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ABSTRACT OF THESIS 

 

 
 

MULTIWALL CARBON NANOTUBES FOR THERMAL AND MECHANICAL 
 PROPERTY ENHANCEMENT 

High performance/small package electronics create difficult thermal issues for integrated 
circuits. Challenges exist at material interfaces due to interfacial contact resistances. Multiwall 
carbon nanotube (MWCNT) arrays are considered to be excellent candidates for use as thermal 
interface materials (TIMs) due to outstanding thermal/mechanical properties. In this work, 
MWCNT array TIMs are analyzed in aluminum and carbon fiber composites via flash diffusivity 
analysis. The effect of TIM thickness, areal/bulk density, surface cleanliness, and volumetric 
packing fraction; along with the effect of substrate finish and interfacial contact pressure on 
thermal performance are analyzed. Trends show the best TIMs possess low thickness, high bulk 
density and packing fraction, and clean surfaces. Pressure dramatically increases thermal 
performance after establishing contact, with diminishing returns from additional pressure. 
Diffusivities approaching 40 mm2/s and 0.65 mm2/s are recorded for aluminum and composite 
systems. Oxygen plasma etching and high temperature annealing (“Graphitizing”) are 
investigated as methods to remove amorphous carbon from array surfaces. Graphitized TIMs 
report diffusivity improvements up to 53.8%. Three methods of incorporating MWCNTs into 
composites are attempted for thermal/mechanical property enhancement. Conductance 
calculations show increasing diffusivity without increasing thickness enhances thermal 
performance in composites. MWCNTs for mechanical property enhancement produce no 
change, or detrimental effects. 

KEYWORDS: Carbon Nanotubes, Thermal Interface Materials, Carbon Nanotube Arrays, 

         Thermal Contact Resistance, Composite Thermal Interface Materials 
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Chapter 1 General Introduction and Outline 

1.1 Motivation 

As technology continues to advance, the expectations and demands consumers place on the 

devices they use seems to expand without limit. This mindset demands increased portability 

coupled with higher performance to deliver an unparalleled level of integration with daily life. 

Society has progressed from desktop computers and home telephones to high powered tablets, 

mobile broadband internet connections and smartphones. All of these advances require more 

power through smaller circuits, which inevitably results in greater thermal dissipation 

challenges. The International Technology Roadmap for Semiconductors estimates power 

dissipation levels for nanoscale devices will reach 100 W/cm2 by the year 2020[1]. The only way 

to achieve this is for thermal management technologies to scale with the improvements in 

electronics. In current electronic devices, thermal interface materials (TIMs) are used between a 

heat source, such as a processor or other integrated circuitry and a heat sink. These materials 

are designed to fill voids between the surfaces and enhance the thermal transport across the 

interface. Current TIM materials such as metallic greases and phase change materials are 

nearing their performance limits, obviating the need for higher performing TIMs to meet future 

thermal design challenges. Highly aligned Multiwall Carbon Nanotube (MWCNT) arrays are being 

explored as future TIMs due to their excellent mechanical and thermal properties.  

Additionally, growing trends in mechanical design point to use of composite materials such as 

carbon fiber reinforced polymers (CFRPs) to replace metals in structural applications. CFRPs 

possess high specific strength which allows for significant weight savings in material structure, 

as well as real world economic benefits like increased fuel efficiencies in automobiles and 

air/spacecraft. However, the structural benefits of carbon fiber composites come with 

unprecedented anisotropic thermal design challenges. Not only will MWCNT TIMs be important 

in future interfaces between composite materials and traditional circuit assemblies, but carbon 

nanotubes in general can be used to overcome some of the thermal challenges due to inherent 

material anisotropy in carbon fiber composites. 
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1.2 Introduction 

In thermal management situations, especially those concerning the efficient removal of heat 

from a power source or electronics package, some form of heat sink is generally required. 

For any heat sink to be effective the system has to have good thermal contact. The term 

“thermal contact” describes when two macroscopic systems are able to exchange energy 

(i.e. heat) with one another through particle collisions or radiation[2]. Those systems with 

good thermal contact can transfer heat easily across an interface, while those with poor 

thermal contact (i.e. insulated systems) have large interfacial contact resistances, Rc, and 

struggle to transfer heat to the environment.  

When designing for optimal thermal contact at an interface, one must imagine the space 

between the surfaces they want to join. Although the surfaces may appear smooth to the 

touch, microscopic surface roughness features will create point contacts, and drastically 

influence the localized heat transfer, as shown in Figure 1-1 below [3]. The call out in the 

figure shows what the surface features look like on the micro scale, with lines indicating 

conductive heat paths. These point contacts allow less than one percent of the possible 

contact area to actually engage, and provide the least resistive path for heat flow across the 

interface [4]. This leaves gaps between the other 99% of potential contact locations to be 

occupied by air, which is a poor conductor of heat. These asperities insulate the interface 

rather than conduct heat across the boundary. 
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Figure 1-1 – Effect of roughness features on conductive heat transfer1 [3] 

The most common solution to problems associated with poor thermal contact is to use a 

thermal interface material, or TIM. At its simplest, the function of a TIM is to replace the largely 

non-conducting air trapped between micro asperities with a high conductivity material [5]. TIMs 

are made from many different materials, with the most common being thermal greases, phase 

change materials, filled polymer matrices and carbon based materials [3]. Table 1-1 outlining the 

pros and cons of common TIMs is presented below.  

  

                                                           
 

1 Reprinted with permission from Electronics Systemintegration Technology Conference, 2006 1st, Farhad 
Sarvar, Whalley, D. C., Conway, P. P. Thermal Interface Materials – A Review of the State of the Art, Page 
1292, © 2006 IEEE 
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Table 1-1: Summary of common TIM systems2, adapted from [3] 

TIM Type Advantages Disadvantages 

Thermal Grease 

- High thermal conductivity 
- Thin bond line with minimal 

installation pressure 
- No curing 
- Low cost 
- No delamination 

- Thermal cycling causes 
pump- out, phase 
separation 

- Can be messy, especially 
in manufacturing 

- Thickness control difficult  
- Excess greases flow out 

Phase 
Change 

Materials 

Polymers 

- higher stability, less pump-out 
- Easier to apply than greases 
- No curing required 
- Delamination not an issue 
- No drying out 
- Lower thermal resistance than 

greases 

- Lower thermal 
conductivity than greases 

- Potentially higher surface 
resistance than greases 

- Constant pressure 
needed 

- Voids result from thermal 
cycling, phase changes 
that cannot be refilled 
 

Low 
Melting 

Point 
Alloys 

- Easy to apply 
- All metal path – low resistance 
- No curing required 

- Dry-out causes voids 
- Intermetallic growth at 

the interface 
- Oxidation/Corrosion at  

high temp cycling 

Filled Polymers 

- Not messy, easy to handle 
- No guessing on applied 

amount 
- Conforms to surface before 

cure 
- No pump-out 
- Resists harsh environments 
- Good dielectric properties 
- Low modulus material 
- Easily cut to size 

- Curing required 
- Thermal conductivity 

lower than grease 
- Delamination can occur 
- Does not flow freely 
- Requires permanent 

clamping pressure 
- Higher cost than grease 

Carbon 
Nanotube/Nanofiber 

based materials 

- Can be used as freestanding 
arrays or dispersed in polymers 

- Accept PCM additions wicked 
into freestanding arrays 

- high thermal conductivity 
- Mechanically compliant 

- Expensive 
- Difficult to handle 
- Properties range due to 

CVD growth processes. 

                                                           
 

2 Adapted with permission from Electronics Systemintegration Technology Conference, 2006 1st, Farhad 
Sarvar, Whalley, D. C., Conway, P. P. Thermal Interface Materials – A Review of the State of the Art, Page 
1292, © 2006 IEEE 
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At this point, an understanding of contact resistance is useful. Figure 1-2 will serve as reference 

for the following discussion.  

 

Figure 1-2 - Temperature vs. Displacement Plots, Solid and Composite Walls 

Fourier’s law of conduction states that the heat flux through a solid material, such as the wall 

depicted in Figure 1-2, part A, is defined by the ratio of change in temperature with respect to 

displacement, multiplied by a constant of proportionality. Mathematically, this is written in the 

familiar form: 

 

 
�⃗� = −𝑘

∆𝑇
∆𝑥

 (1.1)  

Where �⃗� represents the heat flux through the surface, k is the thermal conductivity of the 

material, ΔT corresponds to the temperature gradient in the material, and Δx represents the 

change in location between temperature measurement locations. In a solid, homogenous wall, it 

is possible to replace Δx with the total thickness of the wall, L, and re-arrange the equation to 

the following form (this will prove useful momentarily). 

 

 
−
𝐿
𝑘

=
∆𝑇
�⃗�

 (1.2) 

 In an interfacial situation, like Figure 1-2, part B, the potential for different thermal 

conductivities (i.e.  differing constants of proportionality) must be accounted for. Here, the idea 

of contact resistance is useful, and is defined by equation (1.3)  below. 
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𝑅𝑐 =

∆𝑇𝑣
�⃗�

 (1.3) 

In this situation, ΔTv represents the “virtual” change in temperature seen from one side of the 

interface to the other (seen in the dotted line between two regions of different slope in Figure 

1-2, part B). In this dotted line region, k is not constant. By defining the thermal contact 

resistance, Rc, in this way provides a substitution for the −𝐿 𝑘�  term in equation (1.2), safely 

allowing a change in thermal conductivity across this border, without violating Fourier’s 

conduction law for steady state situations. 

The effect of interfacial contact resistance can be understood best from a first principles thermal 

circuit model [6, 7].  For the following discussion, a two layer thermal interface system will be 

modeled as resistors in series, as shown in Figure 1-3 with exaggerated TIM layer thickness. 

 

Figure 1-3 - Two layer interface system with resistive thermal circuit model 

In the model, L represents the substrate thickness, Cp is the specific heat at constant pressure, k 

is the thermal conductivity of the substrate, A is the surface area at the interface, ρ is the mass 

density, and α is the thermal diffusivity of the substrate. The total resistance of the system can 

be expressed as a sum of thermal resistances (units of K/W), as in equation (1.4): 

 

 
𝑅𝑇𝑜𝑡𝑎𝑙 = 𝑅2 + 𝑅𝑇𝐼𝑀 + 𝑅1 (1.4) 

Where thermal resistances R2, RTIM, and R1 are defined as: 

 𝑅𝑖 =
𝐿𝑖
𝑘𝑖  𝐴𝑖

     (𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2) (1.5) 

   

𝐿1,  𝐶𝑝1,   𝑘1,   𝐴1,   𝜌1,   𝛼1 

𝐿2,  𝐶𝑝2,   𝑘2,   𝐴2,   𝜌2,   𝛼2 

R1 

 Rc 

 R2 

 

TIM layer 
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 𝑅𝑇𝐼𝑀 =
𝑅𝑐
𝐴𝑐

 (1.6) 

 In two layer thermal interface systems, additional TIM “layers” are designed to be as thin as 

possible. This follows from the general definition of thermal resistance, as shown for layers of 

non-negligible thickness in equation (1.5). However, since a TIM is designed to be as thin as 

possible, its thickness is negligible compared to the surrounding substrate thicknesses. This 

assumption makes it possible to ignore its thickness altogether, so instead its resistance is 

represented as an unknown contact resistance, Rc, as shown in equation (1.6). 

At this point, it is critically important to understand the subtle difference between a thermal 

resistance and a thermal contact resistance, as it appears in equation (1.6). Thermal resistances 

are represented in units of K/W, where contact resistances are shown in units of m2K/W. To 

convert a thermal contact resistance into a standard thermal resistance, one must normalize the 

contact resistance to the contact area.  

 Moving forward, if equation (1.4) is expanded using the definition of thermal resistance from 

equation (1.5), a more detailed picture of a two layer system develops, as shown in equation 

(1.7): 

 
𝐿𝑡𝑜𝑡𝑎𝑙

𝑘𝑡𝑜𝑡𝑎𝑙  𝐴𝑡𝑜𝑡𝑎𝑙
=

𝐿1
𝑘1 𝐴1

+
𝐿2

𝑘2 𝐴2
+
𝑅𝑐
𝐴𝑐

 (1.7) 

In most electronics packaging systems, thermal interface areas are designed such that the 

contact area is equivalent on both sides of the interface. Thus it will be considered that all areas 

in equation (1.7) are equal, Atotal = A1 = A2 = Ac. For the purposes of this study, it will also be 

considered that the substrate materials are identical. This allows a simplification of conductivity 

terms, ktotal = k1 = k2, and thickness terms, L1 = L2 (as well as specific heat terms Cp,total = Cp1 = Cp2 

which will be introduced shortly). One final substitution that will be used to convert thermal 

conductivity, k, into more useful terms is found in equation (1.8): 

 𝑘 = 𝛼𝐶𝑝𝜌 (1.8) 

Here, thermal conductivity, k, is equivalent to the product of thermal diffusivity, α, specific heat 

at constant pressure, Cp, and mass density, ρ. After substituting equation (1.8) (along with the 

simplifications for identical substrates), the unknown contact resistance can be solved for as a 

function of bulk system properties and known substrate properties as shown in equation (1.9).   
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 𝑅𝑐 =
𝐿𝑡𝑜𝑡𝑎𝑙

𝛼𝑡𝑜𝑡𝑎𝑙 𝐶𝑝 𝑡𝑜𝑡𝑎𝑙  𝜌𝑡𝑜𝑡𝑎𝑙
− 2�

𝐿1
𝛼1 𝐶𝑝1 𝜌1

� (1.9) 

This expanded form of equation (1.4) allows one to solve for the contact resistance of a two 

layer TIM system through direct knowledge of bulk system and individual substrate thermal and 

physical properties. Bulk system thickness can easily be measured, and it is reasonable to 

assume that bulk system specific heat and density are equivalent in identical substrates. Bulk 

thermal diffusivity of a two layer system can be found through use of the laser flash method, 

which will be a major discussion point later in this thesis.  
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1.3 Outline 

Throughout this work, several approaches to studying MWCNT arrays as either a TIM, or 

structural enhancement (or both) are presented. Chapter 2 presents thermal testing results of 

aligned MWCNT array TIMs in aluminum substrates with a focus on determining which 

property(or combination of properties) of the array or substrate system affects thermal 

performance the most. Properties of interest include array thickness, areal and bulk densities, 

volumetric packing fraction, and surface cleanliness. Also considered are the effects of substrate 

surface roughness and interfacial contact pressure. 

Chapter 3 explores the thermal performance of carbon fiber composite interface systems and 

the potential for improvements in performance through use of aligned MWCNT array TIMs. 

Thermal testing considerations in the flash diffusivity method are discussed for carbon fiber 

composite substrates. Variables considered in Chapter 2 are revisited here, as thermal testing is 

conducted between two different carbon fiber composite substrate surface finishes as well as 

various interfacial contact pressures. 

Lastly, Chapter 4 explores two potential methods of post processing for aligned MWCNT array 

TIMs aimed at improving the thermal performance of the materials. Radio frequency oxygen 

plasma etching is considered as a method of removing surface layers of amorphous carbon, as 

well as a potential method to optimize array thicknesses for custom interface materials. High 

temperature annealing, or “graphitization” of aligned MWCNT array TIMs is considered as a 

method of purifying arrays and repairing defects in the structure of individual carbon 

nanotubes. Thermal testing is performed on samples processed with both methods to 

determine the efficacy of these methods in improving the thermal performance of aligned 

MWCNT array TIMs. 
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1.4 Literature Review 

The discovery of multiwall carbon nanotubes was first reported by Sumio Iijima in 1991 [8]. He 

noted the growth of “needle-like” carbon structures grown on the negative end of an electrode 

he was using for an arc-discharge process used to mass produce the C60 molecule, known as 

“fullerenes”. Subsequent TEM images of the structures would reveal their cross section 

contained between 2 and 50 coaxial layers of carbon hexagons, and were between a few, to a 

few tens of nanometers in diameter. Examples of the MWCNTs found by Iijima can be seen in 

Figure 1-4 below. In the image, hollow tube structures can be seen via Transmission Electron 

Microscopy (TEM). Tubes a, b, and c have 5, 2, and 7 walls respectively. 

 

Figure 1-4 - TEM image of Iijima’s MWCNTs in 1991, courtesy of Nature Publishing Group3 [8] 

Single-wall carbon nanotubes were discovered in 1993 and independently reported by both 

Iijima, et al. [9] and Bethune, et al. [10]. In Iijima’s case, he noted that SWCNTs formed during 

arc-discharge processes where carbon reacted in the presence of iron, argon, and methane. 

Bethune discovered SWCNTs using a similar arc-discharge fullerene production process, except 

his process utilized cobalt. TEM from his experiment revealed carbon nanotubes with one wall 

                                                           
 

3 Reprinted by permission from Macmillan Publishers LTD: NATURE, 354, Sumio Iijima, Helical 
microtubules of graphitic carbon, Page 56. Copyright 1991. 

http://www.nature.com/nature/journal/v354/n6348/abs/354056a0.html
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woven throughout the fullerene dense soot formed in the process. A close up view of one 

SWCNT from Bethune’s process is given below in Figure 1-5, which details a TEM image of a 

single-wall carbon nanotube produced via arc-discharge process of carbon in the presence of 

cobalt. The small, spherical structures attached to the tube and in the bottom of the image are 

fullerenes (C60 molecules), which were the intended product of the process. 

 

Figure 1-5 - TEM image of a SWCNT, courtesy of Nature Publishing Group4 [10] 

1.4.1 Carbon Nanotube Morphology 

Carbon nanotubes are an interesting physical phenomenon for a number of reasons. One of the 

most important aspects of their nature is their construction. At its most basic, a carbon 

nanotube is a hollow structure made of sp2 hybridized carbon atoms arranged in a hexagonal 

pattern [11, 12]. The excellent thermal [13], electrical [14], and mechanical [12] properties of 

carbon nanotubes are direct benefits of their lattice pattern and stiff sp2 bonds . Each layer has 

the same structure as a single sheet of graphene that has been rolled into a cylinder (although it 

                                                           
 

4 Reprinted with permission from Macmillan Publishers Ltd: NATURE, 363, Bethune, D. S., C. H. Klang, M. 
S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Cobalt-catalysed growth of carbon nanotubes with 
single-atomic-layer walls, page 606. Copyright 1993 

http://www.nature.com/nature/journal/v363/n6430/abs/363605a0.html
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is not possible to actually produce a carbon nanotube in this fashion). In a multiwall carbon 

nanotube, the spacing of the layers is approximately the same as the spacing of layers of 

turbostratic graphite [15] (approximately 3.4 angstrom [16]).  

The three common classifications of carbon nanotube construction are “armchair”, “zigzag”, and 

“chiral” nanotubes. These designations are based on their chiral, or “roll-up” vector, 𝐶ℎ����⃗ , and the 

chiral angle, θ [16]. When the chiral vector is defined mathematically in equation 0 as: 

 𝐶ℎ����⃗ = 𝑛𝑎1 +𝑚𝑎2 (1.7) 

Where (n,m) comprise the lattice translation index and a1 and a2 are the base vectors of the 

lattice plane. Tubes designated (n,0) are zigzags, (n,n) tubes are armchairs, and anything (n,m) 

where n≠m are chiral. An easy way to visualize this is to imagine bending the chiral vector (and 

with it, the graphene sheet) back onto itself to form a circle by connecting the vector tip to its 

tail. You would then have a single-wall carbon nanotube matching one of the three geometries.  

Figure 1-6 and Figure 1-7 below help illustrate this concept. Figure 1-6 shows dotted lines with 

chiral vector directions for armchair and zigzag nanotubes, while Figure 1-7 shows a model 

diagram of each nanotube type’s construction. 
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Figure 1-6 - An illustration of nanotube chiral vectors5 

 

 

Figure 1-7 - Diagrams of nanotube constructions6 [17] 

                                                           
 

5 This work was released into the public domain by its author, Kebes, on the Wikimedia Commons: 
http://commons.wikimedia.org/wiki/File:CNTnames.png 
 
6 Reprinted from New Journal of Physics, 5, 126, Humberto Terrones, Mauricio Terrones, “Curved 
nanostructured materials” Page 126.13, Copyright 2003 IOP Publishing Ltd and Deutsche Physikalische 
Gesellschaft.  doi:10.1088/1367-2630/5/1/126 

http://commons.wikimedia.org/wiki/File:CNTnames.png
http://dx.doi.org/10.1088/1367-2630/5/1/126
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Obviously, for single-wall carbon nanotubes, only one layer of graphene is involved. For 

multiwall carbon nanotubes, it has been previously discussed that tubes as large as 50 layers 

have been reported [8]. To illustrate these layers a bit more clearly see Figure 1-8. 

 

Figure 1-8 - Concentric shells of MWCNTs7 

All the layers of the MWCNT do not align their respective lattices to each other, such that you 

can “see” straight through to the hollow core without interference. This is an example of 

turbostratic graphitic stacking, and results in a slightly larger gap between layers in MWCNTs 

than you would find in layers of traditional graphite. From a chemical bonding perspective, the 

carbon atoms comprising a single layer of any carbon nanotube are held together by strong sp2 

bonds (also known as σ-bonds). The component layers of a MWCNT are held together through 

weaker, out-of-plane bonds, known as π-bonds [12]. This is illustrated in Figure 1-9 below, which 

diagrams the basic hexagonal bonding structure for a single graphite layer. For spatial 

understanding, imagine the hexagon as being tilted backward into the page along its horizontal 

axis.  The carbon atoms are the black circles at the hexagon vertices. The strong σ-bonds 

connect the carbon atoms to each other in the plane of the hexagon, while the weaker 

π-bonds keep sheets of graphene connected to the top and bottom of the hexagonal plane. 

                                                                                                                                                                             
 

 
7 Copyright A. Rochefort, nano@polyMTL.ca, http://nanostructures.phys.polymtl.ca/en/Home.html 

mailto:nano@polyMTL.ca
http://nanostructures.phys.polymtl.ca/en/Home.html
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Figure 1-9 - Hexagonal bonding structure for a single graphite layer8 [12]. 
 

When carbon nanotubes are formed, they possess perfect, hexagonal crystalline structure. In 

armchair nanotubes under tensile stress, a condition known as the “Stone Wales rotation”, or 

“5-7-7-5” defect can occur [18-21]. This defect describes a reversible break in the periodic 

hexagonal pattern of the carbon nanotube where two carbon atoms rotate 90 degrees about 

their bond axis. This shift changes the local lattice structure to produce two pentagons and two 

heptagons, hence “5-7-7-5”. This is actually a useful mechanism which increases the elasticity of 

a nanotube, as well as provides a release for excess strain energy in the tube when strained 

beyond 5% [21]. Figure 1-10  (Left) shows a Stone Wales defect in an armchair nanotube. The C-

C bond in the center of the formation rotates 90° to produce two heptagons (left and right) and 

two pentagons (top and bottom). Figure 1-10 (Right) shows a carbon nanotube experiencing 

necking facilitated by Stone Wales rotation defects. The carbon nanotube has constricted as a 

method of releasing excess strain energy under tension. 

 

                                                           
 

8 Reprinted from Comptes Rendus Physique, 4, Rodney S. Ruoff, Dong Qian, Wing Kam Liu, Mechanical 
properties of carbon nanotubes: theoretical predictions and experimental measurements, Page 994, 
Copyright 2003, with permission from Elsevier  
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Figure 1-10 – (Left) Stone Wales rotation defect9 [22], (Right) CNT Necking due to Stone Wales10 

1.4.2 Phonons as Thermal Transport Mechanism 

Carbon nanotubes of any variety are mechanically resilient, and are excellent conduits of heat 

and electricity [12, 23, 24]. The crystalline lattice structure of a carbon nanotube is responsible 

for its excellent thermal conductivity. The regular arrangement of stiff sp2 hybridized bonds acts 

as a confining channel for energy distributing phonons[25].  

A phonon can be described as a quantized sound wave, or as a collective vibrational mode of a 

solid or liquid [26]. These modes naturally exist in structures, and have been divided into two 

categories based on their behaviors, known as coherent and incoherent phonons. Incoherent 

phonons correspond to the random oscillations of atoms within a system. When left 

undisturbed, the atoms oscillate in random phase with respect to each other. When an impulse 

is applied to the system, each atom moves in phase with its neighbor, exhibiting a coherent 

                                                           
 

9 Reprinted figure with permission from Wei, Chenyu; Kyeongjae Cho, Deepak Srivastava, PHYSICAL 
REVIEW B, 67, 115407, page 1, 2003, Copyright 2003 by the American Physical Society 
 
10Copyright A. Rochefort, nano@polyMTL.ca, http://nanostructures.phys.polymtl.ca/en/Home.html  

http://prb.aps.org/abstract/PRB/v67/i11/e115407
mailto:nano@polyMTL.ca
http://nanostructures.phys.polymtl.ca/en/Home.html
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phonon. In an engineering sense, coherent phonons can be thought of as similar to a transverse 

wave, where all atoms transmit energy to their neighbors in the same direction.  

Phonons are responsible for transporting thermal energy in nonmetallic systems, with the bulk 

of the heat being carried by phonons possessing a mean free path (λmfp) of 1 – 100 nm [27]. The 

mean free path is defined as the average distance travelled by a phonon (or an electron in the 

case of metallic conductors) before it collides with either an imperfection in the material or with 

another phonon. In all cases, a higher phonon mean free path equates to higher thermal 

conductivity [28]. Phonons move through materials at the average speed of sound through the 

medium, and are related to the thermal conductivity through equation (1.8): 

 𝑘 =
1
3
𝐶 𝑐̅ 𝜆𝑚𝑓𝑝 (1.8) 

where C represents the phonon specific heat, 𝑐̅, represents the average speed of sound through 

the medium, and λmfp is the mean free path of the phonon [28]. 

The idea that phonons can be thought of as vibrational modes and quantized sound waves can 

be extended to conductive transmission of energy at an interface. From a crystallographic point 

of view, Cahill, et al. writes that an “interface” can be thought of as an interruption in a regular 

crystalline lattice, which phonons propagate through [27]. At an interface of two different 

materials, like a TIM and its substrates, an acoustic impedance mismatch occurs due to the 

different densities and speeds of sound in the interface materials. This mismatch results in a 

transmission loss due to phonon scattering at the boundary. In the case of a TIM system, 

boundary scattering results in decreased thermal conductivity or increased thermal resistance at 

the interface and a general decrease in TIM efficiency. 

1.4.3 Thermal Properties of MWCNT Arrays and Attempted Modifications 

Modern carbon nanotubes are grown by several methods, including arc-discharge, chemical 

vapor deposition, and laser ablation of graphite targets [12]. What makes these nanotube arrays 

attractive as a viable TIM is their outstanding thermal, mechanical and electrical properties [12, 

20, 23]. Their natural tendency to grow in vertically aligned “arrays” allows for immediate 

harnessing of their full potential [6]. An SEM image detailing the aligned natural growth patterns 

of MWCNTs used in the experimental section of this thesis is presented below in Figure 1-11. 
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Figure 1-11 - SEM image of highly aligned MWCNT array 

The thermal conductivity of individual MWCNTs has been measured as >3000 W/mK [29]. 

Others have conducted molecular dynamics (MD) simulations and experiments on individual 

SWCNTs, reporting values ranging from 6600 W/mK at room temperature to 37,000 W/mK at 

100 K (-173 °C) [13]. However, the majority of published experiments focus on a more realistic, 

bulk property approach. Reported thermal conductivity values for bulk MWCNT arrays indicate 

some disagreement over the true potential of these systems. Shaikh et al. reported 8.3 W/mK 

from a laser flash diffusivity method [6], Ivanov et al. reported 15.3 ± 1.8 W/mK from a xenon 

flash diffusivity method [30], while Yi et al. reported 20 W/mK for “bulk” mat MWCNTs from a 

3ω-method [31].  

There have also been published reports of MWCNTs as the foundation of experimental TIM 

assemblies with measurable success. One such device was constructed from graphite, epoxy 

infused MWCNTs, gold and palladium CNT tip coatings and indium metal by Sihn, et al. They 

reported that the conductivity of their prototype interface device jumped from 0.79 W/mK to 

250.4 W/mK when MWCNTs were included (although they admit this value is not attainable 

when using composite materials like carbon fiber for substrates) [32]. Another customized 

interface was reported by Ganguli, et al. using gold, indium, and RF oxygen plasma etching to 

optimize CNT array-substrate contact. They reported system improvement from 1 W/mK 

conductivity to 262 W/mK upon inclusion and optimization of an aligned MWCNT array [33]. 
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There have been some attempts to explain the disparity in reported conductivity values for 

carbon nanotubes. Kim, et al. have suggested that differences between mesoscopic and bulk 

scale measurements are due to nanotube interactions leading to high resistance thermal 

junctions between the tubes [29]. Yi, et al. attribute disparities in measurement values to high 

defect densities in synthesized nanotube arrays [31]. This is corroborated by Ruoff, et al. and 

Chang, et al. Ruoff states that the distribution and type of defects in a carbon nanotube affect 

tube mechanics, including potentially its electrical and thermal transport properties [12], while 

Chang notes that damage done to layers of a multiwall carbon nanotube will dramatically 

decrease thermal conductivity through the tube [25].  

1.4.4 Mechanical Properties of MWCNT Arrays 

Multiwall carbon nanotubes are incredibly strong materials. The measured specific tensile 

strength of one layer of a MWCNT can be as high as 100 times that of steel [12]. As previously 

noted, MWCNT arrays are composed of countless numbers of individual MWCNTs. These arrays 

are bound together by weak van der Waals forces and tube entanglements. Each tube possesses 

an extraordinarily large aspect ratio due to their nanometer scale diameters and micrometer 

scale lengths. However, this high aspect ratio also means that carbon nanotubes are susceptible 

to structural instabilities [12], such as buckling or kinking under axial compression [24]. 

The stiff, covalent bonds which compose the nanotubes’ graphene-like structure, provide a 

framework capable of withstanding extreme stresses. Several groups have conducted studies on 

stress-strain relations of multiwall carbon nanotubes. Treacy, et al. was among the first to 

measure the Young’s modulus of individual MWCNTs. They measured thermally induced 

vibrational modes in a TEM assuming that nanotubes vibrate like a homogeneous, hollow 

cylindrical cantilever. They tested eleven tubes of random length, and random inner/outer 

diameters, reporting values ranging from 0.4 to 4.15 TPa (overall average modulus of 1.8 TPa) 

[34]. An example of these types of vibrational measurements can be seen in Figure 1-12. 
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Figure 1-12 – Vibrating MWCNT at 1st, 2nd natural frequencies (“a” and “b”, respectively)11 [12]  

Wong, et al. used a cantilever beam model to fit measured static response of an individual 

MWCNT subjected to deformation by an atomic force microscope tip. They obtained an average 

Young’s modulus of 1.28 ± 0.59 TPa for six diameters of tubes ranging from 26 to 76 nm [35]. 

Lourie and Wagner used micro-Raman spectroscopy to estimate Young’s modulus of MWCNTs 

that were embedded in epoxy by measuring D-band shift in compressed samples from 122 K to 

264 K. Their results ranged from 1.7 to 2.4 TPa [36].  

The tensile strength of multiwall carbon nanotubes has also been investigated by different 

groups. Yu and Ruoff, et al. measured 19 individual MWCNTs and found that the tensile strength 

of the outermost layer ranged from 11 – 63 GPa. They also reported Young’s modulus values of 

the outermost layer varying from 270 – 950 GPa from their tensile data [37]. Pan, et al. 

fabricated a stress-strain measurement device to apply axial tensile load to 2 mm long “ropes” 

of aligned MWCNTs. They reported average Young’s modulus and tensile strength values of 0.45 

± 0.23 TPa and 1.72 ± 0.64 GPa, respectively [38]. While these values represent individualized 

data points for individualized MWCNTs, it is important to realize that property values for bulk 

materials will undoubtedly be lower due to increasing numbers of defects [12].   

                                                           
 

11 Reprinted from Comptes Rendus Physique, 4, Rodney S. Ruoff, Dong Qian, Wing Kam Liu, Mechanical 
properties of carbon nanotubes: theoretical predictions and experimental measurements, Page 998, 
Copyright 2003, with permission from Elsevier 
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Common failure methods for multiwall carbon nanotubes have been studied experimentally and 

through molecular dynamics simulations. Under tensile strain, multiwall carbon nanotubes can 

experience either brittle fracture of the outer layer (dubbed a “sword-in-sheath” failure by Yu, 

et al. [37]) or a localized plastic deformation, as predicted by MD simulations and witnessed by 

High Resolution Transmission Electron Microscopy (HRTEM) performed by Marques et al. [39]. 

Yu et al. suggest the brittle “sword-in-sheath” failure indicates that the majority of the tensile 

load is carried by the outermost layer of the MWCNT, while the inner layers contribute little to 

load bearing through inter-layer van der Waals forces, resisting the tendency to shear with 

respect to each other. This effect has also been noted by Thostenson and Chou for MWCNTs 

embedded in epoxy matrix systems [15]. 

The plastic deformations witnessed by Marques were initiated by disrupting the carbon bond 

structure under strain using an electron beam in the TEM. These interruptions in the graphitic 

lattice of an MWCNT’s layers are repaired by carbon atoms restructuring themselves, in order to 

return to a more orderly lattice arrangement. This is accomplished by cannibalizing inner layers, 

and slowly stretching the nanotube into a chain of carbon atoms until only one layer remains. 

The final layer finally breaks and is capped by a fullerene structure [39]. This process is detailed 

in a sequence of TEM images shown in Figure 1-13 below. Image a shows the initial image of the 

nanotube where all layers are in an ordered state. Image b is the beginning of nanotube 

disruption formation, away from the narrow segment of the tube. Image c shows total 

disruption of all nanotube layers. In image d, the nanotube reorganizes itself into a new ordered 

state with smaller diameter. The sequence of a-d occurs several times before state e is reached. 

In image e, only a single-wall carbon nanotube remains from this thinning process. Lastly, in 

image f, the SWCNT breaks and the open ends cap themselves.  

Others, such as Wei, et al. and Andrews and Weisenberger, note the necking effect seen by 

Marques, et al. begins with structural defects like the Stone-Wales defect [19, 40] 
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Figure 1-13 - TEM images of MWCNT reconstructive properties under tensile strain12 [39] 

Mechanical failure stemming from compression tends to be a bit more forgiving in carbon 

nanotubes than the full destruction of the tube geometry experienced in tensile failure. Chang, 

et al. report carbon nanotubes can be bent at an angle larger than 140° without exhibiting any 

mechanical failures or loss in phonon transport[25]. SEM Images from this study showing 

nanotube bend radius’s effect on thermal conductivity are reproduced from  [25], and 

presented in Figure 1-14 below. This combined SEM/chart shows how two carbon nanotubes 

and one boron nitride nanotube are subjected to sharp bend radii before any damage is noted 

and any relevant change in normalized thermal conductivity is recorded. The images were taken 

at different points of a bending cycle. 

 

                                                           
 

12 Reprinted with permission from Nano Letters, Vol. 4 No. 5, M. A. L. Marques, H. E. Troiani, M. Miki-
Yoshida, M. Jose-Yacaman, A. Rubio, “On the Breaking of Carbon Nanotubes Under Tension”, Page 812, 
Copyright 2004 American Chemical Society 
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Figure 1-14 – Effect of nanotube bend radius on thermal conductivity13 [25] 

The natural resilience of nanotubes as presented above is one of the most useful traits they 

possess for TIM applications. The ability to flex, conform, and contact surfaces under load is 

critical for good thermal transfer through an interface. Nanotubes retain this resilience and 

flexible nature when applied in bulk forms like freestanding arrays, as shown in Figure 1-15 

below. The SEM image on the left shows buckling of MWCNTs observed under compressive 

force. The MWCNT array shows a distinct line where tubes begin to buckle and compress when 

sandwiched between two aluminum substrates. The SEM image on the right shows MWCNT tips 

bent over to conform to aluminum Substrate under compressive force. 

                                                           
 

13 Reprinted with the Author’s permission from Physical Review Letters, Vol. 99, 045901,  C. W. Chang, D. 
Okawa, H. Garcia, A. Majumdar, A. Zettl, “Nanotube Phonon Waveguide”, Page 3, Copyright 2007 by 
American Physical Society 
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Figure 1-15 – Buckling and Conforming of MWCNT arrays under compressive force 

Suhr et al. reported on the fatigue resistance of carbon nanotube arrays subjected to cyclic 

compression. They found vertically aligned carbon nanotube arrays exhibit preconditioning 

behaviors, viscoelasticity-induced hysteresis, non-linear elasticity and stress-relaxation, as well 

as the ability to withstand large deformations [24].  

Suhr’s report of preconditioning indicates his nanotube arrays settle into a relatively constant 

modulus of 0.58 MPa after 60 cycles, where the arrays initially reported a modulus value of 0.73 

MPa. Once preconditioned, the nanotubes were cycled to fatigue. Compressive strains of up to 

15% caused no fatigue damage up to a half million cycles. Above 15% strain, the nanotubes 

showed degradation through decreased recovered thickness value as early as 75,000 cycles. 

 The viscoelastic hysteresis behavior shows the arrays are slower to recover when a load is 

removed; much like a memory foam pillow slowly expands after compression. With increased 

cycle count, the arrays tend toward a less extreme hysteresis difference, as the nanotubes 

become preconditioned and lose some compressive capacity. This viscoelasticity is also evident 

when holding a sample at a fixed compression, as the reported stress slowly decreases over 

time.  

The nonlinear elasticity measurements show two distinct regions of stiffness. First a modulus of 

0.75 MPa up to a critical strain of nearly 57% strain is seen. Above this value, the second and 

stiffer regime takes over, as the modulus slope increases dramatically toward values greater 

than 2 MPa [24]. This serves as another indicator that the nanotubes have reached a 

compressive limit, and have little room left to reorganize themselves to accommodate more 

stress. 
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 Lastly throughout all of Suhr et al.’s tests, it was noted that the nanotubes were capable of 

withstanding large deflections. Tubes would recover their alignment and orientation while 

releasing the energy stored by compression as heat. Any kinks or defects gained during 

deflection are not lost when the tubes recover their original position.  Charts detailing the 

viscoelastic hysteresis/preconditioning behaviors (left) and non-linear elasticity regimes (right) 

are reproduced from [24] in Figure 1-16 below.  

  

Figure 1-16 – Viscoelastic Hysteresis and Non-linear elasticity of MWCNT arrays, courtesy of 
Nature Publishing Group14 [24] 

Carbon nanotubes that do fail in compression will often buckle or kink, resulting in a somewhat 

flattened cross section. When placed in close proximity to another carbon nanotube (such as in 

a free standing array situation), Ruoff et al. found that an individual carbon nanotube will no 

longer maintain a perfectly cylindrical cross section due to the van der Waals interactions 

between it and its neighbor[41]. This natural interaction places many carbon nanotubes one 

step closer to a buckling or kinking failure mode. Should the tube collapse completely, its 

interlayer interactions take on a characteristic like layers of stacked graphene sheets[12]. 

 

  

                                                           
 

14 Adapted by permission from Macmillan Publishers Ltd: NATURE NANOTECHNOLOGY, Suhr, J., P. Victor, 
et al. “Fatigue resistance of aligned carbon nanotube arrays under cyclic compression”, copyright 2007 

http://www.nature.com/nnano/journal/v2/n7/full/nnano.2007.186.html
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1.4.5 Dry Carbon Nanotube Adhesion 

For years, scientists have studied the natural climbing ability of geckos. As early as 1913, 

descriptions were published of microscopic bristles on the undersides of gecko feet being 

associated with this climbing ability [45]. It was discovered that a gecko’s foot is covered by 

nearly half a million keratinous hairs of micrometer scale, with each hair projecting hundreds of 

spatula shaped structures less than 1 micron [46].  Carbon nanotubes possess a natural adhesive 

quality similar to the foot of a gecko, due to the cumulative effect of van der Waals forces 

experienced when the sidewalls of nanotubes make contact with a substrate [47-49].  

Research groups have studied the adhesion forces created by nanotubes in contact with 

substrate surfaces. In 2006, Zhao et al. measured the normal and shear adhesion strengths of 

MWCNT arrays as functions of attachment cycles and attachment area. They found maximum 

normal and shear adhesion strengths of 11.7 N/cm2 and 7.8 N/cm2 (respectively), as well as an 

inverse relationship between apparent contact area and adhesion strength [48]. They attached 

and removed array samples up to eight times, noticing that the reported adhesion strength 

values would gradually degrade for the first few cycles. After about 3 cycles, the strength values 

would reach a lower steady-state value. They also noted that shorter arrays (around 5 – 10 

micron) displayed larger adhesive strengths, whereas longer arrays (around 100 micron) 

displayed weak adhesive strength on the order of 2 mN/cm2. 

Zhao et al.’s nanotubes were synthesized via CVD, and they point out their arrays had a top 

“canopy” layer which consisted of randomly oriented, tangled nanotube tips. They considered 

this a significant difference between nanotube arrays and gecko feet, since the canopy would 

block some of the nanotubes from contacting the substrate. They proved this top layer was 

problematic by plasma etching this surface away from an array of more than 50 micron 

thickness which previously showed negligible adhesion strength. Testing post plasma etch 

showed an improvement in the adhesion up to a few N/cm2 of adhesion strength [48]. 

Two years later, Qu et al. studied the normal and shear adhesion strengths of MWCNTs and 

found vastly different results. Qu’s group recorded the adhesion force for different samples of 

nanotubes with thicknesses ranging from near 10 micron to 150 micron. Instead of finding 

normal adhesion strength to be dominant, they measured average normal and shear adhesion 
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strengths near 20 N/cm2 and 100 N/cm2 (respectively) for arrays near 150 micron length [47]. 

This result is exactly opposite of those published by Zhao et al. two years earlier.  

Qu’s group credits the same tangled-on-top, straight-through-the-middle nanotube array 

construction for the incredible shear adhesion strength that Zhao’s group claims inhibits contact 

for adhesion. They also used plasma etching to compare adhesive strengths of nanotube layers 

with and without the tangled top nanotube layer, finding a significant increase in adhesion 

strength when this layer was left intact. SEM images show that after shear loading is applied, 

this tangled layer actually aligns itself and provides increased sidewall nanotube-to-substrate 

contact (and hence, higher shear adhesion force)[47].  

To demonstrate the incredible shear adhesion capability of carbon nanotubes, they glued a wire 

to the back side of a silicon nanotube growth substrate with a 4mm x 4mm x 150 micron 

nanotube array sample on the other side. They stuck the nanotubes to a vertical glass slide and 

suspended a 1480 gram textbook from it. A 2 kg preload was applied in the normal direction to 

initially adhere the nanotube/substrate hanger to the glass slide (Image A, below). Images B and 

C show the aligned MWCNT array used. This feat is presented in Figure 1-17 below. 
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Figure 1-17 - Suspending a textbook from carbon nanotubes15 [47] 

1.5 Conclusion 

Since their discovery in 1991, multiwall carbon nanotubes have been the focus of numerous 

research efforts and attempts to capitalize on the outstanding thermal and mechanical 

properties they possess. Their natural tendency to grow in highly aligned arrays makes them 

ideal candidates for use as thermal interface materials. Their vertically aligned, highly graphitic 

and largely defect free nature allows for a large phonon mean free path, and leads to excellent 

heat conduction dominated by phonon transport through their structure.  

MWCNTs have been shown to be a truly unique material with outstanding thermal and 

mechanical properties. Individually, they possess incredibly high thermal conductivity and 

mechanical resiliency. In a bulk format such as aligned array TIMs, outstanding mechanical 

properties allow them to conform to substrate surfaces easily and allow for repeated assembly 

                                                           
 

15 From Science, 322, 5899 Liangti Qu, Liming Dai, et al. “Carbon Nanotube Arrays with Strong Shear 
Binding-On and Easy Normal Lifting-Off”, Copyright 2008. Reprinted with permission from AAAS. 
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of an interface system. Thermally, bulk arrays show conductivity values that are not quite as 

extreme as their constituents, but they still perform admirably as TIM materials. 

Successful attempts have been made to impart the excellent thermal and mechanical properties 

of MWCNTs to composites by including them in the layup of the material itself. Examples of this 

include using aligned MWCNT arrays between plies of unidirectional composite for increased 

fracture toughness, as well as direct synthesis of MWCNTs on 2D woven carbon fiber fabric, 

producing a 3D composite with improved thermal and mechanical properties. 

Finally, incredible shear adhesion capabilities of carbon nanotubes are shown to be a function of 

the van der Waals forces between the millions of nanotube sidewalls and the surfaces they 

touch. This allows arrays to support tremendous shear forces, as well as become a reusable 

thermal interface material by preferentially sticking to one side of an interface. 
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Chapter 2 Multiwall Carbon Nanotube Arrays as a TIM in All-Aluminum Systems  

2.1 Introduction 

The inherent vertical alignment of MWCNT arrays grown through CVD synthesis creates a thin 

bulk material with a large mean free path for phonon-based heat conduction. Additionally, the 

deflection capability of individual nanotubes within the array allows a higher percentage of the 

total array to make contact with irregular substrate surfaces. Within this chapter, the physical 

properties of synthesized MWCNT arrays which affect their performance as a TIM in two layer, 

“sandwich” stack aluminum systems will be studied. Such properties include array thickness, 

areal and bulk densities, array cleanliness, and volumetric packing fraction. It is hypothesized 

the best performing array TIMs will be thin, possess high bulk and/or areal densities, have high 

volumetric packing fractions, and be free from amorphous carbon deposits. 

2.2 Experimental 

Thermal analysis of an aligned MWCNT array’s performance as a TIM is carried out through the 

laser flash method for measuring diffusivity. This method has been well researched and has 

been implemented with several models for heat diffusion, including corrections for laser pulse 

effects and radial heat losses, as well as models for multiple layer diffusivity measurements[50-

57]. Analysis was conducted using an LFA 427 Laser Flash Analysis (LFA) system produced by 

Netzsch.  

2.2.1 Carbon Nanotube Synthesis 

The vertically aligned MWCNTs used in this study were synthesized in-house through a CVD 

process described in detail in patents and publications by Jacques et al. and Andrews et al. [58, 

59]. During a typical nanotube synthesis, a metal catalyst is dissolved in a liquid hydrocarbon to 

form a feed mixture. The preferred mixture used at CAER consists of ferrocene metal catalyst 

and xylene hydrocarbon solution. Ferrocene is used because it is an excellent source of iron 

catalyst particles (which helps seed nanotube growth) while xylene is the source of carbon used 

in nanotube growth. This mixture is prepared at approximately 0.75 atomic % Fe to C ratio, and 

is preheated to 175 °C as it feeds through a capillary. This temperature is above the boiling point 

of xylene (138.5 °C [60]), yet below the decomposition point of ferrocene (190 °C [59]).  



31 
 

Upon exiting the capillary tube, the mixture is instantaneously volatilized due to the elevated 

temperature and is brought into the reaction furnace by an inert carrier gas. Usually, a preferred 

combination of 10 vol % hydrogen with either nitrogen or argon is used as the carrier. Quartz 

slide substrates are fed through a gas curtain entrance (to maintain furnace atmosphere) and 

into the reaction zone on a conveyor belt at a rate allowing residence times between 10 and 120 

minutes. This allows nanotubes to form from iron catalyst particles which have deposited on the 

slides from the atomized feed mixture. The reaction occurs at a temperature between 650 °C 

and 850 °C, with attention given to deliver feed solution at an ideal rate. This rate maintains a 

partial pressure of carbon between 48 and 150 millibar to avoid triggering co-generation of 

amorphous carbon deposits within and on top of synthesized arrays.  

Amorphous carbon lacks the ordered structure of a carbon nanotube, and does nothing to aid 

thermal transport. Instead, it insulates surfaces it contacts from heat transfer. Clearly, it is 

preferred to produce an array with a minimum amount of amorphous carbon deposits, and 

methods of cleaning or purifying arrays burdened by these deposits will be discussed in a later 

chapter of this work. 

2.2.2 Dry Array Sample Construction with Aluminum Substrates 

In order to characterize the effect of varying nanotube physical properties on overall 

performance as a thermal interface material, aluminum substrates were chosen as a well known 

baseline material. Disc shaped substrates for LFA testing were machined out of aluminum plate 

to 14 mm outer diameters on a CNC mill. A multipurpose 6061-T6511 aluminum alloy with both 

mill and mirror finish sides was selected to represent a standard engineering material. Surface 

roughness measurements of each finish were taken with a TR100 Portable Surface Roughness 

Tester (shown in Figure 2-1 below). Aluminum surface roughness values were averaged from 22 

measurements across each side of the plate, where RA = 0.13 μm for mill finish and 0.01 μm for 

mirror finish. 
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Figure 2-1 - TR100 Surface Roughness Tester 

Two layer LFA samples were assembled in a special sample holder produced by Netzsch for use 

with the LFA 427 Laser Flash Analyzer instrument. It consists of a steel alloy cylinder with an 

internally threaded sample well of 15 mm diameter, with an internal shoulder for substrates to 

rest on. A fine thread hollow-lock set screw lubricated with dry graphite spray is tightened on 

top of the substrates with a supplied torque driver to allow precise and repeatable application 

of pressure loads to substrates. The entire assembly is made of steel alloy, which will not flex 

under moderate torque loading. This material possesses a low thermal conductivity which will 

not provide an alternate conduction path. This avoids biasing thermal results by affecting heat 

flow in the sample. Figure 2-2 below contains a diagram and picture of the sample holder. 

      

Figure 2-2 - Compression Sample Holder loaded on the LFA's sample tower 
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After the sample has been constructed, the exposed bottom and top substrate surfaces are 

coated with a thin layer of spray graphite, as recommended by Netzsch [61]. For the “front” 

substrate face, this produces a highly conductive surface with low reflectivity, eliminating 

possible laser reflections and promoting total energy absorption from the laser flash. A graphite 

coating on the “back” substrate face increases the total emissivity value of the surface. This 

allows the LFA software to accurately measure sample temperature rise using an Infrared (IR) 

detector on the back face.  More details about the LFA instrument will be discussed in the 

following section. 

2.2.3 Thermal Testing 

For thermal measurements in this work, a Netzsch LFA 427 Laser Flash Analyzer was used. A 

diagram of the measurement components can be seen in Figure 2-3, below. 

 

Figure 2-3 -LFA 427 Testing System Diagram16 

                                                           
 

16 Image reprinted with permission of Netzsch Instruments, 
 http://www.netzsch-thermal-analysis.com/download/LFA427_E_0311_25.pdf 

http://www.netzsch-thermal-analysis.com/download/LFA427_E_0311_25.pdf
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 In the most simplistic terms, the LFA instrument consists of a highly accurate clock and a 

thermometer. When a sample is tested, a laser pulse flashes energy onto the front side of the 

sample. Just before the pulse, the clock starts counting and the temperature history starts 

recording. The minimum and maximum temperatures are noted, and a normalized temperature 

rise curve is generated. A quantity known as the “half-rise time,” is read off the curve. This value 

is used in thermal models like those of Parker et al. [50], Cape and Lehman [51], and Cowan [52] 

to determine the thermal diffusivity of the sample. When combined with the specific heat and 

bulk density of the sample, the thermal conductivity can be directly calculated. At this point, a 

discussion of the thermal models used in measuring thermal diffusivity is required. 

2.2.3.1 Parker Model for Thermal Diffusivity 

The flash method for determining thermal diffusivity, heat capacity, and thermal conductivity 

published by Parker et al. in 1963 is the basis for thermal measurements made in the Netzsch 

LFA 427. It was developed as a way to reliably measure thermal properties of materials while 

avoiding problems related to contact resistances in contact –based measurements. It was also 

designed to be faster than contemporary methods, and was capable of measurements at higher 

temperatures than allowed by other methods. Parker et al.’s model of thermal diffusivity results 

in this well known relation, where α is thermal diffusivity, L is sample thickness, and t1/2 is the 

sample “half max time.” 

 
𝛼 =

1.38𝐿2

𝜋2𝑡1
2�

 (2.1) 

The derivation of this equation is as follows from Parker, and rests on these assumptions and 

boundary conditions: 

• Heat flow is one-dimensional 

• The pulse width of the incident laser flash is negligible compared with the time 

necessary for the heat flux to propagate through the sample (heat pulse is 

instantaneous) 

• Penetration depth of the laser is small 

• Material properties are ideally temperature independent, or at the least, not strongly 

temperature dependent 

• Heat losses from sample surfaces are negligible 
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To begin the derivation, it is assumed an initial temperature distribution of T(x,0) in a thermally 

insulated solid of uniform thickness, L, exists. If this is the case, the temperature distribution at 

any later time t, as given by Carslaw and Jaeger (and used in Parker et al.[50]) is: 

 
𝑇(𝑥, 𝑡) =
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Also, an initial condition is assumed where a pulse of radiant energy, Q (i.e. laser light), is 

instantaneously and uniformly absorbed in a small depth g, at the front flashed surface of the 

sample (x=0). In a thermally insulated solid of uniform thickness, the temperature distribution at 

that instant is given by 

  𝑇(𝑥, 0) =
𝑄
𝐷𝐶𝑔

     𝑓𝑜𝑟 0 < 𝑥 < 𝑔 (2.3) 

and 

 𝑇(𝑥, 0) = 0     𝑓𝑜𝑟 𝑔 < 𝑥 < 𝐿 (2.4) 

Where D represents density and C represents heat capacity. 

Using these initial conditions, equation (2.2) can be rewritten as 
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where only a few terms of the summation will be needed. Because the assumed incident laser 

pulse only penetrates a very small distance into the sample face g, it is known that 𝑛𝜋𝑔 𝐿⁄  will 

be a very small value. Using the small angle approximation for sine functions, one can safely 

assume sin(𝑛𝜋𝑔 𝐿⁄ ) ≈  𝑛𝜋𝑔 𝐿⁄ . The temperature history on the rear face can now be expressed 

as 
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Next, two dimensionless parameters, V and ω, are defined as 

 𝑉(𝐿, 𝑡) = 𝑇(𝐿, 𝑡)/𝑇𝑀 (2.7) 

 and 

 𝜔 = 𝜋2𝛼𝑡 𝐿2⁄  (2.8) 

where TM represents the maximum temperature of the rear surface. 
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Upon combining the rear face temperature equation (2.6), with the dimensionless parameters in 

equations (2.7), and (2.8), a simplified relation for the normalized rear surface temperature V is 

found. 

 
𝑉 = 1 + 2 �(−1)𝑛exp (−𝑛2𝜔)

∞

𝑛=1

 (2.9) 

From a plot of equation (2.9), the half time “t1/2” can be read where V=0.5. At this point, the 

parameter ω = 1.38, which allows algebraic manipulation of equation (2.8). Upon replacing t 

with t1/2 in equation (2.8) and solving for the thermal diffusivity parameter α, equation (2.1) is 

found, as shown above. This graphical identification process is illustrated in Figure 2-4 below. 

Here, nondimensional parameters V and ω are plotted, and the half time “t1/2” can be read off 

the plot where V=0.5. 

 

Figure 2-4 - Rear surface temperature history from flash diffusivity measurements17 [50] 
 

 

                                                           
 

17 Reprinted with permission from Parker, W.J., et al., Flash Method of Determining Thermal Diffusivity, 
Heat Capacity, and Thermal Conductivity. Journal of Applied Physics, 1963. 32(9): p. 1679 – 1684. 
Copyright 1961, American Institute of Physics. 
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2.2.3.2 Cape-Lehman Model for Thermal Diffusivity, Including Pulse Correction 

The model of thermal diffusivity proposed by Parker et al. operates in an adiabatic system, due 

to the assumption of negligible heat loss from the sample to the surroundings. This is not always 

an accurate representation of a thermal system, especially at elevated temperature[51, 53]. 

Cape and Lehman introduce two extensions of the basic Parker framework for the heat 

conduction problem. One extension is a finite pulse width correction, which is needed when the 

characteristic thermal transit time of a thin sample material tc, is on the same order as the 

duration of the heat pulse. This situation causes the heat rise to appear later than it should, and 

overestimates the appropriate half max time, and thereby, the appropriate diffusivity. The 

second extension accounts for radiative heat losses which occur when measuring thicker 

samples at high temperature. 

Cape and Lehman considered the same cylindrical sample geometry used in the Netzsch LFA 

427. They derived their solutions as shown in [51], the highlights of which are as follows: 

Considering a cylindrical sample flashed by a pulsed heat source with front face at x=0, back face 

at x=a, and with radius r0, the heat flow in such a sample is governed by equation (2.10) when 

thermal diffusivity is independent of temperature. 

 −𝛻2𝛿(𝑥, 𝑟, 𝑡) +
𝛿(𝑥, 𝑟, 𝑡)

𝛼
=
𝑞(𝑥, 𝑟, 𝑡)

𝑘
 (2.10) 

During the flash diffusivity experiment, the sample temperature rises only a little over the 

ambient temperature, T0. The boundary conditions for this equation are derived from the 

Stefan-Boltzmann radiation law, and are: 

 𝑑𝛿(0, 𝑟, 𝑡)
𝑑𝑥

= 𝜈𝑥𝛿(0, 𝑟, 𝑡) (2.11) 

 𝑑𝛿(𝑎, 𝑟, 𝑡)
𝑑𝑥

= −𝜈𝑥𝛿(𝑎, 𝑟, 𝑡) (2.12) 

and 

 𝑑𝛿(𝑥, 𝑟0, 𝑡)
𝑑𝑟

= −𝜈𝑟𝛿(𝑥, 𝑟0, 𝑡) (2.13) 

Where 

 
𝜈𝑥 , 𝑟 = 4𝜎𝜖𝑥 , 𝑟

𝑇03

𝑘
 (2.13) 
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2.3 Results 

Prior to testing thermal diffusivity and thermal contact resistance properties of MWCNT arrays 

in stacked aluminum systems, three samples of the aluminum material were measured for 

baseline thermal diffusivity and specific heat values. Two test procedures were conducted for 

each sample, including a “one layer” test for effective thermal diffusivity of the sample stack and 

a “two layer” test to measure interfacial thermal contact resistance. Initially, each MWCNT array 

was tested as a TIM in a high pressure aluminum system. After completing tests at high 

pressures, it was decided to test at lower pressures to determine the onset of thermal property 

enhancement, as well as array property effects at lower pressures. 

 High pressure tests were conducted with mill and mirror finish surfaces at the interface to 

determine the effect of substrate roughness. All tests were conducted at 25 °C, under increasing 

torque settings. The torque settings were dictated by available range of the tool, a Tohnichi 

RTD260CN Torque Driver (shown in Figure 2-5 below).  

 

Figure 2-5 - Tohnichi RTD260CN Torque Driver 

This tool was supplied by Netzsch with their compression sample holder and equipped with a  

5 mm hex-bit. The total torque range of the tool is 60 – 260 cNm of torque. The three settings 

used during testing were 60 cNm, 100 cNm, and 140 cNm. These equate to approximately 134 

psi, 290 psi, and 447 psi (converted from Netzsch’s pressure vs. torque curve supplied with the 

compression sample holder, see Figure 2-7). Each sample was tested with both one and two 

layer methods before increasing the interfacial pressure. All samples were tested at all three 

pressures, in increasing order. 

 

 



39 
 

To summarize the conditions of the high pressure diffusivity/contact resistance studies: 

• Two tests per sample (1 Layer test for diffusivity, 2 layer test for contact resistance) 

• One temperature setting for all tests (25 °C) 

• Two surface finishes used at the interface (mill (RA=0.13 μm) and mirror (RA=0.01 μm)) 

• Three pressures/torques (134 psi / 60 cNm, 290 psi / 100 cNm, 447psi / 140 cNm) 

Low pressure tests were conducted at 0, 1, 2, 3, and 4 in-lb of torque, using a Stanley PROTO 

torque wrench, as pictured in Figure 2-6 below. 

 

Figure 2-6 - Stanley PROTO Torque Driver 

The pressures related to 3 and 4 in-lb of torque can be backed out from the compression curve 

supplied by Netzsch, and correspond to approximately 31 psi and 75 psi, respectively. Torques 

between 0 in-lb and 2 in-lb correspond to pressures between 0 psi and 31 psi, but exact values 

cannot currently be reported due to the reported range of Netzsch’s curve. Figure 2-7 below 

shows how attempting to extrapolate this curve into the low torque domain below 3 in-lb 

results in negative pressure values, which are clearly unrealistic. 

        

Figure 2-7 - Extension of Netzsch Compression curves into Low Pressure Domain 

For the low pressure tests, aluminum substrates sanded to a 60 grit finish were the only 

interface roughness considered. Measurements of this surface reveal an average roughness of 

RA = 1.25 μm, which is nearly 10 times rougher than the mill interface and 125 times rougher 
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than the mirror. The 60 grit surface treatment was chosen to illustrate the benefit of a TIM over 

a bare interface with relatively large surface roughness features, as there would be more space 

for a TIM to fill when making thermal contact. Other test parameters, including use of one and 

two layer tests, and a consistent testing temperature of 25 °C remained the same during these 

additional tests. 

2.3.1 High Pressure LFA Results 

To establish an overview of the results based purely on thermal performance, the relationship 

between thermal diffusivity and thermal contact resistance at each pressure and interface style 

will be considered. At this time only selected charts will be discussed for brevity’s sake. All of the 

charts presenting these results have naming labels above the TIM data points indicating which 

material produced those results. TIM physical properties, as well as a complete listing of data 

used in the charts from this section, can be seen in Appendix A, at the end of this work.  

 
Figure 2-8 - Diffusivity vs. Contact Resistance - Mill Finish Al at 133.4 psi 
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From Figure 2-8, a general trend can be seen when comparing thermal diffusivity and thermal 

contact resistance of an LFA sample system. As the thermal diffusivity increases, thermal contact 

resistance decreases. As contact pressure increases, a general shift in the data spread toward 

regions of lower contact resistance and higher thermal diffusivity is seen. 

From this chart, as well as the others across both surface finishes and all pressures listed in the 

appendix, it is apparent that the baseline data points do exhibit some spread. A total of three 

baseline systems were tested for both mill and mirror surface finishes establishing a region of 

baseline performance. For the mill finish systems, the baseline locations indicate that aligned 

MWCNT array TIMs can provide significant benefits in these systems. These benefits are not 

seen in all array TIMs tested, which indicates there should be some distinct features about the 

best performers which are lacking in the others.  

 

Figure 2-9 - Diffusivity vs. Contact Resistance - Mirror Finish Al at 447 psi 

Examining Figure 2-9, baseline data from the mirror finish systems under extreme contact 

pressures indicate that most aligned MWNCT TIM materials provide less benefit here than 

benefits seen in mill finish systems. This is likely due to the fine surface finish of the mirror 
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aluminum. With fewer point contact locations than its mill finish counterpart, the mirror finish 

interface systems do a respectable job creating thermal contact on their own. This sets a high 

standard for any TIM aiming to improve upon an otherwise functional interface. 

2.3.1.1 Effect of MWCNT Thickness on Thermal Performance 

At this time, the spread issues with the baseline measurements will be disregarded to examine 

the effect of various array parameters on the thermal performance of the systems. The effect of 

MWCNT array thickness on the thermal diffusivity of the systems will be examined first. Figure 

2-10 is representative of the influence of MWCNT array thickness on stack thermal diffusivity 

across all the systems.  

 

Figure 2-10 - Thermal Diffusivity vs. MWCNT Thickness - Mill Finish Al at 133.4 psi 

There is a negative correlation between thermal diffusivity and array thickness such that as 

array thickness increases, thermal diffusivity through the stack decreases. This follows from 

equation (1.2), where contact resistance is a function of length and conductivity in a system with 

equivalent contact areas. The most important lesson from this chart is lower array thickness 

means potential for higher diffusivity. 
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2.3.1.2 Effect of Packing Fraction on Thermal Performance 

The volumetric packing fraction, or simply “packing fraction,” is an estimation of the amount of 

space within the aligned MWCNT array which is occupied by MWCNTs as opposed to air or other 

materials. In general, a higher packing fraction is a desirable trait in a MWCNT array TIM, as this 

indicates more conductive nanotubes are present and able to conduct heat across the interface. 

Packing fraction is estimated by assuming a closely packed, hexagonal arrangement of MWCNTs 

within the array structure, as illustrated by Figure 2-11. Equation (2.14) is used to determine the 

area of the smallest hexagon which will contain three nanotubes (outlined in red dashed lines) 

where h is the assumed outer diameter of the MWCNTs to ensure maximum packing. 

 
Figure 2-11 - Diagram of Assumed Close-Packed Hexagonal MWCNT Array Arrangement 

 

 
𝐴ℎ𝑒𝑥 =

3ℎ2√3
2

 (2.14) 

 

The estimated number of nanotubes actually on the slide per unit area is calculated from the 

array areal density and assumed inner/outer diameters of the nanotubes. This is compared to 

the assumed maximum possible number of nanotubes per unit area (equal three times the 

maximum possible number of hexagons per unit area) to arrive at the ratio of nanotubes to max 

possible nanotubes to get packing fraction. More succinctly put: 

 

 𝑃𝑎𝑐𝑘𝑖𝑛𝑔 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
𝐴𝑐𝑡𝑢𝑎𝑙 𝑁𝑎𝑛𝑜𝑡𝑢𝑏𝑒𝑠 𝑃𝑒𝑟 𝐴𝑟𝑒𝑎

𝑀𝑎𝑥 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑁𝑎𝑛𝑜𝑡𝑢𝑏𝑒𝑠 𝑃𝑒𝑟 𝐴𝑟𝑒𝑎
 (2.15) 
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Figure 2-12 below shows the relationship between packing fraction and thermal contact 

resistance in mill finish aluminum LFA systems. It is representative of the trends seen in mirror 

finish systems, as well as other contact pressures, which can be seen in Appendix A. 

 

Figure 2-12 - Contact Resistance vs. MWCNT Packing Fraction - Mill Finish Al at 447 psi 

From Figure 2-12 a definite negative correlation between MWCNT packing fraction and thermal 

contact resistance can be seen. This indicates that having a higher percentage of nanotubes 

occupying TIM volume (closely packed arrays) creates a higher chance of improved thermal 

contact and lowers thermal contact resistances across substrate surfaces. 

The mill finish systems have data for a graphitized array, as well as their “as-produced” siblings. 

From this data, it can be seen that a high packing fraction is not the only path to lower thermal 

contact resistance. The graphitization process purifies MWCNT arrays by providing energy to 

repair damaged tubes and remove entrained iron catalyst particles[62]. The purified carbon 

nanotubes are much more graphitic in nature (and thereby more conductive) than their 

predecessors. 
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2.3.1.3 Effect of Areal Density on Thermal Performance 

Areal density is defined as mass per unit area. The distinction of normalizing to area instead of 

volume separates it from its more common counterpart, bulk density (mass per unit volume). 

Areal density of a nanotube array is the first calculated value recorded from an array. The mass 

of the substrate slides is measured before and after their time in the nanotube synthesis 

furnace, allowing subtraction of the mass of the slide and direct measurement of the mass of 

the nanotube array. All slides are of known dimension, so finding areal density is a simple matter 

once nanotube array masses are known. 

Areal density is the only array property that can be characterized prior to harvesting. This makes 

it the only potential candidate for deciding which array will perform best before further effort 

and expense is incurred to characterize it. Figure 2-13 below details representative results 

attempting to link areal density of aligned MWCNT array TIMs with thermal contact resistance. 

 

Figure 2-13 - Contact Resistance vs. Areal Density - Mirror Finish Al at 60 cNm (133.4 psi) 

There is no clear pattern linking areal density of MWCNT arrays to thermal performance at high 

pressures. 
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2.3.1.4 Effect of Bulk Density on Thermal Performance 

Bulk density is defined as mass per unit volume, and is the proper name for what most consider 

“density.” In order to quantify this value for a nanotube array, SEM imaging must be conducted 

to determine the thickness of the array. Once this value is determined, areal density can be 

normalized to this thickness to yield bulk density. Figure 2-14 shows a loose relationship 

between bulk density and thermal contact resistance. 

 

Figure 2-14 - Contact Resistance vs. Bulk Density - Mill Finish Al at 60 cNm (133.4 psi) 

A rough trend exists between bulk density and thermal performance. Lower bulk density tends 

toward higher thermal contact resistance. This is intuitive, as lower density means less mass in 

the same volume, indicating fewer aligned MWCNTs occupying the interface. 

2.3.1.5 Effect of Array Cleanliness on Thermal Performance 

Array cleanliness refers to the surface conditions of the arrays themselves. The array harvesting 

method used results in each array having two distinct surfaces. The “bottom” surface, which 

was originally attached to the substrate, and the “top” surface which corresponds to the top of 

the produced nanotube array. The bottom surface always has a clean look to it, devoid of 
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amorphous carbon and packed with conductive nanotube tips. The top surface cleanliness is 

variable, often depending on the furnace settings, residence time, and even orientation in the 

furnace during synthesis. The majority of amorphous carbon that hinders array thermal 

performance exists on the top surface. 

Attempting to quantify this cleanliness is a difficult task. Initial efforts involved measuring the 

change in weight after cleaning each array surface with a bagless canister vacuum, as described 

in Figure 2-15. Through this process, some of the amorphous carbon deposits are removed from 

the top surface of the array (note: It is assumed that only mass attributed to amorphous carbon 

is removed during this process, not mass belonging to MWCNTs). A set of acrylic supports keep 

the vacuum cleaner tool from touching the array surface, while still remaining close enough to 

remove carbon deposits. An extra pair of hands is also required to hold the edges of the quartz 

substrate down. This ensures the combined substrate and array aren’t ruined by being 

vacuumed up and off the table and crashing into the cleaning tool. 

 

 

Figure 2-15 - Array Vacuum Cleaning Diagram 

Beyond this cleaning method, there are very few methods developed to quantify surface 

cleanliness of a nanotube array. Because of this, SEM images of array surfaces become the de 

facto standard for qualitative surface cleanliness comparison. Figure 2-16 shows examples of 

these cleanliness comparisons. The image on the left is of array #37, which is one of the thinnest 

and cleanest arrays produced to date. It has remarkably clean surfaces on top and bottom. The 

image on the right is array # 97, which is an example of an array with a dirty top. The layer of 

amorphous carbon can be seen on the right side of the array as a brighter white line with 
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spherical carbon mounds resting on top of it. Below these images, 

Figure 2-17 shows percentage of measured array mass removed by vacuum cleaning vs. thermal 

performance. 

      

Figure 2-16 - Examples of Surface Cleanliness Examined via SEM 
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Figure 2-17 - Contact Resistance vs. % Array Mass Removed - Mill Finish Al, 140 cNm (447 psi) 

Figure 2-17 shows there is no readily apparent trend between the percent of array mass 
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removed and improved thermal performance. It is assumed any removed mass belonged to 

amorphous carbon. There can be several explanations for this with extremes ranging from 

arrays that did not have a significant layer of amorphous carbon to remove, to arrays that did 

have layers of amorphous carbon to remove, but it was too entrained in the array to be 

effectively vacuumed away. The latter is true of array #96, which is actually one of the thinnest 

arrays tested at 38.2 micron thick. It has a layer of amorphous carbon extending nearly 20% of 

the total array thickness, as shown in Figure 2-18 below. 

 

Figure 2-18 – SEM images showing amorphous carbon layer of Array 96 

2.3.1.6 High Contact Pressure LFA Results Conclusion 

The preceding sections discussed the physical properties of aligned MWCNT arrays which 

influence their performance as a TIM. Based on the spread of baseline points in the data, any 

conclusions which could be drawn about thermal performance gains from aligned MWCNT array 

TIMs would be dubious at best. There is simply not enough contrast between the baseline and 

MWCNT array TIM data in high contact pressure aluminum systems to prove that carbon 

nanotube arrays provide a clear and consistent improvement over the baseline systems. 

Ignoring the baseline data points for a moment and focusing on the differences in performance 

between each array has yielded a glimpse into the world of an aligned MWCNT array TIM. 

Rough trends point toward high performing arrays possessing low thickness, high bulk density 

and packing fraction, and clean surfaces.  Next, focus will shift to a follow-up study involving low 

pressure/high roughness systems. The goal of this study has been to see if a clear contrast 

between baseline and experimental data can be found at lower assembly pressures. The 

hypothesis for this study is similar to the high pressure systems in that it is expected that high 
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density/packing fraction arrays with low thickness and clean surfaces will perform well. 

Additionally, it is expected that a system with high roughness will yield more substantive results.  

2.3.2 Low Contact Pressure LFA Results 

Low contact pressure tests were conducted at contact pressures ranging from 0 psi to 75 psi, as 

incremented from 0 in-lb (sample sitting in holder without compression) to 4 in-lb of torque by a 

Stanley PROTO torque driver. All tests were conducted with Aluminum substrates with the same 

nominal 14 mm outer diameter and 3.125mm thickness as the high pressure tests. Substrates 

were sanded to a 60-grit finish (RA=1.25 μm) in order to introduce surface roughness. As with 

the high contact pressure systems, the physical properties of arrays tested in low contact 

pressure systems and their thermal performance is included in Appendix B. Some representative 

charts will be discussed in the upcoming sections for brevity. Figure 2-19 below shows all data 

for measured thermal diffusivity as a function of torque applied to the Netzsch high 

compression LFA sample holder. The chart legend shows baseline aluminum with bare 60 grit 

surface finish interfaces, as well as selected top performers from the array set. This chart also 

shows some array TIM and baseline data points which extend into the high pressure regime. 

Based on this chart it would appear that a point of total saturation has not yet been reached, if 

it does exist. However, common sense dictates that the incremental gains in thermal diffusivity 

should diminish as the parent material diffusivity value is approached.  

The most important lesson from this chart is that TIMs greatly improve thermal performance at 

torques as light as 1 in-lb. The exact pressure values corresponding to 1 and 2 in-lb of torque are 

unknown, but are assumed to be less than the pressure associated with 3 in-lb of torque (33 psi) 

based on low pressure extrapolation of Netzsch’s compression curve discussed previously. 

Torques beyond 1 in-lb continue to provide increased thermal contact and better TIM 

performance, but the applied pressure quickly elevates beyond maximum design tolerances of 

many commercial interface systems (usually less than 100 psi [63]) after 4 in-lb of torque 

(approximately 75 psi). 
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Figure 2-19 - Diffusivity vs. Increasing Contact Pressure 

To examine the relationship between Thermal Diffusivity and Thermal Contact Resistance in low 

contact pressure systems, Figure 2-20 below shows data from tests conducted at 2 in-lb of 

torque. The same relation found in high contact pressure systems where decreased thermal 

contact resistance results in higher thermal diffusivity values can be seen here. Thermal 

diffusivity values approaching 30 mm2/s are achieved by two of the three graphitized arrays 

tested in this series, with as-produced arrays trailing not too far behind them. This indicates that 

the aligned MWCNT array TIMs are able to bridge the gaps between the 60 grit aluminum 

surfaces more completely than bare interfaces alone. 
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Figure 2-20 - Diffusivity vs. Contact Resistance of 60 Grit Aluminum at 2 in-lb Torque 

2.3.2.1 Effect of MWCNT Thickness on Thermal Performance at Low Contact Pressures 

Figure 2-21 below shows thermal contact resistance vs. MWCNT Thickness in 60 grit aluminum 

systems at 2 in-lb of torque. If this chart were accepted at face value, one could mistakenly 

believe that increased array length leads to lower thermal contact resistance. This is exactly 

opposite of what should happen in a good TIM system.  
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Figure 2-21 - Contact Resistance vs. Array Thickness in 60 Grit Aluminum at 2 in-lb Torque 

Accepting samples 96, 96-2, and 94 as outliers allows the rough trend to fall into line with 

accepted fact. This is illustrated by Figure 2-23 below. These three samples were chosen as 

outliers even though they represent the two thinnest arrays that have been tested. This decision 

was based on post-testing imaging of samples in the cases of array 96 and 96-2, and SEM 

imaging in the case of array 94. Figure 2-22 below contains these images. 

   

Figure 2-22 - Array 96, 96-2, and 94 (from Left to Right) 

Both samples of array 96 had large damaged portions from the rough aluminum surface. This 

led to poor thermal contact and performance, despite low thickness. Also, as shown earlier in 

Figure 2-18, array 96 has an extensive amorphous carbon layer throughout 20% of its total 
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thickness. In the case of array 94, this array exhibited very patchy characteristics on one side 

(left in image), leading to large portions of the array never making complete contact. 

 

Figure 2-23 - Contact Resistance vs. Array Thickness, 60 Grit Al, 2 in-lb Torque (With Outliers) 

2.3.2.2 Effect of Packing Fraction on Thermal Performance at Low Contact Pressures 

Examining volumetric packing fraction at low pressures reveals the same trend that was seen in 

high contact pressure systems. Namely, as packing fraction increases, thermal performance will 

increase. This is shown in Figure 2-25 below as a decrease in thermal contact resistance 

corresponding to increased packing. 

Here again, samples of array 96 are showing up as outliers due to the large amount of array 

which is destroyed during assembly by the 60 grit aluminum surfaces. Array samples 75 and 82 

are two of the better performing “as-produced” MWCNT array TIMs, and appear to be 

“desireable outliers” in this case. They are performing better than many arrays in the lower 

packing fraction range, which can be attributed to their relative surface cleanliness as seen in 

Figure 2-24 below. 
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Figure 2-24 - Surface Cleanliness of Array 75 (left) and Array 82 (right) 

Array 75 and 82 both lack a large, entrained, amorphous carbon layer. Instead, they possess a 

small amount just on the surface alone. It is much easier for nanotubes to work around a small 

layer of the insulating and highly resistive amorphous carbon like those shown here, instead of 

the thick layers present in array 96. 

 

Figure 2-25 - Contact Resistance vs. Packing Fraction in 60 Grit Al at 3 in-lb Torque 
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2.3.2.3 Effect of Areal Density on Thermal Performance at Low Contact Pressures 

The effect of areal density on thermal performance of aligned MWCNT array TIMs is slightly 

more defined at lower contact pressures than it was at high contact pressure. As shown in 

Figure 2-26 below, measured data suggests that increased areal density (i.e. more nanotube 

mass on the substrate slide) leads to decreased thermal contact resistances. 

 

Figure 2-26 - Contact Resistance vs. Areal Density - 60 Grit Al at 4 in-lb Torque 

Initially, this loose trend seems to make sense. However, it is difficult to make solid conclusions 

about the effects of areal density in the case of materials such as carbon nanotube arrays. This is 

because it is difficult to tell whether the increased mass is due to an increase in the packing 

factor (e.g. more short tubes, packed closer together) or an increase in thickness (potentially 

less tubes, occupying less space). Once the remaining factors have discussed, deconvoluting 

these two factors will be attempted. 

2.3.2.4 Effect of Bulk Density on Thermal Performance at Low Contact Pressures 

Considering the relationship between array bulk density at low contact pressures and thermal 

performance yields a very tight group of points. Again, both samples of array 96 are significant 

outliers due to their large amorphous carbon layer and their tendency to be destroyed by the 
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rough substrates. Based on the data, a clear trend exists here indicating that increased bulk 

density leads to lower thermal contact resistances; and results in higher overall thermal 

performance. The data, labeling samples from array 96 as outliers, is presented in Figure 2-27 

below with a linear trend line illustrating the observed trend. Additionally, as with the areal 

density results, these results must also be carefully considered due to the interplay between 

bulk density, thickness, and packing factor, which will be addressed shortly. 

 

Figure 2-27 - Contact Resistance vs. Bulk Density - 60 Grit Al at 4 in-lb Torque 

2.3.2.5 Effect of Array Cleanliness on Thermal Performance at Low Contact Pressures 

The idea of array cleanliness is difficult to measure quantitatively. No real trend was seen from 

the high contact pressure measurements, and that result persists in the low contact pressure 

regime as well. When studying array cleanliness as amorphous carbon mass removed by vacuum 

cleaning, array 96’s low thermal performance gives the false impression of a trend. This false 

trend seems to indicate that less mass removed from an array indicates cleaner surfaces prior to 

vacuuming and better thermal performance. While that idea in itself is logical, one must assume 

that amorphous carbon exists only on the surfaces of arrays. SEM images of Array 96 presented 

earlier clearly show this is not a valid assumption, which invalidate the trend.  
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Figure 2-28 - Contact Resistance vs. % Array Mass Removed - 60 Grit Al at 3 in-lb Torque. 

2.3.2.6 Low Contact Pressure LFA Results Conclusion 

As discussed in the preceding sections, similar trends were seen in both the high contact 

pressure and low contact pressure aluminum studies. The strongest trends were seen relating 

thermal performance to bulk density, packing fraction, and MWCNT array thickness. In these 

systems, the introduction of a 60-grit surface finish substrate helped provide greater contrast 

between baseline and MWCNT TIM results at low contact pressures. This data provides more 

confidence in the observed trends. Furthermore, it proves MWCNT array TIM performance over 

a range of contact pressures more in conformance with commercially and technically realistic 

assembly pressures. 

2.4 Discussion 

When examining the thermal response of stacked aluminum systems with aligned MWCNT array 

TIMs, the most prominent thermal performance trends appeared when examining bulk density, 

packing fraction, and array thickness. These three features are interconnected in a material such 

as a carbon nanotube array, as shown in Figure 2-29 below. 
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Figure 2-29 - SEM Image of Array 78's Side Profile 

The majority of volume inside of a carbon nanotube array is filled by air. The implications of this 

are counterintuitive for those unfamiliar with these materials. Generally, an aligned MWCNT 

array is comprised of more than 80% air. This means increases in an array’s length must lead to 

a decrease in the overall packing fraction of the material with increased volume, and thus 

decreases its overall bulk density. This conflicts with macro-scale understandings of density, 

where increasing the volume of a solid generally incurs a corresponding increase in mass and 

renders no change in the bulk density. 

 To better understand this, consider a grass analogy for carbon nanotube arrays. At the roots of 

the grass, all the plants (carbon nanotubes) are closely packed and highly aligned. As each plant 

becomes taller, it loses some of its aligned nature, and the top of the patch spreads out from an 

initial aligned state, leading to decreased packing fraction with increased height. 

 

Figure 2-30 - Grass analogy for aligned carbon nanotube arrays 

Low Thickness, Close Packing Decreased Packing with 
Increased Height
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Figure 2-31 - Measured MWCNT Bulk Density vs. Array Thickness 

Figure 2-31 shows that decreased array thickness correlates with increased bulk density. 

 

 

Figure 2-32 - MWCNT Packing Fraction vs. Array Thickness 
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Again, the same type of trend can be seen correlating packing fraction and array thickness. As 

thickness decreases, the overall packing fraction increases. Now two trends exist which indicate 

thinner arrays should be denser and more tightly packed. Assuming perfect arrays with little 

amorphous carbon content are tested, a denser/tightly packed array means more nanotube tips 

per area, which should exhibit better thermal performance as an array TIM. 

Areal density is the only array property which can be measured prior to harvesting and 

committing materials and time to their processing. A relationship between areal density and 

array thickness is presented below in Figure 2-33. 

 

Figure 2-33 - Calculated MWCNT Areal Density vs. Array Thickness 

A logical correlation exists between areal density and array thickness. As thickness decreases, 

there is less overall nanotube mass on the slide and hence, lower areal density. An important 

correlation also exists between the measured array mass on the slide and thermal diffusivity. 

This correlation is presented as mass on the slide vs. thermal diffusivity in Figure 2-34 and as the 

more general areal density vs. thermal diffusivity in Figure 2-35. 
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Figure 2-34 – Thermal Diffusivity vs. MWCNT Mass on Slide – Mill Aluminum at 133.4 psi 

 

 

Figure 2-35 - Thermal Diffusivity vs. MWCNT Areal Density - Mill Aluminum at 133.4 psi 
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Excluding the four outliers, (arrays 94, 96, 97, and 101), reveals a strong and important trend 

correlating less mass on the slide to increased thermal diffusivity. This trend indicates which 

MWCNT arrays may be best suited for TIM use before any work is done to characterize them. 

 It is appropriate to discount the four arrays marked as outliers for differing reasons. Arrays 96 

and 94 are the two thinnest arrays of those tested, but array 96 possesses an extensive layer of 

entrained amorphous carbon, which chokes its thermal performance as seen in Figure 2-18. 

Array 94 also possesses an extensive layer of amorphous carbon, but has the additional 

disadvantage of being patchy, where some nanotube tips do not extend across the interface, as 

shown in Figure 2-22. Array 97 was of medium thickness, but was choked by a layer of cracking 

amorphous carbon on its surface, seen in Figure 2-36 below. Despite some array curling, array 

101 possesses the aligned nature of a top performer as seen in Figure 2-37 below, but is much 

thicker at 152 micron. It yielded the lowest packing fraction of all arrays tested at 5.99% and has 

the lowest bulk density to match at 0.119 g/cm3. These indicate a large amount of air is trapped 

in this array, and a much lower ratio of conductive carbon nanotube paths is present. 

 

Figure 2-36 - Cracked Amorphous Carbon Layer on Array 97 Surface 
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Figure 2-37 - Thickness Profile of Array 101 

The top performing array, array 78, is an excellent example of what is desired in a TIM-grade 

array. It is relatively thin at 54.6 micron, has the highest packing fraction and second highest 

bulk density of all tested arrays at 16.05% and 0.311 g/cm3 (respectively), and is relatively clean 

as shown in the SEM image in Figure 2-38  below. 

 

Figure 2-38 - SEM Image, Side Profile of Array 78 

While there is a thin layer of amorphous carbon visible on the surface of array 78, it is more 

important to notice that there is no layer of amorphous carbon embedded in the array’s 

thickness. This allows the array to maintain close packing and a high degree of nanotube 

alignment. 
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2.5 Conclusion 

At the beginning of this chapter, the stated hypothesis asserted the best performing array TIMs 

were expected to be thin, to possess high bulk and/or areal densities, to have high volumetric 

packing fractions, and to be free from amorphous carbon deposits. Based on the work 

presented in this chapter, it is concluded that the aligned MWCNT arrays best suited for duty as 

a thermal interface material do possess low thicknesses, high bulk densities and volumetric 

packing fractions, low masses on the slide, and low levels of amorphous carbon. It is difficult to 

discern which arrays actually possess these traits based on simple mass measurement. However, 

data suggests that clean arrays with low areal densities should perform better as a thermal 

interface material. Additionally, lower bound limits to the trends of low thickness/low areal 

density providing increased thermal performance must exist, as TIMs must be thick enough to 

effectively bridge the gaps of a stacked interfacial system. This result can be used in future work 

to decide which arrays stand the best chance of being exceptional TIM materials.  
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Chapter 3 Multiwall Carbon Nanotube Arrays as a TIM in Carbon Fiber Composite Systems 

3.1 Introduction 

In the following work, the effectiveness of aligned MWCNT array TIMs in stacked two layer 

carbon fiber LFA systems is investigated. The use of carbon fiber in engineered products 

continues to rise, and with this rise comes the increased chance of a thermal interface having at 

least one carbon fiber substrate. The focus of this chapter is to examine the effects of contact 

pressure and array properties on their performance as TIMs in an all carbon fiber composite 

interface. Based on the results found in Chapter 2, it is hypothesized that aligned MWCNT array 

TIMs with clean surfaces, high bulk density, high packing fraction, and low thickness will provide 

the best improvements in thermal performance in carbon fiber interfacial systems. 

3.2 Experimental 

The LFA substrates used in this chapter are carbon fiber reinforced composite materials, 

produced in-house with contemporary vacuum bagging and autoclave curing techniques. They 

are unidirectional (0°) composites, made to 6-ply thickness from aerospace grade carbon fiber 

prepreg. The composite material was hand laid according to the standard layup diagram used at 

CAER, shown in Figure 3-1 below. 

 

Figure 3-1 – Standard Vacuum Bagging Schematic used at CAER 
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While all the layers of material used in the vacuum bagging process are important and serve 

vital roles, the layers of “peel ply” material surrounding the carbon fiber test panel have the 

most dramatic impact on thermal interfaces. This material is a woven fabric placed on the top 

and bottom of the composite panel to soak up excess epoxy which is pressed out of the panel 

under autoclave pressures. As a side effect, the material imparts a uniform surface finish when 

the fabric is pressed into the top and bottom layer of the prepreg tape. Once the fabric is soaked 

with epoxy, it appears to bond with the panel, requiring it to be peeled off (hence, the name). 

On the macro scale, the imparted surface finish is matte with a smooth texture. Issues appear 

on the micro scale, as demonstrated by the optical microscopy image in Figure 3-2 below. 

      

Figure 3-2 - 10x, 20x (Left, Right) Images of 6-ply Composites with Peel Ply Finish 

The peel ply fabric leaves a pattern on the top and bottom surfaces of the composite. Not only 

does a large pattern like a serrated edge appear, but individual fibers from the larger woven 

bundle leave their own small serrated edge patterns in the valleys between the larger peaks. To 

complete the description of this surface pattern, it must be recalled that the peel ply fabric is a 

two dimensional weave. This means that this serrated edge pattern is really a sequence of peaks 

and valleys in two directions. A surface pattern such as this could potentially have many more 

“point contact” locations than a machined surface with a regular tool mark pattern. As a 

consequence of these challenging surface features, an array TIM may actually need to be thicker 

than desired in order to effectively bridge the gaps created by these peaks. 
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In addition to physical challenges presented by the peel ply surfaces, more challenges arise 

when testing these materials with the Netzsch LFA 427 and its programmed modeling software. 

Recalling the boundary conditions of the LFA method from section 2.2.3, heat flow is assumed to 

be one dimensional. In order to meet the requirements of this assumption, sample thickness 

should be sufficiently low and anisotropy must be considered. By definition, a composite 

material is made of two or more different materials, and therefore has the potential to be 

significantly anisotropic. 

To establish an idea of how anisotropy affects thermal properties in carbon fiber composites, 

consider the following from ASM Handbook Volume 21: Composites. An IM7/epoxy composite 

with (±30/0) construction has 5 W/mK, 1.2 W/mK, and 0.6 W/mK conductivities in the 

longitudinal, transverse, and through-thickness directions (respectively) [64]. This indicates that 

the composite is predominantly conducting heat along the fiber axes, and that heat is avoiding 

the highly resistive conduction paths through the epoxy matrix. This is visually explained in 

Figure 3-3 below, where the yellow represents epoxy matrix, the black represents carbon fibers, 

and red vectors indicate heat flow propensity (larger arrows mean more heat flow). 

 

Figure 3-3 - Diagram of Heat Conduction Preferences in Carbon Fiber Composites 

With these challenges in mind, testing was conducted in a similar fashion to the aluminum LFA 

systems of Chapter 2. Initially, it was assumed that having peel ply surfaces stacked together at 

the sample interface would present problems during LFA testing, so a sanded interface system 

was created as a potential countermeasure. This interface was constructed by wet sanding one 
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side of each "as-produced" carbon fiber piece from the LFA substrate set with 500 grit SiC paper. 

This also set a similar testing stage to the mill and mirror finish stacked aluminum pieces from 

the previous chapter. High contact pressure testing was conducted for peel ply and sanded 

sandwich interfaces at assembly torques of 60 cNm, 100 cNm, and 140 cNm (133.4 psi, 290 psi, 

and 447 psi, respectively). This was followed by low contact pressure testing for both stacked 

interface styles at assembly torques of 0 in-lb, 1 in-lb, 2 in-lb, 3 in-lb, and 4 in-lb to monitor TIM 

effectiveness at interface pressures similar to those used in the electronics industry[63]. Initial 

plans were to conduct “one layer” stack testing for effective thermal diffusivity and “two layer” 

stack testing for thermal contact resistance across the interface.  

Upon analyzing the first few two layer tests, it was found that no reliable measurements could 

be established for thermal contact resistance. The exact cause of the problem remains unclear, 

although it is suspected that violations of the underlying model assumptions are the culprit. To 

remedy this situation, an excel-based iterative calculation method similar to the automated 

calculations of the LFA software has been developed. Reverse-engineering revealed the 

algorithm was designed to calculate thermal contact resistance when given substrate properties 

and an effective one layer diffusivity, and was based on the data reduction methods of J.N. 

Sweet [56]. This was later confirmed by the original programmer from the software vendor.  

This method still relies on the one dimensional heat flow assumption which is likely violated by 

the carbon fiber material, but it at least returned realistic values for thermal contact resistance. 

As an accuracy check, over 100 thermal contact resistance values for aluminum systems were 

calculated and compared to the original thermal contact resistance values calculated by the LFA 

software. The excel-based calculation overestimated the thermal contact resistance values, 

averaging 15% error, which is acceptable for a purely mathematical approximation. The values 

of thermal contact resistance listed in this chapter have been calculated from this excel sheet 

(unless otherwise noted) and are presented as a method of inter-sample comparison, not as 

scientific certainty. 

3.2.1 High Contact Pressure LFA Results 

High contact pressure LFA testing was conducted in the same Netzsch sample holder as the 

aluminum tests of Chapter 2. TIM physical properties and a complete listing of data used in the 

charts from this section can be seen in Appendix C, at the end of this work. 
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Figure 3-4 below shows the general range of diffusivities encountered in carbon fiber composite 

systems, even under high compression. It is important to note that the diffusivity of the carbon 

fiber material itself is barely above 0.65 mm2/s. This indicates just how resistant this material is 

to through-thickness thermal transport. 

 

Figure 3-4 - Diffusivity vs. Contact Resistance of Peel Ply Systems at High Pressures 

The baseline contact resistance data in Figure 3-4 was calculated by the Netzsch software, and is 

presented with appropriate standard deviations, as reported by the program. This plot 

illustrates some of the difficulties encountered when trying to measure contact resistance with 

any degree of reliability. Neglecting the baseline data for a moment reveals an important 

feature of the carbon fiber systems, as shown in Figure 3-5 below. 
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Figure 3-5 - Diffusivity vs. Contact Resistance of Peel Ply Carbon Fiber without Baseline Data 

The range of effective diffusivities that can be seen from this graph is very small, from 

approximately 0.5 mm2/s to 0.65 mm2/s. The thermal performance of arrays in carbon fiber 

systems is independent of contact pressure, as evidenced by the mixing of series throughout the 

range of diffusivities. The highly linear nature of each series is an artifact of the iterative 

calculation method used to estimate contact resistances for this material set. This idea of 

pressure independent thermal performance will be checked for consistency in a later segment 

of this chapter. 

Examining the general thermal performance seen in sanded interface systems reveals even 

more troublesome findings. Take for example, the thermal performance of array TIMs in sanded 

interface systems at extreme pressures as shown in figure below. 
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Figure 3-6 - Diffusivity vs. Contact Resistance of Sanded Interface Systems at 140 cNm 

There are several noteworthy elements in the figure above. First, it should not be possible for a 

thermal interface material to improve the effective diffusivity of two identical, stacked materials 

beyond that of a single material piece. However, this is what has been reported by the LFA 427 

with the Cape-Lehman diffusivity model. Secondly, the baseline material reports incredibly low 

contact resistance values, yet all array TIMs show improved thermal diffusivity with higher 

contact resistances. Within the array TIM data set (separate from the baseline data) the trend of 

increased diffusivity with decreased contact resistance is maintained. This could potentially be 

explained by the smooth surface finish from the sanding allowing a large amount of the 

constituent carbon fibers to make direct contact across the interface. This would facilitate an 

even larger longitudinal conductivity at the interface, which would result in extreme radial heat 

losses and force a smaller measured diffusivity to be reported. A comparison of heat rise curves 

for the sanded interface baseline system confirms difficulties in accurately measuring contact 

resistance, as shown in Figure 3-7 below. 
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Figure 3-7 - Heat Rise Curves from LFA 427 for Sanded Interface Baseline Measurements 

The measured heat rise curve (blue line) for the one layer sanded interface baseline matches the 

red model curve perfectly. This indicates good agreement with the thermal diffusivity model 

being applied. The bottom image shows the result of running a two layer test on a sanded 

interface system. The discrepancy between the blue measurement curve and the red model 

curve shows that no correction for radial heat losses could be made, and that the calculated 

value will not match the underlying theory. 

Because of the difficulties encountered measuring accurate values from sanded interface 

systems, the data discussed from this point forward will tend to focus on the more realistic peel 

ply interface. Unlike the sanded interface system, this interface consistently followed the model 

curve for its one layer and two layer tests, although it still reported unacceptable standard 

deviations in thermal contact resistance. 

3.2.1.1 Effect of MWCNT Thickness on Thermal Performance 

Through calculating contact resistance values, a range of potential thermal performance has 

been established for peel ply carbon fiber interfaces. It is clear this material is highly resistant to 

thermal transport through its thickness before any extra interfacial resistance is considered. A 

reasonable assumption is that array thickness could play an important role in achieving the best 

possible thermal performance. This idea is investigated in Figure 3-8 below. 
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Figure 3-8 - Diffusivity vs. Array Thickness in Peel Ply Systems at 60 cNm 

As shown above, arrays which are thicker than 100 micron provide the least hindrance to the 

overall thermal performance. Array 96 and 78 are two of the thinner arrays which were 

considered in the carbon fiber systems, as well as the aluminum systems of the previous 

chapter. In the aluminum systems array 96 returned poor thermal results because of its 

expansive layer of amorphous carbon, but array 78 was a top performing array. It is possible 

that array 78 is actually too thin to effectively bridge the large gaps created by the peel ply 

surface. However, this does not explain the apparent performance similarities between other 

prior top performers like array 84 and large thickness arrays like array 95. Considering the 

trends presented in chapter 2, it is counterintuitive that two array TIMs of vastly different 

thickness should provide essentially equivalent thermal performance. Figure 3-8 indicates that 

MWCNT array thickness is not the deciding factor in MWCNT array TIM performance. So long as 

the array is long enough to effectively bridge the gaps produced by joining peel ply surfaces, 

thermal performance results are nearly identical. This appears to happen at array thicknesses of 

100 micron and longer. 
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3.2.1.2 Effect of Packing Fraction on Thermal Performance 

Recalling the conclusions of the previous chapter, it was found that a higher packing fraction 

tended toward increased thermal performance. Figure 3-9 below investigates the effect of 

packing fraction on thermal performance in peel ply carbon fiber interfaces. 

 

Figure 3-9 - Diffusivity vs. MWCNT Packing Fraction - Peel Ply Systems at 60 cNm 

As can be seen above, no real relationship exists between packing fraction and increased 

thermal performance in peel ply carbon fiber systems at high contact pressures. Array 78 was 

previously seen as a top performer, but now it returns lower diffusivity values despite having the 

highest packing fraction of those arrays tested in carbon fiber systems. This seems to refute the 

trend presented earlier, although with no appreciable differences in thermal performance 

across various packing fractions, not much is said about a relationship between performance 

and packing fraction in carbon fiber systems either. It is still possible that array 78 was too thin 

to effectively bridge the gaps between the substrates. Previously, it was determined that 

MWCNT array thickness was not an important factor, so long as the arrays could effectively 

bridge the gap. Here, packing fraction is showing a similar result when recalling that arrays 78 

and 96 were likely too thin to effectively bridge the peel ply gap. Based on the longer arrays, 

packing fraction appears to have no effect on thermal performance in carbon fiber systems.  
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3.2.1.3 Effect of Areal Density on Thermal Performance 

Previously, it was determined that lower areal density (and its readily measured sibling, array 

mass on the slide) would generally lead to increased thermal performance in aluminum based 

interface systems. Figure 3-10 below details thermal performance as a function of areal density 

for carbon fiber based interface systems. 

 

Figure 3-10 - Diffusivity vs. Areal Density of Peel Ply interfaces at 60 cNm 

As shown in the figure above, no real trend exists between areal density and array performance 

in carbon fiber interfaces at high pressures. The chart only suggests that thermal performance is 

increased through use of an aligned MWCNT array TIM. It does not provide evidence to make 

distinctions between array performances due to their mass (and thereby implied density or 

height). Figure 3-11 below shows thermal performance as a function of areal density in sanded 

interface carbon fiber systems. 
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Figure 3-11 - Diffusivity vs. Areal Density of Sanded Carbon Fiber Interfaces at 60 cNm 

As shown above, the thermal performance of an array TIM in a sanded interface system is 

largely independent of areal density. Only modest thermal gains are achieved by most arrays at 

high contact pressures. 

3.2.1.4 Effect of Bulk Density on Thermal Performance 

It was previously concluded in Chapter 2 that an array TIM with high bulk density was desirable 

for improved thermal performance in aluminum based interface systems. Figure 3-12 below 

examines peel ply carbon fiber interface systems to search for similar trends. 
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Figure 3-12 - Diffusivity vs. Bulk Density of Peel Ply Systems at 60 cNm 

It would seem that the trend established in the previous chapter does not apply to carbon fiber 

systems. Array 78 was a top performer in those trials, yet it returns the worst performance of all 

arrays tested here. This chart continues to show array TIM performance yielding an almost 

constant value regardless of variance in properties. Next, the effect of bulk density on array TIM 

performance in sanded interface systems is examined in Figure 3-13, below. 
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Figure 3-13 - Diffusivity vs. Bulk Density in Sanded Interface Systems at 60 cNm 

The effect of bulk density on array TIM thermal performance is even less pronounced in sanded 

interface carbon fiber systems than it was in peel ply systems. Consistent mild performance 

increases across the board show no relationship between thermal performance and increasing 

bulk density in sanded carbon fiber interface systems. 

3.2.1.5 Effect of Array Cleanliness on Thermal Performance 

Previously, it was determined that array cleanliness is paramount when using aligned MWCNT 

arrays as TIMs. It was also determined that there was not a well established method of 

quantifying array cleanliness. Instead, qualitative visual judgment of array cleanliness via SEM 

imaging was used as the de facto standard for establishing whether one array was cleaner than 

another. This method continues to be used in carbon fiber interface systems, although the 

measured mass loss after vacuum cleaning is still investigated for potential results as shown in 

Figure 3-14 below. 
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Figure 3-14 - Diffusivity vs. % Array Mass Removed in Peel Ply Systems at 60 cNm 

As the chart shows, there is little to suggest measuring the mass loss of an array after vacuum 

cleaning /prior to harvesting is an effective method for predicting thermal performance of 

aligned MWCNT array TIMs. Figure 3-15 below shows similar results for the sanded interface 

systems at high pressures. 
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Figure 3-15 - Diffusivity vs. % Array Mass Removed in Sanded Interface Systems at 60 cNm 

As can be seen above, the amount of array mass removed by vacuum cleaning prior to 

harvesting has little effect on the thermal performance of the array in a TIM situation. 

3.2.1.6 High Contact Pressure LFA Results Conclusion 

Throughout section 3.2.1 the effect of various array properties on their thermal performance in 

carbon fiber interface systems at high pressure has been presented. A discussion of the material 

construction and testing assumptions revealed possible ways that carbon fiber composites 

behave outside the parameters expected in an LFA substrate material. Up to this point, it 

appears that the properties of the arrays themselves have little effect on the overall thermal 

performance of a carbon fiber interface system with a TIM. These results suggest that the 

anisotropic thermal properties of carbon fiber composites need to be addressed before the 

benefits of a TIM can be leveraged in these systems. 

3.2.2 Low Contact Pressure LFA Results 

Low contact pressure tests were conducted in the same manner as the low pressure aluminum 

substrate tests of section 2.3.2. TIM physical properties and a complete listing of data used in 

the charts from this section can be seen in Appendix D, at the end of this work.  
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Figure 3-16 and Figure 3-17 detail peel ply and sanded system results at low contact pressures. 

 

Figure 3-16 – Diffusivity vs. Contact Resistance for Peel Ply Interfaces at Low Pressures 

 

 

Figure 3-17 - Diffusivity vs. Contact Resistance for Sanded Interfaces at Low Pressures 
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One of the more interesting things to note from these plots is the exponential behavior of the 

data. Previously, the data had been seen on a shorter scale, causing it to appear linearly. This 

exponential behavior is logical, as contact resistance should increase toward infinity as 

diffusivity approaches zero. Also of interest is the relatively large increase in diffusivity achieved 

at minimal contact pressures. This gain is evidenced by Figure 3-18 below. 

 

Figure 3-18 - Diffusivity vs. Applied Torque in Peel Ply Systems at Low Pressures 

 This figure indicates that thermal performance gains are realized as soon as intimate thermal 

contact is established (between 0 and 1 in-lb of torque). Beyond this initial performance jump, a 

diminishing returns situation arises, and results in more torque exerted with minimal thermal 

gains as a result. In terms of overall measured diffusivities, the carbon fiber material still limits 

any realistic measure of diffusivity to approximately 0.65 mm2/s and below. 

3.2.2.1 Effect of MWCNT Thickness on Thermal Performance 

Previously it was determined that arrays with low thicknesses had a significantly better 

performance as a TIM in aluminum substrate interface systems. Figure 3-19 and Figure 3-20 

below explore the effect of thickness on array TIM performance in low pressure carbon fiber 

substrate systems. 
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Figure 3-19 - Diffusivity vs. MWCNT Array Thickness in Peel Ply Systems at 1 in-lb 

 

Figure 3-20 - Diffusivity vs. MWCNT Array Thickness in Sanded Systems at 1 in-lb 
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As can be seen in the figures above, aligned MWCNT array thickness seems to have no real 

effect on the overall thermal performance of carbon fiber systems with any interface style. 

3.2.2.2 Effect of Packing Fraction on Thermal Performance 

In the preceding chapter it was found that a high volumetric packing fraction was associated 

with excellent thermal performance of a TIM system with aluminum substrates. Figure 3-21 and 

Figure 3-22 below explore the effect of packing fraction on the thermal performance of array 

TIM systems in carbon fiber substrates under low contact pressures. 

 

Figure 3-21 - Diffusivity vs. Packing Fraction in Peel Ply Systems at 1 in-lb 
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Figure 3-22 - Diffusivity vs. Packing Fraction in Sanded Systems at 1 in-lb 

As shown above, the pattern previously found relating increasing packing fraction with 

increasing thermal performance is not seen in carbon fiber systems.  

3.2.2.3 Effect of Areal Density on Thermal Performance 

It was previously found that areal density of an aligned MWCNT array TIM had no measureable 

performance on the thermal performance of interface systems using those arrays as TIMS. This 

was due to the convolution of areal density with the bulk density, packing fraction, and array 

thickness. Figure 3-23 and Figure 3-24 below the effect of areal density in carbon fiber interface 

systems using aligned MWCNT array TIMs. 
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Figure 3-23 - Diffusivity vs. Array Areal Density in Peel Ply Systems at 1 in-lb 

 

Figure 3-24 - Diffusivity vs. Array Areal Density in Sanded Systems at 1 in-lb 
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As can be seen above, there is also no discernible effect on the thermal performance attributed 

to the array TIM areal density in carbon fiber interface systems. 

3.2.2.4 Effect of Bulk Density on Thermal Performance 

In aluminum systems, high bulk density was found to be a desirable trait in an aligned MWCNT 

array TIM when excellent thermal performance was required. Figure 3-25 and Figure 3-26 below 

explore the effect of bulk density on TIM performance in carbon fiber interface systems. 

 

Figure 3-25 - Diffusivity vs. Bulk Density in Peel Ply Systems at 1 in-lb 
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Figure 3-26 - Diffusivity vs. Bulk Density in Sanded Systems at 1 in-lb 

As can be seen above, the effect of bulk density on aligned MWCNT array TIM performance does 

not present itself in carbon fiber systems as well. 

3.2.2.5 Effect of Array cleanliness of Thermal Performance 

It is well understood at this time that a clean array is of the utmost importance to a successful 

and effective TIM material. Figure 3-27 and Figure 3-28 below explore the thermal performance 

of aligned MWCNT array TIMs in carbon fiber systems at low pressures. A relationship between 

array mass removed by vacuum cleaning and thermal performance is sought. 
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Figure 3-27 - Diffusivity vs. Array Weight Removed in Peel Ply Systems at 1 in-lb 

 

Figure 3-28 - Diffusivity vs. Array Weight Removed in Sanded Systems at 1 in-lb 



92 
 

As expected based on results for aluminum substrates at high and low contact pressures, and 

carbon fiber substrates at high contact pressures, there is minimal effect seen when comparing 

thermal performance to mass removed from an array by vacuum cleaning. 

3.2.2.6 Low Contact Pressure LFA Results Conclusion 

Throughout section 3.2.2 the effect of various array properties on their thermal performance in 

carbon fiber interface systems at low contact pressures has been presented. It was discovered 

that performance benefits of TIMs are seen at very low contact pressures ( <30 psi). Beyond the 

initial jump in thermal performance, a diminishing returns situation exists where increasing 

contact pressure yields little or no further thermal performance benefits. As was found in higher 

pressure testing, array properties seem to have little effect on the overall thermal performance 

of carbon fiber array TIM systems. 

3.3 Discussion 

The results of this chapter indicate that through thickness heat transfer in stacked carbon fiber 

interface systems is not affected by the choice or suitability of a TIM material. So long as a TIM 

exists between two pieces of carbon fiber, a small gain in thermal performance will be seen at 

modest contact pressures (<30 psi). This shows that thermal transport in carbon fiber 

composites is not dominated by limitations of interfacial thermal contact, but rather by the 

thermal transport capabilities of the material itself. These findings are not thought to discredit 

the trends presented in Chapter 2. Rather, they are convoluted by the thermal capabilities of the 

carbon fiber substrate material itself and reveal the limitations of the Netzsch LFA 427 

instrument. 

As was discussed prior to presentation of high contact pressure carbon fiber LFA results, the 

carbon fiber material itself is a nonstandard substrate material. The LFA’s thermal models rely 

on a 1-D heat transfer assumption which is only guaranteed by prudent material choices. These 

materials should be sufficiently homogenous (i.e. isotropic) and thin. The nominal thickness of 

the 6-ply carbon fiber composite material used was 1 mm, which is sufficiently thin to assume a 

one dimensional heat flow. The problems arise when considering the highly anisotropic heat 

conduction known to exist in carbon fiber composites, as diagrammed in Figure 3-3. In general, 
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the thermal models used in the LFA are not mathematically equipped to deal with these kinds of 

preferential heat flows.  

In the case of the carbon fiber substrates, measured through thickness diffusivities are 

exceedingly low (<1 mm2/s). In light of the preferential heat conduction displayed by carbon 

fiber composites, these measurements might still be appropriate.  The same preferential heat 

paths will exist anywhere this material is used in a real world application, so assuming that heat 

will only travel through the thickness of the composite material is an unrealistic expectation. 

This does complicate the evaluation of materials as TIMs, such as aligned MWCNT arrays. Having 

only a small portion of the flashed laser energy distribute through the substrate set as intended 

(and the subsequent “late-arriving” contributions from the heat spreading first along the fiber 

axes, then up through the thickness) disturbs proper two layer measurements, leading to 

inconsistent measurements of thermal contact resistance.  

3.4 Conclusion 

At the beginning of this chapter, it was hypothesized that aligned MWCNT array TIMs with clean 

surfaces, high bulk density, high packing fraction, and low thickness will provide the best 

improvements in thermal performance in stacked carbon fiber interfacial systems. Through 

testing of array TIMs in two easily achievable carbon fiber composite substrate surface finishes 

and an extensive range of contact pressures, it was found that array properties have little to no 

effect on the thermal performance of the interfacial systems. Instead, it is concluded that the 

majority of challenges to thermal transport in these materials lie in the constituent material 

properties, rather than limitations of thermal transport across the interface. It is also suggested 

that future composites work should focus on ways to decrease the anisotropy found in carbon 

fiber composites. Increasing the through thickness thermal transport properties of the substrate 

materials will allow for more accurate thermal characterization of future aligned MWCNT array 

interface materials. 
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Chapter 4 Techniques Developed to Purify and Improve the Use of MWCNTs as TIMs 

4.1 Introduction 

Throughout Chapters 2 and 3, the use of as-produced, aligned MWCNTs as thermal interface 

materials has been discussed in aluminum and carbon fiber systems under varying interface 

conditions. Now methods of improving and/or purifying the MWCNT arrays to help them meet 

their full potential as TIMS will be discussed. Potential methods to be discussed include surface 

etching and nanotube height tailoring using radio frequency O2 plasma oven processing and 

array annealing in a high temperature graphitization furnace. 

4.2 Experimental  

When harvesting an aligned MWCNT array from its quartz substrate, amorphous carbon 

deposits on top of the growth surface always exist. This layer is a byproduct of the CVD synthesis 

process used to produce the nanotubes, and is a function of several variables including synthesis 

temperature, catalyst/hydrocarbon ratio and furnace residence time. The synthesis process 

utilized by the Center for Applied Energy Research is continually optimized for maximum 

nanotube output, with minimum amorphous carbon deposits. 

The layer of amorphous carbon is undesirable because it lacks an ordered, graphitic structure. It 

possesses an intrinsically low thermal conductivity of 0.2 W/mk [65], and excels at separating 

conductive MWCNT tips from interface substrates. This ruins any chance of aligned nanotube 

arrays making good thermal contact between surfaces, and can actually make the interfacial 

thermal contact resistance between two surfaces worse than if no TIM were used at all. An 

image of the top and bottom sides of an aligned MWCNT array is shown in Figure 4-1 below. The 

layer of amorphous carbon is clearly visible on one side of the array, while exposed nanotube 

tips are unhindered on the other. Figure 4-2 shows an aligned MWCNT in a clamped substrate 

system under ~130 psi assembly pressure. In this image, amorphous carbon is hindering good 

thermal contact between the MWCNT array and the substrate below it. 
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Figure 4-1 - SEM Image showing amorphous carbon deposits on an aligned MWCNT array 

 

 

Figure 4-2 - Amorphous carbon blocking MWCNT tips from contacting a substrate 

4.2.1  O2 Plasma-Based Cleaning of MWNCT Arrays 

The use of plasma cleaning systems to expose or augment the tips of aligned MWCNT arrays has 

been documented by others prior to these experiments [66, 67] .  During this process, the 

sample is placed in a sealed chamber and the atmosphere is replaced with pure oxygen under 

constant venting. A variable power radio frequency generator is engaged, energizing the oxygen 
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to create plasma. The excited oxygen reacts with the sample surface at the molecular level, 

etching away oxidized molecules. These molecules are removed through the venting process.  

It is hypothesized that O2 plasma etching can remove the layer of amorphous carbon which 

covers the aligned MWCNT array tips. This method presents an economical, environmentally 

friendly[67] approach to purifying MWCNT surfaces, with potential to tailor the thickness of the 

array, producing a custom TIM for any interface. One of the goals of this experiment is to 

develop a recipe for cleaning nanotube arrays and tailoring their thicknesses. 

The work of Felten, et al. suggests power levels and residence times in excess of 50 Watts for 10 

minutes to chemically etch the surface of nanotubes, while Hinds, et al. suggested 2.5 W/cm2 

power settings for 7 minutes under 600 millitorr H2O plasma to open nanotube tips. For this 

study, a TePla M4L RF Plasma Oven was used. 

 

Figure 4-3 - TePla M4L RF Plasma Oven 

 Based on these suggestions and prior experience with the M4L Plasma Oven, an oxygen flow of 

500 standard cubic centimeters per minute (sccm) was selected to maintain chamber pressures 

near 2000 millitorr. Power levels ranging from 50 Watts up to the maximum 600 Watts were 

tested, at successive residence times of 5, 15, 30, and 60 minutes. An acrylic sample frame was 

constructed to hold the array in place without providing extra metallic surfaces for the plasma 

to oxidize. 
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Array 97 was chosen as the test subject due to its representative thickness of ~100 μm and its 

extensive coating of amorphous carbon. These characteristics are shown in Figure 4-4 below. 

   

Figure 4-4 - Array 97 Thickness and Surface SEM Images 

The images of array 97 show a dense layer of amorphous carbon entrained in the top extent of 

the array. This layer is blocking a large majority of nanotube tips from making good thermal 

contact between the interface substrates. 

Testing the extremes of the experimental conditions revealed interesting outcomes. On the low 

end of power at 50 Watts, very little change was detected using SEM after 60 minutes of 

residence time. SEM images of baseline vs. etched thickness are shown in Figure 4-5 below. 

     

Figure 4-5 - SEM images of Array 97 Baseline (Left) vs. Etched at 50 W for 60 min (Right) 

The baseline images for each power setting are of array samples within close proximity to the 

exposed nanotube surface, to ensure a proper comparative sample. As can be seen in the 

images above, after 60 minutes of residence time at 50 Watts there is no change in the overall 
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thickness of the sample. Building on these results, a maximum power test was conducted to see 

if any array height change was possible. A new sample was exposed to 600 Watts of RF power 

for 60 minutes. Digital camera images in Figure 4-6 below begin to describe the results. 

     

Figure 4-6 - Before and After Images of Array 97 Exposed to 600 W O2 Plasma for 60 Min 

As the images show, the array sample is completely obliterated after one hour at full power. 

Small sample pieces of array were found on the sample tray after the test and were collected for 

SEM imaging. Thickness and surface images are shown in Figure 4-7 below. Image A shows the 

average thickness of baseline array 97 from the sample set to be around 130 micron. Image B 

shows the average thickness of array 97 after etching at 600 Watts for 60 minutes to still be 

around 130 micron. Image C shows the surface of array 97 post-etching at 1000x magnification. 

Image D shows the surface of array 97 post-etching at 5000x magnification. 
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Figure 4-7 - Thickness/surface comparisons of Array 97 after 600W O2 plasma for 60 minutes 

As images A and B show, even after 60 minutes of full power plasma etching there is no 

difference in thickness. Images C and D prove that amorphous carbon still persists on the 

surface of the array, even after violent plasma processing. After the sample was removed from 

the oven, it was noticed that a slight bronze coloration was present on the surface of the array 

which had been exposed to plasma. An image of this change can be seen in Figure 4-8 below. 

 

Figure 4-8 - Bronze coloration seen on MWCNT arrays after extreme O2 plasma etching 

A B 

C D 
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Once it was determined that 600 Watts was simply too extreme to yield a processed sample for 

thermal testing, one final series of samples was produced at 300 watts. This power setting was 

much less violent toward the array, and provided SEM and LFA samples to thermally 

characterize the etched array. As previously mentioned, baseline thickness samples were taken 

prior to successive etching. At residence times of 5, 15, 30, and 60 minutes one quarter of the 

array was removed for SEM imaging and LFA testing. Since the fact that nanotube thickness 

does not change at higher RF power levels has already established, thickness images will be 

skipped in favor of monitoring surface changes to the array. These images are shown in figure 

below. 

    

    

Figure 4-9 - Surface Changes in Array 97 at Increasing Residence Times - 300 Watts 

Images A through D show the surface of Array 97 at 5, 15, 30, and 60 minutes of residence time 

(respectively) at 300 Watts of RF Power. It is clear that the surface layer does not etch away as 

predicted. Rather, it appears to change and become worse, with more surface features 

appearing between the detector and the nanotube tips encased beneath them. The same 

D C 

B A 
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bronze coloration that appeared in the 600 Watt tests was seen in the 60 minute sample under 

300 Watt power. As shown in figure below, the bronze coloration makes it clear which portion 

of the array was covered by the acrylic testing frame. 

 

Figure 4-10 - Bronze Coloration Seen in 300 W – 60 min Sample 

LFA testing was conducted at 3 in-lb torque on samples from all residence times as described in 

section 2.2 for aluminum substrates under low contact pressures. This helped characterize the 

effect of this bronzed layer on the overall thermal diffusivity of these etched arrays when used 

as a TIM. The results of these tests are shown in Figure 4-11 below. 

 

Figure 4-11 - Thermal Performance of Array 97 after 300 W – 60 min O2 Plasma Etching 
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Clearly, this bronze-colored layer is not aiding the thermal performance of array 97. After 

finding decreased thermal performance from plasma etching, it is believed that the bronze layer 

on the surface of the array is iron oxide. It is possible that the amorphous carbon and carbon 

nanotube tips are being etched to a small degree, until trapped iron catalyst particles are 

exposed. Once oxygen reaches these particles, the iron will oxidize resulting in rust. This leaves a 

resistive coating with thermal conductivity from 0.5 – 4.5 W/mK [68] on the surface, which 

explains the decreased thermal performance. 

4.2.2 Graphitization-Based Cleaning of MWCNT Arrays 

High temperature annealing to purify carbon nanotubes has been used since the mid 1990s [69]. 

The basic principle is to subject samples to extreme temperatures in excess of 2400 °C in an 

inert atmosphere to force the evaporation of metal catalyst particles and initiate the 

reorganization and repair of the nanotubes’ carbon structure into a more ordered, graphitic 

arrangement. Andrews et al. studied the effect of graphitization temperature on the structural 

perfection of multiwall carbon nanotubes and found that heat treatment above 1800 °C was 

sufficient to remove residual metal catalyst particles, with further treatment up to 3000 °C 

resulted in increasing graphitic perfection of nanotube wall structures [62]. Lastly, Weisenberger 

et al. studied the effect of graphitization temperature on the structure of helical ribbon carbon 

nanofibers. They found temperatures of 2400 °C and above were sufficient to remove all metal 

catalyst particles from the nanofibers, as well as change the surface morphologies from circular 

to a faceted polygonal structure indicative of planar graphene layers [70]. 

The hypothesis for this experiment is that graphitized arrays perform better than their 

predecessors as aligned MWCNT array TIMs. It has been documented that the annealing process 

provides the necessary energy for carbon atoms to rearrange their structure, thus repairing any 

Stone-Wales defects or minor kinks, as well as slightly decreasing the distance between 

concentric layers in a MWCNT. These improvements all result in a longer phonon mean free 

path through the array TIM which increases the effective TIM conductivity. 

Thermal testing of graphitized vs. as-produced arrays was conducted in a similar style to the low 

contact pressure LFA testing of aluminum substrates as described in section 2.3.2. Annealing of 

array samples was conducted in a graphite furnace produced by Thermal Technology, Inc., 

pictured in Figure 4-12 below. 
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Figure 4-12 - Thermal Technology, Inc. Graphite Furnace 

When annealing MWCNT samples, sheets of MWCNT array are placed in between 2” diameter 

pucks of pure graphite referred to as “biscuits,” and the excess MWCNT array is trimmed away. 

These biscuits provide sufficient weight to hold the nanotube array samples in place while 

atmospheric purging is conducted, as well as provide additional localized heat to the array 

samples during annealing at extreme temperatures. An example of this biscuit stacking method, 

and loading a biscuit tower into the graphite furnace, is shown in Figure 4-13 below. 

 

Figure 4-13 - Loading MWCNT Arrays into Graphite Biscuits and Loading the Furnace 

Array samples that were annealed for these tests were all prepared at 2700 °C. Samples were 

exposed to an inert helium atmosphere and taken up to temperature with a 50 °C/min ramp. 
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Once at temperature, samples were held at 2700 °C for one hour before ramping back to room 

temperature at 50 °C/min. After annealing, samples were removed from the graphite furnace 

and carefully removed from the biscuit surfaces. An image of an annealed array is shown in 

Figure 4-14 below. In this image, the array has taken on a pattern from the biscuit. 

 

Figure 4-14 - Aligned MWCNT Array - Post Graphitization 

Thermal testing in aluminum substrate systems at low pressures yielded the following results, 

shown in Figure 4-15  below. 

 

Figure 4-15 - Thermal Performance of Graphitized Arrays vs. “As-Produced” Arrays 
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As seen above, annealing arrays provided clear thermal performance benefits over their “as-

produced” precursors. Array 62G is the only array tested which was not able to be paired with 

its as-produced predecessor. It was an older array, and no more original material remained for 

testing. Some arrays exhibited great improvements over their original form. Others like array 94 

showed only moderate improvement. This can be explained with SEM images, recalling Figure 

2-22 which showed inconsistent contact made by array 94. Graphitization can repair array 

defects, but it cannot grow more nanotubes to fill out patchy growth. Observant readers may 

notice that some arrays (as well as the baselines) were tested through the entire pressure range 

considered in this work. This was to ascertain whether a thermal performance “saturation 

point” existed, after which no further benefit would be seen, regardless of pressure. This chart 

shows that if such a point exists, it has not been reached yet. However, the maximum pressure 

in this chart is 447 psi, which is much higher than common contact pressures used in electronic 

components to date (usually less than 100 psi) [63]. 

4.3 Concluding Remarks 

In this chapter, radio frequency oxygen plasma etching and high temperature annealing of 

aligned MWCNT array TIMs were utilized as processing methods to improve the thermal 

performance of array TIMs. Oxygen plasma was suggested based on the publications of previous 

groups indicating existing potential to etch arrays, as well as the idea of an economical and 

environmentally friendly method to tailor array TIM thickness. The reported findings of this 

work indicate that using oxygen plasma to chemically etch arrays does not produce cleaner or 

thinner arrays at the tested power and residence times. Further study may find the proper 

conditions for etching arrays, and would benefit the study of aligned MWCNT array TIMs. 

High temperature annealing, or “graphitization” of aligned MWCNT array TIMs has proven itself 

a viable method of improving the thermal performance of these materials. Although successful, 

this method has economical drawbacks such as the large amount of time and energy necessary 

to anneal the arrays and expensive specialty furnace materials. Graphitizing an aligned MWCNT 

array TIM can have varying results, ranging from slight improvements in a poor array TIM to 

large improvements in a mediocre array. Based on the results of this Chapter, and the results of 

Chapter 2, the best possible TIM under current synthesis methods would be an annealed array 

with low thickness and high bulk density/packing fraction with exceptionally clean surfaces.  
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Chapter 5 Discussion of Results and Conclusion 

5.1 Introduction 

Throughout this work, various applications and treatments of aligned multiwall carbon 

nanotube arrays have been discussed with the ultimate goal of improving the through thickness 

thermal performance of interfacial systems. Thermal applications of nanotubes have been 

compared by measurement of thermal diffusivity and contact resistance in a Netzsch 

Instruments LFA 427 Laser Flash Analyzer. Mechanical applications have been compared by 

appropriate methods on mechanical testing frames at the Center for Applied Energy Research 

and at a third party. 

5.2 MWCNT Arrays as TIMs in All-Aluminum Systems 

In Chapter 2 of this work physical properties of aligned MWCNT arrays, as well as surface 

properties of stacked substrates and applied contact pressure, were investigated to determine 

the optimal properties of a TIM/Interface thermal system. Empirical trends emerged from these 

tests revealing which properties were most desirable in an aligned MWCNT array TIM. 

5.2.1 Relationships between Array Properties and Thermal Performance 

Properties considered important to the thermal performance enhancements seen when aligned 

MWCNT array TIMs are used are MWCNT array thickness, volumetric packing fraction, areal and 

bulk densities, and array surface cleanliness. Empirical trends revealed that the three most 

important properties of an effective array TIM were array thickness, packing fraction, and bulk 

density. Moreover, these trends revealed a convoluted interplay between these three, such that 

decreasing array thickness actually tended toward increasing bulk density and packing fraction. 

This idea is at odds with the traditional concept of bulk density, where changing thickness is 

accompanied by a proportional change in mass, and hence, does not affect the calculated 

density. It was concluded that the only way for decreasing thickness to actually increase density 

was by reducing the overall volume within the array that was occupied by air, which does not 

contribute to the measured array mass. 
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Additionally, a loose relationship between the measured mass of an array on its substrate (or 

areal density) prior to harvesting and its thermal performance after harvesting was established. 

Based on the current CVD nanotube synthesis methods employed for this study, arrays with less 

mass on the slide tend toward higher thermal performance. If one assumes the arrays to all be 

reasonably clean and free of amorphous carbon deposits, this line of thinking equates to the 

empirical trends of array thickness, packing fraction, and bulk density discussed previously. The 

measurement of array mass on the slide is the only method currently available to characterize 

array performance before committing personnel and resources to harvesting and processing the 

array. As such, knowing that lower mass generally tends toward higher performance is the single 

result allowing an educated guess to be made when picking arrays for TIM duty. 

In addition to the physical properties of the arrays themselves, the surface roughness of stacked 

substrates and the applied contact pressure were considered in the overall thermal evaluation 

of the aligned MWCNT array TIMs. In aluminum systems, stacked substrates with roughness 

values ranging from RA = 1.25 μm to RA = 0.01 μm were used to test the sensitivity of array 

performance to interface surface preparation. In general, the highest reported diffusivities from 

an “as-produced” array TIM came from stacked mirror finish aluminum substrates with RA = 0.01 

μm. This is logical as there are fewer surface asperities for the nanotubes to work around; 

allowing even more nanotubes to remain axially aligned and providing a larger mean free path 

for phonon heat transport. However, this does not discount the results of TIM studies with a 60-

grit surface finish (RA = 1.25 μm) which indicated the superior conformability of the aligned 

MWCNT array TIMs. Reported baseline (bare interface) values for these systems were 

consistently lower than results from their TIM-assisted siblings. This indicates surface roughness 

is not as critical to successful heat transfer when an appropriate TIM is involved. Although, if one 

were concerned about thermal performance at designed material interfaces, it makes sense to 

specify reasonably smooth surface finishes wherever economically feasible. 

Lastly, the applied contact pressure makes a great deal of difference to TIM performance. Under 

no applied pressure, aligned MWCNT array TIMs were ineffective at best. This is somewhat 

expected, as nothing is ensuring good thermal contact between the stacked substrates and the 

TIM. Fortunately, increases in pressure from 0 psi to values less than 30 psi are enough to create 

good thermal contact. Above the pressure where good thermal contact is initiated, further gains 

in thermal performances are experienced, but are less dramatic, even into the 400 psi regime. 



108 
 

Many technical applications of TIMs in electronics rely on assembly pressures less than 100 psi, 

which indicates that aligned MWCNT array TIMs are excellent choices for these applications.   

5.2.2 Applications 

Based on the performances of aligned MWCNT array TIMs noted in the aluminum systems of 

Chapter 2, there are several suggested applications for these materials. On a mass production 

scale, all consumer electronics currently relying on thermal greases, pastes, or pads could 

benefit from the robust heat transport and mechanical stability of carbon nanotube array TIMs. 

Additionally, satellites and other space-based thermal design challenges can be met with array 

TIMs because they have no greases to outgas and breakdown under vacuum.  

5.3 MWCNT Arrays as TIMs in Carbon Fiber Composite Systems 

In Chapter 3 of this work physical properties of aligned MWCNT arrays were investigated in 

stacked carbon fiber composite material systems. Several problems arose quickly, indicating the 

clear differences in testing this highly anisotropic material vs. an isotropic material such as the 

aluminum substrates previously discussed. In general, it is unclear whether or not the 

mathematical thermal models programmed into the LFA can accurately handle the challenges 

posed by these materials. Reported values of thermal diffusivity appear to be reasonable, when 

compared to the results of Zalameda, who reported diffusivity values between 0.0035 and 

0.0062 cm2/s (0.35 – 0.68 mm2/s) for through thickness diffusivity of carbon fiber composites 

[71]. At this time, it is abundantly clear that no thermal contact resistances can be acceptably 

calculated by the thermal models of the LFA. As a remedy to this situation an excel-based 

iterative calculation was employed to approximate the interfacial contact resistance instead. 

5.3.1 Relationships between MWCNT Array Properties and Thermal Performance 

In general, none of the empirical trends that appeared when testing stacked aluminum interface 

systems were found in stacked carbon fiber interface systems. This should not suggest that the 

previously found trends relating array properties to thermal performance are incorrect. Instead, 

this is more a commentary on the extremely low through thickness diffusivity values reported by 

the LFA for carbon fiber composite materials. It is possible that the trends still exist, but it is 

difficult to see them based on the small range of diffusivity values reported. The only new trend 

which did arise was a relationship between contact pressure and thermal performance. Once 
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thermal contact is made, very little benefit is seen from additional contact pressure. All reported 

diffusivity values beyond the point of initial thermal contact were within standard deviation of 

each other, so nothing can be said about potential increases or decreases in thermal 

performance induced by higher contact pressures.  

5.3.2 Applications 

There is still some significant development work to be done before carbon fiber thermal 

interfaces can be recommended as a good thermal design practice. The widespread use of peel 

ply fabric in the composites industry means that nearly all carbon fiber composite material 

surfaces will have a highly dynamic surface finish, as illustrated previously in Figure 3-2. 

Materials like this will always benefit from the use of a TIM to decrease the thermal contact 

resistance across the interface. However, in the case of carbon fiber composite materials the 

material itself is the largest thermal bottleneck, not the interface. Future development work 

should be focused on improving the through thickness conductivity of carbon fiber composite 

materials themselves. Once this has been accomplished, aligned MWCNT array TIMs will be 

ready to bridge carbon fiber composite material interfaces. 

5.4 Techniques to Purify and Improve the use of MWCNT Arrays as TIMs 

In Chapter 4 of this work two methods for post processing of aligned MWCNT array TIMs were 

presented as ways to clean or otherwise improve their performance. Radio frequency oxygen 

plasma etching was attempted to selectively remove amorphous carbon deposits from the 

surface of the arrays. High temperature annealing, or “graphitization,” was conducted to repair 

defects in the arrays inherent to the CVD synthesis process. 

5.4.1 Effectiveness of Oxygen Plasma Cleaning Procedures 

Oxygen plasma etching was considered because it presented the possibility of a relatively quick 

and economical improvement method, in addition to being environmentally friendly. Despite 

several groups reporting success using O2 plasma etching methods to functionalize array tips 

(along with settings which should damage the array surface) difficulties were encountered trying 

to achieve a clearly reduced array thickness or reduced amorphous carbon layer.  
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Various settings from 50 Watts to 600 Watts were tried, at residence times ranging from 5 

minutes to 60 minutes. SEM imaging revealed that even at the highest power level and 

residence times, no change in the overall thickness occurred. The array sample that was used in 

this test was utterly destroyed except for a few small pieces recovered for SEM imaging, which 

indicates that something happened to the array. Clearly, such high power settings would never 

be used for etching arrays longer than a few minutes in order to preserve the structural integrity 

of the sample. 

A stable etching power was established at 300 Watts in order to create a testable range of 

samples at increasing residence times. It was found that time spent under O2 plasma was 

actually hindering thermal performance of the arrays post processing. A bronze coating can 

faintly be seen on the surface of the array after extended time under plasma, which is believed 

to be oxidized iron catalyst particles that remain in all arrays produced by the CVD synthesis 

process. This layer of rust is much less conductive than the nanotubes it covers, which would 

explain the reduced thermal diffusivity values measured from O2 plasma treated samples of 

array 97. Based on these results, O2 plasma etching of nanotube arrays is not recommended at 

this time as a means of amorphous carbon removal. 

5.4.2 Effectiveness of Graphitization-Based Cleaning Procedures 

Exposing arrays to extreme high temperature under inert helium atmosphere provides enough 

energy to correct defects in the graphitic structure of the MWCNTs comprising the aligned array 

TIM. At temperatures above 1800 °C, the metal catalyst particles which are trapped in the 

center of the nanotubes during synthesis are evaporated out. This allows the nanotubes to 

constrict their diameter slightly and make the corrections to the arrangement of carbon atoms, 

returning to a proper hexagonal arrangement and more graphitic state. Figure 4-15 in Chapter 4 

showed the thermal performance gains produced by graphitizing aligned MWCNT array TIMs. 

This method has established a track record of consistent improvements in array thermal 

performance, although the degree of improvement does depend on the array physical 

properties. 
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5.5 Conclusion 

The results presented in this work provide a path forward for concentrated research in the field 

of aligned MWCNT array TIMs. These materials are highly desirable since they can be used in 

extreme environments like high temperature and/or high vacuum without penalty. The 

engineering and scientific communities maintain fervent interest in finding the best ways to 

leverage the excellent thermal and mechanical properties of these materials, while making them 

more user-friendly and economical. For MWCNT array based TIMs, the best performers tend to 

be those with clean surfaces, high bulk densities and packing fractions, and low thicknesses. 

Currently, these factors are not controllable in an industrial scale CVD synthesis process. Further 

research into the synthesis process with goals of enhanced product control will produce arrays 

with consistently excellent thermal performance for use as aligned MWCNT TIM materials.  
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Appendix A Data from High Pressure Aluminum LFA Testing 

Table A-1: MWCNT Array TIMs used in Aluminum High Contact Pressure LFA Testing 
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Table A-2: Mill Finish Aluminum Thermal Results - High Contact Pressure Testing 
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Table A-3: Mirror Finish Aluminum Thermal Results - High Contact Pressure LFA Testing 
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Appendix B Data from Low Contact Pressure Aluminum LFA Testing 

Table B-1: MWCNT Array TIMs used in Aluminum Low Contact Pressure LFA Testing 
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Table B-2: Al Thermal Diffusivity Results - Low Contact Pressure LFA Testing 
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Table B-3: Al Thermal Contact Resistance Results - Low Contact Pressure LFA Testing 

  

Sa
m

pl
e

La
be

l
0 

    
    

    
    

    
  

in
-lb

1 
    

    
    

   
in

-lb
2 

    
    

    
   

in
-lb

3 
    

    
    

   
in

-lb
4 

    
    

    
   

in
-lb

5.
31

    
    

  
in

-lb
8.

85
    

    
  

in
-lb

12
.3

9 
    

   
in

-lb
0 

    
    

    
    

    
  

in
-lb

1 
    

    
    

   
in

-lb
2 

    
    

    
   

in
-lb

3 
    

    
    

   
in

-lb
4 

    
    

    
   

in
-lb

5.
31

    
    

  
in

-lb
8.

85
    

    
  

in
-lb

12
.3

9 
    

   
in

-lb

Ba
se

lin
e 

1
B1

67
74

.0
0

35
2.

30
33

5.
50

26
1.

50
24

0.
70

20
1.

70
14

2.
90

12
4.

00
27

95
.0

0
33

.2
7

28
.0

9
12

.6
9

19
.9

9
9.

23
10

.2
1

13
.9

4
Ba

se
lin

e 
2

B2
11

69
0.

00
37

2.
90

27
2.

70
27

0.
80

23
9.

50
19

1.
20

12
7.

60
10

2.
80

89
75

.0
0

40
.3

4
16

.1
2

14
.8

5
22

.0
1

17
.9

3
5.

45
10

.6
3

Ar
ra

y 
62

 G
ra

ph
iti

ze
d

62
G

48
56

.0
0

74
.1

5
63

.9
2

60
.9

0
55

.3
0

50
.9

2
46

.0
3

42
.6

4
21

49
.0

0
4.

64
2.

53
5.

24
2.

15
3.

03
4.

95
1.

83
Ar

ra
y 

75
75

33
57

.0
0

13
7.

40
11

6.
30

10
4.

30
95

.2
0

95
.2

2
82

.1
4

82
.5

6
41

6.
60

1.
64

3.
73

2.
97

9.
18

11
.8

7
5.

44
6.

63
Ar

ra
y 

78
78

46
85

.0
0

13
8.

40
11

8.
50

98
.2

9
91

.8
3

84
.2

3
65

.7
8

61
.2

1
88

2.
40

2.
56

4.
42

13
.9

5
2.

29
6.

20
3.

85
3.

65
Ar

ra
y 

82
82

24
61

.0
0

10
6.

00
97

.2
6

89
.0

2
88

.9
4

-
-

-
38

3.
60

10
.8

2
6.

96
5.

13
2.

27
-

-
-

Ar
ra

y 
84

84
39

27
.0

0
19

1.
20

17
0.

10
16

3.
90

14
5.

60
-

-
-

94
7.

40
7.

90
7.

97
5.

31
7.

75
-

-
-

Ar
ra

y 
91

91
73

57
.0

0
16

8.
00

15
3.

10
13

6.
80

13
6.

00
-

-
-

57
23

.0
0

6.
81

10
.6

2
2.

51
8.

05
-

-
-

Ar
ra

y 
92

92
31

34
.0

0
17

9.
70

15
4.

10
14

4.
30

13
9.

80
-

-
-

44
6.

70
15

.7
0

6.
69

6.
56

3.
81

-
-

-
Ar

ra
y 

93
93

34
59

.0
0

15
3.

20
14

1.
80

14
2.

50
13

8.
90

-
-

-
58

1.
20

2.
39

3.
79

4.
85

5.
27

-
-

-
Ar

ra
y 

94
94

28
39

.0
0

33
1.

50
23

6.
40

20
2.

00
15

5.
50

-
-

-
33

9.
80

24
.4

3
12

.5
1

18
.4

3
1.

14
-

-
-

Ar
ra

y 
94

 G
ra

ph
iti

ze
d

94
G

49
47

.0
0

18
3.

70
14

1.
60

13
1.

10
12

2.
80

-
-

-
56

2.
50

15
.6

0
3.

10
3.

28
1.

04
-

-
-

Ar
ra

y 
95

95
41

08
.0

0
20

1.
40

17
4.

90
15

7.
00

13
2.

80
-

-
-

68
9.

80
6.

10
16

.0
1

9.
47

13
.4

2
-

-
-

Ar
ra

y 
96

96
40

45
.0

0
33

8.
80

31
7.

20
26

1.
40

23
5.

40
19

4.
10

14
8.

80
10

7.
30

80
1.

60
14

.4
0

29
.3

8
11

.1
1

8.
96

17
.2

5
16

.1
8

8.
72

Ar
ra

y 
96

, T
es

t 2
96

-2
15

92
00

.0
0

35
3.

30
28

1.
50

26
2.

70
21

6.
40

-
-

-
0.

00
23

.3
4

23
.2

2
16

.6
6

13
.9

4
-

-
-

Ar
ra

y 
92

97
-

25
7.

50
22

4.
40

18
9.

60
18

1.
80

-
-

-
-

9.
06

13
.5

2
21

.2
2

2.
55

-
-

-
Ar

ra
y 

97
, T

es
t 2

97
-2

36
45

.0
0

18
4.

70
16

6.
50

15
3.

20
15

2.
20

-
-

-
67

9.
50

10
.2

9
3.

53
10

.6
2

16
.7

6
Ar

ra
y 

98
98

42
43

.0
0

19
1.

10
15

8.
00

13
2.

70
13

7.
70

-
-

-
14

32
.0

0
6.

05
7.

53
1.

43
10

.9
0

-
-

-
Ar

ra
y 

99
99

32
65

.0
0

37
65

.0
0

19
8.

70
17

4.
60

14
4.

80
-

-
-

20
7.

20
33

4.
40

5.
44

12
.5

2
6.

45
-

-
-

Ar
ra

y 
99

, T
es

t 2
99

-2
14

26
0.

00
25

3.
90

20
2.

00
18

8.
60

17
4.

10
-

-
-

19
79

0.
00

29
.9

2
16

.4
6

10
.7

2
4.

82
-

-
-

Ar
ra

y 
10

0
10

0
38

45
0.

00
22

2.
40

18
2.

30
17

5.
10

15
8.

20
-

-
-

59
62

0.
00

22
.1

1
8.

31
2.

40
7.

31
-

-
-

Ar
ra

y 
10

0 
Gr

ap
hi

tiz
ed

10
0G

40
31

.0
0

92
.2

0
77

.8
0

78
.1

7
71

.9
2

70
.9

3
61

.5
4

56
.0

3
14

93
.0

0
5.

36
4.

18
1.

75
9.

05
4.

99
2.

72
2.

27
Ar

ra
y 

10
1

10
1

30
86

.0
0

27
1.

10
22

9.
70

19
0.

20
18

3.
20

-
-

-
74

4.
20

8.
69

12
.0

0
21

.3
5

8.
14

-
-

-
Ar

ra
y 

10
5

10
5

86
35

20
4.

8
19

8
17

9.
9

15
4.

5
-

-
-

69
25

18
.6

1
6.

03
9.

63
9

2.
17

7
-

-
-

Ar
ra

y 
10

5 
Gr

ap
hi

tiz
ed

10
5G

96
22

-
11

7.
7

11
1.

3
10

2.
3

-
-

-
71

50
-

3.
37

6
10

.2
6

5.
69

6
-

-
-

Th
er

m
al

 C
on

ta
ct

 R
es

is
ta

nc
e,

 R
c, 

[m
m

2 K/
W

]
St

an
da

rd
 D

ev
ia

tio
n,

 σ
, [

m
m

2 K/
W

]



118 
 

Appendix C Data from High Contact Pressure Carbon Fiber LFA Testing 

Table C-1: MWCNT Array TIMs used in Carbon Fiber LFA Testing 
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Table C-2: Thermal Testing Results – Carbon Fiber Systems at High Contact Pressure 
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Appendix D Data from Low Contact Pressure Carbon Fiber LFA Testing 

Table D-1: Thermal Testing Results – Peel Ply Carbon Fiber Systems at Low Contact Pressure 
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Table D-2: Thermal Testing Results – Sanded Carbon Fiber Systems at Low Contact Pressure 
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