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ABSTRACT OF DISSERTATION

Multidimensional modeling of pyrolysis gas transport inside orthotropic charring
ablators

During hypersonic atmospheric entry, spacecraft are exposed to enormous aerody-
namic heat. To prevent the payload from overheating, charring ablative materials are
favored to be applied as the heat shield at the exposing surface of the vehicle. Accu-
rate modeling not only prevents mission failures, but also helps reduce cost. Existing
models were mostly limited to one-dimensional and discrepancies were shown against
measured experiments and flight-data. To help improve the models and analyze the
charring ablation problems, a multidimensional material response module is devel-
oped, based on a finite volume method framework. The developed computer program
is verified through a series of test-cases, and through code-to-code comparisons with
a validated code. Several novel models are proposed, including a three-dimensional
pyrolysis gas transport model and an orthotropic material model. The effects of these
models are numerically studied and demonstrated to be significant.
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8.20 |ṁ| contours for sample D (Case 1.4), at various times . . . . . . . . . . 92
8.21 Gas streamlines for sample D (Case 1.4), at various times . . . . . . . . 92
8.22 Temperature contours for sample A− (Case 2.1), at various times . . . . 94
8.23 Porosity contours for sample A− (Case 2.1), at various times . . . . . . . 94
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Chapter 1 Introduction

With several space exploration missions announced in the past decade, the human

presence is expanding fast beyond Earth. National Aeronautics and Space Admin-

istration (NASA) in United States has announced the plan for Orion Multi-Purpose

Crew Vehicle (MPCV) in 2011, a manned spacecraft for missions to the Moon, Mars

and asteroids. NASA also successfully launched three exploration rovers to Mars, two

in 2004 and one in 2012. The unmanned spacecraft Hayabusa, launched by Japan

Aerospace Exploration Agency (JAXA), landed on an asteroid and returned to Earth

with samples in 2010. In these missions, Thermal Protection Systems (TPS) are es-

sential to the atmospheric entry, for they protect the traveling vehicle from the severe

heating during entry process. The material of choice for TPS is usually charring ab-

lative, since it is effective and has light weight. Recent exploration missions have

renewed the interest in modeling charring ablative materials, which initially started

with the design of ballistic reentry weapon in the 1950s and the space race in the

1960s. Over the decades, computational material and thermal response programs

have been important tools in the design and analysis of charring ablative TPS. How-

ever, most of the existing models were one-dimensional (1D) and developed in the

1960s. Due to the increasing challenge in future missions, there is a strong need to

develop high-fidelity models for charring ablative TPS. This is important to ensure

payload safety and reduce cost. In this dissertation, a versatile material response

module that supports multidimensional models is developed, and the effects of pyrol-

ysis gas transport within charring ablators are investigated.
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1.1 Background

On August 6th, 2012, the Curiosity rover, carried by NASA’s Mars Science Labora-

tory (MSL) spacecraft, landed successfully on the surface of Mars [1]. Thanks to the

TPS that covered its blunt body, the spacecraft survived from the searing heat as it

blazed through the Martian atmosphere. An artistic rendition of the entry is shown

in Fig. 1.1. As a space capsule enters a planetary atmosphere at hypersonic speed, a

Figure 1.1: MSL spacecraft entering the Mars atmosphere (artist rendering) [2]

strong bow shock is formed in front of the forebody. Due to the friction, the vehicle

decelerates rapidly, and a large amount of heat is generated and conveyed to the vehi-

cle during the entry. This heating process is referred to as aerodynamic heating. TPS

acts as a heat shield of the spacecraft, absorbs the excessive energy from aerodynamic

heating and protects the payloads of the traveling vehicle. In general, TPS materials

are categorized into two types: ablative and non-ablative. When heated, ablative

materials undergo decomposition, vaporization, spallation, or other erosive processes

that result in mass removal of the material. Ablative materials were applied on the

TPS of NASA’s Mercury, Gemini, and Apollo reentry capsules [3], as well as the

recent Stardust sample return capsule [4,5] and the MSL spacecraft [6]. Non-ablative

2



materials experience little to no mass loss during the reentry process, and are often

applied on lower orbit return vehicles. An example of non-ablative materials is the

reusable ceramic tiles applied to the bottom of space shuttles. Non-ablative materials

are usually reusable if none of the tiles are damaged. Ablative materials on the other

hand, are usually expendable; they are also lighter and can sustain a much higher

heat flux than non-ablative materials.

Ablative materials can be further classified into two subcategories: charring (or

decomposing) and non-charring (or surface) ablators. When exposed to extreme

heating, charring ablators undergo both surface erosion and in-depth decomposi-

tion; non-charring ablators erode, oxidize and sublimate only at or near the expos-

ing surface. Examples of non-charring ablators are: metals, Teflon, graphite, and

carbon-carbon [3]. Non-charring ablators usually have higher mechanical strength

than charring ones. They are often applied to locations like stagnation point regions,

nose cones, and drag flaps. For example, the material used on the leading edges of

NASA’s shuttle orbiters were non-charring ablators.

Charring ablators are typically applied on regions exposed to extreme heat flux,

such as rocket nozzle linings and forebody surface of space shells. Some examples

of charring ablators are: AVCOAT, carbon-phenolic, phenolic impregnated carbon

ablator (PICA), PICA-X, etc. AVCOAT was the TPS material that used in Apollo

missions, and it was also selected as the ablative material for the Orion MPCV.

PICA is a modern TPS material that is more effective under high-peak-heating con-

ditions [7], and has lower density than carbon-phenolic, which was used on Venus

probes [8]. PICA was the TPS material for the MSL aeroshell that entered the Mar-

tian atmosphere [6], the heat shield of which is shown in Fig. 1.2. Another recent

mission that used PICA was the Stardust sample return mission, which returned to

Earth on January 15th, 2006. Entering the atmosphere at a velocity of 12.9 km/s,

the Stardust sample return capsule (SRC) is the fastest man-made object that enters
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Figure 1.2: MSL aeroshell heat shield with PICA tiles (before mission) [9]

Earth atmosphere [5]. Figure 1.3 shows the photograph of the Stardust capsule after

landed on the desert in Utah. Although the front surface was charred black, the

shape of the aeroshell was well preserved.

Charring ablators consist of preform and resin materials. The preform material,

such as carbon, silicon or quartz, is made in fiber form. The fibers are stacked

by layers, forming a highly porous structure. This porous preform determines the

structural strength of the ablator. Resin materials such as phenolic or nylon, are

then impregnated into the preform. The charring ablative material in this state is

referred as “virgin”. A scanning electron microscope (SEM) photography of a virgin

charring ablative material is presented in Fig. 1.4. It is seen from the figure that the

fibrous preform materials are randomly oriented and filled with flocculent resins.

The resin material decomposes when heated, losing mass and generating gas.
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Figure 1.3: NASA’s Stardust SRC after landing on the ground [10]

 

Figure 12.  Mirograph of virgin PICA 

Figure 1.4: Micrograph of a virgin PICA surface [11]

This process is called pyrolysis, and the gas generated in the process is termed as

pyrolysis gas. The resin materials not only decompose at the exposed material surface,

but also from within, due to the temperature increase caused by the heat transfer.

The generated pyrolysis gas builds up the inner pore pressure, which drives the gas

to flow out of the material and into the reacting boundary layer, affecting surface
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thermochemistry and momentum transport. When the resin is fully depleted, the

material is charred and no more pyrolysis occurs.

The pyrolysis gas may consist of many species, depending on the resin formulation.

As the gas flow through the material, these species react with each other and with

the char and preform material. The effect of pyrolysis gas leaving residuals on the

fiber surface is called “coking”. As depicted in Fig. 1.5: several fibers on the right

half of the photo have added mass attached, even though the material is charred. In

 

Figure 2.  Mirograph of surface ablated PICA char 

Figure 1.5: Micrograph of a char PICA surface [11]

addition to the coking effect, pyrolysis gas may also react with the char and remove

mass through processes like oxidation, nitridation, etc. Moreover, when subjected to

high thermal and mechanical stress, the char structure may break, and expel chunks

of material from the surface. This effect is called spallation.

Compared to resins, preform materials barely react. Instead, they ablate (through

oxidization, nitridation, sublimation, etc.) in a region near the surface. When preform

fibers on the surface are depleted due to ablation, the ablator shows surface recession.

In addition, the preform may also lose mass from within the material, in which case

oxygen penetrate inside the material and the material ablates from within [12].

The overall charring ablation process is illustrated in Fig. 1.6. In general, the
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Figure 1.6: Illustration of charring ablative phenomena [3]

virgin and char zone have a constant solid density, while the pyrolysis (decomposition)

zone has a changing density as the material decomposes. These zones except for the

sub-structure are porous, allowing pyrolysis gas to flow within. The gas flow direction

depends on the pressure gradient and the geometry of the material. The pyrolysis

zone usually has a higher pressure than the pressure at the ablating surface, which

leads to gas blowing out of the surface. However, the gas may also flow literally inside

and exit through the sides, if they are permeable.

1.2 Extant work and research motivations

The earliest application of charring ablators can be traced back in the 1950s, when

charring ablators were designed as heat shields for intercontinental ballistic missiles

(ICBMs) [13], in order to survive the intense aerodynamic heating during the reen-

try process. Since then, ablative materials were found to be successful as the TPS

for reentry capsules and rocket nozzles, which naturally stimulated research on the

material. The development of charring ablators continued through a series of Amer-

ican human spaceflight missions: Project Mercury, Gemini, and Apollo. Aside from

numerous experiments conducted in the period, computational modeling was found
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useful in analyzing and predicting the behaviors of charring ablators, in terms of

thermal and material response.

The most notable work in the 1950s and 1960s was the Charring Material Abla-

tion (CMA) program. Developed by Aerotherm – one of NASA’s contractors in the

period – CMA has served as a prototype of simulation and design tool for half a cen-

tury. Moyer and Rindal [14] described the charring phenomena and the models used

in CMA thoroughly. The 1D program CMA solved the energy balance by considering

heat conduction and internal thermal decomposition (due to the generation of pyroly-

sis gas), as well as a simple mass conservation. The decomposition model in CMA was

a three components model based on Arrhenius law. Note that the three components

in this model were not chemical species; instead, the model was based on the fact

that phenolic pyrolysis underwent a two stage decomposition during experimental

observations [15]. Two out of the three components accounted for the decomposing

resins and the last component represented the preform material. Since this model is

based on observation rather than chemistry, it is often termed as a phenomenological

model, and is still seen in most of the modern ablation programs. The pyrolysis gas

species were assumed to be in chemical equilibrium and not reacting with char. An-

other major assumption was that the pyrolysis gas was assumed to leave the material

surface as soon as it was generated from within, which inherently neglected the gas

momentum balance. The ablation model in CMA used a node dropping algorithm.

The idea of this technique is to move the computational nodes at the same speed with

the recessing surface; the node that moves out the back wall is dropped and the node

adjacent to the wall is resized. In terms of an equation discretization, CMA adopted

an economical implicit finite difference formulation, which saved computation time

but compromised accuracy.

Aside from the 1D work by Moyer and Rindal [14], it is worth noting that sev-

eral multidimensional attempts were made during this period of time. Hurwicz et.
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al. [16] emphasized multidimensional effects in ablation problems by comparing two-

dimensional (2D) and three-dimensional (3D) results with 1D results on ablative wing

leading edge problems. Differences found between multidimensional and 1D analysis

were attributed to the effect of geometry, but the pyrolysis effects were not modeled.

Another multidimensional attempt in the mid 1960s was made by Friedman and Mc-

Farland [17]. Their 2D-ABLATE program used a finite difference method to simulate

the rocket engine thrust chamber ablation, which was verified through code-to-code

comparison and experimental works. The surface recession and in-depth charring

were modeled. Moreover, the thermal conductivity of the material was modeled as

anisotropic with different values in axial and radial direction. The in-depth pyroly-

sis effects were modeled using mass flux, which was equivalent to gas mass balance;

however the gas momentum was not solved. April, Pike and Valle [18–20] attacked

the problem from another angle, by modeling the equilibrium, non-equilibrium, and

frozen pyrolysis gas flow, in order to determine the gas composition and the energy

transfer associated with the reacting pyrolysis gas flow. The model allowed the gas

species to react among each other and with the char material, using finite rate chem-

istry data for a temperature range of 533–1925 K. However, the change in pyrolysis

gas composition using non-equilibrium analysis was small, in the temperature range

533-1644 K [18].

Due to the shift in focus from human spaceflight to space shuttle missions in

the 1980s, not much work on charring ablative materials was published in the 1980s

and 1990s. However, a series of publications on ICBM by Blackwell and Hogan

from Sandia National Laboratories is worth mentioning in that period of time, for

they updated many numerical schemes used in CMA [21–24]. A control volume finite

element method (CVFEM) was applied as the computational framework to replace the

finite difference discretization in CMA. An exponential differencing was implemented

to allow for a more accurate interpolation of temperature based properties. Moreover,
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a 1D grid contracting scheme was proposed, in which the number of cells was fixed

and the cell sizes were proportionally shrunk as the surface recessed. This new grid

scheme suited CVFEM better than the grid-dropping scheme used in CMA, and

was less complex. Amar adopted the CFVEM and grid contracting scheme in his

master thesis, as well as in his publications in the following years [3,25–27], in which

models were verified with solution accuracy studies. A code-to-code comparison was

performed against CMA where good agreements were shown; but more importantly,

solution accuracy and efficiency was greatly enhanced. Amar’s recent work in NASA’s

Johnson Space Center can be found in Ref. [28], where a 3D charring ablative solver

was developed and verified.

Another body of works started in the mid 1990s was performed by researchers

at the University of Tennessee at Knoxville. Their major focus was on modeling

compressible flow within variable permeability media, which was directly applicable

to pyrolysis flow within charring ablators. In Ref. [29], a modified mass conservation of

gas was solved by replacing velocity terms with Darcy’s law, where material properties

and temperature were assumed to be constants. Keyhani and Polehn [30] modeled

2D flows in anisotropic materials, where gas mass conservation was coupled with an

energy equation. It was also reviewed by Amar [3] that, Keyhani and Polehn’s work

showed significant different pore pressures using loosely and fully coupled solutions,

but the temperatures were relatively close. The recent works performed by this group

were on developing physical-based calibration methods that measures temperature,

heat flux and thermophysical properties [31–33].

The ablation programs in NASA’s Ames research center in late 1990s were de-

veloped by Chen and Milos [34]. Based on the models in CMA, a 1D code was

first developed and called the Fully Implicit Ablation and Thermal response program

(FIAT). The major upgrade was to apply a fully implicit technique that stabilized the

solution procedure and allowed a wider range of problems. It should be noted that
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FIAT had been used for sizing calculations on many NASA space missions, including

Stardust and Mars Pathfinder. The 1D assumption was based on the fact that the

nose radius of a capsule shape reentry vehicle is relatively large when compared to

the depth of charring. However, it might not be valid for slender hypersonic vehicles

and arc-jet test models, where nose radius is comparable to the scale of charring.

In addition, the heat transfer from sidewalls contributed to in-depth heating, which

requires multidimensional consideration. Therefore, Chen and Milos developed a 2D

code called the Two-dimensional Implicit Thermal response and Ablation program

(TITAN) [35]. TITAN solved an energy balance as the governing equation with the

three components decomposition model, while the pyrolysis gas effects were neglected.

This program was integrated with a CFD solver to perform energy coupled fluid-solid

simulations. Other coupling studies using TITAN can be found in Ref. [36,37]. A 3D

ablation program was also developed in this group and called the Three-Dimensional

Finite-volume alternating directional Implicit Ablation and Thermal response code

(3dFIAT) [38]. Not only was the number of dimensions increased, but the numer-

ical algorithm used in 3dFIAT was also different from TITAN. In the publication,

3dFIAT only solved for the energy equation, with additional terms accounting for

pyrolysis energy-consumption and energy convected by pyrolysis; the gas mass and

mass momentum equations were not solved. More recently, a multi-block moving grid

system and an orthotropic thermal conductivity model were added in 3dFIAT [39].

The models were validated using arc jet experiments on PICA and the program pre-

dictions agreed well with thermocouple data. With these ablation programs, Chen

and Milos simulated the Orion crew module and compared 3D results with 1D pre-

dictions at selected locations [40]. It was shown in the paper that multidimensional

effects were insignificant, regarding surface recession, but under-predicted the bond

line temperature at the shoulder region. An improved 1D model was proposed to

take into account the variation of cross sectional area with depth from the surface.
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Milos and Chen also improved the property model of PICA through validations [41].

The new PICA properties data, which was designed to be use with the model imple-

mented in FIAT and TITAN, featured orthotropic and pressure dependent thermal

conductivity models. For recent studies by this group, the non-equilibrium and the

Darcy-Forcheimer effects of pyrolysis flow were investigated using FIAT [42], and

the effect of a non-equilibrium gas surface interaction model was studied by loosely

coupling a flow solver with TITAN [43].

In the early 2000s, the majority of research on modeling charring ablative materials

in Japan was published by researchers at Tohoku University and the Japan Aerospace

Exploration Agency (JAXA) [8, 44–46]. The 1D ablation program developed was

called Super Charring Material Ablation (SCMA), which was based on Aerotherm’s

CMA. The major improvement in SCMA was the modeling of pyrolysis gas motions

by solving gas mass and momentum conservation. The momentum equation was

proposed as a 1D Euler equation in porous scale with extra source terms, which

accounted for frictional and inertial effects. The frictional source and inertial source

were derived from Darcy’s law and Forcheimer’s law, respectively. SCMA showed

satisfactory results on predicting the surface temperature and recession for two ground

tests [47, 48] and the Pioneer-Venus probe flight case [47]. It was experimentally

validated through a set of ablating samples in JAXA’s arc-heated wind tunnel [46].

The decomposition model was a curve-fit, four-stage expression which was based on

thermogravimetry data for the resin, which was different from the two-stage model

used in CMA. Gas pressure was measured within the ablative material and their

1D model predicted a much higher (one order of magnitude higher) pressure than

the measured results. This discrepancy was attributed to the delamination, or the

phenomenon of a huge chunk breaking from the material. They suggested that the

delamination lead to pyrolysis gas leakage from the sidewalls of the sample, which

brought down the gas pressure within. In a technical note earlier published by the
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same group, gas permeability of an ablator was found to vary significantly, depending

on the resin density and lamination angles of the cloth layers [44]. This work, as well

as the observed side leaking effects facilitated the 2D development of their computer

program, presented in Ref. [45], where SCMA was extended to 2D and named as

SCMA2. Initially, the side wall boundary condition of SCMA2 was assumed to be

an adiabatic wall, but 2D effects were still found: the centerline pressure was found

to be one-third of that in 1D simulation. Later, SCMA2 was coupled with a non-

equilibrium CFD solver [49] and the side wall heating effects were investigated [50,51].

However, due to the instability of the solution, the momentum equation was removed

from the analysis. More recently, nitradation reactions on graphite surface in ICP

wind tunnel were studied and also loosely coupled with SCMA2 [52, 53]. In terms

of the ablation model, only heat conduction and shape change were modeled. The

recent Hayabusa sample return mission encouraged further research works, including

a prediction accuracy study [54] and a post flight analysis by loosely combining an

axisymmetric non-equilibrium CFD solver, a radiative heat transfer analysis code, and

an ablation thermal response code [55]. Another set of works conducted by Japanese

researchers other than JAXA can be found in Ref. [56,57], where the unsteady effect

of pyrolysis gas flow was modeled in 2D axisymmetric coordinates.

Recently, a set of high-fidelity study of ablative materials was performed by

Lachaud et. al. [12, 58–70]. With several conservative assumptions removed, the

state-of-art pyrolysis-ablation models were revisited. For instance, the oxidation of

preform materials was studied and modeled from microscopic to macroscopic scales.

The multi-scale models were based on experimental measurements, scanning electron

microscope (SEM) observations and pore scale numerical simulations [58–64]. Due

to the increasing complexity of the models, a computational toolbox was developed

as a testbed for new pyrolysis and ablation models. This toolbox was based on Open-

FOAM, an open source CFD software, which took care of the equation discretization
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and numerical algorithms [12,65,68].

Concurrently, researchers in University of Kentucky went through a similar pat-

tern: a toolbox called Kentucky Aerodynamic and Thermal-response System (KATS)

was developed. KATS was also based on an open source CFD software, called

freeCFD [71]. It handled the numerical algorithms, including equation discretiza-

tion, domain decomposition, gradients calculation, parallelization, etc. A separate

charring ablation module was developed based on this system [72, 73]. The program

modeled decomposition of resins, unsteady pyrolysis gas transport in 3D and showed

good agreement to a validated material response code [74]. Initial success was found

for coupling the material response module with the CFD module [75], the parallel

efficiency of which was studied by Zhang et. al. [76]. In addition, spallation was mod-

eled by one-way coupling a finite rate chemistry code with the CFD module in KATS

by Davuluri and Martin [77]. Pyrolysis gas chemistry models and volume averaged

carbon oxidation models were developed by Martin et. al [70,78–81].

Due to the increasing strength in computer powers and need for high-fidelity

models in recent space exploration missions, it is possible and necessary to extend the

heritage 1D ablation models to multidimensional. Although much multidimensional

work has been carried out in the past decade, the pyrolysis gas transport were omitted

in most of the developed material response codes. The few exceptions used simple

assumptions on material properties, which were far from reality. Since pyrolysis gas

blowing is crucial to the accurate modeling of boundary conditions, it is necessary

to model the pyrolysis gas flow within a charring ablator. Therefore in this work, a

multidimensional pyrolysis gas transport model is developed for orthotropic charring

ablators; in addition, several effects due to the gas flow are found to be significant

and presented in this study.

As the computational framework used in this work, KATS has two major modules:

a fluid dynamic module and a material response module. The two modules were
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developed individually at the University of Kentucky. The material response module

was developed by the author, as is presented in the dissertation. There were several

successful fluid/solid couplings between the two modules [75], but the discussion of

the coupling is omitted in this work.

Copyright c© Haoyue Weng, 2014.
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Chapter 2 Computational Framework

The computational framework of KATS is introduced in this chapter. It includes a

general formulation of the governing equation, a derivation of the equation discretiza-

tion, the resultant discretized equation, and applied numerical schemes.

2.1 Finite volume method

The KATS is based on finite-volume method (FVM). For FVM in general, the gov-

erning equations can be written in the following conservation form:

∂Q

∂t
+∇ · (F− Fd) = S, (2.1)

where Q is the vector of conservative variables, F and Fd are matrices of convective

and diffusive fluxes, and S is the vector of sources. Applying spatial integration over

a control volume yields:

∂

∂t

∫
V

Q dV +

∫
V

∇ · (F− Fd) dV =

∫
V

S dV.

where divergence theorem is then applied:

∂

∂t

∫
V

Q dV +

∫
A

(F− Fd) · n dA =

∫
V

S dV. (2.2)

Removing the integral sign by assuming the control volume is sufficiently small,

Eq. (2.2) becomes:

∂

∂t
(QV ) +

∑
faces

(F− Fd) · nA = SV,

or,
∂

∂t
(QV ) = −

∑
faces

(F− Fd) · nA+ SV. (2.3)

The right hand side of Eq. (2.3) is designated as RHS, such that,

RHS ≡ −
∑
faces

(F− Fd) · nA+ SV. (2.4)
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Equation (2.3) can then be written as the following:

V
∂Q

∂t
= RHS, (2.5)

where the control volume is assumed to be constant. To solve for primitive variables,

chain rule is applied:

V
∂Q

∂P

∂P

∂t
= RHS. (2.6)

Using implicit backward Euler method, the temporal derivative is discretized as:

V
∂Q

∂P

∣∣∣∣(n)

(i,j,k)

P
(n+1)
(i,j,k) −P

(n)
(i,j,k)

∆t
= RHS

(n+1)
(i,j,k), (2.7)

where the superscript denotes the time step and the subscripts denote spatial in-

dices. Since RHS contains a summation of face fluxes, which are functions of P(i,j,k),

P(i−1,j,k), P(i+1,j,k), P(i,j−1,k), P(i,j+1,k), P(i,j,k−1), and P(i,j,k+1), the right hand side of

Eq. (2.7) can be approximated as:

RHS
(n+1)
(i,j,k) ≈ RHS

(n)
(i,j,k) +

∂RHS

∂P

∣∣∣∣(n)

(i,j,k)

∆P(i,j,k)

+
∂RHS

∂P

∣∣∣∣(n)

(i−1,j,k)

∆P(i−1,j,k) +
∂RHS

∂P

∣∣∣∣(n)

(i+1,j,k)

∆P(i+1,j,k)

+
∂RHS

∂P

∣∣∣∣(n)

(i,j−1,k)

∆P(i,j−1,k) +
∂RHS

∂P

∣∣∣∣(n)

(i,j+1,k)

∆P(i,j+1,k)

+
∂RHS

∂P

∣∣∣∣(n)

(i,j,k−1)

∆P(i,j,k−1) +
∂RHS

∂P

∣∣∣∣(n)

(i,j,k+1)

∆P(i,j,k+1), (2.8)

where ∆P = P(n+1)−P(n). Substitute Eq. (2.8) into Eq. (2.7) and combine ∆P(i,j,k)s,

while omitting the subscripts (i,j,k) and superscript (n):[
V

∆t

∂Q

∂P
− ∂RHS

∂P

]
∆P− ∂RHS

∂P

∣∣∣∣
(i−1,j,k)

∆P(i−1,j,k)

− ∂RHS

∂P

∣∣∣∣
(i+1,j,k)

∆P(i+1,j,k) − . . .−
∂RHS

∂P

∣∣∣∣
(i,j,k+1)

∆P(i,j,k+1) = RHS, (2.9)

where 1 ≤ i < imax, 1 ≤ j < jmax, and 1 ≤ k < kmax.
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Applying Eq. (2.9) to all of the control volumes in the computational domain

forms a large linear system:

M∆P = RHS (2.10)

where M is a block band matrix. This linear system is solved at each time step via

PETSc library [82].

Jacobian Matrices

The first Jacobian matrix ∂Q
∂P

in Eq. (2.9) is calculated analytically. The complete

matrix for charring ablation problems is given in Appendix A. The rest of the Jacobian

matrices in Eq. (2.9), or ∂RHS
∂P

at different locations, are obtained numerically via

forward difference:

∂RHS

∂P
≈ RHS(P + ∆P)−RHS(P)

∆P
, (2.11)

where the perturbation ∆P is as small as the smallest positive floating-point number

in double precision.

Convective flux

The numerical scheme used to calculate the convective flux F in the FVM formula is

AUSM+-up (Advection Upstream Splitting Method) [83]. AUSM+up is an upwind

approach that capable of solving for all speed-regimes and multiphase flow. It features

accurate shock capturing and contact discontinuities. Although the pyrolysis gas flow

regime is subsonic (no shock within the material), there is a separation of flow along

the pyrolysis front. Therefore, AUSM+up is selected as the inviscid flux function

(without using flux limiters) for solving the conservation equations in this study.

18



2.2 Parallel computing

The idea of parallel computing is to speed up the computational speed by dividing the

problem into many subproblems, and distributing them to different processors, while

solving them at the same time. In KATS, the computational domain is decomposed

to np subdomains through ParMETIS [84], where np stands for number of processors.

The domain is evenly divided, in the sense that the number of cells in each subdomains

are equal, except for the last processor which takes the remainder of the division.

Figure 2.1 illustrates how the domain is divided according to the number of processors.

The large sparse linear system, represented by Eq. (2.9), is solved on each processor

Figure 2.1: Illustration of an example of the domain decomposition method

for each subdomain. Boundary faces shared by two adjacent subdomains are named

as partition faces in the KATS computer code. The partition faces are treated like

a boundary: the information of ghost cells, as shown in Fig. 2.2, are exchanged at

the partition face by the end of each time step. The exchanging of cell information

is accomplished by Message Passing Interface (MPI).

Copyright c© Haoyue Weng, 2014.
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Figure 2.2: Illustration of example ghost cells in the domain decomposition method
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Chapter 3 Governing Equations

The governing equations of the material response module in KATS depend on the

problem of concern. For instance, if a transient heat conduction is considered, only

one energy equation will be solved in the system; but for a charring problem, the

module might solve up to eight equations. The number of equations and models are

controlled in the input deck of the computer program. An example of input deck is

attached in the Appendix B.

In general, the governing equations consist of mass, momentum, and energy con-

servation. For charring ablation problems, the conservation equations are for pyroly-

sis gas mass, solid material mass, pyrolysis gas momentum and mixture energy. The

derivations of these equations are given in Appendix C. The vectors and matrices in

terms of Eq. (2.1), are presented as:

∂Q

∂t
+∇ · (F− Fd) = S, (2.1 revisited)

Q =



φρg1
...

φρgngs

ρs1
...

ρsnss

φρgu

φρgv

φρgw

φEg + Es



, P =



p1

...

pngs

ρs1
...

ρsnss

u

v

w

T



, S =



ωg1
...

ωgngs

ωs1
...

ωsnss

Dx

Dy

Dz

SD



, (3.1)
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F =



φρg1u φρg1v φρg1w

...

φρgngsu φρgngsv φρgngsw

0 0 0

...

0 0 0

φρgu
2 + p φρguv φρguw

φρguv φρgv
2 + p φρgvw

φρguw φρgvw φρgw
2 + p

φρguH φρgvH φρgwH



, Fd =



0

Fcond,x Fcond,y Fcond,z



,

(3.2)

where ngs is number of gas species, nss is number of solid species, φ is porosity, ωs

are reaction rates of the species, Ds are source terms that accounts for diffusive effects

of porous structure in the momentum equation, SD is diffusive source in the energy

equation, and F cond = (Fcond,x, Fcond,y, Fcond,z) represents conductive heat flux. The

Ds and SD are related with gas transport models, which is discussed in Section 5.4.

The formulation of F cond is based on mixture energy models, as described in Sec-

tion 5.5.

Copyright c© Haoyue Weng, 2014.
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Chapter 4 Boundary Conditions

As part of the input, the boundary condition (BC) type is required to be specified

in KATS. For the material response module, three types are most frequently used:

wall, symmetry, and outlet. Each type will be discussed in the following sections.

In addition to these common types, two special thermal boundary conditions are

introduced in the last two sections.

4.1 Wall BC

The wall BC in KATS assumes non-diffusion of species (zero mass flux) at the bound-

ary. It offers two kinds of velocity condition: slip BC and no-slip BC. Slip BC is for

inviscid flow and non-slip BC is for viscous flow. In either case, the normal gas ve-

locity is zero due to the impermeable wall. The tangential velocity is assigned to

be zero for non-slip BC. For slip BC, it is calculated to satisfy zero gradient at the

wall. In terms of thermal condition, wall BC can be chosen from one of the two

options: fixed temperature or fixed heat flux. The fixed temperature and fixed heat

flux BCs correspond to Dirichlet and Neumann conditions, respectively. For ablation

problems, wall BC is often assigned on the interface between charring ablator and

non-reacting substructure.

4.2 Symmetry BC

For symmetry BC, every primitive variable has zero gradient at the boundary. There-

fore, symmetry BC is a Neumann type. It is usually assigned to planes of symmetry.
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4.3 Outlet BC

The outlet BC in the material response module of KATS is programmed to handle

the exposing (usually heated) surface of charring ablators. Note that it is different

from the concept of outlet/exit/non-reflecting BC in CFD, which assumes the flow

leaving this boundary is not affecting the interior domain. For the outlet BC in this

work, gas species are allowed to travel across the boundary. In addition, flow velocity,

species densities, and static pressure can be specified at the boundary. Finally, either

temperature or heat flux has to be specified on the boundary.

4.4 Aerodynamic heat BC

The aerodynamic BC is a special thermal BC that calculates the penetrated heat

flux for the outlet BC. The modeled fluxes can be applied together or individually,

including aerodynamic heat flux, radiation heat flux, energy flux due to ablation and

pyrolysis gas blowing, as respectively given by:

q̇′′pen = q̇′′ah − εσ(T 4 − T 4
∞)− ṁ′′shw − ṁ′′ghw (4.1)

where hw is the gas enthalpy at the wall, and is obtained by a three-variable interpola-

tion in a surface thermochemistry table. The interpolation requires pressure, pyrolysis

gas blowing rate, and wall temperature as inputs. The details of the interpolation

procedure can be found in Appendix C of Ref. [3].

The aerodynamic heat flux q̇′′ah in Eq. (4.1) is given by:

q̇′′ah = (ρeueCh0)

(
Ch
Ch0

)
(hr − hw), (4.2)

where ρeueCh0 is the heat transfer coefficient, ρe is the gas density obtained at the

boundary layer edge, ue is the boundary layer edge velocity, Ch0 is the uncorrected

Stanton number, Ch/Ch0 is the correction factor to the Stanton number, and hr

is the recovery enthalpy. Here, ρeueCh0 , ue, and hr are input parameters for the
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aerodynamic heat flux BC. In addition, the pressure p at the boundary is also required,

since it is one of the inputs for the interpolation of hw. Note that, for 2D or 3D

geometry, the surface pressure p and the heat transfer coefficient ρeueCh0 could be

nonuniform in space and time. The nonuniform profiles are usually obtained via CFD

simulations. The Stanton number correction factor is the product of a hot wall and

a blowing corrections:

Ch
Ch0

= ΩhwΩblw. (4.3)

These two corrections are discussed in the following subsections.

Hot wall correction

The hot wall correction has two expressions, depending on whether the surrounding

flow is laminar or turbulent. If the flow is laminar, the correction factor is given by

Cohen and Reshotko [85]:

Ωhw =

(
ρhwµhw
ρcwµcw

)0.1

, (4.4)

where the subscript hw and cw are for properties obtained at hot wall and cold wall

conditions, respectively. The hot wall condition refers to the heated surface calculated

in the material response solver. The cold wall condition is the wall condition assumed

in the precede CFD simulation.

For turbulent flow, the correction factor is based on Eckert and Drake [86]

Ωhw =

(
µ∗hw
µ∗cw

)0.2(
ρ∗hw
ρ∗cw

)0.8

, (4.5)

where the properties with superscript ∗ are interpolated by the following reference

enthalpies:

h∗hw = 0.5(he + hhw) + 0.11ru2
e, (4.6)

h∗cw = 0.5(he + hcw) + 0.11ru2
e, (4.7)
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where the boundary layer edge enthalpy is:

he = hr − r
u2
e

2
, (4.8)

and the recovery factor is given by:

r = Pr
1/3
hw . (4.9)

Blowing correction

The blowing correction is based on an empirical study by Kays and Crawford [87]:

Ωblw =
Φ

eΦ − 1
, (4.10)

where

Φ = 2λ
ṁ′′

ρeueCh0
, (4.11)

The blowing reduction parameter λ is 0.5 for laminar flow and 0.4 for turbulent.

4.5 Penetrated heat BC

As opposed to the aerodynamic heating BC, the penetrated heat BC models the effec-

tive heat that directly applied to the material, rather than the heat transmitted from

the flow field. Therefore, the surface energy balance, or Eq. (4.2) is not solved [88];

instead, the value of q̇′′ah in Eq. (4.2) is explicitly given. This type of BC is preferred

for parametric problems with specific focus on the models other than the ones come

with the aerodynamic heating BC. With this approach, there is no need to take into

account the surface phenomena, such as re-radiation (Stefan-Boltzmann law) and

surface catalysis, since the given heat flux is the end result of these phenomena. For

the same reason, the boundary layer corrections (hot wall and blowing corrections)

mentioned in Section 4.4 are unnecessary.
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The value of the penetrated heat flux can be specifically chosen so that no near-

surface ablation occurs, since the modeling of near-surface ablation requires the use of

complex surface models, whether it is finite-rate chemistry [89] or aerothermodynamic

equilibrium tables [90]. The chosen heat flux is usually significantly lower than the

ones reported in CFD analysis, due to the fact that the boundary layer corrections

(which result in heat flux reduction) are not applied.

Copyright c© Haoyue Weng, 2014.
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Chapter 5 Material Models

5.1 Material properties models

Charring ablative material consists of virgin, decomposition (pyrolysis) and char zone,

as was shown in Fig. 1.6. The virgin and char properties are obtained through ex-

perimental measurements. The properties in the decomposition zone are modeled by

interpolation between virgin and char properties. The interpolation is characterized

by degree of char β, which is a function of local solid density:

β =
ρv − ρs
ρv − ρc

. (5.1)

The solid properties including porosity φ, permeability K, and radiation emissivity

ε, are interpolated using β:

φ = (1− β)φv + βφc, (5.2)

K = (1− β)Kv + βKc. (5.3)

For the thermal properties of the pyrolyzing material, including heat capacity cp,s,

thermal conductivity ks, and solid enthalpy hs, they are interpolated as:

cp,s(T ) =
(1− β)ρv

ρs
cp,v(T ) +

βρc
ρs
cp,c(T ), (5.4)

ks(T ) =
(1− β)ρv

ρs
kv(T ) +

βρc
ρs
kc(T ), (5.5)

hs(T ) =
(1− β)ρv

ρs
hv(T ) +

βρc
ρs
hc(T ). (5.6)

Orthotropic material model

Charring ablative materials often possess different transport properties in different

directions of concern [91]. This anisotropic behavior is due to the orientation of fibers

in microscopic scale [92]. For instance, carbon preforms are manufactured by laying
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carbon fibers on top of each other. This process forms layers of carbon fibers, as

illustrated in Fig. 5.1, in which two major directions are identified: in-plane (IP)

and through-the-thickness (TTT) directions. This kind of anisotropic is termed as

Figure 5.1: Illustration of IP and TTT directions regarding fiber orientation

transverse isotropic. Transverse isotropic material is a subset of orthotropic mate-

rial. The latter has different properties along each of the three orthogonal axes, while

the former has a plane of isotropy and a perpendicular axis as shown in Fig. 5.1.

Therefore, transverse isotropic systems are sometimes referred as orthotropic, since

the former can be described with the orthotropic system by assuming two orthogonal

axes having the same IP value. Note that the orthotropic axes might not necessar-

ily align with the Cartesian axes, and there might be one to three rotation angles

between the orthotropic axes and the original axes. Assuming the rotation angles

(counterclockwise using right hand rule) are α, β, and γ for rotation axes x, y, and

z, respectively, the rotation matrices are:

Rx(α) =


1 0 0

0 cosα − sinα

0 sinα cosα

 , (5.7)
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Ry(β) =


cos β 0 sin β

0 1 0

− sin β 0 cos β

 , (5.8)

Rz(γ) =


cos γ − sin γ 0

sin γ cos γ 0

0 0 1

 . (5.9)

Then the overall rotation matrix is obtained by the product of all of the individual

rotation matrices:

R = Rz(γ)Ry(β)Rx(α). (5.10)

Note that the order of matrices in the multiplication is determined by the inverse

order of rotation in the geometry of concern. For example, if an orthotropic direction

is obtained by counterclockwise rotating α degrees around x−axis first and then

rotating γ degrees around z−axis, the overall rotation matrix is calculated by:

R = Rz(γ)Rx(α) =


cos γ − sin γ 0

sin γ cos γ 0

0 0 1




1 0 0

0 cosα − sinα

0 sinα cosα

 . (5.11)

For the material response module in KATS, two material properties are assumed

to be orthotropic: the permeability K and the thermal conductivity ks. The effective

matrices of both properties are thus given by the product of the overall rotation

matrix multiplied by a diagonal matrix of orthotropic properties:

K ≡


Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz

 = R


Kxx

Kyy

Kzz

 , (5.12)
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and

k s ≡


kxx kxy kxz

kyx kyy kyz

kzx kzy kzz

 = R


kxx

kyy

kzz

 . (5.13)

For transverse isotropic properties model, the TTT value is assigned to one of the

diagonal element in the orthotropic matrix, and IP value is assigned to the other two

elements.

5.2 Solid decomposition model

The solid material is modeled with nss components, each with a volume fraction of

Γi. The total solid density is computed by the sum of all components:

ρst =
nss∑
i=1

Γiρsi . (5.14)

The decomposition rate of each solid component is modeled with a modified Ar-

rhenius equation:

∂ρsi
∂t

= ωsi = −ρsi,v
(
ρsi − ρsi,c
ρsi,v

)ψi

Aie
−Ei/(RT ), T > Treac,i. (5.15)

The density of each solid component has a virgin density of ρsi,v , which gradually de-

creases to a minimum char density, ρsi,c . Equation (5.15) ensures zero decomposition

rate when the material is charred (resin depleted). The parameter ψi on the right

hand side of the equation provides additional control to the model: for example, if

ψi = 0, the density control to the reaction rate is turned off.

The most widely used resin decomposition model is the phenomenological three-

components (or two-stage) model, which was based on experimental observations

of phenolic decomposition by Goldstein [15] and used in Moyer and Rindal’s CMA

program [14]. In this model, the overall solid density is defined as:

ρst = Γ(ρsA + ρsB) + (1− Γ)ρsC , (5.16)
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where (ρsA + ρsB) represents the resin density, and ρsC is the density of the preform

material and pyrolysis residuals. The reason to divide resin density to two parts is

due to the experimentally observed two-stage decomposition process of phenolic resin.

Therefore, three virtual components are identified and the number of solid species is

three, or nss = 3. In this model, the volume fraction Γ is usually taken to be 1/2.

Therefore, the Γis in Eq. (5.14) are all 1/2 for the solid components A, B and C.

5.3 Pyrolysis gas model

KATS can model multiple gas species by solving mass conservations for each species.

The overall gas density is calculated by:

ρg =

ngs∑
i=1

ρgi , (5.17)

where ρgi is the ith species density. For each species, an ideal gas law is assumed:

pi = ρgi
Ru

Mi

T, (5.18)

where Ru is the universal gas constant, and Mi is the molecular weight of species i.

Chemical equilibrium model

For this model, the pyrolysis gas species are assumed to be at chemical equilibrium.

Therefore, only one gas conservation is solved, giving ngs = 1 and ρg = ρg1 . The

gas properties are obtained via equilibrium table, as a function of temperature and

pressure. The pyrolysis gas generation rate balances with the solid decomposition

rates:

ωg = −
nss∑
i=1

Γiωsi . (5.19)
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5.4 Pyrolysis gas transport model

Heritage solvers [14, 23, 26, 34, 93] modeled pyrolysis gas transport using Darcy’s

law [94].:

∇p = −φ µ
K

V. (5.20)

Darcy’s law is a 1D steady state correlation for incompressible flow. However, py-

rolysis gas inside charring ablator might not always at steady state and they are

compressible. Therefore, the original Darcy’s law might not be appropriate for the

application of charring ablation modeling. As alternatives, several options are listed

in the following subsections.

Unsteady Darcy’s law for compressible flow

This model was initially inspired by an unsteady 1D formulation presented by Ahn

et. al. [8]. In this work, the formulation is extended to 3D (isotropic) as:

∂(φρgu)

∂t
+
∂φ(ρgu

2 + p)

∂x
+
∂φ(ρguv)

∂y
+
∂φ(ρguw)

∂z
= −φ µ

K
u, (5.21a)

∂(φρgv)

∂t
+
∂φ(ρguv)

∂x
+
∂φ(ρgv

2 + p)

∂y
+
∂φ(ρgvw)

∂z
= −φ µ

K
v, (5.21b)

∂(φρgw)

∂t
+
∂φ(ρguw + p)

∂x
+
∂φ(ρgvw)

∂y
+
∂φ(ρgw

2 + p)

∂z
= −φ µ

K
w. (5.21c)

A simple verification to the model can be performed by assuming steady state and

incompressible (divergence free), where Eqs. (5.21) should fall back to Darcy’s law

(Eq. (5.20)). However, the equations become:

∇(φp) = −φ µ
K

V, (5.22)
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which is different from the Darcy’s law by a factor of φ. Therefore, a modified version

is adopted:

∂(φρgu)

∂t
+
∂(φρgu

2 + p)

∂x
+
∂(φρguv)

∂y
+
∂(φρguw)

∂z
= −φ µ

K
u, (5.23a)

∂(φρgv)

∂t
+
∂(φρguv)

∂x
+
∂(φρgv

2 + p)

∂y
+
∂(φρgvw)

∂z
= −φ µ

K
v, (5.23b)

∂(φρgw)

∂t
+
∂(φρguw + p)

∂x
+
∂(φρgvw)

∂y
+
∂(φρgw

2 + p)

∂z
= −φ µ

K
w. (5.23c)

Note that Eq. (5.23) is an isotropic formulation, where orthotropic properties model

was not applied. For the orthotropic model, the following equation is solved for

D ≡ (Dx, Dy, Dz) using Gauss elimination method:

KD = −φµV , (5.24)

where K is the orthotropic matrix given by Eq. (5.12). The solution D is then

applied to the governing equation as a source term, as shown in Eq. (3.1).

Darcy-Forcheimer’s law

Forcheimer’s law accounts for high speed effects in porous media, which introduces

an inertial term to the conventional Darcy’s law. The classical form of Forcheimer’s

law can be found in Douglas et. al. [95]:

φ
µ

K
V + bφ2ρ|V |V +∇p = 0, (5.25)

where the parameter b is material dependent. An investigation on the Forcheimer

effect applicable to charring ablators can be found by Martin and Boyd [93], where

the value b (β in the reference) was given for several materials. In this study, the

Darcy-Forcheimer’s law is modeled by solving the following system for D :

K (D + bφ2ρ|V |V ) = −φµV , (5.26)

where D is again the source terms in Eq. (3.1).
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Diffusive effects in energy equation

The diffusive effect of porous media is modeled as a source term in the energy equa-

tion, which is given as:

SD =


Dx

Dy

Dz


(
u v w

)
= Dxu+Dyv +Dzw, (5.27)

where D ≡ (Dx, Dy, Dz) is obtained via the models presented in the previous sub-

sections.

5.5 Mixture energy model

In this work, the pyrolysis gas is assumed to be in thermal equilibrium with the solid

material, yielding T = Tg = Ts and one mixture energy equation to solve. The ther-

mal equilibrium assumption is usually reasonable for charring ablation problems [96].

The conductive heat flux, F cond (the last element of diffusive flux in Eq. (3.2)), is the

product of the orthotropic thermal conductivity matrix and temperature gradient:

F cond = k s


∂T/∂x

∂T/∂y

∂T/∂z

 , (5.28)

where the matrix of k s is given by Eq. (5.13).

Copyright c© Haoyue Weng, 2014.
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Chapter 6 Model Verification

6.1 Heat conduction

The first model verification is performed for the transient heat conduction. Heat

conduction is a fundamental physical phenomenon in charring ablation problems.

The governing equation to the problem is the heat equation, whose solution can be

found analytically. Using this problem, the order of accuracy of the solver is verified

on uniform grids, by performing a grid convergence study.

Problem statement and equations

Consider a constant-property, uniform-density planar slab with a constant heat flux

applied on the front face and adiabatic on the back face. The governing equation

describing the problem is the heat equation with constant properties:

ρcp
∂T

∂t
= k

∂2T

∂x2
, x ∈ [0, L], (6.1)

with boundary conditions:

−k∂T
∂x

= q̇′′, at x = 0,

−k∂T
∂x

= 0, at x = L,

and initial conditions:

T (x, t = 0) = T0.

The exact analytical solution to the problem can be found in Arpaci [97] or Beck et.

al. [98], which is given as,

T (x, t)− T0

q̇′′L/k
=
αt

L2
+

1

3
− x

L
+

1

2

( z
L

)2

− 2

π2

∞∑
n=1

1

n2
exp

(
−n2π2αt

L2

)
cos
(
nπ

x

L

)
,

(6.2)
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where α is the thermal diffusivity α = k/(ρcp), which is a constant. Since Eq. (6.2)

has an infinite summation, an extra C++ program is written to evaluate the solution,

where a small truncation error is introduced. The truncation error can be controlled

from input, which by default is assigned to one order of magnitude smaller than the

tolerance in KATS.

The parameters that characterize the problem are summarized in Table 6.1. The

Table 6.1: Heat conduction problem parameters

ρ cp k L q̇′′ T0

Values 8000 kg/m2 500 J/kg K 10 W/m K 0.01 m 7.5×105 W/m2 300 K

analytical solution to Eq. (6.2) is presented in Fig. 6.1, for t = 4 s, 8 s, 12 s, 16 s, 20

s, and 40 s.

Figure 6.1: Analytical solution to the 1D heat conduction problem with heat flux
specified on one side and adiabatic BC on the other side

Grid convergence study

The solution accuracy consists of two parts: the temporal accuracy and the spa-

tial accuracy. In order to evaluate both parts, the general error formulation is first
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considered:

e∆t,∆x = a∆tq1 + b∆xq2, a, b ≡ consts. 6= 0 (6.3)

where e∆t,∆x is the solution error for time step size ∆t and cell size ∆x; q1 and q2

are orders of accuracy in time and space, respectively.

To obtain the temporal accuracy, a highly refined mesh such that ∆x << ∆t, is

considered. The second term on the right hand side of Eq. (6.3) is therefore negligible.

Equation (6.3) then becomes:

e∆t,∆x = a∆tq1. (6.4)

If the time step size is halved, Eq. (6.4) is changed to:

e∆t/2,∆x = a

(
∆t

2

)q1
. (6.5)

Dividing Eq. (6.5) by (6.4), the order of temporal accuracy is revealed to be:

e∆t,∆x

e∆t/2,∆x

=
a∆tq1

a(∆t/2)q1
= 2q1,

⇒ q1 = log2

(
e∆t,∆x

e∆t/2,∆x

)
. (6.6)

For the heat conduction problem given by Table 6.1, five grids are chosen for the

temporal accuracy study, as presented in Table 6.2. The solution errors of each grid

Table 6.2: Grid parameters for temporal order of accuracy study

Grid ∆t, s ∆x, m # of time steps # of grid cells

extra coarse 4× 10−2 2.5× 10−6 1000 4000
coarse 2× 10−2 2.5× 10−6 2000 4000

medium 1× 10−2 2.5× 10−6 4000 4000
fine 5× 10−3 2.5× 10−6 8000 4000

extra fine 2.5× 10−3 2.5× 10−6 16000 4000

are presented in Fig. 6.2. It is clear from the figure that as the total number of time

steps increases, the errors of the solution decrease linearly. The solution slope is as
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Figure 6.2: Solution (temperature) errors to the heat equation in the temporal accu-
racy study: errors have the same slope as the 1st order reference

same as the first order reference, which is given by e∆t,∆x = 2e∆t/2,∆x. The first order

temporal accuracy is therefore confirmed and is considered verified.

For the spatial accuracy, another set of grids is selected as presented in Table 6.3.

Note that from coarse grid to medium and from medium to fine, the numbers of grid

Table 6.3: Grid parameters for spatial order of accuracy study

Grid ∆t, s ∆x, m # of time steps # of grid cells

coarse 4× 10−2 5× 10−5 1000 200
medium 1× 10−2 2.5× 10−5 4000 400

fine 2.5× 10−3 1.25× 10−5 8000 800

cells are doubled, while the numbers of time steps are quadrupled. This ramping is

necessary to verify the spatial order of accuracy. Recalling Eq. (6.3),

e∆t,∆x = a∆tq1 + b∆xq2, (6.3 revisited)

⇒ e∆t/4,∆x/2 = a

(
∆t

4

)q1
+ b

(
∆x

2

)q2
.
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Since q1 has been verified to be one (1), it is possible to show

e∆t,∆x

e∆t/4,∆x/2

=
a∆t+ b∆xq2

a
(

∆t
4

)
+ b
(

∆x
2

)q2 . (6.7)

If the solution has second order spatial accuracy, or q2 = 2, Eq. (6.7) becomes:

e∆t,∆x

e∆t/4,∆x/2

=
a∆t+ b∆x2

a
(

∆t
4

)
+ b
(

∆x
2

)2 =
a∆t+ b∆x2

1
4

(a∆t+ b∆x2)
= 4. (6.8)

Figure 6.3 displays the solution errors against a second order reference that sat-

isfies Eq. (6.8). The slopes selected in the figure confirm that the solution is second

order accurate in space.

Figure 6.3: Solution (temperature) errors to the heat equation in the spatial accuracy
study: errors have the same slope as the 2nd order reference

6.2 Flow through a porous tube

With the heat conduction model verified, the second model problem is intended to

verify the mass and energy conservation of gas, in addition to the porous media flow

model in the momentum equation. The geometry of concern is a 3D tube, which

demonstrates the ability of solving on 3D meshes.
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Problem statement and equations

Consider a finite-long porous cylindrical tube that is subjected to constant static

pressures at the two ends. The pressure difference drives air to flow through the

porous tube. The porous material is assumed to be non-reactive, permeable at the

two ends, but impermeable through the side wall of the tube. Figure 6.4 illustrates

the problem setup, where L = 0.01 m, R = L/4.

Figure 6.4: Illustration of the porous tube problem (air flow is driven by the pressure
difference on two ends)

The governing equations for the given problem are:

∂(φρg)

∂t
+
∂(φρgu)

∂x
+
∂(φρgv)

∂y
+
∂(φρgw)

∂z
= 0, (6.9a)

∂(ρgu)

∂t
+
∂p

∂x
= −µ φ

K
u, (6.9b)

∂(ρgv)

∂t
+
∂p

∂y
= −µ φ

K
v, (6.9c)

∂(ρgw)

∂t
+
∂p

∂z
= −µ φ

K
w, (6.9d)

∂(φρgEg)

∂t
+
∂(φρguH)

∂x
+
∂(φρgvH)

∂y
+
∂(φρgwH)

∂z
= 0, (6.9e)

with boundary conditions:

p = p1, T = T0, at x = 0,

p = p2, at x = L,

∂u

∂r
= 0, ur = 0, at r2 ≡ y2 + z2 = R2,
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and initial conditions:

T = T0, p = p2, (u, v, w) = (0, 0, 0) at t = 0.

Here, Eqs. (6.9a) and (6.9e) are mass and energy conservations in porous structure,

respectively. Eqs. (6.9b) to (6.9d) are unsteady formulations of Darcy’s law. The

solution to the governing equations is expected to reproduce Darcy’s law when steady

state is reached. Table 6.4 lists the parameters that characterize this problem.

Table 6.4: Flow through porous tube problem parameters

p1 p2 φ K µ T0

101750 Pa 101050 Pa 0.8 1.6× 10−11 m2 1.85052× 10−5 kg/m s 300 K

Results and discussions

In order to verify the solution with Darcy’s law, the steady state of the solution has

to be confirmed first. When steady state is reached, Eq. (6.9a) yields:

∂(φρu)

∂x
= 0,

or, φρu ≡ const.

Therefore, an easy way to verify the steady state is to check if the mass flow rate is

uniform over the computational domain. Figure 6.5 shows the mass flow rate over

porosity (since porosity is constant in this case) at 5000 time steps. As is seen from

the figure, the mass flow rate is constant everywhere within the tube. Therefore, the

solution to the porous media equations of KATS is considered to be steady state.

The centerline temperature and pressure profiles obtained by KATS are presented

in Fig. 6.6. As expected, the pressure is linearly ramping down from inlet to outlet,

and the temperature is uniform. In addition, the gas density and x-component of the

velocity are ploted, as shown in Fig. 6.7. Since the fluid is compressible, the density

also decreases linearly with the pressure due to the ideal gas law. The velocity, on the
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Figure 6.5: Mass flow rate within the porous tube (constant indicates steady state)

Figure 6.6: Pressure and temperature profiles along the centerline of the porous tube

other hand, constantly accelerates so as to preserve the mass balance. The differences

between the two ends, however, are not significant.

Performing a volume average for the velocity gives: uavg = 7.56543 × 10−2 m/s.

The result is compared with Darcy’s law:

φu =
−K
µ

p2 − p1

L
. (6.10)

Substitute the parameters in Table 6.4 into Eq. (6.10), and the averaged flow velocity
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Figure 6.7: Gas density and velocity profiles along the centerline of the porous tube:
gas density is linearly decreasing and velocity is linearly increasing, resulting a con-
stant mass flow rate

is acquired:

u =
−K
φµ

p2 − p1

L
,

u =
−1.6× 10−11

(0.8)(1.85052× 10−5)

101050− 101750

0.01
,

u = 7.56541× 10−2 m/s.

Note that the numerical solution is in good agreement with the analytical one, with

an error percentage of merely:

|eu| =
∣∣∣∣7.56543− 7.56541

7.56541

∣∣∣∣× 100% = 0.00026%.

6.3 1D TACOT heating problem

This test-case is intended to verify the resin decomposition model using the ablative

material TACOT. TACOT, or Theoretical Ablative Composite for Open Testing [99],

is a low-density artificial material based on PICA [7]. The thermodynamic properties

of TACOT are given in Appendix D. The charring process of TACOT is modeled
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with the phenomenological three-component decomposition model introduced in Sec-

tion 5.2. The model yields three solid mass balance equations describing the carbon

matrix, and the conversion of resin to pyrolysis gas and char. Use of this model

results in a total of eight equations to solve, which are given by Eqs. (3.1) and (3.2)

with ngs = 1 and nss = 3.

Problem statement

The 1D problem considered here is a 0.05 m long TACOT sample, with one side

maintained at a constant temperature of 1644 K for 60 s. The other wall is set to be

adiabatic. The initial temperature of the material is assumed to be 298 K. The initial

pore pressure is assumed to be identical to the free stream pressure (10132.5 Pa).

Figure 6.8 illustrates the problem setup, with parameters given in Table 6.5.

Figure 6.8: Illustration of the 1D TACOT heating problem: a L = 0.01 m long
TACOT sample with pressure and temperature maintained at one end and imperme-
able adiabatic wall at the other end

Table 6.5: Parameters for 1D TACOT heating problem

Tout pout To p0 L

Values 1644 K 10132.5 Pa 298 K 10132.5 Pa 0.01 m

Grid function convergence test

In order to verify the solution is converging to the exact solution of the governing

equations, a grid function convergence test is performed for this problem. Since KATS
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is a cell centered solver, the number of grid cells is tripled for each level of refinement

in order to maintain the locations of cell centers unchanged. The grids and the time

step sizes for the test are presented in Table 6.6. Assuming the solutions of variable X

Table 6.6: Grid refinements and time step sizes for the convergence test

Refinement Number of grid cells Time step size Number of time steps

coarse 100 0.009 2000
finer 300 0.003 6000
finest 900 0.001 18000

obtained at coarse, finer, and finest mesh are respectively Xcoarse, Xfiner, and Xfinest,

the spatial order of accuracy can thus be calculated as:

order = log3

||Xcoarse −Xfiner||2
||Xfiner −Xfinest||2

. (6.11)

Table 6.7: Spatial orders of accuracy from the grid function convergence test

Variable T p ρs1 ρs2 ρs3 w

Order 1.850157 2.281906 1.846132 1.93456 – 2.575495

The calculated orders of accuracy for each primitive variable in the charring prob-

lem are presented in Table 6.7. Note that, the order for ρs3 is not available because

ρs3 is the solid density of the non-reacting component, which is a constant. The

orders of accuracy for variables T , p, ρs1 and ρs2 are quite close to the expected

order of accuracy, two (2). The last variable w, however, has a much higher order

of accuracy than the desired value. This is because the velocity component for this

problem is almost zero in the region below the charring front; at the evaluated time,

t = 18 s, the values of w are at the order of solution tolerance for 0.011 < z < 0.05 m.

Therefore, the calculated norms of w might not be able to reflect the exact spatial

accuracy. The p accuracy is also slightly above the desired order, since the pressure

is closely related to the velocity through the modified Darcy’s law. In all, based on

the results in Table 6.7, the grid shows satisfactory convergence to the exact solution

of the system.
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Results and discussions

This problem is further verified through a code-to-code comparison with a validated

material response code, MOPAR [74]. Figures 6.9 and 6.10 respectively show the

temperature and solid density profiles at t = 20 s, 40 s, and 60 s. The KATS results

Figure 6.9: Temperature profiles for the
1D TACOT heating problem

Figure 6.10: Overall solid density profiles
for the 1D TACOT heating problem

Figure 6.11: Zoomed-in temperature pro-
files for the 1D TACOT heating problem

Figure 6.12: Zoomed-in solid density pro-
files for the 1D TACOT heating problem

are plotted using symbols while the MOPAR results are plotted using solid lines.
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It is seen from these figures that, the KATS results are in good agreement with

the MOPAR results in general. But Figs. 6.11 and 6.12 show that the predicted

temperatures are slightly greater than those predicted by MOPAR, and the solid

densities slightly under-predict the MOPAR densities. The tiny discrepancy is likely

due to the difference in the gas enthalpy calculation: MOPAR numerically integrates

heat capacity to get the enthalpy, where as KATS interpolates the enthalpy values

directly from the gas equilibrium table.

Copyright c© Haoyue Weng, 2014.
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Chapter 7 Study of Pyrolysis Gas Flow Effects

7.1 Motivation

Resin materials in a charring ablator decompose when heated, generating pyrolysis

gas. As the pyrolysis gas flows within the ablator, it might affect the material thermal

response. Moreover, the pyrolysis gas surface blowing rate is part of the surface

energy balance, which closely related to the thermal boundary condition. Therefore,

it is important to model the pyrolysis gas flow in an ablation program. On one hand,

existing works with pyrolysis gas flow models were mostly seen in 1D, where steady

state Darcy’s law was applied [26,34,93]. But pyrolysis gas flow could be highly time

dependent, especially near the decomposition zone. In addition, the flow direction

is very sensitive to the geometry, and 1D assumption might not be able to catch

the geometric effects. On the other hand, multidimensional research works mainly

focused on the coupling of fluid and solid, where ablation programs only modeled

the heat transfer and the solid decomposition, without considering the pyrolysis gas

momentum conservations [35,38,50]. Therefore in this chapter, the effect of pyrolysis

gas flow is studied through a series of 3D test-cases.

7.2 Applied models

The governing equations for this study are given in Eqs. (2.1), (3.1), and (3.2), where

ngs = 1 and nss = 3. The pyrolysis gas model for this problem assumes chemical

equilibrium, as discussed in Section 5.3. The decomposition of the solid material is

modeled with the phenomenological three components model discussed in Section 5.2.

The pyrolysis gas momentum equations are given by Eqs. (5.23) in Section 5.4. The

considered material in this study is isotropic TACOT [99].
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7.3 Cylinder sample test-cases

The study begins with two test-cases using the same geometry: a cylindrical material

sample. The front surface of the cylinder is assumed to be permeable, and is exposed

to an uniform heat flux and an uniform pressure. The side surface, however, is where

the two cases vary: the side is impermeable in the first case, but it is permeable

in the second case. The first case is expected to represent the 1D model, since the

pyrolysis gas can only be expelled through the front surface. The second case steps a

little further by allowing the pyrolysis gas to exit through the permeable side, which

introduces minimal 3D effects. Note that, the two cases are theoretical problems that

are designed to discover differences between the 1D and 3D frameworks; they are not

based on any specific experiments.

Since the cylinder geometry is axisymmetric, a 4-degree slice of the cylinder is

chosen as the computational geometry, as shown in Fig. 7.1. The boundary conditions

are also demonstrated in Fig. 7.1. The applied surface heat flux qw in the figure is

removed after 40 seconds. The pore pressure and temperature of the material are

initialized with 10132.5 Pa and 298 K, respectively.

3D impermeable side cylinder case and 1D model

To demonstrate that the impermeable side cylinder case is same as the 1D model,

a 1D simulation is first run using the same conditions as described earlier. The in-

depth results of the 1D simulation and the 3D cylinder case are presented by lines

and symbols respectively in Fig. 7.2. The results of the 3D cylinder case are taken

along the centerline. It can be seen from Fig. 7.2 that, the 3D cylinder case (with

impermeable wall) has almost the same solutions as obtained with the 1D model.
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(a) Impermeable side wall case (b) Permeable side wall case

Figure 7.1: Computational geometry and boundary conditions for the cylinder sample
cases in pyrolysis gas flow study

Pressure contour plots of 3D cylinder cases

Figure 7.3 shows the pressure contour plots for the impermeable side case at 20, 40

and 60 seconds. As expected, the contour lines are uniform and paralleled to the

x-axis, which matches the 1D assumption. In addition, the pressure is increasingly

higher inside the material than on the surface. This is because the pyrolysis gas

generated within the sample cannot escape, and are thus trapped inside the material,

since the side wall is impermeable. Therefore, the inner pressure builds up, and the

gas mass accumulates within the sample.

The pressure distribution for the permeable side case, however, is very different,

as is shown in Fig. 7.4. The pressure contour lines are not paralleled to each other;

instead, they form a high-pressure region inside the cylinder sample. This region

corresponds to the decomposition zone, in where pyrolysis gas is formed. This can be

explained by the fact that the generated gas may leave the sample immediately from
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(a) Temperature (b) Material density

(c) Pressure (d) Gas mass flow rate

Figure 7.2: Comparison between 3D cylinder and 1D model results

all open sides, thus preventing the pressure build-up and the gas mass accumulation.

Note that the pressure behavior is valid for light-weight, highly-porous charring

ablative materials, such as PICA and TACOT; it might not be fully extensible to

high density and low permeability ablators such as the legacy carbon-phenolic [100].

This is because the dense ablators with low permeability (and porosity) might not

be able to facilitate the gas transport to the extent seen in this study, and the pore

pressure might build up (due to close pores) even if the side is permeable; therefore

the difference between the 1D and 3D models might not be as significant as in this

case. But for low-density ablators such as TACOT selected in this study, the 3D
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(a) 20 sec (b) 40 sec (c) 60 sec

Figure 7.3: Pressure contours of impermeable side wall cylinder

(a) 20 sec (b) 40 sec (c) 60 sec

Figure 7.4: Pressure contours of permeable side wall cylinder

(permeable side cylinder) pressure distributions are in sharp contradiction with the

1D distributions.
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Pyrolysis gas flow patterns of 3D cylinder cases

The pyrolysis gas flow behavior is demonstrated by streamlines and local gas momen-

tum contours. The local gas momentum is represented by |ṁ′′| = φρg
√
u2 + v2 + w2,

which has the same unit as the momentum. The gas flow results for the impermeable

side cylinder case are shown in Fig. 7.5. The streamlines are all straight and parallel,

pointing upwards. This indicates the pyrolysis gas only travels vertically, and blows

through the front surface, which is same as the 1D model. Note that, the equation

set used to represent the pyrolysis gas momentum is analogous to the Euler equation,

for which the wall boundary condition is slip. This is a sound assumption for porous

media, since the non-slip condition occurs at the surface of the pores, not at the

surface of test-piece. As a result, the simulation of the impermeable side wall case

should be, and is, exactly the same as a 1D case.

For the permeable side wall case, as shown in Fig. 7.6, the gas flows separate at the

decomposition zone (high pressure region), traveling both to top and bottom. The

top part of the flow blows through the front surface, while the bottom part curves

and eventually exists through the open side wall. The gas momentums of the two

flow directions are not equal, as indicated by the contours of Fig. 7.6: the gas mass

transport towards the front (upward) is clearly less than towards the side (downward

first then rightward). This suggests the majority of gas leaves from the side surface,

instead of the front.

Thermal response of 3D cylinder cases

The thermal responses of the two cylinder cases are presented by Fig. 7.7 and Fig. 7.8.

When comparing the two figures, the material temperatures in the permeable side wall

case are higher than those in the impermeable side wall case. In other words, the in-

depth heating is enhanced with the open side wall assumption. This phenomenon was

not expected originally, since the thermal boundary conditions were identical for the
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(a) 20 sec (b) 40 sec (c) 60 sec

Figure 7.5: Gas mass transport of impermeable side wall cylinder

(a) 20 sec (b) 40 sec (c) 60 sec

Figure 7.6: Gas mass transport of permeable side wall cylinder

two simulations. A possible explanation is that, as the hot pyrolysis gas travels within

the porous structure, the material is further heated due to the thermal equilibrium

assumption. The region right below the decomposition zone has the highest mass

transport, as was shown in Fig. 7.6; therefore, the material in this region was heated
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most due to the hot pyrolysis gas flow. Moreover, the non-uniform temperature

contours (e.g. Fig. 7.8c) are the results of the non-uniform gas flow directions and

momentum contours (Fig. 7.6c).

(a) 20 sec (b) 40 sec (c) 60 sec

Figure 7.7: Thermal response of impermeable side wall cylinder

(a) 20 sec (b) 40 sec (c) 60 sec

Figure 7.8: Thermal response of permeable side wall cylinder
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In the impermeable side wall cylinder case, the pyrolysis gas can only travel up-

ward and exit through the front surface. Therefore, the inner solid material did

not experience the extra heating due to the pyrolysis gas; instead, extra energy was

carried away with the gas, as it travels upward.

As a brief summary, multi-dimensional pyrolysis gas transport was shown to affect

the thermal response of the cylindrical charring ablators considered in this subsection.

Use of the 1D model would lead to an under prediction of the in-depth temperatures.

This observation is quite important, since ultimately, the inner temperature is most

crucial to the design of TPS.

Surface gas blowing rates of 3D cylinder cases

Figure 7.9 shows the surface gas blowing rate the two cylinder cases. The arc length

is defined as L =
√
x2 + y2 + z2, i.e. L = 0 represents the center of the sample at the

surface, and L = 0.05 m the top corner of the cylinder.

In Fig. 7.9a, 1D results are also plotted using circles, to again demonstrate the

equivalence between the 1D case and the 3D impermeable wall cylinder case. The

surface gas blowing rates are uniform curves that are only observed on the front

surface. For the permeable wall case, however, the highest gas blowing rate locates

at a few centimeters below the corner of the sample, as shown in Fig. 7.9b. The gas

blowing rate through the front surface is considerably less significant than through

the side wall, which is very different from the 1D assumption.

Table 7.1 shows the gas blowing rate for the 1D and the 3D model, by presenting

the integrated mass flow rates for the two cylinder cases. The integrations were

performed on the front and side wall surface of each cylindrical slice presented in

Fig. 7.1. Since the angle of the cylinder slice is 4 degrees, the blowing rate for the

whole cylinder sample will simply be 90 times the current values in the table; the

percentage however, will not change. For the permeable side case, the integrated
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(a) Impermeable side wall sample (b) Permeable side wall sample

Figure 7.9: Pyrolysis gas blowing rate through surface of cylinder samples

Table 7.1: Gas flow rate through the front and the side wall, for 3D cylinder cases

Case Impermeable side Permeable side
Time, s Front, kg/s Front, kg/s side wall, kg/s

20 1.07×10−6 (100%) 2.96 ×10−7 (16%) 1.60 ×10−6 (84%)
40 8.78×10−7 (100%) 1.10 ×10−7 (7%) 1.49 ×10−6 (93%)
60 4.14×10−7 (100%) 6.97 ×10−8 (7%) 9.88 ×10−7 (93%)
80 2.46×10−7 (100%) 4.59 ×10−8 (6%) 6.89 ×10−7 (94%)
100 1.75×10−7 (100%) 3.52 ×10−8 (6%) 5.48 ×10−7 (94%)
120 1.37×10−7 (100%) 2.89 ×10−8 (6%) 4.64 ×10−7 (94%)

mass flow rate through the side wall is significantly higher than through the front

surface, while for the impermeable side case, zero flow rate is seen on the side and

the entire pyrolysis gas flow is blown through the front surface. Comparing only the

mass flow rates that blow through the front surface, the impermeable side sample

has a greater blowing rate than the permeable side one. This is due to the built-up

pressure in the impermeable side case, which leads to a larger pressure gradient and

thus more front surface blowing.

Hirata et. al. [56] also performed similar simulations, but the pyrolysis gas blowing

results were reported to be higher on the front surface than on the side, which is

in contrast with the results in this study. The discrepancy might come from the

difference in the material models: Hirata et. al. [56] used a constant permeability
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for the entire material; in the present study however, the permeability is modeled by

interpolation of virgin and char permeability. Note that the material permeability

is directly related to the gas flow behavior through the gas momentum equations,

therefore it is necessary to properly take into account the permeability model. Other

possible sources that might lead to the different conclusions are different boundary

conditions and different heating time.

Effect of the unsteady porous gas momentum equation

As discussed in Section 7.2, the pyrolysis gas momentum equations in this study are

given by Eqs. (5.23), which is a time dependent version of Darcy’s law. The pyrolysis

gas momentum equations are given by Eqs. (5.23) in Section 5.4.

Since most material response codes use the steady state version, it is therefore

important to quantify the effect of using the modified equations. Consider the gas

momentum equation in x-direction for instance, Eq. (5.23a) can be rearranged as:

∂(φρu)

∂t
+
∂(φρu2)

∂x
+
∂(φρuv)

∂y
+
∂(φρuw)

∂z
= −∂p

∂x
− φ µ

K
u (7.1)

The right hand side of Eq. (7.1) is defined as the residual in x-direction:

Rx = −∂p
∂x
− φ µ

K
u. (7.2)

Similarly, the y- and z−direction residuals are defined as:

Ry = −∂p
∂y
− φ µ

K
v, (7.3)

Rz = −∂p
∂z
− φ µ

K
w. (7.4)

Therefore, if the steady state Darcy’s law is satisfied, the residual R = (Rx, Ry, Rz)

should be close to zero. The modulus of R is plotted in Fig. 7.10, which shows

that |R| >> 0 in most part of the domain, especially near the boundaries with

high blowing rates. Therefore, it can be concluded that a time-dependent Darcian
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(a) 20 sec (b) 40 sec (c) 60 sec

Figure 7.10: Residual |R| contours for the cylinder case, using a permeable wall

formulation is necessary for small charring sample simulations.

In order to identify which term is contributing the most to the residual R, the

modulus of the inviscid flux G is plotted in Fig. 7.11. The flux G is defined by its

directional components (Gx, Gy, Gz), where, for instance, Gx is the time independent

terms of the left hand side of Eq. (7.1):

Gx =
∂(φρu2)

∂x
+
∂(φρuv)

∂y
+
∂(φρuw)

∂z
(7.5)

In this case, the value is extremely small when compared to |R|, which implies that

the time derivative in Eq. (7.1) is the main contributor to R.

7.4 Iso-Q sample test-cases

For the iso-Q geometry, three test-cases are considered. Figure 7.12 illustrates a sketch

of all iso-Q test-cases presented in this study. The first two are similar to the two

cylinder test-cases presented in the previous section: one has impermeable side wall

and the other has permeable side wall, while the rest of the conditions are identical.

The surface heat flux is non-uniform along the iso-Q geometry, and is applied for 40
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(a) 20 sec (b) 40 sec (c) 60 sec

Figure 7.11: Inviscid flux |G| for the cylinder case, using a permeable wall

seconds. The heat flux distribution is presented in Fig. 7.13, which is obtained from a

CFD simulation [101]. Note that the heat flux applied on the surface of the material

is the penetrated heat flux discussed in Section 4.5, which removes the necessity of

modeling surface models, such as re-radiation, surface catalysis, and boundary layer

corrections. The pressure boundary condition along the surface, however, is uniform

for the first two cases. In the last case, the effect of non-uniform pressure boundary

condition is explored. The last case uses the permeable wall iso-Q sample as test-

piece and applies a pressure distribution shown in Fig. 7.13, in addition to the heat

flux distribution. A 20-second linear ramping is used on the pressure distribution, in

order to prevent the atmospheric gas from being pulled out immediately through the

sample, which causes numerical problems. The ramping profiles for both heat flux

and pressure boundary condition are presented in Fig. 7.14.
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(a) Impermeable side wall (b) Permeable side wall

(c) Permeable wall, non-uniform pressure

Figure 7.12: Computational geometries and boundary conditions for iso-Q case

Pressure contour plots for iso-Q samples

In Fig. 7.15, 7.16, and 7.17, pressure contour plots of the three iso-Q test-cases are

presented. It is seen from Fig. 7.15 that, the impermeable side wall results in a

pressure build-up inside the material, as was the case with the cylinder sample.
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Figure 7.13: Heat flux and pressure distribution [101]
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Figure 7.14: Heat flux and pressure boundary conditions ramping

When the side wall is permeable, the inner pressure does not build up and the contour

values are less than in the first case, as shown in Fig. 7.16. In the third case with

non-uniform surface pressure, the in-depth pressure is even less than the second case.

This is due to the pressure gradient applied by the non-uniform pressure profile, which

drives the generated gas to flow through the side faster than in the second case.

Pyrolysis gas flow patterns for iso-Q samples

Figure 7.18 shows the gas flow pattern for the impermeable side sample. It is clear to

see that a huge amount of gas blows through the outer corner of the iso-Q geometry.

63



(a) 20 sec (b) 40 sec (c) 60 sec

Figure 7.15: Pressure contours of impermeable side wall iso-Q sample

(a) 20 sec (b) 40 sec (c) 60 sec

Figure 7.16: Pressure contours of permeable side wall iso-Q sample

Despite the fact that this geometry is very close to the impermeable wall cylinder

case, the pyrolysis gas flow patterns are very different. This suggests that, a small

change in test-sample geometry may lead to a very different gas flow behavior, and

that 3D modeling of pyrolysis gas is of great influence. For the permeable side wall
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(a) 20 sec (b) 40 sec (c) 60 sec

Figure 7.17: Pressure contours with surface pressure distribution

(a) 20 sec (b) 40 sec (c) 60 sec

Figure 7.18: Gas mass transport of the impermeable side wall iso-Q sample

case, as is shown in Fig. 7.19, a strong momentum transport layer takes place right

below the charring front. This transport shows similar behavior to the permeable

side cylinder case: the pyrolysis gas goes inside of the material and rounds toward

the sides. When surface pressure distribution is added, the pyrolysis gas behavior
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(a) 20 sec (b) 40 sec (c) 60 sec

Figure 7.19: Gas mass transport of the permeable side wall iso-Q sample

(a) 20 sec (b) 40 sec (c) 60 sec

Figure 7.20: Gas mass transport of pressure distribution iso-Q sample

within the material does not deviate much from the second case.
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Surface gas blowing rates of iso-Q test-cases

The profiles of surface gas blowing rate are presented in Fig. 7.21 for all three iso-Q

test-cases. The first iso-Q case is a small extension from the impermeable cylinder

(a) Impermeable side wall sample (b) Zoomed in of Fig. 7.21a

(c) Permeable side wall sample (d) Pressure distribution case

Figure 7.21: Pyrolysis gas blowing rate through surface of isoq samples

case, that only the front surface geometry is changed. However, the surface blowing

rate profiles, as shown in Fig. 7.21a, are very different from the impermeable cylinder

case: the blowing rate starts from a relative flat value at the front, and as it approaches

the end of the iso-Q front, the blowing rate jumps tremendously, indicating a huge

amount of gas exits through the corner. The highest blowing rate in Fig. 7.21a located

at the corner of the iso-Q sample, and is about an order of magnitude higher than
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the blowing rate at the front surface, where as the impermeable cylinder case (1D)

only predicted an uniform gas blowing through the front.

For the permeable side case, as shown in Fig. 7.21c, the highest gas blowing rate

takes place on the sides, not front. The pyrolysis blowing peak is located right below

the shoulder region, and the blowing rate quickly tails down as the side wall reaches

the bottom. The blowing rates through the front surface are about half of the values

in the first case (impermeable iso-Q).

When non-uniform surface pressure is applied, as depicted in Fig. 7.21d, small

differences are observed if compared with Fig. 7.21c: 1) the front surface blowing

rate is reduced; 2) the blowing rate peak value on the side is increased; 3) negative

blowing (sucking) rate is found on the front surface, long after the heat is removed.

These behaviors are the results of applied pressure distribution: due to the pressure

gradient enforced by the boundary condition which drives the flow from the front to

the side, the gas mass transport to the front is attenuated and the transport to the

side is enhanced. When the heat is removed, the generation of pyrolysis gas gradually

diminishes, thus making it possible to pull gas inside through the front surface.

Taking a surface integral of ṁ′′ over the iso-Q slice surface, yields the mass flow

rates at the front and side surface. The values of integration are presented in Table 7.2.

As expected, all of the gases flow through the front, in the impermeable side wall iso-Q

case. For the permeable side case, more than 70% of the gas mass blows through the

side; this percentage increases to more than 90% at 40 seconds. When non-uniform

pressure distribution is applied, the percentage of the front surface blowing rate is

further reduced. At 100 seconds and 120 seconds, the front surface intakes gas from

the surrounding flow. Comparing the mass flow rates at the front, the impermeable

case blows the most, due to the pressure build-up.
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Table 7.2: Mass flow rate blowing from the front and the side wall, for iso-Q cases

Case Impermeable side, kg/s Permeable side, kg/s Non-uniform pressure, kg/s
Time, s Front Front side wall Front side wall

20 1.30×10−6 (100%) 4.17 ×10−7 (21%) 1.57 ×10−6 (79%) 3.45 ×10−7 (13%) 2.33 ×10−6 (87%)
40 1.22×10−6 (100%) 1.61 ×10−7 (8%) 1.84 ×10−6 (92%) 1.15 ×10−7 (6%) 1.90 ×10−6 (94%)
60 5.85×10−7 (100%) 9.77 ×10−8 (8%) 1.09 ×10−6 (92%) 4.92 ×10−8 (4%) 1.20 ×10−6 (96%)
80 3.78×10−7 (100%) 6.53 ×10−8 (8%) 7.94 ×10−7 (92%) 1.28 ×10−8 (1%) 9.16 ×10−7 (99%)
100 2.89×10−7 (100%) 5.08 ×10−8 (7%) 6.62 ×10−7 (93%) -5.85 ×10−9 (-1%) 7.94 ×10−7 (101%)
120 2.40×10−7 (100%) 4.23 ×10−8 (7%) 5.87 ×10−7 (93%) -1.81 ×10−8 (-3%) 7.31 ×10−7 (103%)
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7.5 Conclusions for pyrolysis gas effects study

The pyrolysis gas transport within a small charring ablative material sample was

numerically studied by performing a series of simulations on a cylinder and an iso-Q

model. As expected, the gas mass fluxes at the surface were significantly different

between the 1D and the 3D models: instead of blowing through the front surface, the

majority of the gas flew through the side wall. For the iso-Q model, even if the wall

was impermeable, most of the gas left the sample through the surface corner. The

geometric effect played an important role in the pyrolysis gas transport.

The thermal response of the sample was found affected due to the pyrolysis gas

transport. This was explained by the fact that, the generated gas carries a great

amount of enthalpy, which further heated the material in the direction of gas flow.

The effect of a non-uniform surface pressure distribution (based on aerodynam-

ics) was also investigated. It was concluded that the surface pressure distribution

enhanced the side wall blowing.

The results of this study suggest that the boundary layer effects might be different

from currently assumed, and these effects would be more significant for smaller sam-

ples in arc-jet facilities. Moreover, samples with impermeable side wall might not be

able to correctly reproduce the interactions between the pyrolysis gas and the solid

matrix inside the ablative materials.

As a conclusion, the results of this study have shown 1) contradictory blowing

results when compared with the 1D model, 2) the importance of modeling pyrolysis

gas flow using time-dependent equations, 3) the effect of non-uniform surface pressure

distribution, and 4) the capability of solving multi-dimensional gas transport using

the material response module in KATS.

Copyright c© Haoyue Weng, 2014.
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Chapter 8 Geometric Effects of an Arc-jet Sample

8.1 Motivation

The primary approach to test the performance of charring ablative material is to use

an arc-jet facility [102]. Arc-jet experiments are performed by passing a gas through

an electric arc that energizes the flow. The gas is then accelerated through a nozzle

before reaching the material sample mounted in test chamber. The sample shape for

these tests is typically flat-faced with rounded corners. One sample geometry in par-

ticular, the iso-Q geometry, is increasingly being used for arc-jet experiments. The

intent of this geometry is to produce nearly uniform heat flux along its front surface,

which should allow the use of a 1D assumption when modeling the experiments [101].

In a validation work conducted by Covington et. al. [103], a series of arc-jet exper-

iments were performed on PICA samples, with three different diameters: 2.54 cm,

5.08 cm, and 10.16 cm. Analyzed using 1D material response code FIAT [34], 2.54

cm and 5.08 cm results showed the best agreement when using an assumption of

no pyrolysis gas blowing. The 10.16 cm results, however, were found to have better

agreement when pyrolysis gas blowing was considered. These results suggest that

the diameter of the sample greatly affects the pattern of gas transport within the

interior of the sample. Inspired by this paper, the effect of iso-Q sample geometry is

studied in this chapter. In addition, sample-holders used to fix the sample materials

in the test chamber, as illustrated in Fig. 8.1, are also investigated to explore their

significances to the sample performance.
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(a) Covington et. al. [103] (b) Agrawal et. al. [104]

Figure 8.1: Post-test photos of charring ablative articles with sample-holders

8.2 Applied models

The governing equations and applied models used in this study are exactly the same

as the ones used in the previous study, which were given in Section 7.2.

8.3 Test-case descriptions

In this study, two sets of TACOT iso-Q samples are modeled. The first set of samples

aims at studying the effect of sample diameter and thickness, by performing simu-

lations on four different geometries. The specifications of these samples are given in

Table 8.1.

Table 8.1: Geometric specifications for Case 1.1 to 1.4

Case # Sample d, cm h, cm

1.1 A 2.5 6
1.2 B 5 6
1.3 C 10 6
1.4 D 10 3

The front surface of all four samples has the same iso-Q curvature, described in

Ref. [101]. The surface curvature of each test-case is geometrically scaled with the

sample diameter, as depicted in Fig. 8.2a. Using a hypersonic aerothermo-dynamic
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(a) Surface geometries (b) Normalized surface heat flux

Figure 8.2: Sample geometry and surface heat flux profile for samples A to D

CFD solver [76] over the geometry of sample C, a nominal surface heat flux profile

was obtained, which was scaled in proportion to the sample diameters, resulting

in the profiles shown in Fig. 8.2. The axisymmetry of the iso-Q geometry allowed

the computational domain to be limited to a 4 degree slice around the vertical axis,

reducing computational cost. The computational mesh used for simulations of sample

C is shown in Fig. 8.3. Although the problem is 2D axisymmetric, the KATS code

solves the problem entirely in 3D using axisymmetric boundary conditions.

In addition to the cases presented in Table 8.1, a second set of simulations were

also conducted. In this set, the geometry of samples A to D were further modified

to represent the effects of mounting the samples on impermeable sample-holders.

Geometrically, these modifications take one of two different forms. For samples with

small diameters, the exterior surface of the sample is cut away to allow the holder

to sheath the exterior of the sample. For larger samples, the back face of the sample

is modified as shown in Fig. 8.1 to allow the sample to be fixed onto the holder.

Therefore, the geometries were modified as presented in Fig. 8.4. The geometric

specifications of these modified samples are presented in Table 8.2. For the larger-

style sample-holders, an adiabatic assumption is usually made [103,104]. Specifically,
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(a) 3D view (b) 2D axisymmetric view

Figure 8.3: Computational grid for sample C, (100× 20 + 150× 120)× 2 cells

Table 8.2: Geometric specifications for Case 2.1 to 2.4

Case # Sample d, cm h, cm Sample-holder location(x1, z1) to (x2, z2), cm

2.1 A− 2.5 6 (0.75,-6) to (1.25,-4)
2.2 B− 5 6 (1.5,-6) to (2.5,-4)
2.3 C− 10 6 (0,-6) to (3,-5.5)
2.4 D− 10 3 (0,-3) to (3.5,-2.5)

in Ref. [103], alumina enhanced thermal barrier (AETB) was used as the supporting

material for the largest diameter sample, and graphite adaptors were used for smaller

samples. Since graphite has a very high thermal conductivity, the thermal behavior

of the smaller sample-holder is expected to be very similar to the one without the

sample-holder. Therefore, the investigation of graphite sample-holders is omitted;

the sample-holder materials in this study are all assumed to be impermeable and

adiabatic. It is to be noted that some experiments on pyrolyzing ablators have used

water cooled sample-holders [105,106].

The initial and boundary conditions of the two sets of simulations were identical,
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Figure 8.4: Geometry for samples A− to D−

and were adopted from the arc-jet experiments of Ref. [103]. These conditions are

summarized in Table 8.3. Note that, along the iso-Q sample surface, the pressure

Table 8.3: Initial and boundary conditions

Initial conditions Boundary conditions
p, atm T , K φ p, atm qw(0), W/m2

0.65 298 0.8 0.65 106

boundary condition is uniform, as opposed to the heat flux boundary condition, which

follows the curves shown in Fig. 8.2b. The effect of a non-uniform pressure boundary

condition was previously discussed in Chapter 7. In general, the front surface pressure

profile is relatively flat, but drops quickly around the shoulder of the sample. This

enhances the side wall pyrolysis gas blowing as it creates a pressure gradient between

the front surface and the sides. In order to minimize the parameters varied for this

study, and isolate the pyrolysis gas transport caused by the geometry, and not the

outside pressure gradient, the pressure distribution on the surface of the sample was

uniform for all test-cases.

The geometry of the sample was fixed and was therefore not changing with time:

surface recession (surface ablation) was not taken into account. The heat flux applied
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at the surface was a penetrated heat flux, as discussed in Section 4.5. It is to be noted

that when changing the diameter of samples, the stagnation heat flux and the heat

flux profile will also change if the free stream conditions remain the same. In order to

limit the parametric variables to a minimum and attempt to only look at the effects

of the geometry, all heat flux boundary conditions were set to be identical. For each

case, the heat flux was applied constantly from t = 0 to 20 s, then linearly ramped

down to zero over the next 0.1 seconds. The thermal boundary condition became

adiabatic from t = 20.1 to 30 s when the simulation was stopped. Again, these heat

flux values were all based on the penetrated heat BC discussed in Section 4.5, which

reduces the complexity of the problem by removing models that are themselves prone

to uncertainties.

8.4 Results and discussions

For each test-case, the transient results are presented in three contour plots, one

streamline plot, and one surface line plot. The contour plots show the distributions

of temperature, porosity and |ṁ|, which correspond to thermal response, material re-

sponse, and the scale of local gas momentum, respectively. The streamline plot is an

indication of the gas transport direction, and the line plot shows the gas blowing rate

along the surface. For samples A to D, a grid independence study was performed

and is presented for each mesh. It is to be noted that for identical geometry and

boundary conditions, the results may vary significantly depending on mesh. There-

fore, grid independence is vitally important in material response simulations. Here,

a grid independence study was not conducted on samples A− to D− as these meshes

are subsets of the meshes used for sample A to D. For samples A to D, the grid

independence study results are presented within the discussion of the results from

each sample.
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First set: effect of sample diameter and thickness

Case 1.1

As the first test-case, the 0.0125 m radius iso-Q sample A is considered. Figure 8.5

shows the evolution of temperature within the sample from t = 5 to t = 30 s. It can be

(a) t = 5 s (b) t = 10 s (c) t = 20 s (d) t = 30 s

Figure 8.5: Temperature contours for sample A (Case 1.1), at various times

seen that at t = 5 s, the temperature contour lines are almost paralleled to each other,

reflecting the intended behavior of the iso-Q sample geometry. This is true except

near the side face, where there is a small but noticeable inflection in temperature

(most noticeable through contour line 1) due to the non-uniform heat flux applied on

the surface. The heat flux at the sample shoulder, as shown in Fig. 8.2, is noticeably

higher than the stagnation heat flux. Similarly at t = 10 s, the inflection is observed

on contour 2. At t = 20 and 30 s, it is also noticeable on contour 3.

Figure 8.6 depicts the corresponding porosity contours for sample A. Note that
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(a) t = 5 s (b) t = 10 s (c) t = 20 s (d) t = 30 s

Figure 8.6: Porosity contours for sample A (Case 1.1), at various times

TACOT has a virgin porosity of 0.8 and a char porosity of 0.85. Since the material

porosity is modeled as a linear function of degree of char, as alluded in Eq. (5.3), the

porosity plots reflect the pyrolysis and char zone. It is seen from Fig. 8.6 that the

material above contour line 4 is charred and the region between contour line 1 and 4

is the pyrolysis zone. At t = 5 and 10 s, there are inflections in the porosity near the

side wall, which is similar to the inflections observed in temperature. This is expected

because the charring process is directly linked to the heat penetration. At t = 20 and

30 s, the inflection in the porosity due to the shoulder heat flux disappears, but the

heat flux from the side wall forms vertical pyrolysis zone near the side wall.

Figure 8.7 and 8.8 show the pyrolysis gas transport behavior within sample A.

The divergence of streamlines in Fig. 8.8 indicates the location of the charring front,

where material decomposes and generates pyrolysis gases. Mapping the streamlines

onto Fig. 8.7, it can be seen that the greatest amount of gas transport takes place
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slightly below the charring front and its direction is downward. Also a fast-moving

region is identified near the shoulder region of the sample, where pyrolysis gases are

expelled out of the material through the side wall.

(a) t = 5 s (b) t = 10 s (c) t = 20 s (d) t = 30 s

Figure 8.7: |ṁ| contours for sample A (Case 1.1), at various times

Figure 8.9a shows the normal blowing rate along the sample surface, using three

different refinements of mesh. The results obtained on the evaluated mesh are pre-

sented in lines, while the results on the finer and finest mesh are depicted by circles

and crosses, respectively. Compared with the evaluated mesh, the grid spacing on

the finer mesh is halved and it is only one-third on the finest mesh. It is seen from

Fig. 8.9a that the lines and symbols coincide except for the portion corresponding

to the lower half of the side wall, when t > 5 s. The discrepancies are due to the

less-refined mesh in the region, since in most of the time, the lower part of sample

A barely reacts and the phenomena are less complicated than the upper part where

pyrolysis and charring take place. Apart form the bottom region, the rest of the mesh
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(a) t = 5 s (b) t = 10 s (c) t = 20 s (d) t = 30 s

Figure 8.8: Gas streamlines for sample A (Case 1.1), at various times

is well refined, and the contour plots are very comparable. Note that the surface gas

blowing rate is one of the most grid-sensitive results, since it contains five primitive

variables in the formulation.

(a) Sample A on 3 refined-levels (b) Sample B on 3 refined-levels
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(c) Sample C on 3 refined-levels (d) Sample D on 3 refined-levels

(e) Sample A− and 4 cm sample A (f) Sample B− and 4 cm sample B

(g) Sample C− and sample C (h) Sample D− and sample D

Figure 8.9: Gas mass flow rate through the surface of iso-Q samples

In Fig. 8.9a, it is seen that the location of maximum blowing is located on the

side wall during the entire simulation time. As time proceeds, the peak blowing loca-
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tion shifts downwards and the magnitude decreases. Front surface blowing however,

remains at a relatively low level. These results are very different from the usual 1D

model, where pyrolysis gases are assumed to blow through the front surface only. A

detailed comparison and discussion between the 1D and 3D model was presented in

Chapter 7.

Case 1.2

The time evolution of temperature within sample B are shown in Fig. 8.10. The

results are qualitatively very close to sample A in that the contour lines are largely

parallel to each other, except for the perturbations near the side boundary, which is

likely due to the directional side wall heating.

The evolution of porosity shown in sample B (Fig. 8.11) displays similar behavior

to that of sample A. Also similar to sample A is the pyrolysis gas mass transport,

shown in Fig. 8.12 and 8.13. These results also indicate the existence of two large

mass transport regions: the highest located right below the charring front, moving

downward and the other is below the shoulder, near the side wall, moving outward.

Figure 8.9b presents the normal gas blowing rate along the surface of iso-Q sample

B. The results on the finer and finest mesh are also presented. However, unlike for

sample A, for sample B the finer mesh was only 1.5 times refined and the finest mesh

was 2 times refined to the evaluated mesh, so as to reduce the computational cost. It

is clear to see from Fig. 8.9b that the results on different meshes are almost the same,

except for the peak blowing point at t = 30 s, which due to a large time step size

and/or the less-refined mesh on the side near the lower portion of sample B. This

suggests that the evaluated mesh is mostly grid-independent. Comparing Fig. 8.9b

with sample A shows small but observable differences: the mass blowing rate from

the front surface is increased; the peak value of side wall blowing drops at t = 5 s,

but is increased at t = 10, 20, and 30 s; and the mass blowing near the bottom of the
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(a) t = 5 s (b) t = 10 s

(c) t = 20 s (d) t = 30 s

Figure 8.10: Temperature contours for sample B (Case 1.2), at various times

side wall rises. These results indicate that by changing the sample diameter, the gas

blowing behavior is also changed on both the front and the side surface.
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(a) t = 5 s (b) t = 10 s

(c) t = 20 s (d) t = 30 s

Figure 8.11: Porosity contours for sample B (Case 1.2), at various times

Case 1.3

Iso-Q sample C in Case 1.3 has a diameter twice that of sample B. Its thermal

response to the applied heat flux is displayed in Fig. 8.14.
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(a) t = 5 s (b) t = 10 s

(c) t = 20 s (d) t = 30 s

Figure 8.12: |ṁ| contours for sample B (Case 1.2), at various times

For sample C, the temperature contours mostly remain parallel to the front surface

curvature throughout the length of the simulation. The small perturbations noticed

in Figs. 8.14c and 8.14d are due to the geometry and heating from the side wall.
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(a) t = 5 s (b) t = 10 s

(c) t = 20 s (d) t = 30 s

Figure 8.13: Gas streamlines for sample B (Case 1.2), at various times

Porosity, as depicted in Fig. 8.15, shows similar time evolution to that of temperature,

although with much more localized gradients. Thus, for this sample diameter, the

iso-Q geometry behaves as intended and closely approximates 1D behavior.
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(a) t = 5 s (b) t = 10 s

(c) t = 20 s (d) t = 30 s

Figure 8.14: Temperature contours for sample C (Case 1.3), at various times

Gas mass transport for sample C is presented in Figs. 8.16 and 8.17 for magnitude

and direction, respectively. It can be observed from Fig. 8.16a that the largest mass

transport region is located between the center and the side wall. Over time, as shown

in Fig. 8.16b, the location of greatest mass flux migrates towards the center of the

sample. As with the other samples, the direction of pyrolysis gas motion is away from

the char front, downwards and outwards.

Figure 8.9c shows pyrolysis gas blowing through the surface of sample C. The

evaluated mesh, whose results are plotted in lines, was again refined to 1.5 times and
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(a) t = 5 s (b) t = 10 s

(c) t = 20 s (d) t = 30 s

Figure 8.15: Porosity contours for sample C (Case 1.3), at various times

2 times, corresponding to the finer mesh and finest mesh in the figure. It is seen from

these results that they are very close to each other, which indicates a well-refined

mesh and a grid-independent solution. As is seen in Fig. 8.9c, although the blowing

rate through the front surface is still less than through the side wall, it is much greater

than in previous cases. Also, the blowing rate at the lowest bottom of the side wall is

increased. This suggests that the larger the sample diameter, the greater the blowing

rate through the front surface, and closer to the 1D assumption.
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(a) t = 5 s (b) t = 10 s

(c) t = 20 s (d) t = 30 s

Figure 8.16: |ṁ| contours for sample C (Case 1.3), at various times

Case 1.4

It is seen from Figs. 8.18 and 8.19 that, the side wall heating effect is suppressed for

sample D, which has identical diameter to sample C, but reduced thickness. From the

t = 5 s and 10 s results, both temperature and porosity contour lines are parallel to

the front surface curvature, indicating little side wall heating effects. Even at t = 20

s and 30 s, the side wall heating effects on the material and thermal response are not

significant, whereas for the longer samples, they noticeably increased.
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(a) t = 5 s (b) t = 10 s

(c) t = 20 s (d) t = 30 s

Figure 8.17: Gas streamlines for sample C (Case 1.3), at various times

The motion of pyrolysis gases within the sample is also greatly changed when com-

pared to sample C. Figures 8.20 and 8.21 present the gas mass transport magnitude

and direction, respectively. As is seen from these two figures, the greatest mass flux

is located at the lower corner of the sample and is noticeably higher than observed in

the other samples. This is explained by the fact that the back wall is assumed to be

impermeable and the length of the side wall is limited. Therefore, the pyrolysis gas

flowing downwards accumulates the mass flow rate at the lower corner of the sample,

resulting in a much larger mass flow rate at this location.
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(a) t = 5 s (b) t = 10 s

(c) t = 20 s (d) t = 30 s

Figure 8.18: Temperature contours for sample D (Case 1.4), at various times

(a) t = 5 s (b) t = 10 s

(c) t = 20 s (d) t = 30 s

Figure 8.19: Porosity contours for sample D (Case 1.4), at various times

The pyrolysis gas blowing rates are presented in Fig. 8.9d, along with results

obtained using 1.5 times and 2 times refined meshes. It can be seen from the figure
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(a) t = 5 s (b) t = 10 s

(c) t = 20 s (d) t = 30 s

Figure 8.20: |ṁ| contours for sample D (Case 1.4), at various times

(a) t = 5 s (b) t = 10 s

(c) t = 20 s (d) t = 30 s

Figure 8.21: Gas streamlines for sample D (Case 1.4), at various times

that the greatest discrepancy locates near the lower corner of sample D, where a

strong blowing occurs. The differences between each gas blowing curves are within
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5 percent of the evaluated result, indicating the solutions are close to the converged

solution, though they are not fully grid-independent at the corner of the sample.

For all meshes in Fig. 8.9d, the blowing rate through the front surface is further

increased when compared to the previous samples. This is due to the back-wall

of sample D being very close to the decomposition/pyrolysis zone, which builds up

the pressure near the wall and drives more gas towards the front surface. But the

magnitude of this increase in front surface blowing is small, compared to the increase

in mass flux out the sides of the samples. The maximum value of gas blowing rate

is located at the lower corner, and shows non-monotonic behavior in time, unlike for

the previous samples. In all, the reduction of sample thickness alters the blowing

pattern on both the front and side surface; however, the influence on the side is more

significant than on the front surface.

Second set: effect of sample holders

Case 2.1

Temperature distributions within sampleA− at various times are presented in Fig. 8.22.

Despite minor differences compared to sample A (Fig. 8.5), the distributions are strik-

ingly similar. Figure 8.23 shows that this similarity extends to the porosity. In both

cases the greatest differences are observed late in the run, at t = 30 s. At this point in

time, the extent of heating and charring along the centerline in sample A− is greater

than in sample A, thus leading to a flatter temperature and porosity contours within

sample A− compared to sample A.

The magnitude of mass flux in sample A−, as depicted in Fig. 8.24, also has a

similar pattern to that of sample A. However, as shown in Fig. 8.25, the imperme-

ability of the sample holder walls causes the pyrolysis gas flow to be largely confined

to the portion of the sample not encased within the sample holder. A small portion of

the gas flows into the region enclosed by the sample holder, but reverses its direction
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(a) t = 5 s (b) t = 10 s (c) t = 20 s (d) t = 30 s

Figure 8.22: Temperature contours for sample A− (Case 2.1), at various times

(a) t = 5 s (b) t = 10 s (c) t = 20 s (d) t = 30 s

Figure 8.23: Porosity contours for sample A− (Case 2.1), at various times
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(a) t = 5 s (b) t = 10 s (c) t = 20 s (d) t = 30 s

Figure 8.24: |ṁ| contours for sample A− (Case 2.1), at various times

(a) t = 5 s (b) t = 10 s (c) t = 20 s (d) t = 30 s

Figure 8.25: Gas streamlines for sample A (Case 2.1), at various times
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and exits out through the lower corner on the side of the sample.

As illustrated by comparing Fig. 8.9e and 8.9a, despite the gas flow being confined

to a smaller region of the sample when a holder is present, the overall surface gas

blowing performance is quite similar. To illustrate the effect of the sample holder

further, an additional simulation was conducted for the same geometry as sample

A but with length of only 0.04 m, which corresponds to the length of sample A−

that protrudes from the holder. The resulting mass flow rate through the surface

are shown as symbols in Fig. 8.9e. As expected, the results are almost identical to

the surface gas blowing rate for sample A−. This suggests that, especially where

the surface blowing is concerned, this type of sample holder essentially shortend the

effective length of the material sample.

Case 2.2

The temperature and porosity distributions within sample B−, as shown in Figs. 8.26

and 8.27, are basically unchanged when compared to the same results for sample B

(Figs. 8.10 and 8.11). Only slight differences are evident near the sample holder.

The pyrolysis gas transport magnitude and direction are shown in Figs. 8.28 and

8.29, respectively. As with sample B, the location of greatest |ṁ| is located below the

charring front. It is seen from the streamline plot presented by Fig. 8.29, the pyrolysis

gas flows into the region enclosed by the holder of sample B− and it reverses direction

and exits out the side of the sample. Note that this behavior was also seen for sample

A− (Fig. 8.25).

Another simulation was performed using a shorter (4 cm) version of sample B.

The results of surface mass flux are presented in Fig. 8.9f, using symbols. The surface

blowing rate distributions are again almost identical, lending further support to the

hypothesis that this type of sample holder produces similar behavior to that of a

shorter sample.
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(a) t = 5 s (b) t = 10 s

(c) t = 20 s (d) t = 30 s

Figure 8.26: Temperature contours for sample B− (Case 2.2), at various times
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(a) t = 5 s (b) t = 10 s

(c) t = 20 s (d) t = 30 s

Figure 8.27: Porosity contours for sample B− (Case 2.2), at various times
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(a) t = 5 s (b) t = 10 s

(c) t = 20 s (d) t = 30 s

Figure 8.28: |ṁ| contours for sample B− (Case 2.2), at various times

99



(a) t = 5 s (b) t = 10 s

(c) t = 20 s (d) t = 30 s

Figure 8.29: Gas streamlines for sample B− (Case 2.2), at various times
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Case 2.3

For Case 2.3, which simulates a sample holder mounted to the back face, the thermal

and material response shown in Figs. 8.30 and 8.31 are found to be virtually identical

to the sample without holder (Figs. 8.14 and 8.15).

(a) t = 5 s (b) t = 10 s

(c) t = 20 s (d) t = 30 s

Figure 8.30: Temperature contours for sample B− (Case 2.3), at various times

Furthermore, the pyrolysis gas mass transport for sample C−, as shown in Figs. 8.32

and 8.33, shows that without the confinement effects produced by the holder enclosing

the sample, the presence of the holder results in a small acceleration and deviation
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(a) t = 5 s (b) t = 10 s

(c) t = 20 s (d) t = 30 s

Figure 8.31: Porosity contours for sample B− (Case 2.3), at various times

in mass flux direction close to the holder. As a result, the pyrolysis gas transport

results for sample C− are mostly similar to those for sample C (Figs. 8.16 and 8.17).

This similarity is also reflected in the mass flux out of the surface, as shown in

Fig. 8.9g, where sample C profiles are also presented on the same figure using symbols.

It is clear to see from the figure that the two solutions are almost identical, except

for the small differences on the side wall when t ≥ 10 s. Thus it appears that the

distortions due to mounting a sample are minimized when mounting the sample using
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(a) t = 5 s (b) t = 10 s

(c) t = 20 s (d) t = 30 s

Figure 8.32: |ṁ| contours for sample C− (Case 2.3), at various times

its back face.

Case 2.4

This observation is preserved for sample D− for which the sample holder is consider-

ably closer to the charring front. The temperature and porosity distributions for this

sample, Figs. 8.34 and 8.35 respectively, are comparable to those found for sample

D.

As with sample C−, the differences in pyrolysis gas mass transport within sample
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(a) t = 5 s (b) t = 10 s

(c) t = 20 s (d) t = 30 s

Figure 8.33: Gas streamlines for sample C− (Case 2.3), at various times

D− are confined to the region near the sample, as depicted in Figs. 8.36 and 8.37.

However, due to the proximity of the char front to the sample holder for this case,

these effects are amplified. Thus, as illustrated by comparison of the mass flux out of

the surface for sample D−, shown as lines in Fig. 8.9h and that of sample D, shown

as symbols, differences are only evident when t ≥ 30 s. These differences are created

when the char front is within close proximity to the sample holder, resulting in a

slight increase in mass flux out the side of the sample.
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(a) t = 5 s (b) t = 10 s

(c) t = 20 s (d) t = 30 s

Figure 8.34: Temperature contours for sample D− (Case 2.4), at various times

(a) t = 5 s (b) t = 10 s

(c) t = 20 s (d) t = 30 s

Figure 8.35: Porosity contours for sample D− (Case 2.4), at various times

Comparison of mass flow rate at the stagnation point

As noted in the motivation, experiments such as those conducted in arc-jet facilities

are often used to validate and develop 1D models later used for TPS design. Therefore,
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(a) t = 5 s (b) t = 10 s

(c) t = 20 s (d) t = 30 s

Figure 8.36: |ṁ| contours for sample D− (Case 2.4), at various times

(a) t = 5 s (b) t = 10 s

(c) t = 20 s (d) t = 30 s

Figure 8.37: Gas streamlines for sample D (Case 2.4), at various times

an important consideration is how the effects of sample geometry and experimental

configuration impact the 1D approximation. In Fig. 8.38, the pyrolysis gas mass
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flux out of each sample at its stagnation point is compared to that predicted by a

1D model using the same conditions [74]. There are significant differences evident

Figure 8.38: Pyrolysis gas mass flow rate through surface at the stagnation point

between the blowing rate predicted by the 1D model and that predicted by the 3D

simulations, with as much as an order of magnitude difference in |ṁ| between the 1D

and 3D cases and faster decay in blowing rate for the 3D simulations. Regardless, the

samples with the smallest thickness to diameter ratio do show the greatest agreement

with the 1D model, as expected. However, it is also evident that as the char front

approaches the back face there is an increase, rather than decrease, of pyrolysis gas

mass flux out of the front surface. Only the samples with the highest h/d ratio do not

show this behavior. Furthermore, the mass flux out of the front face can be further

modified when the sample holder is included in the simulation. For the largest sample

with the smallest h/d ratio, the effect of the sample holder is significant. This is in

contrast to the earlier observations of |ṁ| which were dominated by the sidewall mass

flux. As diameter decreases and h/d ratio increases, the effect of the sample holder on

mass flux out the front surface becomes negligible, except for the smallest diameter

sample with the largest h/d ratio. For this sample, the effect of the sample holder is
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only evident at the beginning of the simulation.

8.5 Conclusions for geometric effects study

In order to investigate the influence of sample geometry, a series of 3D material re-

sponse simulations were performed under conditions that are likely to be encountered

in arc-jet experiments. For these simulations, four iso-Q TACOT samples with dif-

ferent diameters and thicknesses were examined; the effect of sample holder was also

investigated for each of the four samples. A CFD simulation was performed for the

flow field around one iso-Q geometry to acquire heat flux on the surface; the heat

flux on the other geometries were scaled proportionally according to the diameter of

the sample.

In contrast to the the widely-used 1D assumption, the majority of the pyrolysis

gas mass transfer was through the side wall of the material sample, regardless of the

sample diameter and thickness.

For a light-weight ablator such as the TACOT material, sample thickness-to-

diameter ratio is crucial to the thermal and material response of a given test specimen:

the smaller the diameter, the greater the effect caused by side wall heating and the less

the front surface blowing. Sample thickness mainly influences the side wall blowing

distribution: if sample thickness is much greater than the charring depth, the side wall

blowing pattern is a single peak distribution that highly skewed toward the shoulder

corner of the sample; if sample thickness is short enough to be comparable with

charring depth, a strong gas blowing will take place at the lower corner of the sample

side wall. These conclusions are likely extensible to other low-density, highly-porous

ablators but likely not applicable to low porosity carbon-phenolic ablators [48], or to

ablators that are encapsulated in a supporting structure, such as AVCOAT [107], used

on Apollo vehicles or the Orion MPCV. For ablators with low virgin permeability and

very high char permeability, such as SIRCA [108], the gas blowing pattern is expected
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to be similar, although the pyrolysis gas transport in the virgin material is expected

to diminish greatly.

Impermeable sample holders, if sheathed outside of the material, altered the mate-

rial, thermal, and blowing responses slightly. The altered behaviors were very similar

to the sample thickness being shortened by the length of the sample holder. Sample

holders located inside of the material did not change much of the material and thermal

responses, except for high diameter-to-thickness samples for which the blowing rate

was enhanced at stagnation point. As a conclusion, the results of this study have 1)

questioned the 1D surface blowing model for small test models, 2) shown qualitative

relation between the sample diameter and the strength of side wall heating effects,

3) investigated the effects of the sample holder to the sample response, 4) provided a

3D numerical perspective of charring process in arc-jet tests. Keeping in mind that

the actual experimental conditions may vary, these results may be used as qualitative

guidelines for choosing model geometries in future arc-jet experiments.

Copyright c© Haoyue Weng, 2014.
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Chapter 9 Effects of Orthotropic Material Properties

9.1 Motivation

Charring ablative materials usually have transverse isotropic (a subset of orthotropic)

properties due to fiber orientations, as was discussed in Section 5.1. Therefore in this

chapter, the effects of orthotropic material properties are numerically investigated us-

ing an arc-jet sample. The comparisons of models are presented by showing pyrolysis

gas streamlines and time series of temperature at selected virtual thermocouples.

9.2 Applied models

The material models and the governing equations are same as discussed in Chapter 7,

except that the material properties are assumed to be transverse isotropic.

9.3 Test-case descriptions

In this study, a total of seven cases is performed using TACOT material [99]. The

sample geometry used in each case is the iso-Q shape as was used in previous studies.

Figure 9.1 illustrates the iso-Q sample geometry mesh as well as the location of

virtual thermocouples. The location of the thermocouples are listed in Table 9.1.

Table 9.1: Coordinates of thermocouples in an iso-Q sample

TC# Coordinate, m TC# Coordinate, m

1 (0, 0, -3.81×10−3) 6 (0, 0, -2.286×10−2)
2 (0, 0, -7.62×10−3) 7 (2.54×10−2, 0, -2.286×10−2)
3 (0, 0, -1.143×10−2) 8 (3.81×10−2, 0, -2.286×10−2)
4 (0, 0, -1.524×10−2) 9 (4.445×10−2, 0, -2.286×10−2)
5 (0, 0, -3.048×10−2) 10 (4.445×10−2, 0, -3.048×10−2)

Since the objective of this test is to solely investigate the orthotropic material

model, the boundary conditions and initial settings of each case are set to be identi-
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(a) Iso-Q (30×10+70×40
cells (b) Thermocouples location [109]

Figure 9.1: Geometry and thermocouples location of the iso-Q sample [101]

cal. Figure 9.2 shows the boundary conditions applied. The heat flux and pressure

Figure 9.2: Illustration of boundary conditions and computational geometry

on the surface are non-uniform, the profiles of which are given in Fig. 9.3a, where

the arc length is defined as L =
√
x2 + y2 + z2, i.e. L = 0 represents the center

of the sample at the surface; the corner of the iso-Q sample is located at where

111



L =
√

0.052 + 0.01339752 = 0.0517638 m. The thermal boundary condition applied

along the surface is the explicit penetrated heat to the material, as was discussed in

Section 4.5. The stagnation value of the penetrated heat flux is shown in Fig. 9.2 as

qw(0).

The ramping profiles for the heat flux and the pressure boundary conditions are

identical, as illustrated in Fig. 9.3b. Initially (t = 0 s), the pressure and temperature

are assumed to be uniform within the material and along the surface. Then from

t = 0.1 to 40 s, the heat flux and pressure distributions given in Fig. 9.3a are applied

constantly on the boundary. Over the next 0.1 seconds, the heat flux boundary

condition is linearly ramped down to zero and the pressure is ramped down to the

initial value. The boundary stays adiabatic and is subjected to uniform pressure from

t = 40.1 to 60 s, which is the end of the simulation.

(a) Non-uniform distribution (b) Ramping over time

Figure 9.3: Pressure and heat flux boundary condition

The specific material model setups for each test-case are described in the following.

• First case: the control test-case, in which material properties are all assumed

to be isotropic. In the rest of the cases, the in-plane (IP) orientation and

the through-the-thickness (TTT) direction are corresponding to x-y plane and

z-direction, respectively.
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• Second case: the permeability in IP direction is assumed to be twice as large

as in TTT direction; the thermal conductivity is isotropic.

• Third case: the permeability in IP direction is assumed to be three times as in

TTT direction; the thermal conductivity is isotropic.

• Fourth case: the permeability in IP direction is assumed to be half of the value

in TTT direction; the thermal conductivity is isotropic.

• Fifth case: the permeability is isotropic but the thermal conductivity in IP

direction is assumed to be two times as in TTT direction.

• Sixth case: both the permeability and the thermal conductivity in IP direction

is assumed to be two times as in TTT direction.

• Seventh case: both the permeability and the thermal conductivity in IP direc-

tion is assumed to be half of the value in TTT direction.

The reason to pick KIP/KTTT = 2 for the second case, and KIP/KTTT = 3 for the

third case is because KIP/KTTT = 2.62 for virgin PICA, based on an experimental

estimation [91]. For the thermal conductivity, the ratio of kIP/kTTT = 2 is based

on the values reported in Ref. [109]. In the fourth case and the seventh case, the

orthotropic ratios are inverted in order to investigate the sample performance when

the material is rotated by 90 degrees.

9.4 Results and discussions

Pyrolysis gas transport

The numerical results of pyrolysis gas transport are presented in Figs. 9.4 to 9.10,

for case 1 to case 7, respectively. In these plots, the contour |ṁ′′| represented the

local momentum of pyrolysis gas, which is given as |ṁ′′| = φρg
√
u2 + v2 + w2. It can
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be seen from Figs. 9.4 to 9.6 that, when permeability was greater in IP direction,

the streamlines leaned towards the horizontal IP direction, especially in the char

layer. The gas momentum (flow rate) was also increased at about 0.005 m below the

shoulder point. In the fourth case (Fig. 9.7), the permeability was smaller in the IP

direction and the streamlines leaned towards the TTT direction. These effects were

due to the fact that the pyrolysis gas would travel more easily in the direction with

higher permeability.

Comparing the first case (Fig. 9.4) with the fifth case (Fig. 9.8), it can be seen

that the streamline patterns were very similar, if not identical. This is because the

change in thermal conductivity had little influence on the gas flow direction. When

comparing Fig. 9.4a with Fig. 9.8a, it can be observed that the gas momentum right

below the decomposition zone was slightly enhanced. This was probably caused by

the greater thermal conductivity in the IP direction, which enhanced the side wall

heating; more heating leads to higher centerline temperature and more pyrolysis gas

generation (thus, greater gas momentum).

When both orthotropic models were used, the thermal response followed a trend

similar to a combination of each model. As expected, the streamlines in Fig. 9.9

are very close to the ones in Fig. 9.5, in which they had the same permeability

matrix. This was due to the fact that the pyrolysis gas flow pattern is dominated

by the permeability orientation, and the thermal conductivity is insignificant to the

gas flow. For the same reason, the streamlines patterns of the fourth case (Fig. 9.7)

and the seventh case (Fig. 9.10) are quite close. The difference in the gas momentum

contours was due to the same analysis between the first case (Fig. 9.4) and the fifth

case (Fig. 9.8), described in the previous paragraph.
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(a) 20 sec (b) 40 sec (c) 60 sec

Figure 9.4: Pyrolysis gas transport for Case 1, isotropic permeability

(a) 20 sec (b) 40 sec (c) 60 sec

Figure 9.5: Pyrolysis gas transport for Case 2, orthotropic permeability: KIP/KTTT =
2

Thermocouple results analysis

The temperature time-series on 10 thermocouples are presented in Figs. 9.11 to 9.20.

The results of the first case in which isotropic properties are used, are plotted using
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(a) 20 sec (b) 40 sec (c) 60 sec

Figure 9.6: Pyrolysis gas transport for Case 3, orthotropic permeability: KIP/KTTT =
3

(a) 20 sec (b) 40 sec (c) 60 sec

Figure 9.7: Pyrolysis gas transport for Case 4, orthotropic permeability: KIP/KTTT =
0.5

a solid line, while results of the other cases are dotted with symbols. As shown in

Fig. 9.1b, the first six thermocouples are located along the centerline of the iso-Q
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(a) 20 sec (b) 40 sec (c) 60 sec

Figure 9.8: Pyrolysis gas transport for Case 5, orthotropic thermal conductivity:
kIP/kTTT = 2

(a) 20 sec (b) 40 sec (c) 60 sec

Figure 9.9: Pyrolysis gas transport for Case 6, orthotropic permeability and thermal
conductivity: KIP/KTTT = kIP/kTTT = 2

sample. The temperature profiles on these thermocouple locations confirmed the

importance of side wall heating effect: when IP thermal conductivity was greater,
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(a) 20 sec (b) 40 sec (c) 60 sec

Figure 9.10: Pyrolysis gas transport for Case 7, orthotropic permeability and thermal
conductivity: KIP/KTTT = kIP/kTTT = 0.5

the temperatures at thermocouple 1 to 6 were higher than the isotropic case; when

kIP was smaller, these temperatures were lower. This observation confirmed that the

horizontal heat transfer is very important to the centerline thermal response.

For the material permeability, it can be seen from Fig. 9.11 to 9.16 that, the

orthotropic models also altered the temperature profiles: when KIP is greater, the

centerline temperature is slightly greater than the value with the isotropic model,

and vice versa. To explain the connection between the permeability models and the

temperatures, consider the pyrolysis gas flow pattern in any of the figure from Fig. 9.4

to Fig. 9.10: a majority of the gas traveled downward first, then leaned towards the

right, and eventually exited through the side wall. When KIP was increased, the

horizontal gas movement was enhanced, thus more gas was pulled to flow downward.

The pulled gas was generated in the decomposition zone, which was hotter than

the material below, therefore, the hot gas further heated up the material along the

centerline, and more gas led to more heating. However, this temperature increment
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was small when compared to the temperature increment caused by the increased IP

thermal conductivity.

The temperature profiles for thermocouples 8 to 10, which located near the side

wall of the material, are presented in Figs 9.18 to 9.20. When the IP permeabilities

(KIP ) were doubled and tripled (depicted as the green and purple stars, respectively),

the temperatures were lower than in the isotropic case (the red solid lines). When

KIP is halved, as depicted by the blue open squares in the figures, the behavior is

just the opposite. Note that this behavior is just the opposite to the behaviors for

thermocouples 1 to 6. The reason of the opposite behavior is because the pyrolysis

gas flowed towards the shoulder region were from inside of the material, which was

cooler than the heated side wall. Therefore, when KIP was increased, the horizontal

gas transport was enhanced, and the temperatures at thermocouples 8 to 10 are

decreased due to the cooling effect.

The thermocouple 7 is located in between the centerline and the side wall of the

material. The temperature profiles for this thermocouple is presented in Fig. 9.17,

which were neither similar to the ones at the centerline nor to the ones near the side

wall. Since the results in Fig. 9.17 were very close to each other, the orthotropic

behaviors at thermocouple 7 cannot be categorized into any of the analyses above.

The thermal response at this location was appeared to behave under the influences

of both analyses.

Figure 9.11: T profiles at TC 1 Figure 9.12: T profiles at TC 2
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Figure 9.13: T profiles at TC 3 Figure 9.14: T profiles at TC 4

Figure 9.15: T profiles at TC 5 Figure 9.16: T profiles at TC 6

Figure 9.17: T profiles at TC 7 Figure 9.18: T profiles at TC 8

Figure 9.19: T profiles at TC 9 Figure 9.20: T profiles at TC 10
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9.5 Conclusions for orthotropic properties study

An orthotropic material properties model was numerically studied by performing a

series of 3D simulations on the iso-Q sample. As expected, the orthotropic model

affected the inner thermal response and the pyrolysis gas flow pattern noticeably.

In particular, the orthotropic permeability enhanced the pyrolysis gas flow in the

direction that had higher permeability. Moreover, the orthotropic permeability also

altered the thermal response slightly, either heating or cooling the material, depending

the location and the flow direction. The temperature changes were explained to be

due to the enthalpy carried by the pyrolysis gas, as it traveled within the porous

material. Using this information, the gas flow within the material and the blowing

direction can be manipulated by altering the orientation angle of the material to

obtain the desired thermal or blowing performance.

The orthotropic thermal conductivity greatly affected the thermal response within

the iso-Q sample, as expected. However, its influence to the gas flow pattern was

small. It is also worthwhile to mention that the experiment with high IP thermal

conductivity demonstrated the significance of the side wall heating effect.

The conclusions in this study are likely extendible to highly porous, highly per-

meable, orthotropic charring materials such as PICA and SIRCA, where the effects

of pyrolysis gas transport are noticeable. But for dense materials with low perme-

ability, the gas effects and permeability models are expected to be insignificant; the

importance of conductivity models however, is expected to remain significant.

As a summary of this study, 1) a comprehensive orthotropic material properties

model was implemented, 2) the significances of the properties models were shown, 3)

the effects of pyrolysis gas transport within orthotropic materials were demonstrated

and analyzed.

Copyright c© Haoyue Weng, 2014.
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Chapter 10 Conclusions

10.1 Summary

The development of a multidimensional thermal and material response module was

presented. The module is based on a FVM computational system with first order

accuracy in time and second order accuracy in space. The major application of this

solver is to analysis and predict the behavior of charring ablative materials.

In this work, a thorough literature review regarding the history of charring ab-

lation modeling was first presented (Chapter 1), which focused on multidimensional

and pyrolysis gas transport models. The computational framework (Chapter 2) and

governing equations (Chapter 3) were presented next, followed by material models

(Chapter 5). The material charring models were verified using analytical solutions and

through a code-to-code comparison, in which promising results were shown (Chap-

ter 6). Moreover, several multidimensional effects were investigated through the series

of parametric studies presented in Chapter 7, 8, and 9. The outcomes of these studies

and the original contributions of this work are emphasized in the following section.

10.2 Original contributions

A list of original contributions to the field of charring ablation modeling and numerical

heat transfer is outlined in this section.

1. A multidimensional pyrolysis gas transport model using time depen-

dent equations and orthotropic, density-based permeability model.

(Chapter 5) Most of the existing multidimensional works did not model the

pyrolysis gas transport within charring ablators [35, 37, 38, 45]. In this work,

the multidimensional gas transport was modeled with a set of time-dependent
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momentum equations based on Darcy’s law. The permeability was assumed

to be orthotropic, and was modeled by interpolation between virgin and char

value, based on degree of char (Eq. (5.1)). This model is important, since the

permeability of charring ablative materials may vary by two to three times de-

pending on the orientation, and even as much as three order of magnitudes

between virgin and char [92].

2. A study of pyrolysis gas transport performed to find the difference

between a 3D model and the conventional 1D model. (Chapter 7) For

small charring ablative samples in ground-test facilities such as arc-jet and ICP

torches, the conventional 1D assumption breaks. By solving the momentum

equations proposed in the previous contribution, the pyrolysis gas was found

to blow majorly through the side walls of a test article, as opposed to the 1D

assumption where gas only blows through the front surface. Correct modeling

of gas blowing is important since the blowing rate is directly related to the ac-

curate modeling of thermal boundary conditions and reacting boundary layers.

Moreover, the 3D gas transport behavior was also found to affect the thermal

response of the sample. This was explained by the enthalpy carried by the py-

rolysis gas: as the generated hot gas flows within the material, the material is

further heated in the flow direction. This further strengthens the importance

of the 3D gas transport model proposed in this work.

It was also found in this study that, the non-uniform pressure boundary con-

dition introduced by multidimensional modeling actually encourages the side

blowing effect, since the stagnation pressure at the material front is usually

higher than the pressure on the sides.

3. A study of geometric effects of iso-Q test sample aiming to find the

relation between sample performance and sample diameter, thick-
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ness, holder geometry. (Chapter 8) It was found in this study that, the

iso-Q sample thickness-to-diameter ratio is crucial to the thermal and material

response. In general, the smaller the diameter, the greater heat penetration

from the side and the less blowing through the front surface. Moreover, the

sample thickness is found to mainly affect the side wall blowing distribution:

if the sample thickness is much greater than the charring depth, the side wall

blowing pattern is a single peak distribution that highly skewed toward the

shoulder corner of the sample; if the sample thickness is short enough to be

comparable with charring depth, a strong gas blowing will take place at the

lower corner of the sample side wall. These conclusions are likely extensible to

other low density, highly porous ablative articles used in ground-test facilities.

For ablators with low virgin permeability and very high char permeability such

as SIRCA [108], the gas blowing pattern is expected to be similar, although the

pyrolysis gas transport in the virgin material is expected to diminish greatly.

The sample holders, if sheathed outside of the material, altered the material’s

thermal and blowing response slightly. The altered behaviors were very similar

to the sample thickness being shortened by the length of the sample holder.

Sample holders located inside of the material did not change much of the ablator

performance, except at the stagnation point for high diameter-to-thickness ratio

samples. Keeping in mind that the actual experimental conditions may vary,

these results may be used as qualitative guidelines for choosing model geometries

in future arc-jet experiments.

4. A study of orthotropic material properties performed to find the

significance of the orthotropic model on iso-Q sample performance.

(Chapter 9) The orthotropic material properties essentially altered the mate-

rial thermal and blowing performance in the direction of isotropy. In particular,

the orthotropic thermal conductivity greatly influenced the sample thermal re-
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sponse, since the heat transfer to the material came from both the front and

the side; thus, the directional properties resulted in different temperature pro-

files from using isotropic properties. However, the effect of orthotropic thermal

conductivity to the pyrolysis gas flow pattern was negligible. The orthotropic

permeability enhanced the pyrolysis gas flow in the direction with higher per-

meability. In addition, the permeability model also slightly altered the thermal

response in the direction of the flow. Using these information, the gas flow

within the material and the blowing direction can be manipulated by altering

the orientation angle of the material, to obtain the desired thermal or blowing

performance.

These conclusions are likely extendible to highly porous, highly permeable, or-

thotropic charring materials such as PICA and SIRCA, in which the effects of

pyrolysis gas transport are noticeable. For dense materials with low perme-

ability, the effects of gas flow and orthotropic permeability are expected to be

insignificant, while the effect of orthotropic thermal conductivity should remain

significant.

10.3 Future work

This work provided a tool box with basic models for charring materials, yet several

phenomena in the charring ablation process were not modeled. The following models

are partially implemented or considered to be implemented in the future:

1. 3D moving mesh and ablation models. Ablation is an endothermic process,

which is very important for charring ablation problems with surface recessions.

The obstacle preventing the implementation of ablation models is 3D moving

mesh, which was not an option in the current KATS and not trivial. Once

this obstacle is overcome, the ablation models will be implemented to investi-
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gate the effects of ablation in conjunction with material decomposition and its

significance to the existing conclusions.

2. Volume-averaged carbon oxidation model. Ablation has two limited

regime: diffusion limited and reaction limited. The volume-averaged carbon

oxidation model is for reaction limited ablation, for which oxygen are diffused

inside the material and carbon fibers are oxidized from within. Since the model

is volume-averaged, it fits well with the finite volume method used in KATS.

3. Chemical non-equilibrium pyrolysis gas model with multiple gas species

and reactions among them. The chemical non-equilibrium model is neces-

sary for a high fidelity material response program. With this model, not only

the overall blowing rate, but also the blowing rate of individual species can be

obtained, which enable a more accurate analysis of boundary layer flow and a

stronger coupling with a CFD solver.

4. Thermal non-equilibrium between the pyrolysis gas and the mate-

rial. Thermal equilibrium is usually assumed for the heat transfer between

the pyrolysis gas and the solid material, since it is valid for a large range of

Nusselt number. Charring ablation problems with Nusselt number beyond the

equilibrium range (though rare) may require a thermal non-equilibrium model.

In addition, the heat transfer between the inner pyrolysis gas and the solid

matrix will be modeled, which allows controlled modeling of the heat transfer

due to the pyrolysis gas transport discussed in this thesis. Finally, it is also

interesting to investigate the difference between the thermal equilibrium and

non-equilibrium models, and find out how much they vary.

5. Spallation and delamination models due to thermal and mechanical

stresses. Spallation is part of the ablation phenomena, yet few literatures have

modeled it or looked into its effect. This phenomenon requires information from
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both the material and the flow flied. Delamination is the phenomenon that the

material forms cracks within the material, and some cracks may be observed

from outside. The delamination is due to thermal and mechanical stresses.

Coupled with a stress solver, the delamination effects can be modeled on top of

the existing material response solver.

Copyright c© Haoyue Weng, 2014.
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Appendix A

Jacobian matrices in the governing equations

The Jacobian matrices in Eq. (2.9) are presented in this appendix. The Jacobian

matrix ∂Q
∂P

consists of derivatives of conservative variables over primitive variables.

The two conservative and primitive vectors are revisited as:

Q =



φρg1
...

φρgngs

ρs1
...

ρsnss

φρgu

φρgv

φρgw

φEg + Es



, P =



p1

...

pngs

ρs1
...

ρsnss

u

v

w

T



, (3.1 revisited)
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where

ρg = ρg1 + ρg2 + · · ·+ ρgngs ,

p = p1 + p2 + · · ·+ pngs,

ρs = Γ1ρs1 + Γ2ρs2 + · · ·+ Γnssρsnss ,

Eg = ρgh+
1

2
ρg(u

2 + v2 + w2)− p,

Es = ρscp,sT = ρshs.

The Jacobian matrix ∂Q
∂P

is thus calculated as Eq. (1), which is given in the next page.
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∂Q

∂P
=



φ
∂ρg1
∂p1

0 . . . 0 ∂φ
∂ρs1

ρg1
∂φ
∂ρs2

ρg1 . . . ∂φ
∂ρsnss

ρg1 0 0 0 φ
∂ρg1
∂T

0 φ
∂ρg1
∂p2

. . . 0 ∂φ
∂ρs1

ρg2
∂φ
∂ρs2

ρg2 . . . ∂φ
∂ρsnss

ρg2 0 0 0 φ
∂ρg2
∂T

...
...

. . .
...

...
...

. . .
...

...
...

...
...

0 0 . . . φ
∂ρgngs

∂pngs

∂φ
∂ρs1

ρgngs

∂φ
∂ρs2

ρgngs . . . ∂φ
∂ρsnss

ρgngs 0 0 0 φ
∂ρgngs

∂T

0 0 . . . 0 1 0 . . . 0 0 0 0 0

0 0 . . . 0 0 1 . . . 0 0 0 0 0

...
...

. . .
...

...
...

. . .
...

...
...

...
...

0 0 . . . 0 0 0 . . . 1 0 0 0 0

∂ρg
∂p1
φu ∂ρg

∂p2
φu . . . ∂ρg

∂pngs
φu ∂φ

∂ρs1
ρu ∂φ

∂ρs2
ρu . . . ∂φ

∂ρsnss
ρu φρg 0 0 φu∂ρg

∂T

∂ρg
∂p1
φv ∂ρg

∂p2
φv . . . ∂ρg

∂pngs
φv ∂φ

∂ρs1
ρv ∂φ

∂ρs2
ρv . . . ∂φ

∂ρsnss
ρv 0 φρg 0 φv ∂ρg

∂T

∂ρg
∂p1
φw ∂ρg

∂p2
φw . . . ∂ρg

∂pngs
φw ∂φ

∂ρs1
ρw ∂φ

∂ρs2
ρw . . . ∂φ

∂ρsnss
ρw 0 0 φρg φw ∂ρg

∂T

∂E
∂p1

∂E
∂p2

. . . ∂E
∂pngs

∂E
∂ρs1

∂E
∂ρs2

. . . ∂E
∂ρsnss

φρgu φρgv φρgw
∂E
∂T



. (1)
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The derivatives in the Jacobian matrix are given as:

∂ρgi
∂pi

=
∂(pi/(RiT )

∂pi
= RiT =

ρgi
pi
, i = 1, 2, . . . , ngs

∂ρgi
∂T

=
∂(pi/(RiT )

∂T
=
pi
Ri

(− 1

T 2
) = −ρgi

T
, i = 1, 2, . . . , ngs

∂φ

∂ρsi
=

∂φ

∂ρs

∂ρs
∂ρsi

=
∂β(φc − φv)

∂ρs
Γi =

φc − φv
ρc − ρv

Γi, i = 1, 2, . . . , nss

∂Es
∂T

= ρscp,s

∂Es
∂ρsi

= (hs + ρs
∂hs
∂ρs

)Γi, i = 1, 2, . . . , nss

∂hs
∂ρs

= (hv − hc)
∂τ

∂ρs
= −(hv − hc)

ρcρv
(ρv − ρc)

(− 1

ρ2
s

) = (hv − hc)
ρcρv

(ρv − ρc)ρ2
s

∂Eg
∂pi

=

(
hg +

1

2
(u2 + v2 + w2)

)
∂ρg
∂pi
− 1, i = 1, 2, . . . , ngs

∂Eg
∂T

=

(
hg +

1

2
(u2 + v2 + w2)

)
∂ρg
∂T

+ ρgcp,g, i = 1, 2, . . . , ngs

The rest of the derivatives in Eq. (2.9) are obtained numerically, using Eq. (2.11)

in Section 2.1.
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Appendix B

Input deck of the material response module in KATS

A sample input deck of KATS is presented in this appendix. The input deck is the

one that used to solve the theoretical charring problem given in Section 6.3.

reference {Mach=1.;p=0;T=0.;}

time marching {

step size=1e-2;

number of steps = 6000;

update frequency = 1000;

}

grid_1 {

file=grid/3D200.cgns;

transform_1 (

function=scale;

anchor=[0.,0.,0.];

factor=[5,5,5];

);

dimension=3;

equations=heat conduction;

heat conduction (

// Debug info

132



debug cell index = [0,2,200,202];

debug face index = [3];

//debug mode = 0;

// Number of ...

number of gas species = 1;

number of solid species = 3;

number of dimensions = 3;

number of energy equations = 1;

// Problem type

problem type = charring ablative;

// Momentum equation type

momentum equations = Darcys law;

convective flux = AUSM+up;

order = second;

relative tolerance = 1e-8;

absolute tolerance = 1e-9;

maximum iterations = 1000;

);

write output (

format=tecplot;

volume variables=[T,p,rhos,hg];

surface variables=[T,pi,rhos,hg,mu,mdot,qdot];

volume plot frequency = 1000;
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surface plot frequency = 1000;

restart frequency = 2000;

moment center = [0.,0.,0.];

load frequency = 10;

include bcs=[4];

// sampling file = tcpoints.txt;

// sampling variables = [T];

// sampling frequency = 10;

);

material (

fluid file = material/fluid.mat;

solid file = material/solid.mat;

);

IC_1 (T=298; p=10132.5; rhos=[60,180,320];);

BC_1 (type=wall;);

BC_3 (type=symmetry;);

BC_2 (type=outlet;

p = 10132.5;

T = 1644;

);

}

Most of the inputs are self-explanatory, except for the material section, which is

defined in separate files. The input deck only provides the directories of the material

files. In each material file, the material model is first specified. For instance, the

solid material file (material/solid.mat) for this case defines the decomposition model

as phenomenological first; then the virgin and char properties are specified, such that:

decomposition model = phenomenological;
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virgin{

density = 280;

porosity = 0.8;

permeability = 1.6E-11;

tuotorsity = 1.2;

volume fraction = 0.5;

thermal properties table = svrgn.txt;

}

char{

density = 220;

porosity = 0.85;

permeability = 2.0E-11;

tuotorsity = 1.1;

volume fraction = 0.5;

thermal properties table = schar.txt;

}

reaction file = r3cmp.txt;

Similarly, the fluid material file (material/fluid.mat) for this case specifies the single

species model (or using an equilibrium table) in the first line:

gas model = eq table; // single species model

gas species = [gpyro]; // linked to gpyro.txt

The properties of the species are given by a file named “gpyro.txt” in the material

directory, as indicated by the file name inside the brackets. For gas materials with

multiple species, the names of all species have to be specified in the brackets, separated

by comma.

135



Appendix C

Derivation of conservation equations in porous media

The derivation of conservation equations presented here is 2D, and is easily extensible

to 3D. Consider a 2D porous control volume, as illustrated in Fig. C.1. The size of

the volume is ∆x by ∆y; the volume is therefore V = ∆x∆y. The volume of the gas

portion is given as Vg = φV , where φ is porosity.

Figure C.1: Sketch of a 2D control volume for derivation of conservation equations

The mass conservation in a control volume can be expressed as: the mass change

in a time interval ∆t equals to the net mass flow through the boundaries + the mass

change by internal sources. This conservation idea can be represented by the following
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equation:

(Vgρg)
(n+1) − (Vgρg)

(n) =(ρguA)x1∆t− (ρguA)x2∆t+ (ρgvA)y1∆t− (ρgvA)y2∆t

+ ωgV∆t, (2)

where the superscript (n) represents the time marching level, that t(n+1) = t(n) + ∆t.

Assuming Ax1 = φx1∆y, Ax2 = φx2∆y, Ay1 = φy1∆x, Ay2 = φy2∆x, and replacing Vg

with φV , Eq. (2) becomes:

V
[
(φρg)

(n+1) − (φρg)
(n)
]

=∆y∆t [(φρgu)x1 − (φρgu)x2] + ∆x∆t [(φρgv)y1 − (φρgv)y2]

+ ωgV∆t. (3)

Divided Eq. (3) by ∆x∆y∆t, the following equation is obtained:

(φρg)
(n+1) − (φρg)

(n)

∆t
=

(φρgu)x1 − (φρgu)x2

∆x
+

(φρgv)y1 − (φρgv)y2

∆y
+ ωg. (4)

Assuming the volume size and the time step size are infinitesimal, or ∆x,∆y,∆t→ 0,

Eq. (4) can be written into the differential form as following:

lim
∆t→0

(φρg)
(n+1) − (φρg)

(n)

∆t
= − lim

∆x→0

(φρgu)x2 − (φρgu)x1

∆x

− lim
∆y→0

(φρgv)y2 − (φρgv)y1

∆y
+ ωg

⇒ ∂(φρg)

∂t
= −∂(φρgu)

∂x
− ∂(φρgv)

∂y
+ ωg

⇒ ∂(φρg)

∂t
+
∂(φρgu)

∂x
+
∂(φρgv)

∂y
= ωg (5)

For the momentum conservation, similar analysis is applied. The conservation

law can be expressed as: the momentum change in a time interval ∆t equals to the

net momentum flow through the boundaries + the net momentum change due to the

pressure on the boundary + the diffusive effects of the porous media. The x-direction

conservation law can be written as:

(Vgρgu)(n+1) − (Vgρgu)(n) =(ρgu
2A)x1∆t− (ρgu

2A)x2∆t+ (ρguvA)y1∆t− (ρguvA)y2∆t

+ px1∆y∆t− px2∆y∆t+DxV∆t. (6)
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Divided by ∆x∆y∆t, the following is obtained:

(φρgu)(n+1) − (φρgu)(n)

∆t
=

(φρgu
2)x1 − (φρgu

2)x2

∆x
+

(φρguv)y1 − (φρguv)y2

∆y

+
px1 − px2

∆x
+Dx. (7)

Taking limits that ∆x,∆y,∆t→ 0, the Eq. (7) yields:

∂(φρgu)

∂t
+
∂(φρgu

2 + p)

∂x
+
∂(φρguv)

∂y
= Dx. (8)

Similarly, the energy balance can be described as: the overall energy change in

a time interval ∆t equals to the net enthalpy flux through the boundaries + the

conductive heat transfer + the energy change due to other diffusive effects. Therefore,

the equation for the energy conservation can be written as:

(VgEg + V Es)
(n+1) − (VgEg + V Es)

(n) = SDV∆t

+ (ρguHA)x1∆t− (ρguHA)x2∆t+ (ρgvHA)y1∆t− (ρgvHA)y2∆t

− Fcond,x|x1 ∆y∆t+ Fcond,x|x2 ∆y∆t− Fcond,y|y1 ∆y∆t+ Fcond,y|y2 ∆y∆t, (9)

where Es = ρscp,sT and the solid density here is the effective density (solid mass over

the whole volume), therefore Es is multiplied with the whole control volume rather

than the solid volume. Divide Eq. (9) by ∆x∆y∆t, then the following is obtained:

(φEg + Es)
(n+1) − (φEg + Es)

(n)

∆t
= SD

+
(φρguH)x1 − (φρguH)x2

∆x
+

(φρgvH)y1 − (φρgvH)y2

∆y

−
Fcond,x|x1 − Fcond,x|x2

∆x
−
Fcond,y|y1 − Fcond,y|y2

∆y
. (10)

Taking limit for ∆x, ∆y, and ∆t, the following differential equation is obtained:

∂(φEg + Es)

∂t
+
∂(φρguH)

∂x
+
∂(φρgvH)

∂y
− ∂Fcond,x

∂x
− ∂Fcond,y

∂y
= SD. (11)

In summary, the conservation equations of mass, momentum, and energy were

derived in 2D and given by Eqs. (5), (8), (11), respectively. Based on these equations,
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the conservation equations in 3D can be extended as:

∂(φρg)

∂t
+
∂(φρgu)

∂x
+
∂(φρgv)

∂y
+
∂(φρgw)

∂z
= ωg, (12a)

∂(φρgu)

∂t
+
∂(φρgu

2 + p)

∂x
+
∂(φρguv)

∂y
+
∂(φρguw)

∂z
= Dx, (12b)

∂(φρgv)

∂t
+
∂(φρguv)

∂x
+
∂(φρgv

2 + p)

∂y
+
∂(φρgvw)

∂z
= Dy, (12c)

∂(φρgw)

∂t
+
∂(φρguw)

∂x
+
∂(φρgvw)

∂y
+
∂(φρgw

2 + p)

∂w
= Dz, (12d)

∂(φEg + Es)

∂t
+
∂(φρguH)

∂x
+
∂(φρgvH)

∂y
+
∂(φρgwH)

∂z

− ∂Fcond,x
∂x

− ∂Fcond,y
∂y

− ∂Fcond,z
∂z

= SD. (12e)

The solid mass conservation equation is quite trivial:

∂ρsi
∂t

= ωsi , i = 1, . . . , nss. (13)

Note that, Eqs. (12) and (13) are equivalent to the governing equations presented

by Eqs. (3.1) and (3.2), except the gas mass conservation was extended to multiple

species. The conservation equations in porous media are thus derived.
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Appendix D

Material properties of TACOT

The material used in this document is TACOT 3.0, which can be found in Ref. [110].

The thermal properties of the virgin and char material are given in Table D.1 and

Table D.2, respectively.

Table D.1: TACOT virgin thermal properties

T (K) cp (J/kg/K) k (W/m/K) h(J/kg)

2.556E+02 8.792E+02 3.975E-01 -8.967E+05
2.980E+02 9.839E+02 4.025E-01 -8.57E+05
4.444E+02 1.298E+03 4.162E-01 -6.901E+05
5.556E+02 1.465E+03 4.530E-01 -5.365E+05
6.444E+02 1.570E+03 4.698E-01 -4.016E+05
8.333E+02 1.717E+03 4.860E-01 -9.124E+04
1.111E+03 1.863E+03 5.234E-01 4.059E+05
1.389E+03 1.934E+03 5.601E-01 9.334E+05
1.667E+03 1.980E+03 6.978E-01 1.477E+06
1.944E+03 1.989E+03 8.723E-01 2.028E+06
2.222E+03 2.001E+03 1.109E+00 2.583E+06
2.778E+03 2.010E+03 1.751E+00 3.697E+06
3.333E+03 2.010E+03 2.779E+00 4.813E+06

The pyrolysis gas model assumes chemical equilibrium. The equilibrium gas prop-

erties at 1 atm is given in Table. D.3.
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Table D.2: TACOT char thermal properties

T (K) cp (J/kg/K) k (W/m/K) h(J/kg)

2.556E+02 7.327E+02 3.975E-01 -3.216E+04
2.980E+02 7.829E+02 4.025E-01 0.000E+00
4.444E+02 1.093E+03 4.162E-01 1.373E+05
5.556E+02 1.319E+03 4.530E-01 2.713E+05
6.444E+02 1.432E+03 4.698E-01 3.936E+05
8.333E+02 1.675E+03 4.860E-01 6.870E+05
1.111E+03 1.842E+03 5.234E-01 1.175E+06
1.389E+03 1.968E+03 5.601E-01 1.705E+06
1.667E+03 2.052E+03 6.050E-01 2.263E+06
1.944E+03 2.093E+03 7.290E-01 2.839E+06
2.222E+03 2.110E+03 9.221E-01 3.422E+06
2.778E+03 2.135E+03 1.458E+00 4.602E+06
3.333E+03 2.152E+03 2.318E+00 5.793E+06

Table D.3: TACOT pyrolysis gas properties at 1 atm

T (K) γ Mw (kg/mol) cp (J/kg/K) hg (J/kg) µ (Pa s)

2.000E+02 1.3334E+00 2.1996E-02 1.5119E+03 -7.2465E+06 8.6881E-06

2.250E+02 1.3271E+00 2.1996E-02 1.5336E+03 -7.2084E+06 9.6663E-06

2.500E+02 1.3199E+00 2.1996E-02 1.5597E+03 -7.1698E+06 1.0645E-05

2.750E+02 1.3114E+00 2.1996E-02 1.5921E+03 -7.1304E+06 1.1615E-05

3.000E+02 1.3018E+00 2.1996E-02 1.6308E+03 -7.0901E+06 1.2572E-05

3.250E+02 1.2914E+00 2.1996E-02 1.6755E+03 -7.0488E+06 1.3514E-05

3.500E+02 1.2807E+00 2.1995E-02 1.7259E+03 -7.0063E+06 1.4438E-05

3.750E+02 1.2697E+00 2.1994E-02 1.7826E+03 -6.9625E+06 1.5344E-05

4.000E+02 1.2587E+00 2.1992E-02 1.8467E+03 -6.9171E+06 1.6232E-05

4.250E+02 1.2475E+00 2.1988E-02 1.9205E+03 -6.8700E+06 1.7102E-05

4.500E+02 1.2362E+00 2.1981E-02 2.0075E+03 -6.8210E+06 1.7955E-05

4.750E+02 1.2248E+00 2.1968E-02 2.1124E+03 -6.7695E+06 1.8792E-05

5.000E+02 1.2133E+00 2.1948E-02 2.2411E+03 -6.7152E+06 1.9615E-05

Continued on next page
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T (K) γ Mw (kg/mol) cp (J/kg/K) hg (J/kg) µ (Pa s)

5.250E+02 1.2018E+00 2.1917E-02 2.4018E+03 -6.6572E+06 2.0424E-05

5.500E+02 1.1902E+00 2.1870E-02 2.6053E+03 -6.5947E+06 2.1221E-05

5.750E+02 1.1786E+00 2.1804E-02 2.8670E+03 -6.5265E+06 2.2007E-05

6.000E+02 1.1670E+00 2.1712E-02 3.2102E+03 -6.4507E+06 2.2785E-05

6.250E+02 1.1554E+00 2.1587E-02 3.6707E+03 -6.3650E+06 2.3556E-05

6.500E+02 1.1440E+00 2.1418E-02 4.3012E+03 -6.2657E+06 2.4323E-05

6.750E+02 1.1333E+00 2.1191E-02 5.1709E+03 -6.1479E+06 2.5089E-05

7.000E+02 1.1242E+00 2.0890E-02 6.3506E+03 -6.0046E+06 2.5861E-05

7.250E+02 1.1174E+00 2.0495E-02 7.8823E+03 -5.8274E+06 2.6644E-05

7.500E+02 1.1131E+00 1.9990E-02 9.7476E+03 -5.6077E+06 2.7443E-05

7.750E+02 1.1113E+00 1.9369E-02 1.1854E+04 -5.3380E+06 2.8261E-05

8.000E+02 1.1116E+00 1.8644E-02 1.4029E+04 -5.0144E+06 2.9092E-05

8.250E+02 1.1136E+00 1.7840E-02 1.6010E+04 -4.6382E+06 2.9930E-05

8.500E+02 1.1171E+00 1.7004E-02 1.7437E+04 -4.2185E+06 3.0761E-05

8.750E+02 1.1219E+00 1.6190E-02 1.7887E+04 -3.7745E+06 3.1571E-05

9.000E+02 1.1283E+00 1.5457E-02 1.7009E+04 -3.3353E+06 3.2349E-05

9.250E+02 1.1364E+00 1.4855E-02 1.4765E+04 -2.9356E+06 3.3086E-05

9.500E+02 1.1473E+00 1.4410E-02 1.1647E+04 -2.6045E+06 3.3780E-05

9.750E+02 1.1620E+00 1.4119E-02 8.5576E+03 -2.3529E+06 3.4435E-05

1.000E+03 1.1804E+00 1.3947E-02 6.2218E+03 -2.1701E+06 3.5060E-05

1.025E+03 1.1992E+00 1.3854E-02 4.7840E+03 -2.0342E+06 3.5663E-05

1.050E+03 1.2138E+00 1.3804E-02 4.0135E+03 -1.9254E+06 3.6250E-05

1.075E+03 1.2220E+00 1.3778E-02 3.6439E+03 -1.8303E+06 3.6828E-05

1.100E+03 1.2240E+00 1.3763E-02 3.5092E+03 -1.7412E+06 3.7398E-05

1.125E+03 1.2202E+00 1.3752E-02 3.5606E+03 -1.6533E+06 3.7965E-05

Continued on next page
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T (K) γ Mw (kg/mol) cp (J/kg/K) hg (J/kg) µ (Pa s)

1.150E+03 1.2087E+00 1.3737E-02 3.9007E+03 -1.5609E+06 3.8536E-05

1.175E+03 1.1899E+00 1.3706E-02 4.8067E+03 -1.4535E+06 3.9133E-05

1.200E+03 1.1737E+00 1.3639E-02 6.2352E+03 -1.3159E+06 3.9793E-05

1.225E+03 1.1662E+00 1.3531E-02 7.4468E+03 -1.1438E+06 4.0528E-05

1.250E+03 1.1638E+00 1.3399E-02 8.1396E+03 -9.4797E+05 4.1314E-05

1.275E+03 1.1633E+00 1.3256E-02 8.4790E+03 -7.3970E+05 4.2119E-05

1.300E+03 1.1633E+00 1.3112E-02 8.6336E+03 -5.2554E+05 4.2924E-05

1.325E+03 1.1631E+00 1.2971E-02 8.7074E+03 -3.0869E+05 4.3714E-05

1.350E+03 1.1624E+00 1.2836E-02 8.7669E+03 -9.0283E+04 4.4478E-05

1.375E+03 1.1608E+00 1.2706E-02 8.8600E+03 1.2994E+05 4.5205E-05

1.400E+03 1.1583E+00 1.2580E-02 9.0239E+03 3.5331E+05 4.5887E-05

1.425E+03 1.1548E+00 1.2459E-02 9.2883E+03 5.8198E+05 4.6514E-05

1.450E+03 1.1506E+00 1.2341E-02 9.6744E+03 8.1874E+05 4.7078E-05

1.475E+03 1.1460E+00 1.2223E-02 1.0190E+04 1.0668E+06 4.7570E-05

1.500E+03 1.1415E+00 1.2103E-02 1.0822E+04 1.3292E+06 4.7986E-05

1.525E+03 1.1377E+00 1.1982E-02 1.1516E+04 1.6084E+06 4.8323E-05

1.550E+03 1.1352E+00 1.1857E-02 1.2154E+04 1.9046E+06 4.8588E-05

1.575E+03 1.1349E+00 1.1732E-02 1.2531E+04 2.2140E+06 4.8798E-05

1.600E+03 1.1377E+00 1.1609E-02 1.2377E+04 2.5267E+06 4.8985E-05

1.625E+03 1.1444E+00 1.1495E-02 1.1514E+04 2.8268E+06 4.9195E-05

1.650E+03 1.1555E+00 1.1397E-02 1.0101E+04 3.0977E+06 4.9464E-05

1.675E+03 1.1698E+00 1.1317E-02 8.5903E+03 3.3310E+06 4.9807E-05

1.700E+03 1.1849E+00 1.1255E-02 7.3383E+03 3.5294E+06 5.0212E-05

1.725E+03 1.1986E+00 1.1207E-02 6.4221E+03 3.7008E+06 5.0656E-05

1.750E+03 1.2102E+00 1.1169E-02 5.7743E+03 3.8528E+06 5.1123E-05
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T (K) γ Mw (kg/mol) cp (J/kg/K) hg (J/kg) µ (Pa s)

1.775E+03 1.2195E+00 1.1139E-02 5.3118E+03 3.9910E+06 5.1602E-05

1.800E+03 1.2270E+00 1.1115E-02 4.9742E+03 4.1194E+06 5.2087E-05

1.825E+03 1.2329E+00 1.1096E-02 4.7227E+03 4.2405E+06 5.2575E-05

1.850E+03 1.2375E+00 1.1080E-02 4.5331E+03 4.3560E+06 5.3063E-05

1.875E+03 1.2410E+00 1.1066E-02 4.3894E+03 4.4675E+06 5.3552E-05

1.900E+03 1.2435E+00 1.1055E-02 4.2810E+03 4.5758E+06 5.4040E-05

1.925E+03 1.2453E+00 1.1046E-02 4.2004E+03 4.6818E+06 5.4528E-05

1.950E+03 1.2463E+00 1.1038E-02 4.1422E+03 4.7860E+06 5.5015E-05

1.975E+03 1.2468E+00 1.1031E-02 4.1025E+03 4.8890E+06 5.5501E-05

2.000E+03 1.2467E+00 1.1024E-02 4.0783E+03 4.9913E+06 5.5986E-05

2.025E+03 1.2462E+00 1.1019E-02 4.0675E+03 5.0931E+06 5.6471E-05

2.050E+03 1.2452E+00 1.1013E-02 4.0684E+03 5.1947E+06 5.6955E-05

2.075E+03 1.2439E+00 1.1009E-02 4.0797E+03 5.2966E+06 5.7437E-05

2.100E+03 1.2423E+00 1.1004E-02 4.1005E+03 5.3988E+06 5.7920E-05

2.125E+03 1.2404E+00 1.0999E-02 4.1304E+03 5.5017E+06 5.8401E-05

2.150E+03 1.2382E+00 1.0995E-02 4.1687E+03 5.6054E+06 5.8882E-05

2.175E+03 1.2358E+00 1.0990E-02 4.2154E+03 5.7102E+06 5.9363E-05

2.200E+03 1.2332E+00 1.0986E-02 4.2703E+03 5.8162E+06 5.9843E-05

2.225E+03 1.2305E+00 1.0981E-02 4.3333E+03 5.9238E+06 6.0323E-05

2.250E+03 1.2276E+00 1.0975E-02 4.4046E+03 6.0330E+06 6.0802E-05

2.275E+03 1.2245E+00 1.0970E-02 4.4843E+03 6.1441E+06 6.1281E-05

2.300E+03 1.2214E+00 1.0963E-02 4.5727E+03 6.2573E+06 6.1761E-05

2.325E+03 1.2181E+00 1.0957E-02 4.6701E+03 6.3728E+06 6.2240E-05

2.350E+03 1.2148E+00 1.0950E-02 4.7768E+03 6.4908E+06 6.2719E-05

2.375E+03 1.2114E+00 1.0942E-02 4.8932E+03 6.6117E+06 6.3198E-05
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T (K) γ Mw (kg/mol) cp (J/kg/K) hg (J/kg) µ (Pa s)

2.400E+03 1.2080E+00 1.0934E-02 5.0197E+03 6.7356E+06 6.3678E-05

2.425E+03 1.2046E+00 1.0924E-02 5.1568E+03 6.8628E+06 6.4158E-05

2.450E+03 1.2012E+00 1.0914E-02 5.3049E+03 6.9935E+06 6.4638E-05

2.475E+03 1.1978E+00 1.0903E-02 5.4645E+03 7.1281E+06 6.5120E-05

2.500E+03 1.1944E+00 1.0891E-02 5.6362E+03 7.2669E+06 6.5602E-05

2.525E+03 1.1911E+00 1.0878E-02 5.8205E+03 7.4100E+06 6.6085E-05

2.550E+03 1.1878E+00 1.0864E-02 6.0179E+03 7.5580E+06 6.6569E-05

2.575E+03 1.1846E+00 1.0849E-02 6.2291E+03 7.7110E+06 6.7054E-05

2.600E+03 1.1815E+00 1.0832E-02 6.4546E+03 7.8696E+06 6.7541E-05

2.625E+03 1.1785E+00 1.0814E-02 6.6951E+03 8.0339E+06 6.8029E-05

2.650E+03 1.1755E+00 1.0795E-02 6.9512E+03 8.2044E+06 6.8519E-05

2.675E+03 1.1727E+00 1.0774E-02 7.2236E+03 8.3816E+06 6.9011E-05

2.700E+03 1.1700E+00 1.0752E-02 7.5128E+03 8.5658E+06 6.9505E-05

2.725E+03 1.1675E+00 1.0727E-02 7.8198E+03 8.7574E+06 7.0001E-05

2.750E+03 1.1650E+00 1.0701E-02 8.1450E+03 8.9569E+06 7.0500E-05

2.775E+03 1.1627E+00 1.0674E-02 8.4893E+03 9.1648E+06 7.1002E-05

2.800E+03 1.1604E+00 1.0644E-02 8.8535E+03 9.3815E+06 7.1506E-05

2.825E+03 1.1584E+00 1.0612E-02 9.2382E+03 9.6076E+06 7.2013E-05

2.850E+03 1.1564E+00 1.0578E-02 9.6443E+03 9.8436E+06 7.2524E-05

2.875E+03 1.1546E+00 1.0542E-02 1.0073E+04 1.0090E+07 7.3039E-05

2.900E+03 1.1528E+00 1.0503E-02 1.0524E+04 1.0347E+07 7.3557E-05

2.925E+03 1.1512E+00 1.0463E-02 1.0999E+04 1.0616E+07 7.4079E-05

2.950E+03 1.1497E+00 1.0419E-02 1.1498E+04 1.0898E+07 7.4606E-05

2.975E+03 1.1484E+00 1.0374E-02 1.2023E+04 1.1192E+07 7.5137E-05

3.000E+03 1.1471E+00 1.0325E-02 1.2573E+04 1.1499E+07 7.5672E-05

Continued on next page

145



T (K) γ Mw (kg/mol) cp (J/kg/K) hg (J/kg) µ (Pa s)

3.025E+03 1.1460E+00 1.0274E-02 1.3151E+04 1.1820E+07 7.6213E-05

3.050E+03 1.1449E+00 1.0221E-02 1.3755E+04 1.2157E+07 7.6759E-05

3.075E+03 1.1440E+00 1.0164E-02 1.4387E+04 1.2508E+07 7.7310E-05

3.100E+03 1.1432E+00 1.0105E-02 1.5047E+04 1.2876E+07 7.7867E-05

3.125E+03 1.1424E+00 1.0043E-02 1.5734E+04 1.3261E+07 7.8429E-05

3.150E+03 1.1418E+00 9.9779E-03 1.6449E+04 1.3663E+07 7.8998E-05

3.175E+03 1.1413E+00 9.9101E-03 1.7190E+04 1.4084E+07 7.9572E-05

3.200E+03 1.1408E+00 9.8394E-03 1.7957E+04 1.4523E+07 8.0152E-05

3.225E+03 1.1405E+00 9.7658E-03 1.8747E+04 1.4982E+07 8.0738E-05

3.250E+03 1.1402E+00 9.6894E-03 1.9558E+04 1.5460E+07 8.1329E-05

3.275E+03 1.1401E+00 9.6103E-03 2.0388E+04 1.5960E+07 8.1926E-05

3.300E+03 1.1400E+00 9.5285E-03 2.1232E+04 1.6480E+07 8.2528E-05

3.325E+03 1.1400E+00 9.4442E-03 2.2086E+04 1.7021E+07 8.3134E-05

3.350E+03 1.1401E+00 9.3574E-03 2.2944E+04 1.7584E+07 8.3743E-05

3.375E+03 1.1403E+00 9.2684E-03 2.3802E+04 1.8169E+07 8.4356E-05

3.400E+03 1.1406E+00 9.1774E-03 2.4653E+04 1.8774E+07 8.4969E-05

3.425E+03 1.1409E+00 9.0845E-03 2.5489E+04 1.9401E+07 8.5583E-05

3.450E+03 1.1414E+00 8.9899E-03 2.6305E+04 2.0049E+07 8.6195E-05

3.475E+03 1.1419E+00 8.8941E-03 2.7093E+04 2.0716E+07 8.6804E-05

3.500E+03 1.1425E+00 8.7971E-03 2.7845E+04 2.1403E+07 8.7408E-05

3.525E+03 1.1432E+00 8.6994E-03 2.8557E+04 2.2108E+07 8.8005E-05

3.550E+03 1.1439E+00 8.6012E-03 2.9220E+04 2.2830E+07 8.8593E-05

3.575E+03 1.1447E+00 8.5028E-03 2.9831E+04 2.3569E+07 8.9171E-05

3.600E+03 1.1456E+00 8.4046E-03 3.0385E+04 2.4322E+07 8.9735E-05

3.625E+03 1.1465E+00 8.3067E-03 3.0877E+04 2.5087E+07 9.0285E-05
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T (K) γ Mw (kg/mol) cp (J/kg/K) hg (J/kg) µ (Pa s)

3.650E+03 1.1474E+00 8.2095E-03 3.1305E+04 2.5865E+07 9.0818E-05

3.675E+03 1.1484E+00 8.1133E-03 3.1667E+04 2.6652E+07 9.1332E-05

3.700E+03 1.1495E+00 8.0183E-03 3.1961E+04 2.7448E+07 9.1828E-05

3.725E+03 1.1506E+00 7.9248E-03 3.2188E+04 2.8250E+07 9.2303E-05

3.750E+03 1.1517E+00 7.8329E-03 3.2347E+04 2.9056E+07 9.2756E-05

3.775E+03 1.1529E+00 7.7428E-03 3.2441E+04 2.9866E+07 9.3187E-05

3.800E+03 1.1541E+00 7.6547E-03 3.2470E+04 3.0678E+07 9.3597E-05

3.825E+03 1.1553E+00 7.5687E-03 3.2437E+04 3.1489E+07 9.3984E-05

3.850E+03 1.1565E+00 7.4850E-03 3.2346E+04 3.2299E+07 9.4349E-05

3.875E+03 1.1578E+00 7.4036E-03 3.2198E+04 3.3106E+07 9.4693E-05

3.900E+03 1.1591E+00 7.3246E-03 3.1998E+04 3.3909E+07 9.5016E-05

3.925E+03 1.1604E+00 7.2480E-03 3.1750E+04 3.4706E+07 9.5320E-05

3.950E+03 1.1617E+00 7.1740E-03 3.1458E+04 3.5496E+07 9.5606E-05

3.975E+03 1.1630E+00 7.1025E-03 3.1126E+04 3.6278E+07 9.5874E-05

The decomposition model for TACOT is the phenomenological three-components

model discussed in Section 5.2. The coefficients for the model are given in Table ??.

Table D.4: TACOT three-components decomposition coefficients

ρi,v (kg/m3) ρi,c (kg/m3) Ai(s
−1) Ei/R (K) ψ Treac (K)

1 3.000E+02 0.000E+00 1.200E+04 8.556E+03 3.000E+00 3.333E+02
2 9.000E+02 6.000E+02 4.480E+09 2.044E+04 3.000E+00 5.556E+02
3 1.600E+03 1.600E+03 0.000E+00 0.000E+00 0.000E+00 5.556E+03
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The transport properties are given as (suggested):

virgin porosity, φv = 0.8,

char porosity, φc = 0.85,

virgin permeability, Kv = 1.6× 10−11 m2,

char permeability, Kc = 2.0× 10−11 m2.

The thermochemistry data table for TACOT is omitted for this document due to

its length. The data file can be found in Ref. [110].
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