
University of Kentucky
UKnowledge

Theses and Dissertations--Mechanical Engineering Mechanical Engineering

2014

SUSTAINABLE LIFETIME VALUE CREATION
THROUGH INNOVATIVE PRODUCT
DESIGN: A PRODUCT ASSURANCE MODEL
K. Daniel Seevers
University of Kentucky, kdanseevers@gmail.com

Click here to let us know how access to this document benefits you.

This Doctoral Dissertation is brought to you for free and open access by the Mechanical Engineering at UKnowledge. It has been accepted for inclusion
in Theses and Dissertations--Mechanical Engineering by an authorized administrator of UKnowledge. For more information, please contact
UKnowledge@lsv.uky.edu.

Recommended Citation
Seevers, K. Daniel, "SUSTAINABLE LIFETIME VALUE CREATION THROUGH INNOVATIVE PRODUCT DESIGN: A
PRODUCT ASSURANCE MODEL" (2014). Theses and Dissertations--Mechanical Engineering. 42.
https://uknowledge.uky.edu/me_etds/42

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu
https://uknowledge.uky.edu/me_etds
https://uknowledge.uky.edu/me
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been
given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright
permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-
party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not
permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-
free license to archive and make accessible my work in whole or in part in all forms of media, now or
hereafter known. I agree that the document mentioned above may be made available immediately for
worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in future
works (such as articles or books) all or part of my work. I understand that I am free to register the
copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on behalf of
the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of the program; we
verify that this is the final, approved version of the student’s thesis including all changes required by the
advisory committee. The undersigned agree to abide by the statements above.

K. Daniel Seevers, Student

Dr. I.S. Jawahir, Major Professor

Dr. James M. McDonough, Director of Graduate Studies

SUSTAINABLE LIFETIME VALUE CREATION THROUGH INNOVATIVE PRODUCT

DESIGN: A PRODUCT ASSURANCE MODEL

DISSERTATION

A dissertation submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy in the

 College of Engineering

 at the University of Kentucky

By

K. Daniel Seevers

Lexington, KY

Director: Dr. I.S. Jawahir, Professor of Mechanical Engineering

Co-Director: Dr. Fazleena Badurdeen, Associate Professor of Mechanical
Engineering

Lexington, Kentucky

2014

Copyright © K. Daniel Seevers 2014

ABSTRACT OF DISSERTATION

SUSTAINABLE LIFETIME VALUE CREATION THROUGH INNOVATIVE PRODUCT
DESIGN: A PRODUCT ASSURANCE MODEL

In the field of product development, many organizations struggle to
create a value proposition that can overcome the headwinds of
technology change, regulatory requirements, and intense competition, in
an effort to satisfy the long-term goals of sustainability. Today,
organizations are realizing that they have lost portfolio value due to poor
reliability, early product retirement, and abandoned design platforms.
Beyond Lean and Green Manufacturing, shareholder value can be
enhanced by taking a broader perspective, and integrating sustainability
innovation elements into product designs in order to improve the delivery
process and extend the life of product platforms.

This research is divided into two parts that lead to closing the loop towards
Sustainable Value Creation in product development. The first section presents a
framework for achieving Sustainable Lifetime Value through a toolset that
bridges the gap between financial success and sustainable product design. Focus
is placed on the analysis of the sustainable value proposition between
producers, consumers, society, and the environment and the half-life of product
platforms. The Half-Life Return Model is presented, designed to provide
feedback to producers in the pursuit of improving the return on investment for
the primary stakeholders. The second part applies the driving aspects of the
framework with the development of an Adaptive Genetic Search Algorithm. The
algorithm is designed to improve fault detection and mitigation during the
product delivery process. A computer simulation is used to study the
effectiveness of primary aspects introduced in the search algorithm, in order to
attempt to improve the reliability growth of the system during the development
life-cycle.

The results of the analysis draw attention to the sensitivity of the driving aspects
identified in the product development lifecycle, which affect the long term goals
of sustainable product development. With the use of the techniques identified in
this research, cost effective test case generation can be improved without a
major degradation in the diversity of the search patterns required to insure a
high level of fault detection. This in turn can lead to improvements in the driving
aspects of the Half-Life Return Model, and ultimately the goal of designing
sustainable products and processes.

Keywords: Sustainable Value Proposition, Product Half Life, Sustainable Lifetime
Value, Adaptive Genetic Search Algorithm, Product Assurance

K. Daniel Seevers

April 23, 2014

SUSTAINABLE LIFETIME VALUE CREATION THROUGH INNOVATIVE PRODUCT

DESIGN: A PRODUCT ASSURANCE MODEL

By

K. Daniel Seevers

Dr. I.S. Jawahir
Director of Dissertation

Dr. Fazleena Badurdeen
Co-Director of Dissertation

Dr. James M. McDonough
Director of Graduate Studies

April 23, 2014

I dedicate this dissertation to my parents, children, and loving wife.

ACKNOWLEDGMENTS

I wish to thank those who helped me through my journey to complete this dissertation.

It has been an honor to be advised by Dr. Jawahir, who brings such a wide scope of

knowledge to the table. He has been integral to the advancement of research in the

fields of Mechanical Engineering, Manufacturing Processes, and Sustainability. My time

spent with Dr. Jawahir discussing these topics has been invaluable.

I would also like to thank my Co-Advisor, Dr. Badurdeen. Her feedback, hard work, and

knowledge were outstanding aids in my journey. I offer thanks as well, to my other

committee members, Dr, Keith Rouch and Dr. Thomas Goldsby, for their perspective,

support, and insight.

The tools and education I have been blessed with throughout my career have been the

direct result of talented people who have been willing to take the time to teach, provide

feedback, and debate with me. Although there are too many to individually name, I

thank them all.

Finally I thank my family. My world is built upon the foundation my parents, Ken and

Doris Seevers, provided to me. My energy comes from the love and support of my

wonderful wife Denise, and the joy my children, Kyra and Rachel, bring to me every day.

iii

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iii

LIST OF TABLES .. ix

LIST OF FIGURES ... x

CHAPTER 1: INTRODUCTION ... 1

1.1 BACKGROUND .. 1
1.1.1 Sustainable Lifetime Value Creation through the Design of Sustainable
Products .. 4
1.1.2 Sustainable Value Creation Models ... 5

1.2 RESEARCH OUTLINE .. 8
1.2.1 Closing the Loop towards Sustainable Lifetime Value Creation 8
1.2.2 Reliability Assurance Model for Sustainable Product Development 10

1.3 CHAPTER SUMMARY ... 12

PART 1: SUSTAINABLE LIFETIME VALUE CREATION .. 14

CHAPTER 2: SUSTAINABLE LIFETIME VALUE CREATION: INTEGRATED MODEL 15

2.1 LITERATURE REVIEW ... 15
2.1.1 Sustainable Development .. 15
2.1.2 Traditional Half-Life Modeling ... 23
2.1.4 New Product Delivery and Return on Investment ... 26
2.1.5 Current Model Limitations ... 35

2.2 CONCEPTS RELEVANT TO CLOSING THE LOOP TOWARDS SUSTAINABLE VALUE CREATION 36
2.2.1 Sustainable Value Creation .. 37
2.2.2 Green Products and Marketing.. 38
2.2.3 Sustainable Lifetime Value in Product Design ... 39

2.3 SUSTAINABLE LIFETIME VALUE CREATION: INTEGRATED MODEL .. 41
2.3.1 Sustainable Product Half-Life Return Model ... 42
2.3.2 Sustainable Product Value Proposition ... 51
2.3.3 Sustainable Product Development Drivers: Integrated Framework 57

2.4 SUMMARY .. 68

CHAPTER 3: PROBLEM DEFINITION .. 71

3.1 INTRODUCTION .. 71
3.2 PRODUCT ASSURANCE ADAPTIVE SEARCH MODEL: PROBLEM STATEMENT............................... 72
3.3 RESEARCH QUESTION .. 75
3.4 SUMMARY .. 76

iv

PART TWO: APPLICATION OF THE INTEGRATED FRAMEWORK: ADAPTIVE GENETIC
SEARCH ALGORITHM... 78

CHAPTER 4: LITERATURE REVIEW ... 79

4.1 THE ROLE OF FEEDBACK AND VERIFICATION IN THE DEVELOPMENT PROCESS 79
4.2 PRODUCT ASSURANCE BACKGROUND ... 80

4.2.1 Product System and Solution Assurance Definition .. 81
4.2.3 Valuable vs. Value Add ... 82
4.2.4 The Cost of Poor Product Assurance ... 83

4.3 PRODUCT ASSURANCE OF COMPLEX SYSTEMS .. 85
4.3.1 Embedded Defects ... 85
4.3.2 Reliability Growth Analysis .. 86
4.3.3 Problem Discovery and Mitigation .. 87
4.3.4 Complex System Definition .. 88

4.4 RISK MITIGATION ... 90
4.4.1 Reliability Growth and Fault Detection Problem Statements 92
4.4.2 Reliability Growth Analysis Model Weaknesses .. 92
4.4.3 Verification Process Weaknesses .. 93

4.4 TEST CASE COMBINATIONS ... 95
4.4.1 Product Assurance Testing Strategies ... 97
4.4.2 Case Study Test Combination - Calculation ... 100

4.5 BACKGROUND OF HEURISTIC SEARCH ALGORITHMS... 101
4.5.1 Related Research in the Field of Heuristic Search Techniques in Reliability
Optimization ... 102
4.5.2 Outline of the Basic Genetic Algorithm ... 106

4.6 SUMMARY .. 107

CHAPTER 5: COMPLEX SYSTEM FAULT DETECTION: MODELING THROUGH APPLICATION
OF INTEGRATED FRAMEWORK ... 110

5.1 MODEL DEVELOPMENT - FOUNDATION .. 112
5.1.2 Reliability Growth Model: Dependent vs. Independent Faults in the System
Design .. 116
5.1.3 Defect (Fault) Type Definitions .. 121
5.2 The Integration of Risk and Fault Detection Management 123
5.2.1 Integrated Product Assurance Maturity Model ... 125
5.2.2 Verification Feedback in the Development Process 125

5.2.3 THE EFFECTS OF COST AND RESOURCE CONSUMPTION ON THE SEARCH PROCESS 127
5.3 FAULT DETECTION AND MITIGATION MODEL DEVELOPMENT .. 127

5.3.1 Fault Mitigation Process (Three Stage Process) .. 135

v

5.3.2 Detailed Description of the Three Resource Consuming Processes 137
5.3.3 Test Case Resource Consumption Summary ... 139

5.4 ADAPTIVE GENETIC SEARCH ALGORITHM MODEL OBJECTIVES ... 140
5.4.1 Search Model Goals ... 141
5.4.2 Adaptive Genetic Search Algorithm – Model Objectives Summary 143

5.5 MODEL DESCRIPTION .. 144
5.5.1 Analysis Focus Areas .. 144
5.5.2 Overview of the Integrated Adaptive Search Algorithm 146

5.6 ANALYSIS OF MODEL EFFECTIVENESS .. 168
5.6.1 Identification of Adaptive Genetic Search Algorithm Variables 168
5.6.2 Dependent Variables (Measured with Each Test Run) 169
5.6.3 Controlled Variables (Values in the Model Held Constant) 169
5.6.4 Adaptive Genetic Search Algorithm - Simulation Hypotheses 170
5.6.5 Expected Shape of the Reliability Growth Curve ... 171

5.7 SUMMARY .. 172

CHAPTER 6: CASE STUDY: MODEL EXECUTION, DATA COLLECTION AND DATA ANALYSIS
... 173

6.1 SUSTAINABLE PRODUCTS VALUE PROPOSITION - CASE STUDY ... 173
6.2 ADAPTIVE GENETIC SEARCH ALGORITHM – CASE STUDY .. 176

6.2.1 Experimental Set-up .. 177
6.2.2 Independent Variables ... 177
6.2.3 Controlled Variables... 181
6.2.4 Data Collection for Dependent Variables and Analysis 182
6.2.5 Complex System Simulator – Embedded Fault Locations 187

6.3 SUMMARY .. 192

CHAPTER 7: RESULTS AND DISCUSSION ... 194

7.1 EVALUATION PRIORITY AND CRITERIA ... 194
7.2 TREATMENT RESULTS .. 196

7.2.1 Analysis Set-up ... 196
7.2.2 Initial Screening Results ... 197
7.2.3 Priority No. 1: Fault Detection Efficiency ... 202
7.2.4 Priority No. 2: Early Fault Detection .. 208
7.2.5 Priority No. 3: Average Test Case Count .. 213
7.2.6 Weighted Rank Summary .. 219

7.3 CONTINUOUS DATA RESULTS ANALYSIS .. 220
7.3.1 Treatment 1 (00000) Results ... 223
7.3.2 Treatment 32 (11111) Results ... 225

vi

7.3.3 Treatment 23 (01101) Results ... 227
7.3.4 Treatment 2 (10000) Results ... 230
7.3.5 Treatment 14 (10110) Results ... 232

7.4 RELIABILITY GROWTH CURVE – DISCOVERY ZONE BREAKDOWN ... 235
7.5 HYPOTHESES ANALYSIS - SUMMARY ... 237

CHAPTER 8: CONCLUSIONS AND FUTURE WORK ... 240

8.1 CONTRIBUTIONS OF THIS DISSERTATION .. 240
8.2 FUTURE WORK .. 244

APPENDIX .. 246

Treatment 3 (01000) Results .. 247
Treatment 4 (11000) Results .. 249
Treatment 5 (00100) Results .. 251
Treatment 6 (10100) Results .. 253
Treatment 7 (01100) Results .. 255
Treatment 8 (11100) Results .. 257
Treatment 9 (00010) Results .. 259
Treatment 10 (10010) Results .. 261
Treatment 11 (01010) Results .. 263
Treatment 12 (11010) Results .. 265
Treatment 13 (00110) Results .. 267
Treatment 15 (01110) Results .. 269
Treatment 16 (11110) Results .. 271
Treatment 17 (00001) Results .. 273
Treatment 18 (10001) Results .. 275
Treatment 19 (01001) Results .. 277
Treatment 20 (11001) Results .. 279
Treatment 21 (00101) Results .. 281
Treatment 22 (10101) Results .. 283
Treatment 24 (11101) Results .. 285
Treatment 25 (00011) Results .. 287
Treatment 26 (10011) Results .. 289
Treatment 27 (01011) Results .. 291
Treatment 28 (11011) Results .. 293
Treatment 29 (00111) Results .. 295
Treatment 30 (10111) Results .. 297
Treatment 31 (01111) Results .. 299

vii

REFERENCES .. 301

VITA ... 312

viii

LIST OF TABLES

TABLE 4.1: ADDITIONAL LITERATURE REVIEW REFERENCES .. 105
TABLE 5.1: COMPLEX SYSTEM EMBEDDED FAULT TYPES.. 122
TABLE 5.2: COMPLEX SYSTEM CONVERTED TO 2D GRID ... 129
TABLE 5.3: CHROMOSOME GENE VARIABLE COST TABLE .. 132
TABLE 5.4: TEST CASE VARIABLE COST: ACTUAL VS. AVERAGE .. 153
TABLE 5.5: EXAMPLE OF NORMALIZED GENE PROBABILITY .. 154
TABLE 6.1: COMPARISON OF CASE STUDY RESULTS.. 175
TABLE 6.2: CASE STUDY FULL FACTORIAL DESIGNED EXPERIMENT ... 178
TABLE 6.3: COMPLEX SYSTEM EMBEDDED FAULT LOCATION DATA .. 188
TABLE 6.4: ARRAY LOCATION OF SINGLE VARIABLE, INDEPENDENT FAULTS 190
TABLE 6.5: ARRAY LOCATION OF TWO VARIABLE, DEPENDENT FAULTS ... 191
TABLE 6.6: ARRAY LOCATION OF THREE VARIABLE, DEPENDENT FAULTS ... 192
TABLE 7.1: SIDE BY SIDE COMPARISON OF BEST OF BREED TREATMENT TO CONTROL 199
TABLE 7.2: INITIAL DOE SCREENING RESULTS -MISSED FAULTS .. 203
TABLE 7.3: DOE RESULTS - RESOURCE COUNT TO DETECT LAST FAULT .. 205
TABLE 7.4: DOE RESULTS – AVERAGE RESOURCE COUNT TO DETECT ALL FAULTS 210
TABLE 7.5: DOE RESULTS – TEST CASE COUNT FOR LAST FAULT ... 215
TABLE 7.6: AGGREGATED RESULTS TABLE FOR THREE DISCRETE PRIORITY METRICS 218
TABLE 7.7 RESULTS TABLE OF THE RANKED ORDER OF SEARCH ALGORITHM ANALYSIS TREATMENTS 222
TABLE 7.8: COMPILED DOE RESULTS FOR TREATMENT NUMBER 1 ... 225
TABLE 7.9: COMPILED DOE RESULTS FOR TREATMENT NUMBER 32 ... 226
TABLE 7.10: COMPILED DOE RESULTS FOR TREATMENT NUMBER 23 ... 229
TABLE 7.11: COMPILED DOE RESULTS FOR TREATMENT 2 ... 231
TABLE 7.12: COMPILED DOE RESULTS FOR TREATMENT NUMBER 14 ... 234
TABLE 7.13: RISK MITIGATION FAULT ZONE DATA ... 237

ix

LIST OF FIGURES
FIGURE 1.1: THE SUSTAINABLE PRODUCT DEVELOPMENT CONUNDRUM .. 2
FIGURE 1.2: PRODUCT AND CUSTOMER LIFETIME VALUE MODELS ARE CORE TO SUSTAINABLE LIFETIME

VALUE CREATION ... 3
FIGURE 1.3: DRIVING THE SUSTAINABILITY VALUE PROPOSITION INTO FUTURE DESIGN GENERATIONS 5
FIGURE 1.4: SUSTAINABLE VALUE CREATION FRAMEWORK FOR PRODUCTS .. 6
FIGURE 1.5: CONCEPT MODEL OF THE INTEGRATED SUSTAINABLE PRODUCT DEVELOPMENT 9
FIGURE 1.6: DISSERTATION CHAPTER OUTLINE ... 13
FIGURE 2.1: THE TRIPLE BOTTOM LINE OF SUSTAINABLE DEVELOPMENT (ELKININGTON, 2004) 18
FIGURE 2.2: THE "6R'S OF SUSTAINABLE MANUFACTURING ARE DESIGNED TO INCREASE STAKEHOLDER

VALUE (JAWAHIR AND DILLON, 2007) ... 20
FIGURE 2.3: RELATIVE PRODUCT HALF-LIFE ESTIMATES OF SELECTED PRODUCT FAMILIES (SEEVERS ET AL.,

2013) ... 22
FIGURE 2.4: THE PROGRESSION OF LOGIC TO ESTABLISH CLV VIA MULTIPLE CHURN RISKS 25
FIGURE 2.5: THE PRODUCT DEVELOPMENT RETURN MAP BY HOUSE AND PRICE (1991) 30
FIGURE 2.6: FOCUS ON PRODUCT LIFE-CYCLE AND LIFETIME IN SUSTAINABLE VALUE CREATION 37
FIGURE 2.7: SUSTAINABLE PRODUCT VALUE PROPOSITION DRIVERS .. 39
FIGURE 2.8: PRODUCER PROFIT/LOSS OVER MODEL PRODUCT LIFE CHART ... 44
FIGURE 2.9: PRODUCT HALF-LIFE VS. PRODUCER PROFIT/LOSS CHART ... 45
FIGURE 2.10: SUSTAINABLE LIFETIME VALUE CREATION TOOL #2: HALF-LIFE RETURN MODEL 47
FIGURE 2.11: VISUAL TOOL DESIGNED TO COMPARE CURRENT DESIGN TO THE INDUSTRY BEST OF BREED IN

EACH METRIC ... 57
FIGURE 2.12: SIX PRIMARY ASPECTS IDENTIFIED THAT WILL HELP DRIVE SUSTAINABLE PRODUCT

DEVELOPMENT ... 60
FIGURE 2.13: FOUNDATION FOR PRODUCT DEVELOPMENT LIFE-CYCLE .. 62
FIGURE 2.14: THE INTEGRATION OF THE VERIFICATION PROCESS INTO THE DEVELOPMENT PROCESS IS

CRITICAL TO VELOCITY OF WORKFLOW ... 63
FIGURE 2.15: THE INTEGRATED FOUNDATION FOR THE SUSTAINABLE PRODUCT DEVELOPMENT TOOL KIT . 67
FIGURE 2.16: THE INTEGRATED SUSTAINABLE PRODUCT DEVELOPMENT TOOL KIT IS DESIGNED TO MAXIMIZE

THE AFFECTS OF THE HALF-LIFE RETURN MODEL .. 69
FIGURE 4.1: BREAKOUT OF CUSTOMER LEVEL FAULT ESCAPE CATEGORIES .. 84
FIGURE 4.2: STAGE GATE RELIABILITY GROWTH MODEL (CROWE, 1998) .. 88
FIGURE 4.3: GRAPHICAL REPRESENTATION OF THE COMPLEX SYSTEM USED IN THE CASE STUDY 91
FIGURE 4.4: THE GOAL OF THE PRODUCT DEVELOPMENT TEAM IS TO OPTIMIZE THE FAULT DETECTION AND

ELIMINATION PROCESS IN ORDER TO DRIVE THE PROGRAM RISK TO CUSTOMER ACCEPTABLE LEVELS . 91
FIGURE 4.5: TEST CASE GENERATION STRATEGIES VARY FROM 100% REACTIVE TO 100% PREDETERMINED

... 98
FIGURE 4.6: BASIC LOGIC FOR A GENETIC OPTIMIZATION ALGORITHM ... 107

x

FIGURE 5.1 MULTIPLE ASPECTS OF THE PRODUCT ASSURANCE PROCESS ... 114
FIGURE 5.2: IDEAL SYSTEM RELIABILITY GROWTH VS. TYPICAL CURVE DURING DEVELOPMENT LIFE-CYCLE 117
FIGURE 5.3: TYPICAL BATHTUB RELIABILITY CURVE OVER PRODUCT LIFETIME 118
FIGURE 5.4: GRAPHICAL REPRESENTATION OF THE EFFECTS OF DEPENDENT FACTORS IN THE RELIABILITY

GROWTH CURVE. .. 120
FIGURE 5.5: GRAPHICAL PRESENTATION OF THE MULTIPLE DEFECT TYPES IN COMPLEX SYSTEMS 122
FIGURE 5.6: THE INTEGRATION OF THE PRODUCT ASSURANCE DELIVERABLES 124
FIGURE 5.7: THE FIVE LEVELS OF THE INTEGRATED PA MATURITY MAP .. 125
FIGURE 5.8: THE INTEGRATION OF PRODUCT ASSURANCE DELIVERABLES INTO THE PRODUCT DESIGN

FEEDBACK LOOP ... 126
FIGURE 5.9: EACH TEST CASE IS REPRESENTED BY ONE IDENTIFIED VARIABLE PER SUB-SYSTEM 128
FIGURE 5.10: CHROMOSOME TEST CASE EXAMPLES .. 130
FIGURE 5.11: EXAMPLE OF 2-VARIABLE COMBINATION STANDARD TEST SWEEP 133
FIGURE 5.12: EXAMPLE OF THREE VARIABLE STANDARD TEST SWEEP .. 134
FIGURE 5.13: THREE STAGES OF FAULT DISCOVERY AND RESOURCE CONSUMPTION 136
FIGURE 5.14: RESOURCE ALLOCATION BANK AND CONSUMPTION POOLS .. 140
FIGURE 5.15: ADAPTIVE GENETIC SEARCH ALGORITHM CONCEPT MAP .. 148
FIGURE 5.16: LOGIC FOR THE GENERAL FAULT SEARCH ALGORITHM .. 155
FIGURE 5.17: DIAGRAM OF DATA MANAGEMENT IN SEARCH POOL-1 ... 156
FIGURE 5.18: LOGIC FOR THE GENE ISOLATION ALGORITHM ... 161
FIGURE 5.19: DIAGRAM OF POOL-2 MUTATION FOR INDEPENDENT FAULT 163
FIGURE 5.20: DIAGRAM OF POOL-2 TEST CASE MUTATION FOR 2 VARIABLE SEARCH 164
FIGURE 5.21: LOGIC FOR THE REGRESSION TESTING AND TABU GENE RELEASE ALGORITHM 167
FIGURE 5.22: EXPECTED RELIABILITY GROWTH CURVE SHAPE .. 171
FIGURE 6.1: THE COMPLETE SET OF SUSTAINABLE VALUE PROPOSITION DRIVING ASPECTS 174
FIGURE 6.2: GRAPHICAL PRESENTATION OF RELATIVE SUSTAINABLE VALUE PROPOSITION CASE STUDY

RESULTS ... 176
FIGURE 6.3: SCREENSHOT OF SEARCH ALGORITHM TOOL – DASHBOARD .. 183
FIGURE 6.4: IDEAL RELIABILITY GROWTH BASED ON DETECTED FAULT COUNT 184
FIGURE 6.5: IDEAL RELIABILITY GROWTH BASED ON MITIGATED RISK ... 185
FIGURE 6.6: GRAPHICAL LOCATION OF SINGLE VARIABLE, INDEPENDENT FAULTS 189
FIGURE 6.7: GRAPHICAL LOCATION OF TWO VARIABLE, DEPENDENT FAULTS 190
FIGURE 6.8: GRAPHICAL LOCATION OF THREE VARIABLE, DEPENDENT FAULTS 191
FIGURE 7.1: EXAMPLE OF EXPERIMENTAL TREATMENT ... 196
FIGURE 7.2: STATISTICAL COMPARISON OF TREATMENTS 1 AND 14.. 200
FIGURE 7.3: STATISTICAL ANALYSIS OF LAST FAULT BETWEEN TREATMENT 1 AND 14- RESOURCE 200
FIGURE 7.4: STATISTICAL ANALYSIS OF TREATMENTS 1 AND 14 - TEST CASE 201
FIGURE 7.5: STATISTICAL ANALYSIS OF LAST TEST CASE BETWEEN TREATMENT 1 AND 14 202

xi

FIGURE 7.6: DOE RESULTS TO ANALYZE FAULT DETECTION EFFICIENCY .. 208
FIGURE 7.7: DEO RESULTS FOR ANALYSIS OF AVERAGE RESOURCES CONSUMED TO DETECT ALL FAULTS . 213
FIGURE 7.8: DOE RESULTS TO ANALYZE TEST CASE COUNT TO FIND LAST FAULT 217
FIGURE 7.9: RISK MITIGATION, TREATMENT 1 VS. 14 .. 223
FIGURE 7.10: CUMULATIVE FAULT DETECTION, TREATMENT 1 VS. 14 ... 223
FIGURE 7.11: RISK MITIGATION COMPARISON, TREATMENTS 1, 14, AND 32 225
FIGURE 7.12: CUMULATIVE FAULT DETECTION COMPARISON, TREATMENTS 1, 14, AND 32 226
FIGURE 7.13: RISK MITIGATION COMPARISON, TREATMENTS NUMBER 1, 14, AND 23 228
FIGURE 7.14: CUMULATIVE FAULT DETECTION COMPARISON, TREATMENTS NUMBER 1, 14, AND 228
FIGURE 7.15: RISK MITIGATION COMPARISON, TREATMENTS 1, 14, AND 2 230
FIGURE 7.16: CUMULATIVE FAULT DETECTION COMPARISON, TREATMENTS 1, 14, AND 2 231
FIGURE 7.17: RISK MITIGATION COMPARISON, TREATMENTS 1 AND 14 .. 233
FIGURE 7.18: CUMULATIVE FAULT DETECTION COMPARISON, TREATMENTS 1 AND 14 233
FIGURE 7.19: MAJOR ZONES OF COMPLEX SYSTEMS RELIABILITY GROWTH CURVE 236

xii

Chapter 1: Introduction

1.1 Background

Technology advancements and new innovations continue to fuel the fast pace of new

product introductions available to consumers around the world. In 1965, Gorden E.

Moore predicted the number of transistors on integrated circuits would double every

two years (Moore, 2006). Today his relatively accurate prediction, Moore’s Law, serves

as a symbolic backdrop for the exponential growth of consumer electronics as well as

design evolutions in the majority of industrial categories. With each new product

introduction, consumers are presented with possibilities for increased productivity,

improved communications and information flow, and improved quality of life (Malik,

2013; Friedman, 2005). But, with the ever increasing hunger for products that increase

consumption of the worlds natural resources, questions arise of how to measure the

benefits new technology brings to humankind vs. the potential wake of waste streams

left in its path. The challenging concept is balancing the e-gain benefits from new

technology vs. the e-waste of abandoned products (Figure 1).

The phrase “the world is now connected” refers to the explosion of electronic

technology that allows consumers around the world to participate in the digital age of

communications and computing (Lessig, 2002; Mulgan, 2011). With the advancement of

satellites, cell towers, increased micro-processor speeds, advanced electronics and

software, information and new solutions are connecting individuals across oceans. New

solutions and product innovations in areas such as health, education, transportation,

and engineering tools are enabling societal gains in all parts of the world. These “e-

gains” are driving new benefits to international consumers. At the same time, the pace

of the new technology advancements is growing exponentially and providing consumers

with a constant flow of new choices. These choices are often at the expense of the

current solution and are creating a waste stream of old hardware.

1

Figure 1.1: The sustainable product development conundrum

New business opportunities for material recycling or re-purposing have grown recently,

yet simultaneously stock piles of consumer electronic waste have also grown. These bi-

products have been labeled as “e-waste”. There is a need for research that analyzes the

drivers of a product lifetime in relation to the balance between e-gains vs. e-waste.

Whereas the fuel for this conundrum comes from technology advancements and

personal gains, engineers should pay attention to all forces that motivate consumers to

abandon the use of a product before its designed useful end of life. These forces include

product defects, excessive warranty costs or product downtime, and lack of function

relative to new options in the market (Widmer et al., 2005).

In order to model or predict the success of a particular design in the field, one must look

beyond the internal definition of product value, and integrate the reality of what the

customer values. If you ask a businessman whether or not a particular product line is

sustainable, the answer may lie in the context of financial gains they may extract from

the customer relationship over time. This drives the analysis of Customer Lifetime Value

in the effort to increase shareholder value. Ultimately, in order to affect the

sustainability of a particular product design in the field, a broader perspective is

required during the product development cycle to enable the creation of sustainable

value over the lifetime of the product platform (Figure 1.2).

2

The traditional definition of customer satisfaction focuses on the ability of the producer

to develop a solution in the form of a value proposition meeting customer expectation

over time. One of the primary drivers in the proposition is the perceived value, a

dynamic variable constantly affected by external factors. In order to improve product

development to reduce the amount of e-waste relative to the e-gains of new

technology, there is a need for research in the field of sustainable product development.

This is accomplished by integrating sustainability concepts into product design tools in

order to drive value over the life-cycle of the product platform and the lifetime of

relationship with the consumer. This research defines the result of this activity as

Sustainable Lifetime Value (SLV).

Figure 1.2: Product and Customer Lifetime Value models are core to Sustainable
Lifetime Value Creation

3

1.1.1 Sustainable Lifetime Value Creation through the
Design of Sustainable Products

In free enterprise business environments, the primary objective of corporations today is

to maximize the return on investment (profit) subject to constraints. The company’s

shareholders are the ultimate residual claimant because they provide the required

financial investment for development and operations (Jensen and Meckling, 1976;

Eccles et al., 2012). For decades, there has been a debate on the effects of adopting

corporate social responsibility and sustainability practice and the cost or benefit of

these actions. Some scholars have argued that adopting such practices will destroy

shareholder wealth (Friedman, 2007; Navarro, 1988). At the heart of these researchers’

position is that employees of a business are responsible to their employers not to

society. Recently, there is some evidence that companies that have a corporate culture

that embraces sustainability may actually outperform similar companies in increasing

shareholder value (Eccles et al., 2012; Linnenluecke and Griffiths, 2010). In reality, the

dynamics of competing in a business world are complex and business models are

constantly changing. The preferences of individual customers widely vary and

corporations must choose the particular value proposition they will offer to the

consumers and against the competition.

To assume the sustainable practices will only act as a tax can lead to takes a narrow

view of the topic. In reality, it is possible to create a sustainable value proposition in a

new product design (relative to the previous offering) that increases value to the

consumer and producer and reduces environmental impact. By taking a broader view

and integrating the drivers of sustainability into the product development process,

sustainable lifetime value is created. Continued research and tool development is

needed to aid the design engineer in bridging the gap between traditional financial

models and models that take advantage of the time value of resources over multiple

product life-cycles (generation to generation design improvements – see Figure 1.3).

4

Figure 1.3: Driving the sustainability value proposition into future design generations

1.1.2 Sustainable Value Creation Models

From a return on investment and sustainability perspective, the long term goal of the

development engineer is to increase shareholder value by improving generation to

generation product designs focused on sustainable lifetime value . Unfortunately this is

a dificult task due to the trade-offs within complex system designs. Competing values in

combination with complex product definitions, make sustainability model development

in the area of product design, dificult.

Research in the field of value creation and the development of sustainable products and

processes should include the study of complex systems. In part, there is need to

breakdown the complex problem into manageable aspects. Ueda et al. (2009) described

the goal of Sustainable Value Creation as a complex problem. Beyond a producer

creating an artifact that they feel the consumer will value, values are “co-created”

through interaction among systems including natural systems. Longevity or product half-

life is not only affected by design attributes such as specifications, but is also affected by

5

how society accepts and advocates for the new technology. Depending on societal

trends, new product introductions can be either slow to succeed or the product can

experience excess inertia. Ueda et al. (2009) also presented value creation models based

on emergent systems and co-created decision making. They studied the relationships

between natural, social, and artifactual systems. In related research, Tolio et al. focused

on the complexity of economic, socio-political and technological dynamics (Tolio et al.,

2010).

This dissertation research is in the field of sustainable products and process

development with a focus on the key aspects that create sustainable lifetime value. One

of the motivations for this research is to provide the engineering community a set of

tools that bridge the gap between product design and financial deliverables. The first

step is to redefine the traditional product value proposition to include the driving cost

aspects of the major stakeholders in sustainable development (Figure 1.4).

Figure 1.4: Sustainable Value Creation framework for products

6

Just as the introduction of new technology to society is a complex problem, the

development and success of new products can also be complex. With the integration of

new hardware, firmware and software, products today are integrated complex systems

that provide solutions to consumers and society. Developing tools for the engineering

community that reflect this reality is the key to bridging the gap between the time value

of money and time value of resources. There is a need for additional tools in the

engineering tool kit to help engineers transition the concept of a sustainable value

proposition into the physical design.

With the help of NGO’s, industry representatives, and government employees, influence

on the long-term effects of sustainable products has continued to increase in some

industries. The potential for even greater value creation is not only possible, but

necessary in order to improve sustainability in products from generation to generation.

At the heart of this proposition is the creation of greater value between consumers and

producers, to achieve societal and environmental benefits.

There is extensive research in the field of product development and customer

satisfaction that analyze the potential profit of particular product design. For example,

Customer Lifetime Value (CLV) models have been developed to help producers

(companies) develop business models that analyze the profit per customer of a product

line over the life of a platform (Reinartz and Kumar, 2003). This traditional model is built

on the fundamentals of financial theory and the time value of money. In addition,

another product development business model, the Return Map, calculates the return on

investment vs. the cost and time to develop the new product (House and Price, 1991).

These two standard product development feedback models are focused on the

producer/consumer relationship, but lack the integration of the basic sustainable

product development concepts.

This research is unique in that it deals with the fundamental weaknesses of these

models from a sustainability perspective and focuses on identifying critical aspects of

7

the development process to integrate them into a framework that aids in the design of

sustainable products.

1.2 Research Outline

This research is divided into two parts that lead to closing the loop towards Sustainable

Value Creation in product development. The first section presents a framework for

achieving sustainable lifetime value through a toolset that bridges the gap between

financial success and sustainable product design. The second section applies the

framework, focusing in on the roles verification, risk and resource management play in

the development on sustainable products.

1.2.1 Closing the Loop towards Sustainable Lifetime Value
Creation

Ultimately, the goal of this research is to create a framework for the engineering

community that helps close the loop towards Sustainable Lifetime Value Creation in

product design. Four primary elements are presented in a concept model focused on

this goal (Figure 1.5).

1. Key Stakeholders: In order to create a sustainable value proposition that will

lead to value creation, the primary stakeholders are identified.

2. Product Development Process Drivers: Six primary drivers of activity in the

development process are identified for the engineering community, that affect

the sustainable lifetime value metrics.

3. Development Process Integration: The six drivers are presented in an

integrated format to emphasize the symbiotic relationship necessary for

increasing the return on investment.

8

4. Sustainable Value Life-Cycle Metrics: A new set of metrics focused on

time value of resources is identified that aids in the analysis of return on

investment for sustainable product development.

Figure 1.5: Concept model of the integrated sustainable product development
framework

Fundamentally the study of product lifetime value is introduced as measured by the

product half-life relative to related development metrics. This research establishes the

Sustainable Products Half-Life Return Model to integrate data sets from product

development life-cycles and the product platform lifetime. To bring focus to the

problem, the concept of an expanded sustainable value proposition is introduced where

the high impact drivers for each pillar of the proposition are identified. In doing so, the

design engineer will have a set of metrics that will aid in value creation in generation-to-

generation product development. Finally, a set of primary drivers in sustainable product

development are integrated into a tool set designed to aid the engineering team during

9

the product development life-cycle. Robust design practices are critical to improving the

lifetime value of a product design but the complexity of product verification and

feedback during the design process can be just as important to Product Lifetime Value,

Customer Lifetime Value and ultimately Sustainable Lifetime Value. The integration of

risk and resource management, along with fault detection and mitigation are levers that

drive improvement in the sustainable products design model.

Whereas the long term benefits of improving the sustainable value proposition will

include the integration of total cost with social and environmental factors, research

focused on the extension of product half-life, material utilization and development

resource optimization will play a major role in sustainable product development.

1.2.2 Reliability Assurance Model for Sustainable Product
Development

The second part of this research applies the aspects of the integrated product

development framework for fault detection and mitigation process during the product

development life-cycle. By introducing risk and resource management (cost) into the

fault diagnosis process, improvements can be driven into the key metrics of the

sustainable product Half-Life Return Model. This research identifies five aspects of the

fault detection process and applies them into a model designed to improve the effects

of test case development by the System Product Assurance Engineers. The results of this

model are used to draw generalization about these effects on the creation of

Sustainable Lifetime Value.

A critical, yet often overlooked aspect of product development is testing, verification

and product assurance activities. Unfortunately some products, including consumer

electronics, have become so complex that traditional product assurance and reliability

engineering processes cannot adequately predict the system reliability, or average life of

a product. With the integration of hardware with firmware and software, the number of

10

system combinations requiring traditional product verification testing is impossible. In

essence, if the goal of the reliability engineer is to test every design combination, the

problem becomes intractable. Today, some complex systems are shipped to customers

with a projected failure rate at the start of production (Tassey, 2002). The societal costs

of these escapes, along with the current expense rates of product verification, create

the need for advancements in process and tool development.

Recently there have been advancements in research focused on fault detection and test

case generation using heuristic techniques. (Cohen et al., 2003; Watkins et al., 2002;

Baudry et al., 2005) These new fault detection algorithms are primarily in software

development which does not present the same difficulty as verifying the combination of

hardware, firmware and software. Because of the possibility of latent and interactive

defects in hardware systems, as well as the potential for multiple defects related to one

sub component in a complex system, subsystems and interactions must be continually

monitored in the verification process.

In the fields of reliability engineering and system assurance, the science of test case (for

fault detection) development, with problem resolution management vs. risk analysis

and management, is typically managed independently with separate data and value

streams. This gap prevents the opportunity to focus verification resources on the test

combination with the highest potential payback. In addition, time to market and limited

testing resources can be a critical factor that affects verification strategies.

The second part of this research is the development of a broader adaptive algorithm

that can integrate the search for functional defects, interactive defects, and latent

defects embedded in a complex system. In addition, this fault diagnosis process is

focused on the characteristics of a complex system that integrates hardware, firmware,

and software into one system to test. By introducing test case cost, a verification

budget, and detected fault risk value into the algorithm, the ability to increase the

lifetime value of the product and shareholder value of the producer will improve. By

11

focusing on the primary drivers of the Half-Life Return Model, the ability to create

sustainable lifetime value is also enabled.

Whereas the long term benefits of improving the sustainable value proposition will

include the integration of total cost as well as social and environmental factors, research

focused on the extension of product half-life, material utilization and development

resource optimization will play a major role in sustainable product development.

1.3 Chapter Summary

This dissertation is presented in two parts (Figure 1.6). The first part is focused on

Sustainable Lifetime Value Creation in the pursuit of developing sustainable products. A

concept model and analysis metrics are presented which can be adapted for specific

industries. In Chapter two, first, a literature review is presented in the area of

Sustainable Value Creation, product delivery, and background material. Next, tools are

presented which are designed to aid the development engineer in the design and

delivery of products that improve the sustainable value proposition. These concepts are

packaged into an integrated framework to address Sustainable Lifetime Value Creation.

The second part of this dissertation is focused on some of the key drivers introduced in

the integrated framework. In particular, it introduces the use of feedback during the

development life-cycle to increase the lifetime value of the product. Chapter three is

dedicated to the problem definition and hypotheses used to research and design a

solution that assists the development team in the verification of product designs.

Chapter four presents a literature review and supporting background on feedback and

the application of the integrated framework. Chapter five presents an adaptive genetic

search algorithm designed to improve complex system fault detection modeling and

application of the integrated framework. Chapter six presents a case study that

exercises the search algorithm and sustainable value proposition metrics. In the

simulation, a designed experiment is used to evaluate the independent affects and

interdependence of the controlled test case model variables. These results are

12

presented in Chapter seven along with discussion. Chapter eight concludes the

dissertation with a summation and discussion of the potential for future work.

Figure 1.6: Dissertation chapter outline

Copyright © K. Daniel Seevers 2014

13

Part 1: Sustainable Lifetime Value Creation

14

Chapter 2: Sustainable Lifetime Value

Creation: Integrated Model

This chapter is focused on creating a model that bridges the gap between product

development and value creation to aid in the design of sustainable products and

processes. The first section provides a literature review and background information on

the broader concepts of sustainable product development and the gaps experienced by

development engineers in their attempt to bridge the relationship between sustainable

concepts and new product delivery processes. The second section identifies the key

aspects of a new value proposition and integrates those aspects into a framework

designed to aid in maximizing the return on investments associated with product

development aimed at the proposition. The goal of this research is to introduce the

concept of the time value of resources into the delivery process to drive toward the

creation of sustainable lifetime value. This creation is accomplished by integrating

sustainability concepts into product design tools to drive value over the life-cycle of the

product platform and the lifetime of the relationship with the consumer.

2.1 Literature Review

2.1.1 Sustainable Development

With continuous growth in the world’s appetite for new products and services, the rapid

consumption of the earth’s natural resources and the pressure of this growth on social

and environmental systems, fuels the desire and need for research in sustainable

product development. The effects of this research on the actions and processes of

specific industries and corporations are varied depending on the region, type of product,

and individual motivation of the organization. Drivers of process change include

regulatory requirements, corporate social responsibility, or even physical reminders

15

such as the reality of post-use waste streams such as e-waste. Inherent in the problem

solving processes used to create new solutions, engineers do not set out to develop

products that add undo waste. In fact, corporate product development processes seek

delivery efficiencies and final designs that meet the expected value proposition. The

concept of sustainable product development is logical, but the definition and

understanding of this concept is varied and can be confusing to the engineering

community. This confusion is due to the subject of sustainability being a broad and

multidisciplinary topic.

System Dynamics

Early research in the field of system dynamics were born out of the recognition that the

consumption of the world’s natural resources and the effects of industrial growth on

ecosystems were at a pace that would eventually outpace the supply. In an effort to

cross boundaries, global think tanks and organizations began to discuss the topic. For

example, a group called “The Club of Rome” released a report titled “Limits to Growth”

to draw attention to related issues (Peccei, 1981; Meadows et al, 1972). In this report, a

multidisciplinary group identified five variables (world population, industrialization,

pollution, food production, and resource depletion) that should be analyzed within one

system in order to gain insight into a model that would aid in future development.

Systems theory research attempted to create models to represent these complex

problems. Jay Forrester is credited with developing models in system dynamics and was

invited by The Club of Rome to attempt to model the five variables identified in their

report (Forrester, 1971). He created a mathematical model intended to predict the

behavior of the complex interactions in the five variables over time. These models were

originally titled World1 and World2 and, since that time, additional research has focused

on improvement of the model. This line of research was aimed at modeling the behavior

of vast systems over time, but did not necessarily provide a clear link between economic

and social benefits of development.

16

Definition of Sustainable Development

One of the most recognized attempts to draw attention to sustainable development was

initiated by the General Assembly of the United Nations in a report by the World

Commission on Environment and Development, titled “Our Common Future” (Burton,

1987). In this report, it was pointed out the the words “environment” and

“development” had definitions and connotations that could lead to narrow

interpretation. In addition, the commision implied that the two words should be

considered inseparable because the ”environment” is where we live and “development”

is what we all do to improve our lot within the environment. Development within an

environment can be described as an economy. Therefore, the commision defined

sustainable development as economic developmment that meets the needs of present

generations without compromising the ability of future generations to meet their own

needs (Vágási et al., 2003). In order to bridge the gap between the Brundtland

Commission and business and economic theory, J. Elkington introduced the term “The

Triple Bottom Line” as an advancement of the traditional financial business term “ the

bottom line”, wherein the end corporations are in business to make profits (Elkinington,

2004).

Financial management literature began to integrate traditional economic and financial

goals with environmental and social concerns. The triple bottom line creates a triad of

macroeconomic concerns between social, economic, and environmental aspects

(McDonough & Braungart, 2002) (Figure 2.1). These early attempts to bridge the gap

between business and sustainability integrated economic concepts into the discussion,

but still lacked a cohesive bridge between sustainability and new product development.

There is a need for further research and tools to aid the engineering community in

closing the loop between the life-cycle of product development and broader life-cycles

of the environment and society.

17

Figure 2.1: The triple bottom line of sustainable development (Elkinington, 2004)

Sustainable Manufacturing

Whereas the Brundtland Commission established a broad definition of sustainable

development, there has been focused research in the definition of sustainable

manufacturing and product development (Jayal et al., 2010). Adapting descriptions from

the US Department of Commerce and the National Council for Advanced Manufacturing,

Jawahir and Jayal (2011) conducted research in the field of sustainable manufacturing

that was focused on the development of sustainable products and processes. While

maintaining and/or improving the product and process quality, the earlier definition of

sustainable manufacturing is expanded to cover the following five expectations:

• demonstrate reduced negative environmental impact,

• offer improved energy and resource efficiency,

18

• generate minimum quantity of wastes,

• provide operational safety, and

• offer improved personal health

while maintaining and/or improving the product and process quality.

These focus areas serve as a general list for a development team to consider during the

design life-cycle. In addition to the list above, research on taking an extended view of

the product life-cycle can also aid in the sustainability of products and processes.

Early attempts to focus on closing the loop on a product life-cycle were coined with the

term the “3R’s”. People were encouraged to reduce their consumption, reuse their

products if possible, and finally recycle the material at the end of the product life (Gehin

et al., 2008). The majority of product development research centered on the 3R’s is

focused on lean and green manufacturing (Metta, 2011). However, in order to drive

towards sustainable manufacturing, innovation-based approaches that extend the 3R’s

further are encouraged. These approaches include introducing the capability to recover

end-of-life products and materials, redesign and remanufacture the next generation

products over multiple life-cycles and utilize the recovered materials (Figure 2.2), (Joshi

et al., 2006; Jawahir and Dillon, 2007).

This research seeks to extend the concept of integrating innovative drivers into the

development process in order to assist the engineer in designing more sustainable

products.

19

Figure 2.2: The "6R's of Sustainable Manufacturing are designed to increase stakeholder
value (Jawahir and Dillon, 2007)

E-WASTE and Product Utilization

As a matter of strategy, engineers do not set out to design new products for the sake of

creating waste. In fact, producers face a new product development conundrum:

Technology producers are in a cycle that encourages new product release and product

turnover before the current product used by the consumer hits its useful end-of-life. In

order to draw attention to the research necessary to help improve the development of

sustainable products and processes, particularly from a waste stream perspective, the

perceived value should be well-understood and addressed.

A familiar saying in commercial enterprise is “time is money”. Courses in engineering

economics introduce financial concepts to their design engineers as they contemplate

cost, expense, and time as part of their overall solution. Given this background,

engineers may struggle to develop the financial connections between time, money

(commerce), and sustainability. In its basic form, finance theory uses interest (rates) to

form the fundamental concept of time value of money. (Crosson and Needles, 2008)

Sustainable Manufacturing
(Innovative, 6R-based)

Innovation Elements

Remanufacture

Redesign

Recover

Recycle

Reuse

Reduce

Lean Manufacturing
(Waste Reduction-based)

Green Manufacturing
(Environmentally-benign, 3R-based)

Traditional Manufacturing
(Substitution-based)

Time
1990 2000 20101980 2020 2030 2040 2050

St
ak

eh
ol

de
r V

al
ue

, $

20

When developing new tools in sustainability for the engineering community, this basic

concept still holds, but further analysis is warranted around the term value. From an

engineering perspective, this research broadens the concept to “time value of

resources” and lifetime value.

The ultimate measure of the lifetime value of a product and consumer satisfaction may

be the actual utilization of the product over an extended period of time. The study of

profit over a product life-cycle through customer utilization and revenue is sometimes

referred to as Customer Lifetime Value- CLV (Berger and Nasr, 1998). This dissertation

draws attention to the gap between research addressing Customer Lifetime Value and

Sustainable Value Creation. By focusing on improving the sustainable value proposition

to the consumer and meeting the intended design of the development team, the

product utilization (reducing early product withdrawal) and warranty rates will improve.

This broader scope of sustainable product development will assist in the improvement

of inefficient consumption and help reduce the creation of its byproducts, such as

electronic waste.

To illustrate the effects of early product withdrawal, the study of the half-life of product

families is introduced (Figure 2.3). The half-life is defined as the point where half of the

products sold within a product platform (model family) have been retired and are no

longer used in the market. The graph presents models of relative half-life estimates for

various types of material goods (Seevers et al., 2013).

21

Figure 2.3: Relative product half-life estimates of selected product families (Seevers et
al., 2013)

The chart exposes the challenges consumer electronics producers and other high

technology industries face, where it is possible that the half-life of a product family is

shorter than the time it takes to develop the product. When product half-life data is

superimposed on product financial models, even greater insight on the potential risk of

early product abandonment is possible. The details behind these dynamics can aid in

research toward the development of sustainable products and processes. The ability to

predict product life due to changing market conditions is an important aspect of

sustainable product design and manufacturing. There is a gap in research addressing

modeling product life that takes into consideration the sustainable value of the products

from the perspective of society and the environment.

22

2.1.2 Traditional Half-Life Modeling

Customer Turnover and Product Churn

Just as research in the field of sustainable manufacturing examines the value of a

product over potentially multiple lifetimes, research in business administration studies

the value of retaining customers over time. Studies show that the initial cost to attract

new customers is typically higher than the cost to retain customers. This phenomenon is

why customer satisfaction is critical to long term profitability of businesses, particularly

those whose value proposition includes annuities or contract services (Reinartz and

Kumar, 2003). In their research, Reinartz and Kumar (2003) identify the impact of

customer relationship metrics on lifetime profitability and create a model to analyze

resource allocation and balance between competing expenses in marketing

organizations for optimal profit. The industry term used to identify a customer who ends

their financial relationship with a producer and stops utilizing their product is called

Churn. Conversely, when a producer adds a new customer (a consumer of their product

line), this is referred to as Lift. Churn and Lift models are a primary method for

businesses to predict their future profit and shareholder value in relation to their

product portfolio and value proposition (Fader and Hardie, 2007).

As the new product development conundrum points out, customer and product churn

creates a strain on both producers and the environment. Abandoned products are taken

out of service before the intended useful life has been achieved. This problem is

heightened in the electronics fields due to many reasons, but technology advancements

continue to force reconsideration of the potential value proposition of the old product

vs. the next generation. Beyond consumer electronics, the creation of waste streams

due to churn can affect many other industries too. Because of this, there has been

increased research in the field of predictive churn models in relationship to the

projected Customer Lifetime Value for the producer.

23

Braun and Schweidel (2011) point out that there are two major research categories

related to this topic. The first category focuses on Customer Lifetime Value in

relationship to the time when a customer decides to terminate a relationship (Fader et

al., 2009; Rosset and Neumann, 2003). Models are created with the intent to calculate

the time before churn. The researchers also point out that these models do not focus on

why they move on, just that they have moved on. The other category of research in this

marketing field focuses on reasons why a customer may choose to stop use of the

product or service (Schweidel et al., 2008). While these models are useful, they do not

account for the complexity of competition in the market place and do not address the

issue of competing causes for churn. Braun and Scheidel focus their research on linking

the different reasons for which customers churn to the value they provide to the

producer. In essence, they develop probability of surviving (a given time period) with

multiple risks for organizations to calculate the expected Customer Lifetime Value of

their product line. The logic used to create this model, starting with survival probability

due to a single event working up to the survival probability due to competing events, is

shown in Figure 2.4 and described below (Braun and Scwheidel’s (2011)).

Survival Probability

The premise for calculating the lifetime profit a business may achieve for a

particular product line starts with connecting the survival rate of keeping the

customer set. The survival probability (S) is a function of hazard rate (H) of the

studied data set over time (t).

Expected Customer Lifetime Value

In order to manage the data, the survival of the customer set is broken down

into time segments. After each time frame, the number of customers remaining

is calculated. The expected is therefore dependent on survival of each period.

24

Figure 2.4: The progression of logic to establish CLV via multiple churn risks

Specific Risk Churn

A customer may choose to stop using a particular product for a number of

reasons. The ability to break a problem down into multiple effects increases the

quality of a model. The model generates information about the effects of

delaying churn attributable to a specific risk.

Isolated Contribution

The likelihood of a single contribution to a single individual is the final building

block to modeling the potential risk to profit due to a lost customer.

Competing Risks Survival

Ultimately the probability of survival with competing risks is derived from the

logic of the previous sections. Braun and Scwheidel’s (2011) research derived the

mathematical equations for this logic.

25

Challenge to model correlation between churn and sustainability

Previous research by Braun and Schweidel (2011) provides a promising model of

projecting Customer Lifetime Value with the possibility of multiple causes of churn. The

researchers’ definition of Customer Lifetime Value is only from the producers’

perspective with regard to potential lifetime profit per a given customer. This narrow

definition does not take into consideration sustainability aspects such as the cost of this

churn to consumers, society, or the environment. In essence, if a consumer “churns”

and moves on to another solution, the waste stream of the abandoned solution is

considered a sunk cost. Sunk costs are expenses that are not recoverable, are attached

to opportunity costs from past decisions, and are not considered relevant to future

decision making (Schmalensee, 2004). This definition is strictly from a financial business

perspective and may under appreciate the time value of resources from a consumer,

societal, or environmental perspective.

In order to expand the definition of value creation to include the longer term

perspective of product development over potentially multiple physical life-cycles,

research in the field of value creation must include the driving aspect of sustainability.

The research in this dissertation will create a framework to transition from Customer

Lifetime Value to Sustainable Lifetime Value (SLV). An integrated framework of

sustainable product development drivers is presented in order to address the long term

value proposition. The effects of this research are presented in a model that integrates

financial product success with the longevity of the product life and measured by the

product half-life.

2.1.4 New Product Delivery and Return on Investment

Within free enterprise markets, many companies have been identified who are focused

on increasing shareholder value and simultaneously focused on sustainability and

corporate social responsibility. There are certification programs that exist, such as

26

Energy Star and Blue Angel, that give producers the opportunity for brand recognition in

return for meeting higher standards for product designs that help consumers and the

environment (Brown et al., 2002; Hemmelskamp and Brockmann, 1997). In addition,

opportunities are identified for investors who seek out corporations that perform well

relative to performance metrics in economic, environmental, and social categories. The

Dow Jones Sustainability Index (DJSI) and the United Nations Global Compact 100 stock

index are two examples of indices that rank stocks based on performance in

environmental and social issues as well as financial results.

Research in the field of Environmental Economics is a branch of sustainable

development that is focused on the effects of the economy on the environment. In

David A. Anderson’s book titled Environmental Economics and Natural Resource

Management , he takes the position that the economy is a subset of the environment

(Anderson, 2013). In related work, Whitehead and Haab (2012) suggest adding the

external costs of production to the internal bill of materials. From an economic theory

perspective, the added cost (nicknamed a pollution tax) will, in effect, raise the cost of

the product and, therefore, lower the demand. These models are focused more on

material consumption and do not analyze the three mutual aspects of the sustainable

value proposition (consumer impact, producer impact, and socio-environmental

impact). The success of a product with new technology is a complex problem, which

may or may not take into consideration the environmental effects. By looking at the

mutual value between the three driving aspects, product success can drive sustainable

lifetime value and shareholder value through improved return on investments.

A Balanced Approach to Product Design

There is another line of research that draws attention to the integration of ecology and

the environment into the product development process. Because of the complexity of

designing products for a sustainable world, engineers are required to make competing

trade-offs in the development process. Traditional tools developed to aid the engineer

27

in decision tradeoffs and generation-to-generation design comparisons include the

Quality Function Deployment and The Pugh Concept Selection Methodology (Prasad,

1998; Hauser; Kerscher, 1993; Pugh and Clausing, 1996). Recently, efforts have been

made to introduce the concept of sustainability into these types of tools which are

mainly focused on life-cycle integration into the visual tools (Ramani et al., 2010;

Devanathan et al., 2010). These new tools are considered to be in the field of eco-design

but do not necessarily focus on the aspects of sustainable value in the product

development process. In order to take advantage of concept selection type sustainable

product development tools that also integrate value creation analysis, the competing

factors of this complex problem should be identified.

The Return Map

In free enterprise markets, the majority of new technology and product development is

conducted with the goal of profit, portfolio growth, and customer satisfaction. There are

tools used by development community program managers that aid in the financial

analysis of a product line to provide feedback to the design teams. An example of such a

tool was developed by Charles H. House and Raymond L. Price. They labeled it “The

Return Map” (Figure 2.5). This tool integrates the concepts of development time

(expense) along with sales. Emphasis is placed on break even points and return on

investment (House and Price, 1991).

One of the primary reasons House and Price developed this tool was to provide

marketing R&D and manufacturing a common standard of measurement to shorten the

development cycle for improved return on investment (ROI). In essence, the Return

Map captures both money and time in one space. Three primary sets of data

(investment expense, sales revenue, and profit) are plotted out on a timeline. The

primary data sets are:

28

Product Research Time: The initial time (investigation phase) and research

expense used to investigate new technology and potentially new product to

deliver to the market.

Product Development Time: This is defined as the “Time-to-Market” or the

amount of time (and development expense) required developing the concept

into the final design ready for production.

Investment Expense: Producers may choose to track research expense separate

from product development expense, but, in general, the investment expense is

the amount of money required to fully develop and produce a product for

market. Some producers track the physical product material expense (a.k.a. bill

of material – BOM expense) separate from the development expense.

Sales: In the Return Model, sales are tracked as total revenue in the product

family sales.

Profit: Profit is the positive gain from sales (revenue) after subtracting for all

expenses.

Break-Even-Time (BET): Starting the clock when the team begins the

investigation of a new product, the breakeven point is where the cumulative

profit line crosses over the cumulative investment expense line. The breakeven

time is, therefore, the amount of time elapsed during the product life-cycle

before the cross over point is met.

29

Figure 2.5: The product development Return Map by House and Price (1991)

Break-Even-After Release (BEAR): Likewise, break-even-after-release refers to

the amount of time (and investment expense) elapsed between the start of

engineering development and the breakeven point. This is a critical metric in the

effort to drive improved collaboration between R&D, marketing, and

manufacturing as well as reducing development time.

Return Factor (RF): This is the calculation of profit divided by the investment at

any specific point in time after the product has started production (SOP) and the

beginning of sales.

With focus on producer collaboration and driving shorter development cycles, the

Return Map is a valuable development tool designed to aid the engineering community

in increasing portfolio value for their investors. As worldwide competition continues to

30

put greater pressure on engineers and, ultimately, the product life-cycle, viewing data

from both a money and time perspective provides insight into the producer value

proposition.

Product Half-Life and Sustainability

Since the development of the original model by House and Price (2011), greater focus

and public demand is being placed on issues of sustainability and the development of

sustainable products and processes. One of the drawbacks of the Return Map model is

that time ends on the last day of product sales. The model does not take into account

the value of the product line in future time, which should be integrated into the

sustainable value proposition. This dissertation introduces a model that focuses on the

total life-cycle of the product family in order to draw attention to the key aspects that

can be fed back into the overall solution. One of the primary metrics used to track the

success of a product over time is the product half-life. This is the point in time where

half of the products sold within a product platform (model family) have been retired and

are no longer used in the market. Product half-life is a form of measuring customer

churn during the life-cycle of the product platform.

In order to extend the producer value proposition into the field of sustainability, total

life-cycle costs for the consumer and indirect socio-environmental costs are integrated

into the formula. As noted earlier, this is not an easy task. In the field of product

development, many organizations struggle to create a value proposition that can

overcome the headwinds of technology change, regulatory requirements, and intense

competition in an effort to satisfy the long-term goals of sustainability. By focusing on

the half-life of the product in the field, producer collaboration, and developing life-cycle

time/expense, progress will be achieved in the pursuit of sustainable product

development.

31

Product Delivery Process

Producing sustainable products requires an integrated approach between product,

process, and system design (Jayal et al., 2010). Just as process plans are created and

followed in an effort to run efficient manufacturing facilities, development teams also

follow a process in order to design products that drive the team towards maximum

return on investment. This section focuses on product delivery processes used by

engineering teams.

Ultimately, the success or failure of a product rests on the ability of the engineering

team to coordinate and, at times, govern activities to deliver a quality design that meets

or exceeds the value proposition. From a business perspective, quality, cost, and

delivery (QCD) are still the cornerstones by which an engineering team will be measured

(Akao, 2004).

One of the more recognizable product development systems is built on the

fundamentals of QCD, surrounded by a total quality management (TQM) mindset.

Taiichi Ohno is considered the father of the Toyota Production System, which is the

basis for broadly accepted lean manufacturing methods (Womack et al., 2007; Kennedy

and Ward, 2003). The cohesiveness of this culture within the Toyota Corporation was so

successful and standardized that it became integrated into the product development

process. In their research, Morgan and Liker (2006) point out that the lean

manufacturing methods were taught around the world and no longer afforded the

Toyota Company exclusive reliance on its benefits. They also point out that Toyota, at

the time of their writing (2006), still had an advantage because lean methods were

integrated into their product delivery process. Whereas the Toyota Corporation is

known for controlled growth, some models described the need for advanced focus on

competing values of innovation to succeed in markets that have advancing technology

and competition (Thakor et al., 2000; Cameron, 2006). The difficulty with relying on

32

incremental improvement is that the process will not allow the development team to

look beyond the tangential change in order to consider step function improvements.

It is important to point out that in free enterprise markets, the forces of intense

competition and technology growth will place a continuous forcing factor on what is

considered best practices. Yamaji et al. (2011) point out that, in the midst of rapid

globalization and worldwide quality competition, Japanese manufacturers are struggling

for the realization of “simultaneous achievement of QCD”. They define it as the

reduction of the product development life-cycle, continued assurance of high quality,

and production at low cost. Even the most recognized companies will continue to feel

competitive pressure to reduce development time and expense, but, at the same time,

delivery of the highest value proposition to the consumer. When this is achieved, the

longevity of the product platform is increased and drives toward Sustainable Value

Creation and investment portfolio growth.

Beyond lean and green manufacturing, focus needs to shift toward integrating

sustainability into every aspect of the product delivery process (PDP). Just as every

corporation or development team could be described by their own specific culture,

every team also has their own development process. It is unrealistic to subscribe to one

development process for all industries; each producer has a different set of goals,

resources, risk aversion level, competitive environment, maturity, and capital

investment intensity. That being said, each team is still driven by a core set of financial,

physical, and coordinated activities integrated in to one superset referred to as the

product delivery process (PDP).

From an engineering perspective, a process implies a set of actions that may or may not

be interdependent to transform a system (Martin, 2000). It is assumed with a

repeatable process that the output of the system is predictable when given a particular

set of inputs and actions. Some processes, like cooking recipes, are passed along

generation to generation, but the intention is to keep the process exactly the same. The

reality of large scale producers, who experience worldwide competition for their

33

product line, is the product development process must be continuously improved. This

is not to imply that the best way to shorten the time it takes to deliver a product design

is to cut corners on the development process. Yet, this can be the natural result of such

a goal. In their research authors Wilson et al. (1996), draw attention to the need for

study of the product development process along with the pitfalls of ignoring the issue.

The researchers describe the term “organizational amnesia”, whereby the majority of

the product knowledge and delivery process is contained within individuals instead of a

systematic, company-wide process. The risk of this type of culture includes the lack of

sharing of best practices and the potential loss of process knowledge if the employee

leaves the team. Their work is an example of research focused on developing an

integrated, functionally balanced product development process.

One of the most traditional product development process methods is based on breaking

the delivery process into major phases (Crowe and Feinberg, 2001). Typical process

phases in order include: conceptual (idea) development; concept evaluation;

development and design consolidation; system test; and, finally, product manufacturing.

To add process structure to these phases, checkpoints at the start of each phase are

conducted. These phase gates (also called stage gates), along with the specific design

practices within the phases, together can be considered a product development

process. This type of development process is also traditionally referred to as the

waterfall process.

One of the most popular practices designed to shorten the product development

process is referred to as “Concurrent Engineering” (Ma et al., 2008). The goal of

concurrent engineering is to integrate functional areas involved within the delivery team

earlier in the process. This includes members from areas such as manufacturing and

service which traditionally did not get involved until later in the process. By addressing

functional needs earlier and potentially avoiding re-design or bottlenecks, the elapsed

time to deliver the final system is reduced.

34

These types of delivery processes are well established and have served their purpose

well. One of the major drawbacks of the waterfall delivery method is the lack of

emphasis on the role that design verification plays early in the process. Traditional

models do not emphasize system verification until the final phase before the hand off to

the manufacturing team. As the complexity of new product designs continue to grow,

especially with the integration of software and firmware with hardware, the ability to

discover system interaction faults in a short amount of time or with limited testing

budgets, is becoming an intractable problem.

2.1.5 Current Model Limitations

As focus on worldwide resource consumption in congruence with the headwinds of

intense competition and product turnover grows, engineers are looking for a tool set

that bridges the gap between traditional design methods and sustainability. While no

two industries or environments are the same, research is necessary to develop a

number of new models and tools to aid the engineering community.

Standard product development feedback models, including those presented by Reinartz

and Kumar (2003) and House and Price (1991), are focused on the producer/consumer

relationship, but lack the integration of the basic sustainable product development

concepts. A common limitation of current product development models is that return

on investment is narrowly focused on the time vale of money and does not take into

consideration the time value of resources over potentially multiple product life-cycles.

In fact, many financial models consider a customer that chooses to stop using a product

as a sunk (investment) cost to the producer and do not consider the burden that

product churn can place on producers, consumers, society, and the environment

(Schmalensee, 2004). In the Return Map - Product Development Feedback model by

House and Price (1991), time and the value of the product ends on the day of the last

product sale. Their model does not consider the potential value of the product over the

35

entire lifetime of the product platform or the effects that the lifetime value have on the

development life-cycle business model.

Traditional product churn models fail to break the problem down beyond the current

product sales cycle, lack analysis of the rate of product churn relative to the amount of

useful product life remaining, and do not take into consideration the complexity of high

technology products and competing fault types that reduce the useful life of a product

in the field. This research is also focused on the role that verification plays on the

creation of value during the product development process. A limitation of traditional

test and verification strategies is the treatment of fault detection and risk management

as two separate processes, thereby limiting the ability to use risk and resource

consumption in the verification process. The product development process is enhanced

when the design team considers the sustainable value proposition aspects within each

design life-cycle. Ultimately sustainability is achieved by closing the loop and repeating

the process over the product lifetime (Figure 2.6).

2.2 Concepts Relevant to Closing the Loop towards
Sustainable Value Creation

Creating sustainable products, especially an in an area that has exponential growth in

new technology, is a complex task. Engineers struggle to make the connection between

sustainability, the value proposition, and shareholder portfolio value growth. By

introducing the concepts outlined in this section, this research is building a foundation

for closing the loop toward Sustainable Value Creation.

Producers are making decisions that need to take into account the continuity of current

successful solutions vs. new technology. This foundation is built on the goal of

integrating producer, consumer, and socio-environmental aspects into one value

proposition. On this foundation, research must continue to develop new tools for the

“engineering tool box” to guide them in the development process.

36

In order to expand the definition of value creation to include the longer term

perspective of product development over potentially multiple physical life-cycles,

research in the field of value creation must include the driving aspect of sustainability.

The research in this dissertation will create a framework to transition from Customer

Lifetime Value to Sustainable Lifetime Value (SLV).

Figure 2.6: Focus on product Life-Cycle and Lifetime in Sustainable Value Creation

2.2.1 Sustainable Value Creation

According to an ASME survey focused on trends related to sustainability in product

development, the overriding reason why corporations integrate sustainability factors

into their designs is government regulations (Autodesk, 2009; Rosen, 2013). This report

surveyed engineers to obtain reasons they would consider sustainability in their product

designs. In additon to regulations, rising energy costs and client demand rounded out

the top three motivating factors for developing more sustainable products. Only 16

percent of respondents reported the potential for improved return on investment. In a

37

similar survey conducted by the MIT Sloan Mangement Review and the Boston

Consulting Group, which focused on integrating sustainability into the developmnet

process, 45% of respondents reported that they expected higher operational cost to

take away from profits. Thirty three percent cited that the administrative costs of

sustainability programs would create additional losses (Kiron et al., 2013). The survey

results show that to keep the attention of the design engineer when developing next

generation products or grab the attention of the consumer in the purchase of their next

solution, sustainable value must be reviewed from their individual and mutual

perspectives.

2.2.2 Green Products and Marketing

The decade of the 1970’s is remembered for the effects of energy on economies around

the world. As a result, focus on environmental business, management, and marketing

began to increase. In the years to follow, it was often considered an added expense to

focus on environmental management within a business and the name “The Green Wall”

was coined to describe the creation of roadblocks to manage issues successfully (Wolff,

1996). Essentially, the word green was used to describe business activities aimed at

financial actions considering the environment in the process. To some consumers, green

marketing was an effective tool to create demand for environmentally focused

products. Although markets grew, they were still considered a niche and not necessarily

mainstream.

Recently, there has been an increase in research centered on sustainable value. Beyond

green marketing, by focusing on sustainability, businesses were beginning to realize that

there could be a win-win scenario in the development of sustainable practices (Laszlo,

2008).

38

2.2.3 Sustainable Lifetime Value in Product Design

The triple bottom line (TBL) attempts to bridge the two worlds of sustainable

development and business. In the center of this concept is the requirement for

reconciliation of environmental, social, and economic demands within the context of

development. While the engineering community is familiar with the TBL, many struggle

to project the concepts onto their own work. In order to put focus on sustainable value,

this research identifies the overlapping benefits between the producer, consumers, and

the socio-environment. This additional set of pillars is referred to as the Sustainable

Product Value Drivers (Figure 2.7).

In order to bring clarity to the concept of value from a sustainability perspective, the

first step is to consider value and respective propositions, from the perspective of the

key stakeholders. For example, new industries in green products and marketing have

been created for consumers who seek out environmentally conscious products. The

proposition for consumers who seek these types of product seek “green value”.

Figure 2.7: Sustainable Product Value Proposition Drivers

39

Producers are motivated to show their social and environmental value through

corporate social responsibility reporting (CSR). Consumers and producers often work

together to create mutual value focused on solutions that reduce workflow and

resource consumption. Producers calculate the net profit they obtain from customers

over the life of a product and call this the Customer Lifetime Value (CLV). Yet, many

engineers lack the tools or foresight to break down the new product design process into

the driving metrics that would simultaneously seek new value creation for the

consumer, producer, and the socio-environment. In order to indentify the driving

aspects of Sustainable Value Creation through product design, long-term value must be

examined from each perspective. This examination of long-term value will lead to the

calculation of lifetime value of a product from a broader perspective. Sustainable

Lifetime Value (SLV) creation in the design of products can be achieved by integrating

all three value drivers into a sustainable value proposition that seeks mutual benefits for

producers, consumers, society, and the environment, without taking away from future

generations.

Producer Value: In order for producers to be profitable, designers strive to develop

products that meet customer needs at acceptable production and delivery cost –

thereby creating a mutual value proposition. Product use and life are the key

deliverables.

Consumer Value: Potential Customers seek out innovative solutions that meet their

needs. In doing so, consumers weigh these potential solutions against the total cost

of purchasing and owning the product.

Socio-Environmental Value: From a sustainability perspective, new products or

solutions that improve the health and well being of society without affecting the

ability of future generations to meet their needs.

These concepts are not difficult when studied on an individual basis, but creating

solutions that optimize the three key pillars of the value proposition is difficult. In fact,

as the world becomes more competitive, the headwinds that development engineers

40

face continue to complicate their ability to achieve the desired goal of sustainable

development. For example, manufacturing losses, abandoned design platforms, and

early product retirement are all examples of waste stream that create losses to

producers, consumers, society and the environment. Certainly, research focused on lean

manufacturing and green marketing can help improve the bottom line. But, in order to

have the greatest impact on the long-term development of products and processes,

focus should be on developing a sustainable products value proposition that integrates

sustainability innovation elements into the product design value proposition. These

elements carry the design concepts beyond the traditional 3R’s of reduce, reuse and

recycle, to include recovery, redesign, and remanufacture (Jayal et al., 2010). This

research focuses on the driving aspects of sustainable product design that affect the

value proposition between the consumer, producer, and the socio-environment.

2.3 Sustainable Lifetime Value Creation: Integrated
Model

In this section, a framework for achieving the goal of Sustainable Value Creation is

presented and three focus areas are identified. The framework is designed to help

engineers close the loop towards sustainable product development. First, the study of

product half-life relative to development metrics introduces the opportunity for

improvement. Next, to bring focus to the problem, the concept of an expanded

sustainable value proposition is introduced. The high impact drivers for each pillar of the

proposition are identified. In doing so, the design engineer will have a set of metrics that

will aid in the optimization of value creation in generation-to-generation product

development. Finally, a set of primary drivers in sustainable product development are

integrated into a tool set framework.

41

2.3.1 Sustainable Product Half-Life Return Model

A common paradigm in product development is to focus only on the physical device or

base unit the customer obtains in the purchase of a new product. Development

engineers can be so focused on the delivery of their particular design or sub system to

the manufacturing team that they fail to take a broader view of the product definition.

In the same manner, producers often assume the final day of product sales (the day of

the last product family purchase) as the end of the product life-cycle. Traditional

financial models, such as “The Return Map,” highlight the last day of product sales as

the end of time in calculating the return on investment. When the concept of the

sustainable value drivers is integrated into the equation, it is evident that the life-cycle

of a product reaches a broader definition, as well as the product definition itself.

By focusing on the broader value proposition presented to the customer, the definition

of the deliverables that are integrated into the product design may also include items

such as customer replaceable sub-units, warranty material, operating systems, and

solution software. A broader product definition will enable the analysis of the lifetime of

a product from a sustainability perspective.

The first model presented is the sustainable product Half-Life Return Model (HLRM). It is

intended to shed light on primary metrics that will enable the development of financially

successful products with improved sustainability attributes.

The HLRM focuses on variables that affect long term portfolio gains and losses, which is

central to Sustainable Value Creation. It integrates two important data streams into one

map:

1. The net profit & loss curve for the product family over the life-cycle

2. The total number units sold that are still in use over time. This curve is also

used to track product use degradation and the product half-life point.

42

Profit and Loss Life-Cycle Curve

The first data set tracks the product family net profit-loss (net P&L) curve over time

(Figure 2.8). The key points on the life-cycle curve are described below.

Start of Development - In the beginning of the product life-cycle, producers invest in

the development of the product and the early expense drives the net P&L negative (i.e.

currently the investment is a negative gain). The SOD date marks the first day of

development expanse.

Expense Turn Around Point - After the start of production and sales which bring in

revenue and presumably net profit per sale, the P&L curve, which had been trending in

the negative direction, eventually slows down. At the point where net unit profits are

greater than net unit expenses, the expense turn-around point is met.

Break Even Point - The first time total profit is equal to total expenses, the breakeven

point is met.

Program Life Profit and Loss - The net profit or loss of the product family is at the end of

the total life-cycle. When the total life-cycle of a product family is taken into

consideration, there may be expenses a producer incurs that are required to transition a

product at end of life. These expenses could include collection, clean-up, or program

scrap charges. Because of this, there may be another inflection in the overall P&L curve

over time

Beginning with the concept generation phase in the beginning of product development,

expenses are incurred in the process of the design and delivery of a product. Figure 2.8

presents the net profit or loss of the product over its life-cycle. After the start of sales,

the intake of revenue may begin to offset expenses and a profitable product will

eventually pass the break-even point and generate net profits over the product life. The

data presented in the figure represents one product life-cycle. The engineering

43

community takes advantage of a product delivery process in order to improve the P&L

life-cycle curve for a given product platform.

Figure 2.8: Producer profit/loss over model product life chart

Product Half-Life Curve

The second data set presented in Figure 2.9, tracks the total number of product family

units that are currently in use after the start of product sales. As a product family churns

(Reinartz, 2003) (where some amount of the original systems originally sold are not in

use anymore and essentially retired), they are removed from the half-life curve. It is

important to note that in some industries it may be possible that some of the initial

units sold have been retired before the last unit is sold, even with products that have a

very short half-life. The data presented in the figure represents one product life-cycle.

44

The engineering community seeks to analyze the value proposition in order to improve

the product half-life. The key points on the life-cycle curve are described below.

Start of Sales - The point where products are available for purchase by consumers

End of Product Family Sales - The point where the last unit of a product family is sold to

consumers

Product Half-Life Point – The point where half of the overall products sold to consumers

has been retired and is no longer in use.

Product End of Life– The point where all products have been retired and are longer in

use.

Figure 2.9: Product half-life vs. producer profit/loss chart

45

Product Half-Life Return Model

Producers can gain insight into the goal of Sustainable Value Creation by integrating

data from the product profit and loss curve (Figure 2.8) on top of the data from product

half-life tracking (Figure 2.9) as shown in Figure 2.10. Essentially producer profit and loss

(especially expenses related to the development phase and the end-of-life phase) is

monitored relative to the longevity of the entire product family life-cycle. The goal of

Sustainable Value Creation should take into account producer product expense,

consumer life-cycle expense, and socio-environmental drivers.

In addition to the key traditional metrics identified in the study of return on investment,

an additional set of metrics is identified that expand the view of Sustainable Value

Creation. By integrating the product half-life data on top of the producer P&L curve over

time, a greater appreciation of the key elements that extend the goals of the consumer,

as well as the producer, are highlighted, which, in turn, affects socio-environmental

targets. The primary metrics in the Half-Life Return Model are:

• Start of Development (SOD)

• Start of Sales (SOS)

• Expense Turn Around Point (ETP)

• Break Even Point (BEP)

• End of Sales (EOS)

• Product Half-Life Point (PHL)

• End of Product Life (EOL)

46

Figure 2.10: Sustainable Lifetime Value Creation Tool #2: Half-Life Return Model

The traditional return factor ratios remain interesting at any given point of the financial

curves but, from a sustainability perspective, the product half-life point (PHL) relative to

the producer investments draws attention to the return of investment from a total life-

cycle perspective.

A potentially sensitive metric is defined as the Sustainability Value Time (SVT).

By integrating the product half-life data (traditionally associated with the product value

proposition) within the product profit and loss data (traditionally associated with the

product delivery process - PDP), the engineering design team can monitor the potential

value creation or loss due the affects of many variables. The SVT is calculated by

subtracting the breakeven point (BET) from the product half-life point (PHL). The

breakeven point is a relative reflection of the initial return on investment of the

development expense of a product. The product half-life point is a relative reflection of

the long term viability of a product family. By comparing the Sustainability Value times

47

(SVT) of relative products to each other, the engineering community will become more

in tune to the drivers of Sustainable Value Creation.

Sustainability Value Time

 SVT (time) = PHL (time) – BEP (time) (2.1)

The model curves, shown in Figure 2.10, represent the ideal state where it is assumed a

product family will be successful and drive an overall profit over the life-cycle. In many

products, especially in industries with continuous technology advancements, the HLRM

curves may look much different. In fact, many high technology products have a negative

value for the SVT metric, where the product half-life point is crossed before the

producer has passed the break-even point on the P&L. These types of products may be

at the highest risk for early abandonment. A negative SVT number not only projects

higher risk for the producer but may also indicate the potential for higher risk of loss by

the consumer, society, and the environment.

Possibly, the most detrimental scenario from a socio-environmental perspective are

new products or family platforms that are deemed a failure in the market, never reach

(positive) profit, and leave behind abandoned hardware, test models, and sunk cost

investment (losses) by both consumers and producers.

There are additional scenarios that highlight the study of combining financial data with

product life data. For example, the process of setting the market price for a product line

is a science and a strategy by itself. From a pure economic perspective, supply, demand,

and utility play roles in the price that is set by the producer to maximize profits. Simple

supply demand curves are essentially setting a price at a point in time. Lower prices may

drive higher sales which is one of the variables on the Half-Life Return Model. But, if the

long term viability of the platform is in jeopardy (for example a fire sale on a product

line that may be discontinued), the half-life of that product may be relatively shorter

than a similar product and, therefore, less sustainable.

48

Half-Life Return Model Goals

From an engineering tool kit perspective, these development process and relative

design comparisons should be considered to achieve the following goals:

 Maximize

• Sales

• Program P&L

• Product Half-Life (PHL)

• Sustainability Value Time (SVT)

Minimize

• Expense Turn Around Point (ETP)

• Start of Sales (SOS)

• Break Even Point (BEP)

The most significant focus on the metrics that are targeted for minimization should be

the development process. Improved collaboration, concurrent engineering, and

improved processes are examples of techniques that could aid in minimizing ETP, SOS,

and BEP. By focusing on the sustainable value proposition, the development team will

be able to improve the goal of maximizing Sales, Program P&L, PHL, and SVT. Similar to

traditional return on investment type ratios, additional metrics that add focus on

Sustainable Value Creation are outlined below.

There are many factors they may influence the definition of financial success for any

given producers. For example, a corporation who seeks a growth strategy for their

investors may place priority on revenue growth. The ration of Product Sales ($) divided

by the Sustainability Value Time can provide insight into the growth over time for a

given product platform (Eq. 2.2).

49

Value Time can provide insight into the growth over time for a given product platform

(Eq. 2.2).

 𝑺𝒂𝒍𝒆𝒔 ($)
𝑺𝑽𝑻(𝒕𝒊𝒎𝒆)

 (2.2)

For a company who in focused on return on investment (potential a value based

corporation), the ration of P&L divided by the Sustainability Value Time can provide

insight (Eq. 2.3).

 𝑷𝒓𝒐𝒇𝒊𝒕 𝒐𝒓 𝑳𝒐𝒔𝒔 ($)
𝑺𝑽𝑻 (𝒕𝒊𝒎𝒆)

 (2.3)

Simplified versions of the equations can be calculated using the product half-life instead

of the product Sustainability Value Time.

Another paradigm of influence for some engineers is the belief that the Bill of Material

cost (BOM cost) for a product must increase if the design is modified for sustainability.

By focusing on the longer term ratio of the Bill of Material (BOM) cost divided by the

product half-life, a new perspective on the value of designing for the full life-cycle can

be introduced (Eq. 2.4).

 𝑩𝒊𝒍𝒍 𝒐𝒇𝑴𝒂𝒕𝒆𝒓𝒊𝒂𝒍 𝑪𝒐𝒔𝒕($)
𝑷𝑯𝑳 (𝒕𝒊𝒎𝒆)

 (2.4)

The race continues between the e-gain benefits of new technology and the research for

new tools that will aid in the long term development of more sustainable products and

processes. A central goal of this research is to begin to build a new paradigm for

development engineers, a paradigm that sheds light on the realization that product

designs can be more sustainable from both a financial and environmental perspective.

By focusing on the main drivers of each sustainable value proposition aspect, the

development community improves their role in creating truly sustainable value.

50

The sustainable products value proposition seeks a balanced approach toward the

integration of total cost of ownership, social and environmental improvements, and an

expanded definition of product life drivers.

2.3.2 Sustainable Product Value Proposition

One difficulty in developing a common set of aspects in the design of sustainable

products and processes is the need to integrate a wide array of drivers into one

common analytical metric set. In the process of identifying the driving aspects of the

sustainable products value proposition, categories that have the highest impact from a

value perspective are identified. In this process, value is viewed as the potential for new

utility relative to its cost. In order to have the highest impact on the long-term goals of

sustainability, generation-to-generation product designs should seek to improve each

pillar of the driving aspects at the same time.

A common paradigm of development engineers is the assumption that the bill of

materials must increase in order to create solutions that accomplish goals such as

extending life, meeting regulations, or lowering the cost for the customer to operate. In

order to break down this paradigm, detailed drivers for each aspect are identified to

provide a broader perspective to the key stakeholder of the value proposition. The first

step of this process is to broaden the definition of costs into a total life perspective. The

concept of the total cost of ownership (TCO) has been presented in many forms,

including research and tools designed for the IT industry. (Bace and Rozwell, 2006;

Ellram, 1993). From a financial perspective, TCO represents the direct and indirect cost

to purchase and utilize a product for the consumer. The sustainable products value

proposition expands the set of total cost drivers. Therefore the primary aspects that

drive producer expenses and potential benefits can be identified as follows:

51

Producer Impact: Cost of Product Development and Delivery

In general, consider the cost of these metrics to be relative to the specific product

design points chosen to meet the expected targets.

1. Bill of Material Expense – Typically, the primary focus of the development

engineer, from an expense perspective, is the bill of material. The bill of material

is the cost to physically manufacture the product.

2. Relative Design concepts of delivered function, specifications, and solutions –

In an effort to meet customer expected quality levels, features, and functions,

the engineering team creates the design specification that describes the

expected outcome of the system. Typically, higher tolerances and tighter

specifications can cost more to produce, but the customer may be willing to pay

for it.

3. Mean time between failure and Intervention – The most common measure of

system reliability is the mean time between failures. The uptime of equipment

can affect productivity beyond the individual user if the product is involved with

any type of work flow. As system complexity, as well as competition increase,

another reliability-based metric has become critical for the development

community. Mean time between interventions is also a measure of product up

time, but it assumes that the system needs attention from the user (and not a

warranty call). Examples in this category include the following: clearing systems

hangs/jams, changing supplies, or updating the system. Complex solutions in the

future will have longer lasting Sub-systems and will have intelligent operating

and embedded systems.

4. Cross Platform Compliance within Product Families – This category is focused

on the typical struggles that producers face in the quest for satisfying individual

customer needs vs. the financial benefits of focusing on the convertibility or the

commonality of components or Sub-systems between platforms. The ability to

52

convert products already produced increases the value and flexibility of the

supply chain team. Increasing the use or re-use of common Sub-systems reduces

the amount of development and verification resources required to design the

product. This aspect is not only one of the key drivers that producers can use to

reduce the cost of their value proposition, but it also applies directly to the

improvement of the product family longevity, a key component of the

environmental pillar.

5. Generation-to-Generation Product Compliance – The focus of this category is on

enabling the producer to use existing infrastructure and intellectual property in

the development of the next generation solution. Likewise, it enables the

customer to use existing infrastructure and intellectual property in the transition

and integration of the next generation system. Extending the platform of a

product family through generation-to-generation compliance can have one of

the most positive effects on designing sustainable products. This aspect is simple

in concept but becomes difficult when integrating challenges from competitive

designs and considering the tendency of engineers to invent new systems

because they can.

6. Product Life Extension or Retirement – Product life extension or retirement can

be a cost stream or an opportunity for re-designing or re-manufacturing the

product for retirement or extended use. Either way, the development engineer

takes end-of-life product aspects into consideration in the overall design. The

ultimate expense for a producer can come from a consumer abandoning the use

of a product before its useful end-of-life.

Customer Impact: Costs and Benefits to the Customer

Ultimately, in free enterprise markets, the consumer is the focal point of new products

and the longevity of competing designs. Customers seek out solutions when they realize

53

benefits relative to the cost of the product. Therefore the primary cost and benefits to

the cusomer can be identified as follows:

1. Benefit of New Innovation and Solution Improvements – This metric is counter

to the others in that this driver is viewed as the aggregate benefts gained by

obtaining the new solution. Benefits of new innovation and solution

improvements can be quantified through a variety of sources, such as

productivity gains, improved quality or reduction in material consumption.

2. Cost to Purchase, Install and Prepare for Use – Beyond the initial box cost, many

consumers fail to include the cost to install and create the infrastructure for new

products. These costs include the training and learning curve required to fully

utilize the new solution. Many products are abandoned early due to a mis-match

in customer expectations or skill levels.

3. Cost of Consumables – This expense stream covers the material or supplies

needed to maintain the utility of the solution. They are typically referred to as

customer replaceable units (CRU’s).

4. Cost of Maintenance and Product Intervention – Consumers expect products to

work but understand interventions and maintenance of the system might be

required. Yet, there is a cost to perform these activities that include expenses

beyond the person performing the activity. Often workflow downstream is

affected by the downtime of devices.

5. Cost of Warranty Repairs - This cost is a combination of warranty expense for

the customer and producer, as well the cost the consumer faces with product

down time. In order to protect themselves, many customers purchase extended

warranties as a precaution in case of unexpected failures.

6. Cost of the End of Current Life-Cycle – Beyond the cost of product dispossal,

there are often expenses in the activities that lead to the purchase of new

54

equipment and the removal and possible accelerated capital expense write-off

of previous equipment.

Social and Environmental Impact: Indirect Cost of Product
Compliance and Natural Resource Consumption

In the process of developing new products, good stewardship of our natural resources is

now recognized as a cost savings opportunity, in addition to what more potential

customers are expecting to review in the purchasing cycle. Standard reporting and

certification processes are integral to the development model. Therefore the primary

cost and benefits that are related to social or environmental aspects can be identified as

follows:

1. Total Energy Consumption to produce and operate – Tracking the consumption

of utilities in the manufacturing process is prudent. Focusing on the effects that

energy consumption has on the product design often yields opportunity for

increased quality or yield. In addition, consumers now track the energy

consumption of products, and it is often a critical specification for customer

purchase requirements.

2. Total water consumption to produce and operate – Energy consumption has

been the central focus for engineers who seek to design for the environment.

Now water consumption is also a critical aspect as the world’s fresh water

supplies become more acute.

3. Product and Material Safety Compliances – Most products require safety and

material certification and approvals. In addition, depending on the product line,

there can be a number of specific certifications required to sell to targeted

consumers. These specific certifications could include, energy, electromagnetic

compatibility (EMC), acoustic, or other aspects of products that affect society

and the environment.

55

4. Corporate Social and Environmental Activities and Reporting – The health and

safety of employees and consumers is usually a first priority for producers. In

addition, many corporations consider taking a proactive approach to social and

environmental issues as a benefit to the overall value proposition. Today, many

consumers look to producers to pass along sustainability-based metrics as part

of the product delivery process.

5. Industry specific certifications – In addition to mainstream certification and

regulatory requirements, many industries have specific regulatory requirements

that are aimed at the unique social and environmental aspects of their products.

6. Collection and Product Disposal - Many new regulations require producers to

reclaim or, at least, play a role in the handling of products at the end-of-life.

Relative Value Metrics

When integrated into one set of driving aspects, the engineering team is presented with

a visual tool that identifies potentially competing cost drivers (Figure 2.11). In a market

with worldwide competition, the value of any one particular sustainable value

proposition metric is relative to the competitive offerings and societal impacts.

Therefore, these values should be considered as dynamic and focus should be placed on

continually monitoring a particular value proposition (in the form of a product offering)

relative to the best of breed for each individual metric. For the value proposition

comparison tool, a scale of 1 to 10 is used to rate each driving aspect compared to the

product in the field that is considered the best of breed for that particular value. In

order to promote continuous improvement, the best of breed is given a set value of

eight across the board. When considering potential designs for next generation product

offerings, surpassing the current best of breed value proposition would be rated a

relative score of 9 or 10. This system is designed to rate each driving aspect

independently from each other. In other words, the best of breed for each metric could

be on several competing products. With that being said, a hypothetical score of a total

56

best of breed for a product offering would be 144 points (multiply each aspect (18 total)

by 8). See case study in Section 6.1 for further details.

Figure 2.11: Visual tool designed to compare current design to the industry best of
breed in each metric

2.3.3 Sustainable Product Development Drivers:
Integrated Framework

In order to drive toward the final goal of Sustainable Value Creation through innovative

product design, it is important to establish a clear relationship between product

development processes and sustainability. There are many forces that a design team

must account for in the process of developing specification and ultimately the final

design of a complex system. At the same time, the design team must integrate

consumer requirements and the effects of competitive offerings. In order to drive a

longer term perspective to product development, the concept of the sustainable value

proposition was introduced. The sustainable value proposition identifies 18 detailed

drivers divided into three primary aspects which are the following: producer value

impact, consumer value impact, and socio-environmental impact.

57

Many development teams may have a goal to increase the sustainability of their product

portfolio but struggle connecting the relationship between financial drivers of a

potential new design concept vs. the potential improvement from an environmental or

societal perspective. The introduction of the product Half-Life Return Model was

presented to integrate financial data with the success and longevity of products over an

entire life-cycle. There are many reasons why a consumer may abandon the use of a

product in the field and move on to a new solution platform. In addition to new

technology, product quality, total cost of ownership, and work flow interruption are

examples of drivers that accelerate the amount of product churn in the field, which, in

turn, drives the product half-life to a shorter value.

Sustainable Product Development Drivers

In this section, six primary drivers are identified that will aid the development team in

designing sustainable products and processes. These drivers are presented in an

integrated framework designed to place focus on the mutual goal of closing the loop

toward Sustainable Value Creation.

The topic of best practices design is broad and there has been significant amounts of

research in areas related to processes that help producers improve financial metrics,

deliver a design to market quicker, or even integrate quality to the value proposition

(Chan and Wu, 2002; Clausing and Clausing, 1988). Although engineers are becoming

more familiar with sustainability topics, the need for improved tools that integrate the

benefits of sustainability into the product delivery process is important to address. In

order to accomplish this, a broader perspective of the value proposition, the effective

working environment, and consumer benefits is required. In addition, an integrated

framework that accounts for producers, consumer, and socio-environmental needs will

serve as the foundation for a greater understanding of the development of sustainable

products and processes.

58

The six drivers in this section are able to stand alone in contributing value relative to

development best practices, but when integrated into one conceptual framework, they

enhance the ability to drive the engineering team toward long term Sustainable Value

Creation.

The primary sustainable product development drivers are:

1. Value Creation – This topic has been described in detailed in Section 2.2. By

integrating the concepts of sustainability into the producer-consumer value

proposition, the mutual satisfaction over the entire product life-cycle and

potentially multiple product life-cycles can be improved.

2. Robust Design – Typically the cornerstone of research related to improving

development return on investment, robust design best practices are just as

prevalent with regard to the design of sustainable products.

3. Verification Feedback – Whereas robust design is front and center with regard

to developing products, the role of verification is ultimately one of the most

important aspects of the development process from a Sustainable Value

Creation perspective. Just as unchecked consumption is a concern from a socio-

environmental perspective, the development of products without a robust

feedback system can be just as dangerous.

4. Risk Management – Risk management is the first of two primary drivers

intended to improve the stewardship of consumer, producer, and environmental

resources. Risk management recognizes there may not be one single solution to

any problem. By drawing attention to the process of risk management, engineers

will increase their ability to produce higher valued added decisions.

5. Velocity of Workflow –Velocity of workflow refers to the relative speed (and

direction) a development team cycles through their respective workflow. Just as

59

continuous improvement is expected in product designs, it is also required in the

development process itself.

6. Resource Optimization – Taken out of context, engineers often assume resource

optimization is simply learning how to deliver the new design with less. In fact,

when sustainability concepts are introduced, resource optimization takes on a

much broader meaning.

When these six drivers are integrated into the same framework, the design engineer is

presented with the foundation that will improve the development process, which guides

the team towards closing the Sustainable Value Creation loop (Figure 2.12).

Figure 2.12: Six primary aspects identified that will help drive sustainable product

development

60

Integrated Framework Part 1: Sustainable Value Creation and the
Value Proposition

The sustainable products value proposition drivers serve as the capstone for the

sustainable product development integrated framework. As described in section 2.2.2,

market opportunities in sustainability are present, but they are typically focused on one

aspect of the sustainable value triad.

Reflecting on the three driving aspects, generation to generation design concepts can be

evaluated relative to the three primary “cost” drivers. The first aspect is the producer

impact, which is a view of the cost to develop and deliver the new product design. The

second aspect is the customer impact, which is the total cost (including benefit) incurred

by the consumer. Finally, the third aspect is the socio-environmental impact, which is

the indirect cost of product compliance and natural resource consumption.

Integrated Framework Part 2: Robust Design, Verification and
Velocity of Workflow

The second section of the Integrated Framework for sustainable product development

incorporates the primary drivers of Robust Design, Verification Feedback, and Velocity

of Workflow into the same model. The implication is that these three aspects have the

greatest potential for Sustainable Value Creation when they are viewed interactively

and within a symbiotic relationship (Figure 2.13).

Just as concurrent engineering encourages earlier involvement of all cross functional

team members in the delivery process, verification engineers should be involved with

the design and delivery of the product from the earliest stages. There is research that

draws attention to the major steps of design and test in the development process

(Smith and Reinertsen, 1991). For example, a perspective presented by Tom Abbott

describes the “pyramids of product development” where a design process pyramid

stands next to (but separate from) a test process pyramid (Abbott, 1988). The design

61

pyramid is described as a top-down process that starts with designing the system,

following with the architecture, high level design, low level design, and, finally, the

detailed design. The test pyramid is described as a bottom-up process by, first, starting

the verification process with individual components and then working through the Sub-

systems up to the final system test. A model that recognizes that development and

verification processes are related was developed by the US Department of

Transportation and is referred to as the “V” model because the design to verification

process follows along in a “V” pattern (Eppinger and Browning, 2012). The development

process starts with customer requirements and follows a top-down path from the

system down to the component level. Similarly, the verification process starts at the

bottom of the V with component qualification and working up through Sub-systems and

finally system integration. The model presented in this dissertation adds to the “V”

model by focusing on the continuous process of feedback into the design and the

integration of risk management and resource optimization into the model.

Figure 2.13: Foundation for product development life-cycle

The most important aspect of this model is working through the interfaces on each leg

of the V and resisting the urge to jump ahead in the process. (Figure 2.14) For example,

an activity that can lead to misleading data and consume verification resources

unnecessarily is the desire to take subsystem design modifications and place them into a

62

system test before conducting the preliminary verification activities within the Sub-

systems, models, and components. It is analogous to jumping to the back of a book to

see the answer but it will not be in context. A basic example of potential drain on this

verification process and velocity is to find an independent fault in the system test.

Theoretically, independent faults should be discovered in a sub-system test before the

design change is promoted to the final system design status. The mindset of the

engineer should be to work their way down the leg of the robust design phases but

continue to deal with detected faults and improvements by promoting the improved

designs into the higher phase of the verification process. This should only occur after it

has passed the interface criteria. For example, the engineer should not promote a

design change to a component of a subsystem until it has passed the component

verification criteria. The same rules apply to the promotion of Sub-systems up the

system integration test phase until after the subsystem has passed not only component

verification but also parameter verification. By focusing on the process, verification

resources and development time can be preserved.

Figure 2.14: The integration of the verification process into the development process is
critical to velocity of workflow

63

In order for this process to be successful, the design and engineering team need to pay

close attention to the interfaces between Sub-systems and components. As the goal is

to improve the system reliability in the most efficient manner possible, it is essential

that faults be detected as close to the original source and as soon as possible as they are

injected into the system. Therefore, the velocity of the process to verify designs at the

interfaces for potential promotion up into the final system design affects both

development resource consumption as well as optimal system reliability growth.

In addition to focus placed on stratified verification, it is important to point out this

should be a continuous process. By breaking the verification process into levels, the

tendency to wait for all Sub-systems to be promoted to the same system level before

beginning the verification process is reduced. Ultimately, in order for the development

team to meet the goals of the sustainable value proposition and improve the Half-Life

Return Model metrics, they must learn how to embrace feedback and the dynamics of

the reliability growth process during the development life-cycle. Simply put, focus

should be placed on product delivery and verification processes that allow the engineer

to learn how to fail faster. Before an engineer can learn how to fail faster, they must

first learn how to fail.

The Integrated Framework stresses the need for integrated feedback throughout the

development process, which will be defined as the product delivery workflow. In order

to improve on the time and resource consumption during the delivery process, the

velocity of the workflow should be studied.

Velocity of Workflow

Velocity of workflow refers to the relative speed (and direction) a development team

cycles through their respective delivery process. Just as continuous improvement is

expected in product designs; it is also required in the development process itself.

64

Focus and research on the cadence of the delivery workflow has recently had significant

growth in the area of software engineering. Similar to complex hardware products that

integrate many related subsystems, enterprise level software development can rely

heavily on structured multi-layered programs. Complex software programs typically

have thousands of lines of code and, when a sub-section of code is modified, it must be

verified before it can be promoted into the current customer level version of code

(Cohen, 2010). This verification process is becoming increasingly important as the push

for quicker development cycles is amplified. Today, many software development teams

have transitioned to working in small “Scrum” teams which is described as an agile

development process. The focus of agile/scrum teams is to deliver new functionality in

the software through more frequent and smaller iterations.

Creating an environment of quick learning cycles is the primary goal of agile

development; creating smaller cross-functionally integrated teams that are focused on

the next deliverable and, thereby, creating a development platform where there is less

chance for error. In addition, the quality/test engineer is integrated into the agile team

and is expected to create the test cases as the code is written (developed). The focus is

on controlled changes and value added activities that are only promoted into the

customer shippable code after it has been verified. In addition, the team focus is on

speed and process efficiency. As a team, the incremental design changes which are to

be developed, verified, and integrated into the product are identified. One of the

primary benefits of the agile / scrum process is the quick incremental development

release cycles called sprints. This type of development process produces steady

incremental value added changes to the system.

With short design sprints, the product development team can react to incremental

changes in technology and customer demand which builds off the current platform. This

drives sustainable value from the producer’s perspective.

One of the drawbacks to the agile/scrum process is it may be difficult to inject major

system changes or step function additions to the value proposition. In addition, by

65

integrating the verification engineers directly into the scrum team and focusing only on

the next incremental design improvement, there is a chance the team may lose focus on

the overall system effectiveness or lose the objectivity of an independent tester in order

to keep peace within the team. There is typically a delicate balance between all of the

driving factors in the sustainable value proposition that will ultimately affect the key

metrics of the Half-Life Return Model. The role of the product assurance engineer is to

look at the system from a holistic perspective, including the reliability growth over the

development life-cycle. This perspective should not only look for the best solution for

the producer but for the consumer and the socio-environment .

Integrated Framework Part 3: Risk Management and Resource
Optimization

In many industries, worldwide competition is accelerating as much as technological

change. In fact, constant improvements in technology are aiding in the acceleration of

worldwide competition and vice versa. In a sense, technology advancements and

competitive growth are feeding each other. Because of this phenomenon, the risk a

producer takes when investing in developing a new product continues to grow. This is

especially true if the development team is using the same process and criteria

generation to generation.

Research centered on the design of sustainable products and processes is sometimes

met with assertions that the drivers of improvements are not new or unique. For

example, it has been stated that the field is simply an extension of lean manufacturing.

The issue with this perspective is the lack of integration of the individual concepts into

an interactive framework. By drawing attention to the velocity of workflow within the

verification and robust design process, the pre-manufacturing aspects of the HLRM are

addressed. In order to increase the effects of the product design process on the

sustainable value proposition, two additional drivers are integrated into the model

66

which will attempt to transition the team beyond manufacturing waste and into a view

of product performance over potentially multiple life-cycles.

The final sustainable product development drivers are risk management and resource

optimization (Figure 2.15 (a)). Development organizations understand the benefits of

robust design, verification feedback, risk management, and resource optimization

individually, and some measure the linear effects these aspects may have on their

delivery process. The development of sustainable products and processes requires new

tools that are multi-disciplinary and end to end in perspective. By integrating risk

management and resource optimization directly into the feedback process, the

development team will have a broader set of tools and information in order to improve

the final deliverable (Figures 2.15 (b) and 2.15 (c)).

Figure 2.15: The integrated foundation for the sustainable product development tool kit

67

The integrated framework is presented as the foundation for the primary drivers in the

engineering tool kit that will aid in the development of sustainable products. In order to

drive toward the final goal of Sustainable Value Creation through innovative product

design, it is important to establish a clear relationship between product development

processes and sustainability. When you take the individual perspectives of producers,

consumers, and stewards of society and the environment, it can seem like a daunting

challenge to create a set of metrics and driving aspects that optimize mutual goals. To

shed light on the relationship between product life-cycles and development life-cycles,

the Half -Life Return Model was introduced. The model introduces key metrics that have

the highest sensitivity toward the mutual goals outlined in the sustainable value drivers.

From these key metrics, the Sustainable Products Value Proposition was introduced to

drive the primary metrics of the HLRM into the cost centers of the producers,

consumers, and socio-environment. With these two models, the engineer can make

generation to generation design decisions at a more informed level. Finally, six primary

drivers of sustainable development are introduced into a model in which the integration

of the driving aspects of sustainable product development is presented in such a way

that a broader perspective is taken in product design.

2.4 Summary

In order to have an effect on the long term process of product development so that

future generations are not faced with the poor decisions of the past, a broader

multidisciplinary engineering approach is required. The integrated Product Development

Framework, shown in Figure 2.16, provides the development engineer with this broader

perspective.

68

Figure 2.16: The integrated sustainable product development tool kit is designed to
maximize the affects of the Half-Life Return Model

The first part of this dissertation was designed to provide the engineering community an

integrated framework that bridges that gap between financial success and sustainable

product design. The long term goal of this research is to provide the foundation for tools

that can be developed to aid in the development of sustainable products and processes.

In doing so, one result will be the ability to focus on a more sustainable value

proposition between producers and consumers. The driving aspects of this Sustainable

Value Proposition were introduced.

By first drawing attention to the value proposition between producers, consumers,

society, and the environment, the engineering community has a logical base to build

upon in the journey to design sustainable products. The next step identified in this

research continues to build the bridge between financial and sustainable product

69

design. By integrating the product profit and loss data with product utilization field data,

a connection is made between financial success and product lifecycle success. The Half-

Life Return Model presented in this chapter is designed to provide feedback to

producers in the pursuit of improving the return on investment for the expanded set of

stakeholders.

Whereas the goal of this research is two-fold, the second part of this dissertation is

focused on more in depth application of the key drivers introduced in the integrated

framework. In particular, the introduction of higher value feedback during the

development life-cycle, in order to increase the lifetime value of the product. Chapter

three is dedicated to the problem definition and hypotheses used to research and

design a solution that assists the development team in the verification of product

designs.

Copyright © K. Daniel Seevers 2014

70

Chapter 3: Problem Definition

3.1 Introduction

In the pursuit of improving the product assurance process in order to develop more

sustainable products and processes, a greater understanding is necessary regarding the

relative role value between the producers, consumers, society, and the environment.

Today, with the rapid acceleration of new technologies, products, including consumer

electronics, have become very complex but affordable to societies around the world.

With these advancements, two primary issues are developing. First, with rapid growth

and turnover of new technology and products, heavy consumption and early

abandonment of products has put a strain on society and the environment. From a

sustainability perspective, the accelerated growth of higher technology products has

generated the following conundrum. Consumer electronics producers are in a cycle that

encourages product turnover (new product release) before the current product in use

hits the designed end-of-life. Second, in competitive markets, products are sometimes

rushed to the retail shelves before the systems are completely verified. This rush also

leads to material waste and further reduction in the full utilization of the originally

designed product life.

At a time where momentum for sustainable products and processes is building,

consumer electronics (a growing market segment) continues to draw attention to the

pitfalls of increasing consumption. From a societal growth perspective, the spread of

new technology via consumer electronics has been extraordinary (Dupont, 2010). At the

same time, electronic waste (e-waste), a byproduct of this growth, continues to grow at

an exponential rate and can be a real threat to the environment and society if left un-

checked (Chen et al, 2010).

71

One avenue for increasing understanding and research addressing this problem would

be to focus on value from a sustainability perspective. For example, one may debate the

potential benefits of a technical product such as a microchip delivers vs. the potential

environmental harm that the manufacturing processes may cause. By framing this

debate in terms of relative value, new perspectives could be developed to aid in the

construction of models and tools for improved products and manufacturing processes.

(Williams and Ayres, 2002)

3.2 Product Assurance Adaptive Search Model:
Problem Statement

With continued technology and manufacturing process advancements, some products,

including consumer electronics, have become so complex that traditional product

assurance and reliability engineering processes cannot adequately predict the system

reliability or average life of a product. This inadequacy includes the ability to develop

test case strategies that are designed to verify the product, with a limited amount of

time and resources.

With test case development and data analysis as the primary byproduct of system

assurance, a significant amount of cost and resource requirements of product

development is in the verification and validation of the design (often referred to as

testing and quality assurance) (Godefroid et al., 2005; Albrecht, 1979; NIST, 2002). A

critical, yet often overlooked, aspect of product development is testing, verification, and

product assurance activities. With the integration of hardware with firmware and

software, the number of system combinations requiring traditional product verification

testing is not feasible. In essence, if the goal of the reliability engineer is to test every

design combination, the problem becomes intractable.

Even with relatively large resource allocations dedicated to this part of the development

process, the possibility of escapes can be large. Today, some complex systems are

shipped to customers with a projected failure rate at the start of production (Tassey,

72

2002). The societal costs of these escapes, along with the current expense of design

verification, create the need for advancements in process and tool optimization. This

need is evident in the increasing number of product recalls and difficult to explain

system failures (Valdes-Dapena, 2011; Bunkley, 2011; Maytag, 2010). To complicate the

role of development engineers further, in addition to function and reliability, engineers

must also integrate a growing number of local and federal requirements into the

product. This increases the resource burden on the product assurance teams.

Ultimately, the goal of the product assurance team is to optimize the fault detection and

elimination process and minimize system risk to drive maximized customer satisfaction

levels. Products that are more reliable and meet customer needs will also improve the

sustainability of the product. Maximizing reliability and customer needs can become a

difficult job because the assurance engineer is typically constrained on the amount of

physical resources and time to reach these goals at an acceptable confidence level.

One of the most difficult aspects of the product assurance engineer’s job is the ability to

recognize the complexity of factor (variable) interaction within the complex system in

test. Most development engineers search for functional errors created within the design

(consider these as independent factors) and it is estimated that 70% of system faults fall

within this category (Little, 2011). Linear (two factor interactions) account for 25% of

systems faults and quadratic or 3 factor faults account for 5% of system faults. Whereas

these are average estimates, some complex systems that are highly sensitive to

environmental conditions of physical wear can contain a much higher amount of 2 or

more factor interactive problems.

In the assurance process for a complex system, the design provided to the test team is

already embedded with a large amount of system faults (although more faults can be

added during the regression process) (Madachy et al., 2007). These faults can be in the

form of defective components and isolated controllable variables, but more often,

system defects are comprised of interaction issues between variables.

73

There is available research in heuristic algorithms and automatic test case generation,

but it is mainly focused in the field of software development where Boolean logic

reduces the feedback complexity (McMinn, 2004). Because of the large size of most

complex software products, current research is focused on predicting software quality

through an estimate of the defect potential of the code. Using a variety of testing

techniques, the feedback for the assurance team’s effectiveness is measured by their

defect removal efficiency rate (Jones, 2008; Fenton et al., 2007).

In general, the majority of heuristic search algorithms are focused on finding one

optimal point defined by a mathematical objective function. The challenge for this

research is to develop an algorithm that allows for multiple target points (and

presumably multiple searches occurring concurrently). In addition, most search

algorithms are not dealing with a dynamic system, in that a reliability engineer has to be

able to deal with how the physical system changes over time. Because of the possibility

of latent and interactive defects in hardware systems, as well as the potential for

multiple defects related to one sub component in a complex system, subsystems and

interactions must be continually monitored in the verification process. To be effective,

the algorithm must be scalable. Many search algorithms function with minimal

variables. By definition, complex systems problems are intractable and, therefore, the

scalability of the model will serve as a primary factor in its value.

During the product development process, engineers use verification feedback

throughout the design life-cycle to track the reliability growth of the complex system

over time. This verification feedback is typically a measure of system failure rates as

measured by time between failures. Reliability growth analysis is an effective metric but

may require high cost test methods and may be blind to potential risk elements not

known to the design team.

In the fields of reliability engineering and system assurance, the science of test case

(fault detection) development with problem resolution management vs. risk analysis

and management are often managed independently with separate data and value

74

streams. This gap prevents the opportunity to focus verification resources on the test

combination with the highest potential payback. In addition, time to market and limited

testing resources can be a critical factor that affects verification strategies. With limited

resources, the ability to modify the testing strategy may be an effective method to

improve the fault detection process and system reliability growth. In order to

compensate for these constraints, an adaptive search algorithm that feeds the current

system metrics back into the test case generation algorithm would be useful. Test case

choices can be dependent on many factors, including the level of safety desired, the

amount of time and resources available, the complexity of the system, and the ability to

describe the system at a module or sub-system level.

3.3 Research Question

With a primary goal to improve the tool set for the engineering community to increase

sustainable lifetime value in new product development, the question that is central to

this research is the following.

In the process of developing test verification strategies that aid in the design of

sustainable products, what are the effects of test case diversity, resource consumption,

and risk feedback on the effectiveness of the fault detection and system risk mitigation

process?

This fundamental question is used to create the following general hypotheses that are

focused on developing the model and potential search algorithm to achieve the desired

goals.

• H01: Treating the cost of all potential test case variables as equal will ensures the
best chance for the most diversified test case population and optimal fault
detection and system reliability growth, given resource constraints.

• H02: After the detection of a system fault, the act of prioritizing the order of
fault correction based on risk will improve the efficiency of the fault detection
and system reliability growth process.

75

• H03: Taking advantage of knowledge from previously discovered system faults,
by creating child test cases (cut and crossover) from successful parent test cases,
will aid in the earlier detection of additional faults when given a fixed amount of
time and test resources.

• H04: Testing all independent Sub-system variables before the use of
combinatory test case generation, ensures the best chance for optimal fault
detection and system reliability growth when given time and resource
constraints.

• H05: Taking advantage of knowledge from previously discovered system faults,
by modifying the probability of Sub-system variable selection, will aid in the
earlier detection of additional faults when given a fixed amount of time and test
resources.

3.4 Summary

Chapter three is dedicated to the problem definition and hypotheses used to research

and design a solution that assists the development team in the verification of product

designs. The first part of this research focused on the concept of Sustainable Lifetime

Value Creation, in the pursuit of developing sustainable products. Tools were presented

which are designed to aid the development engineer in the design and delivery of

products that improve the sustainable value proposition.

The focus of this dissertation now shifts to the application of the concepts described in

the integrated framework. The underlying premise of part two of this research is that a

richer set of feedback during the development lifecycle will aid in improving the

identified metrics in the Half-Life Return Model. A primary source of feedback in the

product development process (PDP) is the testing and verification of the product

throughout the development lifecycle.

As a result of improving the fault detection and mitigation process during the design

lifecycle, the improvement of several key metrics in the Half-Life Return Model are

enabled. These include shorter verification cycles and/or the ability to increase the

utilization of your test resources. With increased verification throughput, product

76

quality and customer satisfaction increase. Finally, the net result is an increase in

Sustainable Lifetime Value.

An Adaptive Genetic Search Algorithm is presented which is designed to improve fault

detection and mitigation. The next two chapters develop the background and

foundation for this model.

Copyright © K. Daniel Seevers 2014

77

Part Two: Application of the Integrated

Framework: Adaptive Genetic Search

Algorithm

78

Chapter 4: Literature Review

4.1 The Role of Feedback and Verification in the
Development Process

Research in the field of control theory and systems engineering is extensive, although

the application in sustainability research is still limited. Donald E. Kirk describes optimal

control theory as an increasingly important contributor to the design of modern

systems. He describes the objectives as maximizing the return from or the minimization

of the cost of the operation of physical, social, and economic processes (Kirk, 2012). In

related work, authors Terry Bahill and Bruce Gissing describe systems engineering as an

interdisciplinary process that ensures the customer's needs are satisfied throughout a

system's entire life-cycle (Bahill and Gissing, 1998). These researchers describe the

process in seven steps with the assigned acronym SIMILAR. The steps are: State the

problem; Investigate the alternatives; Model the system; Integrate; Launch the system;

Assess performance; and Re-evaluate.

From a scientific perspective, the fields of system engineering and control theory have

the potential to address the need for creating tools and processes that take an

interdisciplinary approach to developing solutions that address producer, consumer and

socio-environmental needs. As stated in the introduction to the Half-Life Return Model

(HLRM) and the Integrated Framework for Sustainable Product Development in Part one

of this research, there can be competing goals and objectives due to the need to satisfy

all parties involved in the sustainable value proposition. While research intended to

model the development of sustainable products and processes could be focused on the

optimization of the competing goals of the value proposition, in reality, the

development of complex systems to be used complex environments creates too many

variables to create a simple verification model. Because of this potentially intractable

problem, this research stresses the important role that verification and feedback plays

79

in the interactive process of product design and delivery. In this dissertation, this

process will be referred to as the system product assurance (PA) process.

Research in the field of quality assurance is quite extensive, but the majority of the

emphasis is in the manufacturing phase. The assurance of the design phase in the

product delivery cycle is sometimes referred to as the design assurance or product

assurance process, depending on the organization (Carrubba and Gordon, 1988).

Smaller organizations or startup companies may not have independent product

assurance teams and typically integrate system verification within the development

team. As the complexity of systems grows, along with competition and other pressures

that affect the Half-Life return map, research is needed in the field of product assurance

to support the development of more sustainable products and processes.

The traditional role of product assurance engineers on the development team is to

provide feedback to the design engineers so they can detect systems problems and

verify the designs meet specifications and customer expectations. Essentially, the

product assurance process is a form of feedback in the overall product development

process (Aström and Murray, 2010).

Research in this part of the dissertation is focused on the potential role the product

assurance process has in improving the design of sustainable products. Therefore, a

traditional systems engineering perspective is relevant. A product assurance model is

described that feeds enriched data, as described in the Integrated Framework, back into

the development process. Focus is placed on the process and speed of the fault

detection and mitigation algorithm along with integrating risk and cost into the process.

4.2 Product Assurance Background

In order to design an effective model and test case development algorithm, a deeper

understanding of product assurance processes is necessary. A number of topics will be

80

introduced in this section with their key aspects reflected in the workflow of the

algorithm logic.

4.2.1 Product System and Solution Assurance Definition

Quality and assurance processes have evolved over the years and are typically tailored

around specific product needs. The definition of Product and System Assurance varies

across industries and engineering disciplines. In order to set a base line for this research,

the following definitions are taken into consideration.

Carrubba and Gordon describe Product Assurance as “the integration of design

assurance and quality assurance” (Carrubba and Gordon, 1988). Whereas there is

certainly a focus on quality, especially from the perspective of meeting customer

expectations, product assurance typically integrates the development team’s delivery

process into the workflow to assist in the overall product delivery cycle.

To distinguish between the complexities of the assurance disciplines, the IEEE

organization provides the following definitions (IEEE, 2002; Kersher, 2003).

Quality assurance is defined as "a planned and systematic pattern of all actions

necessary to provide adequate confidence that an item or product conforms to

established technical requirements." Quality assurance (QA) can be broken down

into two main areas: product assurance and process assurance.

Product assurance is traditionally focused on the verification of product

specifications. This verification is usually done via thorough testing. Ideally, it

also includes verifying that the requirements are correct, the design meets the

requirements, and the implementation reflects the design.

81

Design assurance is a highly specialized, narrowly focused, and strongly

disciplined activity which is product focused, product/process engineering design

oriented, technical in nature, based on the scientific method, and organized to

promote development of high-reliability products and systems.

System assurance involves the application of design assurance principles on a

system basis with the objective of delivering high-reliability products and

systems into a market not yet oriented toward high reliability. The purpose,

objectives, and implementation of design assurance are examined along with

staffing.

For this research, Design Assurance and System Assurance are integrated into the

focused definition of Product Assurance (PA). In addition, the goal is to broaden the

scope of the traditional PA perspective and introduce the term Solution Assurance. One

hypothesis is that by broadening the scope of the traditional product definition to

include the overall sustainable value proposition and focusing on the broader solution

presented to the customer, the assurance team helps deliver increased value to the

producer, consumer, society and the environment.

4.2.3 Valuable vs. Value Add

One of the most difficult testing aspects for a quality engineer is having to report back to

a development team with a problem that was discovered. The fear of disappointment in

the process of discovering a problem must be overcome with the knowledge that the

problem was already embedded in the design. The discovery of the fault was necessary

in order to meet the long term expectations of the value proposition. Once an engineer

overcomes this potential trap, a second trap must also be avoided. Once a problem is

discovered, it is only the beginning for adding value in the verification process. In the

assurance of the design and delivery of sustainable products, detecting a problem in a

test is valuable, but value is not added until the problem and risk have been mitigated.

82

The product assurance engineer should avoid the assumption that their job is finished

once a fault has been detected. Ultimately, the foundational role of the product

assurance engineer is to aid in the mitigation of faults in an optimal manner.

A third trap for which a PA engineer should be aware is a phenomenon in product test

that is nicknamed “problem discovery bait and switch.” In complex systems, there is the

potential for two or more faults to be associated with the same sub-system variable. As

a result, a particular test case may discover one particular fault but, during the fault

isolation process, identify a different fault. A product assurance engineer should be

careful not to assume that once a particular fault is corrected that there are no other

potential faults with that variable.

4.2.4 The Cost of Poor Product Assurance

Although it may be easier to measure the cost of poor product assurance vs. good, the

choice of proper metrics to define poor PA is difficult. A question one might ask is:

“What should the report card of the product assurance team look like?” Product design

faults that escaped the product assurance process (and reach the customer) are

typically divided into three categories. These categories include the following: faults

detected during the PA process but deemed (correctly or incorrectly) as acceptable risk;

faults that escaped the development verification process but should have been

detected; and faults that escaped which were caused by manufacturing variation or

process defect (Figure 4.1). From a continuous improvement perspective, producers

should track field escapes in all three categories. Of course, the further upstream a

problem is detected and solved, the more valuable the activity is to the producer,

consumers, and the socio-environment. In addition, from a sustainability perspective,

another high level report card metric could be the product’s actual half-life in the

market vs. designed expectations.

83

Figure 4.1: Breakout of customer level fault escape categories

Whereas the metrics described in Figure 4.1 can serve as an internal measuring stick for

producers, perhaps the most damaging type of escape is when a field escape is so costly

that it reduces the value of the producers brand equity. As was described in the

introduction, the advancement of new technology drives a steady stream of new

product introduction and marketing campaigns. Likely not as well known, there are a

number of product recalls that are published daily, warning customers of particular

product defects. For example, to provide better service in alerting the American people

about unsafe, hazardous, or defective products, six federal agencies with vastly different

jurisdictions have joined together to create a centralized website. This website is a "one

stop shop" for U.S. Government recalls. These recalls include consumer products, motor

vehicles, boats, food, medicine, and cosmetics.

Perhaps, the industry with the highest profile in product recalls is automobiles. Virtually

all automakers (including exotic brands like Rolls-Royce, Lotus and Lamborghini) had at

least one recall issued during 2012 (Gorzelany, 2012).

According to Gorzelany of FORBES, the auto industry sold around 14.5 million units in

2012. Meanwhile, according to his research, automakers recalled over 14.3 million

84

current and past models during the same time period. Toyota and Honda combined for

more than half of all recalls issued during 2012.

One of the major reasons this trend seems to be growing with defects escapes to the

field is because the complexity of system designs continues to grow. The traditional role

of the product assurance engineer was to test the reliability of the systems, especially at

end of life. Now, with the introduction of software and firmware, the potential number

and type of system defects grows with the complexity of the system.

4.3 Product Assurance of Complex Systems

4.3.1 Embedded Defects

Defects on a smaller scale but just as important to individual consumers include those

that are specific to the consumer’s environment. The interaction of the software with

hardware can create field defects quite often in complex systems.

Although major product recalls draw attention to the costs that are absorbed by society,

producers and design teams still face the internal cost of verification and the need to

manage the assurance process cost relative to projected risk. Depending on the type of

product and the confidence requirements, the cost of product assurance verification can

be up to 40% of the overall budget (Tassey, 2002). When fail safe systems are required,

designers rely on redundant system to establish the factor of safety. When developing

complex systems, especially integrating hardware with software, it is more common to

discuss the projected defect rate of the product in the field vs. fail safe systems.

Research conducted by SPR (Software Productivity Research) compiled data from

studies of 600 companies and 13,000 projects, including IBM and ITT, and identified the

following averages (Jones, 2008).

• The US average for software defect potential is about 5 defects per function
point.

85

• The US average for defect removal efficiency is only about 85%.
• Therefore, the US average for delivered defects is about 0.75 defects per

function point.

4.3.2 Reliability Growth Analysis

There is also research that draws attention to the growth of system reliability over the

development cycle, which is referred to as reliability growth analysis RGA (Crow, 1977;

Crow, 1982; Hall, 2008). Often new research in the field of system reliability analysis

comes from military projects because of the need for high accuracy, dependability, and

safety. Larry H. Crowe published some of the original work regarding the analysis of

system reliability growth as tracked and measured during the development process.

Crowe points out that during the early stages of the development of complex system,

prototype models typically contain design and engineering deficiencies. During the

product development process, engineering teams progress through phases of design,

build, and testing of their respective concepts. As the system design faults are detected

and mitigated, the overall system reliability in test grows until it is presumed to hit the

intended targets before the start of production. The fundamental premise of this

analysis (also referred to as a Reliability Growth Curve RGC) is the instantaneous system

mean time between failures (MTBF or sometime mean time to fault MTTF) at that

respective cumulative test time (Duane, 1964). Crowe’s research noted that Duane’s

postulate could be stochastically represented as a Weibull process to allow a statistically

based process to be injected into the reliability growth model.

During the development process, the act of discovering and correcting faults to drive

toward verifying design specifications was traditionally viewed as increasing the

reliability of the system. Early research in the field of modeling product assurance

reliability growth was conducted by Dana Crowe and Alec Feinberg (Crowe and

Feinberg, 1998).

86

As noted in product assurance definitions, the goal of the PA team is not only to detect

and eliminate faults in the design but to do so in congruence with the team’s process

workflow. Crowe and Feinberg (1998) combine the two factors into the basic model as

seen in Figure 4.2.

Crowe and Feinberg (1998) conducted related research in work centered on their stage

gate reliability growth model. In this product assurance testing model, focus is placed on

accelerating the discovery of embedded product problems through a variety of activities

in each defined stage. As seen in Figure 4.2, the first stage calls for the development

team to conduct FMEA studies. The next two stages call for aggressive problem

discovery through highly accelerated life and stress testing. This model is excellent in

detecting and eliminating system problems, but it is hardware oriented and focused on

latent defect detection, not necessarily issues such as design for manufacturing,

usability, and software issues.

4.3.3 Problem Discovery and Mitigation

During the stages of the development life-cycle, system testing and assurance is used to

first detect faults, then analyze, mitigate, and conduct regression testing on the system

to insure the effectiveness of the design correction. As the discovered faults are

corrected and mitigated during the development process, the system reliability growth

increases. The goal of the development team is to establish and execute with speed a

product delivery process that includes a product assurance process to optimize

reliability growth of the product over the development life-cycle. This same goal is

amplified when placed in context of the main drivers of the sustainable Half-Life Return

Model. In order to maximize the potential for the design of sustainable products, the

goal of the development team is to deliver products that meet the sustainable value

proposition and improve the HLRM metrics. Products that meet design specification,

quality, and reliability targets are naturally going to be accepted and used longer in the

market relative to products of poor quality and reliability. Likewise, development teams

87

that minimize the time and expense to deliver products that also meet the cost

expectations of the consumer also improve the performance of the HLRM metrics.

Figure 4.2: Stage gate reliability growth model (Crowe, 1998)

For complex systems, the goal of the product assurance process can be a difficult task

due to potential number of subsystem interaction and latent defects that develop over

the product life-cycle. Testing and reliability growth strategies are dependent on the

number of system interactions, resource budgets, time, and risk management.

4.3.4 Complex System Definition

Today, the first four words of the original phrase by Alexander Pope, “to err is human;

to forgive, divine,” are often used to signal an attempt to ask for forgiveness when a

mistake occurs. In the past, the instinct was to look for the individual that caused the

human error when an accident occurred. Now, as systems become more complex, the

88

appropriate question is not, “Who caused the failure?” but, “Why and how did the

failure occur?” (Strauch, 2002). Because of the potential effects of a catastrophic failure,

there is a wide variety of research in the field of complex system failure (Perrow, 1999;

Amaral and Uzzi, 2007). The modeling of complex systems can take many forms

depending on the desired utilization of the data.

Because the study of sustainable product development involves complex models, there

is emerging research in the field of complex systems in sustainability (Fiksel, 2006). J.

Fiksel points out there is an urgent need for a better understanding of the dynamic,

adaptive behavior of complex systems and their resilience in the face of disruptions,

recognizing that steady-state sustainability models are simplistic.

Research focused on complex systems and the effects on Sustainable Value Creation

include works by Ueda et.al with the focus on value creation in a decision making

society. (Ueda et al., 2009) By definition, modeling the effects of a stimulus on a

complex system can be difficult, but often it is a necessity after a particular major

failure. For example, as the supply chain becomes more complex in this global economy,

a regional catastrophe such as an earthquake in Japan or a flood in Thailand can shut

down production facilities around the world. (ElMaraghy et al., 2012) Because of these

types of events, many businesses develop disaster recovery plans and use risk modeling

to develop action plans deemed appropriate to the potential risks identified. To

recognize the reality of product delivery processes within the business world, risk

modeling of complex systems is essential to the development of sustainable products

and processes.

In reality, complex systems are the aggregation of many Sub-systems. From an

engineering perspective, the subsystems themselves are actually a form of smaller

complex systems that must also be verified before being integrated into the major

system. For the purposes of this research, a complex system (within product

development) is one that integrates hardware, firmware, and software designs into one

system. In an effort to model a complex design, including one used in the case study, a

89

complex model consisting of eight (8) Sub-systems with each sub-system containing ten

(10) sub-system variables is introduced (Figure 4.3). During the product assurance

process, it is possible, and sometimes common, to find independent sub-system faults,

but the focus of system verification is to seek and understand faults (defective designs)

created by sub-system interactions.

4.4 Risk Mitigation

To illustrate the essential goal of the product assurance team, the concept of risk

mitigation is illustrated in Figure 4.4. Recall from the problem definition section, the

ultimate goal of the product assurance team is to optimize the fault detection and

elimination process and minimize system risk to drive maximal customer satisfaction

levels. The constraints on these goals are typically limited time and material resources.

Therefore, with a given set of resources, the PA team should create a plan that detects

embedded faults in the design in the most efficient manner and, simultaneously, assure

the detected faults are mitigated to drive program risk to acceptable levels.

Figure 4.4 (a) presents the ideal state of the product assurance process, focused on

product test in order to mitigate system risk during the design lifecycle. In Figure 4.4 (a)

and (b), the red lines represent the remaining problems in the form of risk that is still

embedded in the final solution. Figure 4.4 (b) presents a risk mitigation curve that

represents a more typical development process. The black curve represents the

summation of problems discovered by the testing team minus the problems that have

been properly resolved. Whereas industry specific producers and consumers establish

acceptable product risks levels, the goal of the team is to drive the net risk to a level

established by the value proposition.

There is a direct correlation between the reduction of product risk and the growth of

the reliability curve. This illustration is simple from a theoretical perspective, but the

team must overcome several challenges to accomplish the stated goal.

90

.

Figure 4.3: Graphical representation of the complex system used in the case study

Figure 4.4: The goal of the product development team is to optimize the fault detection
and elimination process in order to drive the program risk to customer acceptable levels

91

4.4.1 Reliability Growth and Fault Detection Problem
Statements

In the verification of complex systems, especially with limited testing time and

resources, choices have to be made with regard to the goals of the product delivery

team. Finding problems in the product verification process is valuable, regardless of the

product development phase. Unfortunately, poor behavior is often the result of an

assurance process that focuses on the timing of the production start over independent

data. The reward for early problem detection includes extra time for problem

correction, but a problem detected late in the development cycle can still drive value

into the final product.

4.4.2 Reliability Growth Analysis Model Weaknesses

When emphasis is placed on the integration of the reliability growth curve in

combination with the product delivery design phases, the benefits of problem discovery

earlier in the design process becomes visually evident. Some supporting tools, such as

FMEA and accelerated life testing, have been identified to achieve the goal of

accelerated problem detection, but problems still exist with the current model. The

following statements summarize the drawbacks:

1. Traditional reliability growth analysis is focused on the reliability of complex

hardware systems with the failure mode typically detected on a reparable latent

failure such as fatigue.

2. In calculating the MTBF or MTTF, all detected faults are treated with the same

risk (risk prioritization number -RPN) value. In reality the risk and severity of all

faults are not relatively equal.

3. The modeling of the reliability growth is typically represented by a continuous

function, but, in reality, many different types of faults are embedded in the

design that are discovered at different rates. For example, latent defects and

92

multivariable faults are usually detected later in the testing process. The time lag

between problem discovery and design correction is typically missed in test case

development strategies.

4. Because of the time lag between problem detection and problem mitigation,

poor decisions can be made in the assumption of the system reliability. Due to

deadlines and limited verification resources, human error can be made with

assumptions based on a partial set of data. A problem that is discovered at any

phase of the development cycle is valuable. A verification strategy that is too

greedy may miss important faults in complex systems.

5. Current reliability growth models do not integrate resource consumption or sub-

system risk (in the form of feedback) back into the model.

Perhaps one of the most important aspects of the system reliability growth analysis

process is highlighted by the saying “you don’t know what you don’t know.” Reliability

growth analysis is based on data captured in the past but may not reflect a pocket of

embedded faults in a system design that simply has not been detected yet.

4.4.3 Verification Process Weaknesses

The following list summarizes potential problems that product assurance engineers face

under the expanded definition of Product Assurance roles.

1. When comparing products relative to previous generation product designs or the

competition, scripted or pre-determined tests plans are typically followed. These

scripted plans can leave many untested variable combinations on the table for

complex systems.

2. Because complex system testing can be an intractable problem, the majority of

testing combinations are conducted at ambient (nominal) conditions with

standard inputs.

93

3. Typically, the role of rating the severity of a detected fault and the overall

management of product risks is conducted independently of the testing process

and is not integrated into the assurance testing feedback loop.

4. In only focusing on conducting scripted tests, the Product Assurance Engineer

can become solely focused on test execution and not necessarily focused on the

goal of driving risk out of the program and, ultimately, delivering an optimized

solution with a finite set of resources. Discovering and driving out system faults

toward the highest levels of confidence is the goal of the product assurance

engineer, but it comes at a price. Product verification budgets have limits on

time and materials. The optimal use of these resources is the primary focus of

this research.

5. In addition to a finite amount of resources, another is the problem discovery

process. Slow problem resolution and risk management increases the potential

for product development delays. By tracking sub-system performance and design

delivery, an adaptive test algorithm could possibly increase the risk mitigation of

the system.

6. Hardware faults are typically quite different than software faults; therefore,

detection testing is often conducted by separate organizations. Faults can be

functional, interactive, and latent, including end of life reliability.

7. Complex problems can be masked or hidden from the tester’s search capability.

This dependent multi-variable problem is undetectable until an overriding

independent problem has been detected and corrected. A phenomenon

nicknamed “Bait and Switch” can occur when the initial test case finds a problem

but, in the isolation and regression process, a different problem is eliminated. An

engineer should not assume the possibility of further defects when a particular

variable does not exist. (Isolation Testing Returns Alternate Fault)

8. Prototype variation can add to the complexity of system verification. While it is

good to represent the range of possible dimensions with tolerance, some

94

aspects of the parameter designs are not defined early in the verification

process. Undefined dimensions and tolerance ranges can confound test results.

9. In the fields of reliability engineering and system assurance, the science of test

case (fault detection) development with problem resolution management vs. risk

analysis and management are typically managed independently with separate

data and value streams. This gap prevents the opportunity to focus verification

resources on the test combination with the highest potential payback.

4.4 Test Case Combinations

In the business and technical world, the phrase “analysis paralysis” is often used to

describe situations where more time is spent thinking about a problem (and therefore

money spent) than actually solving the problem. This may happen when people are

simply avoiding the problem but, quite often, it occurs because the decisions makers are

overcome by the sheer quantity of information and choices (Schwartz, 2009). It can also

be used as a term to vent frustration over traditional product assurance testing methods

requiring an amount of testing resources that could cost more than the product’s

projected profit. With this in mind, new testing strategies and product development

theories are desired by businesses seeking to improve their path to market and quality

of product. (i.e., one of the primary goals of the Half-Life Return Model).

Recently the Agile Software Development Methodology has become very popular. It

focuses on quick learning cycle sprints and incremental field improvements vs. long

development life-cycles (Martin, 2003). In some regards, this methodology is a more

natural process for software development over hardware development because it is

much easier to send software bug fixes directly to customers as opposed to fixing

hardware devices in the field. In fact, it has become common to get software updates on

a constant basis and, many times, without the customer even knowing about it. The

underlying problem with complex systems is that it is impossible to test every

95

combination of subsystem variables and, as a result, there is a need for research in test

case development strategies.

There are a number of research papers indicating that developing test cases that cover

all variable combinations is an intractable problem (Kuhn et al, 2004; Cohen et al.,

2003). For example, in the case study designed for this disssertation, the compex system

is defined as containing 8 Sub-systems (x = 8) , each with 10 sub-system variables (y

=10). The number of potential test cases that covers every sub-system variable

combination would be the following:

𝒚𝒙 = 𝟏𝟎𝟖 (Test Case Combinations) (4.1)

Obviously, this is not a practical solution; therefore, the next step is to use combinatory

testing and designed experiments that take advantage of multiple pairwise

combinations in full system test cases (Taguchi, 1987). The majority of this type of

testing, including orthogonal array testing (OATS), “Robust Testing” and covering array

testing, has been developed for the software industry (Brownlie et al., 1992; Krishnan et

al., 2007; Cohen et al., 2003). In the software industry, Kuhn and Wallace point out that

studies show that the majority of design faults were either single variable independent

or two variable dependent faults (Kuhn and Wallace, 2004). In addition, the use of

historical knowledge could be used to identify sub-sets of the code that have been more

prone to failure. The researchers propose a technique that does not test every

combination, but, with the use of inteligience in their test case choices, can be

considered equivelent to exhaustive or “pseudoexhaustive” They use a formula to

create the smallest amount of test cases to cover all pairwise combination and they

prioritize the test cases using an assigned value to modify the algorithm (called failure-

triggering fault interaction – FTFI). Their research is proactive in seeking more efficient

test case generation strategies but uses historical data to alter the search focus. The

focus of this dissertation is to use real time feedback to alter the test case generation

process, referred to as an adaptive search model.

96

To simplify the mathmetics, the combinations of test cases are described by a n-tuples,

which is simply an ordered set of n elements (this can be interpreted as a vector)

(Weisstein, 2014). From combinatory theory, the system test case size and desired test

variable combinations within each system test case is used to calculate the number of

test case runs required to hit every combination at least once (covering arrays).

4.4.1 Product Assurance Testing Strategies

There are a variety of strategies and tools to achieve the ultimate goal of fault

detection, elimination, and final system risk assessment. As products become more

complex, verification costs rise and assurance confidence levels diminish. Because it is

impossible to test every combination in a complex system design, many techniques to

aid product assurance engineers have evolved over the years.

In order to draw attention to the need for improved test development strategies, the

two extremes of traditional methods are described.

The most logical method to test any system is based on a predetermined test plan that

is established that covers (a.k.a. covering array strategy) the historical usage and

environmental conditions (Krishnan et al., 2007). It can also be referred to as balanced

or grid testing because a predetermined test plan is in place, regardless of the quality or

maturity of the product design. This type of testing also covers comparative methods

that are used to establish the metrics of the products relative to previous products or

the competition. Whereas the results of pre-established testing are useful, in complex

systems where only a percentage of system combination can be evaluated, test gaps are

a reality and it is possible that faults can go undetected.

On the other extreme of testing methods (from 100% pre-determined) is a method that

is based on 100% reactive testing (Figure 4.5). Knowing that all combinations of a

complex system cannot be tested with limited amount of time and resources, product

assurance engineers often react to a particular problem discovered in the test. Another

97

description of this action is “smell the blood testing.” When a fault is detected, the

engineer will zero in on the system problem to try to flush out related problems. The

issue with this type of testing is that, without any logical tools to guide the test

engineer, test case selection tends to become highly reactive and can lead to

overcompensation of searches in local areas. This overcompensation leads to a larger

percentage of the complex system not exposed to testing combinations and results in

potential fault escapes.

Figure 4.5: Test case generation strategies vary from 100% reactive to 100%
predetermined

A third and emerging method is referred to as discovery testing. In some fields, test

engineers have abandoned traditional specification testing practices and a new field of

verification methods are being developed under the umbrella of “Discovery or Persona”

testing (Kaner, 2008). With complex systems, there can be hundreds of primary design

variables, and it is physically impossible to test every combination. Therefore, the

strategy is to focus on the primary “real world” scenarios within which the product will

be used. Test engineers are encouraged to take on the persona of the target customer

and use the product in the target environment. The theory is that the focus is placed on

discovering the most mainstream and relatively important problems in the most

efficient manner.

98

With the third category described above, the majority of new testing methods, including

research in applying techniques such as intelligent algorithms, has been in the field of

software development (Pauik et al., 1991; Sharma et al., 2010; Bach, 2003; Blanco et al.,

2009). Because software and some aspects of firmware are digital in nature, heuristic

test algorithm can be developed that take advantage of high speed computing power.

The use of these types of intelligent test system strategies has been less prevalent in

hardware reliability engineering research.

Hardware engineers often focus on factors of safety for no-fault systems with

redundancy or predicting reliability rates for repairable systems. Tests results are used

to statistically predict component and system reliability. Component variation and

manufacturing tolerances play a primary role in the documentation of the design. On

the other hand, software engineers work in a digital environment and, therefore,

Boolean logic drives the majority of verification processes. Software verification

methods typically focus on the use of historic models and relative problem burn down

rates to predict the current level of code quality. These results could then be used to

estimate the relative risk remaining in the system (Jones, 2008).

Because hardware and software engineers traditionally treat these processes

differently, the availability of standardized tools across disciplines is diluted. Since

complex systems combine various analytical disciplines and metrics, cross functional

tools for product verification and reliability assurance must be developed. New testing

methods and algorithms are needed to provide the assurance and reliability engineering

community adequate tools to perform their job with a measurable level of confidence.

Referring back to the two testing extremes (100% standardized vs. 100% reactive), the

reality is that testing all combinations in a complex system is an intractable problem, so

an adaptive technique is required to optimize the risk mitigation of the product shipped

to the field with a fixed amount of testing time and resources.

99

4.4.2 Case Study Test Combination - Calculation

For complex systems, such as the one identified to be used in the case study (containing

8 Sub-systems, each with 10 variables), the use of a covering array strategy can be

implemented. In system testing, product assurance engineers are able to take

advantage of many n-tuple combinations with each test run. The focus of this fault

search algorithm is on developing test cases for system product assurance. For the case

study, a test case will be comprised of one variable from each sub-system. A new test

case could be as simple as changing just one sub-system variable (from a previous test)

to see if there are any new dependent two variable faults between the new variable and

any of the seven unchanged subsystem variables. With this single test case, seven new

(untested) two variable test combinations are created and executed with one system

test.

In the case study, there are 108 unique system test combinations for the system

comprised of 8 Sub-systems (each with 10 variables). Research also shows that the

majority of faults will be independent single variable or two and three variable

dependent faults (Kuhn et al., 2004). Therefore, taking advantage of n-tuple (2-tuple

and 3-tuple) combinations with each 8 variable system test) will greatly reduce the

number of test cases necessary to run to cover every 2-variable and 3-variable

combination in the complex system. If the product assurance engineer designed a test

strategy to cover every n-tuple combination at least once (in the case study), the

following would be required:

• 80 - test cases to cover every independent sub-system variable

• 2800 – test cases to cover every two variable sub-system combination

• 81200 - test cases to cover every three variable sub-system combination

The general formula to calculate the number of test case combinations (where order

does not matter) required to cover every “n-tuples” combination (designated by r) with

a given total Pool of variables (designated by n) is:

100

𝒏!

𝒓!(𝒏−𝒓)!
 (4.2)

Because the focus is on sub-system interaction in system testing, each sub-system is

represented by one variable in the system test case. Therefore, the total amount of n-

way combinations in each sub-system should be subtracted from the total amount of

minimal test cases.

The general formula to calculate the number of test case combinations (where order

does not matter) required to cover every “n-tuples” combination (designated by r) with

a given total Pool of variables (designated by n) where each sub-system is represented

by only one variable is:

 �� 𝒏!
𝒓!(𝒏−𝒓)!

� − �� 𝒙!
𝒓!(𝒙!−𝒓)!

� ∗ 𝒚�� (4.3)

where:

r = the number of desired variables in the combination to be tested (two variable

combinations = 2)

n = the total number of subsystem variables in the complex system

x = the total number of Sub-systems

y = number of variables in each sub-system

Note: the assumption for this example is that every sub-system has the same

amount of variables. This assumption can be adjusted in individual examples.

4.5 Background of Heuristic Search Algorithms

Heuristic algorithms have been developed in many forms over the years, but, with the

advancement of desktop computing in the 1980’s, a new source of analytical power

101

increased the development of algorithms used to model and optimize a wide variety of

issues. Taking inspiration from nature, several heuristic techniques, such as genetic

algorithms and simulated annealing, have been developed in an attempt to model

natural evolution or travel patterns. Other popular heuristic algorithms include tabu

search, genetic programming, and more exotic methods such as bacterial growth

simulation. In most cases, the modeling of a specific problem requires a unique set of

logic and decision-making criteria to create useful and efficient tools. The primary

reason for developing these types of search algorithms is because developing a model

to optimize a complex system with multiple variables can become computationally

impossible. This phenomena is referred to as an NP-hard problem. Essentially, the

optimization of the product assurance verification process can also be an NP-hard

problem. As a result, there is research dedicated to the use of heuristic techniques to

develop test cases with the goal of system fault detection. (see next section for

literature review examples) The foundation for some of this research, as well as part of

the algorithm developed in this dissertation, is the use of a genetic algorithm for

optimization.

4.5.1 Related Research in the Field of Heuristic Search
Techniques in Reliability Optimization

The following section high-lights relative research in the use of heuristic search

techniques in reliability optimization. A brief summary of focused research is presented

to give a sense of the current literature. Additional references are listed in the

bibliography.

Search-based Software Test Data Generation: A Survey: (McMinn, 2004) This article

provides a survey of various techniques used in the field and trends. This source

provides good background material and a broad overview.

102

Test-Data Generation Using Genetic Algorithms: (Pargas et al., 1999) Used for software

verification focusing on code branches. It is not as scalable as this research and it is only

focused on programming (software) code analysis.

A Uniform Test Generation Technique for Hardware/Software Systems: (Jervan et al.,

1999) This research introduces the concept of generating testing techniques for

hardware alongside software. The algorithm focuses on describing software and

hardware on the same schematic and then using logic to test sub systems. This

algorithm is more conceptual and not as scalable.

Breeding Software Test Cases with Genetic Algorithms: (Watkins et al., 2004) This

paper focuses on breeding automated software test cases using genetic algorithms.

Their research is similar to this dissertation research because the algorithm uses

broader search techniques early and local focus later. It is still a traditional GA due to

being focused only on software. The fitness function is measured relative to the

previous test case vs. an absolute value. Error injection, a popular technique in testing,

is used. Errors are injected into the system and the ability of the algorithm to find the

problem is measured.

Exploring Very Large State Spaces Using Genetic Algorithms: (Godefroid, 2002) This

work introduces the concept of combining two modeling tools into one algorithm. This

model uses genetic algorithms for large space search and then combines the feedback

of model checking for additional logic. Focused on software, this is another branching

search algorithm. It is relevant to this research because a genetic search algorithm is

combined with a tabu search in the adaptive genetic search algorithm.

DART: Directed Automated Random Testing: (Godefroid, 2005) A paper with over 700

citations, this dissertation shares similarities to their research because the objectives are

a large scale tool for testing by combining three different techniques. This algorithm is

only focused on software. DART detects standard errors in the code such as program

crashes, logical violations and lock-ups.

103

From genetic to bacteriological algorithms for mutation-based testing: (Baudry et al.,

2005) This paper is an interesting adaptation of heuristic algorithms. The research

focuses on imitating the growth of bacteria in software testing. It is similar to this

proposal because it is more focused on mutation than crossover in the genetic algorithm

search process.

The following table lists additional references in the field of heuristics in test case

generation.

104

Table 4.1: Additional literature review references

The Automated Generation of Software Test Data Using
Genetic Algorithms

Sthamer H. H., 1995

Automatic Software Generation and Improvement through
Search Based Techniques

Arcuri, 2009

Black-Box System Testing of Real-Time Embedded Systems
Using Random and Search-Based Testing

Arcuri et al., 2010

Automated Continuous Testing of Multi-Agent Systems Nguyen, 2007
Functional Search-based Testing from State Machines Lefticaru and Ipate, 2008
The Reactive Tabu Search Batitti and Tecchiolli,

1994

Tabu Search-Part II Glover , 1990
Specification-based Regression Test Selection with Risk
Analysis

Chen et al., 2002

The Capability Maturity Model for Software Pauik et al., 1991

Exploratory Testing Explained Bach , 2003

Towards the Prioritization of System Test Cases Srikanth et al., 2013

Automated test data generation using a Scatter approach Blanco et al., 2009

Test Cost Optimization Using Tabu Search Sharma et al., 2010

Sequential Testing of Product Designs: Implications for
Learning

Erat and Kavadias, 2008

Value –Based Design of Software and V&V Processes for NASA
Flight Projects

Madachy et al., 2007

Human Based Genetic Algorithm Kosorukoff, 2001

105

4.5.2 Outline of the Basic Genetic Algorithm

In order to accelerate the growth of the reliability curve during the development

process via fault detection and mitigation with fixed resources, this research introduces

an adaptive genetic search algorithm that integrates the search for functional defects,

interactive defects, and latent defects embedded in a complex system. This fault

diagnosis process is focused on the integration of hardware, firmware, and software

into one system for test. By introducing test case cost and detected fault risk value into

the algorithm, the ability to increase the lifetime value of the product and shareholder

value of the producer will improve. This algorithm will take advantage of genetic

algorithm techniques to improve test case development design to accelerate fault

detection in complex systems.

The following pseudo code serves as the basis for imitating the evolutionary process of

nature in order to search for the optimal solution for an NP-hard problem (also see

Figure 4.6 for code flowchart)

• Initial Population: Start by randomly creating a population of potential solutions

to the objective function. This solution is often represented by a string or array

and is referred to as a chromosome (aka CZ).

• Fitness: Evaluate the fitness of each chromosome in the population

• New Population Cycle: Create a series of new (evolutionary) populations with the

following actions

• Parents: Select two parent chromosomes from the population based on their

fitness (there are a variety of ways to increase the probability of a chromosome

being selected based on their fitness)

• Crossover: Cut the original parents and crossover the genes to form a new

chromosome (the offspring of the parents)

• Mutation: Using a probability algorithm, mutate a determined number of

chromosomes at a particular gene

106

• Test: Use the created population to further test for fitness

• Logic: If the testing end conditions are met – stop, otherwise repeat the cycle

For this research, genetic algorithm vocabulary will be integrated into product assurance

system test vocabulary in an effort to develop the adaptive search model. For example,

the complex system defined in the case study consists of 8 Sub-systems where each sub-

system contains 10 variables. In the search algorithm, a system test case will be

presented in the form of a chromosome consisting of genes (one for each sub-system).

The first digit or space in the chromosome will represent the chosen variable for sub-

system 1; the second place represents the variable chosen for sub-system 2 in the test

case and so on. These variables are referred to as (sub-system) gene-variables (see

Chapter 5 for detailed description).

Figure 4.6: Basic logic for a genetic optimization algorithm

4.6 Summary

Chapter four describes the critical role the assurance process plays in the development

of products that meet the expected value proposition. A critical, yet often overlooked

107

aspect of product development is testing, verification and product assurance activities.

Unfortunately some products, including consumer electronics, have become so complex

that traditional product assurance and reliability engineering processes cannot

adequately predict the system reliability, or average life of a product. With the

integration of hardware with firmware and software, the number of system

combinations requiring traditional product verification testing is impossible. Because of

this, undetected system design faults are often embedded in products when they are

introduced, and can create unplanned expense to consumers and producers. Product

recalls and program updates are becoming a common process in many industries. The

societal costs of these escapes, along with the current expense rates of product

verification in the design process, create the need for advancements in process and tool

development.

The literature review in this chapter identified advancements in research focused on

fault detection and test case generation using heuristic techniques. These new fault

detection algorithms are primarily in software development which does not present the

same difficulty as verifying the combination of hardware, firmware, and software.

Because of the possibility of latent and interactive defects in hardware systems, as well

as the potential for multiple defects related to one sub component in a complex system,

subsystems and interactions must be continually monitored in the verification process.

In the fields of reliability engineering and system assurance, the science of test case (for

fault detection) development, with problem resolution management vs. risk analysis

and management, is typically managed independently with separate data and value

streams. This gap prevents the opportunity to focus verification resources on the test

combination with the highest potential payback. In addition, time to market and limited

testing resources can be a critical factor that affects verification strategies.

The second part of this research is the development of a broader adaptive algorithm

that can integrate the search for functional defects, interactive defects, and latent

defects embedded in a complex system. In addition, this fault diagnosis process is

108

focused on the characteristics of a complex system that integrates hardware, firmware,

and software into one system to test. By introducing test case cost, a verification

budget, and detected fault risk value into the algorithm, the ability to increase the

lifetime value of the product and shareholder value of the producer will improve. By

focusing on the primary drivers of the Half-Life Return Model, the ability to create

sustainable lifetime value is also enabled.

Whereas the long term benefits of improving the sustainable value proposition will

include the integration of total cost as well as social and environmental factors, research

focused on the extension of product half-life, material utilization and development

resource optimization will play a major role in sustainable product development.

One of the key metrics used in this process is the reliability growth of the system

throughout the design lifecycle. This research focuses on breaking this process down in

order to improve the feedback model, especially the fault detection and mitigation

process. The goal of the next chapter is to integrate the aspects of the reliability growth

model, as well as the defined fault types in complex system development, and present

an adaptive genetic search algorithm designed to improve the fault detection and

mitigation process.

Copyright © K. Daniel Seevers 2014

109

Chapter 5: Complex System Fault Detection:

Modeling Through Application of Integrated

Framework

In developing tools that aid the engineering community in the design of sustainable

products and processes, this research points out the role that feedback plays in the

development of complex systems. The creation of sustainable lifetime value involves

delivering a product in the most efficient manner that meets or exceeds the targeted

value proposition. Beyond product testing, the product assurance engineer focuses on

risk management and development resource optimization in an effort to improve the

driving metrics of the Half-Life Return Model. During the design life-cycle, system

reliability growth is one of the primary forms of feedback to the development

community.

The ongoing goal of the product assurance process during system verification is to

detect as many faults as early as possible in the development process. In addition, the

goal is to show growth in system reliability over the same development period. The

engineer is challenged to create a testing strategy and a value system that aggressively

grows the reliability curve through strategic test case generation that is not so

aggressive that faults are left undetected before the testing resources are fully

consumed. In complex systems, the number of test cases required to cover every sub-

system variable combination is so large that the ability to run all of them is cost

prohibitive and impractical. On the other extreme, if the engineer did not have to worry

about latent or multiple faults involving a single test case variable, the use of an

orthogonal array test case strategy would cover every independent, two variable, and

three variable combination in a very effective manner (Kuhn and Reily, 2002; (Lazic and

Mastorakis, 2008; Kuhn et al., 2004). The use of combinatory testing that optimizes the

amount of two and three variable combinations within each full system test improves

110

the efficiency of fault detection. Unfortunately, with complex systems that include the

possibility of latent and interactive defects, there is a need to test sub-system variables

more than once during the development life-cycle. Essentially, a combination is sought

from test case diversity still sensitive to test case cost and potential payback.

In the model simulation for this research, a designed experiment is used to evaluate the

independent effect and interdependence of five controlled variables that focus on cost,

detected fault assigned risk, test case evolution, test case selection probability, and fault

type search priority. The unique contribution of this part of the research is the

development of a broader adaptive genetic search algorithm that integrates the search

for functional defects, interactive defects, and latent defects embedded in a complex

system. In addition, this fault diagnosis process is focused on the integration of

hardware, firmware, and software into one system for test.

This chapter introduces an adaptive genetic search algorithm that integrates the search

for functional defects, interactive defects, and latent defects embedded in a complex

system. In addition, this fault diagnosis process is focused on simulating the

characteristics of a complex system that integrates hardware, firmware and software

into one system for test.

By introducing test case cost and detected fault risk value into the algorithm, the ability

to increase the lifetime value of the product and shareholder value of the producer will

improve. By focusing on the primary drivers of the Half-Life Return Model, the ability to

create sustainable lifetime value is also enabled. In the model introduced in this

chapter, five independent variables are measured in a designed experiment in order to

compare the relative affects on the test case and fault detection process for complex

systems.

111

5.1 Model Development - Foundation

In order to create a search algorithm that achieves the desired goals in the research

question, a foundation focused on the product assurance process is presented which

will lead toward the development of the independent model variables.

5.1.1 Multiple Goals of the Product Assurance Team

The actual testing process is the foundation of the product assurance team’s role, but

there are multiple goals that make up the entire scope of the PA team’s focus on the

protection of the customer, business, and the development team (and now society and

the environment). Figure 5.1 shows how the variety of deliverables build on each other

toward the ultimate target of assurance of the overall solution designed to meet the

value proposition. These deliverables are described below.

Product Testing: As the foundation of the product assurance team’s role, the accuracy

and credibility of physical testing is critical to the long term success of the product. As

with any foundation, the other product assurance deliverables are in question if any

data or process is compromised.

Test Case Development and Specification Analysis: Beyond the execution of the

product verification and certification tests, the design of the test strategies is critical to

the overall success of the product assurance team. Because product assurance teams

are provided with a finite set of resources and verification time, a strategy must be

developed that maximizes fault discovery (as early in the delivery process as possible)

and supports the mitigation of the faults with constraints.

Problem Tracking and Management: Once a fault in the system is discovered in test,

the problem tracking tool serves as the central repository and risk management tool.

The quality of tool management can serve as a direct link to overall return on

development investment.

112

Product Claims and Regulatory Certification: In order to deliver products to customers,

especially when solutions are designed for multi-national customers, the adherence to

local and federal regulatory requirements is required. In addition, the majority of

industries also use certification programs to distinguish product offerings within a

competitive family. The product assurance team is responsible for the accuracy and,

sometimes, the delivery of the certifications.

Product Delivery Process: The product delivery process is designed to provide a

standard process with the goal of meeting the proposed value proposition and expected

ROI. It provides the delivery teams an infrastructure, timeline, and criteria expected to

be met to ensure success.

Risk Identification: The first five goals of the product assurance pyramid are typical for

most businesses, but the next two goals separate testing organizations from product

assurance teams. The identification of risk with each problem discovered, or failure to

meet a product delivery criteria, must be measured in the form of risk to the business

and, ultimately, the value proposition.

Risk Management: Along with risk identification, there is the collection and

management of individual risk items identified during the product delivery process. Risk

management is not only focused on the identification of risk issues but also the

mitigation of the risk.

System Delivery Metrics Integration: The integration of the problem tracking system

with the risk management system into the system delivery metrics is critical to the

overall success of the product delivery process. In the study of sustainable product

development, most of the focus of resource consumption is in the manufacturing and

product use portions of the product life-cycle. In some industries, the material and

resource consumption during the development process can be a large portion of the

overall consumption totals.

113

Solutions Assurance (customer, business, development team): The product assurance

team creates and executes a strategy that seeks to meet or exceed the expectations of

the customer, investors, and development team. It is important to look at the entire

solution from order entry to delivery to end of life to judge the success of a product.

Figure 5.1 Multiple aspects of the product assurance process

The following section presents addition background on the fundamental goals that will

be used as the foundation for building the adaptive genetic search algorithm.

An underlying premise in the call for research in heuristic test case development is the

need to improve the efficiency of the verification engineer who seeks to find embedded

faults in a system with limited resources. The process of fault detection may be a

difficult concept for an engineer who does not intend to create a failure point in their

original work.

In fact, in order to improve the driving metrics of the Half-Life Return Model, the design

team should not just face the reality of the potential for embedded faults in the current

design. They should embrace the value of detecting faults as soon as possible. In order

114

for a design engineer to drive toward the sustainable value proposition and improve the

Half-Life Return Model metrics, they must learn how to fail faster. In order to learn how

to fail faster, one must first learn how to fail. The same principle applies to the

development of the adaptive genetic search algorithm. In order to improve the speed of

the fault detection, problem mitigation, and reliability growth of the system, the

analysis and understanding of the problem detection process must aid in the

improvement of the model.

Complex systems typically contain a high number of interactive design variables, and,

therefore, traditional methods of product assurance and reliability verification become

an intractable problem. It is especially true with exponential growth in technology and

the integration of hardware, firmware, and software in the same (complex) system.

Many products are released to the market with the knowledge that defects are still

embedded in the system (Jones, 2008). Although the goal of this research is to provide

tools to improve the fault detection and risk management process, the tool presented in

the form of a search algorithm differs greatly from the typical heuristic problem. The

following section introduces the primary aspects of the product assurance process that

will aid in the model development.

System Analysis

During the development process, the injection of faults and design defects can and,

typically, will happen due to a number of reasons. Defects that are independent from

any system interaction are generally discovered during a verification test designed to

test the intended function. This type of defect will be referred to as an independent

fault. Faults that are due to the interaction of subsystems are more difficult to detect

and usually require system verification testing that exercises the various combinations

of system interactions during the life-cycle of the product. This class of defects will be

referred to as dependent faults. Defects that are due to the specific interaction of two

subsystem variables are defined as two variable faults. Defects that are due to the

115

specific interaction of three subsystem variables are defined as three variable faults and

so on. Faults that do not show up until later in the product life will be referred to as

latent defects. The role of system verification is a critical aspect of the product design

and delivery process. Essentially, it is a form of feedback to the design team. Traditional

metrics include the reliability growth of the system during the design phases.

Sustainable value is increased as the system reliability increases. By expanding the

aspects of the feedback loop beyond reliability, the growth of sustainable value during

the Product Delivery Process can be enhanced.

5.1.2 Reliability Growth Model: Dependent vs.
Independent Faults in the System Design

Referring back to the primary drivers of the Half-Life Return Model, the length and cost

of the development process have a direct effect on the relationship between product

half-life and the product’s financial success. With that being said, it is not unusual that

product delivery dates for complex systems designs are often missed or delayed.

Typically, the complication of the verification process and reliability growth during the

development phases is underestimated. The integrated framework identified six critical

drivers (value creation, robust design, verification feedback, risk management, velocity

of workflow, and resource optimization) that, when applied in concert, drive the

reliability growth curve toward the ideal state. In essence, the more typical reliability

growth curve is experienced because of the break-down of the product delivery process,

particularly the coordination between the development and verification processes. In

order to improve the reliability growth model for complex systems, it is necessary to

break the reliability growth curve down into the various phases.

The Reliability Growth (Analysis) model (RGA model) presented by Crowe (1982), is a

simplified curve and assumes a continuous fault detection and mitigation process. In

reality, there are different types of failures that affect and or block the fault detection

process. In order to improve the modeling of test resource consumption in the fault

116

detection and mitigation process, there is a need to break the problem down into the

building blocks that add to the reliability growth curve.

Taking a closer look at the more typical reliability growth curve (Figure 5.2), there are

three distinct zones with two transitions, which is similar to another reliability based

model called the “bathtub curve” shown in Figure 5.3 (NIST/SEMATECH, 2013). If you

plot the integration of the area under the bathtub curve, it would resemble the typical

risk mitigation curve.

Figure 5.2: Ideal system reliability growth vs. typical curve during development life-cycle

117

Figure 5.3: Typical bathtub reliability curve over product lifetime

The first section of the curve begins upon delivery and product setup for the customer.

This section is represented by high but rapidly decreasing failure rate after the initial

set-up. It can be caused by transportation, manufacturing, or installation issues. The

origin of the bathtub curve is from actuarial curves and the first section is sometimes

referred to as the infant mortality rate. The second section is referred to as the stable

failure period and is typically represented by a low failure rate until the product starts to

reach its intended end of life. This third section is represented by a rapid growth in

failures because of expected latent defects due to material degradation. The three

phases of the traditional bathtub reliability curve do provide some support for breaking

down the typical reliability growth model in the product delivery process, but it is

typically representing the hardware reliability aspects of the design. In reality, there are

a variety of failure types that affect the final shape of the curve. By understanding the

various types of faults, an improved model can be created in order to drive toward

improved product assurance verification processes.

Beyond recognizing the difference between valuable and value add in the product

assurance process, taking the time lag between problem discovery and problem

mitigation into account while executing the verification strategy is critical to accelerated

reliability growth. The concept of taking action early in the development cycle to

118

accelerate the reliability growth curve is simpler when evaluating systems with limited

interdependent factors. Teams developing complex systems often face program delays

due to product verifications issues that are typically unexpected. The red curve in Figure

5.2 represents a typical curve that has a mix of both independent factor and dependent

factor faults embedded in the system. In reality, the product assurance verification team

can’t detect all dependent interactive faults until any related independent faults have

been discovered and corrected. When verification teams are constrained with limited

resources, many standard tests sweep over non-functional variables that note the

discovered independent problem, but fail to identify the need to return to the fault area

for full system regression.

To simplify this concept, the first graph in Figure 5.4 (a) identifies three important but

separate aspects of which the test designer should be aware. They are as follows: faults

due to poor functional design (these are typically independent); faults due to variability

and system interactions; and faults due to latent/end-of-life defects (typically

referenced as reliability errors).

The three types of potential system faults and the typical progression of the particular

detection timelines aid in the development of an objective of this research. Focus is

placed on the development of an adaptive search algorithm that is more efficient than

traditional test strategy methods, maximizes faults detected (given constrained

resources), and minimizes the overall embedded risk of the system.

Development engineers should understand the amount of two and three factor

interactions that are present in a system when they are focused on robust optimization

and tolerance design. One of the primary tools used to isolate these effects is Design of

Experiments (DOE) computer software. Little (2011) estimates that on average, 10-20%

of effects in system response are due to system interactions. In addition, 5-10% of all

effects are due to curvature referred to as (multi-variable) quadratics.

119

The second chart in Figure 5.4 (b) graphically depicts the effects of the delay in

discovering and correcting multi-factor dependent faults until relative independent

faults have been discovered and corrected (see Point B in Figure 5.4 b). The same cycle

holds for three factor dependent faults and so on (see Point C in Figure 5.4 b). Another

reason reliability growth curves are often late in maturity can be explained by the

difficulty of testing for latent defects (see Point D in Figure 5.4 b). It is important to

remember that the third aspect of product assurance testing is latent or reliability

testing. These defects by definition do not typically show up until the end of the product

life (classic bath-tub curve). If the product verification test is delayed due to functional

or interactive faults, the required testing is delayed for extended life failure points.

Development engineers may be caught off guard when an unexpected (and

independent factor) fault is detected at the end of the verification test. This

independent factor has to be corrected and placed into regression testing. Again, the

engineering team often conducts regression tests on the independent design factor but

fail to search for complex interdependent faults that may have been present all along

but were undetected or infected into the system with the new design.

Figure 5.4: Graphical representation of the effects of dependent factors in the reliability
growth curve.

120

5.1.3 Defect (Fault) Type Definitions

By combining the three (types of) reliability growth curves in Figure 5.4, a graphical

representation of the more typical growth curve is created. Breaking down the reliability

growth curve into driving aspects actually identifies seven different types of faults that

must be dealt with when the engineer is in the process of problem discovery and

mitigation (Table 5.1). The four primary types of faults are: single sub-system variable –

independent faults; dependent faults that involve one variable from two separate Sub-

systems, dependent faults that involve three or more sub-system variables, and latent

defects that are triggered later in the product life-cycle (latent defects can be

independent or multivariable dependent type faults). In addition to the primary fault

types, three additional fault states must be recognized and managed in the problem

detection and mitigation process. These fault states include the following: a discovered

and isolated fault which has not yet been corrected (these faults block the ability to

mitigate associated multivariable faults), any discovered multivariable dependent faults

that have not yet been mitigated, and two or more faults associated with the same sub-

system variable. The last fault type is a special case that has the potential to be the most

costly for an engineering team. These faults types are graphical depicted in Figure 5.5. In

some circumstances, there may be more than one fault associated with the same sub-

system variable. Human nature drives action that may mask the ability to understand

and detect another fault associated with a particular subsystem variable involved with

another defect. The greatest risk is when one fault is detected but another fault is

corrected which, in turn, leads the engineer to assume the original fault has been

properly mitigated. This risk is referred to as the bait and switch phenomenon.

121

Table 5.1: Complex system embedded fault types

Figure 5.5: Graphical presentation of the multiple defect types in complex systems

1 Independent Fault
2 Two variable dependent fault
3 Three (or more) variable dependent fault
4 Latent defects (fault)
5 Discovered and isolated independent fault –

 blocking sub-system variables for further verification
6 Discovered and isolated two (or more) variable fault
7 Two (or more) faults associated with one sub-system variable

122

5.2 The Integration of Risk and Fault Detection
Management

In the fields of reliability engineering and system assurance, the science of test case

(fault detection) development and problem resolution management vs. risk analysis and

management, are typically managed independently with separate data and value

streams (Figure 5.6 (a)). This gap prevents the opportunity to focus verification

resources on the test combination with the highest potential payback. The first step to

improve the process is the integration of these two major aspects into one model

(Figure 5.6 (b)).

At the core of the verification process is the testing of the product in an attempt to

validate the design against the specifications and customer expectations. The discovery

of design faults during this process is valuable to the engineering team. Value is added

to the design once the discovered fault is isolated, the design is corrected, and the

system is verified in a regression test. Together, these aspects make up the problem

detection and mitigation process in product assurance and are measured with a specific

set of problem tracking and resolution metrics. The efficiency and productivity of the

verification team is one measure of the maturity of the team. The ability to seek and

find faults in an optimal manner not only improves the effectiveness of the testing

budgets but improves the efficiency of the overall development team.

The risk assessment and management sub-group may not be associated with the

product assurance process as much as the fault detection and elimination group. In

order to perform problem resolution management in the most efficient manner, each

problem discovered must be examined with some reference to design and customer

expectations. In the simplest form, the severity of the problem discovered is noted in

order to rank the problems for resolution priority. For this model, a familiar problem risk

metric is assigned to each problem discovered. The risk method employed is referred to

as a risk prioritization number (RPN), the fundamental metric used to describe potential

123

faults in a tool called Failure Mode and Effects Analysis (FMEA) (Department of Defense,

1949). By tracking and ranking faults detected in the product assurance process, the

engineering team has the ability to create a value system around the performance of

their particualr test plans and methods. This value system is used in the adaptation

process of the search algorithm.

By integrating the RPN values for the individual faults into an overall system risk

management method, the product assurance team can not only present sub-system and

overall system risk, but but can take advantage of the risk information and feed it back

into the test case generation algorithm. Feedback is used as a driving factor in the

adaptive fault search algorithm.

Figure 5.6: The integration of the product assurance deliverables

124

5.2.1 Integrated Product Assurance Maturity Model

The goals of maximum fault detection and reliability growth during the development

life-cycle, given limited time and resources, are enhanced when the two major aspects

of the product assurance deliverables are integrated into one system (Figure 5.6 (b)).

Just as the development and verification processes are more efficient when integrated

into one product delivery process, the velocity of information flow and fault mitigation

increases with the symbiotic fault detection and risk management system.

The product assurance deliverables are presented as an integrated maturity model in

prioritized order (Figure 5.7). Each sub-group serves as a foundation for the next

deliverable. The maturity map can be used to assess the product assurance capability of

a given team.

Figure 5.7: The five levels of the integrated PA maturity map

5.2.2 Verification Feedback in the Development Process

In Chapter two, the integrated framework for sustainable product development was

described (Figure 2.17). Part of the foundation of the framework was the integration of

verification and the product development process such that their symbiotic relationship

improves the velocity of the process workflow. The final step in building the schematic

125

model of the product assurance process reflected in the search algorithm is the

integration of the four focus items in the product assurance process into the product

design feedback loop (Figure 5.8).

Figure 5.8: The integration of product assurance deliverables into the product design
feedback loop

The integrated feedback loop is the first set of foundational building blocks needed to

create the heuristic search model. The challenge in the design of an effective search

algorithm is the ability to create logic that focuses on the following key aspects:

1. Fault detection, time lag to develop resolution, and then mitigation

2. Risk management and reliability growth tracking

3. Tracking the cost and resource consumption of the system verification

process

4. The velocity of the workflow or the relative (time) efficiency of the

process

126

5.2.3 The Effects of Cost and Resource Consumption
on the Search Process

The second set of foundational building blocks needed to develop the search model is

the understanding of the effects of test case generation and the need for variable

diversity, play in resource consumption, and the adaptation process. One of the goals of

the search algorithm is to be aggressive enough to accelerate the amount of faults

detected early in the process but not be so greedy that critical faults are left in the

system undetected before all test resources are consumed. Most research in heuristic

test case generation is in the field of software development verification. The reason

behind this is that the cost of relative test case is essentially equal (resource

consumption) and the only limit to a magnitude of test case executions is computing

power and bandwidth. The majority of software verification can be automated. With

complex systems, as defined by the integration of hardware with firmware and

software, the cost of each defined test includes physical expenses such as models,

physical testing facilities (including environmental chambers), and lab technicians. In

addition, testing budgets can be inflated if there is required verification of long-life Sub-

systems or destructive testing necessary to improve the sustainable product design

value proposition. An important aspect of hardware testing is the potential for a large

range of resources required to test the variety of sub-system variable combinations. The

following section will describe the nomenclature that describes potential test cases for a

complex system test. The section will also be used to draw attention the wide range of

cost that individual test cases can have relative to each other.

5.3 Fault Detection and Mitigation Model
Development

In the case study in this research, the complex system is defined as a system with eight

(8) major Sub-systems. Each of the Sub-systems contains 10 variables. The primary

127

purpose of system tests is to seek and find interdependent faults between the Sub-

systems. The search algorithm presented in this research is focused on that goal and

also has the ability to detect sub-system (independent faults). It is not focused on the

detection of intra-sub-system dependent faults. In reality, many Sub-systems can be

defined as complex systems and similar logic is used to detect and mitigate faults before

the sub-system is integrated into the final complex system. A fundamental assumption

for the development of the search model is the test cases generated are designed to

search for interactive faults. Therefore, a test case is defined as a system test that

focuses on the interaction of one variable from each sub-system. Figure 5.9 presents a

generalized description of the complex system and variable interactions to be

considered in the case study. In addition, it is assumed that there is at least minimal

system function with at least one variable for each sub-system.

Figure 5.9: Each test case is represented by one identified variable per sub-system

In order to improve the database structure of the test case generation system, the

complex system described in Figure 5.9 is converted into a two-dimensional grid with

128

Sub-systems represented by the columns and the subsequent sub-system variables in

the rows below each column (Table 5.2). A test case is, therefore, presented as the

combination of variables (also an order set of numbers) representing their respective

Sub-systems. For example, the minimal function test case is presented as

(1,1,1,1,1,1,1,1), which describes a test case represented by the first variable of each

sub-system (see the string of red boxes in Figure 5.10). A system test can be conducted

with this particular configuration in order to see if it performs as expected or a fault is

detected. In this (single) particular system test case, a number of potential fault types

are covered. For example, eight independent sub-system variable are tested (the first

variable of each Sub-system) and a large number of two variable and three variable

combinations.

A second sequential test case could be represented by the order set of (1,1,1,1,1,1,1,2),

which keeps all sub-system variables the same in the system test except for the second

variable used in the last sub-system. With this change, a new independent sub-system

variable is tested and 7 new two variable dependent combinations and so on.

Table 5.2: Complex system converted to 2D grid

129

Figure 5.10: Chromosome test case examples

Test case number three is represented by the ordered set (1,1,1,1,1,1,1,3) and so on

until test case number 810, which is represented by (10,10,10,10,10,10,10,10). See the

string of green boxes in Figure number 5.10. A typical random test case is represented

by the string of blue boxes in Figure number 5.10, which is represented by the ordered

set (1,5,3,10,6,4,4,7). For adaptation into a genetic type search algorithm, each ordered

set representing a test case will be referred to as a test chromosome. Therefore, for this

case study, a test case chromosome will contain 8 variables in order with each digit

representing their particular sub-system. These eight ordered values are referred to as

genes within the chromosome. The variable representing their specific sub-system

genes are referred to as the specific Gene variables.

In actual complex systems, each of the chromosome genes can have variable states and

the search algorithm can be modified to reflect this occurrence. For this research, the

amount of variable states for each chromosome Gene is set to ten to exercise a difficult

degree of potential fault combination for an eight Gene chromosome. As a result, the

design requirements for the sub-algorithms, data tracking tables, and probability

130

algorithms is more difficult than a traditional genetic algorithm. Another reason the

genetic makeup of the chromosome is so complicated is that the goal of this research is

to create an algorithm that integrates feedback on hardware, firmware, and software.

This integration is a critical aspect of the search algorithm because, with the potential

for latent defects, there is a need to repeat the testing of the independent and test case

combinations. This factor accentuates the need to be conscious of the costs involved

with test case creation.

In complex systems, there can be a wide variety of expenses associated with each test

case and system configuration. Some tests that exercise a complex system in basic

configurations and nominal conditions might cost significantly less than a particular test

designed to test the most extreme variable combinations in the most extreme

environments. In order to illustrate the effects of cost on the verification process, a

generic cost model is applied to the case study complex system. For the purposes of this

research, the cost of test cases is described in a generic term referred to as test

resources. Test resources can include physical material and labor expense. As an

example, consider one unit of test resource to be equivalent to $1 (or any currency). In

order to distinguish between the costs of test case variables (a.k.a. chromosome Gene

variables), this model assigns the cost of the first Gene variable to be 1 test resource

unit ($1), the second Gene variable to be 2 resource units ($2), and so on, until the last

variable in each Gene is assigned the cost of 10 resource units ($10) (see Table 5.3).

Because the variable cost within each Gene ranges from 1 to 10 resource units, the

average cost of any randomly selected variable within each Gene would be 5.5 units

($5.5). This will become relevant in the analysis of the search algorithm when comparing

the effects of cost on search effectiveness vs. treating all test cases as equal expense.

To illustrate the effects of cost on relative test cases, the following examples should be

considered: The minimal function test case of (1,1,1,1,1,1,1,1) is assigned the cost of

($1,$1,$1,$1,$1,$1,$1,$1) = $8, or eight test resource units. The test case (1,1,1,1,1,7,4)

is assigned the cost of ($1,$1,$1,$1,$1,$1,$7,$4) = $17, or 17 resource units to exercise.

131

In a standard test case sweep intended to cover every two variable combinations

between the chromosome Gene variables, it would require a minimum of 2800 unique

test cases. A standard test suite is a strategy to check every unique test case

combination in order. Given the case study resource cost assignments, the average cost

of each gene-variable is $5.5 test units and the average test case expense would be

(8*$5.5) $44 test resource units.

Table 5.3: Chromosome Gene variable cost table

Therefore, it would require 2800 test cases at an average cost of $44 to cover every

two-variable combination one time. Overall, it would equate to a total cost of

($44*2800) $123,000 test resource units. Unfortunately, with the combination of

hardware with software and the potential for latent defects, it requires multiple sweeps

of these combinations to monitor for system faults. With the goal of creating a model in

132

pursuit of the idealized reliability growth curve, taking multiple sweeps to detect the

majority of faults in the system will normally consume all of the test resources before all

faults are detected (see graph in Figure 5.11).

The problem becomes exponentially worse if the intent is to use a standard test sweep

to detect every three variable combinations in the complex system. In a standard test

case sweep intended to cover every three variable combination between the

chromosome Gene variables, it would require a minimum of 81,200 unique test cases.

Therefore, it would require 81,200 test cases at an average cost of $44 to cover every

three-variable combination one time. This would equate to a total cost of ($44*81,200)

$3,587,200 test resource units. Again, this would cover only one sweep of all three

variable combinations which, in turn, runs the risk of not detecting any similar latent

defects (Figure 5.12).

Figure 5.11: Example of 2-variable combination standard test sweep

133

Figure 5.12: Example of three variable standard test sweep

Most complex system will not have the same size and shape as the example used in this

case study, particularly the broad range of test resource expenses for each chromosome

gene. The case study is set up this way to exercise potential search algorithms in difficult

conditions. It does represent the reality of some test conditions being relatively less

expensive to run than others. Many engineers choose to run a system test with the least

expensive set-up minus their focused set of variables. In a similar manner, one of the

goals of the search algorithm is to be aggressive enough to find faults as early in the

process as possible without being greedy enough to consume all the test resources

before the faults are all discovered. A greedy algorithm could search for faults with test

cases that combine the most expensive variables in each gene. This algorithm has the

potential to quickly consume the test resources when, in fact, many faults might be

embedded throughout the complex system. The goal is to take advantage of the most

cost effective test cases that still succeed in maximum fault detection. One of the

interesting choices that product assurance engineers often face is choosing between

ignoring the individual sub-system variable costs to assure the broadest coverage or

taking advantage of the cost variance to optimize the available resources. This choice

will be one of the primary independent variables considered in the search algorithm.

134

5.3.1 Fault Mitigation Process (Three Stage Process)

The final set of foundational building blocks needed to develop the search model is the

understanding of the true cost of fault detection and the mitigation process in test case

generation. This research points out that in the product assurance process, detecting a

problem in test is valuable, but value is not added until the problem and risk have been

mitigated. In the product assurance maturity model, this research points out the five

levels of adding value in the verification process. The act of discovering faults is the first

maturity level of a test organization. To drive faults out of the system and improve the

reliability growth curve during the development process is to improve the return on

investment in the sustainable products Half-Life Return Model. Therefore, it is

important to consider these steps in the development of the search model. Many test

engineers create a long term testing strategy with the assumption that test resources

are consumed only for discovery of system faults. In reality, system fault discovery is just

one of three major area of the product assurance process where testing resources are

consumed. This research will refer to the three areas of consumption as resource Pools.

In Chapter four, seven types of faults were identified in the development of the search

algorithm. The discovery of faults in a complex system is only the first step in the risk

mitigation process. In addition to a continued search for additional faults, resources are

consumed in the process to isolate and correct discovered faults. In the product

assurance process, resource consumption is categorized into three Pools (Figure 5.13),

which include the following:

1. General large scale fault search – the idea with this resource Pool is to cast a

wide net in the test case variable combination in order to detect a potential

fault.

2. Fault Isolation – the use of additional test resource to isolate the specific faulty

Gene variables within the system test case.

135

3. Regression and Release – the use of additional resources to test the design

improvement and verify the potential fault correction.

Figure 5.13: Three stages of fault discovery and resource consumption

In the adaptive genetic search algorithm (and related computer program), there will be

three distinct processes that perform the unique requirements of each Pool. In the spirit

of heuristic designs, real world analogies will be used to explain the multiple activities

taking place in the search and risk analysis algorithm used in this research.

The difference between the first Pool algorithm and the second Pool algorithm is similar

to a strategy used in the sales and marketing industry referred to as the “hunters and

farmers sales process” (Brown and Miller, 2008; Shapiro, 2002). Just as sales people

develop strategies to find new clients, this research refers to the goal of seeking and

dealing with faults according to the “Hunter, Farmer, Warehouse Manager” method.

The hunter/farmer terminology is used in sales and marketing literature to emphasize a

method that optimizes the revenue generating process with limited sales resources. In

the adaptive genetic search algorithm presented in this research, the hunters refers to

the process used in Pool one, where a portion of the total available resources is used to

find new faults just as a portion of a sales team is used to discover potential clients (or

136

sales leads). Once a sales lead is identified (or a new fault is discovered), the potential

customer is handed over to a different sales person who is more adept in closing a sale,

inferring a different skill or process. In the search algorithm, once a new fault is

discovered, the test case that discovered the fault is taken through another (different)

type of search algorithm that is focused on the isolation of the specific fault within the

system test case. It is important to note that, when a fault is discovered with a particular

test case, a trained engineer will usually have a good idea of the exact sub-system or set

of sub-system variables that caused the fault, but additional testing is required to verify

and isolate the fault. It is identified as the suspected fault (sick) Gene variable(s). In the

genetic search algorithm nomenclature, a test case that identifies a fault in Pool one is

referred to as a “sick chromosome” and the isolated fault is referred to as the “sick

gene-variable” (or combination of variables). The third Pool is referred to as “the

warehouse manager.”

5.3.2 Detailed Description of the Three Resource
Consuming Processes

Pool 1: The “Hunting” search algorithm - This group of resources is dedicated to seeking

and discovering any possible fault in the system (with limited intelligence). Often this

group seeks to cover broad swaths of territory to flush out system problems and faults.

In the algorithm, an adaptive genetic search will be used to minimize the amount of test

combinations that could potentially pay off the highest rewards (i.e., detecting the

highest risk faults with the minimal amount of resources). As in real life when a “sick”

chromosome is discovered (test case detects a problem), further testing is necessary to

isolate the problem. Once a problem is detected, it is moved to Pool 2.

Pool 2: The “Farming” search algorithm – This group of resources is dedicated to

isolating the sick Gene or combination of genes within the chromosome once it has

been handed over from the hunters. This process is necessary to properly correct the

fault, but it is a different search strategy than the general search process. For that

137

reason, a different search algorithm will be used and modeled after tabu search

techniques. Once the sick gene(s) are identified, the identified fault and original test

case are placed on a tabu waiting list for correction regression in Pool 3. Once a fault is

isolated and is determined to be an independent (1 variable) fault, it is removed from

the available relative subsystem Gene Pool until it has been corrected and verified. This

real world example illustrates the most efficient method to conduct system verification.

A defective sub-system design which is independent from any dependent variable

fault(s), should not be available for system test because it only consumes test resources

for an invalid system that will be redesigned. In doing so, the Gene probability table

must be properly updated to spread the probability of Gene variable selection in Pool 1

test case generation. In the process of transferring the test case (“sick chromosome”) to

a second search algorithm, a suspected Gene variable is identified along with the rated

RPN value for the fault. These two data points are typically provided by the test

engineer and will be used in the isolation process.

Pool 3: The “Warehouse Manager” Regression Algorithm – This group of resources is

dedicated to holding the detected faults and then conducting regression tests on

problems in the form of “sick/isolated” chromosome test cases that have been released

by the engineering development team. One of the most important aspects of the

product assurance engineer’s role is conducting a full set of regression tests once a

previously detected problem has been corrected. Beyond confirmation that the original

problem has been corrected, the test strategy should seek interactive (dependent fault)

problems that may have been masked by the original problem. If an independent fault

was corrected and released, the Gene probability table in the search algorithm needs to

be updated to assign the appropriate probability for future selection in the Pool 1 test

case generation algorithm. In addition to the regression function in Pool 3 algorithm,

another critical function is modeled.

After a fault has been discovered and isolated, it is held in a problem tracking system. In

this model, the tabu list indicates that the fault has already been detected and that it

138

has not yet been corrected and mitigated through regression testing. In reality,

additional resources and time are required to correct the problem. In the algorithm

designed for this research, resource consumption is identified with a generic term, test

resource units. The same measure is used to indicate the passage of time required (in

the form of resource units) to identify a potential solution for the discovered fault. In

the model, a separate bank account of test resource units is allocated to Pool 3, to track

the amount of appropriate consumption before the potential release of the fault for

regression testing.

5.3.3 Test Case Resource Consumption Summary

With the aim of providing a richer set of feedback during the development process, the

product engineer should focus on risk management and resource consumption as a

means to improve the value proposition. By integrating risk management and resource

consumption into the feedback loop used to adapt the test case generation process, the

goal is to improve the effects of maximum fault detection with limited resources and to

improve reliability curve growth once a detected fault is mitigated.

In reality, there are limited resources available for the fault detection and mitigation

process that must be divided between the three search Pools (Figure 5.14). The working

model should be able to track the overall resource budget, Pool allocation, and Pool

consumption. In addition, the adaptive search algorithm should be scalable in order to

accommodate the degree of resource consumption required to achieve desired

reliability growth results for any particular complex system.

139

Figure 5.14: Resource allocation bank and consumption Pools

5.4 Adaptive Genetic Search Algorithm Model
Objectives

This section’s primary focus is to integrate the defined aspects of the product assurance

verification and risk model. It addresses the development of a heuristic search algorithm

that provides the ability to analyze the effects of primary independent variables against

the competing goals of maximum fault detection and minimal system risk with limited

resources. A detailed list of product assurance fault detection and mitigation models

was presented in the previous chapter. The primary issues or requirements for a

successful model of complex systems include the following:

• Current heuristic search models assume all things are equal with an unlimited

test budget. In reality, the costs of test variables can vary greatly. Test budgets

are finite.

• Current search models do not consider feeding risk back into the model. The

degree of relative risk of detected faults is not equal.

• Current fault detection models assume a binary (or pass/fail) result. They do not

adequately account for latent defects. In complex systems, multiple faults can be

associated with the same test variable. Test results can create a phenomenon

called “Bait and Switch,” where one fault is detected but another fault is isolated

and corrected.

140

• Faults can be independent (functional), interactive, and latent which include end

of life reliability.

• Complex problems can be masked or hidden from the testers search capability.

These types of problems are typically dependent multi-variables undetectable

until an overriding independent problem has been detected and corrected.

5.4.1 Search Model Goals

With the advancement of computing power and inexpensive memory, the use of

technology to advance the art of system assurance and product delivery has continued

to grow. In developing advanced tools to assist in the creation and study of test case

development, many aspects should be considered. For the adaptive genetic search

model and algorithm that is focused on the improvement of sustainable product

development, the following goals are identified:

• The model should integrate the four aspects of the Product Assurance

Management Model into a search algorithm. It requires a set of metrics and

interface points that allows the value of test resources and risk mitigation to

be integrated into the search algorithm.

• Develop a fault detection search algorithm for a given complex system and

identify by Sub-systems and sub-system variables. The general hypothesis is

that an adaptive search algorithm, with multiples search groups (test

resource Pools), will be more efficient in the fault detection and risk

mitigation process vs. a more traditional grid or even random search testing

methods, which are known to be an NP-Hard problem.

• Develop a series of interactive sub-algorithms that are necessary to conduct

multiple prioritized concurrent searches. This development requires splitting

the resources into sub-Pools to conduct several separate and unique fault

detection or isolation actions. Because this search algorithm differs from the

traditional optimization problem of searching for one optimal point, the

141

tracking of resources and discovered faults is necessary. There should be

three primary search Pools: a general search modeled by an adaptive genetic

algorithm; local Gene isolation, modeled after modified tabu search; and

fault correction regression testing.

• Develop a suitable risk management system that will aid in feedback and

reliability growth in the solution assurance process. The objective is to

integrate assigned risk priority values for each detected fault and develop a

risk mitigation tracking system.

• Use the assigned risk values for the detected faults to feed back into the

adaptive fault detection algorithm and steer the verification process toward

the test variables that would potentially create the most value. The

assumption is faults are embedded in the system throughout the design

process. By utilizing the fixed assurance resources in an adaptive manner, the

fault detection and reliability growth of the product in the field will increase.

For this research, instead of verifying the effectiveness of potential search algorithms

against multiple physical systems, a virtual complex system is created with embedded

faults. The same set and location of the faults will be used in the designed experiment,

although the search algorithms will not know the location of the faults. As the search

algorithms are exercised, the test case is presented to the complex system (fault)

simulator. If the test case detects the embedded fault, the simulator returns the

appropriate information. The case study will be used to study the effectiveness of this

model.

In order to complete the system search algorithm, additional databases need to be

developed and integrated into the source code. These databases should include

resource tracking, test case cost menu, fault detection history, and the Gene probability

table.

The following section summarizes the specific objectives for the adaptive genetic search

algorithm.

142

5.4.2 Adaptive Genetic Search Algorithm – Model
Objectives Summary

1. Recognize the goal of fault mitigation and risk reduction with fixed resources.

2. Split the resources over three distinct search goals: broad search capabilities,

local defect isolation, and fault correction regression

3. Once a fault is discovered through the isolation process, the discovered fault

information and the original discovering test case should be transferred and held

in a database. This information could be utilized as a potential tabu list.

4. In order to improve search efficiency, the algorithm should have the ability to

block specific chromosome (sub-system) Gene variables that have been isolated

as faulty. This blocking will prevent the specific Gene variable form being

selected in a potential test case until the fault is mitigated.

5. Prioritize the discovered and isolated faults by assigned RPN risk levels.

6. The use of an adaptive genetic algorithm will allow the risk value attached to a

detected fault (in the form of a risk prioritization number (RPN)) to serve as the

primary driver in the mitigation of resource allocation function.

7. The system should be rewarded for discovering embedded problems as quickly

as possible.

8. The system should not be so greedy that the search algorithm completely misses

pockets of potential faults.

9. The system should be flexible enough to carry on multiple searches (with local

interrogation).

10. The algorithm must be adaptive. Probability of Gene selection should be

modified based on previous fault detection history.

11. A test case value system must be integrated into the algorithm to maximize

resource utilization. Design a resource allocation and consumption tracking

algorithm.

143

12. As part of the value system, the algorithm should have the flexibility to create

any number of potential test cases with a calculated cost. The user should have

the ability to select the amount of test cases to consume per Pool generation to

control the resource consumption and greediness of the search.

13. In order to be adaptive, the algorithm should be able to modify or adapt the

search based on feedback that includes risk metrics. For example, changing the

allocation of resources to the Pools (or multiple search engines) depending on

the sub-system feedback.

14. The overall model must be scalable. Complex systems contain a large amount of

design variables and, therefore, the algorithm must be scalable, yet still remain

efficient and manageable.

15. A “glass box” system fault simulator is required to test and verify the algorithm.

This system includes a case study with all four types of identified faults

embedded in the fault simulator. The simulator serves as a surrogate

representative of an actual test where the faults are locations and related data

are pre-determined (in order to analyze the efficiency in any relative search

algorithm) but not given to the algorithm.

5.5 Model Description

5.5.1 Analysis Focus Areas

In creating an algorithm designed to study the major drivers and interactions that affect

the efficiency of fault detection in a development process, focus will be placed on five

key aspects of the model. Complex system verification is a complex problem and,

therefore, there are many potential variables that can be adjusted to study their

particular effects on the search algorithm efficiency. A designed experiment will be used

to study the significance of the individual values and interactions between the five input

signals. The focus areas include the following:

144

1. Test case expense

When comparing the relative cost of two potential test cases, it is important to

note that more test cases can be executed if the average cost per case is lower.

The issue may be in the lack of ability to cover all combinations and reflecting a

test case generation process that may be too greedy or too passive. For example,

if too many cost corners are cut in the verification process, the effectiveness to

find all faults may be eliminated. This study will analyze the effectiveness of the

designed algorithm focused on taking advantage of relative costs vs. treating all

potential test case combinations (chromosomes) the same.

2. Sorting discovered faults based on risk

Since the goal is to accelerate the growth of the system reliability curve, it could

be beneficial to first place priority on correcting the problems with the highest

RPN number. This study will analyze the effectiveness of the search algorithm by

comparing the process of correcting discovered faults in the order they were

discovered or in the order of the highest to lowest RPN ranking.

3. Imitating nature I – Crossover and Mutation

In the development of complex systems, some Sub-systems can be affected by

defects more than others for a variety of reasons. As a result, one strategy is to

focus a larger percentage of test resources on areas where previous defects have

been discovered (“smell the blood method”). This study will analyze the

effectiveness of the algorithm by comparing the use of genetic algorithm

techniques (crossover and mutation) in the creation of new test cases vs. not

taking advantage of information regarding previous fault detection.

4. Imitating Nature II – Genetic Algorithm Probability Modification

In the process of creating potential test cases in the genetic algorithm process, a

random number generator is used to choose the representative variables for

each sub-system. Initially, there is an equal chance of all variables within each

sub-system being chosen. As previously mentioned, one strategy designed to

improve the effectiveness of the fault search is to focus a larger percentage of

145

test resources on areas where previous defects were discovered. Another

method that may accomplish this objective is to change the probability of a

particular sub-system (chromosome gene) variable being chosen if a fault has

been previously associated with that variable. It should be noted that, if the fault

is designated as an independent fault type, the sub-system variable is not

available to be chosen for a new test case until the fault has been corrected and

mitigated.

5. Prioritize sweep testing of all independent sub-system variables first

The goal of the search algorithm is to create the most efficient test case

development by using feedback during the fault search process and adapting the

test case generating strategy. The majority of search efficiency is gained by

taking advantage of two and three sub-system variable combinations in the

same test case. In the process, most independent sub-system variables are

covered in a short amount of time but not in a systematic process. This study will

analyze the effectiveness of the algorithm by comparing the strategy to check all

independent sub-system variables before the use of adaptive genetic algorithm

vs. jumping directly into the adaptive combinatory testing.

5.5.2 Overview of the Integrated Adaptive Search
Algorithm

There are six primary sub-algorithms, several data tracking tables, and a complex system

test case simulator required in the adaptive genetic search algorithm (Figure 5.15). The

major algorithms are as follows:

1. Command Center (tracks resource bank/consumption, risk management data,

scorecard, etc.)

2. Program Parameter Initialization and DOE Switches

3. Resource Pool 1 – Genetic Test Case Generator

4. Test Case Queue

146

5. Resource Pool 2 – Fault Isolation Via Tabu Search

6. Resource Pool 3 – Fault Management and Test Regression

 7. Complex System Test Case (Fault) Simulator

A description of each section follows.

Command Center

The command center serves as the data bus and graphical user interface (GUI) for the

user. In addition to the GUI, the command center has two primary sections. The first

section is the central repository or test resource units. The amount of resource units is

delivered to each of the consumptions Pools as determined by the tool user. Second,

consumption metrics are tracked and recorded in the database and used to potentially

adapt the resource allocation process.

In order to achieve the goal of optimizing the available resources in the three Pools, the

modification of available resources over the course of the testing process is useful. In

the early test phases, a broad spectrum of testing (Pool 1 search) may be more valuable

than the other Pools.

147

Figure 5.15: Adaptive Genetic Search Algorithm Concept Map

Once a number of high values (relative RPN risk scores) have been discovered, the

reallocation of test resources between Pools could improve the optimization model. The

algorithm could be based on relative cumulative-RPN scores in each Pool or an

advanced method could utilize Bayesian networks to judge the relative risk between

Pools. The computer program written for the case study allows the user to modify the

distribution of resources per program cycle and initial Pool allocations at the start of the

algorithm.

148

The second section is focused on data collection and analytics which are reported via

the tool dashboard. There are a large number of metrics that are tracked and presented

in response to the desired output signals as well as system debug information and fault

detection timing patterns. The following list of the primary feedback metrics is

presented in the dashboard:

• Isolated Faults (number) in order of discovery

• Cumulative resource consumption at the time of each fault discovery

• Resource count for the release of faults from the tabu list

• Breakout of resource consumption for the separated Pools

• The test case cycle number when each fault was discovered

• The test case cycle number when each fault was released (mitigated)

• A potential system reliability growth number (accumulation of RPN values

associated with each discovered fault) over time

• Estimated system reliability growth number (accumulation of RPN values

associated with each fault discovered and mitigated over time)

• A large variety of detailed feedback sources for program debug and

instantaneous relative results

Program Parameter and DOE Alternative Initialization

The specific search algorithm and subsequent case study designed in this research is

focused on developing insight on the identified variables to apply to more realistic

verification test plans. The primary method to draw summation results against the

experimental hypothesis is through a five variable designed experiment.

Therefore, it is necessary to design a user interface in the tool that allows experiment

switches in the code, where certain sections of the code are to be turned off or modified

depending on the experiment. In addition, the GUI and variable declaration section of

149

the model allows the user to modify values of the parameters and the controlled

variables.

Resource Pool 1 – Genetic Test Case Generator

The genetic test case generator serves as the heart of the search algorithm and the

largest potential consumer of test resource units. A typical genetic algorithm will

produce a population of potential solutions to a given optimization problem. A sample

of the population is chosen and evaluated against the objective function in an effort to

eventually evolve to the best solution. In a similar manner, the first resource

consumption Pool (algorithm) of the adaptive genetic test case generator creates a

given number of potential test cases (the number is determined by the user). The

expense to execute the potential test cases is then calculated and assigned to each test

case chromosome. The user has the choice of how large of a sample to take from the

population to conduct the testing for each cycle. For example, if the population size is

only one test case and it will be chosen no matter how expensive it is to run, this

strategy will insure a very diverse set of tests. On the other hand, if a large population of

potential test cases is created (along with the cost) and the user always chooses the

(one) least expensive test case to run, there is a chance that many sub-system variables

affected by a fault will not be tested. In the spirit of test case diversity, yet with the

most cost effective path, the goal is to take advantage of both drivers. Creating a larger

population of potential test cases insures a greater overall diversity of testing. By

choosing a sample of each generated test case population, there is an opportunity to

include several combinatory tests per cycle but at a more cost effective rate. In the

algorithm, the program is designed to continuously cycle through the three resource

consumption Pools until all resources are consumed or the algorithm is terminated by

the user. Theoretically, a user can never be certain if all faults are discovered. In the

case study, a glass box concept is used with the same set and location of faults to

analyze the various aspects of the models.

150

Depending on the size of each population sample, each adaptive genetic search

algorithm program cycle may consist of several internal cycles. For example, if the

sample size used in the Pool1 algorithm is four, the algorithm will cycle through the test

case queue, Pool 2 algorithm and Pool 3 algorithm, and then go back to the next test

case in the queue four times before going back to the Pool 1 algorithm to create a new

set of test cases to be placed in the queue.

Description of three primary data tables

There are several data tracking tables required for this system algorithm, but two tables

are critical to the objective of maximized fault detection and reliability growth with fixed

resources. In the first part of this research, one of the primary objectives of the

Integrated Sustainable Product Development Framework was the introduction of risk

management and resource optimization into the robust design and verification process.

Therefore, a) the test case variable cost, b) assigned fault risks (RPN), and c) the genetic

algorithm Gene probability are tracked in the model.

The cost table is static (i.e. metrics do not change during the course of the adaptive

search) once the desired experimental set-up is chosen, and contains the relative value

of the Gene in reference to the generation of a test case. Because resources and time

are limited, the lowest cost test cases that still achieve the goal (in the aggregate form

of time and material) would be preferred. While it is not possible to catch all faulty

genes by only running the least costly test cases, it is still valuable to optimize the

detection of the most valuable genes with minimal resources. For the case study used in

the verification of the algorithm, the relative cost for each variable normalized between

0 and 10 are entered into the table (see Table 5.4). An engineer could use actual cost as

well. In an effort to study the effects of cost on the adaptive search model, experiments

will be conducted where each sub-system (gene) variable will be treated as the same

cost, regardless of the actual cost. This action would help insure the most diverse test

case suite but could exhaust the total resources before all faults are discovered. Because

the standard cost in the case study runs from 1 resource unit to ten for each Gene

151

(which contain 10 variables), the average cost of each test variable is 5.5 resource units.

This average cost is also reflected in Table 5.4. For example, the expense to execute the

third variable in the first sub-system (gene) would be 3 resource units, if actual assigned

costs were used, or 5.5 resource units, if average costs were used.

The second input that is critical to the adaptive feature of the search algorithm is the

Gene probability table. In the spirit of designing a heuristic genetic algorithm, the

probability of individual values within each Gene is modified during the course of the

testing and fault discovery process. Table 5.5 contains the initial relative probability of a

sub-system (gene) variable being chosen given a random number generator between 0

and 1 being used to pick the variable that represents the sub-system in the test case. As

the algorithm starts to execute, all probability values are equal. There are two ways to

change the probability values in the algorithm. The first way is having an independent

fault detected and isolated. In this case, it does not make sense (or create new value) to

continue testing a Gene variable design that will be modified to test the detected fault.

Therefore, the Gene variable is blocked from being chosen in the test case generator.

This block is accomplished by assigning a probability value of 0 to that specific Gene and

then redistributing the range of numbers equally between the remaining variables in the

sub-system.

The second modification method integrates the hypothesis that faults may be in clusters

or hidden from view due to another fault. In reality, it can happen if the complexity of a

particular design is higher than other modules or the relative experience of the module

design team is less than others.

152

Table 5.4: Test case variable cost: actual vs. average

For the algorithm, the user has the ability to choose if they desire to increase the

probability that a Gene variable will be chosen relative to the other variables on the sub-

system during the random selection process. In this case, after a fault is detected and

mitigated, the probability can be slightly increased on the Gene involved with the

corrected fault, but it has to be done at the expense (and lowering the probability) of

the other variables in the sub-system (i.e. chromosome gene). It is a very sensitive

variable and cannot be so greedy that others faults, especially the expensive ones, are

never chosen. This independent variable is analyzed in this research.

The third table contains the pre-assigned risk-RPN value and primary suspect gene-

variable for each fault embedded in the complex system test case simulator.

153

Table 5.5: Example of normalized Gene probability

Because computer program is too large for this dissertation, the pseudo code and logic

flow chart are presented for each major algorithm.

The pseudo code for the Resource Consumption Pool 1 algorithm is presented below

and the flowchart is shown in Figure 5.16.

Pseudo Code of General (Resource Consumption Pool 1) Fault Search
Algorithm

Start

-If new test resource units are available from bank, then receive

-If test resources are not available, then return to command center

-Else - conduct the following algorithm

-From 1 to X population size – generate a round of test case population candidates

 - For I = 1 to 8

154

Generate random number, compare to probability table and assign Gene

variable (reference Gene probability table)

-next

-Evaluate variable expense and assign total cost of each test case

 Reference cost table

-Sort the test case population by cost (lowest to highest)

-For I =1 to x (x is the desired sample size from population)

 Transfer the x - lowest cost test cases to the test case queue

Figure 5.16: Logic for the general fault search algorithm

For illustrative purposes, assume the test engineer would like to create a population of

eight (8) potential test cases in the complex system with 8 Sub-systems (genes). In

addition, the engineer elected to take a sample of the four (4) lowest cost test cases for

each cycle. In Figure 5.17, an example shows the generation of eight potential test

cases. Each individual Gene in the chromosome is randomly picked based on the

probability table. After the chromosome population is generated, the cost of each test

155

case candidate is calculated and then ranked from lowest to highest. The top four

lowest cost test cases are chosen to be executed because they present the best

utilization of resources. In this example, the lowest cost test case chromosome was #6

which would cost 12 resource units to execute; then test case number three (21

resource units); then test case number 1 (24 resource units); and then, finally, test case

number 2, which would cost 25 resource units. These four test cases (the population

sample for this algorithm cycle) would then be sent to the test case simulator queue.

Pool 1 Example

Figure 5.17: Diagram of data management in search Pool-1

In this example, test cases 5, 7, 8, and 4, were more expensive than the first four test

cases and were not chosen to be used in the product verification test plan. There are an

unlimited amount of possible configurations to choose from in consideration of how big

the population should be and how many test cases are chosen each round. The focus of

this research is to take advantage of the adaptive aspects of this approach and,

156

therefore, a smaller population and sample size is used per round to take advantage of

the feedback. For the case study, these two values are held constant to focus attention

on the five identified independent variables.

Test Case Queue

The test case queue is an algorithm and database designed to hold the set of test cases

generated in the adaptive genetic search algorithm, queued up to be sent to the

complex system test (and fault) simulator. The test cases are in the form of ordered

number arrays and are also referred to as the test case chromosomes. The majority of

the test cases are created by the Pool 1 algorithm, but some are also created by the

Pool 3 process that takes any released test cases that previously detected a fault and

creates new test cases (through crossover and mutation). The new test cases are placed

directly in the front of the test case queue. The designed experiment used in the case

study assessment has the ability to turn this feature on and off. Each time a test case is

sent to the simulator, the appropriate amount of resources is deducted from the

respective consumption Pool’s bank account to simulate the expense of executing an

actual test. The appropriate results are sent to the command center for data collection

and analytics.

Resource Pool 2 - Faulty Gene Isolation Search Algorithm

The primary purpose of the Pool 2- resource consumption algorithm is to isolate the

fault (Gene variables) within the test case that identified a system fault. It is important

to recall that finding a fault is valuable, but value is not added until it is isolated and

then mitigated.

The following pseudo code describes the Pool 2 isolation algorithm which uses a form of

a tabu search to eliminate the various variable test case combinations in the process of

isolating the actual fault (Figure 5.19 for logic flow). This search can be a critical process

157

if there is actually more than one fault that can be discovered in a particular test case. It

can also create a phenomenon where the test fails for one particular reason, but the

engineer isolates and corrects a different fault.

A fundamental requirement for system testing and an assumption for the assurance

verification process is that the product can function (including at least one variable from

each sub-system) at the most basic level. This base chromosome, referred to as the

basic function test case (Test case = (1,1,1,1,1,1,1,1)), will be used in the tabu mutation

Gene isolation algorithm within resource Pool 2. The base chromosome (all 1 values) will

also be referred to as the primary “healthy” test case. Note: It is logical that, if the

product does not function at the system level, further system testing is an inefficient use

of resources.

The pseudo code for the Resource Pool 2 algorithm is presented below and the

flowchart is shown in Figure 5.18.

Pseudo Code

-Receive test cases and supporting data that have identified a system fault

 Update array counters and Pool 2 database

-Load test case into Pool 2 algorithm parameters

Look up the suspected Gene variable associated with the fault (in the associated

database)

-Step 1: Search for any independent faults

 -For i= 1 to the chromosome length (8)

-Freeze the value of the suspected “sick’ Gene of the test case

chromosome

-Replace the value of all remaining test case chromosome genes with the

minimum function variable #1. (example (1,4,1,1,1,1,1,1)

-Send the new test case to the complex system test case simulator

158

If fault not detected – unlock suspected Gene variable and return to try

next value for i in the isolation process

Else – if fault detected Goto FaultDetected Logic below

 -If test cases 1 through i do not detect an isolated fault then go to step 2

-Step 2 : Search for any two variable – dependent faults

-For i= 1 to the chromosome length (8)

-Freeze the value of the suspected “sick Gene variable and the ith position

of the test case chromosome

-Replace the value of all remaining test case chromosome genes with the

minimum function variable #1. (example (3,4,1,1,1,1,1,1)

-Send the new test case to the complex system test case simulator

-if fault detected Goto FaultDetected Logic below else

-If fault not detected – return to try next value for i in the isolation

process

 – if fault detected Goto FaultDetected Logic below

-If no faults are detected on the possible two variable combinations with the

suspect gene, then try other two variable test case combinations in order

 If the test cases above do not detect any fault then go to step 3

-Step 3 : Search for any three variable – dependent faults

-For i= 1 to the chromosome length (8)

-Freeze the value of the suspected “sick Gene variable and the ith and jth

position of the test case chromosome

-Replace the value of all remaining test case chromosome genes with the

minimum function variable #1. (example (3,4,8,1,1,1,1,1)

-Send the new test case to the complex system test case simulator

-if fault detected Goto FaultDetected Logic below else

-If fault not detected – return to try next value for i in the isolation

process

-repeat for the j’th position

159

 – if fault detected Goto FaultDetected Logic below

-If no faults are detected on the possible three variable combinations with the

suspect gene, then try other three variable test case combinations in order

 until fault is discovered or transfer test case to holding area and return to

command

Goto: FaultDetected

If a fault has been detected and isolated then

-If the fault is an independent type, block the Gene variable and modify the

probability table

Else modify the Gene probability table of the Gene variables identified in

the fault isolation process

-Send isolated fault to the Pool3 problem tracking system (tabu list)

-End

160

Figure 5.18: Logic for the Gene isolation algorithm

Example 1: Independent Fault

The first example presented is the isolation of an independent fault within a test case

that indicated a fault. For example, this could be a function feature of the product that

is defective regardless of the environment or other test case variables. Because there is

no dependence with other test case variables, it is the simplest Gene to isolate.

Assume the general fault search in Pool 1 identifies a fault within the test case

chromosome (CZ) and the following information is sent to the Pool-2 holding area -

[(1,3,2,1,2,1,1,3), 132, 2] (Figure 5.19). The following information is parsed from the

delivered information.

• Faulty Test Case CZ = (1, 3, 2, 1, 2, 1, 4, 5)

• RPN = 132

161

• Primary Suspect Gene = #2 (For the case study, this implies the second Gene

out of eight in the chromosome is the primary suspect that caused the

product failure).

After a test case with a system fault is received by Pool 2 algorithm, the first action in

the isolation process is to determine if the fault is independent. The process is to isolate

the suspected sick Gene with the known (healthy) base test case. All genes variables in

the chromosome except the target Gene value are changed to the (base) value of “1”

and this chromosome is tested in the simulator. If the response back is a faulty CZ, the

suspected faulty Gene is confirmed and sent to the tabu holding list in Pool 3. If the

result of the test is no fault detected, each of the other individual sub-system variables

are isolated with the others values changed to the base value of 1 and sent to the

simulator. If after all Gene variables are tested independently and no faults are

detected, further isolation testing is required.

Example 2: Two Variable Dependent Fault

If an independent fault was not isolated in the first process, the next step is to search for

any two variable combinations within the test case that triggered the fault. For example,

this could be a functional feature of the product that is defective when used in a specific

design of another module. Because there can be many combinations within the

chromosome, two and three variable faulty Gene combinations can be resource

intensive to isolate. In the below example, the fault detected in the simulator is caused

by the combination values of the of second and sixth Gene in the test case.

162

Figure 5.19: Diagram of Pool-2 mutation for independent fault

Assume the general search in Pool 1 identifies faulty chromosome (CZ) and the following

information is sent to the Pool-2 holding area - [(6,3,2,4,2,3,4,5), 132, 2], (Figure 5.20).

The following information is parsed from the delivered information.

• Faulty Test Case CZ = (1, 3, 2, 1, 2, 1, 1, 3)
• RPN = 132
• Primary Suspect Gene = #2 (For the case study, this implies the second Gene

out of eight in the chromosome is the primary suspect that caused the

product failure).

Assuming an independent fault was not detected in the first step of the isolation

process, the algorithm takes five more test cycles to isolate the faulty Gene combination

of Gene 2 and Gene 6. The test resources used for all five tests are recorded. If the

second Gene in the combination was after the fifth or there was a three variable fault

combination, isolated combinatory testing will continue until the fault is detected.

163

Figure 5.20: Diagram of Pool-2 test case mutation for 2 variable search

Resource Pool 3 – Fault Management and Test Regression

The Pool 3 algorithm is designed to carry out several tasks during the execution of the

model. It includes a problem tracking and monitoring system, mitigation resource

tracking, fault regression testing, and release and test case evolution via cut and

crossover. The logic involved in this algorithm is described below.

Not only are resources required to discover and isolate faults in a complex system, they

are also necessary to develop correction to the faulty design. As stated in the previous

chapter regarding product assurance reality, taking the time lag between problem

discovery and fault mitigation into account while executing the verification strategy is

critical to accelerated reliability growth. In the case study, a theoretical complex system

is simulated with various types of faults embedded in the system. In addition to the

164

type, location, and assigned RPN number, the fault also has an assigned amount of

resources necessary to correct the problem. The Pool 3 algorithm receives and tracks

the progress of faults that are isolated in the discovery process. The model also

regulates the allocation of resources toward the faults and, when enough have been

applied to a particular fault, it is released for regression testing.

One of the primary objectives of the experiment designed to analyze the effectiveness

of the search algorithm is the hypothesis that prioritizing the order in which the

discovered faults are corrected and released based on the highest RPN number first, will

improve the overall effectiveness of the model. The user has the ability (via a switch) to

command the algorithm to apply resources in the fault correction process to the faults

in the order they were discovered or by the order of their risk rating level. In the second

case, the fault with the highest RPN number always gets first priority in the allocation of

available resources.

After a fault is released, the original test case is sent back to the complex system test

case simulator for regression testing. If the test case comes back with a detected fault, it

is sent back to the Pool 2 fault isolation process. If the test case comes back clean, the

fault has been corrected and the proper data is sent to the command center. Genetic

algorithm probability tables are updated and the test case is modified to create

additional test cases in the assumption there may be other faults associated with the

sub-system variables in the original test case. The model takes the original test case,

cuts it in half, and re-populates the open Gene variables in the new test case

chromosome with randomly generated values. The two new test cases are sent to the

test case queue for analysis. Often problems can be clustered because the particular

area under stress could be higher risk than average. The hypothesis is that the

probability of detecting faults with half-parents of new chromosomes in the genetic

algorithm is better than a random search. This is part of the adaptive genetic search

process. The following pseudo code describes the Pool 3 algorithm and the logic flow

chart is shown in Figure 5.21.

165

Pseudo Code for Regression Testing, Tabu Gene Release and CZ crossover
(Pool3) Search Algorithm

-Receive test cases and supporting data that have identified a system fault

 -Update array counters and Pool 3 database

-Sort Isolated Faults by RPN Value (from High to Low)

-If new test resource units available from bank, then receive

-If test resources are not available, then return to command center

-Else ; conduct the following algorithm

-Apply available resources to the highest priority faults in the problem tracking system

-Check if any faults have accumulated enough resources for release

 -If no then Return to Command Center

 -If yes, load original test case and send to complex system test case simulator

 -If fault detected, then transfer test case and data to Pool 2 fault isolation

algorithm

 -Else (fault not detected) release fault from tabu list

 -Update Gene variable probability tables and update dashboard metrics

-Cut original test case chromosome in half, re-populate parent test cases, and

send to test case queue

166

Figure 5.21: Logic for the regression testing and tabu Gene release algorithm

Complex System Test Case (Fault) Simulator

The complex system test case execution simulator is designed to imitate the experience

a product engineer will face in the verification process when seeking out embedded

faults. The fault simulator contains a “glass box” database containing the location of

each embedded fault and related risk. These faults contain the identified test case

variable (“sick gene”) that is suspected to be involved with the problem but must be

verified and assigned a RPN score. If a fault is embedded within a test case, the

simulator indicates a defected test chromosome but not the particular or combination

of genes. This realistic feedback is similar to the data a product assurance engineer

would receive. Although a product system fault is detected, further testing is necessary

in order to isolate the gene(s) within the test chromosome that caused the defect. The

fault location database is considered a glass box where the location and assigned risk of

the faults is defined ahead of time and held constant for all trials of the search

167

algorithm. This is done to assess the effectiveness of the algorithm designs relative to

the five independent variables. The search algorithms themselves do not know the

location of the faults.

In addition to the pre-assigned location of the independent and the two and three

variable dependent faults, an internal clock based off of test unit resource consumption

is used to release latent defects during the execution of the search algorithm. It is also

important to remember that this simulator is recreating faults in the system in the same

manner and sequence that the test engineer would see in the actual lab. For example, a

particular Gene may be involved with 2 or more faults. As was described in the

background section, independent faults must be detected and corrected before

interactive (dependent) faults can be corrected. Therefore, only one problem at a time

will be identified by the simulator.

5.6 Analysis of Model Effectiveness

5.6.1 Identification of Adaptive Genetic Search Algorithm
Variables

The adaptive genetic search algorithm simulator is a complex computer program written

to model the effects of a variety of influencing variables. The model is applied to a case

study which contains 32 faults and whose locations are held constant in the simulator.

The faults are a variety of single variable-independent; two-variable dependent, three-

variable dependent, and latent defects that are released at a fixed time after the

algorithm has started. The type, location, and assigned risk of the faults are based on

real world experience. In addition to the independent variables which were described in

Section 5.5.1, the dependent and controlled model variables are defined below:

168

5.6.2 Dependent Variables (Measured with Each Test Run)

• Cumulative Resource Consumption during system test runs

• Total Discovered System Risk (cumulative RPN) over Total (cumulative) Resource
Consumption

• Resource consumption per fault discovery, including total consumption to find
last fault

• Test case count per fault discovery and total test case count to discover all faults

• MTBF during the fault detection and mitigation process can be indirectly
calculated

 5.6.3 Controlled Variables (Values in the Model Held
Constant)

• Number of potential test case candidates created per pass

• Number of test case candidates chosen to be used per pass

• Total amount of Test Resources available

• Initial amount of resources available for each test Pool (fault discovery, fault
isolation and fault regression)

• Amount of test resources added to fault regression Pool over the system run
(test case generation cycles)

• Total and type of faults injected into the fault simulator (case study)

• Timing of Latent Defect releases (based on resource consumption)

(Note: The controlled values can be modified in the model if desired)

169

5.6.4 Adaptive Genetic Search Algorithm - Simulation
Hypotheses

In analyzing the effectiveness of the proposed adaptive genetic search algorithm, a five

variable, two level designed experiment is used to present the statistical significance of

five identified independent model variables. Therefore, the following null hypotheses

will be investigated:

H01: Treating the cost of all potential test case Sub-systems variables (gene-

variables) as equal, ensures the best chance for maximum fault detection and

reliability growth, given resource constraints.

H02: Prioritize the order of fault correction: Driving resources to the correction,

regression, and release of the detected fault with the highest assigned risk value

rank first (based on customer satisfaction), will ensure the maximum fault

detection and reliability growth, given resource constraints.

H03. Creating offspring “child” test cases through crossover and mutation of

parent test cases that previously discovered a fault ensures maximum fault

detection and reliability growth RGC, given resource constraints.

H04. Testing all independent sub-system test variables before the adaptive

genetic search algorithm is enabled ensures the best chance for maximum fault

detection and reliability growth, given resource constraints.

H05. Focusing on sub-system history: By modifying (increasing) the probability of

a sub-system variable to be chosen within a test case sub-system, based on

previous success, will ensure maximum fault detection and reliability growth,

given resource constraints.

170

5.6.5 Expected Shape of the Reliability Growth Curve

One of the desired effects of the search algorithm is to create a tool for the engineering

community that increases the understanding of the dynamics involved in the reliability

growth curve for a complex system. This research identified seven types of fault or fault

states that can affect the progress of the reliability growth curve. In reality, the

detection and mitigation of faults during the development life-cycle may not be as quick

or efficient as expected and cause delays in the product delivery. Traditionally, the

reliability growth curve is presented as a continuous curve, plotting the mean time

between failures over time. In this research, the reliability growth in the form of

discovered and mitigated risk will be measured and plotted for each factor of the

designed experiment. The chart in Figure 5.22 identifies the expected shape of the

reliability growth curve if the search and mitigation process is the most efficient. The

rate of discovered faults per consumed resources can also be plotted.

Figure 5.22: Expected Reliability Growth Curve Shape

171

5.7 Summary

Chapter five presented the design of the adaptive genetic search algorithm, along with

the logic behind the fault detection process. Emphasis was placed on the reality that

there is a time lag between fault detection, and fault mitigation, which can create

unexpected product development delays and fault escapes to the field. The goal of the

search algorithm is to increase the efficiency of the fault search and mitigation process.

Chapter six is focused on designing a validation experiment in the form of a case study

and a complex system simulator. The simulator will be used to exercise the adaptive

genetic search algorithm with a designed experiment that will be used to analyze the

effectiveness of the model and hypotheses.

Copyright © K. Daniel Seevers 2014

172

Chapter 6: Case Study: Model Execution, Data

Collection and Data Analysis

This chapter presents two case studies that illustrate models designed to aid the

engineering team in sustainable product development. The first study compares

generation to generation product designs relative to the sustainable products’ value

proposition metrics. The second study applies the adaptive genetic search algorithm to

simulated complex systems with embedded faults. An experiment is conducted to

evaluate the impact that five independent variables have on the model’s effectiveness.

 6.1 Sustainable Products Value Proposition - Case
Study

In the pursuit of producing sustainable products, there is not a simple prescription for

designing products that perfectly meet the needs of producers, consumers, and the

socio-environment in a single package. A producer may make a tradeoff for one of the

sustainable value proposition driving aspects in order to improve in several other

metrics. It is still important to look at the aggregate score of a particular next generation

design as compared to the previous generation as well as the best of breed offering in

the market for each category. Figure 6.1 presents the collected driving aspects of the

value proposition that the engineering community is encouraged to measure new

potential new product design concepts relative to previous designs and vs. the best of

breed in the industry.

In a competitive market with worldwide competition, the value of any one particular

sustainable value proposition metric is relative to the competitive offerings and societal

impacts. For the value proposition comparison tool, a scale of 1 to 10 is used to rate

each driving aspect as compared to the product in the field that is the best of breed for

that particular value. In order to promote continuous improvement, the best of breed is

173

given a set value of 8 across the board. Therefore, when considering potential designs

for next generation product offerings, surpassing the current best of breed value

proposition would be rated a relative score of 9 or 10. The hypothetical best score of the

best of breed product is 144 points.

Figure 6.1: The complete set of sustainable value proposition driving aspects

A case study is presented comparing the relative rating of a potential next generation

product design (in each of the sustainable value proposition driving aspects) to the

current producer’s product offering and the best of breed. The results of this analysis

are presented in Table 6.1 and graphically presented in Figure 6.2. In the graph, the light

blue color represents a relative scale of 7-8 points where 8 is the value of the current

best of breed offering to a consumer at that time. The green segment on the graph

represents a next generation design that exceeds the current value proposition to the

consumer.

174

Table 6.1: Comparison of case study results

In this particular case study, there is a 46% improvement in the next generation design

and a rating of 15 of the 18 driving aspects considered equal to or better than the

current best of breed. With the next generation design, the table shows that three of

the driving aspects did not meet the current best of breed offering. These results point

out potential opportunities but indicate that an improvement in those three categories

may come with a need to lower a rating in another category.

 Sustainable Product Design Metrics: Driving Aspects

Producer Impact: Cost of
Product Life Development
Metrics

Current Industry
Category Best of

Breed

Generation 1
Design

Generation 2
Design

 Bill of Material Expense 8 7 8
 Relative Design concepts 8 8 10
 MTBF and MTBI 8 5 8
 Cross Platform Compliance 8 2 6
 Generation-to-Generation Compliance 8 6 6
 Product Life Extension or Retirement 8 1 8
Total Producer Impact Score 48 29 46

Consumer Impact: Total Cost of
Ownership Metrics
 Benefit of New Innovation 8 5 8
 Cost to Purchase, Install 8 8 10
 Cost of Consumables 8 7 9
 Cost of Maintenance 8 2 8
 Cost of Warranty Repairs 8 6 8
Cost of the End of Current Life Cycle 8 3 6
Total Consumer Impact Score 48 31 49

Socio-Environmental Impact:
 Total Energy Consumption 8 6 9
 Total water consumption 8 7 8
 Product and Material Safety Compliances 8 8 8
 CSR and Environmental Activities 8 6 9
 Industry specific certifications 8 7 8
 Collection and Product Disposal 8 5 8
Total Socio-Env. Impact Score 48 39 50

Overall Product Design Score 144 99 145

175

Figure 6.2: Graphical presentation of relative sustainable value proposition case study
results

6.2 Adaptive Genetic Search Algorithm – Case Study

The premise of the research described in the last chapter centered on the value that

timely feedback contributes to the development process. The opportunity for

improvement in the development of robust designs that meet the sustainable value

proposition can be seen graphically in the reliability growth curve of a product during

the development life-cycle. In complex systems, early detection of embedded faults

increases the likelihood of meeting target risk levels at the start of production and

improves the utilization of verification resources. Both of these aspects contribute

directly to increased value outlined in the sustainable products Half-Life Return Model.

During the development process, one of the primary drawbacks of the analysis of

reliability growth curves is that they are only based off of discovered faults. In reality, an

embedded fault may exist in a system design that has not been detected and, therefore,

176

the engineering team does not even know of the potential risk. The adage, “you don’t

know what you don’t know,” is relevant in the context that research is necessary in the

study of verification strategy and test case development to increase ability to discover

complex system faults that may escape the development process with traditional

verification efforts.

In the area of complex system verification, this study contributes to the field of test case

development strategies by focusing on the effects that five targeted variables have on

fault detection and risk elimination. This chapter focuses on evaluating the adaptive

genetic search algorithm by conducting a five variable, 2 level, full factorial designed

experiment. In order to improve the accuracy of the results, each of the test run

(treatment) combinations is repeated eight times and the average of the dependent

variables is used in the analysis package. Graphical and statistical analysis is conducted

to draw conclusions regarding hypotheses and general search effectiveness. The

statistical package JMP by SAS is used to provide mathematical confidence in the results.

6.2.1 Experimental Set-up

A computer program was written to convert the adaptive genetic search tool into a

working model to analyze its effectiveness. The program was written in Microsoft Visual

Studio with an interface designed to capture the results of each run and transfer into a

Microsoft Excel database. In addition, a complex system simulator was created to

include all seven fault types embedded in the system.

6.2.2 Independent Variables

The independent variables, which are modified with each treatment and placed in

ordered arrays, defined by the full factorial designed experiment (detailed in Table 6.2)

and a description of values assigned is provided below.

177

1. Cost of Each Test Case Gene Variables (i.e. Cost of Test Case Chromosome)

The high signal (signified by 1) for this independent variable (“cost”) assumes the actual

cost of each Gene variable in the chromosome will be used. As defined by the

experiment, the values range from 1 test resource unit for the first variable in each sub-

system and incrementally climb to 10 resource units for the tenth sub-system variable.

The low signal (signified by 0) for the first independent variable assumes the average

cost of the Gene variables will be used. For this case study, the average cost of the sub-

system variables is 5.5 test resource units. The short name for this variable is “cost.”

2. RPN – Risk value of each fault detected (Prioritizes fault mitigation resources)

The high signal (signified by 1) for this independent variable (RPN utilization) assumes

the algorithm will utilize the assigned relative risk prioritization number (RPN) for each

discovered fault to prioritize the allocation of resources in Pool 3. The low signal

(signified by 0) for the second independent variable assumes all discovered faults have

equal risk level ratings and, therefore, resources are applied to the correction (time

release) of the faults in the order they were discovered. The short name for this variable

is “RPN”. Traditionally, a risk prioritization number is based on the multiplication of

three factors (severity, occurrence and detection), each on a scale of 1 to 10, with 10

signifying the highest risk for each category. Therefore, the worst case scenario for a

problem (which is highly idealistic) would be 10 x 10 x 10 = 1000 (Cohen et al., 2013). A

different scale was used in the case study in order to match the relative scale of the case

study in the computer model. The assigned RPN values in the case study range from 750

to 3600, which is higher than the traditional number set. The significance of the

assigned values is only relative to the embedded faults in the system.

Table 6.2: Case study full factorial designed experiment

178

3. Cut and crossover of test cases (CZ’s) from high probability parents

The high signal (signified by 1) for this independent variable (genetic algorithm

crossover) assumes the algorithm will utilize the genetic algorithm process of cutting a

Algorithm - Independent Variable Analysis - Experiment Design
Treatment No. Pattern Cost PRN Pool 3B 1D Sweep Probability

1 00000 Low Low Low Low Low
2 10000 High Low Low Low Low
3 01000 Low High Low Low Low
4 11000 High High Low Low Low
5 00100 Low Low High Low Low
6 10100 High Low High Low Low
7 01100 Low High High Low Low
8 11100 High High High Low Low
9 00010 Low Low Low High Low
10 10010 High Low Low High Low
11 01010 Low High Low High Low
12 11010 High High Low High Low
13 00110 Low Low High High Low
14 10110 High Low High High Low
15 01110 Low High High High Low
16 11110 High High High High Low
17 00001 Low Low Low Low High
18 10001 High Low Low Low High
19 01001 Low High Low Low High
20 11001 High High Low Low High
21 00101 Low Low High Low High
22 10101 High Low High Low High
23 01101 Low High High Low High
24 11101 High High High Low High
25 00011 Low Low Low High High
26 10011 High Low Low High High
27 01011 Low High Low High High
28 11011 High High Low High High
29 00111 Low Low High High High
30 10111 High Low High High High
31 01111 Low High High High High
32 11111 High High High High High

179

released test case that previously discovered a fault and forming two new test cases.

The low signal (signified by 0) for the third independent variable assumes this process

will not be utilized and all search based test cases will be based on the probability tables

for each chromosome gene. The short name for this variable is “Pool 3”.

4. Sweep of all Independent variables first in test case chromosome creation

The high signal (signified by 1) for this independent variable (initial independent variable

test sweep) assumes the algorithm will create test cases that sweep through all

independent sub-system variables before the process is converted to the genetic

algorithm test case generation method. The low signal (signified by 0) for the fourth

independent variable assumes this process will not be utilized and genetic algorithm

probability tables will be used to choose the test case sub-system variable with the first

test case. The short name for this variable is “1D sweep”.

5. Gene probability modification given fault detection

The high signal (signified by 1) for this independent variable (Gene variable probability

modification) assumes the algorithm will utilize the genetic algorithm process of

modifying the probability of a particular sub-system (gene) variable. The variable will be

chosen based on its involvement in previously successful test cases. The low signal

(signified by 0) for the fifth independent variable assumes this process will not be

utilized and the use of genetic algorithm probability tables will be held constant during

the test case population creation process. The short name for this variable is

“Probability.” The target incremental increase of probability for the target variable is 5

percent divided by the amount of variables involved in the mitigated fault. For example,

after a two variable fault is successfully detected and mitigated, the probability of each

of the sub-system (gene) variables being selected will increase by 2.5% and, therefore,

decrease the probability of the remaining sub-system variable by 0.277% (which is

2.5%/9).

180

6.2.3 Controlled Variables

The controlled variables in the analysis of the adaptive genetic search algorithm are held

constant to focus on the effects of the five identified independent variables. The values

chosen for the controlled variable could be changed in order to conduct further

research on the model’s efficiency. The controlled variables are as follows:

Controlled Variables (Values in the Model Held Constant):

1. Test case population: number of chromosomes (potential test case candidates)

created per Pool-1 pass (case study target = 5 to 8)

2. Test Case Sample: number of chromosomes (test cases) chosen per Pool-1 pass (case

study target = 4)

3. Total amount of test resources units available (case study target 175,000 test

resource units)

4. Initial amount of resources provided to each test Pool (case study target = 100,000

resource units in Pool 3)

5. Amount of fault mitigation resources added to Pool 3 over the system run (test case

generation cycles) (case study target = 1 to 1 match to resources applied to Pool1 1

and 2)

6. Total and type of faults injected into the fault simulator (see case study for details;

target = 32 faults with 4 latent)

7. Timing of Latent Defect releases (various - based on resource consumption; see case

study for details)

Note: For controlled variables number four and five, the values chosen in the execution

of the model were set relatively high enough to minimize the sensitivity of this model

aspect compared to the independent variables.

181

6.2.4 Data Collection for Dependent Variables and Analysis

The data for dependent variables gathered to analyze the fault detection and the

mitigation process. The dashboard designed in the computer program is shown in Figure

6.3. The data is presented in the model scorecard and transferred to a database. In

addition to several data sources for model feedback, four primary data streams are

collected for further analysis. These data streams include the following:

1. Cumulative resource consumption during system test runs

2. Total system risk mitigation(cumulative mitigated RPN growth) divided by total
(cumulative) resource consumption

3. Cumulative resource consumption per fault discovery, including total consumption
to find last fault

4. Test case count per fault discovery and total test case count to discover all faults

182

Adaptive Genetic Search Algorithm Results Scorecard – Example Run

Figure 6.3: Screenshot of search algorithm tool – dashboard

Data Analysis

After the eight replications of each treatment are executed and data collected,

continuous data rate samples and the average of the two data sets will be analyzed.

Continuous Data (Sampling) Plots

There are two primary continuous data sets that are sampled for each treatment.

During the execution of the search algorithms, test resources are applied to the fault

detection and mitigation process until they are fully consumed (the target total resource

bank is 175,000 units). During the consumption process, incremental data samples are

183

taken every 1400 test units for the growth of system risk mitigated via cumulative RPN

and the cumulative amount of mitigated faults. After eight runs of each treatment, the

average value for each data point is calculated.

Fault Detection Sample Plots

For the case study, thirty-two faults are embedded in the system. Therefore, a plot of

the faults discovered and mitigated over the consumption of the test resources will

become asymptotic to a horizontal line on the y axis (Figure 6.3).

Figure 6.4: Ideal reliability growth based on detected fault count

In an ideal state, there is rapid acceleration of faults discovered and then the full

amount of possible faults are discovered (the y intercept is 32). If the search algorithm is

too greedy or inefficient, the resources will be consumed before all of the faults are

detected (a lower y-intercept value).

184

Fault Detection Sample Plots

The second data sample is the cumulated mitigated risk over the course of the test

resource consumption. This y-value is the accumulation of the RPN value assigned to

each fault that was detected and mitigated. It serves as a proxy for system reliability

growth during the product assurance process in the development life-cycle (Figure 6.4).

For the case study, the average RPN value was 1865.6. With a total of 32 faults, the y-

intercepts of the RPN system risk mitigation line is equal to 59,700.

Figure 6.5: Ideal reliability growth based on mitigated risk

Discrete Data Analysis – Statistical DOE

In addition to data sampling during the search algorithm process, statistical analysis

through a DOE was conducted for two targeted dependent variables. In the analysis of

the search algorithm, there is a priority of objectives that should be considered in

choosing the analysis metrics. The first priority of the search algorithm is to find as many

embedded faults in the complex system as possible with a fixed amount of resources.

185

Undetected faults that escape to customers can have the greatest negative impact to

the Half-Life Return Models metrics. In the analysis of the designed experiment, a

penalty is applied to each treatment for each fault undetected during the test run.

The second priority of the search algorithm is the acceleration of the reliability growth

curve given a fixed amount of resources. The third priority is the amount of test cases

required to find the embedded faults. If the same amount of faults can be discovered

for the same amount of test resources, but in half the test cases, the second path would

be preferred. With that in mind, the reason for it being only the third priority is that the

algorithm adaption may become too greedy during the aggressive search process (test

case reduction) and completely miss embedded faults. Given the first priority is total

fault detection and mitigation, the two dependent values that will be statically analyzed

are described below.

1. Average Test Case Count: The average number of test cases required for the

discovery of the embedded system faults. If a fault was left undetected, a 20%

penalty is added onto the total amount of test cases executed before the

resource bank was depleted. Even with the aid of advance algorithms, the search

for faults in a complex system is still an exploratory process and, therefore, the

actual number of test cases to find all the faults in the test case is an estimate.

The 20% penalty for undetected fault serves as an approximation of the

additional resources required and serves as a proxy that is accurate enough for

the desired analysis sensitivity. In reality, it is possible that some treatments may

become so greedy that the search process would become so constrained it

would never find the remaining fault(s) regardless of the amount of test

resources provided. An additional ten percent penalty is added onto the

accumulation of test cases for each additional fault left undetected.

2. Average Total Resource Consumption: The second analysis is based on the

average total number of test resources consumed at the time of the last fault

186

discovery. If a fault was left undetected, a 20% penalty is added onto the total

amount of resource consumed before the resource bank was depleted. An

additional ten percent penalty is added onto the accumulation of test resources

consumed for each additional fault left undetected.

6.2.5 Complex System Simulator – Embedded Fault
Locations

The complex system test case and fault simulator utilized in this case study is embedded

with 32 faults distributed between the four primary fault types.

1. There are 13 independent, single variable faults

2. There are 13 two variable, dependent faults

3. There are 6 three variable, dependent faults

4. Of the 32 faults outlined above, four are latent and released in the simulator

after a period of time

The location and supporting data for the case study faults are held constant for each

test run to analyze the effectiveness of the various search models. The detailed for each

fault location are described in Table 6.3. For example, the location of fault number 1 in

the simulator is G1-2. This indicates the fault is located in the second variable of the first

chromosome gene. The locations of the faults are not released to the search algorithms.

The assigned locations of the various faults are primarily based on two factors. The first

is that the locations are assigned in various locations to be certain that the algorithms

are faced with a difficult search problem. In addition, many of the faults are clustered

within a given sub-system or even targeted on a specific sub-system variable in order to

imitate realistic design conditions. For example, a concentration of faults may be due to

a relatively less experienced team assigned to the particular sub-system. Another reason

could be due to a very challenging design requirement for a given sub-system variable.

187

Table 6.3: Complex system embedded fault location data

A graphical presentation of the fault location is presented below. Figure 6.5 and Table

6.4 detail the independent variable. The first chart is the schematic location and the

second chart converts the fault location to a two dimensional array. Two variable –

dependent faults are interactive faults involving variables from two different sub-system

 Complex System Simulator - Embedded Fault Data

Fault Number Fault ID No. Fault Type Assigned RPN Fault Location(s)
1 1 1D - Latent 2100 G1-2
2 2 1D - Independent 1800 G3-2
3 3 1D - Independent 1800 G3-2
4 1D - Independent 3600 G1-3
5 5 1D - Independent 2100 G1-6
6 6 1D - Independent 2100 G1-4
7 7 1D - Independent 1800 G3-9
8 9 1D - Independent 3600 G4-3
9 12 1D - Independent 2100 G6-4

10 16 1D - Independent 2100 G6-3
11 17 1D - Independent 1200 G8-17
12 18 1D - Independent 3600 G4-4
13 19 1D - Independent 2100 G8-10
14 101 2D - Dependent 750 G1-2, G4-3
15 102 2D - Dependent 750 G1-3, G4-3
16 103 2D - Dependent 1500 G1-6, G3-9
17 104 2D - Dependent 3600 G1-5, G8-8
18 105 2D - Dependent 750 G1-6, G8-8
19 106 2D - Dependent 750 G5-3, G6-3
20 107 2D - Dependent 1500 G3-4, G4-4
21 108 2D - Dep Latent 3600 G3-2, G7-9
22 109 2D - Dep Latent 750 G3-3, G4-9
23 110 2D - Dependent 750 G4-6, G5-6
24 111 2D - Dependent 1500 G6-5, G7-5
25 112 2D - Dependent 3600 G7-2, G8-2
26 113 2D - Dep Latent 750 G2-5, G8-2
27 201 3D - Dependent 750 G1-2, G4-7, G7-1
28 202 3D - Dependent 750 G1-9, G6-4, G8-3
29 203 3D - Dependent 1500 G6-5, G7-2, G8-1
30 204 3D - Dependent 3600 G2-3, G3-1, G4-1
31 205 3D - Dependent 750 G3-5, G4-4, G5-5
32 206 3D - Dependent 750 G5-2, G6-8, G8-5

188

genes. The schematic and array locations are presented in Figure 6.6 and Table 6.5

respectively. Three variable dependent faults data is presented in Figures 6.7 and Table

6.6. Latent defects are represented by the yellow graphics.

Figure 6.6: Graphical location of single variable, independent faults

189

Table 6.4: Array location of single variable, independent faults

Figure 6.7: Graphical location of two variable, dependent faults

190

Table 6.5: Array location of two variable, dependent faults

Figure 6.8: Graphical location of three variable, dependent faults

191

Table 6.6: Array location of three variable, dependent faults

6.3 Summary

This chapter presents the design of two case studies that illustrate models developed to

aid the engineering team in sustainable product development. The first study compares

generation to generation product designs relative to the sustainable products value

proposition metrics. In the analysis of sustainable value creation, the definition of a

common set of metrics can be a difficult task. For example, new technology has

provided a boost to societies with the availability of advanced tools and solutions. This

research refers to these new tools and technology as e-gains (gains produced via new

electronic technology). With the continued exponential growth of new technology, a

conundrum has developed, technology producers are in a cycle that encourages new

product release and product turnover before the current product in use by the

consumer, reaches it s useful end-of-life. A set of meaningful product design value

metrics may differ greatly, depending on one’s perspective.

192

In the sustainable products value proposition metrics used in the case study, emphasis is

placed on the cost of the product over the entire lifecycle for the producer, consumer as

well as society and the environment. Beyond the time value of money as the foundation

for cost analysis, the time value of resources is used as the primary motivation to create

Sustainable Lifetime Value. In the case study presented in this chapter, the comparison

of the next generation design relative to the current product available to consumers,

disclosed a 46% improvement in the relative value proposition design metrics.

As technology growths, so does the complexity of new products available to consumers.

In order to improve long-term sustainable value of these new products, focus is placed

on improving the verification of the designs relative to the intended value proposition.

The second case study in this chapter is designed to exercise the adaptive genetic search

algorithm for analysis. The intent of the search algorithm is to assist in the verification

engineers in the test case generation process, in order to maximize fault detection and

system risk reduction. In order to assist in the case study, a complex system fault

simulator and designed experiment were designed to aid in the analysis relative to the

research hypothesis and experiment variables. The results of the designed experiment

are presented in chapter seven.

Copyright © K. Daniel Seevers 2014

193

Chapter 7: Results and Discussion

7.1 Evaluation Priority and Criteria

Because of the complexity of the search model objectives, the results analysis of this

case study is presented in a combination of formats. The adaptive genetic search

algorithm is constructed based on the foundation of combinatory testing to take

advantage of as many new two and three variable combinations as possible within each

test run. Even with the use of combinations in the complex system presented in the case

study, it would require 2800 unique tests to insure every two variable combination

would be covered at least once. In addition, it would require 81,200 test cases to be

sure every three variable combination would be tested at least once. If 100% confidence

is required, there is no choice but to conduct the tests. Unfortunately, some product

development teams have limited resources and must develop strategies that maximize

the information gathered during the verification process within their risk tolerance. For

example, a test case combination may be judged to have limited return on investment

vs. the potential risk of the configuration. In the case study, the average cost of a test

case is 44 resource units. For each treatment run, 175,000 test resource units are

available in the algorithm bank. At an average cost of 44 units per test case, the average

run would allow 3,977 test cases to be executed before resources were consumed.

Therefore, the goal of the search algorithm is to take advantage of several factors that

can potentially improve the efficiency and effectiveness of the search algorithm with

limited test resources.

Determination of the designed experiment treatments’ effectiveness will be based on

the following prioritized criteria. The first priority of the search algorithm is to find as

many embedded faults in the complex system simulator as possible with a fixed amount

of resources. A weighted value of sixty percent of the total criteria is assigned to this

goal. The treatments are ranked in order, starting with the lowest amount of resources

194

consumed at the point of the final detected fault. If all of the faults were not detected

before the resources were consumed, a penalty was applied to the treatment. The

second priority of the search algorithm is the acceleration of the reliability growth curve

with a fixed amount of resources. In other words, discovering a fault earlier in the

search process is desired. The average amount of resources consumed to discover all of

the faults is the discrete metric used to compare the various search algorithm models.

The treatments are ranked in order, starting with the lowest average amount of

consumed resources, and a weighted value of thirty percent is applied to this criteria.

The third priority is the amount of test cases required to find the embedded faults.

Similar to the amount of resources consumed, the average amount of test cases

required to discover all of the faults is calculated for each treatment. The treatments are

ranked in order, starting with the lowest amount of test runs required to discover all of

the embedded faults in the system, and a weighted value of ten percent is applied to

this criteria. Each of the search algorithm priorities are presented separately, but the

final summation will present the rank order of the overall weighted treatment results.

When creating a model to search for faults in a complex system, the statistical

significance of an algorithm may be very effective on one system but not as effective on

another due to several reasons. Faults are not intentionally injected into a design by the

engineering team and, therefore, the amount of faults can vary greatly. Therefore, the

goal of the adaptive genetic search algorithm is to seek improvement over the baseline

approach of creating random test cases that seek faults in an unknown system. This

approach is analogous to shooting a shotgun at a system and hoping to hit multiple

targets. The intent is to take advantage of feedback to improve the search process but

not create an algorithm that is too aggressive. There is still a high degree of test case

diversity needed in order to ensure fault detection. Therefore, the assigned alpha (α)

value for the general statistical significance of the search algorithm is set to α = 0.1.

195

7.2 Treatment Results

7.2.1 Analysis Set-up

A two level, full factorial experiment was designed in order to test the effectiveness of

the five independent variables in the adaptive search algorithm.

In the case study, an example of an experimental treatment is described by the ordered

number set (10010). In this example, the high values are used on the first (actual cost of

each variable) and fourth (conduct a sweep of all independent variables first) variables

in the ordered set (Figure 7.1). The low values are assigned to the other three variables.

This example happens to be treatment number 10 in the designed experiment. For each

treatment, the discrete and continuous results are presented along with a summation of

the interpretation of the effect.

Figure 7.1: Example of experimental treatment

The continuous data results of two of the treatments will be used to compare to all of

the other treatments in the designed experiment. The first treatment is number 1

(ordered set (00000)). This treatment is described as the control test case. Whereas this

is the designed experiment test case assigned the low signal for all of the independent

variables, it still takes advantage of combinatory testing as an efficient method to search

for faults in the complex system. In essence, it takes advantage of a randomly generated

and ordered set of sub-system variables to create the recommended test cases. In the

case study, the locations of the faults are not known to the search algorithm, so a

diverse set of test cases is necessary. Designed experiment analysis will seek to

196

understand if use of the five variables improves or decreases the efficiency of the search

algorithm results. The second treatment used to compare against all others results is the

variable combination identified in the initial experiment screenings (as well as the

tabulated results of the designed experiment) as the most effective in attaining the

desired goals. After repeating the designed experiment 8 times, treatment number 14

consistently had the highest ranked results in all three criteria and is considered the best

of breed for comparison.

7.2.2 Initial Screening Results

In analyzing the search algorithm model’s effectiveness, the hypothesis for the initial

screening test is that the independent variable combination represented by treatment

number – 14 (10110), will have a statistically significant effect on improving the

efficiency of the search model. Therefore, the null hypothesis (𝜇0) for this comparison is

that there is no statistical difference between the control treatment (00000) and

treatment number 14 (10110). Thirty-two trials were completed in the adaptive search

algorithm simulator to record the amount of resources and test cases required to

discover the last fault. If all faults were not discovered, a penalty was assessed. The

results of the experiment are presented in Table 7.1. In the table, if any of the

treatments missed the discovery of a fault(s) after each run, the information was

recorded and signified with red numbers.

Figure 7.2 presents statistical analysis that compares the amount of resources

consumed at the time the last fault was discovered for each treatment run. Visual

inspection of the bounding box graph shows that the amount of resources consumed in

the fault discovery process for treatment 14 is less than the control (treatment number

1). The initial two-sample T-Test with a 95% confidence level had a P-Value of 0.000.

Although the samples from each setting have similar characteristics, both samples are

not normally distributed (see data summary in Figure 7.3). Therefore, an additional non-

parametric statistical analysis (Mann-Whitney Test) was conducted to confirm the

197

rejection of the null hypothesis. The P-Value for this test was also 0.000, thus confirming

that the results of the treatments are significantly different.

198

Table 7.1: Side by side comparison of best of breed treatment to control

Treatment No. 1 00000 Treatment No. 14 10110
Run Faults Missed Last Fault Resource Last Test Case Run Faults Missed Last Fault Resource Last Test Case

1 0 143424 2930 1 0 100169 2556
2 0 104160 2093 2 0 57951 1482
3 0 169728 3459 3 0 76857 1970
4 1 210124 4296 4 0 79318 2025
5 0 106896 2169 5 0 59011 1502
6 0 102816 2064 6 0 54408 1405
7 0 141072 2862 7 0 75680 1945
8 0 138480 2806 8 0 63796 1626
9 0 71520 1418 9 0 121841 3087

10 0 139200 2823 10 0 63904 1642
11 0 87312 1760 11 0 83367 2139
12 0 83760 1668 12 0 64759 1657
13 0 93984 1879 13 0 56984 1455
14 0 74352 1471 14 0 106528 2727
15 0 128304 2596 15 0 61129 1567
16 1 210125 4303 16 0 81027 2078
17 1 210125 4308 17 0 80712 2065
18 1 210125 4286 18 0 69412 1637
19 0 116880 2377 19 0 110399 2788
20 1 210009 4302 20 0 90514 2315
21 0 119760 2417 21 0 65963 1688
22 0 84144 1695 22 0 62618 1612
23 0 115968 2339 23 0 62611 1593
24 0 126384 2556 24 0 67249 1714
25 0 104352 2095 25 0 56740 1456
26 0 100704 2022 26 0 85702 2183
27 0 115968 2339 27 0 64341 1642
28 0 149424 3037 28 0 55332 1423
29 0 74688 1484 29 0 73470 1880
30 1 175104 3571 30 0 57222 1467
31 1 175056 3570 31 0 108696 2768
32 0 168304 3431 32 0 56864 1445

199

Figure 7.2: Statistical comparison of treatments 1 and 14

Figure 7.3: Statistical analysis of last fault between treatment 1 and 14- Resource

200

Similarly, Figure 7.4 presents statistical analysis comparing the amount of test cases

required to discover the last fault for each treatment run (column four in Table 7.1).

Visual inspection of the bounding box graph shows that the amount of test cases

required in the fault discovery process for treatment 14 is less than the control

(treatment number 1). The initial two-sample T-Test with a 95% confidence level had a

P-Value of 0.000. Although the samples from each setting have similar characteristics,

both samples are not normally distributed (see data summary in Figure 7.5). Therefore,

an additional non-parametric statistical analysis (Mann-Whitney Test) was conducted to

confirm the rejection of the null hypothesis. The P-Value for this test was also 0.000,

thus confirming the results of the treatments are significantly different. By taking

advantage of three of the independent variables, improvements were attained in the

adaptive genetic search algorithm.

Figure 7.4: Statistical analysis of treatments 1 and 14 - Test Case

201

Figure 7.5: Statistical analysis of last test case between treatment 1 and 14

The initial results of the full factorial designed experiment are presented in Table 7.2.

Initial observations provide insight into the effects of the independent variable, but

further analysis of the designed experiment is required to provide general information

on the effects and interactions that each variable has on the overall efficiency of the test

development and search process.

7.2.3 Priority No. 1: Fault Detection Efficiency

Whereas there are three criteria identified in the analysis of the effectiveness of the

search algorithm variables, the discrete data from each will be presented and then the

aggregated weighted average of the three will be presented.

202

Table 7.2: Initial DOE Screening Results -Missed Faults

Treatment NO. DOE Order Total Undetected Faults
2 10000 0
4 11000 0
6 10100 0
8 11100 0
9 00010 0

10 10010 0
12 11010 0
14 10110 0
16 11110 0
20 11001 0
3 01000 1
5 00100 1

13 00110 1
22 10101 1
26 10011 1
28 11011 1
32 11111 1
7 01100 2

15 01110 2
19 01001 2
25 00011 2
29 00111 2
30 10111 2
1 00000 3

11 01010 3
24 11101 3
17 00001 4
18 10001 4
21 00101 5
31 01111 5
23 01101 6
27 01011 6

203

The first priority is the ability to discover as many faults as possible within a fixed

amount of resources. The treatments are presented in Table 7.3 and are grouped (by

color shading of number of faults left undetected) according to their effectiveness. Of

the thirty-two combinations, only ten treatments discovered all of the embedded faults

in the complex system after completing all eight runs in the simulator. Seven treatments

missed one fault after repeating the treatment eight times and six treatments missed

two faults. Nine treatments missed 3 or more faults after the eight test runs. Table 7.3

ranks the treatments within their respective groupings based on the average amount of

resources required to discover the final fault. Based on the criteria, treatment number

14 (10110) was the most efficient variable combination by consuming an average of only

66,610 test resource units. After treatment 14, the next four treatment numbers, based

on search efficiency and detecting all faults, were 12 (11010), 20 (11001), 10 (10010)

and 6 (10100) respectively.

On the other extreme, the last four treatments in the ranking (21-(00101), 31-(01111),

27-(01011), 23-(01101)) left 5-6 faults undiscovered after 8 test runs. For all of the

treatments ranked in the top five of the most effective combinations, the common

factor is that all had the high signal for the cost variable and the low value for all but one

of the GA-probability variable. The common factor for all of the treatments ranked in

the bottom five is all combinations had the low signal for the cost variable and the high

value for the GA-probability value. The cost and probability variables have a strong

relationship. The other three variables have mixed effects but are involved with variable

interactions effects. Therefore, the following section details the statistical analysis of the

DOE that is focused on analysis of the five independent model variables against the first

priority of detecting as many embedded faults as possible before all resources are

consumed.

204

Table 7.3: DOE results - resource count to detect last fault

With an α value of 0.1, several independent variables and their interactions have

statistical significance in the effectiveness of the search algorithm (see details in Figure

7.6). These variables include the following: the use of actual test variable costs, not

using the risk values for fault mitigation priority, the use of the independent variable

sweep, and not modifying the Gene selection probability based on passed test case

successes. In addition, there are two interactions that were statistically significant. Due

Treatment NO. DOE Order Total Undetected Faults Adjusted Res Count Last Fault Rank
14 10110 0 66610 1
12 11010 0 76167 2
20 11001 0 77173 3
10 10010 0 77524 4
6 10100 0 78754 5
4 11000 0 82352 6
8 11100 0 87725 7
2 10000 0 93810 8

16 11110 0 105814 9
9 00010 0 110406 10

28 11011 1 101469 11
26 10011 1 105332 12
13 00110 1 110895 13
22 10101 1 114554 14
32 11111 1 116829 15
3 01000 1 134078 16
5 00100 1 149892 17

30 10111 2 109677 18
25 00011 2 132874 19
7 01100 2 137069 20

15 01110 2 139145 21
29 00111 2 141076 22
19 01001 2 144787 23
24 11101 3 150512 24
1 00000 3 156032 25

11 01010 3 162376 26
18 10001 4 131955 27
17 00001 4 163752 28
21 00101 5 167308 29
31 01111 5 172333 30
27 01011 6 165486 31
23 01101 6 190402 32

205

to the nature of a blind search algorithm, several of the other variable combinations,

particularly interactions, appear to have an effect on the fault search efficiency. Within

the full factorial experiment (repeated 8 times), the actual variation between treatment

runs was significant enough to reduce confidence in the repeatability of the effect.

Taking advantage of the actual cost and conducting independent variable tests before

combinatory tests had a strong influence on minimizing resource consumption in the

fault search algorithm.

__

206

Response Res Count Last Fault
Actual by Predicted Plot

Summary of Fit

RSquare 0.90325
RSquare Adj 0.812547
Root Mean Square Error 14750.44
Mean of Response 123255.3
Observations (or Sum Wgts) 32

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 15 3.25e+10 2.1667e+9 9.9583
Error 16 3481207616 217575476 Prob > F
C. Total 31 3.5982e+10 <.0001*

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 123255.25 2607.534 47.27 <.0001*
Cost -25364.19 2607.534 -9.73 <.0001*
RPN 4477.0625 2607.534 1.72 0.1053
Crossover 3531.9375 2607.534 1.35 0.1944
1D sweep -4879.438 2607.534 -1.87 0.0797
Probability 13339.688 2607.534 5.12 0.0001*
Cost*RPN -2613 2607.534 -1.00 0.3312
Cost*Crossover 1136.375 2607.534 0.44 0.6688

RPN*Crossover 6214.375 2607.534 2.38 0.0299*

Cost*1D sweep 1916.125 2607.534 0.73 0.4731

RPN*1D sweep 7099.5 2607.534 2.72 0.0151*
Crossover*1D sweep -1610.375 2607.534 -0.62 0.5455
Cost*Probability 2206.875 2607.534 0.85 0.4098
RPN*Probability -1198.125 2607.534 -0.46 0.6521

50

75

10

12

15

17

20
Re

s
Co

un
t L

as
t F

au
lt

Ac
tu

al

50000 75000 100000 125000 150000 175000

Res Count Last Fault Predicted P<.0001 RSq=0.90 RMSE=14750

207

Term Estimate Std Error t Ratio Prob>|t|
Crossover*Probability 5209.5 2607.534 2.00 0.0630
1D sweep*Probability -1081 2607.534 -0.41 0.6840

Figure 7.6: DOE results to analyze fault detection efficiency

7.2.4 Priority No. 2: Early Fault Detection

The second priority in evaluating these experimental results was choosing the variable

combinations that discover a maximum amount of faults with the least amount of test

resources. The discrete metric identified as the comparative signal was the calculated

average of the consumed resource count at the point each of the faults were

discovered. The lower the relative average number signals a more effective variable

combination. Table 7.4 presents the treatments ranked in order within their respective

fault detection capabilities. The top five (most effective test combinations) in order

were as follows: treatment 14 (10110); treatment 10 (10010); treatment 6 (10100);

treatment 2 (10000); and treatment 12 (11010). In the first priority (fault detection

capability), treatment 14 was also the most efficient, but treatments 6 and 2 did not

make the top five list. Although the goals of maximum fault detection and early fault

detection take advantage of similar strategic characteristics, the goals are not the same.

All five variable combinations were assigned the high value in the first (cost) position

Sorted arameter Estimates
Term Estimate Std Error t Ratio t Ratio Prob>|t|
Cost -25364.19 2607.534 -9.73 <.0001*
Probability 13339.688 2607.534 5.12 0.0001*
RPN*1D sweep 7099.5 2607.534 2.72 0.0151*
RPN*Crossover 6214.375 2607.534 2.38 0.0299*
Crossover*Probability 5209.5 2607.534 2.00 0.0630
1D sweep -4879.438 2607.534 -1.87 0.0797
RPN 4477.0625 2607.534 1.72 0.1053
Crossover 3531.9375 2607.534 1.35 0.1944
Cost*RPN -2613 2607.534 -1.00 0.3312
Cost*Probability 2206.875 2607.534 0.85 0.4098
Cost*1D sweep 1916.125 2607.534 0.73 0.4731
Crossover*1D sweep -1610.375 2607.534 -0.62 0.5455
RPN*Probability -1198.125 2607.534 -0.46 0.6521
Cost*Crossover 1136.375 2607.534 0.44 0.6688
1D sweep*Probability -1081 2607.534 -0.41 0.6840

208

and the low value in the fifth (GA-probability) positions. The other positions had mixed

values.

The bottom five (least effective capability) ranked in order 28th through 32th were as

follows: treatment 17 (00001), treatment 21 (00101); treatment 31 (01111); treatment

27 (01011); and treatment 23 (01101). Unlike the top five combinations, the bottom five

for the second criteria is the same as the first priority, including the order. Each of the

bottom five treatments had the low value in the first position and the high value in the

fifth position. These results show a strong relationship between cost and GA-probability

variables and potential interactions between the other combinations. The following

section details the DOE statistical analysis. Focus in on analysis of the five independent

model variables against the second priority of detecting the most embedded faults early

with the least amount of resources and before all resources are consumed.

209

Table 7.4: DOE results – average resource count to detect all faults

With an α value of 0.1, several independent variables and their interactions have

statistical significance in determining the effectiveness of the search algorithm (see

Treatment NO. DOE Order Total Undetected Faults Adjusted Ave Res Count Rank
14 10110 0 16975 1
10 10010 0 17595 2
6 10100 0 17770 3
2 10000 0 18164 4

12 11010 0 19981 5
16 11110 0 21343 6
8 11100 0 21568 7
4 11000 0 21788 8

20 11001 0 21870 9
9 00010 0 23101 10

22 10101 1 19781 11
32 11111 1 20882 12
26 10011 1 21077 13
28 11011 1 21308 14
13 00110 1 24401 15
5 00100 1 25558 16
3 01000 1 27394 17

30 10111 2 19044 18
29 00111 2 24587 19
25 00011 2 25892 20
15 01110 2 27041 21
7 01100 2 27533 22

19 01001 2 28700 23
24 11101 3 24690 24
1 00000 3 26512 25

11 01010 3 28086 26
18 10001 4 23262 27
17 00001 4 30731 28
21 00101 5 28040 29
31 01111 5 29373 30
27 01011 6 29428 31
23 01101 6 31997 32

210

details in Figure 7.7). These variables include the following: the use of actual test

variable costs, use of the risk values for fault mitigation priority, use of the independent

variable sweep, and not modifying the Gene selection probability based on passed test

case successes. In addition, there is one interaction that was statistically significant. Due

to the nature of a blind search algorithm, several of the other variable combinations,

particularly interactions, appear to have an effect on the fault search efficiency. Within

the full factorial experiment (repeated 8 times), the actual variation between treatment

runs was significant enough to reduce confidence in the repeatability of the effect.

Taking advantage of the actual cost and conducting independent variable tests before

combinatory tests had a strong influence on minimizing the average resource

consumption in the fault search algorithm.

211

Response Ave Res Count All Faults
Actual by Predicted Plot

Summary of Fit

RSquare 0.955475
RSquare Adj 0.913732
Root Mean Square Error 1225.947
Mean of Response 23921
Observations (or Sum Wgts) 32

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 15 516028849 34401923 22.8896
Error 16 24047149 1502946.8 Prob > F
C. Total 31 540075998 <.0001*

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 23921 216.7189 110.38 <.0001*
Cost -3477.375 216.7189 -16.05 <.0001*
RPN 1265.375 216.7189 5.84 <.0001*
Crossover -134.5625 216.7189 -0.62 0.5434
1D sweep -788.875 216.7189 -3.64 0.0022*
Probability 1120.375 216.7189 5.17 <.0001*
Cost*RPN -30.25 216.7189 -0.14 0.8907
Cost*Crossover -52.4375 216.7189 -0.24 0.8119
RPN*Crossover 501.5625 216.7189 2.31 0.0343*
Cost*1D sweep 120.875 216.7189 0.56 0.5847
RPN*1D sweep 282.75 216.7189 1.30 0.2105
Crossover*1D sweep -41.8125 216.7189 -0.19 0.8494
Cost*Probability -74.75 216.7189 -0.34 0.7346
RPN*Probability -275.75 216.7189 -1.27 0.2214
Crossover*Probability -107.5625 216.7189 -0.50 0.6264
1D sweep*Probability -303.625 216.7189 -1.40 0.1803

15

20

25

30

Av
e

Re
s

Co
un

t A
ll

Fa
ul

ts
 A

ct
ua

l

15000 20000 25000 30000

Ave Res Count All Faults Predicted P<.0001 RSq=0.96 RMSE=12

212

__

Figure 7.7: DEO results for analysis of average resources consumed to detect all faults

7.2.5 Priority No. 3: Average Test Case Count

The third priority in evaluating the experimental results was focused on choosing the

variable combinations that discovers a maximum amount of faults with the least

amount of test cases. The discrete metric identified as the comparative signal was the

calculated average of the total amount of test cases required to find all of the faults. The

lower the relative average number signals a more effective variable combination. Figure

100 presents the treatments ranked in order within the respective fault detection

capabilities. The top five (most effective test combinations) in order were as follows:

treatment 6 (10100); treatment 9 (00010); treatment 14 (10110); treatment 10 (10010);

and treatment 2 (10000). In the first priority (fault detection capability), treatment 14

was also the most efficient, but treatments 9 and 2 did not make the top five list. While

the goals of maximum fault detection and minimum amount of test cases are to take

advantage of similar strategic characteristics, the goals are not the same. All five

variable combinations were assigned the low value in the second (risk prioritization)

position as well as the low value in the fifth (GA-probability) positions. The other

Sorted Parameter Estimates
Term Estimate Std Error t Ratio t Ratio Prob>|t|
Cost -3477.375 216.7189 -16.05 <.0001*
RPN 1265.375 216.7189 5.84 <.0001*
Probability 1120.375 216.7189 5.17 <.0001*
1D sweep -788.875 216.7189 -3.64 0.0022*
RPN*Crossover 501.5625 216.7189 2.31 0.0343*
1D sweep*Probability -303.625 216.7189 -1.40 0.1803
RPN*1D sweep 282.75 216.7189 1.30 0.2105
RPN*Probability -275.75 216.7189 -1.27 0.2214
Crossover -134.5625 216.7189 -0.62 0.5434
Cost*1D sweep 120.875 216.7189 0.56 0.5847
Crossover*Probability -107.5625 216.7189 -0.50 0.6264
Cost*Probability -74.75 216.7189 -0.34 0.7346
Cost*Crossover -52.4375 216.7189 -0.24 0.8119
Crossover*1D sweep -41.8125 216.7189 -0.19 0.8494
Cost*RPN -30.25 216.7189 -0.14 0.8907

213

positions had mixed values. An engineer may choose to focus on the results of this

criterion, if minimal testing takes priority over total verification expense.

The bottom five (least effective capability), ranked in order 28th through 32th, were the

following: treatment 17 (00001), treatment 21 (00101); treatment 31 (01111);

treatment 27 (01011); and treatment 23 (01101). Unlike the top five combinations, the

bottom five for the second criteria is the same as the first priority and the second

priority, including the order. Each of the bottom five treatments had the low value in

the first position and the low value in the fifth position. These results show a strong

relationship between cost and GA-probability variables and potential interactions

between the other combinations. The following section details the statistical analysis of

the designed experiment. The focus is on the analysis of the five independent model

variables relative to the third priority (detecting the most embedded faults possible,

with the least amount of test cases, and before all resources are consumed).

214

Table 7.5: DOE results – test case count for last fault

Treatment NO. DOE Order Total Undetected Faults Adjusted Ave TC Count Rank
6 10100 0 431 1
9 00010 0 457 2
14 10110 0 461 3
10 10010 0 471 4
2 10000 0 498 5
12 11010 0 527 6
8 11100 0 528 7
4 11000 0 535 8
20 11001 0 547 9
16 11110 0 603 10
13 00110 1 484 11
22 10101 1 491 12
5 00100 1 506 13
3 01000 1 544 14
32 11111 1 568 15
26 10011 1 571 16
28 11011 1 577 17
7 01100 2 550 18
29 00111 2 487 19
25 00011 2 515 20
15 01110 2 538 21
30 10111 2 543 22
19 01001 2 572 23
1 00000 3 528 24
11 01010 3 562 25
24 11101 3 624 26
18 10001 4 584 27
17 00001 4 614 28
21 00101 5 557 29
31 01111 5 588 30
23 01101 6 641 31
27 01011 6 588 32

215

With an α value of 0.1, several independent variable and their interactions have

statistical significance in determining the effectiveness of the search algorithm (see

details in Figure 7.8). These variables include the following: using the risk values for fault

mitigation priority and not modifying the Gene selection probability based on passed

test case successes. In addition, there are two interactions that were significantly

significant. Due to the nature of a blind search algorithm, several of the other variable

combinations, particularly interactions, appear to have an effect on the fault search

efficiency, but, within the full factorial experiment (repeated 8 times), the actual

variation between treatment runs was significant enough to reduce confidence in the

repeatability of the effect. Unlike the analysis of the previous two priorities, the cost and

independent sweep variables do not have a significant effect on the reduction of test

cases, but there is statistical significance between their interactions.

Response Ave TC Count
Actual by Predicted Plot

Summary of Fit

RSquare 0.81386
RSquare Adj 0.639353
Root Mean Square Error 30.5982
Mean of Response 540.3125
Observations (or Sum Wgts) 32

45

50

55

60

65

Av
e

TC
 C

ou
nt

 A
ct

ua
l

450 500 550 600 6

Ave TC Count Predicted P=0.002 RSq=0.81 RMSE=30.598

216

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 15 65496.875 4366.46 4.6638
Error 16 14980.000 936.25 Prob > F
C. Total 31 80476.875 0.0020*

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 540.3125 5.409049 99.89 <.0001*
Cost -5.375 5.409049 -0.99 0.3352
RPN 27.9375 5.409049 5.16 <.0001*
Crossover -2.8125 5.409049 -0.52 0.6102
1D sweep -6.5625 5.409049 -1.21 0.2426
Probability 26.375 5.409049 4.88 0.0002*
Cost*RPN 0.75 5.409049 0.14 0.8915
Cost*Crossover -1 5.409049 -0.18 0.8556
RPN*Crossover 14.5625 5.409049 2.69 0.0160*
Cost*1D sweep 11.75 5.409049 2.17 0.0452*
RPN*1D sweep 7.1875 5.409049 1.33 0.2026
Crossover*1D sweep 3.0625 5.409049 0.57 0.5791
Cost*Probability 1.8125 5.409049 0.34 0.7419
RPN*Probability -6.5 5.409049 -1.20 0.2470
Crossover*Probability -1.5 5.409049 -0.28 0.7851
1D sweep*Probability -5.5 5.409049 -1.02 0.3244

__

Figure 7.8: DOE results to analyze test case count to find last fault

Combining the results of all three priorities sheds light on the most significant variables

with regard for designing the most effective search algorithm, but the results of each

Sorted Parameter Estimates
Term Estimate Std Error t Ratio t Ratio Prob>|t|
RPN 27.9375 5.409049 5.16 <.0001*
Probability 26.375 5.409049 4.88 0.0002*
RPN*Crossover 14.5625 5.409049 2.69 0.0160*
Cost*1D sweep 11.75 5.409049 2.17 0.0452*
RPN*1D sweep 7.1875 5.409049 1.33 0.2026
1D sweep -6.5625 5.409049 -1.21 0.2426
RPN*Probability -6.5 5.409049 -1.20 0.2470
1D sweep*Probability -5.5 5.409049 -1.02 0.3244
Cost -5.375 5.409049 -0.99 0.3352
Crossover*1D sweep 3.0625 5.409049 0.57 0.5791
Crossover -2.8125 5.409049 -0.52 0.6102
Cost*Probability 1.8125 5.409049 0.34 0.7419
Crossover*Probability -1.5 5.409049 -0.28 0.7851
Cost*Crossover -1 5.409049 -0.18 0.8556
Cost*RPN 0.75 5.409049 0.14 0.8915

217

priority are slightly different. Tables 7.6 and 7.7 present the aggregated results from all

three criteria.

Table 7.6: Aggregated results table for three discrete priority metrics

Treatment NO. DOE Order Total Undetected Faults Adjusted Ave TC Count Adjusted Ave Res Count Adjusted Res Count Last Fault
1 00000 3 528 26512 156032
2 10000 0 498 18164 93810
3 01000 1 544 27394 134078
4 11000 0 535 21788 82352
5 00100 1 506 25558 149892
6 10100 0 431 17770 78754
7 01100 2 550 27533 137069
8 11100 0 528 21568 87725
9 00010 0 457 23101 110406

10 10010 0 471 17595 77524
11 01010 3 562 28086 162376
12 11010 0 527 19981 76167
13 00110 1 484 24401 110895
14 10110 0 461 16975 66610
15 01110 2 538 27041 139145
16 11110 0 603 21343 105814
17 00001 4 614 30731 163752
18 10001 4 584 23262 131955
19 01001 2 572 28700 144787
20 11001 0 547 21870 77173
21 00101 5 557 28040 167308
22 10101 1 491 19781 114554
23 01101 6 641 31997 190402
24 11101 3 624 24690 150512
25 00011 2 515 25892 132874
26 10011 1 571 21077 105332
27 01011 6 588 29428 165486
28 11011 1 577 21308 101469
29 00111 2 487 24587 141076
30 10111 2 543 19044 109677
31 01111 5 588 29373 172333
32 11111 1 568 20882 116829

218

7.2.6 Weighted Rank Summary

After the weighted values of the three assessment priorities are applied to the results,

the aggregated rank order was calculated and presented in Figure 102. The top five

(most effective test combinations) in order were as follows:

1. Treatment No. 14 (10110)
2. Treatment No. 12 (11010)
3. Treatment No. 10 (1010)
4. Treatment No. 6 (10100)
5. Treatment No. 20 (11001)

The results show a clear positive effect from taking advantage of actual cost in

calculating the expense of each test case vs. treating all test case expenses as equal

expense. The remainder of the results show there are competing interactions between

the experiment variable that produced varied results depending on the priority. The

most unusual result is treatment number 20 is the 5th most effective combination for

the search algorithm. The majority of treatments in the top of the rankings did not alter

the probability of the genetic algorithm selection process. The results suggest cases that

took advantage of the Gene selection probability became too aggressive and exceeded

the limits of test case diversity required to search for the embedded faults. The

exception is treatment number 20, which combines actual cost with prioritizing fault

mitigation and altering Gene selection probability. The bottom five (least effective test

combinations) in order were as follows:

 5. Treatment No. 17 (00001)
 4. Treatment No. 21 (00101)
 3. Treatment No. 31 (01111)
 2. Treatment No. 27 (01011)
 1. Treatment No. 23 (01101)

It is important to acknowledge that the control case for the combinatory test case

generation is treatment number 1 (00000). By only taking advantage of the random test

219

case generation process for each chromosome, this combination of variables was rated

the 8th worst of the 32 combinations. These results imply that taking advantage of one

or more variables led to improvements in the search efficiency on 24 of the treatments

but were less effective on 7 of the treatments. Attempting to improve the search

efficiency of the adaptive genetic search algorithm with the high value on the

probability modification and the low value of the cost variable generally produced poor

results. Another interesting result is the rank position of treatment number 9 (00010).

The only modification made to the test case generator in the search algorithm was the

signal to systematically sweep (and test) each independent variable first to be sure they

were functioning properly before spending resources on the complex system

combinatory testing. This data validate the common sense rule of thumb that it is cost

effective to be sure all Sub-systems are functioning as expected before submitting the

complex system for verification testing.

7.3 Continuous Data Results Analysis

In the following section, continuous data results are presented for tracking fault

detection and risk mitigation over the total consumption. Five specific treatments were

chosen to summarize the results. The graphs and data for the remaining treatments are

presented in the appendix. Whereas the final result of any given treatment may

resemble that of another, the curve shapes over the consumption of resources may be

very different. For example, treatment number 14 was the most effective combination

of test variables, but, considering the potential variation in complex system fault

patterns, there is minimal statistical difference between the top five treatments.

The five treatments chosen for the summary are the following: No. 1 (00000) because it

is the control case; No. 32 (11111) because it was the hypothesized best case; treatment

No. 23 (01101) because it turned out to be the least efficient case; No. 2 (10000)

because it isolates the sensitivity of the cost variable in the search efficiency; and No. 14

(10110) because it is the most efficient variable combination. For each treatment, two

220

charts are presented that highlight the goals of fault detection and risk mitigation over

the consumption of the test resources. In addition to the graphs, the data from each of

the test runs is presented in a table along with brief commentary of the results relative

to the best of breed (number 14 – (10110) and control treatments (number 1 – (00000).

Analyzing the growth of each curve during the course of the resource consumption

provides insight into the greediness and early effectiveness of the treatment.

221

Table 7.7 Results table of the ranked order of search algorithm analysis treatments

Treatment No. DOE Missed Faults 1. Res Last Fault Weight (60%) 2. Ave Res Weight (30%) 3. Ave Test Case Weight (10%) Overall Rank
Rank Rank Rank Rank

14 10110 11-17 1 0.6 1 0.3 3 0.3 1.2
12 11010 11-17 2 1.2 5 1.5 6 0.6 3.3
10 10010 Top 10 4 2.4 2 0.6 4 0.4 3.4
6 10100 Top 10 5 3 3 0.9 1 0.1 4
20 11001 18-23 3 1.8 9 2.7 9 0.9 5.4
2 10000 Top 10 8 4.8 4 1.2 5 0.5 6.5
4 11000 Top 10 6 3.6 8 2.4 8 0.8 6.8
8 11100 Top 10 7 4.2 7 2.1 7 0.7 7
9 00010 Top 10 10 6 10 3 2 0.2 9.2
16 11110 11-17 16 9.6 6 1.8 10 1 12.4
28 11011 27-28 11 6.6 14 4.2 17 1.7 12.5
26 10011 24-26 12 7.2 13 3.9 16 1.6 12.7
22 10101 18-23 14 8.4 11 3.3 12 1.2 12.9
13 00110 11-17 13 7.8 15 4.5 11 1.1 13.4
32 11111 31-32 15 9 12 3.6 15 1.5 14.1
3 01000 Top 10 16 9.6 17 5.1 14 1.4 16.1
5 00100 Top 10 17 10.2 16 4.8 13 1.3 16.3
30 10111 29-30 18 10.8 18 5.4 22 2.2 18.4
25 00011 24-26 19 11.4 20 6 20 2 19.4
7 01100 Top 10 20 12 22 6.6 18 1.8 20.4
29 00111 29-30 22 13.2 19 5.7 19 1.9 20.8
15 01110 11-17 21 12.6 21 6.3 21 2.1 21
19 01001 18-23 23 13.8 23 6.9 23 2.3 23
24 11101 24-26 24 14.4 24 7.2 26 2.6 24.2
1 00000 Top 10 25 15 25 7.5 24 2.4 24.9
11 01010 11-17 26 15.6 26 7.8 25 2.5 25.9
18 10001 18-23 27 16.2 27 8.1 27 2.7 27
17 00001 11-17 28 16.8 28 8.4 28 2.8 28
21 00101 18-23 30 18 29 8.7 29 2.9 29.6
31 01111 31-32 30 18 30 9 30 3 30
27 01011 27-28 32 19.2 31 9.3 32 3.2 31.7
23 01101 18-23 32 19.2 32 9.6 31 3.1 31.9

222

7.3.1 Treatment 1 (00000) Results

Treatment 1 is assigned the low signal values for all five variables in the designed
experiment.

Figure 7.9: Risk mitigation, treatment 1 vs. 14

Figure 7.10: Cumulative fault detection, treatment 1 vs. 14

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Sy
st

em
 R

is
k

El
im

in
at

io
n

(R
PN

)

Test Resource Consumption (resource units)

Treatment 14

Treatment 1

Best of Breed
 Case 14
Control
 Case 1

0

5

10

15

20

25

30

35

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Fa
ul

t D
et

ec
tio

n
(F

au
lts

)

Test Resource Consumption (resource units)

Treatment 14

Treatment 1

Best of Breed
 Case 14
Control
 Case 1

223

Summary

After repeating the treatment eight times, a total of 3 faults were left undetected in the

simulation (see data Table 7.8 for details).

After eight treatment runs, the average amount of resources consumed to detect the

last fault in the complex system simulator was 156032 resource units out of a possible

175000. This treatment ranked 25th out of the 32 treatments in this category.

The average amount of resources consumed at the point of their discovery, for all of the

faults in the complex system simulator after eight treatment runs, was 26512 resource

units. This treatment ranked 25th out of the 32 treatments in this category.

The average of the amount of test cases required at the point of their discovery, for all

of the faults in the complex system simulator after eight treatment runs, was 528. This

treatment ranked 24th out of the 32 treatments in this category.

The overall ranking of this treatment relative to the weighted average of the three

priorities is 25th out of 32.

Comparing treatments, combination number 14 took advantage of early independent

and dependent fault detection and demonstrated accelerated risk mitigation growth. In

addition, treatment number 14 discovered all of the faults with approximately half the

amount of resources required in treatment number 1.

224

Table 7.8: Compiled DOE results for treatment number 1

7.3.2 Treatment 32 (11111) Results

Treatment 32 is assigned the high signal values for all five variables in the designed

experiment.

Figure 7.11: Risk mitigation comparison, treatments 1, 14, and 32

Treatment # 1
Treatment Order 00000 Run #

1 2 3 4 5 6 7 8 Average
Average Test Case Count 353 368 575 556 491 472 506 546 483
Average Resource Count 18159 18674 28776 27904 24573 23896 25408 27382 24347
Resource Count at Last Fault 83808 75792 155040 162528 145968 109104 140832 151872 128118
No. of undetected faults 0 0 0 0 1 1 0 1
Total Resource Consumption 175008 175104 175104
Total Test Case 3588 3571 3648
Adjusted Ave TC Count 353 368 575 556 610 591 506 666 528
Adjusted Ave Res Count 18159 18674 28776 27904 30368 29716 25408 33093 26512
Adjusted Res Count Last Fault 83808 75792 155040 162528 210010 210125 140832 210125 156032

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Sy
st

em
 R

is
k

El
im

in
at

io
n

(R
PN

)

Test Resource Consumption (resource units)

Treatment 14

Treatment 1

Treatment 32

Best of Breed
 Case 14
Control
 Case 1

225

Figure 7.12: Cumulative fault detection comparison, treatments 1, 14, and 32

Table 7.9: Compiled DOE results for treatment number 32

Summary

After repeating the treatment eight times a total of 1 fault was left undetected in the

simulation.

0

5

10

15

20

25

30

35

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Fa
ul

t D
et

ec
tio

n
(F

au
lts

)

Test Resource Consumption (resource units)

Treatment 14

Treatment 1

Treatment 32

Best of Breed
 Case 14
Control
 Case 1

Treatment # 32
Treatment Order 11111 Run #

1 2 3 4 5 6 7 8 Average
Average Test Case Count 575 465 573 537 488 538 559 652 548
Average Resource Count 20941 16704 20881 19496 18598 19611 20573 24210 20127
Resource Count at Last Fault 79395 52936 113407 113088 54662 90205 124598 149163 97182
No. of undetected faults 0 1 0 0 0 0 0 0
Total Resource Consumption 175097 0
Total Test Case 4652
Adjusted Ave TC Count 575 625 573 537 488 538 559 652 568
Adjusted Ave Res Count 20941 22748 20881 19496 18598 19611 20573 24210 20882
Adjusted Res Count Last Fault 79395 210116 113407 113088 54662 90205 124598 149163 116829

226

The average amount of resources consumed to detect the last fault in the complex

system simulator after eight treatment runs was 116829 resource units out of a possible

175000. This treatment ranked 15th out of the 32 treatments in this category.

The average of the amount of resources consumed at the point of their discovery, for all

of the faults in the complex system simulator after eight treatment runs was 20882

resource units. This treatment ranked 12th out of the 32 treatments in this category.

The average of the amount of test cases required at the point of their discovery, for all

of the faults in the complex system simulator after eight treatment runs was 568. This

treatment ranked 15th out of the 32 treatments in this category.

The overall ranking of this treatment relative to the weighted average of the three

priorities is 15th out of 32.

Comparing treatments, combination number 32 shows quick risk mitigation growth,

ahead of treatment number 1 but soon falls behind due to the slow process of detecting

faults in the early stages.

7.3.3 Treatment 23 (01101) Results

Treatment 23 is assigned the high signal values for all five variables in the designed

experiment except the first (cost) and fourth (Ind. sweep) positions.

227

Figure 7.13: Risk mitigation comparison, treatments number 1, 14, and 23

Figure 7.14: Cumulative fault detection comparison, treatments number 1, 14, and
23

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Sy
st

em
 R

is
k

El
im

in
at

io
n

(R
PN

)

Test Resource Consumption (resource units)

Treatment 14

Treatment 1

Treatment 23

Best of Breed
 Case 14
Control
 Case 1

0

5

10

15

20

25

30

35

0 50000 100000 150000 200000 250000

Cu
m

ul
at

iv
e

Fa
ul

t D
et

ec
tio

n
(F

au
lts

)

Test Resource Consumption (resource units)

Treatment 14

Treatment 1

Treatment 23

Best of Breed
 Case 14
Control
 Case 1

228

Table 7.10: Compiled DOE results for treatment number 23

Summary

After repeating the treatment eight times a total of 6 faults were left undetected in the

simulation. The treatment ranked last out of the 32 combinations. The search process

can become too aggressive.

The average amount of resources consumed to detect the last fault in the complex

system simulator after eight treatment runs was 190402 resource units out of a possible

175000. This treatment ranked 32th out of the 32 treatments in this category.

The average of the amount of resources consumed at the point of their discovery, for all

of the faults in the complex system simulator after eight treatment runs was 31997

resource units. This treatment ranked 32th out of the 32 treatments in this category.

The average of the amount of test cases required at the point of their discovery, for all

of the faults in the complex system simulator after eight treatment runs was 641. This

treatment ranked 31st out of the 32 treatments in this category.

The overall ranking of this treatment relative to the weighted average of the three

priorities is 32nd out of 32. The variable combination in this treatment is less effective

than treatment number 1.

Treatment # 23
Treatment Order 01101 Run #

1 2 3 4 5 6 7 8 Average
Average Test Case Count 569 418 570 608 486 574 564 626 552
Average Resource Count 28683 20990 28752 30466 24427 28821 28075 31158 27672
Resource Count at Last Fault 153792 79623 157920 121680 101664 126624 153936 174576 133727
No. of undetected faults 0 2 0 1 1 0 2 0
Total Resource Consumption 175104 175056 175008 175056
Total Test Case 3592 3571 3569 3572
Adjusted Ave TC Count 569 661 570 723 605 574 797 626 641
Adjusted Ave Res Count 28683 32811 28752 36079 30226 28821 39450 31158 31997
Adjusted Res Count Last Fault 153792 245146 157920 210067 210010 126624 245078 174576 190402

229

Comparing treatments, combination number 23 shows quick risk mitigation growth,

ahead of treatment number 1 but soon falls behind due to the slow process of detecting

faults in the early stages.

7.3.4 Treatment 2 (10000) Results

Treatment 2 is assigned the low signal values for all five variables in the designed

experiment except the first position (cost).

Figure 7.15: Risk mitigation comparison, treatments 1, 14, and 2

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Sy
st

em
 R

is
k

El
im

in
at

io
n

(R
PN

)

Test Resource Consumption (resource units)

Treatment 14

Treatment 1

Treatment 2

Best of Breed
 Case 14
Control
 Case 1

230

Figure 7.16: Cumulative fault detection comparison, treatments 1, 14, and 2

Table 7.11: Compiled DOE results for treatment 2

Summary

After repeating the treatment eight times a total of 0 faults were left undetected in the

simulation.

The average amount of resources consumed to detect the last fault in the complex

system simulator after eight treatment runs was 93810 resource units out of a possible

175000. This treatment ranked 8th out of the 32 treatments in this category.

0

5

10

15

20

25

30

35

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Fa
ul

t D
et

ec
tio

n
(F

au
lts

)

Test Resource Consumption (resource units)

Treatment 14

Treatment 1

Treatment 2

Best of Breed
 Case 14
Control
 Case 1

Treatment # 2
Treatment Order 10000 Run #

1 2 3 4 5 6 7 8 Average
Average Test Case Count 482 485 515 526 461 498 533 487 498
Average Resource Count 19374 19688 20963 21344 1900 20418 21740 19886 18164
Resource Count at Last Fault 78651 149556 85067 99878 65871 84260 106249 80949 93810
No. of undetected faults 0 0 0 0 0 0 0 0
Total Resource Consumption
Total Test Case
Adjusted Ave TC Count 482 485 515 526 461 498 533 487 498
Adjusted Ave Res Count 19374 19688 20963 21344 1900 20418 21740 19886 18164
Adjusted Res Count Last Fault 78651 149556 85067 99878 65871 84260 106249 80949 93810

231

The average of the amount of resources consumed at the point of their discovery, for all

of the faults in the complex system simulator after eight treatment runs was 18164

resource units. This treatment ranked 4th out of the 32 treatments in this category.

The average of the amount of test cases required at the point of their discovery, for all

of the faults in the complex system simulator after eight treatment runs was 498. This

treatment ranked 5th out of the 32 treatments in this category.

The overall ranking of this treatment relative to the weighted average of the three

priorities is 6th out of 32.

Comparing treatments, combination number 2 takes advantage of the most effective

variable (cost) but is not as aggressive as number 14. The risk mitigation curve is very

similar to the best of breed (BOB). Due to the slightly less aggressive search process, the

average amount of resources consumed to detect all faults took approximately 40%

more than the BOB. This treatment is consistently more effective than treatment 1.

7.3.5 Treatment 14 (10110) Results

Treatment 14 is assigned the high signal values for all five variables in the designed

experiment except the second (risk priority) and fifth (GA-probability) positions.

232

Figure 7.17: Risk mitigation comparison, treatments 1 and 14

Figure 7.18: Cumulative fault detection comparison, treatments 1 and 14

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Sy
st

em
 R

is
k

El
im

in
at

io
n

(R
PN

)

Test Resource Consumption (resource units)

Treatment 14

Treatment 1

Treatment 14

Best of Breed
 Case 14
Control
 Case 1

0

5

10

15

20

25

30

35

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Fa
ul

t D
et

ec
tio

n
(F

au
lts

)

Test Resource Consumption (resource units)

Treatment 14

Treatment 1

Treatment 14

Best of Breed
 Case 14
Control
 Case 1

233

Table 7.12: Compiled DOE results for treatment number 14

Summary

After repeating the treatment eight times a total of 0 faults were left undetected in the

simulation.

The average amount of resources consumed to detect the last fault in the complex

system simulator after eight treatment runs was 66610 resource units out of a possible

175000. This treatment ranked 1st out of the 32 treatments in this category.

The average of the amount of resources consumed at the point of their discovery, for all

of the faults in the complex system simulator after eight treatment runs was 16975

resource units. This treatment ranked 1st out of the 32 treatments in this category.

The average of the amount of test cases required at the point of their discovery, for all

of the faults in the complex system simulator after eight treatment runs was 461. This

treatment ranked 3rd out of the 32 treatments in this category.

The overall ranking of this treatment relative to the weighted average of the three

priorities is 1st out of 32.

Treatment # 14
Treatment Order 10110 Run #

1 2 3 4 5 6 7 8 Average
Average Test Case Count 470 450 532 501 435 379 449 475 461
Average Resource Count 17319 16457 19797 18611 16007 13650 16495 17464 16975
Resource Count at Last Fault 61795 57261 71882 81372 60104 58277 83910 58277 66610
No. of undetected faults 0 0 0 0 0 0 0 0
Total Resource Consumption
Total Test Case
Adjusted Ave TC Count 470 450 532 501 435 379 449 475 461
Adjusted Ave Res Count 17319 16457 19797 18611 16007 13650 16495 17464 16975
Adjusted Res Count Last Fault 61795 57261 71882 81372 60104 58277 83910 58277 66610

234

Comparing treatments, combination number 14 took advantage of early independent

and dependent fault detection and demonstrated accelerated risk mitigation growth. In

addition, treatment number 14 discovered all of the faults with approximately half the

amount of resources required in treatment number 1.

7.4 Reliability Growth Curve – Discovery Zone
Breakdown

In the product assurance process, the reliability growth curve is a standard metric used

to tracked product assurance progress during the design process. As faults are

discovered and mitigated over the development life-cycle, system reliability increases.

One underlying premise of this dissertation’s model is the timing of the discovery of the

four main fault types. The model’s fault discovery process sheds light on how the timing

of these discoveries follow a distinct pattern in the normal life-cycle. The actual risk

mitigation curve for treatment 14 (recognized as the most efficient algorithm) is

presented in Figure 7.19.

235

Figure 7.19: Major Zones of Complex Systems Reliability Growth Curve

The algorithm takes advantage of testing all possible independent sub-system variables

before the adaptive genetic search algorithm takes place. This process flushes out any

non-functioning independent Sub-systems and sub-system variables. In doing so, test

resources are not consumed on a component that has already been deemed defective

from previous testing. It was hypothesized that it is natural that the majority of two

variable faults will be discovered before the majority of three variable faults. In part, the

search algorithm, takes advantage of randomly generated test cases and, therefore, a

three variable fault can be discovered at any time. It just takes more time to cover the

potential number of possible combinations. It is also important to note that this

algorithm does not guarantee that every test combination will be covered before the

resources are consumed. It is especially true if the algorithm takes advantage of the

actual variable costs instead of using the same cost for each variable to ensure total test

case diversity. In the adaptive search algorithm presented in this dissertation, the model

236

was programmed to choose the lower cost test cases from a generated sample as

programmed by the user.

Data identifying the point when the first fault of each type was identified and the point

when the last fault was identified for each type is presented in Figure 7.13. In the

algorithm, fault detection is tracked by the amount of resources that have been

consumed at the point in time when the fault was detected. The actual fault type zones

in treatment 14 follow the pattern expected when the last two-variable fault was

identified well before the last three variable fault was located.

Table 7.13: Risk mitigation fault zone data

7.5 Hypotheses Analysis - Summary

The original hypotheses speculated that the combination of five identified independent

variables in the adaptive genetic search algorithm would improve the fault detection

and mitigation process as compared to simply relying on creating complex system test

cases based on a random generation process. A two level - five variable full factorial

experiment was designed to analyze the effectiveness of the potential models. The base

case (treatment number 1 (00000)) was included in the designed experiment and

ranked 25th out of the 32 treatment combinations. These results indicate that seven test

variable combinations created search algorithms that decreased the search efficiency as

 Major Fault Zones - Treatment 14
Resource Count Resource Count

Fault Type First Fault Detected Last Fault Detected
1 Variable - Independent 27 961
2 Variable - Dependent 5153 33528
3 Variable - Dependent 11389 62126
Latent Defect No. 1 46385 NA
Latent Defect No. 108 54443 NA
Latent Defect No. 109 24378 NA
Latent Defect No. 113 56009 NA

237

relative to the base case. The original hypotheses speculated that taking advantage of all

five independent variables (treatment number 32 – (11111)) would improve the search

efficiency relative to the base case. The final position of this treatment was 15th in the

rank order, ten positions above the base case. Treatment number 14 (10110) was

identified as the most efficient combination of the independent variables. Although the

alpha level (α) was set to 0.1 due to the reality that embedded faults in complex systems

are always different, a p-value equal to 0.000 was obtained in statistical analysis that

compared the results of the control treatment vs. the most efficient treatment.

Therefore, the null hypothesis is rejected and the treatment 14 combination of variables

did significantly improve the search for embedded faults in the complex system

simulator. Because the statistical confidence of the independent variables (along with

the related interactions) in the analysis of the designed experiment differed depending

on the targeted priority, one null hypothesis of the individual independent variable

could not be rejected due to the lack of statistical evidence.

In general, the null hypotheses for the independent variables referred to as Common

Cost and sub-system Test Sweep can be rejected. The action of using actual cost for all

sub-system variable, as well as sweeping through all independent sub-system variables

before engaging the genetic search algorithm, significantly improves the efficiency of

the search algorithm compared to treatment number 1. There is also evidence that

changing the probability of the chromosome Gene selection process, based on previous

success, did significantly affect the search algorithm but in a negative way. The search

algorithm became too greedy. The same was true for the act of prioritizing the

allocation of fault mitigation resources to the discovered fault with the highest risk

rating. Although these actions independently do not improve the search process, there

is statistical evidence that the interactions of the variables could improve the results of

the search algorithms depending on the results priority.

The results indicate that efficiency gains are possible in the fault search process which

will enable improvement in the product assurance process. With improvements in the

238

fault detection and mitigation process, the driving metrics of the Half-Life Return Model

are also improved. This includes the potential reduction of the development lifecycle

cost and/or schedule. It can also directly affect the satisfaction of customers which can

lead towards extending life of the product platform in the field. This combination of

results is the foundation for Sustainable Value Creation.

 Copyright © K. Daniel Seevers 2014

239

Chapter 8: Conclusions and Future Work

This dissertation is focused on research in the field of sustainable product development.

In free enterprise markets, producers seek to develop products that drive a profit for

their respective business, as well as provide the best solution for the customer. In this

process, a value proposition is developed by the producer for the consumer that is

designed to overcome the risks of the business venture vs. the potential reward for both

the producer as well as the consumer. Products and design platforms that are

abandoned before the end of their useful life, create waste and reduce asset value for

society and the environment, in addition to the producer and consumer. Design teams

that fail to take a longer term perspective on the effect their product development

process has on the overall product life in the field, miss the opportunity to improve the

creation of sustainable value for their respective stakeholders. There is a need for

research that improves the toolset for the engineering community that aids in the

sustainable product design process.

8.1 Contributions of This Dissertation

Current literature and related development tools available to the engineering

community often fail to assist the design team in bridging the gap between sustainable

design metrics and financial success. This dissertation, presents a model that identifies

the primary drivers which lead to closing the loop towards Sustainable Lifetime Value

Creation. The problems addressed in this dissertation and the unique contributions are

divided into two parts. The first section focuses on the integration and analysis of data

sets from a more sustainable value proposition and product utilization. The Half-Life

Return Model (HLRM) is presented, designed to provide feedback to producers in the

pursuit of improving the return on investment for the primary stakeholders. Metrics are

identified in the model, designed to aid the development team in analyzing the financial

success of the product relative to the product half-life in the field.

240

The second section applies the concepts presented in the first section with focus placed

on the effects specific feedback variables have on the efficiency of the product

development process. An Adaptive Genetic Search Algorithm is presented, designed to

improve fault detection and mitigation during the product delivery process. A computer

simulation is used to study the effectiveness of the primary aspects introduced in the

search algorithm, in order to attempt to improve the reliability growth of the system

during the development life-cycle.

In summary, the main contributions of this dissertation are as follows:

Sustainable Value Proposition

• Reformulated the concept of a value proposition between producers and

consumers to reflect the additional sustainability focus areas of society and the

environment. This new Sustainable Value Proposition is designed to compare

relative design concepts, in order to drive sustainable improvements in next

generation products.

The sustainable products value proposition seeks a balanced approach towards

the integration of total cost of ownership, social and environmental

improvements, and an expanded definition of product life drivers. The driving

metrics identified in three impact areas are focused on reducing the potential

risk of relative product offerings. In the development process, engineers need to

not only look at the total cost for the consumer, but also take a broader and

more holistic cost view, in order to identify product designs concepts that may

be at higher risk for long-term sustainability and waste streams.

• Defined six driving cost aspects for the producer in the Sustainable Value

Proposition. This includes measuring the commonality and convertibility cost

opportunities of design concepts from a platform to platform as well as gen-to-

gen perspective. In essence expanding the definition of the total cost of product

development.

241

• Defined six driving aspects for the consumer in the Sustainable Value

Proposition. This includes expanding the definition of cost of ownership beyond

the initial purchase and operation of the product, to include the total cost to the

consumer over the lifecycle and potentially multiple lifecycles of the consumers

needs.

• Defined six driving aspects of the product design from a societal and

environmental perspective. This will close the loop between the consumer and

producer in the Sustainable Value Proposition.

Half-Life Return Model

• Designed and presented the Half-Life Return Model. Producers gain insight into

the goal of Sustainable Value Creation by integrating data from the product

profit and loss curve on top of the data from product half-life tracking.

• Defined the drivers of the product delivery process that will improve the

financial return on investment, for the development team in the Half-Life Return

Model.

Product Assurance Model: Adaptive Genetic Search Algorithm

• Defined a detailed list of fault types discovered in the verification of complex

systems in order to improve the fault detection and mitigation model

• Developed an improved product assurance feedback loop model, by Integrating

the process of fault detection and mitigation along with product risk

management into one system.

• With the goal of improving the velocity of quick learning (cycles) between the

product design and system verification teams, this model integrates risk

management and resource consumption into the product assurance process.

242

• Developed an Adaptive Genetic Search Algorithm designed to improve fault

detection and mitigation during the product delivery process. A computer

simulation was used to study the effectiveness of primary aspects introduced in

the search algorithm, in order to attempt to improve the reliability growth of the

system during the development life-cycle.

• The results of the experiment designed to validate the search algorithm, confirm

some of the hypotheses, but shed light on the sensitivity of overly aggressive

product validation strategies.

o In the case study, the most efficient combination of variables in the

adaptive genetic search algorithm improved the fault detection efficiency

by 44%, relative to the control treatment.

o The use of the test case generation process that takes advantage of cost

benefits between potential (competing) samples from the test case

population, has the greatest efficiency effect on the improvement of the

fault detection process.

o The results of the case study also confirm the benefits of early fault

detection as well as test case diversity in the overall efficiency a product

verification strategy.

o Depending on the specific complex system to be verified, the search

algorithm can result in interactions between the independent variables.

The results of the experiment show the potential benefits of creating

child test cases from previously successful test cases. At the same time,

the results also show that the modification of the chromosome gene

selection probability based on previous success, created a test case

generation strategy that became too aggressive.

• As a result of improving the fault detection and mitigation process during the

design lifecycle, the improvement of several key metrics in the Half-Life Return

243

Model are enabled. These include shorter verification cycles and/or the ability to

increase the utilization of your test resources. With increased verification

throughput, product quality and customer satisfaction increase. Finally, the net

result is an increase in Sustainable Lifetime Value.

8.2 Future Work

Further research on the sensitivity of some of the variables held constant, may increase

the knowledge of feedback in the adaptive search process. Beyond test case generation,

the use of risk, cost, system coverage, and feedback in an adaptive search can be

applied to many other applications that seek multiple value targets.

Whereas this research is focused on the process of developing sustainable product and

processes in high technology industries, the results can be applied to other fields. The

first part of this dissertation can be applied to any producer who seeks to drive

additional shareholder value and is faced with a dynamic market. Future research

focused on the sensitivity of the metrics identified in the Half-Life Return Model will

improve the ability to apply these tools in other industries. This includes the potential

validation of the model with field data, comparing Half-Life Return Model results to the

producers shareholder return on investment. In addition, it would be useful to continue

Half-Life Return Model research based on the effects that external factors (non-

controllable) have on the model when comparing different industry types.

Educating development communities about the aspects of value creation from a

sustainability perspective is an important next step from this research. By taking a

broader and more holistic approach to value creation during the product development

process, an improved perspective can be achieved regarding risk management from a

shareholder return on investment.

The race continues between the e-gain benefits of new technology and the research for

new tools that will aid in the long-term development of more sustainable products and

244

processes. A central goal of this research is to begin to build a new paradigm for

development engineers. It can be a paradigm that sheds light on the realization that

product designs can be more sustainable from both financial and environmental

perspectives. By focusing on the main drivers of each sustainable value proposition

aspect, the development community improves their role in creating truly sustainable

value.

Copyright © K. Daniel Seevers 2014

245

Appendix

246

Treatment 3 (01000) Results

Treatment 3 is assigned the low signal values for all five variables in the designed
experiment except the second position (risk prioritization).

Figure A.1: Risk mitigation comparison, treatments 1, 14, and 3

 Figure A.2: Cumulative fault detection comparison, treatments 1, 14, and 3

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Sy
st

em
 R

is
k

El
im

in
at

io
n

(R
PN

)

Test Resource Consumption (resource units)

Risk Mitigation vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 3

Best of Breed
 Case 14
Control
 Case 1

0

5

10

15

20

25

30

35

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Fa
ul

t D
et

ec
tio

n
(F

au
lts

)

Test Resource Consumption (resource units)

Fault Detection vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 3

Best of Breed
 Case 14
Control
 Case 1

247

Table A.1: Compiled DOE results for treatment number 3

Summary

After repeating the treatment eight times a total of 1 fault was left undetected in the
simulation.

The average amount of resources consumed to detect the last fault in the complex
system simulator after eight treatment runs was 134078 resource units out of a possible
175000. This treatment ranked 16th out of the 32 treatments in this category.

The average of the amount of resources consumed at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 27394
resource units. This treatment ranked 17th out of the 32 treatments in this category.

The average of the amount of test cases required at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 544. This
treatment ranked 14th out of the 32 treatments in this category.

The overall ranking of this treatment relative to the weighted average of the three
priorities is 16th out of 32.

Comparing treatments, combination number 3 shows quick risk mitigation growth,
ahead of treatment number 1 but soon falls behind due to the slow process of detecting
faults in the early stages.

Treatment # 3
Treatment Order 01000 Run #

1 2 3 4 5 6 7 8 Average
Average Test Case Count 623 541 589 493 584 475 476 451 529
Average Resource Count 30969 27000 29382 26500 29061 23842 23890 22911 26694
Resource Count at Last Fault 166032 119328 140880 115200 172848 114768 97776 101760 128574
No. of undetected faults 1 0 0 0 0 0 0 0
Total Resource Consumption 175056
Total Test Case 3696
Adjusted Ave TC Count 742 541 589 493 584 475 476 451 544
Adjusted Ave Res Count 36566 27000 29382 26500 29061 23842 23890 22911 27394
Adjusted Res Count Last Fault 210067 119328 140880 115200 172848 114768 97776 101760 134078

248

Treatment 4 (11000) Results

Treatment 4 is assigned the low signal values for all five variables in the designed
experiment except the first (cost) and second (risk prioritization) positions.

Figure A.3: Risk mitigation comparison, treatments 1, 14, and 4

Figure A.4: Cumulative fault detection comparison, treatments 1, 14, and 4

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Sy
st

em
 R

is
k

El
im

in
at

io
n

(R
PN

)

Test Resource Consumption (resource units)

Risk Mitigation vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 4

Best of Breed
 Case 14
Control
 Case 1

0

5

10

15

20

25

30

35

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Fa
ul

t D
et

ec
tio

n
(F

au
lts

)

Test Resource Consumption (resource units)

Fault Detection vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 4

Best of Breed
 Case 14
Control
 Case 1

249

Table A.2: Compiled DOE results for treatment 4

Summary

After repeating the treatment eight times a total of 0 faults were left undetected in the
simulation.

The average amount of resources consumed to detect the last fault in the complex
system simulator after eight treatment runs was 82352 resource units out of a possible
175000. This treatment ranked 6th out of the 32 treatments in this category.

The average of the amount of resources consumed at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 21788
resource units. This treatment ranked 8th out of the 32 treatments in this category.

The average of the amount of test cases required at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 535. This
treatment ranked 8th out of the 32 treatments in this category.

The overall ranking of this treatment relative to the weighted average of the three
priorities is 7th out of 32.

Similar to combination number 2, treatment 4 takes advantage of the most took
effective variable (cost) but is not as aggressive as number 14. The fault detection
process is actually less effective than both treatments 1 and 14 in the early stages but
catches up quickly after the middle stages. In the end, the average amount of resources
consumed to detect all faults took approximately 25% more than the best of breed.

Treatment # 4
Treatment Order 11000 Run #

1 2 3 4 5 6 7 8 Average
Average Test Case Count 565 496 489 518 574 534 525 579 535
Average Resource Count 22792 20234 20199 20979 23238 21819 21403 23643 21788
Resource Count at Last Fault 106089 58237 71724 64623 105730 86158 59392 106863 82352
No. of undetected faults 0 0 0 0 0 0 0 0
Total Resource Consumption
Total Test Case
Adjusted Ave TC Count 565 496 489 518 574 534 525 579 535
Adjusted Ave Res Count 22792 20234 20199 20979 23238 21819 21403 23643 21788
Adjusted Res Count Last Fault 106089 58237 71724 64623 105730 86158 59392 106863 82352

250

Treatment 5 (00100) Results

Treatment 5 is assigned the low signal values for all five variables in the designed
experiment except the third (GA-crossover) positions.

Figure A.5: Risk mitigation comparison, treatments 1, 14, and 5

Figure A.6: Cumulative fault detection comparison, treatments 1, 14, and 5

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Sy
st

em
 R

is
k

El
im

in
at

io
n

(R
PN

)

Test Resource Consumption (resource units)

Risk Mitigation vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 5

Best of Breed
 Case 14
Control
 Case 1

0

5

10

15

20

25

30

35

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Fa
ul

t D
et

ec
tio

n
(F

au
lts

)

Test Resource Consumption (resource units)

Fault Detection vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 5

Best of Breed
 Case 14
Control
 Case 1

251

Table A.3: Compiled DOE results for treatment number 5

Summary

After repeating the treatment eight times a total of 1 fault was left undetected in the
simulation.

The average amount of resources consumed to detect the last fault in the complex
system simulator after eight treatment runs was 123634 resource units out of a possible
175000. This treatment ranked 17th out of the 32 treatments in this category.

The average of the amount of resources consumed at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 24838
resource units. This treatment ranked 16th out of the 32 treatments in this category.

The average of the amount of test cases required at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 490. This
treatment ranked 13th out of the 32 treatments in this category.

The overall ranking of this treatment relative to the weighted average of the three
priorities is 17th out of 32.

Comparing treatments, combination number 5 is similar to treatment 3 which shows
quick risk mitigation growth, ahead of treatment number 1 but soon falls behind due to
the slow process of detecting faults in the early stages. Although this treatment does
track the same fault detection progress and treatment 1, it does provide earlier risk
mitigation growth.

Treatment # 5
Treatment Order 00100 Run #

1 2 3 4 5 6 7 8 Average
Average Test Case Count 506 517 463 429 415 513 447 508 475
Average Resource Count 25652 26182 23588 21809 21326 25752 22802 25761 24109
Resource Count at Last Fault 103008 132048 143232 103392 127824 167760 112656 135264 128148
No. of undetected faults 0 0 1 0 0 0 0 0
Total Resource Consumption 0 175104
Total Test Case 0 3696
Adjusted Ave TC Count 506 517 587 429 415 513 447 508 490
Adjusted Ave Res Count 25652 26182 29417 21809 21326 25752 22802 25761 24838
Adjusted Res Count Last Fault 0 132048 210125 103392 127824 167760 112656 135264 123634

252

Treatment 6 (10100) Results

Treatment 6 is assigned the low signal values for all five variables in the designed
experiment except the first (cost) and third (GA-crossover) positions.

Figure A.7: Risk mitigation comparison, treatments 1, 14, and 6

Figure A.8: Cumulative fault detection comparison, treatments 1, 14, and 6

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Sy
st

em
 R

is
k

El
im

in
at

io
n

(R
PN

)

Test Resource Consumption (resource units)

Risk Mitigation vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 6

Best of Breed
 Case 14
Control
 Case 1

0

5

10

15

20

25

30

35

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Fa
ul

t D
et

ec
tio

n
(F

au
lts

)

Test Resource Consumption (resource units)

Fault Detection vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 6

Best of Breed
 Case 14
Control
 Case 1

253

Table A.4: Compiled DOE results for treatment number 6

Summary

After repeating the treatment eight times a total of 0 faults were left undetected in the
simulation.

The average amount of resources consumed to detect the last fault in the complex
system simulator after eight treatment runs was 78754 resource units out of a possible
175000. This treatment ranked 5th out of the 32 treatments in this category.

The average of the amount of resources consumed at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 17770
resource units. This treatment ranked 3th out of the 32 treatments in this category.

The average of the amount of test cases required at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 431. This
treatment ranked 1st out of the 32 treatments in this category.

The overall ranking of this treatment relative to the weighted average of the three
priorities is 4th out of 32.

Comparing treatments, combination number 6 is a very effective treatment compared
to treatment number 14. Although this treatment ranked fourth overall on the weighted
scale, it was the third most efficient in average resource consumption and the most
effective in the amount of test cases required to discover the faults.

Treatment # 6
Treatment Order 10100 Run #

1 2 3 4 5 6 7 8 Average
Average Test Case Count 394 398 553 464 417 444 360 417 431
Average Resource Count 16359 16355 22538 19288 17155 18216 14920 17328 17770
Resource Count at Last Fault 65455 57907 128802 82832 69315 110811 57455 58798 78922
No. of undetected faults 0 0 0 0 0 0 0 0
Total Resource Consumption
Total Test Case
Adjusted Ave TC Count 394 398 553 464 417 444 360 417 431
Adjusted Ave Res Count 16359 16355 22538 19288 17155 18216 14920 17328 17770
Adjusted Res Count Last Fault 65455 57907 128802 82832 69315 110811 57455 57455 78754

254

Treatment 7 (01100) Results

Treatment 7 is assigned the low signal values for all five variables in the designed
experiment except the second (risk prioritization) and third (GA-crossover) positions.

Figure A.9: Risk mitigation comparison, treatments 1, 14, and 7

Figure A.10: Cumulative fault detection comparison, treatments 1, 14, and 7

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000 Cu
m

ul
at

iv
e

Sy
st

em
 R

is
k

El
im

in
at

io
n

(R
PN

)

Test Resource Consumption (resource units)

Risk Mitigation vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 7

Best of Breed
 Case 14
Control
 Case 1

0

5

10

15

20

25

30

35

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Fa
ul

t D
et

ec
tio

n
(F

au
lts

)

Test Resource Consumption (resource units)

Fault Detection vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 7

Best of Breed
 Case 14
Control
 Case 1

255

Table A.5: Compiled DOE results for treatment number 7

Summary

After repeating the treatment eight times a total of 2 faults were left undetected in the
simulation.

The average amount of resources consumed to detect the last fault in the complex
system simulator after eight treatment runs was 137069 resource units out of a possible
175000. This treatment ranked 20th out of the 32 treatments in this category.

The average of the amount of resources consumed at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 27533
resource units. This treatment ranked 22th out of the 32 treatments in this category.

The average of the amount of test cases required at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 550. This
treatment ranked 18th out of the 32 treatments in this category.

The overall ranking of this treatment relative to the weighted average of the three
priorities is 20th out of 32.

Comparing treatments, combination number 7 shows quick risk mitigation growth,
ahead of treatment number 1 but soon falls behind due to the slow process of detecting
faults in the early stages.

Treatment # 7
Treatment Order 01100 Run #

1 2 3 4 5 6 7 8 Average
Average Test Case Count 476 411 498 519 616 520 550 574 521
Average Resource Count 23996 20714 25170 26025 30626 26229 27482 28668 26114
Resource Count at Last Fault 125616 73248 72336 88416 172704 81120 146160 170640 116280
No. of undetected faults 0 0 0 0 1 1 0 0
Total Resource Consumption 175104 175008
Total Test Case 3648 3696
Adjusted Ave TC Count 476 411 498 519 734 642 550 574 550
Adjusted Ave Res Count 23996 20714 25170 26025 36235 31972 27482 28668 27533
Adjusted Res Count Last Fault 125616 73248 72336 88416 210125 210010 146160 170640 137069

256

Treatment 8 (11100) Results

Treatment 8 is assigned the high signal values for all five variables in the designed
experiment except the forth (Ind. sweep) and third (GA-probability) positions.

Figure A.11: Risk mitigation comparison, treatments 1, 14, and 8

Figure A.12: Cumulative fault detection comparison, treatments 1, 14, and 8

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000 Cu
m

ul
at

iv
e

Sy
st

em
 R

is
k

El
im

in
at

io
n

(R
PN

)

Test Resource Consumption (resource units)

Risk Mitigation vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 8

Best of Breed
 Case 14
Control
 Case 1

0

5

10

15

20

25

30

35

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Fa
ul

t D
et

ec
tio

n
(F

au
lts

)

Test Resource Consumption (resource units)

Fault Detection vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 8

Best of Breed
 Case 14
Control
 Case 1

257

Table A.6: Compiled DOE results for treatment number

Summary

After repeating the treatment eight times a total of 0 faults were left undetected in the
simulation.

The average amount of resources consumed to detect the last fault in the complex
system simulator after eight treatment runs was 87825 resource units out of a possible
175000. This treatment ranked 7th out of the 32 treatments in this category. The
average of the amount of resources consumed at the point of their discovery, for all of
the faults in the complex system simulator after eight treatment runs was 21568
resource units. This treatment ranked 7th out of the 32 treatments in this category.

The average of the amount of test cases required at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 528. This
treatment ranked 7th out of the 32 treatments in this category.

The overall ranking of this treatment relative to the weighted average of the three
priorities is 8th out of 32.

Comparing treatments, combination number 8 takes advantage of the most took
effective variable (cost) but is not as aggressive as number 14. The risk mitigation curve
is very similar to the best of breed (BOB). Due to the slightly less aggressive search
process, the average amount of resources consumed to detect all faults took
approximately 30% more than the BOB. This treatment is consistently more effective
than treatment 1.

Treatment # 8
Treatment Order 11100 Run #

1 2 3 4 5 6 7 8 Average
Average Test Case Count 519 467 548 404 546 529 570 641 528
Average Resource Count 21052 18994 22187 16536 22612 21738 23219 26207 21568
Resource Count at Last Fault 63675 76056 82953 57582 85488 92488 121391 122164 87725
No. of undetected faults 0 0 0 0 0 0 0 0
Total Resource Consumption
Total Test Case
Adjusted Ave TC Count 519 467 548 404 546 529 570 641 528
Adjusted Ave Res Count 21052 18994 22187 16536 22612 21738 23219 26207 21568
Adjusted Res Count Last Fault 63675 76056 82953 57582 85488 92488 121391 122164 87725

258

Treatment 9 (00010) Results

Treatment 9 is assigned the low signal values for all five variables in the designed
experiment except the forth (Ind. sweep) position.

Figure A.13: Risk mitigation comparison, treatments 1, 14, and 9

Figure A.14: Cumulative fault detection comparison, treatments 1, 14, and 9

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Sy
st

em
 R

is
k

El
im

in
at

io
n

(R
PN

)

Test Resource Consumption (resource units)

Risk Mitigation vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 9

Best of Breed
 Case 14
Control
 Case 1

0

5

10

15

20

25

30

35

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Fa
ul

t D
et

ec
tio

n
(F

au
lts

)

Test Resource Consumption (resource units)

Fault Detection vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 9

Best of Breed
 Case 14
Control
 Case 1

259

Table A.7: Compiled DOE results for treatment number 9

Summary

After repeating the treatment eight times a total of 0 faults were left undetected in the
simulation.

The average amount of resources consumed to detect the last fault in the complex
system simulator after eight treatment runs was 110406 resource units out of a possible
175000. This treatment ranked 10th out of the 32 treatments in this category.

The average of the amount of resources consumed at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 23101
resource units. This treatment ranked 6th out of the 32 treatments in this category.

The average of the amount of test cases required at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 457. This
treatment ranked 2th out of the 32 treatments in this category.

The overall ranking of this treatment relative to the weighted average of the three
priorities is 9th out of 32.

This is a unique combination of variable because it ranks second in test case efficiency
and sixth in the average amount of resource consumed but tenth in the amount of
resources to discover the last fault. This is an efficient algorithm combination but runs a
higher risk of consuming the resources before all faults are detected than the top five.

Treatment # 9
Treatment Order 00010 Run #

1 2 3 4 5 6 7 8 Average
Average Test Case Count 489 481 485 441 491 413 396 459 457
Average Resource Count 24896 24312 24354 22208 24704 21070 20157 23106 23101
Resource Count at Last Fault 147744 105024 100992 129264 122688 95712 76608 105216 110406
No. of undetected faults 0 0 0 0 0 0 0 0
Total Resource Consumption
Total Test Case
Adjusted Ave TC Count 489 481 485 441 491 413 396 459 457
Adjusted Ave Res Count 24896 24312 24354 22208 24704 21070 20157 23106 23101
Adjusted Res Count Last Fault 147744 105024 100992 129264 122688 95712 76608 105216 110406

260

Treatment 10 (10010) Results

Treatment 10 is assigned the low signal values for all five variables in the designed
experiment except the first (cost) and forth (Ind. sweep) positions.

Figure A.15: Risk mitigation comparison, treatments 1, 14, and 10

Figure A.16: Cumulative fault detection comparison, treatments 1, 14, and 10

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000 Cu
m

ul
at

iv
e

Sy
st

em
 R

is
k

El
im

in
at

io
n

(R
PN

)

Test Resource Consumption (resource units)

Risk Mitigation vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 10

Best of Breed
 Case 14
Control
 Case 1

0

5

10

15

20

25

30

35

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Fa
ul

t D
et

ec
tio

n
(F

au
lts

)

Test Resource Consumption (resource units)

Fault Detection vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 10

Best of Breed
 Case 14
Control
 Case 1

261

Table A.8: Compiled DOE results for treatment number 10

Summary

After repeating the treatment eight times a total of 0 faults were left undetected in the
simulation. This treatment is very similar to treatment number 14, the best of breed.

The average amount of resources consumed to detect the last fault in the complex
system simulator after eight treatment runs was 77524 resource units out of a possible
175000. This treatment ranked 4th out of the 32 treatments in this category.

The average of the amount of resources consumed at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 17595
resource units. This treatment ranked 2th out of the 32 treatments in this category.

The average of the amount of test cases required at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 471. This
treatment ranked 4th out of the 32 treatments in this category.

The overall ranking of this treatment relative to the weighted average of the three
priorities is 3rd out of 32.

Comparing treatments, combination number 10 is a very effective treatment compared
to treatment number 14. On average, this treatment consumed approximately 15%
more resources to detect the faults in the simulator.

Treatment # 10
Treatment Order 10010 Run #

1 2 3 4 5 6 7 8 Average
Average Test Case Count 450 412 523 438 483 399 513 550 471
Average Resource Count 16817 15173 19614 16416 18039 14771 19203 20725 17595
Resource Count at Last Fault 83908 56855 84746 59145 67879 56315 101884 109462 77524
No. of undetected faults 0 0 0 0 0 0 0 0
Total Resource Consumption
Total Test Case
Adjusted Ave TC Count 450 412 523 438 483 399 513 550 471
Adjusted Ave Res Count 16817 15173 19614 16416 18039 14771 19203 20725 17595
Adjusted Res Count Last Fault 83908 56855 84746 59145 67879 56315 101884 109462 77524

262

Treatment 11 (01010) Results

Treatment 11 is assigned the low signal values for all five variables in the designed
experiment except the second (risk prioritization) and forth (Ind. sweep) positions.

Figure A.17: Risk mitigation comparison, treatments 1, 14, and 11

Figure A.18: Cumulative fault detection comparison, treatments 1, 14, and 11

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000 Cu
m

ul
at

iv
e

Sy
st

em
 R

is
k

El
im

in
at

io
n

(R
PN

)

Test Resource Consumption (resource units)

Risk Mitigation vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 11

Best of Breed
 Case 14
Control
 Case 1

0

5

10

15

20

25

30

35

0 50000 100000 150000 200000 Cu
m

ul
at

iv
e

Fa
ul

t D
et

ec
tio

n
(F

au
lts

)

Test Resource Consumption (resource units)

Fault Detection vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 11

Best of Breed
 Case 14
Control
 Case 1

263

Table A.9: Compiled DOE results for treatment number 11

Summary

After repeating the treatment eight times a total of 3 faults were left undetected in the
simulation.

The average amount of resources consumed to detect the last fault in the complex
system simulator after eight treatment runs was 162376 resource units out of a possible
175000. This treatment ranked 26th out of the 32 treatments in this category.

The average of the amount of resources consumed at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 28086
resource units. This treatment ranked 26th out of the 32 treatments in this category.

The average of the amount of test cases required at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 562. This
treatment ranked 25th out of the 32 treatments in this category.

The overall ranking of this treatment relative to the weighted average of the three
priorities is 26th out of 32.

Comparing treatments, combination number 3 shows quick risk mitigation growth,
ahead of treatment number 1 but soon falls behind due to the slow process of detecting
faults in the early stages.

Treatment # 11
Treatment Order 01010 Run #

1 2 3 4 5 6 7 8 Average
Average Test Case Count 470 543 521 427 618 492 484 577 517
Average Resource Count 23812 27250 26061 21439 30848 24635 24341 28809 25899
Resource Count at Last Fault 139440 105504 112272 70272 147744 108864 73728 163728 115194
No. of undetected faults 0 0 0 1 0 1 1 0
Total Resource Consumption 175104 175056 175104
Total Test Case 3590 3696 3648
Adjusted Ave TC Count 470 543 521 548 618 615 606 577 562
Adjusted Ave Res Count 23812 27250 26061 27335 30848 30430 30147 28809 28086
Adjusted Res Count Last Fault 139440 105504 112272 210125 147744 210067 210125 163728 162376

264

Treatment 12 (11010) Results

Treatment 12 is assigned the high signal values for all five variables in the designed
experiment except the third (GA-crossover) and fifth (GA-probability) positions.

Figure A.19: Risk mitigation comparison, treatments 1, 14, and 12

Figure A.20: Cumulative fault detection comparison, treatments 1, 14, and 12

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Sy
st

em
 R

is
k

El
im

in
at

io
n

(R
PN

)

Test Resource Consumption (resource units)

Risk Mitigation vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 12

Best of Breed
 Case 14
Control
 Case 1

0

5

10

15

20

25

30

35

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Fa
ul

t D
et

ec
tio

n
(F

au
lts

)

Test Resource Consumption (resource units)

Fault Detection vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 12

Best of Breed
 Case 14
Control
 Case 1

265

Table A.10: Compiled DOE results for treatment number 12

Summary

After repeating the treatment eight times a total of 0 faults were left undetected in the
simulation. This treatment is very similar to treatment number 14, (the best of breed)
with little statistical difference between the two in the category of resources required to
discover the last fault.

The average amount of resources consumed to detect the last fault in the complex
system simulator after eight treatment runs was 76167 resource units out of a possible
175000. This treatment ranked 2th out of the 32 treatments in this category. The
average of the amount of resources consumed at the point of their discovery, for all of
the faults in the complex system simulator after eight treatment runs was 19981
resource units. This treatment ranked 5th out of the 32 treatments in this category.

The average of the amount of test cases required at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 527. This
treatment ranked 6th out of the 32 treatments in this category.

The overall ranking of this treatment relative to the weighted average of the three
priorities is 2rd out of 32.

Comparing treatments, combination number 10 is a very effective treatment compared
to treatment number 14. On average, this treatment consumed approximately 15%
more resources to detect the faults in the simulator.

Treatment # 12
Treatment Order 11010 Run #

1 2 3 4 5 6 7 8 Average
Average Test Case Count 575 492 504 582 467 465 584 543 527
Average Resource Count 21883 18770 18924 22076 17731 17612 22422 20426 19981
Resource Count at Last Fault 80031 71407 93839 77626 55606 57257 98239 75333 76167
No. of undetected faults 0 0 0 0 0 0 0 0
Total Resource Consumption
Total Test Case
Adjusted Ave TC Count 575 492 504 582 467 465 584 543 527
Adjusted Ave Res Count 21883 18770 18924 22076 17731 17612 22422 20426 19981
Adjusted Res Count Last Fault 80031 71407 93839 77626 55606 57257 98239 75333 76167

266

Treatment 13 (00110) Results

Treatment 13 is assigned the low signal values for all five variables in the designed
experiment except the third (GA-crossover) and forth (Ind. sweep) positions.

Figure A.21: Risk mitigation comparison, treatments 1, 14 and 13

Figure A.22: Cumulative fault detection comparison, treatments 1, 14, and 13

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Sy
st

em
 R

is
k

El
im

in
at

io
n

(R
PN

)

Test Resource Consumption (resource units)

Risk Mitigation vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 13

Best of Breed
 Case 14
Control
 Case 1

0
5

10
15
20
25
30
35

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Fa
ul

t D
et

ec
tio

n
(F

au
lts

)

Test Resource Consumption (resource units)

Fault Detection vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 13

Best of Breed
 Case 14
Control
 Case 1

267

Table A.11: Compiled DOE results for treatment number 13

Summary

After repeating the treatment eight times a total of 1 fault was left undetected in the
simulation.

The average amount of resources consumed to detect the last fault in the complex
system simulator after eight treatment runs was 110895 resource units out of a possible
175000. This treatment ranked 13th out of the 32 treatments in this category.

The average of the amount of resources consumed at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 24401
resource units. This treatment ranked 15th out of the 32 treatments in this category.

The average of the amount of test cases required at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 484. This
treatment ranked 11th out of the 32 treatments in this category.

The overall ranking of this treatment relative to the weighted average of the three
priorities is 14th out of 32.

Comparing treatments, combination number 13 shows quick risk mitigation growth,
ahead of treatment number 1 but soon falls behind due to the slow process of detecting
faults in the early stages.

Treatment # 13
Treatment Order 00110 Run #

1 2 3 4 5 6 7 8 Average
Average Test Case Count 448 484 581 384 502 467 450 435 469
Average Resource Count 22702 24488 29024 19671 25137 23500 22838 22074 23679
Resource Count at Last Fault 73248 161472 120096 80160 147840 101136 109584 98064 111450
No. of undetected faults 0 0 0 0 1 0 0 0
Total Resource Consumption 175008
Total Test Case 3648
Adjusted Ave TC Count 448 484 581 384 623 467 450 435 484
Adjusted Ave Res Count 22702 24488 29024 19671 30914 23500 22838 22074 24401
Adjusted Res Count Last Fault 73248 161472 120096 80160 210010 57257 109584 75333 110895

268

Treatment 15 (01110) Results

Treatment 15 is assigned the high signal values for all five variables in the designed
experiment except the first (cost) and fifth (GA-probability) positions.

Figure A.23: Risk mitigation comparison, treatments number 1, 14, and 15

Figure A.24: Cumulative fault detection comparison, treatments number 1, 14, and 15

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Sy
st

em
 R

is
k

El
im

in
at

io
n

(R
PN

)

Test Resource Consumption (resource units)

Risk Mitigation vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 15

Best of Breed
 Case 14
Control
 Case 1

0

5

10

15

20

25

30

35

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Fa
ul

t D
et

ec
tio

n
(F

au
lts

)

Test Resource Consumption (resource units)

Fault Detection vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 15

Best of Breed
 Case 14
Control
 Case 1

269

Table A.12: Compiled DOE results for treatment number 15

Summary

After repeating the treatment eight times a total of 2 faults were left undetected in the
simulation.

The average amount of resources consumed to detect the last fault in the complex
system simulator after eight treatment runs was 139145 resource units out of a possible
175000. This treatment ranked 21st out of the 32 treatments in this category.

The average of the amount of resources consumed at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 27041
resource units. This treatment ranked 21st out of the 32 treatments in this category.

The average of the amount of test cases required at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 538. This
treatment ranked 21st out of the 32 treatments in this category.

The overall ranking of this treatment relative to the weighted average of the three
priorities is 22nd out of 32.

Comparing treatments, combination number 15 shows quick risk mitigation growth,
ahead of treatment number 1 but soon falls behind due to the slow process of detecting
faults in the early stages.

Treatment # 15
Treatment Order 01110 Run #

1 2 3 4 5 6 7 8 Average
Average Test Case Count 476 495 601 548 486 508 429 515 507
Average Resource Count 23988 25095 30200 27418 24647 25725 21690 25954 25590
Resource Count at Last Fault 80736 154656 134352 101472 145008 74832 75840 151872 114846
No. of undetected faults 1 0 0 0 1 0 0 0
Total Resource Consumption 175104 175008
Total Test Case 3696 3696
Adjusted Ave TC Count 600 495 601 548 609 508 429 515 538
Adjusted Ave Res Count 29805 25095 30200 27418 30440 25725 21690 25954 27041
Adjusted Res Count Last Fault 210125 154656 134352 101472 210010 74832 75840 151872 139145

270

Treatment 16 (11110) Results

Treatment 16 is assigned the high signal values for all five variables in the designed
experiment except the first (cost) position.

Figure A.25: Risk mitigation comparison, treatments 1, 14, and 16

Figure A.26: Cumulative fault detection comparison, treatments 1, 14, and 16

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000 Cu
m

ul
at

iv
e

Sy
st

em
 R

is
k

El
im

in
at

io
n

(R
PN

)

Test Resource Consumption (resource units)

Risk Mitigation vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 16

Best of Breed
 Case 14
Control
 Case 1

0

5

10

15

20

25

30

35

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Fa
ul

t D
et

ec
tio

n
(F

au
lts

)

Test Resource Consumption (resource units)

Fault Detection vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 16

Best of Breed
 Case 14
Control
 Case 1

271

Table A.13: Compiled DOE results for treatment number 16

Summary

After repeating the treatment eight times a total of 0 faults were left undetected in the
simulation.

The average amount of resources consumed to detect the last fault in the complex
system simulator after eight treatment runs was 105814 resource units out of a possible
175000. This treatment ranked 16th out of the 32 treatments in this category. The
average of the amount of resources consumed at the point of their discovery, for all of
the faults in the complex system simulator after eight treatment runs was 21343
resource units. This treatment ranked 6th out of the 32 treatments in this category.

The average of the amount of test cases required at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 603. This
treatment ranked 10th out of the 32 treatments in this category.

The overall ranking of this treatment relative to the weighted average of the three
priorities is 10th out of 32.

Comparing treatments, combination number 16 is similar to treatment 14 but not as
aggressive, especially in the middle of the fault detection process . Due to the slightly
less aggressive search process, the average amount of resources consumed to detect
the last fault took approximately 60% more than the treatment 14, but only 21% more
resources for the average point of detecting all faults.

Treatment # 16
Treatment Order 11110 Run #

1 2 3 4 5 6 7 8 Average
Average Test Case Count 831 512 510 527 677 536 561 670 603
Average Resource Count 20430 19285 19144 19618 25726 20076 21273 25192 21343
Resource Count at Last Fault 70933 88464 70698 126493 126499 90969 149058 139535 107831
No. of undetected faults 0 0 0 0 0 0 0 0
Total Resource Consumption
Total Test Case
Adjusted Ave TC Count 831 512 510 527 677 536 561 670 603
Adjusted Ave Res Count 20430 19285 19144 19618 25726 20076 21273 25192 21343
Adjusted Res Count Last Fault 70933 88464 70698 126493 126499 74832 149058 139535 105814

272

Treatment 17 (00001) Results

Treatment 17 is assigned the low signal values for all five variables in the designed
experiment except the fifth (GA-probability) position.

Figure A.27: Risk mitigation comparison, treatments 1, 14, and 17

Figure A.28: Cumulative fault detection comparison, treatments 1, 14, and 17

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Sy
st

em
 R

is
k

El
im

in
at

io
n

(R
PN

)

Test Resource Consumption (resource units)

Risk Mitigation vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 17

Best of Breed
 Case 14
Control
 Case 1

0

5

10

15

20

25

30

35

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Fa
ul

t D
et

ec
tio

n
(F

au
lts

)

Test Resource Consumption (resource units)

Fault Detection vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 17

Best of Breed
 Case 14
Control
 Case 1

273

Table A.14: Compiled DOE results for treatment number 17

Summary

After repeating the treatment eight times a total of 4 faults were left undetected in the
simulation.

The average amount of resources consumed to detect the last fault in the complex
system simulator after eight treatment runs was 163752 resource units out of a possible
175000. This treatment ranked 28th out of the 32 treatments in this category.

The average of the amount of resources consumed at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 30731
resource units. This treatment ranked 28th out of the 32 treatments in this category.

The average of the amount of test cases required at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 614. This
treatment ranked 28th out of the 32 treatments in this category.

The overall ranking of this treatment relative to the weighted average of the three
priorities is 28th out of 32. The variable combination in this treatment is less effective
than treatment number 1.

Comparing treatments, combination number 17 shows quick risk mitigation growth,
ahead of treatment number 1 but soon falls behind due to the slow process of detecting
faults in the early stages.

Treatment # 17
Treatment Order 00001 Run #

1 2 3 4 5 6 7 8 Average
Average Test Case Count 572 540 429 656 621 539 624 464 556
Average Resource Count 28541 27284 21675 32663 31199 26973 31222 23584 27893
Resource Count at Last Fault 150432 145440 74448 154032 165744 139056 171504 105072 138216
No. of undetected faults 1 0 0 0 0 2 1 0
Total Resource Consumption 175104 175104 175008
Total Test Case 3590 3588 3570
Adjusted Ave TC Count 689 540 429 656 621 774 738 464 614
Adjusted Ave Res Count 34215 27284 21675 32663 31199 38420 36809 23584 30731
Adjusted Res Count Last Fault 210125 145440 74448 154032 165744 245146 210010 105072 163752

274

Treatment 18 (10001) Results

Treatment 18 is assigned the low signal values for all five variables in the designed
experiment except the first (cost) and fifth (GA-probability) positions.

Figure A.29: Risk mitigation comparison, treatments number 1, 14, and 18

Figure A.30: Cumulative fault detection comparison, treatments number 1, 14, and 18

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Sy
st

em
 R

is
k

El
im

in
at

io
n

(R
PN

)

Test Resource Consumption (resource units)

Risk Mitigation vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 18

Best of Breed
 Case 14
Control
 Case 1

0

5

10

15

20

25

30

35

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Fa
ul

t D
et

ec
tio

n
(F

au
lts

)

Test Resource Consumption (resource units)

Fault Detection vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 18

Best of Breed
 Case 14
Control
 Case 1

275

Table A.15: Compiled DOE results for treatment number 18

Summary

After repeating the treatment eight times a total of 3 faults were left undetected in the
simulation.

The average amount of resources consumed to detect the last fault in the complex
system simulator after eight treatment runs was 131955 resource units out of a possible
175000. This treatment ranked 27th out of the 32 treatments in this category.

The average of the amount of resources consumed at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 23262
resource units. This treatment ranked 27th out of the 32 treatments in this category.

The average of the amount of test cases required at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 584. This
treatment ranked 27th out of the 32 treatments in this category.

The overall ranking of this treatment relative to the weighted average of the three
priorities is 27th out of 32. The variable combination in this treatment is less effective
than treatment number 1.

Comparing treatments, combination number 18 shows quick risk mitigation growth,
ahead of treatment number 1 but soon falls behind due to the slow process of detecting
faults in the early stages.

Treatment # 18
Treatment Order 10001 Run #

1 2 3 4 5 6 7 8 Average
Average Test Case Count 484 445 511 473 516 685 626 467 526
Average Resource Count 19230 17686 20581 19175 20823 26698 25087 18924 21026
Resource Count at Last Fault 70569 60931 106174 94116 104158 131653 121930 75630 95645
No. of undetected faults 1 0 0 2 0 0 0 0
Total Resource Consumption 175080 175047
Total Test Case 4559 4520
Adjusted Ave TC Count 640 445 511 782 516 685 626 467 584
Adjusted Ave Res Count 25195 17686 20581 31105 20823 26698 25087 18924 23262
Adjusted Res Count Last Fault 210096 60931 106174 245066 104158 131653 121930 75630 131955

276

Treatment 19 (01001) Results

Treatment 19 is assigned the low signal values for all five variables in the designed
experiment except the second (risk prioritization) and fifth (GA-probability) positions.

Figure A.31: Risk mitigation comparison for treatments 1, 14, and 19

Figure A.32: Cumulative fault detection comparison, treatments number 1, 14, and 19

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000 Cu
m

ul
at

iv
e

Sy
st

em
 R

is
k

El
im

in
at

io
n

(R
PN

)

Test Resource Consumption (resource units)

Risk Mitigation vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 19

Best of Breed
 Case 14
Control
 Case 1

0

5

10

15

20

25

30

35

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Fa
ul

t D
et

ec
tio

n
(F

au
lts

)

Test Resource Consumption (resource units)

Fault Detection vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 19

Best of Breed
 Case 14
Control
 Case 1

277

Table A.16: Compiled DOE results for treatment number 19

Summary

After repeating the treatment eight times a total of 2 faults were left undetected in the
simulation.

The average amount of resources consumed to detect the last fault in the complex
system simulator after eight treatment runs was 144787 resource units out of a possible
175000. This treatment ranked 23rd out of the 32 treatments in this category.

The average of the amount of resources consumed at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 28700
resource units. This treatment ranked 23th out of the 32 treatments in this category.

The average of the amount of test cases required at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 572. This
treatment ranked 23th out of the 32 treatments in this category.

The overall ranking of this treatment relative to the weighted average of the three
priorities is 23th out of 32. The variable combination in this treatment is similar to the
effectiveness of treatment number 1.

Comparing treatments, combination number 19 shows quick risk mitigation growth,
ahead of treatment number 1 but soon falls behind due to the slow process of detecting
faults in the early stages.

Treatment # 19
Treatment Order 01001 Run #

1 2 3 4 5 6 7 8 Average
Average Test Case Count 677 495 485 487 510 668 418 598 542
Average Resource Count 34026 25161 24330 24412 25696 33433 21152 29782 27249
Resource Count at Last Fault 154032 81216 88656 149856 123216 170736 73248 135600 122070
No. of undetected faults 0 0 1 1 0 0 0 0
Total Resource Consumption 175104 175104
Total Test Case 3590 3570
Adjusted Ave TC Count 677 495 604 606 510 668 418 598 572
Adjusted Ave Res Count 34026 25161 30136 30216 25696 33433 21152 29782 28700
Adjusted Res Count Last Fault 154032 81216 210125 210125 123216 170736 73248 135600 144787

278

Treatment 20 (11001) Results

Treatment 20 is assigned the high signal values for all five variables in the designed
experiment except the third (GA-crossover) and forth (Ind. sweep) positions.

Figure A.33: Risk mitigation comparison, treatments 1, 14, and 20

Figure A.34: Cumulative fault detection comparison, treatments 1, 14, and 20

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Sy
st

em
 R

is
k

El
im

in
at

io
n

(R
PN

)

Test Resource Consumption (resource units)

Risk Mitigation vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 20

Best of Breed
 Case 14
Control
 Case 1

0

5

10

15

20

25

30

35

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Fa
ul

t D
et

ec
tio

n
(F

au
lts

)

Test Resource Consumption (resource units)

Fault Detection vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 20

Best of Breed
 Case 14
Control
 Case 1

279

Table A.17: Compiled DOE results for treatment number 20

Summary

After repeating the treatment eight times a total of 0 faults were left undetected in the
simulation. This treatment ranks in the top 5. The average amount of resources
consumed to detect the last fault in the complex system simulator after eight treatment
runs was 77173 resource units out of a possible 175000. This treatment ranked 3rd out
of the 32 treatments in this category.

The average of the amount of resources consumed at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 21870
resource units. This treatment ranked 9th out of the 32 treatments in this category. The
average of the amount of test cases required at the point of their discovery, for all of
the faults in the complex system simulator after eight treatment runs was 547. This
treatment ranked 9th out of the 32 treatments in this category. The overall ranking of
this treatment relative to the weighted average of the three priorities is 5th out of 32.

Comparing treatments, combination number 20 is a very effective treatment compared
to treatment number 14 when comparing the total amount of resources required to
detect the last fault. Although this treatment ranked fourth overall on the weighted
scale, it was the 9th most efficient in average resource consumption and the 9th most
effective in the amount of test cases required to discover the faults. In the early stages,
treatment number 1 is actually more effective at fault detection. The results indicate
this treatment may be more sensitive to the fault locations in a complex system than
the other top five.

Treatment # 20
Treatment Order 11001 Run #

1 2 3 4 5 6 7 8 Average
Average Test Case Count 488 557 491 740 574 479 571 477 547
Average Resource Count 19728 22162 19602 29664 22696 19119 23120 18866 21870
Resource Count at Last Fault 57791 78593 56711 132526 78375 56841 96521 60029 77173
No. of undetected faults 0 0 0 0 0 0 0 0
Total Resource Consumption
Total Test Case
Adjusted Ave TC Count 488 557 491 740 574 479 571 477 547
Adjusted Ave Res Count 19728 22162 19602 29664 22696 19119 23120 18866 21870
Adjusted Res Count Last Fault 57791 78593 56711 132526 78375 56841 96521 60029 77173

280

Treatment 21 (00101) Results

Treatment 21 is assigned the low signal values for all five variables in the designed
experiment except the third (GA-crossover) and fifth (GA-probability) positions.

Figure A.35: Risk mitigation comparison, treatments 1, 14, and 21

Figure A.36: Cumulative fault detection comparison, treatments 1, 14 and 21

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Sy
st

em
 R

is
k

El
im

in
at

io
n

(R
PN

)

Test Resource Consumption (resource units)

Risk Mitigation vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 21

Best of Breed
 Case 14
Control
 Case 1

0

5

10

15

20

25

30

35

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Fa
ul

t D
et

ec
tio

n
(F

au
lts

)

Test Resource Consumption (resource units)

Fault Detection vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 21

Best of Breed
 Case 14
Control
 Case 1

281

Table A.18: Compiled DOE results for treatment number 21

Summary

After repeating the treatment eight times a total of 5 faults were left undetected in the
simulation. The search process can become too aggressive.

The average amount of resources consumed to detect the last fault in the complex
system simulator after eight treatment runs was 167308 resource units out of a possible
175000. This treatment ranked 30th out of the 32 treatments in this category.

The average of the amount of resources consumed at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 28040
resource units. This treatment ranked 29th out of the 32 treatments in this category.

The average of the amount of test cases required at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 557. This
treatment ranked 29th out of the 32 treatments in this category.

The overall ranking of this treatment relative to the weighted average of the three
priorities is 29th out of 32. The variable combination in this treatment is less effective
than treatment number 1.

Comparing treatments, combination number 21 shows quick risk mitigation growth,
ahead of treatment number 1 but soon falls behind due to the slow process of detecting
faults in the early stages.

Treatment # 21
Treatment Order 00101 Run #

1 2 3 4 5 6 7 8 Average
Average Test Case Count 489 467 400 575 441 531 454 499 482
Average Resource Count 24567 23694 20446 28850 22312 26848 22890 25302 24364
Resource Count at Last Fault 144720 85104 79152 93552 92304 151824 76416 163104 110772
No. of undetected faults 0 0 2 0 1 0 2 0
Total Resource Consumption 175056 175056 175008
Total Test Case 3572 3569 3571
Adjusted Ave TC Count 489 467 643 575 561 531 693 499 557
Adjusted Ave Res Count 24567 23694 32297 28850 28179 26848 34585 25302 28040
Adjusted Res Count Last Fault 144720 85104 245078 93552 210067 151824 245011 163104 167308

282

Treatment 22 (10101) Results

Treatment 22 is assigned the high signal values for all five variables in the designed
experiment except the second (risk prioritization) and forth (Ind. sweep) positions.

Figure A.37: Risk mitigation comparison, treatments 1, 14, and 22

Figure A.38: Cumulative fault detection comparison, treatments 1, 14, and 22

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Sy
st

em
 R

is
k

El
im

in
at

io
n

(R
PN

)

Test Resource Consumption (resource units)

Risk Mitigation vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 22

Best of Breed
 Case 14
Control
 Case 1

0
5

10
15
20
25
30
35

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Fa
ul

t D
et

ec
tio

n
(F

au
lts

)

Test Resource Consumption (resource units)

Fault Detection vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 22

Best of Breed
 Case 14
Control
 Case 1

283

Table A.19: Compiled DOE results for treatment number 22

Summary

After repeating the treatment eight times a total of 1 fault was left undetected in the
simulation.

The average amount of resources consumed to detect the last fault in the complex
system simulator after eight treatment runs was 114554 resource units out of a possible
175000. This treatment ranked 14th out of the 32 treatments in this category.

The average of the amount of resources consumed at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 19781
resource units. This treatment ranked 11th out of the 32 treatments in this category.

The average of the amount of test cases required at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 491. This
treatment ranked 12th out of the 32 treatments in this category.

The overall ranking of this treatment relative to the weighted average of the three
priorities is 13th out of 32.

Comparing treatments, combination number 13 shows quick risk mitigation growth very
similar to treatment number 14, during the test runs, this combination became too
greedy and left a fault undetected.

Treatment # 22
Treatment Order 10101 Run #

1 2 3 4 5 6 7 8 Average
Average Test Case Count 523 397 528 559 469 438 421 439 472
Average Resource Count 20899 16641 20896 22129 19070 17808 16919 18013 19047
Resource Count at Last Fault 141525 59544 116499 134513 78912 123716 78149 108010 105109
No. of undetected faults 0 0 0 1 0 0 0 0
Total Resource Consumption 175066
Total Test Case 4549
Adjusted Ave TC Count 523 397 528 712 469 438 421 439 491
Adjusted Ave Res Count 20899 16641 20896 28002 19070 17808 16919 18013 19781
Adjusted Res Count Last Fault 141525 59544 116499 210079 78912 123716 78149 108010 114554

284

Treatment 24 (11101) Results

Treatment 24 is assigned the high signal values for all five variables in the designed
experiment except the forth (Ind. sweep) position.

Figure A.39: Risk mitigation comparison, treatments number 1, 14, and 24

Figure A.40: Cumulative fault detection comparison, treatments 1, 14, and 24

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Sy
st

em
 R

is
k

El
im

in
at

io
n

(R
PN

)

Test Resource Consumption (resource units)

Rsk Mitigation vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 24

Best of Breed
 Case 14
Control
 Case 1

0

5

10

15

20

25

30

35

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Fa
ul

t D
et

ec
tio

n
(F

au
lts

)

Test Resource Consumption (resource units)

Fault Detection vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 24

Best of Breed
 Case 14
Control
 Case 1

285

Table A.20: Compiled DOE results for treatment number 24

Summary

After repeating the treatment eight times a total of 3 faults were left undetected in the
simulation.

The average amount of resources consumed to detect the last fault in the complex
system simulator after eight treatment runs was 150512 resource units out of a possible
175000. This treatment ranked 24th out of the 32 treatments in this category.

The average of the amount of resources consumed at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 24690
resource units. This treatment ranked 24th out of the 32 treatments in this category.

The average of the amount of test cases required at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 624. This
treatment ranked 26th out of the 32 treatments in this category.

The overall ranking of this treatment relative to the weighted average of the three
priorities is 24th out of 32. The variable combination in this treatment is similar to the
effectiveness of treatment number 1.

Comparing treatments, combination number 24 shows quick risk mitigation growth,
ahead of treatment number 1 but soon falls behind due to the slow process of detecting
faults in the early stages.

Treatment # 24
Treatment Order 11101 Run #

1 2 3 4 5 6 7 8 Average
Average Test Case Count 646 459 495 577 589 489 642 631 566
Average Resource Count 25660 18455 19613 22938 23255 19670 25248 24957 22475
Resource Count at Last Fault 133041 57631 93050 101787 114494 88459 131560 91288 101414
No. of undetected faults 0 1 0 0 0 1 0 1
Total Resource Consumption 175010 175042 175084
Total Test Case 4549 4533 4541
Adjusted Ave TC Count 646 615 495 577 589 644 642 782 624
Adjusted Ave Res Count 25660 24441 19613 22938 23255 25619 25248 30743 24690
Adjusted Res Count Last Fault 133041 210012 93050 101787 114494 210050 131560 210101 150512

286

Treatment 25 (00011) Results

Treatment 25 is assigned the low signal values for all five variables in the designed
experiment except the forth (Ind. sweep) and fifth (GA-probability) positions.

Figure A.41: Risk mitigation comparison, treatments 1, 14, and 25

Figure A.42: Cumulative fault detection comparison, treatments 1, 14, and 25

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000 Cu
m

ul
at

iv
e

Sy
st

em
 R

is
k

El
im

in
at

io
n

(R
PN

)

Test Resource Consumption (resource units)

Risk Mitigation vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 25

Best of Breed
 Case 14
Control
 Case 1

0

5

10

15

20

25

30

35

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Fa
ul

t D
et

ec
tio

n
(F

au
lts

)

Test Resource Consumption (resource units)

Fault Detection vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 25

Best of Breed
 Case 14
Control
 Case 1

287

Table A.21: Compiled DOE results for treatment number 25

Summary

After repeating the treatment eight times a total of 2 faults were left undetected in the
simulation.

The average amount of resources consumed to detect the last fault in the complex
system simulator after eight treatment runs was 132874 resource units out of a possible
175000. This treatment ranked 19th out of the 32 treatments in this category.

The average of the amount of resources consumed at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 25892
resource units. This treatment ranked 20th out of the 32 treatments in this category.

The average of the amount of test cases required at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 515. This
treatment ranked 20th out of the 32 treatments in this category.

The overall ranking of this treatment relative to the weighted average of the three
priorities is 19th out of 32.

Comparing treatments, combination number 25 shows quick risk mitigation growth,
ahead of treatment number 1 but soon falls behind due to the slow process of detecting
faults in the early stages.

Treatment # 25
Treatment Order 00011 Run #

1 2 3 4 5 6 7 8 Average
Average Test Case Count 533 430 370 459 412 646 491 539 485
Average Resource Count 26763 21708 19036 23115 20966 32224 24579 27063 24432
Resource Count at Last Fault 145440 88128 72864 81552 72384 158784 126384 111888 107178
No. of undetected faults 0 1 0 0 0 0 1 0
Total Resource Consumption 175056 175008
Total Test Case 3571 3570
Adjusted Ave TC Count 533 550 370 459 412 646 610 539 515
Adjusted Ave Res Count 26763 27594 19036 23115 20966 32224 30374 27063 25892
Adjusted Res Count Last Fault 145440 210067 72864 81552 72384 158784 210010 111888 132874

288

Treatment 26 (10011) Results

Treatment 26 is assigned the high signal values for all five variables in the designed
experiment except the second (risk prioritization) and third (GA-crossover) positions.

Figure A.43: Risk mitigation comparison, treatments 1, 14, and 26

Figure A.44: Cumulative fault detection comparison, treatments 1, 14, and 26

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Sy
st

em
 R

is
k

El
im

in
at

io
n

(R
PN

)

Test Resource Consumption (resource units)

Risk Mitigation vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 26

Best of Breed
 Case 14
Control
 Case 1

0

5

10

15

20

25

30

35

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Fa
ul

t D
et

ec
tio

n
(F

au
lts

)

Test Resource Consumption (resource units)

Fault Detection vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 26

Best of Breed
 Case 14
Control
 Case 1

289

Table A.22: Compiled DOE results for treatment number 26

Summary

After repeating the treatment eight times a total of 1 fault was left undetected in the
simulation.

The average amount of resources consumed to detect the last fault in the complex
system simulator after eight treatment runs was 105332 resource units out of a possible
175000. This treatment ranked 12th out of the 32 treatments in this category.

The average of the amount of resources consumed at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 21077
resource units. This treatment ranked 13th out of the 32 treatments in this category.

The average of the amount of test cases required at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 571. This
treatment ranked 12th out of the 32 treatments in this category.

The overall ranking of this treatment relative to the weighted average of the three
priorities is 16th out of 32.

Comparing treatments, combination number 13 shows quick risk mitigation growth very
similar to treatment number 14, during the test runs, this combination became too
greedy and left a fault undetected.

Treatment # 26
Treatment Order 10011 Run #

1 2 3 4 5 6 7 8 Average
Average Test Case Count 436 538 562 531 609 585 729 426 552
Average Resource Count 15920 19814 20814 19446 22643 21339 27194 15549 20340
Resource Count at Last Fault 54555 95053 95531 105296 129203 135165 169512 78480 107849
No. of undetected faults 0 0 0 0 0 1 0 0
Total Resource Consumption 175065
Total Test Case 4617
Adjusted Ave TC Count 436 538 562 531 609 740 729 426 571
Adjusted Ave Res Count 15920 19814 20814 19446 22643 27237 27194 15549 21077
Adjusted Res Count Last Fault 54555 0 95531 105296 129203 210078 169512 78480 105332

290

Treatment 27 (01011) Results

Treatment 27 is assigned the high signal values for all five variables in the designed
experiment except the first (cost) and third (GA-crossover) positions.

Figure A.45: Risk mitigation comparison, treatments 1, 14, and 27

Figure A.46: Cumulative fault detection comparison, treatments 1, 14 and 27

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Sy
st

em
 R

is
k

El
im

in
at

io
n

(R
PN

)

Test Resource Consumption (resource units)

Risk Mitigation vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 27

Best of Breed
 Case 14
Control
 Case 1

0

5

10

15

20

25

30

35

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Fa
ul

t D
et

ec
tio

n
(F

au
lts

)

Test Resource Consumption (resource units)

Fault Detection vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 27

Best of Breed
 Case 14
Control
 Case 1

291

Table A.23: Compiled DOE results for treatment number 27

Summary

After repeating the treatment eight times a total of 6 faults were left undetected in the
simulation. The treatment ranked last out of the 32 combinations. The search process
can become too aggressive.

The average amount of resources consumed to detect the last fault in the complex
system simulator after eight treatment runs was 165486 resource units out of a possible
175000. This treatment ranked 31st out of the 32 treatments in this category.

The average of the amount of resources consumed at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 29428
resource units. This treatment ranked 31st out of the 32 treatments in this category.

The average of the amount of test cases required at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 588. This
treatment ranked 32nd out of the 32 treatments in this category.

The overall ranking of this treatment relative to the weighted average of the three
priorities is 31st out of 32. The variable combination in this treatment is less effective
than treatment number 1.

Comparing treatments, combination number 27 shows quick risk mitigation growth,
ahead of treatment number 1 but soon falls behind due to the slow process of detecting
faults in the early stages.

Treatment # 27
Treatment Order 01011 Run #

1 2 3 4 5 6 7 8 Average
Average Test Case Count 565 418 636 484 466 513 439 467 499
Average Resource Count 28394 21083 31581 24156 23778 25743 22420 23518 25084
Resource Count at Last Fault 131232 73152 159792 122736 80256 129888 72144 83280 106560
No. of undetected faults 0 1 1 3 0 0 0 1
Total Resource Consumption 175104 175008 175104 175056
Total Test Case 3572 3588 3593 3570
Adjusted Ave TC Count 565 539 751 843 466 513 439 586 588
Adjusted Ave Res Count 28394 26991 37157 41591 23778 25743 22420 29348 29428
Adjusted Res Count Last Fault 131232 210125 210010 280166 80256 129888 72144 210067 165486

292

Treatment 28 (11011) Results

Treatment 28 is assigned the high signal values for all five variables in the designed
experiment except the first (cost) and third (GA-crossover) positions.

Figure A.47: Risk mitigation comparison, treatments 1, 14, and 28

Figure A.48: Cumulative fault detection comparison, treatments, 1, 14 and 28

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Sy
st

em
 R

is
k

El
im

in
at

io
n

(R
PN

)

Test Resource Consumption (resource units)

Risk Mitigation vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 28

Best of Breed
 Case 14
Control
 Case 1

0
5

10
15
20
25
30
35

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Fa
ul

t D
et

ec
tio

n
(F

au
lts

)

Test Resource Consumption (resource units)

Fault Detection vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 28

Best of Breed
 Case 14
Control
 Case 1

293

Table A.24: Compiled DOE results for treatment number 28

Summary

After repeating the treatment eight times a total of 1 fault was left undetected in the
simulation.

The average amount of resources consumed to detect the last fault in the complex
system simulator after eight treatment runs was 101469 resource units out of a possible
175000. This treatment ranked 11th out of the 32 treatments in this category.

The average of the amount of resources consumed at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 21308
resource units. This treatment ranked 14th out of the 32 treatments in this category.

The average of the amount of test cases required at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 577. This
treatment ranked 17th out of the 32 treatments in this category.

The overall ranking of this treatment relative to the weighted average of the three
priorities is 11th out of 32.

Comparing treatments, combination number 28 shows quick risk mitigation growth very
similar to treatment number 14, during the test runs, this combination became too
greedy and left a fault undetected.

Treatment # 28
Treatment Order 11011 Run #

1 2 3 4 5 6 7 8 Average
Average Test Case Count 513 641 572 535 501 546 678 475 558
Average Resource Count 18755 23638 21077 19747 18598 20120 24974 17610 20565
Resource Count at Last Fault 84019 143008 69111 55284 54662 82305 106527 62064 82123
No. of undetected faults 0 0 0 1 0 0 0 0
Total Resource Consumption 175046
Total Test Case 4628
Adjusted Ave TC Count 513 641 572 692 501 546 678 475 577
Adjusted Ave Res Count 18755 23638 21077 25694 18598 20120 24974 17610 21308
Adjusted Res Count Last Fault 84019 143008 69111 210055 54662 82305 106527 62064 101469

294

Treatment 29 (00111) Results

Treatment 29 is assigned the high signal values for all five variables in the designed
experiment except the first (cost) and second (risk prioritization) positions.

Figure A.49: Risk mitigation comparison, treatments 1, 14, and 29

Figure A.50: Cumulative fault detection comparison, treatments, 1, 14, and 29

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Sy
st

em
 R

is
k

El
im

in
at

io
n

(R
PN

)

Test Resource Consumption (resource units)

Risk Mitigation vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 29

Best of Breed
 Case 14
Control
 Case 1

0

5

10

15

20

25

30

35

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Fa
ul

t D
et

ec
tio

n
(F

au
lts

)

Test Resource Consumption (resource units)

Fault Detection vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 29

Best of Breed
 Case 14
Control
 Case 1

295

Table A.25: Compiled DOE results for treatment number 29

Summary

After repeating the treatment eight times a total of 2 faults were left undetected in the
simulation.

The average amount of resources consumed to detect the last fault in the complex
system simulator after eight treatment runs was 141076 resource units out of a possible
175000. This treatment ranked 22nd out of the 32 treatments in this category.

The average of the amount of resources consumed at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 24587
resource units. This treatment ranked 19th out of the 32 treatments in this category.

The average of the amount of test cases required at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 487. This
treatment ranked 21st out of the 32 treatments in this category.

The overall ranking of this treatment relative to the weighted average of the three
priorities is 19th out of 32.

Comparing treatments, combination number 29 shows quick risk mitigation growth,
ahead of treatment number 1 but soon falls behind due to the slow process of detecting
faults in the early stages.

Treatment # 29
Treatment Order 00111 Run #

1 2 3 4 5 6 7 8 Average
Average Test Case Count 453 387 469 480 510 403 496 460 457
Average Resource Count 22904 19812 23610 24156 25712 20448 25054 23313 23126
Resource Count at Last Fault 134832 78288 137184 142080 125088 93936 131952 126432 121224
No. of undetected faults 1 0 0 0 0 0 0 1
Total Resource Consumption 175056 175008
Total Test Case 3571 3570
Adjusted Ave TC Count 573 387 469 480 510 403 496 580 487
Adjusted Ave Res Count 28753 19812 23610 24156 25712 20448 25054 29147 24587
Adjusted Res Count Last Fault 210067 78288 137184 142080 125088 93936 131952 210010 141076

296

Treatment 30 (10111) Results

Treatment 30 is assigned the high signal values for all five variables in the designed
experiment except the second (risk prioritization) position.

Figure A.51: Risk mitigation comparison, treatments 1, 14, and 30

Figure A.52: Cumulative fault detection comparison, treatments 1, 14, and 30

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000 Cu
m

ul
at

iv
e

Sy
st

em
 R

is
k

El
im

in
at

io
n

(R
PN

)

Test Resource Consumption (resource units)

Risk Mitigation vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 30

Best of Breed
 Case 14
Control
 Case 1

0

5

10

15

20

25

30

35

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Fa
ul

t D
et

ec
tio

n
(F

au
lts

)

Test Resource Consumption (resource units)

Fault Detection vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 30

Best of Breed
 Case 14
Control
 Case 1

297

Table A.26: Compiled DOE results for treatment number 30

Summary

After repeating the treatment eight times a total of 2 faults were left undetected in the
simulation.

The average amount of resources consumed to detect the last fault in the complex
system simulator after eight treatment runs was 109677 resource units out of a possible
175000. This treatment ranked 18th out of the 32 treatments in this category.

The average of the amount of resources consumed at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 19044
resource units. This treatment ranked 18th out of the 32 treatments in this category.

The average of the amount of test cases required at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 543. This
treatment ranked 22nd out of the 32 treatments in this category.

The overall ranking of this treatment relative to the weighted average of the three
priorities is 18th out of 32.

Comparing treatments, combination number 30 shows quick risk mitigation growth,
ahead of treatment number 1 but simply takes an average of 65% more resource per
run to detect the last fault. One caution in interpreting the results of this treatment
focuses on the two missed faults occurred in the same run.

Treatment # 30
Treatment Order 10111 Run #

1 2 3 4 5 6 7 8 Average
Average Test Case Count 473 490 495 541 501 524 439 568 504
Average Resource Count 17082 17552 17780 19698 18077 19027 15836 15111 17520
Resource Count at Last Fault 89921 83302 88750 92276 94594 122565 60922 61484 86727
No. of undetected faults 0 0 0 0 0 0 0 2
Total Resource Consumption 0 175063
Total Test Case 0 4609
Adjusted Ave TC Count 473 490 495 541 501 524 439 878 543
Adjusted Ave Res Count 17082 17552 17780 19698 18077 19027 15836 27296 19044
Adjusted Res Count Last Fault 89921 83302 88750 92276 94594 122565 60922 245088 109677

298

Treatment 31 (01111) Results

Treatment 31 is assigned the high signal values for all five variables in the designed
experiment except the first (cost) position.

Figure A.53: Risk mitigation comparison, treatments 1, 14, and 31

Figure A.54: Cumulative fault detection comparison, treatments 1, 14, and 2

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000

Cu
m

ul
at

iv
e

Sy
st

em
 R

is
k

El
im

in
at

io
n

(R
PN

)

Test Resource Consumption (resource units)

Risk Mitigation vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 31

Best of Breed
 Case 14
Control
 Case 1

0

5

10

15

20

25

30

35

0 50000 100000 150000 200000 250000

Cu
m

ul
at

iv
e

Fa
ul

t D
et

ec
tio

n
(F

au
lts

)

Test Resource Consumption (resource units)

Fault Detection vs. Consumption Comparison

Treatment 14

Treatment 1

Treatment 31

Best of Breed
 Case 14
Control
 Case 1

299

Table A.27: Compiled DOE results for treatment number 31

Summary

After repeating the treatment eight times a total of 5 faults were left undetected in the
simulation. The search process can become too aggressive.

The average amount of resources consumed to detect the last fault in the complex
system simulator after eight treatment runs was 172333 resource units out of a possible
175000. This treatment ranked 30th out of the 32 treatments in this category.

The average of the amount of resources consumed at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 9373
resource units. This treatment ranked 30th out of the 32 treatments in this category.

The average of the amount of test cases required at the point of their discovery, for all
of the faults in the complex system simulator after eight treatment runs was 588. This
treatment ranked 30th out of the 32 treatments in this category.

The overall ranking of this treatment relative to the weighted average of the three
priorities is 30th out of 32. The variable combination in this treatment is less effective
than treatment number 1.

Comparing treatments, combination number 31 shows quick risk mitigation growth,
ahead of treatment number 1 but soon falls behind due to the slow process of detecting
faults in the early stages.

Treatment # 31
Treatment Order 01111 Run #

1 2 3 4 5 6 7 8 Average
Average Test Case Count 494 535 475 452 605 479 521 548 514
Average Resource Count 24920 26913 23980 22743 30159 24051 26067 27341 25772
Resource Count at Last Fault 89184 88176 75648 90432 155232 93744 97344 121008 101346
No. of undetected faults 0 0 1 1 0 1 1 1
Total Resource Consumption 175104 175104 175056 171360 175104
Total Test Case 3572 3572 3571 3570 3571
Adjusted Ave TC Count 494 535 594 572 605 598 639 665 588
Adjusted Ave Res Count 24920 26913 29797 28599 30159 29864 31678 33053 29373
Adjusted Res Count Last Fault 89184 88176 210125 210125 155232 210067 205632 210125 172333

300

References
Abbott, T. (1988). "Improving the Product Development Process" Case Studies of
Engineering and Manufacturing for Superior Results. ASME short course material.

Akao, Y. (2004). Quality function deployment: integrating customer requirements into
product design. Productivity Press.

Albrecht, A. J. (1979, October). Measuring application development productivity. In
Proceedings of the Joint SHARE/GUIDE/IBM Application Development Symposium, 10:
83-92.

Amaral, L. A. N., & Uzzi, B. (2007). Complex systems-a new paradigm for the integrative
study of management, physical, and technological systems. Management Science, 53(7):
1033-1035.

Anderson, D. A. (2013). Environmental Economics & Natural Resource Management 4th
Edition. Routledge.

Arcuri, A. (2009). Automatic software generation and improvement through search
based techniques. Doctoral dissertation, University of Birmingham.

Arcuri, A., Iqbal, M. Z., & Briand, L. (2010). Black-box system testing of real-time
embedded systems using random and search-based testing. In Testing Software and
Systems. Springer Berlin Heidelberg: 95-110.

Aström, K. J., & Murray, R. M. (2010). Feedback systems: an introduction for scientists
and engineers. Princeton University Press.

Autodesk (2009). Autodesk/ASME Sustainability Survey Results, Available online:
http://images.autodesk.com/adsk/files/asme_surveyresults2.pdf (accessed on 10 March
2013).

Bace, J., & Rozwell, C. (2006). Understanding the components of compliance. Gartner
Research Paper 145.

Bach, J. (2004). Exploratory Testing, In The Testing Practitioner, 2nd Edition. Veenendaal,
Bosch, UTN Publishers: 253-265.

Badurdeen, F., Iyengar, D., Goldsby, T. J., Metta, H., Gupta, S., & Jawahir, I. S. (2009).
Extending total life-cycle thinking to sustainable supply chain design. International
Journal of Product Lifecycle Management, 4(1): 49-67.

301

http://images.autodesk.com/adsk/files/asme_surveyresults2.pdf

Bahill, A. T., & Gissing, B. (1998). Re-evaluating systems engineering concepts using
systems thinking. IEEE Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews, 28(4): 516-527.

Battiti, R., & Tecchiolli, G. (1994). The reactive tabu search. ORSA Journal on Computing,
6(2): 126-140.

Baudry, B., Fleurey, F., Jézéquel, J. M., & Le Traon, Y. (2005). From genetic to
bacteriological algorithms for mutation-based testing. Software Testing, Verification and
Reliability, 15(2): 73-96.

Berger, P. D., & Nasr, N. I. (1998). Customer lifetime value: marketing models and
applications. Journal of Interactive Marketing, 12(1): 17-30.

Blanco, R., Tuya, J., & Adenso-Díaz, B. (2009). Automated test data generation using a
scatter search approach. Information and Software Technology, 51(4): 708-720.

Braun, M., & Schweidel, D. A. (2011). Modeling customer lifetimes with multiple causes
of churn. Marketing Science, 30(5): 881-902.

Brown, C., & Miller, S. (2008). The impacts of local markets: a review of research on
farmers markets and community supported agriculture (CSA). American Journal of
Agricultural Economics, 90(5): 1298-1302.

Brown, R., Webber, C., & Koomey, J. G. (2002). Status and future directions of the
ENERGY STAR program. Energy, 27(5): 505-520.

Brownlie, R., Prowse, J., & Phadke, M. S. (1992). Robust Testing of AT&T PMX/StarMAIL
Using Oats. AT&T Technical Journal, 71(3): 41-47.

Bunkley, N. (2011). Ford's High Tech Control System Hurts Ranking for Quality . NY
Times . Available online:
http://www.nytimes.com/2011/06/24/business/24ford.html?_r=0 (accessed on
11 November 2012).

Burton, I. (1987). Report on Reports: Our Common Future: The World Commission on
Environment and Development. Environment: Science and Policy for Sustainable
Development, 29(5): 25-29.

Cameron, K. S. (2006). Competing values leadership: Creating value in organizations.
Edward Elgar Publishing.

Carrubba, E. R., & Gordon, D. R (1988). Product assurance principles: integrating design
assurance and quality assurance. McGraw-Hill.

302

http://www.nytimes.com/2011/06/24/business/24ford.html?_r=0

Chan, L. K., & Wu, M. L. (2002). Quality function deployment: a literature review.
European Journal of Operational Research, 143(3): 463-497.

Chen, A., Dietrich, K. N., Huo, X., & Ho, S. M. (2010). Developmental neurotoxicants in
e-waste: an emerging health concern. Environmental Health Perspectives, 119(4):
431-438.

Chen, Y., Probert, R. L., & Sims, D. P. (2002, September). Specification-based regression
test selection with risk analysis. In Proceedings of the 2002 Conference of the Centre for
Advanced Studies on Collaborative Research. IBM Press.

Clausing, J. R. & Clausing, D. (1988). The House of Quality. Harvard Business Review,
May-June: 63-73.

Cohen, G. (2010). Agile Excellence for Product Managers: A Guide to Creating Winning
Products with Agile Development Teams. Happy About Publishing.

Cohen, J., Ferguson, R., & Hayes, W. (2013). White Paper: A Defect Prioritization Method
Based on the Risk Priority Number. Carnegie-Mellon University Pittsburg PA Software
Engineering Institute.

Cohen, M. B., Gibbons, P. B., Mugridge, W. B., & Colbourn, C. J. (2003, May).
Constructing test suites for interaction testing. In Proceedings of 25th International
Conference on Software Engineering, 2003. IEEE: 38-48

Colton, C. C. (1824). Lacon, Or, Many Things in a Few Words: Addressed to Those who
Think, new edition. Longman, Orme, Brown, Green & Longmans. Paterson-Row, London:
113.

Crosson, S., Needles, B. E., (2008). Managerial Accounting (8th Ed). Boston: Houghton
Mifflin Company.

Crow, L. H. (1977). Confidence interval procedures for reliability growth analysis. Army
Material Systems Analysis Activity. Aberdeen Proving Ground MD.

Crow, L. H. (1982). Confidence interval procedures for the Weibull process with
applications to reliability growth. Technometrics, 24(1): 67-72.

Crowe, D., & Feinberg, A. (1998). Stage-gating accelerated reliability growth in an
industrial environment. In Annual Technical Meeting-Institute of Environmental Sciences
and Technology, 44: 246-254.

Crowe, D., & Feinberg, A. (Eds.). (2001). Design for Reliability. CRC Press.

303

Department of Defense, (1949). Procedures for performing a failure mode effect and
critical analysis. US Department of Defense: MIL-P-1629.

Devanathan, S., Ramanujan, D., Bernstein, W. Z., Zhao, F., & Ramani, K. (2010).
Integration of sustainability into early design through the function impact matrix.
Journal of Mechanical Design, 132(8): 1-8.

Duane, J. T. (1964). Learning curve approach to reliability monitoring. In IEEE
Transactions on Aerospace, 2(2): 563-566.

Dupont, S. (2010). Digital diplomacy. Foreign Policy. Retrieved from:
http://www.nytimes.com/2011/06/24/business/24ford.html?_r=0 (accessed on 11
November 2012).

Eccles, R. G., Ioannou, I., & Serafeim, G. (2012). The impact of a corporate culture of
sustainability on corporate behavior and performance. National Bureau of Economic
Research.

Elkington, J. (2004). Enter the triple bottom line. In Adrian Henriques and Julie
Richardsons (eds) The Tripple Bottom Line: Does It All Add Up. Earthscan: 1-16.

Ellram, L. (1993). Total cost of ownership: elements and implementation. Journal of
Supply Chain Management, 29(4): 2-11.

ElMaraghy, W., ElMaraghy, H., Tomiyama, T., & Monostori, L. (2012). Complexity in
engineering design and manufacturing. CIRP Annals-Manufacturing Technology, 61(2):
793-814.

Eppinger, S. D., & Browning, T. R. (2012). Design structure matrix methods and
applications. MIT Press.

Erat, S., & Kavadias, S. (2008). Sequential testing of product designs: Implications for
learning. Management Science, 54(5): 956-968.

Fader, P. S., & Hardie, B. G. (2007). How to project customer retention. Journal of
Interactive Marketing, 21(1): 76-90.

Fader, P. S., & Hardie, B. G. (2009). Probability models for customer-base analysis.
Journal of Interactive Marketing, 23(1): 61-69.

Fenton, N., Neil, M., Marsh, W., Hearty, P., Marquez, D., Krause, P., & Mishra, R. (2007).
Predicting software defects in varying development lifecycles using Bayesian nets.
Information and Software Technology, 49(1): 32-43.

304

http://www.nytimes.com/2011/06/24/business/24ford.html?_r=0

Fiksel, J. (2006). Sustainability and resilience: toward a systems approach. Sustainability:
Science Practice and Policy, 2(2): 14-21.

Forrester, J. W. (1971). World Dynamics. Wright-Allen Press Inc., Cambridge.

Friedman, M. (2007). The social responsibility of business is to increase its profits.
Springer, Berlin: 173-178.

Friedman, T. L. (2005). The World is Flat A Brief History of the Twenty-First Century. New
York: Farrar, Straus and Friedman.

Gehin, A., Zwolinski, P., & Brissaud, D. (2008). A tool to implement sustainable end-of-
life strategies in the product development phase. Journal of Cleaner Production, 16(5):
566-576.

Glover, F. (1990). Tabu Search—part II. ORSA Journal on Computing, 2(1): 4-32.

Godefroid, P., & Khurshid, S. (2002). Exploring very large state spaces using genetic
algorithms. In Tools and Algorithms for the Construction and Analysis of Systems,
Springer Berlin Heidelberg: 266-280.

Godefroid, P., Klarlund, N., & Sen, K. (2005, June). DART: directed automated random
testing. In ACM Sigplan Notices. ACM, 40(6): 213-223.

Gorzelany. (2012, December 29). Biggest Auto Recalls Of 2012 (And Why They Haven't
Affected New-Car. Forbes Magazine, LIFESTYLE. Retrieved from:
http://www.forbes.com/sites/jimgorzelany/2012/12/29/biggest-auto-recalls-of-2012/
(accessed on 10 March 2013).

Hauser, J. R. (1993). How Puritan-Bennett used the house of quality. Sloan Management
Review, 34(3): 61-70.

Hemmelskamp, J., & Brockmann, K. L. (1997). Environmental labels—the German ‘Blue
Angel’. Futures, 29(1): 67-76.

House, C. H., & Price, R. L. (1990). The return map: tracking product teams. Harvard
Business Review, 69(1): 92-100.

IEEE. (2002). Software Quality Assurance Planning - Standard 730-2002. IEEE.

Jawahir, I. S., & Dillon, O. W. (2007, October). Sustainable manufacturing processes: new
challenges for developing predictive models and optimization techniques. In

305

http://www.forbes.com/sites/jimgorzelany/2012/12/29/biggest-auto-recalls-of-2012/

Proceedings of the First International Conference on Sustainable Manufacturing.
Montreal, Canada.

Jawahir, I. S., Rouch, K. E., Dillon, O. W., Holloway, L., & Hall, A. (2007). Design for
sustainability (DFS): new challenges in developing and implementing a curriculum for
next generation design and manufacturing engineers. International Journal of
Engineering Education, 23(6): 1053-1064.

Jawahir, I. S., & Jayal, A. D. (2011). Product and Process Innovation for Modeling of
Sustainable Machining Processes. In Advances in Sustainable Manufacturing. Springer
Berlin Heidelberg: 301-307.

Jayal, A. D., Badurdeen, F., Dillon Jr, O. W., & Jawahir, I. S. (2010). Sustainable
manufacturing: Modeling and optimization challenges at the product, process and
system levels. CIRP Journal of Manufacturing Science and Technology, 2(3): 144-152.

Jensen, M. C., & Meckling, W. H. (1976). Theory of the firm: Managerial behavior,
agency costs and ownership structure. Journal of Financial Economics, 3(4): 305-360.

Jervan, G., Eles, P., & Peng, Z. (1999, May). A Uniform Test Generation Technique for
Hardware/Software Systems. In IEEE European Test Workshop (ETW99).

Jones, C. (2008). Measuring defect potentials and defect removal efficiency. CrossTalk
The Journal of Defense Software Engineering, 21(6): 11-13.

Joshi, K., Venkatachalam, A., & Jawahir, I. S. (2006, October). A new methodology for
transforming 3R concept into 6R concept for improved product sustainability. In IV
Global Conference on Sustainable Product Development and Life Cycle Engineering: 3-6.

Kaner, C., Bach, J., & Pettichord, B. (2008). Lessons learned in software testing. John
Wiley & Sons.

Kennedy, M. N., & Ward, A. (2003). Product development for the lean enterprise: why
Toyota's system is four times more productive and how you can implement it. Oaklea
Press.

Kerscher, W. J. I. I. I. (1993, January). System assurance at AC Rochester. In Proceedings
of Annual Reliability and Maintainability Symposium, 1993. IEEE: 71-76

Kirk, D. E. (2012). Optimal control theory: an introduction. Dover Publications.

Kiron, D., Kruschwitz, N., Reeves, M., & Goh, E. (2013). The benefits of sustainability-
driven innovation. MIT Sloan Management Review, 54(2): 69-73.

306

Kosorukoff, A. (2001). Human based genetic algorithm. In 2001 IEEE International
Conference on Systems, Man, and Cybernetics: 3464-3469.

Krishnan, R., Krishna, S. M., & Nandhan, P. S. (2007). Combinatorial testing: learnings
from our experience. ACM SIGSOFT Software Engineering Notes, 32(3): 1-8.

Kuhn, D. R., & Reilly, M. J. (2002, December). An investigation of the applicability of
design of experiments to software testing. In Proceedings of 27th Annual NASA Goddard
Software Engineering Workshop, 2002. IEEE: 91-95.

Kuhn, D. R., Wallace, D. R., & AM Gallo, J. (2004). Software fault interactions and
implications for software testing. In IEEE Transactions on Software Engineering, 30(6):
418-421.

Laszlo, C. (2008). Sustainable value: How the world's leading companies are doing well
by doing good. Stanford University Press.

Lazic, L., & Mastorakis, N. (2008). Orthogonal array application for optimal combination
of software defect detection techniques choices. WSEAS Transactions on Computers,
7(8): 1319-1336.

Lefticaru, R., & Ipate, F. (2008, April). Functional search-based testing from state
machines. In 2008 1st International Conference on Software Testing, Verification, and
Validation. IEEE: 525-528.

Lessig, L. (2002). The future of ideas: The fate of the commons in a connected world.
Random House LLC.

Linnenluecke, M. K., & Griffiths, A. (2010). Corporate sustainability and organizational
culture. Journal of World Business, 45(4): 357-366.

Little, T. A. (2011). Robust Optimization & Tolerance Design. Design for Six Sigma
Training Material. Thomas A. Little Consulting, TLC.

Ma, Y. S., Chen, G., & Thimm, G. (2008). Paradigm shift: unified and associative feature-
based concurrent and collaborative engineering. Journal of Intelligent Manufacturing,
19(6): 625-641.

Madachy, R., Boehm, B., Richardson, J., Feather, M., & Menzies, T. (2007). Value-Based
Design of Software V&V Processes for NASA Flight Projects. In Proceedings from AIAA
Space 2007 Conference.

307

Malik, K. (2013). Human Development Report 2013. The rise of the South: Human
progress in a diverse world. Available at: http://ssrn.com/abstract=2294673.

Martin, J. N. (2000). Processes for engineering a system: an overview of the ANSI/EIA
632 standard and its heritage. Systems Engineering, 3(1): 1-26.

Martin, R. C. (2003). Agile software development: principles, patterns, and practices.
Prentice Hall PTR.

McDonough, W., & Braungart, M. (2002). Design for the triple top line: new tools for
sustainable commerce. Corporate Environmental Strategy, 9(3): 251-258.

McMinn, P. (2004). Search-based software test data generation: a survey. Software
Testing, Verification and Reliability, 14(2): 105-156.

Meadows, D. H., L., M. D., Randers, J., & Behrens, W. W. (1972). The Limits to Growth.
Universe Books.

Metta, H., (2011). A multi-stage decision support model for coordinated sustainable
product and supply chain design. Lexington KY: University of Kentucky Doctoral
Dissertation.

Moore, G. E. (2006). Cramming more components onto integrated circuits, Reprinted
from Electronics, volume 38, number 8, April 19, 1965, pp. 114 ff. Solid-State Circuits
Society Newsletter, IEEE, 11(5): 33-35.

Morgan, J. M., & Liker, J. K. (2006). The Toyota product development system. New York.

Mulgan, G. (2011). Connexity: How to live in a connected world. Random House.

Navarro, P. (1988). Why do corporations give to charity?. Journal of Business, 61: 65-93.

Nguyen, C. D., Perini, A., Tonella, P., & Kessler, F. B. (2007, December). Automated
continuous testing of multi-agent systems. In The Fifth European Workshop on Multi-
Agent Systems.

NIST/SEMATECH. (2013) e-Handbook of Statistical Methods. Retrieved from:
http://www.itl.nist.gov/div898/ (accessed on 10 March 2013).

Pargas, R. P., Harrold, M. J., & Peck, R. R. (1999). Test-data generation using genetic
algorithms. Software Testing Verification and Reliability, 9(4): 263-282.

Peccei. (1981). One Hundred Pages for the Future: Reflections of the President of the
Club of Rome. Pergamon Press. New York.

308

http://ssrn.com/abstract=2294673
http://www.itl.nist.gov/div898/

Perrow, C. (1999). Organizing to reduce the vulnerabilities of complexity. Journal of
Contingencies and Crisis Management, 7(3): 150-155.

Prasad, B. (1998). Review of QFD and related deployment techniques. Journal of
Manufacturing Systems, 17(3): 221-234.

Pugh, S., & Clausing, D. (1996). Creating Innovtive Products Using Total Design: The
Living Legacy of Stuart Pugh. Addison-Wesley Longman Publishing Co., Inc..

Ramani, K., Ramanujan, D., Bernstein, W. Z., Zhao, F., Sutherland, J., Handwerker, C., &
Thurston, D. (2010). Integrated sustainable life cycle design: a review. Journal of
Mechanical Design, 132(9): 1-15.

Reinartz, W. J., & Kumar, V. (2003). The impact of customer relationship characteristics
on profitable lifetime duration. Journal of Marketing, 67(1): 77-99.

Rosen, M. A. (2013). Engineering and Sustainability: Attitudes and Actions.
Sustainability, 5(1): 372-386.

Rosset, S., & Neumann, E. (2003, November). Integrating Customer Value
Considerations into Predictive Modeling. In Proceedings from the Third IEEE
International Conference on Data Mining: 283-290.

Schmalensee, R. (2004). Sunk costs and antitrust barriers to entry. American Economic
Review Papers and Proceedings, 69(2): 471-475.

Schwartz, B. (2009). The paradox of choice. HarperCollins. New York.

Schweidel, D. A., Fader, P. S., & Bradlow, E. T. (2008). Understanding service retention
within and across cohorts using limited information. Journal of Marketing, 72(1): 82-94.

Seevers, K. D., Badurdeen, F., & Jawahir, I. S. (2013). Sustainable value creation through
innovative product design. In Proceedings of 11th Global Conference on Sustainable
Manufacturing, CIRP. Berlin.

Shapiro, B. (2002). Want a happy customer? Coordinate sales and marketing. Boston:
Harvard Business School. Available online: http://hbswk.hbs.edu/item/3154.html
(accessed on 10 March 2013).

Sharma, A., Jadhav, A., Srivastava, P. R., & Goyal, R. (2010). Test cost optimization using
tabu search. Journal of Software Engineering and Applications, 3(05): 477-486.

Smith, P. G. & Reinertsen, D. G. (1991). Developing products in half the time. New York:
Van Nostrand Reinhold.

309

http://hbswk.hbs.edu/item/3154.html

Srikanth, H., Banerjee, S., Williams, L., & Osborne, J. (2014). Towards the prioritization of
system test cases. Software Testing, Verification and Reliability, 24(4): 320-337.

Sthamer, H. H. (1995). The automatic generation of software test data using genetic
algorithms. Doctoral dissertation, University of Glamorgan.

Strauch, B. (2004). Investigating Human Error: Incidents, Accidents, and Complex
Systems. Aviation, Space, and Environmental Medicine, 75(4): 372-372.

Tolio, T., Ceglarek, D., ElMaraghy, H. A., Fischer, A., Hu, S. J., Laperrière, L., ... & Váncza,
J. (2010). SPECIES—Co-evolution of products, processes and production systems. CIRP
Annals-Manufacturing Technology, 59(2): 672-693.

Taguchi, G., Clausing, D., & Watanabe, L. T. (1987). System of experimental design:
engineering methods to optimize quality and minimize costs. White Plains, NY:
UNIPUB/Kraus International Publications.

Tassey, G. (2002). The economic impacts of inadequate infrastructure for software
testing. National Institute of Standards and Technology, RTI Project: 7007(011).

Thakor, A. V., DeGraff, J., & Quinn, R. (2000). Creating sustained shareholder value—and
dispelling some myths. Financial Times, Mastering strategy: The Complete MBA
Companion in Strategy, Pearson Education, Harlow.

Ueda, K., Takenaka, T., Váncza, J., & Monostori, L. (2009). Value creation and decision-
making in sustainable society. CIRP Annals-Manufacturing Technology, 58(2): 681-700.

Vágási, M., Szalkai, Z., & Jankó, Á. (2003). Sustainable customer relationship. In
Proceedings of 5th International Summer Academy on Technology Studies Corporate
Sustainability, Deutschlandsberg, Austria: 289-302.

Valdes-Dapena, P. (2011). Honda recalling 1.5 million cars. CNN Money. Retrieved from:
http://money.cnn.com/2011/08/05/autos/honda_recall (accessed on 10
November 2012).

Watkins, A., Berndt, D., Aebischer, K., Fisher, J., & Johnson, L. (2004, January). Breeding
software test cases for complex systems. In Proceedings of the 37th Annual Hawaii
International Conference on System Sciences.

Weisstein, E. W. (2014). "n-Tuple.". From MathWorld--A Wolfram Web Resource.
Retrieved from: http://mathworld.wolfram.com/n-Tuple.html (accessed on 10 March
2014).

310

http://money.cnn.com/2011/08/05/autos/honda_recall
http://mathworld.wolfram.com/n-Tuple.html

Whitehead, J. C., & Haab T. C., ECON 101: Negative Externality. Environmental
Economics Blog: Retrieved from: http://www.env-econ.net/negative-externality.html
(accessed on 10 March 2014).

Widmer, R., Oswald-Krapf, H., Sinha-Khetriwal, D., Schnellmann, M., & Böni, H. (2005).
Global perspectives on e-waste. Environmental Impact Assessment Review, 25(5): 436-
458.

Williams, E. D., Ayres, R. U., & Heller, M. (2002). The 1.7 kilogram microchip: Energy and
material use in the production of semiconductor devices. Environmental Science &
Technology, 36(24): 5504-5510.

Wilson, C. C., Kennedy, M. E., & Trammell, C. J. (1996). Superior product development:
managing the process for innovative products. Blackwell.

Wolff, M. F. (1996). ‘Green Wall’ hurts environment management. Research-Technology
Management, 39(2): 5-6.

Womack, J. P., Jones, D. T., & Roos, D. (2007). The machine that changed the world: The
story of lean production--Toyota's secret weapon in the global car wars that is now
revolutionizing world industry. Simon and Schuster.

Yamaji, M., & Amasaka, K. (2011). New Japan quality management model:
implementation of new JIT for strategic management technology. Journal of
International Business & Economics Research, 7(3): 107-114.

311

http://www.env-econ.net/negative-externality.html

VITA
Name

K. Daniel Seevers

Place of Birth

St. Louis, Missouri

Education

B.S. Mechanical Engineering, Missouri University of Science & Technology
(formally University of Missouri - Rolla)

M.A. Patterson School of Diplomacy and International Commerce, University of
Kentucky

M. S. Manufacturing Technology, Eastern Kentucky University

Professional Positions

 Development Engineer, IBM

 Sr. Manager, Product Development, Lexmark International Inc.

 Director of Operations, Lexmark International Inc.

 Director of Product and Process Assurance, Lexmark International Inc.

 Director of Development Operations, Lexmark International Inc.

Honors/Awards

 Eagle Scout

 National Distinguish Service Award, Order of the Arrow, Boy Scouts of America

William T. Hornaday Metal, for distinguished service to natural resource
conservation

Publications & Patents

U.S. Patent No. 5215012 A: Ribbon Cartridge for Printers

312

U.S. Patent No. 5926673 A: Driving mechanism for photosensitive image bearing
drum in electrophotographic machines

U.S. Patent No. 6397026 B1: Apparatus and methods for increasing bias force on
opposing photosensitive member and developing means

313

	University of Kentucky
	UKnowledge
	2014

	SUSTAINABLE LIFETIME VALUE CREATION THROUGH INNOVATIVE PRODUCT DESIGN: A PRODUCT ASSURANCE MODEL
	K. Daniel Seevers
	Recommended Citation

	TITLE PAGE
	ABSTRACT OF DISSERTATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Chapter 1: Introduction
	1.1 Background
	1.1.1 Sustainable Lifetime Value Creation through the Design of Sustainable Products
	1.1.2 Sustainable Value Creation Models

	1.2 Research Outline
	1.2.1 Closing the Loop towards Sustainable Lifetime Value Creation
	1.2.2 Reliability Assurance Model for Sustainable Product Development

	1.3 Chapter Summary

	Part 1: Sustainable Lifetime Value Creation
	Chapter 2: Sustainable Lifetime Value Creation: Integrated Model
	2.1 Literature Review
	2.1.1 Sustainable Development
	System Dynamics
	Definition of Sustainable Development
	Sustainable Manufacturing
	E-WASTE and Product Utilization

	2.1.2 Traditional Half-Life Modeling
	Customer Turnover and Product Churn
	Challenge to model correlation between churn and sustainability

	2.1.4 New Product Delivery and Return on Investment
	A Balanced Approach to Product Design
	The Return Map
	Product Half-Life and Sustainability
	Product Delivery Process

	2.1.5 Current Model Limitations

	2.2 Concepts Relevant to Closing the Loop towards Sustainable Value Creation
	2.2.1 Sustainable Value Creation
	2.2.2 Green Products and Marketing
	2.2.3 Sustainable Lifetime Value in Product Design

	2.3 Sustainable Lifetime Value Creation: Integrated Model
	2.3.1 Sustainable Product Half-Life Return Model
	Profit and Loss Life-Cycle Curve
	Product Half-Life Curve
	Product Half-Life Return Model
	Half-Life Return Model Goals

	2.3.2 Sustainable Product Value Proposition
	Producer Impact: Cost of Product Development and Delivery
	Customer Impact: Costs and Benefits to the Customer
	Social and Environmental Impact: Indirect Cost of Product Compliance and Natural Resource Consumption
	Relative Value Metrics

	2.3.3 Sustainable Product Development Drivers: Integrated Framework
	Sustainable Product Development Drivers
	Integrated Framework Part 1: Sustainable Value Creation and the Value Proposition
	Integrated Framework Part 2: Robust Design, Verification and Velocity of Workflow
	Velocity of Workflow
	Integrated Framework Part 3: Risk Management and Resource Optimization

	2.4 Summary

	Chapter 3: Problem Definition
	3.1 Introduction
	3.2 Product Assurance Adaptive Search Model: Problem Statement
	3.3 Research Question
	3.4 Summary

	Part Two: Application of the Integrated Framework: Adaptive Genetic Search Algorithm
	Chapter 4: Literature Review
	4.1 The Role of Feedback and Verification in the Development Process
	4.2 Product Assurance Background
	4.2.1 Product System and Solution Assurance Definition
	4.2.3 Valuable vs. Value Add
	4.2.4 The Cost of Poor Product Assurance

	4.3 Product Assurance of Complex Systems
	4.3.1 Embedded Defects
	4.3.2 Reliability Growth Analysis
	4.3.3 Problem Discovery and Mitigation
	4.3.4 Complex System Definition

	4.4 Risk Mitigation
	4.4.1 Reliability Growth and Fault Detection Problem Statements
	4.4.2 Reliability Growth Analysis Model Weaknesses
	4.4.3 Verification Process Weaknesses

	4.4 Test Case Combinations
	4.4.1 Product Assurance Testing Strategies
	4.4.2 Case Study Test Combination - Calculation

	4.5 Background of Heuristic Search Algorithms
	4.5.1 Related Research in the Field of Heuristic Search Techniques in Reliability Optimization
	4.5.2 Outline of the Basic Genetic Algorithm

	4.6 Summary

	Chapter 5: Complex System Fault Detection: Modeling Through Application of Integrated Framework
	5.1 Model Development - Foundation
	5.1.1 Multiple Goals of the Product Assurance Team
	System Analysis
	5.1.2 Reliability Growth Model: Dependent vs. Independent Faults in the System Design
	5.1.3 Defect (Fault) Type Definitions
	5.2 The Integration of Risk and Fault Detection Management
	5.2.1 Integrated Product Assurance Maturity Model
	5.2.2 Verification Feedback in the Development Process

	5.2.3 The Effects of Cost and Resource Consumption on the Search Process
	5.3 Fault Detection and Mitigation Model Development
	5.3.1 Fault Mitigation Process (Three Stage Process)
	5.3.2 Detailed Description of the Three Resource Consuming Processes
	5.3.3 Test Case Resource Consumption Summary

	5.4 Adaptive Genetic Search Algorithm Model Objectives
	5.4.1 Search Model Goals
	5.4.2 Adaptive Genetic Search Algorithm – Model Objectives Summary

	5.5 Model Description
	5.5.1 Analysis Focus Areas
	5.5.2 Overview of the Integrated Adaptive Search Algorithm
	Command Center
	Program Parameter and DOE Alternative Initialization
	Resource Pool 1 – Genetic Test Case Generator
	Pseudo Code of General (Resource Consumption Pool 1) Fault Search Algorithm
	Pool 1 Example

	Test Case Queue
	Resource Pool 2 - Faulty Gene Isolation Search Algorithm
	Example 1: Independent Fault
	Example 2: Two Variable Dependent Fault

	Resource Pool 3 – Fault Management and Test Regression
	Pseudo Code for Regression Testing, Tabu Gene Release and CZ crossover (Pool3) Search Algorithm

	Complex System Test Case (Fault) Simulator

	5.6 Analysis of Model Effectiveness
	5.6.1 Identification of Adaptive Genetic Search Algorithm Variables
	5.6.2 Dependent Variables (Measured with Each Test Run)
	5.6.3 Controlled Variables (Values in the Model Held Constant)
	5.6.4 Adaptive Genetic Search Algorithm - Simulation Hypotheses
	5.6.5 Expected Shape of the Reliability Growth Curve

	5.7 Summary

	Chapter 6: Case Study: Model Execution, Data Collection and Data Analysis
	6.1 Sustainable Products Value Proposition - Case Study
	6.2 Adaptive Genetic Search Algorithm – Case Study
	6.2.1 Experimental Set-up
	6.2.2 Independent Variables
	6.2.3 Controlled Variables
	6.2.4 Data Collection for Dependent Variables and Analysis
	Data Analysis
	Continuous Data (Sampling) Plots
	Fault Detection Sample Plots
	Fault Detection Sample Plots
	Discrete Data Analysis – Statistical DOE

	6.2.5 Complex System Simulator – Embedded Fault Locations

	6.3 Summary

	Chapter 7: Results and Discussion
	7.1 Evaluation Priority and Criteria
	7.2 Treatment Results
	7.2.1 Analysis Set-up
	7.2.2 Initial Screening Results
	7.2.3 Priority No. 1: Fault Detection Efficiency
	7.2.4 Priority No. 2: Early Fault Detection
	7.2.5 Priority No. 3: Average Test Case Count
	7.2.6 Weighted Rank Summary

	7.3 Continuous Data Results Analysis
	7.3.1 Treatment 1 (00000) Results
	7.3.2 Treatment 32 (11111) Results
	7.3.3 Treatment 23 (01101) Results
	7.3.4 Treatment 2 (10000) Results
	7.3.5 Treatment 14 (10110) Results

	7.4 Reliability Growth Curve – Discovery Zone Breakdown
	7.5 Hypotheses Analysis - Summary

	Chapter 8: Conclusions and Future Work
	8.1 Contributions of This Dissertation
	8.2 Future Work

	Appendix
	Treatment 3 (01000) Results
	Treatment 4 (11000) Results
	Treatment 5 (00100) Results
	Treatment 6 (10100) Results
	Treatment 7 (01100) Results
	Treatment 8 (11100) Results
	Treatment 9 (00010) Results
	Treatment 10 (10010) Results
	Treatment 11 (01010) Results
	Treatment 12 (11010) Results
	Treatment 13 (00110) Results
	Treatment 15 (01110) Results
	Treatment 16 (11110) Results
	Treatment 17 (00001) Results
	Treatment 18 (10001) Results
	Treatment 19 (01001) Results
	Treatment 20 (11001) Results
	Treatment 21 (00101) Results
	Treatment 22 (10101) Results
	Treatment 24 (11101) Results
	Treatment 25 (00011) Results
	Treatment 26 (10011) Results
	Treatment 27 (01011) Results
	Treatment 28 (11011) Results
	Treatment 29 (00111) Results
	Treatment 30 (10111) Results
	Treatment 31 (01111) Results

	References
	VITA

