Asn N 114.04293 114.1 C4H6N2O2

Aspartic Acid Asp D 115.02694 115.1 C4H5NO3

Cysteine Cys C 103.00919 103.1 C3H5NOS
Glutamic Acid Glu E 129.04259 129.1 C5H7NO3

Glutamine Gln Q 128.05858 128.1 C5H8N2O2

Glycine Gly G 57.02146 57.05 C2H3NO
Histidine His H 137.05891 137.1 C6H7N3O
Isoleucine Ile I 113.08406 113.2 C6H11NO
Leucine Leu L 113.08406 113.2 C6H11NO
Lysine Lys K 128.09496 128.2 C6H12N2O

Methionine Met M 131.04049 131.2 C5H9NOS
Phenylalanine Phe F 147.06841 147.2 C9H9NO

Proline Pro P 97.05276 97.12 C5H7NO
Serine Ser S 87.03203 87.08 C3H5NO2

Threonine Thr T 101.04768 101.1 C4H7NO2

Tryptophan Trp W 186.07931 186.2 C11H10N2O
Tyrosine Tyr Y 163.06333 163.2 C9H9NO2

Valine Val V 99.06841 99.13 C5H9NO

hydrogen-bonded structures, which has two basic elements:

– Alpha helix — spiral configuration of a polypeptide chain with 3.6 residues (amino

acids) per turn. The helix may be left-handed or right-handed, and the latter is more

common.

– Beta strand —two adjacent polypeptide strands that are bonded together. Two or

more strands may interact to form a beta sheet, which is a common motif of regular

secondary structure.

• Tertiary structure — the level of protein structure at which an entire polypeptide chain

has folded into a three-dimensional structure. In multi-chain proteins, the term tertiary

structure applies to the individual chains.
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• Quaternary structure — the fourth order of complexity of structural organization exhib-

ited by protein molecules, and refers to the arrangement in space of the complete protein,

without regard to the internal geometry of the subunits. Quatenary structure is possessed

only when the molecule is made of at least two subunits that are separable.

The three-dimensional structure of a protein is determined by techniques such as X-ray crys-

tallography and nuclear magnetic resonance (NMR).

In fact, proteins rarely act alone. Instead, most biological characteristics arise from com-

plex interactions among the cell’s numerous constituents, such as proteins, DNA, RNA, and

small molecules. Many times proteins team up into “molecular machines” and have intricate

physicochemical dynamic connections to undertake biological functions at both cellular and

systems levels [7]. Protein-protein interactions (PPIs) are the physical contacts of high speci-

ficity established between two or more protein molecules as a result of biochemical events

steered by electrostatic forces including the hydrophobic effect [156]. Many are physical con-

tacts with molecular associations between chains that occur in a cell or in a living organism

in a specific biomolecular context [33, 123]. A protein interaction network in yeast is shown

in Figure 2.19, which illustrates that a few highly connected nodes hold the network together.

In this figure, the largest cluster that contains ∼78% of all proteins is shown. Many com-

putational methods can predict protein-protein interactions, such as SPRINT, which is a new

sequence-based algorithm and tool [67].

2.4 Mass Spectrometry Instruments

Mass spectrometry (MS) is an analytical technique that ionizes chemical species and sorts

the ions based on their mass-to-charge ratio. In other words, a mass spectrum measures the

masses within a sample. MS is used in many different fields and is applied to pure samples as

well as complex mixtures [156]. Here, we will introduce the MS instruments, including mass

spectrometers, tandem mass spectrometers, and mass spectrometer configurations.
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Figure 2.18: Three-Dimensional Protein Structures. Image source: National Human Genome
Research Institute (NHGRI).
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Figure 2.19: Yeast protein interaction network [7]. A map of proteinprotein interactions in
Saccharomyces cerevisiae, which is based on early yeast two-hybrid measurements.
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2.4.1 Mass Spectrometers

Mass spectrometric measurements are carried out in the gas phase on ionized analytes. By

definition, a mass spectrometer consists of an ion source, a mass analyser that measures the

mass-to-charge ratio (m/z) of the ionized analytes, and a detector that registers the number of

ions at each m/z value. Figure 2.20 outlines a mass spectrometer, where the mass analyzer

and detector are always within the high-vacuum region. A bunch of molecules are first ion-

ized with the ionizer. Several ionization methods exist, but the most commonly used methods

in proteomics are electrospray ionization (ESI) and matrix-assisted laser desorption and ion-

ization (MALDI). In the second step, the ions are separated in the mass analyzer according to

their m/z. Ion sources can be combined with different mass analyzers, such as MALDI-time-of-

flight (TOF), ESI-ion trap (IT), and ESI-Fourier transform ion cyclotron resonance (FTICR).

The limitation of m/z is determined by the mass range of a mass analyzer. The m/z range in pro-

teomics can be typically from 50 to 4,000 u [48], where u is the unified atomic mass unit which

was defined as 1/12 the mass of an atom of 12C in 1961. Another unit of mass is dalton (Da),

which has been accepted as an alternate name for the unified atomic mass unit [16]. Finally,

the ions are detected by the detector and the m/z of the detected ions are calculated and stored

in a computer. Each type of ions with the same m/z will form a peak in the resulting dataset

(called a mass spectrum). Figure 2.21 shows an example. The intensity of a peak indicates the

ion counts detected by the detector at the m/z, which is related to the abundance of the corre-

sponding type of molecules in the original sample. However, because different molecules have

different ionization efficiencies, the abundances of two different molecules cannot be compared

solely by their peak intensities [1, 80, 83].

In mass spectrometry, four terms—mass resolving power, mass resolution, mass accuracy,

and mass precision—are used to characterize the performance of high-resolution, accurate-

mass mass spectrometers. The 2013 IUPAC recommendations [90] clear up the controversial

usage of mass resolution and mass resolving power. In 1997 IUPAC, resolving power in mass

spectrometry is defined as the ability of an instrument to distinguish between two peaks at m/z
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Ion Source Mass Analyzer Detector

A B C

Figure 2.20: Outline of a mass spectrometer [101]. (A) The ion source for electrospray ion-
ization is at atmospheric pressure, and the source for MALDI is under vacuum. (B) The mass
analyzer can be a TOF, an ion trap, a quadrupole, a FTICR, or a hybrid of the aforementioned
analyzers. (C) The detector is normally an electron multiplier.

Figure 2.21: Mass spectrum. (a) Exemplary mass spectrum. (b) Zooming in a peak shows
more details. In particular, each peak spans a width on the m/z direction [80].
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values differing by a small amount and expressed as the peak width in mass units (Deltam).

But mass resolving power is defined separately as m/∆m in a manner similar to mass resolu-

tion. These definitions of resolving power in mass spectrometry and mass resolving power are

contradictory, the former is expressed as a mass and the latter as a dimensionless ratio. Con-

sequently, the 2013 IUPAC definition for mass resolving power is a “measure of the ability of

a mass spectrometer to provide a specified value of mass resolution”, while mass resolution is

defined as the observed m/z value divided by the smallest difference (∆)m/z for two peaks that

can be separated: (m/z)/(∆)m/z. There are several ways to define the minimum peak separation,

and the two most widely used are the valley definition and the peak width definition. Figure

2.22 pictorially illustrates the two different definitions of resolution. In the valley definition,

∆m is the closest spacing of two peaks of equal intensity with the valley (lowest value of signal)

between them less than a specified fraction of the peak height. Typical valley values are 10%

or 50%. The value obtained from a 5% peak width is roughly equivalent to a 10% valley. In the

peak width definition, the value of ∆m is the width of the peak measured at a specified fraction

of the peak height, for example 0.5%, 5%, or 50%. Additionally, the latter is called the full

width at half maximum (FWHM), which is usually used in orbitrap technology [156]. Mass ac-

curacy is the closeness of the agreement between the result of a measurement and a true value

(exact mass). When a measurement is close to the true value we say it is accurate and when it is

not we say it is inaccurate. Mass precision is the closeness of agreement between independent

mass measurement results [155]. When a set of mass measurements of one ion species lie close

together we say the measurements are precise, and when not we say the measurements are im-

precise. Figure 2.23 illustrates these four terms: (a) Mass resolution R = m/∆m at FWHM;

(b) accuracy is the proximity of the experimental measurement (blue vertical line) to the exact

mass (red vertical line); precision is the repeatability of the measurement reflecting random

errors.

With the above definitions, in an example of a peak at m/z 400.0000, with a peak width of

0.002 FWHM, the mass resolution is R = m/∆m = 200,000. As a consequence, two peaks of
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Figure 2.22: The definitions of resolution [8]. (a) “10% valley”: two separate peaks of similar
intensities overlap at a peak height of 5% of their maxima, therefore summing to be 10% at the
overlap. (b) “full width at half maximum”: most typically used in conjunction with TOF and
FTICR mass spectrometers.

Figure 2.23: Some fundamental MS definitions [155]. (a) Mass resolution R = m/∆m at
FWHM, (b) accuracy and precision of mass determination, red vertical line is exact mass, and
blue vertical line is experimental measurement.
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equal height at m/z 400.0000 and 400.002 cannot be baseline resolved, which means we cannot

distinguish them. Only two peaks of equal height at m/z 400.0000 and 400.004 can be baseline

resolved, if the mass spectrometer delivers a peak width of 0.002 u (FWHM) at these given

m/z values [155]. Mass accuracy is normally measured by milli mass units (mmu) or parts per

million (ppm). The mmu is equivalent to 10−3 u. A more modern name for the mmu is the

milli dalton (mDa), since nowadays the unified atomic mass unit is more and more displaced

by the unit dalton. Consequently, the ppm is equivalent to 10−6. Then the mass accuracy can

be measured in Da, mDa, and ppm as

∆mi = (mi − ma) in Da

= (mi − ma) × 103 in mDa

= ((mi − ma)/ma) × 106 in ppm,

where ma is the exact or theoretical mass, mi is the measured or observed mass from MS,

and ∆mi can be positive or negative [13]. Based on the above formulas, for an ion on ma =

400.0000 Da, the mass accuracy for a measurement on mi = 400.0013 is ∆mi = 0.0013(Da) =

1.3(mDa) = 3.25(ppm). Additionally, if mi = 399.9987, we will have ∆mi = −0.0013(Da) =

−1.3(mDa) = −3.25(ppm).

2.4.2 Tandem Mass Spectrometers

A tandem mass spectrometer is needed to obtain tandem mass spectra (or MS/MS spectra).

A tandem mass spectrometer has two mass analyzers (or two sequential analyses in the same

analyzer). The first analyzer selects ions at a certain m/z window (usually a very small win-

dow so that only copies of the same ion are selected). This selected peptide ion is called the

precursor ion or the parent ion. MS/MS can be one of the two types: tandem-in-space and

tandem-in-time.

In tandem-in-space MS, the first mass analyzer separates and isolates the precursor ion

of interest. The isolated ion is transmitted to the collision cell where it is fragmented. The
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fragments are transmitted and analyzed in the second mass analyzer (tandem in space). In

tandem in time, the precursor ion selection, fragmentation, and the separation of the fragments

all occur in one mass analyzer at different time-points. The precursor ions with the highest

intensity and with a charge state of +2 or more are generally preferred because they give the

best fragmentation spectra. The isolated precursor ion is then fragmented by different methods

[83].

Finally, the fragment ions are measured as usual to form a MS/MS spectrum. The MS/MS

spectrum of peptides contains sequence information. Figure 2.24 (a) illustrates the possible

fragmentation sites of a peptide. For example, when the fragmentation occurs at the peptide

bond (between C and N atoms), The b-ions appear to extend from the amino terminus, some-

times called the N-terminus (for example, b2), and y-ions appear to extend from the carboxyl

terminus (for example, y2), or C-terminus. The subscript k of the yk ion indicates the number of

residues in the fragment. Fig.2.24 (b) shows an annotated MS/MS spectrum. Because amino

acid residues have different mass values (except for Leucine and Isoleucine), the m/z values of

the fragment ions can be used to identify peptides [80].

Figure 2.24: Tandem mass spectrum [80]. (a) Fragmentation of a four-residue peptide in
MS/MS. The fragmentation can happen at each bond on the peptide backbone, resulting in
different fragment ion types. (b) Annotated CID MS/MS spectrum of a peptide GLPYPQR.
CID produces mostly y and b ions.
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2.4.3 Mass Spectrometer Configurations

Each of the three aforementioned components (the ionizer, the mass analyzer and the de-

tector) of a mass spectrometer can be made with different technologies, causing different prop-

erties of the data. In proteomics MS/MS dataset analysis, one cares mostly about the ionizer

type, the mass analyzer type, and the peptide fragmentation method.

Two types of ionizers are commonly used in proteomics. These are matrix-assisted laser

desorption/ionization (MALDI) and electrospray ionization (ESI). The difference for the ions

produced is that MALDI produces singly charged ions (z = 1) and ESI produces singly and

multiply charged ions (z ≥ 1). ESI ionizes the analytes out of a solution and is therefore

readily coupled to liquid-based (for example, chromatographic and electrophoretic) separation

tools. Figure 2.25 illustrates generic MS-based proteomics experiment. MALDI sublimates

and ionizes the samples out of a dry, crystalline matrix via laser pulses. Integrated liquid-

chromatography ESI-MS systems (LC-MS) are preferred for the analysis of complex samples,

whereas MALDI-MS is normally used to analyse relatively simple peptide mixtures [1, 80].

Five basic types of mass analysers are commonly used in proteomics research. These are

quadrupole (Q), ion trap (linear ion trap, LIT/LTQ; quadrupole ion trap, QIT), time-of-flight

(TOF), Fourier transform ion cyclotron (FTICR), and orbitrap analysers. The difference in

mass analyzers mostly affects the resolution and mass accuracy of the data. Normally the order

of performance in terms of resolution and accuracy is ion trap ≈ quadrupole < TOF < FTICR

≈ orbitrap. Table 2.2 summarizes their analytical characteristics and capabilities [48]. These

analysers can be stand alone or, in some cases, put together in tandem to take advantage of

the strengths of each other [1, 80]. Figure 2.26 illustrates several mass spectrometers used in

proteome research.

In our wet-lab experiments, we use Thermo Scientific Orbitrap Elite mass spectrometer,

which combines a dual-pressure linear ion trap with a high-field Orbitrap mass analyzer, to

create the ultimate analytical instrument. The schematic of the Orbitrap Elite Hybrid MS is

demonstrated in Figure 2.27, where the mass resolution is >240,000.
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Figure 2.25: Generic MS-based proteomics experiment [1]. The typical proteomics experiment
consists of five stages.

Table 2.2: The comparison of typical performance characteristics of commonly used mass
spectrometers in proteomics

Instrument Mass resolution Mass accuracy (ppm) m/z range Scan rate
QIT 1,000 100-1,000 50-2,000; 200-4,000 Moderate
LTQ 2,000 100-500 50-2,000; 200-4,000 Fast
TOF 10,000-20,000 10-20; <5 No upper limit Fast
FTICR 50,000-750,000 <2 50-2,000; 200-4,000 Slow
LTQ-Orbitrap 30,000-100,000 <5 50-2,000; 200-4,000 Fast
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Figure 2.26: Mass spectrometers used in proteome research [1]. The left and right upper
panels depict the ionization and sample introduction process in ESI and MALDI. The different
instrumental configurations (a→ f ) are shown with their typical ion source.

Figure 2.27: Schematic of the Orbitrap Elite Hybrid MS [145].
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There are a few fragmentation methods for tandem mass spectrometers: collision induced

dissociation (CID), collision activated dissociation (CAD), infrared multiphoton dissociation

(IRMPD), blackbody infrared dissociation (BIRD), sustained off resonance irradiation colli-

sion induced dissociation (SORI-CID), electron capture dissociation (ECD), surfaceinduced

dissociation (SID), electron transfer dissociation (ETD), and higher-energy C-trap dissociation

(HCD). CID was traditional most used for fragmentation, while a more recent type is HCD.

These approaches tend to fragment at different sites of a peptide, and often generate different

types of fragment ions and therefore significantly different spectra for the same peptide [80].

One cannot be ignorant to the characteristics of the different detectors in analyzing MS

data. For example, detector saturation effects (the state reached when an increase in applied

external magnetic field cannot increase the magnetization of the material further) can skew the

near Gaussian mass peaks of intense ions downward, so the experimental mass of intense ions

will have negative mass error. An overview of the different instrument techniques that can be

used is summarized in Table 2.3 [83], where the instrumental methods can be combined in

many different ways.

Table 2.3: Overview of different instrument settings

Ion sources Mass analyzers Fragmentation Detectors
MALDI
ESI
ESSI
SELDI
FAB
PD
LDI

Quardrupole
TOF
Ion trap
FTICR
Orbitrap

CID/CAD
ECD
ETD
HCD

Bottom
up

IRMPD
BIRD
SID

Top
down

Faraday cup
Scintillation counter
Electron multiplier
HED
MCP
FTICR

2.5 Protein Identification by Mass Spectrometry

Protein identification is a key and essential step in the field of proteomics. Mass spectrom-

etry has emerged as the primary tool for protein identification, which is by far the most popular
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application of mass spectrometry in proteomics today [19].

There are usually two different methods to identify proteins: top-down and bottom-up.

For top-down sequencing, intact proteins are fragmented directly into the mass spectrometer.

For bottom-up technologies, protein identification is based on mass spectrometric analysis of

peptides derived from proteolytic digestion, usually with trypsin.

In the bottom-up approaches for tandem mass spectra, there are two modes for protein iden-

tification: data-dependent acquisition (DDA) and data-independent acquisition (DIA). The

most widespread mode is DDA, where selected peptide precursors following chromatographic

separation are fragmented by MS/MS [74]. DIA is a method of molecular structure determina-

tion where all ions within a selected m/z range are fragmented and analyzed in a second stage of

tandem MS [156]. Tandem mass spectra are acquired either by fragmenting all ions that enter

the mass spectrometer at a given time (called broadband DIA) or by sequentially isolating and

fragmenting at the selected ranges of m/z.

In this section, we will review several different approaches for protein identification: top-

down MS, peptide mass fingerprinting and bottom-up tandem mass spectra. For the tandem

mass spectra in DDA mode, there are roughly four ways to interpret the dataset and identify the

fragmentation of proteins: sequence database searching, spectral library searching, database-

independent approach (de novo sequencing), and the hybrid interpretation algorithms.

2.5.1 Top-Down Protein Identification

Top-down mass spectrometry is an emerging approach for the analysis of intact proteins.

Top-down MS offers the ability to sequence intact proteins, especially for the analysis of PTMs,

but is not yet a high-throughput method [114]. In the top-down approach, intact proteins are

introduced into the mass spectrometer, so important information about combinatorial PTMs

(individual histone PTMs and their combinatorial patterns) is retained. A key step in enabling

top down approaches has been the ability to assign tandem mass spectrometer product ion

identities, which can be done either via high resolving power or through product ion charge
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state manipulation [107].

The work flows of top-down and bottom-up approaches for protein analysis are shown in

Figure 2.28. The mass range of top-down has been extended to proteins as large as 229 kDa

[49], and one can detect increasingly larger numbers of intact proteins in a single analysis. But

top-down technique is still mainly for analyzing single purified proteins or simple mixtures,

while bottom-up methods are used to the analysis of complex mixtures and proteins. Although

the bottom-up approach offers swift identification of a protein by combining tandem MS dataset

and database searching, there are some drawbacks for it. For example, one cannot completely

recover peptides from protein digestion for MS measurements, leading to information loss.

Top-down sequencing can overcome these information-loss problems. The isoforms can be

separated by the spectrometer, because measurement of the intact proteins gives information

for possible protein isoforms provided they have sufficiently different masses. Given that the

analyst has selected the protein of interest according to its m/z prior to activation, as a MS/MS

method, top-down sequencing always makes the connection between the intact protein and the

fragments [29].

2.5.2 Protein Identification by Peptide Mass Fingerprinting

Peptide mass fingerprinting is an effective way of identifying, e.g., gel-separated or LC-MS,

proteins, by matching experimentally obtained peptide mass dataset against large databases.

The experimental dataset used in the PMF-based protein identification strategy are mass lists

derived from matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS spec-

trum of an enzymatic-digested protein. Also, theoretical spectra each comprising the list of

masses expected by an enzymatic digestion of each protein sequence in the reference database

are provided [22]. Additionally, experimental dataset are used as query in PMF search pro-

grams. Consequently, each protein in the database is given a score, dependent on how well

the theoretical mass list correlates with the experimental data. Those with the highest score

are then most likely to be present in the sample in question. This sounds like a simple task if
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Figure 2.28: The comparison of top-down and bottom-up workflows [29].

the protein in question is present in the database. However, several phenomena influence the

matching of the experimental dataset to the theoretical ones, making PMF a method that is not

always reliable. This can happen for many reasons, such as unexpected PTM, splice variants,

individual sequence variants (single nucleotide polymorphisms, etc), or omissions and errors

in the database [86]. In addition, only peptides with a mass within the recorded mass range will

be observed, e.g., between 700 and 3,500. Also, additional signals can arise from unwanted

components in the sample, e.g., keratin from hair and dust. Figure 2.29 lists additional reasons

why a complete match of all peaks should not be expected [83].

Various software tools can be used for PMF searches [103, 24, 137, 125]. The outcome is

most often a ranked list of proteins of which the top hit represents the protein/proteins most

likely to be present in the samples analyzed. Many of the algorithms behind these search tools

take into account features like the size of the database, the distribution frequency of a particular

peptide mass within a given protein size, and the distribution of the mass accuracy. The user
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Matching
peptides

Experimental data Theoretical data

• Chemically modified peptides
• Unpredictable peptides due to 

degradation of the protein (C- 
or N-terminal)

• Adducts
• Contaminating peptides
• Unspecific cleavage or #missed 

cleavages > # allowed missed 
cleavages

• Amino acid variation
• Alternative slicing

• Wrongly prediction of open 
reading frame (ORF)

• Amino acid variation
• Low ionisation efficiency
• Suppression effects (ionisation 

of some components in expence 
of other)

• Near-identical masses resulting 
in overlapping isotopic patterns

• Theoretical masses falling 
outside of the mass range

Figure 2.29: The Venn diagram of matching peptides [83]. There are several reasons why a
perfect match should not be expected, when experimental peptide mass fingerprinting dataset
is compared to the theoretically predicted dataset.
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can also set some parameters, such as the number of missed cleavages sites allowed (there may

be some sites that should be cleaved by the reagent that are not completely cleaved during the

course of the experiment), the modifications expected, the sequence database against which the

dataset should be searched, and the mass accuracy. The specificity of the search is determined

by these parameters. For example, if the mass tolerance is two times higher than the true mass

accuracy of the data, then the specificity of the search is low, and the risk of having false-

positive hits is high. On the other hand, if the mass tolerance is two times lower than the true

mass accuracy of the data, then the specificity of the search is high, and the search program

will not be able to report the true-positive hit [83]. The next step is to decide on a threshold:

proteins whose scores are above this threshold are said to be identified. The choice of a suitable

threshold is difficult because setting a threshold too low will incorrectly identify a number of

proteins (false positives), while setting the threshold too high may result in the correct protein

not being identified (false negative) [86].

One of the limitations of PMF is its sensitivity to database size. There is a direct effect

on the statistical confidence a PMF algorithm can ascribe to protein identification as the search

database grows. A larger database has an elevated chance of the experimental masses randomly

matching theoretical peptide masses in these databases, thereby decreasing the confidence of

protein identifications using PMF [86].

2.5.3 Protein Identification by Tandem Mass Spectrometry

In the last few years, the shotgun (bottom-up) proteomics method [74, 47, 128, 6, 106]

has become the approach of choice for identifying and quantifying proteins in most large-scale

studies [1]. This strategy is based on digesting proteins into peptides followed by peptide

sequencing using tandem mass spectrometry (MS/MS) and automated database searching. The

shotgun method is also called peptide fragment fingerprinting (PFF). Compared with methods

of analysis based on extensive protein separation prior to MS-based identification, such as two-

dimensional (2D) gels [46], LC-MS/MS (shotgun) proteomics allows higher dataset throughput
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and better protein detection sensitivity, and it is presently the method of choice for identifying

proteins in most large-scale studies. Our research is also based on shotgun proteomics, which

involves several major steps schematically illustrated in Figure 2.30.

Figure 2.30: Overview of shotgun proteomics [95]. 1) Sample proteins are digested into pep-
tides using enzymes such as trypsin. Resulting peptide mixtures are then separated using a LC
system coupled online to a mass spectrometer. 2) Peptides are subjected to MS/MS analysis
that results in the acquisition of MS/MS spectra. 3) The correct assignment of MS/MS spectra
to peptide sequences is the first step in proteomic dataset processing.

In the shotgun proteomic approach, the first step is the digestion of sample proteins into

peptides using proteolytic enzymes such as trypsin. The resulting peptide mixtures can be

very complex, since each protein produces multiple peptides after digestion. Peptide samples

are then separated by one- or multidimensional liquid chromatography (LC) and subjected to

MS/MS analysis to sequence the peptides [118]. In quantitative proteomics, peptides are also
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encoded with a stable isotope tag, which can determinate the relative protein abundances with

respect to a control sample [1]. Peptides are then ionized, and selected ions are subjected

to sequencing to produce signature MS/MS spectra. The MS/MS dataset acquisition process

consists of two stages. The first stage involves reading all peptide ions that are introduced

into the instrument at any given time (MS spectrum). In the second stage, some selected

peptides called precursor or parent ions are fragmented into smaller pieces (fragment ions) in

the collision cell of the mass spectrometer in the process termed CID. The acquired MS/MS

spectrum is thus a record of mass-to-charge ratios (m/z values) and intensities of all the resulting

fragment ions generated from an isolated precursor ion [23]. One can identify the amino acid

sequence of the peptide that produced it, which is from the fragmentation pattern encoded by

the MS/MS spectrum. Figure 2.31 demonstrates an example of a tandem mass spectrometry

spectrum. After the desired amount of MS dataset is collected, the effort shifts toward the

computational analysis [83].

Figure 2.31: An example of a tandem mass spectrometry spectrum [83].

The computational analysis typically starts with the identification of the peptides that give
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rise to the acquired MS/MS spectra. The peptide identification strategies can be roughly clas-

sified into several categories, which is shown in Figure 2.32. In order to identify peptide, one

can correlate acquired experimental MS/MS spectra with theoretical spectra predicted for each

peptide contained in a protein sequences database (database search approach), or against spec-

tra from a spectral library (spectral library searching). Alternatively, peptide sequences can

be extracted directly from the spectra, i.e., without referring to a sequence database for help

(de novo sequencing approach). There are also hybrid approaches, such as those based on the

extraction of short sequence tags (35 residues long) followed by database searching [95].

Figure 2.32: Peptide identification strategies [95]. Peptide identification can be performed by
database search approach, spectral library search, de novo sequencing, and hybrid approaches.
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Sequence Database Searching

In high-throughput studies, searching MS/MS spectra against protein sequence databases

is the most efficient peptide identification method. The most popular software packages for

this task include Mascot [103, 14], PEAKS [82], Tandem [26], Sequest [37, 4], Ommsa [44],

and Phenyx [25]. Slightly modified procedure is used for different packages in the dataset

analyses. But all of them include two major steps: first, each MS/MS spectrum is used to

identify a peptide sequence from the database; secondly, the peptides are grouped together to

identify the proteins from the database.

In the first step of peptide identification, a scoring function is used to measure the quality of

the matching between a given peptide and the MS/MS spectrum. All peptides in the database

with proper mass values are scored using the spectrum and the scoring function, and the highest

scoring peptide is output as the answer. A good scoring function is of primary importance

for the accuracy of peptide identification. Given a spectrum and a peptide, most software

computes the theoretical m/z values of the fragment ions of the peptides, and matches the peaks

of the spectrum with the m/z values. In the scoring function, the intensities and the numbers

of the matched peaks, as well as the mass errors of the matches are usually taken into account.

Because a certain type of mass spectrometer usually produces higher intensity peaks for certain

ion types, then the fragment ion types are also important [80].

One cannot directly compare the peptide identification scores of different search engines. A

method was suggested to “normalize” different scores by using the significance of the matching

[38]. During the database searching, a “survival function” is trained by the suboptimal matches

to the input, which is then used to convert the matching score to a significance value.

Even with a good scoring function, false discoveries still exist. One wants to know the false

discovery rate (FDR) at certain score threshold, then he can determine which analysis results

are trustworthy and the others discarded. Currently, the so-called decoy database method is

commonly used in this result validation step [35]. In such a method, one can generate a ran-

dom database (the decoy) with similar statistical properties as the target database. Moreover,
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the peptide identification algorithm is done both on the target and decoy database. Conse-

quently, one can estimate the FDR at a given score threshold by the number of matches in

the decoy database with scores above this threshold. Sometimes decoy database will be used

incorrectly, Zhang and Xin et al. pointed out that there were three general pitfalls in FDR and

gave corresponding solutions in their PEAKS DB [134].

After all peptides are identified, it is still a challenging problem for the protein identifica-

tion. One reason is that not all peptides of a protein can be identified. A protein is usually true,

if two or more peptides of it are identified with high confidence. However, for a protein with

only one identified peptide, it is difficult to judge whether it is a false discovery. In protein iden-

tification, this is commonly known as the “one hit wonders”. Consequently, the combination of

the MS and MS/MS spectra was proposed to improve this situation [78]. Another reason is that

each identified peptide may be shared by a few proteins in the database. This is often caused by

the homologous proteins existing in the database. Therefore, it is difficult to determine which

of the proteins sharing the same peptides are real ones. The relationship between the identified

peptides and the proteins in the database can be imagined as a bipartite graph. Figure 2.33

illustrates a simplified example of a protein summary list, where shared peptides are marked

with an asterisk. In this figure, the proteins that cannot be conclusively identified are shown at

the end of the list [96]. It is a difficult problem to infer the correct proteins from this bipartite

graph and researchers were aiming to deal with this situation [96].

In proteomics, protein identification is the most mature application of MS. However, the

current software is still not perfect for the aforementioned reasons. Additionally, for some

instruments only 5 ∼ 50% of the MS/MS spectra could be confidently mapped to the peptides in

the database [59]. There are a few reasons for this low utilization of the data. The largest reason

is perhaps due to noise spectra, which may be caused by poor fragmentations of the peptide

ions. The containing of these noise spectra not only increases the computational complexities,

but also increases the FDRs of the results. The PTMs in the peptides is another reason for

the low utilization of the dataset. In practice, a significant portion of peptides in the digested
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Figure 2.33: A simplified example of a protein summary list [96]. Peptides are apportioned
among all their corresponding proteins, and the minimal list of proteins is derived that can
explain all observed peptides. Proteins that are impossible to differentiate on the basis of
identified peptides are collapsed into a single entry (F and G) or presented as a group (H, I, and
J).
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samples are modified, which could change mass for some residues. Usually, both fixed and

variable PTMs are allowed in a protein identification software package. Consequently, PTMs

increase the complexity of the protein identification significantly [80].

Peptide sequence database searching can also be used to identify mixture spectra (the con-

current fragmentation of multiple precursors), which are observed quite frequently in mass

spectrometry experiment [76]. LC-MS/MS is also the primary approach for disulfide bond

analysis. A new computational method termed DISC was proposed, by matching an input

MS/MS spectrum against the putative disulfide linkage structures, which are hypothetically

generated from a protein database [77].

Spectral Library Searching

Instead of searching acquired MS/MS spectra against theoretically predicted spectra, one

can assign MS/MS spectra to peptides by matching against a spectral library [132, 27, 42, 63].

The spectral library is compiled from a large collection of experimentally observed MS/MS

spectra identified in previous experiments. By using a certain mass tolerance window to re-

strict the set of candidate spectra, a newly acquired MS/MS spectrum can be compared to

library spectra to determine the best match [119]. Existing spectral library search tools include

Bibliospec [42], X! Hunter [27], and SpectraST [63]. The National Institute of Standards and

Technology (NIST) spectral libraries are available for multiple organisms, and contain dataset

from a variety of MS instrument types [95].

The spectral library matching approach performs better than traditional sequence database

searching in terms of speed, error rates, and sensitivity of peptide identification [63]. Another

advantage is that statistical models developed for assessing the validity of the peptide identi-

fications by database searching are adaptable to this method [63]. As a drawback, only those

peptides can be identified whose spectra were previously identified and entered into the library.

Consequently, the existing libraries are incomplete, especially regarding peptides from low

abundance proteins and peptides containing PTMs. At present, the spectral library matching



54 Chapter 2. Background

tools remain underutilized and mostly used as an additional step in multi-stage strategies [95].

De Novo Sequencing

The spectral library and sequence database searching approaches require the target spectra,

peptides, and proteins to be in the database. However, this prerequisite is often not satisfied

due to many reasons, including inferior gene prediction from the genome, incomplete genome

sequencing, and alternatively spliced genes, etc. Under those situations, de novo sequencing

is the only choice to identify the peptides. A de novo sequencing algorithm inputs a MS/MS

spectrum, and outputs a peptide sequence that best explains the spectrum. Additionally, the

peptide sequence is only constructed by the algorithm from the MS/MS spectrum, without any

protein database [80].

When database searching, the algorithm for a scoring function is simple, which can enu-

merate each peptide in the database with proper mass values. While this is not the case any

more for de novo sequencing. It is exponential time for enumerating every possible amino

acid combinations with a given total mass value. Therefore, designing an efficient algorithm

to construct the optimal peptide sequence is very important for de novo sequencing. Conse-

quently, some software packages were developed for de novo sequencing include PEAKS [82],

PepNovo [40] and Lutefisk [122].

One can interpret the spectrum manually by examining the ion ladders. A series of high

intensity peaks are named ladders, if the m/z difference between every adjacent pair of peaks

approximately equals the mass of an amino acid residue. In a CID MS/MS spectrum, one

can observe all the y-ions (or b-ions), if the peptide fragmentation is ideal. Additionally, their

peaks should form a complete series of y-ions (or b-ions) ladders. Consequently, the amino

acid sequence of the peptide can be derived from the mass differences between adjacent peaks

in the ladders.

The imperfect dataset is the largest reason for the difficulties of de novo sequencing. Firstly,

only partial sequence information can be derived if the ion ladders are incomplete. Both the
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N-terminal ion (e.g., y-ion) and C-terminal ion (e.g., b-ion) ladders are examined by most al-

gorithms to improve the sequencing accuracy and coverage. Additionally, some of the internal

fragment ions are utilized by the PEAKS algorithm to further improve the accuracy [82]. Sec-

ondly, there are much more peaks than just the N-terminal and C-terminal ion ladders. In fact,

many of these peaks are from other fragmentations of the peptide. Consequently, the algo-

rithm can misinterpret some of the other peaks as the peaks in the N-terminal or C-terminal ion

ladders, which would cause errors in the result [80].

Peptide de novo sequencing is significantly harder than peptide identification with a database.

In order to derive the complete peptide sequence, it requires much higher quality dataset. It is

desirable to derive a partial sequence tag, when the complete peptide sequencing is not possi-

ble. Many de novo sequencing packages such as Lutefisk [122] outputs partial sequence tags

when they are unsure about some amino acids. Additionally, PEAKS software computes a “lo-

cal confidence score” for each amino acid in its de novo sequencing result [82]. Consequently,

a sequence tag is formed from the remaining amino acids, by removing the amino acids below a

confidence threshold. Recently, many new de novo sequencing methods have been developed,

with the improvements in the accuracy of MS/MS and development of alternative fragmenta-

tion modes of MS/MS (compared to traditional CID spectra) [129].

Glycosylation is one of the most important and prevalent PTMs in proteomics, and a heuris-

tic algorithm for glycan de novo sequencing from HCD MS/MS spectra of N-linked glycopep-

tides was proposed to identify the glycopeptides [120]. In a typical wet-lab mass spectrometry

experiment, mixture spectra occur quite frequently, and de novo sequencing can also be used

in the peptide identification for mixture spectra [75].

Hybrid Approaches

The combination of the elements from de novo sequencing and database searching is an-

other approach. One common way is to start by extracting, for every acquired MS/MS spec-

trum, a set of short “sequence tags” [85] which are likely to be a part of the true peptide
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sequence. A tag is a short amino acid sequence with a prefix mass and a suffix mass values that

designate its position within the peptide sequence. Additionally, the database search for each

MS/MS spectrum is only performed against those candidate database peptides which contain

one of the sequence tags extracted from that spectrum, thus reducing the number of compar-

isons and the search time [95]. Hybrid approaches are particularly useful for the identification

of PTM peptides [30]. Additionally, the combination of different approaches can improve the

performance of each other. For example, with the use of spectra pairs from the same peptide

under different fragmentation modes (HCD and ETD), the performance of de novo sequencing

can be significantly improved [130].
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State-of-the-Art Peptide Mass

Fingerprinting

Peptide mass fingerprinting (PMF) is an analytical technique for protein identification,

where the unknown protein of interest is first cleaved into smaller peptides, whose absolute

masses can be accurately measured with a mass spectrometer.

In this chapter, we will introduce the development of PMF. Additionally, we formulate

PMF problem mathematically, and these definitions and notations will be used in this thesis.

Consequently, we will review some state-of-the-art PMF approaches, especially for MOWSE,

optimization-based PMF, and PMF by the order of retention time.

3.1 Peptide Mass Fingerprinting (PMF)

Peptide mass fingerprinting (PMF) was the first available method to identify proteins using

MS, and is still widely used [51]. This approach uses theoretical spectra each comprising the

list of masses expected by an enzymatic digestion of each protein sequence in the reference

database [86]. The difference between PMF and peptide fragment fingerprinting (PFF) is illus-

trated in Figure 3.1. PMF only uses MS spectra to identify proteins. In PFF, the set of MS/MS

spectra, along with information such as the parent (precursor) mass of these fragmented pep-

57
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tides, are all used in the database search [137]. Traditional PMF was first introduced in 1993,

and the representative was MOWSE [100]. Until now, the most popular PMF methods are

Mascot (1999) [103], MS-Fit (1999) [24], ProFound (2000) [137], and Aldente (2003) [125].

Figure 3.1: The difference between PMF and PFF.

The scoring system is the heart of all protein identification methods. Mass spectrometry

dataset derived from an unidentified protein are compared with theoretical dataset from known

proteins, and a score is assigned based on how well these two datasets compare. For a unknown

protein, a “hit” is termed as any score above an arbitrary confidence threshold. The unknown

protein is expected to be the top such hit. If there are no scores above this threshold (“no hits”),

then the protein remains unidentified. The score distributions for protein identifications using

a scoring scheme is shown in Figure 3.2, where there is no score threshold including all correct

identifications while simultaneously excluding all false positives. From this figure, we know

that the separation of true from false protein identifications based on a score is never perfect

[86].

PMF is popular and works well in practice, since it is relatively fast to compute PMF scores

against a database. For good quality samples belonging to well-characterized model organ-

isms, PMF can identify proteins with high confidence in many cases, especially in organisms

with smaller genomes. Unfortunately, sometimes a sample spectrum does not resemble any

theoretical spectra in the protein database closely enough to make a confident identification.

This can happen for many reasons, such as unexpected PTM, splice variants, single nucleotide
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Figure 3.2: The correct and incorrect score distributions [86]. Score distributions for correct
(green) and incorrect (red) protein identifications using a scoring scheme.

polymorphisms (SNPs), etc. More proteins can now be identified with confidence, as more

sophisticated methods for scoring PMF have been developed. This corresponds to a better sep-

aration of true from false positives using the scoring system. The next step involves deciding

on a threshold: the identified proteins are those scores above this threshold. It is difficult to

define a threshold because setting the threshold too high may result in the correct protein not

being identified (false negative), while setting a threshold too low will incorrectly identify a

number of proteins (false positives) [86].

One of the limitations of PMF is its sensitivity to database size. As the search database

grows, there is a direct effect on the statistical confidence a PMF algorithm can ascribe to

protein identification. A larger database has an elevated chance of the experimental masses

randomly matching theoretical peptide masses in these databases, thereby decreasing the con-

fidence of protein identifications using PMF [86]. Therefore, a larger database should not allow

for better protein identification. Many experimentalists use PMF as a “first pass” to identify

a protein, and if the identification fails, move on to methods such as PFF [137]. Some of the

more popular PMF packages are listed below in Table 3.1.

Aldente [125] is hosted on the ExPASy Proteomics Server as one of a suite of bioinfor-

matics tools. Released in 2004, Aldente uses a robust Hough transform (a feature extraction

technique used in image analysis) to speed searches and find straight lines hidden in the data
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Table 3.1: A short list of popular PMF packages

PMF Package URL
Aldente http://www.expasy.org/tools/aldente
Mascot http://www.matrixscience.com/search form select.html
MS-Fit http://prospector.ucsf.edu/prospector/cgi-bin/msform.cgi?form=msfitstandard

ProFound http://prowl.rockefeller.edu/prowl-cgi/profound.exe

(the classical Hough transform was concerned with the identification of lines in the image),

making this tool more robust to noise than other PMF packages.

Mascot [103] uses a proprietary scoring algorithm but is known to be based on the MOWSE

algorithm [100], which is first described in 1993. By calculating the distribution of tryptic

peptide lengths across the entire search database, a probability can be calculated for every

observed peak, assuming this match is purely random. Here, the probability represents that

whether the observed match is a random event. In Mascot, the searches in smaller protein

databases, such as bacterial databases, generally has lower threshold scores for confidence

than those conducted in larger databases for higher organisms. We can also infer that for noisy

experimental spectra, these extra peaks contribute to the possibility of a random match, and

thus raise the confidence score threshold for a given probability [86].

MS-Fit [24] is also a probabilistic algorithm, again based on MOWSE, but runs over

FASTA format [148] databases. MS-Fit first bins proteins according to the mass weight. Within

each of them, a series of bins are created according to the tryptic peptide masses. When cal-

culating the probability of a random tryptic peptide match, it is calculated specifically for the

distribution of these peptide masses for a given precursor mass. Therefore, it can reduce the

size of the search database effectively [86].

ProFound [137] uses a Bayesian probability scoring system for the hits, with additional

information. For example, provisions for the knowledge that particular amino acids are present

(or absent) in the sample protein. Each piece of information functions as an additional con-

straint upon the search space of protein database, thus reducing the effective size of the database



3.2. Preliminaries for PMF 61

against which the search is conducted [86].

A study by Chamrad et al. [20] in 2004 using MALDI-TOF mass spectrometry dataset from

a project mapping genes onto mouse chromosomes used expert interpretation of the spectra to

identify 70% of the proteins, thus forming a reference set for PMF algorithm comparison.

This study found the performance of Mascot and ProFound to be similar, correctly identifying

around 53% of proteins from the reference set at a 5% significance level (the probability of

rejecting the null hypothesis when it is true in hypothesis tests), with MS-Fit identifying only

32% using the same input parameters.

Another study in yeast using 266 spectra gathered on MALDI-TOF instruments from three

different manufacturers in 2004 found Mascot to outperform ProFound, with Mascot identify-

ing 45% of proteins while ProFound identified 33% of the proteins [109].

Among traditional PMF, Mascot performed the best from above studies. More recently,

PMF was tackled as an optimization problem by He et al. [50] assuming each peak can only

be assigned to one protein (2010). In addition to the peptide mass, the RT was also used to

facilitate protein identification (2011) by Bochet [17].

In the following sections, we will introduce MOWSE, optimization-based PMF, and PMF

by the order of retention time.

3.2 Preliminaries for PMF

We shall use the following definitions and notations in this thesis.

Assuming we have an input set of experimental peaks P = {li(mi, ri) | i = 1, 2, . . . , n},

where li is a peak, mi is the mass of li, ri is the corresponding RT, and n is the total number

of peaks. We also assume there is a database of proteins D = {p j | j = 1, 2, . . . , s}, where

p j denotes a protein, and s is the size of this database. We use Σ to denote the alphabet of

20 different types of amino acids. For an amino acid a ∈ Σ, we use ||a|| to symbolize the

mass of its residue. Let S = a1a2 . . . ad be a string of amino acids, we define the residue mass
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of this peptide as ||S || = Σ1≤k≤d||ak|| and the actual mass as ||S || + ||H2O||, where H2O is the

chemical formula of water. A matching between one theoretical peptide S and an experimental

peak li means that |||S || + ||H2O|| − mi| ≤ δ, where δ is the mass tolerance threshold. We use

a scoring function F(P, p j, δ) to measure the quality of matching between peaks set P and a

protein p j in the database D. When δ is fixed, we can simplify F(P, p j, δ) as F(P, p j). A

protein consists of a set of peptides, usually from proteolytic digestion. We denote uq ∈ p j as

a peptide uq in a protein p j. For uq ∈ p j, if it matches with lg ∈ P, then we denote such match

as < uq, lg >, and denote such uq and lg as uq ∈P p j and lg ∈p j P. The set of matched peptides

of p j is U(p j) = {uq ∈P p j|q = 1, 2, . . . , t}, where t is the total number of matched peptides

in p j. For each matched peptide uq, there will be a real number matching score, denoted as

f (uq), whose exact definition will be decided later. The set of matched peaks for p j in P is

L(p j) = {lg ∈p j P|g = 1, 2, . . . , o}, where o is the total number of matched peaks in P for p j. We

assume that a peptide in a protein can match to more than one peak, since there could be peaks

with exactly the same, or very similar masses but different retention time. At the same time,

a peak can match to more than one peptide, since there are different peptides with exactly the

same or very similar masses. When considering the matching score between a protein and a set

of peaks, a peak can only match to one peptide and a peptide can only match to one peak, since

multiple use of peaks will generate bias in the scoring scheme (for example, a peak matches

to two peptides with different scores). We now define a matching, M(p j, P), between protein

p j and P as a set of pairs (uq, lg), where uq ∈ U(p j) and lg ∈ L(p j), satisfying the following

conditions: (1) < uq, lg >: (uq matches to lg); (2) for any two pairs (uq, lg) and (ur, lh) in M, q = r

if and only if g = h: (one to one condition). The matching score of M(p j, P) is the summation

of each matching peptide in M: S (M(p j, P)) =
∑

(uq,lg)∈M f (uq). The score of a protein p j with

respect to P is defined as maximum matching score: F(P, p j, δ) = maxM S (M(p j, P)).

For PMF, our objective is to find a set of proteins Z ∈ D that contains all the proteins whose

scores are greater than a threshold score ∆, i.e. Z = {p j | p j ∈ D, F(P, p j, δ) ≥ ∆}.
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3.3 MOWSE

PFM is a challenging problem since we only have the masses of peptides to identify pro-

teins. The technical details of Mascot [103] are not published, but is known to be based on

the MOWSE [100] algorithm. In MOWSE, a frequency matrix X is created, where each row

represents an interval of 100 Da in peptide mass, and each column represents an interval of

10 kDa in intact protein mass. Consequently, we scan each sequence entry in entire protein

database D. For a protein p j, after tryptic digestion, for each peptide uv ∈ p j, its corresponding

matrix element xde ∈ X would be incremented, where d is the interval number of peptide uv and

e is the interval number for protein p j. Here, we count the total number of peptides for each

cell xde. The tryptic peptide frequency matrix X in Human database is shown in Figure 3.3.

Consequently, the observed distribution frequency of all tryptic peptides in Human database is

shown in Figure 3.4, where protein intervals range from 1 to 400, and peptide intervals range

from 1 to 2,376. When zooming in Figure 3.4 for the partial tryptic peptides, we get Figure

3.5.

Figure 3.3: Tryptic peptide frequency matrix X in Human database.
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Figure 3.4: A frequency distribution plot for the tryptic peptides in Human database. Protein
columns range from 1 to 400, and peptide rows range from 1 to 2,376.

Figure 3.5: A zoomed frequency distribution plot for the tryptic peptides in Human database.
Protein columns range from 1 to 100, and peptide rows range from 1 to 100.
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The elements of X are normalized by dividing the cells of each 10 kDa column with the

largest value in that column. An example for column 1 is shown in Figure 3.6, where the largest

value is in row 2, which is 15,666. In Human database, if we combine several consecutive

columns together, we get Figure 3.7, where the normalized distributions among them are very

similar. Consequently, if we combine several different columns together, we will get Figure

3.8, where the normalized distributions among them are still similar, while it is inconsistent

for the large column, since there is not enough protein database for the large columns. We

also check the distribution for proteins and peptides from one dimension in Human database.

Figure 3.9 illustrates the normalized frequency distribution plot for all protein columns, and

Figure 3.10 shows the normalized frequency distribution plot for all peptide rows.

Figure 3.6: A normalized frequency distribution plot in Human database at protein column 1.

With this mass distribution of tryptic peptides, the final score for each protein is calculated

as: FM(P, p j, δ) = 50, 000/(|p j|∗
∏

1≤q≤t f ′m(uq)), where 50,000 is a constant, |p j| is the molecular

weight of the protein, uq ∈P p j and uq is a matching peptide of p j, f ′m(uq) is the normalized

score for xde (in the frequency matrix X), and t is the total number of matches for p j. From
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Figure 3.7: Normalized frequency distribution plots for protein columns 1,2,3,4,5,6.

Figure 3.8: Normalized frequency distribution plots for protein columns 11,3,20,87,301,400.
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Figure 3.9: The normalized frequency distribution plot for all combined protein columns.

Figure 3.10: The normalized frequency distribution plot for all combined peptide rows.
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this score function, the final score for each protein depends on the scores of matching peptides,

they also use a constant (50,000) divided by the protein mass to adjust the raw score. For a

matching peptide in a protein, if the normalized score for this peptide is high, it contributes less

for the protein score, otherwise it gives more contribution to the final score. Another factor is

the mass of protein, for large protein it will get smaller score with the same matches.

The MOWSE framework is shown in Algorithm 1.

Algorithm 1: MOWSE: finding a set of proteins to best explain experimental peaks.
Input: D: a database of s proteins;
P: an observed peak list;
δ: a mass tolerance threshold;
U(p j): a set of matched peptides for protein p j;
f ′m(uq): a normalized score for a peptide uq ∈P p j;
|p j|: the molecular weight of the protein p j;
∆: a threshold score ;
Output: Z: a set of proteins Z ∈ D that best explain P;

1 for j := 1 to |D| do
2 FM(P, p j, δ)← 0
3 for q := 1 to |U(p j)| do
4 FM(P, p j, δ)← FM(P, p j) + lg(1/ f ′m(uq))
5 end for
6 if |U(p j)| > 0 then
7 FM(P, p j, δ)← FM(P, p j, δ) + lg(1/|p j|) + lg(50, 000)
8 end if
9 end for

10 Z ← {p j | p j ∈ D, FM(P, p j, δ) ≥ ∆}
11 return Z

3.4 Optimization-Based PMF

In 2010, He et al. [50] tackled PMF as an optimization problem for peaks partition, assum-

ing each peak can only be assigned to one protein. They used their methods for protein mixture

identification, and they could identify part of 49 proteins from real data, which obtained much

better identification results than traditional approaches. But they only considered the assign-

ment of peaks to proteins, and ignored the matched peptides between the peaks and proteins,
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which would also lose some important information at the same time. The relationship between

peaks, peptides, and proteins for Optimization-Based PMF are shown in Figure 3.11, where

the authors only assigned the peaks to proteins.

Figure 3.11: Optimization-based PMF.

The main objective of their paper was to study the potentials and pitfalls of PMF in pro-

tein mixture identification. They first demonstrated that protein mixture identification was an

optimization problem. While obtaining an optimal solution was difficult, they could employ

some heuristic searching methods to find the local optima. As a result, the identification ac-

curacy was significantly better than that of traditional PMF and subtraction strategy (will be

introduced later). They also demonstrated that the performance of PMF was mainly affected

by the mass accuracy of mass spectrometer, the number of component proteins in the mixture,

the sequence coverage of each protein and the noise level in a MS dataset [50].

If there is only one protein in the sample (one ground-truth protein), assuming that this

ground-truth protein has the highest score, the problem of single protein identification is an

optimization problem:

Z = arg max
p j∈D

F(L)(P, p j),

where Z is the protein with the highest score and F(L)(P, p j) is a scoring function. In other

words, Z best “explains” P.

In the context of protein mixture identification (multiple ground-truth proteins), the objec-

tive is to find a set of proteins Z that best “explains” P:

Z = arg max
Y⊆D

F(M)(P,Y),
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where Y denotes a subset of proteins and F(M)(P,Y) is a scoring function. Note that F(M)(·,·) is

different from F(L)(·,·) as Y may have multiple proteins.

Obviously, single protein identification is a special case of protein mixture identification

when an additional constraint |Y | = 1 is provided.

To define F(M)(P,Y), there are two choices:

1. Virtual single protein approach: considering Y as a “virtual” single protein V , yielding

the following relationship:

F(M)(P,Y) = F(L)(P,V).

2. Peak partition approach: distributing peaks in P to different proteins in Y explicitly, as-

suming that each peak can only be assigned to one protein (In general, such assump-

tion is invalid since one peak may belong to multiple proteins). One needs to par-

tition the peaks of P into disjoint subsets. Assuming that Y consists of k proteins

pg1 , pg2 , . . . , pgk(1 ≤ k ≤ s) and divide P into k disjoint subsets P1, P2, . . . , Pk, then

the score is calculated as:

F(M)(P,Y) =
k∑

j=1

F(L)(P j, pg j).

The subtraction strategy by Jensen et al. [58] in 1997 can be regarded as a special instance

of peak partition approach in which peaks are divided in a greedy manner. Suppose the peak

subsets P0, P1, P2, . . . , Pk are generated by the subtraction strategy sequentially (P0 is an empty

set), the score at each step j(1 ≤ j ≤ k) is calculated as:

F(L)(P −
j−1∪
t=0

Pt, pg j).

The peak partition approach is very complicated since one needs to explicitly assign peaks

to proteins, and it is a NP hard problem. Therefore, the authors use the virtual single protein

approach to define the scoring function.
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After defining the scoring function, one needs to find a subset of proteins that maximizes

it. Even when k is given, an exhaustive search is prohibitive since there are totally Ck
s possible

solutions, where s is the size of protein sequence database. This combination is a selection

of k proteins from a database with the size of s. When s is large, computationally expensive

approaches become unattractive.

The authors first assume that the true number of ground-truth proteins is known in advance,

i.e., k is an input parameter. Then, they relax this requirement by introducing an adaptive

algorithm that can determine the number of target proteins automatically.

Local search algorithm with known k (Losak) is a local search algorithm with known k for

protein mixture identification. The details is shown in Algorithm 2. Losak takes the number

of target proteins as input and iteratively improves the value of objective function. Initially,

randomly selected k proteins are labeled as “target”. In the iteration process, for each “non-

target” protein, its label is exchanged with each of the k target proteins and the objective value

is re-evaluated. If the objective value increases, the “non-target” protein is exchanged with the

“target” one. When all “non-target” proteins have been checked, a full iteration is completed.

The algorithm terminates when a full iteration does not change any labels, thereby indicating

that a local optimum is reached.

Local search algorithm with unknown k (Losau) is an extension of Losak with details de-

scribed in Algorithm 3. To determine the number of target proteins automatically, an “insertion

and a “deletion” are introduced into the local optimization process. If protein pi is contained

in Z, it will be deleted from Z if such an operation increases the score. Similarly, if protein pi

is not contained in Z, it will be either inserted into Z or exchanged with another protein in Z

if such an operation increases the score. To achieve a trade-off, a penalty ω on the insertion is

introduced to reflect the intention of “explaining” Z using as few proteins as possible. In the

first iteration, the number of proteins in Z is used to update ω value so that Z can be expanded

to a reasonable size. In the subsequent iterations, the parameter d f (0 < d f < 1) is used as the

decay factor to decrease ω at each iteration: ω← d f · ω.
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Algorithm 2: Losak: local search algorithm with known k
Input: D: a database of s proteins;
P: observed peak list;
δ: mass tolerance threshold;
k: the number of target proteins;
Output: Z: a set of k proteins, Z ∈ D best explain P;

1 Randomly select k proteins into Z as “target” proteins;
2 Initialize hasS wap← True;
3 while hasS wap = True do
4 hasS wap← False;
5 for i := 1 to s do
6 if pi does not belong to Z then
7 h← arg max j F(M)(P,Z + {pi} − {pg j}); /*pg j belongs to Z; */
8 if F(M)(P,Z + {pi} − {pgh}) > F(M)(P,Z) then
9 Z ← Z + {pi} − {pgh};

10 hasS wap← True;
11 end if
12 end if
13 end for
14 end while
15 return Z

Many false positives may be introduced into the final protein list because of the adaptive

nature of Losau. It is desirable to filter out these incorrect proteins. Meanwhile, it is also

necessary to provide a procedure to evaluate the confidence of each single protein. Algorithm

4 describes the filtering procedure. The peak subset MP(pg j) is used to evaluate each protein

pg j . Since all the peaks in MP(pg j) match pg j , the probability that other proteins achieve better

single protein identification score than pg j on MP(pg j) is very low if pg j is the ground-truth

protein. The number of “winning proteins” is used to measure the rank uncertainty and θ as

the threshold. If more than θ proteins outperform pg j on MP(pg j) in terms of single protein

identification score, it is removed from the result set.

Both the simulated and real dataset are used to demonstrate the improvement of their al-

gorithms over others. The real MS dataset is obtained from a mixture of 49 standard human

proteins in the ABRF sPRG2006 study. The dataset is generated using a linear ion trap-orbitrap

(LTQ-Orbitrap) mass spectrometer. In evaluation, they compare Losak and Losau with the fol-
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Algorithm 3: Losau: local search algorithm with unknown k
Input: D: a database of s proteins;
P: observed peak list;
δ: mass tolerance threshold;
d f : decay factor;
θ: rank threshold in filtering;
Output: Z: a set of k proteins, k is determined automatically.

1 Randomly select 2 proteins into Z as “target” proteins;
2 Initialize ω← 1 and q← 1; /*ω: penalty value; q: iteration number */
3 Initialize hasOperation← True;
4 while hasOperation = True do
5 hasOperation← False;
6 if q = 1 then
7 ω← d f · ω;
8 end if
9 for i := 1 to s do

10 ζnoop ← F(M)(P,Z);
11 if q > 1 then
12 ω← |Z|;
13 end if
14 if pi ∈ Z then
15 if F(M)(P,Z − {pi}) > ζnoop then
16 Z ← Z − {pi};
17 hasOperation← True; /* Deletion */
18 end if
19 end if
20 else
21 h← arg max j F(M)(P,Z + {pi} − {pg j});
22 ζswap ← F(M)(P,Z + {pi} − {pgh});
23 ζinst ← F(M)(P,Z + {pi}) − ω;
24 if ζswap > ζinst and ζswap > ζnoop then
25 Z ← Z + {pi} − {pgh};
26 hasOperation← True; /* Swap */
27 end if
28 if ζinst > ζswap and ζinst > ζnoop then
29 Z ← Z + {pi};
30 hasOperation← True; /* Insertion */
31 end if
32 end if
33 end for
34 q← q + 1
35 end while
36 Z ← ProteinFilter(D, P, δ, θ, Z); /* Filtering (See Algorithm 4 ) */
37 return Z
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Algorithm 4: PoteinFilter Algorithm
Input: D, P, δ, θ, and Z is a set of unfiltered proteins.
Output: F: a refined set of proteins, F ⊆ Z.

1 Initialize F ← ∅;
2 for j := 1 to |Z| do
3 Initialize Winner ← 0;
4 for i := 1 to s do
5 if F(L)(MP(pg j), pi) > F(L)(MP(pg j), pg j) then
6 Winner + +;
7 end if
8 end for
9 if Winner < θ then

10 F ← F + {pg j};
11 end if
12 end for
13 return F

lowing algorithms:

• SPA: single protein identification algorithm with the scoring function in Samuelsson et

al. [109] in 2004. The reasons are its scoring function has comparable performance to

Mascot and ProFound, and Its score can be calculated incrementally. Since SPA ranks

each protein in the database separately, k top-ranked proteins are reported, where k is a

user specified parameter.

• Subtraction: an implementation of the subtraction strategy also with the scoring function

in Samuelsson et al. [109]. The algorithm repeats k rounds to identify k proteins as

output, where k is specified by the user. In each round, the masses matching the protein

identified in the previous round are removed prior to the next round of searching.

The mass tolerance threshold is 1 ppm, and the results in Table 13 show that Losak and

Losau achieve significant higher protein identification rate than previous PMF methods. Here

the number of reported proteins for SPA, Subtraction, and Losak is 49, i.e., the number of

ground-truth proteins. The decay factor d f is set to 0.95 in Losau. As observed in the exper-

iment, there are only 34 ground-truth proteins that match more than five peaks in candidate
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selection process. On one hand, it indicates that the sequence coverage is insufficient during

dataset generation (less than five peptides were identified for some proteins); on the other hand,

it means that some mono-isotopic masses of ground-truth proteins are not assigned correctly.

Table 3.2: Identification performance of different algorithms on the real MS data
Algorithms Precision Recall F1-measure Running time(s)

SPA 24% 24% 24% 7.9
Subtraction 43% 43% 43% 24.0

Losak 67% 67% 67% 21.2
Losau 61% 71% 66% 19.6

3.5 PMF by the Order of Retention Time

One of the most common approaches for large-scale protein identification is High-Performance

Liquid Chromatography (HPLC), followed by MS. The amount of time between the injection

of a sample and its elution from the column (the elution is then identified by MS) is known as

the Retention Time (RT).

RTs were seldom used for protein identification, while recently Bochet et al. [17] con-

sidered the order of peptide RT and applied quantile regression to identify proteins without

experimental fragmentation spectra. Using a combination of highly accurate and precise mass

measurements, modern retention time prediction, and a robust scoring algorithm, they were

able to identify 257 proteins of Francisella tularensis from a single LC-MS experiment in a

fragmentation-free approach. This number amounts to 59% of that of proteins identified in

a standard fragmentation-based approach, when executed with same false discovery rate. In-

dependent evidence supports at least 27 of a set of 31 proteins that were identified only in

the fragmentation-free approach. Their results suggest in the future PMF methods may be an

interesting complement or an alternative to fragmentation-based approaches.

HPLC peptide RTs can be used to identify peptides by comparing experimentally obtained

RTs with those that have been predicted, or previously measured. In practice, it is hard to
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predict the accurate experimental RT from the algorithm for wet laboratories (where chemicals,

drugs, or other materials are handled in liquid solutions or volatile phases). Therefore, the

method relies on the retention order of the peptides rather than their RT. By substituting the

RTs by the retention order, a more robust characterization of the retention process is extracted.

Furthermore, one does not seek to identify isolated peptides, but rather groups of peptides

coming from the digest of the same protein. A peptide will be identified from the experimental

data, only if other predicted peptides from the same candidate protein are also found in their

predicted order. The proposed method identifies proteins in one single step and not by first

finding peptides and then proteins.

The principle of the new method is illustrated in Figure 3.12, where intensities of the peaks

are not considered. In this figure, the solid lines represent matching peptides, and the dashed

lines represent non-matching peptides. For each protein in the relevant sequence database,

one first predicts the peptides resulting from its enzymatic digest. Secondly, the HPLC RT

predictions for the peptides are obtained and the peptides are sorted by predicted RT. Thirdly,

one attempts to assign each predicted peptide for a given protein to a peak in a spectrum in the

predicted order. The solution for this alignment problem is dynamic programming.

Figure 3.12: The principle of the identification method [17]. For each protein the predicted
tryptic peptides are sorted according to their predicted retention time (bottom). They are then
matched to ions from the spectra in the same order. Each trapezoid represents one experimental
spectrum, and the masses of the peptides are symbolized by the height of the lines.
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The completion in silico digest was performed on all proteins predicted by the database.

Only peptides at least four amino acids long were kept. For each protein, these peptides were

sorted according to their predicted order of retention from the HPLC column. Here the hy-

drophobic predictions in trifluoroacetic acid of the SSRCalc software [60] were used. For

each protein, the algorithm described in Algorithm 5 computes the optimal alignment of the

predicted peptides with the ions found in the experimental spectra. This maximizes the or-

dered peptide match (OPM) score. The score optimized in the alignment is defined as follows:

the mass of each predicted peptide is compared with the closest mass in each spectrum after

deisotoping and decharging. If ∆, the difference between the two masses is less than a given

threshold, the contribution of the match to the score is +1, otherwise a penalty is counted (-1).

This dynamic programming algorithm iteratively computes the score si, j of the best alignments

between a prefix (pi, · · · , p j) of the list of peptide masses and a prefix (S 1, · · · , S i) of the list

of spectra. Here the values of the no-peptide score and the no-spectrum score are 0 and 1,

respectively.

To evaluate the statistical significance of the OPM scores, they were compared with the

decoy scores whose proteins obtained by random permutation of the real sequences. Each of

these decoy proteins had the same length, number of tryptic peptides, and amino acid com-

position as its naturally occurring counterpart. In the database, the number of proteins with

the largest content of digest peptides was low. To obtain a sufficiently accurate estimate of the

quantile limits for these large proteins (with more than 56 peptides), several permutations were

performed for each of them.

Because the alignment scores depend on the number of tryptic peptides, and in the absence

of a substantial theoretical justification for the use of a particular parametric distribution model,

quantile regression were applied to describe the empirical distribution of scores for the decoy

proteins. Here, quantile regression is a way to estimate the conditional quantiles of a response

variable distribution in the linear model. Briefly, for each value of the variable quantile re-

gression uses a weighting function to construct a local score distribution for the randomized
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Algorithm 5: The order of peptide matching score.
Input: A protein pg;
A list (l1, · · · , lm) of decharged, deisotoped spectra;
A list of masses (u1, · · · , un) of tryptic peptides of pg, ordered by predicted elution time;
A peak match threshold δ;
no-peptide score nps, no-spectrum score nss, and a peptide-spectrum match score ps
Output: maximum score for protein pg;

1 ps← 0;
2 for i := 1 to m do
3 for j := 1 to n do
4 if li has a peak in the interval (u j − δ, u j + δ) then
5 set ps← +1;
6 end if
7 else
8 set ps← −1;
9 end if

10 Compute si, j ← max(si−1, j−1 + ps, si−1, j + nps, si, j−1 + nss) under the convention
that si, j = 0 if i = 0 or j = 0

11 end for
12 end for
13 return sm,n

proteins. The score of each real protein was compared with that local distribution for the same

number of tryptic peptides, and the corresponding quantile was reported as the significance of

the match. Figure 3.13 depicts the distribution number of matched peptides, where abscissa is

the number of peptides longer than four amino acids per protein, and ordinate is the number of

matched peptides.
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Figure 3.13: The distribution of matched peptide number with a HPLC-MS experiment [17].
Each point represents a protein from the sequence database. For visualization only, the posi-
tions of the points are shifted by a small gaussian random amount (σ=0.5). The lines represent
the best linear fits for the data.



Chapter 4

Network-Based Inference Methods

When imagining the relationship between peptides and proteins as a bipartite graph, we

may design new peptide protein matching score functions, based on network inference. Here

we borrow the idea from recommender systems, hoping to discover important peptide-protein

information from the projection of peptides.

In this chapter, we will present the concept of recommender systems, and formulate network-

based inference (NBI) methods mathematically. We design two novel NBI methods for PMF:

probabilistic spreading (ProbS), which is based on a probability framework; and heat spread-

ing (HeatS), for a dynamic analysis. The experiments on simulated, authentic, and simulated

authentic dataset demonstrate that our NBI approaches can improve the performance.

4.1 Recommender Systems

The rapid expansion of the Internet greatly increases the necessity of effective recommender

systems to filter abundant information [79]. A recommender or recommendation system is a

subclass of information filtering system that turns dataset on past user preferences into predict

possible future likes and interests [139, 140]. Tremendous activity to the understanding of com-

plex networks can facilitate researchers to design good recommender systems [141]. Bipartite

networks are a particular class of networks, whose nodes are divided into two sets X and Y ,

80
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and only the connection between two nodes in different sets is allowed. Bipartite networks are

illustrated in Figure 4.2 (a). Additionally, bipartite network projection can extract the hidden

information of networks and do a personal recommendation, since people with similar hobbies

would like the same items in the future [142]. Figure 4.1 illustrates a recommender system con-

sisted of five users and four books, where some additional information frequently exploited in

the design of recommendation algorithms, including user profiles, object attributes and object

content. This network-based inference method can be used for mining potential information

in other applications, such as speeding up drug repositioning [21], discovering undetectable

proteins [99], and identifying cancer genes [131].

Figure 4.1: Illustration of a recommender system consisted of five users and four books [79].
The relations between users and objects that can be represented by a bipartite graph is the basic
information contained by every recommender system.

The huge potential of recommender system was first noticed by web entrepreneurs in the

forefront of the information revolution. While being originally a field dominated by computer

scientists, it is now a topic of interest also for mathematicians, physicists, and psychologists.
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Recommender system can be used for the Internet and electronic commerce, such as online

shopping. A recommender system may have significant impact on a company’s revenues: for

example, 60% of DVDs rented by Netflix are selected based on personalized recommendations

[79].

The input dataset is used by a recommender system to predict potential further likes and

interests of its users. Users’ past evaluations are typically an important part of the input data.

Let M be the number of users and N be the number of all objects that can be evaluated and

recommended. Note that object is simply as a generic term that can represent books, movies,

etc. The goal of a recommender system is to deliver lists of personalized “recommended”

objects to its users. Objects with the highest predicted ratings constitute the recommendation

list that is presented to the target user. The usual classifications of recommender systems is as

follows [79]:

• Content-based recommendations: recommended objects are those with content similar

to the content of previously preferred objects of a target user.

• Collaborative recommendations: recommended objects are selected on the basis of past

evaluations of a large group of users. They can be divided into:

– Memory-based collaborative filtering: recommended objects are those that were

preferred by users who share similar preferences as the target user, or, those that

are similar to the other objects preferred by the target user.

– Model-based collaborative filtering: recommended objects are selected on models

that are trained to identify patterns in the input dataset.

• Hybrid approaches: these methods combine collaborative with content-based methods

or with different variants of other collaborative methods.

There are some basic metrics used to measure the quality of recommendations, including:

accuracy metrics, rank-weighted indexes, diversity and novelty, and coverage.
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Here we will introduce two model-based collaborative filtering recommender systems, both

are diffusion-based methods: probabilistic spreading and heat spreading. Before introducing

these two approaches, we shall first present the basic knowledge for the one-mode projection

of bipartite network, and object-object networks as well.

When analyzing and modeling bipartite networks, one-mode projecting can be extensively

used to compress bipartite networks. One-mode projection has the convenience of directly

showing the relations among a particular set of nodes. Since one-mode projection is always

less informative than the bipartite representation, a proper weighting method is required to

better retain the original information. The one-mode projection onto X means a network con-

taining only X nodes, where two X nodes are connected when they have at least one common

neighboring Y node. Figures 4.2 (b) and (c) show the resulting networks of X and Y projection,

respectively.

Figure 4.2: The illustration of a bipartite network (a), its X projection (b), and Y projection (c)
[141]. The edge weight in (b) and (c) is set as the number of common neighbors in Y and X,
respectively.

Basically, a recommendation system consists of users and objects, where each user has
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collected some objects. In the web searching, the classical PageRank algorithm [15] could

measure the importance of a website page by counting the number and quality of links to this

page. In the recommender system, similarly as PageRank, one can obtain recommendations

using a network representation of the input dataset with user preferences. Here we present two

algorithms based on specific transformations of the input dataset to object-object networks.

Personalized recommendations for an individual user are then obtained by using this user’s

past preferences as “sources” in a given network, and propagating them to yet unevaluated

objects.

The first algorithm is probabilistic spreading (ProbS), which is suitable for dataset without

explicit ratings, i.e. only the sets of object visited by each user is known. The spreading

recommendation algorithm proposed in [141] is based on a projection of the input dataset (an

unweighted user-object network) to an object-object network. In this projection, we would

like to determine the edge weight in X projection. The weight Wαβ can be considered as the

importance of node α with respect to node β, and it differs from Wβα generally. For example,

a book projection can be produced from a customer-book opinion network. Additionally, the

weight Wαβ between two books α and β, demonstrates the strength of book α recommendation

to a customer who has bought book β. A suitable form of Wαβ can be initialized by studying

the original bipartite network, where a certain amount of a resource is assigned to each object

node. For example, for α, the value of ‘1’ represents a person has bought book α, and ‘0’

represents this person have not bought book α yet. Since it is an unweighted network, the

unbiased allocation of the initial resource is split equally among all its neighboring customer-

nodes. Consequently, resources collected by customer-nodes are equally redistributed back

to their neighboring book-nodes. This is equivalent to a random walk, from the initial source

nodes to a distance of two in the customer-book bipartite graph. An illustration of this resource-

allocation process for a simple bipartite network is shown in Figure 4.3. In plots (a)-(c), the

upper three are X-nodes, and the lower four are Y-nodes. After two steps of flow, a weighted

projection of a bipartite network will be produced. Here the weight located on the directed
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edge A → B means the fraction of resource node A would transfer to node B. The weights of

self-connections are also labeled besides the corresponding nodes [142].

Figure 4.3: Illustration of the resource-allocation process in a bipartite network [142]. The
resource first flows from X to Y (a → b), and then returns to X (b → c). The process from (a)
to (c) can be considered as a weighted projection of a bipartite network, shown as (d → e).

The second algorithm is heat spreading (HeatS), which can answer the need of diversity in

algorithm-based recommendation. A hybrid algorithm was proposed in [140] which combines

accuracy-focused ProbS with diversity favoring heat spreading. As in probabilistic spreading,

heat spreading works by assigning objects an initial level of “resource” denoted by a vector,

and then redistributing it via the transformation. In contrast to ProbS, HeatS is row-normalized

and corresponds to a heat diffusion process on the given user-object network.

Figure 4.4 illustrates the procedures of ProbS and HeatS. The objects with initial resource

‘1’ means they are collected by the target user. For example, the books bought by a person

are ‘1s’ (including first and fourth), and those ‘0s’ are books not bought yet (including second,
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third, and fifth). Consequently, we would like to recommend a book for this person among the

‘0s’. According to the final scores, ProbS will recommend the third object to the target user

(third has the maximum score among the initial resources ‘0s’), while HeatS will recommend

the second one (second has the maximum score among the initial resources ‘0s’). Generally

speaking, ProbS tends to recommend popular objects and thus lacks diversity and novelty,

while HeatS is able to find out unpopular (i.e., of low degree) objects. On the other hand,

recommendations obtained by HeatS are too peculiar to be useful.

Figure 4.4: The comparison of ProbS and HeatS [79]. The target user is marked by a star and
the collected objects are of initial resource 1. The final scores after ProbS and HeatS are listed
in the right sides of plots (c) and (e).

4.2 Preliminaries for Network-Based Inference (NBI)

We shall use the following definitions and notations in this thesis.



4.2. Preliminaries for Network-Based Inference (NBI) 87

With the protein database D, we can digest it with trypsin, and obtain a peptide database

denoted as T = {uv | v = 1, 2, . . . ,w}, where uv denotes a peptide, and w is the size of this

database. Additionally, we can describe the protein-peptide associations as a bipartite DT

graph G(D,T, E), where E = {e jv | p j ∈ D, uv ∈ p j, uv ∈ T }. There is an edge if uv ∈ p j.

Therefore, the DT bipartite network can be presented as a s ∗ w adjacent matrix {b jv}, where

b jv = 1 if p j and uv are linked, otherwise it is 0 if there is no relationship between them.

The network-based inference (NBI) method we use here was first developed by Zhou

et al [141] for personal recommendation, and there are mainly two types: ProbS [141] and

HeatS[140].

Given above protein-peptide bipartite network, ProbS works by assigning peptides an initial

resource, such as those selected objects. We also denote fp(uv) as the initial resource allocated

to the vth peptide in database T , the superscript p stands for “probabilistic.” Here we give all

of fp(uv) as 1, then ProbS can be illustrated as a resource-allocation process. In the first step,

all resources in peptide set T flow to protein set D according to

fp(p j) =
w∑

v=1

b jv fp(uv)
k(uv)

=

w∑
v=1

b jv

k(uv)
,

where k(uv) is the degree of node uv. Subsequently, all resources in protein set D return simi-

larly back to peptide set T . Consequently, the final resource allocates to ut is calculated as

f ′p(ut) =
s∑

j=1

b jt fp(p j)
k(p j)

.

Here, the intuitive meaning of this score is the calculation of the popularity for each peptide.

If a peptide only belongs to one protein, it is a unique peptide. When the degree of a peptide

is large, and if the degrees of its connected proteins are also large, it may be a popular peptide.

After the calculation, the final score for each peptide would be different from the initial score

of 1, but the summation of them still equals to |T |. By redistribution of the scores, for unique

peptides, they contribute more to others ( f ′p(ut) < 1); while for those popular ones, they absorb
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more from others ( f ′p(ut) > 1).

Similar to ProbS, we can define HeatS score as the follow:

fh(p j) =
w∑

v=1

b jv fh(uv)
k(p j)

,

f ′h(ut) =
s∑

j=1

b jt fh(p j)
k(ut)

.

In contrast to f ′p(ut), f ′h(ut) is row-normalized (ipsative scaling, rescaling the score by divid-

ing the total degree of this node) and corresponds to a heat diffusion process (or power iteration

algorithm) on the given protein-peptide network [140]. Here fh(uv) can be 1 or 0, depending

on the input data, so it is a dynamic model. After calculations, for the nodes with fh(uv) = 1,

their f ′h(ut) would be in (0,1]. But unlike ProbS, usually the HeatS scores for unique peptides

should be greater than those popular ones.

4.3 Probabilistic Spreading Algorithm (ProbS)

In contrast to MOWSE, we do not use probability for each peptide. Instead, we would

like to design a new scoring system. In the protein inference problem [96, 113, 53, 138], we

can imagine that the relationship between identified peptides and proteins in a database is a

bipartite graph [80]. Figure 4.5 demonstrates this relationship. Additionally, we may infer

correct proteins from this bipartite graph [133], although it is still a difficult problem [2]. Now

considering PMF, we can depict the relationship between peptides from proteins based on

network technology.

The main pipeline of ProbS is illustrated in Figure 4.6. We initialize all of peptides with 1,

and the total number of resources is |T |. After two flows, all the values for each peptide will

be modified depending on its uniqueness or popularity. A hypothesis is that the contributions

of different peptides should not be uniform for protein identification. Those unique peptides
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Figure 4.5: Each peptide may be contained by multiple proteins, resulting in a bipartite graph
that is hard to resolve [80].
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Figure 4.6: The flowchart of the method ProbS.

could contribute more than the popular ones. Otherwise, a naive scoring function could be only

counting the matched numbers for each protein.

We denote K as the total degrees of all the nodes in T . Consequently, K =
∑w

v=1 k(uv) and

k(uv)/K can represent the probability of the degree of node uv among total degrees. Therefore,

the scoring function for ProbS can be

FP(P, p j, δ) =
t∑

q=1

f ′p(uq)

k(uq)/K
= K

t∑
q=1

f ′p(uq)

k(uq)
,

where f ′p(uq) is the ProbS score of matched peptide uq, and t is the total number of matches for
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p j. Since K is a constant, we can use

FP(P, p j, δ) =
t∑

q=1

f ′p(uq)

k(uq)
=

t∑
q=1

f ′p(uq)

k(uq)
,

to calculate the score in practice. Additionally, since we initialize all the peptides with 1, then

f ′p(uq) does not depend on the experimental peaks P, and we can calculate it before process-

ing the input dataset. But the total number of matches (t) still depends on the experimental

peaks P. Here, f ′p(uq)/k(uq) is from 0 to 1, and those larger scores are important to identify

proteins. From this function, we know that ProbS is similar to MOWSE, which is also based

on probability. The ProbS framework for PMF is shown in Algorithm 6.

Algorithm 6: ProbS for PMF: a set of proteins best explaining experimental peaks.
Input: D: a database of s proteins;
P: an observed peak list;
δ: a mass tolerance threshold;
U(p j): a set of matched peptides for protein p j;
f ′p(uq): a matching ProbS score for a peptide uq ∈ p j;
k(uv) : the degree of node uv;
∆: a threshold score ;
Output: Z: a set of proteins Z ∈ D that best explaining P;

1 for j := 1 to |D| do
2 FP(P, p j, δ)← 0
3 for q := 1 to |U(p j)| do
4 FP(P, p j, δ)← FP(P, p j, δ) + f ′p(uq)/k(uq)
5 end for
6 end for
7 Z ← {p j | p j ∈ D, FP(P, p j, δ) ≥ ∆}
8 return Z

4.4 Heat Spreading Algorithm (HeatS)

Another NBI method is HeatS. In recommender systems, ProbS is popularity-focused while

HeatS favors uniqueness, as we mentioned before. As in probabilistic spreading, HeatS works

by assigning peptides an initial level of resource, then redistributing it via the transformation.
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Figure 4.7: The flowchart of the method HeatS.

The main pipeline of HeatS is illustrated in Figure 4.7. In our method, only the peptides

that matched with the peaks will be assigned to 1, and unmatched to be 0. Consequently,

the score for a protein is the matched peptides divided by the degree of this protein, which

can be considered as the coverage for this protein. For example, in Figure 4.7, the score for

the third protein is 2/3, which means there are two peptides matched among the total three

peptides. Unlike ProbS, HeatS should compute simultaneously because the assignment of

the peptides depends on the input dataset of experimental peaks P. After calculations, the

scores for matched peptides will be changed, usually the scores of popular peptides would be

smaller than that of unique ones. Additionally, we ignore the scores for those peptides that not

matching.

HeatS performs better than other methods in our testings. The reason for that is after the

first heat spreading, proteins with higher scores tend to be the real ones in the experiment. In

the second flow, they give high scores to their corresponding peptides. Because peptides from

the same protein are dependent on each other, they usually obtain high scores from peptides co-

operation. By decreasing the scores for other random matches, the ground-truth proteins have

more chances to be on the top. Our experimental results also demonstrate this phenomenon.
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The scoring function for HeatS can be

FH(P, p j, δ) =
t∑

q=1

f ′h(uq),

where f ′h(uq) is HeatS score of matched peptide uq, t is the total number of matches for p j. The

HeatS framework for PMF is shown in Algorithm 7.

Algorithm 7: HeatS for PMF: a set of proteins best explaining experimental peaks.
Input: D: a database of s proteins;
P: an observed peak list;
δ: a mass tolerance threshold;
U(p j): a set of matched peptides for protein p j;
f ′h(uq): a matching HeatS score for a peptide uq ∈ p j;
∆: a threshold score ;
Output: Z: a set of proteins Z ∈ D that best explaining P;

1 for j := 1 to |D| do
2 FH(P, p j, δ)← 0
3 for q := 1 to |U(p j)| do
4 FH(P, p j, δ)← FH(P, p j, δ) + f ′h(uq)
5 end for
6 end for
7 Z ← {p j | p j ∈ D, FH(P, p j, δ) ≥ ∆}
8 return Z

4.5 Experiments

Recall that we have an input set of experimental peaks P = {li(mi, ri) | i = 1, 2, . . . , n},

where li is a peak, mi is the mass of li, ri is the corresponding RT, and n is the total number

of peaks. We also have a database of proteins D = {p j | j = 1, 2, . . . , s}, where p j denotes a

protein, and s is the size of this database. For PMF, our objective is to find a set of proteins

Z ∈ D that contains all the proteins whose scores are greater than a threshold ∆, i.e. Z = {p j |

p j ∈ D, F(P, p j, δ) ≥ ∆}.

We use three datasets to show the superiority of our approaches compared to others. We

also consider factors that affect the performance. The source code of the program consists of
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approximate 45,000 lines of Java code, and all the answers for different approaches can be

produced within several seconds. Here we choose Java since it has some advantages, such as it

is object-oriented, and platform-independent. Because of Java’s robustness, ease of use, cross-

platform capabilities and security features, it has the ability to move easily from one computer

system to another. We choose Eclipse as our integrated development environment (IDE) for

Java programming, since Eclipse is the most widely used Java IDE.

In order to evaluate different algorithms, we generate three datasets: simulated dataset,

authentic dataset, and simulated authentic dataset. We also test these datasets in the following

chapters.

4.5.1 Evaluation Criteria

A protein in output Z is counted as a true positive (TP) if it belongs to ground-truth pro-

teins, otherwise as a false positive (FP). Here, we could use standard performance metrics in

information retrieval, including

precision, recall, and F1-measure, to evaluate identification performance. Their definitions

are as follows:

• nT P : the number of true positives.

• nFP : the number of false positives.

• nP: the number of all ground-truth proteins.

• precision = nT P/(nT P + nFP): the proportion of identified ground-truth proteins to all

identified proteins.

• recall = nT P/nP: the proportion of identified ground-truth proteins to all ground-truth

proteins.

• F1−measure = (2∗ precision∗recall)/(precision+recall): the harmonic mean of recall

and precision.
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Usually precision and recall are not the same for different thresholds. In practice it is

difficult to find a perfect ∆ for reporting all identified proteins. In order to compare different

methods, in the experiments we choose ∆ to be nP , since we know the nP before the searching.

Therefore, nP and (nT P + nFP) would be the same under this situation. Consequently, recall,

precision, and F1-measure would be the same. Another solution is choosing different ∆ to

count nT P and nFP , then recall, precision, and F1-measure will be different. Here, in order to

compare with other state-of-the-art methods, we simply use nP as our ∆.

4.5.2 Processing of Database

We use the newest Swiss-Prot database in UniProt. Swiss-Prot is the manually annotated

and reviewed section of the UniProt Knowledgebase (UniProtKB). Since 2002, it is a high qual-

ity annotated and non-redundant protein sequence database, which brings together experimen-

tal results, computed features and scientific conclusions [154]. For Human, we have 20,161

canonical entries and 21,956 additional isoform proteins. After theoretical tryptic digestion

without missed cleavages, there are total 699,457 different theoretical peptides generated from

this Human protein database. The cleavage rule for trypsin is: after R or K, but not before P.

That is, the trypsin cleaves the protein sequence after each K or R, unless K or R is followed

by a P. For example, cleavage of the sequence “MVPPSKGGAKPLGRSLGPLLLRPEEP”

should result in these 3 peptides: “MVPPSK”, “GGAKPLGR”, and “SLGPLLLRPEEP”.

In order to compare different methods fairly, we put a canonical protein and its isoforms into

one group. If any protein in a group is identified, we say this group is identified. Additionally,

we always select the protein with highest score in this group as its representative [39]. Also for

NBI methods, we treat a canonical protein and its isoforms as one group, and use groups as the

nodes in the network. Consequently, the size of the bipartite graph will be decreased, and the

impact of isoforms would be avoided, since we do not calculate the identical peptides from the

isoforms repetitively.

In order to count the identified proteins precisely, we also combine the proteins with dif-
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ferent names but same sequences to be one protein. For example, P0DMV8 and P0DMV9,

they have identical protein sequences, so we combine them as one group. When reporting the

result, we treat the proteins with high percentage of identical peptides as a protein group. Here

we choose the threshold of 0.8, which means for two proteins, if 80% of their matches are the

same, we report them as a protein group.

4.5.3 Testing Datasets

In order to evaluate the performances of different methods, we use three datasets to test

them. These datasets are generated from different methods, including: simulated dataset, au-

thentic dataset, and simulated authentic dataset. Since it is not easy to get the suitable MS

dataset from online and wet-lab, besides the authentic dataset, we also design algorithms to

generate the simulated dataset, and the simulated authentic dataset, from a liquid chromatog-

raphy and tandem mass spectrometry (LC-MS/MS) dataset.

Here, simulated dataset has the information for identified peptides (mass and RT), while

simulated authentic dataset has the raw dataset which contains peaks information for the iden-

tified peptides. In this thesis, all the results of the approaches are based on these three datasets,

which are introduced in the following subsections. After processing, there are a certain number

of peaks in each dataset. Additionally, each peak includes two floating point numbers: mass

and RT of a peptide.

Dataset One

Dataset one is a simulated dataset, which is generated from a LC-MS/MS dataset. In the

wet-lab, we perform experiments with a Thermo Scientific Orbitrap Elite mass spectrometer,

which has a dual-pressure linear ion trap and a high-field Orbitrap mass analyzer. This ion

trap contributes enhanced ion optics that increase sensitivity and reliability, a greater dynamic

range for better precursor detection, and the power of MSn identification. The high-field Or-

bitrap mass analyzer geometry and advanced signal processing technologies enable resolution
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of >240,000. The availability of multiple fragmentation techniques (CID, HCD and optional

ETD) offers versatility for challenging research applications [145].

In the wet-lab with LC-MS/MS, we generated a sample of protein complex for Human,

which includes protein telomeric repeat-binding factor 1 (TERF1). TERF1 is a protein that

encoded by the TERF1 gene, which is located in the chromosome 8, from 73,921,097 to

73,960,357 base pair. TERF1 gene encodes a telomere specific protein which is a compo-

nent of the telomere nucleoprotein complex. This protein is present at telomeres throughout

the cell cycle and functions as an inhibitor of telomerase, acting in cis to limit the elongation

of individual chromosome ends [156].

We searched this HCD MS/MS spectra with Mascot, by using the following parameters:

trypsin digestion, no PTM, monoisotopic peaks, any charge state, and unrestricted protein

mass. There are altogether 248 identified proteins in Human database. From this protein

candidate list, we selected the protein that at least has four matched peptides. Consequently,

we had 89 proteins that satisfied this rule. For each of these 89 proteins, we obtained the

information for the matched peptides from Mascot, including the mass and RT. From these

89 proteins, we selected the masses and RTs from the matched peptides as the simulated MS

spectra, and the total number of the peaks was 770. Finally, we set our simulated MS dataset to

contain these 770 matched peptides, and these 89 proteins are considered as our ground-truth

proteins. For each line of the simulated dataset, there are two numbers that represent a peptide:

mass and RT.

Dataset Two

Dataset two is from an authentic dataset. In 2005, a proteomics standard composed of 49

highly purified human proteins in an equimolar mixture was created by the ABRF Proteomics

Standards Research Group (sPRG). The sPRG conducted a blind study to assess the proteomics

communitys ability to determine the identities of the constituent proteins using their proteomics

platforms of choice. 120 laboratories from across the world volunteered to participate. Each
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Figure 4.8: A diversity of analysis tools were used by six BIC members.

laboratory received a complex mixture of 49 unknown proteins and were asked to identify as

many of these proteins as possible using their best analytical strategies. Consequently, 78 lab-

oratories returned their results. The study revealed the value of multiple independent analyses

of this proteomics standard, and contributors were asked to voluntarily contribute their datasets

for future public distribution. Finally, 24 raw datasets were submitted representing a wide va-

riety of proteomics strategies and mass spectrometry platforms. Format conversion utilities

were used to create peak lists to .mgf, mzData, and mzXML, allowing a total of 19 of the

24 datasets to be examined ultimately by the sPRG Bioinformatics Committee (BIC). These

selected datasets included: dataset from all major vendors’ instruments; ESI and MALDI, 1D-

LC, 2D-LC, and gel workflows. Only the MS/MS dataset were considered. Consequently, all

six BIC members searched the datasets using different software tools for peptide identification

and protein inference, which is shown in Figure 4.8.

After initial explorations, a FASTA database was assembled for final searches as the human

component of Swiss-Prot, plus 39 non-human and 5 non-Swiss-Prot human candidates (15,681

total proteins). For final searches, each BIC reported a count of confident peptide sequences
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Figure 4.9: BIC consensus on protein identifications [64].

and protein probability or binary decision. There were 84 final searches on datasets from 19

laboratories by six BCI members, and Figure 4.9 demonstrates a histogram of the degree of

consensus among each BIC members’ final decisions about which proteins were and were not

detected. From this figure, 78 proteins were declared by all six BIC members and 89 were

declared by at least five or more. Only 15 proteins ultimately considered correct had less

consensus than this – in some cases because not all BIC members searched the lab where a

protein was implicated. The summary of BIC consensus protein annotation is shown in Table

4.1.

For these 19 datasets, not everyone counts peptides the same way, so the dataset from

each BIC member were normalized to the mean across the group. Using the annotation, BIC

re-grade sPRG2006 protein lists, and the picture changes slightly as some of 2006’s putative

bonus proteins were confirmed, Figure 4.10 shows this situation.

From above steps, we know that although the ABRF protein mix was originally intended to

contain 49 proteins only, ABRF sPRG BIC have confirmed the presence of further 20 ‘bonus’
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Table 4.1: The summary of BIC consensus protein annotation [64].
Total proteins detected in any lab’s data 104
Expected: Intended 49 proteins 49
Expected: Additional human proteins 20
Expected: E.coli 3
Total desirable protein detections (originally in sample) 72
Expected: Digestion enzyme 2
Variable: Human keratins 12
Variable: Sheep proteins (from wool) 5
Variable: Trypanosome proteins 9
Variable: E.coli proteins 4
Total other detections (avoidable artifacts) 30

proteins in the mix [64].

In this thesis, we use an authentic MS dataset obtained from a mixture of 49 standard human

proteins in the ABRFsPRG2006 study, which was also tested by He et al [50]. The dataset was

generated by a linear ion trap-orbitrap (LTQ-Orbitrap) mass spectrometer. Additionally, we

consider identifications of all expected and ‘bonus’ proteins to be ground-truth proteins [10].

The raw dataset for ABRFsPRG2006 study can be processed by third party software, such

as MZmine 2 [105]. MZmine 2 is an open-source software for mass-spectrometry dataset

processing, with the main focus on LC-MS dataset. Figure 4.11 shows the result of the raw

dataset processed by MZmine 2, there are tree views in the left window: the blue ones are MS,

while the red ones are MS/MS. In the right window, a MS scan #8,024 is displayed with some

peaks. We first employed Decon2LS [56] to find peaks in individual mass spectra from raw

LC-MS data. DeconTools is a software package used to de-isotope mass spectra and detect

features in MS dataset by using the isotopic signatures of expected components. Consequently,

VIPER [92] is used to identify LC-MS peaks from MS peaks across elution time. Figure 4.12

shows the result of the raw dataset processed by VIPER, vertical axis represents the mass,

and the horizontal axis is the retention time. Here we used the default parameter settings for

Decon2LS and VIPER, except for the threshold of intensity for peaks peaks (only consider the

peaks whose intensities are greater than 1E4). The mass range is from 800 to 4,100 Da. In
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Figure 4.10: The re-grading of sPRG2006 protein lists [64].

total, we obtained 9,976 de-convoluted peaks as the input dataset.

We also tested other input datasets with different intensities, such as 5E4 and 1E5, then the

number of peaks are 6,812 and 3,996 respectively. For 1E5, mass ranges from 800 to 4,200,

and charge less than 3, we have Figure 4.13 that processed by VIPER, which is much spare

than Figure 4.12.

Dataset Three

Dataset three is from a simulated authentic dataset. Now, we only have datasets with one

hundred proteins, but we would like to know what is the maximum protein number PMF could

identify with satisfying precision. In wet-lab experiments, the number of proteins in complex

samples is usually several thousands and is identified by MS/MS spectra with PFF. Therefore,

we set our goal to identify several hundred proteins with PMF. Unfortunately, it is difficult to

find a suitable sample with only several hundred proteins from online and wet-lab resources

[32]. Consequently, we designed a new method to generate MS spectra partially from the raw

dataset for thousands of proteins, assuming this MS dataset is from hundreds of proteins.
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Figure 4.11: The display of the raw ABRFsPRG2006 dataset processed by MZmine 2. In the
left window, the blue ones are MS spectra, while the red ones are MS/MS spectra. In the right
window, #8,024 is a MS scan and there are some peaks within it.
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Figure 4.12: The display of the raw ABRFsPRG2006 dataset processed by VIPER. The hori-
zontal axis represents the retention time, and the vertical axis is the mass.

We performed a LC-MS/MS experiment for 2,000 Human proteins by Orbitrap Elite. Now

we would like to select partial MS spectra which could represent five hundred proteins from

this MS/MS dataset. We first used PEAKS software (Ma et al., 2003) to identify the proteins,

by the following parameters: parent mass error tolerance mass tolerance (2 ppm), fragment

mass search type (0.02 Da), precursor mass search type (monoisotopic), enzyme (trypsin), max

missed cleavage (0), non-specific cleavage (none), max variable PTM per peptide (0), searched

entry (42,164), and database (UniProt Human), etc. After searching, we created a protein

candidate list, which contains 1,606 identified proteins. We selected the top 519 proteins,

since there is a distinct difference between the scores at this position. From those proteins,

we selected their corresponding 5,686 identified peptides. After removing those same peptides

that matched different proteins, 5,158 ones left. Consequently, we employed Decon2LS (Jaitly,

2009) to find peaks in individual mass spectra from raw LC-MS/MS data. There were two files

generated after the processing of Decon2LS, one contains the information for all 23,380 MS
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Figure 4.13: ABRFsPRG2006 processed by VIPER with intensity 1E5, charge less than 3. The
horizontal axis represents the scan number, and the maximum is 8,025. The vertical axis is the
mass, where the range is from 800 to 2,000.
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survey scans, another has the peaks for all MS scans. We used those selected peptides from

PEAKS to find their corresponding MS survey scans, with the facilitation of MS scans from

Decon2LS. As a result, the number of selected MS scans was 4,148. After that, we searched the

peaks for MS from Decon2LS, for all selected MS survey scans. Recall that from PEAKS we

have selected 5,158 identified peptides, we used their masses to filter the peaks, with the mass

tolerance of 2 ppm. After selecting peaks from MS spectra with these peptides, we generated

a new file with smaller number of peaks for MS. Finally, we used VIPER to identify LC-MS

peaks from this new file of MS peaks across elution time, and we obtained 9,974 de-convoluted

peaks as the input. The framework for selecting peaks from the raw dataset is shown in Figure

Algorithm 8. Additionally, the details of these steps are introduced in the follows.

Algorithm 8: Filtering peaks: generating a raw simulated authentic dataset.
Input: CPL: a protein candidate list;
S PL: a selected proteins’ identified peptides list;
MS S :all the MS survey scans;
S : a survey MS scan;
P: a peak in a survey MS scan;
S MS : all the MS survey scans that contain selected peptides;
PMS : all the peaks in a survey MS scan;
δ: a mass tolerance threshold;
Output: PRW: a partially raw simulated authentic dataset;

1 for i := 1 to |MS S | do
2 if S i ∈ S MS then
3 for j := 1 to |PMS | do
4 for k := 1 to |S PL| do
5 if P j is a peak in the interval of (Pk − δ, Pk + δ) then
6 put P j into PRW;
7 break;
8 end if
9 end for

10 end for
11 end if
12 end for
13 return PRW

In the first step, we used PEAKS software [82] to identify the proteins. PEAKS studio

performs LC-MS/MS dataset analysis and statistics according to the experimental design. Raw
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Figure 4.14: The identified peptides for 2,000 proteins by PEAKS DB. The right windows have
the information for identified peptides: the top is a score for a peptide, the middle is a MS/MS
spectrum for this peptide (scan 66,188), and the bottom is a score for the amino acid residue.

LC-MS/MS dataset often contains noise, and PEAKS will do dataset refinement to improve

the overall quality of the data, such as precursor m/z correction. The next processing is pep-

tide de novo sequencing, which derives the peptide sequence from the tandem mass spectrum

without the need of a sequence database. Following the identification of peptides with MS/MS

spectra, the resulting peptide sequences are used to determine the original protein components

of the samples with high sensitivity and accuracy. Figure 4.14 shows the identified peptides

by PEAKS DB, the right windows have the information for these identified peptides: the top

has a score for a peptide, the middle has a MS/MS spectrum for a peptide (scan 66,188), and

the bottom has a score for the peptide’s amino acid residue. Figure 4.15 displays the identified

proteins by PEAKS DB, where the right windows have the information for these identified

proteins: the top has all scores for the identified proteins, and the bottom has the details for an

identified protein and all its matched peptides, which are marked by blue lines.
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Figure 4.15: The identified proteins for 2,000 proteins by PEAKS DB. The right windows have
the information for identified proteins: the top is all identified proteins’ information, and the
bottom is the details for an identified protein with all its matched peptides, which are marked
by blue lines.
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The next step is the database searching in PEAKS. The relationship of the original MS

and scans from the raw dataset is shown in Figure 4.16, the maximum mass is approximate

9,000, and the maximum scan is 127,129. Among all the scans, there are 23,380 MS scans.

After searching by PEAKS, we have the protein candidate list, which contains 1,606 identified

proteins altogether. We selected top 519 proteins from them, and obtained corresponding 5,686

identified peptides. After removing those same peptides matched to different proteins, 5,158

ones left. We used these peptides to find their MS survey scans, and the number was 4,148.

Again, we searched from the raw dataset for all these selected MS survey scans. We filtered the

peaks with these identified peptides’ masses, by the mass tolerance of 2 ppm. After selecting

the peaks from the raw dataset to generate a new raw data, we used VIPER to identify LC-

MS peaks from MS peaks across elution time. The two dimensional relationship of mass and

scan number for the selected 519 proteins from the partially raw dataset is shown in Figure

4.17, where the maximum mass is approximate 6,000, and the maximum scan is 127,129.

From this figure, we know that distribution of the partially raw dataset is much sparse than the

original one in Figure 4.16. The framework for selecting peaks from the raw dataset is shown

in Algorithm 8.

4.5.4 Experimental Results

Dataset One

We used 770 simulated peaks from 89 proteins to our algorithms, with a tolerance δ=2ppm.

Here the parameter for trypsin digestion is “without missed cleavage” (not allowing internal

trypsin cleavage site). Therefore, for the peptides with 1 or 2 missed cleavages, they cannot

match the peptides from ground-truth proteins. The results are shown in Table 4.2. From this

table, we know that our approach is better than MOWSE.
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Figure 4.16: The display of the raw dataset for 2,000 proteins processed by VIPER. The hori-
zontal axis represents the retention time, and the maximum scan is 127,129. The vertical axis
is the mass, and the maximum mass is approximate 9,000.
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Figure 4.17: The display of the partially raw dataset for top 519 proteins processed by VIPER.
The vertical axis is the mass, and the maximum one is approximate 6,000. The horizontal
axis represents the retention time, and the maximum scan is 127,129. The distribution is much
sparse than the original one.
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Table 4.2: The performance of different algorithms on dataset one
Algorithms Precision Recall F1-measure
MOWSE 63% 63% 63%

ProbS 65% 65% 65%
HeatS 67% 67% 67%

Dataset Two

When database searching, we set the mass tolerance threshold as 1 ppm. The results are

shown in Table 4.3. For the intensities of 5E4 and 1E, we saw similar results, which shows our

method is not sensitive to the intensity threshold. In order to demonstrate the performance of

our approach, we compare other state-of-the-art methods with this dataset. Here SPA, Subtrac-

tion, Losak, and Losau are from He et al [50], where SPA and Subtraction are traditional PMF

algorithms, Losak and Losau are developed by He et al [50]. Here the performance of ProbS is

similar to traditional PMF such as SPA, while HeatS performs better than other methods.

Table 4.3: The performance of different algorithms on dataset two
Algorithms Precision Recall F1-measure

SPA 24% 24% 24%
Subtraction 43% 43% 43%

Losak 67% 67% 67%
Losau 61% 71% 66%

MOWSE 33% 33% 33%
ProbS 29% 29% 29%
HeatS 69% 69% 69%

Dataset Three

From the report of PEAKS, we selected the top 519 proteins. Based on them, we filtered

the raw dataset with 2 ppm, and a partially raw dataset could be produced. Consequently,

we used Decon2LS [56] and VIPER [92] again, obtained 9,974 de-convoluted peaks as the

input. When database searching, we set the mass tolerance threshold to 2 ppm. In order to

compare different methods fairly, we used the same human database from UniProt. For the
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519 proteins identified by PEAKS, we grouped them if they were isoforms. After that, 510

different proteins were identified from PEAKS, and we used them as the ground-truth proteins.

For each algorithm, the top 510 proteins were compared with the ground-truth proteins. The

results are shown in Table 4.4.

We have demonstrated that our algorithms have significant improvement compared to other

methods, and the purpose of dataset three is to find the maximum proteins our algorithms can

identify. Therefore, here we only compare with MOWSE. The results show that our algorithms

are still better than MOWSE, although they are not perfect for hundreds of proteins. We also

checked the results for different threshold number from the candidate proteins list, in order

to know the distribution of ground-truth proteins. By using the same dataset, we counted the

number of true positive proteins from top 255 proteins, and 127 ones as well, which are shown

in Table 4.5 and Table 4.6. Notice that, here Recall and F1-measure are different to Precision,

since nP and (nT P+nFP) are different by choosing different thresholds. For example, in Table 4.5,

the Precision for HeatS is 82%, which means 209 proteins are TPs in the reported 255 proteins.

Consequently, the Recall is 209/510 = 41%, and the F1-measure is 0.82∗0.41∗2/1.23 = 55%.

Table 4.4: The performance of different algorithms on dataset three for top 510 proteins
Algorithms Precision Recall F1-measure
MOWSE 48% 48% 48%

ProbS 29% 29% 29%
HeatS 60% 60% 60%

Table 4.5: The performance of different algorithms on dataset three for top 255 proteins
Algorithms Precision Recall F1-measure
MOWSE 59% 30% 40%

ProbS 49% 25% 33%
HeatS 82% 41% 55%
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Table 4.6: The performance of different algorithms on dataset three for top 127 proteins
Algorithms Precision Recall F1-measure
MOWSE 72% 18% 29%

ProbS 55% 14% 23%
HeatS 89% 22% 35%



Chapter 5

Adjustment of Scores

After the above steps (network based inference methods), we could obtain a set of proteins

Z from the scoring function of ProbS or HeatS. For the purpose of getting better results, we

could also consider other factors, such as the mass of a protein, and the RT of a peptide.

The raw score from NBI has a bias with larger proteins compared to smaller proteins.

Because heavier proteins have more peptides than smaller ones, their matches and scores will

be higher than the latter. Therefore, we need to adjust the raw score. Here we choose linear

regression, trying to tackle this bias.

So far, in ProbS and HeatS, we only analyze the information for the mass of a peptide,

however there is also retention time (RT) associated with this mass. In addition, we use the

order of RTs from the matched peptides for further adjustment of the protein score. Here, a

dynamic programming will be applied.

In this chapter, we will show how to adjust the raw scores, with linear regression and

ordered retention time.

5.1 Linear Regression (LR)

When database searching, a larger protein has a larger set of peptides than a small protein

resulting, often resulting in a number of matched peptides. Taking the simulated 89 proteins as

113
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example, Figure 5.1 shows the average matched number in 400 intervals. In the database, with

the increase of the protein intervals, the average matched number of peptides for the protein

interval is also increasing. For example, if a protein p1 has a matched peptide, and the average

matches for the interval of p1 is one; while another protein p2 has two matched peptides, but

the average matches for the interval of p2 is two. Under this situation, the score of p2 should

not be double than that of p1, they could have the same score. Accordingly, we need to adjust

our scoring function to correct this bias towards large proteins. In traditional PMF methods,

the molecular weight of each protein is restricted, such as in the range of 30,000 - 100,000 Da.

Additionally, they used a simple method, a constant (50,000) divided by the protein mass, to

adjust the raw score. However, this phenomenon increases dramatically with the increase of

the size of input proteins. Therefore, we need a better method to deal with the bias with larger

proteins.

Here we can use a simple linear regression technology to deal with this problem. For this

purpose, we divide protein mass by 10,000 Da, resulting in the 400 protein intervals, which is

the same with MOWSE. For the proteins in each interval, we can calculate the number of aver-

age matched peptides. Since there are not enough proteins in the protein interval with heavier

proteins in the Human database, we use the first 25 intervals to estimate a linear regression

line for all 400. Finally, we could get the estimated matching number from an equation of

c = a + b ∗ |p j|, where b is the slope of the line, a is the intercept, a and b are estimated from

first 25 intervals, |p j| is the explanatory variable, and c is the dependent variable. Here, |p j|

is the mass of protein p j, and we use c to normalize the score for p j, in order to compare the

proteins with different masses fairly. Therefore, the formula is as follows:

FL(P, p j, δ) =
Σt

q=1 f (uq)

c(|p j|)
,

where f (uq) is the raw score for a matched peptide uq, t is the total number of matches for

p j, and c(|p j|) is the estimated matching number for p j. By using linear regression for each
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Figure 5.1: The average matched number of peptides in 400 protein intervals for the simulated
89 proteins.
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interval, we adjust the raw scores with the estimated average matched number, hoping to keep

the balance between different protein masses.

In ProbS, we multiply the scores of matched peptides for a protein. Now we use the root of

c(|p j|) to adjust the raw score. Therefore, we have

FPL(P, p j, δ) = c(|p j |)

√∏
1≤q≤t

(
1

f ′′p (uq)
)

to calculate the geometric mean, and get

F′PL(P, p j, δ) =

∑t
q=1 lg( 1

f ′′p (uq) )

c(|p j|)

by using log. While in HeatS, we add the scores of matched peptides for a protein. Now we

adjust raw score by dividing by the average matched number c(|p j|). Consequently, we have

FHL(P, p j, δ) =

∑t
q=1 f ′h(uq)

c(|p j|)
,

which is an arithmetic mean. The regression line based on average matched number for each

interval is shown in Figure 5.2. From the above formulas, if two proteins have the same number

of matches, the protein in the small interval has more chance to get a high score, compared to

the protein in the large interval. Consequently, the score for the huge protein in the interval of

400, will be decreased dramatically to avoid false positives. The linear regression framework

for PMF is shown in Algorithm 9.

5.2 Ordered Retention Time (ORT)

Together with highly accurate peptide mass measurements, the additional RT information is

also provided by preliminary HPLC analysis [5, 11, 12, 45]. RT was not used for protein iden-

tification. However, in 2011 Bochet et al [17] considered the order of peptide RT and applied



5.2. Ordered Retention Time (ORT) 117

Figure 5.2: The average matched number in 400 intervals and their linear regression for the
simulated 89 proteins.

Algorithm 9: LR for PMF: finding a set of proteins to best explain experimental peaks.
Input: D: a database of s proteins;
P: an observed peak list;
δ: a mass tolerance threshold;
U(p j): a set of matched peptides for protein p j;
f (uq): a matching score for a peptide uq ∈ p j;
c(|p j|): the estimated matched number for the protein p j;
∆: a threshold score ;
Output: Z: a set of proteins Z ∈ D that best explaining P;

1 for j := 1 to |D| do
2 FL(P, p j, δ)← 0
3 for q := 1 to |U(p j)| do
4 FL(P, p j, δ)← FL(P, p j, δ) + f (uq)
5 end for
6 FL(P, p j, δ)← FL(P, p j, δ)/c(|p j|)
7 end for
8 Z ← {p j | p j ∈ D, FL(P, p j, δ) ≥ ∆}
9 return Z
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dynamic programming with quantile regression to identify proteins. They assumed that for the

matched peptides in a protein, the order of peptides’ predicted RTs should be consistent with

the order of peptides’ experimental elution times. Therefore, among these matched peptides in

one protein, they would like to find the maximum number of peptides, whose order of predicted

RTs should be the same with that of elution times. Additionally, the success of this method

relies on accurately predicted peptide RT. In 2004, Krokhin, et al. developed s SSRCalc tool

[62], used a linear model with different hydrophobicity coefficients for amino acids close to

termini of the peptide. For each peptide, SSRCalc provides a hydrophobicity index (HI) which

can be converted into a predicted RT by an affine transformation [61]: RT = a + b ∗ HI.

In practice, it is hard to compute the accurate experimental RT from the predicted algorithm,

and sometimes there are several different RTs for one peptide from a raw dataset. Therefore,

we only keep the order of RTs, which is more robust than using RTs directly. For a protein

p j, the matched peptide set U(p j) is sorted by predicted RT, and the matched peak set L(p j) is

also sorted according to experimental RTs. By dynamic programming [117], we would like to

find a subset in U(p j), which is consistent with the order of predicted RTs with the maximum

score. Here the purpose is to remove potentially random matches. The dynamic programming

with HeatS and ORT for protein p j is shown in Algorithm 10.

5.3 Experiments

Again, we have an input set of experimental peaks P = {li(mi, ri) | i = 1, 2, . . . , n}. We also

have a database of proteins D = {p j | j = 1, 2, . . . , s}. For PMF, our objective is to find a set

of proteins Z ∈ D that contains all the proteins whose scores are greater than a threshold ∆, i.e.

Z = {p j | p j ∈ D, F(P, p j, δ) ≥ ∆}.

Here we still use three datasets introduced in the former chapter. The testing results demon-

strate that our adjustment algorithms (LR and ORT) could improve the performance signifi-

cantly.
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Algorithm 10: ORT: dynamic programming with HeatS and order of RT for protein p j.
Input: P: an observed peak list with RT;
δ: a mass tolerance threshold;
U(p j): a set of matched peptides for protein p j;
L(p j): a set of matched peaks for protein p j;
f ′h(uq): a HeatS score for a peptide uq ∈ p j;
c(|p j|): the estimated matched number for the protein p j;
Output: the maximum score for protein p j;

1 Sort U(p j) with HI;
2 Sort L(p j) with RT;
3 for q := 0 to |U(p j)| do
4 n[q, 0]← 0
5 end for
6 for g := 1 to |L(p j)| do
7 n[0, g]← 0
8 end for
9 for q := 1 to |U(p j)| do

10 for g := 1 to |L(p j)| do
11 n[q, g]← max(n[q − 1, g − 1] + f ′h(uq), n[q − 1, g], n[q, g − 1])
12 end for
13 end for
14 return (n[|U(p j)|][|L(p j)|])/c(|p j|)
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5.3.1 Dataset One

Again, we inputted 770 simulated peaks from 89 proteins to our algorithms. The tolerance

δ is 2ppm, and the parameter for trypsin digestion is “without missed cleavage”. The results

are shown in Table 5.1. Here ORT is based on the algorithm of Bochet et al [17]. To ensure

a fair comparison, we added LR to MOWSE and ORT, and also improved their performance.

From this table, we know that our approaches are better than MOWSE and ORT. Among four

different methods, HeatS has the best performance. Generally, the adjustment of a raw score

could get better result.

Table 5.1: The performance of different algorithms on dataset one
Algorithms Precision Recall F1-measure

ORT 60% 60% 60%
MOWSE 63% 63% 63%

ProbS 65% 65% 65%
HeatS 67% 67% 67%

MOWSE&LR 69% 69% 69%
ProbS&LR 69% 69% 69%

ProbS&HeatS&LR 71% 71% 71%
HeatS&ORT&LR 74% 74% 74%

ORT&LR 75% 75% 75%

5.3.2 Dataset Two

The authentic MS dataset is still from a mixture of 49 standard human proteins in the

ABRFsPRG2006 study. When database searching, we set mass tolerance threshold to 1 ppm.

The results are shown in Table 5.2. There are only 39 proteins whose matches are greater than

two. We identified all of them. However, the other 10 proteins, we cannot report because

they only have zero or one match. We also tested other input dataset with different intensities,

such as 5E4 and 1E5, then the number of peaks were 6812 and 3996 respectively. We saw

similar results, which shows our method is not sensitive to the intensity threshold. In order to

demonstrate the performance of our approach, we compare other state-of-the-art methods with
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this data. Here SPA, Subtraction, Losak, and Losau are from He et al [50], where SPA and

Subtraction are traditional PMF algorithms, Losak and Losau are developed by He et al. We

also test MOWSE and ORT from Bochet et al [17]. To ensure a fair comparison, we add LR

for both of them.

The results demonstrate that our algorithms achieve significant improvement compared to

other methods. In the top 49 proteins for HeatS &ORT , there are only 2 proteins belong to

FP. The others are 39 expected proteins and 8 bonus expected ones. Here expected proteins

are intended 49 proteins, and bonus expected proteins are 20 additional human proteins, which

were reported by abrf2007. That means all 47 proteins are T P, which proves the correctness

and robustness of our approaches.

Table 5.2: The performance of different algorithms on dataset two
Algorithms Precision Recall F1-measure

SPA 24% 24% 24%
Subtraction 43% 43% 43%

Losak 67% 67% 67%
Losau 61% 71% 66%

MOWSE 33% 33% 33%
MOWSE&LR 63% 63% 63%

ORT 37% 37% 37%
ORT&LR 65% 65% 65%

ProbS 29% 29% 29%
ProbS&LR 63% 63% 63%

HeatS 69% 69% 69%
HeatS&LR 73% 73% 73%

HeatS&ORT&LR 80% 80% 80%

5.3.3 Dataset Three

The simulated authentic dataset has 9,974 de-convoluted peaks. When database searching,

we set mass tolerance threshold to 2 ppm. In order to compare different methods fairly, we

used the same Human database from UniProt. Finally, we obtained 510 different proteins from

PEAKS, and used them as the ground-truth proteins. The results are shown in Table 5.3. We
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also checked the different threshold numbers from the protein candidate list, such as top 255

proteins, and 127 ones as well, which are shown in Table 5.4 and Table 5.5. From these results,

we know that LR and ORT can improve the performance of different algorithms. Notice that,

with the increase of input dataset, for the smaller proteins (in the interval 1, 2, etc), we should

keep their original scores to avoid underestimating with linear regression.

Table 5.3: The performance of different algorithms on dataset three for top 510 proteins
Algorithms Precision Recall F1-measure
MOWSE 48% 48% 48%

ProbS 29% 29% 29%
ProbS&LR 49% 49% 49%

HeatS 60% 60% 60%
HeatS&LR 65% 65% 65%

HeatS&ORT&LR 66% 66% 66%

Table 5.4: The performance of different algorithms on dataset three for top 255 proteins
Algorithms Precision Recall F1-measure
MOWSE 59% 30% 40%

ProbS 49% 25% 33%
ProbS&LR 73% 37% 49%

HeatS 82% 41% 55%
HeatS&LR 85% 43% 57%

HeatS&ORT&LR 85% 43% 57%

Table 5.5: The performance of different algorithms on dataset three for top 127 proteins
Algorithms Precision Recall F1-measure
MOWSE 72% 18% 29%

ProbS 55% 14% 23%
ProbS&LR 91% 23% 37%

HeatS 89% 22% 35%
HeatS&LR 91% 23% 37%

HeatS&ORT&LR 91% 23% 37%



Chapter 6

Post Processing Algorithms

After the above steps, we obtained a protein candidate list with a scoring function. Given

a threshold ∆, we could find a set of proteins Z = {p j | p j ∈ D, F(P, p j, δ) ≥ ∆}, which can

best explain the peaks. But there may be still room to improve the accuracy of these score

functions, by the heuristic ways.

In this chapter, we will design two post processing algorithms to correct the scores: the

assignment of peaks, restricting that a peak can only be assigned to one peptide in order to

reduce random matches; and the protein filtration, assuming each peak can only be assigned to

one protein.

6.1 Assignment of Peaks (AP)

Since we do not use MS/MS, we cannot know the sequence for each matched peptide, and

it is hard to distinguish peptides within a tolerance threshold. After searching the database,

we have some candidate proteins with descending order of scores. The top ones tend to be

ground-truth proteins. Therefore, we start from the top protein to the bottom one. For each

matched peak in a protein, if this peak is never assigned to a theoretical peptide, we mark it;

otherwise, just ignore it. After searching, each matched peak will be assigned to only one

peptide. The reason is that, a peak is actually from one peptide in most wet-lab experiments.

123
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Now we reevaluate the proteins with these updated peaks, hoping to reduce random matches.

The detail of the assignment of peaks is shown in Algorithm 11. Here we assume that a peak

can only match to one peptide. After the assignment of peaks, we select the best matching

from a peak among several peptides, and reduce the other matches which are false positives.

Algorithm 11: Assignment of peaks: assuming a peaks can only match to one peptide.
Input: P: an observed peak list;
PS M: all of the peptide spectrum matches;
U(p j): a set of matched peptides for protein p j;
L(p j): a set of matched peaks for protein p j;
CPL: a protein candidate list in a descending order;
Output: PS O: a set of peptide spectrum matches;

1 for j := 1 to |CPL| do
2 for q := 1 to |U(p j)| do
3 (uq, lg) is a matching;
4 if lg never matches to any peptide then
5 put (uq, lg) into PS O;
6 mark lg;
7 end if
8 end for
9 end for

10 return PS O

6.2 Protein Filtration (PF)

In the last step, we wish to filter false positive proteins. We hope that for each reported

protein, it at least has one novel peak, which means this peak is never assigned to others. In

other words, we restrict that each matched peak will be assigned to only one protein. We also

start from the top protein to the last. For each matched peptide in a protein, if it is never used

by others, it is a “novel” peptide and we mark it. For each protein, if all of its peptides are

not novel, we will remove it from the candidate list. Finally, we may get a smaller Z with the

same ∆. The detail of the protein filtration is shown in Algorithm 12, assuming a peak can only

match to one protein.
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Algorithm 12: Protein filtration: assuming a peaks can only match to one protein.
Input: P: an observed peak list;
PS O: a set of petide spectrum matches where one spectrum matches to one peptide;
U(p j): a set of matched peptides for protein p j;
L(p j): a set of matched peaks for protein p j;
CPL: a protein candidate list in a descending order;
Output: CPF: a set of protein candidate list after protein flitration;

1 for j := 1 to |CPL| do
2 Novel← false;
3 for q := 1 to |U(p j)| do
4 (uq, lg) is a matching;
5 if lg never matches to any protein then
6 Novel← true;
7 mark lg;
8 end if
9 end for

10 if Novel==ture then
11 put (p j) into CPF;
12 end if
13 end for
14 return CPF

6.3 Experiments

Again, we have an input set of experimental peaks P. We also have a database of proteins

D. For PMF, our objective is to find a set of proteins Z ∈ D that contains all the proteins whose

scores are greater than a threshold ∆.

Here we still use the same three datasets. The testing results demonstrate that our post

processing algorithms (AP and PF) could improve the performance.

6.3.1 Dataset One

The simulated dataset is still from a wet-lab experiment with 248 proteins from Human,

which identified by MS/MS with Mascot. We selected top 89 proteins and their 770 matched

peptides as the input dataset, with a tolerance δ=2ppm. The results are shown in Table 5.1.

Additionally, the post processing algorithms could also improve the performance. We can
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identify all the proteins whose matches are greater than two, and the top 61 ones are all TP. As

a result, AP and PF could improve 8% performance compared to the best one of other methods.

Table 6.1: The performance of different algorithms on dataset one
Algorithms Precision Recall F1-measure

ORT 60% 60% 60%
MOWSE 63% 63% 63%

ProbS 65% 65% 65%
HeatS 67% 67% 67%

MOWSE&LR 69% 69% 69%
ProbS&LR 69% 69% 69%

ProbS&HeatS&LR 71% 71% 71%
HeatS&ORT&LR 74% 74% 74%

ORT&LR 75% 75% 75%
HeatS&ORT&LR&AP 80% 80% 80%

HeatS&ORT&LR&AP&PF 83% 83% 83%

6.3.2 Dataset Two

The authentic MS dataset is from a mixture of 49 standard human proteins in the ABRF-

sPRG2006 study. In the last chapter, for HeatS &ORT , we have identified 47 ground-truth

proteins, including 39 expected proteins and 8 bonus expected ones. Since there are only 2

proteins belong to FP in the top 49, it is hard to improve the performance. Therefore, we do

not use post processing algorithms here.

6.3.3 Dataset Three

The simulated authentic dataset still contains 9,974 de-convoluted peaks. When database

searching, we set mass tolerance threshold as 2 ppm. The results are shown in Table 6.2. We

also checked the different threshold numbers from top 255 proteins in the candidate list, and

127 ones as well, which are shown in Table 6.3 and Table 6.4. From the results, AP could

improve 5% performance compared to the best of other methods for 510 proteins.
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Table 6.2: The performance of different algorithms on dataset three for top 510 proteins
Algorithms Precision Recall F1-measure
MOWSE 48% 48% 48%

ProbS 29% 29% 29%
ProbS&LR 49% 49% 49%

HeatS 60% 60% 60%
HeatS&LR 65% 65% 65%

HeatS&ORT&LR 66% 66% 66%
HeatS&ORT&LR&AP 71% 71% 71%

Table 6.3: The performance of different algorithms on dataset three for top 255 proteins
Algorithms Precision Recall F1-measure
MOWSE 59% 30% 40%

ProbS 49% 25% 33%
ProbS&LR 73% 37% 49%

HeatS 82% 41% 55%
HeatS&LR 85% 43% 57%

HeatS&ORT&LR 85% 43% 57%
HeatS&ORT&LR&AP 87% 44% 59%

Table 6.4: The performance of different algorithms on dataset three for top 127 proteins
Algorithms Precision Recall F1-measure
MOWSE 72% 18% 29%

ProbS 55% 14% 23%
ProbS&LR 91% 23% 37%

HeatS 89% 22% 35%
HeatS&LR 91% 23% 37%

HeatS&ORT&LR 91% 23% 37%
HeatS&ORT&LR&AP 92% 23% 37%



Chapter 7

Target-Decoy Search Strategy

After database searching, we can obtain a protein candidate list with a scoring function.

Given a threshold ∆, we could find a set of proteins Z = {p j | p j ∈ D, F(P, p j, δ) ≥ ∆}, which

can best explain the peaks. Now, the problem is how to choose a proper score threshold ∆,

for reporting the identified proteins with satisfactory accuracy. This step is also called result

validation.

Precision and recall are two competing goals in MS data analysis for protein identification,

which should be considered together. Nowadays, the accuracy of the result is often measured

by the false discovery rate (FDR), which is defined as the ratio between the number of reported

false hits to the total number of reported hits. Moreover, the most widely used approach for

FDR estimation is the target-decoy strategy.

In this chapter, we will review target-decoy strategy for tandem mass spectrometry, and

introduce the concept of decoy database. Furthermore, we design two new target-decoy strate-

gies for PMF, including random dataset and decoy dataset. The experiments on three datasets

demonstrate that our target-decoy methods achieved intriguing performance.
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Figure 7.1: A scoring function is used to separate the true and false identifications. False
discovery rate (FDR) is the portion of false positives above the user-specified score threshold.

7.1 Target-Decoy for Tandem Mass Spectrometry

In MS/MS data analysis for peptide identification, accuracy and sensitivity are two com-

peting goals that must be talked about together. How to estimate incorrect peptide and protein

identifications accurately and precisely is crucial in proteome analyses by MS/MS. Conse-

quently, a scoring function is the core to evaluate the matching quality between a peptide and

a MS/MS spectrum. Usually, the software will find a peptide that maximizes the peptide-

spectrum matching score. The match between the spectrum and the highest-scoring peptide is

called as a peptide-spectrum match (PSM) [35, 36].

A PSM can be incorrect, the reasons include: (1) low quality spectrum; (2) peptides not in

the database; and (3) imperfect scoring function. Therefore, invariably have different standards

for what constitutes a good match. Recently, the accuracy of the result is often measured

by FDR, which is defined as the ratio between the number of reported false hits to the total

number of reported hits. In Figure 7.1, the PSMs are sorted by their scores, and the FDR can

be estimated after choosing a threshold.
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Figure 7.2: FDR estimation [146]. The decoy proteins are randomly generated so that any
decoy hit is supposedly a false hit.

In practice, rather than deciding exactly which PSMs are true or false, the target-decoy

search strategy has emerged as a simple, effective, and most popular way to validate PSMs

identified with LCMS/MS since 2007. Nowadays, the target-decoy strategy is the most widely

used method for FDR estimation in proteomics [134]. The idea of target-decoy strategy is

to extract the false positive information by simulation, with a decoy database, i.e., a database

of sequences known to be incorrect. Figure 7.2 illustrates the FDR estimation by the target-

decoy strategy, where the blue colors indicate the target hits and the orange colors indicate the

decoy hits, the circles are the true hits, and squares are false hits. Furthermore, in the design

of sensitive filtering criteria, researchers can be guided by decoy hits to precisely distinguish

correct from incorrect PSMs [55].

Target-decoy searching is usually performed in the following steps [36]:

• Constructing a concatenated target-decoy sequence list, marking decoy sequences with

a text flag in their annotation.

• Using a MS/MS search engine to interpret input MS/MS spectra, using target-decoy
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sequence list.

• Evaluating the relative proportion of target and decoy sequences in the search space, by

deriving the multiplicative factor required to estimate false positives, if necessary.

• Estimating false positive-related statistics.

• Using decoy hits to guide the establishment of filtering criteria.

• Reporting statistics for filtered dataset.

7.2 Decoy Database

There are several methods for creating decoy databases. Each has varying advantages and

disadvantages, and it must be stressed that no single decoy type is perfect. Here we introduce

four of them. Each method produces a decoy database of the same size (i.e., number of amino

acids), and also the same number of proteins as the original.

• Reversed Proteins — a simple reverse of the amino acid sequence of each protein. This

is by far the simplest and most widely used method for creating decoy sequences.

• Shuffled Proteins — the order of amino acids in each protein sequence is randomly shuf-

fled, using a uniform distribution random number generator. Protein shuffling is another

method used for creating decoy sequences, where the amino acids of each input target

protein are randomly rearranged to yield a new decoy protein.

• Random Proteins — each amino acid is generated randomly according to their occur-

rence frequencies in the target database, using a uniform distribution random number

generator that can accommodate the generation of billions of random numbers. This is

the method internally implemented by some search engines, such as Mascot, for per-

forming target-decoy analyses.
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• Decoy Peptides — rather than generating entire decoy proteins, one can instead gener-

ate decoy peptides directly by altering each peptide sequence derived from the target

sequence list. Alterations can take the form of reversals or shuffling. This procedure

has the advantage of creating decoy peptides exactly matching the masses of all target

peptides considered by the search engine.

In the target-decoy search strategy, assuming no correct peptides are found in both target

and decoy portions, then incorrect assignments from target or decoy sequences are equally

likely. This means the number of FPs in target and decoy database are identical. Additionally,

by doubling the number of selected decoy hits, one can estimate the total number of FPs that

meet specific selection criteria [126]. This represents the number of obvious incorrect decoy

hits, combined with the hidden incorrect target hits [35]. With FP estimations, it is possible to

derive measurements that help evaluate and compare scoring methods and datasets, which is

shown in Table 7.1. For example, false discovery rate can be represented as FP/(T P + FP),

where FP is “2 * passing decoy assignments”, FP is “total passing assignments - number of

FP”. Here, for the assignments whose scores are above than the score threshold, we call them

“passing assignments”.

7.3 Random Dataset

Conventionally, a decoy database search is only used for validating searches of a MS/MS

dataset. It is hard to get a FDR for PMF, but it can be informative to see the result of repeating

a PMF search against a decoy database, especially if the match from target database is close

to the significance threshold, or if there is reason to think the experimental values or search

parameters may be producing a false positive (FP) [100, 103]. Our experiments on the decoy

database also proved that for traditional PMF, it is impossible to use the strategy of FDR. But

we also would like to estimate the false positive of our algorithms, instead of a decoy database,

we use a random dataset to approximately evaluate it.
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Table 7.1: The measurements derived from decoy database search results [35]

Measurement Formulation Description of estimate
False positive (FP) 2 * passing decoy A # incorrect A above ST
True positive (TP) Total passing A - # FPs # correct A above ST
Total correct (TC) Max TPs for all score criteria # total correct A in the dataset
Total incorrect (TI) Total A - TC # total incorrect A in the dataset
False negative (FN) TC - TP # correct A falling below ST
True negative (TN) TI - FN # incorrect A falling below ST
Precision TP / (TP + FP) % correct A above ST
FP rate or FDR FP / (TP + FP) or 1 - precision % incorrect A above ST
Sensitivity TP / TC % all correct A above ST
Specificity TN / (TN + FP) % all incorrect A below ST
Accuracy (TP + TN) / total A % all A correctly classified by ST
Notes: Abbreviations # = number of, % = proportion of,

A = assignments, ST = score threshold,
FDR = false discovery rate.

For each testing dataset, we get the total number of input spectra. For each peak, we add

additional noise. This noise can be produced randomly or generated by normal distribution,

then the mass and retention time will be changed a little from the original ones. After that, we

put the new random dataset to our algorithms, using the same searching parameters. Finally, a

protein candidate list will be calculated for random dataset, and we can compare the two lists

to estimate FP. Algorithm 13 show the detail of generating a random dataset from a target one.

Now we have two protein candidate lists, target and random results. We can roughly esti-

mate the false discovery rate (FDR) with these two lists. For the target proteins list, we start

from the top to the bottom, and get the score and index for each protein; also, at the same

time, we start from top to bottom in the random one, and get the protein’s score and index. We

compare these two scores, and if the target is greater than random, we let the index of target go;

otherwise we add the index of the random. By comparing these two indexes, we can evaluate

the value of FDR. The detail of the calculation of FDR is shown in Algorithm 14, where we can

roughly estimate FDR from these two lists. Actually, this strategy has limitation. Only for the



134 Chapter 7. Target-Decoy Search Strategy

Algorithm 13: Random dataset: generating a random dataset from the target dataset.
Input: T D: a target dataset;
mt: the mass of a peak in T D;
rt: the retention time of a peak in T D;
MT : a mass tolerance threshold;
RT : a retention time tolerance threshold;
Output: RD: a random dataset with the same size of T D;

1 for i := 1 to |T D| do
2 generate a random number mr for mass where |mr| < MT ;
3 mdi = mti + mr;
4 generate a random number rr for retention time where |rr| < RT ;
5 rdi = rti + rr;
6 put mdi, rdi into RD;
7 end for
8 return RD

best solution, it can work well for the small datasets, such as those less than 10,000 peaks. But

for the huge datasets, it may not produce a satisfying result. For each FDR, for example 5%,

we can find the corresponding index in the target dataset. By using this index as a threshold,

we can count precision, recall, and F1-measure.

7.4 Decoy Dataset

Besides the random dataset method, we also design another approach to estimate the FDR,

which is called decoy dataset. Here we still use the same aforementioned random dataset, but

we try to simulate the score distribution of a decoy dataset which based on the random dataset.

The difference between the random and decoy dataset is that we only select several discrete top

results from the former, while for the latter we use the cumulative distribution function (CDF)

to calculate the score threshold.

After the processing of a random dataset, we have a score for each protein. Although we

can use these scores directly to estimate the FDR, there may be a problem with it. These

scores are discrete, which cannot guarantee that they represent the authentic distribution of a

random dataset. Therefore, we would like to simulate the score distribution for the random
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Algorithm 14: FDR: estimating the false discovery rate roughly.
Input: T PL: a target candidate proteins list;
RPL: a random candidate proteins list;
F(P, p j): the score of protein p j for the target dataset;
FR(P, p j): the score of protein p j for the random dataset;
Output: FDR: an estimated false discovery rate;

1 iTarget← 1;
2 iRandom← 1;
3 while iTarget < |T PL| and iRandom < |RPL| do
4 if F(P, piTarget) > FR(P, piRandom) then
5 iTarget++;
6 end if
7 else
8 FDR=iRandom/(iTarget+iRandom);
9 iRandom++;

10 end if
11 end while
12 return FDR

dataset, which could depict the score threshold more accurate for a decoy dataset. Here, we

take dataset two as an example, and show how to implement the idea of estimating the FDR

for a decoy dataset.

First, we select all the scores for the proteins whose matches are great than 0, and the to-

tal number is 5,053. Here, we use “dfittool” in MATLAB to fit the distribution of the protein

score. Figure 7.3 illustrates the protein score distribution for dataset two by a decoy dataset.

The blue histogram represents density of the proteins with different scores, where the bin width

is 0.01. The red curve is the distribution fitted by the generalized extreme value (GEV), which

is a family of continuous probability distributions developed within extreme value theory. Sec-

ondly, we can evaluate the values by cumulative probability of this fitted distribution. Figure

7.4 evaluates the protein score by the generalized extreme value. For example, for an evaluated

protein score of 1.2, the cumulative probability score is 0.99959. When plotting above figure,

we can get Figure 7.5, where the cumulative probability is based on the evaluated protein score.

Now, with the cumulative probability value, we can find the corresponding protein score,
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Figure 7.3: The distribution of the protein score (# matches > 0), and its distribution fitted by
the generalized extreme value. The blue histogram is the density of the proteins whose scores
are within in a small bin, and the red curve is the distribution fitted by the generalized extreme
value.

Figure 7.4: The evaluated protein score (# matches > 0) by the generalized extreme value.
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Figure 7.5: The distribution fitting evaluation plot for the protein score (# matches > 0) by the
generalized extreme value.

and use it in the target database. For example, if we define the cumulative probability score of

99% as our threshold, we will get the protein score of 0.31, which can be used to report the

proteins in the target database as a score threshold. Additionally, the protein score is 0.14 for

the cumulative probability score of 95%.

With aforementioned method, we can find a protein threshold which can facilitate us to

report proteins. But the selected threshold is too low compared to protein scores in the target

database. Therefore, we restrict that the number of matches for a protein should be great than

1 or 2, and we can get greater score which is more suitable as a threshold. The total number of

proteins (peptide matches that are greater than 1) is 699, and Figure 7.6 illustrates the protein

score distribution for dataset two by a decoy dataset. After calculations, the protein score is

0.42 for the cumulative probability score of 99%, and 0.21 for 95%. Additionally, the total

number of proteins (peptide matches that are greater than 2) is 61, and Figure 7.7 illustrates it.

Consequently, the protein score is 0.59 for 99%, and 0.28 for 95%. Again, we can use thees

protein scores as our thresholds in the target database searching.
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Figure 7.6: The distribution of the protein score (# matches > 1), and its distribution fitted by
the generalized extreme value.

Figure 7.7: The distribution of the protein score (# matches > 2), and its distribution fitted by
the generalized extreme value.
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7.5 Experiments

Now, we have an input set of experimental peaks P. We also have a database of proteins D.

For PMF, our objective is to find a set of proteins Z ∈ D that contains all the proteins whose

scores are greater than a threshold ∆. Additionally, we would like to know the FDR in our

identified proteins. Consequently, we use target-decoy strategy to facilitate us for estimating

the FDRs.

Here we still use the same three datasets, and generate three random datasets with normal

distribution. For each of them, we test two methods mentioned above: random dataset and de-

coy dataset, to find proper thresholds. The testing results demonstrate that our two approaches

could work well under some situations, although they are still not perfect.

7.5.1 Dataset One

Again, we generated the simulated dataset from a wet-lab experiment with 248 proteins

for Human, which identified by MS/MS with Mascot. We selected the top 89 proteins and

their 770 matched peptides as the input dataset, with a tolerance δ=2ppm. We can identify all

the proteins whose matches are greater than two, and the top 61 ones are all TP. The target

decoy strategy does not work very well for most of the algorithms. But the best solution,

HeatS&ORT&LR&AP&PF, could achieve satisfying result. Here we use normal distribution

to generate the random dataset. For each FDR, for example 5%, we can find the corresponding

index in the target dataset. By using this index as a threshold, we can count the precision,

recall, and F1-measure. The relationship of FDR and other measurements is shown in Table

7.2, where FDR and precision can be roughly calculated by a random dataset.

Besides random dataset searching, we also use decoy dataset searching strategy. From

aforementioned introduction for decoy dataset, we can estimate the FDR from the distribution

of decoy dataset. Here, the protein score is 16.7 for 99.9%, 11.6 for 99.5%, 9.9 for 99%, and

7.0 for 95%, where the matched peptides for the proteins are greater than 0. Additionally, with
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Table 7.2: The performance of dataset one for HeatS&ORT&LR&AP&PF by a random dataset
FDR Precision Recall F1-measure
1% 97% 70% 81%
2% 97% 70% 81%
5% 96% 72% 82%

10% 87% 83% 85%

these FDRs, we can set the corresponding score threshold in target database, then calculate the

Precision, Recall, and F1-measure. For example, for the protein score of 16.7 in the decoy

dataset, we set it as the score threshold in the target dataset. There are total 47 proteins whose

scores are greater than 16.7, and 43 of them are TPs. Consequently, the Precision is 43/47 =

94%, the Recall is 43/89 = 49%, and the F1-measure is 0.94 ∗ 0.49 ∗ 2/(0.94 + 0.49) = 65%.

The performance of dataset one for HeatS&ORT&LR&AP&PF by a decoy dataset is shown in

Table 7.3.

Table 7.3: The performance of dataset one for HeatS&ORT&LR&AP&PF by a decoy dataset
FDR Precision Recall F1-measure
0.1% 94% 49% 65%
0.5% 93% 69% 79%
1% 93% 70% 80%
5% 78% 79% 80%

7.5.2 Dataset Two

The target-decoy strategy does not work for most of the algorithms. But for the best solu-

tion, HeatS&ORT&LR, it can work well for the lower estimated FDR, such as 1%. We also

add the noise with normal distribution to the target dataset, and get random dataset. The per-

formance of estimated FDR and other measurements by a random dataset is shown in Table

7.4. Here we consider 49 expected proteins and 20 bonus expected proteins as the ground-truth

proteins.

Besides random dataset searching, we also use decoy dataset searching strategy. Based
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Table 7.4: The performance of dataset two for HeatS&ORT&LR by a random dataset
FDR Precision Recall F1-measure
1% 96% 62% 75%
2% 96% 62% 75%
5% 85% 83% 83%

10% 63% 90% 74%

on aforementioned analysis, for a decoy dataset, the protein score is 1.6 for 99.9%, 0.8 for

99.5%, 0.62 for 99%, and 0.5 for 98%, where the matched peptides for the proteins are

greater than 2. Consequently, the performance of dataset two on different estimated FDRs

for HeatS&ORT&LR by a decoy dataset is shown in Table 7.5.

Table 7.5: The performance of dataset two for HeatS&ORT&LR by a decoy dataset
FDR Precision Recall F1-measure
0.1% 96% 66% 79%
0.5% 85% 89% 87%
1% 70% 95% 81%

1.5% 65% 96% 78%

7.5.3 Dataset Three

The target-decoy strategy does not work for most of the algorithms. Even for the best

solution, HeatS&ORT&LR&AP, it is still not work very well. Here we use normal distribution

to generate the random dataset. The performance of FDRs by a random dataset is shown in

Table 7.6.

Table 7.6: The performance of dataset three for HeatS&ORT&LR&AP by a random dataset
FDR Precision Recall F1-measure
1% 92% 29% 45%
2% 89% 42% 57%
5% 75% 56% 64%

10% 73% 62% 67%

Besides random dataset searching, we also use decoy dataset searching strategy. From
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aforementioned introduction for decoy dataset, for a decoy dataset, the protein score is 1.84 for

99.9%, 1.18 for 99.5%, 0.97 for 99%, 0.6 for 95%, and 0.47 for 90%. Here the proteins are

selected from that whose matched peptides are greater than 2. Consequently, the performance

of dataset three on different estimated FDRs for HeatS&ORT&LR&AP by a decoy dataset is

shown in Table 7.7.

Table 7.7: The performance of dataset three for HeatS&ORT&LR&AP by a decoy dataset
FDR Precision Recall F1-measure
0.1% 93% 16% 28%
0.5% 90% 27% 42%
1% 90% 32% 48%
5% 82% 49% 62%

10% 75% 56% 65%
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Conclusion and Future Work

8.1 Conclusion

We have introduced novel network-based inference (NBI) algorithms for peptide mass fin-

gerprinting (PMF) in a database search. By analyzing peptide-protein bipartite network, we

designed new peptide protein matching score functions. We present two methods: the static

one, ProbS, models the peptide probability independently; and the dynamic one, HeatS, ex-

tracts peptide dependent score from dynamic input dataset. In order to tackle the bias between

large and small proteins, we adjust the raw matching score with linear regression, according to

the masses of proteins. Additionally, we consider the order of retention time (RT) to further

adjust the protein score. Here, a dynamic programming is applied to find a subset with maxi-

mum score, whose order of RTs is consistent with that of predicted RTs. In the post processing,

we develop two algorithms: assignment of peaks, and protein filtration. The former restricts

that a peak can only be assigned to one peptide in order to reduce random matches; and the

latter tries to filter out false positive proteins, assuming that each peak can only be assigned

to one protein. Moreover, we design two new target-decoy search strategies (random dataset

and decoy dataset) to estimate the false discovery rate (FDR), which could facilitate us to re-

port the accuracy of the result. Finally, we demonstrated that our methods achieved significant
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improvement in performance compared to several state-of-the-art approaches.

In practice PMF is popular and works well, since it is relatively fast to compute PMF

scores when database searching. Although PMF cannot obtain peptide sequence information,

it still has some advantages over MS/MS. For example, MALDI-TOF MS is significantly less

expensive and faster than MS/MS. Additionally, in the host cell proteins (HCPs) detection, MS

and PMF should be used. Because the abundance of HCPs is usually too low to be identified by

MS/MS. Moreover, some proteins (such as histones) would be cleaved to short peptides (3-4

amino acid residues) after digestion, which are very hard to be identify by MS/MS. As a result,

MS and PMF should be applied for them.

8.2 Future Work

In the future, with the advance of mass accuracy for instrumentation and increase of com-

puter performance, NBPMF may be expected to achieve better accuracy combined with LC-

MS/MS for protein identification, compared to using LC-MS or LC-MS/MS separately. For

example, trapped ion mobility spectrometry is a relatively new gas-phase separation approach,

which provides a powerful separation platform prior to mass analysis [88]. Therefore, for the

LC-MS with TIMS, we would have four-dimensional information for each peak, including:

mass, RT, intensity, and mobility. As a result, NBPMF would perform better with these new

datasets than the former ones.

Another future work is to combine NBPMF with MS/MS to solve protein inference prob-

lem. After database searching for MS/MS, we have three kinds of peptides: unique peptides

identified by MS/MS, shared peptides identified by MS/MS, and unidentified peptides from

MS. We would initialize these three types of peptides with different weights, and adjust them

by our NBI algorithms. Now, we could use these modified scores to infer proteins. Con-

sequently, the combination of NBPMF and MS/MS may have the possibility to improve the

performance for protein inference, compared to using MS or MS/MS separately.
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