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ABSTRACT 

 

LEAN FIRE MANAGEMENT: A FOCUSED ANALYSIS OF THE INCIDENT 
COMMAND SYSTEM BASED ON TOYOTA PRODUCTION SYSTEM 

PRINCIPLES. 

 

A primary role of the Incident Command System is to learn from past incidents, 
as illustrated by its origins in the wildland firefighting community. Successful emergency 
response operations under the Incident Command System has prompted its nationwide 
spread, this promulgation critically relies on the system’s capability to stabilize and 
continuously improve various aspects of emergency response through effective 
organizational learning. The objective of this study is to evaluate the potential to apply 
fundamental principles of the Toyota Production System (Lean manufacturing) to 
improve learning effectiveness within the Incident Command System. An in-depth 
review of literature and training documents regarding both systems revealed common 
goals and functional similarities, including the importance of continuous improvement. 
While these similarities point to the validity of applying Lean principles to the Incident 
Command System, a focus on the systematic learning function of the Incident Command 
System culminated in the discovery of gaps in approaches proposed by the Incident 
Command System framework. As a result, recommendations are made for adjustments in 
systematic problem solving to adapt Lean principles of root cause analysis and emphasis 
on standardization of successful countermeasures to benefit the system. Future 
recommendations are also proposed based on the author’s understanding of the system. 

 

KEYWORDS:   Incident Command System, Fire Management, Lean Manufacturing, 
Toyota Production System, Lean Systems Program  
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CHAPTER 1: INTRODUCTION 

1.0 Purpose of Thesis 

The goal of this thesis is to evaluate the potential to apply fundamental principles 

of Lean Manufacturing to facilitate continuous improvements for users of the Incident 

Command System (ICS). The Incident Command System is instrumental in driving the 

management of all incidents, large or small, including human and lightning caused 

wildfires in forests, grasslands, and preserved or monitored areas of the United States 

(hereinafter referred to as “wildland fires”). The term “Lean Manufacturing” indicates 

that operational methods based on Toyota Production System (TPS) principles are in 

place within some model area of, or throughout the entirety of, an organization.  

Key references were used throughout this thesis in order to compare the Incident 

Command System with a successful Lean manufacturing management system as an effort 

to analyze possible gaps between the two. This approach revealed encouraging 

similarities while also illustrating differences between the two systems and justifications 

for why they are as such. This analysis and reasoning was formulated through an 

understanding of what each system intends to achieve through the work they do at the 

level closest to production of a product or service. Furthermore, the intent of this thesis 

was not to redefine the direct work done in the production of these products or services.  

1.1 Introduction  

Though beautiful in many regards, Mother Nature is capable of many awe-

inspiring processes that can result in the destruction of property or loss of human life. The 

rage exhibited by an earthquake can tear apart homes, scarring the people involved, as 
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well as leaving scars on the very earth itself. Similarly, hurricanes can approach quickly 

and devastate high density populations while spreading disruptive weather patterns 

throughout wide regions of surrounding areas. Those same severe storms blow across the 

land relentlessly, capable of producing deadly tornadoes or lightning that endanger the 

people in their paths.  

Fire is another phenomenon that deserves to be added to this list. The inevitability 

of fire occurrence in our lives has prompted dedicated annual seasons where precautions 

are taken and emphasized publically in hopes of reducing the frequency and severity of 

incidents. Also, fire can occur post-incidentally from any one of these events, or can be 

started due to human influence. In some cases, fire can be beneficial to the local 

ecosystem [1], whereas in other cases fire is completely and totally unwanted. For either 

case, it is important that we understand fire in depth so our communities can be prepared 

when incidents occur.   

1.2 United States Fire Statistics 

The statistical estimates referenced in the following section are used to illustrate a 

very broad topic, the effects of fire in the United States. As such, it was important to 

gather a complete set of data published in 2011 in order to present a more wholistic view 

of the situation. The most current and comprehensive reports are produced by the 

National Fire Protection Association (NFPA), and the most recent nationwide cost 

estimate for overall fire impact was published in late 2014 using data concerning 2011. 

This 3 year gap is indicative of the time it takes to gather, process, and interpret all the 

data that factors into this complex estimate for these reports. However, the use of 2011 
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data here should present an important illustration of the impact that fire has had in the 

United States. Furthermore, these NFPA statistics were published with the same intent of 

providing a very high level depiction, and these numbers are said to have a broad 

uncertainty while giving a reasonable idea of the major role that fire plays in our 

economy [2]. 

The impact of fire on the United States is tremendous, and it reaches well beyond 

suppression costs and property damage. The National Fire Protection Association 

estimated total fire costs in the United States to be $329 billion in 2011, which was 

equivalent to 2.1% of the 2011 U.S. Gross Domestic Product (GDP) [2]. Figure 1 

illustrates the estimated total costs for fire in the United States from the year 2000 

through 2011 based on these NFPA statistics [2]. 

 

Figure 1: Estimated total cost of fire in the U.S. (2000-2011) [2]. 

When looking at these overall cost estimates, it’s worth noting that the total cost 

of fire in 2011 was higher than that of 2001, when major catastrophic damage and losses 

were suffered on September 11, 2001. Figure 1 also shows the total cost for 2001 
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excluding the estimated costs related to the events of 9/11 to illustrate $60 billion of 

losses from incidents related. If this cost were incurred in 2011, with inflation taken into 

consideration, it’s easy to see the total cost of fire reaching nearly $400 billion dollars in 

a single year. The contributing factors to the total cost of fire in 2011 were broken down 

in NFPA reports [2], and for clarity these categories are visualized in Figure 2.  

 

Figure 2: Breakdown of estimated total cost of fire in U.S. for 2011 [2]. 

The highest cost in the breakdown is attributed to volunteer firefighters, but this estimate 

illustrates savings based on the monetary value added by the volunteers providing their 

services for little to no compensation [2] [3]. It must also be noted that in the “Third 

Needs Assessment for the United States,” published in 2011, the NFPA estimated 71% of 

the nation’s fire departments in 2010 were classified as volunteer departments [4]. The 

second highest cost actually incurred by fire services according to this breakdown is the 

expenditures of local career fire departments. If the volunteer contributions are combined 

with the career contributions, this would give a total proposed firefighter expenditure of 

$182.1 billion in the United States. The estimated expenditures from the reports included 
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calls answered with no incident, emergency medical services, as well as fire prevention, 

monitoring, mitigation, suppression, and other activities that must be undertaken in order 

to protect the public from incidents [2].  

According to the NFPA estimate, these costs are a direct result of around 1.38 

million fires that occurred in 2011, where 17,500 civilians and 70,090 firefighter injuries 

resulted [5] [6]. Furthermore, within these incidents, 3,005 civilians and 61 firefighters 

lost their lives [5] [6] [7]. A note in Karter’s NFPA report regarding injuries and losses 

resulting from fire states that, “the term ‘civilian’ includes anyone other than a firefighter, 

and covers public service personnel such as police officers, civil defense staff, non-fire 

service medical personnel, and utility company employees” [5].  

As a subset of these 1.38 million fires, the NFPA also estimated that 338,000 of 

these were fires related to “brush, grass, or wildland fires” [5]. Wildland fire statistics 

from the National Interagency Fire Coordination Center (NIFC), strictly regarding federal 

suppression and associated costs, indicated that 82,798 wildland fires occurred on private, 

state, and federal land in 2011, including 8,672 prescribed fires [8]. Figure 3 shows that 

the federal suppression costs for these fires from 2000 to 2011 varied between 

approximately one to two billion U.S. dollars for private, state, and federal land 

combined [8].   
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Figure 3: Federal Wildland Fire Suppression Costs (2000-2011) [8]. 

According to the figure, federal cost of wildland fire suppression for private, state, and 

federal land has shown variation between $1 billion and $2 billion from 2000 to 2011 [8]. 

This variation alludes to the lack of predictability from year to year in planning for the 

processes of wildland fire suppression. This is also reflective of the many factors that 

contribute to wildland fire management.  

Federal wildland fire suppression costs in 2011 reached $1.73 billion for the 

suppression of the 82,798 fires considered [8]. The higher estimate of 338,000 brush, 

grass, and wildland fires from the NFPA could be estimated to have cost around $7 

billion, if it’s assumed that all incidents were exactly the same in severity and scope. 

However, while this type of estimate may serve for a general perspective, it’s simply not 

realistic to assume that any two incidents are exactly the same. Some aspects of incident 

response will always vary with respect to resource requirements and availability, as well 

as management approach. However, the estimated costs of fire clearly indicate that better 

understanding of fire and the ability to better manage it are crucial going forward. 
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1.3 General Combustion Research 

There have been great strides by researchers in trying to achieve a better 

understanding of physical fire based phenomena, and this research has resulted in fire 

being commonly utilized in today’s society. Combustion research has progressed enough 

over the years to provide the internal combustion engine as well as sophisticated heating 

and cooling equipment. Designers, maintenance personnel, and operators of these devices 

have enough knowledge to safely control them, no matter that their power comes from 

spark based ignitions and explosion based power generation. This illustrates the 

knowledge and skill possessed by members of the research community to use 

experimentation, fundamental theory, and computational methods to better understand 

the thermodynamics, fluid dynamics, chemical kinetics, and transport mechanisms which 

promote fire occurrence and behavior [9].  

The abnormal occurrence of fire in our world has been researched just as 

extensively. The justification is clearly associated with the costs associated as well as the 

number of fatalities and injuries resulting from these incidents. 

1.4 Wildland Fire Research 

A great deal of effort has been contributed to researching wildland fire behavior 

in an attempt to provide better understanding to the people who risk their own lives in 

order to save others. This research begins fundamentally with the causes of ignition and 

flame spread. Historically, radiative heat transfer had been accepted as the dominant 

trigger for wildland fire ignition and flame spread. Therefore, radiation based ignition has 

been studied extensively to better understand occurrences of wildland fire and develop 
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models for predictive purposes [10]. However, fire has been observed and explored to 

discover a major role played by convective heat transfer, thus the exclusion of convection 

also excluded a large part of the mechanics behind ignition theory and flame propagation 

[9] [10]. These types of discoveries bring us ever closer to a solid definition of fire but 

there is still a long road ahead before we fully understand it.  

Ultimately, the firefighting community must continue to push forward and 

respond to incidents as effectively and efficiently as possible. The drive for stable fire 

protection and mitigation, along with the need for methods capable of improvement to 

keep up with national trends, brings to light the importance of research into the overall 

fire management system itself. Fortunately, at the basic foundational level in which it was 

developed, the system strives to provide some clarity and stability to a fairly chaotic 

profession.  

1.5 Fire Management in the United States 

Both urban and wildland fire management are heavily influenced by documents 

and systems in place, which are intended to highlight the best method for approaching 

fire-based incidents. These documents also take into consideration various factors. A list 

of some well-known documents and systems can be seen in Figure 4. Each of these are 

intended to guide firefighters and help keep the firefighting community consistent 

through standard codes, regulations, and sharing of information. 
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Figure 4: Partial list of guiding documents and systems in place for fire management. 

Regulation or codification of standards may come from entities such as the National Fire 

Protection Association (NFPA), the Occupational Safety and Health Administration 

(OSHA), they may be published within the Code of Federal Regulations (CFR), or they 

may be presented as a subset of the National Incident Management System (NIMS) 

framework. These codes and regulations typically include, but are not limited to 

minimum requirements for safety, equipment, and training.  

The Resource Management Plan (RMP) functions at a very high level as a 

guideline for planning before or during incidents. These documents are important in 

providing an understanding of geographical considerations and natural resources; 

therefore RMPs will typically outline features such as Wildland Urban Interfaces (WUI), 

mine shafts, watersheds, caves, and the like [11].  
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Fire Management Plans (FMP) are closer to the incident level but still operate at a 

fairly high level with respect to the work being done. These documents are generally 

required to follow guidelines of the Resource Management Plan, and outline additional 

information regarding the situational awareness of an area to assist in planning for and 

managing incidents [12]. Fire Management Plans are required for any area with burnable 

vegetation; they are important documents because if no approved Fire Management Plan 

exists for an area, then suppression is the only option for dealing with fires [12]. This is 

undesirable for a number of reasons. Immediate suppression has been shown to 

negatively affect fire dependent species while also preventing fuel level reduction in large 

areas of the wildland, and the resulting buildup of fuel levels increases the risk of 

catastrophic fires at a later time [1]. So it is clear that these documents assist managers in 

making informed decisions through consideration of fuel levels and ecological 

dependence on fire, while also focusing on public awareness of fire risks and 

preparedness in order reduce the risk of catastrophic fire. Further importance of Fire 

Management Plans stem from the fact that these are developed by people who are most 

familiar with the area and may be the only incident management personnel permanently 

associated with the area due to the nature of wildland fire crews moving between vastly 

different geographical areas to address other incidents [13].  

The above mentioned regulations and documents help to guide decisions based on 

information external to what’s happening in the midst of an incident, and they do not 

specifically address the exact approach taken or work methods required by an incident. 

While there is no single answer to providing guidance for these two aspects of fire 

management, the existence of the Incident Command System provides a solid repeatable 
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starting point for any incident by promoting clear roles and corresponding 

responsibilities. Those responsibilities as well as proven approaches to past incidents are 

outlined within Standard Operating Procedures (SOPs) that are developed by individual 

agencies and incorporate the various regulations mentioned above [14].  

1.6 Reasoning for Lean Fire Management 

The main discussion in this thesis will cover the Incident Command System and 

touch on its functional components, such as Standard Operating Procedures, as they 

function within an overall emergency management framework. This focus on methods 

and work done at the incident will lend itself nicely to a comparison with a Lean 

organization and point to possible applications of Lean to the Incident Command System. 
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Figure 5 

 
 

Figure 5: Primary commonalities between the two different systems of Lean manufacturing and fire 
management. Operational feedback reflects system performance to drive problem solving and research 
efforts. However, the quality and efficiency of these efforts rely heavily on the system’s ability to 
communicate current conditions. The defining characteristic of a Lean manufacturing management 
system is its ability to document and communicate this current condition in order to continuously 
improve. 
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Figure 5 illustrates that these distinctly different systems share a common goal to 

provide a product or service. The desire to continuously improve those products or 

services provides a common drive for both systems to utilize problem solving and pursue 

various research efforts. The research aspect of this usually promotes the following: 

better understanding of fundamental physical properties important to the problem, 

development of information technology to visualize and share information more 

efficiently, and improvements/implementation of equipment to improve work 

efficiency/methods. Last but definitely not least, improvements in operations and 

management of the system itself can be achieved through this loop.  

The efficiency of the improvement cycle in Figure 5, for any system, depends 

highly on current and specific feedback with respect to key functions and processes of the 

system. Feedback is extremely effective when taken from some form of stable standard 

because it must provide visibility on current problems in order to properly prioritize 

topics for research and problem solving [15]. In short, the quality of problems to be 

solved or presented for research efforts is directly related to the level of understanding 

that a system has of its capabilities, processes, and products or services with respect to 

real-time situations. Lean manufacturing is well known to excel at providing this type of 

feedback for problem solving when implemented properly [16]. Thus the flow of 

feedback for a Lean system illustrated in Figure 5 is shown as complete to direct that 

critical information towards the progression of overall continuous improvement.  

Within such a broad fire management landscape, the Incident Command System 

stands out as a focal point because of its importance in everyday fire management. The 

Incident Command System exhibits the specific goal to promote effective management of 
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hazardous incidents to prevent property losses as well as loss of valuable lives on a day to 

day basis. It accomplishes this by streamlining the overall decision making process to 

effectively cope with all aspects of urgency associated with wildland fire, urban fire, or 

any other hazardous incidents. For wildland fire-based incidents, the decision may be to 

strictly monitor an incident or to fully extinguish it based on the guidance of the 

aforementioned regulations and Fire Management Plans. The Incident Command System 

originated in the 1970s, and has grown immensely over the past 44 years. Though when 

considering the many generations of firefighters that have served in the United States 

over the course of its history, the Incident Command System is a relatively new approach 

to incident management.   
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CHAPTER 2: LITERATURE REVIEW 

2.0 The Incident Command System 

The Incident Command System was developed in response to lessons learned 

during past experiences. This progression can be seen in the timeline illustrated in Figure 

6. 

 

Figure 6: Timeline depicting the history of the Incident Command System. 

In the fall of 1970, southern California suffered significant fires that burned over 500,000 

acres, more than 700 structures, and caused 16 fatalities [17]. In response, the 

FIRESCOPE program was developed as “the first practical application of systems design 

to a major, complex wildland fire management operational problem” [18]. This statement 

alone is grounds for an industrial or manufacturing engineer to approach this topic with 

interest. The acronym FIRESCOPE referred to “FIrefighting REsources of Southern 

California Organized for Potential Emergencies” and as the name suggests, the effort 

encompassed support from various levels of California’s local, state, and federal response 

community [18]. The FIRESCOPE team discovered that inefficient interagency 

communications and unclear organizational structures within the fire management system 

were regularly at fault during out of control incidents [18]. As such, the schematic 
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illustrated in Figure 7 was discussed in Richard A. Chase’s technical document regarding 

FIRESCOPE, and outlines the complicated method of communicating needs related to 

fire management before FIRESCOPE set out to improve this. 

 

(Figure from Chase, 1980) 

Figure 7: Communication for Fire Management before FIRESCOPE. Illustrates 
complexity of coordination between multiple agencies before the FIRESCOPE project. 
Schematic developed and discussed by Richard A. Chase in the foundational technical 
report outlining a new approach [18]. 

 

Chase states that in this system each individual agency had to seek out support or 

approval individually amongst multiple agencies in order to ensure mutual aid if incidents 

were severe enough to warrant multiple agencies for control [18].  
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Figure 8: A simplified schematic of the Multiagency Coordination System Proposed by 
FIRESCOPE. Illustration based on the original schematic discussed within the Chase 
technical report [18]. 

 

Figure 8 illustrates a simplified interpretation of the solution that FIRESCOPE 

proposed in the Chase technical document, known as the Multiagency Coordination 

System (MACS). This system illustrates a centralized information center that helps to 

coordinate and communicate needs during an incident [18]. This concept alone was a 

major improvement at the time, but the FIRESCOPE proposal did not end there. The 

Incident Command System was developed to compliment this concept and maintain this 

same level of coordination and clear communication at the incident level to provide 

consistent clarity for all levels of involvement with the incident [18].  

To achieve the level of clarity required for coordination and efficient 

communication, the Incident Command System places emphasis on a dynamic 



organizational structure based on clear roles and standardized terminology [19] [20]. The 

organizational structure exhibits flexibility during an incident to adjust personnel 

deployments based on incident severity [20]. Furthermore, a standardized planning 

process is in place to control adjustments in personnel, plan to meet the objectives of each 

incident, and determine future management efforts [20]. For the most part, future 

management efforts are developed further through problem solving efforts before, during, 

and after incidents to improve response efficiency [20].  

2.0.1 Nationwide Implementation 

As part of the FIRESCOPE program, the Incident Command System evolved 

throughout the 1970s and was implemented as a stand-alone incident response system in 

southern California in the 1980s [18]. Over time, the Incident Command System proved 

its effectiveness in meeting the demands of each fire based incident with its uniquely 

scaled organizational structure and facilitation of coordinated resources [21]. Due to the 

association of wildland fire to urban fire at the Wildland Urban Interface, urban 

firefighters have also been well aware of the Incident Command System since its 

beginnings in the 70s. Furthermore, in the early 2000s, the Incident Command System 

was extended nationwide when President George W. Bush signed Homeland Security 

Presidential Directive 5 (HSPD-5), which called for a National Response Framework 

(NRF) to create a uniform management system for all incidents (not just fire related) 

under the National Incident Management System.  

This national adoption of the Incident Command System relied heavily on 

training and implementation of its ideal usage. As a result, study materials for the 
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Incident Command System are readily available at the “Emergency Management 

Institute” website [20], and in-person training programs exist that build upon these online 

courses as trainees progress. The main facilitators of this training are the Federal 

Emergency Management Agency (FEMA) and the National Incident Management 

System (NIMS) who provide the training documents.  

National implementation of the Incident Command System has propelled it to 

become the primary management system utilized within the entire spectrum of 

emergency management. Therefore, benefits or relationships obtained through improved 

usage of the Incident Command System for any application should be easily transferrable 

between urban fire, wildland fire, and other fields of emergency management. It is stated 

clearly in all training materials and relevant literature that when the Incident Command 

System framework is used on a day to day basis for each incident, that learning of the 

process lends it the capability to be effective in providing a stable and scalable 

framework for all types of incidents [18] [20]. This characteristic of the Incident 

Command System coupled with its applicability amongst many emergency management 

systems provides for a flexible approach towards analysis of its characteristics.  

2.0.2 United States Coast Guard Application 

It’s worth noting various successful applications of the Incident Command 

System that exist within emergency management services such as the United States Coast 

Guard (USCG). Like fire services, the U.S. Coast Guard is tasked with protecting the 

lives of many Americans. The Coast Guard primarily performs seafaring duties to ensure 

the safety and security of the nation’s coastlines from various threats. The Coast Guard’s 
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focus on public safety means it was impacted by the signing of Homeland Security 

Presidential Directive 5 to implement the Incident Command System framework in 2005.  

While implementing the Incident Command System, the U.S. Coast Guard 

developed and published their own issue of an Incident Management Handbook which 

states in the opening section that, “during Incident Management Handbook development, 

it was recognized that 80% of response operations share common principles and 

procedures…the other 20% are unique to the incident” [22]. This statement lends great 

credibility to the implementation of the Incident Command System to bring some level of 

stability and clarity to what is often considered highly variable and chaotic working 

conditions. The realization that 80 percent of response efforts are similar implies that 

there is a basis of repeatability in their processes. This repeatability can be documented 

and improved similarly to how stable processes are improved within a Lean system. In 

support of this statement, the handbook also directs members of the Coast Guard to 

where they can access multiple job aids that have been developed and supplied for each 

standard role within the organization [22].  

The Coast Guard is well known for outstanding work within emergency response 

as well as search and rescue operations even before adoption of the Incident Command 

System, and examples of this are easily available for illustration of this fact [23]. 

However, while the best efforts are exerted by all responders within emergency 

management, the occurrence of more severe incidents may lead to an influx of people 

affected by that incident to require hospital treatment. This is where the Hospital 

Emergency Incident Command System (HEICS) comes into play. 
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2.0.3 Healthcare Application 

Within the healthcare community the concept of “pre-hospital emergency 

management” encompasses any or all incidents that are managed by other emergency 

response agencies that may increase demands on hospitals as well as incidents that 

involve the hospital directly [24] [25]. The Hospital Emergency Incident Command 

System is based on the original “FIRESCOPE ICS” [24] and gives an excellent platform 

for hospital based incident management due to its flexibility and coordination to 

“function as the ‘central nervous system’ in directing all response activities” [24]. The 

HEICS is also evolving within the healthcare industry to standardize response to new 

issues that have appeared over the years such as pandemics due to infectious disease and 

consideration of the mental effects associated with large incidents on all persons, 

including responders and medical staff members [25].  

As can easily be seen from these examples, application of the Incident Command 

System amongst all response agencies as well as healthcare has the capability to provide 

a coordinated effort to helping victims of incidents from the beginning of an incident 

throughout their recovery. This speaks volumes of the flexibility and adaptability of the 

Incident Command System. However, it must be noted that the fire services in the United 

States have been using the Incident Command System since the very beginning of its 

development. So, for the purposes of this thesis, applications of the Incident Command 

System within the firefighting community will be the primary subject when analyzing 

capabilities of applying Lean manufacturing principles and practices. Those principles 

and practices will be introduced and discussed in the following sections.   
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2.1 The Toyota Production System 

The Toyota Production System was developed in response to lessons learned 

during past experiences, and thus, shares similar background with the development of the 

Incident Command System. The development and spread of Toyota Production System 

principles can be seen in the following timeline of Figure 9. 

 

 

Figure 9: Timeline depicting the history of the Toyota Production System. 

The tough economic climate of post-World War II Japan led Japanese manufacturing 

companies to fight for their very survival. In 1950, American scientist and statistician W. 

Edwards Deming traveled to Japan to assist post-war recovery efforts. Deming 

introduced Japanese officials to the concept of statistical quality control [26] and the idea 

that focusing on “built-in” quality rather than inspection could increase the quality of 

products or services without increasing costs [27]. Deming also introduced the Japanese 

to the Plan-Do-Check-Act (PDCA) learning cycle (shown in Figure 10), as well as his 

“14 Principles of Management” [27], both of which serve as the foundation for managing 

the ability to achieve and sustain built-in quality.  
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Figure 10: The Plan-Do-Check-Act learning cycle taught to Japanese industry by W. 
Edwards Deming. 

 

Eventually these ideas were embraced and successfully implemented into many Japanese 

companies, including Toyota, who continued to apply them, eventually developing the 

Toyota Production System (TPS or Lean manufacturing). The foundation of a Lean 

system is standardization and revision of those standards through diligent problem 

solving to resolve abnormalities, to reduce/eliminate waste, and to continuously improve 

the system’s ability to provide products or services [28] [29].  

2.1.1 Implementations in North America 

The transition of the Toyota Production System from Japan to North America is 

marked by a peak in interest by North American manufacturing companies after several 

key occurrences over time. For example, in 1984, General Motors (GM) and Toyota 

partnered together to open the New United Motor Manufacturing Incorporated (NUMMI) 

plant, an endeavor in which Toyota contributed principles of their production system 

towards operation during the joint venture [30]. The NUMMI plant was a second attempt 
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at operations within a manufacturing facility in Fremont, California that had been shut 

down and considered to be a lost opportunity [30]. Although the issues of productivity, 

quality, and low employee morale plagued the former GM-Fremont plant before the 

partnership, Toyota pushed to re-hire all former employees and maintain union contracts 

with each employee to produce vehicles [30]. The NUMMI plant experienced better 

worker morale, and in turn improved quality and productivity issues due to the people 

oriented philosophy of the Toyota Production System [31]. A philosophy in which they 

respected the worker and allowed them to stop the line and question possible defects and 

abnormalities of their processes [31].  

The 1987 opening of Toyota Motor Manufacturing Kentucky (TMMK) in 

Georgetown, Kentucky marked the first major production facility in North American and 

was Toyota’s first venture into the U.S. market on their own. TMMK remains as the 

largest Toyota plant in the U.S. and since opening, the company has opened plants in 

Indiana, Texas, Mississippi, Alabama, and West Virginia.  

Later, in 1991, the term “Lean manufacturing” first appeared in a book titled “The 

Machine that Changed the World” [32]. This book is based on research conducted at the 

Massachusetts Institute of Technology (MIT) regarding the development and inner 

workings of the Toyota Production System [32]. This exposure to Toyota’s continuous 

improvement efforts led many people within the manufacturing industry to take notice. 

As it stands today, the Toyota Production System places a great deal of 

importance on “providing products and services with craftsmanship, pride, zeal, history, 

spirit, joy, and more” [29]. The company strives to promote lifelong learning in its 
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employees to produce well-rounded professionals; this effort intends to develop 

employees who possess not only well-developed specialized technical skills but also 

overall knowledge and keen interest in continuously improving their work [33].  

Fujio Cho is well known as a visionary with respect to Toyota and the Toyota 

Production System. It is well documented that Mr. Cho focused on building consensus, 

and developing people based on their skills as well as their particular interests. Mr. Cho’s 

philosophy is summarized in the following statements collaborated from various sources:  

“A company must provide service to society, and the way a company must go 

about that is to produce good products honestly and consistently without 

compromise [29], offering service-oriented concepts to create a highly effective 

and efficient modern system consisting of people, information, machine and 

material” [33] [34].  

It was this drive to provide service to society that promoted Mr. Cho to play a large role 

in the development of the University of Kentucky’s Lean Systems Program. 

2.1.2 The University of Kentucky’s Lean System Program 

The success of the Toyota Production System and several attempts to understand 

its inner workings by competitors and researchers alike prompted Mr. Cho’s vision to 

promote a partnership between Toyota and the University of Kentucky in 1994. The 

University of Kentucky was chosen due to its close proximity to Toyota Motor 

Manufacturing Kentucky, as well as its excellent curricula regarding Science, 

Technology, Engineering, and Mathematics (STEM). Therefore, apart from actual Toyota 

experience, the University of Kentucky’s Lean Systems Program (UK-LSP) is the closest 
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resource available for deeper understanding of Lean manufacturing. The Lean Systems 

Program provides a variety of courses on Lean manufacturing principles and practices 

created through 20 years of close collaboration with Toyota. During this time, the 

program has served more than 20,000 people from different types of organizations 

including manufacturing, food service industry, healthcare and public services, as well as 

education.  

To maintain congruence with the Toyota Production System at its source, the UK 

Lean Systems Program operates from a pool of retired Toyota employees from various 

levels within the organization who teach Lean manufacturing principles as they have 

learned them during their time within Toyota. Furthermore, the Lean systems Program 

houses a current Toyota executive who serves in residence with the Lean Systems 

Program for a 2 year period. This opportunity gives the executive valuable practice in 

applications of Toyota Production System principles across a broader audience to include 

clients not affiliated with Toyota. Exposure to an academic environment also promotes 

Mr. Cho’s vision of developing the academic understanding of the Toyota Production 

System. Furthermore, the executive in residence helps to promote continuous 

improvement within the Lean Systems Program itself through application of Toyota 

Production System principles towards the program’s processes, functions, and goals. 

After the executive’s two year term is done, another executive, possibly from a 

significantly different area of management within Toyota, will rotate in providing further 

development. This provides many perspectives on the product provided by the Lean 

Systems Program.   

26 
 



The value added by the UK Lean Systems Program can be seen when reviewing 

their standard definition of what Lean should mean to an organization. The Lean Systems 

Program’s definition of “True Lean” is meticulously crafted and more clearly illustrated 

as the breakdown of the following 5 points: 

1. The group by themselves, 

2. use systematic problem solving, 

3. to improve the work they do, 

4. towards achievement of the company’s targets and goals, 

5. when and only when the company culture is the reason the improvement occurs. 

‒ The Definition of “True Lean” [28]. 

Each point of this definition holds a certain principle of TPS. The opening point 

focuses on the people doing the work. This intentional placement of putting them first in 

the definition of “True Lean” symbolizes their importance in the system. The second 

point states that there exists a method of problem solving used systematically throughout 

the organization. The third point stresses the focus on continuous improvement but only 

within the work that one is responsible for, not in other sections outside of their control. 

The fourth and fifth points outline that the company’s culture is what drives the system 

towards achieving the measurable targets and goals set by the company. These last two 

points also allude to a capability of assessing performance within the system by 

communicating it effectively to the workers, as well as upper level management, to 

stimulate the improvement process and ensure value added improvements. This is 

achieved through effective development and visualization of Key Performance Indicators 

(KPI) encompassing the company’s targets and goals. Effective usage of Key 
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Performance Indicators can allow users of the system to quickly and efficiently identify 

gaps for improvement. The approach for organizational transformation at the University 

of Kentucky’s Lean Systems Program is unique, and this definition illustrates the overall 

intention to reach beyond common misconceptions of what practicing Lean 

manufacturing means in any setting. That is, rather than focusing specifically on tools or 

an ability to save costs, the program develops curriculum that brings about consideration 

of society, company culture, industrial psychology, principles of organizational learning, 

and respect for people to the forefront of Lean transformation. 

2.1.3 Lean Healthcare and Non-Manufacturing Applications 

Healthcare organizations have had some success implementing Lean principles 

and practices to enable and sustain continuous improvements. Graban [35] discussed that 

various hospitals have been able to reduce operational considerations through Lean 

principles and practices. This was evident in reductions related to the time it takes for lab 

results to be processed, decontamination time for instrumentation, and other aspects that 

reflect negatively on patient satisfaction (blood based infections due to intravenous 

devices, patient wait time, or the patient’s length of stay). Graban also notes:  

“With advances and systematic improvements in aviation safety, passengers in the 

general public take it for granted that they will arrive safely at their destination; 

we should hope for similar advances in healthcare so patients can take it for 

granted that they will not be harmed in hospitals” [35]. 

This perspective is one that drives the incorporation of Lean in healthcare and illustrates 

implementation into another industry, aviation safety. 
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 The aviation safety industry has been fairly successful in its transformation to 

Lean manufacturing. The Maintenance, Repair, and Overhaul (MRO) industry is defined 

as the industry responsible for maintenance and restoration of active aircraft functioning 

at an airline so they maintain safe performance of their intended functions [36]. These 

organizations have benefitted from the implementation of Total Productive Maintenance 

(TPM) as well as other Lean principles to improve their efficiency and eliminate waste 

[36]. The successful applications seem to be prominent for large aircraft MROs, and 

some struggles have been encountered when applying Lean to organizations that deal 

more particularly with small aircraft due to limited resources and low volume [37].   

More towards the business aspects that Lean can be useful for, it must be noted 

that the well-known and highly sought after 8 step problem solving process that is used 

within Toyota is simply referred to as the “Toyota Business Practice” [38]. This method 

is not only used for solving problems at the production floor, but is used for improving 

processes in other aspects of the organization such as the Human Resources department, 

Accounting and Finance functions, and the management of hiring and training new 

employees [28] [38]. This isn’t to say that the 8 step problem solving method can be used 

standalone within these departments, but indicates that it is only part of a larger 

management directive inherent to the Toyota Production System. The focus on Deming’s 

Plan-Do-Check-Act learning cycle encourages the entire management of the system and 

the problem solving process follows this cycle strictly as well.  

The idea that the Toyota Production system is applicable in all management 

spectrums is also supported by a comment in Phillip Marksbury’s book “The Modern 

Theory of the Toyota Production System.” Marksbury states that the Toyota Production 

29 
 



System may better be described as the “Toyota Management System” to avoid much 

confusion [39].  

These factors illustrate the Toyota Production System’s capability and flexibility 

to be applied in any management setting. This is rooted deeply in the Toyota Production 

System’s goal to provide quality to the customer, where customer can be defined as the 

next receiving process in the overall production of a product or service, as well as the 

final customer who receives the final product or service [28] [29].  

2.2 Organizational Learning Theory 

System such as the Incident Command System and those who use it must 

continuously improve response efforts, and Organizational Learning plays a key role in 

that effort. The dynamic Incident Command System meets its goals through a best 

practices type of approach, which relies heavily on its ability to learn from previous 

incidents [14]. This indicates that learning occurs not only on an individual basis, but also 

at an organizational level [40]. The application of Lean principles and practices have 

been shown to greatly increase individual learning, and by extension, organizational 

learning [41]. Because of this, Toyota has been called “the gold standard” of learning 

organizations [16]. The Plan-Do-Check-Act learning cycle encourages the continuous 

improvement typical of learning systems because of its reliance on timely operational 

information feedback [15] [42] [43] [44]. Operational feedback relies on how well a 

system is defined and understood by its users in order to identify problems and resolve 

them quickly. This leads neatly into Chapter 3, where investigation into the systems 
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serves to promote an encouraging discussion of similarities alongside illustration of gaps 

between Lean and the Incident Command System. 
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CHAPTER 3: DISCUSSION 

3.0 Systematic Comparison 

The need to develop an ever-increasingly effective learning organization provides 

a common goal for both Lean manufacturing and Incident Command System 

applications. This indicates that the Incident Command System could benefit in its efforts 

for continuous improvement by adopting Lean principles. To support this claim, 

fundamental principles that govern the Incident Command System, as well as its key 

functions and components, needed to be examined closely for comparison. Figure 11 

provides an overall comparison of the organizational structures for discussion. 
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Figure 11: 

Figure 11: Standardized structure and roles within Lean manufacturing (Left) [28] and the Incident Command 
System (Right) [20]. Illustrates span of control, communication flowing in both directions, and coordination taking 
place between supervisors of each group in both systems. The diagonal (dash-dot-dot) arrows illustrate improper 
communication within these systems. Listed to the left, the Lean structure clearly associates each role with certain 
responsibilities [28]. This is a partial representation of either system’s entire structural hierarchy for descriptive 
purposes only. Given the Incident Command System’s dynamic nature, the dashed boxes illustrate required roles to 
initiate formation of the structure [20]. 



 

The comparison shown in Figure 11 illustrates organizational structures and 

direction of flow for communication in both Lean manufacturing and the Incident 

Command System. Well defined span of control, roles, responsibilities, and 

communication are key components in the success of both systems. 

3.0.1 Standardized Structure and Roles 

Figure 11 illustrates that the functional groupings within an Incident Command 

System’s response framework are typically comprised of 3 to 7 individuals per supervisor 

[20]. Similarly, in a Lean system the same type of control span is employed for Team 

Leaders to have around 4 to 6 Team Members reporting to them. This limitation provides 

ease of management within a system without underwhelming or overburdening 

management, and gives more clarity to role definition and individual contributions [45]. 

The organizational structure of Figure 11 for a Lean system depicts roles that are 

intended to guide workers who perform the same job or work rotations every day. In 

contrast, the Incident Command System’s organizational structure is extremely flexible to 

compensate for high variability in the demand of resources for each incident. In either 

case, the existence of some standard roles within each structure provides stability.  

The Incident Command System’s structure typically begins with one small group 

of responders at the resource level, which is illustrated by the dashed box in Figure 11. 

From there the situation is assessed and a decision is made. The determination of whether 

more resources are needed, as dictated by the incident, prompts the structure to expand 

into the hierarchy shown in Figure 11 [20]. The Incident Commander (IC) role, shown 
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highest in the hierarchy, is a critical role assuming responsibility for management of the 

incident. While the incident is small with respect to the number of people responding, the 

Incident Commander role may be filled by the leader of the first responding resource; if 

the incident does not escalate, this person may remain solely responsible for all aspects of 

management [20]. However, as the incident escalates, more resources are required to 

assist in incident management. If the number of people that the Incident Commander is 

directly responsible for (span of control) is exceeded, various section chiefs may be 

“activated” by assigning qualified personnel to the role in order to distribute the work and 

maintain appropriate span of control [20]. Otherwise, if the incident becomes 

significantly more difficult to manage, the role of Incident Commander is transferrable to 

an individual who has more experience with larger incidents or more specific incidents 

such as wildland fire or the presence of hazardous materials at the incident [20]. 

Each section chief assumes responsibility for managing some aspect of response 

whether it be within an Operations, Planning, Logistics, Finance, or Intelligence section 

of the framework [20]. The section chiefs will act within their scope of responsibility and 

report back to the IC periodically [20]. The Operations Section Chief and roles assigned 

within it are illustrated in Figure 11. However, due to the inherent nature of 

understanding incidents and determining approaches to resolving them, the Planning 

Section Chief is one of the first roles activated within the organizational framework to 

guide operations [46]. It must be noted that Planning, Logistics, Finance, and Intelligence 

sections have different role assignments under them, and for simplicity these are not 

illustrated in Figure 11 [20].  
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Various definitions for specific groupings exists to distinguish different modules 

of the Incident Command System’s organizational framework. For example, under the 

Operations Section Chief, different “Branches” are groups working on the same fire with 

each branch providing a specific service (e.g. suppression, search and rescue, medical 

services) to contribute towards controlling the incident and protecting the population 

[20]. Under any given Branch, the term “Division” or “Group” is used to define how a set 

of resources is contributing to an incident.  

Divisions may be comprised of similar or different types of resources with the 

main distinguishing characteristic being the geographical location of their operations (e.g. 

interior/exterior of a building fire, or north, south, east, west side of a large wildland 

incident) [20]. Under a Division, the term “Strike Team” or “Task Force” is used to 

distinguish how working teams are comprised. Strike Teams would have similar 

resources to contribute to an incident (two hose trucks), while Task Forces would be 

comprised of mixed types of resources (hose truck/ladder truck) [20]. Further, a “Group” 

consists of functionally similar types of resources working on the incident within a 

Division [20].  

This design for an expanding framework is unique to the Incident Command 

System. However, a similar level of flexibility is exhibited by the Toyota Production 

System in its organizational design. The organizational structure of a Lean system is 

based on providing support to frontline production Team Members, and a good example 

of this can be seen in problem solving. Problems are addressed directly at the process 

from a point of occurrence by a Team Leader, and upon escalation they are 

communicated to higher levels of a Lean organization [28]. This allows problems to be 
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resolved at the appropriate level using the right amount of effort at the right time to 

accomplish the task. 

This type of clarity with respect to role definition provides responders with the 

ability to function in a stable framework while communicating quickly and efficiently 

between various functional modules during the midst of an incident. To facilitate usage of 

this structure, the situation must be understood and planning must take place to expand or 

reduce resources used in the incident appropriately.    

3.0.2 Planning and Communication 

The planning process that takes place within an Incident Command System 

environment is known as “The Planning P” [47], and this method is geared towards 

changing the purely reactive mode of initial response into a more proactive mode of 

gaining control or reducing an incident [20]. Similar to how an Operations Section Chief 

is activated in Figure 11, a dedicated Planning Section Chief could be activated and focus 

primarily on the planning process.  Their main goal would be to coordinate with other 

Section Chiefs (Operations, Logistics, Finance, and Intelligence) to collaborate goals into 

an Incident Action Plan (IAP) for the incident [20] [47].   
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(Planning P from training.fema.gov – PlanningP.pdf) 

Figure 12: Illustration of "The Planning P" planning process of the Incident Command 
System. Shows the planning process as a cycle that occurs after initial response takes 
place [47]. This cycle is representative of one operational period where meetings take 
place to develop, update, and revise the Incident Action Plan. The cycle also resembles a 
PDCA cycle. 

 

The Planning P shown in Figure 12, illustrates the meetings required between 

various section chiefs to share information throughout the organization. Therefore, it can 

be inferred from previous discussion of roles that, if the incident does not warrant section 

chief activation, this would be manageable by the Incident Commander. This is because 

coordination of efforts will be less complex, and development of the Incident Action Plan 

may require fewer meetings or steps of the cycle. Most importantly, this cyclical method 

of planning and coordination represents a learning phase similar to the Plan-Do-Check-

Act learning cycle which is inherent to the Incident Command System overall. This 



planning method plays a significant role in the expansion and reduction of operational 

resources [46] as well as the problem solving process which is addressed later in this 

chapter. For more information please refer to “The Planning Process” document found in 

Appendix A.  

The desire for two-way communication represented in Figure 11 for both systems 

indicates that information should come from the top down as well as from the bottom to 

the top. This is logical given that the current condition should affect decision making in 

both systems. Furthermore, collaboration amongst certain adjacent roles in Figure 11 is 

highly encouraged in each system where applicable. For instance, in a Lean system, 

Team Leaders from different work groups would collaborate to resolve issues that their 

respective Team Members are dealing with (e.g. receiving defects from a previous 

process) instead of team members themselves as they are busy with their work [28]. 

Similarly, in the fire services, any issues across different groups would be communicated 

through respective supervisors in the system to resolve the situation. In order for this 

communication to be efficient the corresponding roles must be accompanied by some 

method of informing personnel of their responsibilities. 

3.0.3 Standard Responsibilities and Documents 

In Lean systems, Standardized Work (STW) is developed and maintained, 

preferably by the Team Leader, to promote stability while providing opportunities to 

define and eliminate abnormal conditions that burden the workers [28]. As previously 

mentioned, the tasks of the frontline production members in a manufacturing 

environment often contain low variability. Standardized Work Charts such as shown in 
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Figure 13 are appropriately rigid for this. Standardized Work Charts display the time 

required to complete work in order to meet customer demand (often referred to as “Takt 

Time”) as well as the elemental work method and standard amount of work in process for 

the worker to complete their tasks [28].  

An abnormality or abnormal condition is typically understood to be present when 

a worker has to adjust their normal method of work to avoid a problem, has to stop their 

work, or has to do something that isn’t described in the Standardized Work Chart for 

his/her work station. This type of struggle is clear to the worker who is experiencing it, 

but only if the standards for that process are well defined and followed. This awareness 

gives the Team Member an opportunity to stop the line or call for help to remedy any 

abnormalities. Also, Standardized Work Charts are intended to be displayed where they 

are easily viewed by the Team Leaders, Group Leaders, and higher levels of the 

organization [28]. This provides quick assessment of current conditions to show how well 

the Team Member is able to keep pace with production, while also providing an 

opportunity to observe any abnormalities that are occurring. This visibility along with 

regular Team Leader assessment provides the ability for the system to react faster and 

resolve abnormalities more efficiently to regain normal working conditions.  

The two following figures are displayed to illustrate the Standardized Work Chart 

(Figure 13) as well as the supporting Standard Work Element Sheet (Figure 14). These 

documents are present within the laboratory function of the University of Kentucky Lean 

Systems Program to instruct trainees on Standardized Work. This laboratory strives to 

simulate a production environment progressing through various defined stages in Lean 
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manufacturing development in order to allow trainees with an opportunity to use tools 

associated. These documents represent an assembly function within that environment. 

 

 

Figure 13: Standardized Work Chart depicting work methods, Takt time, and Standard 
Work in Process required for completing one cycle of work towards production of a 
product. Visual representation of work layout depicted with numbers correspond to steps 
in the work method. This provides a stable repeatable starting point for work each time. 
However, the standard layout must be sustained for this tool to be effective [28]. 
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Figure 14: The Standard Work Element Sheet illustrates each step of the work method 
described in the Standardized Work Chart and provides further information regarding 
key points how as well as reasons why something is done. For this example, visual 
symbols (cross, diamond, or inverted triangle) indicate steps in the method where safety 
may be of concern, where quality needs to be checked, or where a step is critical for 
meeting the specifications of the product during the production process [28]. 
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Standardized Work Charts are often supported by Standard Work Element Sheets 

(SWES) illustrated in Figure 14, which breaks down more complicated work elements to 

describe how they are done and provides clear visuals alongside key points as to why 

they are done [28] [48]. It can be seen by the revision dates of these documents that the 

Standard Work Element Sheet has been revised more recently than the Standardized 

Work Chart. This reveals an important relationship between these two documents as well 

as continuous improvement in general. The Standardized Work Chart is comprised of 

broad steps showing an overall method for assessment while the Standard Work Element 

Sheet provides the details of those steps for in depth understanding. Hence, changes that 

occur in smaller increments are preferable to larger changes because they generally won’t 

change the overall work being done, but will affect details and understanding of how part 

of the work is done. These changes would improve detailed aspects of the methods 

outlined in Standardized Work Charts without drastically affecting the Team Member 

performing the work. When a large number of minor changes have accumulated 

regarding the details of work, then the overall method may be revised to reflect the 

current condition and new work method.  

This stability reduces the need for constant in depth training on a process with 

experienced workers, because the method remains largely familiar to the worker. 

Exceptions to this occur when equipment, product design, or quality requirements 

change, but overall, it is desired to have a good stable process that’s well documented and 

built from the best method available [28] [48]. This gives way for good results in a Lean 

system based on the idea that a good process will produce good results and that 

improvement of that process will improve results further [28].  
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The decision based work content performed by members of higher levels within a 

Lean organization effectively limits the application of these approaches towards 

standardizing their processes. For these instances, Standardized Procedures may be 

developed with less strict adherence to exact step by step methods and intended to serve 

as a general guideline [48]. This can provide stability regarding how to approach 

situations, keep the individual focused on what to look for in a given situation, and ensure 

that the person knows how often the situation should be reassessed [49]. A simple 

example of this type of work is a general production maintenance scenario represented in 

Figure 15.  

 

Figure 15: Simple scenario of production maintenance [50]. 

 

In this scenario, the individual performing maintenance checks has 5 machines to 

consider. The figure illustrates that at the fourth machine there are four things to consider, 
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this machine may have components to inspect, gauges to read, or other regular 

preventative maintenance tasks. Having this checklist of things to take into consideration 

allows the worker to approach the work the same way each time. Also it’s easily apparent 

from clear diagrams such as Figure 15, that the third item to investigate is somewhat 

obscured. Having some record of what to check when investigating a machine can 

provide the ability to ensure all tasks are accomplished, but also provides a baseline of 

stability which can be improved upon. In this case, the third item on the checklist could 

be moved or improved to provide a quick visual without having to go behind the fourth 

item for access.  

The overall goal for decision based standards are the same as with Standardized 

Work Charts and Standard Work Element Sheets. This is to focus on the process, 

stabilize it, standardize it, and look for future improvements to ensure incrementally 

better results. However, it can be seen that the level of rigidity presented in the 

Standardized Work documents of Figure 13 and Figure 14 would be restrictive to 

firefighters and most likely impossible to maintain due to high fluctuations in work 

content and time.  

Methods for production maintenance bear striking similarities to how the fire 

services approach assessing a situation. For example, a standard method for assessing 

problems with a machine may be the inspection of products being made by the machine, 

as particular defects may indicate problems with specific components of the machine. 

Production maintenance also utilizes oil sampling in order to better understand machine 

conditions that may be present when oil is dirty, burnt, or contains shards of metal [50]. 

Similarly, in the fire services smoke reading is practiced in order to predict the location of 
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a fire within a building as well as the severity of a fire based on the smoke’s color, 

density, velocity, and turbulence [51]. This technique can provide first responders with 

vital warning signs to avoid possibly dangerous situations. These approaches provide 

quick and immediate feedback about a situation and are practiced mainly because of the 

brevity and accuracy by which a person can assess a situation to discover the main cause 

of a problem.  

Methods of standardizing the overall response efforts of fire services may come in 

the form of regulations or codes proposed by local, state, or federal entities as discussed 

in the Introduction. These typically result from a legislative process, and tend to work 

towards improving aspects of safety and performance. For example, the Code of Federal 

Regulations requires that firefighters use Self Contained Breathing Apparatus (SCBA) for 

respiratory health during incident response. While regulations tend towards general 

improvement, they take time to complete from the standpoint of identifying a problem 

and then going through necessary channels to resolve it, therefore a time lag exists before 

regulations and codes are implemented that could improve day to day operations. 

However, the amount of these regulations, codes, and legislative entities are numerous 

for firefighters. Naturally, some baseline of stability is critical to reducing the complexity 

placed upon firefighters in their duties.  

The fire response community strives towards process control throughout the 

entirety of response from the sizing up of an incident to the determination of when an 

incident is under control. These methods are generally referred to as Standard Operating 

Procedures (SOP), or similarly Standard Operating Guidelines (SOG), the latter being 

used to counter any misconceptions that two unique incidents should be handled exactly 
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the same. These procedures are developed by each department to incorporate regulatory 

standards ensuring compliance [14]. Furthermore, departments are not limited in their 

capability to adjust Standard Operating Procedures for improving past regulations in 

order to meet department specific goals or to build upon “consensus standards” [51], 

which may be unrelated to regulations but understood to be best practices learned from 

past incidents. 

3.0.4 Examples of Standard Operating Procedures in Fire Services 

Standard Operating Procedures in the fire services are critical to keeping 

responders on the same page to bring some form of repeatability and a proactive mindset 

to an occupation that deals with highly variable and reactive situations. Numerous 

Standard Operating Procedures are developed within each fire department, and some 

even address how to implement and follow the framework of the Incident Command 

System. There are some which incorporate federal requirements, such as the 

aforementioned required usage of SCBA and the exposure limits for toxins emitted from 

combustion. While others improve upon the overall body of knowledge related to 

regulations, for example, outlining best practices for the usage of SCBA under heavy 

operations. Other Standard Operating Procedures may provide guidance on operational 

tasks, such as approaching and sizing up an incident, or keeping accountability of 

personnel while inside structures during incidents [51].  

The Standard Operating Procedure that’s typically used for the initial response of 

an incident exists to provide a repeatable look at an incident, such as a multiple story 

building on fire. During the approach and size-up of an incident, departments position the 
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Engine truck with the hose for suppression forward of the building for two reasons: they 

are able to view multiple sides of the building on approach for size up of the incident, and 

they save room at the front of the building for a Ladder truck to access the building [51]. 

Alongside this, departments designate sides of the building with letters or numbers for 

clear communication; these are illustrated in Figure 16 and Figure 17. 

 

 

Figure 16: Top-Down Illustration of building face designation during the size-up of an 
incident. Illustrates the approach of resources during incident command. Street facing 
side is labeled A or “Address Side” while other faces are labeled B, C, and D in a 
clockwise fashion. Engine crew sizes up the situation after seeing sides D, A, B and 
positions itself just past the incident to leave room for the Ladder crew [51]. 
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Figure 17: Side Illustration of building face designation during size-up of an incident. 
Each level is designated by a number or simply referred to as first, second, or third floor. 
This designation along with the designation of the sides of the building give clarity to 
communication. The point 3AB serves as an example of how a specific corner of the 
building can be communicated briefly and efficiently using this method and other similar 
methods for designation.   

 

The figures illustrate the faces and stories of a building being designated by the 

convention called for in a Standard Operating Procedure. As can be seen in Figure 17, 

multi-story buildings can add some complexity to the designation of building areas. 

Building designation allows for clear consistent communication for resources responding 

to an incident no matter which department they arrived from, and gives better visibility 

on where things are happening within the incident as well. For example, if a distress call 

comes over the radio from a firefighter in 3AB, then it is clear that the firefighter is on 

the third floor in the corner where faces A and B meet, as illustrated in Figure 17. 

 From an industrial engineering standpoint, these standards in place provide good 

process control. During the process of response, the repeated actions called for in this 

standard allows for approaching and sizing up of an incident relatively the same way each 



time even if the incident differs. Having seen up to 3/4 of the building or incident in 

question, the firefighter is more knowledgeable about the current condition, allowing 

them to make more informed decisions. Furthermore, in the case of a uniquely designed 

building (L-shaped or multiple subterranean levels) or a fence blocking visibility, then 

the firefighter will know of areas to be wary of and further investigation can be done 

[51].  

There is also a strong need for stability in keeping track of which firefighters are 

actually inside buildings fighting fires. Therefore, an Accountability Standard Operating 

Procedure exists for the tracking of personnel within a structure during a fire. The role of 

the Accountability Officer is filled by personnel as called for within the Standard 

Operating Procedure. The accountability officer’s role includes the collection and 

tracking of firefighters’ Personal Accountability Safety System (PASS) devices before 

they enter the building to perform their duties [51]. Afterward, the accountability officer 

will regularly conduct a Personnel Accountability Report (PAR) over the radio for all 

personnel being tracked at some time intervals during an incident, complete with a 1 

minute warning to let them know the call is coming [51]. If they receive no response 

from any one individual during the Personal Accountability Report, a Rapid Intervention 

Team (RIT) stands ready to rescue a possibly incapacitated firefighter [51]. This Standard 

Operating Procedure illustrates a blending of the federal regulation mandating the use of 

SCBA equipment and the learned best practices of firefighters understanding that the 

equipment may be rated for a certain amount of operational time, but may not last exactly 

that long due to heavy activity when used. Therefore, the intervals in which Personnel 

Accountability Reports are done is normally timed such that the group is reminded of the 
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time they have already spent working an incident and, at the same time, gives them an 

awareness of the further capability of their SCBA gear [51].  

This method illustrates a desire by users of the Incident Command System to 

manage and maintain visibility of their responders, while also being able to visualize 

abnormal conditions. This type of standard is reminiscent of the duties performed by 

Team Leaders in a Lean system who track various Key Performance Indicators as well as 

monitoring the work being done to maintain an awareness of the current condition 

experienced by the frontline production Team Members. 

3.1 Problem Solving 

The ability to resolve abnormalities based on current factual cues from the system 

is important in the overall landscape of continuous improvement. In a production 

environment, even attempting to define a problem can be a daunting task if one is using 

old data or searching through a large batch of products to find the cause of defects [52]. 

Therefore, real time detection of defects and occurrences is important, and these events 

should be broken down, categorized, and visualized clearly for prioritization of a problem 

which can be resolved to positively affect progress towards the company’s targets and 

goals. The following sections are dedicated to problem solving of abnormalities and the 

ability to find solutions that prevent the problem from recurring.  

3.1.1 Systematic Problem Solving 

Figure 18 depicts the 8 step problem solving process found in Lean manufacturing 

alongside the Incident Command System problem solving method with its 5 steps as 

proposed by IS-241b from the Emergency Management Institute’s training documents 
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[20]. The Incident Command System’s process for solving problems seems to share the 

same foundation of the Plan-Do-Check-Act learning cycle introduced to Japanese 

industry by Deming. Therefore, both processes show each step aligning to an aspect of 

the Plan-Do-Check-Act (illustrated P, D, C, or A) process. Differences between the two 

methods appear in the incompleteness of the Plan-Do-Check-Act cycle in the Incident 

Command System, which indicates the system lacks the drive for standardizing 

successful results. A difference also appears in one key aspect promoted by Lean problem 

solving, the focus on root cause analysis to reduce problem recurrence.  

It can be seen in the steps illustrated by the figure that a high emphasis is placed 

on planning within both problem solving methods during the initial stage of investigation 

to better understand a problem and develop effective solutions. Furthermore, both of the 

methods are cyclical, as monitoring the situation or process being addressed ties back to 

the first step of identifying or clarifying the next problem to purpose.     
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Figure 18: 

 
 

Figure 18: Comparison of Problem Solving Methods used in Lean manufacturing (Left) [28] and the Incident Command System 
(Right) [20]. The eight-step problem solving method used systematically within Lean organizations emphasizes root cause 
analysis and standardization of successful implementations [28]. This cycle not only encourages the system to find a problem and 
fix a problem, but helps ensure that the problem never returns. The five-step problem solving method discussed in IS-241b 
training documents does not emphasize root cause analysis or standardization of successful results [20]. This indicates that when 
the system finds a problem and fixes it, that it cannot be ensured that the problem will never return. 
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The Incident Command System’s problem solving method is illustrated on the 

right side of Figure 18. Due to its usage in high stress, high urgency environments, the 

method promotes various supporting materials in the form of questionnaires or checklists 

that guide the user towards clarifying, breaking down, and setting goals for problems 

quickly during an incident. The questionnaire associated with the first step provokes the 

user to think critically about how to identify, define, and analyze the problem [20]. Step 2 

encourages brainstorming, surveys, and discussion groups; this step is supported by a list 

of questions one should ask themselves regarding various alternatives: constraints, 

appropriateness, adequacy, effectiveness, efficiency, and side effects [20].  

The development of countermeasures follows in the third step with an exercise of 

listing out all alternatives and writing their degree of limitation in terms of political, 

safety, financial, environmental, ethical, and other factors [20]. Once a countermeasure is 

decided on, a 9 point checklist is used in Step 4 to fully describe the solution by outlining 

targets, methods, resources, timeframe, and who is responsible [20]. Finally, the fifth step 

involves monitoring progress to evaluate the results and is accompanied by a 6 point 

checklist to assist with this task [20]. Refer to Appendix B for the complete job aid used 

for this problem solving model containing all checklists and supplemental items. 

The steps of the Lean manufacturing problem solving process is illustrated to the 

left side of Figure 18, and follows the Plan-Do-Check-Act cycle adamantly. The first 

three steps of the Lean manufacturing process have the same goal as the Incident 

Command System’s first two steps, but the planning phase continues into a fourth step 

where root cause analysis is done.  
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Properly breaking down the problem in step 2 along with performing root cause 

analysis of step 4 are well-known struggle points within the 8 step process [28] [53]. This 

is partly due to a learned tendency to commit to a solution for a problem without deeply 

searching for the cause [28] [53]. Step 2 requires starting with a broad perspective of an 

issue and narrowing down all contributions to find a unique problem to prioritize based 

on severity or frequency of occurrence. If the problem breakdown is not done thoroughly, 

the rest of the process is adversely affected until the breakdown is revisited and corrected 

to go as deeply as necessary.  

Analyzing the root cause is typically achieved in step 4 by asking “Why” multiple 

times in relation to the target. The target is set in step 3 and based on the prioritized 

problem found in step 2. This process drills even deeper to find the true cause of a 

problem for elimination. Following the process thoroughly promotes the cycle illustrated 

in the figure of finding and fixing a problem, where the addition of tracing it back to a 

root cause and standardizing successful results will provide the opportunity to prevent 

recurrence [28].  

Towards the end of the planning phase of Plan-Do-Check-Act problem solving, 

both systems move forward to develop, implement, and monitor countermeasures. The 

absence of thorough root cause analysis in either method will lead to multiple iterations 

of countermeasures based on trial and error until something works, where the true cause 

of the problem may still be unresolved. Also important in the closing stages of problem 

solving is the standardization of successful results. This step serves to communicate the 

problem as well as the changes associated to those who will be affected by it, or those 
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who can benefit from the knowledge. This sharing of information is important for 

maintaining the level of organizational learning desired in any system. 

Unsuccessful applications of Lean manufacturing typically result from an over-

emphasis on immediate improvement which often ignores the importance of thorough 

problem solving and well maintained standardization [54]. The Incident Command 

System’s training documents do not explicitly state standardization and incorporation as 

part of the current best method, but these aspects are clearly required for continuous 

improvement. Furthermore, resolving issues without finding the root cause will risk in 

recurrence of problems. The Incident Command System’s process shown in Figure 18 

encourages finding and fixing problems, but will not prevent recurrence unless problems 

are traced back to the root cause and the results are incorporated into the standard 

procedures of the Incident Command System. 

3.1.2 Problem Recurrence and Continuous Improvement 

Donahue and Tuohy [55] recognized recurrence of problems in their analysis of 

learning capabilities within the Incident Command System. After careful review of post 

incident reports, they concluded the need for the drive and ability to solve problems 

permanently rather than suffer them repeatedly [55]. Moynihan [56] further explored the 

concepts of organizational learning in the Incident Command System with regards to 

learning that takes place during the management of an incident (intra-crisis learning) and 

learning that takes place as reflection outside of an incident (inter-crisis learning). 

Moynihan also noted that the development and revision process taking place during the 
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learning that occurs via reflection would effectively minimize the amount of learning 

required during incidents [57]. 

The Incident Command System’s use of questionnaires, checklists, and other 

materials are intended to direct problem solving while streamlining the decision making 

process. Users of the 5 Step Problem solving process shown on the right of Figure 18 

benefit from a fairly swift process to determine countermeasures during the midst of an 

incident. However, it’s unknown to the author whether this 5 step method is also used 

during reflection of an incident to develop countermeasures for systematic problems or 

general instability within repeatable processes. The addition of root cause analysis and 

standardization of successful results during reflection of an incident could provide an 

opportunity for deeper understanding of what causes various recurring struggle points. 

This type of deep investigation promotes an intuitive understanding of the processes in 

question. In turn, this level of understanding increases the effectiveness of the documents 

used for stability such as Lean Standardized Work documents or Firefighter Standard 

Operating Procedures encouraging continuous improvement within the systems. 

For a wildland fire environment, instabilities can be found even between the 

groups of responders who work together to manage incidents. Incident Management 

Teams could be dispatched from one wildland fire to the next to work with an entirely 

different structure and circumvent the reflection process for an incident entirely [13]. The 

most stable roles within wildland environments would be those that develop the Resource 

Management Plans and Fire Management Plans. Those who develop these plans typically 

have authority over incidents that occur in their area [13] and should have access to 

information gathered during incident management. This information could be processed 
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through the 8 step method to discover and eliminate root cause for revision and further 

development of Resource Management Plans, Fire Management Plans, and other 

standards to promote continuous improvement.  

The importance of problems in any environment arises from the fact that they will 

occur inevitably. The key approach used by Lean manufacturing methods is to develop a 

system capable of communicating those problems or gaps in real time in order to use 

them as an opportunity for improvement. This hinges on adherence to the Plan-Do-

Check-Act learning cycle and the system’s ability to retain or spread information to 

prevent problem recurrence. 

The Lean approach to obtaining timely operational feedback for improvement is 

based on system stability through the aforementioned standards for roles, responsibilities, 

and methods. This level of definition within the system increases as these component are 

improved through waste reduction and reduction of general confusion within the system. 

A general illustration of the Continuous Improvement process is shown in Figure 19, 

where improvement is shown as steps upward. These continuous improvement activities 

not only benefits systems components but also work towards providing better definition 

for the system itself. 
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Figure 19: Continuous Improvement and stability in a system promote a decrease in the 
time required for further improvements resulting from better definition of the system. 

 

The clarity gained from improvements made in a stable and well-defined system 

gives rise to the opportunity for more frequent continuous improvement activities 

because of the ability to distinguish abnormal and normal conditions within the system. 

This is only possible if the knowledge gained from improvement activities is retained and 

understood throughout the organization.  

Figure 20 demonstrates the cycle of continuously evaluating how effectively the 

Incident Command System responds through each iteration of addressing incidents (Fires 

1,2,3,…,n). The Incident Command System then uses this data from each incident to 

improve the efficiency of response and goes on to repeat the process.  
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Figure 20: Anticipated incremental improvements in TPS/Lean organizations versus 
improvements in the Incident Command System. Based on Maginnis [41]. 

 

Figure 20 also illustrates an anticipated gap that occurs between systems applying 

TPS/Lean methods and the Incident Command System without root cause analysis and 

strict adherence to standardizing successful results [41]. 

3.1.3 Gap Analysis for Determining Needs 

 Gaps within the fire services are also explored by the National Fire Protection 

Association through the “Needs Assessments for the U.S. Fire Services” report. The 

Needs Assessment is published every 5 years since 2001 and composed with data from 

the prior year. Each report provides comparisons to previous needs assessments. For 

example, the 2011 assessment is compared with results of both reports published in 2001 

and 2006 to illustrate improvements as well as remaining gaps to show needs of fire 

services [4]. The intention of this report is to direct grant money to improve fire services 

by comparing survey-based statistics to regulatory requirements within the following 6 

core areas: personnel and capabilities, facilities and apparatus, personal protective 
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equipment, fire prevention and code enforcement, ability to handle unusually challenging 

incidents, and communications/new technology  [4]. 

 The categories in the report are separated into different sections to reflect needs 

based on size of population protected. This stratification was shown necessary in the 

report due to the trend that fire services protecting smaller communities generally display 

greater needs since there are more departments covering smaller communities to be 

surveyed [4]. Furthermore, the report is broken down to provide fact sheets and statistical 

reports for each state in the United States [58]. Appendix C contains a portion of the 

United States report, and the fact sheet for Kentucky from 2011 can be found in 

Appendix D. 

 These reports discuss general improvements across the board for the United States 

as a whole [4], and some improvement in certain areas for the state of Kentucky [58].  

The percentage of estimated need for Self Contained Breathing Apparatus to outfit all 

firefighters in departments across the nation, as well as in Kentucky, are illustrated in 

Figure 21. This contribution towards a clear picture of fire services along with an 

illustration of needs is admirable. This information is also key in preventing fire services 

from suffering the consequences of outdated equipment, facilities, or a lack of written 

agreements with coordinating agencies.  

 Figure 21 illustrates a particular result of the report regarding Self Contained 

Breathing Apparatus needs for fire services in 2011. The figure is interpreted to read 

“52% of the all fire departments cannot equip firefighters on a shift with self contained 

breathing apparatus, down from 70% in 2001, and 60% in 2005” [4].   
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Figure 21: Self Contained Breathing Apparatus needs in the United States fire services 
(blue) [4] and Kentucky fire services (red) [58]. 

 

As encouraging as this communication of needs may be for stimulating 

improvements, these statistics don’t seem to drill down past illustrating general gaps. It 

would be interesting to see needs based directly on processes performed by fire services 

in the United States. When looking at needs deeply from this process perspective, it 

allows for the development of performance indicators that would affect these statistics in 

real time. The needs would then be communicated and monitored at multiple levels 

within the system allowing for maintenance of the current, clear information. Figure 22 

illustrates a strictly theoretical example of Key Performance Indicators that could be 

tracked to communicate the effects of Self Contained Breathing Apparatus equipment 

upon three categories of performance within an organization.  
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Figure 22: Theoretical hierarchy of Key Performance Indicators for Fire Services. 

 

The three performance indicators shown in Figure 22, Safety, Quality, and Cost are based 

on information tracked at the process and collaborated at the departmental level. This 

information would then be communicated to the state level to be combined with data 

from other departments to be shared at the federal level as a performance measure that 

would indicate needs. The performance indicators displayed at the departmental level 

would be regularly updated through documenting process abnormalities, tracking 

response time, etc. 

This effort would also encourage some level of activity at the departmental level 

for improvement. Going deeper into these categories to better understand the reasoning 

behind gaps may also provide insight into methods of reducing them without monetary 

contributions as well. 
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CHAPTER 4: CONCLUSION 

4.0 Conclusions 

The robust learning cycle present within a successful Lean manufacturing 

environment hinges on a Plan-Do-Check-Act process which facilitates continuous 

improvement when followed rigorously. This is due to a deeper level of learning 

achieved from investigations of root cause to eliminate problems [59]. In addition, Lean 

systems retain and spread information regarding improvements throughout the system by 

continual revision of standards and effective communication in response to problem 

solving successes. This also serves to drive the system towards future efforts for 

continuous improvement as goals have been effectively raised and set. The Incident 

Command System attempts to follow the Plan-Do-Check-Act cycle, but literature 

indicates that the system struggles with problem recurrence; therefore application of root 

cause analysis may be able to significantly contribute to the effectiveness of future 

emergency responses. Furthermore, the Incident Command System’s training documents 

regarding problem solving do not guide the user to post-problem solving efforts intended 

to retain and spread knowledge throughout the system. This highlights an area where loss 

of valuable incident based knowledge would occur, which could be remedied through 

more diligent revision of standards.  

The use of statistics to illustrate the needs of fire services within the Unites States 

provides an opportunity to reduce those needs by sharing them. However, some 

exploration of these needs at the process level would be useful in providing a better 

overall picture of the system. The monitoring and maintenance of these performance 
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indicators at various levels of the fire services would also facilitate continuous 

improvement. This is because problem identification and prioritization are essentially 

streamlined through access to the most current information. Finally, the application of 

these key performance indicators in real time would provide an opportunity for more 

frequent statistical analysis and reporting.  

After analyzing the Incident Command System and Lean manufacturing to form 

an overall understanding of both systems, it seems readily apparent that the application of 

Lean methods would be extremely promising. Similarities between the two systems 

indicate possibility for success, while the differences only imply opportunity. 

4.1 Future Considerations 

For the duration of this study, it was intended to understand the Incident 

Command System and Lean manufacturing organizations better in order to consider the 

Incident Command System from a Lean manufacturing perspective. This was done in 

order to assess whether or not Lean could be applied to the Incident Command System. 

Because of the encouraging similarities between the two systems discussed in this thesis, 

future studies could be more focused towards application of the various tools sought out 

by manufacturing professionals around the world. Some primary tools associated with 

Lean manufacturing that could be implemented into any department to aid in preparation 

for incident management would be 5S (Sort, Straighten, Shine, Standardize, and Sustain) 

[60], Waste Elimination of the 7 critical wastes (Waiting, Overproduction, Rework, 

Motion, Processing, Inventory, and Transportation) [60], and Visual Management of 

results of these efforts.  
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These principles are fairly straightforward, but require diligence to maintain 

results and drive to improve further. Implementation of these tools would be most 

successful within a “model area” of an organization rather than being deployed across the 

entire framework [28]. This approach allows for better support towards the model area 

during implementation, and results from this implementation can be used to lead by 

example in order to spread throughout the organization. The development of a model area 

also results in experienced members of the organization who understand the struggles of 

implementing the new approach and can serve in a support function to other areas who 

may be working towards implementing Lean principles as well.  

Due to the various gaps discovered between these two systems. Future work could 

serve to investigate the statistics published by the National Fire Protection Association, as 

well as other entities, in order to better understand them. This would require an effort by 

the investigator to track down comparisons of various levels of needs (expressions of no 

need, some need, and critical need) discussed in the reports, discover what that need 

physically looks like, and then compare and analyze the related effects of this need 

realized at the fire departments level among various other perspectives. This could 

culminate in a quantifiable indication of what is occurring at any one department directly 

affecting the need expressed.  

Furthermore, research into the development of Standard Operating Procedures 

will need to be done. It would be particularly interesting to see direct comparison 

between the production maintenance aspects of manufacturing and the Standard 

Operating Procedures used within the fire services. Further, in this effort the researcher 

would gain a basic understanding of how Standard Operating Procedures are developed, 

66 
 



and then assess the revision of these documents. Most importantly, the number of 

revisions along with the quality of revisions would give a good indication of how well the 

system retains knowledge gained by incidents. This would also include assessing the 

amount of rework done with revising a Standard Operating Procedure. 

Critical future research is required as relates to the problem solving method used 

within the fire services. It is of interest whether current or proposed methods are used 

during an incident versus different methods that may be used after an incident. It may 

take a great deal of effort to differentiate problem solving towards addressing an incident 

to meet incident goals and the problem solving methods used to resolve systemic 

abnormalities. Furthermore, some indication of the systematic utilization of the 5 step 

problem solving method could be given through survey or consensus and compilation of 

the results. However, the rewarding results of these efforts would be an idea of how 

coordinated the problem solving approach is within the realm of fire management. 

Systematically solving problems reduces the amount of in depth explanation required for 

developed solutions because all personnel will “speak the same language” as far as the 

discussion of their methods and line of thinking towards results. 

Finally, many factors are understood to impact the use and effectiveness of the 

Incident Command System regardless of system design itself. Moynihan [56] stated that 

barriers to learning during a crisis may result from limited time, political consequence, 

and weak working relationships between responders. As well, a recent comprehensive 

literature review published by Jensen and Waugh [61] noted various factors regarding the 

application of the Incident Command System’s procedures within various other 

emergency response areas. In order to improve the system overall, it is important to 
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maintain continuous improvement efforts within areas that do use the Incident Command 

System regularly, such as the firefighting community. These efforts would result in a well 

defined area of the system that demonstrates efficiency and effectiveness to lead by 

example and encourage further integration as a unified response community. 
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APPENDICES 

Appendix A: The Planning Process (8 Pages) 
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Appendix B: Job Aid: Problem-Solving Model (11 Pages) 
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Appendix C: Overall United States Needs Assessment Data (4 Pages) 
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