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ABSTRACT OF THESIS

EXPERIMENTAL CHARACTERIZATION OF
ROUGHNESS AND FLOW INJECTION EFFECTS

IN A HIGH REYNOLDS NUMBER TURBULENT CHANNEL

A turbulent channel flow was used to study the scaling of the combined effects of
roughness and flow injection on the mean flow and turbulence statistics of turbulent
plane Poiseuille flow. It was found that the additional momentum injected through
the rough surface acted primarily to enhance the roughness effects and, with respect
to the mean flow, blowing produced similar mean flow effects as increasing the rough-
ness height. This was not found to hold for the turbulence statistics, as a departure
from Townsend’s hypothesis was seen. Instead, the resulting outer-scaled streamwise
Reynolds stress for cases with roughness and blowing deviated significantly from the
roughness only condition well throughout the inner and outer layers. Investigation
into this phenomena indicated that suppression of the large-scale motions due to
blowing may have been contributing to this deviation.
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Chapter 1

Introduction

It is important to expand our knowledge base of turbulent flow behavior, because

despite over a century of work in turbulent flows it is still considered the “last un-

solved mystery of classical mechanics”. Unlike laminar flow, no current complete

analytical theory exists for turbulent flow and it is therefore much more difficult to

study. It is a commonly held belief that the Navier-Stokes equations contain the

solutions to turbulent flow, but numerical methods to completely resolve these highly

non-linear equations are still in their infancy. This is particularly true for flows with

high Reynolds number where the separation of physical and temporal scales intro-

duces significant challenges in fully resolving all relevant scales. It is therefore of vast

importance to continue to develop our understanding of turbulent flows by combin-

ing the best numerical simulations with new, high-Reynolds number turbulent flow

studies. This will allow for new insight into previously unexplored phenomena and

with many applications of industrial and research interests, it would appear that

fundamental turbulence research is full of potential benefits.

As discussed in the following section, the work in this thesis is concerned with

application of roughness and flow injection boundary conditions to a turbulent flow.

A potential application of this work is the fluid-mechanical environment of an ablative

thermal protection system (TPS), or heat shield. These ablative TPS are used on

re-entry vehicles to protect the cargo of a space-faring capsule upon re-entry to a

planet’s atmosphere. The aero-heating environment experienced by these heat shields

is extreme, and presents many challenges to the designer of a TPS. Complications

arise from the broad range of flow conditions the craft undergoes during re-entry, from

the non-continuum flow in the outer atmosphere, through a hypersonic, high-heating

environment, all the way to subsonic speeds near the earth’s surface. It is these
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difficulties that make modeling such flow fields a complex and expensive task. To aid

in our understanding of these flows, it is preferable to break the problem down into

manageable problems. For the purposes of this thesis, we have focused on the near-

wall effects of roughness of the heat shield and flow injection due to ablation gases.

Heat-shield roughness is commonly the result of removal of material from the heat-

shield itself due to charring of the surface and mechanical erosion through particle

spallation, both of which cause drastic increases in the heat flux to the surface and

must be accounted for in any modeling effort. However, current turbulence models

are poor at capturing the effects of an arbitrary surface roughness and in the case of

TPS design, a simple augmentation factor is usually employed which is empirically

derived based on the expected roughness geometry during flight. With regard to the

effects of ablation gases, the interactions with turbulent flow are perhaps even less

understood than that of roughness. The main effect of injecting gas into the boundary

layer is to reduce heat flux through the boundary layer by addition of a relatively

“cooler” gas at the surface. Also known as film cooling, flow injection is a phenomena

often encountered in situations where heat flux to the wall is undesirable. However,

flow injection has its own effects on the mean flow, one of which is the addition of

instability in the flow as momentum is moved farther away from the wall and an

increased likelihood of flow separation from the wall.

The combination of roughness and blowing is therefore very complex due to the

complications listed above and further described in Chapter 2. To aid in understand-

ing the fluid-mechanical effects present, the current set of experiments used a subsonic

research facility and well-understood instrumentation techniques to provide insight

into this flow type. It is the goal of this research to provide feedback to the TPS

designer and aid in our understanding of the complicated interactions of these phe-

nomena while building upon the current knowledge base and indicating where future

research will be most beneficial.
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Chapter 2

Background

2.1 Basic Turbulence Theory

There are a number of early works which are often credited with the development

of turbulence theory. Perhaps the most recognized are the experiments by Osborne

Reynolds [55]. His experiments involved a carefully constructed glass pipe with the

ability inject dye into the flow. Reynolds had control over the pipe diameter, flow

velocities, and fluid viscosities and made the very important observation of transition

from laminar to turbulent flow. He discovered that this happened for roughly the

same value of a dimensionless parameter, known today as the Reynolds number

Re =
UL

ν
(2.1)

where U is the velocity, L is a characteristic length, and ν the kinematic viscosity.

As Osbourne also deduced, the Reynolds Number is a measure of the ratio of inertial

forces to viscous forces and provides a way to gage the relative importance of these

two forces in any type of flow. Reynolds went on to develop these ideas in a later

paper [56] in which he decomposed the flow into the mean and fluctuating parts

(the Reynolds equations) and introduced the idea of turbulent kinetic energy, which

represented a transfer of energy from the mean flow to turbulence. The Reynolds

equations represent a tool for understanding the energy content of turbulence, and

to this day experimental fluid measurements still characterize flows based on the

behavior of the Reynolds stresses. Reynolds decomposition is built around breaking
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the time varying velocity into time-averaged and fluctuating components such that

u(t) = U + u
′

(2.2)

where u(t) is the time-varying velocity, U represents the time-averaged velocity, and

u
′

the fluctuating velocity about the mean. Reynolds decomposition of the flow into

these two quantities was a breakthrough in the analytical approach to turbulence.

Later, an important work was published by Ludwig Prandtl [53]. For the first time,

this paper described the boundary layer, the development of drag, flow separation

and the concept of aircraft stall. Prandtl’s boundary layer theory had the important

contribution of separating the flow into two regions, the inner- or viscous region and

the outer- or inviscid region. Later, Prandtl wrote what is considered to be a canonical

work in turbulence [51]. In it he analyzed the limit of very high Reynolds number, and

found that the inner layer (where y/L << 1) depends only on the kinematic viscosity,

ν, and the wall shear stress, τw. From this a velocity scale can be constructed

Uτ =
√

τw/ρ (2.3)

where ρ is the fluid density and the resulting velocity is known as the friction velocity.

This scale is very important in turbulent flows as it allows for an inner length scale

to be developed known as the viscous length

δ+ =
ν

Uτ

(2.4)

and the Reynolds number based on these is

δ+Uτ

ν
= 1. (2.5)

4



The distance from the wall can also be normalized by these viscous scales

y+ =
y

δ+
=

Uτy

ν
. (2.6)

From this point forward, the usual notation for viscous scaling can be adopted,

which utilizes the + superscript to identify terms non-dimensionalized using Uτ and

δ+. Furthermore, to indicate the ratio of the outer and inner length scales, a friction

Reynolds number can be defined with the friction velocity, and the outer length scale

(boundary layer thickness, δ for boundary layers; radius, R for pipes; and half-height,

h for channels) to produce the friction Reynolds number

Reτ =
( y

δ+

)

/
( y

L

)

=
LUτ

ν
. (2.7)

Prandtl argued that the inner layer (at very high Reynolds numbers) depends

only on these viscous scales, and the functional form of the velocity gradient depends

only on the ratio of the friction velocity and the wall distance, times some function of

wall distance normalized by δ+ [51] . Theodore von Kármán expanded these ideas to

develop the logarithmic law of the wall in his 1930 paper [28, 50] which is applicable at

the outer part of the inner layer where viscosity has a small effect, and the dependence

on the viscous length vanishes from the law of the wall,

dU+

dy+
=

1

κy+
(2.8)

where κ is the von Kármán constant, and can be integrated to produce the logarithmic

law of the wall

U+ =
1

κ
ln y+ +B (2.9)

where B is an integration constant.

The inner and outer layers can be broken down based on the approximate wall

5



distance as in table 2.1.

Table 2.1: Separation of wall regions in channel flows

Inner Layer y+ < 5 Viscous sublayer
y/h < 0.1 y+ < 50 Viscous wall region

5 < y+ < 30 Buffer layer
Outer Layer y+ > 30, y/h < 0.3 Log-law region
y+ > 50 y+ > 50, y/h < 0.1 Overlap region

2.2 Turbulence and Roughness

Turbulent flow interactions with roughness have been studied extensively for over

a century [26]. The role of roughness has been very important in the development

of turbulent theory, specifically with regard to engineering-type flows (such as duct,

pipe, and channel flow) where roughness is often encountered. Perhaps one of the most

well known, and earliest works on this subject was that by Johann Nikuradse [45]. In

this set of roughness experiments, carefully sifted sand was used to coat the inside of

pipes to produce a very uniform roughness pattern. This allowed Nikuradse to develop

an idea of the effects of roughness on the mean flow quantities and the wall shear

stress. To this day, many turbulent flow types are characterized by their “equivalent

sand grain roughness”, ks, in reference to Nikuradse’s original classification of flow

modifications based on the wall shear stress and the sand grain size. This section

will review the relevant facets of turbulent flow interactions with roughness. The

number of studies in this field is very large, and a full review is not attempted in this

thesis. Instead, a brief review of the notation used for roughness, the effects on the

time-averaged statistics, and a review of the most relevant literature is discussed in

the following.
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2.2.1 Roughness Geometry

One of the major difficulties in rough wall studies, and one of the main sources of

confusion when comparing data, is accurately defining the roughness geometry. The

geometrical feature with the largest effect on the flow is arguably the roughness height,

k. This parameter is the one most often reported in the literature. However, there are

numerous other important lengths, denoted Li, which affect the flow behavior. Often

a density is defined based on the frontal area of a roughness element(s) per ground

area the element(s). For three-dimensional roughness this term can be written as

λ3D =
nkLz

A
(2.10)

where n is the number of roughness elements in the horizontal area, A and Lz is

the spanwise spacing of the roughness elements. For two-dimensional roughness the

equation becomes

λ2D =
k

λ
(2.11)

where λ is the element spacing or “wavelength” in the streamwise direction. These

dimensionless aspect ratios have been used to quantify the fully-rough flow behav-

ior near the roughness elements themselves and the resulting mean-flow quantities

discussed in section 2.2.2. These simple aspect ratios are only one way of classify

roughness elements, as numerous Li can be chosen to make other values whose ef-

fects on the mean flow have to be investigated separately. This has led to numerous

studies to determine the “most relevant” roughness scales. Various correlations have

been developed for three-dimensional (for example [15, 54, 61]) and two dimensional

roughness patterns (see [47, 54]). While these correlations can guide the design of an

experiment, very minute differences in roughness elements and experimental facilities

can drastically affect the resulting flow field. This has led to the expansive body
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of research on roughness, as new experiments must be performed on new roughness

geometries and flow conditions.

One length scale which has been deemed essential to classifying a rough-walled

flow is the viscous scaled roughness height, or roughness Reynolds number

k+ =
kUτ

ν
(2.12)

which is the ratio of the roughness height to viscous effects, and as demonstrated in

the following section, is the driving parameter for characterizing mean flow behavior

when roughness is present. This parameter is the most often cited in the literature,

as it has first order effects on the flow behavior which dominate the other roughness

length scales. This will be further discussed in section 2.2.2.

2.2.2 Roughness effects on the mean flow

In flows with rough-wall boundaries, the mean flow behavior is displaced away from

the wall by an amount 0 < y0 < k, known as the zero-plane displacement, where

y0 = 0 for a smooth surface. There have been multiple attempts to define y0 (see

[54] for a listing), but an exact definition is elusive and thus different methods are

typically employed dependent on the type of roughness. A best practice is to always

include y0 in the experimental results so its effect on the mean profiles can be judged.

The error in determining y0 is often negligible when experiments are concerned with

the outer flow (or even the log layer when viewing high Reynolds number data) as

any small shift in the profile has minimal effect on the outer layer. For the purposes

of this thesis, the shift is incorporated into the profile via

Y = y + y0. (2.13)

The mean flow effects of roughness can be derived based on an asymptotic match-
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ing analysis as done in the roughness review paper by Michael Raupach [54]. This

leads to two velocity dependencies, the first of which is the defect law which is valid

in the outer layer, and depends only on an outer length-scale L

U(Y )− U∞

Uτ

= F (Y/L) (2.14)

and the second is for the inner layer which only depends on the viscous scaled terms

(U(Y ))+ = G(Y +, k+, L+
i ) (2.15)

In the overlap region both of these laws must hold, and the gradients of each

function are matched

Y

Uτ

dU

dY
= Y + dG

dY +
= η

dF

dη
= κ−1. (2.16)

Integration of this function gives the law of the wall for turbulent, rough-walled flow

U+ =
1

κ
lnY + + C(k+, L+

i ) (2.17)

where the integration term, C, is dependent on the roughness length scales. The main

effect of roughness is to alter the log-law constant, which is more readily seen in the

commonly used form of the log-law for roughness

U+ =
1

κ
lnY + +B −∆U+(k+, L+

i ) +W (Y/L) (2.18)

where the term ∆U+ is the roughness function, and has zero value for smooth walls.

The outer layer deviation from the log-law is given by the wake function, W (Y/L).

The effect of the roughness function is described as the shift between the smooth and

rough wall velocity profiles on a semi-logarithmic, inner-scaled mean profile plot [54].

9



This assumes that the functional dependence of equations 2.14 and 2.15 hold. Namely

that an overlap layer exists between the inner and outer layers which depends solely

on the wall distance, Y .

To ensure that the dependencies of equations 2.14 and 2.15 hold, the outer length

scale must be much larger than the viscous scales and the roughness heights. This

is the core assumption behind the often cited wall-similarity hypothesis for rough-

ness. Namely, that the outer layer is unaffected by the presence of roughness at

high Reynolds numbers except for determining Uτ , Y , and the boundary layer thick-

ness δ. As noted by Raupach [54], the wall similarity hypothesis is an extension of

Reynolds number similarity for smooth walled flows. Wall similarity is often referred

to as Townsend’s hypothesis as it uses many of the arguments of Albert Townsend

[46, 65]. Essentially, Townsend’s hypothesis postulates that at high Re, and outside

the viscous sublayer, the time-averaged statistics of a turbulent flow are unaffected

by viscous scaling, δ+. The scales k and Li are also irrelevant in the outer layer. As

summarized by Raupach [54]:

“Therefore, wall similarity holds for relative mean motion at all heights above the

roughness sublayer. Since the turbulence maintains and is maintained by the mean

velocity profile, it is unlikely that surface length scales which are irrelevant for the

mean velocity profile are important for the dominant turbulent motions.”

It is generally accepted that similarity holds in rough-walled flow except for the

viscous or roughness sublayer (near the roughness elements themselves). Following

the derivation in [54], analysis of the effects of roughness at high Reynolds number,

and away from the wall, given the viscosity independence of the flow and equation

2.14, the law of the wall in terms of an equivalent sand grain roughness, ks can be

found

ks =
32.6ν

Uτ

e−κ(B−∆U+). (2.19)

This length allows for a quick comparison of the roughness function and wall shear
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of some new roughness elements to that of the sand-grain roughness of Nikuradse [45],

essentially establishing a baseline case of comparison. This new length-scale also gives

way to definition of the sand-grain roughness Reynolds number

k+
s =

ksUτ

ν
= 32.6e−κ(B−∆U+), (2.20)

which is separate from the Reynolds number based on the actual roughness height,

k+, in that it cannot be determined without knowing ∆U+ (except for the obvious

case of sand-grain roughness where k+ = k+
s ). A rough-walled flow can then be

classified based upon the value of k+
s into one of three flow regimes:

1. k+
s < 5 The surface is considered to be aerodynamically smooth, as roughness

of this height causes no appreciable shift in ∆U+.

2. 5 < k+
s < 70 The flow exhibits transitional behavior, meaning the form drag on

the roughness elements is significant, but viscous drag is still important.

3. k+
s > 70 The flow is fully rough, and drag is produced primarily through form

drag on the roughness elements. The flow obeys Reynolds number similarity.

As noted previously, these classifications were originally developed using sand-

grain roughness, and the actual location of the transition zone (5 < k+
s < 70) depends

on λ2D or λ3D. The main issue with using ks to classify roughness effects is that

sand-grain roughness itself is poorly geometrically defined, and thus it is difficult to

physically scale ks. This leads to additional confusion when comparing sand-grain

studies to geometrically well-defined studies such as hemisphere or cone arrays. The

effect of the ground-breaking and detailed work of Nikuradse can not be denied,

however all subsequent roughness studies have been stuck with the precedent of using

a poorly defined roughness geometry for comparison.
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Another important aspect of rough-walled flow is the mutual sheltering of rough-

ness elements which occurs in fully rough flow. Typically, mutual sheltering occurs

when a stable permanent vortex forms in-between the roughness elements and effec-

tively isolates the roughness from the mean flow. This condition is preceded by an

unstable vortex shedding regime where mean flow separates from the wall somewhere

near a roughness element, and re-attaches before the next roughness element. These

two regimes can be classified based on the ratio of ks/k, which increases linearly with

λ2D and λ3D until some critical value, and then decreases linearly with λ2D and λ3D.

This critical value indicates the onset of mutual sheltering of the roughness elements.

This means that the flow behavior can potentially be predicted with some accuracy

given λ2D or λ3D and often this is done to set the value of ks a priori [15]. Obviously,

this method is more accurate with a well defined geometry such as 2-D square bars

or sinusoidal, “wavy”, roughness as less length-scales are present compared to 3-D

roughness and several correlations exist [54]. Generally for λ2D > 0.2 mutual shelter-

ing effects are seen over the roughness elements [61]. The results for 3-D roughness are

more scattered as aspect ratios other than λ3D have an effect on ks, whereas for 2-D

roughness it appears λ2D does a decent job at predicting the equivalent sand-grain

roughness.

2.2.3 Turbulence Statistics

The wall-similarity hypothesis also applies to the dominant turbulent motions, which

are independent of the roughness geometry as well at high Re [54]. This independence

implies that the basic structure of turbulence is preserved regardless of roughness ge-

ometry. This is perhaps particularly interesting because it indicates that single-point

turbulence statistics should collapse regardless of roughness geometry and Reynolds

number (provided Re is large enough). There is lingering debate on whether this is

true, as some researchers argue that the turbulent motions are independent of the
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roughness [2, 34, 54, 59] while a few have proposed that roughness effects extend into

the outer layer [32, 36]. The differences seen in these studies have been somewhat

reconciled by the review paper of Javier Jiménez [26] who argues that a value of

L/k > 40 would be required for wall-similarity to hold. Furthermore, little is known

concerning the makeup or organization of the dominant motions present in a turbu-

lent flow, and even less still about the motions in the roughness sublayer, despite the

vast amount of experimental, analytical, and numerical analysis applied to this prob-

lem. Knowledge of these motions would allow for determination of any modifications

in the presence of roughness, and the resulting impact on wall similarity. Therefore

work on characterizing turbulent structure modifications due to roughness and com-

parisons to the smooth-wall cases must be carried out. Furthermore, with regard to

the time-averaged turbulence statistics, wall-similarity dictates that collapse will be

seen across the Reynolds stresses, and higher order moments (provided the Reynolds

number is high enough for the flow to be fully rough) with the smooth-wall case,

except very near the wall.

2.3 Turbulence and Flow Injection

As with surface roughness, the effects of momentum injection or “blowing” through

a surface have received significant attention due to their relevance in applications

such as turbine blade transpiration cooling, flow separation control, and turbulence

mode modulation. Studies incorporating blowing boundary conditions typically fo-

cus on either blowing introduced locally through a slot or series of holes [9, 19, 33] or

uniformly across the surface [11, 14, 63] through a porous medium or smooth plate

with an array of holes. Generally, blowing has been found to decrease skin friction

through reduction of the mean shear at the surface. Studies of blowing effects primar-

ily focus on boundary layers, although channel flow studies have also been conducted

using direct numerical simulation at low Reynolds numbers [11, 29, 44, 58, 63, 66]
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with blowing found to enhance turbulent motions within the channel and increase

Reynolds shear stress.

Depending entirely upon the method of injection, the modifications to the mean

flow behavior vary widely. Generally, for zero-pressure gradient boundary layers, the

effects of blowing on the mean velocity defect plot ((Uinf − U)+ vs y/L) have been

found to be independent of blowing rate [6]. Some approximation can be made for

wall similarity with respect to the mean flow, as noted in [31], where a modified form

of the law of the wall is given for boundary layers with a small amount of upstream

flow injection

U+ =
1

κ
ln(y+) + B +KU+

inj (2.21)

where U+
inj is the injection velocity scaled in viscous units and K is weakly dependent

on U+
inj. Kornilov recommends a value of K = 9.6 for turbulent boundary layers

with injection. The form of equation 2.21 is very similar to the log-law of the wall

for rough walled flows, equation 2.18. With the KU+
inj term acting similarly to the

roughness function, ∆U+ in that it causes a shift in the inner-scaled mean velocity

profile. However, instead of the roughness case where momentum is removed from

the mean flow, blowing serves to add momentum and generally causes a positive shift

in the profile.

Although flow injection has a similar (but opposite in sign) effect on the mean

flow as compared to roughness for localized injection, there remain other effects which

are specific to blowing which limit the analogy with roughness effects. The method

of flow injection can significantly affect the resulting flow structure and thus caution

is warranted before applying Townsend’s hypothesis. When injection is localized

through a slot or porous strip, the turbulence structures appear to re-adapt to a

state which is approximately similar to the state prior to injection [19, 33]. In the

region of flow injection, significant modification to the Reynolds stresses are typically

seen, which is unsurprising because the boundary conditions are supplying extra
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momentum to the flow. For flows where the injection is uniform across the surface, a

slightly different picture has been observed. Upon initially encountering injection, the

flow will take several development lengths to adjust to the new boundary conditions.

This is followed by a region of relatively stable flow behavior in which the flow appears

to reach a fully developed state [11]. However, this is a very different condition to that

of Reynolds number similarity in that the turbulence statistics vary quite significantly

from the smooth-wall boundary condition.

Another difficulty arises when considering uniform flow injection for external and

internal flows. As seen in smooth wall studies [42], the coherent motions of internal

flows such as pipes and channels may be significantly different than boundary layer-

type flows. This would indicate that the disparate structures in external and internal

flows react differently to uniform flow injection, and again suggests that application

of Townsend’s hypothesis may not be valid. Only recently has work begun on char-

acterizing the structural differences of flows with injection [58]. Understanding the

coherent motion similarities and differences between internal and external flows will

undoubtedly aid in understanding the limitations of Townsend’s hypothesis for flow

injection cases.

2.4 Turbulent Interactions With Roughness and Flow

Injection

In comparison to the quantity of research focused on the separate effects of roughness

or blowing on turbulent wall-bounded flow, there have been relatively few examining

their combined effects [20, 21, 57, 67]. These studies limited their investigation to

mean flow properties, with only the work by Schetz and Nerney (1977) providing any

turbulence statistics [57]. Generally, it has been observed that applying roughness

and blowing theory independently to predict their combined effects on the flow results
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in poor matching of the empirical data. Due to the diversity of these investigations,

conducted over a range of subsonic to supersonic flows and for various geometries (in-

cluding axi-symmetric bodies, slender cones, and flat plates), there is little consensus

as to what these combined effects are. For example, an additional ∆U+ shift due

to blowing was observed in the mean flow by Voisinet (1974) [67], however Schetz

and Nerney observed no such shift. Furthermore, prior studies were largely limited

to mean flow properties, with little-to-no information available about how these com-

bined effects act to modify the turbulence, with the exception of Schetz and Nerney

who observed that blowing will increase the turbulence intensity near the wall. This

is consistent with the observations described in Section 2.3 when blowing is present

over a smooth surface. An additional point of confusion is the effect of roughness ge-

ometry. The work by Healzer et al. (1974) used copper balls of k = 1.27 mm (which

is the ball diameter) sintered into a packed array [20]. Schetz and Nerney used a

sintered metal surface as well but with much smaller roughness height of k = 0.07

mm. Voisinet employed an entirely different approach by using a wire mesh, which

is geometrically very different from a sintered surface and perhaps just as difficult

to characterize accurately. Roughness heights of k = 0.1, 0.33, 1.25 mm are given for

the three meshes used. Finally, Holden (1988) does not give a precise value for k in

his report, but does mention using spherical roughness elements [21].1 Regardless of

the roughness geometry used, the trend among these studies is that roughness acts

as a momentum sink in the flow and blowing acts as a momentum source. Using

the notation of the previous sections, the effects of roughness and blowing can be

balanced in the mean flow by altering ∆U+ and KU+
inj.

The lack of data may be unsurprising, as the effects of roughness and blowing are

poorly understood individually, making their combined effect very complex. How-

1Holden’s report may not have included the roughness geometry used in his study due to restraints
on releasing classified information as the work was funded through the Air Force Office of Scientific
Research [21]. Despite this, it does make Holden’s point in his literature review section regarding
the faults of using ill-defined surface geometry rather strange.
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ever, it is valid to argue that many systems of engineering and scientific interest

contain these effects. One of the more prominent being thermal ablative heat shields,

which contain surface roughness due to charing of the heat shield and mechanical

erosion from particle spallation with blowing arising from resin which pyrolyzes and

is then out-gassed through the ablator structure. In addition to the applicability

to char-roughened ablative heat shields, a basic understanding of the flow structure

modifications due to roughness and blowing could be useful for reducing losses in

transpiration cooled equipment such as turbine blades. Furthermore, empirical blow-

ing and roughness data can be used to validate CFD code which implements these as

boundary conditions.

Thus, with the numerous applications of these studies, and the relatively few sets

of empirical data, it appears as though experimental results in this area are necessary

as the bulk of the work completed on surface roughness and blowing interactions is

not cohesive and covers a broad range of flow conditions. This is less of an issue in

the roughness and blowing cases individually as much work has been completed on

these topics. There have also been no concise experiments performed (either in a

compressible or incompressible environment) which investigate the modifications to

the higher-order turbulence statistics and the associated turbulent motions due to

roughness and blowing. This would allow for further insight into the applicability of

Townsend’s hypothesis. With these deficiencies in mind, the current work aims to fill

some of the gaps left by previous work and hopefully provide insight into this unique

flow environment.
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Chapter 3

Experiment Design

The experiments were conducted in the Turbulent Channel Flow Facility (TCFF) in

the University of Kentucky Experimental Fluid Dynamics Lab (EFDL). This is the

same facility used in the studies by Estejab (2011) [16], but with modifications to allow

for roughness and flow injection in the test section. The channel has a half height of

h = 50.8 mm and an aspect ratio of 9:1 to ensure quasi-2D flow at the centerline [68].

The TCFF is powered by a 5.2 kW centrifugal blower which drives the flow through

conditioning, development, and test sections at area averaged, or bulk, velocities up

to 〈U〉 = 30 m/s; producing Reynolds numbers up to Reb = h〈U〉/ν = 102, 000 or

Reτ = hUτ/ν = 4200 for the smooth-walled cases. Data from Estejab [16] is used

here as the smooth-wall comparison cases for similar Reynolds numbers. A schematic

of the smooth-wall channel facility used can be seen in figure 3.1

To ensure a fixed turbulent transition location a boundary layer trip consisting of

a 50 mm wide section of 120 grit sand paper followed by a 100 mm wide section of

60 grit sandpaper was located at the development section inlet. The distance from

the channel inlet to the test section is 246h, allowing the turbulence to reach a fully

developed state [40]. The test section is 24h long, with an instrumentation access

point located at its mid-point. Following the test section, an additional 12h long

conditioning section ensures a consistent pressure gradient inside the test section.

For this set of experiments, the top surface of the downstream end of the TCFF

test section was replaced with a 24h long section of nominally 2-D, sinusoidal rough-

ness. To force flow through the rough surface, an apparatus was designed and con-

structed to produce backplane pressure on the surface. Further details on the blowing

rig and rough surface are provided in Section 3.1. In order to properly characterize

the flow injection a blowing ratio was defined
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Figure 3.1: Turbulent channel flow facility (TCFF) schematic.

BR =
Uinj

Um

(3.1)

Where Uinj is the velocity of the injected air, and Um is the maximum measured

velocity in the channel, at wall normal location ym. Because the centerline velocity, Ucl

varied with blowing rate when tunnel speed was kept constant, the maximum velocity

proved to be a better method of reducing the blowing ratio and accounted for any

asymmetry in the flow due to blowing. Generally, this asymmetry was small, with the

value of Um differing by less than 2% from Ucl in both location and magnitude. This

is also the typical way of characterizing blowing ratios in DNS channel flow studies

with transpiration [11].
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3.1 Flow Injection Rig

In order to accurately capture the effect of flow injection, the key parameter to mea-

sure is the flow injection velocity across the surface. If using gas from a pressurized

cylinder, the method can be straightforward as compressed gas flow meters are com-

mercially available and relatively inexpensive. Originally, this method was considered,

however a reliable source of dry, room-temperature, compressed air was not readily

available so the decision was made to use a series of small fans to pressurize the flow

chamber. With this decision made, the other aspects of the blowing rig were designed

with several key parameters in mind, listed here in order of priority:

1. Distribute the backplane pressure on the rough surface evenly so as to ensure a

consistent average blowing rate across the entire roughness.

2. Provide a means of accurately determining the injection velocity.

3. Support the rough surface in the channel while keeping the surface as planar

with respect to the channel floor as possible.

4. The rough surface mounting method must be such that new roughnesses can

be switched into the blowing rig with relative ease if desired.

The blowing rig itself went through two design iterations. One of the main reasons

for this is a desire to attain higher blowing ratios than the original blowing rig would

allow. The other reason is related to measurement of the injection velocity. This

quantity was measured originally with a loss coefficient, and then later by a more

reliable Venturi-type flow meter. Both designs of the blowing rig will be discussed in

the following and the benefits to each as well as the methodology used to actually

calculate the blowing ratio will be demonstrated. The original blowing rig design will

be referred to as V.1 and the new blowing rig will be referred to as V.2.
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3.1.1 Blowing Rig V.1

For the first iteration of the blowing rig, ten 14 Watt Sofasco SF12038 high-flow AC

fans were wired with a controller to vary the fan speed and control the blowing rate.

To reduce any non-uniformity caused by the fans, a series of screens were installed

inside the blowing rig. The interior geometry of the blowing rig box was 0.4572 m

tall by 0.889 m wide, by 1.143 m long. The box was composed of three main sections,

the topmost of which contained the blowing fans and was 152.4 mm in height. The

second section was 203.2 mm in height, and the third section was 101.6 mm in height.

Between each section was a conditioning screen designed to break down instabilities

due to the fans in a controlled manner, and spacing between screens was at least

sixty times the mesh size [35]. The first, coarse grid was located after the topmost

section and consisted of a woven polypropylene mesh (McMaster-Carr part number

9275T38) with mesh size of M = 3.4 mm. Following this the flow was allowed

to develop over a distance of 153.2 mm before entering an aluminum honeycomb

flow straightener (Bellcomb Industries part number BSP245C) of thickness 25.4 mm,

average hexagonal cell size of width 50.8 mm. Directly after the flow straightener, the

flow entered a second flow conditioning screen of mesh size M = 1.25 mm (McMaster-

Carr part number 87655K132). Finally, the flow developed an additional 101.6 mm

before encountering the rough surface.

The box itself was constructed of 1 mm thick 3003 Aluminum sheet metal for

light weight and ease of machining. All sections of the box were formed using a

sheet-metal bender, with each vertical section composed of C-shaped channels pop-

riveted together at the ends. The spanwise side sections supported the box across

the channel. The streamwise side sections of the box were attached to the spanwise

sections with an L-shaped, pop-riveted bracket. For smooth-wall turbulence studies,

the TCFF test section has a plexiglass top which bolts to the test section side-walls.

The same bolt-hole configuration was employed on the box to mount the bottom of
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the box to the test section. The rough surface was mounted to the 3.81 cm lip around

the edge of the box. This lip was necessary for mounting of the rough surface and

for situating the rig above the test section, but it reduced the interior dimensions of

the flow injection area (0.889 × 1.143 m versus the test section dimensions of 0.9144

× 1.2192 m). Thus the rough surface had an unblown section in the streamwise

direction of 12.7 mm on each side, and 38.1 mm on the entrance and exit to the test

section. Due to the small relative size of these unblown sections compared with the

total flow injection area, the effect of these unblown sections is considered negligible.

This first version of the blowing rig used a loss coefficient method to determine

the flow rate through the screen. The blowing rig was constructed with a set of

pressure taps around the perimeter of the bottom two sections. Using the lowest set

of pressure taps and the static pressure ports in the channel, the pressure drop across

the rough surface could be determined using the loss coefficient [64].

Kroughness =
∆p

1/2ρU2
(3.2)

whereKroughness is the pressure loss coefficient, ∆p the pressure drop across the screen

(measured at static ports PR2 and PC1 in figure 3.3), and U the mean velocity. The

pressure loss coefficient for the rough surface was determined by an external set of

experiments performed in a pipe flow facility also located in the EFDL. This pipe

was constructed specifically to determine the loss coefficient of various screens and

provided a novel way of determining the very low flow rates experienced when using

the rough surface in the TCFF. The pipe was constructed of smooth PVC, with a

diameter, D = 50.8 mm. The pipe was pressurized at one end and the flow rate

regulated with a ball valve. The flow entered the pipe and was allowed to develop

along a length of 295D after which the test section is located. The insertion of a

porous test specimen was performed with specially designed plugs which positioned
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the test specimen in the pipe but did not allow for pressurized gas to escape the

pipe. This test section was followed by a further 100D of pipe to allow for pressure

measurements after the test article. The pipe was fitted with pressure taps according

to the recommendations of Tavoularis (2005) [64] which allowed determination of the

pressure drop across the test article. The velocity profile at the pipe outlet was also

measured using a Pitot-static tube mounted on a traverse. For various inlet pressures,

the pressure drop across the sample and mean exit velocity were recorded and used

to generate the loss coefficient, Kroughness.

Figure 3.2: Upstream view of TCFF with blowing rig V.1 installed above test section.

Several of the issues regarding the use of a pressure loss coefficient are evident

in figure 3.4. The first of which is that to measure a significant amount of velocity

at the end of the pressure drop pipe, a high pressure had to be applied to the test

article. This meant that the run cases later performed in the TCFF were outside the

calibration points and thus subject to a significant amount of uncertainty. Also, the

large pressure drop required indicates that the flow after the test piece was subject to

a large amount of non-uniformity, and that the rough surface was highly non-porous.

Equation 3.2 was originally developed for screens and other highly porous samples

[64].
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Figure 3.3: Schematic of blowing rig V.1.

Figure 3.4: Plot of calibration points for determining Ksurface = 19, 852 for the

rough surface, and the resulting equation 3.2, Uinj =
√

(2∆P )/(19, 852ρ). The actual
pressure drops measured during test runs in the TCFF are also plotted for a test case
at Reh ≈ 35, 000.

To confirm the flow rates calculated using equation 3.2, the Sofasco fans factory

flow rate curve was compared to the results acquired for flow rates inside the channel

using Kroughness. The highest measured static pressure difference between the blowing

rig and the channel was 16.7 Pascals (0.067 inches of water column) and equated to a

calculated blowing rate of 2.28 m3/min (80.7 CFM). This is in line with the factory

specifications of the Sofasco fans which are reported to have a maximum flow rate of

0.24 m3/min (8.5 CFM) per fan at low static pressures, which results in a flow rate

of 2.4 m3/min and is very close to the calculated value. Despite this encouraging
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result supporting our technique of measuring Uinj, the two issues regarding the use

of a loss coefficient were the main motivators for implementing a higher confidence

method of measuring the injection velocity.

3.1.2 Blowing Rig V.2

From the beginning, the second version of the blowing rig was designed to more easily

measure Uinj. It was decided that a venturi-type flow meter would provide the best

accuracy, ease of use, and lowest pressure drop compared with other conventional flow

measurement devices such as variable-area vanometers, or orifice plates. Because no

high pressure air source was available, and because the blowing fans on V.1 of the

blowing rig were only able to produce the small pressure drop seen in figure 3.4, a

new source of injection air was required. A centrifugal blower (McMaster-Carr part

number 1963K15) was chosen because it could supply a relatively large flow rate of

5.7 m3/minute (200 CFM) at a large static pressure of 350 Pascals (1.4 inches of

water column). This was nearly double the flow rate of the Sofasco fans which was

measured to be 2.28 m3/s (80.7 CFM) at 16.7 Pascals (0.067 inches of water column).

The new blower was over-sized to allow for a wide range of BR to be investigated.

It was estimated using Ksurface that a blowing rate of BR = 0.016 or 1.6 % of the

maximum channel velocity could be achieved for Reh ≈ 35, 000, as opposed to the

previous maximum value of 0.35 % using the Sofasco fans.

Because the injected flow now came from a single source, and had to be measured

at a single location prior to entering the blowing rig, several modifications to the

blowing rig were necessary. The centrifugal blower was fitted external to the tunnel

with a reducing section which took the square exit of the blower down to a three-

inch diameter tube. This tube was fitted to a flexible section of the same diameter,

approximately 1 meter in length, to eliminate any blower vibrations from reaching the

blowing rig. The tube was connected to a section of Schedule 40 black steel threaded
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pipe, size 3 NPT with a nominal inner diameter of 76.2 mm (3 inches). Then the

flow traveled through 5 pipe diameters of straight section before entering the venturi

meter which was threaded to accept the pipe. Following the meter, an elbow was

included which re-directed the air into a fixed pattern diffuser (McMaster-Carr part

number 1837K21) mounted on top of the blowing rig. The diffuser evenly distributed

the flow into the blowing rig. These modifications can be seen in figure 3.5 and in

the schematic diagram of figure 3.6. The rest of the blowing rig, including the flow

conditioning screens, were left intact in V.2, with the only modification being to block

off the Sofasco fans and pressure ports.

Figure 3.5: Blowing rig V.2 installed on TCFF.

Following the construction of blowing rig V.2, a series of smoke-flow visualization

studies were performed to asses the uniformity of the injected gas velocity over the

rough surface. It was found that at multiple tunnel speeds, the blowing rig performed

well at distributing the flow into the channel. The resulting images from these tests

are available in appendix 5.1.
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Figure 3.6: Schematic of blowing rig V.2.

3.2 Rough Surface and Modular Test Section Floor

The rough surface used for this set of studies is an acoustic panel with a nominally

two-dimensional, sinusoidal roughness pattern. The roughness elements are spaced

with a streamwise length of Lx = 7 mm and amplitude of k = 1 mm. The surface

had micro-cracked pores distributed uniformly across its surface, which allowed for

evenly distributed blowing. This surface is an acoustic panel known as “Millennium

Metal” manufactured by American Acoustical Products1 and acquired for use here

because of its very uniform surface roughness. An image of this surface is included

in figure 3.7.

In addition to the modifications mentioned previously for blowing rig V.2, the test

section floor was also adapted to include a modular floor design. This floor allowed

easy and accurate positioning of the measurement station at multiple streamwise

locations. An image of this is included in figure 3.8.

The dimensions of the new floor allowed measurements to be taken at numerous

streamwise positions, but for this study three positions were chosen and are given in

1Additional information is available at www.aapusa.com/millennium_metal.html
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Figure 3.7: Rough surface detail.

Figure 3.8: New modular test section floor, with measurement instrumentation plug
holder at three streamwise positions (actual instrumentation plug not pictured).

terms of the streamwise distance from the inlet of the test section, x = 16.7 cm, x = 57

cm, and x = 103.1 cm, which correspond to stations closest to the inlet, center, and

outlet.

3.3 Data Acquisition Techniques

Due to the unique requirements of measuring the wall-normal profiles on a rough sur-

face, a methodology was developed which produced repeatable wall-normal profiles.
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The main mode of data collection was with hot-wire anemometers using the same

basic interface as that outlined in Estejab [16]. The instrumentation control system

is summarized in the flow-chart of figure 3.9.

Figure 3.9: Diagram illustrating instrumentation connections used for measurement
of wall-normal velocity profiles and calibration.

3.3.1 Pressure Measurement

A Pitot-static tube (Dywer model 167-6) measured the centerline velocity used to

calibrate the hot-wire anemometer. The Pitot tube was fixed at the channel centerline

and had a diameter of 3.2 mm and a 0.15 mm insertion length. The streamwise aligned

element of the tube was 50.8 mm in length.
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To determine the static pressure in the channel test section, two static ports were

machined into the surface of the instrumentation plug located 25.4 mm downstream

from the tip of the Pitot tube and spaced 25.4 mm apart to average any pressure

variations caused by the presence of the Pitot tube. The static ports had a diameter

of 1.3 mm for a depth of 9.5 mm and were then mated to threaded barbed hose

fittings mounted exterior to the channel with a matching diameter of 1.3 mm and a

length of 14.2 mm. This produced a length to diameter ratio of 18.

Pressure measurements were acquired using a NIST calibrated Omega PX653-

03D5V differential pressure transducer with a 0-746.5 Pascal range.

3.3.2 Venturi Flow Meter

The Venturi flow meter was a Dwyer Instruments Inc. unit (part number 2000-10-

VF4) and was delivered with a calibrated pressure gage. The attached gage output

both pressure and flow rate increments for each differential pressure. The meter

was calibrated up to pressures of 2490.889 Pascals and flow rates of 5.6634 m3/s. In

parallel with the calibrated meter, a second pressure transducer was connected (NIST

calibrated Omega PX653-0.5BD5V differential pressure transducer with a ±124.544

Pascal range), and a series of injection velocities were tested. The flow rate was

then calculated from the differential pressure and with an application of Bernoulli’s

equation and compared with the calibrated pressure gage scale. The results indicated

that the gage assumed a fully developed turbulent profile, which is in accordance with

the factory requirements of a development length before the flow enters the gage. The

factor between the calculated flow rates and calibrated pressure gage was 1.2. This

allowed for a much more accurate pressure transducer to be used to determine the

injection velocity via

V̇inj = 1.2× Ag1

√

2∆P

ρ ((Ag1/Ag2)
2 − 1)

(3.3)
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where V̇inj is the injection gas flow rate, Agi is the area at the inlet (i = 1) and

reduced area section (i = 2), and ∆P is the pressure drop measured.

3.3.3 Hot-Wire Probes

Single-component velocity hot-wire probes were constructed by soldering Wollaston

wire onto Auspex boundary layer type hot-wire prongs. The wire was then etched

using a 15 % nitric acid / water solution to expose the 2.5 µm diameter Platinum core

wire. A micro-positioner was used to maneuver the wire inside a small bubble of acid

formed at the tip of a syringe. Using this method, hot-wires of various lengths can

be constructed with great accuracy. For this set of tests, all wires were constructed

with a length of ℓ = 0.5 mm.

The spatial filtering effects of hot-wire anemometers have been studied extensively

(see, for example [10, 25, 48, 62]). Typically, if the viscous scaled wire length is ℓ+ =

ℓUτ/ν < 20, the wire can be considered free of spatial filtering effects. Therefore, any

data taken with hot-wires which do not fulfill this requirement must be analyzed with

the effects of spatial filtering in mind. Another important factor when choosing the

wire geometry is the aspect ratio, ℓ/d > 200. This parameter controls end-conduction

effects. For hot-wires outside these nominal parameters, several correction methods

have been developed [23, 25, 39, 60, 62]. However, the basis of these correctional

methods relies on assumptions or empirical data made for smooth-wall turbulent

flows and therefore they are not directly applicable to the roughness and blowing

cases and will not be applied to the data sets in this thesis.

To measure wall-normal profiles of the fluctuating streamwise component of ve-

locity, the single-sensor hot wire probe was mounted on an custom-built traversing

system. This system was comprised of multiple components. The linear motion of

the probe was provided by a Velmex A1509Q1-S1.5 lead-screw type traverse with a

1 mm per rotation pitch. The lead screw was driven by a Lin Engineering 417/15/03
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high-accuracy stepper motor attached through a timing belt with a 2:1 increase in

diameter. This motor was controlled using a Lin Engineering R325 micro-stepping

controller with resolution of 5 nm per step. To verify the position of the traverse,

an Acu-Rite SENC50 E 5/M DD9 0.5 A156 quadrature linear encoder was mounted

on the traverse. This system had a 500 nm resolution and stated accuracy of ± 3

µm. The encoder signal was read by the data acquisition system after first being fed

through a USDigital LS7184 quadrature clock converter microchip which then was

combined into a single clock pulse signal with a companion TTL direction signal.

Thus the probe position could be known with high relative accuracy between points

of measurement.

The entire traversing mechanism is mounted on a 152.4 mm (6 inch) diameter

instrumentation plug. This plug has additional ports for the centerline Pitot tube

and the thermistor probe. Prior to a run, a probe is mounted on the traverse in a

reverse orientation from the smooth-wall configuration. This step is necessary because

the roughness measurements are performed on the top surface of the channel instead

of the bottom. Setting the zero location of the probe was a critical step in the

instrumentation process because it allowed the probe to return to a known “home”

position, yh, and then moved back to the centerline, after each run for calibration.

Since probe contact with the wall was undesirable, an electrical contact limit switch

was designed into the positioning apparatus. The switch carried a 5 Volt signal which

was grounded once a bar on the moving portion of the traverse contacted a micrometer

mounted on the fixed section of the lead screw drive. By carefully adjusting the

micrometer while monitoring the probe position with a Titan Tool Supply Z-axis

ZDM-1 measuring microscope, the limit switch could accurately be set to trigger at

a specific wall-normal position with ± 5 µm accuracy.

In roughness studies, the actual wall location is typically offset by an amount

y0 known as the zero-plane displacement [54]. The value of y0 is typically smaller
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than the roughness height itself, k. As y0 can be determined a posteriori, it was

therefore not essential to accurately determine the exact wall distance as all probes

were traversed to within a single roughness height. The first set of data acquired

inside the channel with blowing rig V.1 traversed the probe until destructive contact

was made with the wall. While this method did return the exact wall location, it

had the negative side effect of requiring many probes to be constructed, which may

introduce small probe-to-probe variations. Additionally, a second calibration could

not be performed to check the probe drift over the run time (this time was considerable

at low speeds, typically 5 hours). Therefore, for the second set of runs with V.2 of the

blowing rig, a new method was developed to ensure the probe was traversed within

the roughness elements, but remained intact after a run.

The new method involved a line-of-sight tool constructed with a mirror and prism

mounted on an adjustable traverse. The unit is placed inside the channel with a

section of the modular floor which does not contain the instrumentation plug, removed

for access. The user then manually increments the probe into the roughness, using

the tool to check if the probe tip is within the roughness elements. Once the user

is confident the probe is inside the roughness, the distance from the probe home

location to the new, “safe” location is recorded as ys. The advantage of this method

lies in the in situ method of setting the zero, with all instrumentation attached in

position for a run. It does have the unfortunate consequence of user dependence on

final probe location, however, due to the probe homing method, consistency between

runs is ensured regardless of the value of ys chosen.

Hot-wire probe power was provided by a Dantec Dynamics StreamlineTMsystem

at an overheat ratio of 1.6. The probe was calibrated before and after each profile

measurement at the centerline of the channel using the Pitot probe and wall-pressure

tap combination to verify the absence of temperature drift in the HWA probe. The

calibration data was fitted using a fourth-order polynomial following correction of the
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voltage for flow temperature variation [27]. Details on error sources related to this

calibration technique are available in Appendix 5.3.

3.3.4 Data Acquisition

The core of the data acquisition system was a National Instruments PCI-6123 data

acquisition card mounted in a desktop PC. This particular card could sample up to 8

analog data channels at 500 kHz and 16-bit resolution simultaneously. In addition to

the analog inputs, the card had 8 digital input/output lines and two 24-bit counter-

timers which were used for experiment control. All inputs and outputs to the card

were completed through a National Instruments BNC-2110 connector block.

Hot-wire profile data were first filtered internally at 30 kHz by the Dantec Dy-

namics StreamlineTMunit and then digitized at 60 kHz by the NI PCI-6123. The ac-

quisition time, T , for each run was adjusted based on the Reynolds number expected

to capture at least 100 instances of the largest structures (estimated as O(20h) [42])

in order to ensure converged statistics. Wall normal profiles were constructed by

traversing the probe from within the trough of the roughness element at y = ys to

y = 1.1h.

Pressure transducer voltage and thermistor controller voltage were also digitized

simultaneous to the hot-wire by the NI PCI-6123. These were sampled at a rate of

10 kHz after filtering by a Krohn-Hite Corporation Model 3905A multichannel filter

at a rate of 5 kHz.

3.4 Measurement Procedures

The primary data set acquired for this thesis was taken with blowing rig V.2 and the

modular floor design. The bulk of the data investigates matched BR cases across

multiple Re, with other runs designed to study specific effects such as very high BR

or streamwise development length. During the course of this research wall-normal
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profiles of the streamwise velocity were acquired at a multitude of different run con-

ditions. The main goal of this set of experiments was to isolate the effects of roughness

relative to roughness and blowing while also investigating their combined effects when

subject to changes in Reynolds number, blowing ratio, and streamwise measurement

location. The key parameters of this data set are listed in the tables of Section 3.4.

The test cases can be broken down into two large groups based on streamwise

location of the measurement. The first set of data is only at the test section center

(x = 57 cm) and the other set at the inlet (x = 16.7 cm) and exit (x = 103.1 cm) of

the test section. Group one data is summarized in table 3.1 and contains roughness-

only runs for the full set of Re investigated, and roughness/blowing runs for the three

lowest Re. Group two data in tables 3.2 and 3.3 involve data taken at the inlet and

exit of the test section, mainly to investigate the streamwise development of the flow.

The experimental procedures for these runs were imperative to acquiring reliable

data sets. Therefore great care was taken in the procedures developed specifically for

this set of tests. The primary parameter was determination of the wall location which

required two important parameters. The first was setting the “home” location, yh,

of the wire and the second was setting the safe wall distance, ys, that dictated the

distance the wire traveled from the home position into the roughness. The method

for setting yh and ys are detailed in Section 3.3.3. Prior to inserting a new hot-wire

into the TCFF test section, yh was set external to the tunnel and the value recorded.

Then the probe was inserted into the test section. The safe distance was then set

with the optical tool. The value of ys was measured again when any changes to the

streamwise measurement location were required. Great care was taken to ensure the

hot-wire was inside the roughness elements at the beginning of all measurements.

The confirmation of this procedure came in the hot-wire mean flow results. Typically

the first few data points acquired by the hot-wire reported negative or zero velocity

indicating that the probe was in a recirculation zone behind a roughness element.
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Due to the directional sensitivity of the hot-wire probe response, these points were

discarded in later analysis.

Prior to starting a run, the injection velocity, Uinj was set using an adjustable flap

on the inlet to the flow injection centrifugal fan. The flap was opened or closed until

the correct injection velocity was reached. It was often a trial and error process to

set BR however, as Um was not known exactly prior to a run. All blowing ratios were

checked after a run with the actual Um and were found to deviate very little from the

estimated values. The difference between estimated and actual BR was always less

than 1 %.

Before beginning a run, calibration of the hot-wire was performed in situ with

the probe in the geometric center of the channel. A pitot-static tube was located

at the centerline which acquired the mean velocity over a period of 30 to 60 seconds

depending on the channel speed (lower calibration speeds required a higher acquisition

time) and then this velocity was used to calibrate the mean signal of the hot-wire

probe. The number of calibration points depended on the actual run speed. At the

lowest run speeds a minimum of 8 different velocities were acquired, and 14 at the

highest run speeds.

Directly after calibration, the run was initiated. Each profile was gathered over a

series of 70 points, although some points were later removed due to the recirculation

zones as described earlier. An acquisition time, T was also selected for each point.

An automated LabviewTMprogram read in the profile measurement locations from

file and automatically adjusted the probe location between velocity readings. The

encoder position was also recorded after moving the probe and was used as the actual

wall position of the probe in post-processing. After a run ended, the “home” position

was used to re-align the probe with the channel centerline and another calibration

was immediately performed.
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Table 3.1: Run cases for data gathered at center (x = 57 cm) of test section. NOTE:(†) runs were performed with blowing rig
V.1.

Case Tunnel
Freq.

Um Uτ Reb Reτ V̇injected BR ℓ+ ∆U+ y0 k+ k+
s T

(Hz) (m/s) (m/s) (m3/min) (%) (µm) (sec.)

1 10 3.876 0.196 11,449 659.0 0 0 6.49 1.32 140 12.97 9.73 220
2 10 4.016 0.214 11,666 719.5 0.250 0.102 7.08 3.12 270 14.16 19.63 220
3 10 4.025 0.22 11,664 739.6 0.319 0.130 7.28 3.52 150 14.56 22.95 220
4 10 4.029 0.223 11,495 749.7 0.398 0.162 7.38 3.92 145 14.76 26.82 220
5 10 4.061 0.23 11,552 773.3 0.451 0.182 7.61 4.32 -30 15.22 31.35
6 10 4.133 0.26 11,092 874.1 1.133 0.450 8.60 7.77 190 17.21 120.4 220
7 10 4.124 0.265 10,859 890.9 1.416 0.563 8.77 8.92 150 17.54 188.54 220
8 10 4.139 0.27 10,629 907.7 1.841 0.729 8.93 9.47 100 17.87 233.65 220
9 23.3 10.721 0.618 31,366 2,078 0 0 20.45 6.92 150 40.90 86.43 220
10 23.3 10.677 0.65 30,714 2,185 0.651 0.100 21.51 8.02 530 43.02 132.7 200
11 23.3 10.679 0.67 30,592 2,253 0.844 0.130 22.17 8.52 550 44.34 161.3 200
12 23.3 10.642 0.695 30,088 2,337 1.036 0.160 23.00 9.42 600 46.00 229.1 200
13 † 23.3 10.603 0.66 30,234 2,219 0.937 0.145 19.66 8.52 -348 43.68 161.3 200
14 † 23.3 10.373 0.68 29,240 2,286 1.535 0.243 20.25 9.42 -145 45.00 229.1 200
15 † 23.3 10.623 0.72 29,427 2,421 2.286 0.353 21.44 10.42 -8 47.65 338.4 200
16 38 18.472 1.131 53,399 3,801 0 0 37.41 9.46 850 74.82 232.7 90
17 38 18.404 1.25 52,518 4,203 1.133 0.101 41.36 11.02 840 82.73 427.7 90
18 38 18.495 1.30 53,471 4,371 1.416 0.126 43.02 11.62 790 86.04 540.4 90
19 38 18.527 1.32 52,284 4,438 1.841 0.163 43.68 11.97 790 87.36 619.4 90
20 52 26.361 1.60 76,380 5,379 0 0 52.95 10.22 1000 105.89 313.0 90
21 63 32.680 2.00 95,382 6,724 0 0 66.18 10.72 1300 132.36 380.4 90
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Table 3.2: Run cases for data gathered at x = 16.7 cm. NOTE: the wall shear stress for these cases was attempted, but due to
the developing nature of the flow, is subject to considerable error compared with the other cases which displayed a much more
established log-layer.

Case Tunnel
Freq.

Um Uτ Reb Reτ V̇injected BR ℓ+ ∆U+ y0 k+ ks T

(Hz) (m/s) (m/s) (m3/s) (µm) (mm) (sec.)

22 38 18.464 1.1 53,753 3,698 0 0 36.40 7.92 170 72.80 127.7 90
23 38 18.144 1.2 53,649 4,034 1.133 0.101 39.71 12.42 100 79.42 738.3 90
24 38 18.219 1.3 53,711 4,371 1.416 0.127 43.02 13.17 100 86.04 989.1 90
25 38 18.200 1.4 53,422 4,707 1.841 0.166 46.33 13.42 100 92.65 1,090 90

Table 3.3: Run cases for data gathered at x = 103.1 cm.

Case Tunnel
Freq.

Um Uτ Reb Reτ V̇injected BR ℓ+ ∆U+ y0 k+ ks T

(Hz) (m/s) (m/s) (m3/s) µm (sec.)

26 10 4.049 0.20 11,879 672.4 0 0 6.62 1.29 750 13.24 9.62 220
27 10 4.280 0.24 11,341 806.9 1.133 0.434 7.94 6.92 480 15.88 86.43 220
28 10 4.313 0.26 11,154 874.1 1.416 0.539 8.60 8.27 600 17.21 146.3 220
29 10 4.486 0.28 11,499 924.6 1.841 0.673 9.10 9.32 830 18.20 220.4 220
30 38 18.788 1.23 53,456 4,135 0 0 40.7 10.60 920 81.40 363.0 90
31 38 19.345 1.39 53,972 4,673 1.133 0.096 46.0 12.27 780 91.99 696.3 90
32 38 19.384 1.47 53,727 4,956 1.416 0.120 48.8 13.07 900 97.55 951.3 90
33 38 19.362 1.50 53,162 5,043 1.841 0.156 49.6 13.47 880 99.27 1,112 90
34 63 33.344 2.2 95,963 7,396 0 0 72.8 12.02 1,050 145.6 631.6 90
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Table 3.4: Smooth-wall comparison cases at center of test section (x = 57 cm).

Case Tunnel
Freq.

Um Uτ Reb Reτ ℓ+ T

(Hz) (m/s) (m/s) (sec.)

35s 10 4.209 0.198 12,403 665.7 5.90 220
36s 33 15.881 0.651 47,981 2,189 21.33 180
37s 45 22.987 0.895 69,586 3,009 29.32 90
38s 63 33.344 1.258 101,234 4,229 41.21 90
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3.5 Wall Shear Stress

Direct measurement of wall shear stress to determine Uτ was not possible in the

present case. Therefore, for this set of experiments, the so-called “Clauser chart”

method was used to determine the friction velocity [12]. This method has precedence

in rough-walled turbulent boundary layers [17, 32, 38, 48, 59], but it has been noted

to lack agreement with other methods [1]. This has resulted in multiple improvements

upon the basic Clauser method [1, 49] being proposed. However, the structure of any

of these methods relies on universality of the velocity-defect law. For the purposes of

these experiments at the lower Reynolds numbers (Reτ < 3000), the method described

in Perry et al. (2009)[48] was modified by utilizing the streamwise Reynolds stress

to determine y0 whereby a value was chosen so that each profile tends towards zero

at the same location as the smooth wall cases at similar values of Reτ . This method

proved very reliable at producing values of y0 which also collapsed the mean profile

data. An iterative procedure was then used to determine Uτ by matching the slope

of the mean velocity profile in the logarithmic region to that of the smooth-walled

case. At higher Reτ the near-surface peak in streamwise Reynolds stress was not

sufficiently resolved to extrapolate the profile. However, it was assumed that the log

region in the mean flow was large enough in this high-Re range to fit the profiles

accurately using equation 3.4 with a von Kármán constant of κ = 0.39 and log-law

additive constant of B = 4.42 [43].

U+(y) =
1

κ
ln(y+) + B −∆U+(k+, L+) (3.4)

3.5.1 Validation of Clauser Chart

To validate the results obtained with the Clauser chart method described above,

a simple control volume momentum balance was performed on the mean flow which
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took into account the entrance and exit mass flux to the test section and the measured

pressure drop along the test section. A diagram of this approach is shown in figure

3.10.

Figure 3.10: Diagram of control volume inside channel test section with roughness
and blowing. The spanwise direction of the control volume is into and out of the
paper with unit width, w

To complete this control-volume analysis, several simplifying assumptions had to

be made. Namely, that no flow crossed the mean streamlines from the inlet and

outlet locations of maximum velocity. This makes up the bottom of the control

volume, surface 4, in figure 3.10. No mass crosses this boundary, and no forces act

on it. Furthermore, the control volume is placed infinitely close to the roughness at

surface 3, so that the only effect on the flow is the wall shear force. The pressure

gradient in the channel is represented as a pressure acting on the control volume at

surfaces 1 and 2. The y-momentum equation is of little use here as no forces act

in that direction besides the mass addition due to blowing. However, all mass must

leave the control volume via surface 2, so the effect of blowing is accounted for by the

measured velocity profiles at 2.
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ΣFx = −τwA3 − P2A2 + P1A1 =

∫

CS

−→
V ρ

−→
V · n̂dA (3.5)

= ρ
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∫

A2
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0
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

 (3.7)
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−1

x2



 ρ

ym2
∫

0

U2
2dy − ρ

ym1
∫

0

U2
1dy + P2ym2

− P1ym1



 (3.9)

Here U1 and U2 are the entrance and exit velocity profiles, respectively. All terms

are assumed not to vary in the z or spanwise direction near the centerline. Thus,

the profiles become a function of x and y only. To acquire the pressure drop at

the entrance (P1) and exit (P2), a series of experiments were carried out in which

the channel test section was modified to accept two Dwyer pitot-static tubes (part

number 166-12-CF). These pitot-static tubes were fitted in the side-wall of the channel

at the centerline. Each probe was carefully aligned to read the streamwise dynamic

pressure with the static pressure ports in the same streamwise location as the point

of the hot-wire measurements. Furthermore, the tubes were 304.8 mm long and thus

the sensing tip was inside the middle 1/3 of the channel.

With the use of these pitot-static tubes, and the static ports on the floor in the

center of the test section, the pressure gradient could be found at three different

locations in the test section. This allowed the analytical model derived in equation

3.9 to be compared with the values from the Clauser-chart method between any two

of the three locations. Because the flow was not sufficiently developed at the inlet to

the test section (x = 16.7 cm) these points are ignored.
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Determination of the wall shear using equation 3.9 is shown in figure 3.11 along

with the Clauser chart values averaged between the center and exit. There was

significant scatter in the calculated values of Uτ , and only two points are available

for each Reynolds number. This was most likely due to the very small pressure

measurements which were typically less than 15 Pascals. The benefit of this analysis

is that it confirms the Clauser chart values should increase with increased blowing.

In fact, for the low Re cases, the calculated Uτ appear to follow the Clauser Uτ well.

Figure 3.11: Calculated and Clauser chart friction velocity comparison. Uτ found
between center (x = 57 cm) and rear (x = 103.1 cm) of test section is shown as
dashed lines. The blue points are for Reτ ≈ 700 and the red points are Reτ ≈ 4000.
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Chapter 4

Results and Discussion

The bulk of this chapter focuses on the matched blowing ratio cases. These provide

the most direct comparison of blowing effects across a range of Reynolds numbers.

Also included are several test cases to study the limits of wall similarity with respect

to increasing BR and streamwise flow development. All cases have been summarized

in table 4.1, along with the symbol designation used in Section 4.1. The results

are broken down into three main sections, time averaged statistics are presented in

Section 4.1, the frequency spectra are presented in Section 4.2, limitations on self-

similarity due to blowing are presented in Section 4.3, and analysis of streamwise flow

development is presented in Section 4.4.

4.1 Time-Averaged Statistics

Observing the time-averaged statistics for the roughness and combined roughness/blowing

effects allows for direct comparison of modifications to the flow structure. The first

section, Section 4.1.1, contains the wall-normal, streamwise, time-averaged statistics

such as the coefficient of friction, roughness function, and velocity profiles for each run

condition. This is followed by a section discussing the turbulence statistics in Section

4.1.2, which contains the Reynolds stress plots and higher-order statistics such as the

skewness, kurtosis, and third-order moments.
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Table 4.1: Symbols for Blowing Rate according to Reynolds number at x = 57 cm.
NOTE:(†) runs were performed with blowing rig V.1.

Case Tunnel
Freq.

Reτ BR Symbol

(Hz) (%)

1 10 659 0 ⋄
2 10 719.5 0.1 �

3 10 739.6 0.13 △
4 10 749.7 0.16 ◦
5 10 773.3 0.18 I

6 10 874.1 0.43 ⊲
7 10 890.9 0.56 +
8 10 907.7 0.73 ⊳
9 23.3 2,078 0 ⋄
10 23.3 2,185 0.1 �

11 23.3 2,253 0.13 △
12 23.3 2,337 0.16 ◦
13 † 23.3 2,219 0.145 I

14 † 23.3 2,286 0.24 ⊲
15 † 23.3 2,421 0.35 +
16 38 3,801 0 ⋄
17 38 4,203 0.1 �

18 38 4,371 0.13 △
19 38 4,438 0.16 ◦
20 52 5,379 0 ⋄
21 63 6,724 0 ⋄
35s 10 665.7 0 × or −
36s 33 2,189 0 × or −
37s 45 3,009 0 × or −
38s 63 4,229 0 × or −

4.1.1 Mean Flow

The variation of the friction coefficient as a function of bulk Reynolds number is

presented in figure 4.1. In this case, the friction coefficient is defined as

Cf =
τw

(0.5ρ〈U〉2) (4.1)
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where τw is the wall shear stress, ρ is the density, and 〈U〉 is the area-averaged or

bulk velocity

〈U〉 = 1

ym

ym
∫

0

U(y)dy (4.2)

where ym is the wall-normal location of the maximum velocity. The bulk velocity

was calculated in this way to account for any slight asymmetry in the mean velocity

profile which was induced by roughness and/or blowing. By definition, for the smooth

wall cases, ym = h and the bulk velocity returns to its usual form. Generally, the

asymmetry present in the roughness and blowing cases was small, with Um = U(ym)

found to be within 2 % of Ucl = U(h) in location and value.

With respect to the values of Cf seen in figure 4.1, the deviation of Cf for the

BR = 0% condition from the smooth-wall curve follows typical surface roughness

behavior. The lowest Reynolds number measured appears to be transitional and the

highest Reynolds numbers measured are approaching fully rough conditions. Inter-

estingly, for non-zero BR, the skin friction was observed to increase with increasing

BR and the Reynolds number behavior of Cf is similar to that expected for in-

creasing roughness effects. This result is in contrast to results from other blowing

studies with smooth-walls as well as prior work on turbulent boundary layers with

roughness and blowing [21, 57, 67], where any amount of flow injection was observed

to reduce skin friction when roughness was present. One potential explanation for

this deviation from prior results is the surface geometry. In the present study, the

roughness is nominally two-dimensional, whereas prior work focused exclusively on

three-dimensional roughness geometries such as mesh roughness and sintered metal

surfaces. The near-wall flow of two-dimensional roughness can be expected to be

composed of relatively spanwise-coherent shear-layers separating from the roughness

elements. The addition of momentum transfer from the blowing could disrupt these

shear layers, resulting in enhanced momentum transfer with the surface.
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k, as the BR > 0 cases follow separate ∆U+(k+) trends for each individual BR.

Following the analogy for roughness, this equates to a change in overall roughness

geometry and not simply an increase in k.

From the plot in figure 4.5(a), a clear dependence on the blowing ratio is evident,

and an attempt to correlate the blowing ratio to the increase in ∆U+ resulted in the

following empirical correlation

∆U+

corrected = ∆U+(1− 1.2(BR%)) (4.3)

where the blowing ratio is formulated as a percentage

BR% =
Uinj

Um

× 100. (4.4)

As shown in figure 4.5(b), the ∆U+ values for BR > 0 modified with equation

4.3 collapse onto the BR = 0 curve for the highest, fully rough Reynolds numbers.

Although the formulation of the correction is simplistic, it suggests that the effects of

roughness and blowing can potentially be treated in succession, at least for the mean

flow.

This result encouraged extension of the correction to account for blowing in the

friction coefficient. First noting that Cf = 2〈U+〉−2, equation 4.3 can be combined

with the log-law formulation for a rough-walled surface,

U+(y) =
1

κ
ln(y+) + B −∆U+(k+, L+) (4.5)

to account for blowing effects such that

Cfblowing
= 2

(√

2

Cf

−∆U+

[

1.2BR

1− 1.2BR

]

)−2

(4.6)
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4.1.3 Higher-Order Statistics

The skewness factor is defined as the third order central moment normalized with the

second order variance

Su =
u3

(

u2

)3/2
. (4.7)

The skewness is displayed for all Reynolds numbers and the cases with matched

blowing ratios in figure 4.11. Observing the BR = 0 cases, some deviation is seen from

collapse across the Reynolds number range. It appears that at the lowest Reynolds

number, the skewness zero crossing occurs much sooner (Y/h ≈ 0.02) than the other

roughness cases (Y/h ≈ 0.1). This is interesting because collapse is expected across all

roughness run cases, as was the case for the mean velocity defect plot and the outer-

scaled Reynolds stress. This is contrary to other high-Reynolds number roughness

studies for turbulent boundary layers where similarity is seen far away from the wall

for the Skewness factor at similar values of k+ to those in this study [3, 17].

With regard to the blowing effects on skewness, there appears to be a positive

increase in the skewness factor near the wall as blowing is increased. This is especially

evident for the lowest Reynolds number case. As noted by Flack et al. (2005), positive

skewness near a rough wall may reflect for higher momentum fluid being swept into

the near wall region [17]. The same conclusion may also hold true for the cases of

BR > 0 where the blowing is essentially acting as a sink for additional momentum

and mixing near the wall. At any rate, for the lowest Reynolds number case at

Reτ ≈ 700, poor collapse is seen regardless of the blowing condition. This reflects the

results from the Reynolds stress plots for Reτ ≈ 700, which did not collapse with the

higher Reτ roughness and blowing cases. The higher Re cases display self-similarity,

but do not show collapse with the smooth wall data until outside of Y/h > 10−1.

The flatness or kurtosis factors for the same cases as in figure 4.11 are presented
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At Reτ ≈ 700 in figure 4.15, the spectral maps of both smooth and rough-wall

cases are dominated by the wavelengths which form the near-wall peak in Reynolds

stress, with a local maxima at λ/h ≈ 1 and Y/h = 0.025. For this low, transitional k+

value the effect of roughness is confined to suppression of the peak. However, at higher

Reynolds numbers in figures 4.16, and 4.17 there is a much greater difference between

the smooth-wall and rough-wall spectral maps. The near-wall energy site for the

rough case shifts to Y/h ≈ 0.01, which was an effect first noted in the Reynolds stress

profiles of section 4.1.2. Furthermore, the wavelength of the eddies is much smaller

than the near-wall energy site of the smooth-walled case, having λ/h ≈ 0.02, or λ ≈ k.

This result is consistent with the near wall turbulence production transitioning from

being driven by the wall shear, and scaling with the viscous length, to being driven

by the roughness geometry and scaling with k under fully rough conditions.

Also evident in the higher Reynolds number cases are the signature of what Monty

et al. (2007) termed the “dominant energy modes”[41]. These modes have recently

been associated with the occurrence of large and very-large scale motions (LSMs and

VLSMs) [4, 5, 8, 18, 24, 30, 69]. Although the signature of LSMs and VLSMs are

also evident in the Reτ ≈ 700 spectral map, due to the shift of the near-wall peak to

smaller wavelengths which occurs at higher Reynolds numbers these modes are more

evident in the high Reynolds number cases.

These dominant energy modes exhibit very different behavior between the smooth-

wall and rough wall cases, with the long-wavelength VLSM mode dominating the

smooth-walled spectral map far away from the wall and the shorter-wavelength LSM

mode dominating the spectral map for the rough-walled case. The streamwise evolu-

tion of these modes from the start of the surface roughness is therefore the source of

the differences between the scaled smooth-walled and rough-walled Reynolds stress

profiles. Comparison of the spectral maps of the different Reynolds numbers but

identical roughness boundary conditions indicates that the structure and magnitude
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of the outer-layer motions maintain Reynolds number similarity

Focusing now on the effects of non-zero BR, the difference between spectral maps

for two matched blowing cases of BR = 0.1%, BR = 0.16% and the rough walled

BR = 0% case are shown in the three figures (4.15,4.16, and 4.17) as subplots (c) and

(d). These subplots were generated by interpolating data at common points on a grid

made up of the wall normal position Y/h, and the wavelength λ/h for each value of

kxφuu, thus allowing subtraction of the magnitude of the BR > 0 from the BR = 0

cases, and a direct comparison of the effect of blowing. For the lowest, transitionally

rough, Reynolds number case in figure 4.15, the additional effects of blowing appear to

be largely confined to the suppression of kinetic energy of the near-wall peak eddies,

with increased suppression occurring with increasing BR. Also noticeable, however,

was a slight increase in energy at wavelengths corresponding to k and in the outer

layer, suggesting a shift toward increased influence of the roughness elements.

This same suppression is also evident for the two higher, fully rough, Reynolds

number cases in figures 4.16 and 4.17 near the wall, with the additional blowing

suppressing wavelengths of scales ranging from k to h. This suppression corresponds

to the decrease in u2
+
in the near-wall peak observed in the inner-scaled Reynolds

stress plots. More interesting, however, is that the decrease in u2
+
observed into the

outer layer appears to be due to reduction in the strength of the LSM, suggesting

that the additional blowing disrupts the formation of LSM. The magnitude of this

disruption increases with increasing BR. The VLSM wavelengths, conversely, appear

largely unaffected by blowing, although there is a suggestion of some enhancement of

the VLSM at Reτ ≈ 2000 and BR = 0.1% in figure 4.16 (c). The imperviousness of

the VLSM scaling to suppression of the LSM modes indicates that the two phenomena

may be unrelated, contrary to what has been proposed previously [8, 18]. Instead, it

would appear that the LSM are driven by the wall boundary conditions which in the

present case have been significantly altered by the addition of blowing, whereas the
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Thus, the motions in the outer layer can be affected if enough momentum is added

to the flow, specifically the LSM appear to be most responsive.

4.4 Streamwise Flow Development

To investigate the streamwise development of the flow, three sets of measurements

were carried out at different streamwise locations. In this section the flow injection

rates, rather than BR, are matched across Reynolds numbers. This is because of

difficulties with matching BR at the test section exit where Um varied significantly

with small increases in V̇inj. The symbols used in this section are listed in table 4.2.

The first set of experiments examined roughness only at the center of the test section

and at the exit of the test section (x = 57 and 103.1 cm, respectively). This was

preformed as a preliminary test to the addition of blowing to the flow. The mean

profiles scaled with outer variables are shown in figure 4.22.

Table 4.2: Symbols for streamwise flow development plots according to Reynolds
number at x = 57 cm.

Case Tunnel
Freq.

Reτ V̇inj Symbol

(Hz) (m3/min)

22 38 3,698 0 ⋄
23 38 4,034 1.133 �

24 38 4,371 1.416 △
25 38 4,707 1.841 ◦
26 10 672.4 0 ⋄
27 10 806.9 1.133 ⊲
28 10 874.1 1.416 +
29 10 924.6 1.841 ⊳
30 38 4,135 0 ⋄
31 38 4,673 1.133 �

32 38 4,956 1.416 △
33 38 5,043 1.841 ◦
34 63 7,396 0 ⋄

As was suspected, the flow is developing along the test section. This was an-
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Chapter 5

Conclusions

A turbulent channel flow wind tunnel modified using a blowing rig and roughness

was employed to provide the highest roughness Reynolds number study to date for

channel-type flows. With reference to computational studies in this field, smooth-wall

channel flow DNS for up to Reτ = 2000 have only recently been completed [22]. How-

ever, it will be a significant amount of time before the roughness studies presented

here can be accurately simulated by DNS, and it is thus important to continue ex-

perimental work of this nature. In addition to the high Reynolds number roughness

data provided, this study has the added complexity of uniform flow injection over the

surface, which is another effect that is difficult to simulate in computer models.

The unique data set provided here resolved the velocity profile into the roughness

elements themselves, capturing the time-averaged statistics across the channel. Fur-

thermore, this is the first time high-fidelity turbulence statistics have been available

for roughness and flow injection, with the added benefit of insight into the turbulent

flow structures through the use of power spectral maps. Additionally, new insight

has been gained into the applicability of Townsend’s hypothesis of wall similarity. It

was found that the turbulence statistics may not follow wall-similarity even when the

mean velocity collapses. Finally, modifications to the power spectra due to roughness

and blowing were isolated and it was suggested that the LSM’s are being modulated

by the change in wall boundary conditions. With this compiled database, several

conclusions can be drawn with regard to the flow modifications:

i The coefficient of friction calculated for the BR = 0 cases indicated that the

highest Reynolds number cases reached the fully rough condition and were thus

independent of the roughness geometry. For cases with BR > 0, a simple correc-
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tional scheme was devised to account for the positive shift in ∆U+ due to blowing.

This scheme was further extended to Cf , where it can be used to account for the

friction increase due to blowing.

ii The velocity defect plot at matched blowing ratios revealed that roughness and

blowing effects in the mean flow are confined to the near-wall and are only active

in setting the wall shear stress and zero plane displacement for the outer flow.

iii For transitional roughness Reynolds numbers, k+ < 40, blowing decreases the

near-wall peak in the Reynolds stress plots but the turbulence production cycle

remains the primary producer of shear in the flow.

iv When k+ ≥ 40, the Reynolds stress plot peak scales on the roughness element

height (Y ≈ 0.5k with roughness only and Y ≈ k with blowing) as opposed to

following the smooth wall behavior where Y + ≈ 15.

v For the roughness only cases, self-similarity was seen in the mean velocity plots

and Reynolds stresses. However, because the flow was still developing over the

roughness, the profiles did not collapse with the smooth-wall, fully-developed

cases. Due to this behavior, it was estimated that the rough-wall cases support

wall similarity after a sufficient development length.

vi The skewness and flatness factors were seen to collapse at k+ ≥ 40 regardless of

blowing ratio implemented, and the zero-crossing point of the third-order moment

scaled in outer units was seen to be consistent for this same condition.

vii The power spectral maps revealed that as k+ increased, more energy was added to

the flow at wavelengths which corresponded to the roughness height. Furthermore,

disruption of the LSM was seen as BR > 0 while the VLSM remained impervious

to any changes in the LSM. This indicated that the two phenomena may be
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unrelated and that LSM may be driven by the wall boundary condition while

VLSM are produced in the outer layer by mean flow shear.

viii The ability of the flow to maintain self-similarity was found to be BR and Re

dependent with a departure from self-similarity accompanied by a large increase

in the energy of the LSM. This is ancillary to the previous conclusion in which

a decrease in the energy of the LSM is seen as BR is increased (but within the

limits of self-similarity studied here).

ix The flow was also shown to be developing along the test section. Surprisingly the

flow behavior at high Reynolds number and BR = 0 approaches the BR > 0 cases

at the test section exit and showed self-similarity in both the velocity defect and

Reynolds stress plots. This indicated that the flow may approach wall similarity

if allowed to reach full development and that the blowing is indeed acting as

additional roughness because as k+ increases for the BR = 0 case it collapses

with the higher k+, BR > 0 behavior.

With these conclusions in hand, further studies can investigate the work completed

here to study such effects as the self-similarity of the flow versus its wall similarity.

Additional roughness development length will be necessary in future work as well

as extension of the data set to additional roughness elements, especially those most

relevant to the engineering roughness which is likely to be encountered. Currently,

work is undergoing to introduce test surfaces which are geometrically similar to an

ablated heat shield and sand-grain type roughnesses. With the foundation of work in

the study presented here, a clear direction forward can be taken and further insight

into the complicated flow field of roughness and blowing can be investigated more

fully.
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Appendices

5.1 Appendix A: Blowing Rig Smoke Flow Visualization

To acquire a preliminary idea about the performance of the blowing rig, and a heuristic

insight into the flow-field modifications due to blowing, a series of simple smoke-flow

visualizations were performed with blowing rig V.2. These visualizations were all

performed at the maximum injection rate possible of approximately 1.841 m3/min

(65 CFM). The smoke was first introduced into the blowing rig with the channel

and flow injection blower off. Then the channel was briefly cycled to remove any

excess smoke from the channel test section which had escaped from the blowing

rig. Following this the channel speed was set, and the blowing rig powered on. At

the higher tunnel speeds, the large amount of turbulent mixing made tracking the

evolution of flow structures with the smoke difficult. However, a quantitative idea

about the dispersion of the injected gas into the tunnel was made relatively easily at

two tunnel speeds, 10 and 20 Hz or 4.3 and 9.2 m/s respectively with the constant

V̇inj listed above. The images are shown in figures 5.1 and 5.2, and were acquired at

the channel exit, with the flow conditioning section removed for optical access. This

preliminary set of data showed that the effects of blowing could traverse a significant

portion of the outer-flow, and the large amount of mixing caused the smoke to be

carried far into the outer layer near the channel exit.

To gain an idea of the flow development in the streamwise direction, a set of low-

speed experiments were performed at a tunnel speed of 2.5 Hz or 0.05 m/s. This low

speed allowed some of the larger flow structures to be captured by the smoke flow

visualization. A time evolution of the flow is shown in figure 5.3.

Also noted in figure 5.3 is the evolution of a turbulent “bulge” in the flow. It

increases in size as it is convected downstream after initially forming at the wall.
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Figure 5.1: Smoke flow visualization of blowing effects at Ucl = 4.3 m/s.

Figure 5.2: Smoke flow visualization of blowing effects at Ucl = 9.2 m/s.

This bulge eventually dissipates into the mean flow as it grows larger. Several of

these bulges are seen in the images. This is visual evidence of potential modifications

to the LSMs (which themselves can manifest as turbulent bulges) due to blowing and

confirms some of the results seen in section 4.2, concerning the power-spectral maps.
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Figure 5.3: Time-evolution of blowing effects in test section at Ucl = 0.05 m/s.
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Table 5.1: Uncertainty Analysis

Source of Input Value Variation Relative Coverage
Uncertainty Variants Calculation Uncertainty Factor

Calibrator ∆Ucal ±2% 2SDV (∆Ucal) 0.04 2
Linearisation ∆Ufit ±0.5% 2SDV (∆Ufit) 0.01 2

DAQ EAD 10 V
EAD∂U
U∗2n

∂U
∂E

9.1202E − 4
√
3

Resolution n 16 bit
∂U/∂E 1.32E−4 V

Probe Position θ 1◦ 1− cos(θ) 1.523E−4
√
3

Temperature ∆T 2◦C ∆T
273

0.0073
√
3

Variations

The probe position error is not explicitly known, but it is estimated to accurately

be within 1◦ of the streamwise direction, and hence the error due to mis-alignment is

1− cos(1◦) (5.3)

Finally the maximum measured temperature variation over an entire run period

was measured to be 1◦ Celsius, and was often much lower (0.5◦ C).

To determine the actual standard uncertainty, the following equation is used

U(Usample) = 2

√

∑

(

Relative Uncertainty

k

)2

(5.4)

where k is known as the “coverage factor” and is given for each individual uncer-

tainty in table 5.1. The value of U(Usample) is the aggregated “Relative Expanded

Uncertainty” and collectively characterizes the worst case error scenario. Because all

hot-wire probes were calibrated in a similar method, the error analysis was performed

on the data set with the most variation between pre- and post-calibrations. This was

the Reτ ≈ 6, 700 case (highest roughness only Reynolds number). The maximum

calibrated velocity varied by 2% over the course of the experiment. In figure 5.7, the

error percentage calculated with the method described above is plotted. As is readily

evident, the error decreases drastically with increasing velocity. This is mainly due
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to the thermal nature of the probe itself, as natural convection dominates the heat

transfer from the probe at low velocities.

Figure 5.7: Relative Expanded Uncertainty for the test case with the largest variabil-
ity between pre- and post-calibration at Reτ ≈ 6, 700.

Figure 5.7 indicates that the error for most of our flows is 2% unless the measured

velocity is below ≈ 3 m/s. This error has been generalized for the worse case scenario

as follows by using a maximum error of 7% for flow velocities of U < 3 m/s, and 2%

for U > 3 m/s.
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Nomenclature

∆kxφ
+
uu Difference between two pre-multiplied power spectral density values, scaled

with viscous units

∆p Pressure drop across rough surface used to calculate pressure loss coefficient

∆U+ Roughness function for rough-wall turbulent flow

δ Outer-flow length scale

δ+ Viscous length

V̇inj Flow rate of gas injected through rough surface

ℓ Hot-wire probe sensing length

ℓ+ Hot-wire probe sensing length scaled with viscous units

κ von Kármán constant for the log law of the wall

λ Streamwise wavelength

λ2D Two-dimensional roughness density

λ3D Three-dimensional roughness density

〈U〉 Area-averaged or bulk velocity

ν Kinematic viscosity

u2 Time-averaged velocity fluctuations

u4 Fourth-order velocity variance

u3 Third-order velocity variance
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U Time-averaged Velocity

−→
V Velocity vector in Cartesian space

φuu Streamwise power spectral density

φ+
uu Streamwise power spectral density scaled with viscous units

ρ Density

τw Wall shear stress

A Horizontal area of roughness element group

Ai Surface areas of control volume with i ∀ i = 1, 2, 3, 4

B Additive constant for the log law of the wall

BR% Ratio of injected gas velocity to the maximum measured channel velocity ex-

pressed as a percent

BR Ratio of the injected gas velocity to the maximum measured channel velocity

C(k+, L+
i ) Integration term for the law of the wall in turbulent, rough-walled flow

Cf Coefficient of friction based on bulk velocity

Cfblowing
Coefficient of friction corrected for blowing effects

D Pipe diameter

d Diameter of hot-wire probe sensing element

f Streamwise frequency

F (η) Functional form of the velocity dependency in the outer-layer

Fu Flatness or kurtosis factor
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Fx Forces in the streamwise direction

G(Y +, k+, L+
i ) Functional form of the inner-scaled velocity dependency in the near-

wall region

h Channel half-height

k Roughness height

k+ Roughness Reynolds number

ks Equivalent sand-grain roughness height

k+
s Sand-grain roughness Reynolds number

kxφuu Pre-multiplied streamwise power spectral density

kx Streamwise wavenumber

Kroughness Pressure loss coefficient for rough surface

Li Relevant roughness length scales other than roughness height

Lx Roughness characteristic length in the streamwise direction

Lz Roughness characteristic length in the spanwise direction

n Number of roughness elements in horizontal area A

Pi Pressure forces on control volume with i ∀ i = 1, 2

Re Reynolds number

Reb Bulk Reynolds number based on the area-averaged velocity

Su Skewness factor

T Measurement acquisition time
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u(t) Time-varying velocity

U+ Mean velocity scaled with viscous units

u
′

Time-varying velocity fluctuations

u2+ Time-averaged Reynolds stress

Uτ Friction Velocity

Um Maximum velocity in channel

U∞ Free-stream velocity

Ucl Velocity at geometric centerline of channel

Uinj Velocity of gas injected through rough surface by blowing rig

w Width of control volume

x Streamwise direction, measured from inlet of test section

Y Wall-normal direction minus roughness zero plane displacement

y Wall-normal direction, measured normal from wall location of measurements

Y + Wall-normal direction minus the zero plane displacement and scaled with vis-

cous units

y+ Wall-normal direction scaled with viscous units

y0 Zero-plane displacement due to roughness

yh Hot-wire home position

ym Location of maximum streamwise velocity

ys Hot-wire safe location relative to rough wall
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ymi
Location of maximum streamwise velocity at control surface index i ∀ i =

1, 2

u3+ Third-order velocity variance scaled with viscous units

u4+ Fourth-order velocity variance scaled with viscous units

L Outer length scale
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[9] Çuhadaroğlu, B., Akansu, Y. E., and Ömür Turhal, A. An experimental study
on the effects of uniform injection through one perforated surface of a square
cylinder on some aerodynamic parameters. Experimental Thermal and Fluid

Science, 31:909–915, 2007.

[10] Chin, C. C., Hutchins, N., Ooi, A. S. H., and Marusic, I. Use of direct numerical
simulation (DNS) data to investigate spatial resolution issiues in measurements
of wall-bounded turbulence. Meas. Sci. Technol, 20(11):115401, 2009.

[11] Chung, Y. M. and Sung, H. J. Initial relaxation of spatially evolving turbulent
channel flow with blowing and suction. AIAA Journal, 39(11):2091–2099, 2001.

[12] Clauser, F. The turbulent boundary layer. Advanced Applied Mechanics, 4:1–51,
1956.

96



[13] Dean, R. Reynolds number dependence of skin friction and other bulk flow
variables in two-dimensional rectangular duct flow. ASME J. Fluid Eng., 100:215,
1978.

[14] Dey, S. and Nath, T. K. Turbulence characteristics in flows subjected to bound-
ary injection and suction. Journal of Engineering Mechanics, 136(7):877–888,
2010.

[15] Dirling, R. A method for computing rough wall heat transfer rates on reentry
nosetips. In AIAA Paper 73-763, AIAA 8th Thermophysics Conference, Palm

Springs, California, 1973.

[16] Estejab, B. An investigation of the reynolds number dependence of the near-
wall peak in canonical wall bounded turbulent channel flow. Master’s thesis,
University of Kentucky, 2011.

[17] Flack, K. A., Schultz, M. P., and Shapiro, T. A. Experimental support for
townsends reynolds number similarity hypothesis on rough walls. Physics of

Fluids, 17:035102, 2005.

[18] Guala, M., Hommema, S. E., and Adrian, R. J. Large-scale and very-large-scale
motions in turbulent pipe flow. J. Fluid Mech., 554:521–542, 2006.

[19] Haddad, M., Labraga, L., and Keirsbulck, L. Turbulence structure downstream
of a localized injection in a fully developed channel flow. Journal of Fluids

Engineering, 128:611–617, 2006.

[20] Healzer, J. M., Moffat, R., and Kays, W. The turbulent boundary layer on a
rough, porous plate: experimental heat transfer with uniform blowing. Technical
Report HMT-18, Stanford University CA Thermosciences Division, 1974.

[21] Holden, M., Bergman, R., Harvey, J., Duryea, G., and Moselle, J. Studies of the
structure of attached and separated regions of viscous/inviscid interaction and
the effects of combined surface roughness and blowing in high reynolds number
hypersonic flows. Technical Report CUBRC-88682, Calspan UB Research Center
Buffalo NY, 1988.
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