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ABSTRACT OF THE DISSERTATION 

 

 

SHAPE MEMORY BEHAVIOR OF SINGLE AND POLYCRYSTALLINE 

NICKEL RICH NICKEL TITANIUM ALLOYS 

  

NiTi is the most commonly used shape memory alloy (SMA) and has been widely 

used for bio-medical, electrical and mechanical applications. Nickel rich NiTi shape 

memory alloys are coming into prominence due to their distinct superelasticity and shape 

memory properties as compared to near equi-atomic NiTi shape memory alloys. Besides, 

their lower density and higher work output than steels makes these alloys an excellent 

candidate for aerospace and automotive industry. Shape memory properties and phase 

transformation behavior of high Ni-rich Ni54Ti46 (at.%) polycrystals and Ni-rich Ni51Ti49 

(at.%) single-crystals are determined. Their properties are sensitive to heat treatments that 

affect the phase transformation behavior of these alloys.  

 

Phase transformation properties and microstructure were investigated in aged 

Ni54Ti46 alloys with differential scanning calorimetry (DSC) and transmission electron 

microscopy (TEM) to reveal the precipitation characteristics and R-phase formation. It 

was found that Ni54Ti46 has the ability to exhibit perfect superelasticity under high stress 

levels (~2 GPa) with 4% total strain after 550°C-3h aging. Stress independent R-phase 

transformation was found to be responsible for the change in shape memory behavior 

with stress. 

 

The shape memory responses of [001], [011] and [111] oriented Ni51Ti49 single-

crystals alloy were reported under compression to reveal the orientation dependence of 

their shape memory behavior. It has been found that transformation strain, temperatures 

and hysteresis, Classius-Clapeyron slopes, critical stress for plastic deformation are 

highly orientation dependent. 

  

The effects of precipitation formation and compressive loading at selected 

temperatures on the two-way shape memory effect (TWSME) properties of a [111]-

oriented Ni51Ti49 shape memory alloy were revealed. Additionally, aligned Ni4Ti3 

precipitates were formed in a single crystal of Ni51Ti49 alloy by aging under applied 



compression stress along the [111] direction. Formation of a single family of Ni4Ti3 

precipitates were exhibited significant TWSME without any training or deformation. 

When the homogenized and aged specimens were loaded in martensite, positive TWSME 

was observed. After loading at high temperature in austenite, the homogenized specimen 

did not show TWSME while the aged specimen revealed negative TWSME. 

 
 

KEYWORDS: NiTi; Shape memory alloys; Mechanical characterization; High strength 

shape memory alloy; Two-way shape memory effect 
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1 Introduction 

1.1 Motivation and Purpose of the study 

 Ni-rich NiTi alloys are the most commonly used shape memory alloys and they 

been widely used for bio-medical, electrical and mechanical applications due to their high 

strength, good corrosion resistance and smooth surface properties as compared to 

equiatomic NiTi SMAs [1]. Recently, high Ni-rich NiTi SMAs are coming into 

prominence owing to their distinct superelasticity and shape memory properties [2]. It 

was reported that in high Ni-rich NiTi alloys stable superelasticity and shape memory 

effect can be obtained provided that special heat treatment conditions without any 

“additional training” were employed in contrast to equiatomic NiTi alloys [3]. 

 Aging is a simple process to optimize and improve the mechanical properties of 

Ni-rich NiTi SMAs without any additional mechanical training [4]. It is well known that 

the precipitation and corresponding shape memory properties highly depend on aging 

temperature, aging time and cooling rate [5, 6]. NiTi alloys that contain more than 50.6 

at.% nickel are sensitive to aging as compared to equiatomic NiTi SMAs due to the 

formation of precipitates by aging [7]. Ni-rich NiTi alloys could demonstrate two- and/or 

three-step (‘multi-step’) transformations after thermal processing due to precipitation 

formation [5, 8]. In Ni-rich NiTi SMAs, the Ni content of the matrix is an important 

factor to control the transformation temperatures and it can be altered by formation of Ni-

rich precipitates [9]. The limited number of studies in high Ni-rich NiTi alloys have 

revealed that their shape memory properties are quite sensitive to heat treatments [10] 

and cooling rate [5].  
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In the past, highly Ni-rich NiTi alloys (>52 at. % of Ni) did not attract high 

interest due to the difficulties in forming and working [11]. Nowadays, researchers 

overcame these obstacles through the new hot rolling and fabrication methods for these 

alloys [12-14]. However, only limited number of studies exist on the mechanical 

properties of these Ni-rich NiTi SMAs [15]. To the best of my knowledge, no work has 

been conducted on the mechanical properties of high Ni-rich Ni54Ti46 alloy.  

It is well known that the shape memory properties of NiTi alloys are highly 

orientation dependent [16-19]. Thus, SMA single crystals have highly anisotropic 

properties such as different shape memory and superelastic strains along certain 

directions that are very beneficial for sensor and actuator applications [20]. 

The highest recoverable strain in compression was observed in the [148] 

orientation amongst the [112], [100] and [111] orientations for aged single crystal 

Ni50.8Ti49.2 (at.%) alloys [21]. In the [001] orientation of NiTi alloys, slip deformation is 

minimized due to the lack of available slip systems [22].  

NiTi shape memory alloys exhibit shape memory effect (SME) and superelastic 

behavior that are related to the reversible thermoelastic martensitic transformation [8]. In 

SME, the shape of the austenitic phase is remembered and the material should be 

deformed in martensite or thermally cycled under stress to observe reversible shape 

change. However, it is possible to train the material to observe shape change without the 

application of any external force. This behavior is called as two-way shape memory 

effect (TWSME). TWSME in shape memory alloys mostly refers to the reversible shape 

change with thermal cycling under zero stress. TWSME can be obtained by suitable 

thermomechanical processing [23, 24] when internal stresses, often formed by the 
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presence of precipitates or dislocations, bias martensite variants enabling a net shape 

change upon austenite to martensite phase transformation. Upon heating, the change in 

shape will be recovered by martensite to austenite transformation. Thus, the material has 

the ability to remember two different shapes that can be activated by temperature. 

Aging of Ni-rich NiTi shape memory alloys at intermediate temperatures results 

in the formation of Ni4Ti3 precipitates [25]. It has been revealed that formation of Ni4Ti3 

precipitates is the most useful methods for improving the TWSME property of NiTi 

alloys [26]. The aging under a constant applied stress induce the TWSME property 

through the formation of aligned precipitates which are result of applied stress [27]. In 

stress-free aging of Ni51Ti49, four families of Ni4Ti3 precipitates are produced. On the 

other hand, aging under compressive stress in the [111] direction of Ni51Ti49 single crystal 

leads to the creation of a single family of Ni4Ti3 precipitates [28-32]. 

In Ni-Ti based alloys, a few studies reported that the TWSME can be generated to 

have different shape recovery directions [33, 34]. When plastic strain is induced by 

deformation of martensite, the TWSME takes place in the direction of the preliminary 

deformation of martensite which is called “positive” TWSME [33]. The “negative” 

TWSME occurs after the deformation of austenite and the TWSME corresponding to the 

spontaneous shape change in the opposite direction of the preliminary deformation [34]. 

Although this property would be very useful in many practical applications such as 

actuators and sensors, not much attention is paid on gaining the fundamental 

understanding of this behavior. 

Systematic shape memory effect tests as a function of applied stress and 

superelasticity tests as a function of temperature were conducted in compression. Phase 
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transformation was investigated in Ni-rich NiTi SMA with differential scanning 

calorimetry (DSC), X-ray diffraction (XRD) and transmission electron microscopy (TEM) 

to observe the influence of precipitates and R phase on the phase transformation 

behavior. Chapter 2 presents background information on SMAs. Experimental procedures 

are introduced in Chapter 3. In Chapter 4, the effects of aging and cooling rate on the 

transformation temperatures, strain, hysteresis, and R-phase were investigated in Ni54Ti46 

(at.%) high Ni-rich NiTi alloys. Chapter 5 discusses the orientation effects on the shape 

memory behavior of Ni-rich Ni51Ti49 single crystals. Chapter 6 focuses on the effects of 

aging and compressive loading at selected temperatures on the two-way shape memory 

effect properties of a Ni-rich Ni51Ti49 single crystals along the [111] orientation. Finally, 

conclusions are provided in Chapter 7. 

1.2 Objectives 

The objectives of this study are to: 

 Characterize the shape memory behavior of Ni54Ti46 (at.%) SMAs under 

compression as functions of stress and temperature to develop high strength SMAs which 

can operate at stress levels higher than 500 MPa. 

 Understand the multi-step transformations in aged Ni-rich NiTi shape memory 

alloys.  

 Investigate the effects of aging on the microstructure and formation of R-phase in 

Ni-rich Ni54Ti46 alloys. 

 Reveal the effects of aging temperature, aging time and cooling rate on 

transformation hysteresis, temperatures and strain in Ni-rich Ni54Ti46 alloys. 
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 Understand the superelasticity and the shape memory behavior of Ni-rich Ni51Ti49 

(at.%) single crystalline alloys. 

 Reveal the orientation dependent shape memory behavior of Ni51Ti49 shape 

memory alloys. 

 Investigate the influence of precipitates and dislocations on the two-way shape 

memory effect in Ni51Ti49 (at. %) single crystal alloys. 
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2 Background 

2.1 History and Overview of Shape Memory Alloy (SMA) 

The first shape memory behavior was found by A. Ölander in Au-Cd alloy in 

1932 [35]. Later, Chang and Read observed shape memory effect in Au- 47.5 at. %Cd in 

1951 [36]. The shape memory behavior of InTi and CuZn was reported in 1953 [37]. In 

early 1960s, William J. Buehler was a metallurgist at the Naval Ordnance Laboratory 

(NOL) worked on the equiatomic nickel–titanium (NiTi) alloys and discovered the SME 

in NiTi. This alloy was named Nitinol (Nickel Titanium Naval Ordnance Laboratory) by 

Buehler [38]. The SME was also found in Cu-Al-Ni alloy by Arbuzova and Khandros 

[39]. However, it should be noted that Cu-based SMAs are brittle in a polycrystalline 

state. On the other hand, the NiTi alloys have high ductility and good corrosion 

resistance. 

Previously, the technology was not mature enough to give the exact form to alloy 

for practical applications [40]. Discrepancy among batches of Nitinol was a major 

problem to consider. Therefore, Buehler et al. focused on the Nitinol manufacturing 

process to overcome this problem [41, 42]. Since the development of manufacturing 

techniques, the intensive investigations have been done and the commercial use of 

Nitinol increased during the 1970s and 1980s. Nitinol was employed for couplings, bio-

medical, actuators, sensors, heat engines, lifting devices, safety products and military 

products. 

2.2 Shape Memory Alloy 

The development of novel materials is very important for the advancement of 

materials engineering. The shape memory alloys are called active or multifunctional 
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material. In general, active materials give mechanical response when they are subjected 

to a non-mechanical field.  

A high actuation frequency and energy density are very important properties of 

ideal active materials. The actuation energy densities and frequencies of some common 

active materials are given in Figure 2.1 and Figure 2.2 [43]. The actuation energy density 

that is shown by the dotted lines in Figure 2.1 is the product of the actuation strain with 

the actuation stress with the assumption is that the active material is operating under 

constant stress. The specific actuation energy density can be calculated from Figure 2.1 

by dividing the actuation energy density by the mass density. While SMAs have high 

actuation energy densities as shown in Figure 2.1, they exhibit low frequency response as 

shown in Figure 2.2. 

 

 

Figure 2.1 Actuation energy density diagram indicating typical ranges of actuation stress, 

actuation strain, and the actuation energy densities of different active materials [43]. 
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Figure 2.2 Actuation frequency diagram comparing the actuation frequency ranges [43]. 

Shape memory alloys have two phases. The high temperature phase is called 

austenite and the low temperature phase is called martensite. These two phases have 

different crystal structures. In general, while austenite is cubic, martensite can be 

tetragonal, orthorhombic, and monoclinic. The transformation from one phase to other 

phase occurs by shear lattice distortion. 

The forward transformation is the phase transformation from austenite to 

martensite. When the material is heated from martensite, the crystal structure transforms 

back to austenite which is called reverse transformation. During these phase 

transformations, there are four essential temperatures such as martensite start temperature 

(Ms), martensite finish temperature (Mf), austenite start temperature (As), and austenite 

finish temperature (Af). These temperatures can be obtained from the Differential 

Scanning Calorimeter (DSC) which is given in Figure 2.3. 
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Figure 2.3 DSC response of aged Ni55Ti45 SMA showing the transformation 

temperatures and associated latent heat of transformation during thermal cycling. 

There are two essential phenomena for shape memory alloys; shape memory 

effect and superelasticity. 

2.2.1 Shape Memory Effect  

 

When the test specimen is deformed at a temperature below As, twinned 

martensite becomes detwinned martensite (A-B) and after unloaded (B-C) the induced 

strain cannot be fully recovered. Subsequent to heating it up to a temperature above Af 

(C-D), it recovers the retained strain as it transform to austenite which is shown in Figure 

2.4. 
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Figure 2.4 Stress vs. strain and temperature vs. strain curves of aged Ni51Ti49 single 

crystal alloys. 

2.2.2 Superelasticity 

One of the commercial uses of shape memory alloy exploits the superelastic 

properties of the metal during the high-temperature, austenitic phase. The superelasticity 

(SE) is associated with stress-induced transformation. When the sample was loaded and 

unloaded at a temperature above Af, superelastic behavior was observed with large 

recoverable strain (see Figure 2.5). 
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Figure 2.5 A typical SMA superelastic cycle. 

 

The 
Ms

 represents the critical stress which is the onset of stress-induced 

transformation from austenite to martensite. Transformation ends at 
Mf

. During 

unloading, back transformation from martensite to austenite starts at 
As

 and ends at 
Af

. 

Upon unloading, the SE strain is denoted by the εSE while the elastic part of the strain is 

represented by εelastic. The stress hysteresis which is shown with vertical arrow in Figure 

2.5 is found at the midpoint of plateau strain between the forward and back 

transformations. 

2.3 Nickel Titanium Shape Memory Alloys 

Nitinol is well known shape memory alloy by exhibiting strong shape memory 

effect, superelasticity and good mechanical properties under the right conditions [44].  
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2.3.1 Ni-rich Nickel Titanium Shape Memory Alloys 

Ni-rich NiTi shape memory alloys are coming into prominence due to their 

distinct superelasticity and shape memory properties as compared to near equiatomic 

NiTi SMAs. If the alloy contains 52 at. % or more of Nickel, NiTi alloys are generally 

considered to be “high Ni-rich” NiTi SMAs [45]. High Ni-rich NiTi SMAs show many 

unique properties such as good corrosion resistance, smooth surface finish and high 

toughness [46]. Besides, its lower density than steel makes this alloy an excellent 

candidate for aerospace and automotive industries [45]. The NiTi alloys that contain more 

than 50.6 at.% nickel are sensitive to aging as compared to equiatomic NiTi SMAs due to 

the formation of precipitates by aging [7].  

In Ni-rich alloys, Ni4Ti3 precipitates can be formed after aging at around 400 
o
C. 

The R-phase appears between the austenite and martensite phases in Ni-rich NiTi shape 

memory alloys. The crystal structure of R-phase is rhombohedral. This phase generally 

disappears with heat treatments at high temperatures and thus its existence is associated 

with certain conditions [47]. 

2.3.2 Phase Diagram of NiTi Alloy 

The NiTi phase diagram is crucial for heat-treatments of the alloys and 

advancement of the shape memory characteristics. Before the NiTi phase diagram was 

established, it has been controversial for approximately thirty years. Laves and Wallbaum 

found that NiTi was a single phase near the equiatomic composition at higher 

temperatures [48]. The decomposition of NiTi into NiTi2 and Ni3Ti at 800 °C was first 

stated by Duwez and Taylor [49]. However, the similar decomposition was not found by 

Margolin et al. [50], and Purdy and Parr [51]. The solubility limit of the NiTi phase 
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above 900 °C metallographically was determined by Poole and Hume-Rothery in 1955 

[52]. According to their result, the boundary on Ti-rich side is close to 50NiTi, and is 

steep. In contrast, on Ni-rich side, the solubility decreases greatly with lowering 

temperature. According to the proposed phase diagram by Purdy and Parr [51], the 

solubility limit on the Ni-rich side was similar to the Poole and Hume -Rothery’s report 

[52]. They found that the NiTi phase transforms to π phase which is the reversible 

transformation. It was the first observation of martensitic transformation in the NiTi 

alloy. In 1963, Wasilewski et al. reported a new phase Ni3Ti2, and proposed a phase 

diagram, which involves a peritectoid reaction at 625 °C [53].  

 

Figure 2.6 Phase diagram of binary NiTi alloy [54][55]. 

Nishida et al. showed that three phases Ni4Ti3, Ni3Ti2 and Ni3Ti could appear 

depending upon aging temperature and time [56]. Ni4Ti3 appears at lower aging 

temperature and shorter aging time while Ni3Ti appears at higher aging temperature and 
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longer aging time and at intermediate temperature and time, Ni3Ti2 appears. They also 

report that the preexisted Ni4Ti3 is dissolved in the matrix by prolonged aging, and the 

number and size of Ni3Ti2 increase. After that, the number and size of the Ni3Ti increase 

with the Ni3Ti2 is absorbed into the matrix by prolonged aging. They confirmed that the 

Ni3Ti is the equilibrium phase while the both Ni4Ti3 and Ni3Ti2 are intermediate phases. 

Ni4Ti3 → Ni3Ti2 → Ni3Ti transformations occur which are summarized by time-

temperature-transformation (TTT) diagram shown in Figure 2.7. Besides, the TTT 

diagram also shows the upper temperature limit for each precipitate. Kainuma et al. 

determined the TTT diagrams for the Ti–54Ni, Ti–56Ni and Ti–52Ni alloys [57]. 

According to Otsuka and Ren  , the most reliable phase diagram of NiTi is as shown in 

Figure 2.6 which is similar to Massalski et al. [54]. 

 

Figure 2.7 TTT diagram describing aging behavior for Ti–52Ni alloy [7]. 
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2.3.3 Effects of Nickel Composition 

 One of the most important parameters that governs the transformation 

temperatures in NiTi alloys is the Ni composition of the alloy. The martensite start 

temperature is directly related to Ni concentration, as shown in Figure 2.8 [58]. In Nickel 

rich NiTi alloys, even an increase in Ni composition by 1% decreases the Ms by 100 °C 

(in solution-treated condition) [59, 60]. On the other side, the transformation temperature 

is almost composition independent on Ti-rich side. 

 

Figure 2.8 Ms temperature as a function of Ni content for NiTi SMAs [58]. 
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2.3.4 Effects of precipitation in NiTi Shape Memory Alloys  

 Another major factor that affects the phase transformation temperatures in Ni-rich 

NiTi shape memory alloys is the formation of Ni4Ti3 precipitates. Ni-rich Ni-Ti shape 

memory alloys aged at intermediate temperatures form precipitates of the metastable 

Ni4Ti3 phase [25]. These precipitates have a lenticular shape (see Figure 2.9) and a 

rhombohedral structure [61]. These metastable precipitates could act as an obstacle for 

martensite nucleation and growth which is associated with high transformation strain 

[62]. The Ni4Ti3 metastable precipitates give rise to coherency stress fields [63, 64]. Also, 

the external stress applied during aging can favor the occurrence of certain Ni4Ti3 

variants [65, 66]. In Ni-rich NiTi SMAs, the TTs increase after the formation of Ni4Ti3 

precipitates that decreases the Ni concentration of the matrix [9]. The Precipitates are 

widely spaced with long-term aging and they do not directly affect martensitic 

transformations [67]. 

 

Figure 2.9 TEM micrographs of the B2→R transformation in aged single crystal [14]. 
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Small lenticular Ni4Ti3 precipitates form on and near grain boundaries and near 

oxide particles while the major part of the grain is free of precipitates after short aging 

time (3.6 ks) at 773 K (see Figure 2.10a) [68, 69]. Increasing the aging time to 36 ks 

results the precipitation formation in the interior of the grain (see Figure 2.10b) [69]. The 

coherent stress fields of the early small precipitates assist the nucleation of other 

precipitates in the interior of the grain. 

 

Figure 2.10 TEM micrograph of the Ni-rich Ni50.7Ti49.3 (at.%) SMA after a) short aging 

time (773 K, 3.6 ks) b) long aging time (773 K, 36 ks) [69]. 

The aging of NiTi to create Ni4Ti3 precipitates provides some advantages such as 

increased austenite yield strength, two way shape memory effect and superelasticity [70]. 

On the other hand, the maximum transformation strain decreases as a result of the 

formation of untransformable precipitate formation [71]. In polycrystals, the precipitates 

may also hinder the process of detwinning that could result in less transformation strain 

[72]. 
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Figure 2.11 X-ray diffraction analyses of the Ni-rich NiTi alloy cooled in different 

condition: (a) quench in dry-ice bath; (b) quench in water; (c) cooled in furnace [73]. 

The effects of cooling rate on the phase transformation temperature of Ni-rich 

NiTi alloy were investigated by Motemani et al. [73]. Various cooling techniques were 

employed such as; furnace cooling, water quenching and dry-ice bath quenching. 

According to their results, one phase (austenite, B2) was observed in samples cooled in 

the dry-ice bath and water (see Figure 2.11a and b), while the intermetallic phases (Ni4Ti3 

and Ni3Ti) were also seen in addition to austenite phase for furnace cooled sample (see 

Figure 2.11c). Therefore, we can conclude that the cooling rate affects the precipitates 

formation. It was also shown by Zang et al. that in NiTi SMAs, the decrease of the 



19 
 

cooling rate results the decrease of Ms and Mf temperatures due to formation of the 

precipitates [74].  

2.3.5 Multiple-Stage Transformation 

Changes in microstructure affect the shape memory behavior of NiTi shape 

memory alloys. After certain thermomechanical treatments or adding a third element, the 

transformation sequence can be changed from one-stage (B2-M) to two-stage (B2-R, R-

M) transformation on cooling. The presence of the precipitates provides the resistance 

supporting the formation of R-phase and thus, a two-stage (B2→R→B19’) martensitic 

transformation occurs in Ni-rich NiTi alloys [5, 75-77]. Moreover, in some cases more 

complicated transformation path of the R→B19’ transition occurs due to the presence of 

Ni4Ti3 precipitates [5, 76, 77]. B2-R, R-M and B2-M transformations can be 

characterized by difference in of temperatures hysteresis and transformation energies. 

A.J. Wagoner Johnson et al. examined the origin of the multi-step transformations 

on heating and cooling in single-crystal NiTi shape-memory alloys. While the effect of 

local composition on the multi-step transformations was shown, the work also confirms 

that inhomogeneous precipitation plays a dominant role in the multiple stage 

transformation [78]. 

2.3.6 R-Phase in NiTi Shape Memory Alloys 

In Ni-Ti alloys under certain conditions, three transformations (B2→ M, B2→ R-

phase, R-phase → M) are possible. In addition to B2 austenite to B19’ martensite phase 

transformation, R-Phase can also be formed in NiTi alloys subsequent to cold working, 

aging of Ni-rich alloys and the addition of a third element [79]. It was reported that two-

stage transformation observed in NiTi alloys is associated with the R-phase transition and 
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the martensitic transformation [80, 81]. H. Morawiec et al. reported that when the R-

phase transition was present in the alloy, the final structure of the martensite did not 

change and remained monoclinic [82]. Large transformation hysteresis and large 

distortions are observed during the B2→ M and R→M whereas temperature hysteresis 

and distortions are small for B2→ R-phase transformation. The B2→R-phase 

transformation is characterized by a small temperature hysteresis (1-10
°
C) compared to 

the B2→B19’ (20-50°C) [83]. During transformation, the large distortion implies a huge 

defect to the microstructure while the small distortion denotes a small defect to the 

microstructure. B2 to R-phase transformation results in quite a small transformation 

strain and temperature hysteresis in comparison to those of the martensitic transformation 

of monoclinic-B19’ [10]. These unique properties of R-phase renders it very useful for 

small amplitude but the higher frequency actuator and damping applications [84]. 

The narrow hysteresis during B2→ R-phase transformation provides the 

capability of the high response rate and high reversibility that makes them promising for 

actuator and sensor applications [77].  

The R-phase transformation can be obtained by several methods: 

1- Cold working by annealing at low temperatures, 

2- Addition of third element, such as iron, 

3- Aging between 400°C and 500°C. 
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Figure 2.12 Possible martensitic transformation paths in NiTi alloys. 

The presence of the R-phase can be detected as double-peaks in the cooling cycle 

of a DSC scan as shown in Figure 2.13. 

 

Figure 2.13 R-phase transformation identified on a DSC response of aged Ni-rich 

Ni51Ti49 SMA. 
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The shape memory and superelastic effects are observed by B2→R-phase 

transformation which confirms the thermoelastic nature of transformation [47]. The 

crystallography of B2 to R-phase and the subsequent R-phase to B19 martensite 

transitions was stated by Xiangyang Zhang and Huseyin Sehitoglu [85]. T. Fukuda et al. 

stated that a Ni51Ti49 (at.%) alloy with aligned Ti3Ni4 precipitates formed by aging under 

an applied stress shows an anomalous transformation [86]. According to their study, 

stress induced R to B2 transformation occurs in this alloy since thermally induced R-

phase variants are preferable for the stress field formed by the aligned particles. 

However, these variants are not preferable for the applied stress.  

Jafar Khalil-Allafi et al. worked on multiple-step martensitic transformations in a 

Ni51Ti49 (at.%) single crystal. According to their study, Ms and As temperatures increase 

with increasing aging time due to Ni depletion of the matrix. After 45 min of aging time, 

Rs reaches a constant value (see Figure 2.14). It might be related to the nucleation of the 

R-phase at the interface between B2 matrix and Ni4Ti3 precipitates, where the Ni content 

of the B2 matrix adjacent to the precipitate is constant for different aging times [87]. 
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Figure 2.14 Transformation temperatures versus aging time for NiTi alloy [87]. 

2.3.7 Two-Way Shape Memory Effect 

Two-way shape memory effect represents the reversible and a spontaneous shape 

change of materials with thermal cycling without application of external stress. TWSME 

is the unique property when SMAs are applied as the actuator. It is well known that 

TWSME property is not intrinsic to SMAs while it can be obtained commonly after 

specific shape memory [88], pseudoelastic [89], and thermal cycling under a constant 

stress [90, 91] training methods. Once that the material has learned the behavior, it is 

possible to modify the shape of the material, in a reversible way between two different 

shapes without applying stress or load, only by changing the temperature across Af and 

Mf. TWSME is a useful property that can be achieved in both Ni-rich and near 

equiatomic NiTi SMAs.  

The two main mechanisms for TWSME are attributed to either residual stresses 

induced in matrix by dislocation arrays or on retained (stabilized) martensite [92-95]. 

Perkins revealed that TWSME takes place as a result of a macroscopic non-uniform 
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residual stress field, concluding that plastic deformation was necessary to observe 

TWSME [96]. Enami et al. reported that complex dislocation arrays are generated by 

thermomechanical cycling during the training procedure [29]. They assumed that these 

dislocations are responsible for TWSME because of the residual strain of stress fields 

which they generated. The magnitude of TWSME depends heavily on the microstructural 

properties such as dislocations, orientation of martensite variants and internal stress [97]. 

An optical microscopy study has suggested that the martensite nuclei retained after a 

partial transformation to austenite on heating, are responsible for the formation of 

preferential martensite variants on subsequent cooling [98]. It is commonly accepted that 

the generation of an anisotropic dislocation structure into the parent phase matrix during 

training processes create an anisotropic stress fields that help to formation of 

preferentially oriented martensite variants. As a result of these oriented martensite 

variants reversible shape changes occurred during thermal cycle [29, 99]. 

Ni-rich Ni4Ti3 precipitates that play an essential role in two-way shape memory 

are formed during aging at intermediate temperatures in Nickel rich NiTi [25]. Internal 

stress fields that control the growth of the martensite variants providing TWSME are 

produced by these Ni-rich precipitates [26, 97, 98]. 

When the sample undergoes a thermal cycling at constant stress as a part of the 

training procedure, it induces stress-assisted two-way memory effect (SATWME) in 

which martensitic transformation would be assisted by the external stress [100]. The 

magnitude of TWSME and SATWME depends heavily on the microstructural change 

such as dislocations, reorientation of martensite variants and internal stress [97]. The 

optical microscopy study has suggested that the martensite nuclei retained after a partial 
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transformation to austenite on heating, are responsible for the formation of preferential 

martensite variants on subsequent cooling [101]. On heating to above austenite finish 

temperature under a constant load showed an increasing fraction of retained martensite 

together with a portion of permanent strain generated at the end of each thermal cycle 

[102]. There is also experimental evidence showing that the amount of retained 

martensite variants increases as the number of thermomechanical cycling increases and 

these retained variants aide in the development of TWSME [88]. 
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3 Experimental Procedures 

3.1 Polycrystalline Sample Preparation 

Vacuum Arc Melted Ni54Ti46 (at.%) rods were obtained from Sophisticated 

Alloys, Inc. The Ni54Ti46 ingots were contained in Argon filled quartz ampoules and 

homogenized at 1000  C for 4 hours and quenched in water. Solution heat treatment refers 

to the process of dissolving precipitate phases created during the casting and/or hot-

rolling process without melting the matrix. The solution heat treatment temperatures were 

selected based on the binary Ti-Ni phase diagram. Following homogenization, they were 

aged at various temperatures for 3 hours. Aged SMAs were cooled down by water 

quenching (WQ) or furnace cooling (FC) with a rate of 2 °C/min. Lindberg/Blue M 

BF5114841 box furnace (Figure 3.1) was used for heat treatments. 

 

 

Figure 3.1 Lindberg/Blue M BF5114841 box furnace. 
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3.2 Single Crystalline Sample Preparation 

Single crystalline samples of Ni51Ti49 were prepared by using the Bridgman 

method in a He atmosphere. Compression specimens were cut by Electro Discharge 

Machine (EDM) (Figure 3.2.). The Ni51Ti49 single crystalline specimens were solution 

treated at 1000  C for 2 hours in argon atmosphere in quartz tubes, followed by quenching 

into water. After specimens were homogenized, they were aged at selected temperatures. 

 

Figure 3.2 Electro Discharge Machine. 
 

3.3 The Differential Scanning Calorimeter and Transmission Electron Microscopy 

Transformation temperatures of the material were determined by  er in Elmer 

 yris 1 differential scanning calorimetry ( SC) (Figure  . ) with a heating cooling rate 

of 10  C min in  e atmosphere. The microstructure after aging was investigated by 
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transmission electron microscopy (TEM). The thin foil specimens for TEM were 

prepared by the twinjet electropolishing device in a solution consisting of (all vol. %) 8% 

perchloric acid, 72% acetic acid, 12% methanol and 8% ethylene glycol at room 

temperature. TEM observations were carried out by JEOL JEM-2100HR (and HC) 

operated at an acceleration voltage of 200kV.  

 

 Figure 3.3 Perkin-Elmer Pyris 1 Differential Scanning Calorimetry. 
 

3.4 Hardness Test 

Vickers hardness values were determined by using Sun-Tec model FM-7 

microhardness test equipment (Figure 3.4). Before the hardness test, samples are placed 

in epoxy and polished. Hardness tests were performed with a 100 gf force and 15 seconds 

dwell time. Hardness test was conducted ten times for each sample. The lowest and the 
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highest values were omitted and the average of the rest eight values was taken as a final 

hardness result of samples. 

 

Figure 3.4 Sun-tec model FM-7 microhardness test equipment. 

 
 

3.5 Mechanical Testing 

Compression specimens with dimensions of 4mm x 4mm x 8mm were tested by 

100 kN MTS Landmark servo-hydraulic load frame with a strain rate of 10
-4

 s
-1

 (Figure 

3.5). The temperature of the sample was monitored by K-type thermocouples attached on 

the sample and grips. Omega CN8200 series temperature controller was used to govern a 

heating rate of 10  C min and a cooling rate of 5  C min. 
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Figure 3.5 MTS Landmark servo-hydraulic machine. 
 

3.6 XRD analysis 

X-ray diffraction (XRD) measurements to reveal the lattice parameters were carried 

out on a Bruker AXS D8 DISCOVER diffractometer using Cu K radiation (Figure3.6). 

The highly polished specimens were scanned at room temperature to capture the 

crystalline structure of the samples. 
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Figure 3.6 Bruker AXS D8 DISCOVER diffractometer. 
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4 Shape Memory Behavior of Ultra High Strength Highly Ni-rich 

Ni54Ti46 Shape Memory Alloys 

4.1 Introduction 

In this chapter, shape memory properties of highly Ni-rich Ni54Ti46 alloys are 

determined. Shape memory behavior as a function of applied stress and superelasticity 

behavior as a function of temperature tests were conducted in compression. The effects of 

aging on transformation temperatures, strain and hysteresis; microstructure and formation 

of R-phase were revealed.  

DSC, hardness, XRD, TEM and compression test (thermal cycling under stress 

and superelasticity) were carried out. The Ni54Ti46 alloys were selected for investigation 

since they exhibit higher strength and more stable behavior than near equiatomic NiTi. In 

this chapter, all The Ni54Ti46 ingots were homogenized at 1000  C for 4 hours in argon 

atmosphere in evacuated quartz tubes, followed by quenching into water. 

  



33 
 

4.2 DSC Results 

 

The effects of aging temperature on transformation temperatures are investigated 

by using DSC. Changes in the sample that are related with endothermic or exothermic 

reaction cause a change in the differential heat flow that is then recorded as a peak. 

Figure 4.1 depicts the heating (bottom) and cooling (top) DSC curves of homogenized 

and aged (between 450°C and 600°C for 3 h) Ni54Ti46. The TTs were determined by 

using the intersection method. In Figure 4.1, transformation peaks are not observed for 

the homogenized sample, even when it is cooled down to -160°C. After 450°C aging, 

only R-phase was observed with Rs = 47°C and Rf =17°C. In contrast, the specimen 

exhibited a multiple transformation peaks after aging at 500°C for 3 hours. While the first 

peak during cooling is attributed to the R-phase formation, the second peak during 

Figure 4.1 DSC curves of homogenized and aged Ni54Ti46 alloys. 
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cooling can be attributed to the B19’ martensite formation. The TTs were; Rs = 25°C, Rf 

= 4°C, Ms
 
= -47°C, Mf

 
= -53°C, As = -12°C, Af = -3°C. The TTs for 550°C-3h aged 

specimen were; Ms
 
= -61°C, Mf

 
= -66°C, As =-40°C, Af = -33°C. Transformation peaks 

were not observed after 600C-3h aging.  

 

Figure 4.2 shows the DSC results of homogenized and 550°C-3h aged Ni54Ti46 

samples. In order to determine the effects of cooling rate (CR), the samples were aged at 

550°C for 3 hours and then cooled down by three methods; water quenching (WQ), air 

cooling (AC) and furnace cooling (FC) where 2°C/min cooling rate was applied for 

Figure 4.2 DSC curves of the Ni54Ti46 alloy aged at 550°C for 3 hours and then 

cooled down by different rates. 
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furnace cooling. TTs obtained from Figure 4.2 are given in Table 4.1. The decrease in 

cooling rate after 550°C aging increased the TTs and also broadened the peaks. The 

decrease in cooling rate promoted the formation of Ni-rich Ni4Ti3 precipitates, which in 

turn decreased the Ni concentration of the matrix [5]. Since the TTs of Ni rich Ni-Ti 

alloys decrease with the increasing Ni content of matrix, lower Nickel content of the 

matrix after 550°C-FC samples resulted in an increase in TTs [103]. In 550°C-FC, the 

first peak during cooling at about 40°C was attributed to the R-Phase formation. The 

other two peaks during cooling can be attributed to the B2-B19’ or R-B19’ martensite 

transformations due to inhomogeneity in microstructure [104]. Upon heating, B19’-R-B2 

or B19’-B2 transformations occurred at temperatures very close to each other. R-peak in 

heating manifests itself in the shape of a shoulder in Figure 4.2 that is consistent with the 

work of Genlian Fan et al. who provided the detailed multi-stage martensitic 

transformation information [105]. It is clear that the cooling rate affects the thermal 

hysteresis. The highest hysteresis of 95 °C (Af-Mf) is observed with the lowest cooling 

rate which is the FC sample. 

Table 4.1 Phase transformation temperatures for 550°C aged samples. 

TTs (°C) 

    CR 

Rs Rf Ms
I
 Mf

I
 Ms

II
 Mf

II
 As Af 

    WQ 
- - -61 -66 - - -40 -33 

     AC 
- - -38 -30 -65 -74 -21 -4 

     FC 
56 31 20 11 -3 -38 32 57 
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Aging time also influences the formation of Ni4Ti3 precipitates in Ni-rich NiTi 

alloys. Therefore, the Ni content of the matrix changes with aging time and the forward 

and reverse phase transformation temperatures such as Mf and Af are shifted [55, 103]. 

Figure 4.3 shows the effects of aging time on the TTs. The sample was aged at 500°C for 

various time periods from 1 hour to 24 hours. The TTs increase with increasing aging 

time where Ms was -66°C, -47°C and -43°C after aging at 500°C for 1hour, 3 hours and 

24 hours, respectively. 

Figure 4.3 DSC curves for Ni54Ti46 alloy aged at 500°C for various 

durations. It shows the effects of aging time on the martensitic 

transformation. 
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4.3 XRD Results 

 

Figure 4.4 X-ray diffraction patterns obtained at room temperature for the homogenized 

and 550°C-3h aged Ni54Ti46 alloys. Subscripts A and P indicate B2 austenite and Ni4Ti3 

precipitate, respectively. 

Figure 4.4 shows the XR  profiles of the homogenized and aged (550°C- h) 

Ni54Ti46 alloys. In both homogenized and aged specimens, strong diffraction pea s are 

observed at about 42.5° and 62° which correspond to the austenite phase with cubic B2 

structure while the other smaller pea s are indexed as Ni4Ti  precipitate. Aging at 550 °C 

for   hours did not affect the crystal structure of the precipitate. There are no pea s 

corresponding to the Ni Ti2 and Ni Ti precipitates in the aged specimen, indicating that 

the transformations from the metastable Ni4Ti  precipitates to Ni Ti2 and Ni Ti 

precipitates did not occur after 550 °C- h aging. The lattice parameters of B2 (austenite) 
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were; a = 0.2991 nm and a = 0.298  nm for homogenized and 550°C-3h aged Ni54Ti46 

alloys, respectively. Additionally, the lattice parameters of Ni4Ti  precipitates were: a 

=1.127 nm and c = 0.5084 nm for 550°C-3h aged Ni54Ti46 alloy. 

4.4 TEM Results 

 

Figure 4.5a shows the bright field TEM image and the corresponding selected area 

diffraction (SA ) pattern for the homogenized specimen. In the SA  pattern, there are 

superlattice reflections in addition to the fundamental reflections of the austenite phase; 

the 1 7 < 21>B2
*
 superlattice reflections are the characteristic of Ni4Ti  precipitates. 

Figure 4.5b shows the dar  field image obtained using the superlattice reflection arrowed 

in the SA  pattern in Figure 4.5a. It is clear that fine Ni4Ti  precipitates with about ~10-

 0 nm in size are homogeneously distributed in the specimen. The fine Ni4Ti  precipitates 

are considered to be formed very rapidly during water quenching due to the high excess 

of Ni in the austenite matrix. Figure 4.5c shows the bright field image and the 

corresponding SA  pattern for the specimen aged at 550°C for  h. The Ni4Ti  

precipitates grew after 550°C- h aging and high density of lenticular precipitates were 

observed on {111}B2 planes. 
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Figure 4.5 (a) Bright field image with the corresponding SAD pattern of the 

homogenized Ni54Ti46 alloy and (b) its dark field image to show Ni4Ti3 precipitates. (c) 

Bright field image with the corresponding SAD pattern of the 550°C-3h aged Ni54Ti46 

alloy. 
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In order to investigate the effects of aging temperature on the volume fraction of 

Ni4Ti  precipitates, TEM observations were conducted for the specimens aged at 500°C 

and 550 °C from the direction close to [110]B2. Figures 4.6a and b are the dar  field 

images of the specimens aged at 500°C and 550°C, respectively, showing the regions 

where only a single variant of Ni4Ti  precipitates was observed. The bright and dar  

regions in Figure 4.6a correspond to the austenite matrix and Ni4Ti  precipitates, 

respectively, while they are vice versa in Figure 4.6b. It should be noted that some 

precipitates are overlapping along the [110]B2 direction in both dar  field images. The 

volume fractions of Ni4Ti  precipitates were calculated using the thic nesses of 

precipitates and interparticle distances following the method described by Michutta et al. 

[106]. The volume fraction of the Ni4Ti  precipitates determined for the 500°C aged 

specimen was ~55% while it was ~4 % for the 550°C aged specimen. It can be 

concluded that lower temperature aging results in a higher volume fraction of 

precipitates. 
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Figures 4.7a and 4.7b show the bright field TEM image of the 550°C-3hr-FC 

sample and the corresponding selected area diffraction (SAD) pattern at room 

temperature, respectively. In Figure 4.7a, bright regions correspond to Ni4Ti3 precipitates. 

The length of the longitudinal direction of the lenticular Ni4Ti3 precipitates varies from 

200 nm to 600 nm, approximately. There are sharp superlattice reflections in Figure 4.7b 

at 1/7 positions along <321>B2* in reciprocal space, which correspond to Ni4Ti3 

precipitates. Besides, we can see the superlattice reflections at 1/3 positions and 1/2 

Figure 4.6 Dark field images of the (a) 500°C-3h aged Ni54Ti46 obtained 

using a <001>B2
*
 reflection and (b) 550°C-3h aged Ni54Ti46 obtained using 

one of 1/7 <321>B2
*
 reflections. 
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positions along <110>B2*, which are indicated by single and double arrows, respectively. 

The 1/3 <110>B2* reflections correspond to R-phase while the 1/2 <110>B2* reflections 

correspond to B19′ martensite phase. This result is consistent with the  SC result shown 

in Figure 4.2 that R-phase and B19′ martensite phase transformation pea s were observed 

in the FC sample. By means of the high resolution TEM, it was confirmed that there is 

also the retained austenite phase in the microstructure in addition to the R-phase and B19
’ 

martensite phase. It can be argued that aging and furnace cooling might have promoted 

the formation of Ni-rich Ni4Ti3 precipitates, which in turn depleted the Ni concentration 

of the matrix [5]. The precipitates do not undergo phase transformation and since the TTs 

of Ni-rich Ni-Ti alloys decrease with the increasing Ni content of matrix, after 550°C-

3hr-FC treatment the lowered Ni content of the matrix resulted in an increase of TTs 

[103].  

  

Figure 4.7 a) TEM bright field micrograph formations and b) selected area diffraction 

(SAD) pattern for [111]B2 zone axis of Ni54Ti46 550°C-3hr-FC alloy. 
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4.5 Hardness Results 

 

 

Figure 4.8 The Vickers hardness of Ni54Ti46 as a function of aging temperature. 

The hardness values of Ni54Ti46 alloy are shown as a function of aging 

temperature in Figure 4.8. In general, hardness is related to the material strength and 

formation of precipitates are responsible for the change in strength [107]. It should be 

noted that fine and homogeneously distributed Ni4Ti3 precipitates are observed in the 

homogenized specimen (Chapter 4.4). Vickers hardness value is 562 for homogenized 

sample. Increasing the aging temperature from 450 °C to 500 °C increases the hardness 

from 527 to 675 on the Vickers scale due to the formation of Ni4Ti3 precipitates. 

Furthermore, increasing aging temperature 550 °C decreases the hardness to 619 which 

can be attributed to a decrease is the volume fraction of precipitates. After 500 °C-3h 

aging, the density of precipitate is the highest.  
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Figure 4.9 Hardness vs cooling rate values at fixed temperature of 550°C at 3 hours for 

the Ni54Ti46 alloy. 

The average hardness values of Ni54Ti46 alloy are shown as a function of cooling 

rate in Fig.4.9. Cooling rate also affects the hardness and strength of the material. The 

average hardness values are 619, 594 and 615 on the Vickers scale for WQ, AC and FC 

samples, respectively. 

 

Figure 4.10 The hardness as a function of aging time of 500°C aged Ni54Ti46 alloys. 
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The hardness values of the aged Ni54Ti46 alloy are shown as a function of aging 

time in Figure 4.10. The maximum hardness value of 675 is observed at aging for 3 

hours. 

4.6 Mechanical Characterization 

4.6.1 Thermal Cycling Under Constant External Stress 

Figure 4.11 (a-d) shows the thermal cycling under stress curves of homogenized 

and aged Ni54Ti46 alloys. The samples were loaded in austenite at a temperature above Af 

and cooled below Mf and then, heated above Af. Stress was kept constant during the each 

cycling test. The applied stress was increased incrementally either until 1800 MPa or 

until significant plastic strain was observed. 

Figure 4.11a shows the methods used to determine the transformation strain, TTs, 

and temperature hysteresis. The transformation temperatures were determined by the 

tangent line method. The TTs increased with stress in all cases. For 450°C-3h aging,   
  

(martensite (B19’) start temperature under stress) and   
  (austenite start temperature 

under stress) were 14°C and -5°C under 800 MPa while they were increased to 86 °C and 

30°C under 1500 MPa, respectively.   
  and   

  temperatures after 500°C -3h aging were 

-34°C and -1°C under 200 MPa and 81°C and 22°C under 1500 MPa, respectively. In the 

550°C-3h aged alloy,   
  and   

  were -41°C and -46°C under 200 MPa while they were 

48°C and -17°C under 1500 MPa, respectively. The   
  and   

  were -72°C and -113°C 

under 200 MPa and 28°C and 39°C under 1500 MPa, respectively, for the 600°C-3h aged 

alloy.  
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Figure 4.11 Thermal cycling under compressive stress results of homogenized and 

aged Ni54Ti46 alloys. 
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Figure 4.11 also shows that the transformation strain was increased with stress. 

While transformation strain was 0.86% under 800 MPa, it was 0.92% under 1500 MPa 

for 450°C-3h aged alloy. After 500°C-3h aging, transformation strain was 0.26% under 

200 MPa and it increased to 0.9% under 1200 MPa. The transformation strains were 

0.43% and 1.09% under 200 MPa and 1200 MPa, respectively, for the 550°C-3h aged 

case. In the 600°C-3h aged condition, the transformation strains were 0.26% and 1.16% 

under 200 MPa and 1500 MPa, respectively. 

The temperature hysteresis which is measured graphically at the midpoint of the 

transformation strain was shown with the horizontal arrow in Figure 4.11a. The 

temperature hysteresis after 450°C-3h aging was found to substantially decrease with 

stress where it was 26°C under 800 MPa and 8°C under 1500 MPa. Temperature 

hysteresis was 29°C under 200 MPa and 13°C under 1500 MPa for 500°C-3h aging; 

25°C under 200 MPa and 18°C under 1000 MPa for 550°C-3h aging; 20°C under 200 

MPa and 17°C under 1000 MPa for 600°C-3h aging. 

The irrecoverable strain was calculated at (Af

+20)°C by measuring the difference 

between the strain values of cooling and heating curves. A very small quantity of 

irrecoverable strains of about 0.07% and 0.13% were observed at 1500 MPa and 1800 

MPa, respectively, for 450°C-3h aged sample. Best of my knowledge, this is the highest 

stress level under which shape memory effect with almost negligible irrecoverable strain 

has been obtained in NiTi alloys. The irrecoverable strain was 0.14% at 1500 MPa after 

500°C-3h aging; 0.08% at 1000 MPa and 0.23% at 1500 MPa after 550°C-3h aging; 

0.22% at 1500 MPa after 600°C-3h aging.  
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The four thermal cycling under ultra high stress level of 1500 MPa responses of 

500°C-3h aged Ni54Ti46 are shown in Figure 4.12. After the first cycle, the irrecoverable 

strain of the sample was 0.14% and it decreased with further cycling. These results show 

that the shape memory behavior of Ni54Ti46 alloy under ultra high stress level of 1500 

MPa can be stabilized with training in compression. 

  

Figure 4.12 Thermal cycling under 1500 MPa response of the 500°C-3h aged 

Ni54Ti46 sample. 
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4.6.2 Isothermal Stress Strain Behavior  

Figure 4.13 shows the compressive stress-strain responses of aged Ni54Ti46 

samples. In some cases, the testing temperature was lower than Af, thus retained strain 

was observed after unloading. However, upon subsequent heating above Af, the retained 

strain was recovered by transforming into austenite. In all conditions, superelastic 

behavior was observed above Af. The alloys started to show superelasticity at different 

temperatures depending on their aging temperature. The fully recoverable superelasticity 

starts at -20°C, 0°C, -45°C, and -80°C for the 450°C-3h , 500°C-3h, 550°C-3h and 

600°C-3h aged samples, respectively. The total strain of 3%, 2.5%, 4%, and 3% was 

Figure 4.13 The compressive stress-strain response of Ni54Ti46 aged samples as a 

function of temperature. 
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observed for the 450°C-3h, 500°C-3h, 550°C-3h and 600°C-3h aged samples, 

respectively. After 550°C-3h aging, the sample showed perfect superelasticity when it 

was loaded till 1900 MPa and a strain of 4% at room temperature. Except the 600°C-3h 

aged condition, all aged samples showed superelasticity around body temperature which 

makes them promising for biomedical applications [108]. The aged Ni54Ti46 alloys have 

very high strength without any extensive thermomechanical treatments such as rolling or 

extrusion [109]. The superelasticity was observed with a recoverable strain of 2.5% under 

an ultra-high stress level of 2100 MPa without any training for the 500°C-3h aged 

sample. A huge superelastic window of 140°C was observed for 450°C-3h aged sample. 

The superelastic window was around 80°C for the other aging conditions. It should also 

be noted that, huge hardening was observed for all aged samples.  

4.6.3 Discussion 

 

Figure 4.14 Transformation strain as a function of applied stress. 
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The transformation strains of aged samples are shown as a function of stress in 

Figure 4.14. Initially, the transformation strains increase with stress due to the increased 

volume of favored martensite variants and then saturates. In the 450°C-3h aged sample, 

the increase in transformation strain was not observed since the shape memory effect 

curves were incomplete due to very low transformation temperatures. In the 500°C-3h 

aged condition, the transformation strain increases with stress up to 1500 MPa. In the 

550°C-3h aged condition, the transformation strain initially increases with stress up to 

1000 MPa and then saturates. The transformation strain initially increases with stress up 

to 1200 MPa, and then saturates for the 600°C-3h aged sample. The maximum 

transformation strain of 1.16% was obtained under 1200 MPa in the 600°C-3h aged 

condition. According to the TEM results, the density of precipitates is higher in the 

500°C -3h aged condition compared to 550°C-3h aged sample. Due to the high density of 

precipitates, the distance between the particles might not be enough to for transformation 

or stress fields around the particles disrupt the selection of favored variants [110]. 

According to Hamilton et al., in addition to external stress, the stress field around 

precipitates induces the preferentially oriented martensite variants [111]. Consequently, 

less transformation was observed in 500°C-3h aged condition.  
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Figure 4.15 Temperature hysteresis and irrecoverable strain as a function of applied 

stress. 

Figure 4.15 shows the thermal hysteresis and irrecoverable strain responses of 

Ni54Ti46 alloys. In all aging conditions, temperature hysteresis was almost constant at low 

stress levels. However, it should be noted that triangular type behavior is observed at low 

stress levels. Then, temperature hysteresis decreased with increasing stress level. The 

volume fraction of favored martensite variants increased with increasing external stress 

which can be attributed to the decreased frictional resistance to interfacial motion [111]. 

At high stress levels, hysteresis increased with the formation of plastic strain, in all 

conditions. At low stress levels, 500°C-3h aged sample showed the highest thermal 

hysteresis of 30°C. At high stress levels, it showed temperature hysteresis of 9°C which 
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is lower than temperature hysteresis for 550°C-3h and 600°C-3h aged samples. The 

minimum temperature hysteresis is 17°C for 550°C-3h and 600°C-3h aged samples. A 

very narrow temperature hysteresis of 8°C is observed under 1500 MPa for 450°C-3h 

aged sample which is the lowest temperature hysteresis for all aging conditions. It was 

shown by Melton et al. that a temperature hysteresis was ~50°C under 185 MPa for 

equiatomic NiTi SMA [112]. 

 

 

Figure 4.16 Stress vs. temperature diagram of aged Ni54Ti46 alloys. 
 

Figure 4.16 shows the   
  of aged Ni54Ti46 alloys as a function of applied stress. 

TTs can be tailored by adjusting the aging temperature in Ni-rich NiTi alloys since they 

are highly composition dependent [59, 60]. In Figure 4.16, higher aging temperature 
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leads to lower transformation temperature due to the increased volume fraction of 

precipitates that decreases the Ni content of the matrix.  

The TTs show a linearly increasing trend with stress and the slope of this 

tendency can be represented by the Clausius-Clapeyron (Cs-Cl) relationship. The 

relationship can be written as follow, 

  

  
  

  

    
 

where    is the transformation strain in the direction of the uniaxial stress,    is the 

transformation enthalpy,    is the equilibrium temperature of transformation and   is the 

uniaxial stress. The Cs-Cl slopes were 10.7, 10.6, 13.2, and 13.7 MPa/°C for the 450°C-

3h, 500°C-3h, 550°C-3h and 600°C-3h aged samples, respectively. The Cs-Cl slopes for 

near equiatomic NiTi varies between 5-8 MPa/°C [113]. 

 

 

Figure 4.17 Work output values as a function of applied stress. 
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Binary NiTi alloys can produce work outputs of 10 - 20 Jg
-1

 [114]. In Figure 4.17, 

the work outputs increase with applied stresses due to the increased transformation 

strains. At high stress levels, the work outputs saturate since the transformation strains 

saturate. For the Ni54Ti46 alloy, the maximum measured work output is 13.3 Jg
-1

 after 

450°C -3h aging, 12 Jg
-1

 after 500°C -3h aging, 12.72 Jg
-1

 after 550°C -3h aging and 14.1 

Jg
-1

 after 600°C -3h aging. 

4.7 Shape Memory Behavior of aged 550 °C-3h-FC Ni
54

Ti
46

 SMA  

Figure 4.18 shows the thermal cycling in compression responses of 550°C- hr-FC 

sample. The Ni54Ti46 ingots were contained in Argon filled quartz ampoules and 

homogenized at 1000  C for 4 hours and quenched in water. Following homogenization, 

Figure 4.18 (a) Thermal cycling in compression test results for 550°C-3hr-FC sample, (b) 

transformation and irrecoverable strains as a function of applied stress. 
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they were aged at 550°C for 3 hours to generate precipitates. Aged SMAs were cooled 

down by furnace cooling (FC) with a rate of 2 °C/min. The sample with the 

aforementioned treatment will be referred to as 550°C-3hr-FC in the text from hereafter. 

The specimen was loaded to selected compressive stress values in austenite, cooled down 

below the martensite finish temperature (  
 , martensite (B19’) finish temperature under 

stress) and then heated above the austenite finish temperature (  
 , austenite finish 

temperature under stress) to complete one heating/cooling cycle. Applied stress was held 

constant during each cycle. Multiple thermal cycling tests were performed at compressive 

stress levels ranging from 100 MPa to 1500 MPa. It is clear from Figure 4.18 that the 

recoverable strain increases with stress. While transformation strain remained at 0.29% 

under 200MPa, it increased to 0.78% under 1000 MPa. The TTs increase with stress, as 

well.   
  (martensite (B19’) start temperature under stress) and   

  were 51 °C and 58 °C 

under 400 MPa while they increased to 89 °C and 94 °C under 1000 MPa, respectively.  

The temperature hysteresis was determined graphically as the difference in temperature 

between the cooling and heating curves corresponding at the midpoint of the 

transformation strain. The temperature hysteresis was found to substantially decrease 

with stress and it was 22 °C under 200 MPa and 9 °C under 1000 MPa. Under ultra high 

compressive stress level of 1500 MPa, the temperature hysteresis increases 28 °C due to 

the plastic deformation that manifests itself as irrecoverable strain. The irrecoverable 

strain was calculated at (  
 +20)°C by taking the difference between the strain values of 

cooling and heating curves. The irrecoverable strain of the sample is 0.32% at 1500 MPa. 

Moreover, increasing the applied stress from 1000 MPa to 1500 MPa elevated the 

irrecoverable strain from 0.09% to 0.32%.  
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It should be noted that   
  and   

  (austenite start temperature under stress) were 

37 °C and 43 °C (As


 > Ms

) under 200 MPa, respectively, while they were 73 °C and 54 

°C (Ms

> As


) under 800 MPa. As is governed by the accumulated elastic, dissipation and 

chemical energies where it can be below Ms if the elastic energy storage is very high 

[115]. Increased external stress yields more elastic energy storage due to the increasing 

transformation strain. The elastic strain energy accumulated during the forward 

transformation helps the back transformation from martensite to austenite. Two 

thermoelastic martensitic transformation categories have been reported by Dunne and 

Wayman : Class I, where the difference in Ms and Mf is small and As > Ms, and Class II, 

in which the difference between Ms and Mf is large and Ms > As [116]. As applied stress 

increases, the level of elastic energy stored gets higher and since the material is strong, it 

has not been released and thus less heating is sufficient to start backward transformation. 

Therefore, as applied stress increases the transformation type changes from Class I to 

Class II.  

Figure 4.19 shows the compression test results of 550°C-3hr-FC material. The test 

specimen was loaded and unloaded at -20 °C (below As) where upon unloading could not 

fully recover the applied strain. Subsequent to heating it up to a temperature at the 

vicinity of Af, it recovered the retained strain which can be deemed as good shape 

memory behavior. When the sample was loaded and unloaded at a temperature above Af, 

superelastic behavior was observed with large recoverable strain. 
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The alloy started demonstrating fully recoverable superelasticity at 60 °C (i.e., 

Af+3
o
C), while it had only 0.17% irrecoverable strain upon loading to 4% reaching a load 

level of 2000 MPa at 70 °C (i.e., Af+13
o
C). Figure 4.19 demonstrates that aged Ni54Ti46 

alloys are capable of very high strength without the need of extensive thermomechanical 

treatments. In literature, it was reported that Ni50.8Ti49.2 (at. %) polycrystals have 

transformation strain of 2.7% and 2.6% after heat treatments at 500 
o
C for 15 hours and at 

400 
o
C for 1.5 hours, respectively [117]. Figure 4.19 showed that the test temperature 

drastically affects the critical stress for backward (martensite to austenite) transformation. 

When the sample is loaded at a higher temperature, a higher critical stress is obtained. 

Figure 4.19 The compressive stress vs. strain (superelasticity) responses of Ni54Ti46 for 

550°C-3hr-FC sample. 
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While the critical stress was 565 MPa at 60 °C, it was 669 MPa for a test temperature of 

70 °C. The slope of the transformation plateau increases with increasing test temperature 

accompanied with a significant strain hardening effect. 

Figure 4.20 shows the phase diagrams of 550°C-3hr-FC specimen that were 

constructed by the TTs extracted from thermal cycling test results shown in Figure 4.18. 

The TTs which are determined from DSC tests in stress free condition (Figure 4.2), are 

also added to Figure 4.20. The TTs show a linearly increasing trend with stress and the 

slope of this tendency can be represented by the Classius-Clapeyron (Cs-Cl) relationship. 

It is clear that the change in TTs above 500 MPa is different than the change in TTs 

below 500 MPa. During forward transformation, two forward-finish-temperature (FFT) 

Figure 4.20 Stress vs. temperature phase diagram of 550°C-3hr-FC aged Ni54Ti46 

alloys for a) Forward (austenite to martensite) and b) Backward (martensite to 

austenite) transformations. 
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slopes were obtained as functions of stress. Cs-Cl slope of the FFT is 6.8 MPa/°C below 

500 MPa while it is 52 MPa/°C above 500 MPa. Forward-start-temperature (FST) slope 

was 14.2 MPa/°C above 500 MPa where below 500 MPa it was very high. Figure 4.20b 

shows the TTs as a function of applied stress during the backward transformation of 

martensite to austenite. Similar to forward transformation, two-stage behavior is also 

observed in backward transformation. The backward-start-temperature (BST) slope was 

18 and 101.8 MPa/°C below and above the 500MPa, respectively. Backward-finish-

temperature (BFT) slope of 54 and 15.8 MPa/°C were obtained below and above 500 

MPa, respectively.  

As an important observation during thermal cycling, an asymmetric “triangle 

type” behavior was observed at low stress levels (below 500 M a) while this behavior 

was symmetric at higher stress levels (above 500 MPa). The change in thermal cycling 

responses with stress can be attributed to the i) change in martensite morphology or ii) 

change in a transformation sequence with stress.  

It was shown by Sutou et al. that in Cu-based SMAs, stress induced martensitic 

transformation requires additional energy compared to thermally induced stress 

transformation after aging [118]. Thus, the TTs obtained from thermal cycling under no 

stress (e.g. DSC curves) do not match to the TTs obtained by extrapolation of Cs-Cl 

slope. A similar phenomenon might be taking place in Ni rich NiTi alloys where due the 

presence of high volume fraction of particles and R-phase formation, stress induced 

martensite morphology below 500MPa would be different than the stress induced 

martensite morphology above 500 MPa. Thus, two different Cs-Cl slopes below or above 

500MPa could be observed. 
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The change in thermal cycling response with stress might also be attributed to the 

change in transformation sequence and inhomogeneous distribution of precipitates. It is 

clear that when the FST line above 500 MPa is extended, it coincides with Ms
I
 (Figure 

4.20a) while the extrapolated FFT line above 500 MPa matches with Rf. Extended FST 

line below 500 MPa coincides with Rs while extrapolated FFT line below 500 MPa 

matches with Mf
II
 (Figure 4.20a). It is well known that austenite to R-phase TTs are 

weakly dependent on applied stress (high Cs-Cl slope) while austenite to B19’ TTs are 

highly stress dependent (low Cs-Cl slope) [119-121].  

In general, during cooling after aging, austenite to R phase transformation is 

initiated near precipitates followed by R to B19’ (martensite) transformation [104]. In 

some cases, the inhomogeneous distribution of Ni4Ti3 precipitates in Ni-rich NiTi results 

in complex multi-stage martensitic transformations [103]. It should be kept in mind that 

the alloys studied are highly Ni-rich which also results in inhomogeneous distribution of 

precipitates. Thus, the interparticle distance might be small in certain regions while being 

larger at other regions in the microstructure. When this distance between particles is very 

small, the parent phase could be locked by internal stress, and transformation start can be 

impeded [122]. This fact is related to what has been observed that in Ni-rich Ni50.3Ti49.7 

alloys where martensitic transformation is suppressed with a decrease in grain size and 

especially below a critical grain size only B2 to R-phase transformation is possible [123]. 

If grain size is decreased further, no transformation is observed. The aged highly Ni-rich 

Ni54Ti46 sample has a heterogeneous microstructure with varying distribution of particle 

size and interparticle distances, certain regions of the sample might only transform to R-

phase, while other regions could transform to B19’ martensite. Since R-phase 
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temperatures are almost stress independent, stable FFT was observed in the regions with 

very small interparticle distances, resulting in the change of thermal cycling under stress 

behavior when high stress is applied. 

It can be argued from the phase diagram (Figure 4.20) that at low stress levels (< 

500 MPa) during cooling,   
  is lower than   

  (R phase start temperature under stress) 

and thus austenite starts transforming to R-phase initially and then B19’ martensite where 

the FFT is governed by   
  which is lower than   

  (R phase finish temperature under 

stress ). At high stress levels, since the   
  and   

  are almost independent of stress while 

austenite to martensite transformation temperatures are highly stress dependent, Ms

 

increases above   
  and   

  increases above   
 . Thus, B2 to B19’ transformation starts 

initially and in certain regions with narrow interparticle distance B2 to R phase 

transformation occurs where the FFT is governed by   
  which is lower than   

  for B2-

B19’ transformation. Thus, although the start temperature for forward transformation is 

increasing, the finish temperature for forward transformation is almost constant.  

4.8 Conclusions 

Shape memory behavior of highly Ni-rich Ni54Ti46 alloys was studied. This 

chapter also was performed to reveal the effects of aging on the microstructure and shape 

memory properties of Ni
54
Ti

46
 Ni-rich SMA. Ni4Ti  precipitates were observed in both 

homogenized and aged specimens. While fine Ni4Ti  precipitates with ~10- 0 nm in size 

are homogeneously distributed in the homogenized specimen, the Ni4Ti  precipitates 

grew after aging at 550°C and high density of lenticular precipitates were observed on 

{111}B2 planes. The volume fractions of the Ni4Ti  precipitates were about 55% after 

500°C- h aging and 4 % after 550°C aging. TTs are tailored by changing aging. Both the 
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decrease in cooling rate and increasing the aging time leads to increase of Ms temperature 

due to the Ni depletion of matrix with Ni4Ti  precipitate formation. Ms temperatures were 

-61°C and 20°C for 550°C-  h- WQ and 550°C-  h- FC aged samples, respectively. 

Multiple step transformation observed after aging. While the first transformation was B2 

to R phase transformation, the second transformation was an R-phase of B19’ 

transformation during cooling. It was found that mechanical and shape memory 

properties of Ni
54
Ti

46
 were highly precipitation characteristics and applied stress 

dependent. The asymmetric “triangle type” behavior for shape memory effect was 

observed below 500 MPa while the behavior was symmetric at higher stress levels. The 

shape memory behavior was investigated in compression and it was discovered that they 

have a low transformation strain (~1%) but very high strength and very narrow 

temperature hysteresis. The shape memory effect was observed even under an ultra high 

stress level of 1500 MPa without prior training in all aged samples. The maximum 

transformation strain of 1.16% is obtained under 1200 MPa in the 600°C -3h aged 

condition. A very narrow temperature hysteresis of 8°C is observed under 1500 MPa for 

450°C -3h aged sample. The maximum work output is 14.1 Jg
-1

 after 600°C -3h aging. At 

room temperature, the superelastic behavior was observed accompanied with a large 

recoverable strain (4%) in 550°C -3h aged condition. This ultra-high strength Ni-rich 

NiTi SMAs are promising for medical applications due to their distinct superelasticity 

and shape memory properties coupled with its biocompatibility. A narrow hysteresis and 

high stability of the shape memory effect also makes this alloy attractive for actuator 

applications.  

Copyright © Irfan Kaya 2014 
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5 Effects of orientation on the shape memory behavior of Ni51Ti49 

single crystals 

5.1 Introduction 

Anisotropic properties of SMAs are very essential to demonstrate the shape 

memory and superelastic strains which can be optimized along a certain direction for 

sensor and actuator applications [20]. It is well known that stress-induced martensitic 

transformation is strongly temperature and crystal orientation dependent [16-19]. 

Moreover, utilizing single crystals could eliminate the grain boundary effects thus 

allowing for an uncomplicated investigation of precipitate effects.  

In this study, the shape memory behavior of Ni51Ti49 alloys along the [001], [011] 

and [111] crystallographic orientations were studied systematically. The thermal cycling 

under compressive stress and superelastic responses have been examined for all 

orientations. The transformation strains, irrecoverable strains and temperature hysteresis 

are determined.  

The Ni51Ti49 single-crystals were grown by Bridgman Technique in an inert gas. 

The as received Ni51Ti49 single-crystals were contained in Argon filled quartz ampoules 

and homogenized at 1000  C for 2 hours and quenched in ambient temperature water. 

Subsequently, homogenized samples were given aged at 500°C for 1.5 hours to form 

precipitates.  
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5.2 DSC Results 

 

Figure 5.1a shows the DSC result of the solution-treated Ni51Ti49 single crystal. 

The pea s can be attributed to the B2 to B19’ martensite formation during cooling and 

vice versa upon heating. The TTs of the solution-treated sample were determined as; Ms
 
= 

-52 °C, Mf
 
= -68 °C, As = -37 °C, Af = -23 °C. Figure 5.1b shows the DSC result of the 

aged Ni51Ti49 single crystal. During cooling, the first peak (at about 20°C) is attributed to 

the B2 to R-phase formation while the second peak is attributed to R to B19’ martensite 

formation. Upon heating, B19’ martensite to austenite transformation occurred. The TTs 

were determined as; Rs = 25 °C, Rf = 16 °C, Ms
 
= -7 °C, Mf = -16 °C, As = 27 °C, Af = 33 

°C. The TTs were increased after aging which can be attributed to the formation of Ni4Ti3 

precipitates that decreases the Ni concentration of the matrix [5]. Since the TTs of Ni rich 

Figure 5.1 DSC responses of Ni51Ti49 single crystals after a) solution treatment and b) 

aged at 500°C for 1.5 hours. 
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Ni-Ti alloys decrease with increasing the Ni content of matrix, lower Nickel content of 

the matrix after aged samples resulted in an increase in TTs [103]. 

5.3  Thermal cycling under external stress 

 

The strain-temperature curves generated during thermal cycling under stress are 

presented in Figure 5.2 for the [001]-oriented homogenized sample. The specimen was 

compressed to selected stress values in austenite, cooled down below the martensite 

finish temperature (Mf) and then heated above the austenite finish temperature (Af) to 

complete one thermal cycle. Applied stress was held constant during each cycle. The 

stress levels were increased incrementally to 50 MPa, 100 MPa, 200 MPa, 400 MPa, 600 

MPa and 800 MPa.  

Figure 5.2 Thermal cycling under constant stress responses of homogenized Ni51Ti49 single 

crystals along the [001] orientation. 
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Figure 5.2 shows the methods used for determination of transformation strain, 

TTs and temperature hysteresis. The transformation strain increases with stress. In [001], 

the transformation strains were found to be 0.66% under 50 MPa and 3.83% under 800 

MPa.  

The TTs in thermal cycling curves were determined by tangent method.   
  

(martensite (B19’) start temperature under stress) was -40°C under 50 MPa while it 

increased to 42°C under 800 MPa along the [001] orientation.  

The irrecoverable strain was calculated at   
 +20°C by taking the difference 

between the strain values of cooling and heating curves. The irrecoverable strain was 

0.7% under 800 MPa along the [001] orientation. 

 

Figure 5.3 Thermal cycling under constant stress responses of homogenized Ni51Ti49 

single crystals along the [011] orientation. 
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The strain-temperature curves generated during thermal cycling under stress are 

presented in Figure 5.3 for the [011] oriented homogenized sample. The stress levels 

were increased incrementally to 50 MPa, 100 MPa, 200 MPa, 400 MPa and 600 MPa. In 

[011], transformation strain was 0.58 % under 50 MPa and increased to 3.72% under 600 

MPa and   
  was -49°C and -4°C under 50 MPa and 600 MPa, respectively. The thermal 

hysteresis is defined as the width of the strain-temperature loops measured at the 

midpoint of the transformation strain as shown in Figure 5.2. The temperature hysteresis 

was found to substantially decrease with stress and it was 59°C under 50 MPa and 54°C 

under 100 MPa along the [011] orientation. The irrecoverable strain was 1.3% under 600 

MPa along the [011] orientation.  

 

Figure 5.4 Thermal cycling under constant stress responses of homogenized Ni51Ti49 

single crystals along the [111] orientation. 
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The strain-temperature curves generated during thermal cycling under stress are 

presented in Figure 5.4 for the [111]-oriented of homogenized sample. The stress levels 

were increased incrementally to 50 MPa, 100 MPa, 200 MPa and 400 MPa. In [111], 

transformation strain was 1.14 % under 50 MPa and increased to 4.71% under 400 MPa. 

In [111] orientation,   
  was -29°C and 2°C under 50 MPa and 400 MPa, respectively. 

The temperature hysteresis was found to substantially decrease with stress and it was 

27°C under 50 MPa and 23°C under 100 MPa along the [111] orientation. The 

irrecoverable strain was 2.3% under 400 MPa along the [111] orientation.  

 

Figure 5.5 Thermal cycling under constant stress responses of aged Ni51Ti49 single-

crystals along the [001] orientation. 

Figure 5.5 shows the thermal cycling under compressive stress responses of 

500°C-1.5 hours aged single crystal along the [001] orientation. At low stress levels (< 
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300 MPa), two-stage B2-R-B19’ transformations are observed during cooling while 

single step B19’-B2 transformation is observed during heating. At high stress level 

(>300MPa), one-stage (B2-B19’) transformation was observed on cooling. The change in 

thermal cycling responses with stress can be attributed change in a transformation 

sequence with stress [124]. At low stress levels (< 300 MPa) during cooling,   
  is lower 

than   
  (R-phase start temperature under stress) and thus austenite starts transforming to 

R-phase initially and then B19’ martensite. On the contrary,   
  increases above   

  at 

high stress levels since   
  is almost independent of stress while   

  temperatures are 

highly stress dependent. Therefore, one-stage B2 to B19’ transformation was observed on 

cooling at high stress levels. 

The transformation strains initially increase and then saturate. Transformation 

strain was 1.37 under 100 MPa and 3.27% under 600 MPa in [001] orientation. It 

increased to 3.65% under 1500 MPa. The temperature hysteresis was found to 

substantially decrease with stress where it was 37°C under 100 MPa and 15°C under 400 

MPa along the [001] orientation. The temperature hysteresis was 23°C under 200 MPa, 

10°C under 1000 MPa and 9°C under ultra high compressive stress level of 1500 MPa. 

The irrecoverable strain was 0.18% at 600 MPa in [001] orientation. Moreover, 

increasing the applied stress from 600 MPa to 1500 MPa elevated the irrecoverable strain 

from 0.18% to 0.62% along the [001] orientation. The TTs increase with stress, as well 

where   
  was 7°C under 100 MPa while it increased to 65°C under 600 MPa along the 

[001] orientations. 

The strain-temperature curves generated during thermal cycling under stress are 

presented in Figure 5.6 for the [011] oriented aged single crystal. Similar to [001] 
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orientation, two-stage B2-R-B19’ transformations are observed during cooling at low 

stress levels (< 300 MPa) while one-stage (B2-B19’) transformation was observed at high 

stress levels (>300MPa).  

 

Figure 5.6 Thermal cycling under constant stress responses of aged Ni51Ti49 single-

crystals along the [011] orientation. 

Transformation strain was 1.5% under 100 MPa and 3.3% under 600 MPa in 

[011] orientation. It increased to 3.7% under 1000 MPa in [011]. The temperature 

hysteresis substantially decreased with stress where it was 36°C under 100 MPa and 24°C 

under 400 MPa. Above 400 MPa, temperature hysteresis increases gradually due to 

plastic deformation that manifests itself as irrecoverable strain. Temperature hysteresis 

was 29°C, 39°C and 52°C under 600MPa, 800MPa and 1000MPa, respectively. When 

the applied stress increases from 400 MPa to 1000 MPa, the irrecoverable strain elevates 
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from 0.24% to 2.19%. The TTs increase with stress where   
  was -7°C under 100 MPa 

while it increased to 39°C under 600 MPa. 

 

Figure 5.7 Thermal cycling under constant stress responses of aged Ni51Ti49 single-

crystals along the [111] orientation. 

 

Figure 5.7 shows the thermal cycling under compressive stress responses of 

500°C-1.5h aged single crystal along the [111] orientation. The stress levels were 

increased incrementally to 50 MPa, 100 MPa, 200 MPa, 400 MPa and 600 MPa. 

Transformation strain was 1.56% under 100 MPa and 2.28% under 600 MPa. The 

temperature hysteresis was 39°C under 100 MPa and 19°C under 400 MPa. Above 400 

MPa, temperature hysteresis increased gradually due to plastic deformation. The 

irrecoverable strain was 0.74% at 600 MPa.   
  was 18°C under 100 MPa while it 

increased to 35°C under 600 MPa along the [111] orientations.  
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5.4 Isothermal stress strain behavior 

 

 

Figure 5.8 The compressive stress-strain response of homogenized Ni51Ti49 single-

crystals along the [001], [011], and [111] orientations as a function of temperature. 
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The compressive stress-strain responses of the homogenized single crystals along 

the [001], [011], and [111] orientations are shown in Figure 5.8. The samples were 

deformed at -140°C (below Mf) to show variant reorientation behavior and at selected 

temperatures above Af to show superelasticity. In all orientations, superelastic behavior 

was observed with a large recoverable strain (4%). Figure 5.8 shows that temperature 

drastically affects the critical stress for transformation. When the sample is loaded at a 

higher temperature, a higher critical stress is obtained.  

The compressive stress–strain curves of the aged single crystals along the [001], 

[011], and [111] orientations obtained at selected temperatures are plotted in Figure 5.9. 

It should be noted that -80
o
C was below Mf while 40

o
C was above Af. At -80

o
C, 

martensite reorientation takes place during loading and the remained strain after 

unloading is recovered upon heating.  

The alloy showed fully recoverable superelasticity in [001] orientation while it 

had 0.2% and 0.3% irrecoverable strain in [011] and [111] orientations, respectively, at 

40°C. The superelastic response with a total strain of 7% is obtained at high temperature 

in [001] orientation. According to compressive stress vs strain curves at 60
o
C (Figure 

5.9b and 5.9c), significant residual strain was observed after unloading the [011] and 

[111] oriented single crystals. The largest superelastic window of ∆T = 140°C was 

observed in [001] orientation. 

The stress hysteresis, ∆σ, decreases with increasing test temperature along the 

[001] orientation as shown in Figure 5.9a. ∆σ is 148 M a at 40
o
C while it is 89 MPa at 

160
o
C. The similar behavior was also observed by Chumlyakov et al. [125], where the 

temperature dependence of ∆σ is attributed to the effects of external stresses on the 
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nucleation and growth of martensite crystals when four crystallographic variants of 

particles are formed by aging.  

 

Figure 5.9 The compressive stress-strain responses of aged Ni51Ti49 single-crystals as a 

function of temperature. 
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5.5 Discussion 

  

Figure 5.10 (a) Temperature hysteresis and irrecoverable strain and (b) 

transformation strain as a function of applied stress for homogenized Ni51Ti49 single 

crystals. 
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Figure 5.10a shows the thermal hysteresis and irrecoverable strain as a function of 

applied stress along the three selected orientations of homogenized Ni51Ti49. [011]-

oriented single crystals showed the highest thermal hysteresis. The hysteresis did not 

change with external stress for homogenized [001]-oriented Ni51Ti49 single-crystal. The 

similar behavior was reported by Hamilton et al. in Ni50.4Ti49.6 [111]. The slip systems of 

NiTi are reported to be <010>{110} and <010}>{100} [126]. The resolved shear stress 

for these slip systems is zero in [001] orientation [125]. Therefore, [001]-oriented single 

crystals show no signs of plastic strain. 

The transformation strains of homogenized samples are shown as a function of 

stress in Figure 5.10b. It is clear that [111] orientation has the highest transformation 

strain amongst the studied homogenized single crystals. At 200 MPa, [111] orientation 

produced a noticeably higher transformation strain when compared with each of the other 

orientations. At 400 MPa, the transformation strain is still highest in [111] orientation but 

so does its irrecoverable strain. [001]-oriented single crystals show no signs of 

irrecoverable strain, whereas, [111]-oriented single crystals show noticeable irrecoverable 

strain. The onset of irrecoverable strain occurred at a lower stress level (approximately at 

200MPa) in [111] orientation than the two other oriented samples. 

With increasing stress, the transformation strains increase due to increased 

volume of favored martensite variants. The maximum transformation strain for the [111] 

orientation is significantly higher than for the [001] and [011] orientations. In [001], the 

transformation strain was 3.83% under 800 MPa. In [011], transformation strain was 

3.72% under 600 MPa. In [111], transformation strain was 4.71% under 400 MPa.  
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Figure 5.11a shows the thermal hysteresis and irrecoverable strain of aged single 

crystals as a function of applied stress in three orientations. In the aged condition, the 

hysteresis initially decreases rapidly for the all cases at low stress regime (Region I), and 

increases for [011] and [111]-oriented samples at high stress regime (Region II) while it 

is saturated for [001]-oriented crystals.  

Figure 5.11 (a) Temperature hysteresis and irrecoverable strain as a function of 

applied stress and (b) transformation strain as a function of applied stress for 

aged alloys. 
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At 200 MPa, none of the samples produced irrecoverable strain. At 400 MPa, the 

onset of the irrecoverable strain occurred in all orientations. At 600 MPa, irrecoverable 

strain increased noticeably along the [011] and [111] orientations while it was almost 

constant along the [001] orientation. The critical stress level for slip is approximately 400 

MPa for both [011] and [111] orientations. The increasing hysteresis at high stress regime 

(II) for the [011] and [111]-oriented samples can be attributed to increasing the plastic 

deformation with stress above 400 MPa.  

In Figure 5.11b, it is clear that [111]-oriented single crystals have the smallest 

transformation strain. Maximum transformation strain of the hard [001] orientation is 

significantly higher than the softer [111]. Transformation strains were 3.27%, and 2.28% 

under 600 MPa in [001] and [111] orientations, respectively. It increased to 3.65% under 

1500 MPa in [001]. 

The change in hysteresis with stress correlates well with the corresponding 

change in transformation strain. The initial decrease in hysteresis can be related to the 

decrease in the number of martensite variants (or increased number of favored martensite 

variants) formed with stress. Since fewer martensite variants are formed, the interaction 

between the variants diminishes, resulting in a smaller hysteresis. The initial wide 

hysteresis for the aged [001]-oriented single crystal compared to the homogenized [001]-

oriented crystal is attributed to the friction dissipation due precipitates. As a conclusion, 

less variant for [001] and less friction cause low energy dissipation which leads to obtain 

small hysteresis.  

These results confirm that the shape memory properties are strongly affected by 

the crystal orientation and precipitate formation. 
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In Figure 5.12 shows the critical stress for transformation as a function of 

temperature obtained from isothermal stress-strain responses for homogenized and aged 

Ni51Ti49 single crystal specimens. The Ms of aged sample is determined from DSC tests in 

stress free condition and added to Figure 5.12 (shown with arrows). The TTs show a 

linearly increasing trend with stress which can be represented by the Classius-Clapeyron 

(Cs-Cl) relationship [127]. During forward transformation, the forward-start-temperature 

(FST) slopes were obtained as functions of stress for three orientations. Cs-Cl slopes of 

FST are 7.2 MPa/°C, 7.6 MPa/°C and 7.6 MPa/°C for [001], [011], and [111]-oriented 

homogenized samples, respectively. In aged conditions, Cs-Cl slopes of FST are 7.7 

MPa/°C, 11.8 MPa/°C and 10.4 MPa/°C for [001], [011], and [111] orientations, 

respectively. The transformation stress levels are highly orientation dependent in high 

Figure 5.12 Stress vs. temperature phase diagram of (a) homogenized and (b) aged 

Ni51Ti49 single-crystals. 
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stress regime while they are not orientation dependent in low stress regime for aged 

samples as shown in Figure 5.12b. 

5.6 Conclusion  

The effects of heat treatment and orientation on the shape memory properties of 

Ni51Ti49 single-crystals are investigated under compression, and results are summarized 

below: 

1) Aged specimens have higher strength than the homogenized specimens in all 

orientations.  

2) Almost perfect shape memory behavior was observed even at stress levels as high 

as 1500 M a in [001]-oriented aged sample. The alloy’s ability to show shape 

memory behavior under such high stresses can be attributed to the high strength 

of the precipitation-hardened single crystal due to a high density of precipitates. 

The largest superelastic window (∆T = 140°C) was observed. 

3) In [001]-oriented aged sample, very narrow temperature hysteresis of 10°C was 

observed under ultra high compressive stress level of 1500 MPa with 3.65% 

transformation strain. 

4) In [001] and [011] orientations, homogenized samples showed large hardening 

during loading compared to aged samples.  

5) In the homogenized condition, [011]-oriented single crystals showed the highest 

thermal hysteresis when compared to the other two orientations. The hysteresis 

did not change with external stress for homogenized [001]-oriented Ni51Ti49 

single-crystal. In the aged condition, the hysteresis initially decreases for the all 

cases at low stress levels, and increases for [011] and [111]-oriented samples at 
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high stress levels that can be attributed to increased plastic deformation with 

stress. 
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6 Two-Way Shape Memory Effect in Ni51Ti49 Single Crystals 

 

6.1 Introduction 

In this chapter, the TWSME properties of Ni-rich Ni51Ti49 single crystals oriented 

along the [111] direction were systematically investigated in compression. The TWSME 

responses of homogenized and aged samples along with the effects of deformation 

temperatures and applied stress were systematically investigated and discussed. 

Additionally, the TWSME response of [111]-oriented Ni51Ti49 was systematically 

investigated in compression after aging under stress. Since all the tests are done in 

compression, in this chapter, positive and negative TWSME strains mean that 

compressive and tensile strains, respectively, are observed upon cooling. DSC, TEM and 

thermomechanical tests (thermal cycling under stress and superelasticity) were carried 

out. 

 

6.2 Influence of precipitates and dislocations on the two-way shape memory 

effect in Ni51Ti49 single crystal alloys 

The single crystal samples were grown by the Bridgman technique in an inert gas 

atmosphere. The as-grown Ni51Ti49 single crystals were contained in Argon filled quartz 

ampoules and sub ected to solution annealing at 1000  C for 2 hours followed by water 

quenching. Then, some samples were subsequently aged at 500°C for 1.5 hours and water 

quenched. TWSME tests were done under 5 MPa of compressive loading, which is 

considered to be low to affect the variant selection but required to keep the grips in 

contact with the samples to measure strain. 
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The following methods were used to generate the TWSME which are shown in 

Figure 6.1. 

1. The compressive deformation of martensite below Mf. 

2. The compressive deformation of austenite above Md where the specimen would 

plastically deform without phase transformation.  

3. Temperature cycling under constant compressive load. 

4. The compressive loading of austenite at temperatures below Md where both the 

phase transformation and plastic deformation could take place.  

 

 

 

Figure 6.1 Schematic of the loading paths in stress-temperature phase diagram. Critical 

stress for plastic deformation is assumed to be constant for simplicity. 
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6.2.1 DSC Results 

According to DSC results, the TTs of homogenized Ni51Ti49 single crystal alloy 

were; Ms = -52°C, Mf = -68°C, As = -37°C, Af = -23°C, and the TTs of aged (500°C -

1.5h) Ni51Ti49 single crystal alloy were; Rs = 25°C, Rf = 16°C, Ms = -7°C, Mf = -16°C, As 

= 27°C, Af = 33°C (Chapter 5.2). 

6.2.2 Microstructure of solution-treated and aged single crystals 

TEM observation was carried out to investigate the microstructure of the solution-

treated and aged specimens. The solution-treated specimen was composed of a single B2 

austenite phase, while Ni4Ti3 precipitates were observed in the aged specimen. Figures 

6.2a and 6.2b show the bright field STEM image taken from the aged specimen and the 

corresponding selected area diffraction (SAD) pattern, respectively. There are 

superlattice reflections at 1/7 positions along <321>B2
*
 in reciprocal space, which 

correspond to the Ni4Ti3 precipitates. The average size of the Ni4Ti3 precipitates is around 

180 nm. The R-phase can be confirmed by the superlattice reflections at 1/3 positions 

along <110>B2
*
. 

 

Figure 6.2 (a) Bright field STEM micrograph and (b) corresponding SAD pattern of the 

Ni51Ti49 single crystal aged at 500°C for 1.5 hours. 
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Figure 6.3 shows the HRTEM micrograph of the aged specimen and 

corresponding fast Fourier transforms (FFTs). The symbols A, R and Ni4Ti3 represent 

B2 austenite, R-phase and Ni4Ti3 precipitate, respectively. It is confirmed that R-phase is 

formed around the precipitates due to the stress fields caused by the precipitates [128]. 

The orientation relationship between R-phase and Ni4Ti3 precipitate was reported as 

[111]R ([0001]H) // [111]Ni4Ti3 ([0001]H) [129]. Considering the crystal orientations shown 

in Figure 6.3a, it was found that the R-phase and Ni4Ti3 precipitates observed in Figure 

6.3a have the same orientation relationship ([111]R // [111]Ni4Ti3). 

 

Figure 6.3 (a) High resolution bright field STEM micrograph of the aged specimen and 

(b, c and d) FFTs obtained from the framed areas A, R and Ni4Ti3 in (a), respectively. 

Symbols A, R and Ni4Ti3 indicate B2 austenite, R-phase and Ni4Ti3 precipitate, 

respectively. 
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6.2.3 TWSME of solution-treated single crystals 

 

In order to reveal TWSME of solution-treated Ni51Ti49 single crystal alloys along 

the [111] orientation, the samples were deformed at selected conditions in compression 

as-shown in Figure 6.4. In Figure 6.4a, the specimen was loaded to 5 MPa in austenite 

and then it was cooled down below Mf and then heated above the Af to complete one 

thermal cycling cycle that is the TWSME behavior. It is clear that the TWSME strain 

Figure 6.4 TWSME of the solution-treated [111]-oriented Ni51Ti49 single crystal after a) 

solution treatment, b) thermal cycling under 400 MPa, c) deformation in martensite 

phase at -150°C, and d) deformation at 200°C which is above Md. Corresponding stress-

strain and strain-temperature graphs are inserted to show compression response to obtain 

TWSME. 
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(εtw) was not observed right after solution treatment. Figure 6.4b shows the TWSME 

experiment after thermal cycling under 400 MPa where an irrecoverable strain of 2.3% 

was observed upon completion of the cycle. A positive (compressive) TWSME strain of 

0.41% was obtained in this case. Figure 6.4c shows the TWSME after deformation in 

martensite where the single crystal was compressed till total-strain (εtot) of 4.2% and then 

unloaded at -150 °C. It was heated to a temperature above Af where the remained strain 

(εre) was recovered and an irrecoverable strain of 0.4% was observed. When the sample is 

thermally cycled under 5 MPa, compressive (positive) TWSME strain of 0.6% was 

observed. Figure 6.4d shows the compressive strain vs. temperature result after 

deformation above Md at 200°C. The sample was deformed up to 3.6% and then 

unloaded where 3.2% irrecoverable strain is observed. During thermal cycling under 5 

MPa, no TWSME strain was observed. 

6.2.4 TWSME of as-aged [111]-oriented Ni51Ti49 

Figure 6.5 TWSME of as-aged Ni51Ti49 single crystal alloys. 
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Figure 6.5 shows the thermal cycling responses of as-aged Ni51Ti49 single crystal 

alloys under 5 MPa applied stress. The specimens were cooled down below Mf and then 

heated above Af where εtw of 0.4% was obtained. The aged single crystals showed the 

two-stage (B2-R-B19′) transformation during cooling, and both transformations produced 

the positive εtw. 

6.2.5 TWSME of aged Ni51Ti49 after deformation in martensite phase 

 

Figure 6.6 Stress vs Strain and Temperature vs Strain curves of aged Ni51Ti49 single 

crystal alloys. 

Figure 6.6 shows the deformation of aged single crystal in martensite and the 

corresponding TWSME behavior. Upon application of compressive stress, variant 

reorientation and then elastic deformation of martensite plates take place. At higher 
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stress, a second yield was observed which can be attributed to the plastic deformation of 

martensite. The test specimen was loaded (A-B) to a total-strain of 7% and unloaded (B-

C) at -80 °C. Upon unloading, a remained strain of 4.6% and recovery strain (εmech) of 

2.4% were observed. Subsequent heating (C-D) resulted in thermally induced recovery 

strain (εth) of 2.8% and plastic strain (εp) of 1.8%. The specimen is cooled down below 

Mf (D–E) and then heated above the Af (E-F) and compressive (positive) εtw of 0.7% is 

generated. Since the aged single crystal showed εtw of 0.4% before deformation (Figure 

6.5), we can conclude that the plastic deformation of martensite increased εtw. It is noted 

that contribution of R-phase transformation to εtw did not change with deformation and 

the 0.3% increase of εtw is produced by the subsequent B19′ transformation. 

6.2.6 TWSME of aged Ni51Ti49 after deformation above Md 

TWSME of the aged single crystal was determined after selected level of 

deformations above Md (at 200°C) and shown in Figure 6.7. If loaded at a temperature 

above Md, NiTi behaves like a conventional alloy with the material exhibiting elastic and 

then plastic deformations. The aged single crystal was loaded (A-B) to selected total-

strain value and then unloaded (B-C) at 200 °C. The specimen was cooled down (C-D) 

and heated (D-E) to observe TWSME. The elastic deformation is observed until a strain 

of 0.8% and yield stress is determined as 600 MPa. The deformed specimen shows the 

two-stage (B2-R-B19′) transformation during cooling and one stage (B19′-B2) 

transformation during heating of TWSME. After TWSME test the sample is loaded to 

next total-strain value and TWSME test is repeated. Tensile (negative) εtw of 1.4, 1.7, 1.9 

and 1.9% were observed after εtot of 2, 4, 6, and 10 %, respectively. Thus, it is clear that 

when an aged alloy is plastically deformed in austenite, the negative TWSME is observed 
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as shown in Figure 6.7. It should be noted that both the R-phase and B19′ transformations 

produced the negative εtw. 

 

6.2.7 TWSME of aged Ni51Ti49 single crystal after thermal cycling under constant 

stress 

Figure 6.8 shows the response of aged sample that is loaded to 600 MPa in 

austenite (1-2), and then thermally cycled (2-4). The transformation strain was 2.4% and 

the irrecoverable strain (εirr) was 0.8 % under 600 MPa. Then, TWSME test was 

performed (5-6-7) and negative (tensile) εtw of 1.4% was obtained. The aged specimen 

Figure 6.7 Incremental compressive stress-strain response of aged Ni51Ti49 single 

crystal alloys at 200°C. TWSME after each loading cycle is included in the graph. 
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showed the negative TWSME after thermal cycling under stress, which is in contrast to 

the solution-treated specimen which showed the positive TWSME (Figure 6.4b). 

 

 

Figure 6.8 Thermal cycling under 600 MPa and the corresponding TWSME of aged 

Ni51Ti49 single crystal. 

6.2.8 TWSME of aged Ni51Ti49 single crystal after deformation of austenite below 

Md 

Figure 6.9a shows that compressive stress vs strain curves at 60 °C which is 

above Af but below Md. The sample was loaded till the selected strain levels of 2, 7, 11, 

14, and 20% and unloaded. After unloading, the sample was heated to 150 °C to 

transform the retained martensite to austenite where only a small partial recovery strain is 

observed. Then, TWSME tests were performed. Figure 6.9b shows the TWSME 
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responses of the single crystal that are conducted after unloading and subsequent heating 

as marked in Figure 6.9a. The two-stage (B2-R-B19′) transformation was observed 

during cooling and one stage (B19′-B2) transformation during heating of TWSME. 

Tensile (or negative) εtw of 1, 1.3, 1.1, 0.8, and 0.6% was observed after deformation 

strain of 2, 7, 11, 14, and 20%, respectively. 

 

6.2.9 Discussion 

6.2.9.1 TWSME of solution-treated single crystals 

The Ni51Ti49 single crystal did not show TWSME right after solution treatment, 

whereas positive TWSME was observed in the solution-treated specimens deformed in 

martensite and by thermal cycling under high stress (resulted in irrecoverable strain) 

experiments. On the other hand, the solution-treated specimen deformed in austenite did 

not show TWSME. It has been reported by many researchers that the positive TWSME 

Figure 6.9 a) Stress-strain curves of aged Ni51Ti49 single crystal alloys subjected to selected 

levels of total strain at 60°C and b) the corresponding TWSME responses. 
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can be obtained when a specimen is plastically deformed in the martensite phase [5, 33, 

34, 103, 128, 130-134]. Since the solution-treated specimen showed positive TWSME 

after thermal cycling under stress, it is considered that the dislocations were introduced in 

the martensite phase during thermal cycling. The positive TWSME has been also 

confirmed in Ni49.7Ti50.3, Ni50Ti50 and Ni50.2Ti49.8 alloys after thermal cycling under stress 

[90, 135, 136]. Miyazaki and Kimura investigated the effects of prestrain on the TWSME 

as a function of deformation temperature in a solution-treated Ni51Ti49 alloy [137]. They 

observed that in tension, the positive TWSME can be observed when dislocations are 

introduced in the martensite, while the dislocations introduced in the austenite phase did 

not result in TWSME. They have attributed the observed TWSME to the spring-back 

behavior of dislocations. When the deformed martensite is transformed back to austenite 

by heating, the elongated specimen will contract with a large driving force. The work 

hardened dislocation structure will also be contracted upon the reverse transformation. 

After the contraction, the dislocations will produce a spring-back force to make the 

specimen regain an elongation. Therefore, the dislocations introduced in the martensite 

produce the positive TWSME. On the other hand, the spring-back force cannot be caused 

by the dislocations introduced in the austenite phase, resulting in lack of TWSME. This 

explanation of the positive TWSME can be also applied to the specimens deformed in 

compression presented in this study. The dislocation structure formed in martensite by 

compressive deformation will be elongated upon the reverse transformation during 

heating. The spring-back force produced by the elongated dislocation structure makes the 

specimen regain a compression, resulting in the positive TWSME (Figure 6.4b and 6.4c). 

On the other hand, the solution-treated specimen deformed in austenite did not show 
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TWSME (Figure 6.4d) since the introduced dislocations do not produce the spring-back 

force. 

 

 

Figure 6.10 Bright field TEM images of the solution-treated Ni51Ti49 single crystals (a) 

deformed in martensite and (b) deformed in austenite. 

Figure 6.10a shows the bright field TEM image taken at room temperature from 

the solution-treated specimen deformed in martensite as shown in Figure 6.4c. The 

specimen is austenite since the TTs are below room temperature as shown in Figure 5.1a. 

It is clear that the dislocations are aligned on specific crystal planes. Previously, Kudoh et 

al. suggested that the slip system of the B19′ martensite is (001)B19’[100]B19’ [138]. 

Considering the lattice correspondence between the martensite and austenite (Table 6.1), 

the (001)B19’[100]B19’ system corresponds to one of the {011}B2<100>B2 systems, for 

example (110)B2[001]B2, in the austenite. The dislocations formed in the martensite 

become the dislocations in the austenite when the specimen is transformed back to the 

austenite upon heating. Since there is only one (001)B19’[100]B19’ slip system in a single 
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martensite variant, the dislocations formed in a martensite variant may align on the 

(001)B19’ planes. When the specimen is transformed back to the austenite by heating, the 

dislocations align on one of the {011}B2 planes in the austenite. Such aligned dislocations 

are considered to help the selection of specific martensite variants during cooling. As a 

result, the specimen deformed in the martensite phase shows improved positive TWSME 

(Figure 6.4b and 6.4c). When the specimen is deformed in the austenite phase, there are 

many {011}B2<100>B2 slip systems available for deformation (such as (110)B2[001]B2 and 

(101)B2[010]B2). Moreover, there are other slip systems such as {001}B2<100>B2 [139, 

140] that prevents the alignment of dislocations on certain planes as shown in Figure 10b. 

Therefore, the selection of martensite variants does not occur and TWSME is not 

observed in the specimen deformed in austenite (Figure 6.4d). 

Table 6.1 Twelve lattice correspondence variants (CVs) [141]. Subscripts M and A 

indicate martensite and austenite, respectively. 

 CV1 CV1′ CV2 CV2′ CV  CV ′ CV4 CV4′ CV5 CV5′ CV6 CV6′ 

 M100   A100   A001   A100   A001   A010   A010   A010   A010   A001   A100   A001   A100  

 M010   A011   A110   A110   A101   A101   A101   A110   A011   A110   A011   A101   A011  

 M001   A110   A110   A110   A110   A110   A110   A101   A101   A101   A101   A011   A011  

 

6.2.9.2 TWSME of aged single crystals 

The Ni51Ti49 single crystal showed positive TWSME after aging at 500 °C for 1.5 

hours as shown in Figure 6.5, although the solution-treated single crystal did not show 

any TWSME. One of the reasons for the positive TWSME could be the inhomogeneous 

distribution of Ni4Ti3 precipitates which is produced by the inhomogeneity of single 

crystals along the single crystal growth direction. The stress fields around the precipitates 

cause the selection of martensite variants, which is considered to result in the positive 
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TWSME. It should also be noted that the applied stress of 5 MPa (to ensure the contact of 

the grips) could result in selection of R-phase variants since R-phase could easily be 

stress-induced due to its small transformation strain compared to B19′ martensite. The 

stress-induced R-phase is considered to transform to specific variants of B19′ martensite 

which produce further compressive strain during cooling.  

It is clear that when the aged samples are deformed in martensite, they showed an 

increased positive εtw. In contrast, when they are deformed in austenite or by the thermal 

cycling under stress, negative εtw is observed. In order to understand the origin of 

negative εtw, microstructure of aged single crystals are investigated by TEM. 

TEM observation was conducted from the direction parallel to the compression 

axis, [111]B2 orientation, for the aged crystals deformed in martensite and austenite. 

Figure 6.11 depicts the bright field images showing the Ni4Ti3 precipitates and B19′ 

martensite and the corresponding SAD patterns of the deformed samples. It should be 

noted that in addition to austenite, martensite was also observed in all aged specimens. 

Since the Ms of the aged specimen is -7 °C as shown in Figure 5.1b, it is believed that the 

martensite phase was formed thermally in the twin-jet polishing process which was made 

at around -15 °C. In the specimen deformed in austenite, the Ni4Ti3 precipitates cannot be 

clearly observed because of the high density of dislocations around the precipitates 

(Figure 6.11c). 

The dominant martensite variants were found to be different in the two cases. 

There are twelve lattice correspondence variants in the B19′ martensite [141] as shown in 

Table 6.1. The martensite variants which were mainly observed in the aged specimen 

deformed in martensite are CV1, CV1′, CV , CV ′, CV5 and CV5′. The variants CV1 
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and CV3 can be confirmed in the SAD pattern shown in Figure 6.11b. On the other hand, 

for the aged specimen deformed in austenite, the dominant martensite variants are CV2, 

CV4 and CV6 (Figure 6.11d). 

 

Figure 6.11 Bright field TEM images showing the Ni4Ti3 precipitates and B19′ 

martensite and the corresponding SAD patterns of the aged Ni51Ti49 single crystals 

deformed in (a and b) martensite and (c and d) austenite. Symbols P and M in the bright 

field images indicate Ni4Ti3 precipitate and B19′ martensite, respectively. 

The transformation strain along the [111]B2 direction was calculated based on the 

lattice deformation theory [142] and the results are shown in Table 6.2. In this theory, 
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austenite is assumed to transform fully into a single variant martensite without the twins. 

The following lattice parameters were used to calculate the transformation strain: a0 = 

0.3015 nm [143], and a = 0.2889 nm, b = 0.4120 nm, c = 0.4622 nm and  = 96.8° [144]. 

The positive sign and negative sign of the transformation strain correspond to the 

extension and contraction along the [111]B2 direction, respectively. The martensite 

variants which were mainly observed in the aged specimen deformed in martensite (CV1, 

CV1′, CV , CV ′, CV5 and CV5′) produce the contraction of the specimen, 

corresponding to the positive TWSME after compression. On the other hand, the 

martensite variants observed in the aged specimen deformed in austenite (CV2, CV4 and 

CV6) results in tensile strain corresponding to the negative TWSME after compression. 

Table 6.2 Directions derived from the [111]A direction and calculated transformation 

strains for the twelve martensite variants. The positive sign and negative sign of the 

transformation strain correspond to the extension and contraction along the [111]A 

direction, respectively. 

 CV1 CV1′ CV2 CV2′ CV  CV ′ CV4 CV4′ CV5 CV5′ CV6 CV6′ 

Axial 

direction: 

 A111  

 M110

 

 M011

 

 M110

 

 M101

 

 M110

 

 M011

 

 M110

 

 M101

 

 M110

 

 M011

 

 M110

 

 M101

 

Transformatio

n strain (%) 
- .64 - .64 9.79 -1. 4 - .64 - .64 9.79 -1. 4 - .64 - .64 9.79 -1. 4 

 

It should be noted that the negative TWSME was only observed in the aged 

specimens, indicating that the Ni4Ti3 precipitates play an important role in the formation 

of negative TWSME. The aged specimens deformed in austenite and by thermal cycling 

under stress show the two-stage (B2-R-B19′) transformation and even the B2-R 

transformation alone produces the negative εtw as shown in Figures 6.7 and 6.8. Since B2-

R transformation occurs around the Ni4Ti3 precipitates, we can conclude that the specific 
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variants of the R-phase that produce the negative TWSME strain are formed during 

cooling by the internal stresses around the Ni4Ti3 precipitates. 

 

The bright field images of the aged single crystal after deformation which contain 

Ni4Ti3 precipitates and B2 austenite with dislocations were shown in Figure 6.12. In 

Figure 6.12a, dislocations were observed between the precipitates in the aged specimen 

deformed in martensite (see Figure 6.6). On the other hand, it is clear that the dislocations 

accumulate around the precipitates in the aged specimens deformed in austenite (see 

Figure 6.7) as-shown in Figure 6.12b. Figure 6.12c shows the bright field image of the 

aged specimen deformed by thermal cycling under stress (see Figure 6.8). The 

dislocations introduced by the thermal cycles are around the precipitates similar to the 

aged specimen deformed in austenite (Figure 6.12b) which shows the negative TWSME. 

Therefore, it is considered that the dislocations were mainly introduced in austenite 

Figure 6.12 Bright field TEM images showing the Ni4Ti3 precipitates and B2 austenite of 

the aged specimen (a) deformed in martensite, (b) deformed in austenite and (c) 

deformed by thermal cycling under stress. Symbols P, A and M indicate Ni4Ti3 

precipitate, B2 austenite and B19′ martensite, respectively. 
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during thermal cycling under stress and the specimen showed negative TWSME as 

shown in Figure 6.8. 

Since dislocations did not accumulate around the precipitates in the aged 

specimen deformed in martensite, dislocations are considered to be difficult to form on 

the boundary between the precipitate and martensite. Thus, it is expected that the 

dislocations do not affect the B2-R transformation considerably since they do not alter 

the stress fields around the precipitates. However, dislocations affect the subsequent B19′ 

transformation, resulting in the positive TWSME similar to the solution-treated specimen 

deformed in martensite. This is supported by the experimental results shown in Figures 

6.5 and 6.6 where further plastic deformation of martensite did not increase the positive 

εtw produced by B2-R transformation significantly but increased the strain produced by 

the subsequent B19′ transformation. On the other hand, in the aged specimen deformed in 

austenite and deformed by the thermal cycling under stress, the stress fields around the 

precipitates might be affected by the dislocations which are formed on the boundary 

between the precipitate and austenite matrix. It is known that the dislocation formation 

around the precipitates could result in back stresses around the particles [145, 146]. The 

Orowan dislocation loops were observed around precipitates and were responsible for 

creation of back stress [147]. Since B2-R transformation occurs around the precipitates 

due to the stress fields caused by lattice mismatch, the formation of back stress due to 

dislocation formation leads to the selection of R-phase variants that will result in tensile 

(negative) strain in the loading direction. It has been reported that the [111]R direction is 

derived from <111>B2 directions and is the most expansible direction during the B2-R 

transformation [129]. Therefore, it is considered that the specific R-phase variants with 



102 
 

[111]R direction being parallel to the compression axis of [111]B2 are selected due to the 

back stress creation to produce the tensile (negative) strain. 

 

Figure 6.13 (a) HRTEM micrograph of the aged specimen deformed by thermal cycling 

under stress (see Figure 6.8) and (b, c and d) FFTs obtained from the framed areas A, R 

and Ni4Ti3 in (a), respectively. Symbols A, R and Ni4Ti3 indicate B2 austenite, R-

phase and Ni4Ti3 precipitate, respectively. 
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Figure 6.13 shows the HRTEM images of the aged specimen deformed by 

thermal cycling under stress (see Figure 6.8) obtained along the compression axis of 

[111]B2. The crystal orientation of the austenite and Ni4Ti3 precipitate is same while the 

R-phase variant is different from that observed in Figure 6.3. The [111]R direction of the 

R-phase variant is parallel to the [111]B2 compression axis and the variant is expected to 

produce a negative TWSME strain during B2-R transformation. 

After B2-R transformation, the selected variants of R-phase will transform to 

specific B19′ martensite variants which will further increase the negative TWSME strain. 

It has been reported that the [101]B19′ is derived from <111>B2 and is the most expansible 

direction during the B2-B19′ transformation [129]. In the specimen deformed in 

austenite, [101]B19′ martensite variants were observed along the compression axis of 

[111]B2 (Figure 6.11d). Therefore, it is concluded that [111]B2 austenite is transformed to 

[111]R R-phase variants first and then transformed to [101]B19′ martensite variants during 

the two-stage (B2-R-B19′) transformation. As a result, two-stage negative TWSME 

strains are produced as shown in Figures 6.7 and 6.8. 
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6.2.10 Generation of TWSME 

As a summary, the schematics for TWSME creation of solution-treated and aged 

samples after compression tests were illustrated in Figure 6.14. First, single crystals were 

compressed either at a low temperature below Mf or at a high temperature above Md, and 

then they were unloaded. The dislocations were aligned on specific crystal planes when 

they were formed in martensite, while the deformation in austenite did not cause the 

alignment of dislocations on certain planes. After heating above Af, the dislocation 

structure formed in martensite was elongated by the shape recovery of the specimen and 

produces the spring-back force. Then, the specimens were cooled down below Mf and 

heated above Af to obtain TWSME. The positive (compressive) TWSME was observed 

in the specimen deformed in martensite since the spring-back force selected specific 

martensite variants which produced the contraction of the specimen, while the 

dislocations formed in the specimen deformed in austenite did not produce TWSME. 
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Figure 6.14 also shows the schematics for the generation of TWSME in the aged 

specimens. The test specimens were loaded and unloaded at a low temperature below Mf 

or at a high temperature above Md. The dislocations were observed between the 

precipitates when the specimen was deformed in martensite. On the other hand, the 

Figure 6.14 Schematic illustration of generation of TWSME. 



106 
 

dislocations introduced in austenite were observed around the precipitates. Similar to the 

solution-treated specimens, the dislocation structures formed in martensite were 

elongated after heating above Af and produced the spring-back force, while the specimen 

deformed in austenite did not show a shape change at above Af. In order to obtain 

TWSME, the specimens were cooled down below Mf and heated above Af. If the sample 

was deformed in martensite, the dislocations did not affect the R-phase transformation 

considerably since they did not alter the stress fields around the precipitates while the 

spring-back forces caused the contraction of the specimen during B19′ martensite 

transformation, resulting in positive (compressive) TWSME similar to the solution-

treated specimen. On the other hand, in the aged specimen deformed in austenite, the 

dislocation formation around the precipitates resulted in the back stress along the 

compressive direction. This stress field resulted in selections the specific variants of R-

phase and B19′ martensite which led to the observation of the negative (tensile) TWSME 

upon the two-stage (B2-R-B19′) transformation. 

The εtw of aged SMAs are summarized in Figure 6.15 as a function of applied 

compressive total strain. Initially, thermal cycling test under 5 MPa applied stress was 

conducted for the as-aged Ni51Ti49 single crystals, and compressive εtw of 0.4% was 

obtained. For the aged sample deformed at 200 °C, tensile εtw shows a linearly increasing 

trend with increasing strain up to 6% of compressive strain and tends to saturate with 

further deformation. When the aged sample is deformed at -80 °C, increasing the applied 

compressive strain from 4% to 7% elevated the compressive εtw from 0.5% to 0.7%. For 

the aged sample deformed at 60 °C, tensile εtw increases with increasing strain up to 

compressive strain of 7%. As shown in Figure 6.15, the tensile εtw decreases with further 
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deformation since the formation of the internal stresses is disturbed by the excessive 

introduction of dislocation [148]. A maximum two-way shape memory strain of 1.9% 

was obtained after 6% deformation of at 200 °C in the aged [111] oriented Ni51Ti49 single 

crystals. 

 

 

  

Figure 6.15 εtw as a function of applied strain for aged SMAs. 



108 
 

6.3 The effects of stress-assisted aging on the two-way shape memory behavior of 

[111]-oriented NiTi single crystal 

The single crystal samples were grown by the Bridgman method in an inert gas 

atmosphere. The as-grown Ni51Ti49 single crystals were solution annealed at 1000  C for 2 

hours in Argon filled quartz ampoules and water quenched. Then, the crystals are aged at 

500°C for 1.5 hours under an external compressive stress of 150 MPa applied along the 

[111] direction.  

 

Figure 6.16a shows the bright field micrograph and the corresponding selected 

area diffraction (SAD) pattern obtained at room temperature for the Ni51Ti49 single 

crystal after stress-assisted aging. The SAD pattern was taken along the [110]Ni4Ti3 zone 

axis and some reflections from Ni4Ti3 precipitates were indexed. In the dark field image 

(Figure 6.16b) taken by using the diffraction spot circled in the SAD pattern, a single 

family with two crystallographically equivalent variants of Ni4Ti3 precipitates was 

Figure 6.16 (a) Bright field image and the corresponding SAD pattern for the Ni51Ti49 

single crystal aged at 500 °C for 1.5 hours under a compressive stress of 150 MPa. (b) 

Dark field image was taken using the 2Ni4Ti3 reflection circled in the SAD pattern in (a). 
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observed on the (111)B2 plane perpendicular to the [111]B2 compression direction. It 

should be noted that the matrix in Figure 6.16 is a single B19′ martensite phase which is 

considered to be formed thermally during electropolishing process at -15 °C. 

 

Figure 6.17 shows the thermal cycling under constant compressive stress 

responses of [111]-oriented Ni51Ti49 single crystal after a stress-assisted aging. The 

specimen was loaded in the austenite phase to selected stress levels, and then cooled 

down below the martensite finish temperature and heated above the austenite finish 

temperature. Multiple thermal cycling tests were performed at selected compressive 

stress levels ranging from 5 MPa to 600 MPa. During thermal cycling, two-stage (B2- R- 

Figure 6.17 (a) Thermal cycling under selected constant compressive stresses, (b) 

transformation and irrecoverable strains as a function of applied stress for the [111] 

oriented Ni51Ti49 single crystal aged at 500 °C for 1.5 hours under a compressive stress 

of 150 MPa. 
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B19’) transformation behavior was observed on cooling under low stress levels. At high 

stress levels, since the austenite to R-phase transformation temperatures are almost stress 

independent while austenite to B19’ martensite transformation temperatures are highly 

stress dependent, B19’ martensite transformation temperatures increase above R-phase 

transformation temperatures and R-phase transformation disappears [124]. 

The thermal cycling under 5 MPa is accepted as the TWSME behavior where a 

negative (tensile) TWSME strain (εtw) of 1.56% was observed. When the stress is 

increased to 25 MPa, the negative (tensile) transformation strain is decreased to 0.54% 

and 50 MPa is needed to suppress the observation of tensile strain. For stress levels above 

50 MPa, the compressive transformation strain increases with stress. While the 

transformation strain is negative (tensile) (-1.56%) under 5 MPa, it is positive 

(compressive) (2.15%) under 600 MPa. 

In Figure 6.17, it is clear that TTs increase with stress. Ms and Af were -7 °C and 

31 °C under 25 MPa while they were increased to 39 °C and 64 °C under 600 MPa, 

respectively. The irrecoverable strain was calculated by taking the difference between the 

strain values of cooling and heating curves at 70 °C. The irrecoverable strain was 0.05%, 

0.46% and 0.9 under 200 MPa, 400 MPa and 600 MPa, respectively.  
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Figure 6.18 (a) TWSME, (b) thermal cycling under 600 MPa and (c) TWSME after 

thermal cycling under 600 MPa of stress-free and stress-assisted aged [111]-oriented 

Ni51Ti49 single crystals. 

 

Figure 6.18(a) shows the thermal cycling responses of stress-free and stress-

assisted aged Ni51Ti49 single crystal alloys under 5 MPa. The initial TWSME strain after 

stress-free aging was 0.4 %. On the other hand, when the sample is aged under stress, the 

precipitates are aligned and negative (tensile) TWSME strain of 1.56% was observed. 
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Figure 6.18(b) shows the thermal cycling responses under 600 MPa applied stress 

of aged [111]-oriented Ni51Ti49 single crystals. It is clear that responses are similar in 

both cases where recoverable strain of 1.5% and irrecoverable strain of 0.9% were 

observed. Figure 6.18(c) shows the subsequent TWSME responses of stress-free and 

stress-assisted aged Ni51Ti49 single crystal after thermal cycling under 600 MPa (Figure 

6.18(b)). Negative (tensile) TWSME strain of 1.4% was obtained after thermal cycling 

under 600 MPa in the stress-free aged sample. The negative TWSME strain in the stress-

assisted aged sample was increased after thermal cycling under 600MPa, where a large 

negative TWSME strain of 2.2% was obtained. It should be noted that while the 

Figure 6.19 Schematic illustrations of the formation of Ni4Ti3 precipitates in Ni-

Ti SMAs after aging (a) in stress-free condition and (b) under compressive 

stress. (c) A schematic for the generation of negative (tensile) TWSME due to R-

phase transformation after stress-assisted aging. 
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transformation strain is 2.14% compressive at 600 MPa, the subsequent TWSME strain is 

2.2% tensile for the samples that are aged under stress. 

The effects of aging and external stress on the formation of Ni4Ti3 precipitates 

were schematically illustrated in Figure 6.19. While stress-free aging produces four 

families of Ni4Ti3 precipitates on the four {111}B2 planes (Figure 6.19a), a compressive 

stress applied along the [111]B2 direction during aging results in one family of Ni4Ti3 

precipitates on the (111)B2 plane (Figure 6.19b). It has been reported that Ni3Ti4 

precipitates shrink along the [111]Ni4Ti3 (// <111>B2) direction upon formation from the 

austenite matrix and creates tensile stress in the matrix along the [111]Ni4Ti3 (// <111>B2) 

direction [61, 129]. 

The tensile stress created in the matrix around Ni4Ti3 precipitates selects the 

specific R-phase and B19′ martensite variants. The orientation relationships between the 

Ni4Ti3 precipitate and R-phase and between the Ni4Ti3 precipitate and B19′ martensite 

were reported as [111]Ni4Ti3 // [111]R and [111]Ni4Ti3 // [101]B19′, respectively [129]. In 

Chapter 6.2, the [111]Ni4Ti3 // [111]R relationship has been confirmed in Ni51Ti49 single 

crystals after stress-free aging. The [111]R and [101]B19′ directions are derived from 

<111>B2 directions and they are the most expansible directions during the transformations 

from austenite. Therefore, the tensile stress along the <111>B2 directions in the austenite 

matrix created by Ni4Ti3 precipitates facilitates the formation of [111]R R-phase variants 

and [101]B19′ martensite variants. 

Figure 6.19c shows the schematic for negative (tensile) TWSME creation due to 

R-phase transformation after stress-assisted aging. Since the specimen has only one 

family of Ni4Ti3 precipitates, the [111]R R-phase variants are selected and they elongate 
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the specimen along the [111]B2 compression direction, resulting in negative (tensile) 

TWSME. After the R-phase transformation, the [101]B19′ martensite variants are selected 

during the subsequent B19′ martensite transformation, which results in further increase in 

negative TWSME strain and two-stage behavior, as shown in Figure 6.17. 

The negative TWSME strain of the samples that are aged under stress was 

increased after thermal cycling under 600MPa (Figure 6.18). It was previously reported 

that in stress-free aged specimens that dislocations introduced during thermal cycling 

under compressive stress accumulate around Ni4Ti3 precipitates and create back stresses 

along the external compression direction. The back stresses resulted in further selection 

of the [111]R and [101]B19′ variants. Thus, the increase of the negative TWSME strain in 

the stress-assisted aged specimen can be attributed to the creation of back stresses by 

dislocations around Ni4Ti3 precipitates that facilitates the selection of the [101]B19′ 

martensite variants. 

6.4 Conclusion 

Firstly, the two-way shape memory effect responses of Ni-rich [111]-oriented 

Ni51Ti49 single crystals are investigated under compression. Effects of aging and 

deformation temperature on TWSME were revealed and the corresponding 

microstructure was investigated. The important results are summarized below, 

(1) The solution-treated single crystals did not show TWSME in the as-

solution-treated condition and after deformation in austenite. On the other hand, positive 

(compressive) TWSME was observed when they are deformed in martensite or by 

thermally cycled under stress. 
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(2) The stress-free aged single crystals deformed in martensite showed 

positive TWSME. However, the stress-free aged specimens deformed in austenite and by 

the thermal cycling under stress showed negative (tensile) TWSME.  

(3) The dislocations introduced in martensite phase are aligned on specific 

crystal planes and the stress fields around the dislocations cause the selection of 

martensite variants which results in the positive TWSME. TEM investigation revealed 

that the martensite variants observed in the stress-free aged specimen deformed in 

martensite were mainly CV1, CV1′, CV , CV ′, CV5 and CV5′ which results in the 

contraction of the specimen, corresponding to the positive TWSME. 

(4) The negative TWSME was only confirmed in aged specimens. It was 

proposed that the back stresses created by the dislocation formation around Ni4Ti3 

precipitates results in the selection of the specific variants of R-phase and B19′ martensite 

which produce negative strain. TEM investigation confirmed that the martensite variants 

observed in the stress-free aged specimen deformed in austenite were mainly CV2, CV4 

and CV6 which correspond to the negative TWSME. 

(5) The two-way shape memory strain initially increases with increasing 

deformation strain and decreases with excessive introduced dislocations. A maximum 

two-way shape memory strain of 1.9% was obtained after 6% deformation of at 200 °C in 

the stress-free aged specimen. 

Secondly, the effects of stress-assisted aging on the TWSME behavior of Ni51Ti49 

single crystal along the [111] orientation were investigated. Single family of Ni4Ti3 

particles was formed after aging at 500°C under an applied compressive stress of 150 

MPa along the [111] direction. The important results are summarized below, 
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(1) Since a single family of Ni4Ti3 precipitates was formed, the [111]R and   

[101]B19′ variants are formed due to the aligned stress fields along the precipitates to 

elongate the specimen along the [111]B2 compression direction and result in negative 

(tensile) TWSME during cooling. 

(2) The negative TWSME strain was increased after thermal cycling under 

constant stress.  

(3) The maximum TWSME strain was observed to be negative (tensile) of 

2.2% after thermal cycling training under 600 MPa compressive stress with the 2.15% 

transformation strain. 
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7 Conclusion 

Nickel rich NiTi shape memory alloys have been widely used for bio-medical, 

electrical and mechanical applications due to their distinct superelasticity and shape 

memory properties as compared to near equi-atomic NiTi SMAs. In this study, shape 

memory properties and phase transformation behavior of high Ni-rich Ni54Ti46 (at.%) 

polycrystalline and Ni-rich Ni51Ti49 (at.%) single-crystalline SMAs are determined. 

Conclusions are summarized below. 

1- High Ni-rich Ni54Ti46 (at.%) polycrystalline alloys 

The effects of aging on the phase transformation behavior and mechanical 

properties of a Ni-rich Ni54Ti46 are investigated. Samples were homogenized at 1000°C, 

followed by heat treatment in the temperature range from 450°C to 600°C. Phase 

transformation was investigated in aged Ni54Ti46 SMA with differential scanning 

calorimetry, X-ray diffraction and transmission electron microscopy to observe the 

influence of precipitates and R-phase on the phase transformation. Additionally, their 

hardness was measured as a function of both aging time and temperature.  

 The multi-step transformations are observed after heat treatments due to 

precipitation formation. 

 Depending on aging heat treatments, transformation strain of 2-3% can be 

obtained in SE and SM. 

 Applied stress and operation temperature considerably affect the 

transformation strain and hysteresis, and also alters the transformation 

sequence in these SMAs. 
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 Stress independent R-phase transformation was found to be responsible for 

the change in shape memory behavior with stress.  

 High Ni-rich NiTi alloys has the ability exhibit perfect shape memory effect 

under high stress levels of 1 GPa and perfect superelasticity when up to 2 

GPa was applied after selected heat treatments in compression. 

 The shape memory behavior of Ni
54
Ti

46
 alloys was investigated under 

compression and it has been shown that they have a low transformation strain 

but very high strength, narrow temperature hysteresis (10°C) and dramatic 

change in shape memory behavior with stress.  

 Ni54Ti46 alloy has the ability to exhibit perfect superelasticity was observed 

under high stress levels (~2 GPa) with reversible strain of 4%. 

 The fine and homogeneously distributed Ni4Ti3 precipitates are observed. 

The volume fraction of the Ni4Ti  precipitates was ~55% for 500°C aged 

specimen and ~4 % for 550°C aged specimen. 

 Precipitation formation is found to be an effective method to improve the 

strength of the material and also control the shape memory properties. 

 It was revealed heat treatments could significantly alter the transformation 

temperatures and shape memory effects response. 

 

 

2- Ni-rich Ni51Ti49 (at.%) single-crystalline alloys 

The effects of aging and orientation on the shape memory and mechanical 

properties of Ni51Ti49 alloys are investigated. In addition, the effects of aging and 
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deformation on the two-way shape memory effect properties of single crystalline Ni-rich 

Ni51Ti49 alloys are revealed.  

 R-phase transformation is observed after aging in all orientations. 

 The shape memory behavior of Ni51Ti49 alloys was found to be highly 

orientation dependent. [001]-oriented Ni51Ti49 single crystals have high 

strength and show perfect superelasticity for a wide temperature range (∆T = 

140°C). Narrow temperature hysteresis of 10°C was observed under ultra 

high compressive stress level of 1500 MPa with 3.65% transformation strain 

in [001] orientation. 

 When the samples were compressed in martensite state, positive 

(compressive) TWSME was observed. After compression above Md, the 

homogenized samples did not show TWSME while the stress-free aged 

samples displayed negative (tensile) TWSME.  

 TEM investigation revealed that compression in martensite and austenite 

phases results in different dislocation structures in the microstructure. Thus, 

the stress fields around the precipitates and dislocations form dissimilar 

martensite variants that results in the positive and negative TWSME strains. 

Since R-phase formation is highly stress dependent, small changes in the 

internal stress fields affect the selection of R-phase variants and thus, the 

martensite variants. 

 A maximum negative (tensile) TWSME strain of 1.9% was obtained in the 

stress-free aged sample after 6% compression at 200 °C. 
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 The negative TWSME strain in the stress-assisted aged sample was increased 

after thermal cycling under 600 MPa, where a large negative TWSME strain 

of 2.2% was obtained. It should be noted that while the transformation strain 

is 2.14% compressive at 600 MPa, the maximum TWSME strain is 2.2% 

tensile after training for stress-assisted aged sample. 
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