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ABSTRACT OF DISSERTATION 

 

PRECIPITATION, ORIENTATION AND COMPOSITION EFFECTS ON THE SHAPE 

MEMORY PROPERTIES OF HIGH STRENGTH NiTiHfPd ALLOYS 

NiTiHf high temperature shape memory alloys are attractive due to their high 

operating temperatures (>100 
o
C) and acceptable transformation strain compared to NiTi. 

However, NiTiHf has limitations due to their lack of ductility and low strength, resulting 

in poor shape memory properties.  In this study, Pd has been added to NiTiHf alloys in an 

attempt to improve their shape memory behavior. A combined approach of quaternary 

alloying and precipitation strengthening was used. 

The characterization of a Ni45.3Ti29.7Hf20Pd5 (at. %) polycrystalline alloy was 

performed in compression after selected aging treatments. Transmission electron 

microscopy was used to reveal the precipitation characteristics. Differential scanning 

calorimetry, load-biased (constant stress) thermal cycling experiments and isothermal 

stress cycling (superelasticity) tests were utilized to investigate the effects of aging 

temperature and time. The crystal structure and lattice parameters were determined from 

X-ray diffraction analysis. Significant improvement in the shape memory properties of 

Ni45.3Ti29.7Hf20Pd5 was obtained through precipitation strengthening. The effects of 

chemical composition (effects of Hf content replacing with Ti) on the shape memory 

properties of NiTiHfPd alloys were also revealed. 

Orientation dependence of the shape memory properties in aged 

Ni45.3Ti29.7Hf20Pd5 single crystals were investigated along the [111], [011] and [-117] 

orientations. The shape memory properties were determined to be strong functions of 

orientation and aging condition. A perfect superelastic behavior (with no irrecoverable 

strain) with 4.2 % recoverable compressive strain was obtained in the solutionized 

condition at stress levels as high as 2.5 GPa while   2 % shape memory strain under a bias 

stress of 1500 MPa was possible in an aged [111] oriented single crystal. A mechanical 

hysteresis of 1270 MPa at -30 
o
C, which is the largest mechanical hysteresis that the 

authors are aware of in the SMA literature, was observed along the [111] orientation. 

Finally, thermodynamic analyses were conducted to reveal the relationships 

between microstructure (e.g. precipitate size and interparticle distances) and martensitic 

transformations in Ni45.3Ti29.7Hf20Pd5 SMAs. Precipitate characteristics were found to be 

effective on the elastic energies for nucleation, propagation with dissipation energy and 

these energies influenced the TTs and the constant stress shape memory properties in 

Ni45.3Ti29.7Hf20Pd5 alloys. 
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1. INTRODUCTION 

1.1. Motivation and objectives  

Diffusionless solid to solid phase transformation is called martensitic 

transformation [1]. If a martensitic transformation is reversible, it is called thermoelastic 

martensitic transformation [1]. 

Owing to the thermoelastic martensitic phase transformations, shape memory 

alloys (SMAs) have the unique ability to recover large deformations upon heating or by 

removal of stress [2] in contrast to regular materials. Due to this atypical behavior, there 

are countless of potential and current applications for SMAs including use as actuators, 

sealing elements, sensors, couplers, stents, valves and surgical appliances in the 

biomedical, aerospace, oil-gas, automotive, robotics, and telecommunication industries 

[3]. Among the SMAs, NiTi is the most commonly used and well-known alloy since it 

has good physical and functional properties such as high ductility, low density, high 

corrosion resistance, and good fatigue life [2, 4]. However, it is also known that 

transformation temperatures (TTs) of NiTi alloys are usually below 100 
o
C, and they tend 

to exhibit low strength and poor cyclic stability [5] without thermo-mechanical 

treatments such as cold working. Consequently, changes in stoichiometry leading to 

precipitation strengthening, alloying and thermo-mechanical treatments have been 

utilized as the primary methods to tailor the shape memory behavior of NiTi [2, 6-8].  

Ni-rich precipitates (e.g. Ni4Ti3) formed through aging can also increase the 

strength of Ni-rich NiTi alloys [9, 10]. Even without the precipitation hardening, NiTi 
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alloys with high Ni content are stronger than equiatomic or Ti-rich NiTi alloys [11]. 

Thus, Ni-rich alloys have been extensively studied by many researchers [2] 

Beside precipitation strengthening, an alternative way to significantly increase the 

strength of NiTi alloys is thermo-mechanical treatments (e.g. cold working and post 

annealing) [2]. In equiatomic NiTi alloys, even though the matrix is not strong enough to 

observe perfect superelasticity (SE) in solutionized condition, it is possible to obtain full 

recovery in superelasticity after proper thermo-mechanical processing [2]. Furthermore, 

by combining Ni-rich compositions with thermo-mechanical processing, it is possible to 

get a high yield strength of 2800 MPa and superelastic behavior with negligible plastic 

deformation in Ni55.9Ti44.1 (wt.%) alloys after 42 % cold work followed by annealing 

[12]. 

One of the advantages that high strength SMAs can offer is high work output, 

which is crucial for solid state actuator applications. SMA based actuators have 

additional advantages over commercial pneumatic/hydraulic or motor driven systems 

such as higher energy density, compactness, lightweight and silent operation [13]. 

Commercial NiTi alloys have work output densities of about 10 J.cm
-3

 [14], while 

NiTiPd and NiTiPt alloys have work output capabilities on the order of 6-9 J.cm
-3

 and 13 

J.cm
-3

, respectively [15]. In a recent study, the work output of a Ni-rich NiTiHf 

polycrystalline alloys was found to be 18-20 J.cm
-3

[16]. It is clear that alloying 

significantly affects work output, but further investigation is needed to improve the 

understanding the relationship between composition, microstructure and work output of 

NiTi based alloys.  
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On the other hand, shape memory alloys could be employed as dampers in many 

industries such as aerospace (in aircraft engines to dampen the acoustic energy) and 

construction (in impact damping devices to counter seismic movements) due to energy 

absorbing capabilities. Damping capacity is defined as the amount of energy that can be 

dissipated out of a system resulting in relief. Hence, good damping materials should have 

large mechanical hysteresis at high stress levels. In general, the stress hysteresis of NiTi 

alloys is around 200-400 MPa [2] while it can be increased to 500-600 MPa with the 

addition of Nb [17]. It was reported that damping capacities are 16 J.cm
-3

 and 38 J.cm
-3

 

for NiTi and NiTiNb alloys, respectively [18] while it can reach up to 54 J.cm
-3

 in 

NbTi/NiTi nanocomposite wires [19]. An alloy that has a similar damping capacity to 

NiTiNb and NbTi/NiTi systems but also with the ability to operate under higher stress 

levels would be very appealing for aerospace and biomedical applications [20, 21] as well 

as applications in civil and seismic structures [18, 20, 22]. They can provide several 

advantages such as high force accommodation, weight saving, portability and reduction 

in cost over existing systems [20] since less material will be used in a device due to high 

strength capability.   

Tailoring shape memory properties can also be obtained through alloying process 

[2]. Among the many elements investigated as potential ternary alloying additions to 

NiTi, only Hf, Zr, Pd, Au and Pt are known to increase the TTs [3]. Due to the high cost 

of Pt, Pd, and Au, Zr and Hf are the most practical alloying additions for developing high 

temperature shape memory alloys (HTSMA) [3]. It is also known that Hf is more 

effective in increasing TTs compared to Zr at similar chemical compositions [3]. 

However, Ni-lean NiTiHf alloys suffer from large thermal hysteresis (results in additional 
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energy requirements and cycle time in actuator applications), poor thermal stability, 

brittleness and low strength impeding their superelastic behavior [23]. Furthermore, the 

use of quaternary alloying additions to overcome these limitations has not been generally 

pursued.  

 

The objectives of current study are to; 

  1. Determine the effects of Pd addition on the strength and shape memory 

properties of NiTiHf shape memory alloys by conducting detailed experiments 

including shape memory effect under constant stress, stress-free transformation 

temperatures in differential scanning calorimetry (DSC) and superelasticity. 

  2. Reveal the effects of aging temperature and time on the microstructure, 

TTs, transformation strain, temperature and mechanical (stress) hysteresis of 

polycrystalline and single crystal NiTiHfPd alloys. 

3. Investigate the effects of chemical composition on the shape memory 

properties of NiTiHfPd high strength shape memory alloys. 

  4. Investigate the orientation dependence of shape memory properties of 

single crystal NiTiHfPd alloys. 

  5. Determine the effects of aging on work output, and damping capacities 

of NiTiHfPd in polycrystalline and single crystal NiTiHfPd alloys. 

6. Investigate on the microstructural dependence of the shape memory 

behavior and elastic energy storage in NiTiHfPd shape memory alloys 
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7. Establish microstructure-property-thermodynamics relationships in 

NiTiHfPd shape memory alloys 

 

1.2. Thermodynamics of martensitic transformations in SMAs 

 

Free-energy curves for austenite and martensite (forward) phase transformation 

are schematized in Figure 1.1 where p

chG and M

chG  are free energies for austenite and 

martensite, respectively. To is the equilibrium temperature while Ms is martensite start 

temperature and As is austenite start temperature.  
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Figure 1.1: Schematics of free-energy curves of martensite and austenite during phase 

transformation 

 

 mp

chG   is the chemical driving force for phase transformation from parent phase 

(austenite) to martensite and pm

chG  is vice versa. Parent phase transforms to martensite 

and martensite transforms to parent phase when there is a sufficient driving force in the 

system.  When the M

chG and A

chG  are equal to each other, no transformation is expected 

since there is no difference (driving force) between the chemical energies of transforming 
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phases. The general thermodynamical equilibrium equiations for the forward 

transformation can be written of the forms [24] ;  

mp

irr

mp

el

mp

ch

mp

nc

mp

ch

mp

total GGGGGG                                      (1)                                                                           

where 
mp

totalG  is the total Gibbs free energy difference to initiate the martensitic 

transformation,
mp

chG   is
 
the change in chemical energy,

mp

ncG  is the change in non-

chemical energy. 
mp

ncG  energy can be expressed as a combination of 
mp

elG  , the change 

in elastic energy and 
mp

irrG  ,the irreversible energy during the phase transformation from 

austenite to martensite [25]. 
mp

totalG  term should be smaller than zero in order to initiate 

the martensitic transformation. 

The temperature at which the 
mp

chG   is zero was defined to be To, equilibrium 

temperature [24]. At To, since there is no driving force to trigger the martensitic 

transformation, an additional energy should be supplied (by cooling or heating) to initiate 

the transformation.  

Super-cooling (To-Ms) below To is necessary for parent phase to martensite 

transformation and super-heating (As-To) beyond To is required for martensite to parent 

phase transformation assuming negligible elastic energy storage.  

mp

elG  is the stored elastic energy during the forward transformation and it is 

released completely upon back transformation from martensite to austenite. Hence, the 

elastic energy storage is a mechanically reversible process [24]. The amount of the stored 

elastic energy should be equal to the released energy upon back transformation if there is 
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no plastic relaxation due to dislocation generation/plastic deformation after a full 

transformation cycle [26, 27]. 

The irreversible energy 
mp

irrG  can be assumed as a combination of mainly 

frictional energy that is required to move phase front (between transforming phases), 

friction between martensite variants and internal twins in variants in addition to plastic 

relaxation energy due to dislocation generation. Both of the abovementioned mechanisms 

result in dissipation of energy and consequently, hysteresis in SMAs [11] 

 

1.3. Mechanism of martensitic transformations in SMAs 
 

1.3.1. Shape memory effect  

Thermo-elastic martensitic transformation is a reversible solid to solid phase 

transformation that can be triggered by various parameters (e.g. temperature, stress, 

magnetic field) in SMAs. Martensitic transformation is a shape change between high 

temperature or parent phase and low-temperature phase (martensite) with small volume 

change [2]. Basic or the most common shape memory properties (e.g. shape memory 

effect and superelasticity) are directly related to this first order type martensitic 

transformation.   

 Variant re-orientation and stress induced martensite (SIM) formation are the two 

main mechanisms that result in strain in shape memory alloys. If a material is cooled 

down in the absence of stress, parent phase transforms to martensite by self-

accommodating mechanism to minimize the energy of the system. If there is an external 
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stress applied, the stress distorts self accommodating structure and selects favored 

martensite variants along its application direction. In both cases, if the material is heated 

above Af (austenite finish) temperature, the material transforms back to austenite. This 

mechanism is called one-way shape memory effect. Figure 1.2 shows schematics for the 

shape memory effect behavior in SMAs. 
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Figure 1.2:  Representative schematics of shape memory effect in SMAs 

If there is already internal stress in the microstructure, it is possible to obtain 

shape memory strain without applying an external stress and this process is called two-
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way shape memory effect (TWSME) [28, 29]. The two-way shape memory effect, as an 

intrinsic property of SMAs, is closely related to the internal stress around precipitates, 

oriented dislocation arrangements and retained martensite [30, 31], that can be provided 

by training (e.g. thermal cycling, stress cycling) or martensite deformation. These 

procedures promote oriented dislocations in the microstructure and consequently, 

anisotropic stress fields are generated. Some martensite variants are favored by these 

stress fields acting like external stress and TWSME is observed. 

1.3.2. Psuedoelasticity 

Figure 1.3 shows a typical superelastic behavior and related transforming phases 

in SMAs. At temperatures above Af, deformation of the parent phase results in stress 

induced martensite transformation. The initial linear part of the stress-strain plot 

represents the elastic deformation of the austenite phase. Subsequent to this elastic 

deformation, a deviation from linearity to a plateau is observed, which marks the 

initiation of the stress-induced austenite-to-martensite phase transformation. With further 

loading, where the plateau ends and work hardening increases steeply, deformation is 

probably due to some detwinning and elastic deformation of the martensite phase, which 

is expected to be fully de-twinned at the end of the stage. 
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Figure 1.3: A typical superelastic behavior in SMAs. 

Upon unloading, elastic recovery of the martensite takes place and then it is 

followed by the martensite-to-austenite back transformation. The superelasticity behavior 

can be observed up to a certain temperature of Md (depending on material, composition 

etc.) where plastic deformation becomes the main deformation mechanism. 
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1.4. Brief background on NiTi and NiTi-based shape memory alloys  

1.4.1. NiTi alloys  

It was stated that NiTi alloys are the most common SMAs that have current and 

potential applications in many industries including medical [32, 33], automobile, 

aerospace [34] and construction [32, 35] due to superior physical and mechanical 

properties. 

Annealed near equiatomic NiTi alloys undergo B2 (cubic) to B19’ (monoclinic) 

phase transformation [2]. If there is internal stress in the microstructure due to thermal 

treatments, cycling etc., NiTi shows two-step martensitic transformation. They undergo 

B2 to R-phase followed by R to B19’ phase transformation. R-phase is a transition 

structure that has commonly rhombohedral structure [2].   
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Figure 1.4: The change in TTs as a function of Ni concentration in NiTi alloys [2] 

Figure 1.4 shows the effect of Ni mole fraction on the TTs in NiTi alloys. TTs are 

insensitive to aging in near-equiatomic NiTi since no precipitation is achievable in these 

materials through aging [2]. On the other hand, as the Ni content increases on the Ni-rich 

side (> 50.6 %) of the phase diagram, the TTs decrease rapidly. Aging of a Ni-rich NiTi 

alloy causes formation of Ni-rich precipitates resulting in Ni depletion in the matrix and 

consequently increase in TTs. In addition to TTs, Ni-rich precipitates can increase the 

strength of NiTi alloys and thus, Ni-rich NiTi alloys have been studied widely [9, 10] as 

compared to Ni-lean NiTi. 

Despite of superior properties, it is also a fact that equiatomic NiTi alloys have 

low TTs and low strength beside poor cyclic stability [5]. It is possible to get 
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irrecoverable strain upon thermal cycling even under 50 MPa as shown in Figure 1.5. 

Consequently, changes in stoichiometry leading to precipitation strengthening, alloying, 

and thermo-mechanical treatments have been utilized as the primary methods to tailor 

(e.g. increase strength) the overall behavior of NiTi [2, 6-8]. 

 

Figure 1.5:  Constant stress thermal cycling response of Ni49.9Ti50.1 (at %) at 50 and 100 

MPa [5] 

Ni-rich NiTi alloys are stronger compared to Ni-lean alloys even without 

precipitation hardening [11]. In addition to precipitation hardening, thermo-mechanical 

treatments (e.g., cold working and post annealing) also can significantly increase the 

strength of NiTi [2]. In solutionized condition, fully recoverable superelasticity is not 

possible in equiatomic NiTi alloys due to their soft matrix. However, it is possible to 

obtain a superelastic behavior without significant plastic deformation under high stress 

(e.g. >1500 MPa) by utilizing Ni-rich compositions with thermo-mechanical treatments 

(e.g., Ni50.83Ti49.17 (at.%) after 42 % cold work followed by annealing [12]). It should be 



 

15 
 

noted that pre-treatments such as thermo-mechanical treatment and post annealing are 

required to obtain fully recoverable SE in near-equiatomic NiTi alloys. 

 A thermo-mechanical treatment is also effective in the change of active twinning 

modes during phase transformation in NiTi alloys. The most common twinning type 

observed in NiTi alloys is <011> type II [36]. Latterly, it has been observed that the 

twinning type can be a mixture of type I and type II while a combination of type I and 

compound twins were also observed after proper cold rolling [37]. 

Another important research area of NiTi alloys is the orientation dependence of 

their shape memory properties. Figure 1.6 shows the stress-strain responses of Ni50.8Ti49.2 

shape memory alloys in various orientations in compression. 
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Figure 1.6: Orientation dependence of stress-strain behavior of Ni50.8Ti49.2 alloys [3] 

It is known that texture formation is most likely during processing of SMAs and 

this may alter the mechanical and shape memory responses of the material. Thus, 

investigation of the shape memory properties of SMA single crystals is crucial due to the 

fact that shape memory properties could be optimized by texturing in a polycrystalline 

material [38-41].  

It was revealed that multiple correspondant variant pairs (CVPs) were activated 

during stress induced martensite transformation along the [111] and [112] orientations in 

compression and this resulted in high hardening in the transformation region [41] of the 

Ni50.8Ti49.2 (at. %) single crystals. Because of this high hardening, they quickly reached 

the critical stress for plastic deformation. Thus, their transformation strain and 
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superelastic temperature window were limited [41, 42]. However, [148] orientation had 

only one active CVP and this yield a plateau-like transformation (low hardening 

transformation region) and a transformation strain close to theoretical values in 

Ni50.8Ti49.2. 

 

1.4.2. NiTiHf alloys 

In practical applications, TTs are important parameters in designing SMA related 

parts due to the fact that active control mechanisms are closely linked to them. Some 

applications in aerospace, energy conversion and automobile engines require higher TTs 

(above 100 
o
C), which is not possible for the NiTi alloys [3, 43]. High temperature shape 

memory alloys are good candidates for lightweight and compact actuators and sensors. 

HTSMAs must have good mechanical and functional properties (e.g. significant 

transformation strain, oxidation resistance, resistance to plastic deformation and creep 

etc.) at the high operation temperatures since these properties usually deteriorate as 

operation temperature increases [3].  

Thus, many studies have been conducted in order to understand the fundamental 

basis in the TTs change in SMAs [44]. One attempt has been to obtain HTSMAs by using 

NiTi with the idea of taking advantages of its exceptional properties at also elevated 

operation temperatures. In order to increase the TTs of NiTi shape memory alloys, 

chemical alloying has been used [2] as a method. Addition of Fe, V, Al, Co, Cu, Mn in 

the expense of Ni reduces the TTs whereas addition of Hf, Zr, Pd, Pt, Au and W in the 

expense of Ti increases the TTs in NiTi shape memory alloys [3]. NiTiX (X= Hf, Zr) 
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alloys have been demonstrated to have a higher potential for actual applications due to 

lower costs compared to the Pd, Pt and Au additions [45].  

Figure 1.7 shows the change in Mp (calculated to be peak point of transformation 

curve during forward transformation in a transformation cycle) temperature as a function 

of Hf and Zr content in a and b, respectively. Up to 3 % of Hf, the TTs are insensitive to 

composition change and they start increasing after 5 % Hf addition in Figure 1.7.a. There 

is an increase by 5 
o
C/at % up to 10 % of Hf where the increase becomes 20 

o
C/at % 

beyond 10 % Hf addition. Mp temperatures reach up to 400 
o
C for 25 % Hf in NiTiHf 

alloys. 

 

Figure 1.7: Mp temperatures as a function of a) Hf and b) Zr contents in NiTiX 

(X=Hf,Zr) alloys [3]. 

In Figure 1.7.b, Mp temperature is not a function of Zr addition up to 10 % beyond 

which there is almost 10 
o
C/at % increase with increasing Zr content. Mp temperatures 

reach up to 250 
o
C with addition of 25 % Zr. Thus, it can be concluded that Hf was more 

effective in increasing TTs compared to Zr for an equivalent additions in ternary NiTiHf 
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alloys [3]. Thus, among NiTiHf and NiTiZr systems, the earlier has been more 

pronounced due to its capability in elevating the TTs as mentioned previously [3]. 

 

Figure 1.8: Mp temperature as a function of Ni content in NiTiHf alloys [3]. 

The change in Mp temperatures as a function of Ni content in NiTiHf alloys 

containing 10 % Hf is shown in Figure 1.8. It is obvious that Mp does not change up to 

50 % and suddenly decreases to below 0 
o
C beyond equiatomic line with increasing Ni 

content.  

 

1.4.3. NiTiHf-X (X= Cu, Nb, Zr) alloys 

The TTs of NiTiHf alloys are promising for the high temperature applications. 

However, Ni-rich NiTiHf alloys have also limitations due to their high brittleness [16] for 

practical use and Ni-lean NiTiHf alloys have poor superelasticity response since the 

stress-induced martensite transformation and plastic deformation occur simultaneously 
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due to low critical stress for slip and high strain hardening in transformation region [16, 

46].  

Low ductility and strength of NiTiHf alloys are the main challenges that should 

be addressed before these alloys can be used in practical applications. Thus, quaternary 

elements have been added to NiTiHf alloys to improve their shape memory behavior.  

Nb was added to Ti35.5Ni49.5Hf15 (at %) alloys and it was found to increase the 

cold workability and shape recovery ratio of the Ti35.5Ni49.5Hf15 shape memory alloys 

while decreasing the TTs and plastic strain in thermal cycling experiments under constant 

tensile stresses of 500 MPa [47]. It was revealed that Nb additions of greater than 20 % 

were also effective in decreasing plastic strain from 2.66 % to 0.24 % in constant stress 

thermal cycling experiments while decreasing the transformation temperatures [47] as 

shown in Figure 1.9. 
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Figure 1.9: Constant stress thermal cycling experiments in a) Ti35.5Ni49.5Hf15, b) Ti30.5 

Ni49.5Hf15Nb5, c) Ti25.5Ni49.5Hf15Nb10 and d) Ti20.5Ni49.5Hf15Nb15 alloys [28]. 

Cu has been another alloying addition to NiTiHf alloys. Cu addition generally 

improved the glass forming ability and thermal stability of NiTiHf alloys while 

decreasing their TTs [48, 49]. NiTiHfCu alloys have also good TWSME [50] due to 

anisotropic dislocation arrangements generated by so-called training procedures. Most of 

the studies on NiTiHfCu alloys were focused on the changes in TTs and microstructure 

through aging.  
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Figure 1.10: Stress-strain response of Ni45.3Ti29.7Hf20Cu5 alloys aged at 550 
o
C for 3 

hours [51]. 

Karaca et.al. recently reported the crystal structures, TTs, microstructure, 

hardness, shape memory (including TWSME) and superelastic properties after addition 

of 5 % Cu to Ni50.3Ti29.7Hf20 alloys replacing Ni [51]. In this study, Ni45.3Ti29.7Hf20Cu5 

alloys were able to recover compressive strains of ≈ 2 % under 700 MPa above 100 
o
C, 

which is promising for potential high temperature applications and 0.8 % two-way shape 

memory strain was also possible above 80 
o
C. No fully recoverable superelasticity was 

reported due to high hardening, low strength and high hysteresis as shown in Figure 1.10. 
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Figure 1.11: DSC heat flow curves for NiTiHfZr alloys in various chemical 

concentrations [29] 

Martensitic transformations in Ti50.5-xNi49.5Zrx/2Hfx/2 (X=0-20 at %) alloys were 

investigated by Hsieh et.al [52] and the related DSC curves are presented in Figure 1.11. 

TTs and hardness values increased as a function of Zr. Mp temperatures increased 50 to 

323 
o
C with increasing Zr and Hf contents. No mechanical properties (e.g. constant stress 

thermal cycling, superelasticity) have been reported for the NiTiHfZr alloys.  

 

 

Copyright @ Emre Acar 2014 

 



 

24 
 

2. EXPERIMENTAL PROCEDURE 

This chapter describes the experimental methods used in characterization of 

NiTiHfPd polycrystalline and single crystal alloys in this study. The details of material 

fabrication, preparation (e.g. thermal treatments), crystal and micro structural analysis, 

calorimetric measurements and mechanical testing will be presented throughout the 

chapter. 

2.1. Fabrication and thermal processing of materials  

Induction melting method was used to process NiTiHfPd polycrystalline SMAs in 

various chemical compositions (Ni45.3Ti29.7Hf20Pd5, Ni45.3Ti34.7Hf15Pd5 and 

Ni45.3Ti39.7Hf10Pd5) as casting of a 1” diameter by 4” long rod. The melting was 

conducted with high purity elemental constituents (99.98 wt pct Ni; 99.995 wt pct Pd, 

99.95 wt pct Ti and 99.7 wt pct Hf (excluding Zr, which is nominally 3%)). Some of the 

rods in chemical composition of Ni45.3Ti29.7Hf20Pd5 was homogenized at 1050 
o
C for 72 

hours and then extruded at a 7:1 ratio in diameter at 900 
o
C. Other materials (including 

some of Ni45.3Ti29.7Hf20Pd5) were homogenized at 900 
o
C for 72 hours and were not 

extruded and left as-cast materials.  

Bridgeman Technique was used to grow alloy single crystals in a He atmosphere. 

The aim composition of the starting alloy was Ni45.3Ti29.7Hf20Pd5 (at %) while the 

measured composition was Ni45.3Ti29.1Hf20Pd5.2 with 0.4 % Zr (at %), as determined by 

inductively coupled plasma atomic emission spectroscopy (ICP-AES). The single crystal 

ingots were oriented along [111], [011] and [-117] and cut into compression specimens 

(4mm x 4mm x 8mm) by electro discharge machining (EDM). The single crystals were 
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solutionized in vacuum quartz tubes (to avoid oxidation) followed by water quenching. 

Aging treatments were conducted in air using a Lindberg/Blue M BF5114841 box 

furnace. All specimens were water quenched after heat treatment unless a different 

method is stated in next chapters.  

2.2. Crystal and micro structure analysis 

X-ray diffraction measurements were carried to identify the crystal structures and 

lattice parameters of transforming phases by a Bruker-AXS D8 Discover diffractometer 

with CuK radiation. Both room temperature and elevated temperature scanning on 

mechanically polished specimens were conducted to reveal the diffraction patterns of 

transforming phases. Allen Bradley 900-TC8 temperature controller was used for 

maintaining desired temperatures in the XRD equipment.  

Transmission electron microscope (TEM) observations were conducted at room 

temperature (RT) in a JEOL 2010F instrument operated at 200 kV. The specimens for 

TEM observation were prepared by a twin-jet polishing technique using a solution of 

20% sulfuric acid and 80% methanol at around -15 
o
C (258 K). 

2.3. Calorimetric measurements 

The differential scanning calorimeter (The Perkin-Elmer DSC Pyris 1 as shown in 

Figure 2.1) method was used to capture TTs under stress-free conditions. Typical 

temperature range was from -150°C to 600°C and the heating and cooling rate used to run 

the experiments was fixed at 10°C/minute. Encapsulated samples in disposable Perkin 

Elmer or Thermal Support aluminum pans with 20-40 mg were used in calorimetric 

measurements. 
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2.4. Mechanical experiments 

The mechanical experiments were performed in an MTS Landmark servo 

hydraulic test platform shown in Figure 2.2 (100 kN) on 8x4x4 mm
3
 compression 

specimens (Figure 2.3) cut by electro discharge machine (EDM) from the various 

chemical compositions NiTiHfPd ingots. Sides of the machined compression samples 

were mechanically polished to remove the EDM layers.  

 

 

Figure 2.1: Perkin-Elmer Pyris 1 DSC [53] 
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Figure 2.2: MTS Landmark servo hydraulic test platform 

 

Strain was measured by an MTS high temperature extensometer with a gage 

length of 12 mm attached to compression grip faces as shown in Figure 2.4. A strain rate 

of 10 
-4

 mm/sec was employed during loading of the specimens while unloading was 

performed at a rate of 100 N/sec.  
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Figure 2.3: Schematic of a compression test specimen 

 

Heating of the specimens occurred by means of mica band heaters retrofitted to 

the compression grips and cooling was achieved through internal liquid nitrogen flow in 

the compression grips. A heating-cooling rate of 10 
o
C/min was utilized during testing 

using an Omega CN8200 series PID temperature controller, which was capable of 

controlling temperature to ±2 
o
C. K-type thermocouples attached to the test specimens 

and the compression grips (total of three thermocouples) provided real-time temperature 

feedback.  
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Figure 2.4: MTS high temperature extensometer with a gage length of 12 mm attached to 

compression grip faces of the test platform. 

 

2.4.1. Thermal cycling under constant stress experiments 

A schematic of a shape memory effect in a constant-stress thermal cycling 

experiment is shown in Figure 2.5. At an applied load, austenite starts transforming to 

martensite at Ms and the transformation finishes at Mf (martensite finish temperature) 

during cooling. Throughout heating, martensite phase starts transforming to austenite at 

As and transformation finishes at Af.  The induced strain upon cooling under load is fully 

recovered after heating above Af (ignoring plastic deformation).  
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Figure 2.5: Schematic showing the methods of calculating shape memory parameters in 

the constant-stress thermal cycling experiments 

 

Total strain was measured as the difference between cooling and heating curves at 

Ms, while the transformation strain was the difference between the total induced strain 

and plastic strain. The plastic strain (irrecoverable strain) was measured to be the 

difference between the cooling-heating curves at around Af+20 
o
C. Thermal hysteresis 

was measured at the midpoint of the total induced strain as shown in Figure 2.5.  

 

2.4.2. Psuedoelasticity/Superelasticity experiments 

Figure 2.6 represents a typical psuedoelastic/superelastic response of an SMA at 

test temperatures above Af.  In superelasticity experiments that will be presented in the 

later chapters, samples were loaded under strain control and then unloaded under force 

control if anything else is not specified. The elastic deformation of the austenite phase 
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takes place in the initial linear part of the stress-strain plot. Following this elastic 

deformation, a deviation from linearity to a plateau is observed, which marks the 

initiation of the stress-induced austenite-to-martensite phase transformation. Further 

loading could result in detwinning and/or elastic deformation of martensite phase. During 

unloading, elastic recovery of the martensite is followed by the martensite to austenite 

back transformation. 
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Figure 2.6: A typical superelastic response of an SMA with the calculation methods of 

relevant parameters 

 

Critical stress for the stress induced martensite ( cr ) is measured at the yielding 

point of the first linear part as shown in Figure 2.6. Calculation methods of elastic 

strain el , superelastic/reversible strain se and irreversible (e.g. irrecoverable) strain 
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irr are also presented in Figure 2.6. The mathematical summation of se and el strains 

result in reversible strain rev where the summation of rev and irr strains give the total 

applied strain. 
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3. Ni45.3Ti29.7Hf220Pd5   POLYCRYSTALLINE SHAPE MEMORY ALLOYS 

3.1. Introduction  

The purpose of this chapter is to investigate the shape memory properties of a 

quaternary Ni45.3Ti29.7Hf20Pd5 (at. %) polycrystalline alloys in compression after selected 

heat treatments. The effects of aging temperature and time on the TTs, microstructure, 

work output, and damping capacities were determined by conducting a series of 

systematic experiments on an extruded Ni45.3Ti29.7Hf20Pd5 polycrystalline alloy. 

Additionally, the effects of superelastic cycling on the stress-strain and strain-temperature 

responses of the polycrystalline shape memory alloy were revealed. 

 

3.2. Effects of aging on the microstructure of polycrystalline Ni45.3Ti29.7Hf20Pd5  

shape memory alloys 

In this section the microstructure characteristics of a quaternary 

Ni45.3Ti29.7Hf20Pd5 polycrystalline alloy were investigated after selected aging conditions. 

In order to investigate the effect of aging on the microstructure, TEM observation was 

conducted at RT in as-extruded and aged conditions. The as-extruded and 400 
o
C-3 hours 

aged specimens consist of a single B2 austenite phase without any detectable precipitates 

by conventional TEM, as shown in Figure 3.1. On the other hand, spindle-shaped 

precipitates were clearly observed in the 550 
o
C-3 hours and 650 

o
C-3 hours aged 

specimens.  
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Figure 3.1: TEM images of a) as-extruded and b) 400 
o
C-3 hours aged Ni45.3Ti29.7Hf20Pd5 

polycrystalline samples 

 

Figure 3.2a shows the bright field image of the 550 
o
C-3 hours aged sample, 

where the inset is the magnified image of the area B. The selected area diffraction (SAD) 

pattern taken from the area B is shown in Figure 3.2b. Fine precipitates with the sizes of 

about 20-30 nm in length with the interparticle distance of about 10-30 nm were formed 

after 550 
o
C-3 hours aging. The B19′ martensite phase was observed between the 

precipitates. According to the SAD pattern, the fine striations which can be seen inside 

the martensite phase were determined as (001)B19′ compound twins. The volume fraction 

of the precipitates increased with increasing the aging temperature from 550
 o
C to 650 

o
C.  
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Figure 3.2: a) Bright field image and b) SAD pattern taken from area B of the 550 
o
C-3 

hours aged specimen. Insert in (a) is the enlargement of area B. c) Bright field image and 

(d) SAD pattern taken from area D of the 650 
o
C-3 hours aged specimen. Subscripts M 

and T in the SAD patterns indicate matrix and twin, respectively. 

 

Figure 3.2c shows the bright field image of the 650 
o
C-3 hours aged specimen. It 

is clear that the precipitates were quite large when compared with the 550 
o
C-3 hours 

aged specimen where their length varies from about 80 nm to 300 nm and their width is 

about 50 nm. Their interparticle distance varied from 15 nm to 150 nm. The (001)B19′ 

compound twins were also observed in the 650 
o
C-3 hours aged specimen, which can be 
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confirmed by the SAD pattern shown in Figure 3.2d (taken from the area D in Figure 

3.2c), indicating that the main twinning mode observed in the martensite phase was not 

affected by the aging temperature. The (001)B19′ compound twins have been reported in 

NiTiHf alloys as the main substructure of martensite [48, 53, 54], although the (001)B19′ 

compound twinning cannot be a lattice invariant shear alone according to the 

phenomenological crystallographic theory [2]. 

 

3.3. DSC heat flow curves of Ni45.3Ti29.7Hf20Pd5 alloys 

To investigate the effects of aging on TTs at zero stress, DSC tests were 

conducted after 3 and 5 hours of aging at temperatures ranging from 400 to 900 °C by my 

previous colleague Gurdish S. Ded.  The DSC curves are shown in Figure 3.3. For each 

DSC cycle, the endothermic peaks at higher temperatures represent the martensite to 

austenite transformation upon heating and the exothermic peaks at lower temperatures 

represent the austenite to martensite transformation upon cooling. For most of the aging 

conditions, three to five thermal cycles were completed to verify the stability of the TTs. 

Results from the as-extruded material are also included in Figure 3.3 as a baseline to 

compare the effect of aging time and temperature on TTs and stability of the samples. 

Figure 3.3a shows the DSC response of the Ni45.3Ti29.7Hf20Pd5 after aging at 

selected temperatures between 400 
o
C and 900 

o
C for an aging period of 3 hours. It is 

evident that TTs change drastically with aging temperature. Initially, TTs decreased after 

aging at 400 and 450 
o
C, then, TTs monotonically increased with aging temperature 

between 500 and 600
 o

C. For aging temperatures above 600 
o
C, the TTs once again 

started to decrease.  
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Figure 3.3b shows the change in TTs for Ni45.3Ti29.7Hf20Pd5 polycrystalline 

specimens aged for 5 hours at temperatures between 400 
o
C and 600 

o
C. The trend in TTs 

with aging temperature was similar to that of the 3 hours aged conditions. For aging 

treatments at 400 
o
C and 450 

o
C, TTs were very low and remained beyond the cooling 

limit (-150 
o
C) of the DSC setup. Between 500 and 600 

o
C, TTs increased with increasing 

aging temperature. For a given aging temperature between 500 and 600 
o
C, the TTs were 

higher when the samples were aged for 5 hours compared to aging for 3 hours and the 

heat flow curves displayed better cyclic stability. The maximum Af was 170 
o
C and Ms 

was 110 
o
C for material aged for 5 hours at 600 

o
C. 
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Figure 3.3: DSC responses for the Ni45.3Ti29.7Hf20Pd5 alloy after a) 3 hours and b) 5 

hours aging as a function of aging temperature  
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Changes in the stress-free TTs with aging temperature and time have been 

determined from the DSC results presented in Figure 3.3 and the data is summarized in 

Figure 3.4. An initial decrease in TTs with aging temperature was observed for both 3 

and 5 hour aging times reaching a minimum at aging temperature of about 400 °C.  

Between 400 to 600 °C the TTs increased with increasing aging temperature, reaching a 

maximum at about 600 °C, decreasing once again with any further increase in aging 

temperature. For 3 hours aging time, Af reached a maximum of 150 
o
C following aging at 

600 
o
C.  Increasing the aging time from 3 to 5 hours at 600 

o
C resulted in an additional 20 

o
C increase in Af to 170 

o
C.  In contrast, aging at 400 

o
C and 450 

o
C for 5 hours, 

suppressed the TTs below the cooling limit of the DSC setup, resulting in over a 320 
o
C 

range in TTs due to aging. 

The initial drop in TTs was attributed to the formation of precipitates with very 

small size and short interparticle distance. Thus, the resistance for martensite nucleation 

increased and formation of martensite required additional energy change, which in turn 

required further undercooling in the course of the forward transformation [55]. 
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Figure 3.4: TTs change in the Ni45.3Ti29.7Hf20Pd5 alloy after a) 3 hours and b) 5 hours  
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The underlying reason for the increase in TTs after the initial decline could be an 

increase in the volume fraction of the precipitates, resulting in a change in composition of 

the remaining matrix material. It is well known that TTs are highly composition 

dependent in NiTi based SMAs [2]. In Ni-rich NiTi based alloys, TTs increase by 

formation of Ni-rich precipitates as in NiTi [6-9], NiTiPt [56], NiTiPd [57] and NiTiHf 

[58] alloys, while precipitation of Ti rich phases can potentially result in a decrease in 

TTs as has been reported in NiTiPd alloys [44]. Consequently, as the chemical 

composition of matrix changes during precipitate coarsening, the TTs are altered [2, 44]. 

The coherency of the formed precipitates in the microstructure is another factor that can 

affect the TTs. The mismatch between matrix and precipitate lattice parameters may 

cause internal stresses around precipitates that can also change (e.g. increase) the TTs 

[59]. 

The second drop in TTs was attributed both to a reduction in precipitate volume 

fraction and lose of coherency as the aging temperature increases and either approaches 

or surpasses the precipitate solvus temperature. Once again resulting in a Ni-rich matrix 

or decrease in the internal stress due to non-coherent precipitates and thus, decrease in 

TTs.  It is important to note that TTs of the Ni45.3Ti29.7Hf20Pd5 alloy can be adjusted from 

-150 
o
C to 150 

o
C through simple heat treatments. Hence, the TTs of Ni45.3Ti29.7Hf20Pd5 

alloys can easily be tailored by controlling aging time and temperature, which could be 

beneficial in designing of practical applications. 
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      Figure 3.5 shows the thermal cycling experiments under zero stress of Ni45.3Ti-

29.7Hf20Pd5 shape memory alloys in the as-extruded and 650 
o
C for 3 hours aged 

conditions. For both specimens, 20 thermal cycles were conducted to see the variation of 

TTs upon repeated phase transformations in the absence of stress. 
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Figure 3.5: DSC thermal cycling responses of Ni45.3Ti29.7Hf20Pd5 in as-extruded and aged 

at 650 
o
C for 3 hours 

  

It was observed that TTs were decreased upon thermal cycling in both the as-

extruded specimen and the specimen aged at 650 
o
C for 3 hours. Another observation was 

that variations (e.g. decrease) of TTs were more visible in the aged specimen compared to 

the as-extruded specimen. Ms temperature was decreased by 20 
o
C in the as-extruded 

specimen while it was decreased by 50 
o
C in the aged specimen after 20 cycles.  

The reason of the decrease in TTs upon thermal cycling in the both specimens 

was predicted to be dislocation generation at the interfaces of austenite and martensite 

upon reversible phase transformations. When the dislocations were generated, they acted 

as obstacles for phase transformation to martensite in the microstructure and lowered TTs 

as in NiTi alloys [60]. On the other hand, the better stability (e.g. less variation of TTs 
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upon cycling) of the as-extruded specimen can be a result of possibly smaller precipitates 

inherited from the manufacturing and slow cooling processes of the polycrystalline 

alloys. When the as-extruded material was aged at 650 
o
C for 3 hours, precipitates may 

get bigger and allow more spaces for dislocation generation and motion. Consequently, 

the higher density of dislocations may lower the TTs further upon cycling.   

     

3.4. Work output and damping capacities of Ni45.3Ti29.7Hf20Pd5 polycrystalline 

shape memory alloys 

One measure of the capacity of a solid-state actuator is its work output. As the 

work output of a material increases, the required weight or volume decreases, resulting in 

a more efficient system. There is an emerging need for actuators that produce high work 

output for applications in such industries as aerospace, biomedical, automotive, and 

down-hole energy exploration. For example, some actuation applications in civil or 

military aircrafts involve variable (area or geometry) inlets and nozzles that require up to 

20 % shape change [61, 62]. Compared to existing hydraulic actuation systems in use, 

solid state actuators made out of SMAs may work more efficiently while occupying 

much less space, thus enabling  certain aircraft designs. With suitable TTs, high work 

output SMAs may also be used in biomedical applications such as stronger stents for 

main arteries or certain implants. 

In Figure 3.6, the maximum work output levels of various NiTi based SMAs are 

shown as a function of their typical operating temperature range. It was observed that 

Ni45.3Ti29.7Hf20Pd5   alloys can generate higher work outputs of 32-35 J/cm
3
 (up to 120 
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o
C) compared to other NiTi based SMAs, though upper temperature capability was 

somewhat limited. NiTi alloys can generate work outputs more than 10-20 J/cm
3
 [14], 

while Ni rich NiTiHf alloys can produce around 18-20 J/cm
3
 [21]. Ni45.3Ti29.7Hf20Cu5    

alloys can generate work outputs of around 14-15 J.cm
-3

 [51] while NiTiHfNb alloys [47] 

have work output levels of 17-18 J.cm
-3

 above 100 
o
C and 150 

o
C, respectively. Finally, 

NiTiPd and NiTiPt alloys can yield between 9-15 J/cm
3
  at temperatures above 150 

o
C 

[15, 63].  

 

Figure 3.6: A comparison of work outputs for typical NiTi based SMAs. 

        

Beside the high work output, Ni45.3Ti29.7Hf20Pd5 polycrystalline alloys have 

considerable damping/absorbed energy capacity, which in simple terms is the ability to 

repeatedly disperse unwanted energy from a system. Damping capacity is related to the 
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mechanical hysteresis and transformation strain and can be determined by calculating the 

area between the forward and reverse transformation curves in the superelastic stress-

strain response, as depicted schematically in Figure 3.7a.  High hysteresis and high 

transformation strain result in more energy dissipation from a system. Damping 

capacities of selected NiTi-based alloys are compared in Figure 3.7b as a function of 

operating stress levels (critical stress for forward transformation).  
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Figure 3.7: a) Calculation of the absorbed energy during a superelastic stress-strain cycle 

b) Damping capacity as a function transformation stress for various NiTi based SMAs. 

The high damping capacity (30-34 J.cm
-3

) of the present alloy stems from its 

outstanding mechanical hysteresis and good superelastic strain, approaching 4 %. In 

related systems, the damping capacity is 16 J.cm
-3

, 18-20 J.cm
-3

, 38 J.cm
-3

, and 54 J.cm
-3

 

for NiTi, NiTiHf [21], polycrystalline NiTiNb alloys, and NbTi/NiTi nanocomposites, 

respectively [17-19]. The Ni45.3Ti29.7Hf20Pd5 alloy has similar capability to polycrystalline 

NiTiNb alloys that are often used in coupling applications, while both polycrystalline 

materials have damping capacity, which is less than new NbTi/NiTi nanocomposites.  
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However, it should be noted that Ni45.3Ti29.7Hf20Pd5   alloys have the ability to operate at 

much higher stresses (~2 GPa) than the NiTiNb and NbTi/NiTi systems.  

In addition to damping applications, dissipation mechanisms due to the 

martensitic transformation allows SMAs to be used in applications that require wear 

resistance [64].  In particular, properties such as high strength, high hardness, corrosion 

resistance, and the ability to be used with conventional lubricants [65] combined with this 

superb damping capacity and wear resistance, open these types of materials to many 

tribological and wear resistant applications including bearings and gears [66]. 

 

3.5. High temperature mechanical cycling and thermal cycling under high 

stress responses of Ni45.3Ti29.7Hf20Pd5   

For practical applications, the stability of shape memory behavior during thermal 

[60] and mechanical cycling [67] is crucial since SMAs are usually operated under 

cycling forces and temperatures [68]. It should be noted that, it is inevitable to avoid 

irreversible processes (e.g. defect generation, energy dissipation) during cyclic reversible 

martensitic phase transformations [60, 67, 69] that can result in degradation of the shape 

memory behaviors [67].  However, the extent of irreversible processes can be limited by 

increased resistance for slip using various techniques such as precipitation hardening, 

composition alteration and cold work [60, 70]. Hence, many studies have been conducted 

to understand the effects of thermal and mechanical cycling on the shape memory 

properties of NiTi to date [12, 40, 67, 69]. In general, it has been reported that 

transformation temperatures decrease with thermal cycling [50, 60, 71]. After SE cycling,  
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decrease in critical transformation stress levels and mechanical hysteresis and increase in 

hardening and residual strains were observed [67, 69]. 

In this study, the effects of superelastic cycling on both stress-strain responses and 

strain-temperature responses in polycrystalline Ni45.3Ti29.7Hf20Pd5 shape memory alloys 

aged at 550 
o
C for 5 hours are systematically investigated. The constant stress shape 

memory responses were recorded initially under stress levels ranging from 300 MPa to 

1200 MPa followed by 5000 superelastic cycles at 160 
o
C. After the superelastic cycling 

tests, another set of constant stress thermal cycling experiments were conducted under 

same levels of stresses applied initially. Consequently, the effects of SE cycling on the 

stress-strain and strain-temperature responses were revealed in Ni45.3Ti29.7Hf20Pd5 

polycrystalline shape memory alloys. 

Figure 3.8 shows the shape memory responses of Ni45.3Ti29.7Hf20Pd5 alloy aged at 

550 
o
C for 5 hours before and after the superelastic cycling experiments. Compressive 

stresses ranging 300 MPa and 1200 MPa were applied above Af temperatures and 

specimens were cooled down below Mf temperature followed by heating back above Af 

under the applied load. Before SE cycling,  Ms was measured to be 98 
o
C and 154 

o
C 

under 300 MPa and 1200 MPa, respectively. Shape memory strains were 0.95 % and 1.9 

% under 300 MPa and 1200 MPa, respectively. The irrecoverable strain was measured to 

be 0.25 % under 1200 MPa before the SE cycling. In the constant stress shape memory 

experiments conducted after the SE cycling, Ms was determined to be 58 
o
C and 125 

o
C 

under 300 MPa and 1200 MPa, respectively. Shape memory  strains are 0.7 % and 1.6 % 

under 300 MPa and 1200 MPa, respectively. No irrecoverable strain was observed under 

1200 MPa after the SE cycling as shown in Figure 3.8. The recovery in the plastic strain 
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after the SE cycling can be a result of work hardening upon SE cycling. Due to 

generated/re-arranged defects, further generation of dislocations can be impeded leading 

to diminish in the plastic strain after the SE cycling. It was truly remarkable that the 

Ni45.3Ti29.7Hf20Pd5 alloy can recover ~2 % strain against very high compressive stress 

level of 1200 MPa with no irrecoverable strain at high temperatures (>100 
o
C) after SE 

cycling. High strength at elevated temperatures has been always a desired feature in 

metallic materials due to the fact that the critical stress for plastic deformation tends to 

decrease with increasing temperature in general. Thus, this ability could give a unique 

potential to this alloy to be used in actuator applications that requires high strength at 

elevated temperatutes. 
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Figure 3.8: a) The compressive strain vs. temperature responses before and after the 

superelastic cycling  and b) Superelastic cyclic responses of Ni45.3Ti29.7Hf20Pd5 alloy aged 

at 550 
o
C for 5 h at various cycle numbers 

Superelastic cyclic responses of the Ni45.3Ti29.7Hf20Pd5 polycrystalline alloy after 

the initial thermal cycling experiments is presented in Figure 3.8b. The Ni45.3Ti29.7Hf20Pd5 

polycrystalline alloy was mechanically cycled 5000 times at 160 
o
C under compressive 

a) b) 
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stresses ranging 50 MPa and 1600 MPa (nearly 3 % strain). Loading and unloading of the 

specimen was carried under force control in the mechanical test frame. The 1st, 10
th

 and 

5000th cycles are shown in Figure 3.8b to observe the effect of 5000 cycles in the stress-

strain responses. In Figure 3.8b, residual strain can be defined as the devitaion of the 

starting point of a SE cycle compared to the initial point of the first SE cyle. After 5000 

SE cycles, 0.2 % residual strain was observed. 

It was clear that the transformation stress levels, slopes of the transformation and 

stress hystereses were effected after the first cycle. It was also observed that the changes 

occured more rapidly at the initial SE cycles due to easier generation/re-arrangement of 

defects. With additional cycles, the changes in the superelastic cycles were not 

pronounced since the defect generation/re-arrangement became more difficult due to 

already existed defects. These observations were in good agreement with the superelastic 

cyclic results of NiTi polycrystalline alloys reported earlier in the literature [67, 69, 72].  

In Figure 3.8b, transformation stress levels were tailored with increased 

superelastic cycles. It is known that defects are generated or re-arranged upon each 

superelatic cycling near precipitates in the microstructure and they are accumulated until 

reaching a saturation point [67]. Those defects may act as obstacles for the back 

transformation from martensite to austenite at some local areas in  the microstructure and 

hence, some martensite plates may retain in the microstructure without transforming [73]. 

Furthermore, those defects may generate internal stress and provide easy nucleation sites 

for martensite formation in the next superelastic cycle. However, it was not always 

certainly answerable what type of defects were in charge for the change in the 

superelastic cycles. 
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A notable feature observed in the stress-strain responses upon SE cycling was the 

increased hardening during transformation. The increase in hardening can be connected 

to the residual stress and pinning effect of dislocations generated upon stress cycling. 

After each SE cycle, the growth of martensite was more difficult due to higher density of 

defects in the microstructure.  These facts were displayed as the increased transformation 

slope/hardening of the stress-strain responses in the Figure 3.8b. 

Stress hysteresis was also influenced after each SE cycle. Since the generated 

defects resisted the growth of martensite, they formed back stresses opposite to the 

applied external stress. When the applied stress was removed, the back stresses 

accumulated may effect the backward transformation and consequently the stress 

hysteresis. Also, energy dissiptaion is known to be strongly linked to martensite 

morphology in shape memory alloys [24]. Thermodynamically, wider and larger 

martensite plates will cause more energy dissipation compared to thin plates due to stored 

energy loss [24]. The generation and/or re-arrangement of defects upon SE cycling may 

change the martensite morphology by limiting the growth of martensite plates in the 

microstructure and consequently, the energy dissipation may be tailored after SE cycling 

resulting less stress hysteresis [74]. Moreover, it should be noted that the Ni45.3Ti-

29.7Hf20Pd5 alloy has very promising SE cyclic response at high temperatures (160 
o
C) 

even when very high stress of 1600 MPa was reached. This is a very unique property that 

can be very useful for high temperature and high strength SMA applications exposed to 

cycling forces. 
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In Figure 3.9a, linear dependence of the transformation temperatures (e.g. Ms) is 

shown as a function of applied stress in thermal cycling experiments before and after the 

SE cycling. It was clear that both Ms and As decreased after SE cycling. 

The linear dependence can be explained by the Clausius-Clapeyron (C-C) 

relationship which is [75] 

tro T 

 H

T







                                            (2) 

where ∆σ is the difference between critical stresses, ∆T is the  temperature 

difference, ∆H is the change in transformation enthalpy, To is the equilibrium temperature 

and εtr is the transformation strain. The C-C slope was determined to be 17.6 MPa/
o
C 

before the SE cycling while it decreased to 13.7 MPa/
o
C after the SE cycling.  
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Figure 3.9: Effects of superelastic cycling on a) martensite start temperature and b) shape 

memory strain as a function of applied stress in Ni45.3Ti29.7Hf20Pd5 alloy 
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Ms was decreased by 40 
o
C under 300 MPa and 29 

o
C under 1200 MPa after the 

SE cyclic tests as shown in Figure 3.9a. The decrease of Ms can be attributed to 

hardening effect of generated dislocations upon SE cycling. The generated and/or re-

arranged defects may hinder the martensitic transformation, thus futher undercooling, 

T , was required. Thereby, Ms decreased further below the thermodynamic equilibrium 

temperature oT  [76], 

TTM os                                                                                         (3) 

The decrease in Ms has also been reported for NiTi based and Fe based shape 

memory alloys by many researchers after stress free thermal cycling experiments due to 

pinning effect of dislocations  [50, 60, 71, 77]. 

Figure 3.9b presents the shape memory strains as a function of applied stress in 

the thermal cycling experiments before and after the SE cycling. Transformation strains 

also slightly decreased after the SE cyclic experiments in Ni45.3Ti29.7Hf20Pd5 

polycrystalline alloys as shown in Figure 3.9b. It decreased by 0.25 % under 1200 MPa 

after the SE cyclic test. It was truly remarkable that up to 2 % shape memory strain with 

negligible irrecoverable strain was observed under high stress levels of 1200 MPa in 

polycrystalline Ni45.3Ti29.7Hf20Pd5 after SE cycling.   

 The decrease in transformation strain can be attributed to the suppression of 

martensite formation in some local regions with high defect density and retained 

martensite upon cycling. Due to interactions of growing martensite plates with  

precipitates and generated/re-arranged defect networks upon high number of SE cycles, 

some local regions may be slipped and transformation may not occur [78, 79]. Another 
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possible reason can be the limited detwinning process due to internal stress fields due to 

the defect pile-ups. Since the detwinning process may be blocked in some local regions, 

total transformation strain may decrease. It has been revealed that when there is strong 

internal stress in the microstructure due to constraints (e.g. precipitates), detwinning 

process is suppressed and less transformation strain is obtained as observed in 

Ni50.375Ti49.625 single crystals [80].   

3.6. Summary and conclusions 

Based on the results presented in this chapter, following conclusions can be deducted 

for the Ni45.3Ti29.7Hf20Pd5 (at %) polycrystalline shape memory alloys; 

1. As-extruded and 400 
o
C-3h aged samples did not have any precipitates that were 

detectable with conventional TEM. Precipitates with sizes about 20-30 nm in 

length and interparticle distance of approximately 10-30 nm were formed after 

550 
o
C-3 hours aging. The length of the precipitates varied from 80 nm to 300 nm 

with a width of about 50 nm and interparticle distances of 15 nm to 150 nm as the 

aging temperature was increased to 650 
o
C.  (001)B19′ compound twins were 

observed in all samples regardless of thermal treatment. 

2. Shape memory properties (e.g. transformation temperatures) of the Ni45.3Ti-

29.7Hf20Pd5 alloys can easily be tailored by controlling aging temperature and time. 

TTs can be adjusted between –100 
o
C and 100 

o
C by simple heat treatments. 

3. Ni45.3Ti29.7Hf20Pd5 alloy exhibits a fairly high, 30-34 J.cm
-3

, damping capacity and 

a very high work output (30-35 J.cm
-3

) capability at temperatures between 0 and 

100 
o
C, especially in the as-extruded condition.   
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4. It was observed that Ni45.3Ti29.7Hf20Pd5 polycrystalline alloys can show very 

promising superelastic cyclic responses at high temperatures (160 
o
C) under high 

stress levels of 1600 MPa without any visible irrecoverable strains even after 

5000 cycles. 

 

5. Critical stress, slope and mechanical hysteresis were effected upon superelastic 

cycling.Ms was decreased by 30-40 
o
C in constant stress shape memory curves 

while shape memory strain and plastic strain were decreased by 0.25 % after SE 

cycling which can be both attributed to the defect generation/re-arrangement 

during the reversible thermo-elastic phase transformations. 
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4. EFFECTS OF CHEMICAL COMPOSITION ON THERMO-MECHANICAL 

RESPONSE OF NiTiHfPd ALLOYS 

 

4.1. Introduction 

 

The potential and current application areas of NiTi alloys include electronic 

devices, medical tools and home appliances [81]. However, NiTi alloys may have also 

restrictions to be utilized in specific areas since each application requires distinctive 

functional properties. For instance, low hysteresis can be very useful for actuator 

applications [82] while large hysteresis is desired for coupling [83] and damping 

applications [18]. Also, low TTs (near body temperature) might be suitable for 

biomedical applications [84] while high TTs (>100 
o
C) is essential for an SMA to be used 

in an aircraft or automobile engines [3]. Hence, NiTi based SMAs have been developed 

to meet the industrial needs besides benefiting from the excellent properties of NiTi. 

Alloying and composition alteration are known to be utmost effective for the controlling 

crucial shape memory properties (e.g. transformation strain, thermal and mechanical 

hysteresis, lattice parameters, TTs) [2]. 

The addition of Hf to NiTi can increase the TTs to several hundred degrees 

Celsius [3].  However, there are also several disadvantages to (Ti+Hf)-rich NiTiHf alloys 

such as a large thermal hysteresis, poor thermal stability, in addition to  poor ductility and 

no evidence of superelasticity [23], which seriously limits their potential for practical 

applications.  However, Bigelow et al. [85] has demonstrated that these limitations can be 
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overcome by working on the Ni-rich side of stoichiometry by developing a precipitation 

strengthened alloy.  

As a ternary alloying addition, Cu (replacing Ni) was found to cause two step 

phase transformations (B2-B19-B19’) in NiTiCu alloys with Cu contents from 5 at. % to 

15 at. %. In the alloys of exceeding 15 % Cu content, single step phase transformation is 

observed from B2 to B19 phase [86]. Cu addition is also effective in shrinking hysteresis 

in NiTi alloys. In binary Ni49.8Ti50.2 (at %) alloys, hysteresis is more than 40 K [87] while 

it decreases to 11 K in NiTi-10Cu (at %) alloy [88]. In contrast to Cu, Nb addition can 

widen the thermal hysteresis in NiTi alloys to more than 130 K [89]. Chemical alloying is 

also effective on the mechanical hysteresis of NiTi alloys. The mechanical hysteresis is 

more than 200 MPa in Ni50.2Ti49.8 (at %) while it is less than 100 MPa and about 300 MPa 

in Ti50Ni40Cu10 (at %) and Ti48Ni50Nb2 (at %) alloys, respectively [90]. Lattice 

parameters are also functions of alloying additions such as in Ni49.5Ti50.5-xZrx alloys. It 

was found that the lattice parameters a and c increased with the monoclinic angle   and 

lattice volume while the parameter of b decreased in martensite lattice with increased Zr 

content [91]. 

Previously, shape memory properties of Ni45.3Ti29.7Hf20Pd5 (at.%) were in 

investigated as functions of aging temperature and time in polycrystalline [92] conditions. 

The aged polycrystalline alloy was capable of recoverable shape memory strain up to ~4 

% under 1000 MPa and had work output of 30-35 J.cm
-3

 and damping capacity of 30-34 

J.cm
-3

 in the as-extruded condition. This chapter investigates the efffects of chemical 

composition change (replacing Ti with Hf) on the shape memory behavior (including 

two-way shape memory effect) and superelastic responses of as-grown Ni45.3Ti-
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39.7Hf20Pd5, Ni45.3Ti34.7Hf15Pd5 and Ni45.3Ti29.7Hf20Pd5 polycrystalline shape memory 

alloys. The NiTiHfPd alloys used in this study were homogenized at 900 
o
C for 72 hours 

in vacuum followed by a furnace cooling process. Microstructure of the 

Ni45.3Ti34.7Hf15Pd5 alloy was revealed by transmission electron microscopy and effects of 

composition on the lattice parameters of the transforming phases and martensite 

morphology were discussed. For brevity, Ni45.3Ti39.7Hf10Pd5, Ni45.3Ti34.7Hf15Pd5 and 

Ni45.3Ti29.7Hf20Pd5 alloys will be called as NiTiPd-10Hf, NiTiPd-15Hf and NiTiPd-20Hf 

throughout the section. 

Table 1 shows the TTs under stress-free conditions in NiTiPd-10Hf, NiTiPd-15Hf 

and NiTiPd-20Hf alloys, extracted from DSC measurements. Ms temperatures are -40, 35 

and 75 
o
C for the NiTiPd-10Hf, NiTiPd-15Hf and NiTiPd-20Hf alloys. It is clear that TTs 

increased as a function of Hf content.  

 

Table 1: TTs of NiTiPd-10Hf, NiTiPd-15Hf and NiTiPd-20Hf alloys obtained 

through DSC measurements 

Material Martensite 

finish ,Mf (
o
C) 

Martensite 

start ,Ms (
o
C) 

Austenite start 

,As (
o
C) 

Austenite 

finish ,Af (
o
C) 

NiTiPd-10Hf -40 -4 1 45 

NiTiPd-15Hf 35 50 63 106 

NiTiPd-20Hf 75 110 102 150 
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4.2. Crystal and micro structure of NiTiPd-10Hf, NiTiPd-15Hf and NiTiPd-20Hf 

alloys 

 

 Figure 4.1 shows the X-ray diffraction patterns of NiTiPd-10Hf, NiTiPd-15Hf and 

NiTiPd-20Hf alloys at RT. All the alloys consist of two phases, B2 austenite and B19′ 

martensite at room temperature. The crystal structure of NiTiPd-10Hf austenite was B2 

cubic with a= 0.3063 nm and the crystal structure of martensite is B19’ monoclinic with 

lattice parameters of a=0.2985 nm, b= 0.4127 nm, c= 0.4732 nm and β= 99.3
o
. For 

NiTiPd-15Hf, the crystal structure of the martensite was B19’ with lattice parameters of 

a=0.3034 nm, b= 0.4109 nm, c=0.4805 nm and β= 100.9
o
 while the lattice parameter of 

B2 austenite phase was a=0.3085 nm. On the other hand, the NiTiPd-20Hf had a B19’ 

martensite with lattice parameters of a= 0.3072 nm, b= 0.4128 nm, c= 0.4892 nm and β= 

102.6
°
 while the B2 austenite had a lattice parameter of a=0.3121 nm Thus, it can be 

concluded that as the Hf content increased, lattice parameters of the transforming phases 

also increased in the current alloys. The volume of the B2 cubic structure of the austenite 

was expanded by 2.09 % and 5.79 % as the Hf content was increased by from 10% to 15 

% and to 20 %, respectively. 
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Figure 4.1: (a) X-ray diffraction patterns for the NiTiPd-10Hf, NiTiPd-15Hf and 

NiTiPd-20Hf alloys. Bright field TEM images of the (b) NiTiPd-15Hf alloy and (c) 

NiTiPd-10Hf alloy. 

 

Figures 4.1b and c show the bright field TEM micrographs of the NiTiPd-15Hf 

and NiTiPd-10Hf alloys, respectively. The thickness of the martensite plates was lower in 

the NiTiPd-15Hf alloy than that in the NiTiPd-10Hf alloy. The internal twin of the 

NiTiPd-15Hf was found to be (001)B19′ compound twin which has also been observed in 

the NiTiPd-20Hf [92]. On the other hand, the internal twin of the NiTiPd-10Hf alloy was 

confirmed to be <011>B19′ type II twin. It is noted that the thickness of the (001)B19′ 

compound twin was thinner than that of the <011>B19′ type II twin and higher density of 

twins was observed in the NiTiPd-15Hf alloy. 

 

4.3.The constant stress thermal cycling behavior of NiTiPd-10Hf 
 

Figure 4.2 shows the constant stress shape memory response of the NiTiPd-10Hf 

alloy as a function of applied stress. Compressive stresses ranging from 25 MPa to 1000 
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MPa were applied above the austenite finish temperature and specimens were cooled 

down below the martensite finish  temperature followed by heating back above Af under 

the selected constant applied load. The martensite start  temperature was  approximately 2 

o
C and 104 

o
C under 25 MPa and 1000 MPa, respectively. No irrecoverable strain was 

observed up to stress level of 500 MPa while it was only 0.3 %  at 600 MPa and 2.5% at 

1000 MPa. The Af temperature was  approximately 80 
o
C and 180 

o
C under 25 MPa and 

1000 MPa, respectively. 
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Figure 4.2: The constant stress thermal cycling response of the NiTiPd-10Hf alloy as a 

function of stress between a) 25 – 300 MPa and b) 400 – 1000 MPa. 
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4.4.The constant stress thermal cycling behavior of NiTiPd-15Hf 

 

The constant stress shape memory responses of the NiTiPd-15Hf alloy as a 

function of stress are shown in Figure 4.3. Compressive stresses ranging from 25 MPa to 

1000 MPa were applied in austenite and kept constant during the thermal cycling. No 

irrecoverable strain was observed up to a stress level of 400 MPa.  
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Figure 4.3: The constant stress thermal cycling response of the NiTiPd-15Hf alloy as a 

function of stress between 25 MPa – 1000 MPa. 

 

 4.5.The constant stress thermal cycling behavior of NiTiPd-20Hf 
 

Figure 4.4 shows the  shape memory responses of the NiTiPd-20Hf alloy as a 

function of compresive stress ranging from 25 MPa to 1000 MPa. It should be noted that 

irrecoverable strain was observed after 600 MPa.  
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Figure 4.4: The constant stress thermal cycling response of the NiTiPd-20Hf alloy as a 

function of stress from 25 MPa – 1000 MPa. 

  

4.6. Shape memory properties associated with the constant stress thermal cycling 

 

Figure 4.5a shows the transformation strain values as functions of applied stress, 

extracted from the thermal cycling experiments shown in Figure 4.2, Figure 4.3 and 

Figure 4.4. Total strain was measured between the cooling and heating curves at Ms, as 

shown in Figure 4.2. As the applied stress  increased, the total strain also increased and 

then saturated as the selection of preferred variants of martensite saturated at intermediate 

stress levels. Beyond the plateau, with further increase in stress, transformation strain 

started to decrease due to plastic deformation. 

 Transformation strain was calculated by subtracting the plastic strain from the 

total strain.  For NiTiPd-10Hf, the transformation strains were 0.8 %, 4.6 %, and 5 % 

under 25 MPa, 500 MPa, and 1000 MPa, respectively. Transformation strains were 0.3 
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%, 3.5 %, and 3 % under 25 MPa, 500 MPa, and 1000 MPa, respectively, for NiTiPd-

15Hf and 0 %, 2.2 %, and 2 % under 25 MPa, 500 MPa, and 1000 MPa, respectively, for 

NiTiPd-20Hf. It is clear that as the Hf content increased in the alloys, the transformation 

strains were decreased, which is in good aggrement with the previously reported data for 

NiTiHf alloys [93]. 

The change of transformation temperatures (e.g. Ms and Af) with applied stress in 

the constant stress thermal cycling experiments (Figure 4.2, Figure 4.3 and Figure 4.4) 

are plotted in Figure 4.5b, 4.5c and 4.5d for the NiTiPd-10Hf, NiTiPd-15Hf and NiTiPd-

20Hf, respectively. It was found that Classius-Clapeyron slopes were 8.5 MPa/
o
C, 11.8 

MPa/
o
C and 15 MPa/

o
C for Ms  in the NiTiPd-10Hf , NiTiPd-15Hf and NiTiPd-20Hf 

alloys, respectively.The Clausius-Clapeyron relationship was formulated previously [75]. 

There is a good agreement with the C-C slopes and the transformation strain, εtr 

in the current alloys, based on the C-C equation. The C-C slopes were inversely 

proportional to the εtr values as expected.  
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Figure 4.5: a) Transformation strain as a function of stress and b) C-C relationship in 

NiTiPd-10Hf, c) C-C relationship in NiTiPd-15Hf and d) C-C relationship in NiTiPd-20 

alloys 

Figure 4.6 shows the thermal hysteresis and irrecoverable strain values as a 

function of applied stress obtained from the constant stress thermal cycling tests. The 

irrecoverable strain was not observed up to 500 MPa, 400 MPa and 600 MPa in NiTiPd-

10Hf, NiTiPd-15Hf and NiTiPd-20Hf alloys, respectively. As the stress was increased to 

1000 MPa, irrecoverable strains of 2.5 % 1.3 % and 1.8 % were measured for NiTiPd-

10Hf alloy, NiTiPd-15Hf and NiTiPd-20Hf alloys, respectively.  
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Figure 4.6: Thermal hysteresis and irrecoverable strain as functions of applied stress 

extracted from the load-biased thermal cycling tests of the NiTiPd-10Hf, NiTiPd-15Hf 

and NiTiPd-20Hf alloys  

 

For the NiTiPd-10Hf, the temperature hysteresis was almost constant (66 
o
C) up 

to 500 MPa.  This was followed by a slight (up to 700 MPa) followed by a dramatic 

increase in hysteresis to 113 
o
C as the applied stress was increased to 1000 MPa. The 

thermal hysteresis of the NiTiPd-15Hf was 39 
o
C under 25 MPa and increased to 105 

o
C 

under 1000 MPa. In the NiTiPd-20Hf, the hysteresis cannot be detected at 25 MPa while 

it was increased from 17 
o
C to above 150 

o
C as the applied stress increased from 100 

MPa to 1000 MPa. Consequently, the increase of the Hf content resulted in lower initial 
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temperature hysteresis compared to NiTiPd-10Hf. It is also clear that the progress of the 

thermal hysteresis with stress was different for the selected alloys. 

The evolution of the thermal hysteresis in the current alloys can be analyzed in 

two regions which are those before (pre-saturation region) and after (post-saturation 

region) saturation stress. The saturation stress could be defined as the stress at which 

transformation strain stops increasing and starts either saturating or decreasing in Figure 

4.5a. For instance, the saturation stress was 500 MPa for the NiTiPd-10Hf alloy while it 

was 700 MPa for the NiTiPd-15Hf and NiTiPd-20Hf alloys. The thermal hysteresis in the 

NiTiPd-10Hf alloy was almost constant up to the saturation stress of 500 MPa where it 

increased progressively even before the saturation stress in the NiTiPd-15Hf and NiTiPd-

20Hf alloys. After plastic deformation occurred (reflected by irrecoverable strain in 

Figure 4.6), the hysteresis increased almost abruptly in all alloys. It is known that the 

hysteresis is a result of dissipation mechanisms in shape memory alloys [1, 94]. In SMAs, 

the three main energy dissipation mechanisms can be expressed as i) friction between 

transforming phases or in-compatibility, ii) friction between martensite variants and iii) 

dislocation generation [11]. Addition to these main sources, friction between possible 

internal twins can also contribute to hysteresis. 

When the stress is low, the difference between thermal hysteresis of the two 

alloys should be independent of possible effects associated with the applied stress. The 

thermal hysteresis was 72 
o
C, 41 

o
C and 17 

o
C at 100 MPa for NiTiPd-10Hf, NiTiHf-

15Hf and NiTiPd-20Hf alloys, respectively.  

This initial difference in the hysteresis could be related to the compatibility 

between the transforming phases of the alloys. It has been reported that there is a close 
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relationship between hysteresis and lattice compatibility that depends on the lattice 

parameters of the transforming phases in SMAs. When the interphase of the transforming 

phases is more compatible, a lower hysteresis is expected [95-97]. A sign of the 

compatibility between the transforming phases is the middle Eigen value 2  of a selected 

matrix of the phase transformation between crystal structures based on the Non-Linear 

Geometric Theory of Martensite (NLGTM) [95]. According to the theory, the closer the 

middle Eigen value is to 1, the less hysteresis is expected in shape memory alloys [96, 

98-102]. The λ2 values were calculated to be 0.9077, 0.8870 and 0.8747 for the NiTiHf-

10Hf, NiTiPd-15Hf and NiTiPd-20Hf, respectively, using the parameters for B2 to B19’ 

transformation [103]. It is clear that there is an inverse relation between the middle Eigen 

values and the initial temperature hysteresis in the alloys. Moreover, the 2  values are not 

even close to 1, which is the sign of incompatible microstructures, in the selected 

NiTiHfPd alloys. Thus, the compatibility between the transforming phases could not be 

the only reason alone in explaining the initial hysteresis differences in the current alloys.  

The difference in the dissipation energy at low stress could be attributed to 

difference in internal twinning characteristics (Figure 4.1b and 4.1c) and/or formation of 

partial self accommodated martensite structures. 

In the pre-saturation region, the gradual increase in the thermal hysteresis in the 

NiTiPd-15Hf and NiTiPd-20Hf alloys can be attributed to the increase in the friction 

between the martensite variants due to increased transformation strain by growing 

martensite plates. Since the strain was increased, the friction between martensite plates 

also increased resulting progressively increased hysteresis. On the other hand, the thermal 

hysteresis of the NiTiPd-10Hf alloy was almost constant in this region even though the 
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increasing transformation strain. The difference in the progress of thermal hysteresis in 

this pre-saturation region could stem from the observed difference in the twin types of the 

alloys. The <011>B19′ type II twin was observed in NiTiPd-10Hf while (001)B19′ 

compound twinning was observed in NiTiPd-15Hf and NiTiPd-20Hf alloys. The 

thickness of compound twins is smaller compared to those with the type II twins (as 

shown in Figure 4.1) and this may result in more interfaces and more friction due to 

increased interactions for the same volume of martensite during straining. Furthermore, it 

is more difficult to detwin the compound twins which increase the friction during 

propagation and selection of martensite variants. Previously, the mobility of the (001) 

type compound twins in a Ni49.8Ti42.2Hf8 alloys were reported to be less than <011> type 

II twins in an equiatomic Ni50Ti50 [104]. Thus, the compound twins in NiTiPd-15Hf and 

NiTiPd-20Hf alloys may cause larger internal friction during the motion of the phase 

fronts in during generation of transformation strain due to the limited mobility, resulting 

an progressively increasing dissipation and hysteresis observed with increasing stress.  

 

In all the alloys, an abrupt increase of the thermal hysteresis in the post-saturation 

region (>700 MPa) was observed. In this region, the increase in the hysteresis can be 

mainly attributed to the plastic deformation, which is manifested by the open loops 

(irrecoverable strain) at the end of the thermal cycles. As the dislocations were generated 

in the materials due to slip, the dissipation of energy was observed as the abruptly 

increased thermal hysteresis depending on the value of the generated dislocations. 
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4.7 Isothermal stress-strain behavior of NiTiPd-10Hf 
 

Figure 4.7 shows the stress-strain responses of the NiTiPd-10Hf alloy at 15 
o
C 

and at 90 
o
C. It was clear from the thermal cycling response under 25 MPa shown in 

Figure 4.2a that the alloy was austenite at 15 
o
C when it was cooled down from a 

temperature above Af. The specimen was incrementally loaded and unloaded at this 

temperature up to a strain of 11 % and stress of 2400 MPa. The initial linear part of the 

stress-strain curve (region I) shows predominantly elastic deformation of the existing 

phases (primarily austenite).   

The onset of yielding and the plateau region (Region II in Figure 4.7a) is 

attributed to stress induced martensite formation (as opposed to general dislocation slip). 

However, in this case, it was not the only operative deformation mechanism, as there was 

significant residual strain after unloading the alloy in this region (in contrast to 

deformation at 90 
o
C, Figure 4.7b).  Consequently, reorientation/dewtinning of any 

remnant martensite in the alloy was possibly occurring concurrently with the stress 

induced martensite formation.   

At the end of Region II, the material is assumed to be fully transformed to 

martensite.  This region was followed by what is primarily assumed to be elastic 

deformation of martensite (Region III.). In addition to elastic deformation of martensite 

in region III, further re-orientation and detwinning could also occur [105] with the 

possibility of some dislocation slip and deformation twinning activity [106].  

After region III, plastic deformation became more dominant at the second 

yielding point, which was the onset of region IV. In this region, dislocation generation 

and/or deformation twinning were expected to dominate the deformation response [105].  
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Therefore, it was expected that bulk plastic deformation of martensite occurred at 

relatively high stresses, more than 2 GPa, which can be beneficial for high strength 

biomedical or industrial applications.    
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Figure 4.7: Stress-strain responses of NiTiPd-10Hf at a) 15 
o
C and b) 90 

o
C. 

In Figure 4.7b, the specimen was incrementally loaded up to 7 % strain at 90
 o

C.  

This temperature was above the Af temperature for the alloy and the deformation 

response was superelastic in nature. During loading at 90
 o

C, elastic deformation of 

austenite was observed up to the critical stress level for martensite transformation. 

Further loading resulted in austenite to martensite transformation accompanied with 

plateau-like behavior. Upon unloading, martensite was unloaded elastically and then the 

reverse transformation from martensite to austenite was observed, followed by elastic 

unloading of austenite. Almost fully recoverable strains were possible even when a stress 

level of nearly 1250 MPa was applied. When the sample was loaded to 7 % strain and 

unloaded, nearly all the strain was recovered between elastic recovery and transformation 



 

69 
 

strain with the transformation component of at least 4.3 %. Stress hysteresis, calculated 

between the loading and unloading curves at 3.5 % was determined to be 525 MPa. 

It should be noted that plateau-like behavior was observed at 90 
o
C during 

superelastic deformation of this Ni45.3Ti39.7Hf10Pd5 alloy (Figure 4.7b), in contrast to a 

much steeper and shorter plateau region and high hardening observed previously in a 

Ni45.3Ti29.7Hf20Pd5 alloy [92]. The lack of hardening during transformation in NiTiPd-

10Hf could be attributed to the formation of type II twins. It is known that the (001)B19′ 

compound twins were observed in the Ni45.3Ti29.7Hf20Pd5  alloy, which is similar to Ni-

rich NiTiHf alloys as the main substructure of martensite [48, 53, 54]. Thin compound 

twins in the Ni45.3Ti29.7Hf20Pd5 alloy can make the growth of martensite variants and 

detwinning more difficult due to pinning effects and/or increased elastic energy storage. 

Thus, during transformation or detwinning, the required energy to complete the stress 

induced martensite transformation increased, which would need to be supplied by an 

increasing external force during the transformation process. Also, in Ni45.3Ti29.7Hf20Pd5, 

the increased elastic energy storage was manifested as increased difference between the 

Mf and Ms during the cooling portion of the isobaric thermal cycling experiments [107]. 

 

 

4.8. Iso-thermal stress-strain response of NiiPd-15 Hf alloy 

 

Figure 4.8 shows the stress-strain responses of the NiTiPd-15Hf alloy at 15 
o
C. 

The alloy was in martensite phase based on the TTs shown in Table 1 at 15 
o
C (due to Mf 

temperature of 35 
o
C) when it was cooled down from a temperature above Af. The 

specimen was incrementally loaded and unloaded at this temperature up to strain of 8 % 
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and compressive stress of 2100 GPa. Therefore, it is expected that bulk plastic 

deformation of martensite occurs at relatively high stresses of more than 2 GPa, which is 

beneficial for high strength biomedical or other industrial applications 
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Figure 4.8: Stress-strain response of the NiTiPd-15Hf at 15 
o
C 

 

In order to investigate the morphology of re-oriented martensite, TEM 

observation was conducted at room temperature for the NiTiPd-15Hf alloy after the 

compression tests shown in Figure 4.8. A bright field image of the re-oriented martensite 

is shown in Figure 4.9a. Thicker re-oriented martensite plates were frequently observed 

as compared to the thermally-induced martensite (Figure 4.1b). The thick martensite 
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variant is considered to be a favorable variant under stress. The selected area diffraction 

pattern obtained from the interface between the martensite plates A and B in Figure 4.9a 

is shown in Figure 4.9b. The twinning in the martensite plates was revealed as (001)B19′ 

compound twin. The boundary between the plates A and B is determined to be {111}B19′-

type I boundary [48]. Although the plates A and B are {111}B19′ type I twin related, the 

boundary of the plates is not completely parallel to the twinning plane, {111}B19′, since 

the plates contain the (001)B19′ compound twins. On the other hand, {011}B19′ type I twin 

related martensite plates have been reported as SIM in a Ni36Ti49Hf15 alloy deformed in 

tension [23]. It is considered that the twin relationship between re-oriented plates depends 

on the martensite variants. 

 

 

Figure 4.9: (a) Bright field image obtained at room temperature for the NiTiPd-15Hf 

alloy deformed at 15 
o
C and (b) selected area diffraction pattern taken from the interfaces 

between the martensite plates A and B in (a). Subscripts M and T indicate matrix and 

(001)B19′ compound twin, respectively 

In Figure 4.10, compressive stress-strain responses of NiTiPd-15Hf are shown at 

60 
o
C and 90 

o
C. At 60 

o
C, full recovery was not observed since the test temperature was 



 

72 
 

below Af. Upon heating above Af, the retained strain was completely recovered as shown 

by the heating curve in Figure 4.10a. 
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Figure 4.10: Stress-strain responses of NiTiPd-15Hf at temperatures of 60 
o
C and 90 

o
C 

  

In Figure 4.10b, the sample was incrementally (by 1 %) loaded up to 5 % strain at 

90 
o
C, above Af. Almost fully reversible superelastic response was observed even when a 

stress level of nearly 1400 MPa was applied. When the sample was loaded to 5 % strain 

and unloaded, irrecoverable strain of 0.3 was observed. The transformation strain was 

determined to be 3.1 %. Stress hysteresis, calculated between the loading and unloading 

curves at 2.5 % (as shown in Figure 4.10b), was determined as 635 MPa at 90 
o
C. 

 

4.9. Iso-thermal stress-strain behavior of NiTiPd-20Hf alloy 
 

Figure 4.11 shows the stress-strain responses of the NiTiPd-20Hf alloy at 200 
o
C, 

which is above Af. As the material was loaded to 1 %, a transformation strain of 0.7 % 

was obtained at 200 
o
C. The stress hysteresis calculated at 0.5 % was 260 MPa at 200 

o
C. 



 

73 
 

At the applied strain increased to 2 %, a full recovery was not realized due to high 

hardening and plastic deformation. 
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Figure 4.11: Stress-strain responses of NiTiPd-20Hf at 200 
o
C 

 

4.10. Two-way shape memory effect in NiTiPd-10Hf 
 

Figure 4.12 shows the strain-temperature responses of the NiTiPd-10Hf alloy 

under 5, 25 and 50 MPa before and after training. Training was consisted of thermal 

cycles under stress levels of up to 700 MPa as shown in Figure 4.2. The initial thermal 

cycling of the as-received material did not result in a significant strain since the applied 

stress of 5 MPa was not enough to favor any preferred martensite variants.   
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Figure 4.12: Strain-temperature responses of Ni45.3Ti39.7Hf10Pd5 under 5, 25 and 50 MPa 

before and after training 

 

The thermal cycling response at 5 MPa after training essentially represents w a 

two-way shape memory effect, since the applied stress was very low and needed to keep 

to compression sample in place during thermal cycling. In this case, a transformation 

strain of 1.6 % was observed that can be attributed to the internal stresses generated 

during plastic deformation of the sample during training. It is known that TWSME 

behavior can be observed in SMAs upon generation of anisotropic internal stress by 

dislocation networks or nucleation sites for martensite by interfaces such as precipitates 
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or retained martensite after certain “training” procedures such as thermal cycling [31, 

108], stress cycling [109], or plastic deformation during variant re-orientation [29, 110].  

The constant stress thermal cycling experiments under 25 and 50 MPa before and 

after the training procedure are also included on Figure 4.12. The transformation strains 

before training were 0.8 % and 1.4 % under 25 and 50 MPa, respectively, while thermal 

hysteresis was 72 
o
C for both stress levels. After training, the transformation strains were 

1.6 % and 2 % under 25 and 50 MPa, respectively, and the temperature hysteresis 

decreased to 47 
o
C at 25 MPa and 41 

o
C at 50 MPa.  

The decrease in the thermal hysteresis after the training process can stem from the 

work hardening effect of the generated dislocations.  As the material hardened, it became 

more difficult to form new defects and dislocations resulting in decreased energy 

dissipation. The dislocation networks may also obstruct the martensitic transformation 

resulting in extra elastic energy storage which helped the back transformation during 

heating and lowers the TTs for austenite formation [92, 111], as observed in Figure 4.12. 

Consequently, the hysteresis decreased in trained samples during the constant stress 

thermal cycling experiments.     

4.11. Two-way shape memory effect in NiTiPd-15Hf and NiTiPd-20Hf alloys 
 

Figure 4.13 shows the strain-temperature responses of the NiTiPd-15Hf under 5 

MPa after various training conditions. The initial thermal cycling of the as-grown 

material (T-0) did not result in significant strain since the applied stress of 5 MPa was not 

enough to favor any preferred martensite variants.  TWSME after thermal cycling under 
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700 MPa (T-1) and 1000 MPa (T-2), as shown in Figure 4.13, yielded in compressive 

strain. 
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Figure 4.13: The constant stress strain-temperature responses of as-grown and trained 

Ni45.3Ti39.7Hf15Pd5 and NiTiPd-20Hf alloys at 5 MPa  

The TWSME strain in T-1 was 0.6 % while thermal hysteresis was 45 
o
C. At T-2, 

the TWSME strain was 0.5 % and the temperature hysteresis was decreased to 40 
o
C. It is 

clear that the TWSME was decreased after the T-2 condition since significant dislocation 

generation was observed when the bias stress increased from 700 MPa to 1000 MPa as 

shown in Figure 4.3. The decrease in the thermal hysteresis in the T-2 condition can stem 

from the less volume of transformed material.  Moreover, as the material hardens due to 

plastic deformation, it becomes more difficult to form new defects and dislocations 

resulting in decreased energy dissipation.  

In NiTiPd-20Hf, TWSME strain in T-1 was 0.8 % with a thermal hysteresis of 35 

o
C. In T-2, TWSME strain was 0.85 % and the temperature hysteresis was decreased to 
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30 
o
C, similar to NiTiPd-15Hf alloy. It is clear that there is a huge elastic energy storage 

(monitored as a larger difference between Ms and Mf in Figure 4.13b) during the 

transformation in the T-2 case, which could be a result of hard propagation of phase 

fronts due to generated dislocations after the constant stress thermal cycling experiment 

at 1000 MPa (Figure 4.4b). In comparison, it should be recalled that the NiTiPd-10Hf 

alloy could develop two-way shape memory strain of 1.6 % without an intense training 

process, owing to larger internal stress and/or larger volume of favored martensite plates 

resulting in larger TWSME strain compared to the other alloys.  

 

4.12. Work output 
 

In Figure 4.14, work output levels for the NiTiPd-10Hf, NiTiPd-15Hf and 

NiTiPd-20Hf alloys are shown as a function of applied stress. The work output can be 

expressed as the mathematical product of reversible strain and the applied stress obtained 

from the load-biased thermal cycling experiments. As the applied stress increased, the 

work output also rose due to an increase in reversible strain and stress.  

In the NiTiPd-10Hf alloy, work output was 0.2 J.cm
3 
 under 25 MPa and reached 

a maximum value of 29 J.cm
3
 under 700 MPa. As for the current alloys, the work output 

was 0.075 J.cm
3 

 under 25 MPa and reached a maximum value of 30 J.cm
3
 under 1000 

MPa in the NiTiPd-15Hf alloy. The work output values were 5 J.cm
3
 and 20 J.cm

3
 at the 

compressive stress levels of 100 MPa and 1000 MPa, respectively in NiTiPd-20Hf. As 

the applied stress increased further to 1000 MPa, the work output decreased to 25 J.cm
3
 

due to a lower reversible strain of only 2.5 %.  
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Figure 4.14: Work output and transformation strain values as a function of applied 

compressive stress for the NiTiPd-15Hf and NiTiPd-10Hf alloys. 

In comparison, the NiTiPd-10Hf alloy has nearly comparable work output  to a 

previously studied extruded Ni45.3Ti29.7Hf20Pd5 alloy,  which is capable of 32-35 J/cm
3
 

[92]. Binary NiTi alloys can generally provide work outputs of 10-20 J/cm
3
 [14], while 

Ni rich NiTiHf alloys can produce around 18-20 J/cm
3
 [85, 112]. Finally, NiTiPd and 

NiTiPt alloys can yield work outputs of 9-15 J/cm
3
 at temperatures above 150 

o
C [15, 

63]. However, it should be noted that the upper temperature capability is limited in 

NiTiHfPd alloys compared to more conventional ternary NiTi-X (X=Hf, Pd, Pt) high 

temperature shape memory alloys. High work output levels were realized in the 

NiTiHfPd alloys owing to high stress capability and good transformation strain. 
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4.13. Summary and conclusions 

 

Effects of chemical composition on the overall and shape memory properties were 

investigated in this chapter. Following conclusions were reached. 

1. The internal twins formed in Ni45.3Ti39.7Hf10Pd5 under stress free transformation in the 

large martensite plates were <011> type II twins, which are commonly observed in 

NiTi binary alloys. 

2. The Ni45.3Ti39.7Hf10Pd5 alloy  exhibited near perfect shape memory response with 4.6 

% transformation strain  at 500 MPa. A near perfect superelastic response was 

observed at 90 
o
C with nearly complete recovery of 7 % applied strain, including ~4.3 

% transformation strain at a stress level of 1250 MPa in Ni45.3Ti39.7Hf10Pd5. 

3. It was found that Classius-Clapeyron slopes were 8.5 MPa/
o
C, 11.8 MPa/

o
C and 15 

MPa/
o
C for Ms in the NiTiPd-10Hf , NiTiPd-15Hf and NiTiPd-20Hf alloys, 

respectively. 

4. The Ni45.3Ti39.7Hf10Pd5 alloy exhibited 1.6 % two-way shape memory strain after a 

simple training procedure consisting of thermomechanical cycling at up to 700 MPa. 

The Ni45.3Ti34.7Hf15Pd5 and Ni45.3Ti29.7Hf20Pd5 alloys exhibited two-way shape 

memory strains of 0.6 % and 0.8 %, respectively, after simple training. 

5. The as-grown Ni45.3Ti39.7Hf10Pd5 alloy has a maximum work output energy density of 

29 J.cm
-3

, achieved at a stress level of 700 MPa. On the other hand, maximum work 

output were 30 J.cm
-3

 and 20 J.cm
-3

 for the as-grown Ni45.3Ti34.7Hf15Pd5 and 

Ni45.3Ti29.7Hf20Pd5 alloys, respectively. 
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6. A notable superelastic response was observed at 90 
o
C with nearly complete recovery 

of 5 % applied strain, including over 3 % transformation strain in Ni45.3Ti34.7Hf15Pd5 

and Ni45.3Ti34.7Hf15Pd5 alloys while the high hardening limited the superelasticity in 

Ni45.3Ti29.7Hf20Pd5.  

7. As the Hf content was increased, the transformation strain was decreased and the 

volume of crystal structures was expanded.  

8. The evolution of the thermal hystereses with the applied stress was linked to the 

observed twinning types. A progressively increasing hysteresis with the applied stress 

in the load-biased thermal cycling tests was observed in the compound twinned 

NiTiPd-15Hfand NiTiPd-20Hf alloys in contrast to type-II twinned NiTiPd-10Hf 

alloy. 
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5. SHAPE MEMORY PROPERTIES OF [111]-ORIENTED Ni45.3Ti29.7Hf20Pd5    

ALLOYS 

 

5.1. Introduction 

 

It has been well documented that shape memory properties of NiTi alloys are 

highly orientation dependent [9-14].  Originally, the stress induced martensitic phase 

transformation in NiTi single crystals was investigated by Takei et al. in 1983 [113], 

while Miyazaki et al. studied the shape memory and superelastic behaviors of Ti49Ni51 (at 

%) single crystals around the same time [114].  Since then, many aspects of NiTi single 

crystals such as cyclic deformation behavior [115], tension-compression asymmetry [39], 

orientation dependence of shape memory properties [59], and aging effects on shape 

memory behavior [42]  have been investigated. In NiTi single crystals, yield strengths as 

high as 2000 MPa are possible in the martensite phase for Ti48.5Ni51.5 and Ti49.2 Ni50.8 

with 3 % transformation strain along the [111] direction in compression [42, 59].  

Moreover, the mechanical behavior of strongly textured polycrystalline materials can 

mimic the behavior of single crystals [3]. As an example, it is possible to get strongly 

<111> textured NiTi alloys by wire drawing that exhibit shape memory behavior similar 

to [111] oriented single crystals [116].   

In this chapter, the shape memory properties of Ni45.3Ti29.7Hf20Pd5 single crystals 

were investigated along the [111] orientation. Effects of aging temperature and time on 

the functional properties of single crystals were also reported. Lastly, the effects of initial 
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microstructure and following aging treatments on the shape memory properties were 

reported. 

 

5.2. Superelasticity of an ultra-high strength of [111] oriented Ni45.3Ti29.7Hf20Pd5 

alloys 

In this section, Ni45.3Ti29.7Hf20Pd5 single crystalline SMA was investigated in 

compression along the [111] direction. Its superelastic behavior as a function of 

temperature was revealed. Mechanical strength, damping capacity and mechanical 

hysteresis were also determined studying the potential of this ultra-high strength 

Ni45.3Ti29.7Hf20Pd5 single crystalline alloy for industrial applications that require high 

strength and high damping capacity. 

High strength, high damping capacity and high work output are important 

parameters for consideration of SMAs in many practical applications. Work output is 

especially important in actuation applications where there are restrictions on weight and 

space such as adaptive engine components and morphing structures in aerial vehicles. As 

stated in Chapter 3, good damping materials should have large mechanical hysteresis and 

good strain. The stress hysteresis is about 200-300 MPa in polycrystalline NiTi [67], 

increasing to 400-500 MPa in [111] oriented Ti48.5Ni51.5 and Ti49.2Ni50.8 (at %) single 

crystals [42, 59], and is about 500 MPa in NiTiNb polycrystalline SMAs [17]. High 

strength and large hysteresis SMAs are very appealing for aerospace and biomedical 

applications [20, 21] as well as applications in civil and seismic structures [18, 20, 22]. 

Possible advantages that they can provide include high force accommodation, weight 

saving, portability and reduction in cost over existing systems [20]. 
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In this study, the [111] oriented single crystal was solutionized (solution treated) 

at 1050 
o
C for 4 hours followed by water quenching. Figure 5.1 represents the 

superelastic response of the solution-treated [111] oriented Ni45.3Ti29.7Hf20Pd5 single 

crystal in compression at selected test temperatures above the austenite finish 

temperature, Af.  The sample was loaded under strain control and then unloaded under 

force control. In the first cycle, the material was loaded to a strain value of 3 % and then 

unloaded. In succeeding cycles, the applied strain was increased by 1 % (until a 

maximum applied strain of 6 % was reached 

At all test temperatures, the transformation strain was fully reversible meaning 

that there was negligible amount of plastic deformation [59]. The superelastic window for 

the Ni45.3Ti29.7Hf20Pd5 single crystal alloy was at least 100 
o
C (with testing in this study 

conducted between – 30 
o
C and 70 

o
C). The maximum transformation strain was 4.2 % at 

-30 
o
C. The elastic moduli of the austenite and martensite phases were 65-75 GPa and 

100-110 GPa, respectively.   

 Another remarkable feature observed in Figure 5.1 is the very high strength of 

the Ni45.3Ti29.7Hf20Pd5 single crystal that results in a perfect superelastic response with no 

permanent plastic deformation under compressive loads up to 2.5 GPa. Thus, it can be 

concluded that the stress required for dislocation slip or irreversible deformation twinning 

in the martensite phase is higher than 2.5 GPa for this material along [111] orientation. 
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Figure 5.1: Superelastic response of solution-treated Ni45.3Ti29.7Hf20Pd5 single crystal 

along [111] orientation at constant test temperatures ranging from – 30 
o
C to 70 

o
C. 

All of the superelastic loops in Figure 5.1 showed hardening even in the 

transformation plateau regions. Moreover, as evident by the increasing slopes of the 

transformation plateaus, hardening increased with increasing test temperature. The reason 

behind this tendency could be the operation of additional martensite variants activated by 

temperature as previously observed in NiTiHf and CoNiGa single crystals [117, 118]. 

Interactions among these variants may hinder the transformation or detwinning and more 

stress may be needed to propagate phase or twin boundaries [59, 119] as the test 

temperature was increased.  

 



 

85 
 

2000

1800

1600

1400

1200

1000

800

600

400

200

0

 S
tr

e
s
s
, 

M
P

a

-300 -200 -100 0 100

Temperature, °C

[111] oriented Ni-29.7Ti-20Hf-5Pd
 
  

 Forward transformation
 Backward transformation

Slopes :
9 MPa/ ºC        (forward)
13.06 MPa/ ºC (backward)

(a)

 

1400

1300

1200

1100

1000

900

800

700

600

500 M
e

c
h

a
n

ic
a

l 
H

y
s
te

re
s
is

, 
M

P
a

200017501500

Critical Stress, MPa

[111] oriented Ni-29.7Ti-20Hf-5Pd
Homogenized at 1050 ºC for 4 hours
 

(b)

 

Figure 5.2: a) Clausius-Clapeyron and b) mechanical hysteresis vs. critical stress (for the 

forward transformation) relationships for Ni45.3Ti29.7Hf20Pd5 along [111] direction in 

compression. 

Critical stresses for the forward and backward transformations were found 

graphically by intersecting line segments aligned with the plateau regions and the 

connected linear elastic regions of austenite and martensite, respectively, and the results 

are shown in Figure 5.2a. The critical stresses for both the forward and backward 

transformations  increased with temperature and  ranged between 1380 MPa and 1880 

MPa for the forward transformation and 130 MPa to 1460 MPa for the back 

transformation within a pseudoelastic window of – 30 
o
C to 70 

o
C. The stress hysteresis 

as a function of temperature was also deduced from Figure 5.1 and these results are 

shown in Figure 5.2b. The stress hysteresis was calculated at the middle point of the 

plateau strain between the forward and reverse transformations when the sample is loaded 

up to 6 % applied strain. It was clear that the stress hysteresis tended to decrease with 

temperature and was almost independent of transformation strain. 
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The increase in stress induced martensite stress levels with temperature can be 

explained by the Clausius-Clapeyron relationship [75].The slope of the C-C line was 9 

MPa/ 
o
C for the forward transformation and 12.6 MPa/ 

o
C for the backward 

transformation for the solution-treated Ni45.3Ti29.7Hf20Pd5 single crystal. The difference in 

C-C slopes also confirmed the decrease in hysteresis with temperature, which ranged 

from 1270 MPa at – 30 
o
C to 815 MPa at 70 

o
C. As a comparison, the C-C slope for the 

forward transformation  was around 7 MPa/ 
o
C in a peak aged Ni50.8Ti49.2 [111] single 

crystal and was on the average of 6.5 MPa/ 
o
C for Ni51.5Ti48.5 single crystals in various 

orientations [42, 59].  

Based on the stress-strain behavior shown in Fig 5.1, the yield stress of the 

martensite (and by inference the austenite phase) was greater than 2500 MPa for the 

solution treated Ni45.3Ti29.7Hf20Pd5 alloy along the [111] orientation. This level of yield 

stress was significantly higher than the yield strength of precipitation strengthened [111] 

oriented Ni50.8Ti49.2 single crystals, which had an austenite yield strength between 900 

MPa and 1250 MPa in over-aged (aged at 550 
o
C for 1.5h)  and peak-aged (aged at 450 

o
C for 1.5h) conditions, respectively, while the yield strength of the martensite phase was 

1700 MPa for over-aged and 2100 MPa for the peak-aged conditions measured at 

temperatures above 100 
o
C [59]. In alloys that were even more Ni-rich,  e.g., [111]-

oriented Ni51.5Ti48.5 single crystals  tested in compression,  the martensite yield strength 

was reported to be around 2000 MPa for an over-aged (aged at 550 
o
C for 1.5h)   state at 

77 K [42].  

The maximum recoverable strain for the Ni50.8Ti49.2 and Ni51.5Ti48.5 single crystals 

along the [111] direction was 3% in over-aged conditions in compression [42, 59]. The 



 

87 
 

maximum recoverable strain in the superelastic experiments for the Ni45.3Ti29.7Hf20Pd5 

single crystalline alloy was around 4.2 %. Consequently, this alloy can recover more 

strain compared to the aforementioned [111]-oriented NiTi single crystals and it 

possesses a higher yield strength even in the solution treated condition. It should be noted 

that in the current study, no irrecoverable strain was observed when the 

Ni45.3Ti29.7Hf20Pd5 single crystalline specimens were deformed at 70 
o
C up to a stress 

level of 2500 MPa.  

Hysteresis in SMAs is a decisive parameter in the design and operation of many 

SMA-based components. Hysteresis in these systems is defined as the non-reversible 

energy dissipation during the thermoelastic martensitic phase transformation. The 

mechanical (or stress) hysteresis was extracted from the superelastic curves in Figure 5.1 

and is summarized in Figure 5.2b as a function of the critical stress for the forward 

transformation. The comparison between the results of the current study and other NiTi 

based alloys is depicted in Figure 5.3. The [111]-oriented Ni45.3Ti29.7Hf20Pd5 single 

crystalline alloy yields a mechanical hysteresis of 1270 MPa at -30 
o
C, which is the 

largest mechanical hysteresis observed in SMAs. In NiTi polycrystals, the mechanical 

hysteresis was around 200-300 MPa [67] while it is around 400-500 MPa in NiTiNb 

alloys [17]. It was clear that [111]-oriented Ni45.3Ti29.7Hf20Pd5 alloys had significantly 

higher stress hysteresis around room temperature than any other SMAs. Thus, 

Ni45.3Ti29.7Hf20Pd5 alloys could be a cost effective and promising candidate for 

biomedical and damping applications in a case of texturing.  
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Figure 5.3: Comparisons of mechanical hysteresis for various NiTi based SMAs [2, 17, 

46, 59]. 

It is well known that the lattice friction and dislocation generation increases both 

mechanical and thermal hysteresis in SMAs [11, 120, 121]. Since there was almost no 

irrecoverable strain in the superelastic behavior of the material and stress hysteresis was 

independent of transformation strain, dislocation generation can be ruled out as a 

prospective reason for the large hysteresis observed. Thus, this large hysteresis can 

mainly be attributed to the lattice incompatibility between the transforming phases, 

restricted mobility of phase front/twin boundaries due to high frictional resistance or 

relaxation of elastic energy. 

In thermo-elastic phase transformations, elastic energy is stored during the 

forward transformation and in turn, promotes back transformation. Elastic strain energy 

does not directly affect thermal and mechanical hysteresis [11]. However, if the stored 

elastic energy is relaxed subsequent to phase transformation, the potential of the 
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remaining elastic energy to promote back transformation is lessened and thus the 

mechanical hysteresis is expected to be larger [11, 120, 122]. 

Lattice friction is another dissipative mechanism, which escalates the hysteresis. 

Friction can be described as the resistance for phase front or variant motion in the 

material [11]. Interactions between martensite variants or among variants and  phase front 

imperfections (i.e., dislocations, other point or lineal lattice defects, second phase 

particles, precipitates, etc.) may increase this resistance and yield more friction. This 

means more energy dissipation and larger hysteresis.  

Since the matrix was rather strong in this Ni45.3Ti29.7Hf20Pd5 single crystal and it 

was consisted of alloying elements with dissimilar atomic radii, the resistance for phase 

propagation might be responsible for the high dissipation of energy. A similar 

phenomenon was reported in Ni51.5Ti48.5 single crystals, which had a stronger matrix than 

the Ni50.1Ti49.9 single crystals [11]. However, it is hard to explain the considerable change 

in hysteresis with temperature in the Ni45.3Ti29.7Hf20Pd5 single crystal by only considering 

the lattice friction. 

The close relationship between hysteresis and lattice compatibility of 

transforming phases is well known. Lattice compatibility is a function of lattice 

parameters of the transforming phases in SMAs. When the interphase of the transforming 

phases is more compatible, a lower hysteresis is expected [95-97]. The large hysteresis 

observed in our Ni45.3Ti29.7Hf20Pd5 single crystal alloy could be attributed to the 

incompatibility between austenite and martensite phases. It should be noted that the 

mechanical hysteresis observed is about 1270 MPa at – 30 
o
C and 900 MPa at 70 

o
C for 

an applied strain of 6 %. Such a change in hysteresis with temperature can be due to the 
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change in lattice parameters of the transforming phases, which leads to a more 

compatible crystal structure at the interphase. 

Mechanical hysteresis  is closely related to the damping capacity of SMAs, which 

may become a useful ability for various applications in defense, construction, and 

transportation industries [20]. For [111] oriented Ni45.3Ti29.7Hf20Pd5 single crystals, the 

damping capacity was  approximately 44 J.cm
-3

, which is larger than 38 J.cm
-3 

  for 

NiTiNb and  16 J.cm
-3 

  for Ni50.6Ti49.4 alloys [18]. 

The ultra-high strength, exceptional damping capacity, and practical ability to 

demonstrate superelastic behavior at room temperature without irrecoverable strain 

makes Ni45.3Ti29.7Hf20Pd5 SMAs an  intriguing candidate for strategically important 

applications in biomedical, aerospace, oil-gas, and construction  applications. It should be 

noted that for biomedical applications, the presence of Hf and Pd would also improve the 

visibility of Ni45.3Ti29.7Hf20Pd5 components such as stents, prosthetics, etc. during 

magnetic resonance imaging. 
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5.3. Effects of aging temperature on the shape memory properties of [111]-oriented 

Ni45.3Ti29.7Hf20Pd5 single crystals 

In the previous section, superelastic properties of solutionized [111]-oriented  

Ni45.3Ti29.7Hf20Pd5 single crystals were determined in compression [123]. This material 

was capable of 4.2 % transformation strain, extremely high critical and yield stress levels 

(> 2000 MPa), and high damping capacity/absorbed energy (44  J.cm
-3

) due to a high 

stress hysteresis (> 1200 MPa)  at temperatures between -30
 o
C and 70 

o
C. In the present 

section, the effects of aging (550 
o
C and 600 

o
C for 3 hours) on the shape memory 

properties of Ni45.3Ti29.7Hf20Pd5 single crystals along the [111] orientation were 

investigated under compression. In addition to superelastic tests at selected temperatures, 

constant-stress thermal cycling tests were conducted and the transformation temperatures, 

transformation strain, thermal hysteresis, work output, and energy absorption as functions 

of stress and/or temperature were determined. 

As an experimental method, the [111]-oriented Ni45.3Ti29.7Hf20Pd5 single crystals 

were solutionized at 1050 
o
C for 4 hours in sealed quartz tubes followed by a water 

quench. Subsequently, they were aged at 550 
o
C or 600 

o
C for 3 hours in air and again 

quenched in water.  For brevity, the Ni45.3Ti29.7Hf20Pd5 specimen aged at 550 
o
C for 3 

hours and the specimen aged at 600 
o
C for 3 hours will be referred as “550 

o
C-3h” and as 

“600 
o
C-3h” throughout the section, respectively. 

Figure 5.4 shows TEM images of 550 
o
C-3h and 600 

o
C-3h aged samples. It was 

clear that precipitates with different sizes were formed after aging.  The microstructure of 

the 550 
o
C-3h sample consisted of a high-density of very fine precipitate phase (< 20nm). 

The precipitate phase had the same face-centered orthorhombic lattice structure as those 
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found in a NiTiHf alloy by Han et al [124] based on electron diffraction patterns. The 

precipitates were spindle shaped; the size of the long axis increased from 10-20nm to 50-

60nm when the aging temperature was increased from 550 
o
C to 600 

o
C.           

 

 

Figure 5.4: Microstructure of the Ni45.3Ti29.7Hf20Pd5 alloy aged at a) 550 
o
C for 3h and b) 

600 
o
C for 3h. 

Figure 5.5 shows the constant stress thermal cycling response of the [111] 

oriented Ni45.3Ti29.7Hf20Pd5 single crystals after aging. The transformation temperatures 

(Ms, Mf, As and Af)  as  function of applied stress were determined  using the tangent 

method.  Ms and Af were 20 
o
C and 61 

o
C under 100 MPa and 105 

o
C  and 135 

o
C under 

1000 MPa, respectively, for the 550 
o
C-3h aged condition. In the 600 

o
C-3h case, Ms and 

Af temperatures were 61 
o
C and 142 

o
C under 100 MPa and 115 

o
C and 195 

o
C under 

1000 MPa, respectively. 
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The transformation strains and thermal hystereses were extracted from Figure 

5.5a and 5.5b and plotted as a function of applied stress in Figure 5.5c. With increasing 

stress, the transformation strains increased since stress drove the selection of more 

favored martensite variants.  However, at some point this process would saturate and the 

transformation strains would become independent of stress or actually start to decrease if 

pastic deformation began to dominate.  In the 550 
o
C-3h aged condition, transformation 

strain initially increased with stress up to 500 MPa and then saturated. It was 0.2 % at an 

applied stress level of 100 MPa and 2.2 % at 1500 MPa. The transformation strains for 

the 600 
o
C-3h aged sample  behaved in a similar fashion, initially increased with stress up 

to 700 MPa and then  saturated.  The transformation  strains for the 600 
o
C-3h aged 

sample were 0.3 % at100 MPa and 2 % at 1000 MPa.   
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Figure 5.5: Shape memory behavior under stress for a) 550 
o
C-3h condition, b) 600 

o
C-

3h condition, c) temperature hysteresis and transformation strain as functions of applied 

stress for [111] oriented Ni45.3Ti29.7Hf20Pd5 single crystals aged at 550 
o
C for 3h and 600 

o
C for 3h. 

It should be noted that almost perfect shape memory behavior was observed even 

at stress levels as high as 1000 MPa in both aged materials. However, the  shape memory 

behavior of the 550 
o
C-3h aged specimen at a stress level of 1500 MPa was truly 

remarkable. The alloy’s ability to show shape memory behavior under such high stresses 

can be attributed to the high strength of the precipitation hardened single crystal due to a 

high density of relatively fine and coherent precipitates. This was the highest stress level 
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under which a fully reversible shape memory strain of any significance (e.g., >2%) has 

been obtained.  This ability can afford a very unique opportunity for the current alloy to 

be utilized in applications where there is a need to recover strain under very high levels of 

compressive force. 

Temperature hysteresis as a function of applied stress was determined graphically 

between the cooling and heating curves in Figures 5.5a and b at the mid-point of the 

transformation strain and is summarized in Figure 5.5c for both aging conditions. In the 

550 
o
C-3h aged material, the temperature hysteresis decreased rapidly from 50 

o
C to 37 

o
C when stress was increased from 100 MPa to 500 MPa and continued to decrease more 

slowly resulting in a minimum hysteresis of 28 
o
C to 1000 MPa. Further increase in stress 

to 1500 MPa reversed this trend resulting in  a slight increase  in hysteresis but only to 38
 

o
C.  

The change in hysteresis with stress correlated well with the corresponding 

change in transformation strain. The initial decrease in hysteresis can be related to the 

decrease in the number of martensite variants formed with incerasing stress  level. Since  

fewer martensite  variants were formed, the interaction between the variants diminished 

resulting in a smaller hysteresis. The further change in hysteresis between 500 MPa to 

1000 MPa can be attributed to the change in lattice compatibility of the tranforming 

phases with temperature and stress, and  will be described in detail later. Under 1500 

MPa, a small irrecoverable strain was observed indicating the occurrence of plastic 

deformation, which resulted in the subsequent increase in hysteresis. 
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In the 600 
o
C-3h aged condition, the temperature hysteresis increased only 

slightly up to 500 MPa  and then increased rapidly with further increase in applied stress 

(Figure 5.5c). The temperature hysteresis was 35 
o
C, 46 

o
C and 55 

o
C  at 100 MPa, 700 

MPa and 1000 MPa, respectively. The rapid increase  in temperature hysteresis  at 

stresses greater then 500 MPa  can be attributed to an increase in plastic deformation, 

which was exhibited as irrecoverable strain in the strain-temperature curves  shown in 

Figure 5.5b. It is clear that the  evolution  in temperature hysteresis  was different for  the 

two aging conditions. This difference was attributed to the fact that in the 550 
o
C-3h 

condition, the material was stronger due to the finer coherent precipitates, which did not 

allow energy dissipation by defect generation. After 600 
o
C-3h aging, plastic deformation 

was easier due to formaton of larger and presumably semi-coherent or incoherent 

precipitates, which were not as effective in strengthening the material.  

The superelastic responses of the aged single crystals along the [111] orientation 

were shown in Figure 5.6. Specimens were loaded to a total strain of 4 % for the 550 
o
C-

3h and to 3% total strain for the 600 
o
C-3h aged conditions.  It was clear that both aging 

treatments resulted in perfect superelasticity with no irrecoverable strain.  
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Figure 5.6: The stress vs. strain responses for the Ni45.3Ti29.7Hf20Pd5 alloys aged at a) 550 

o
C for 3h and b) 600 

o
C for 3h. 

The C-C slopes were 11 MPa/
 o
C and 11.6 MPa/

 o
C for the 550 

o
C-3h and 600 

o
C-

3h aged specimens, respectively. For the same material in the solution-treated condition, 

the C-C slope was 9 MPa/
 o

C [11]. Previous studies have reported C-C slopes  of 

approximately 7 MPa/ 
o
C in peak aged Ti49.2Ni50.8 and 6.5 MPa/ 

o
C for Ti48.5Ni51.5 single 

crystals in the [111] direction [42, 59]. 

Pertinent shape memory and superelastic properties for this single crystal alloy 

are summarized in Table 2.  These include Ms, maximum transfromation strains extracted 

from Figure 5.5 (SME strain) and Figure 5.6 (SE strain), Clausius-Clapeyron slopes 

(obtained from Figure 5.5), stress hystereses extracted from Figure 5.6, and temperature 

hystereses under 100 MPa and 1000 MPa isobaric stress conditions (extracted from 

Figure 5.5). It was clear that transformation temperatures increased with aging 

temperature for constant aging time. Ms was approximately 10 
o
C  and 50 

o
C (at a stress 

level of 100 MPa) for the 550 
o
C-3h and the 600 

o
C-3h aged single crystals, respectively. 
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In the solution-treated condition, Ms was predicted to be less than -200 
o
C [11]. The 

increase in TTs can be attributed to the formation of  (Ni+Pd)-rich precipitates  upon 

aging at 550 
o
C (Figure 5.4) and their increase in volume fraction by elevating the aging 

temperature to  600 
o
C for the same aging time. It is well known that in NiTi based 

alloys, TTs increase by formation of  Ni-rich precipitates since they deplete the matrix of 

Ni moving the matrix composition closer to stoichiometry and thus to higher 

transformation temperatures  [2, 44]. 

Table 2: Comparison of shape memory parameters for solution-treated [15] and aged 

Ni45.3Ti29.7Hf20Pd5 single crystals along the [111] orientation in compression  

Material 
Ms 

(
o
C) 

SME 

strain 

(%) 

SE 

strain 

(%) 

C-C 

slope 

(MPa/
 

o
C) 

Stress 

Hysteresis 

(MPa) 

Temperature 

Hysteresis 

(
 o
C) 

Solutionized <-200 - 4.2 9 1270-900 - 

550 
o
C-3h ~10 2.2 2.2 11.1 400-365 50-38 

600 
o
C-3h ~50 2 1.6 11.6 250-235 35-55 

 

Mechanical hysteresis was graphically evaluated from Figure 5.6. For the 550 
o
C-

3h aged sample, stress hysteresis was 400 MPa at 40 
o
C and 365 MPa at 80 

o
C. It was 

250 MPa at 80 
o
C and 235 MPa  at 120 

o
C for the 600 

o
C-3h aged sample. It should be 

noted that the stress hysteresis of the solution treated material was abut 1270 MPa at -

30
o
C and 900 MPa at 70

o
C [11]. It was clear that as testing temperature increased, stress 

hysteresis decreased in all cases. Furthermore, stress hysteresis decreased with aging 
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temperature. The difference in stress hysteresis can be attributed to a change in martensite 

morphology and/or compatibility of the transforming phases with aging and testing 

temperature. When the compatibility between the transforming phases was better, less 

dissipation was expected [95]. It should be noted that compatibility depends on the lattice 

parameters of the transforming phases, which are subsequently depended on matrix 

composition and temperature. Therefore, it was possible that both aging and testing 

temperature could alter the lattice parameters in a manner that could result in improved 

compability. In the Ni45.3Ti29.7Hf20Pd5 alloy, aging had concurrent effects as it alters the 

matrix composition  (increases the transformation temperatures) and decreased the stress 

hysteresis.    

 

Figure 5.7: Comparison of the work output energy densities for NiTi-based shape 

memory alloys as a function of operation temperature. 
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A unique aspect of the [111]-oriented Ni45.3Ti29.7Hf20Pd5 single crystals was their 

high work output energy density, which was calculated by multiplying the recoverable 

strain and the applied stress from the constant stress thermal cycling experiments. Work 

output is a crucial criterion for solid-state actuators, especially for applications in the 

aerospace industry. A comparison of the work output for various NiTi-based SMAs is 

shown in Figure 5.7. It was reported that NiTi alloys can generate work output values 

exceeding 10 J.cm
-3 

[14]. Above 100 
o
C, Ni-Ti-Pd and Ni-Ti-Pt SMAs have relatively 

high work outputs that are on the order of 9 J.cm
-3 

 to 13 J.cm
-3

 [15][125]. For the [111]-

oriented Ni45.3Ti29.7Hf20Pd5 single crystal, the work output was 33 J.cm
-3

 after aging at 

550 
o
C for 3 hours and 20 J.cm

-3
 after 600 

o
C-3h aging. The former had similar work 

output to a [111] oriented ternary NiTiHf  (30 J.cm
-3

) alloy [118], and all the NiTiHfPd 

single crystals have higher work outputs than those of  NiTiPd and NiTiPt alloys, but at 

lower temperatures. Finally, the energy absorption capacity was determined to be around 

3-4 J.cm
-3

 and 7-8 J.cm
-3

 for 600 
o
C-3h and 550 

o
C-3h aged samples, respectively. This 

was much smaller than for the solution treated Ni45.3Ti29.7Hf20Pd5, which was 44 J.cm
-3 

due to the very wide mechanical hysteresis [11].  

Aging provided the ability to tailor the TTs and increase the strength of certain 

alloys such as Ni45.3Ti29.7Hf20Pd5 alloys. However, the intrinsic high strength of the 

Ni45.3Ti29.7Hf20Pd5 can be attributed to a combination of solid solution strengthening due 

to the dissimilar atomic size of the elements (as demonstrated in the solution treated alloy 

[11]) and to precipitate strengthening, especially in the case of a fine homogeneous 

distribution of coherent nanosize particles as in the material aged at 550 
o
C-3h. This type 

of ultra high strength SMA would be promising for many applications where weight is 
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critical. The high energy density of the Ni45.3Ti29.7Hf20Pd5 alloy would provide the ability 

to deliver high forces through small electrochemical devices. Moreover, 

Ni45.3Ti29.7Hf20Pd5 alloys may be used in biomedical applications (assuming they have 

good biocompatibility) where high force and MRI compatible stents or implants are 

needed.  
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5.4. Effects of aging time on shape memory and superelasticity behavior of [111]-

oriented Ni45.3Ti29.7Hf20Pd5 alloys 

This section presents a detailed characterization studies after aging at 600 
o
C for 

durations of 3, 48 and 72 hours, while monitoring changes in microstructure and its 

subsequent effects on shape memory properties of Ni45.3Ti29.7Hf20Pd5  single crystals 

along the [111] orientation in compression. 

Figure 5.8 shows the constant stress thermal cycling behavior of [111] oriented 

Ni45.3Ti29.7Hf20Pd5 single crystals aged at 600 
o
C for 3, 48 and 72 hours. Transformation 

strain was graphically measured as the difference between the cooling and heating curves 

at the Ms temperature while the tangent line method was used to determine TTs, as 

conducted previously. Transformation strain and TTs at 100 MPa and 1000 MPa were 

derived from Figure 5.8 and summarized in Table 3. Ms of  the 3, 48 and 72 hours aged 

samples were 61 
o
C, 103 

o
C and 125 

o
C at 100 MPa, respectively. It should be noted that 

the Ms under zero stress was extrapolated to be ~ -270 
o
C in  solutionized (at 1050 

o
C for 

4 hours) Ni45.3Ti29.7Hf20Pd5 single crystals [123]. The increase in TTs after aging the 

solutionized material can be attributed to compositional changes of the Ni45.3Ti29.7Hf20Pd5 

matrix due to precipitation [2, 44]. 
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Figure 5.8: Shape memory effect of Ni45.3Ti29.7Hf20Pd5 single crystals aged at 600 
o
C for 

a) 3 hours, b) 48 hours and c) 72 hours as a function of applied compressive stress. 

All the aged single crystals showed perfect shape memory effect at 500 MPa and 

limited residual strain even at 1000 MPa above temperatures of 100 
o
C which can be 

advantegeous for high temperature/high strength applications. Transformation strains of 

the samples aged at 600 
o
C for 3, 48 and 72 hours at 1000 MPa are 2.1 %, 2.5 % and  2.6 

%, respectively. The shape memory strain of the 3 hours aged sample was lower than 

those of the ones aged for longer  times. There are several possible explanations for this 

behavior. One of the reasons for less strain in the 3 hour aged specimen could be the 
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difficulty in selection and growth of favored martensite variants due to the stress fields 

around the fine, closely spaced, coherent precipitates.  Another reason for the lower strain 

after 3 hours of aging could be attributed to the presence of untransformed local regions 

in the microstructure. Due to very small interparticle distances, some local regions of the 

microstructure might have already experienced plastic deformation before any 

transformation [78, 79]. Another reason could be the lack of detwinning in the martensite. 

Detwinning of the martensite could be restricted by the small, coherent particles, which 

could lower the total recoverable strain, as in the case for Ti49.62Ni50.38 (at %) single 

crystals [80].  

Transformation strains for the samples aged for 48 and 72 hours were 

comparable. This can be attributed to the similar size, shape, and volume fraction of the 

precipitates for these two aging conditions. As clearly seen in Figure 5.8, the shape 

memory curves in the 3 hours aged material were more gradual, i.e., not as steep as in 

those of the 48 and 72 hours aged materials. 

Temperature hysteresis was determined graphically at the midpoint of the 

transformation strain between the cooling and heating curves. Temperature hysteresis of 

the aged samples were very close initially (35-37 
o
C) at 100 MPa and was almost 

constant up to 700 MPa for all aged specimens. Then, it increased to 55 
o
C, 52 

o
C and 65 

o
C as applied stress was increased to 1000 MPa for 3, 48 and 72 hours of aging, 

respectively. The reason of the abrupt increase in hysteresis could be attributed to 

dislocation generation due to plastic deformations which are evident from the unclosed 

thermal cycling loops at stress levels above 700 MPa.  
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A linear relationship between Ms and applied stress was observed for the aged 

single crystals. The C-C slopes representing the aforementioned correlation are 11.9 

MPa/
o
C, 12.8 MPa/

o
C and 15.7 MPa/

o
C for the samples aged for 3, 48, and 72 hours, 

respectively. The C-C slopes for the current specimens were comparable to the values for 

[111]-oriented Ni-rich NiTiHf single crystals (i.e., 11.6 MPa/ 
o
C [118] while they are 

higher than the C-C slopes of [111]-oriented NiTi single crystals, which are 6.5-7 MPa/ 

o
C [42, 59]. 

The superelastic behavior of the single crystal specimens aged at 600 
o
C for 3, 48, 

72 hours are  shown in Figure 5.9. The specimens were first loaded to a total strain of 2 

%, unloaded,  and then loaded to 3 % strain at selected test temperatures.  
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Figure 5.9: The stress vs. strain responses of Ni45.3Ti29.7Hf20Pd5 single crystals aged at 

600 
o
C for a) 3 hours, b) 48 hours and c) 72 hours. 

For each aging treatment, near perfect superelastic response was observed at test 

temperatures above 100 
o
C  at compressive stress levels between 1000 and 1400 MPa. 

This respose can be utilized for industrial applications demanding elevated temperatures 

and greater material strength. In all the superelastic curves, high hardening was observed 

during stress induced martensitic transformations in contrast to NiTi alloys [2]. Similar 

behavior is commonly observed in NiTiHf alloys and responsible for the lack of 
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superelasticity [23]. Due to stronger matrix in Ni45.3Ti29.7Hf20Pd5 high hardening did not 

result in a loss of the superelasticity behavior. 

The mechanical hysteresis (stress hysteresis) values were determined as the 

difference between the loading and unloading lines at the corresponding midpoint value 

of the applied strain in Figure 5.9. The stress hysteresis range was 235-249 MPa, 341-385 

MPa and 376-423 MPa for 3, 48 and 72 hours aging, respectively. Mechanical hysteresis 

tended to decrease with testing temperature for the 3 hours aged specimen, while it 

increased with temperature for both 48 and 72 hours aged samples.  

5.5. Microstructural dependence of the shape memory properties in [111]-oriented 

Ni45.3Ti29.7Hf20Pd5 alloys 

In NiTi-based shape memory alloys, thermo-mechanical treatments have been one 

of the most powerful tools to improve/alter the mechanical properties of an alloy [2], 

hence many research efforts have been on this direction [4, 42, 58, 113, 114, 126-128]. It 

was mentioned that the precipitation formation is found to be an effective method to alter 

the crucial shape memory properties such as matrix strength [58], transformation strain 

[114], transformation temperatures [44] and transformation stress [4]. The microstructure 

characteristics (e.g. precipitate size & coherency, interparticle distance, grain size) have 

been found to be very effective in tailoring the detwinning [80] and the elastic energy 

storage processes [129, 130] in addition to the aforesaid shape memory properties. 

In the current study, the effects of microstructure on shape memory properties of 

[111] oriented Ni45.3Ti29.7Hf20Pd5 single crystals were investigated. The constant-stress 

shape memory behavior of [111] single crystals was compared for as-grown plus aged 
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(550 C-3h) samples versus crystals that were first solution-treated and then aged. In 

contrast, given the large and stable superelastic response observed previously for 

solution-treated crystals [22], the superelastic response of [111]-oriented Ni45.3Ti-

29.7Hf20Pd5 single crystals was analyzed in four conditions: the as-grown single crystal, 

solution-treated, as-grown+aged, and solution-treated+aged.  Significant differences in 

superelastic response were observed in the various conditions and attributed to stark 

changes in the microstructure. Some specimens were aged at 550 
o
C for 3 hours in air and 

they are named as “as-grown+aged” in the text. Other compression specimens were 

solutionized at 1050 
o
C for 4 hours in sealed quartz tubes (to avoid oxidation) followed 

by water quenching. They were aged at 550 
o
C for 3 hours in air after the solution 

treatment and named as “solution-treated+aged” throughout the text for brevity.  

 Figures 5.10a and 5.10b are bright field TEM micrographs and corresponding 

selected area diffraction (SAD) patterns taken at RT for the Ni45.3Ti29.7Hf20Pd5 single 

crystals in the as-grown and solution-treated conditions, respectively. The as-grown and 

solution-treated materials were composed of austenite with B2 structure, and precipitates 

were not observed in the bright field micrographs of either material. However, in the 

SAD pattern obtained from the as-grown specimen, shown as an insert in Figure 5.10a, 

circular diffuse scattering could be seen in addition to the fundamental reflections of the 

B2 austenite phase. The diffuse scattering is most likely caused by tiny precipitates, 

which were too small to be observed by conventional TEM, inherited from the slow 

cooling during the growth of the single crystals. Sandu et al. [131] have reported the 

same diffuse scattering in an aged NiTiZr alloy (as can be seen in Figure 5.11 of 

Reference [131]). Little or no diffuse scattering was observed in the diffraction patterns 



 

109 
 

of the solution-treated specimen, shown in Figure 5.10b, indicating that the specimen has 

fewer/negligible precipitates, as expected.  

In contrast to the as-grown and solution-treated specimens, precipitates were 

clearly observed in the aged materials. The bright field micrographs obtained from the as-

grown+aged and solution-treated+aged specimens are presented in Figures 5.10c and 

5.10d, respectively. For the as-grown+aged specimens, the estimated length of the long 

axis of the spindle shaped precipitates was 20-30 nm and the interparticle distance was 

 40-60 nm. On the other hand, the solution-treated+aged samples had thinner 

precipitates with a length of 15-20 nm along the long axis and a smaller interparticle 

distance of 15-20 nm.  

The differences in the precipitate size and interparticle distance for the aged 

samples are attributed to the differences in the initial microstructures of the samples 

before aging. In the as-grown materials, very small precipitates (<5nm) are present, while 

after solution-treatment, the microstructure was expected to be essentially precipitate 

free, as evident from the respective SAD patterns.  During aging of the as-grown 

material, the previously existing precipitates simply coarsen into larger precipitates with 

longer interparticle distances as shown in Figure 5.10c. On the other hand, in the 

solution-treated material, aging results in nucleation and growth of smaller precipitates 

with shorter interparticle distances as shown in Figure 5.10d.  In the as-grown crystal, 

nucleation of the precipitates occurred as the material slow cooled during solidification so 

that nucleation occurred at higher temperatures with less excess solute and therefore 

fewer nucleation sites than if the material is aged directly from the quenched condition at 

550 C. Thus, while precipitation was homogeneous in both cases, it would be expected 
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that a much greater density of fine precipitates will form in the solution-treated and aged 

sample, as shown in Figure 5.10.              

In the SAD pattern shown in Figure 5.10c, there were superlattice reflections at 

1/2 positions along <110>B2
*
 in reciprocal space, which correspond to the B19′ 

martensite phase in the as-grown+aged material. Figure 5.10d shows that martensite in 

the solution-treated+aged samples consisted of large plates with many precipitates 

incorporated inside a single lathe. In this case, the formed precipitates were embedded in 

large martensite plates. The large martensite plates observed in Figure 1d were related to 

{011}B19′ type I twinning, which was frequently observed in NiTiHf alloys [48, 54, 132]. 

It should be noted that the martensite phase observed in the solution-treated+aged 

specimen was probably formed during the electropolishing process, since the martensitic 

transformation start temperatures of the solution-treated+aged specimen was determined 

by extrapolation to be  -2 °C, as will be discussed later. Figure 5.10e shows the dark 

field image taken from the as-grown+aged specimen using the superlattice reflection 

circled in the SAD pattern. It was clear that the martensite plates were formed between 

the precipitates instead of bypassing the precipitates. 
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Figure 5.10: Bright field TEM micrographs of Ni45.3Ti29.7Hf20Pd5 in the (a) as-grown, (b) 

solution-treated, (c) as-grown + aged at 550 
o
C for 3 hours, and (d) solution-treated + 

aged at 550 
o
C for 3 hours conditions, (e) Dark field TEM micrograph of (c) showing the 
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martensite phase.  The insets in (a), (b), and (c) are the corresponding [110]B2 SAD 

patterns. 

Figure 5.11 shows the shape memory responses of the as-grown+aged 

Ni45.3Ti29.7Hf20Pd5 single crystals as a function of applied stress along the [111] 

orientation with limited comparison to the solution-treated+aged condition. Thermal 

cycles were conducted between a temperature above the austenite finish temperature  and 

below the martensite finish temperature under compressive stresses ranging from 300 

MPa to 1000 MPa. The transformation temperatures were determined by the tangent 

method from the inflection points of the shape memory curves and the transformation 

strains were measured between the heating and cooling lines at the Ms temperature.  
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Figure 5.11: The strain-temperature responses of [111] oriented as-grown+aged and 

solution-treated+aged Ni45.3Ti29.7Hf20Pd5 single crystals.  

Ms temperatures were 65 
o
C and 123 

o
C in the as-grown+aged specimen under 

300 MPa and 1000 MPa, respectively. The transformation strains were 2 % and 2.5 %  

under 300 MPa and 1000 MPa, respectively. In comparison, the solution-treated+aged 

specimen had Ms of 38 
o
C and 106 

o
C and transformation strains of 1.55 % and 2.15 % 

under 300 MPa and 1000 MPa, respectively. As expected, the transformation 

temperatures and the transformation strains increased with stress in both aged materials. 

It was clear that the form of the shape memory curves was different in the two 

aged materials. The transformation took place more rapidly (higher slope in the 

transformation region of the shape memory curves) in the as-grown+aged specimen while 
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it was more shallow (lower slope in the shape memory curve) in the solution-

treated+aged specimen during cooling and heating. The reason for the shallow 

transformation with temperature in the solution-treated+aged Ni45.3Ti29.7Hf20Pd5 single 

crystal could be attributed to larger elastic energy storage compared to the as-

grown+aged material [107, 129], which can be explained based on the differences in the 

martensite formation types. 

The precipitate-martensite interaction could be the main reason in the different 

shape memory responses and elastic energy storage in the aged Ni45.3Ti29.7Hf20Pd5 single 

crystals [11, 129]. In the solution-treated+aged alloy, the precipitates were small and 

interparticle distance was short enough, thus the growing martensite plates tried to bypass 

and surround nearby precipitates resulting in larger martensite plates with embedded 

precipitates as it has been previously observed in CuAlMn SMAs [133]. The elastic 

energy storage could be observed as gradual increase/decrease in shape memory curve in 

thermal cycling experiments as mentioned earlier. In the solution-treated+aged alloy, the 

growth of martensite was slower and harder due to the process of trying to bypass and 

encapsulate precipitates in the microstructure. Thus, energy required to complete the 

transformation increased resulting in high elastic energy storage [11, 120, 129, 134] and 

lower slope strain-temperature curve in the solution-treated+aged alloy. 

However, when the interparticle distances were large enough as in the as-

grown+aged alloy, the martensite plates would not be able to bypass the precipitates but 

instead tended to form in the channels between the precipitates (as in Figure 5.10c) as 

also observed Ni45.3Ti29.7Hf20Pd5 single crystals aged at 600 
o
C for 48 and 72 hours [107]. 

In this case, the size of the martensite plates were determined by the interparticle 
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distances. The strain fields surrounding the precipitates might favor the nucleation of 

martensite plates between the precipitates due to the larger particle size and interparticle 

distance as shown in Figure 5.10c. This mechanism can make the transformation easier 

without large elastic energy storage and can be displayed as steeper strain-temperature 

curves as in Figure 5.11. 

 It should be noted that the observed results are similar to Ni45.3Ti29.7Hf20Pd5 

polycrystalline alloys [92] while they are not to Ni50.3Ti29.7Hf20 and Ni50.3Ti29.7Zr20 

polycrystalline shape memory alloys [16, 135]. In the extruded and aged quaternary 

Ni45.3Ti29.7Hf20Pd5 alloys, as the martensite was formed between precipitates, the slope of 

the shape memory curves in the thermal cycling experiments was either low (indicating 

hard transformation) or steep (indicating easier transformation) depending on aging 

condition. As the material was aged at 550 
o
C for 3 hours, the precipitates were formed in 

size of 20-30 nm with interparticle distance of 10-30 nm. In this case, the martensite was 

formed between precipitates resulting in lower strain-temperature curve slope due to hard 

transformation. However, as the material was aged at 650 
o
C for 3 hours, the precipitates 

were coarsened in size which were   80-300 nm in length and 50 nm in width while 

the interparticle distance was varied between 15-150 nm. In this case, the martensite 

formation was constrained between large precipitates that had larger interparticle 

distances and the transformation was easier compared to the 550 
o
C-3h case. Thus, the 

slope of the strain-temperature curves were steeper [92]. 

 The slope of the shape memory curves in the thermal cycling experiments were 

lower when the precipitates were constrained between the formed precipitates while the 

slope was steeper as the small precipitates were embedded in big martensite plates.In the 
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Ni50.3Ti29.7Hf20/Zr20 alloys, effects of different aging conditions on the interpaticle 

distances and possible effects of these interparticle distances on the growth of martensite 

plates should be revealed. Another possible difference between the ternary and the 

quaternary  Ni45.3Ti29.7Hf20Pd5  alloys could be a possible difference in the mobility of the 

martensite plates. There is a 5 % Pd addition in the quaternary alloy and that addition 

increased the lattice parameters of the transforming phases [92]. This could limit the 

mobility of the phase front and increase the energy for martensite propagation in the 

Ni45.3Ti29.7Hf20Pd5  alloys compared to the ternary alloys.  Thus, a more detailed study 

should be conducted to understand the nature (internal twinning, compatibility, twinning 

density dependent interparticle distance etc.) of the differences in the shape memory 

responses (easy or hard transformation) between the ternary Ni50.3Ti29.7Hf20/Zr20  and the 

quaternary Ni45.3Ti29.7Hf20Pd5  alloys. 

Another indication that the elastic energy storage in the solution treated+aged 

sample was higher compared to the as-grown+aged sample was the change in the 

transformation type observed in the thermal cycling curves under 1000 MPa. The as-

grown+aged sample had an Ms of 123 
o
C and As of 135 

o
C while the solution 

treated+aged sample had an Ms of 106 
o
C and As of 98 

o
C under 1000 MPa as shown in 

Figure 5.11. The transformation type of the as-grown+aged material was “Class Ι” since 

its Ms was lower than As (Ms<As). In contrast, the transformation for the solution-

treated+aged material was “Class ΙΙ”, since its Ms was higher than As (Ms>As) [136]. The 

change in the transformation types from “Class Ι” to “Class ΙΙ” is typically attributed to 

additional elastic energy storage [92, 111], which helps the back transformation and 
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consequently results in a lowering of As. Similar behavior was previously reported for 

Ni45.3Ti29.7Hf20Pd5 polycrystalline alloys [92]. 

The stress-strain responses of [111] oriented Ni45.3Ti29.7Hf20Pd5 single crystals in 

both the as-grown and the solution-treated plus quenched conditions are shown in Figure 

5.12. The samples were initially loaded to a strain of 3 % and unloaded isothermally at 

various temperatures above Af. Subsequently, the sample was reloaded with the strain 

value increased by 1 % for each additional strain cycle up to a total strain of 6 %. The 

final stress-strain curves to 6 % strain for the solution-treated plus quenched material at -

30 and 10 C are include in Figure 5.12 for a direct comparison of the stress hysteresis 

for the two conditions.  

The initial linear portion of the stress-strain curves represents the elastic 

deformation of austenite.  This is followed by a plateau like region due to the stress 

induced martensitic transformation, transitioning to a region of higher work hardening 

due to elastic deformation and detwinning/reorientation of the stress-induced martensite. 

During unloading, elastic unloading of the martensite is followed by the martensite-to-

austenite back transformation and finally elastic unloading of austenite. It was clear that 

fully reversible superelasticity was observed in both materials with a large SE window 

for the as-grown crystals ranging from below -30 
o
C to 70 

o
C. The maximum 

transformation strain was 4.4 % at – 30 
o
C. The elastic moduli of the austenite and 

martensite phases were calculated to be 48-59 GPa and 87-97 GPa, respectively for the 

as-grown single crystal.   
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Figure 5.12: The superelastic responses of [111]-oriented Ni45.3Ti29.7Hf20Pd5 alloys in as-

grown and the solution-treated conditions as a function of temperature. 

In addition to a large transformation strain of 4.4 %, the as-grown 

Ni45.3Ti29.7Hf20Pd5 single crystals displayed perfectly closed superelastic loops, even 

when the applied stress levels reached 2 GPa with little or no plastic deformation along 

the [111] orientation. Beside the high strength, they had relatively large mechanical 

hysteresis ranging from 720 MPa at -30 
o
C to 560 MPa at 70 

o
C.  But these values were 

roughly half that for the solution-treated+quenched single crystals, which nonetheless 

were anomalously large. 

The superelastic behavior of the solution-treated and quenched [111] oriented 

Ni45.3Ti29.7Hf20Pd5 single crystals at test temperatures of -30 
o
C and 10 

o
C are also 

presented in Figure 5.12 for comparison. Its SE window was previously determined to be 
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between – 30 
o
C and 70 

o
C with a maximum transformation strain of 4.2 % at – 30 

o
C and 

elastic moduli of the austenite and martensite phases of 65-75 GPa and 100-110 GPa, 

respectively [137].  It should be noted that it was quite remarkable to get over 4 % strain 

under 2.5 GPa without any plastic deformation. Compared to the as-grown specimens, 

the solution-treated samples had larger mechanical hysteresis ranging from 1270 MPa 

and 830 MPa at – 30 
o
C and 70 

o
C, respectively, and a higher hardening rate was 

observed in the transformation regime [137].  

Figure 5.13 shows the superelastic responses of the as-grown+aged single crystals 

along the [111] orientation in compression. The samples were simply loaded to a strain of 

4 % and unloaded, at various temperatures above Af ranging between 80 
o
C and 200 

o
C. 

Nearly complete superelastic responses were obtained at temperatures as high as 160 
o
C, 

with increasing levels of irrecoverable strain observed in the SE curves at temperatures 

above 160 
o
C.   

The superelastic response of the solution-treated+aged single crystal at 80 
o
C 

[138] is included in Figure 5.13 for comparison. It is evident that the hardening rate in the 

transformation region is much higher in the solution-treated+aged specimen while there 

is almost “Luders type” transformation in the initial stress-strain curves of the as-

grown+aged single crystal. Transformation strain was 2.6 % in the as-grown+aged 

condition while it is 2.1 % in the solution-treated+aged single crystal when deformed to a 

total strain of 4% at 80 
o
C.  
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Figure 5.13: The stress-strain responses of [111]-oriented Ni45.3Ti29.7Hf20Pd5 single 

crystals in as-grown+aged and solution-treated+aged  conditions.  

Figure 5.14a summarizes the critical stresses for the onset of stress induced 

martensite formation as a function of test temperature as determined from the SE 

experiments. The C-C slopes were 6.8 MPa/
o
C, 9 MPa/

o
C, 12.2 MPa/

o
C and 11.4 MPa/

o
C 

for the as-grown, solution-treated, as-grown+aged and solution-treated+aged single 

crystals, respectively. The data in Figure 5.14a indicates that the solution-treated material 

had higher critical stresses than the as-grown material, while the solution-treated+aged 

single crystals had higher critical stress levels at equivalent test temperatures compared to 

the as-grown+aged single crystals. For instance, the critical stress was 1380 MPa and 950 

MPa in the solution-treated and in the as-grown single crystals, respectively, at -30 
o
C, 
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while it was 900 MPa in the solution-treated+aged sample and 615 MPa in the as-

grown+aged sample at 80 
o
C.  

The slopes of the as-grown and solution-treated samples were similar in 

magnitude as were the as-grown+aged and solution-treated+aged single crystals, with the 

slopes of the former pair slightly smaller than the latter.  Consequently, the differences in 

the transformation stress at a given temperature for each pair of samples (unaged and 

aged) could be attributed to the lower TTs of the solution treated and solution-

treated+aged samples compared to their as-grown counterparts. Since the solution-treated 

materials had lower TTs, the austenite phase would be more stable at equivalent test 

temperatures and therefore in order to start SIM, additional stress would be needed.  

The as-grown, solution-treated, as-grown+aged and solution-treated+aged single 

crystals had extrapolated (Figure 5.14a) Ms of  -170 
o
C,  -270 

o
C, 38 

o
C and  -2 

o
C, 

respectively, at 0 MPa. It was clear that the TTs were lower in the solution-treated and 

solution-treated+aged materials with respect to their as-grown and as-grown+aged 

counterparts. The higher transformation temperatures of the as-grown material, compared 

to the solution-treated condition, could be attributed to the small and randomly 

distributed precipitates that form during the slow-cooling process of the single crystal 

growth. In contrast to the as-grown material, there was little evidence of precipitation in 

the solution-treated condition. Due to chemical composition differences of the matrix due 

to precipitation, the TTs could be higher in the as-grown single crystal. Composition 

dependence of TTs is a well-known phenomenon in NiTi based SMAs [2]. As Ni-rich 

precipitates are formed in Ni-rich NiTi based alloys, TTs increase.  The same ternd is 

observed with preciptate formation in NiTiPt [56], NiTiPd [57] and NiTiHf [58] alloys.  



 

122 
 

Similary, aging significantly increased the transformation temperatures of the 

Ni45.3Ti29.7Hf20Pd5 single crystals (Fig. 5.14a), with the as-grown+aged material, 

containing larger and presumably a greater volume fraction of the precipitate phase, 

having slightly higher trasnformation temperatures than the solution-treated+aged 

material.  
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Figure 5.14: a) Transformation stress vs. temperature, b) temperature hysteresis (solid 

lines) & transformation strain (dotted lines) vs. compressive stress, and c) mechanical 

hysteresis as a function of temperature for [111]-oriented Ni45.3Ti29.7Hf20Pd5 shape 

memory alloys of various conditions  
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Figure 5.14b summarizes the transformation strains and the temperature 

hystereses as a function of stress, extracted from the strain-temperature responses shown 

in Figure 5.5a and Figure 11. The temperature hysteresis was graphically measured at the 

mid-point of the transformation strains between the cooling and heating curves. In the as-

grown+aged sample, the temperature hysteresis decreased initially with stress up to 700 

MPa and then saturated.  The overall derease in hysteresis was relatively minor, only a 6
 

o
C change between 300 and 1000 MPa.The temperature hysteresis of the solution-

treated+aged material decreased abruptly from 47 
o
C to 37 

o
C as the stress increased from 

300 MPa to 500 MPa and continued to decrease at a much slower rate to 28 
o
C at 1000 

MPa. The initial decrease was attributed to a reduction in the number of active variants 

with stress and consequently, less variant interacion and friction, resulting in less 

hysteresis.  

Transformation strains extracted from the thermal cycling experiments (Figure 

5.11) were plotted as a function of applied stress in Figure 5.14b. The strain values 

started at 2 % at 300 MPa and peaked at  2.6% % at 700 MPa in the as-grown+aged 

sample and ranged from 1.55 % to 2.15 % in the solution-treated+aged sample at 300 

MPa and 1000 MPa, respectively.  

The difference in the transformation strains could be attributed to the ease with 

which the materials are capable of detwinning. It is known that if there are strong internal 

stresses (e.g. due to coherent precipitates or very fine-grained microstructure, etc), the 

detwinning process can be restricted. Since the precipitates were smaller and interparticle 

distances were shorter in the solution-treated+aged sample compared with the as-
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grown+aged sample, detwinning might be reduced resulting in a smaller transformation 

strain as also reported forTi49.625-Ni50.375 (at.%) single crystals [80].   

Figure 5.14c shows the mechanical hystereses extracted from the superelastic 

stress-strain curves (Figures 5.1, 5.6a, 5.12 and 5.13) of the as-grown, solution-treated, 

as-grown+aged, and solution-treated+aged Ni45.3Ti29.7Hf20Pd5  single crystals. The stress 

hysteresis was calculated at the mid-point of the plateau strains between the forward and 

reverse transformations when the samples were loaded to 6 % strain in the as-grown and 

solution-treated materials and at 3 % strain in the as-grown+aged and solution-

treated+aged materials. The [111] oriented Ni45.3Ti29.7Hf20Pd5 single crystalline alloys 

had mechanical hystereses of 1270 MPa and 720 MPa at -30 
o
C in the solution-treated 

and in the as-grown conditions, respectively. These values are relatively high compared 

to NiTi and NiTi-based alloys.For example,  the mechanical hysteresis is 200-300 MPa  

in binary NiTi alloys [67] and 400-500 MPa in NiTiNb alloys [17].  However, a 

hysteresis as high as 1000 MPa has been reported in a recently published study on 

NbTi/NiTi nano-composites[19]. In the as-grown+aged material, the stress hysteresis 

values were between 300-380 MPa in the temperature range of 80-200 
o
C,   and 400-365 

MPa in the solution-treated+aged material  at 40-80 
o
C. These values are much less than 

the unaged materials and more in line with typical nitinol materials. 

For both the as-grown and the solution-treated materials, the stress hysteresis 

decreased with increasing test temperature. The decrease in the hysteresis could be 

rationalized by considering a possible increase in mobility of the martensite variants with 

temperature. Due to increased mobility of the variants, the movement of the phase front 

would be easier, occurring with less friction during the stress induced martensite 
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transformation, resulting in a decreasing hysteresis. In the as-grown+aged material, the 

stress hysteresis was essentially constant over a wide range in test temperature and then 

started increasing at the highest test temperature (160 
o
C).  This increase in hysteresis at 

160 
o
C is attributed to plastic deformation, as evidenced from the irreversible strain in the 

SE curve. 

The stress hysteresis of the as-grown material was less than the solution-treated 

material (720 versus 1270 MPa at -30 
o
C), but both values are quite high compared to 

typical NiTi alloys [34, 35].  The high hysteresis has its source in part in the relatively 

high stress required for the forward austenite to martensite transformation in these 

materials.  Comparatively, both materials have nearly the same stress requirement for the 

reverse martensite to austenite transformation, but the martensite start stress in the 

solution-treated alloy is nearly 50 % greater, resulting in about a 50% larger hysteresis.  

The high martensite start stresses may be due to high test temperatures compared to the 

transformation temperatures of the materials, since more stress is needed to initiate the 

transformation as the test temperature increases above Af.  While it was not possible to 

measure the transformation temperatures in these materials by a thermal analysis 

technique, the extrapolated Ms temperatures were -170 and -270 for the as-grown and 

solution treated materials, respectively, which is quite low.  The requirement for 

significant unloading and therefore large hysteresis before the reverse transformation 

occurs is then microstructure/internal stress driven.  The as-grown material contains a 

high density of very fine nanometer sized precipitates with probably overlapping stress 

fields.  The internal stress would actually help promote martensite formation so that a 

large amount of unloading is required to get a point where the reverse martensite to 
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austenite transformation can occur.  The solution-treated material, however, is essentially 

precipitate free but actually has a larger hysteresis.  It is possible that in this material a 

preponderance of anti-site defects or clustering of point defects (since of all material 

conditions, this one would have a matrix composition farthest from stoichiometry) creates 

and even larger internal stress requiring an even larger unloading requirement for the 

reverse transformation to start.  However, without a technique like neutron diffraction to 

corroborate the internal stress state, this is purely conjecture.   

Ni45.3Ti29.7Hf20Pd5 has natural advantages of higher strength and moderate 

temperature capability, which could make the material suitable for high strength/force 

actuator applications, compared to conventional near-equiatomic NiTi alloys.  

Additionally, the material exhibits a large stress hysteresis around room temperature and 

may be valuable in high damping applications. The high strength can also provide 

advantages to Ni45.3Ti29.7Hf20Pd5 in saving on weight and portability of compact systems 

in places where the volume is important. The ability to govern the shape memory 

properties, including transformation temperatures, via microstructural control is a benefit 

of Ni45.3Ti29.7Hf20Pd5 alloys since this control can be achieved by simple heat treatments 

without requiring extra processes such as cold rolling, extrusion, or other thermo-

mechanical treatments. 
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5.6. Summary and conclusions 

The shape memory behavior under constant stress and superelastic properties of the 

[111] oriented Ni45.3Ti29.7Hf20Pd5 alloys were investigated through mechanical tests. 

Microstructural features were studied by TEM and consequently, following conclusions 

can be deducted; 

1. The solution-treated single crystalline alloy showed full recovery of 6 % applied 

strain with 4.2 % transformation strain at - 30 
o
C. The superelastic window was at 

least 100 
o
C, between -30 

o
C and 70

 o
C.  At 70

 o
C the yield strength was greater 

than 2500 MPa. 

 

2. The solution-treated single crystalline alloy demonstrates a very large mechanical 

hysteresis of 1270 MPa at -30 
o
C, resulting in a maximum damping capacity of 44 

J.cm
-3

. Although, the stress hysteresis is essentially independent of transformation 

strain, it is highly dependent on test temperature, and diminished with increasing 

temperature to 815 MPa at 70 
o
C.  

3. Perfect shape memory behavior at 1000 MPa and near-perfect shape memory 

effect with with 2.2 % transformation strain under an ultra high stress level of 

1500 MPa was observed in [111]-oriented single crystals aged at 550 
o
C for 3 

hours beside fully recoverable superelastic responses to stresses as high as 1.8 

GPa 

4. A decrease in transformation strain was observed in the material aged at 600 
o
C 

for 3 hours compared to the material aged at 550 
o
C for 3 hours.  
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5. Aging was very effective in decreasing the stress hysteresis from  1200 MPa 

(solution-treated sample) to 400 MPa (550 
o
C-3h) and 250 MPa (600 

o
C-3h). 

6. The [111]-oriented single crystalline alloy has a high work output energy density 

of 33 J.cm
-3

 in the 550 
o
C-3h aged condition, which was measured for the 

thermally induced transformation. It was also observed that the work output 

decreased as the aging temperature increased to 600 
o
C, similar to the absorbed 

energy. 

7. The as-grown single crystal showed fully reversible superelasticity with a large 

SE window from at least -30 
o
C to 70 

o
C. The maximum transformation strain 

was 4.4 % at – 30 
o
C with a mechanical hysteresis of 720 MPa. The elastic moduli 

of the austenite and martensite phases were 48-59 GPa and 87-97 GPa, 

respectively.  

8. Manipulating the microstructure through simple thermal treatment was an 

effective way to control the shape memory behavior of the Ni45.3Ti29.7Hf20Pd5 

alloy. Aging of the as-grown single crystals at 550 
o
C for 3 hours produced 

precipitates of 20-30 nm in size with interparticle distances of about twice the 

particle size.  Aging solution-treated (1050 
o
C for 4 hours) single crystals at 550 

o
C for 3 hours produced smaller precipitates,  15-20 nm, with interparticle 

distances of about the same dimension. 

9. The aged (550 
o
C for 3 hours) Ni45.3Ti29.7Hf20Pd5 single crystals (as-grown+aged 

or solution-treated+aged) exhibited recoverable shape memory strains of at least 2 

% at stress levels as high as 1000 MPa in the thermal cycling experiments. High 
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temperature superelasticity was observed in the as-grown+aged material over a 

wide range of temperatures from 80 
o
C to 180 

o
C and at stress levels as high as 2 

GPa. The combination of high strength, moderate temperature capability, and 

stable superelastic or shape memory behavior make the aged Ni45.3Ti29.7Hf20Pd5 

alloys promising for industrial applications where that combination of properties 

is desired. 

10. Shape memory properties of the Ni45.3Ti29.7Hf20Pd5 alloys (e.g. transformation 

temperatures) can easily be manipulated over a very wide range by 

microstructural control. Ms temperatures in the absence of stress can be adjusted 

between  -270 
o
C and 38 

o
C, while the Clausius-Clapeyron slopes were in the 

range of 6.8-12.2 MPa/
o
C. 
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6. ORIENTATION DEPENDENCE OF THE SHAPE MEMORY PROPERTIES 

OF Ni45.3Ti29.7Hf20Pd5   ALLOYS 

6.1. Introduction 

It should be noted that most of the practical applications require processing of 

SMAs that might result in texture formation. Thus, it is important to investigate the single 

crystal properties of SMAs since their shape memory properties are highly orientation 

dependent and highly textured polycrystalline materials will mimic the behavior of single 

crystals with dominant orientation [38].  

Several studies have been conducted on the orientation dependence of mechanical 

properties in NiTi single crystals [38-41]. Reports on the single crystal Ni50.8Ti49.2 (at. %) 

alloy under compressive loads revealed that [111] and [112] orientations have multiple 

correspondant variant pairs (CVPs) activated during stress induced martensite 

transformation resulting in high hardening [41] in SIM transformation regions. Due to 

this high hardening, they quickly reach the critical stress for slip, easily limiting their 

transformation strains and superelastic temperature window [41, 42]. In contrast to [111] 

and [112] orientations, only a single CVP is activated along the [148] orientation leading 

to a transformation strain that approaches to theoretically calculated values. In [001] and 

[-117] oriented Ni50.3Ti49.7 (at. %) and Ni51Ti49 (at. %) single crystals, the critical stress 

for slip is relatively high compared to other orientations, which is attributed to the zero 

Schmid factor for {001}<001> and {011}<001> dislocation systems [42, 139]. Hence, 

the slip systems are unfavorable in the [001] orientation and plastic deformation is 

hindered [41, 42, 139], providing a good opportunity to observe shape memory behavior 

without the complications from dislocation formation. In addition to orientation 
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dependence, other aspects of NiTi single crystals such as aging effects on shape memory 

responses [42], cyclic deformation behavior [115], and tension-compression asymmetry 

[39] have been  investigated.  

In the previous chapters, Pd addition to Ni50.3Ti29.7Hf20 (at. %) alloys were 

investigated in polycrystalline and [111]-oriented single crystalline forms. In [111]-

oriented Ni45.3Ti29.7Hf20Pd5 single crystals, superelastic properties in the temperature 

range of -30 
o
C to 70 

o
C were revealed using solution-treated material in compression. It 

was shown that the solutionized single crystal had 4.2 % reversible strain, extremely high 

critical and yield stress levels (> 2000 MPa), and high damping capacity (44 J.cm
-3

) due 

to a high stress hysteresis (> 1200 MPa).  Subsequently, the effects of aging temperature 

and aging time were investigated for [111] oriented crystals in compression.  It was found 

that aging was an effective method to tailor transformation strains, transformation 

temperatures, and stress and temperature hysteresis.  Aging of the Ni45.3Ti29.7Hf20Pd5 

single crystals resulted in precipitation where precipitate size and spacing depend on 

aging time and temperature.  

6.2. Orientation dependence of shape memory properties in aged Ni45.3Ti29.7Hf20Pd5 

single crystals 

In this section, the orientation dependence of the shape memory properties of 

Ni45.3Ti29.7Hf20Pd5 single crystals along the [111], [011] and [-117] orientations with two 

selected aging conditions were investigated. The single crystals were aged at 550 
o
C for 3 

hours (550 
o
C-3h) or aged at 600 

o
C for 48 hours (600 

o
C-48h) to generate two distinct 

precipitate structures in order to determine the effect of microstructure on shape memory 

properties of single crystals as a function of orientation.  



 

132 
 

Laue back-scatter diffraction patterns were used to determine the orientation of 

the single crystal samples. Compression specimens, with a 16 mm
2
 cross section and a 8 

mm length, were cut by electro discharge machining from the single crystal ingots so that 

their loading axes were along either the [111], [011] or [-117] directions. The machined 

single crystal specimens were solutionized at 1050 
o
C for 4 hours in sealed quartz tubes 

followed by water quenching. After the solution treatment, single crystals were aged at 

550 
o
C for 3 hours or at 600 

o
C for 48 hours in air and were quenched in water.  

It was previously reported [10] that aging of Ni45.3Ti29.7Hf20Pd5 single crystals 

resulted in precipitation of a spindle-shaped phase with the same face-centered 

orthorhombic lattice structure as that observed in ternary NiTiHf alloys by Han et al. [13] 

and later described in more detail by Yang et al. [14]  and Santamarta et al. [15]. These 

precipitates are oblate spindle shaped with a habit plane of (100)P // (001)B2 and a long 

axis of [001]P // [-110]B2 resulting in six orientationally different variants [13] as 

schematized in Figure 6.1a.  

 

Figure 6.1a depicts the orientation relationships between the compression axes of 

single crystals and the six variants of the precipitates. For example if the [001]B2 direction 

is selected as the compression axis, two variants (V1 and V2) of the precipitates are 

perpendicular to the [001]B2 direction while the long axis of the other four variants (V3-6) 

is 45° away from the [001]B2 direction. On the other hand, if the [110]B2 direction is 

selected, the long axis of the four variants (V3-6) is located at 60° from the [110]B2 

direction while V1 and V2 are perpendicular and parallel to the [110]B2 direction, 
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respectively. When the compression axis is the [111]B2 direction, the long axis of three 

variants (V2, V4 and V6) is located at 35.3° from the [111]B2 direction while the other 

three variants (V1, V3 and V5) are perpendicular to the [111]B2 

direction.

 

Figure 6.1: a) Three-dimensional distribution of the precipitates with six variants 

denoted as V1, V2, V3, V4, V5 and V6. The bold arrows indicate the compression axes 

selected in this study. b) Schematic microstructures for the aged Ni45.3Ti29.7Hf20Pd5 alloys. 

 

It should be noted that the above-mentioned difference in the precipitate 

orientation does not affect the orientation dependence of the transformation strain 

considerably. It has been reported that the orientation dependence of the transformation 

strain is caused due to the selection of martensite variants depending on the resolved 

shear stress on the most favorable martensite variants under stress [41]. Since the 

resolved shear stress factor is not affected by the orientation of the precipitates, it is 
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considered that the transformation strain is not affected by the precipitate orientation 

significantly but mainly governed by the orientation of the external stress axis. 

 

In Ni45.3Ti29.7Hf20Pd5 alloys, the microstructures and consequently, the main shape 

memory properties such as transformation temperatures, transformation strains and stress, 

and temperature hysteresis are effected by aging [138]. In particular, maximum 

strengthening was achieved by very fine (10-20 nm), coherent and homogeneously 

distributed precipitates through aging at 550 
o
C for 3 hours [10]. After aging at 600 

o
C for 

48 hours, the precipitates coarsened in size to 200 nm and 20 nm along the long and short 

axes, respectively, and the interparticle distance increased to 80 nm [107].  In the 550 
o
C-

3h condition, large martensite variants contained the fine precipitates while the martensite 

plates were constrained between the precipitates after aging at 600 
o
C for 48hours [107].  

In the 550 
o
C-3h aged Ni45.3Ti29.7Hf20Pd5 alloy, since the precipitates were small 

and interparticle distance was short, the growing martensite plates bypassed and 

eneveloped the precipitates resulting in large martensite plates with embedded 

precipitates (Figure 6.1b).  This is similar to observations in ternary NiTiHf and NiTiZr 

alloys [15] and CuAlMn SMAs  with fine precipitates [133]. In the case of the 

Ni45.3Ti29.7Hf20Pd5 alloy, the energy required to complete the transformation was 

increased due to the process of bypassing and encapsulating the precipitates, as will be 

discussed below. Consequently, the elastic energy of the alloy was also increased during 

transformation [11, 120, 129, 134]. 



 

135 
 

On the other hand, the precipitates were large enough in the 600 
o
C-48h 

condition, that martensite formation was constrained and formed between precipitates 

[12] instead of bypassing or envloping the precipitates (Figure 6.1b). In this condition, 

the main factor that determined the size of the martensite plates during transformationwas 

the interparticle distance. 

Constant stress thermal cycling responses of the Ni45.3Ti29.7Hf20Pd5  single crytals 

oriented along [111], [011] and [-117] directions are shown in Figure 6.2 after aging at 

550 
o
C for 3 hours while results for materials aged at 600 

o
C for 48 hours are shown in 

Figure 6.3. Applied compressive stress was varied from 100 MPa to 1000 MPa and the 

strain-temperature responses under stress levels of 300 MPa, 700 MPa and 1000 MPa are 

shown in Figures 6.2 and 6.3. Compressive stress was applied at temperatures above Af 

and then, the sample was cooled down below Mf and heated back above Af  while under 

constant stress. It is clear from Figures 6.2 and 6.3 that reversible strains and TTs 

increased with stress in all orientations for both aging conditions. The distance between 

the cooling and heating lines at Ms is used to calculate the reversible strain after 

subtracting off the residual/irrecoverable strain and TTs were determined by the tangent 

method. Reversible strains for samples aged at 550 
o
C for 3 hours were 1.6 %, 0.8 % and 

0.4 % under 300 MPa and 2.2 %,  2.7 % and 0.7 % under 1000 MPa, while Ms was 106 

o
C, 146 

o
C and 58 

o
C under 1000 MPa for [111], [011] and [-117] orientations, 

respectively. For samples aged at 600 
o
C for 48 hours, reversible strains were 1.6 %,  1.6 

% and 0.6 % under 300 MPa and approximately  2.3 %,  2 % and  0.9 % under 1000 MPa 

while Ms was 176 
o
C, 198 

o
C and 130 

o
C under 1000 MPa for [111], [011] and [-117] 

orientations, respectively. It is clear that TTs can be  altered by simple aging treatments 
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for Ni45.3Ti29.7Hf20Pd5  single crystals and this ability can provide advantages to 

engineering of NiTiHfPd SMAs for possible high temperature applications.  

 For samples aged at 550 
o
C for 3 hours and tested along the [111] and [-117] 

orientations, minimal or no irrecoverable strains were observed at stresses as high as 

1000 MPa, while residual strain was observed at all stress levels along the [011] 

orientation, approaching 0.4 % at 1000 MPa.  In the 600 
o
C-48h condition,  residual 

strains were again observed at nearly every stress level reaching 1.9 % at 1000 MPa 

along the [011] direction.  In constrast,  no residual strain was observed along the [111] 

orientation up to 700 MPa and no plastic strain was observed along the [-117] direction 

up to 1000 MPa compressive stress. This indicates that the [-117] and [111] orientations 

have higher strength against plastic deformation compared to the [011] direction in 

Ni45.3Ti29.7Hf20Pd5 single crystals, regardless of aging condition. Also, compared to near 

equiatomic NiTi single crystalline alloys, Ni45.3Ti29.7Hf20Pd5  alloys have superior 

strength since it is known that Ni50.1Ti49.9  alloys produce irrecoverable strains even at 

stress levels of 160 and 175 MPa in thermal cycling experiments in [111] and [123] 

orientations, respectively [11]. 

It is clear that larger plastic strains were observed during thermal cycling in the 

[011]  orientation at all stress levels and in the [111] orientation at 1000 MPa for samples 

aged at 600 
o
C for 48 hours compared to aging at 550 

o
C for 3 hours. This difference in 

strength between samples of similar orientation can be attributed to differences in the 

microstructure.  In the 600 
o
C-48h aged condition, the material is weaker due to larger 

and presumably semi-coherent or incoherent precipitates with a larger interparticle 

distance [107]. Thus, the microstructure is much less resistant to dislocation motion.  
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After aging at 550 
o
C for 3 hours, the material is stronger due to the precipitation 

hardening effect of finer coherent precipitates [138], which significantly reduces the 

mobility and eventually generation of dislocations in the structure. 
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Figure 6.2: Shape memory behavior of Ni45.3Ti29.7Hf20Pd5 single crystals under 

compressive stresses of a) 300 MPa, b) 700 MPa and c) 1000 MPa after aging at 550 
o
C 

for 3 hours.  
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Figure 6.3: Shape memory behavior of Ni45.3Ti29.7Hf20Pd5 single crystals under 

compressive stresses of a) 300 MPa, b) 700 MPa, and c) 1000 MPa after aging at 600 
o
C 

for 48 hours.  

Figures 6.4 and 6.5 show the isothermal stress-strain responses of [111], [011] 

and [-117] oriented Ni45.3Ti29.7Hf20Pd5 single crystals at selected test temperatures near or 

above Af. Samples were loaded to 4 % in [111] and [011] orientations and 2 % in the [-

117] direction after aging at 550 
o
C for 3 hours, while they were loaded to 3 % in the 

[111] and [011] orientations and 2.5 % in the [-117] direction after aging at 600 
o
C for 48 

hours.  
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 Under these conditions,  near-perfect superelastic responses (resulting in little or 

no residual strain after unloading) were obtained in all orientations for both aging 

conditions. High hardening was observed in the transformation regions of all orientations. 

Hardening stems from the fact that additional energy is needed to grow the favored 

martensite variants due to the interaction between the growing martensite plates and 

precipitates, variant-variant interaction, and/or detwinning of martensite. 

Ni45.3Ti29.7Hf20Pd5 alloys have (001)B19′ compound twins [92] as commonly observed in 

Ni-rich NiTiHf alloys [48, 53, 54]. Thin compound twins in the Ni45.3Ti29.7Hf20Pd5 alloy 

may make the growth of martensite variants and detwinning more difficult. Thus, the 

required energy to complete the stress induced martensite transformation increases, 

which would need to be supplied by an increasing external force during the 

transformation process. In contrast, it was also revealed that when the martensite is Type-

II, as in a Ni45.3Ti39.7Hf10Pd5 (at.%) alloy, plateau-like behavior was observed instead of 

high-hardening behavior in the transformation region (see Chapter 4). 

It should be noted that the [111] orientation had a higher degree of hardening 

during transformation than the [011] orientation in both aging conditions (e.g. at 60 
o
C in 

Figure 6.4a or at 140 
o
C in Figure 6.5a ). The increased hardening along the [111] 

orientation can possibly be linked to the activation of a greater number of CVPs along the 

[111] orientation than [011] orientation. Those CVPs may interact with each other and 

the precipitates during transformation and consequently may result in a higher stress-

strain slope in the transformation region [41]. In addition to higher hardening, the [111] 

orientation has a larger stress hysteresis compared to the [011] orientation, which 

supports the idea that the [111] orientation has more CVPs. Due to greater interaction 
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amongst those CVPs in the [111]  crystals, larger dissipation of energy and consequently 

stress hysteresis may be observed due to higher friction, compared to the [011] 

orientation.  
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Figure 6.4: Superelastic responses of Ni45.3Ti39.7Hf20Pd5 single crystals at test 

temperatures of a) 60 
o
C, and b) 80 

o
C after aging at 550 

o
C for 3 hours.   
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Figure 6.5: Superelastic responses of Ni45.3Ti39.7Hf20Pd5 single crystals at test 

temperatures of a) 60 
o
C, and b) 80 

o
C after aging at 600 

o
C for 48 hours.  



 

141 
 

The critical stress for the onset of the martensite transformation, cr , was 650 

MPa, 390 MPa and 1340 MPa at 60 
o
C along the [111], [011] and [-117] orientations, 

respectively, after aging at 550 
o
C for 3 hours. Values for cr  of 750 MPa, 540 MPa and 

1375 MPa were measured at 140 
o
C along the [111], [011] and [-117] orientations, 

respectively, after aging at 600 
o
C for 48 hours. Hence, we can conclude that at a given 

temperature 117

cr > 111

cr > 011

cr , which is expected when the Clausius-Clapeyron 

relationship is considered [75]. 

The Ms temperatures of the aged single crystals were extracted from the thermal 

cycling data in Figures 6.2 and 6.3 as a function of applied compressive stress and are 

shown in Figure 6.6a. The C-C slopes were 11.1 MPa/
o
C, 8.2 MPa/

o
C, and 27.6 MPa/

o
C 

for the samples oriented along the [111], [011], and [-117], respectively after aging at 550 

o
C for 3 hours. After aging at 600 

o
C for 48 hours, slopes of 12.5 MPa/

o
C, 9.3 MPa/

o
C 

and 42.2 MPa/
o
C were obtained along the [111], [011] and [-117] orientations, 

respectively. It is apparent that the C-C slope along the [-117] orientation is relatively 

high compared to [111] and [011] orientations for both aging conditions. 

Since the ∆H and To are orientation independent, low transformation strain results 

in a high C-C slope. It should also be noted that Ms under zero stress is orientation 

independent as shown in Figure 6.6a. Thus, the temperature difference between Ms and 

the selected test temperature is same for all orientations. Consequently, high slope/low 

strain orientations (e.g. [-117] yield high critical transformation stress at the same test 

temperature.   
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Previous work indicated that the C-C slopes of Ni51.5Ti48.5 were 9.3 MPa/
o
C and 

7.5 MPa/
o
C for [111] and [110] orientations, respectively, for crystals aged at 550 

o
C for 

1.5 hours [42]. Also, the C-C slope for [001], which is only 12
o
  from the [-117] 

orientation, was 7.5 MPa/
o
C for Ni51.5Ti48.5 single crystals with the same aging condition 

[42].  Similarly, the C-C slope for a Ni50.3Ti29.7Hf20 (at %) single crystal aged at 550 
o
C 

for 3 hours was 11.58 MPa/
o
C (in compression) along the [678] orientation, which is 

close to the [111] direction [118]. 

C-C curves were extrapolated from the Ni45.3Ti39.7Hf20Pd5 [111], [011] and [-117] 

orientations to obtain the predicted Ms temperature under zero stress. It was found that 

the stress-free Ms was  approximately 10-15 
o
C after aging at 550 

o
C for 3 hours and it 

was around 100-105 
o
C after aging at 600 

o
C for 48 hours. It is clear that transformation 

temperatures increased after high temperature and longer time aging due to the formation 

of larger precipitates. It should be noted that these stress-free values for Ms were 

independent of orientation as expected.  

Figure 6.6b shows the reversible strain data extracted from the constant stress 

strain-temperature responses of the Ni45.3Ti39.7Hf20Pd5 single crystals shown in Figures 

6.2 and 6.3. Reversible strains of the samples were 0.3 %, 0.1 % and 0.1 % under 100 

MPa and they were 2.2 %, 2.7 % and 0.7 % under 1000 MPa for [111], [011] and [-117] 

directions, respectively after aging at 550 
o
C for 3 hours. After aging at 600 

o
C for 48 

hours, reversible strains of 0.4 %, 0.2 % and 0.2 % under 100 MPa and 2.3 %, 2 % and 

0.9 % were obtained under 1000 MPa for [111], [011] and [-117] directions, respectively. 

It is clear that reversible strains increased initially and then saturated with applied stress 
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in almost all orientations for both aging conditions and the saturation was followed by a 

decrease in [011] oriented crystals aged at 600 
o
C for 48 hours. 
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Figure 6.6: The change in a) Ms and b) reversible strain with applied stress for 

Ni45.3Ti39.7Hf20Pd5  single crystals along the [111], [011] and [-117] orientations aged for 

3h at 550 
o
C and 48h at 600 

o
C.  
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Figure 6.7: The change in thermal hysteresis (solid lines) and residual strain (dotted 

lines) with applied stress for Ni45.3Ti39.7Hf20Pd5 single crystals along the [111], [011] and 

[-117] orientations after  a) 550 
o
C-3h and b) 600 

o
C-48h aging. 
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The reversible strains measured in compression from isothermal stress-strain 

(superelastic) experiments (Figures 6.4 and 6.5) on Ni45.3Ti39.7Hf20Pd5 were  2.2 %, 2.3 % 

and 0.3 % at 60 
o
C and they were 2 %, 2 % and 0.4 % at 80 C

o
 for [111], [011] and [-117] 

directions, respectively, after aging at 550 
o
C for 3 hours.  After aging at 600 

o
C for 48 

hours, superelastic reversible strains of 1.5 %, 1.2 % and 0.6 % at 140 
o
C and 1.2 %, 1.1 

% and 0.5 % were obtained at 160 
o
C for [111], [011] and [-117] directions, respectively. 

In comparison, the compressive superelastic strains in Ni50.8Ti49.2 (at.%) were 2.3 

%, 3.2 % and 3.5 % for peak-aged (1.5 h at 673 K)  and were 3 %, 3.6 % and 4.3 % for 

over-aged (15h at 773 K) single crystals along the [111], [110] and [100] orientations, 

respectively [39]. In Ni51.5Ti48.5 (at. %) single crystals, the transformation strains in 

compression from superelastic experiments were 1.2 %, 4.2 % and 3.9 % for solutionized 

(2h at 1273 K) and 3 %, 3.7 % and 3.3 % for aged (1.5 h at 823 K) single crystals along 

[111], [110] and [001] orientations, respectively [42].  

Even though the binary NiTi and Ni45.3Ti39.7Hf20Pd5 shape memory alloys have 

the same crystal structures for the parent (B2) and martensite phases (B19’), they have 

different transformation strains along the same/similar crystallographic orientations in 

compression.  But not only is the magnitude of the strains different for similar 

orientations but the orientation dependence of the transformation strains is different. In 

Ni50.8Ti49.2 alloys, the highest transformation strains occur along the [100] orientations 

while the [111] orientation has the lowest strain. In Ni51.5Ti48.5, the [011] orientation has 

the highest transformation strain, while the lowest strain also occurs in the [111] 

orientation. In contrast, the Ni45.3Ti39.7Hf20Pd5 alloy exhibits the smallest reversible strain 

along the [-117] (near [001]) and similar values along the [011] and [111] orientations. 
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These differences in transformation strains between the binary NiTi alloys and  

Ni45.3Ti39.7Hf20Pd5 can be attributed to the differences in i) lattice parameters, ii) 

precipitate characteristics, especially volume fraction, and iii) active twinning systems.  

The transformation strains in SMAs are strongly lattice parameter dependent [2], 

since SMAs are strained by shearing the lattice structures of the transforming phases. 

When the reversible volumetric shear that depends on lattice parameters is high, 

transformation strain is expected to be high, neglecting plastic deformation by slip since 

plastic deformation may limit the reversibility of the shearing. Thus, lattice parameters 

(e.g. c/a ratio in B19’ lattice structure) of the transforming phases will affect the 

magnitude of the transformation shear strains in SMAs.  

Other reasons for the difference in transformation strains between the 

Ni45.3Ti39.7Hf20Pd5 and binary NiTi single crystal alloys can be attributed to precipitate 

characteristics (coherency,and volume fraction), and the density and type of twins.  It has 

been reported that the volume fraction of precipitates is around 3.6 % in Ni50.7Ti49.3 after 

aging at 673 K for 1.5 h and 5 % in Ni50.8Ti49.2 after aging at 823 K for 1.5 h while the 

volume fraction of precipitates increased to 16-20 % in Ni51.5Ti48.5 after aging at 823 K 

for 1.5 h [25, 42]. The average area fraction of precipitates has been reported to be 18.2 

% for a Ni50.3Ti29.7Hf20 and 31 % in a Ni51Ti29Hf20 alloy [140]. Thus, the volume fraction 

of precipitates in the Ni45.3Ti39.7Hf20Pd5 alloy is probably higher than the binary NiTi 

alloys, which means that there is less material to transform so the transformation strains 

will be proportionally smaller. Additionally, the residual stress around the precipitates 

can affect the transformation strain by activating CVPs other than the ones favored by the 
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applied stress. The increased number of CVPs may limit the transformation strain in 

Ni45.3Ti39.7Hf20Pd5  alloys as in Ni50.8Ti49.2 single crystals [41].  

It should be noted that differences in lattice parameters and precipitate 

characteristics can only explain the differences in magnitude between transformation 

strains along the same orientations in Ni45.3Ti39.7Hf20Pd5 and NiTi alloys. There is also a 

difference in the orientation dependence of the transformation strains between the binary 

and quaternary alloys. The smallest transformation strain is observed along [111] 

orientation in the binary NiTi alloys and [-117] (near [001]) orientation in 

Ni45.3Ti29.7Hf20Pd5 alloys. Moreover, Ni45.3Ti29.7Hf20Pd5 showed relatively high reversible 

strain along the [111] orientation. This difference in behavior could be attributed to a 

difference in active twinning types in the martensite phase of the alloys. Transformation 

strains depend on the active twinning mode that dictates the CVP formation and 

detwinning properties [141].  

It is well known that Type I and Type II are the most common twinning modes 

observed in binary NiTi alloys [41]. Conversely, initial results suggest that (001)B19′ 

compound [92, 142] twins, similar to Ni-rich NiTiHf alloys [48, 53, 54], are active in 

Ni45.3Ti29.7Hf20Pd5 alloys depending on aging condition.  It is known that compound 

twins generate lower transformation strain compared to a Type II twinning process [42]. 

Furthermore, the growth of CVPs in the Ni45.3Ti29.7Hf20Pd5 alloy could be more difficult 

due to frictional effects associated with the thin compound twins. Compound twins do not 

detwin easily, resulting in high hardening due to an increased stress required to complete 

the transformation [92, 143].  In turn, the high work hardening limits the amount of 
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detwinning that can occur prior to the onset of plastic deformation. Thus, a large 

detwinning strain is not expected in NiTiHfPd alloys.  

Temperature hysteresis was determined graphically from Figures 6.2 and 6.3 at 

the mid-point of the transformation strain between the cooling and heating curves for all 

orientations and is summarized in Figure 6.7 for both aging conditions.  In addition, the 

irrecoverable strains as a function of applied stress are also included in Figures 6.7a and b 

as a function of stress for the two aging conditions. Temperature hystereses of the 550 

o
C-3 h aged single crystals were 43 

o
C, 40 

o
C, and 21 

o
C under 300 MPa and 25 

o
C, 60 

o
C, and 25 

o
C under 1000 MPa along the [111], [011], and [-117] orientations, 

respectively.  Along the [111] orientation, the temperature hysteresis decreased abruptly 

from 46 
o
C to 30 

o
C when the applied stress was increased from 100 MPa to 500 MPa 

and continued to decrease more slowly to 1000 MPa where a minimum hysteresis of 25 

o
C was observed in this orientation.  In constrast, the hysteresis  for [011] crystals 

increased with stress, consistent with an increase in plastic deformation. Finally, for [-

117] crystals, the hysteresis was almost independent of stress.   

After aging at 600 
o
C for 48 hours, temperature hystereses of the single crystals 

were 45 
o
C, 51 

o
C, and 46 

o
C under 300 MPa  and 54 

o
C, 113 

o
C, and 45 

o
C under 1000 

MPa along the [111], [011], and [-117] orientations, respectively. Similar to the 550 
o
C-

3h condition, when stress was increased, temperature hysteresis increased in the [011] 

orientation due to greater plastic deformation, while it was almost constant in the [111] 

orientation prior to the any significant plastic deformation and then increased at higher 

stresses.  Finally, the hysteresis was essentially constant for [-117] crystals over the entire 

range of stresses investigated, consistent with the lack of plasticity along this orientation.  
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The initial decrease in hysteresis with stress  for [111] samples aged at 550 
o
C for 

3 hours could be related to a decrease in the number of martensite variants formed with 

stress in this orientation.  With fewer martensite variants present with stress, the 

interaction between the martensite variants  would be less, resulting in a smaller 

hysteresis.  

The temperature hysteresis for both the 550 
o
C-3h and 600 

o
C-48h aged samples 

along the [011] orientation increased gradually with stress up to approximately 500-700 

MPa and then increased more rapidly with further increase in stress. For the former 

condition, it was 26 
o
C, 37 

o
C, 46

 o
C and 60 

o
C at 100 MPa, 500 MPa, 700 MPa and 1000 

MPa, respectively.  While in the later condition, it was 48 
o
C, 56 

o
C, 61 

o
C and 113 

o
C at 

100 MPa, 500 MPa, 700 MPa, and 1000 MPa, respectively. In both cases, the increase in 

hysteresis with stress is directly attributed to accumulated plastic strain as the stress 

increased (as shown in Figure 6.7). 

In the [-117] orientation, the temperature hysteresis was almost constant with 

applied stress in both aging conditions. It was 20 
o
C, 20 

o
C and 25 

o
C at 100 MPa, 500 

MPa and 1000 MPa, respectively, after aging at 550 
o
C for 3 hours while it was 45 

o
C, 47 

o
C and 45 

o
C at 100 MPa, 500 MPa and 1000 MPa, respectively, after aging at 600 

o
C for 

48 hours. This is consistent with the fact that irrecoverable strain was almost negligible 

for all applied stress levels for both aging conditions, so that  little energy was disspated 

due to defect (e.g. dislocation) generation. 

It is clear that the trend in the thermal hysteresis for [111] and [-117] oriented 

crystals  was different compared to the [011] orientation. The hysteresis decreased with 
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stress in the [111] orientation after aging at 550 
o
C for 3 hours, while it was almost 

constant along the [-117] orientation for both aging conditions. However, for both aging 

conditions the thermal hysteresis increased with stress in the [011] orientation starting 

from 100 MPa. This difference correlates with the significant degree of plastic 

deformation associated with thermal cycling of [011] crystals compared to [111] and [-

117].  In the [011] orientation, as applied stress increased, energy dissipation by 

dislocation generation also increased resulting in a widening thermal hysteresis with 

stress. 

Work output is another important property of SMAs in the design of functional 

devices such as solid state actuators. In this case, work output can be calculated by 

multiplying the applied stress by the corresponding reversible strain from the isobaric 

thermal cycling experiments. Figure 6.8 shows the work output values as a function of 

stress for various orientations and aging conditions for single crystal Ni45.3Ti29.7Hf20Pd5.  
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Figure 6.8: Work output as a function of orientation, aging treatment (550 
o
C-3 h and 

600 
o
C-48 h), and applied stress for Ni45.3Ti39.7Hf20Pd5  single crystals. 

Work output for the 550 
o
C-3 h aged samples increased with applied stress and 

reached maximum values of 22 J/cm
3
, 27 J/cm

3
, and 7 J/cm

3
 at 1000 MPa along the 

[111], [011] and [-117] orientations, respectively. In the 600 
o
C-48 h aged condition, the 

maximum work output was 20 J/cm
3
 and 8.5 J/cm

3
 under 1000 MPa along [111] and [-

117] orientations, respectively. In the [011] direction, the work output reached a 

maximum of 22 J/cm
3
 at 700 MPa and then decreased to 20 J/cm

3
 at a stress of 1000 MPa 

due to decreased reversible strain, as shown in Figure 6.6b.
 
 

It is clear that in Ni45.3Ti39.7Hf20Pd5 single crystals, work output values are strong 

functions of loading orientation and aging condition. [111] and [011] orientations have 

comparable work output values while the [-117] has lower work output values due to 

poorer reversible strains for both aging conditions. Aging at 600 
o
C for 48 hours results in 
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higher work output values due to higher reversible strains compared to aging at 550 
o
C 

for 3 hours for all orientations, based on the thermal cycling experiments shown in 

Figures 6.2 and 6.3.  In comparison, binary NiTi alloys can generate work output values 

exceeding 20 J.cm
-3 

 [144] and the  work output for [111] oriented NiTiHf single crystals 

can be as high as  30 J.cm
-3

 [118].  

Fundamental knowledge of the orientation dependence of shape memory 

properties is very important to predicting the behavior of textured polycrystalline 

materials. It is known that a strong  <111> texture occurs during the drawing of NiTi 

alloys [38]. Thus, this type of texture would strongly benefit Ni45.3Ti39.7Hf20Pd5 alloys.  

The [011] and [111] orientations exhibit the highest reversible strains. But while [011] 

has the lowest strength amongst the studied orientations, [111] is one of the strongest 

orientations.  Thus, a strong [111] texture would seem to optimize both the 

trasnformation strain and strength (minimize residual strain) of the alloy.  

 

6.3.  Summary and conclusions 

Effects of crystal orientation on the shape memory properties of Ni45.3Ti29.7Hf20Pd5 (at 

%) alloys were investigated in aged conditions. In summary;  

1. Shape memory responses of Ni45.3Ti29.7Hf20Pd5 single crystals were 

determined at stresses ranging from 100 to 1000 MPa in the [111], [011] and 

[-117] orientations. The maximum reversible strains were 2.2 %, 2.7 % and 

0.7 % along the [111], [011] and [-117] orientations, respectively after aging 

at 550 
o
C for 3 hours. In the 600 

o
C-48h aging, the maximum reversible 
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strains were 2.3 %, 3.2 % and 0.9 % along the [111], [011] and [-117] 

orientations, respectively. The [-117] and [111] orientations were stronger 

compared to the [011] orientation in compression after aging at 550 
o
C for 3 

hours and aging at 600 
o
C for 48 hours. 

 

2. Fully reversible superelastic responses were possible with a larger than 2.2 %, 

2.3 % and 0.3 % reversible strains along [111], [011] and [-117] orientations, 

respectively, at a test temperature of 60 
o
C after aging at 550 

o
C for 3 hours. 

After aging at 600 
o
C for 48 hours, reversible strains of 1.5 %, 1.2 % and 0.6 

% were measured for the [111], [011] and [-117] orientations, respectively, at 

140 
o
C. No irreversible strain was observed even when deformed to 1500 MPa 

in the [111] and [-117] orientations after both aging conditions. 

 

3. It was observed that the C-C relations were strong functions of orientation and 

aging condition. The C-C slopes were 11.1 MPa/
o
C, 8.2 MPa/

o
C, and 27.6 

MPa/
o
C for the samples oriented along the [111], [011], and [-117], 

respectively, after aging at 550 
o
C for 3 hours. After aging at 600 

o
C for 48 

hours, the slopes were 12.5 MPa/
o
C, 9.3 MPa/

o
C and 42.2 MPa/

o
C along the 

[111], [011] and [-117] orientations, respectively. 

 

4. Thermal hysteresis was also a strong function of orientation in the 

Ni45.3Ti29.7Hf20Pd5 single crystals. The thermal hysteresis was constant or 
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decreased along the [111] orientation, while it increased in the [011] 

orientation, and was essentially constant along the [-117] orientation for both 

aging conditions. Overall, the thermal hysteresis increased with the amount of 

irrecoverable strain for both aging conditions. Temperature hystereses of the 

550 
o
C-3 h aged single crystals were 25 

o
C, 60 

o
C and 25 

o
C under 1000 MPa 

along the [111], [011] and [-117] orientations, respectively. After aging at 600 

o
C for 48 hours, temperature hystereses were 54 

o
C, 113 

o
C and 45 

o
C under 

1000 MPa along the [111], [011] and [-117] orientations, respectively. 

 

5. The work output values were also strong functions of orientation. Maximum 

work output values of 22 J/cm
3
, 27 J/cm

3
, 7 J/cm

3
 were observed along [111], 

[011] and [-117] loading orientations, respectively, after aging at 550 
o
C for 3 

hours. For samples aged at 600 
o
C for 48 hours, maximum work output values 

of 20 J/cm
3
, 22 J/cm

3
, 8.5 J/cm

3
 were observed along [111], [011] and [-117] 

loading orientations, respectively. 

 

6. The material aged at 600 
o
C for 48 hours is weaker due to larger, widely 

spaced, and presumably semi-coherent or incoherent precipitates. After aging 

at 550 
o
C for 3 hours, the material is stronger due to the formation of finer 

coherent precipitates, which do not allow energy dissipation by defect 

generation in contrast to the previous case as evidenced from load-biased 

thermal cycling experiments.  
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7. The difference in the crucial shape memory properties (e.g. transformation 

strain) compared to binary NiTi alloys could be stemmed from the difference 

in the twinning types. Intial results showed that (001)B19′ compound twins 

were active in Ni45.3Ti29.7Hf20Pd5 alloys depending on aging condition while 

the most common twinning types were Type I and Type II in NiTi alloys. 
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7. MICROSTRUCTURE-PROPERTY-THERMODYNAMIC RELATIONS IN 

Ni45.3Ti29.7Hf20Pd5 SHAPE MEMORY ALLOYS 

7.1. Introduction 

SMAs display shape memory effect and superelasticity owing to thermoelastic 

solid to solid phase transformation [2]. In this chapter, the main aim is to reveal 

relationships between microstructure (e.g. precipitate size ( d ) and interparticle distances, 

 ) and martensitic transformations in high strength Ni45.3Ti29.7Hf20Pd5 polycrystalline 

and single crystal SMAs by using thermodynamical principles. 

7.1.1. Transformation temperatures of martensitic transformation 

Based on the general formula for the forward transformation (equation 1) and the 

free energy curves in Figure 1.1 in Chapter 1, the necessary conditions for the forward 

and back transformations are [25] 

0  mp

irr

mp

el

mp

ch GGG                                                              (5) 

0  pm

irr

pm

el

pm

ch GGG                                                               (6) 

 

mp

elG  is the stored elastic energy during the forward transformation and it is 

released completely upon back transformation from martensite to austenite. Hence, the 

elastic energy storage is a mechanically reversible process [24]. The amount of the stored 

elastic energy should be equal to the released energy upon back transformation if there is 

no plastic relaxation due to dislocation generation/plastic deformation after a full 

transformation cycle [26, 27]. 
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The irreversible energy 
mp

irrG  can be assumed as a combination of mainly 

frictional energy that is required to move phase front (between transforming phases), 

friction between internal twins in martensite and plastic relaxation energy due to 

dislocation generation. Both of the abovementioned mechanisms result in dissipation of 

energy and consequently, hysteresis in SMAs 

The total elastic strain energy storage during the martensitic transformation 

( elG ) is contributed by the elastic energies for nucleation (
n

elG ) and propagation 

(
p

elG ) of martensite [145]. Based on the equations (5) and (6), the TTs can be formulated 

as following [25]; 
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Similar relations for As and Af temperatures can be determined to be [25]; 
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S can be expressed as tr
T

S 


.



  [1] where 

T


is the C-C slope and tr is the 

maximum transformation strain which depends on aging condition and loading 

orientation. 

To is generally expressed as [24, 146]; 

2

fs

o

AM
T


                                                                                          (11)                                                                                         

To is only chemical composition dependent. If there are constraints (e.g. multiple 

interfaces, precipitates, grain boundaries etc.) to transformational shape change, 

transformation temperatures are lowered and equation 11 may not give correct To values 

in those cases. Thus, To could be higher than 
2

fs AM 
 [129] and even very close to Af 

temperature [147] in the presence of constraints in microstructure. On the other hand, if 

there is internal stress in a microstructure, TTs could be elevated and in such a case, To 

could be lower than theoretically calculated value. Thus, several approaches will be used 

in the calculation of To throughout our analysis and results will be presented based on 

each approach in the chapter. As a first approach (A1), To will be calculated by equation 

11 for all materials. Then, as a second approach (A2), To will be assumed to be equal to 

Af for each material. Finally, the extruded material will be assumed to be a base material 

and due to the decreasing (e.g. small precipitates) and the increasing (e.g. internal stress) 

effects on TTs, the To of the extruded material (calculated by equation 11) will be 

assumed to be the To of all the aged alloys. The non-chemical free energies of the aged 
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materials will be calculated relative to the extruded material. This method will be 

abbreviated as A3.  

 

7.1.2. Non-chemical energy terms related to martensitic transformation 

In the thermoelastic martensitic transformations, the TTs temperatures are 

affected by the stored and released elastic strain energy as well as the irreversible energy 

as discussed previously. Thus, the whole phase transformation can be influenced by a 

change in elastic energy and irreversible (combination of frictional and plastic relaxation) 

contribution in equations (5) and (6).  

The elastic energy due to propagation of martensite can be formulated as, 

     
SMMG fs

p

el  )(
                                                                                          (12) 

 
where S is the change in entropy upon phase transformation. On the other hand, the 

elastic energy (necessary driving force at Ms) for nucleation can be expressed as, 

     
2

)().(
S

AMSTG fso

n

el


                                                                         (13) 

In addition to the elastic strain energies, it could be useful to derive an expression 

for the irreversible energy from the above derived equations before starting the analysis. 

By combining the equations (13) and (16), the irreversible energy can be expressed as;  

S
MA

G
sf

irr 


 .
2

                                                                    (14)                                          
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7.2. Effects of microstructures on the transformation temperatures 

The precipitate characteristics of the polycrystalline Ni45.3Ti29.7Hf20Pd5 alloys 

were presented in Chapter 3 through TEM observations conducted on as-extruded and 

aged samples at RT. The as-extruded specimen was expected to have tiny precipitates due 

to slow cooling process after homogenization. The 400 
o
C-3 hours aged specimens 

consist of a single B2 austenite phase without any visible precipitates with the 

conventional TEM, however it was assumed that the 400 
o
C-3h specimen had very small 

precipitates in size, that can only be detected by HRTEM. On the other hand, spindle-

shaped precipitates were clearly observed in the 550 
o
C-3 hours and 650 

o
C-3 hours aged 

specimens. Fine precipitates with sizes of approximately 20-30 nm in length with 

interparticle distance of about 10-30 nm were formed after 550 
o
C-3 hours aging.  

As the aging temperature increased to 650 
o
C, the precipitates were quite large 

when compared with the 550 
o
C-3 hours specimen, with a length that varies from about 

80 nm to 300 nm and width of about 50 nm. The interparticle distance varied from 15 nm 

to 150 nm in the 650 
o
C-3h specimen. 

Figure 7.1 shows the changes in the stress-free TTs (determined from the DSC 

results) with aging temperature after aging for 3 hours. An initial decrease in TTs with 

aging temperature was observed reaching a minimum at about 400 °C.  Between 400 to 

600 °C the TTs increased with increasing aging temperature, reaching a maximum at 

about 600 °C, decreasing once again with any further increased in aging temperature. For 

3 hours aging time, Af reached a maximum of 150 
o
C following aging at 600 

o
C.   
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Figure 7.1: Regions in the change in TTs and thermal hysteresis in Ni45.3Ti29.7Hf20Pd5 

polycrystalline alloys after various aging treatments 

A possible change in the non-chemical free energy terms (elastic end irreversible 

energies) based on initial microstructures are thought to be responsible in the change of 

TTs in the following manner; 

 The initial drop in TTs was attributed to the formation of precipitates with very 

small size and very short interparticle distances. Thus, the resistance for martensite 

nucleation increases and formation of martensite required more energy change, which in 

turn required further undercooling ( so MTT  ) in the course of the forward 

transformation [55].  

Based on thermoydnamics, following factors can be liable for the change of TTs 

in Ni45.3Ti29.7Hf20Pd5; 
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i) Elastic energy for nucleation is high due to small interparticle distance for the 

aging temperature up to 400 
o
C 3 hours in region I. When the precipitate size ( d <10nm) 

and   distances were small (high precipitate density,), the elastic energy for nucleation 

of martensite (
n

elG ) will be high and it will decrease the Ms temperature in spite of 

increased volume fraction of precipitates based on equation (13). In region II, the lower 

n

elG due to larger interparticle distances after aging at higher temperatures might help 

increase the TTs.  

 

ii) In addition to the non-chemical energy terms, there is also an effect of 

chemical composition ( compT ) on the martensitic transformation temperatures. In 

general, TTs are increased with aging in NiTi-based alloys due to an increase in the 

volume fraction of the Ni-rich precipitates, resulting in a change in composition of the 

remaining matrix material (e.g. Ni depletion in matrix). It is well known that TTs are 

highly composition dependent in NiTi based SMAs [2]. Hence, a decrease in the Ni 

content upon aging will result Ni depletion from the matrix and it will increase the Ms 

temperature by compT  depending on an increase or decrease in the Ni content.  

In region I, the effect of the chemical composition was presumably suppressed by 

the effects of non-chemical energies and consequently, the TTs decreased. However, the 

chemical composition change can be quite dominant in the increased TTs in region II in 

addition to the abovementioned decrease in 
n

elG and irrG energies. 
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In region III, the second drop in TTs can be attributed to a reduction in precipitate 

volume fraction as the aging temperature increased and either approached or surpassed 

the precipitate solvus temperature. Once again resulting in a Ni-rich matrix and thus, 

decrease in TTs based on the equation that will be stated in later paragraphs.  

 

iii) An increase in the irrG term was observed in region I as shown in Figure 

7.1. The increase in the thermal hysteresis is a representation of an increase in irreversible 

energy term since hysteresis is an irreversible dissipation process. The increase in the 

irrG term decreased the Ms temperature in 400 
o
C-3h sample based on equation 7.  

 

iv) Another factor in tailoring of the TTs can be local internal stress ( in ) 

originated from the mismatch between lattice parameters of the matrix and the formed 

precipitates in the materials. It is known that the TTs increase if there is internal stress in 

the microstructure since the formed internal stress acts as an external stress favoring 

martensitic transformations in SMAs [4]. The effect of the internal stress on Ms 

temperature can be expressed a change by intT . 

In region I, the precipitates were small in size due to low aging temperature. 

Hence, the internal stress was not high enough to surpass the effects of non-chemical 

energies on TTs as mentioned earlier. 
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Dissimilarly; the precipitates became more coherent after aging temperatures of 

400 
o
C resulting high internal stresses in the materials in region II. The formed internal 

stresses helped in favoring the martensite plates as external stress did and consequently, 

Ms increased. 

 After aging temperature of 600 
o
C in region III, the materials were already over-

aged resulting non-coherent precipitates that relaxed surrounding internal stress fields. 

The relaxed internal stress was not as effective in increasing TTs in region III as it was in 

region II. 

Figure 7.2 shows the change in non-chemical energies calculated by the 

abovementioned three approaches as a function of aging temperature in 

Ni45.3Ti29.7Hf20Pd5 alloys. In a and b, the elastic strain energies decreased while the 

friction energy slightly increased compared to the as-received case after aging at 400 
o
C. 

As the aging temperature increased to 550 
o
C, all the non-chemical energies abruptly 

increased while the decrease continued once the materials was over-aged at 650 
o
C. 

In Figure 7.2c, when the material is aged at 400 
o
C, the elastic strain energies 

increased slightly while the friction energy was almost constant compared to the as-

received case. As the aging temperature increased to 550 
o
C, the nucleation energy 

started to decrease while the propagation and friction energies increased. After aging at 

650 
 o

C, the friction energy was almost constant as the nucleation and propagation 

energies decreased.  
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Figure 7.2: Non-chemical energies calculated by the methods of a) A1, b) A2 and c) A3 

as a function of aging in Ni45.3Ti29.7Hf20Pd5 alloys 

By considering all the above mentioned factors, a change in Ms temperature might 

be formulated as;  

intTT
S

G
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G
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n

el
os 









                                              (15) 

Since the 
n

elG and composition effect are two computing mechanisms in the TTs 

change, we can combine two effects such that; 
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7.3. Effects of aging and high stress on the non-chemical energies in 

transformation behavior  

Constant-stress thermal cycling results of the as-extruded and heat treated 

Ni45.3Ti29.7Hf20Pd5 polycrystalline specimens under selected compressive stress levels 

ranging from 100 MPa to 1000 MPa are depicted in Figure 7.3. Specimens were loaded 

to selected stress levels at temperatures above Af and then were thermally cycled under 

the selected constant stress. It is evident from Figure 7.3 that the TTs increased with 

stress.  
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Figure 7.3: Constant-stress thermal cycling results for the Ni45.3Ti29.7Hf20Pd5  alloy a) as-

extruded, b) aged at 550 
o
C for 3 hours [148] 
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Figure 7.4 shows the schematic representations of thermal cycling curves of the 

as-extruded and 550 
o
C-3h aged specimens at 100 MPa and 1000 MPa. In the as-extruded 

specimen, Ms and As were -16 
o
C and 15 

o
C under 100 MPa, and 60 

o
C and 102 

o
C under 

1000 MPa, respectively.  At both stress levels, As was higher than Ms in the as-extruded 

condition. In other words, the transformations were “Class I” [136] at 100 MPa and 1000 

MPa (Ms<As). For the 550 
o
C-3h aged specimen, Ms was 13 

o
C and As was 38 

o
C under 

100 MPa. Thus, it was also a “Class I” transformation. However, an anomaly was 

observed for the 550 
o
C-3hours aged specimen at 1000 MPa, compared to the previous 

cases, since Ms was 93 
o
C and As was 80 

o
C. It is clear that Ms was lower than As under 

100 MPa while Ms was higher than As (“Class II” (Ms>As) [136]) under 1000 MPa for 

the aged sample. Ms and As for the as-extruded and 550 
o
C-3hours aged samples are 

given as a function of applied stress in Table 3. 

 

  

Figure 7.4: Schematic representation of the change in Ms and Af temperatures with stress 

in a) as-extruded and b) 550 
o
C-3h aged material as a function of applied stress in 

constant-stress thermal cycling experiments [92]. 
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The change from Class I to II transformation behavior with stress in the 550 
o
C-3 

hours aged specimen can be attributed to the higher elastic energy storage during thermal 

cycling at the high stress of 1000 MPa compared to lower stress levels. The higher elastic 

energy storage might be a result of various factors including; 

i) a change in twinning properties and lattice parameters  

The Ni45.3Ti29.7Hf20Pd5 polycrystalline alloy undergoes a B2  to B19’ phase 

transformation under zero stress. However, at stresses as high as 1000 MPa, the lattice 

parameters of  the parent  and martensitic phases may alter that will affect the 

compatibility of the transforming phases and twinning properties. Thus, elastic energy 

storage might increase during thermal cycling at 1000 MPa  compared to thermal cycling  

at lower stresses (e.g. 100 MPa [27]. However, it is clear that for the as-extruded sample, 

the applied stress did not result in high elastic energy storage since Ms<As for all applied 

stress levels. Thus, either applied stress did not increase the stored elastic energy or 

stored elastic energy relaxed after transformation due to plastic deformation in the as 

extruded sample.  

 

ii) a possible habit plane distortion by extereme high stress 

In NiTi shape memory alloys, it was reported that the habit plane between 

martensite and austenite distorts during detwinning process resulting in additional elastic 

energy storage [149]. It was also observed that the habit plane was distorted locally in a 

stress-induced martensite transformation in CuNiAl shape memory alloys [150] since the 

martensite was formed on the habit plane during transformation. Similiarly, in the 
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Ni45.3Ti29.7Hf20Pd5 polycrystalline alloys, the habit plane could be distorted during 

formation due to applied high stress and/or during propagation due to formed high back 

stress. This distortion in the habit plane may cause an increase in the elastic energy 

particularly at high stress levels and may change the transformation type as the stress 

increases in constant stress thermal cycling experiments if there is no elastic energy 

relaxation. 

 

iii) increased detwinnig by extreme high stress 

Transformation strain is obtained mainly by CVP formation and detwinning strain 

in SMAs [151]. Detwining can be explained as the growth of one variant at the expense 

of other CVPs in the microstructure [151]. Hence, it increases as a function of stress since 

the growth of one CVP variant in the expense of others requires further energy. In the 

Ni45.3Ti29.7Hf20Pd5 polycrystalline alloys, the applicable stress is exteremly high (e.g. 

>700 MPa) in constant stress thermal cycling experiments. Thus, this high stress may 

increase the detwining strain and result in further elastic energy storage at high stress 

levels. On the other hand, if the material is precipitation strengthened as in 550 
o
C-3h 

case, the internal stresses around precipitates could try to inhibit the detwining process 

and this may contribute the additional elastic energy storage in aged materials compared 

to not aged or over-aged materials.  
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Table 3: Change in Ms and As temperatures with applied stress in thermal cycling 

experiments of the as-extruded and 550 
o
C-3h aged specimen [92]. 

Stress 

As-extruded 550 
o
C-3h 

Ms
100 MPa

 (
o
C) As

100 MPa 
(
o
C) Ms

1000 MPa
 (

o
C) As

1000 MPa
 (

o
C) 

100 MPa -16 15 13 38 

300 MPa -1 32 32 55 

500 MPa 23 45 50 70 

700 MPa 37 60 65 76 

1000 MPa 60 102 93 80 

 

iv) increased material strength and back stress  

When the responses of the as-extruded and aged samples under 100 MPa (or DSC 

responses, Figure 3.3) were compared, it was clear that As was higher than Ms in both 

cases, indicating that precipitate formation did not solely result in high elastic energy  

storage. Since  the 550 
o
C-3 hours aged material was precipitation hardened with nano 

size coherent particles upon aging, propagation of formed martensite was more difficult 

and consequently, elastic energy storage during the martensitic transformation were 

higher [129, 130] compared to the as-extruded sample (neglecting the effect of 

transformation strains since they were close).  On the other hand, increased back stress 

due to martensite-particle interaction  could make the motion of phase front more 

difficult and this may contribute the accumulation of elastic energy during propagation of 
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martensite. The increased back stress could be a result of both improved strength and 

application of high stress in Ni45.3Ti29.7Hf20Pd5 polycrystalline alloys. Although 

transformation type was the same for both cases, the difference between As and Ms 

decreased from 31 
o
C to 25 

o
C with aging. Thus, some increase in elastic storage or 

decrease in energy dissipation occured with aging.   

    When the sample was aged and then high stress was applied, the transformation 

type changed from “Class І” (Ms<As) to “Class ІІ” (Ms>As) due to very high elastic 

energy storage [111]. Since the elastic energy helped back transformation and elastic 

energy relaxation by dislocation generation was not expected in the aged specimen, lower 

superheating was enough to initiate the back transformation. Lower superheating resulted 

in a relatively lower As during thermal cycling at 1000 MPa for the 550 
o
C-3 hours aged 

specimen as shown in Figure 7.3.  The key point to note was the fact that stored elastic 

energy was not relaxed upon transformation due to high matrix strength in the aged 

sample while it was relaxed in the as extruded sample [26]. Thus, we can conclude that 

aging and applied high stress could increase the elastic storage energy and prevent its 

relaxation, which could lower As, decrease hysteresis, and change the transformation 

type.      

The change in temperatures can be analyzed by the following thermodynamical 

assay. Recall that the Ms formula was expressed as equation 7 earlier. 

Hence, when the friction to move the phase front is high in a material, meaning 

high irreversible/dissipation, Ms will be lowered according to the equation above. Similar 

to Ms, the equation for the As temperature was defined in equation 9.  
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In equation 9, p

elG was the accumulated elastic energy when the full martensite 

transformation is obtained (dictated by both nucleation and variant reorientation during 

growth). Thus, for a Class II transformation (Ms>As), the following equation can be 

written; 

irr

n

el

p

el GGG  2                                                                 (17)                                                                                
            

 

Equation 17 indicates that for a Class II transformation, p

elG  should be 

large,
n

elG and irrG should be small. p

elG
 
can be increased if there is additional elastic 

energy creation during martensite reorientation and no relaxation due to defect 

generation, 
n

elG can be increased with decreased interparticle distance and increased 

shear modulus of the matrix. irrG depends on the compatibility of the transforming 

phases and the strength of the matrix. Thus, increased strength of the matrix could 

increase the stored elastic energy by increasing the elastic energy generated during 

forward transformation. The increased strength can also decrease the relaxation of elastic 

energy and the dissipation energy that could change the transformation class from I to II.  

In this study, precipitation formation was responsible for not only increasing the strength 

but may also alter the lattice parameters of the transforming phases, which could alter the 

compatibility and twinning properties of the martensite and thus the elastic energy and 

dissipation energy creation. However, precipitation hardening cannot change the 

transformation class alone in the studied alloys. High stress must be applied to increase 

the stored elastic energy by creating additional elastic energy due to variant reorientation 

and altering the elastic and dissipation energy terms due to change in lattice structures 
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and parameters of the transforming phases.  A more detailed analysis regarding the non-

chemical energies as a function of stress will be discussed in onward paragraphs.     

Figure 7.5 shows the phase diagrams that were extracted from the constant stress 

thermal cycling experiments in the as-extruded and aged Ni45.3Ti29.7Hf20Pd5 

polycrystalline alloys. The phase diagrams show the TTs under applied stress levels in 

addition to stress-free ones extracted from C-C curves. 
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Figure 7.5: Experimentally observed phase diagrams for Ni45.3Ti29.7Hf20Pd5 

polycrystalline alloys 
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As observed in Figure 7.5, the phase diagrams were clearly distinct from each 

other. In some diagrams, the curves for the TTs under load were linear (e.g. 550 
o
C-3h) 

while the others were not (e.g.650 
o
C-3h). It is clear that the difference in TTs (e.g. 

difference between Af and Ms, MsAfT   during the forward transformation increased with 

stress for all Ni45.3Ti29.7Hf20Pd5 specimens. However, the same increasing trend was not 

observed for the TTs difference during the back transformation in the 400 
o
C-3h and 650 

o
C-3h samples. The differences were almost constant up to a stress level that is 500 MPa 

and 700 MPa for the earlier and later materials, respectively. Then, the difference 

between Ms and Af is increased suddenly. In contrast, the MsAfT   decreased initially 

followed by staying almost constant with stress in the material aged at 550 
o
C for 3 hours. 

These differences on the change of TTs with stress will be discussed based on the non-

chemical energy contributions in Ni45.3Ti29.7Hf20Pd5 alloys.   

The phase diagrams of studied alloys were shown Figure 7.5. In the 550 
o
C-3h 

sample, the MsAfT   was almost constant with increased stress up to 1000 MPa. However, 

the difference between Af and Ms suddenly increased after 500 MPa in the 400 
o
C-3h and 

after 700 MPa for the 650 
o
C-3h phase diagrams. There could be two main deductions of 

the observed behaviors based on thermodynamic relations. 

i) According to the equation (14), the difference between Af and Ms was directly 

related to the irreversible energy, irrG . The increased MsAfT  showed an increase in the 

irreversible energy based on the equation. This deduction can also be proved by the 

experimental data previously reported in [92]. As the applied stress increases to 500 MPa, 

a plastic deformation was observed in line with the unclosed curves (irrecoverable 
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strains) in the constant stress thermal cycling loops. The observed irrecoverable strain 

was a direct result of a dissipation in the material and consequently an increase in 

the irrG . 

ii) MsAfT  was also closely related to the elastic energy for nucleation of 

martensite, 
n

elG . It is clear that the increased MsAfT  after 500 MPa in the 400 
o
C-3h and 

after 700 MPa for the 650 
o
C-3h specimens was observed after starting of plastic 

deformations in the constant stress thermal cycling experiments [92]. Upon plastic 

deformation in the materials, dislocations were generated that can make the nucleation of 

martensite easier in the materials since dislocations could act like nucleation sites for the 

martensite [152]. In the dislocated samples (e.g. 400 
o
C-3h and 650 

o
C-3h), the 

nucleation of the martensite will be easier causing a decrease in 
n

elG  and measurable 

differences between Af and Ms temperatures as observed in phase diagrams. 

 In contrast to easier nucleation by plastic deformation, the propagation of the 

phase fronts will be more difficult due to the pinning effects of dislocations compared to 

non-dislocated samples (e.g. 550 
o
C-3h). Consequently, 

p

elG  increased as the applied 

stress increased, which helped the total elastic energy increase. 

It was also clear that Ms temperature was lower than As after a certain stress level 

in the 550 
o
C-3h and 650 

o
C-3h samples as lined in the phase diagrams. This shows that 

the transformation type changed after this stress levels from class I to class II due to 

elastic energy accumulated as the stress increased in the constant stress thermal cycling 

experiments.  
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On the other hand, the change in reversible (
n

elG  and
p

elG ) and irreversible 

( irrG ) energies can be discussed qualitatively as shown in following graphs. Figure 7.6 

shows the non-chemical free energies calculated by the approach 1. Figure 7.6a and 7.6b 

show the change in
n

elG ,
p

elG  and irrG energies with stress for the Ni45.3Ti29.7Hf20Pd5 

alloys in as-extruded and aged at 400 
o
C for 3 hours, respectively and Figure 7.6c and 

7.6d show the related energy changes for the materials aged at 550 
o
C and at 650 

o
C for 3 

hours, respectively.  
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Figure 7.6: Dependence of the reversible (
n

elG  and
p

elG ) and irreversible ( irrG )  free 

energies (calculated by approach 1 ) on the applied stress during constant stress thermal 



 

176 
 

cycling experiments in a) as-extruded, b) 400 
o
C-3h, c) 550 

o
C-3h and 650 

o
C-3h 

Ni45.3Ti29.7Hf20Pd5 shape memory alloys 

  

The elastic energy for nucleation in the as-extruded sample was 0 J/cm
3
 under 

zero stress and slightly decreased to -0.55 J/cm
3
 as the stress increased to1000 MPa. The 

elastic energy for propagation was 0.31 J/cm
3
 in stress-free condition as it increased to 

1.48 J/cm
3
 under 1000 MPa. The friction energy was determined to be 0.85 J/cm

3
 under 

zero MPa and stayed close up to 700 MPa. It increased to 1.4 J/cm
3
 as the stress was 

1000 MPa.  

The elastic energy for nucleation in the specimen aged at 400 
o
C for 3 hours was 

0.01 J/cm
3
 under zero stress; however, as the applied stress increased, 

n

elG  decreased to 

-0.003 J/cm
3 

under 1000 MPa. The elastic energy for propagation was 0.43 J/cm
3
 in 

stress-free condition as it increased to 1 J/cm
3
 under 1000 MPa. The friction energy was 

determined to be 0.82 J/cm
3
 under zero MPa and stayed almost constant up to 500 MPa. 

After 500 MPa, an abrupt increase was observed in irrG , which was 1.21 and 1.6 J/cm
3
 

under 700 and 1000 MPa, respectively. 

Figure 7.6c showed the change in reversible and irreversible energies in 

Ni45.3Ti29.7Hf20Pd5 aged at 550 
o
C for 3 hours. The elastic energy for nucleation in the 

specimen aged at 550 
o
C for 3 hours was 0 J/cm

3
 under zero stress; however, as the 

applied stress increased to 1000 MPa, 
n

elG  increased to 0.06 J/cm
3
. The elastic energy 

for propagation was 0.44 J/cm
3
 in stress-free condition as it increased to 0.81 J/cm

3
 under 
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1000 MPa. The friction energy was determined to be 0.51 J/cm
3
 under zero MPa and 0.41 

J/cm
3
 at 1000 MPa. The irreversible energy in the 550 

o
C-3h material decreased initial as 

the stress reached to 300 MPa and was almost constant up to 1000 MPa, which is fairly 

consistent with the temperature hysteresis result reported previously [92]. Since there was 

no increase in the irreversible energy term, the temperature hysteresis was almost 

constant in the 550 
o
C-3h sample. 

The elastic energy for nucleation in the specimen aged at 650 
o
C for 3 hours was 

0.68 J/cm
3
 under zero stress and decreased to -0.15 J/cm

3
 as the stress increased to1000 

MPa. The elastic energy for propagation was 0.34 J/cm
3
 in stress-free condition as it 

increased to 1.42 J/cm
3
 under 1000 MPa. The friction energy was determined to be 0.68 

J/cm
3
 under zero MPa and stayed almost constant up to 700 MPa. It increased to 1.14 

J/cm
3
 when the stress was as high as 1000 MPa.  

Figure 7.7 shows the non-chemical free energies calculated by the approach 2. 

Figure 7.7a and 7.7b show the change in 
n

elG ,
p

elG  and irrG energies with stress for 

the Ni45.3Ti29.7Hf20Pd5 alloys in as-received and aged at 400 
o
C for 3 hours, respectively 

and Figure 7.7c and 7.7d show the related energy changes for the materials aged at 550 

o
C and at 650 

o
C for 3 hours, respectively. 
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Figure 7.7: Dependence of the reversible (
n

elG  and
p

elG ) and irreversible ( irrG )  free 

energies (calculated by approach 2) on the applied stress during constant stress thermal 

cycling experiments in a) as-extruded, b) 400 
o
C-3h, c) 550 

o
C-3h and 650 

o
C-3h 

Ni45.3Ti29.7Hf20Pd5 shape memory alloys 

The elastic energy for nucleation in the as-extruded sample was 0.85 J/cm
3
 under 

zero and slightly decreased to 0.29 J/cm
3
 as the stress increased to1000 MPa. The elastic 

energy for propagation was 0.31 J/cm
3
 in stress-free condition as it increased to 1.48 

J/cm
3
 under 1000 MPa. The friction energy was determined to be 0.85 J/cm

3
 under zero 

MPa and stayed close up to 700 MPa. It increased to 1.4 J/cm
3
 as the stress was 1000 

MPa.  
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The elastic energy for nucleation in the specimen aged at 400 
o
C for 3 hours was 

1.11 J/cm
3
 under zero stress; however, as the applied stress increased, 1000 MPa, 

n

elG  

decreased to 0.17 J/cm
3
, which was the energy under 1000 MPa. The elastic energy for 

propagation was 0.43 J/cm
3
 in stress-free condition as it increased to 1 J/cm

3
 under 1000 

MPa. The friction energy was determined to be 0.82 J/cm
3
 under zero MPa and stayed 

almost constant up to 500 MPa. After 500 MPa, an abrupt increase was observed in 

irrG , which was 1.21 and 1.6 J/cm
3
 under 700 and 1000 MPa, respectively. 

Figure 7.7c showed the change in reversible and irreversible energies in 

Ni45.3Ti29.7Hf20Pd5 aged at 550 
o
C for 3 hours. The elastic energy for nucleation in the 

specimen aged at 550 
o
C for 3 hours was 0.61 J/cm

3
 under zero stress; however, as the 

applied stress increased, 1000 MPa, 
n

elG  increased to 0.74 J/cm
3
, which was the energy 

under 1000 MPa. The elastic energy for propagation was 0.44 J/cm
3
 in stress-free 

condition as it increased to 0.81 J/cm
3
 under 1000 MPa. The friction energy was 

determined to be 0.51 J/cm
3
 under zero MPa and 0.41 J/cm

3
 at 1000 MPa. 

The elastic energy for nucleation in the specimen aged at 650 
o
C for 3 hours was 

1.02 J/cm
3
 under zero stress and decreased to 0.28 J/cm

3
 as the stress increased to1000 

MPa. The elastic energy for propagation was 0.34J/cm
3
 in stress-free condition as it 

increased to 1.42 J/cm
3
 under 1000 MPa. The friction energy was determined to be 0.68 

J/cm
3
 under zero MPa and stayed almost constant up to 700 MPa. It increased to 1.14 

J/cm
3
 as the stress was 1000 MPa.  
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Figure 7.8 shows the non-chemical free energies calculated by the approach 3. 

Figure 7.8a and 7.8b show the change in 
n

elG ,
p

elG  and irrG energies with stress for 

the Ni45.3Ti29.7Hf20Pd5 alloys in as-received and aged at 400 
o
C for 3 hours, respectively 

and Figure 7.8c and 7.8d show the related energy changes for the materials aged at 550 

o
C and at 650 

o
C for 3 hours, respectively. 
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Figure 7.8: Dependence of the reversible (
n

elG  and
p

elG ) and irreversible ( irrG )  free 

energies (calculated by approach 3) on the applied stress during constant stress thermal 

cycling experiments in a) as-extruded, b) 400 
o
C-3h, c) 550 

o
C-3h and 650 

o
C-3h 

Ni45.3Ti29.7Hf20Pd5 shape memory alloys 
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The elastic energy for nucleation in the as-extruded sample was 0 J/cm
3
 under 

zero and slightly decreased to -0.55 J/cm
3
 as the stress increased to1000 MPa. The elastic 

energy for propagation was 0.31 J/cm
3
 in stress-free condition as it increased to 1.48 

J/cm
3
 under 1000 MPa. The friction energy was determined to be 0.85 J/cm

3
 under zero 

MPa and stayed close up to 700 MPa. It increased to 1.4 J/cm
3
 as the stress was 1000 

MPa.  

The elastic energy for nucleation in the specimen aged at 400 
o
C for 3 hours was 

0.75 J/cm
3
 under zero stress; however, as the applied stress increased, 1000 MPa, 

n

elG  

decreased to -0.18 J/cm
3
, which was the energy under 1000 MPa. The elastic energy for 

propagation was 0.43 J/cm
3
 in stress-free condition as it increased to 1.04 J/cm

3
 under 

1000 MPa. The friction energy was determined to be 0.82 J/cm
3
 under zero MPa and 

stayed almost constant up to 500 MPa. After 500 MPa, an abrupt increase was observed 

in irrG , which was 1.21 and 1.6 J/cm
3
 under 700 and 1000 MPa, respectively. 

The elastic energy for nucleation in the specimen aged at 550 
o
C for 3 hours was -

-0.55 J/cm
3
 under zero stress and increased to 0.41 J/cm

3
 as the stress increased to1000 

MPa. The elastic energy for propagation was 0.44 J/cm
3
 in stress-free condition as it 

increased to 0.81 J/cm
3
 under 1000 MPa. The friction energy was determined to be 0.51 

J/cm
3
 under zero MPa and stayed almost constant up to 700 MPa. It decreased to 0.41 

J/cm
3
 as the stress was 1000 MPa.  

Figure 7.7d showed the change in reversible and irreversible energies in 

Ni45.3Ti29.7Hf20Pd5 aged at 650 
o
C for 3 hours. The elastic energy for nucleation in the 

specimen aged at 550 
o
C for 3 hours was -4.5 J/cm

3
 under zero stress; however, as the 
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applied stress increased, 1000 MPa, 
n

elG  increased to 5.24 J/cm
3
, which was the energy 

under 1000 MPa. The elastic energy for propagation was 0.34 J/cm
3
 in stress-free 

condition as it increased to 1.42 J/cm
3
 under 1000 MPa. The friction energy was 

determined to be 0.68 J/cm
3
 under zero MPa and 1.4 J/cm

3
 at 1000 MPa. 

It is clear that the elastic energy for propagation increased with the applied stress 

in the all specimens. This means that the elastic energy increased with the applied stress 

in Ni45.3Ti29.7Hf20Pd5 SMAs in constant stress thermal cycling experiments if there was 

no relaxation of the stored energy by dislocation generation. Different than propagation 

energy, friction energy stayed almost constant up to certain stress level in the 400 
o
C-3h 

and 650 
o
C-3h samples. After a certain level, friction energy abruptly increased meaning 

there was energy dissipation in the material. This dissipation of energy can be explained 

by the dislocation generation in the materials which was also evident from the unclosed 

curves in the constant stress thermal cycling experiments [92]. 

In contrast to the as-extruded and 400 
o
C-3h sample, there was no increase in the 

friction energy with stress in the 550 
o
C-3h sample, which was in good agreement with 

the decreased/constant thermal hysteresis data [92]. In all the phase diagrams except 550 

o
C-3h, nucleation energy stayed almost constant up to certain stress level and decreased 

as the friction energy increased. This observation was in good agreement with the data on 

Cu-Al-Ni shape memory alloys previously reported [153]. This reverse behavior can be 

linked to a possible relaxation of the stored energy by dislocation generation as the 

applied stress increases [153] and/or formation of nucleation sites after plastic 
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deformation as discussed in previous paragraphs. Due to nucleation sites, nucleation of 

martensite was easier and 
n

elG decreased. 

 

7.4. Effects of microstructures on constant stress shape memory behaviors  

In this section, initial microstructures of Ni45.3Ti29.7Hf20Pd5 single crystals will be 

utilized in discussion on the relationships between experimentally observed shape 

memory behaviors via thermodynamic principles. Based on our previous experimental 

results, we know that the single crystals aged at 600 
o
C for various times (e.g. 3h, 48h 

and 72h) have more distinctive microstructures due to more homogeneous distribution of 

precipitates owing to lack of grain boundaries [2]. In polycrystalline materials, the 

precipitates may form inside grains and along grain boundaries and this may result a 

heterogeneous distribution of precipitates in addition to internal stress [154], which may 

affect a detailed shape memory response analysis negatively.  

Figure 5.8 showed the shape memory responses of the [111] oriented 

Ni45.3Ti29.7Hf20Pd5 alloys aged at 600 
o
C for 3, 48 and 72 hours previously. The revealed 

precipitation characteristics with aging time are shown in Figure 7.9. The specimen aged 

for 3 hours showed very fine and homogeneously distributed precipitates (Figure 7.9a) 

with a length of ~50 nm along the long axis and 8 nm along the short axis. The average 

interparticle distance between precipitates was measured to be nm35 . 

 In Figures 7.9b and 7.9c, “p” refers to precipitates and “m” refers to martensites. 

After aging for 48 hours, the precipitates were coarsened in size to 200 nm and 20 nm 

along the long and short axes, respectively, and interparticle distance was increased to 
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nm80 as depicted in Figure 7.9b. After 72 hours of aging, no further increase in 

precipitate size and interparticle distance was observed.  It should also be noted that, for 

48 hours and 72 hours aged specimens, the precipitate distribution was also 

homogeneous. Martensitic plates were not observed in the sample aged for 3 hours since 

this sample has an Ms lower than the room temperature. Martensitic plates were found to 

be confined by the surrounding precipitates in the both samples aged for 48 hours and 72 

hours with the ones to be slightly larger in the 72 hours case.  

 

Figure 7.9: TEM images for the aged Ni45.3Ti29.7Hf20Pd5 at 600 
o
C for a) 3 hours,  b) 48 

hours and c) 72 hours 

The thermal cycling responses of the 3 hours aged sample are very different 

compared to those  aged for 48 and 72 hours (see Figure 5.8 in chapter 5). A schematic 

representation of phase transformations under stress for idealized cases and the current 

responses of 3 and 48 hours aged samples are depicted in Figure 7.10a and Figure 7.10b, 

respectively.  
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Figure 7.10: Schematic representation of martensite nucleation in single crystals during 

cooling in temperature cycling experiments for a) Ideal case with/without constraint. b) 

Actual test results for specimens aged at 600 
o
C for 3 hours and 600 

o
C for 48 hours. 

  

In the absence of precipitates (and neglecting the inherent elastic energy storage 

of the material), martensite can form in an obstacle free environment, annotated as case 1 

in Figure 7.10a. In this case, a single martensite variant would nucleate and grow rapidly 

without facing any resistance. If there are obstacles in the microstructure (e.g. grain 

boundaries, precipitates, dislocations, or other crystallographic defects,) additional energy 

is required to overcome these obstacles. The  additional energy can be supplied by further 

undercooling, which would increase the chemical energy difference between phases. 

Thus, the transformation will not be as rapid as case 1, but  would be more gradual, as 

represented by case 2. The reason for deviation from the ideal case is due to increased 

elastic energy storage [129]. The stored elastic energy is affected by martensite 

morphology and precipitation characteristics [11, 55] and  will increase with increased 

resistance to the progression of the phase transformation [120, 129]. In the case of the 
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Ni45.3Ti29.7Hf20Pd5 alloy, the increased resistance can be attributed to the additional 

constraints arising from the small coherent precipitates (high precipitate density) against 

interface motion. Thus, the slope of the transformation strain – temperature curve (TST 

slope) decreases as the elastic energy storage increases in the material due to increased 

constraints in the microstructure. When the precipitates become larger and incoherent, the 

stored elastic energy may be relaxed due to dislocations acquired from incoherent 

precipitate boundaries [11]. In such a case, the TST slope will become steeper due to 

easier propagation of the transformation, resulting in lower elastic energy storage. Thus, 

as the resistance to the transformation-induced shape change increases, elastic energy 

storage increases, and the slopes of the TST curves decrease, as illustrated in case 2. 

In Figure 7.10b, the actual thermal cycling response of the specimens aged for 3 

and 48 hours at 300 MPa are shown. The response after 3 hours aging resembles the ideal 

case 2, while the response after 48 hours is similar to ideal case 1. The difference in these 

responses could be attributed to the effects of precipitates on the martensite morphology 

and elastic energy storage [11, 129]. When the precipitates are small and interparticle 

distance is short enough, the growing martensite plates will try to bypass and surround 

nearby precipitates resulting in larger martensite plates with embedded precipitates as it 

has been previously observed in CuAlMn SMAs [133]. However, if the precipitates are 

large enough, the martensite plates will not be able to bypass the precipitates but instead 

will tend to form in the channels between precipitates (as in Figures 7.10b and 7.10c).  

The process of trying to bypass and encapsulate precipitates in the microstructure 

makes the growth of martensite slower and harder. This process increases the energy 

required to complete the transformation,  which will need to be supplied by further 
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undercooling [55] and stored as elastic energy in the material [11, 120, 129, 134]. In 

thermal cycling experiments, the elastic energy storage could be observed as gradual 

increase/decrease in transformation strain with temperature as in the case of 3 hours aged 

specimen. Moreover, the additional undercooling is responsible for the lower TTs in the 3 

hours aging case, compared to the 48 and 72 hours aged samples.  

Higher elastic energy storage and lower TTs in 3 hours aging case can also be 

elucidated by the thermodynamical description of martensitic transformation. It was 

mentioned that the total elastic strain energy storage during the martensitic 

transformation ( elG ) is comprised of both the elastic energies for nucleation (
n

elG ) and 

propagation (
p

elG ) of martensite [145] earlier. The elastic energy due to propagation of 

martensite was previously formulated as, 

                                                     SMMG fs

p

el  )(                                        

 Due to smaller interparticle distances ( nm1510 ) in the 3 hours aged 

specimen (Figure 7.9), the nucleation of martensite will require more elastic energy than 

the 48 and 72 hours aged specimens.  

In addition to the nucleation energy, the elastic energy for propagation of 

nucleated martensite is also larger in the 3 hours aged specimen according to the equation 

(12). This fact can clearly be seen by the difference between Mf and Ms is much higher 

due to gradual TST curve (Figure 7.10b) when it is compared with the 48 and 72 hours 

aged cases. Thus the combined contributions of 
n

elG  and 
p

elG  will result in higher 

elastic strain energy storage in the 3 hours aged sample than the 48 and 72 hours aged 
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samples. It should be recalled that the To depends on only chemical composition of the 

matrix. Since the chemical composition is most likely saturated after 72 hours of aging at 

600 
o
C, To of the 72h aged Ni45.3Ti29.7Hf20Pd5 single crystals will be taken as a base value 

calculated by equation 17 and will be assumed to be same for also 3h and 48h aged 

materials. 

The reversible and irreversible energies can be expressed as in the following table 

and plot; 

Table 4: The reversible (
n

elG  and
p

elG ) and irreversible ( irrG ) free energies in 

Ni45.3Ti29.7Hf20Pd5 single crystals aged at 600 
o
C for 3, 48 and 72 hours at 300 MPa 

Aging Time/Energy n

elG (J/cm
3
) 

p

elG (J/ cm
3
) irrG (J/ cm

3
) 

3h 1.44 1.55 0.38 

48h 0.54 0.96 0.75 

72h -0.5 2.16 0.76 

 

Higher elastic energy storage for nucleation is responsible for the low TTs in the 3 

hours aged specimen. Recall that the Ms was previously expressed in equation 16; 

In the equation 16, irrG term represents the friction work that is required to 

move phase front and consequently, Ms depends mostly on elastic energy for 

nucleation, n

elG and friction work, irrG .  
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Figure 7.11: Non-chemical energy changes as a function of aging time in 

Ni45.3Ti29.7Hf20Pd5 single crystals 

It is clear that due to fine coherent precipitates and smaller interparticle distances 

in 3 hours aging case, irrG and 
n

elG  will be larger compared to those of the 48 and 72 

hours aging cases as discussed above. Consequently, Ms will be lower after 3 hours aging 

according to equation (7).  

When the precipitates are larger in size, as in the case of the 48 and 72 hours aged 

samples (Figures 7.10b and 7.10c), martensite plates form between precipitates [155]. In 

this case, interparticle distances become the main factor that determines the size of the 

martensite plates as tranformation takes place. The larger precipitatation size and 

interparticle spacing also enable easier nucleation of martensite plates favored by the 
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strain fields surrounding the precipitates, as shown in Figure 7.10b and 7.10c. As the 

aging time increased to 48 and 72h, the elastic energy for nucleation at 300 MPa 

decreases to 0.54 and -0.51 J/cm
3
, respectively. The increased interpaticle distance also 

resulted in easier propagation of the formed martensite. The elastic energy for 

propagation at 300 MPa was 1.55, 0.96 and 2.16 J/cm
3
 for the aging time of 3, 48 and 72 

h, respectively. 

Figure 7.12 shows the change in the non-chemical free energies 
n

elG ,
p

elG  and 

irrG  with stress for the Ni45.3Ti29.7Hf20Pd5 single crystals aged at 600 
o
C for 3, 48 and 

72 hours.  
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Figure 7.12: Dependence of the reversible (
n

elG  and
p

elG ) and irreversible ( irrG )  free 

energies on the applied stress during constant stress thermal cycling experiments in a) 3h 

aged, b) 48h aged, c) 72h aged Ni45.3Ti29.7Hf20Pd5 single crystals 

The elastic energy for nucleation in the 3h aged sample was 1.62 J/cm
3
 under zero 

and decreased to 1.18 J/cm
3
 as the stress increased to1000 MPa. The elastic energy for 

propagation was 0.85 J/cm
3
 in stress-free condition as it increased to 1.6 J/cm

3
 under 

1000 MPa. The friction energy was determined to be 0.45 J/cm
3
 under zero MPa and 

stayed close up to 700 MPa. It increased to 0.58 J/cm
3
 as the stress was 1000 MPa.  

The elastic energy for nucleation in the specimen aged for 48 hours was 0.73 

J/cm
3
 under zero stress; however, as the applied stress increased, 1000 MPa, 

n

elG  
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decreased to 0.08 J/cm
3
, which was the energy under 1000 MPa. The elastic energy for 

propagation was 1.08 J/cm
3
 in stress-free condition as it slightly decreased to 1.05 J/cm

3
 

under 1000 MPa. The friction energy was determined to be 0.54 J/cm
3
 under zero MPa 

and 1 J/cm
3
 at 1000 MPa. 

The elastic energy for nucleation in the specimen aged for 72 hours was -0.02 

J/cm
3
 under zero stress and decreased to -1.13 J/cm

3
 as the stress increased to1000 MPa. 

The elastic energy for propagation was 1.32 J/cm
3
 in stress-free condition as it increased 

to 1.72 J/cm
3
 under 1000 MPa. The friction energy was determined to be 0.98 J/cm

3
 

under zero MPa and increased to 1.52 J/cm
3
 as the stress was increased to 1000 MPa. 

 

7.5. Comparison of the approaches 

In the sections above, three approaches/methods were used in calculating the non-

chemical energies to explain the functional properties of Ni45.3Ti29.7Hf20Pd5 shape 

memory alloys. In this part, the approaches will be compared. 

Three different methods examined were as follows; 

A1) To was assumed to be equal to equation of 
2

fs

o

AM
T


  for all materials 

(extruded and aged). 

A2) To was assumed to be equal to Af  for each material. 

A3) The extruded material was assumed to be a base material and the To 

(calculated by equation 11) of the extruded material was assumed to be valid for 

the all the aged conditions.. 
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The first approach could be appropriate if there was a material without 

precipitates or internal stress, which might affect the TTs and consequently To 

temperatures. If there are internal stress and constarints (limiting the mobility of 

transformation) in a material, the analysis will not give the correct tendency in a possible 

comparison between materials due to unknown effects. Thus, the first approach does not 

look suitable for the comparison between the extruded and aged Ni45.3Ti29.7Hf20Pd5 

alloys.  

The second approach has the same tendency with the approach one. The only 

difference is the value of the To temperature is higher and closer to Af temperature when 

compared to A1. Thus, this method might be proper for a material with an ideal 

microstructure that has no precipitates  . 

The third approach looks the most promising method in explaining the non-

chemical energy terms for the current Ni45.3Ti29.7Hf20Pd5 shape memory alloys. In this 

method, the extruded material was assumed to have an ideal microstructure without any 

factors affecting the TTs and To. Then, the energies for the aged materials were examined 

relative to the extruded base material and the comparison were undertaken. Because, it 

was mentioned that if there are constarints in the microstructure (e.g. small precipitates, 

grain boundary etc.), the TTs could be decreased. On the other hand, the TTs might be 

increased if there is internal stress due to mismatch of precipitates and matrix. Since these 

effects are not known quantatively for each material, the exact To values are non known. 

Thus, approach 3 could be useful  comparison of aged materials. 

 



 

194 
 

7.6. Summary and conclusions 

 

Based on the thermodynamical analysis, the following conclusions can be drawn for the 

Chapter 7; 

1. Precipitate characteristics (precipitate size and interparticle distance) were found 

to be very effective to tailor the elastic energies for nucleation, propagation with 

dissipation energy and these energies affect the TTs in Ni45.3Ti29.7Hf20Pd5 alloys. 

 

2. Aging and extreme high stress capabilities resulted in a change in transformation 

type from Class I to II as the stress increased (e.g. 700-1000 MPa) in constant 

stress thermal cycling experiments in Ni45.3Ti29.7Hf20Pd5 alloys. The observed 

change was a result of increased elastic energy storage as a function of stress. 

 

3. Stress-temperature phase diagrams were strong functions of non-chemical elastic 

energies in Ni45.3Ti29.7Hf20Pd5 alloys. The elastic energy for propagation 

increased with applied stress in constant stress thermal cycling experiments 

while the nucleation energy decreased with stress for all aging conditions in 

polycrystalline and single crystals. The dissipation energy were constant initially 

in general and increased as the plastic deformation increased.  

 

4. The precipitate characteristics were very effective in shape memory behavior of 

Ni45.3Ti29.7Hf20Pd5 single crystals owing to non-chemical free energy change. 

The nucleation energy decreased with aging time while the friction energy 



 

195 
 

increased by aging time. The propagation energy decreased after aging for 48 

hours followed by an increase upon aging for 72h due to higher entropy value. 

 

5. Three methods were used in calculating the non-chemical free energy terms and 

comparisons were made between the methods. For the Ni45.3Ti29.7Hf20Pd5  alloys, 

the third method that allows for the relative calculation and comparison were 

suggested to be the most proper approach. 
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8. GENERAL CONCLUSIONS AND FUTURE WORKS 

Ni45.3Ti29.7Hf20Pd5, Ni45.3Ti34.7Hf15Pd5 and Ni45.3Ti39.7Hf10Pd5 polycrystalline and 

Ni45.3Ti29.7Hf20Pd5 single crystalline shape memory alloys were characterized using 

various experimental techniques including DSC, XRD, TEM, constant stress thermal 

cycling, and isothermal stress cycling tests. Effects of homogenization and heat 

treatments were also investigated. Thermodynamic analyses were performed to 

understand the experimental results. Based on the results, following conclusions can be 

arrived; 

1. In Ni45.3Ti29.7Hf20Pd5 alloys, precipitates with sizes about 20-30 nm in length 

and interparticle distance of approximately 10-30 nm were formed after 550 

o
C-3 hours aging. The length of the precipitates varied from 80 nm to 300 nm 

with a width of about 50 nm and interparticle distances of 15 nm to 150 nm as 

the aging temperature was increased to 650 
o
C.  Controlling aging temperature 

and time helped adjusting TTs between –100 
o
C and 100 

o
C. (001)B19′ 

compound twins were observed in all samples regardless of thermal treatment. 

2. Ni45.3Ti29.7Hf20Pd5 alloy exhibits a fairly high damping capacity (30-34 J.cm
-3

) 

and a very high work output (30-35 J.cm
-3

) capability at temperatures between 

0 and 100 
o
C, especially in the as-extruded condition.  On the other hand, an 

aged material at 550 
o
C for 3 hours showed very promising superelastic cyclic 

responses at high temperatures (160 
o
C) under high stress levels of 1600 MPa 

without any visible irrecoverable strains even after 5000 cycles. 
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3. The internal twins formed in Ni45.3Ti39.7Hf10Pd5 under stress free 

transformation in the large martensite plates were <011> type II twins, which 

are commonly observed in NiTi binary alloys. The difference between the 

evolutions of the thermal hystereses of NiTiPd-10Hf and NiTiPd-15Hf (and 

NiTiPd-20Hf) with the applied stress was linked to the difference in twinning 

types. A progressively increasing hysteresis with the applied stress in the load-

biased thermal cycling tests was observed in the compound twinned NiTiPd-

15Hfand NiTiPd-20Hf alloys in contrast to type-II twinned NiTiPd-10Hf 

alloy. 

 

4. The Ni45.3Ti39.7Hf10Pd5 alloy  exhibited near perfect shape memory response 

with 4.6 % transformation strain  at 500 MPa. A near perfect superelastic 

response was observed at 90 
o
C with nearly complete recovery of 7 % applied 

strain, including ~4.3 % transformation strain at a stress level of 1250 MPa in 

Ni45.3Ti39.7Hf10Pd5. A notable superelastic response was observed at 90 
o
C 

with nearly complete recovery of 5 % applied strain, including over 3 % 

transformation strain in Ni45.3Ti34.7Hf15Pd5 and Ni45.3Ti34.7Hf15Pd5 alloys while 

the high hardening limited the superelasticity in Ni45.3Ti29.7Hf20Pd5. As the Hf 

content was increased (replacing Ti), the transformation strain was decreased 

and the volume of crystal structures was expanded.  

5. The Ni45.3Ti39.7Hf10Pd5 alloy exhibited 1.6 % two-way shape memory strain 

after a simple training procedure consisting of thermomechanical cycling at up 

to 700 MPa. The Ni45.3Ti34.7Hf15Pd5 and Ni45.3Ti29.7Hf20Pd5 alloys exhibited 
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two-way shape memory strains of 0.6 % and 0.8 %, respectively, after simple 

training. 

6. The solution-treated single crystalline alloy showed full recovery of 6 % 

applied strain with 4.2 % transformation strain at - 30 
o
C along [111] 

orientation . The superelastic window was at least 100 
o
C, between -30 

o
C and 

70
 o

C.  At 70
 o

C the yield strength was greater than 2500 MPa. Perfect shape 

memory behavior at 1000 MPa and near-perfect shape memory effect with 

with 2.2 % transformation strain under an ultra high stress level of 1500 MPa 

was observed in [111]-oriented single crystals aged at 550 
o
C for 3 hours 

beside fully recoverable superelastic responses to stresses as high as 1.8 GPa, 

due to the combination of precipitation hardening and natural high strength. 

 

7. The solution-treated single crystalline alloy demonstrates a very large 

mechanical hysteresis of 1270 MPa at -30 
o
C, resulting in a maximum 

damping capacity of 44 J.cm
-3

. Although, the stress hysteresis is essentially 

independent of transformation strain, it is highly dependent on test 

temperature, and diminished with increasing temperature to 815 MPa at 70 
o
C.  

 

 

8. Manipulating the microstructure through simple thermal treatment was an 

effective way to control the shape memory behavior of the [111] oriented 

Ni45.3Ti29.7Hf20Pd5 alloy. Aging of the as-grown single crystals at 550 
o
C for 3 

hours produced precipitates of 20-30 nm in size with interparticle distances 

of about twice the particle size.  Aging solution-treated (1050 
o
C for 4 hours) 



 

199 
 

single crystals at 550 
o
C for 3 hours produced smaller precipitates, 15-20 

nm, with interparticle distances of about the same dimension. 

9. Shape memory responses of Ni45.3Ti29.7Hf20Pd5 single crystals were 

determined at stresses ranging from 100 to 1000 MPa in the [111], [011] and 

[-117] orientations. The maximum reversible strains were 2.2 %, 2.7 % and 

0.7 % along the [111], [011] and [-117] orientations, respectively after aging 

at 550 
o
C for 3 hours. In the 600 

o
C-48h aging, the maximum reversible 

strains were 2.3 %, 3.2 % and 0.9 % along the [111], [011] and [-117] 

orientations, respectively. The [-117] and [111] orientations were stronger 

compared to the [011] orientation in compression after aging at 550 
o
C for 3 

hours and aging at 600 
o
C for 48 hours. 

 

10. Fully reversible superelastic responses were possible with a larger than 2.2 %, 

2.3 % and 0.3 % reversible strains along [111], [011] and [-117] orientations, 

respectively, at a test temperature of 60 
o
C after aging at 550 

o
C for 3 hours. 

After aging at 600 
o
C for 48 hours, reversible strains of 1.5 %, 1.2 % and 0.6 

% were measured for the [111], [011] and [-117] orientations, respectively, at 

140 
o
C. No irreversible strain was observed even when deformed to 1500 MPa 

in the [111] and [-117] orientations after both aging conditions. 
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11. The work output values were also strong functions of orientation. Maximum 

work output values of 22 J/cm
3
, 27 J/cm

3
, 7 J/cm

3
 were observed along [111], 

[011] and [-117] loading orientations, respectively, after aging at 550 
o
C for 3 

hours. For samples aged at 600 
o
C for 48 hours, maximum work output values 

of 20 J/cm
3
, 22 J/cm

3
, 8.5 J/cm

3
 were observed along [111], [011] and [-117] 

loading orientations, respectively. 

 

12. The difference in the shape memory properties (e.g. transformation strain) 

compared to binary NiTi alloys could be stemmed from the difference in the 

twinning types. Intial results showed that (001)B19′ compound twins were 

active in Ni45.3Ti29.7Hf20Pd5 alloys depending on aging condition while the 

most common twinning types were Type I and Type II in NiTi alloys. 

13. Precipitate characteristics (precipitate size and interparticle distance) were 

found to be effective on the elastic energies for nucleation, propagation with 

dissipation energy and these energies affect the TTs in Ni45.3Ti29.7Hf20Pd5 

alloys. Aging and extreme high stress capabilities resulted in a change in 

transformation type from Class I to II as the stress increased (e.g. 700-1000 

MPa) in constant stress thermal cycling experiments in Ni45.3Ti29.7Hf20Pd5 

alloys. The observed change was a result of increased elastic energy storage as 

a function of stress. 

 

14. Stress-temperature phase diagrams were strong functions of non-chemical 

elastic energies in Ni45.3Ti29.7Hf20Pd5 alloys. The elastic energy for 



 

201 
 

propagation increased with applied stress in constant stress thermal cycling 

experiments while the nucleation energy decreased with stress for all aging 

conditions in polycrystalline and single crystals. The dissipation energy were 

constant initially in general and increased as the plastic deformation increased.  

 

In the current study, the effects of precipitation, orientation and composition 

on the shape memory behavior of high strength NiTiHfPd alloys was investigated. 

In the light of the observed results, possible future studies on these types of alloy 

systems could be to; 

1. Investigate stress generation capabilities of NiTiHfPd polycrystalline 

and single crystalline alloys and compare them to NiTi alloys.  

2. Characterize the fatigue properties of NiTiHfPd alloys by conducting 

isobaric thermal cycling and isothermal stress cycling experiments. 

3. Investigate possible effects of chemical composition on the shape 

memory properties of NiTiHfPd high strength shape memory single crystal 

alloys. 

4. Reveal the effects of stress-assisted aging on the shape memory 

properties (e.g. TTs. Transformation strain, TWSME) in NiTiHfPd alloy 

systems. 

Copyright @ Emre Acar 2014 
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