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ABSTRACT OF DISSERTATION

A FILTER-FORCING TURBULENCE MODEL FOR LARGE EDDY
SIMULATION INCORPORATING THE COMPRESSIBLE “POOR MAN’S”

NAVIER–STOKES EQUATIONS

A new approach to large-eddy simulation (LES) based on the use of explicit spatial
filtering combined with backscatter forcing is presented. The forcing uses a dis-
crete dynamical system (DDS) called the compressible “poor man’s” Navier–Stokes
(CPMNS) equations. This DDS is derived from the governing equations and is shown
to exhibit good spectral and dynamical properties for use in a turbulence model. An
overview and critique of existing turbulence theory and turbulence models is given.
A comprehensive theoretical case is presented arguing that traditional LES equations
contain unresolved scales in terms generally thought to be resolved, and that this can
only be solved with explicit filtering. The CPMNS equations are then incorporated
into a simple forcing in the OVERFLOW compressible flow code, and tests are done
on homogeneous, isotropic, decaying turbulence, a Mach 3 compression ramp, and a
Mach 0.8 open cavity. The numerical results validate the general filter-forcing ap-
proach, although they also reveal inadequacies in OVERFLOW and that the current
approach is likely too simple to be universally applicable. Two new proposals for
constructing better forcing models are presented at the end of the work.
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Chapter 1. Introduction

The simulation of turbulent flows remains a critical problem in modern computational

fluid dynamics (CFD). Many engineering and naturally occurring flows are turbulent,

ranging across such situations as planetary boundary layers, jet engine combusters,

rocket nozzles, and pipe flows. However, due to nonlinearities in the Navier–Stokes

equations (NSEs), direct numerical simulation (DNS) requires that the computational

grid must be resolved down to the finest coherent structures. Furthermore, under-

resolution is not only inaccurate, but numerically unstable. For turbulent flows, this

requires resolution down to the Kolmogorov dissipation scale, which is the length scale

at which viscous dissipation overwhelms nonlinearities. The ratio of the dissipation

scale to the largest scale of coherent structure, called the integral scale, is O(Re3/4),

where Re is the integral scale Reynolds number. Thus, a 3-D grid resolving all

scales of the flow requires O(Re9/4) grid points. Also the time step is generally

proportional to the grid size; this means that the overall computational work required

for a certain period of time grows like O(Re3). Because turbulent Reynolds numbers

are frequently O(106) or greater, this typically makes DNS prohibitively expensive

for flows of engineering interest, even on modern supercomputers.

The reality of the infeasibility of using DNS for simulating engineering flows for the

foreseeable future has led to the need for turbulence modeling. Generally, turbulence

models fall into two types: Reynolds averaged Navier–Stokes (RANS) models and

large-eddy simulation (LES) models. RANS models sidestep the fact that turbulence

is an intrinsically unsteady phenomenon by attempting to predict only the Reynolds

or time-averaged flow by solving time-averaged equations. However, the Reynolds

averaging technique introduces a closure problem, which must be dealt with by means

of a model. In general, RANS models are limited in their applicability, and different
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models have been developed for different types of flows. In particular, RANS models

tend to be poor at dealing with turbulent transition, highly separated flows, and

moving boundaries. One explanation for the limitations of RANS modeling is that it

must capture the entire frequency spectrum of turbulence, ultimately frustrating the

search for a universal RANS turbulence model.

LES modeling differs from RANS modeling in that it is intended to capture the

unsteady phenomena that can be resolved by the grid, while handling the effects

of subgrid-scale (SGS) phenomena by means of a model. This includes traditional

LES [1], which filters the governing equations and relies on an “eddy viscosity”,

implicit LES (ILES) [2], which relies on built-in numerical dissipation to achieve

stability, and structural models [3], which attempt to reconstruct estimates of SGS

quantities in order to return information to the large scale. The vast majority of

RANS and LES methods rely on artificial dissipation to handle the effects of SGS

fluctuations. But because turbulence is due to nonlinear interactions, although it

does act to enhance dissipative properties of the flow, its mathematical characteristics

are substantially different from true, linear dissipation. Thus, although the popular

dissipative methods are relatively stable and can produce usable results for certain

classes of flows, reliance on dissipation intrinsically limits these methods, especially

in the case of transition to turbulence. In Chapter 3, we will present a detailed,

mathematical explanation and critique of both RANS and LES methods and present

an argument for the necessity of using an explicit filter to compute LES solutions.

Currently, the simulation of more complex flow situations, such as chemically

reacting flows and multiphase flows, is gaining industrial significance. However, the

critical phenomena of these flows happen at the SGS level, and traditional dissipative

models do not provide the information needed to simulate such phenomena. This has

led researchers to investigate new types of models. One class of models is coupled

to traditional dissipative turbulence models, and uses the turbulence model terms
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in order to construct SGS quantities. See, for example, the Lagrangian-Langevin

dispersion model investigated by Berrouk et al. [4]. Another approach is to rely on

the SGS estimates provided by a structural model. Rather than modeling turbulence

as dissipation, these models use dissipation primarily to achieve numerical stability,

and use some kind of model to directly simulate SGS fluctuations. For example, A.R.

Kerstein’s one-dimensional turbulence (ODT) uses a stochastic process to simulate

SGS mixing [5]. J. Domaradzki’s subgrid-scale estimation model estimated SGS

quantities, then used these to estimate the SGS stress tensors in the LES equations [6].

This class of models has the advantage of simultaneously attacking the traditional

flow-related problems of dissipative models, while also providing a model of SGS

quantities suitable for application to situations such as the mixing of chemical species.

Compressible turbulence introduces another layer of complication for turbulence

modeling. The compressible Navier–Stokes equations (CNSEs) include additional

terms in the mass and momentum equations, and include an energy equation as well.

The averaging and filtering techniques used to produce RANS and LES equations

produce additional nonlinear terms beyond those of the usual stress tensors famil-

iar to incompressible LES researchers. Further, compressible turbulence interacts

with shock waves at high Mach number and can be shown to violate some of the

assumptions undergirding classic eddy viscosity models [7]. For example, scalar eddy

viscosity models rely on an assumption of local isotropy, an assumption that has been

shown to be false by Schmitt [8]. They also assume turbulence is an essentially dissi-

pative mechanism that transfers energy from large to small scales, while the analysis

of Kraichnan shows that locally, net energy transfer can be in the reverse direction

[9].

The model presented in this current work is of the latter type. In particular, it is

an extension to the compressible NSEs of an older turbulence model by McDonough

and Yang [10]. The same techniques used to formulate this model, called the “poor
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man’s Navier–Stokes” (PMNS) equations after the terminology of Frisch [11], will

be applied to the compressible NSEs, hence the name, compressible “poor Man’s

Navier–Stokes” (CPMNS) equations. The SGS model takes the form of a discrete

dynamical system (DDS), as opposed to the aforementioned random models (more

explanation of dynamical systems will be given in Chapter 2). A DDS is a natural

choice for a SGS model, as the NSEs themselves can be viewed as a dynamical

system, according to the theory of Ruelle and Takens [12]. Moreover, dynamical

systems exhibit bifurcation behavior; that is, their time-evolution behavior changes

qualitatively as certain parameters, called bifurcation parameters, are increased. For

example, the logistic map, a commonly studied DDS, exhibits steady-state, periodic,

subharmonic, and chaotic behavior as its bifurcation parameter is increased. In the

case of the compressible NSEs, three relevant bifurcation parameters are the Reynolds

number Re, the Mach number M , and the Peclet number Pe. We will show in Ch. 4

that the bifurcation parameters of the CPMNS equations produce physically realistic

bifurcation sequences, a desirable characteristic that a stochastic model cannot match.

In the latter portion of Ch. 4, we develop a forcing function to be used as a

backscatter model. A pure backscatter model is a natural choice to be used in con-

junction with an explicit filter, and we give a detailed discussion of prior research

in forcing methods. This forcing method is implemented in the OVERFLOW com-

pressible CFD code, and we discuss the features, advantages, and shortcomings of

this package in Ch. 5. In Ch. 6, this model is applied to two different flows: decay of

homogeneous, isotropic turbulence in a periodic cube, and turbulent boundary layer

flow over a Mach 2.9 compression ramp. We show that in both cases, the backscatter

model enhances the performance of the LES. In Ch. 7, we summarize our findings,

outline some open problems, and present two alternative strategies for developing

better forcing functions.
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Chapter 2. Foundations in Turbulence Theory

In this chapter, we present a summary of compressible turbulence theory and the ba-

sic techniques of turbulence modeling. A solid theoretical foundation serves as both

a foundation for modeling and for critiquing existing models. This is necessary, as

researchers in the field of turbulence modeling employ a variety of competing theo-

ries. The fact is that despite decades of research, no universally applicable, reliable

turbulence model has yet been constructed, nor has any single general approach to

turbulence modeling even become universally accepted. When such a large knowledge

gap exists in a field, it is incumbent upon scientists to refrain from taking the core as-

sumptions behind any technique for granted, and by the same token it is necessary to

explicitly state what assumptions, simplifications, and theories are being employed.

Fluid turbulence remains one of the great unsolved problems of physics, and were it

solved, there would be no need for this discussion. We present our judgment of which

theoretical and analytical techniques we believe shed the most light on the nature of

turbulence with the goal of explicitly clarifying to the reader why we have chosen the

particular turbulence modeling technique presented in Chapter 4.

In this chapter, then, we will present an overview of compressible turbulence

theory, beginning with the statistical and mathematical tools used to discuss and

analyze both physical turbulence and the Navier–Stokes equations. The Kovasznay

decomposition is used to separate the flow into pressure, entropy, and vorticity modes.

Statistics are used both to characterize turbulent flow data and to construct popular

turbulence models. Spectral analysis is used to analyze physical data, to decompose

the NSEs, to build turbulence models, and to construct and study numerical solution

methods. We then continue to give a basic discussion of chaotic dynamical systems

and their application to the NSEs, a critical paradigm shift in the theory of turbulence
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with significant consequences for turbulence modeling. Shock-turbulent interaction

is the last topic discussed, as it is an issue unique to compressible turbulence and

poses challenges that researchers most familiar with incompressible turbulence may

not be aware of. Finally, we summarize the discussion in this chapter and present our

conclusions on the nature of turbulence and how it relates to turbulence modeling.

2.1 Governing equations

Turbulence in engineering flows is assumed to obey the continuum hypothesis; that is,

that turbulent fluid behaves like a continuous medium. In physical terms, this means

that we assume that the smallest length scales on which turbulent dynamics operate

are much greater than the mean free path of the molecules of the fluid. This is a non-

trivial assumption, though it is now generally accepted that the governing equations

contain everything necessary for turbulence. But even still, there are flow situations

where the continuum hypothesis does not necessarily hold, such as hypersonic wakes

at high altitudes [13]. These situations must be handled using statistical mechanics

and the Boltzmann equation, which is outside the scope of the problem approached

here. Within the continuum regime, compressible, flow with no body forces or source

terms is governed by the following equations for mass, momentum, and energy:

∂tρ+ ∂j(ρuj) = 0, (2.1a)

∂t(ρui) + ∂j(ρujui) = −∂ip+ 2∂j(µSij) + ∂iµv∂juj, (2.1b)

∂t(ρe0) + ∂j(ρe0 + p)uj = ∂jσijui − ∂jqj, (2.1c)

where

σij = 2µSij + µvSkk (2.2)

and

Sij =
1

2
(∂jui + ∂iuj), (2.3)
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where ui is the velocity component in the ith direction, ρ is the density, µ is the

dynamic viscosity, µv is the second viscosity, e0 is the stagnation energy, p is the

pressure, qj is the heat flux, and repeated indices indicate summation. Pressure is

related to energy by

ρe0 =
p

γ − 1
+

1

2
ρuiui (2.4)

and to static temperature T and ρ by the equation of state

p = ρRT, (2.5)

where R is the ideal specific gas constant and γ is the specific heat ratio. The formula

for heat flux is

qj = −κ∂jT, (2.6)

where κ is the thermal conductivity. Computations in this work make use of the

Stokes hypothesis,

µv = −2

3
µ, (2.7)

although we note that this hypothesis is not in general true for polyatomic gases

[14]. However, the software used in the present research does not have a model of

second viscosity, nor is there a generally accepted model, although it can indeed have

significant effects on turbulence dynamics, as seen in the DNS flame experiments of

Fru et al. [15].

Although turbulence modeling of the compressible Navier–Stokes equations (NSEs)

is the focus of this work, for a preliminary investigation of some of the core math-

ematical issues of turbulence, it will helpful at times to consider the incompressible

NSEs, as they are much simpler and still have the essential nonlinearities that lead

to turbulence. The incompressible NSEs are given in non-conservative form by

∂iui = 0 (2.8a)

∂tui + uj∂jui = −∂ip+ ν∂jjui, (2.8b)

where ν is the kinematic viscosity.
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2.2 Basic Tools

In studying the properties of turbulent flows, several mathematical tools are tradi-

tionally used. As these tools are important both in interpreting experimental data

presented in the literature and in traditional turbulence models, they will be defined

here. We divide these methods into three general classes: the Kovasanay decomposi-

tion, statistical tools, and spectral analysis. Each of these tools gives unique insights

into the nature of compressible turbulence and the challenges an LES model must

overcome.

2.2.1 Kovasznay decomposition

We have referred before to information being transferred through a compressible flow

via three mechanisms: advection, acoustic waves, and entropy waves. This idea of

information transmission can be justified in both physical and mathematical terms.

From a physical, somewhat heuristic standpoint, we can think of “information” as

a change in conditions at a particular point in or subset of the flow field and its

“transmission” as the propagation of these effects. Physically, these effects can be

observed to propagate in a compressible medium as flow particles advect downstream,

and as both acoustic and entropy waves propagate at the speed of sound through the

medium. Mathematically, information transmission is fundamentally embedded in

the concept of a partial differential equation (PDE), as differential operators de-

fine the way solution variables at different points in the domain interact with each

other. Further, information transmission can be associated with analytical and nu-

merical solution techniques. The method of characteristics, which looks at how certain

quantities remain constant along particular paths and is associated with compression

wave propagation, has been invaluable in both the theoretical analysis and numerical

computation of compressible flows. Thus because of both mathematical and physi-

cal considerations, decomposing the flow field into modes associated with the three
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aforementioned mechanisms intuitively seems like a productive route of analysis.

In a 1953 paper [16] and with Chu in 1958 [17], Kovasznay developed a decom-

position of the compressible flow field into vortical, acoustic, and entropic modes.

Here, we follow the discussion of Garnier et al. [7]. The linear decomposition used to

develop this approach bears a great deal of similarity to the tools of linear perturba-

tion analysis used in PDE theory to study small deviations of nonlinear systems from

equilibrium, of which classical instability analysis in fluid dynamics is an example.

By assuming the turbulent fluctuations are small relative to the mean flow field, the

flow variables are expanded as

u =
∞∑
m=0

εmum (2.9a)

ρ =
∞∑
m=0

εmρm (2.9b)

p =
∞∑
m=0

εmpm (2.9c)

s =
∞∑
m=0

εmsm, (2.9d)

where ε << 1, (u0, ρ0, p0, s0) is the mean flow field, and (um, ρm, pm, sm) is referred

to as the mth -order fluctuating flow field. By assuming the fluctuations are small,

the high-order terms can be dropped and the expansions applied to the NSEs. The

the individual fluctuations and thus the equations themselves can then decomposed

into vorticity, entropy, and acoustic modes. The equation for the vorticity mode is

given by

∂tωω = ν0∇2ωω,

pω = 0, sω = 0,∇× uω = ωω,∇ · uω = 0,
(2.10)

where the ω subscript denotes the vorticity mode of the first-order fluctuating vari-

able. Because the fluctuating vorticity component of velocity is divergence-free, this

is also referred to as the solenoidal component.
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Both the entropy and acoustic modes are dilatational; i.e., they are vorticity-free.

The equation for the entropy mode is given by

∂tse = κ0(γ − 1)∇2pe + κ0∇2se

pe = 0,ωe = 0,∇ · ue = ∂tse,
(2.11)

and the equation for the acoustic mode is given by

∂ttpa = +a2
0∇2pa + κ0γ∂t(∇2pa)

∂tsa − κ0∇2sa = κ0(γ − 1)∇2pa

ωa = 0,∇ · ua = ∂tsa − ∂tpa,

(2.12)

where a0 is the mean speed of sound, and the e and a subscripts denote the entropy

and acoustic modes of first-order fluctuations, respectively. The vorticity and entropy

modes are both associated with advection at the speed of the fluid, while the acoustic

mode is associated with pressure waves traveling at the speed of sound. Note that

by construction, the decomposition (uω,ue + ua) is a Helmholtz decomposition into

solenoidal and dilatational modes. Interactions among the modes can be studied by

including higher-order terms [17]. These are not listed here, but their existence is

sufficient to establish that not only does compressibility affect the overall dynamics

of turbulence, but that the solenoidal (i.e., “incompressible”) and dilatational modes

interact. This leads to the conclusion that the solenoidal mode may not simply be

separated from the dilatational mode and treated with techniques that are sufficient

for incompressible flow.

2.2.2 Statistical tools

Statistical descriptions of turbulence are natural for the analysis of experimental data,

as it is relatively simple to compute statistics for large data sets. Reynolds averaging,

or time averaging, is one of the oldest statistical tools for measuring turbulent flows,

used for both incompressible and compressible flows. The Reynolds average is defined
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by

f(x) = lim
T→∞

1

T

∫ T

0

f(x, t)dt. (2.13)

When applied to turbulence modeling, researchers generally assume that the time av-

erage is independent of the initial conditions. This is known as the ergodic hypothesis,

which Foias et al. demonstrated is true for incompressible flows under certain assump-

tions [18]. The Reynolds average leads naturally to the Reynolds decomposition,

f(x, t) = f(x) + f ′(x, t), (2.14)

where f and f ′ are referred to as the mean and fluctuating variables. Often in the

literature, f is replaced by F . In compressible flows, momentum and velocity are

not interchangeable, which leads naturally to Favre averaging, also known as density-

weighted or mass-weighted averaging. This technique has been found to be useful in

the context of compressible flows and is defined by

f̃(x) =
ρf

ρ
. (2.15)

This leads to the Favre decomposition,

f(x, t) = f̃(x) + f ′′(x, t). (2.16)

Favre averaging is also used to define the turbulent Mach number Mt, by

Mt =

√
ũ′′i u

′′
i

a
, (2.17)

where a =

√
γRT̃ is the mean speed of sound, γ is the specific heat ratio, and R is the

specific gas constant. The two forms of averaging are not equivalent for compressible

flows, though they clearly are in the incompressible case. In particular, f ′ = 0 and

f̃ ′ 6= 0, while f̃ ′′ = 0, and f ′′ 6= 0. Favre variables are particularly useful, since mean

streamlines are tangent to the density-weighted average velocity vector, which is not

true for the Reynolds-averaged velocity vector for the compressible case.
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Reynolds averaging combined with the ideas of the Kovasznay decomposition lead

naturally to separating familiar turbulence statistics from incompressible flows into

solenoidal and dilatational components. In particular, we define the solenoidal dissi-

pation rate by

εs =
µ̃

ρ
ω̃′′i ω

′′
i , (2.18)

and the dilatational dissipation rate is given by

εd =
4

3

µ̃

ρ
(̃∂iu′′i )

2. (2.19)

We will define the solenoidal and dilatational kinetic energies, Ks and Kd, in terms of

spectra in Sec. 2.2.3. The Reynolds and Favre decompositions can be applied to the

NSEs, and then filtering applied to the equations themselves, to give the Reynolds-

averaged Navier–Stokes (RANS) equations, which express the variables in terms of

their means and moments. Details of the derivation and simplifying assumptions can

be found in [19]. The equations for mass, momentum, and energy are given by:

∂j(ρũj) = 0, (2.20a)

∂j(ρũjũi) = −∂ip+ (µ̃+ µ̃v) ∂i∂jũj + µ̃∂j∂jũi + ∂jρũ′′i u
′′
j , (2.20b)

∂j(ρũjh̃) = uj∂jp+ σijSji − ∂jρcpũ′′jT ′′, (2.20c)

where h = cpT is the specific enthalpy, T is the temperature, and cp is the specific

heat capacity at constant pressure. Here, unlike Wilcox [20], we have omitted time

derivatives, since time-averaging eliminates them. They may be restored by using

ensemble rather than time averaging; however, ensemble averaging is significantly

more complex to rigorously define in such a way that it is always equivalent to the time

average, especially when the long-term behavior is dependent on initial conditions.

There are many equivalent formulations of the energy equation, since the equation

of state and specific heat relations allow equivalent transformations among a variety

of variables. Note the presence of two covariance terms, ρũ′′i u
′′
j and ũ′′jT

′′ and two
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correlations, uj∂jp and σijSji. This means the RANS equations are not a closed

system and cannot be directly solved. This will be discussed in more detail in Section

3.2.1. However, the RANS equations do introduce a number of terms that are useful

for experimentation and validation of turbulence models. In particular, the velocity

covariance tensor ũ′′i u
′′
j in Eq. (2.20b) is called the Reynolds stress tensor (RST), and

components of it can be computed whenever time series for two velocity components

at a point in space are known. In the literature, the RST is often denoted by

τij = ũ′′i u
′′
j (2.21)

for compressible flows, and by

τij = u′iu
′
j (2.22)

for incompressible flows.

It is important to emphasize here that outside of fluid dynamics, statistical quan-

tities have proven to be of very little use to the academic mathematics community in

the formal study of the solutions of classical, deterministic PDEs (although they are

of course essential for studying random and stochastic differential equations). Many

mathematical techniques familiar to fluid dynamicists, such as linear perturbation

theory, the method of characteristics, Sobolev spaces, and harmonic analysis, have

proved quite productive in the study of deterministic PDEs, but attempts to char-

acterize solutions in terms of statistical moments are noticeably absent from both

graduate textbooks on PDE theory (such as Evans [21]) and journal publications.

Foias et al. do in fact prove some interesting results about the statistics of the incom-

pressible NSEs, such as boundedness and well-definedness, and prove Kolmogorov’s

scaling laws under certain assumptions, but even their lengthy discussion does not

contain any of the groundwork that would be necessary for closing the RANS equa-

tions. In fact, there is a crucial distinction to be made between statistically charac-

terizing solutions of a PDE and applying averaging to a PDE to write it in terms
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of more statistical moments than one has equations for. The former is actually an

application of measure theory, which is a very productive mathematical concept. The

latter eliminates information from the system, replacing a closed system of equations

with an unclosed one.

2.2.3 Spectral analysis

We include all uses of the Fourier transform in both continuous and discrete space

under the general category of spectral analysis. We begin with the cube Ω = [−π, π]3

with periodic boundary conditions, which is a common domain for studying the char-

acteristics of homogeneous, isotropic turbulence. The set L2(Ω) of square-integrable

functions on Ω has the orthonormal Fourier basis set,

{φk(x) = eik·x | k ∈ Z3,x ∈ Ω}, (2.23)

and the Fourier transform is defined by the volume integral,

ûi,k(t) =
1

8π3

∫
Ω

u(x)φ(x)dV (2.24)

Note that here and below, i =
√
−1 when not used as an index. A common assump-

tion is that ui is an L2 function, so we can expand it in a Fourier series:

ui(x, t) =
∑
k

ûi,k(t)φk(x), (2.25a)

where k is often referred to as the wavenumber (or wave vector). This technique can

be generalized to any domain for which there exists a set of functions that form a

complete orthogonal system, which can then be used as a basis set. Readers familiar

with the finite element method know that this is the analytical basis of that technique.

In this work, however, we restrict our investigations to the periodic basis in Eq. (2.23).

Fourier series can be applied to a PDE to obtain a Galerkin expansion, which

transforms a PDE into a system of infinitely many ordinary differential equations

(ODEs), as long as all the relevant derivatives of the solution exist in L2 in at least
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weak form. For the NSEs, this requires that the solutions exist in the Sobolev space

H1, which is a subset of L2. Although this has not been formally proven in three

space dimensions, it is a necessary condition for the existence of solutions, so any

discussion of finding numerical solutions must assume this. Given a general PDE for

a scalar u,

∂tu = L(u) +B(u, u), (2.26)

where L and B are linear and bilinear operators, respectively, applying a Fourier

expansion provides

d

dt

∑
k

ûk(t)φk(x) =
∑
k

ûk(t)L(φk(x)) +
∑
l,m

ûl(t)ûm(t)B(φl(x), φm(x)). (2.27)

The linear operator L has the Fourier representation
∑

j Aj(ik)nj where Aj is a scalar

constant, nj is an integer, and j = {0, 1, . . . , J}, leading to the simplification

d

dt

∑
k

ûk(t)φk(x) =
∑
j,k

Aj(ik)nj ûk(t)φk(x) +
∑
l,m

ûl(t)ûm(t)B(φl(x), φm(x)). (2.28)

Applying the Hermitian inner product
∫

Ω
( · )φ−kdx to both sides then provides the

infinite set of ODEs,

d

dt
ûk =

∑
j

Aj(ik)nj ûk +
∑
l,m

ûlûm

∫
Ω

B(φl, φm)φ−k, k ∈ Z, (2.29)

where the (x) and (t) notation has been suppressed. This technique can easily be

extended to a system of PDEs for a vector of solutions u. In particular, note the

term produced by the bilinear operator,

∑
l,m

ûlûm

∫
Ω

B(φl, φm)φ−k,

causes the system of ODEs to be coupled across all Fourier modes. Galerkin ex-

pansions of linear PDEs do not have such terms, meaning that exact solutions for

the individual Fourier coefficients can be found independently without solving for any

other coefficients. This clearly is not the case for nonlinear PDEs. We will not provide
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Galerkin expansions of the NSEs in this section, as it is more useful to derive them

in the following sections where they provide more immediate contextual relevance.

The Fourier series can also be applied to discrete signals. The discrete Fourier

transform (DFT) for a vector {fn}N−1
n=0 is given by

Fk = fn exp

(
−(2πi)nk

N

)
, k = 0, . . . , N − 1. (2.30)

The power spectral density (PSD) estimate is then given by

P0(F ) =
1

N2
|F0|2, (2.31a)

Pk(F ) =
1

N2

(
|Fk|2 + |FN−k|2

)
, k = 1, . . . ,

(
N

2
− 1

)
, (2.31b)

PN/2(F ) =
1

N2
|FN/2|2. (2.31c)

When fn is a velocity signal sampled in time or space, the PSD gives (modulo ρ|Ω|)

the kinetic energy per unit space or time stored at each temporal or spatial frequency.

This observation allows us to decompose the kinetic energy into solenoidal and di-

latational components without actually computing a Helmholtz decomposition of the

velocity field. Given a discrete solution, we define Pk(W ) and Pk(D) to be the PSDs

of vorticity and divergence, respectively. Then the solenoidal and dilatational kinetic

energy dissipation rates are estimated by

εs ≈ 2|Ω|µ
ρ

∑
Pk(W ), (2.32)

and

εd ≈
4|Ω|

3

µ

ρ

∑
Pk(D). (2.33)

Since spatial differentiation in Fourier space is equivalent to multiplication by ik, we

can compute the solenoidal kinetic energy by

Ks = |Ω|
∑ Pk(W )

k2
. (2.34)

and the dilatational kinetic energy by

Kd = |Ω|
∑ Pk(D)

k2
. (2.35)
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We then define Es(k) = Pk(W )/k2 and Ed(k) = Pk(D)/k2 to be the solenoidal and

dilatational energy spectra, respectively.

In the rest of this work, Galerkin expansions and Fourier series will be critical

tools for the study of turbulence, analysis of discrete data, study and critique of

turbulence modeling techniques, and the derivation of the CPMNS equations.

2.3 Dynamical systems view of turbulence

Since O. Reynolds’ original pipe flow experiments [22], the mechanics of transition

from laminar to turbulent flow have occupied special attention of researchers. While

transition to turbulence has been a studied problem for over a century, foundations

were not laid for a solid theory of transition to turbulence until the development of

dynamical systems theory in the second half of the 20th century. Generally speaking,

dynamical systems theory is a means of investigating time-evolution equations in

terms of the transformation of their solution states from one moment in time to

the next. In particular, the theory is well-suited to describing qualitative changes

from one kind of dynamic behavior to another. This section presents a technical

definition of dynamical systems, the notion of bifurcation behavior, strange attractors,

and chaos. The section proceeds to give an overview of the length scales typically

associated with turbulent behavior and discusses the idea of so-called “turbulent

dissipation” with an overview of the dynamics of conservative, Euler turbulence.

2.3.1 Mathematics of dynamical systems

Before proceeding further with this discussion, we quote here Frisch’s definition of a

dynamical system [11]:

Definition 1 A dynamical system is a quadruplet (Ω,A, P,Gt). The set

Ω is called the probability space. A is a σ-algebra of Ω. P , the probability
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measure, maps A to the real numbers between 0 and 1 and satisfies

P (A) ≥ 0 ∀A ∈ A, P (∪iAi) =
∑
i

P (Ai), P (Ω) = 1, (2.36)

where {Ai} is any enumerable set of disjoint sets ∈ A. The time-shifts,

Gt, are a family of operators depending on a variable t ≥ 0 which can be

either continuous or discrete. The Gts satisfy the semi-group property

G0 = I, GtGt′ = Gt+t′ (2.37)

and conserve the probability:

P (G−1
t A) = P (A), ∀ t ≥ 0, ∀A ∈ A (2.38)

In other words, Gt maps Ω into itself. Another way of saying this is that it evolves

an initial condition, ω0 ∈ Ω, in time. A dynamical system may be either discrete or

continuous, depending on whether the state evolves continuously or in discrete steps.

A common example of a discrete dynamical system is the logistic map:

xn+1 = βxn(1− xn). (2.39)

Time-dependent partial differential equations (PDEs) may be viewed as continu-

ous. In the case of the NSEs, Ω is the set of all instantaneous flow fields for a given

domain, initial conditions, and boundary conditions, and Gt is the solution operator

for the NSEs.

An important feature of dynamical systems theory is the notion of bifurcation

behavior. A thorough investigation of bifurcation theory is beyond the scope of this

work, but the relevant elements of it will be presented here. Following Seydel [23],

we begin with a system of ODEs,

ẏ = f(y, λ), (2.40)

where ẏ indicates differentiation of y with respect to time. Note that the system

is autonomous, i.e., it does not explicitly depend on t. Here, λ is the bifurcation
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parameter of the system, and in this simple case, we are considering a system with

only one parameter. Bifurcation theory investigates how the behavior of systems

change as the parameters are varied, such as a transition from steady-state equilibria

to periodic limit cycles. In general, analytical investigation of bifurcation behavior

involves examining the eigenvalues and other characteristics of the Jacobian matrix

of f ,fy. For the incompressible NSEs, the bifurcation parameter is Re, but the

compressible NSEs have three such parameters: Re, M , and Pe.

While there are various kinds of bifurcations, one of the most well-studied, the

Hopf bifurcation, which is a transition from a steady equilibrium to a periodic oscil-

lation, was demonstrated by E. Hopf for n-dimensional systems of the type of ODEs

seen in Eq. (2.40) [24]. Hopf’s theorem, which describes and predicts this elementary

bifurcation behavior is given below:

Theorem 1 Assume, given a system as in Eq. (2.40), that the following hold for

some (y0, λ)

1. f(y0, λ0) = 0 for some pair (y0, λ0).

2. fy(y0, λ0) has a simple pair of purely imaginary eigenvalues µ(λ0) = ±iβ and

no other eigenvalue with zero real part.

3. d [< (µ(λ0))] /dλ 6= 0.

Then there is a birth of periodic limit cycles at (y0, λ0), and the initial period of the

oscillation is

T0 =
2π

β
.

Of course, the NSEs are PDEs, not ODEs, so this theorem cannot be directly applied

to them. But it is useful to see that a qualitative change in the dynamical behavior of

a system is associated with a definite, quantifiable change in the intrinsic properties of

the associated differential equations. In the case of a Hopf bifurcation, it is the birth
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of a new pair of imaginary eigenvalues. In fact, Hopf bifurcations can be generalized

to PDEs in the sense of a new pair of complex conjugate eigenvalues, an important

distinction being that PDEs such as the NSEs have infinitely many eigenvalues.

2.3.2 The Ruelle-Takens theory of turbulence

Dynamical systems theory has proved a fruitful basis for investigating the nature

of turbulence. The Landau-Hopf theory of turbulence, which was widely accepted

until the 1970s, posited successive Hopf bifurcations with incommensurate frequencies

(also known as quasiperiodicity) as the route from laminar to turbulent flow [25],

similar to how the logistic map reaches chaos after an infinite number of subharmonic

bifurcations. This theory was superseded in the 1970s by the Ruelle–Takens theory

of turbulence [12]. Ruelle and Takens made use of a new aspect of dynamical systems

theory, that of a strange attractor, to describe turbulence. To understand the concept

of an attractor, consider the ODEs in Eq. (2.40) again. The attractor is the set of all

y(t) that the solution tends to as t→∞. The simplest attractor is the steady-state

case, which is a single point in Rn for the case of a system of ODEs, and the final

solution field in the case of a PDE with a steady-state solution. In the case of a

limit cycle, it is the entire orbit that the solution traces. A quasiperiodic attractor,

such as Landau hypothesized characterizes turbulence, is a torus. In contrast to

these regular sets, a strange attractor is a highly irregular set, usually with fractal

dimension, associated with chaotic behavior. More detail can be found in specific

literature on chaos, e.g., Peitgen et al. [26].

The Ruelle–Takens theory of turbulence essentially looks at the bifurcation se-

quence as a transition from one type of attractor to another as the parameter Re

increases, with turbulence itself being associated with a strange attractor. In a 1978

paper with Newhouse [27], they argued that a small perturbation in Re away from a

quasiperiodic attractor may lead to a strange attractor, thus the appropriate bifurca-
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tion sequence leading to turbulence would lead from one quasiperiodic mode directly

to chaos, rather than the infinite succession of quasiperiodic bifurcations as in the

Landau theory. This sequence has been observed in numerous experiments, e.g., those

of Wan and Coney [28]. However, it is important to note that the 1978 paper does

not say that quasiperiodic behavior must always give way to chaotic behavior, simply

that it is highly probable. Thus, observations of slightly modified sequences, such as

the sequence of two period-doubling bifurcations between quasiperiodicity and chaos

recorded by Yoo and Han [29], are consistent with the 1978 theory.

In general, most turbulence models, especially those widely used in engineering

practice, are constructed without incorporating many if any of the important insights

of the dynamical systems view of turbulence. This is a major shortcoming that the

CPMNS equations are intended to address.

2.3.3 Turbulent length scales

Three length scales, originally developed for incompressible flow, are generally associ-

ated with turbulence. They are (1) the integral scale, (2) the Taylor microscale, and

the (3) the dissipation or Kolmogorov scale. This theory was originally developed

for incompressible turbulence, but, as the compressible NSEs also have advective and

dissipative terms, the terminology has also been used in the context of compressible

turbulence. A brief description of these length scales is given here; fuller discussion

including derivations can be found in standard works on turbulence, such as Tennekes

and Lumley [30].

1. The integral scale, `0, is the largest length scale associated with coherent turbu-

lent structure. It can be thought of as the approximate thickness of a turbulent

boundary layer, or the approximate width of a turbulent jet. The integral scale

is estimated by

`0 ∼ LRe−1/2, (2.41)
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where L is the length scale of the flow, and Re is the large-scale Reynolds num-

ber. In terms of the equations, this is the length scale where viscous diffusion

has little influence on the overall dynamics of the turbulence, i.e., the turbulence

is a wholly nonlinear phenomenon. This length scale is associated with its own

Reynolds number, Re` = urms`/ν, where urms is the rms velocity fluctuation.

2. The Taylor microscale, λT , is the length scale associated with interaction be-

tween both nonlinear dynamics and viscosity. It can be thought of as the length

scale where viscosity begins to affect the dynamics of the turbulent eddies, and

is estimated by the formula,

λT ∼ `0Re
−1/2
` (2.42)

The Taylor microscale also has its own associated Reynolds number, Reλ =

uλT/ν.

3. Finally, the Kolmogorov microscale, ηK is the smallest length scale associated

with turbulence. This is the scale at which the dissipation rate of the turbulent

eddies dominates the dynamics of the behavior. It is estimated by

ηK ∼ 15−1/4Re
−1/2
λ λT (2.43)

The portion of the spectrum between the integral scale and Taylor microscales, where

nonlinearities dominate the dynamics of the flow, is generally referred to as the inertial

subrange. For incompressible, homgeneous, isotropic turbulence, A.N. Kolmogorov

argued that the energy spectrum in this range obeys a power law, k−5/3 [31], in

the limit Re → ∞. But as we will see below, this law does not apply generally to

compressible turbulence. However, the length scales in general will be useful. Because

these length scales are simply estimates, and because these estimates are derived

from terms that occur in both the compressible and incompressible NSEs, they can

be applied to compressible turbulence as well as incompressible turbulence. These
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estimates will be important later on for constructing parameters for the CPMNS

equations.

Attempts to construct a theory for the spectral decay of compressible turbulence

kinetic energy in the inertial subrange corresponding to Kolmogorov’s k−5/3 law are

still an area of active research. From a physical standpoint, it is natural to expect

that the dissipative characteristics of turbulence should be affected by compressibility.

Lighthill [32] argued that in both turbulent and laminar compressible flows, energy

is radiated away from a point by acoustic mode waves and ultimately converted

to heat via acoustic attenuation. Thus, compressibility effects act like a source of

additional dissipation and ought to make the spectral decay steeper than the k−5/3

law for incompressible turbulence. Attempts to derive a spectral decay law have been

presented by Zakharov and Sagdeev in [33], and by Kadomtsev and Petviashvili in

[34], where they argued for an approximate k−2 scaling.

The shock thickness is another length scale is often mentioned in the context of

compressible turbulence, and those familiar with this field should find it to be con-

spicuous in its absence from this text. This is because at high Mach numbers, the

thickness of a shock wave in a physical flow is a result of the breakdown of contin-

uum mechanics in the shock, and this work is concerned specifically with modeling

unresolved dynamical behavior of the NSEs. In contrast to physical shock thick-

ness, the thickness of a shock wave generated by the viscosity terms in the NSEs

at moderate Mach numbers is generally significantly smaller than the physical shock

thickness[35], and is zero in inviscid flows. In fact, Ruggeri [36] has proven that

for general hyperbolic conservation laws with added dissipation (such as the NSEs),

there exists a critical velocity beyond which shocks must be discontinuous, i.e., the

analytical shock thickness is zero even for high-Mach NSE flows. That physical flows

exhibit nonzero shock thickness shows that, at least in the interior of the shock, the

continuum hypothesis breaks down, and the NSEs are no longer an adequate model.
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In the absence of any model of the breakdown of the continuum hypothesis in

a CFD simulation, the numerical shock thickness is almost entirely a result of the

shock-capturing method and the grid resolution, not any accurate physics or math-

ematics. The more accurate the solution method, then, the more closely the shock

thickness approaches a value smaller than the real, physical scale. Therefore, the

CFD researcher should always keep in mind that discrepancies between CFD and

experimental results in the immediate vicinity of shock waves could be due not to

any inadequacy in the mesh resolution or the numerical method, but could arise from

the fact that NSEs themselves are an imperfect model of real-world compressible fluid

dynamics. For those interested in non-continuum modeling of the internal dynamics

of shock waves, we refer them to the work of Carlson et al. [37], who created a sta-

tistical model exhibiting excellent agreement with argon shock tube experiments, as

a starting point.

2.3.4 Turbulent “dissipation”

The turbulent kinetic energy dissipation rate arises naturally from Reynolds-averaging

the dissipative term in the kinetic energy equation. See, e.g., the classic derivation of

Wilcox [38], where he derived the incompressible turbulent kinetic energy equation,

∂tK + uj∂jK = τij∂jui − ρε+ ∂j

[
µ∂jK −

1

2
ρu′iu

′
iu
′
j − p′u′j

]
, (2.44)

where K is the turbulent kinetic energy, τij is the RST as in Eq. (2.22), and ε is the

turbulent kinetic energy dissipation rate. This derivation is exact, and no additional

hypotheses are made. It can be easily seen from a Galerkin expansion of the NSEs

that the effect of dissipation grows like the square of the wavevector length, and

that the nonlinear terms lead to interactions between the small and large scales that

would otherwise not exist. So it is reasonable to conclude that turbulence enhances

dissipation through the transfer of kinetic energy from large to small scales, where

the energy is more rapidly dissipated by the viscous terms.

24



Although these observations are entirely correct, this has led to incorrect descrip-

tions of turbulence itself as “dissipation.” In mathematics, dissipation is formally

defined in terms of dynamical systems, and an understanding of this definition makes

it clear why it is incorrect to refer to turbulence as dissipative. One of the first formal

definitions was given by Willems [39]. We will not give a thorough explanation of his

formalism here due to it requiring a significant extension of the definitions in the pre-

vious section that goes beyond the scope of this work. However, it is straightforward

to to discuss it in a less formal way.

Willems considers a dynamical system that has a quantity Q that can be both

“supplied” and “stored,” where the storage is by definition a nonnegative scalar, e.g.,

the total mass in a volume. Willems then defines a dissipative system as one in which

S(Q0) +

∫ t

t0

Q̇ ≥ S(Qt), (2.45)

for all time t, where S is the storage function and Q̇ is the net rate of supply of

Q, e.g., the net flow of mass across the boundary of a volume. In the case of strict

equality, the system is said to be lossless, i.e., conservative. However, this definition

results in frictionless and isentropic systems being defined as “dissipative,” which is

non-intuitive for engineers and physicists, so we will use the term to refer only to those

systems where strict equality does not hold for all t. Eckmann [40] uses a phase space

definition, defining a dissipative system as one in which the phase space volumes (the

measure of the set of all future possible states) contracts in time, eventually reaching

a set of measure zero. This is not as general as Willems’ definition, since it does

not include randomly forced systems; however, it is equivalent to Willems’ definition

when strict inequality holds and forcing is either absent or deterministic.

A consequence of either definition is that Hamiltonian mechanics (which are a

transformation of Lagrangian mechanics) are unable to describe dissipation, i.e., con-

servation laws are by definition not dissipative. See, e.g., Derks and van Groeson
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[41] for a discussion of dissipation and Hamiltonian systems in the context of the

Korteweg-de Vries equation. In the context of fluid dynamics, the Euler equations

are a Hamiltonian system, as demonstrated by Olver [42], but the full NSEs are not,

due to the presence of the viscous term. Therefore, the nonlinear mechanics leading

to turbulence are non-dissipative.

2.3.5 Dynamics of Euler turbulence

Although it receives somewhat less attention due to its nonphysical characteristics,

the dynamics of so-called “inviscid turbulence” have been studied since at least the

numerical experiments of Basdevant and Sadourney [43], who used very low-fidelity

simulations of two-dimensional inviscid turbulence to evaluate the validity of the

ergodic hypothesis, which states that two states q(t1), q(t2) in a turbulent flow even-

tually become uncorrelated in the limit (t2−t1)→∞. More recent and more relevant

numerical experiments are those of Bos and Bertoglio [44] and Cichowlas et al. [45],

whose numerical experiments of three-dimensional spectrally truncated incompress-

ible Euler turbulence showed that inviscid turbulence exhibits a transient inertial

subrange with approximate k−5/3 scaling, thus confirming that the inertial subrange

in turbulence is due to the conservative nonlinear terms and is largely independent

of dissipation.

Even in the case of Euler turbulence, however, Cichowlas et al. refer to “effective

dissipation” acting on the low wavenumbers. This is not true mathematical dissipa-

tion. Rather, what they are referring to is the fact the energy at some of the low-k

modes is eventually and permanently transferred to the higher modes, which maintain

a statistical equilibrium, i.e., the phase space volumes cease decaying. Further, the

energy is globally conserved, so this is not a dissipative system. Bos and Bertoglio are

more careful, referring only to a “quasi-dissipative regime” that has some superficial

spectral similarities to dissipation.
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The experiments mentioned above have some important dynamics. Both use

truncated spectral methods which are conservative in their formulation. In the sta-

tistically stationary limit, truncated inviscid turbulence actually exhibits k2 scaling,

which is of course nothing like physical turbulence. But what Cichowlas et al. [43]

observed was that when beginning with a single-mode initial condition, during the

transient evolution of the flow to the statistically stationary state, the spectrum ex-

hibits the regimes depicted in Fig. 2.1. The low-k wavenumbers exhibit k−5/3 scaling,

while k2 scaling occupied only the highest wavenumbers. Between these two regimes

lies a buffer regime, termed “quasi-dissipative” by Bos and Bertoglio[44] due to its

tendency to decay to the k2 region.

Figure 2.1: The three regimes of truncated inviscid turbulence on a log-log scale.

Eventually, the k2 behavior propagates to the lowest mode and occupies the entire

spectrum. Moreover, the speed of this behavior’s evolution and its spectral range

depends on the number of modes used in the simulation, as was shown on experiments

with 256, 512, 1024, and 1600 modes by Cichowlas et al. [45], and further extended by

Bos and Bertoglio [44], who used an EDQNM closure model to investigate as many

as 32768 modes. If we denote kQ(N, t) to be the boundary wavenumber between the
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quasi-dissipative and k2 behaviors for an N -mode spectral truncation of the Euler

equations, then kQ(N, t) is a decreasing function of N and t based on numerical

observations, i.e., the k2 behavior takes over the spectrum more quickly for lower-

order truncations. Essentially, the high-frequency k2 regime acts like an energy sink

primarily for the quasi-dissipative regime, although there is some absorption of energy

from the k−5/3 regime as well.

The numerical experiments above have led us to the following hypotheses for

incompressible turbulence, which are analogous to K41 theory with Galerkin trunca-

tions in place of viscosity:

• H1. For any fixed t, limN→∞ kQ(N, t) =∞.

• H2. In the limit of infinite time, the system represented by the limiting case in

H1 exhibits a global energy spectrum, E(k) = K0

ζ(5/3)
k−5/3, where K0 is the en-

ergy of the initial condition integrated over the domain, and ζ(s) is the Riemann

zeta function.

This hypothesis is justified both by the fact that the limiting case is equivalent to

the limiting case of K41 theory, and by the fact that a global k2 behavior is mathe-

matically impossible due to the divergence of the series, and it therefore must be an

artifact of truncation rather than the limiting case.

In light of the fact that the nonlinear dynamics of turbulence are conservative, not

dissipative, these two hypotheses (and, by extension, K41 theory) are equivalent to

claiming that in the k−5/3 energy spectrum, the transfer of energy from low-k to high-

k wavenumbers, or “effective dissipation”, is in balance with the backscatter. The

evolution of truncated Euler turbulence with a single-mode initial condition leads us

to a description of turbulence as the sub-dissipation scale, “energy-starved” modes

absorbing energy primarily from modes in the Taylor scale and above, while backscat-

ter keeps the inertial subrange in a kind of “approximate equilibrium.” Moreover,
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the behavior of all but the highest-k modes in the inertial subrange is in the short

term not significantly affected by the energy-starved modes.

In light of this spectral theory, the physical viscosity of the NSEs, which acts

mainly high wave numbers, as can be seen by the Fourier expansion of Laplacian,

∂xxu = −
∑

k k
2ûkφk, “empties” the high-k modes of energy, so that the energy

supplied to them from lower modes is not balanced with an equilibrium-sustaining

backscatter. But the dissipation itself is due entirely to the physical viscosity (and

note that in the CNSEs, the energy equation contains additional dissipative terms).

Thus, while it is tempting to look at the empirical fact that turbulence enhances

dissipation, observe the fact that the RANS momentum equations differ structurally

from the NSEs only due to the inclusion of the RST, and conclude that turbulence is

an essentially dissipative mechanism, this is incorrect. The RST arises entirely due

to applying Reynolds averaging to the nonlinear, conservative Euler terms, so it is

incorrect to view these terms or the nonlinear mechanics of the NSEs in general as

dissipative.

2.4 Shock-Turbulent Interaction

We have established in Section 2.2.1 that compressibility affects the dynamics of

turbulence. In particular, the presence of a dilatational mode that is absent in in-

compressible flow shows this. The Kovasznay decomposition shows analytically that

compressibility effects not only exist, but interact with the “incompressible” (i.e.

solenoidal) dynamics. Thus we expect shock waves to have a significant effect on

the dynamics of turbulence. From a physical standpoint, shock waves increase the

entropy of the flow and thus ought to contribute to turbulent dissipation. They

also compress turbulent eddy structures in the direction normal to the shock and

stretch them in the direction parallel to the shock. To understand this phenomenon,

recall that a shock wave reduces only the normal component of the velocity of an
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incoming flow, while leaving the tangential components unchanged. The effect of this

is that shock waves induce anisotropy in the turbulence behind the shock, even if

the incoming turbulence field is isotropic, as confirmed in experiments by Hesselink

and Sturtevant [46]. This has significant consequences for turbulence modeling, as it

means any compressible turbulence model relying on a local isotropy assumption will

necessarily break down in the presence of shock waves.

Linear interaction analysis (LIA) of the Kovasznay decomposition of compressible

turbulence provides more theoretical insight into the phenomenon of shock-induced

distortions in the turbulent field. Depending on the Mach number and angle of

incidence, an incoming wave can be refracted, phase shifted, and generate new waves

behind the shock. For example, when an entropy wave with wavenumber k is refracted

through a shock wave by some angle α, it generates a vorticity wave propagating at

αv < α at wavenumber k, combined with a pressure wave, also propagating at αv,

but with a different wavenumber kp [19], which then propagate downstream of the

shock. While a more general analysis can be found in Fabre et al. [47], it suffices

for our purposes to observe from this that the composition, orientation, and spectral

characteristics of incoming turbulence will significantly affect the characteristics of

the turbulence field behind the shock wave. The linear interaction analysis by Jamme

et al. [48] of DNS results for shock-turbulence interaction at M = 1.5 showed that

the shock wave tended to amplify both streamwise and transverse turbulent stress

components ũ′′2i of incoming pure vorticity and vorticity/entropy modal waves, while

it tended to attenuate the turbulent stress for pure entropy waves. Thus in the

presence of shock waves, both experimental and theoretical considerations negate the

local isotropy hypothesis.

An important phenomenon of shock-turbulence interaction is the eddy shocklet.

Shocklets occur over a wide range of supersonic Mach numbers and are generally

associated with coherent eddies that have relatively large spatial and coherent scales.
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Eddy shocklets have been observed experimentally, for example, in the compressible

shear layer experiments of Papamoschou [49]. DNS studies by Lee et al. [50] found

that eddy shocklets have the characteristics of a usual shock wave. In this study,

the shocklets were found to have a very large local effect on turbulent dissipation

rate, several orders of magnitude larger than the dissipation due to turbulent stress.

However, because shocks are matched by expansions in such a flow, they have a net

O(10%) effect on the global turbulent dissipation rate of the flow. In general, strong

local effects can have effects on phenomena such as boundary layer development,

flow separation, and other flow characteristics critical to the macroscopic quantities

important for engineering flows.

Shock corrugation refers to the distortion of the shock front caused by interaction

with the irregular, turbulent flow field. Lee et al. [50] used both linear perturbation

analysis and DNS to demonstrate that the shock wave interacts with the Taylor

microscales of the flow, significantly reducing them as the flow passed through the

shock. The DNS experiments of Grube et al. [51] showed that the smallest length

scales associated with the shock corrugation correspond with the microscales of the

turbulent flow, and that the distortion of the shock wave has a significant effect on

the location and behavior of the shock-turbulence interaction. Thus to accurately

capture shock-turbulence interaction, DNS-like grid resolution near the shock wave

is necessary. Garnier et al. [7] identify three levels of grid resolution near the shock:

1. The microscopic level resolves all length scales of the corrugated shock and

corresponds to DNS resolution.

2. The mesoscopic level resolves some features of the corrugated shock and the

near field downstream of the shock.

3. The macroscopic level does not resolve any of the shock corrugation.

Both the mesoscopic and macroscopic levels under-resolve the shock-turbulence inter-
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action and therefore require turbulence models. The investigation of Bermejo-Moreno

et al. [52], where several subgrid scale interaction models were compared against DNS

and LES without a model, found that in the absence of an explicit turbulence model,

LES greatly over-predicts the Reynolds stresses and kinetic energy downstream of the

shock. Introducing a turbulence model, such as the eddy viscosity of Vreman et al.

[53], improved the correspondence of LES and DNS results. However, the numerical

method used in that work discretized a form of the filtered equations that is prone

to aliasing. As we will see in Sec. 3.2.3 there is an aliasing problem associated with

the standard LES formulation that many researchers do not directly engage; this

aliasing error is very likely the source of the phenomena that are typically mitigated

by dissipative turbulence models.

Furthermore, there are additional physics governing the interaction of shocks and

turbulence that are currently not well-understood. Because physical shock waves do

not obey continuum mechanics within the shock, any effects that this breakdown

might have on turbulence cannot be captured in an NSE-based simulation, regardless

of the mesh resolution. Furthermore, Donzis [35] has argued that the ratio of the

shock thickness to Kolmogorov dissipation scale is a key parameter in the behavior of

shock-turbulent interactions and accounts for the differences between predictions and

experiments. Because the NSEs alone cannot capture the shock thickness accurately

[36], this leads to the expectation that some intrinsic deviations between simulation

and experiment will always arise in purely NSE-based simulations, especially at high

Mach number and temperature.

2.5 Conclusions on the nature of turbulence

In this chapter, we have developed the theory of compressible turbulence with a

view toward the construction of turbulence models. Any researcher in this field

requires a solid theoretical foundation, but simply being acquainted with the wealth
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of mathematical tools is not enough. The construction of a turbulence model requires

a judgment about just what exactly the nature of turbulence is. Whether or not

this judgment is made explicitly, it must be made, and when it is explicit, it can

be critiqued and the premises of a model reexamined. For example, in the view

of Prandtl and Boussinesq, turbulence consisted of discrete eddies randomly mixing

with each other. This led to mixing-length models which have been almost wholly

discarded as this view of turbulence has been discarded.

The view of turbulence taken in this work is strictly mathematical. That is, we

view turbulence as a phenomenon completely described and contained within the

Navier–Stokes equations themselves. The numerical simulation of turbulent flows

under the continuum hypothesis, then, is a matter of numerically solving the NSEs.

Although the mathematical community has yet to provide the theorems necessary

to definitively establish this view, it is partially validated by the many successes

of DNS in both incompressible and compressible turbulence. Of course, turbulent

phenomena can and do happen in contexts where the NSEs no longer hold, but

we are limiting the investigations of this work to contexts where we can reasonably

assume the governing assumptions of the NSEs hold everywhere outside the internal

structure of shocks. This view is further validated by the fact that some of the most

productive tools in the investigation of the nature of turbulence have been the same

tools that mathematicians use to study, derive, and characterize solutions of general

partial differential equations of various classes and types.

To state succinctly the theory of turbulence on which this work relies, a turbulent

flow is the evolution in time of the Navier–Stokes equations as a chaotic dynamical

system, driven by the conservative, nonlinear interactions of the entire spectrum, and

controlled by the dissipative, linear terms in the energy and momentum equations.

This rather abstract definition, which eschews any language of physical phenomena,

is deliberate; by the time we have gotten to the point of writing a CFD code, the
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question of how to construct governing equations out of the physical system has

already been answered, hopefully correctly. As we will see in the following chapter,

the need for turbulence modeling arises not due to the NSEs, but the difficulty in

computing numerical solutions of them in a computationally feasible way. Therefore,

the model in this work will be based on this mathematical concept rather than the

more physical concepts of turbulent eddies, vortical structures, and the like.
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Chapter 3. Computational Simulation of Turbulent Flows

Since the inception of the discipline of computational fluid dynamics, turbulence has

posed a fundamental obstacle to obtaining reliable, accurate solutions of computa-

tional flow problems. In this chapter, we will outline the fundamental issues associated

with attempting to compute solutions of the NSEs for flows of engineering interest,

the common techniques associated with solving them, and the issues associated with

those techniques.

In Sec. 3.1, the mathematical issues associated with numerically solving the NSEs

are presented, including the coupling different length scales and the aliasing problem,

both of which are associated with nonlinearities. The instabilities induced by aliasing

require the use of some kind of artificial dissipation. Traditionally, because turbu-

lence has been viewed as a mechanism of dissipation (whether in a statistical sense or

otherwise), dissipation has been introduced into the computations by adding an arti-

ficial viscosity term, which derived from quantities resolved by the numerical method,

to the equations themselves. This dissipative term is then supposed to emulate the

mechanisms of turbulence. However, this is hardly the only approach to turbulence

modeling. In general, a turbulence model is any means of attempting to simulat-

ing the effects of fluctuations that are not directly computed by solving the NSEs.

As we will see below, there are two main classes of turbulence models: Reynolds

averaged Navier–Stokes (RANS), discussed in Sec. 3.2.1, and large-eddy simulation

(LES) models, discussed in Sec. 3.2.2. In these sections, we will present an overview

of both RANS and LES modeling and the strengths and shortcomings associated with

popular modeling strategies. The LES section in particular is a detailed, thorough

discussion of current technique, and a criticism of existing methods in the context of

aliasing. Finally, we will summarize our findings and their implications for turbulence
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in Sec. 3.3.

3.1 Mathematical issues in CFD

In general, directly solving a system of PDEs using a finite difference (FD), finite vol-

ume (FV) or finite element method requires resolving the computational mesh down

to the smallest scales necessary to resolve all solution phenomena. For steady-state,

laminar flow, such direct numerical simulation (DNS) is already frequently done us-

ing modern computers, as the characteristic structures of the flow are relatively large.

However, for turbulent flow, the computational grid must be resolved down into the

Kolmogorov dissipation scale. Thus, if a computational grid is to be resolved down to

the dissipation scale for compressible turbulence, based on the Kolmogorov scaling, it

will require O
(
Re9/4

)
grid points. Moreover because the time step is generally pro-

portional to Re−3/4, the total arithmetic necessary to solve the equations over a fixed

length of time grows like O (Re3). This makes DNS of all but very simple turbulent

flows infeasible on current computers, and thus useless for engineering applications

for the foreseeable future.

3.1.1 Nonlinearity

The fundamental problem posed by turbulent CFD can be seen by looking at a

Galerkin expansion of the incompressible momentum equations, Eq. (2.8b). Suppose

our domain of interest Ω is the cube, [−pi, pi]3, and we have periodic boundary

conditions. Then the set of complex exponential functions {φk(x) = eik·x}, where

k ∈ Z3, is an orthonormal basis for the Hilbert space L2 on the cube. Consider the

scaled, incompressible momentum equation

∂tui + uj∂jui = −∂ip+
1

Re
∂jjui. (3.1)
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Now, applying the techniques discussed in Sec. 2.2.3, we have the Galerkin system,

d

dt
ûi,k +

∑
m

ikjûj,mûi,k−m = ikip̂k −
1

Re
kjkjûi,k, k ∈ Z3. (3.2)

Contrast this with a Galerkin expansion of the heat equation on the same domain,

∂tu = κ∂jju, given by

d

dt
ûk = −κkjkjûk. (3.3)

From Eq. (3.2), we can see that the behavior of the Fourier coefficients of the NSEs

is coupled across the various modes due to the nonlinear terms, while the behavior of

each mode in the linear heat equation is independent of any other mode. Moreover,

this coupling extends across the entire basis set, so we cannot a priori discard any

wavenumbers when constructing a solution or attempting to characterize its behavior.

In other words, the high-frequency phenomena affect the low-frequency phenomena

and vice-versa; there is an explicit coupling among all length scales of turbulent be-

havior. Domaradzki et al. showed that for a given wavenumber, k, almost all the

energy transfer occurs over the range [0.5k, 2k] [54]. K41 theory says that eventually,

the viscous term will overwhelm the nonlinear terms and render the energy negligible

beyond some point in the spectrum. For accurate DNS, then, all wavenumbers cor-

responding to wavelengths longer than the beginning of the Kolmogorov dissipation

scale must be resolved.

3.1.2 Aliasing

Aliasing is a fundamental issue in discrete solutions of the Navier–Stokes equations.

The problems associated with it arise entirely due to the nonlinear interactions and are

therefore not an issue in the solutions of linear PDEs. One of the most comprehensive

treatments of aliasing applied to numerically solving the NSEs was presented in the

context of spectral methods employing discrete Fourier coefficients by Canuto et al.

[55], but their work can be easily generalized to other discrete methods. Following
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their discussion, we consider an L2 function u defined on [0, 2π] and discretized into

N evenly spaced nodes,

xj =
2πj

N
, j = 0, . . . , N − 1. (3.4)

The DFT of a discrete signal {u(xj)}Nj=0 is given by

ũk =
1

N

N−1∑
j=0

u(xj)e
ikxj . (3.5)

The N/2-degree trigonometric interpolant of u, also known as the discrete Fourier

series of u, is then defined by

INu(x) =

N/2−1∑
k=−N/2

ũke
ikx. (3.6)

Note that INu(xj) = u(xj). There is an exact relationship between the DFT and the

Fourier coeffecients of u,

ũk = ûk +
∞∑

m=−∞
m6=0

ûk+Nm, −N/2 ≤ k ≤ N/2− 1. (3.7)

Because of this relationship, the class of modes with wavenumbers k +Nm are con-

sidered to be aliased with mode k on a grid with N points. The kth discrete Fourier

coefficient of u(xj) thus depends on all the Fourier coefficients of u whose modes alias

with mode k. This leads naturally to the definition of aliasing error, RNu(x), which

is defined as the difference between the discrete Fourier series and the truncated

continuous Fourier series,

RNu(x) = INu(x)− PNu(x)

=

N/2−1∑
k=−N/2

(ũk − ûk)φk (3.8)

=

N/2−1∑
k=−N/2

 ∞∑
m=−∞
m 6=0

ûk+Nm

φk.
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This definition of aliasing can be easily extended to any discretized form of polyno-

mial interpolation with orthogonal basis functions. While applying this same analysis

to the finite volume (FV) discretization of the NSEs on an arbitrary structured grid is

not feasible in general, it is easy to see that FV methods are themselves equivalent to

discretized polynomial interpolation and therefore can be expressed as a continuous

truncation (such as a truncated Fourier series) plus an aliasing error term. While we

cannot assume this aliasing error will in general be orthogonal to the continuous trun-

cation error, it is still a useful concept because aliased spectral methods applied to the

NSEs display non-physical oscillations and numerical instabilities at large Reynolds

number [56], much like what is seen in any FV method. The important conclusion

from this is that unresolved scales can cause errors in resolved scales.

Aliasing is a particular issue in solutions of the Navier–Stokes equations due to

the nonlinear terms. Consider u2 on the aforementioned grid. We have

û2
k =

∞∑
l=−∞

ûlû(k−l). (3.9)

Then the aliasing error associated with this nonlinear term is

RNu
2(x) =

N/2−1∑
k=−N/2

 ∞∑
n=−∞

n 6=0

û2
k+Nn

φk.

=

N/2−1∑
k=−N/2

 ∞∑
n=−∞

n 6=0

∞∑
l=−∞

ûlû(k+Nn−l)

φk. (3.10)

What is critical to note here is that while the aliasing in Eq. (3.8) is generated

exclusively by modes that are both unresolved and alias with the resolved modes, all

modes contribute to the aliasing error on Eq. (3.10). This issue can be illustrated in

a different way by looking at the discrete Fourier series:

(INu(x))2 =
N−2∑
k=−N

 N/2−1∑
l=−N/2

ũlũ(k−l)

 eikx. (3.11)
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Here we see that the square of the discrete Fourier series, which corresponds to the

numerical solution method, contains unresolved modes itself. These modes will then

alias with the resolved modes in the construction of u2, requiring special treatment.

Intuitively, nonlinear PDEs should experience some kind of compounding error prob-

lem not exhibited by linear PDEs.

In a more thorough analysis of the aliasing errors arising from the incompressible

NSEs, Canuto et al. [56] identify the presence of “parasitic modes” apparent in Eq.

(3.11) due to aliasing that negatively affect the accuracy of the solution and are

amplified as the solution evolves. Ultimately, these modes must be eliminated by

filtering, whether by an explicit numerical filter or implicitly via the numerical method

itself. While the details of the derivation are obviously not directly applicable to

finite-volume methods for the compressible NSEs, the fundamental observation that

aliasing due to unresolved modes is compounded and propagated by the nonlinear

terms, thus requiring artificial dissipation, is generally applicable to all numerical

solution methods.

The infeasibility of DNS for turbulent flows on engineering scales has led to a

variety of attempts to compute desired quantities via other techniques. In the first

section, we will give a technical definition of aliasing error and the instabilities it

induces. We will return to the concepts in this section repeatedly throughout the

course of this work, as it is essential to understanding the challenges and pitfalls of

CFD, so it must be read carefully.

3.2 Turbulence modeling

The following discussion of the various methods and techniques of turbulence model-

ing is somewhat lengthy, but it is necessary. The modeling approach presented in this

work is a significant departure from previous methods, and the full rationale behind

it requires a complete discussion and critique of the existing state of the art. Because
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there are so many different approaches to turbulence modeling, it is not trivial to state

a universally applicable definition of the problem turbulence modeling is supposed to

solve, and thus it is easy to neglect it. On a similar note, certain assumptions have

become so universal that they are often not stated explicitly or formally justified, but

given the lack of any universal turbulence model, re-examination of those assump-

tions remains appropriate. In science, when the predictions of models do not match

the data, the theories behind those models must be continually scrutinized.

3.2.1 RANS modeling

RANS modeling attempts to predict only time-averaged flow quantities by solving

the RANS equations and thus does not require resolution of any of the turbulent

flow structures at all. But as discussed in Section 2.2.2, the RANS equations are

unclosed and thus do not admit solutions. Thus the RST and all other quantities

containing fluctuating components must be modeled. Applying a Fourier expansion to

the fluctuating component of the Reynolds decomposition shows that the turbulence

model must capture the entire spectrum of unsteady behavior:

f ′(x, t) = f(x, t)− f(x) =
∑
k∈N3

(f̂j,k(t)− f̂)φk(x),

with a similar relationship holding for the Favre decomposition. In other words, a

RANS model must capture the effects of fluctuations on every scale from the integral

scale down to the dissipation scale; it is thus inappropriate to refer to a RANS

model as a “subgrid scale model.” The additional covariance tensors and correlations

make RANS modeling for compressible flows significantly more complex than for

incompressible flows. For the purposes of explanation and critique, then, we restrict

our discussion to the RANS equations for incompressible flows, which are given by

∂juj = 0, (3.12a)

∂j(ujui) = −∂ip+ µ∂j∂jui + ∂ju′iu
′
j. (3.12b)
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Here, only the incompressible RST, u′iu
′
j, must be modeled. However, the fact that the

incompressible RANS equations have fewer degrees of freedom than the compressible

case does not make the closure problem any more tractable. In both cases, the

equations must be closed via turbulence models, all of which rely to one degree or

another on further heuristic assumptions and empirical constants.

The RST is generally simplified by means of the Boussinesq hypothesis [8]. He

thus proposed that the RST is proportional to the deviatoric stress tensor, leading

to the relation:

u′iu
′
j = 2µT,ij

(
Sij −

δij
3
Skk

)
, (3.13)

where µT,ij is called the eddy viscosity, and Skk = 0 for incompressible flows. However,

note in this original formulation, µT,ij is a tensor, which makes it rather complex to

estimate, even assuming such an estimate can be found. To simplify this, Prandtl

drew on the kinetic theory of gases, which had recently been applied with much

success to molecular viscosity, substituting turbulent eddies for gas molecules and a

mixing length for mean free path, and thus proposed a scalar eddy viscosity, µT . An

immediate weakness apparent in this approach is that unlike molecules and mean free

paths, neither eddies nor mixing lengths are well-defined in a turbulent flow.

The Boussinesq hypothesis is the foundation of nearly all RANS and LES turbu-

lence models used in commercial applications, including the RANS k−ε, k−ω, and

Spalart–Allmaras (SA) [57] turbulence models, and variants of the LES Smagorinsky–

Lilly model [1] [58]. A notable exception is the Reynolds stress model (RSM), which

is a second-order closure model that uses transport equations to solve for the RST

directly. However, the RSM creates new terms that also must be closed, and some

implementations use an eddy viscosity to close the higher-order terms, such as that

of Lien and Leschziner [59].

Most RANS models assume local isotropy, i.e., µT is approximately scalar. But

as we saw in Section 2.4, we can expect turbulent flows with shock waves to be highly
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anisotropic behind the shock. Not only that, but the linear perturbation analysis

that originally led to this expectation is independent of length scale, suggesting that

isotropy will not even hold in a local sense. Further, while homogeneous, isotropic

turbulence is an important tool in the development of turbulence theory, flows of engi-

neering interest usually include boundary layers, wakes, and other shear mechanisms,

which produce anisotropic turbulence. In fact, anisotropy is critical to the study of

boundary layers. The effects of roughness on boundary layer anisotropy have been

studied by Shafi and Antonia [60], where they found that increased roughness tends

to decrease anisotropy; and the effects of suction on anisotropy have been studied by

Djenidi et al. [61], where they found that suction alters the structure of the boundary

layer anisotropy. Antonia and Djenidi then joined with Spalart to do a fairly detailed

DNS study of the anisotropy structure of a turbulent boundary layer with a view

toward constructing more effective RANS models [62].

While the Boussinesq hypothesis seems reasonable from the aforementioned phys-

ical analogy to the kinetic theory of gases, it must be understood that while the

kinetic theory of gases starts with the random motion of gas molecules, turbulent

flow is a deterministic phenomenon. Further, an eddy is not a discrete, well-defined,

physical object; it is a subjectively defined temporary structure in the velocity field

and is thus not amenable to a kinetic theory of its own. On a closer look, then, the

physical rationale of the Boussinesq hypothesis is not self-evident. A mathematical

analysis shows that nonlinear interactions of fluctuating terms and dissipative terms

are unlike.

Consider the Boussinesq hypothesis applied to cross-strain terms i 6= j. In the

case of isotropic, homogeneous turbulence, the eddy viscosity will be constant, so we

have

∂ju′iu
′
j = µT∂j (∂jui + ∂iuj) . (3.14)

We proceed by applying Fourier expansion to both sides. For the left-hand side of
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Eq. (3.14) we have:

∂ju′iu
′
j = ∂j

(
ûi,kûj,` − ûi,kûj,`

)
φkφ`

= ∂j
(
ûi,kûj,` − ûi,kûj,`

)
φk+`,

= i(kj + `j)
(
ûi,kûj,` − ûi,kûj,`

)
φk+`,

where summation is over j, k and `.

Applying the same process to the right-hand side of Eq. (3.14), we have

µT∂j(∂iuj + ∂jui) = µ̂T∂j(∂iûj,kφk + ∂jûi,kφk)

= −µ̂T (kikjûj,k + kjkjûi,k)φk,

where, as before, summation is over j and k. Thus the Boussinesq hypothesis is

equivalent to claiming that

i(kj + `j)
(
ûi,kûj,` − ûi,kûj,`

)
φk+` = −µT (kikjûj,k + kjkjûi,k)φk (3.15)

However, it is is clear from this expression that the left-hand side contains interac-

tions of different wavenumbers, while the right-hand side does not. The effect of

differentiation is quite different as well. On the left-hand side, we have the imaginary

value i(kj + lj), while on the right-hand side, we have the negative real values −kikj

and −kjkj. The right-hand side is thus clearly dissipative, but no such conclusion is

apparent for the left-hand side. Moreover, Galerkin truncation of this system provides

i
(

(ûi,`ûj,k−`)− ûi,`ûj,k−`

)
(kiûj,k + kjûi,k)

= −µT ∀k ∈ Z3, (3.16)

which reduces the hypothesis to a claim that there is a constant relationship between

any pair of mean Fourier coefficients and sub-series of nonlinear interactions across

the entire spectrum. In this simplified case, then, we can see that there is substantial

mathematical rationale to expect the Boussinesq hypothesis to not hold.

While the above analysis suggests that the Boussinesq hypothesis will not, in

general, be exactly satisfied for global turbulence, it may validly be argued that it
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is only a model, and therefore needs only to be satisfied approximately to within

the needs of engineering applications. In fact, RANS turbulence models based on

the Boussinesq hypothesis have been employed successfully to predict meaningful

quantities to within engineering tolerances, such as the pressure distributions at low

angles of attack in Mittal’s numerical results for a NACA airfoil [63]. Based on the

success of this kind of modeling in certain types of flows, it is then not unreasonable

to think that it might be successfully applied to all turbulent flows, as long as the

right kinds of models can be found, or if perhaps the right parameters for existing

models can be found. But as early as 1976, Kraichnan [64] advanced a detailed

theoretical argument for the inability of a scalar eddy viscosity to correctly capture

the energy transfer between large and small scales, and his 1987 work suggests further

difficulties with this basic approach. The analysis of Schmitt [8] answers the question

of approximate satisfaction by using DNS, experimental, and LES data. Drawing

from the basic linear constitutive equation,

R = −2µTS, (3.17)

where R is the RST and S is the deviatoric stress tensor, he applies a tensor product

ρRS, defined by

ρRS =
|R : S|
‖R‖‖S‖

, (3.18)

where A : B = tr(AB) = AijBij is the Frobenius inner product, and ‖ · ‖ is the

Frobenius norm. The Frobenius inner product is simply the usual vector dot product

when A and B are vectors, and the quantity ρRS reduces to the cosine of the angle

between them in this case. Further, it has the property

ρRS(A,B) = 1 iff A = aB for some a ∈ R.

Thus the Boussinesq hypothesis can be exactly satisfied for a given turbulent flow

field if and only if ρRS = 1 everywhere. However, this function allows a tolerance
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to be set for where the Boussinesq hypothesis is approximately satisfied; Schmitt

chose the value ρRS = cos(π/4) ≈ 0.71 as the cutoff. In the case of DNS data for

an annular pipe flow, Schmitt found that the Boussinesq hypothesis is valid near the

wall, but in the main flow, ρRS < 0.7. Only a small region in LES data for flow past

a square cylinder, and likewise for experimental data for a double annular jet, were

found to approximately satisfy the Boussinesq hypothesis. Therefore, not only do

current eddy viscosity models fail in these regions of the flow, but Schmitt [8] has

shown experimentally that no such models can be found for many flows of interest.

There are many more variations on RANS modeling, which we will not discuss

in depth here. One particular example is unsteady RANS (URANS), which is the

application of traditional RANS models to unsteady flows. The justification of this

technique is often weak. For a typical example, Iaccarino et al. [65] make an off-hand

appeal to ensemble averaging, but do not produce any analysis to further justify this

approach. Johansen et al. [66] appeal to a filter with a spectral cutoff, but this is

indistinguishable from LES. The theoretical and experimental weaknesses of RANS

modeling are why we are pursuing more effective LES in this work. Further, the

criticisms of the Boussinesq hypothesis are valid in any context, and they are why

the turbulence model presented in this work does not rely on an eddy viscosity of any

kind.

3.2.2 Large eddy simulation

Large eddy simulation (LES) is a simulation method designed to directly compute the

unsteady phenomena resolved by the grid, while modeling the subgrid-scale (SGS)

effects. Due to the nonlinear effects of aliasing, a dissipative filter to attenuate high-

wavenumber content is necessary for stable solution of the NSEs on a coarse mesh.

Nearly all LES methods used today use some kind of spatial dissipation. Further,

finite volume and finite difference methods rely on Taylor series approximations, which
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may not be accurate on a coarse mesh. Recall that the second-order finite difference

expansion of ∂xu is

u(x+ h)− u(x− h)

2h
= ∂xu+ h2∂3

x(ξ), (3.19)

where ξ ∈ [x − h, x + h]. Typically the error term is written O(h2) and assumed to

be small, but this is only the case when high-order derivatives are small. But for

turbulent solutions of the NSEs, this may not be the case. Further, because so little

is known about turbulent solutions to the NSEs, we do not even know if high-order

derivatives exist, let alone whether the Taylor series converges everywhere or has a

sufficiently large radius of convergence for finite difference approximations to be valid.

A properly constructed filter can eliminate these issues.

To filter the variables, a filter kernel G∆(x, t) is chosen along with associated filter

width, ∆, where ∆ is assumed to be smaller than the solution domain. Typically,

G∆ is a C∞ function with compact support on B∆(x), the ball of radius ∆ centered

about x. The filtered variable is then defined by

f∆ = G∆ ∗ f =

∫
B∆(x)

f(ξ, t)G∆(x− ξ, t)dξ, (3.20)

f ′∆ = f − f∆, (3.21)

and spatial Favre filtering is defined in a natural way;

f̃∆ =
ρf∆

ρ∆

, (3.22)

f ′′∆ = f − f̃(x)∆. (3.23)

If Ĝk = 0 for k > kmax, where kmax is the largest wavenumber that can be resolved

accurately on the mesh (on a uniform mesh with spacing h, this is the Nyquist

wavenumber, kN = π/h), and ∆ is sufficiently large, both f and f̃ will have convergent

Taylor series on the computational mesh and not have any of the high frequency

content that causes aliasing. In engineering CFD, ∆ is typically not constant and
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is instead a function of the local mesh resolution. However, note that solvers for

structured meshes typically transform the equations into generalized coordinates in

which the mesh is uniform. Details of this transformation are given in Section 5. For

this section, it suffices to point out that the NSEs in generalized coordinates have

the same structural nonlinearities and numerical issues as the NSEs in rectangular

coordinates, the analysis we do here is generally applicable.

Traditional LES methods use a filtered set of equations derived by applying the

LES and Favre decompositions, filtering the governing equations, and following a

similar procedure used to derive the RANS equations. However, because the filter

kernel has compact support, no differential terms are eliminated. One form of the

LES equations is given by Gatski as [67]

∂tρ+ ∂j(ρũj) = 0, (3.24a)

∂t(ρũi) + ∂j(ρũjũi) = −∂ip+ (µ̃+ µ̃v) ∂i∂jũj + µ̃∂j∂jũi + ∂jρũ′′i u
′′
j , (3.24b)

∂t(ρẽ) + ∂j(ρũjh̃) = uj∂jp+ σijSji − ∂jρcpũ′′jT ′′, (3.24c)

where the ∆ subscript is suppressed. Observe that, due to some of the simplifica-

tions, this form of the LES equations is identical to the RANS equations in Eqs.

(2.20a)–(2.20c) with the addition of time derivative terms. Because of this, the LES

equations have the same closure issues that the RANS equations do, and, like in

RANS modeling, researchers into new LES techniques typically employ the Boussi-

nesq hypothesis in order to achieve closure. But unlike RANS methods, u′′ is truly

a SGS quantity, so a LES model need not capture the entire spectrum. Though we

will not provide details of these models here, the Smagorinsky [1], dynamic [68], and

WALE [69] turbulence models are common eddy viscosity models used in engineering

applications and most commonly included in commercial CFD packages. Thus, the

criticisms in Section 3.2.1 apply to traditional LES modeling as well. In addition, a

recurring problem in eddy viscosity methods is excessive dissipation. For example,
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in transitional flows, they tend to damp out unstable modes and prevent them from

developing into turbulence.

3.2.3 Implicit and explicit filtering

Despite the use of spatial filtering to derive the LES equations, no such filter is

typically used in numerical solution procedures. Instead, the usual approach is to

present the LES equations along with equations for the SGS model, simply discretize

this system, and assume that the nodal variables represent filtered quantities. For

example, while the dynamic model of Germano et al. [68] uses an explicit spatial

filter to compute parameters for the SGS model, it does not actually low-pass filter

the flow variables. Arguably, omitting an explicit filtering in the solution procedure

is equivalent to assuming that the finite mesh support and low-pass characteristics of

the discrete differencing operators act as a filter.

The assumption that discretization acts as a filter is explicitly stated in implicit

LES (ILES). ILES methods employ neither explicit turbulence modeling nor explicit

filtering. Rather, dissipation is introduced into the simulation via the discretization of

the equations, and it is argued that this numerical dissipation acts as both filter and

model [2]. The amount of dissipation needed in a grid cell is often estimated from the

large scale flow using some kind of deconvolution scheme, such as as the “approximate

deconvolution” scheme of Adams and Stolz [70]. This dissipation estimate is then

built into the truncation error of the local, spatial discretization. While ILES has

been more successful than traditional LES at modeling turbulent transition (see, e.g.,

Hickel et al. [71], the numerical experiments of Thornber et al. [72] indicate that ILES

is still too dissipative to correctly model turbulent decay. In fact, ILES shares the

fundamental assumption of the Boussinesq hypothesis that the effects of nonlinear

SGS interactions on the large scale are dissipative. Thus the same kind of rationale

based on Eq. (3.15) still holds, as the effects of nonlinear interactions can be seen to
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be quite different from those of dissipation when viewed in Fourier space. Thus we

expect that this approach alone will never be adequate for SGS turbulence modeling.

While the problems with assuming turbulence is purely dissipative have been dis-

cussed previously, there is a more subtle problem with assuming spatial discretization

acts as a filter. Lund [73] showed that the filtering associated with discretization is

strictly one-dimensional, so each term in the NSEs has a unique filter associated with

the direction of the spatial derivative. This nonuniform approach means that there

is no well-defined three-dimensional filter equivalent to the ILES technique, so that

ILES methods cannot be viewed as rigorously providing a solution to the filtered

NSEs.

A second problem associated with the the lack of explicit filtering is the aliasing

associated with the under-resolved nonlinear terms. In practice, the spurious oscil-

lations associated with aliasing tend to be damped out by the artificial dissipation

typically provided by the turbulence model. The aliasing problem can be seen by ap-

plying LES filtering methods to the Burgers equation with unity Reynolds number,

∂tu = −1

2
∂xu

2 + ∂xxu. (3.25)

Applying filtering provides

∂tu = −1

2
∂xu2 + ∂xxu+ εc, (3.26)

where εc is the commutation error,

εc =

(
−1

2
∂xu2 + ∂xxu

)
−
(
−1

2
∂xu2 + ∂xxu

)
. (3.27)

Here, we assume that εc = O(∆n), where n is the order of the spatial discretization we

intend to use in the numerical method, an assumption we will later justify. A typical

assumption in LES is that the filtering operation eliminates all modes above kmax, so

for the purposes of the present analysis, we assume that ( · ) is a sharp spectral cutoff
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filter, i.e,

u =
∑

|k|≤kmax

ûkφk. (3.28)

Suppression of the commutation error and Galerkin expansion reveals that the fil-

tered equations contain no unresolvable modes and are thus not subject to aliasing,

although note that all contribute to the filtered nonlinear term:

d

dt
ûk =

ik

2

∑
l∈Z

ûlûk−l − k2ûk, |k| ≤ kmax. (3.29)

In practice, then, properly implemented numerical solutions of the filtered equation

should be stable. In fact, we will show in Chapter 6 that filtering alone increases the

kinetic energy decay rate of homogeneous, isotropic turbulence. But note that the

summations include interactions where two high-k modes interact to form a low-k

mode. In actual LES computations, this information does not exist. Under-resolved

discretization of the filtered equations does not introduce aliasing, but rather elimi-

nates high wavenumber interactions at the lower modes. If we introduce the nonlinear

filter error,

ε̂f,k = ik
∑
|l|>kmax

ûlûk−l, |k| ≤ kmax, (3.30)

we can decompose the expansion into the form suitable for numerical solution,

d

dt
ûk =

ik

2

kmax∑
l=−kmax

ûlûk−l − k2ûk + ε̂f,k, |k| ≤ kmax. (3.31)

Reconstituting this in physical space then provides

∂tu = −1

2
∂xu

2 + ∂xxu+ εf , (3.32)

where εf is the filter error,

εf =
1

2
∂x

(
u2 − u2

)
(3.33)

Equation (3.32) features errors due to the effects of filter truncation on the nonlinear

terms, but it still does not generate aliasing-rela ted errors. While we have worked

this out in detail only for the Burgers equation in Eq. (3.25), the same rationale holds

for the full compressible NSEs.
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3.2.4 Aliasing in traditional LES

A common assumption is that u2 in Eq. (3.32) is impossible to evaluate and therefore

must be replaced by u2 + (u2 − u2), resulting in the form,

∂tu = −1

2
∂xu

2 + ∂xxu+
1

2
∂x

(
u2 − u2

)
+ εf . (3.34)

For example, Sagaut explicitly states regarding the incompressible LES equations

[74],

“But the uiuj term cannot be calculated directly because it requires a

second application of the filter.”

The unstated assumption behind this claim is that filtering is being done implicitly.

For the incompressible momentum equations, this leads to the form

∂tu+∇ · (uuT ) = −∇p+
1

Re
∇2(u) +∇ · τ , (3.35)

where τ is the familiar Leonard decomposition [75] given by

τij = Lij + Cij +Rij (3.36)

Lij = uiuj − uiuj (3.37)

Cij = uiu′j + uju′i (3.38)

Rij = u′iu
′
j. (3.39)

The problem with this form is that ∇ · (uuT ) is not supported on the computa-

tional mesh, as discussed below, so the Leonard decomposition actually introduces

the problem it purports to solve. As should be fairly clear, if an explicit filtering

operation is performed, there is no issue whatsoever with applying it as many times

as is necessary for a given method. If explicit filtering is used, the Leonard stress Lij,

is unnecessary, and only the cross tensor, Cij, and the Reynolds subgrid tensor, Rij,

should be modeled.
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An additional issue is that the Leonard decomposition is not Galilean invariant.

In 1986, Germano proposed a modification [76],

τij = L0
ij + C0

ij +R0
ij (3.40)

L0
ij = uiuj − uiuj (3.41)

C0
ij = uiu′j + uju′i − uiu′j − uju′i (3.42)

R0
ij = u′iu

′
j − u′i u′j. (3.43)

Note that when the filtering operation is an exact spectral cutoff, the Germano mod-

ification is equivalent to the original Leonard decomposition.

To see the aliasing issue with traditional LES modeling, we return to our discussion

of the LES Burgers equation, Eq. (3.34). The usual technique is to replace 1
2
∂x(u

2 −

u2) + εf with a turbulence model, ∂xM(u), regarding which we currently make no

assumptions other than support on the computational mesh. Galerkin expansion of

this new system now provides

d

dt
ûk = ik

∑
|l|≤kmax

ûlûk−l − k2ûk + ikM̂(u)k, |k| ≤ kmax, (3.44a)

0 = ik
∑
|l|≤kmax

ûlûk−l, |k| > kmax. (3.44b)

We can see from Eq. (3.44b) that the traditional LES equations contain high wavenum-

ber terms that will cause aliasing, and so the system Eqs. (3.44a)–(3.44b) cannot be

accurately solved on the mesh. By the logic discussed in Section 3.1.2, terms in Eq.

(3.44b) will alias with terms in Eq. (3.44a), so that a discrete numerical method

actually approximates the system

d

dt
ûk = ik

∑
|l|≤kmax
n≥0

ûlû(k−l+nkmax) − k2ûk + ikM̂(u)k, |k| ≤ kmax. (3.45)

Therefore in the absence of explicit filtering, the discretization scheme and M(u)

must provide enough dissipation to completely eliminate all of the parasitic modes
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in the nonlinear summation, in addition to providing a simulation of interactions

with unresolved wavenumbers. But since most implicitly filtered LES models are not

constructed with a view toward specifically eliminating the aliasing error above, they

tend to be excessively dissipative.

Thus we see from a careful analysis of aliasing that by introducing the SGS terms

with the goal of creating a system of equations that resemble the NSEs with filtered

variables, the aliasing problem that filtering is meant to solve is reintroduced in a

different form. In our view, this makes the traditional LES equations inadequate to

perform the task for which they were originally constructed.

3.2.5 Eddy viscosity in LES

Typical formulations of M(u) employ the Boussinesq hypothesis, given by [77]

uiuj − uiuj −
1

3
(ukuk − ukuk) δij − ukuk = −2νeSij. (3.46)

We restrict our analysis to the incompressible equations for simplicity’s sake, but the

arguments in this section can be easily extended to compressible turbulence. As in

RANS, νe is assumed to not be constant throughout the flow. In fact, we cannot

even assume it constant in the case of homogeneous, isotropic turbulence because

it is based on local, subgrid-scale turbulent behavior, which cannot be assumed to

be statistically uniform in space at any given t. However, we can assume νe is fully

resolved on the grid; i.e., there is no wavenumber content beyond kmax. Assume,

then, that the filter is a spectral cutoff filter at kmax. If we consider only the case

i = j = 1, an eddy viscosity model must satisfy the relationship

2

3

(
u2 − u2

)
= −2νe∂xu, (3.47)

54



where u = u1 and νe is the eddy viscosity. Galerkin expansion of Eq. (3.47) provides

2

3

 ∑
l+m=k

ûlûm −
∑
l+m=k

|l|,|m|≤kmax

ûlûm

 = −2
∑
l+m=k

|l|,|m|≤kmax

mν̂e,lûm, k ∈ Z (3.48)

2

3

 ∑
l+m=k

|l|,|m|>kmax

ûlûm

 = −2
∑
l+m=k

|l|,|m|≤kmax

mν̂e,lûm, k ∈ Z. (3.49)

From this expansion we see the questionable character of the Boussinesq hypothesis

even in the context of LES. The left-hand side contains exclusively multiplication

of high-frequency modes, but the right-hand side contains exclusively dissipation of

the low-frequency modes. No interactions between the high and the low frequencies

whatsoever are involved. However, the problem is not nearly so intractable as the

RANS case, since resolved modes do exist (recall that in RANS no spatial modes

are resolved), and eddy viscosity models only need to introduce small amounts of

dissipation in order to stabilize the numerical procedure and produce reasonably

accurate simulations of the large-scale flow.

Another issue with eddy viscosity is that dissipation can only be used to model

energy transfer strictly from large scales to small scales, but DNS results for incom-

pressible turbulent flows as early as those presented by Piomelli et al. [78] exhibit

substantial inverse transfer of energy from small to large scales, which is known as

“backscatter.” Hence, an effective turbulence model for LES must be able to cap-

ture this phenomenon. The dynamic model [68] is capable of producing backscatter,

but its creation of negative viscosities results in a mathematically ill-posed problem

that causes numerical instabilities unless special treatments, such as the Lagrangian

dynamic model of Meneveau et al. [79], are used. In fact, in the absence of explicit

filtering, where the dynamic model returns eddy viscosities near zero, it is allow-

ing aliasing to supply the backscatter, and negative eddy viscosities actually amplify

aliasing. However, because LES eddy viscosity models apply limited, local dissipa-
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tion, they are better able to capture transient phenomena of the flow than any RANS

model.

The traditional LES approach is understandable in its historical context, as the

theoretical foundations of large-eddy simulation were not well developed when Leonard

introduced his tensor decomposition in 1976 [75]. Lele would not provide thorough

analysis of low-dissipation Padé filtering in the context of CFD until 1996, Vasilyev et

al. [80] did not formally address and solve the critical mathematical issues associated

with explicit filtering until 1998, and Canuto would not publish the first edition of

his work on spectral methods [81], with its important discussion of aliasing, until

1988. In fact, when Smagorinsky introduced his eddy viscosity model in 1963 [1], he

did not filter the governing equations at all, but rather constructed a simple model

of the atmosphere using a combination of mathematical and physical reasoning. His

model was thus formulated not based on any numerical or spectral properties of the

filtering, but simply based on the physically intuitive Boussinesq hypothesis.

Further, early attempts to analyze the LES equations involved assuming that

uiuj ≈ uiuj. In 1970, for example, Deardorff [82] made this assumption, in addition

to assuming a “top-hat” filter with support on a small cube in attempting to analyze

the LES equations. Likewise, Clark et al. followed this assumption in 1979 [83]. This

assumption is false, and the Leonard decomposition can be viewed as a correction to

this error. In neither case did these authors engage in a rigorous spectral analysis

of the SGS tensor, so the Leonard decomposition was reasonable in this context.

However, in the light of all the previously discussed knowledge of aliasing and filtering

developed since then, we argue that this traditional approach is clearly inadequate

and should be abandoned.
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3.2.6 Structural modeling

The problems with eddy viscosity based turbulence models have led to a variety of

alternative approaches, one of the more common being constructing subgrid-scale

information from the resolved flow field. Following the terminology of Garnier et al.

[7], we refer to this general class of techniques as structural modeling. Two fairly

common approaches to structural modeling are scale similarity modeling, such as

the models of Bardina et al. [84] and Liu et al. [85], and deconvolution models,

such as that of Adams and Stolz [70]. Further need for good structural models has

arisen as multi-species flow simulations have become more common. Dispersion of

solid particles, chemical kinetics, and other such phenomena depend on small-scale

fluctuating velocities and therefore require reconstruction of SGS quantities, whether

via a structural turbulence model or by an ex post facto reconstruction, such as the

stochastic Langevin model of Dehbi [86].

A type of structural model of particular interest due to its direct applicability

to SGS mixing in multiphase or multi-fluid flows is synthetic velocity modeling. In

these models, the fluctuating variables are directly constructed. An early example of

a synthetic velocity model is Domaradzki’s subgrid-scale estimation (SSE) model [6].

The SSE model works by estimating a SGS velocity field via construction from the

large scales, using a method similar to the deconvolution methods employed in ILES.

The turbulent stress tensor of the LES momentum equations (3.24b) is then directly

constructed from this estimated SGS velocity field.

In incompressible LES, Kerstein’s linear eddy model [87] is a synthetic velocity

model that has been extensively developed. LEM simulates SGS fluctuations by com-

bining a one-dimensional heat equation with a stochastic mixing process; thus both

dissipation and nonlinear interactions are modeled. This model has been incorpo-

rated into a full LES model, one-dimensional turbulence (ODT) [88]. ODT has been

incorporated into full LES simulations by Schmidt et al. with considerable success [5],
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although it also shows significant dissipation as the resolution of the grid decreases.

This is likely due to the fact that it still handles very small scales with an eddy

viscosity.

Attempts at inducing backscatter via random forcing functions were introduced

in the 1990s by Leith [89] and Chasnov [90] with reasonable success. Although this

has not been a particularly popular method, the basic idea continues to be used and

modified with some success. A more recent example that has exhibited fairly good

agreement with DNS results is the LES–Langevin model of Laval and Dubrulle [91],

although the dissipative component of this model was provided by a Smagorinsky-

type eddy viscosity. We will provide extensive detail and analysis of these models in

Sec. 4.4, as the model presented in this work is based on backscatter forcing.

In this work, we are presenting a turbulence model that is a combination of scale

similarity, synthetic velocity and forcing; in particular, the fluctuations from the

synthetic velocity will be used to supply the “randomness” of the forcing, and a

general scale-similarity argument will be used to provide the magnitude. However,

we will see that the model used to construct the synthetic velocities is deterministic,

not random, and further has favorable characteristics that make it an attractive choice

to use in the context of turbulence modeling.

3.2.7 Dealiased LES equations

We have shown above that the bilinear term in traditional constructions of the LES

equations introduces numerical aliasing error when discretized. This aliasing is tradi-

tionally suppressed via a a highly dissipative, eddy viscosity-based turbulence model.

Because of these considerations, it is our view that explicit filtering is an indispensable

component of LES. This leads us to reconsider the original application of the filtering

operation to the NSEs. In particular, the filtering of the NSEs must be done in such

a way as to be consistent with the numerical implementation of explicit filtering. We
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begin by filtering the governing equations, Eqs. (2.1a)–(2.1c):

∂tρ+ ∂j(ρuj) = 0, (3.50a)

∂t(ρui) + ∂j(ρujui) = −∂ip+ ∂jσij, (3.50b)

∂t(ρe0) + ∂j(ρe0 + p)uj = ∂jσijui − ∂jqj, (3.50c)

where the commutation error εc has been suppressed. As in traditional LES, we

will solve for the filtered conserved variables {ρ, ρui, ρe0}, but we will not employ

the usual technique that creates the SGS terms. Instead, we define high frequency

interactions (HFIs) by

HFIi = ∂j

(
ρujũi − ρujui

)
(3.51)

HFIe = ∂j

(
σijui − σijũi − (ρe0 + p)uj + (ρe0 + p)ũj

)
. (3.52)

In the case of HFIi, this term is just the derivative of the cross and Reynolds subgrid

stress tensors for compressible flows. However, we are deliberately eschewing the

language of stress tensors because we believe, based on the discussions in Ch. 2.3.4,

that it is fundamentally misleading and leads to the sorts of physical analogies behind

ideas such as the Boussinesq hypothesis. In particular, so-called “SGS turbulent

stress” is not a physical phenomenon; it is a mathematical artifact that arises from

filtering the NSEs, and both its magnitude and its spectral character depends entirely

on the filtering operation chosen. Thus we are viewing these as error terms associated

with the filtering operation rather than physical phenomena to be modeled via a linear

stress-strain relationship or something else along those lines.

Continuing by substituting the HFI terms, we get

∂tρ+ ∂j(ρuj) = 0, (3.53a)

∂tρui + ∂jρũjũi = −∂ip+ ∂jσij +HFIi, (3.53b)

∂tρe0 + ∂j(ρe0 + p)ũj = ∂jσijũi − ∂jqj +HFIe, (3.53c)
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where the HFI terms can be modeled. This system is similar in structure to the filtered

Burgers equation, Eq. (3.32). Assuming that the filtering operation approximates a

spectral cutoff, the HFI terms take the form of the error term in Eq. (3.30) and contain

the entirety of interaction of the high wavenumber content with the low-pass filtered

variables. There are two important differences from Eqs. (3.24a)–(3.24c), namely,

that all bilinear operators are filtered, and discretization of this system minus the

HFI error terms creates no aliasing. Therefore in the absence of a turbulence model,

numerical solutions of this system should be stable. This leads to the conclusion

that any properly anti-aliased solution procedure for the compressible NSEs on an

under-resolved mesh with no turbulence model, in fact, returns a solution for Eqs.

(3.53a)–(3.53c) minus the HFI error terms, rather than Eqs. (3.24a)–(3.24c). In this

view, it is these error terms that must be modeled to increase solution accuracy, not

the usual SGS tensor.

To show that the system above is equivalent to filtering the solution at each time

step, we return to the Burgers equation in Eq. (3.25),

∂tu = −1

2
∂xu

2 + ∂xxu.

Partial discretization with forward Euler time step provides

u(n+1) = ∆t
[
−∂x

(
u(n)
)2

+ ∂xxu
(n)
]

+ u(n). (3.54)

Applying a discrete filter operator G to the solution at time step (n+ 1) gives

Gu(n+1) = ∆t
[
−∂xG

(
u(n)
)2

+ ∂xxGu
(n)
]

+Gu(n) + ∆tεc. (3.55)

where ∆t is the time step and εc is the discrete commutation error. Thus we can

see that filtering the solution at time step (n+ 1) is equivalent to solving the filtered

equations up to the commutation error. However, since we will be filtering at each

time step, then we have

Gu(n+1) = ∆t
[
−∂xG

(
Gu(n)

)2
+ ∂xxG

2u(n)
]

+Gu(n) + ∆t(εc + εf ), (3.56)
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where εf is the discrete filter error caused by filtering at the previous time step.

Defining G such that G(u) → u in the limit of infinite mesh resolution, as the time

step and mesh size go to zero, this system becomes

∂tu = −∂xu2 + ∂xxu+ εc + εf ,

which is just Eq. (3.32) with the commutation error included, and εf is the HFI term.

The commutation error associated with a discrete filter can be controlled to be

arbitrarily small. Let W be a vector of filter weights,

W = [w−N , . . . , w0, . . . wN ], (3.57)

where 2N + 1 is the stencil size,
∑
wl = 1, and the filtering operation is defined by

uj =
N∑

l=−N

wluj+l. (3.58)

Then the nth moment of W is defined by

Mn(W ) =
N∑

l=−N

lnwl. (3.59)

Vasilyev et al. [80] showed that for a discrete derivative operator, εc = O(∆m), where

m = min{n |Mn(W ) 6= 0}. (3.60)

In the case of Padé filters constructed of two weight vectors, W1 and W2, they showed

that

m = min{n |Mn(W1)−Mn(W2) 6= 0}. (3.61)

This provides an easy method for constructing filters with small commutation error. If

this error is of the same or higher order than the discretization scheme, no significant

effects on global solution accuracy are introduced.

It is fairly easy to see that the numerical implementation of the filtering operation

by filtering after each time step is dissipative by restricting our discussion to the
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Euler equations on a periodic cube, Ω = [0, 2π]3. Recall from Sec. 2.3.4 that the

Euler equations are a conservative system, so that kinetic energy in the cube must

be constant in time. Furthermore, the truncated Galerkin system is conservative

at well. Suppose we use a truncated Galerkin method to solve the system, with

truncation wavenumber kmax. Now suppose the filtering operation is a spectral cutoff

at kmax/2 < kN < kmax.

The Galerkin expansion of the Euler equations with the pressure Poisson equation

is given by

d

dt
ûi,k = −

∑
m

ikjûj,mûi,k−m + ikip̂k (3.62)

pk =
∑
m

mi(mj − kj)ui,muj,k−−m, (3.63)

where i2 = −1 when not used as a subscript index, and all wavenumbers are bounded

by kmax. Now suppose we begin with an initial condition u0 such that ûk,i(0) = 0

for all ki > kN , i.e., u0 = u0. Then at t = 0, the summations in the system in Eqs

3.62–3.63 are only over m such that ‖m‖∞ ≤ kN and ‖k−m‖∞ ≤ kN . Because the

system is conservative,

d

dt
K ≡ 1

2

d

dt

∫
Ω

uiuidV =
1

2

∑
ûi,kûi,−k = 0. (3.64)

What we can see from the above analysis is that initially, the evolution of energy

at modes above kN after a single time step is due entirely to the low-k modes, and

the conservative nature of the system means therefore that the energy at those low-k

modes must initially decay. But applying the filtering operation eliminates all the

energy accumulated at the high-k modes. Assuming, based on the results discussed

in Sec. 2.3.5, that “energy-starved” modes in a truncated system immediately absorb

energy from the low-k modes, for this implementation,

d

dt
K < 0, (3.65)
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and the system is dissipative. This logic can be extended to any conservative numeri-

cal formulation of the Euler equations, such as finite-volume methods, since the DFT

can be used to define and investigate the spectral content of those methods as well.

In FD and FV methods, there is an additional complication to consider. By

waiting until the end of the time step to apply the filter, the nonlinear term induces

a small amount of aliasing error which the filter must eliminate. But this aliasing

propagates throughout all wavenumbers, so appropriate filtering must induce at least

some attenuation at every mode, and a mere spectral cutoff is therefore likely to be

inadequate, as we will see in Sec. 3.2.8. Therefore, if a numerical FV or FD method is

formulated such that it is conservative in the inviscid fluxes, even a perfect dealiasing

filter turns a conservative system into a dissipative system. Moreover, if the dealiasing

filter has a transfer function that completely attenuates the highest wavenumbers,

these high-k modes are “energy-starved” at the beginning of the next time step.

Based on the results for inviscid turbulence in Sec. 2.3.5, the nonlinear dynamics

alone should be enough to transfer energy to these modes and cause the evolution

of a proper inertial subrange. This leads to the conclusion that in the context of

a proper implementation of Eqs. (3.53a)–(3.53b), the numerical implementation of

filtering should induce excessive dissipation, and the sole role of any turbulence model

should be to supply backscatter.

3.2.8 A critique of deconvolution

The above discussion leads logically to a critique of the concept of deconvolution, first

developed by Adams and Stolz in their approximate deconvolution method (ADM)

[70], interpreted further by Mathew et al. in 2003 [92], and slightly modified by

Mathew et al. in 2006 [93]. These latter authors argued in their 2003 publication (and

we agree with this argument) that ADM is nearly equivalent to an explicit filtering

procedure that can be done in a single step after each discrete time integration. The
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basic concept revolves around a filter G and an approximate inverse Q such that

QGu ≈ u on the resolved scales of the flow. Applying their method to Eq. (3.25), we

get

∂tGu+
1

2
G∂x(QGu)2 = ∂xxGu. (3.66)

The problem with this method is subtle, but is apparent based on the previous dis-

cussion. Recall that parasitic modes are created by the nonlinear term alone. Now

suppose G is some “optimal” filter kernel that applies the minimal filtering necessary

to eliminate all aliasing error on the given mesh. Then for any approximate inversion

Q such that 1 ≥ TQG(k) ≥ TG(k), where the T s are filter transfer functions (this is

what is typically meant by an approximate inverse), the Q anti-filtering operation

simply re-introduces parasitic modes.

In the 2006 variant of the Mathews deconvolution technique [93], the equations

are reformulated as

∂tQGu+
1

2
∂x(QGu)2 =

1

2
∂x

((
(QG)2u

)2 − (QGu)2
)

+ ∂xxQGu, (3.67)

which they present as a “completely non-heuristic LES model,” which is an accurate

statement. Because they are filtering at each time step, this formulation is not exact,

and the discrete filter must converge to some continuous filter in the limit of infinite

mesh resolution and zero time step. Due to this and the fact that their method

effectively dealiased their solutions, we argue based on the previous discussion that

the correct formulation of the continuous equations their discrete method corresponds

to is

∂tQGu+
1

2
∂xQG(QGu)2 =

1

2
∂xQG

((
QG2u

)2 − (QGu)2
)

+ ∂xxQGu, (3.68)

where filter and commutation errors have been suppressed.

Because the discrete implementation of QG is already close to a spectral cutoff,

the differences between the transfer functions of QG and (QG)2 are marginal and,
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as can be expected, so are the differences in the respective solutions. In the limiting

case of a true spectral cutoff, QG = QG2, this method returns to the equations seen

in Eq. (3.32). The fundamental problem with all deconvolution methods of this type

is that without resorting to any heuristic model, assuming the method is properly

dealiased, the best they can do is solve Eqs. (3.53a)–(3.53b) without the HFI terms.

Otherwise, all that is accomplished is insufficient attenuation of parasitic modes. In

fact, the 2006 variant tends to under-dissipate, and it does not attenuate the low-k

modes at all, suggesting that in fact the filter is not sufficiently removing aliasing.

The fundamental conceptual problem with deconvolution can best be seen when

applied to image filtering. Even when exact knowledge of the method used to filter

from N data points to M < N data points is used, this process cannot be inverted and

does not reconstruct any lost high-frequency information. Fig. 3.1 shows an image [94]

that has been downsampled to one-fourth resolution using the Lanczos-3 kernel, then

deconvolved back to the original resolution using the exact same kernel. Clearly, the

high-frequency information lost in the original downsampling has not been restored,

and PSDs of representative vectors from both images confirm that, as seen in Fig.

3.2. Deconvolution methods thus cannot restore missing SGS information, and at

best simply provide a high-quality, low-pass filtering that dealiases the solution while

minimizing unnecessary attenuation of the resolved modes.

3.3 Summary and conclusions

The above discussion allows us to concisely answer the question of what exactly the

purpose of a turbulence model is. Put succinctly, the purpose of a turbulence model

is to counteract the errors induced by inadequacies of the numerical method used for

solving the NSEs. This makes turbulence modeling materially different from other

types of physical modeling. For example, the Boussinesq approximation for thermal

convection is a model, but it corrects the inability of the incompressible NSEs to
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Figure 3.1: 544x725 image filtered to 136x182 and deconvolved back to the original
resolution using Lanczos-3 for both operations. Image is public domain [94].

Figure 3.2: PSDs of the original 544x725 image and its deconvolution.

respond to temperature gradients. Newton’s laws of motion are useful models of

all kinds of phenomena at sub-relativistic and super-quantum scales, but completely

inadequate in those two latter ranges. In fact, the NSEs themselves are a model

of the bulk motion of fluid molecules, one that has proved to be quite adequate for

generating accurate simulations of turbulence. A turbulence model, by contrast, is

essentially low-fidelity approximation of the information lacking from the numerical

implementation of a mathematical system.

In this light, the task of RANS modeling appears to be borderline intractable. The

inadequacy is in the construction of the RANS equations themselves, which cannot

be viewed as a truncation of the NSEs and cannot even hypothetically be solved
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analytically. Unlike the LES equations, the RANS equations cannot be viewed as

equivalent to an under-resolved numerical method plus an error term. Since the

original idea is to compute solutions of the NSEs in a statistical sense only, the task

of a RANS model is to reconstruct the statistical information that has been destroyed

by the Reynolds averaging process, information that is completely independent of the

number of degrees of freedom in the solution method.

The task of turbulence modeling in the case of large-eddy simulation is thus fairly

straightforward. If NDNS degrees of freedom are necessary to obtain an accurate

solution for a given set of parameters, but the computer in question is only capable of

solving systems of size NLES << NDNS, then the inadequacy in the numerical method

is simply insufficiently many degrees of freedom in the system and the resulting large

truncation error feeding on itself via the nonlinear terms. As seen in Section 3.2.7,

LES equations can be constructed based on the assumption of a spectral cutoff filter,

and it can be shown that even solving this system requires NDNS degrees of freedom

due to the HFI terms. Further, it was demonstrated that the HFI terms cause aliasing

error on an under-resolved mesh, and removal of this error via explicit filtering results

in a dissipative system that transfers energy from large to small scales, but has no

inverse transfer. Then in the context of dealiased LES, the sole purpose of any

turbulence model is to supply backscatter. In the limit NLES = NDNS, the truncation

error vanishes and with it, any concern for modeling.

This view of the LES closure problem, combined with the modern knowledge that

the NSEs are sufficient to produce turbulence on their own, naturally leads away

from the kind of physical rationale underlying eddy viscosity modeling and toward

methods grounded more in the NSEs themselves. Indeed, techniques that are useful

in general PDE theory and analysis have been very productive in studying the theory

of turbulence and are in turn useful for numerical methods. However, it is important

to understand that even in the case of LES, a closure problem exists. The information
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in a high-degree system simply is not, by definition, contained in a low-degree system.

Note that this is a separate problem from the issue of the construction of the low-

degree solution, such as the construction of an ideal mesh. Adaptive meshing, such

as the SCALES method, significantly improves LES results without introducing new

degrees of freedom, even more so when used in conjunction with a turbulence model

[95]. Eq. (3.29) shows that accurate solutions of the filtered NSEs require the same

amount of information as DNS on an ideal mesh due to the nonlinear terms. Because

this information is entirely absent from the resolved-scale computations, some degree

of heuristic modeling is necessary to improve the performance of an under-resolved

solution method.
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Chapter 4. The Compressible Poor Man’s Navier–Stokes Equations

In the first section of this chapter, we present a brief background of the “poor man’s”

Navier–Stokes equations. In Sec. 4.1, the CPMNS equations are derived from the

compressible NSEs. A detailed derivation of the discrete, coupled momentum and

energy equations is provided, along with formulas for the bifurcation parameters in

terms of the fundamental parameters of the flow. A full numerical analysis of the

bifurcation behavior of the system is presented in Sec. 4.2, with attention given to

each bifurcation parameter. Dynamical behavior is characterized using an automated

tool that processes the power spectral densities (PSDs) of the time series generated

as bifurcation parameters are varied. Color-coded regime maps are presented to

demonstrate the range of dynamical behavior achieved by the CPMNS equations as

the different momentum and energy bifurcation parameters are varied. Section 4.3

shows the response of the CPMNS equations to initial conditions, demonstrating they

are truly chaotic. Sensitivity to initial conditions is quantitatively demonstrated using

numerically computed Lyapunov exponents. In the final section, we present a survey

and discussion of existing forcing techniques and construct the forcing function we

use in this work.

This chapter presents work published earlier by Strodtbeck et al. [96]. We describe

the motivation behind the CPMNS equation, give a complete derivation, and present

the results of numerical experiments on the bifurcation behavior. The CPMNS equa-

tions are a discrete dynamical system, a simple and famous example of which is the

logistic map. This map is a classical and well-studied example of a discrete dynamical

system (DDS), given by

a(n+1) = βa(n)
(
1− a(n)

)
, (4.1)

where β is the bifurcation parameter. A complete overview of this map will not be
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given here, as this has been accomplished elsewhere (see, for example, May, [97]).

Of particular interest is that increasing β leads to transitions in dynamical behavior,

so that steady behavior gives way to periodicity, and eventually to chaos through

subharmonic bifurcations, with recurring “windows” of periodic behavior between

regions of chaos. Similarity between the bifurcation behavior of the logistic map as β

increases and behavior of the 2–D Navier–Stokes equations (NSEs) asRe increases was

observed in the 1990s by Pulliam and Vastano [98]. This led Hylin and McDonough

[99] to incorporate the logistic map in constructing subgrid-scale (SGS) models for

large-eddy simulation (LES). However, despite some surface similarities, there are

substantial differences between bifurcation characteristics of the logistic map and the

NSEs. The logistic map does not exhibit quasiperiodic behavior, and it transitions to

chaos via a sequence of period-doubling bifurcations, neither of which are uniformly

consistent with observed transitional behavior in physical fluid turbulence.

The aforementioned inadequacies and others motivated McDonough and Yang

[10] to propose use of a different DDS as a SGS model. This DDS, called the “poor

man’s Navier–Stokes (PMNS) equation” (following the terminology of Frisch [11])

was derived directly from a Galerkin expansion of the NSEs and has the form of

three logistic maps coupled via additional nonlinear terms. McDonough and Huang

showed that the 2-D PMNS equations exhibit the full range of dynamical behavior

seen in physical fluid turbulence [100]. Initial LES experiments for a buoyant plume

presented by McDonough and Yang [10] and small-scale simulations of combustion

have also been performed using the PMNS equations and show good agreement with

experimental data, although comprehensive studies have yet to be completed.

In view of the successes of the incompressible PMNS equations, in this chapter

we will use similar techniques applied to the compressible NSEs to obtain a discrete

dynamical system, which will be referred to as the compressible PMNS or CPMNS

equations. Attention will be given to fundamental differences from the derivation
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and formulation of the original PMNS equations. It will be further shown that the

CPMNS equations exhibit the same range of dynamical behavior as the full com-

pressible Navier–Stokes equations and the original PMNS equations, and that their

bifurcation behavior corresponds to observed physical turbulence. To this end, bifur-

cation diagrams, regime maps, and time series will be presented and analyzed.

4.1 Analysis

In this section, the CPMNS equations will be derived from the compressible NSEs

(CNSEs) in a manner similar to that presented in [100] for the incompressible case.

Because we are deriving a model for small-scale fluctuations, we assume (x, t) ∈

Ω× [t0, tf ], where Ω ⊂ R3 is a typical grid cell, and [t0, tf ] is a typical LES time step.

The CNSEs can be scaled to give, in dimensionless, non-conservative form,

∂tρ+ ∂j(ρuj) = 0, (4.2a)

∂tui + uj∂jui = − 1

M2
∂iT +

1

ρRe

(
∂j∂jui +

µ+ λ

µ
∂i∂juj

)
, (4.2b)

∂tT + uj∂jT = −(γ − 1)T∂juj

+ (γ − 1)
M2

2ρµRe
σij(∂jui + ∂iuj) +

1

Pe
∂j∂jT, (4.2c)

where repeated indices indicate summation, 1 ≤ i, j ≤ 3, ui are the velocity com-

ponents, ρ is density, T is temperature, µ is the dynamic viscosity, λ is the sec-

ond viscosity coefficient, γ is the specific heat ratio, R is the gas constant, σij =

[µ(∂jui + ∂iuj) + δijλ∂kuk] represents the components of the viscous stress tensor,

and δij is the Kronecker delta function. The equations are scaled using velocity

scale U , length scale L, density scale D, temperature scale γT∞, and time scale

L/U . This leads to the non-dimensional numbers, Re = ULD/µ (Reynolds number),

Pe = UL/α (Peclet number), where α is the thermal diffusivity, and M = U/
√
γRT∞

(Mach number). This particular form of the energy equation was derived by applying

the ideal gas equation of state p = ρRT , where p is pressure, and the linear internal
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energy relationship e = RT/(γ−1) to the internal energy equation as found in Gatski

[67].

Before applying a Galerkin procedure to the CNSEs, we must first discuss our

treatment of the density. The CPMNS equations, like the original PMNS equations,

will be derived by first truncating a Galerkin expansion of the NSEs to a single,

arbitrary wave vector. On the other hand, because ρ appears in the denominator

of the compressible NSEs, simple truncation creates difficulties. From a practical

standpoint, fluctuation of the truncated density between 0 and 1 will lead to numerical

instabilities, as is clear from Eqs (4.2b) and (4.2c). However, recall that our goal with

the CPMNS equations is to derive a DDS to serve as the core of a SGS turbulence

model for use in a LES method, so we will employ some simplifications on the small

scales. To this end, we will make the following two assumptions:

1. The grid cell will be small enough that variations in density across the cell will

be small; i.e., at any given time tref ,
∫

Ω
ρ(x, tref ) ≈ |Ω|ρ(x, tref ) ∀ x ∈ Ω. This

is not true in general for supersonic flows featuring shock waves; however, mod-

ern shock-capturing methods dissipate shocks across several grid cells, so this

is an acceptable first-order approximation within the context of any practical

numerical simulation.

2. The time interval is small enough that temporal turbulent fluctuations in the

SGS density will be small relative to the local average density; i.e., the effect of

SGS density fluctuations will be dominated by velocity and energy derivatives

in the momentum and energy equations. This can be seen because ρ appears in

the denominator of Eqs. (4.2b) and (4.2c). If we decompose ρ = ρ0 + (dt)ρ1 +

(dt)2ρ2 + . . ., where ρ0 is some local reference density (such as a time-filtered

quantity), on a small enough time interval dt, we expect the fluctuating terms
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to be small enough that

1

ρ
=

1

ρ0 + (dt)ρ1 + (dt)2ρ2 + . . .
=

1

ρ0

+O(dt).

Combined, these two assumptions will allow us to effectively treat ρ as a constant in

the context of deriving the CPMNS equations. Recalling that the CNSEs have already

been scaled to dimensionless form, this means that we will set ρ = 1 and omit the

density equation. However, these assumptions do not mean we are assuming there are

no turbulent density fluctuations; rather, we are assuming that the effect of density

fluctuations on temperature and velocity are small enough to be neglected. But

because spatial derivatives can be large even while fluctuating quantities themselves

are small, Eq. (4.2a) implies that velocity fluctuations can have a significant effect on

density fluctuations. Since the CPMNS equations are to be used as a SGS turbulence

model, coupling with the large scales will require enforcing global conservation laws.

Thus, we intend to modify density as part of the global coupling routine, rather

than with a direct SGS model. This is analogous to the approach taken with the

incompressible PMNS equations, where the divergence-free mass conservation law is

not used in the construction of the DDS, but rather is used to enforce global mass

conservation on the model output via a projection method.

To construct the CPMNS equations, we assume solutions of the NSEs exist as

L2 functions on the grid cell, so that a Fourier representation exists for velocity and

temperature:

ui(x, t) =
∞∑
k

ai,k(t)ϕk(x), (4.3a)

T (x, t) =
∞∑
k

ek(t)ϕk(x). (4.3b)

Here, {ϕk(x)}, is an unspecified, countable, orthonormal set of basis functions, which

we assume to be complete in L2(Ω). We assume that elements of {ϕk(x)} have the
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wave-like properties:

ϕ̃k ≡
1

ki
∂iϕk, (4.4)

Ckϕ̃k ∈ {ϕk(x)}, (4.5)

∂i∂jϕk = −kikjϕk, (4.6)

where Ck is some normalization constant. This basis will be used to apply a Galerkin

procedure to the momentum equation as follows.

First, substitute Eqs. (4.3a) and (4.3b) into Eq. (4.2b) and apply the wave-like

property of the basis functions to the spatial derivatives to obtain:∑
k

ȧi,kϕk +
∑
l,m

mjaj,lai,mϕlϕ̃m

=
∑
k

(
− 1

M2
kiek −

1

Re

(
|k|2ai +

µ+ λ

µ
kikjaj

))
ϕk,

(4.7)

where “ ˙ ” indicates differentiation with respect to time. Next, multiply both sides

by ϕk and integrate over the domain Ω. Orthonormality gives

ȧi,k+
∑
l,m

mjaj,lai,m

∫
Ω

ϕkϕlϕ̃m = − 1

M2
kiek

− 1

Re

(
|k|2ai,k +

µ+ λ

µ
kikjaj,k

)
, i, j = 1, 2, 3.

(4.8)

To simplify notation, we define

Aj = kj

∫
Ω

ϕ2
kϕ̃k (4.9)

and truncate the system to a single mode k, yielding

ȧi + Ajaiaj = − 1

M2
kie−

1

Re

(
|k|2ai +

µ+ λ

µ
kikjaj

)
, (4.10)

where the k subscript is suppressed. Note that in the case of Ω being a cube with

periodic or zero Dirichlet boundary conditions, the conditions in Eqs. (4.4)–(4.6)

imply that sines and cosines are the basis functions, so Aj = 0. However, because our
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domain is approximately a single grid cell in a turbulent flow, boundary conditions

will be neither periodic nor zero everywhere, so we do not expect Aj = 0.

To arrive at a discrete equation, Eq. (4.10) is discretized according to a simple

forward Euler scheme with time step τ , as follows:

a
(n+1)
i = a

(n)
i − τ

[
ki
M2

e(n) +
1

Re

(
|k|2ai+

µ+ λ

µ
kikja

(n)
j

)
+ Aja

(n)
i a

(n)
j

]
. (4.11)

Rearranging to combine all ai terms yields the following for the momentum equations:

a
(n+1)
i = a

(n)
i

(
1− τ |k|2/Re

τAi
− a(n)

i

)
τAi

− τ
[
ki
M2

e(n) +

(
µ+ λ

µ

1

Re
kikja

(n)
j + Aja

(n)
i a

(n)
j

)
(1− δij)

]
.

(4.12)

If we define the parameter

εi =
1− τ |k|2

Re
τAi

,

apply the scaling ai → εiai, and divide both sides by εi, we get

a
(n+1)
i = εiτAia

(n)
i

(
1− a(n)

i

)
− τ

[
ki

M2εi
e(n) +

(
µ+ λ

µ

1

Re

εj
εi
kikja

(n)
j + εjAja

(n)
i a

(n)
j

)
(1− δij)

]
.

(4.13)

The purpose of the scaling is to obtain the term βia
(n)
i (1 − ai), which is the right-

hand side of the logistic map and the core of the original PMNS equations. This

approach contrasts with McDonough’s assumption 1 − τ |k|2 /Re = τAj [100] and

results in slightly different formulation of several of the bifurcation parameters below.

To further simplify, we assume
∫

Ω
ϕ2
kϕ̃k = 1, and we introduce local, directional

Reynolds numbers Rei in order to more effectively model anisotropic turbulence.

Thus we can express the coefficients of Eq. (4.13) as bifurcation parameters:

βi = 1− τ |k|2

Rei
, (4.14a)

ξij = (1− δij)
τεj
Reiεi

µ+ λ

µ
kikj, (4.14b)

αi =
τki
M2εi

. (4.14c)
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This leads to the discrete momentum equation,

a
(n+1)
i = βia

(n)
i (1− a(n)

i )− βja(n)
i a

(n)
j (1− δij)− ξija(n)

j − αie(n). (4.15)

We can apply the same procedure to the energy equation. The steps are analogous

to those used to derive the momentum equation, so we give each term from Eq. (5.1c)

with the analogous term after single-mode truncation and defining Φ =
∫

Ω
ϕ̃2
kϕk:

∂tT → ė (4.16a)

uj∂jT → ajeAj (4.16b)

−(γ − 1)T∂juj → −(γ − 1)ajeAj (4.16c)

µ(∂jui + ∂iuj)
2 → µ(kjai + kiaj)

2Φ (4.16d)

δijλ∂kuk(∂iuj + ∂jui) → 2λkikjaiajΦ (4.16e)

1

Pe
∂j∂jT → −|k|

2

Pe
e. (4.16f)

Simplifying, we have the single-mode energy equation:

ė+ γajeAj = Φ
(γ − 1)M2

2Re

[
(kjai + kiaj)

2 +
2λ

µ
kikjaiaj

]
− |k|

2

Pe
e. (4.17)

Forward Euler discretization in all but the dissipative term and applying the ai → εiai

scaling gives

e(n+1)
(

1 +
τ

Pe
|k|2
)

= e(n) + τ

{
Φ

(γ − 1)M2

Re[
1

2
(kjεia

(n)
i + kiεja

(n)
j )2 +

λ

µ
kikjεiεja

(n)
i a

(n)
j

]
− γεja(n)

j e(n)Aj

} (4.18)

Here, the dissipative term has been treated implicitly because numerical experiments

revealed that explicit treatment caused severe stability problems, as is true rather
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generally for linear diffusion. Next, we define the following bifurcation parameters:

βT =
τ |k|2

Pe
, (4.19a)

ζij =
τλΦ(γ − 1)M2εiεjkikj

µRe
, (4.19b)

ηij = kiεj

√
τΦ(γ − 1)M2

2Re
, (4.19c)

which allows us to write the discrete energy equation as

e(n+1) = [ e(n)(1− γβja(n)
j ) + 2

(
ηjiηji(a

(n)
i )2 + ηijηjia

(n)
i a

(n)
j

)
+ζija

(n)
i a

(n)
j

]
/(1 + βT ).

(4.20)

We can then combine Eqs. (4.15) and (4.20) into the following DDS, to which we will

refer as the CPMNS equations:

a
(n+1)
i = βia

(n)
i (1− a(n)

i )− βja(n)
i a

(n)
j (1− δij)− ξija(n)

j − αie(n), (4.21a)

e(n+1) =
[ e(n)(1− γβja(n)

j ) + 2
(
ηjiηji(a

(n)
i )2 + ηijηjia

(n)
i a

(n)
j

)
+ζija

(n)
i a

(n)
j

]
/(1 + βT ),

(4.21b)

where summation in the momentum equation is over j alone.

Certain modifications and assumptions must be made to achieve the desired range

of dynamical behavior. Although the formula for βi constrains its value to be less

than unity, chaotic behavior requires the value to range as high as four; hence, we

will apply a multiplier of four to the term, βia
(n)
i (1 − a

(n)
i ), as done in [97]. Thus,

the system that will be used in actual computations for the present work is given as

follows:

a
(n+1)
i = 4βia

(n)
i (1− a(n)

i )− βja(n)
i a

(n)
j (1− δij)− ξija(n)

j − αie(n), (4.22a)

e(n+1) =
[ e(n)(1− γβja(n)

j ) + 2
(
ηjiηji(a

(n)
i )2 + ηijηjia

(n)
i a

(n)
j

)
+ζija

(n)
i a

(n)
j

]
/(1 + βT ),

(4.22b)

As with the original PMNS equations, the CPMNS equations retain all the essential

symmetries and nonlinearities of the original NSEs. As shown below, this leads to
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similar dynamical behavior. Observe that there are 28 total bifurcation parameters.

This would seem to present a closure problem similar to that of other turbulence

models; however, all the bifurcation parameters can be expressed in terms of flow-

related quantities, such as local Reynolds numbers and characteristic wavenumbers.

In contrast to typical turbulence models, where the model constants must be cali-

brated from experimental data, the bifurcation parameters of the CPMNS equations

are dynamic, and the principal issue will be determining how to compute these from

the large-scale results.

It might seem unexpected that a discrete map could serve as the basis of a turbu-

lence model, as the CNSEs are a continuous system. However, consider the case of the

Lorenz equations [101] and the Hénon map. The former set of equations is likewise

a single-mode truncation of fluid flow equations, although in the case of Lorenz, the

system to be truncated is already a simplification of the original NSEs based on 2-D

convection assumptions. Further, the Lorenz equations are still a continuous system

of ODEs, whereas the CPMNS equations are a discrete system. However, recall that

the Hénon map [102] is a DDS that generates the Poincaré section for a simplified

model of the Lorenz attractor. Hénon constructed a discrete map that mimicked the

way the Lorenz equations stretch, fold, and contract a volume. Thus there is an

important theoretical link between continuous and discrete dynamical systems. We

can then envision the CPMNS equations as mimicking a single topological cycle of

a turbulent fluid flow on a small parcel of fluid, although clearly, the action is much

more complicated than that modeled by the Hénon map.

As an aside, a similar discrete equation can be derived for the density equation,

but this is not done here, as we assumed from the beginning that the fluctuations in ρ

are small enough to be neglected when deriving the CPMNS equations. In fact, this

assumption was motivated by early numerical experiments, which did incorporate

density. However, these early versions of the CPMNS equations exhibited stability
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problems due to the linearity of the density equation. Further, retaining coupling with

a density equation in order to arrive at a DDS requires additional assumptions which

are more difficult to justify. However, despite the omission of a density equation, there

are still non-trivial differences from the original, incompressible PMNS equations, as

there are additional dissipative terms in the momentum equation and coupling with

the energy equation.

4.2 Bifurcation analysis

In this section we present results obtained by varying the bifurcation parameters in the

momentum and energy equations. Regimes are identified on the basis of their power

spectral densities (PSDs) using the same automated tool employed in [100]. This tool

analyzes the PSDs of velocity series produced by the system and assigns a label based

on the spectral peaks. PSDs with only one peak are periodic, those with multiple

commensurate frequencies are subharmonic, and those with incommensurate peaks

are quasiperiodic. In addition, if there are non-smooth intervals in between spectral

peaks, the tool adds the description of being “broadband” or “noisy.” The regime

maps presented thus give a broad overview of the kind of dynamical behavior that

can be exhibited by the CPMNS equations and a qualitative understanding of the

transition behavior. In addition to this, we present details of representative behavior

from each regime in the form of time series, phase portraits, bifurcation diagrams,

and PSDs.

Calculations were performed on a single Pentium IV processor at the University

of Kentucky. All results were obtained using 64-bit Fortran. A typical run consisted

of 2 × 104 iterations with the last 5000 iterations subjected to statistical analysis.

A standard radix-2 FFT with 2048 points was used to compute PSDs characterizing

the solution regimes. Early experiments showed that 2048 points were sufficient to

generate the regime maps while still keeping computation time low.
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4.2.1 Bifurcation behavior and PSD analysis

As mentioned before, the CPMNS equations exhibit the same range of dynamical be-

havior as the original PMNS equations. Because of the relatively high computational

cost required to calculate traditional measures of chaos such as Lyapunov exponents

and fractal dimension, the automated tool employed characterizes dynamical behav-

ior based on PSD of the time series of a1 (due to coupling, all components tend

to exhibit the same behavior) and identifies the following solution regimes: steady,

periodic, periodic with different fundamental frequency, subharmonic, phase-locked,

quasiperiodic, noisy subharmonic, noisy phase-locked, noisy quasiperiodic with fun-

damental, noisy quasiperiodic without fundamental, broadband with fundamental,

broadband with different fundamental, broadband without fundamental, and diver-

gent. In this section, we present some representative time series with their PSDs

to illustrate how the tool works. Note that here, noisiness in the PSD reflects the

behavior of the DDS itself and may be associated with strange attractors, in contrast

to inherent instrumental noise at high-k modes in experimental results.

In the following numerical experiments, βi were varied, while the other bifurcation

parameters for the CPMNS equations were, except when otherwise specified, defined

using values that maintained stability over significant ranges of βi:

αi = 1× 10−4 (4.23a)

ξij = 0.005(1− δij) (4.23b)

ζij = 0.03 (4.23c)

ηij = 0.01 (4.23d)

a(0) = (0.1041, 0.1022, 0.1053) (4.23e)

e(0) = 0.01 (4.23f)

βT = 0.55 (4.23g)

γ = 1.4 (4.23h)
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for all i and j.

The bifurcation diagrams in this section were created by plotting the last 400 steps

of 60,000 iterations against the value of βi used to generate that particular sequence.

Of course, the number of potential bifurcation diagrams is infinite since the DDS

depends on more than one parameter. We chose to exhibit two such diagrams in

order to stress the similarity to and differences with the bifurcation diagram for the

logistic map.

Figure 4.1 shows a bifurcation diagram for the above parameters where β1 = β2 =

β3 = β and other parameters as given above, corresponding to isotropic turbulence,

scaled for direct comparison with the logistic map. There are some notable similarities

between this bifurcation diagram and that of the logistic map, seen in Figure 4.2.

First, Figure 4.1 shows a period-doubling Feigenbaum bifurcation sequence associated

with the logistic map, in this case on the interval 4β ∈ [3, 3.633]. Note that in the

close-up views presented, a structure similar to the logistic map bifurcation sequence

is revealed. Observe also that there are bifurcation parameter values, such as 4β =

3.636, where chaos transitions temporarily back to periodicity. This is reminiscent of

turbulent-to-laminar transitions observed experimentally by Patel and Head [103]. It

is also similar to the “periodic windows” of the logistic map. This is to be expected,

as the logistic map serves as the core of the CPMNS equations.

There are also a number of structural dissimilarities between the bifurcation se-

quence for the logistic map and the bifurcation sequence for CPMNS shown in Figure

4.1. There is a prominent discontinuity in Figure 4.1 at β = 3.633, while the bifur-

cation diagram in Figure 4.2 appears to be continuous. Further, this discontinuity

appears after only one period-doubling bifurcation, while the logistic map continues

a period-doubling sequence until chaos is reached.

We next considered a bifurcation diagram for a case of mild anisotropy. Fig-

ure 4.3 shows one such example, where β1 = β, β2 = 0.99β, β3 = 0.98β, α =
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(0.0001, 0.0002, 0.00013), and other parameters as given above. In this case, the

structural dissimilarity with Figure 4.2 is more apparent, and there are additional

dissimilarities with Figure 4.1 as well. In this particular case, the first bifurcation

happens at approximately 3.038, and there are multiple discontinuities at higher val-

ues of β.

Figure 4.1: CPMNS bifurcation diagram for βi = β for all i with zoom in

Figure 4.2: Logistic map bifurcation diagram with zoom in

Figure 4.4 shows the PSDs, time series and phase portraits of various types of

signals along with 80 representative steps of the associated time series. Note the

values in (d) and (e) correspond to much stronger anisotropy than in the first three

images. For the two corresponding phase portraits, the insets stretch the vertical axis

so that the structure may be seen more clearly. PSDs and the corresponding phase

portraits were constructed from the same 2048-point series for the given values of βi

and αi. Dynamical behavior is established from the PSDs by analyzing the character
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Figure 4.3: CPMNS bifurcation diagram for β1 = β, β2 = 0.99β, β3 = 0.98β, α =
(0.0001, 0.0002, 0.00013) with zoom in

of the spectral peaks. Periodic and subharmonic behavior is characterized by spikes

tens of decibels over the noise at commensurate frequency intervals. Quasiperiodic

behavior has spectral peaks at incommensurate frequencies, while strict broadband

behavior has no observable spectral peaks.

Here, we focus on noisy signals, as the existence of periodic and subharmonic

behavior can be easily established from the bifurcation diagrams. The phase por-

traits further help identify the dynamical behavior. In order, the PSDs correspond to

(a) quasiperiodic (with a previous subharmonic bifurcation), (b) noisy quasiperiodic

with fundamental frequency, (c) noisy subharmonic, (d) broadband with fundamental

frequency and (e) pure broadband. In terms of real fluid turbulence, both subhar-

monicity and quasiperiodicity have been observed experimentally as transition stages

to turbulence. See, for example, the results of Takeda [104]. The former is the main

constituent of Feigenbaum sequences for quadratic maps, and the latter is a funda-
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mental stage in the Ruelle and Takens bifurcation sequence. Despite the fact that

time series corresponding to quasiperiodic flow can be rather complicated, the flow

is not yet turbulent; in particular, it is not sensitive to initial conditions. The noisy

subharmonic and broadband with fundamental frequency are reminiscent of the tur-

bulent mixing layers found in Van Dyke [105], in which large-scale structures appear

to follow a periodic (or nearly periodic) law, while the small-scale turbulent fluctu-

ations are clearly non-periodic. Likewise in the same book, the wake of a turbulent

cylinder is shown to shed large, coherent turbulent structures in a nearly periodic

fashion.

Note that as the PSDs become more broadband-like, new structures appear in

the time series. The quasiperiodic (a), noisy quasiperiodic (b), and noisy subhar-

monic (c) cases show similar, fairly regular time series, while the broadband with

fundamental (d) and pure broadband (e) cases are both highly irregular and non-

repeating. The subharmonic frequency can be seen in the nearly alternating ampli-

tudes in the time series of (a), (b), and (c). Note especially the intermittency in

the pure broadband signal. Intermittency is an important characteristic of physical

turbulence, so a subgrid-scale synthetic velocity model ought to be able to exhibit

this behavior as well. Finally, observe that the time series are fairly similar for most

of the broadband behavior, suggesting that modeling using the CPMNS equations

will be fairly forgiving—a desirable feature, as the bifurcation parameters must be

computed dynamically from imperfect numerical data (typically obtained via some

form of deconvolution of resolved-scale calculations) in full LES.

The noise in the above PSDs is not quite white noise, as the PSDs are not com-

pletely flat. As the phase portraits demonstrate, the noisy signals exhibit the kind of

behavior commonly associated with chaotic dynamical systems, as there is clear struc-

ture in each phase portrait. This is consistent with the fact the CPMNS equations are

a set of algebraic maps and therefore are a deterministic system. Further, recalling
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Figure 4.4: PSDs, time series, and phase portraits for β = (a) (0.928458, 0.919173,
0.909889) (b) (0.92874, 0.919453, 0.910165) (c) (0.928176, 0.918894, 0.909612), (d)
(0.9556, 0.5844, 0.854), (e) (0.9444, 0.5154, 0.32). In (a), (b), and (c), αi = 0.0001 ∀ i,
while in (d) and (e), α = (0.0001, 0.002, 0.0013)
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that the CPMNS equations themselves were derived from the NSEs, the occurence of

noisy signals after a brief transition through subharmonic and quasiperiodic regimes

is generally consistent with the theory of Ruelle and Takens that the transition to

physical turbulence corresponds to a relatively short bifurcation sequence to chaos as

Re increases in the NSEs [12], although there are many more bifurcations in the dis-

crete system. Recalling that the attractor for a continuous quasiperiodic dynamical

system is a torus, note that the attractor for the quasiperiodic discrete series appears

to be a number of closed “rings.” Fundamental frequencies can be associated with

clear divisions of the attractor into 2 or more discrete pieces, while the phase portrait

corresponding to the pure broadband signal in (e) is not divided into multiple distinct

pieces.

When at least two of the three βis are equal, there is a tendency for the corre-

sponding ais to lock, as was also observed in the 2-D case [100]; i.e., for some N and

i, j pair such that βi = βj, a
(n)
i = a

(n)
j for all n > N . However, this phenomenon

was observed to occur exclusively for βi = βj, which is unlikely to ever hold in a

real simulation, as it would require the velocity components and length scales to be

exactly equal in each of the two directions. Nevertheless, it is interesting to see why

this occurs. Suppose β = β2 = β3, α = α2 = α3, ξ = ξ21 = ξ31, and ξ∗ = ξ32 = ξ23.

Substituting these into Eq. (4.22a) yields:

a
(n+1)
2 = βa

(n)
2 (1− a(n)

2 )− β1a
(n)
1 a

(n)
2 − βa

(n)
3 a

(n)
2 − ξa

(n)
1 − ξ∗a3 − αe(n),(4.24)

a
(n+1)
3 = βa

(n)
3 (1− a(n)

3 )− β1a
(n)
1 a

(n)
3 − βa

(n)
3 a

(n)
2 − ξa

(n)
1 − ξ∗a2 − αe(n). (4.25)

Subtracting (4.24) from (4.25) then provides:
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2 − a(n+1)

3 = 4β
[
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2
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2

)
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3

(
1− a(n)

3
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(
a
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(n)
3

)
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(
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1

)(
a
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)
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(
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)
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If
∣∣∣4β (1− a(n)

2 − a
(n)
3

)
+ ξ∗ − β1a

(n)
1

∣∣∣ < 1, this will be a contractive map leading to a2

and a3 converging together. This inequality is clearly within the realm of possibility,

as we expect |ai|, ξij, and βi all to be less than unity. It has been observed over the

course of numerical experiments that even mild anisotropy in βi and αi is sufficient

to prevent locking, so we do not expect this to occur in full simulations.

Figure 4.5 shows 100 representative time steps and PSDs for all three compo-

nents of a and e for β = (0.93, 0.85, 0.41) and α = (0.0001, 0.002, 0.0013), which

corresponds to anisotropic, broadband behavior with a single fundamental frequency.

Note that the time series for both a1 and a2 exhibit recurring, intermittent, small

oscillations that appear to be absent in the signal of a3. However, there is no ob-

vious, qualitative difference in the PSDs of the three signals, suggesting that there

is no reliable way to determine intermittency of a signal from the PSD alone. Also,

the e series is entirely negative with a significantly smaller absolute value than that

of any of the ais, which are positive. In general, velocity series tend to be positive,

although some very small negative velocity series have been observed. This means

that in implementation, the effect of this model will be to add kinetic energy into the

flow if the final result receives the same sign as the large-scale velocity component,

suggesting that an equivalent amount of thermal energy ought to be subtracted in

order to maintain conservation of energy. At the same time, nearly uniform positivity

of velocity components suggests the need for a transformation (e.g., subtracting their

mean values) permitting both signs as occurs in physical turbulent flows.

4.2.2 Regime maps

While the above analysis is instructive for understanding core characteristics of the

CPMNS equations, unlike the logistic map, there are 28 potential bifurcation param-

eters to be investigated. In this section, we present 2-D regime maps of bifurcation

behavior for bifurcation parameters of both the momentum and energy equations.
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Figure 4.5: Time series and phase portraits for β = (0.93, 0.85, 0.41).

These regime maps were produced automatically using an algorithm designed to

characterize solutions based on their power spectra.

4.2.2.1 Momentum parameters

The regime map in Figure 4.6 illustrates that the CPMNS equations exhibit the

same range of dynamical behavior as a real fluid flow. In particular, transitions

between regimes moving in the direction of increasing β correspond to real transitional

behavior: steady behavior gives way to periodic, which becomes subharmonic, and

then transitions through several quasiperiodic and broadband regimes before reaching

a distinct, yellow, fully broadband (chaotic) regime and finally diverging. There does,

however, seem to be significantly less phase-locked behavior than in the incompressible

case, and often this does not appear as an Arnol’d tongue. Another interesting

characteristic of this regime map is that periodic behavior can transition directly to

quasiperiodic (as in the incompressible case [100]) without first passing through a

subharmonic bifurcation, which is the Ruelle and Takens bifurcation sequence [12].
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Figure 4.7 shows a close-up view of the boxed region of the regime map depicted

in Figure 4.6. Note that there is not a definite boundary between zones. Rather,

the different regime zones are interspersed in a manner suggestive of fractal zonal

boundaries. This establishes that the bifurcation sequence is far more complex than

a simple progression from stationary to broadband, but in fact shifts back and forth

among several regimes, including even periodic behavior, before finally settling on

pure broadband behavior, similar to what can be seen with the incompressible PMNS

equations, and analogous to experimental results in the incompressible case, e.g.,

Gollub and Benson [106].

A key concern of implementing the CPMNS equations as part of a LES SGS model

is maintaining stability. As can be seen in the figures already presented, the divergent

(black) zone does not have a clearly defined, regular boundary, so it is important

to determine an appropriate maximum value for β that guarantees stability, but

also includes the full range of dynamical behavior. There are sizable “noisy” bands

when the βi are large, which is consistent with physical turbulence, since β → 1

as Re → ∞. Although there are black bands of instability for smaller values of β,

it should be noted that in actual implementation, the CPMNS equations are to be

used as a turbulence model and thus would be turned off when there are no chaotic

subgrid-scale fluctuations to be modeled, i.e., when βi
<∼ 0.7. In general, we see that

βi > 0.9 must hold for at least one i in order to see noisy behavior, and this criterion

was implemented in simulations.

Figure 4.8 is a regime map for β vs. ξ. Here ξij = ξ for all i and j, and βi = β

for all i. Observe that in Eq. (4.14b), ξ is associated with the dissipative terms in

the NSEs and is inversely proportional to Re. The regime map shows the expected

behavior that as ξ increases, the bifurcation sequence is shifted, requiring larger

values of β to transition. But note that for ξ > 0.26, the regime map shows that

no broadband behavior is exhibited at all, and the CPMNS equations are almost
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Figure 4.6: Regime map of β3 vs. β1 = β2, αi = 0.0001
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Figure 4.7: Close-up of regime map of β3 vs. β1 = β2, αi = 0.0001

completely unstable. Linear terms tend to destabilize a DDS, as when the coefficients

are large enough, they simply amplify the variable and result in diverging to ±∞. It

appears from this map that limiting ξ < 0.1 captures the desired dynamical behavior.

Also, note that as ξ increases, the stable zone is bounded below by an increasing value

of β. In the code used in this work, a check to ensure that ξij < 0.26 was implemented.

Figure 4.9 shows the interaction between β and the coefficient on the energy

term, α, where αi = α for all i. As α increases, at first, the bifurcation sequence

appears to be compressed; i.e., a higher value of α results in a lower value of β

corresponding to the same point in the bifurcation sequence. Increasing α corresponds

to decreasing the square of the Mach number, which is consistent with experimental

results, such as older experiments of Demetriades [107], and more recent experiments,

such as those of Chen et al. [108], which indicate that increasing Mach number has
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an overall stabilizing effect on a flow. But note also that as α increases past 3, totally

different dynamical behavior emerges. Instead of the usual transition to periodicity,

steady-state behavior gives way immediately to quasiperiodicity, or periodicity with

a different fundamental frequency, with Arnol’d tongue-shaped zones of phase-locked

behavior. While interesting from a purely mathematical point of view, this zone has

less in common with physical turbulence, so we exclude this zone from modeling,

and therefore implement a check on αi to ensure that it is always less than three.

Furthermore, note the lower bound on β increases, so stability is also an issue in the

zone of large α. Numerically, flow simulation of very low M tends to be unstable as

well.

Finally, note that in all the regime maps, the bifurcation sequence frequently

passes through a subharmonic region before transitioning to quasiperiodicity and

then broadband chaos. This contrasts with the bifurcation sequence of Ruelle and

Takens [12], where periodicity immediately transitions to quasiperiodicity. Rather,

what is seen has more in common with the Feigenbaum bifurcation sequence and

the results in [98], although the bifurcation diagram in Figure 4.3 shows that the

subharmonic bifurcations are not necessarily of the period-doubling type.

4.2.2.2 Energy parameters

In this section, each regime map is created by varying a given parameter of the

discrete energy equation while simultaneously varying β in the discrete momentum

equation (recall that βi = β for all i), with the other parameters given in Eq. (4.23).

For all i and j, ηij = η, and ζij = ζ. The presence of an energy equation is one of

the main differences between the CPMNS equations and the original incompressible

PMNS equations [100], so its effects on the bifurcation sequence are of key interest.

As seen in Figure 4.10, the parameter βT has very little overall effect on the

bifurcation sequence. This is because, as it appears in the denominator of the discrete
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Figure 4.8: ξ vs. β

energy equation Eq. (4.22b), increasing it simply reduces the influence of e(n) on the

overall system, i.e., e(n) → 0 as βT → ∞. Observe that this corresponds to Pe → 0

as seen in Eq. (4.19a), but note also that the denominator of the energy equation is

bounded below by unity, which eliminates the ability of βT to destabilize the CPMNS

equations as it decreases. As seen in Figures 4.11 and 4.12, all the energy parameters

with the most influence on the bifurcation behavior of the system lie in the numerator.

Note also the similarity of Figure 4.12 with Figure 4.11, likely due to both coefficients

operating on second-order terms.

As in the case of the momentum parameters, the behavior of the energy equa-

tion is qualitatively similar to that of physical turbulence. Note in Eqs. (4.19b) and

(4.19c), that increasing ζij and ηij corresponds to increasing Mach number or de-

creasing Reynolds number, both of which have the physical effect of delaying the
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Figure 4.9: α vs. β

onset of turbulence. In particular, both ζij and ηij are associated with the viscous

stress tensor term in the original PDE, which is dissipative due to the presence of

second derivatives. But unlike in the momentum equation, this term results in a

second-order nonlinearity in the discrete energy equation due to multiplication of σij

by (∂jui+∂iuj) in the original PDE. However, we can see in Figure 4.11 that increas-

ing η still delays the the onset of chaos. As in the case of α, increasing η sufficiently

results in completely different dynamical behavior. In this case, steady-state becomes

quasiperiodic and then simply diverges. But for η < 10, we see the usual bifurcation

sequence. The regime map for ζ in Figure 4.12 appears to be a simple transforma-

tion of that of η in Figure 4.11, the main difference being that the range on ζ is

several orders of magnitude larger than that of η. The similarity of regime maps is

unsurprising, since both coefficients correspond to second-order terms. Since ζ also
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corresponds to viscous stress tensor, the above comments regarding η are applicable

to ζ as well.

Figure 4.10: βT vs. β

In earlier experiments, the discrete energy equation was derived from the total en-

ergy equation without making the simplification of subtracting out the kinetic energy

equation. This resulted in a third-order equation, with the third-order terms being

associated with the viscous stress tensor. However, this third-order system exhibited

dynamics contrary to observed physical behavior. As the η and ζ coefficients (which

were formulated differently from Eqs. (4.19c) and (4.19b), but were still associated

with viscous terms) increased, corresponding to M increasing and Re decreasing, the

bifurcation sequence was compressed, and the onset of chaos happened more rapidly.

Thus Eq. (4.2c) is preferable for our purposes than the total energy equation.

4.3 Sensitivity to initial conditions

As with any DDS, an important question is the size and location of basins of attrac-

tion. If the basin of attraction has low fractal dimension or small measure, then it
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Figure 4.11: η vs. β

may be a difficult or even intractable problem to ensure that initial conditions for

use in a real simulation lie in the basin. Of particular interest as well is determining

whether all initial conditions for a given set of bifurcation parameters lead to the

same dynamical behavior. At a minimum, for use as the basis of a turbulence model,

it is necessary that the initial conditions lead to similar dynamical behavior, i.e., the

PSDs exhibit similar characteristics.

In these numerical experiments, we investigate two cases of highly different “noisy”

behavior to see how initial conditions affect each one. Figure 4.13 is the basin of at-

traction for βi = 0.945 and αi = 0.0001 for all i, which corresponds to an isotropic

broadband region and is very close to the divergent zone. Figure 4.14 is the at-

tracting basin for β = (0.92, 0.94, 0.93) and α = (0.0001, 0.002, 0.0013), which the
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Figure 4.12: ζ vs. β

automated tool identified as a noisy quaisperiodic region. The basin in Figure 4.13

has a sparse structure, likely due to it being so close to the divergent region to be-

gin with, which suggests that it may have small or vanishing Lebesgue measure. By

contrast, Figure 4.14 shows a clearly positive-measure basin with multiple solution

regimes interspersed. In a real simulation, initial conditions will be set by results

from the previous time step, so we expect overall stability.

Close inspection of Figure 4.14 shows five colors, corresponding to noisy quasiperi-

odic with and without fundamental frequency, broadband with and without funda-

mental, and broadband with different fundamental. The immediate question, then, is

whether these represent truly different dynamical behavior, or whether the automated

tool simply is inconsistent in classifying signals that are close to one kind of behavior

or another. Numerical investigation of initial conditions that the regime map algo-
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rithm associated with each dynamical behavior was performed to determine whether

different initial conditions lead to truly different numerical behavior, or whether this

is due to marginal selection criteria in the algorithm. Sample results are shown in

Figure 4.15. The PSDs and time series are quite similar, and, importantly, the phase

portraits appear nearly identical. While time series (b) has two large intermittency

bursts not seen in (a), this is due to the relatively small sample shown here, and these

structures can be seen in (a) in other regions of the time series. The two time series

shown each begin exactly 4 × 104 iterations from their respective initial conditions

to illustrate the sensitivity to initial conditions. Upon further investigation, these

observations proved true of a variety of initial conditions, regardless of how the tool

had labeled them. This indicates that the multiple colors in the basins of attraction

are due to the selection algorithm itself, not to the behavior of the CPMNS equations,

as categorizing a noisy signal has a subjective element, such as deciding exactly how

large a spike at the end of a PSD qualifies as retention of the fundamental frequency.

In this particular case, note the two small bumps in each PSD and how it gradually

rises at the end. Whether or not the tool detected the bumps as incommensurate

frequencies determined whether or not it classified the signal as noisy quasiperiodic

or broadband, and whether or not it detected the rise at the end determined whether

or not it classified the signal as having a fundamental frequency. Therefore, inter-

spersion of different noisy regimes in Figure 4.6 may also be due to the selection

algorithm rather than entirely to fundamental mathematical properties of the DDS.

For modeling purposes, this indicates that different initial conditions will not lead to

significantly different dynamical behavior, emphasizing once again that the CPMNS

equations will be robust as a turbulence model.

Both cases used to generate Figures 4.13 and 4.14 exhibited sensitivity to initial

conditions. Lyapunov exponents λL were estimated numerically using an algorithm

described by Peitgen et al. [109], based on the formula
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λL ≈
1

N

N∑
n=1

ln

∣∣∣∣a(n,ε) − a(n)

ε

∣∣∣∣ , (4.26)

where a(n,ε) is computed from the previous time step using a(n−1) +ε, and ε is an error

term. For these computations, N = 5 × 105, and ε = 3 × 10−5. The isotropic case

corresponding to Figure 4.13 exhibited a Lyapunov exponent λL = 0.939, while the

anisotropic case corresponding to Figure 4.14 had λL = 0.930. Both Lyapunov expo-

nents were computed using 5 × 105 iterations. Initial DNS experiments by Schwarz

et al. [110] suggest values of λL in this range, although current computing power was

insufficient to complete the numerical experiments. Figure 4.16 shows the growth of

λL as β = β1 = β2 = β3 and αi = 0.0001 for all i increases. The sharp drops corre-

spond to transitions from chaos to periodicity in the bifurcation sequence. Clearly,

infinitely many such diagrams can be generated for the anisotropic case, depending

on what relationships among the different βi are chosen.

4.4 SGS model functions

In Sec. 3.2.3, we argued that adequate explicit filtering will on its own eliminate

aliasing and provide a stable solution procedure. Thus we expect numerical solution of

the dealiased NSEs, Eqs. (3.53a)–(3.53c), to be numerically stable. In fact, Mathew et

al. [93], whose method could be considered a solution of the aforementioned equations

without any turbulence model, and whose filtering method was close to a spectral

cutoff (which we suspect does not sufficiently dealias numerical results), reported

that decreasing mesh resolution merely led to the eventual disappearance of turbulent

structures rather than the instability normally associate with the lack of a turbulence

model. In the DNS experiments of Huang and Leonard [111], which used a Fourier

method with grid-shift dealiasing, reducing the number of modes from 256 to 128

had the effect of increasing the decay rates of various turbulence quantities. Further,

experiments with homogeneous, isotropic turbulence on a cube, detailed in Section
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Figure 4.13: Basin of attraction for βi = 0.945 and αi = 0.0001 for all i

6.2, revealed that the low-dissipation HAMR scheme [112], which we have used as

an explicit filter, by itself increases the turbulent kinetic energy decay rate. As we

will see in Ch. 5, Fig. 6.31 shows the dissipation caused by a 5th -order differencing

filter on a shock ramp is far in excess of what is needed. This leads to the conclusion

that in the presence of filtering sufficiently dissipative to eliminate aliasing entirely, a

model of the HFI error terms in Eqs. (3.53a)–(3.53c) needs to be entirely responsible

for providing backscatter. The question, then, is how exactly to do this.

Simple additive methods have been used with a significant degree of success in

ODTLES [5] and by McDonough and Yang in LES of a buoyant plume [10]. However,
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Figure 4.14: Basin of attraction for β = (0.92, 0.94, 0.93) and α =
(0.0001, 0.002, 0.0013)

both of these models involve the construction of a small-scale velocity field, which

is then mass-conserved by projecting it to a divergence-free subspace and added to

the large-scale solution. Clearly, this method is not viable for the compressible equa-

tions, since compressible flows are not divergence-free. Further, a second projection

significantly increases the total computation time of the LES due to the required

Poisson solve. The problem with any additive model is that any modification of the

flow field no longer satisfies the governing equations. While this is not as severe an

issue in incompressible LES, as just about any mass-conserved field within reason can
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Figure 4.15: PSD, time series, and phase portrait for initial conditions detected as
noisy quasiperiodic (a) and broadband with fundamental (b)

Figure 4.16: Lyapunov exponent λ vs. β
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serve as an initial condition, it is a significant issue in compressible LES. In DNS,

constructing initial conditions that do not result in rapid divergence to instability is

nontrivial, and in both DNS and LES, generating inlet turbulence for compressible

flows is an active area of research, as can be seen in the review of Tabor and Baba-

Amadi [113]. Thus we would expect any additive method to potentially introduce

instability. Indeed, in the course of this work, various attempts to construct an addi-

tive method for compressible flows without introducing additional PDEs proved to be

numerically unstable. Inevitably, unless the modifications were so small as to induce

no significant variation in the flow statistics, they would cause negative pressures to

build somewhere in the flow domain.

It is tempting to attempt to build an approximation to the HFI terms, restated

here for momentum,

HFIi = ∂j

(
ρujũi − ρujui

)
.

However, as discussed in Sec. 3.3, the fundamental issue is insufficiently many degrees

of freedom. It is important to keep in mind that no information about the HFI

error terms is resolved on the grid; we have explicitly constructed them to contain

exclusively all of the error associated with filtering and under-resolution. Attempts

to directly estimate these terms from the resolved scale, such as the SSE model of

Domaradzki and Saiki, have met with limited success [3].

This led to consideration of formulating the turbulence model as a backscatter-

inducing forcing function instead. Attempts at inducing backscatter via random

forcing functions were introduced in the 1990s by Leith [89] and Chasnov [90] with

reasonable success. Although this has not been a particularly popular method, the

basic idea continues to be used and modified with some success. A more recent

example that has exhibited fairly good agreement with DNS results is the LES–

Langevin model of Laval and Dubrulle [91]. We discuss each of these models below.
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4.4.1 Leith’s stochastic backscatter model

The stochastic backscatter model of Leith, proposed in [114] and [89], is perhaps the

earliest example of forcing used as a turbulence model. Motivated by the observations

of experimentalists that energy transfer is not strictly from large to small scales, he

proposed the addition of an isotropic backscatter forcing vector f to the traditional

Smagorinsky model,

fi = ρ∂iφi (4.27)

φi = Cb|Sdt|3/2
(

∆

dt

)2

g, (4.28)

where g is a Gaussian random number with unit variance and zero mean, Cb is an

adjustable constant, dt is the time step, S is the deviatoric stress tensor, and ∆ is the

filter width. The exponents were arrived at via dimensional scaling arguments. This

model was applied to a plane shear mixing layer in a compressible flow of M = 0.25

with reasonably good predictions of the evolution of the width.

Leith’s implementation has a few intrinsic limitations. There are the usual short-

comings associated with the Smagorinsky model and traditional LES equations, which

we will not repeat, as they have been discussed in detail in Chapter 3. The use of

a two-dimensional computation is questionable as well, although the dynamics of

geophysical turbulence tends to follow 2D patterns.

The main issues are with the model itself. First, turbulence is non-Gaussian, so

the best that can be achieved with such a model is a Gaussian approximation to

turbulence. Second, the forcing is isotropic, while both physical and NSE turbulence

are frequently anisotropic. Third, differentiating the non-smooth φi resulted in fi

inducing the accumulation of numerical errors, possibly due to the aliasing problem

that exists in traditional implementations of LES. To avoid this issue, Leith smoothed

the forcing potential φi using an unspecified filter. However, filtering has the effect

of attenuating high wavenumbers, and it is precisely the effect of unresolved scales

104



on all resolved wavenumbers that a backscatter model must capture.

Leith appears to have abandoned this model. There have been no further publi-

cations of computations performed with it since 1990, and in a 1996 publication on

stochastic modeling of chaotic systems [115], this model is not even mentioned. This

suggests that the model proved to be inadequate upon further investigation.

4.4.2 Chasnov’s η − F model

Chasnov, drawing in part on inspiration from Leith, introduced a random backscatter

model in the context of a spectral method [90]. Like Leith, he introduced a forcing

model as a means of augmenting the traditional Smagorinsky model. He posed his

argument as a conceptual improvement over eddy viscosity modeling a net transfer of

energy from low to high wavenumbers by arguing that energy cascade and backscat-

ter should be modeled as separate effects, where the former can be provided by eddy

viscosity, η, and the latter should be provided by random forcing f defined by a spec-

trum F . Chasnov’s eddy viscosity, in contrast to typical Smagorinsky-type models

used in finite-volume methods, is wavenumber-dependent, increasing somewhat at

the higher wave numbers.

Chasnov defines η and F in terms of integrals of the energy spectrum, E, by deriv-

ing them from Kraichnan’s eddy-damped quasinormal Markovian model (EDQNM)

[9] of the momentum equation. The formulas are given by

ηk =
1

k2

∫ ∞
kmax

dp

∫ p

p−k
dqθkpq

(
p2

q
(xy + z3)E(q) +

q2

p
(xz + y3)E(p)

)
(4.29)

Fk =

∫ ∞
kmax

dp

∫ p

p−k
dqθkpq

k3

pq
(1− 2y2z2 − xyz)E(q)E(p), (4.30)

where θ is a damping rate and x,y, and z are the cosines of the angles of the triangle

with side lengths k, p, and q.

A comprehensive overview of EDQNM theory is beyond the scope of this work and

would likely require a chapter of its own. Briefly, it is an attempt to provide closure
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for ensemble averaging in the spectral domain, and like many other closure methods,

it uses artificial dissipation to do so. That said, good agreement with experimental

results has been achieved using it, both by Chasnov and others, such as Park and

Mahesh [116].

By tuning the Kolmogorov constant, which is embedded in the construction of θ,

the η − F model was able to more closely match the k−5/3 energy spectrum than an

eddy viscosity alone. However, it required constants well in excess of experimental

observations. A further weakness of the η − F approach is its spectral formulation.

For LES of flows of engineering interest, spectral and pseudo-spectral methods are

rare, and many of the most popular codes use FV methods. Thus forcing with a

carefully tuned spectrum may not have any applicability to practical LES.

It is worth noting that to achieve the k−5/3 spectrum, the spectral eddy viscosity,

η, had near-zero values throughout low-k spectrum, only rising to significantly large

values in the last ∼ 50% of the resolved spectrum. This gives it a spectral dissipation

profile similar to that of the HAMR scheme of Liu et al. [112]. Contrast this with

the Smagorinsky eddy viscosity [1], where the spectral damping profile is simply the

spectrum of the strain rate magnitude, and thus can be expected to contain significant

low-k damping.

Much like Leith, Chasnov appears to have ceased development of this turbulence

model. None of his recent publications have anything to do with LES, and he appears

to have ceased research into turbulence entirely in 2001. However, the fact that a

combination of damping and forcing was able to capture the Kolmogorov spectrum

provides positive reinforcement for this general approach.

4.4.3 Laval and Dubrulle’s LQL model

Laval and Dubrulle [91] proposed a model making use of Langevin equations for

inducing backscatter. Their model is constituted in terms of the inviscid NSEs and

106



includes both a sharp cutoff filter and an eddy viscosity. They identify forcing from

the small scales as the key feature missing from purely dissipative models and employ

stochastic forcing in order to simulate the effects of the unresolved scales on the large

scales. The Langevin Quasi-Linear (LQL) formulation of their model is given by

∂tui = uj∂jui + li = −∂ip+ ∂j(µ+ µt)∂jui (4.31)

∂tli = −1

τ
+ ζi + ξ (4.32)

ζi = −uj∂jfi − fj∂jui (4.33)

fi = ∂j(uiuj − uiuj) (4.34)

where τ is a time scale, µt is an eddy viscosity, and ξ is a Gaussian random variable

with zero mean and adjustable variance chosen to be of the order of the velocity

magnitude without injecting additional energy.

Their experiments on isotropic turbulence exhibited good agreement with DNS

results. In particular, the addition of the forcing showed a good match with the time

evolution of spectral characteristics of decaying isotropic turbulence, and a good

match for the energy transfer characteristics of forced isotropic turbulence. As ex-

pected, it was significantly less dissipative than a pure eddy viscosity model and

more closely matched the Kolmogorov energy spectrum than either the Smagorinsky

or spectral eddy viscosity methods used for comparison.

The spectral matches are particularly interesting considering the non-Gaussian

nature of turbulence. However, the probability density function of the velocity incre-

ments and gradients of randomly forced Burgers equation is not Gaussian [117], so

it is likely that the “feeding” of a random forcing through the NSE discrete solution

operators breaks the Gaussian behavior (although this is not something we have so

much as sketched a proof for,it could be an interesting task for an enterprising math-

ematician to demonstrate whether a Gaussian distribution can be recovered by some

transformation of the results from a numerical solution of Gaussian-forced NSEs).
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While the results of Laval and Dubrulle suggest that the use of Langevin equations

for a forcing model could prove a very fruitful route of inquiry, there are two immediate

criticisms of this approach.

1. It employs a sharp spectral cutoff filter, which does not dealias the low wavenum-

bers; an eddy viscosity would probably be unnecessary if the filter provided

proper dealiasing.

2. The term fi cannot be accurately computed on the under-resolved mesh, and

any numerical formulation of it will consist almost entirely of aliasing error.

Thus the forcing term is mostly a perturbation of numerical aliasing error.

Using aliasing to model turbulence is perhaps not a particularly important issue in

homogeneous, isotropic turbulence, since both aliasing and SGS quantities will be

homogeneous and isotropic. In this case, scaled and randomly perturbed aliasing

may be an adequate turbulence model. But in typical engineering flows with high

anisotropy, this approach is likey to be inadequate. In any context, it is not ideal

to use aliasing error as a turbulence model, unless such error can be controlled,

quantified, and properly attenuated.

4.4.4 A new CPMNS-based model

The specific form of the forcing function employed in this work is inspired by the

successful use of linear forcing, first proposed by Lundgren [118], implemented for

incompressible turbulence by Rosales and Meneveau [119], and extended to the com-

pressible case by Petersen and Livescu [120] to create a stationary state in homoge-

neous, isotropic turbulence. This sort of formulation is attractive due to its straight-

forward implementation and analysis. Originally, it was proposed due to being trivial

to implement in physical space rather than the spectral domain. A linear forcing
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function for the compressible NSEs simply takes the form

fi = Cρui, (4.35)

where C is a constant, and it can be shown that

C =
ε− 〈(∂iui)p〉

2K
, (4.36)

where K is mean turbulent kinetic energy, and ε is the mean dissipation rate. This

shows that as C increases, the flow must dissipate K more rapidly in order to maintain

equilibrium, and a higher value of Reλ can be achieved.

Petersen and Livescu [120] found that simple linear forcing is insufficient to

fully control the turbulence characteristics of compressible flows due to the distinct

solenoidal and dilatational modes. Thus the proposed forcing was of the form

fi =
√
ρ [Cd(

√
ρu)d + Cs(

√
ρu)s] , (4.37)

where the s and d subscripts denote solenoidal and dilatational modes, respectively.

It can be shown that at equilibrium,

Cs =
εs

2Ks

(4.38)

and

Cd =
εd

2Kd − 〈(∂iui)p〉
. (4.39)

The aforementioned results are, however, of limited applicability to the current

situation for several reasons. Foremost among these is the fact that we are not

trying to reach an equilibrium, but only to simulate sufficient backscatter to coun-

teract the excess dissipation introduced by filtering. Further, the use of the chaotic

CPMNS equations provides an element of unpredictability, so that strict analysis of

linear forcing is not directly applicable. Splitting the forcing into dilatational and

solenoidal modes appears desirable, but a Helmholtz decomposition of the velocity
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field on a large grid consisting of multiple blocks in generalized coordinates with arbi-

trary boundary conditions is computationally expensive, and developing fast, efficient

solvers is an ongoing area of research that is beyond the scope of this work. How-

ever, it may be possible to develop a sufficiently fast implementation of the discrete

Hodge-Helmholtz decomposition, which has been successfully applied to analyzing

experimental fluid data by Guo et al. [121].

Because we are trying to model backscatter rather than achieve stationary turbu-

lence, we apply the forcing only to qhi and multiply by ai in order to provide chaotic

dispersion. Thus the formulas for our forcing terms are

fi =ρ(CPMNS)uhi,i(ai − Ai) (4.40a)

fe =fiui (4.40b)

where fi is the forcing term for the momentum equation, fe is the forcing term for

the energy equation, CPMNS is the PMNS model constant, and Ai is the average of ai

over the twelve iterations, which again tend to be enough to converge to the system’s

attractor. This averaging is necessary to ensure that the average kinetic energy

induced by the forcing term is zero; i.e., energy should be scattered rather than

artificially injected. The forcing term on the energy equation is a simple formulation

for maintaining consistency in the governing equations.

We have chosen CPMNS to be constant on the assumption that the needed backscat-

ter is directly proportional to |uhi|. If there is very little high-k content in the solution,

this indicates that the flow is locally resolved into the dissipative scale, while signifi-

cant quantity of energy in the high-k modes suggests that the dissipation scale is not

resolved by the mesh. Furthermore, although it is unlikely for the ideal parameter to

be a constant (and we will see in Ch. 6 that it indeed is not), the general paradigm

of filter-forcing turbulence modeling is not well-studied. Thus, for the present work,

we are deliberately keeping the formulation simple. The goal of this present work is

to create the theoretical foundation and basic computational evidence necessary for
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the development of filter-forcing models as a class, leaving the creation of an ideal

forcing function as an open problem (note, for example, that a period of over three

decades transpired between Smagorinsky’s original, single-parameter model [1], and

the development of the much more effective variable-parameter dynamic model [68].

That said, Eq. (4.36) suggests that increasing CPMNS will increase the intensity of the

backscatter and lead to a more turbulent flow.

Formulas for the bifurcation parameters used in the numerical implementation of

Eqs. (4.22a)–(4.22b) are based on the derivations presented in Sec. 4.1. They are

given by

βi =1−
∣∣∣∣ ν

∆2ωi

∣∣∣∣ (4.41a)

α =τ/(Mloc)
2 (4.41b)

ξij =
1

3
τkikj(1− δij) (4.41c)

ζij =
2

3

(
τ(γ − 1)M2

locεiεjkikj
Reloc

)
(4.41d)

εi =
βi
τ

(4.41e)

ηij =kiεj

√
τ(γ − 1)M2

loc

Reloc
(4.41f)

Rei =
∆
√
ν|ωi|
ν

(4.41g)

Reloc =
1

3
(Re1 +Re2 +Re3), (4.41h)

where all flow variables have been appropriately scaled with local quantities as men-

tioned previously. Here, Mloc is local Mach number, ki is the wavenumber associated

with the length of the grid cell in the i th direction, ωi is the i th component of vorticity,

∆ is the filter width (here taken to be the average length of a grid cell), τ = 1/|ω|,

and ν is kinematic viscosity. Note that the formulation of Rei is similar to that of

y+, the dimensionless turbulent wall distance, although with an instantaneous vor-

ticity component in place of mean strain rate. With the exception of elements of β,
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the formulas for the bifurcation parameters are taken directly from the derivations.

At each time step, the bifurcation parameters are constructed and, if the DDS is in

the quasiperiodic or chaotic regime, iterated 12 times, which is generally sufficient

for the system to exhibit its characteristic behavior. If the bifurcation parameters

correspond to a non-broadband regime, the map is not iterated and the SGS forcing

at the node for the given time step is set to zero.

4.5 Summary and conclusions

The CPMNS equations exhibit the kinds of properties that are desirable for a DDS

to be used as the core of a turbulence model. They exhibit bifurcation behavior

similar to that of physical turbulence, and they have the spectral characteristics

of deterministic chaos. They have been incorporated in a single-parameter forcing

function adapted from a linear forcing method used in DNS of forced turbulence.

This forcing function, when combined with a dissipative filter, should be capable of

providing the backscatter necessary for LES of turbulent flows.
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Chapter 5. OVERFLOW

The CPMNS model is implemented in the context of an existing compressible flow

code, OVERFLOW, which is developed by NASA Ames. While the distribution

of OVERFLOW is limited by United States export control regulations, the hybrid

C/FORTRAN source code is distributed free of charge within the USA. OVERFLOW

is a three-dimensional, implicit, finite volume, structured overset grid CFD code

employed widely within the NASA community and academia, and with limited use

in industry. Because it is a mature code, it has good stability characteristics, a wide

variety of boundary condition and turbulence model options, and features advanced

shock-capturing routines and multispecies models. It uses domain decomposition in

parallel mode, employing both MPI and OpenMP. Decomposition and reassembly are

fully automated processes, leaving the entire parallelization process invisible to the

user.

In Sec. 5.1, we outline the governing equations and key numerical features of

OVERFLOW. In Sec. 5.2, the chimera interpolation method for overset grids is de-

fined, and its strengths and shortcomings are explained. In Sec. 5.3, the WENOM

shock capturing method is explained. This high-order shock capturing method is

much preferable to TVD schemes for use in LES. In Sec.5.4, the parallelization scheme

used by the code is explained, details of the computational hardware are given, and

the results of numerical performance tests are presented. Finally, in Sec. 5.5, we

summarize our conclusions on OVERFLOW’s pros and cons for use in the present

investigation.
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5.1 Governing equations and features

OVERFLOW solves the dimensionsless, compressible Navier–Stokes equations in gen-

eralized coordinates (ξ, η, ζ). The dimensionless CNSEs without body force or heat

source terms are given in rectangular coordinates by

∂tρ+∇ · (ρu) = 0, (5.1a)

∂t(ρu) +∇ · (ρu⊗ u)−∇p+
1

Re
∇ · τ (5.1b)

∂t(ρe0) +∇ · (ρe0u) =
1

Re Pr(γ − 1)
∇ · µ∇T = ∇ · pu+

1

Re
∇ · τu. (5.1c)

In these equations, u is the velocity vector, ρ is density, T is temperature, e0 is the

total energy, γ is the specific heat ratio, µ is the dynamic viscosity, Re is the Reynolds

number, Pr is the Prandtl number, τ = µ(∇u +∇uT ) − 2/3(∇ · u)I, and I is the

identity matrix. Flow quantities are scaled using the free stream speed of sound,

dynamic viscosity, gas constant, and density, and by the length of one grid unit.

Viscosity is computed using Sutherland’s law, implemented in the code as

µ = C1

(
T 3/2

C2 + T

)
, (5.2)

where µ and T are scaled by the freestream reference quantities, µ∞ and T∞, and the

two parameters are given by

C1 =
S

T∞
+ 1 (5.3)

C2 =
S

T∞
, (5.4)

where S = 199◦ R.

Transforming the CNSEs to generalized coordinates is done by selecting a dif-

ferentiable coordinate transformation ξ = (ξ(x), η(x), ζ(x)) and applying the chain

rule, i.e.,

∂i = ∂iξ · ∇ξ, (5.5)
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where ∇ξ is the gradient operator with respect to ξ. The transformed CNSEs can

then be written in the general form

∂tq + ∂ξE + ∂ηF + ∂ζG = 0, (5.6)

where q = [ρ, ρu1, ρu2, ρu3, ρe0]. Here, E, F , and G contain the advection, pressure,

and dissipation terms. The specific form of the discretization and splitting is specified

by the user, and the code offers a wide range of options, such as Yee symmetric to-

tal variation diminishing (TVD) [122], third-order Roe upwind [123], and fifth-order

weighted essentially non-oscillatory (WENO) [124] schemes for shock capturing, and

alternating direction implicit (ADI) Beam–Warming [125], and Steger–Warming [126]

for the implicit solver, to list a few examples. Turbulence models are much more lim-

ited, by contrast. The only modern Reynolds averaged Navier–Stokes (RANS) models

in the code are Spalart–Allmaras [57], k−ω [127], and Menter’s shear stress transport

(SST) [128] methods. There are no pure large-eddy simulation (LES) models, but

there are several detached eddy simulation (DES) options available that use either

the SA or SST models for the RANS component.

Either first or second order implicit Euler time advancement is available, and this

can be further enhanced with either Newton or dual-time sub-iteration. While these

sub-iteration is not formally required by the code, it is recommended due to being

less computationally expensive than merely shrinking the time step, and because it

enhances convergence in the overlap regions.

5.2 Chimera overset interpolation

One of the more interesting features of OVERFLOW is its use of overset grids, which

represent a unique approach to grid construction developed by Benek, Buning, and

Steger [129] in order to allow structured grids to be easily built for complex geometry.

Today, overset grids are seldom used outside of academic and government research,
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although there are a few commercial tools available that employ them, such as ESI’s

FASTRAN, Metacomp’s CFD++ and Cradle’s STREAM. Overset grids are com-

posed of multiple overlapping structured grids. Figure 5.1 illustrates the overlapping

nature of the overset grids used in numerical experiments. Hole-cutting is used to

discard points inside 3-D objects, while high-order interpolation is used to transition

between grids in overlap regions. The advantages to this technique are that it makes

grid generation much simpler, as refining or changing one grid does not require chang-

ing every other grid connected to it, adjacent grids do not need to conform, and it

allows the use of structured grid solvers on hexahedral meshes, which do not have

the truncation issues associated with tetrahedral meshes.

Because of the simplicity of construction, a structured mesh can be designed for

OVERFLOW in a fraction of the time required to make a mesh for use in Fluent or

similar software. OVERFLOW additionally features an automatic mesh generator

for off-body grids used in simulating external flows around aircraft and the like,

further simplifying mesh generation. Furthermore, because the grids are stored in

PLOT3D format, they can be constructed using any of a variety of commercial tools,

and results can be viewed in common visualization applications such as Tecplot and

FieldView. Further, unlike contiguous-mesh codes, overset meshes allow for easy

meshing and fast computation of moving objects, such as ailerons and flapping wings,

since the capability of mesh overlap simplifies the movement of different mesh blocks.

Of course, structured meshes cause fewer cache misses than unstructured meshes,

leading to overall faster computation times.

In the “chimera” scheme [130], each sub-mesh is treated as a separate entity

and thus requires a closed set of boundary conditions. Obviously, boundaries that

coincide with the boundary of the computational domain simply use the boundary

condition assigned by the user. But boundaries that lie in overlap regions within the

interior of the flow must inherit information via interpolation from nearby points from
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Figure 5.1: Close-up of overset grid features for a 24 degree shock ramp featuring a
trip wire

overlapped grids. This interpolation is performed by constructing “ghost points” as

depicted in Fig. 5.2, which shows an overset mesh for a 1-D problem. Suppose that

the boundary of grid A lies inside grid B. For the interpolated velocity, uI+1, at a

ghost point, xI+1, where I is the maximum index of grid A, the value is given by

second-order linear interpolation,

uI+1 = αum + (1− α)um+1 (5.7)

α =
xm+1 − xI+1

xm+1 − xm
, (5.8)

where the m index denotes the cell of B containing the boundary point of A. Higher

orders of accuracy can be obtained by using more points and polynomial rather than

linear interpolation. However, this scheme results in non-conservative flux formula-

tions. Wang et al. [131] proved that for a steady-state solution with second-order

finite volume scheme, the conservation error induced by the chimera formulation is

first-order, suggesting that the conservation error will always be at least an order of

magnitude larger than the discretization error. This can cause significant errors when
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Figure 5.2: Overlapping 1-D grids with a ghost point (red) created by chimera inter-
polation

steep gradients or shock waves transverse overlap regions. As we will see in Sec. 6.3

this can cause problems in boundary layers. Furthermore, because large-eddy simu-

lation in general results in transient, highly irregular fluid structures, the traditional

chimera formulation will likely induce additional errors. Therefore, it is helpful to

keep overlap regions away from critical areas in the flow, though this may not always

be possible.

There is currently an active debate over the construction of conservative schemes

for OVERFLOW. The problem is that while conservative schemes obviously have

some desirable properties, they also tend to be unstable and induce errors of their

own. Tang and Zhou [132] showed that the undesirable properties of non-conservative

schemes disappear as the mesh resolution increases, but this is to be expected of any

method with error based on the mesh resolution. More recently, Tramel et al. [133]

have proposed an interpolation scheme based on volumes rather than points, although

this scheme is not mature and has not been implemented in OVERFLOW. Currently,

there is a tradeoff between stability and obeying conservation laws, and OVERFLOW

takes the former approach. As a result, it is important to limit the influence of overset

interpolation errors on any computational mesh, and the cases presented in this work

are degraded by overset phenomena to varying degrees.

Due to the aforementioned difficulties, the most widely used commercial solvers do

not support overset grids. Because of this, it is often impossible to to convert results
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obtained using overset grids to a format usable by other solvers. This significantly

limits the usefulness of overset CFD codes.

5.3 WENOM shock capturing

As mentioned in Sec. 5.1, there are a variety of shock-capturing options available

in OVERFLOW that eliminate Gibbs phenomena. In the supersonic experiments

performed in this work, we have used the mapped weighted essentially non-oscillatory

scheme (WENOM) of Hendrick et al. [134]. WENOM is a correction to the original

WENO5 scheme of Jiang and Shu [124] that maintains 5th -order accuracy near critical

points, defined as points where the 1st derivatives of the solution vanishes, but the

3rd derivatives do not. The original scheme can drop to as low as 3rd -order accurate

at critical points, hence the need for the WENOM correction to maintain global

5th -order accuracy.

To construct a WENO-type scheme, numerical fluxes are first computed across

several stencils each containing the point at which the derivative is desired. The

derivative is then computed from a weighted average of the fluxes, where each flux

is weighted according to a smoothness function, which is defined by the particular

scheme. Depending on the stencil size, this allows high orders of accuracy and low

dissipation comparable to what can be obtained with centered differencing, yet with

the stabilizing, shock-capturing behavior typically associated with much lower-order

TVD schemes.

Following Hendrick et al. [134], we explain the WENOM scheme in terms of a

scalar conservation law,

∂tu+ ∂xf(x) = 0, (5.9)

which is then spatially discretized on a uniform mesh of N + 1 points, {xj = j/N},

where the points lie at the center of finite volumes. This is then discretized in space,

119



yielding

∂tu(xj) =
hj+1/2 − hj−1/2

∆x
, (5.10)

where ∆x = 1/j in this case, and h ≈ f is the conservative numerical flux function.

The formula for h is given by

hj+1/2 =
2∑

k=0

wkh
k
j+1/2, (5.11)

where hkj+1/2 is the 3rd -order stencil approximation of hj+1/2 on (xj+k−2, xj+k−1, xj+k),

and the wks are weights. The WENOM scheme has a fairly complex formulation of

weights. First, preliminary weights from the original WENO5 [124] formulation are

computed,

w∗k =
αk∑2
i=0 αi

(5.12)

αk =
ak

ε+ βk
(5.13)

a = [1/10, 6/10, 3/10], (5.14)

where βk is a smoothness indicator based on local differences (details of the differenc-

ing and the formulas for βk can be found in Hendrick et al. [134]), and ε is a small,

user-selected value that prevents division by zero. The accuracy of this original for-

mulation exhibits significant dependence on ε, which led to the modification of the

weights with a continuous mapping,

gk =
w∗k(ak + a2

k − 3akw
∗
k + (w∗k)

2)

a2
k + w∗k(1− 2ak)

. (5.15)

The final weights are then computed by

wk =
gk∑2
i=0 gk

, (5.16)

which provides a system that is 5th order accurate everywhere. Not only is WENOM

more formally more accurate than WENO5 schemes, but it shows excellent ability

to preserve oscillating waves passing through a shock wave, a behavior that TVD
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schemes tend to eliminate entirely, thus making the WENOM scheme much better

suited for LES.

The main advantages of this scheme are its high accuracy, its non-total variation

diminishing (TVD) character, and low dissipation. In the context of LES, excessive

dissipation can significantly inhibit or even totally eliminate resolved-scale turbulent

behavior. TVD is a non-physical condition when imposed on transient and turbulent

flows. To see why, imagine a point downstream of a vortex-shedding obstacle. As the

vortices pass through the point, the variation will increase, and as the smooth regions

of the flow pass through it, the variation will decrease. In the numerical experiments

performed in the course of preparing this work, it was found that TVD schemes tend

to completely suppress the development of turbulence, and dissipation near the shock

needed to be minimized in order to preserve the shock-turbulent interaction.

5.4 Parallelization and performance tests

Parallelization of OVERFLOW is done on two levels. First is domain decomposition,

which is a fully automated process that splits the grid into hexahedral regions with

an approximately equal number of points on each generalized coordinate axis, one

per each core specified, with parallelization handled via an MPI abstraction layer.

While there is no hard-coded limit on the number of processors, there appear to

be computational problems associated with domains that are too small (although

this may be due to bugs introduced by our heavy modification of OVERFLOW in

this work). It appears that approximately 150k points per subdomain are needed to

prevent floating-point overflows in the iterative solution procedure. The second level

is the use of OpenMP on any loops through the arrays associated with each of the

domains, which requires no sophisticated programming. The hybrid MPI/OpenMP

approach allows the strengths of each to be leveraged within the code, resulting in a

high level of parallel efficiency on a massively parallel machine featuring multi-core
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processors.

5.4.1 Model problem

To test the parallel efficiency of OVERFLOW on the hardware used for the present

investigation, a model problem was constructed for a 24 degree shock ramp experi-

ment with uniform air inlet conditions of Mach 2.9 and T∞ = 109.26K. The shock

ramp was 454 mm from the inlet and had a height of 68 mm. A trip wire was placed

192 mm from the inlet in order to induce turbulence. The maximum height of the

geometry was 400 mm, the width was 500 mm, and the total length was 1396 mm.

The floor of the simulated test section was set to the adiabatic no-slip condition, and

the other walls were inviscid with pressure extrapolation. This problem was chosen

to model the test section of a wind tunnel in a physical experiment performed by

Ringuette et al. [135], for which there exists detailed physical data. Additionally,

detailed DNS data were obtained by Wu et al. [136]. This model problem and the

grids in this section were used for early iterations of the final mesh ultimately used for

the simulations found in Sec. 6.3, although they ultimately proved to need significant

modification.

Three different meshes were used for simulation, here referred to as the coarse,

medium, and fine meshes. The coarse mesh had ∼ 6.7 million nodes, the medium

mesh had ∼ 11.8 million nodes. and the fine mesh had ∼ 22.4 million nodes. Each

mesh had the same basic structure as seen in Figure 5.1. The ARC3D diagonalized

Beam–Warming scheme [137] was used for the implicit solves, and WENOM was used

for shock-capturing. Discretization was second order in time, with a dimensionless

time step of 0.01. Fifth-order spatial discretization combined with 2nd-order simple

time discretization achieved high-quality LES resolution in the boundary layer behind

the trip wire. No explicit turbulence model was used, nor had any explicit filtering

been implemented for these tests, so built-in dissipation parameters were adjusted in
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Figure 5.3: Density contours for the initial condition

order to stabilize the computations. Flow was initialized using the k − ω turbulence

model to achieve a converged solution, and implicit LES (ILES) was run for 200,000

or more time steps (depending on the grid) in order to obtain a fully-developed initial

condition.

5.4.2 Results

In each case, 500 time steps were computed starting from the statistically stationary,

fully-developed initial condition depicted in Figure 5.3, and the average computation

time per time step was taken from the output file generated by OVERFLOW. Because

the flow was fully developed for the initial condition, the final condition after 500

time steps was nearly identical except for instanteous details of fluctuations in the

boundary layer. Observe that the initial condition exhibits a strong oblique shock at

the ramp, which reflects off the ceiling of the wind tunnel and continues to the outlet.

There is a system of weaker shocks at the trip wire and near the boundary layer;

this is because the boundary layer is unstable and features time-dependent, irregular

structures.

Parallel computations for this result and all other computations in this work were

performed using from 1 to 200 cores on the University of Kentucky’s DLX cluster,

which has 376 nodes with two 2.66 GHz Xeon X5650 processors at each node, for a

123



Table 5.1: Time per step in seconds for the coarse, medium, and fine meshes

N. Cores Coarse Med Fine
1 8.53 14.3 26.7
6 1.50 2.74 4.99
12 0.826 1.58 2.97
24 0.441 0.843 1.48
36 0.312 0.641 1.02
48 0.266 0.476 0.776
60 0.673
72 0.565
144 0.357

Figure 5.4: Processing speed versus number of cores

total of twelve cores and 36 GB of RAM per node. The fine mesh has been run on

as many as 144 cores in order to demonstrate the high scalability of the code. The

average time per flow solution step is recorded in Table 5.1. OVERFLOW provides

a detailed breakdown of the entire computation time, so we have here recorded only

the time spent in the solution process, as time spent reading from and writing to

files can be minimized by reducing the number of times save states are written. The

machine used for computations was experiencing problems with its file system at the

time of experimentation, resulting in an undue impact on overall time (as much as
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80% of total run time could be consumed by file I/O). Figure 5.4 shows the data for

computation speed with a power law curve fit. For the coarse grid, f(x) = 0.12x0.91,

for the medium grid, f(x) = 0.07x0.87, and for the fine grid, f(x) = 0.04x0.88, where

x is the number of cores. As can be seen in Figure 5.4, computation time follows

an approximate power law. Ideal behavior is a doubling of speed with a doubling of

processors, which corresponds to an exponent of 1 in the power law curve fit. The

figure shows that this exponent does approach 1 as the grid size decreases, although it

should be noted that even the coarse grid at 6.7 million nodes is not particularly small

by current engineering CFD standards. Further, for all three grids, the exponent is

still close to 0.9—in fact, it is approximately the same for both medium and fine

grids, despite the latter grid having about twice as many points as the former.

5.5 Summary and conclusions

OVERFLOW is a highly efficient parallel CFD code, exhibiting an approximate power

law behavior for computation speed with an exponent close to 0.9 . This behavior

persists for grids as large as 22 million nodes and for as many as 144 cores. The

hybrid MPI/OpenMP structure of the code combined with the use of structured

overset meshes provides excellent, consistent scalability. Computationally optimal

decomposition of a structured grid is relatively simple, since the grid is simply a

rectangular prism in computational space; this makes structured grids a good choice

for parallel CFD. Because the use of overset grids makes the construction of struc-

tured meshes much simpler, OVERFLOW is an excellent code for computationally

intensive compressible CFD calculations. However, the limitations of overset meshes,

especially when high-gradient, turbulent structures and shock waves pass through

overlap regions, should not be disregarded when examining computational results.

In the context of LES, we recommend using second-order time advancement with

Newton subiterations. In the context of LES, high-order shock capturing is necessary,
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and so we recommend the WENOM scheme due to the fact that it is 5th -order

accurate everywhere in the flow. And because OVERFLOW is so highly efficient, as

many cores as are available should be used while keeping the number of grid points

per core to ∼ 150k.
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Chapter 6. Computations

In order to validate the potential of the PMNS model for use in LES, three test

cases were simulated and compared to DNS or experimental results: homogeneous,

isotropic, decaying turbulence on a periodic cube with at rms Mach 0.3, a 24 degree

shock ramp at Mach 2.9, and an open cavity with L/H = 6 at Mach 0.8. The form

of the model used was based on Lundgren’s linear forcing ??, using the output of the

CPMNS equations to scatter the energy, with a single adjustable constant used to

change the intensity of the SGS velocity field.

In this chapter, we will see that the model’s influence on macroscopic flow quan-

tities are marginal. This is in fact desirable, as purely dissipative turbulence models

tend to be quite effective at predicting wall pressures to within engineering tolerances.

See, for example, the simulations of Kim et al. [138] of a NACA-0018 airfoil using a

modification of the dynamic model [68], which show excellent agreement with exper-

imental results. Therefore a backscatter model should not have order-of-magnitude

effects on these kinds of quantities. With that in mind, the chief goal of the CPMNS

model is providing small-scale structures in the flow field that a purely dissipative

model would typically eliminate. Such structures may not have a large effect on quan-

tities such as mean wall pressure, but they have a significant effect on the dispersion

of Lagrangian particles in multiphase flows and the mixing rate of chemical species

in combusting flows. We have constructed the filter-forcing model with this problem

in mind, although we have not at this time begun to investigate the model’s effects

on Lagrangian particles or chemical kinetics. The forcing scheme in this chapter is

implemented as follows:

1. Compute a single time step as usual, including all Newton iterations.
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2. Apply an explicit, low-pass filter.

3. Extract a high-pass velocity field, uhi.

4. Perform local checks to determine whether the flow is locally turbulent.

5. If the check is positive, iterate a chaotic discrete map and construct a pointwise

force, f .

6. Incorporate this force into the right-hand side vector to be used in the next

time step.

7. Return to step 1.

In Sec. 6.1, the filtering scheme used throughout this work is explained, and the

shock-detection routine used to avoid introducing the near-shock oscillations associ-

ated with high-order filtering schemes is discussed. In Sec. 6.2, we compare DNS and

LES results for homogeneous, isotropic, decaying turbulence on a periodic cube with

an rms Mach number of 0.3. These results show the filter-forcing model’s ability to

improve CFD results via induced backscatter. In Sec. 6.3, we compare LES of a Mach

2.9 compression ramp to the DNS of Wu [139] and the measurements of Ringuette et

al. [135]. In Sec. 6.4, we compare the results of different LES simulations of a Mach

0.8 flow over an open cavity to the classic measurements of Plentovich et al. [140].

6.1 HAMR filtering

As argued in Section 3.2.3, explicit filtering is superior to relying on dissipation

introduced by the numerical method and the turbulence model to act as a kind

of implicit filter due to the former’s mathematically straightforward connection to

filtering the governing equations. OVERFLOW features two built-in filters, a 3rd -

order filter employing 4th differencing and a 5th -order filter employing 6th differencing.
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If n is the number of 2nd differences applied, the OVERFLOW filtering scheme takes

the form

q = q +

[(
−1

4

)n (
(d2
j)
n + (d2

k)
n + (d2

l )
n
)]
q, (6.1)

where d2
j is the 2nd difference operator in the jth direction. While this class of filters

has 2n − 1 vanishing moments and thus can be considered as a class of high-order

commutative filters, they are excessively dissipative. As can be seen from the transfer

functions for the OVERFLOW filters plotted in Fig. 6.1, the high attenuation region

begins at k ≈ 0.25 for the 3rd -order filter and k ≈ 0.35 for the 5th -order filter.

Numerical experiments revealed that both filters are simply far too dissipative to be

used in the context of LES. In fact, even the 5th -order filter completely damped all

the turbulent fluctuations in the case of the Mach 2.9 compression ramp. Thus it is

clear that the particular choice of filter is critical for successful LES computations.

Figure 6.1: Transfer functions for the (d2)n filters featured in OVERFLOW versus
scaled wavenumber k
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Padé filters take the form

G2φ = G1φ, (6.2)

where G1 and G2 are filtering operations using weighted averaging. The transfer

function for the filter operation G = G−1
1 G2 is thus given by

TG(k) =
TG1(k)

TG2(k)
. (6.3)

By constructing the left-hand and right-hand filter matrices such that TG1 ≈ TG2 for

k < kcutoff , then

TG(k) ≈ 1, k < kcutoff . (6.4)

This allows the construction of filters that closely approximate spectral cutoff filters

without the expense of transforming the solution to the spectral domain. However,

because the the numerical method solves Eq. (6.2) rather than directly constructing

G, one must avoid having too many coefficients in the banded G2 matrix in order to

not increase solution time too much.

6.1.1 Low-pass filtering

Explicit filtering was performed on the conserved variables at the end of each time step

using an optimized high-accuracy and maximum-resolution (HAMR) scheme, which

is an asymptotically stable Padé filter featuring low dispersion, introduced by Liu et

al. [112]. The unique ability of Padé filtering to avoid attenuating low-wavenumber

modes resulted in superior solution accuracy compared to a classical 10th -order filter

as demonstrated in numerical experiments performed by the same authors in a second

paper [141]. To filter a variable, φ, and obtain φ, the HAMR formula is given by

φi + α(φi−2 + φi+2) + β(φi−1 + φi+1) =
3∑
`=0

p`
2

(φi+` + φi−`) (6.5)
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for interior points, with the values for the filter coefficients taken from the aforemen-

tioned second paper [141]. These are given as

α = 0.5673952755

β = 0.1209216774

p0 = 0.9665459988

p1 = 1.1849715528

p2 = 0.2217709541

p3 = 0.0033454001.

Near the boundary, an asymmetric scheme of the form,

a · [φ1, . . . ,φ5] = b · [φ1, . . . ,φ6], (6.6)

is used. The coefficients for the second and third points near the boundary are given

respectively as

a2 =(0.3217547156, 1.0, 1.2703966706,

0.4689158656, 0.0)

b2 =(0.317036053, 1.0192555517, 1.2318855773,

0.5074269689,−0.0192555517, 0.003851103),

and

a3 =(0.1346835856, 0.5779871517, 1.0, 0.577987157,

0.1346835856, 0.1346835856)

b3 =(0.13114000585, 0.5957047873, 0.9645646288,

0.6134224229, 0.1169659500, 0.0035435271) .

Observe that this scheme has only five filter coefficients in the left-hand G2 matrix,

requiring the solution of a pentadiagonal system at each time step. The interior filter
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has five vanishing moments, so the commutation error is O(∆6). The boundary filters

posess only four vanishing moments, so the commutation error for them is O(∆5).

Since OVERFLOW’s most highly resolved flux discretizations are 6th order accurate

in the interior of the flow domain, this makes the HAMR scheme an ideal choice

for the computations in this work. This set of filters posess the transfer functions

seen in Figs 6.2–6.4. As can be seen, all three filter kernels possess a steep, smooth

spectral cutoff and very little attenuation of the low wavenumbers. This makes them

an ideal choice for LES, since as the mesh size approaches zero, we expect the high-

wavenumber content to be negligible and the error introduced by the filter to be on

the order of the discretization error. Since the vector of conserved variables, q, is

filtered at every time step, we will drop the overbar notation for filtered variables in

this chapter.

Figure 6.2: Transfer function for low-pass (solid) and high-pass (dashed) filters versus
scaled wavenumber ω
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Figure 6.3: Real (solid) and imaginary (dashed) components of the transfer function
for the 2nd point away from the boundary versus scaled wavenumber ω

6.1.2 High-pass filtering

To calculate the high-pass velocity components for the backscatter model, we obtained

filter coefficients by doing a least-squares fit to a sharp spectral cutoff at ω = 0.3 as

seen in Fig. 6.4. While this method proved to sufficiently isolate high-wavenumber

content for the purpose of structural turbulence modeling, the filter coefficients do

not exactly satisfy the relations necessary to be used as a low-pass filter for mollifying

a PDE solution as part of a numerical procedure, so we caution any reader away from

using these coefficients in that manner. The filter coefficients for the interior points
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are given by

α = −0.6275872367

β = 0.2691885228

p0 = 0.06314459948

p1 = 0.1096411682

p2 = 0.0701432898

p3 = 0.02940528862,

and the same least-squares procedure was used to obtain coefficients for the boundary

points, which are given by

a2 =(0.3096256995, 1.0, 1.1380646293,

0.4106696169, 0.0)

b2 =(0.3084688023, 1.0057844862, 1.1264956568,

0.4222385894,−0.0057844862, 0.0011568972),

and

a3 =(0.1477868412, 1.0, 1.1264956568,

0.6357553622, 0.1477868412)

b3 =(0.1470348738, 0.6395151994, 0.9924803256,

0.6532750366, 0.1440270040, 0.0007519674).

By using these coefficients in a high-pass filter, we obtain small-scale conserved vari-

able field qhi. The high-pass primitive velocities are found by

uhi,i =
(ρui)hi
ρ

. (6.7)
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Figure 6.4: Real (solid) and imaginary (dashed) components of the transfer function
for the 3rd point away from the boundary versus scaled wavenumber ω

6.1.3 Shock detection

Care must be taken regarding shocks. While a HAMR scheme attenuates high-k

modes, it does not dissipate in a Gaussian-like manner. The smooth, sharp shocks

created by shock capturing schemes depend on high-k modes in order to locally

eliminate the Gibbs phenomenon. By attenuating primarily these modes, the HAMR

scheme actually counteracts the shock-capturing scheme and reintroduces near-shock

oscillations. Additional filtering at each time step compounds the oscillations until

they cause critical instability or nonphysical quantities, such as negative densities

or pressures. In addition, construction of uhi will also create undesired velocities

in the vicinity of the shock, which will cause spurious activation of the turbulence

model. We illustrate this phenomenon using a simple 256-point scalar jump function

smoothed with a single pass of the Shuman filter [142],

ui =
u∗i−1 + 2u∗i + u∗i+1

4
, (6.8)
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which creates a signal analogous to the kinds of oscillation-free smoothed shock waves

found in CFD simulations using classical shock-capturing routines. This function is

depicted in Fig. 6.5. Application of the filter, however, introduces oscillations around

the shock, as seen in Fig. 6.6, which depicts the difference between the filtered and

unfiltered signals, analogous to uhi in the LES model. Clearly, this necessitates special

treatment at the shock.

The approach to shock treatment taken in this work is to simply avoid filtering

near the shock. If we have a discrete signal, {ui|1 < i < n}, we will represent the

n×n HAMR filtering matrix by Hn. If we have near-discontinuities at {ui1, . . . , uim}

we wish to apply the filtering operation only to the “smooth” sections of u and ignore

the discontinuous regions, i.e.,

u =
([
Hi1−1(u1, . . . , ui1−1)T

]T
, ui1, . . . , uim,

[
Hn−im(uim+1, . . . , un)T

]T)
. (6.9)

Although this introduces O(∆5) commutation error associated with the boundary fil-

ter at places in the interior of the flow, this is preferable to the solution-stopping insta-

bilities caused by allowing Gibbs phenomena to accumulate. Further, the WENOM

scheme used for the cavity and the ramp is 5th -order, so this will have no effect on

global solution accuracy.

Shock detection is a nontrivial problem and currently an area of active research,

although the main focus of literature on this topic is visualization of shock waves

rather than computing CFD solutions. Because of this, many of the methods are too

slow to be incorporated into a CFD solver. The HAMR scheme requires the solution

of pentadiagonal systems in each spatial direction, so additional computations should

be kept to a minimum. Kanamori and Suzuki [143] identify two main classes of shock

detection in current use: those based on the assumption that local gradients are

perpendicular to the shock, and those based on solving the local Riemann problem,

of which their method is an example. However, this latter class of methods tends to

be too computationally expensive to be included as a method of shock detection in
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Figure 6.5: Discrete signal u featuring a smoothed, discontinuous jump.

Figure 6.6: Difference between u and u, where u is filtered with the HAMR scheme
without any shock detection
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CFD.

The first method investigated was the pressure gradient method of Lovely and

Haimes [144]. They introduce a shock detection function,

Fshock =
u · ∇p
a|∇p|

− a∇ · (ρu)

|∇p|
, (6.10)

where a is the speed of sound, and Fshock ≥ 1 in the presence of a shock. Eliminating

all points from the filtering routine where Fshock ≥ 0.9 proved to be adequate for pre-

venting Gibbs phenomena from arising while still providing filtering in the turbulent

regions of the flow. But because OVERFLOW does not store the pressure or its gra-

dient at each time step, the additional memory and computational costs associated

with this method were something we wished to avoid. However, it was used in early

numerical experiments and proved to be effective in a range of situations without

needing to adjust any parameters, so we recommend its use in any compressible CFD

code employing high-order filtering.

In the present work, we employed a density smoothness indicator similar to the

smoothness functions employed in WENO shock capturing. The formula is given by

Fsmooth =
13
12

(ρi−1 − 2ρi + ρi+1)2 + 3
2
ρi(ρi+1 − ρi−1)

ρ2
i

. (6.11)

This is computationally inexpensive and does not require the creation of whole new

variable arrays, since it can be computed only for the vector currently being filtered.

But in this formula, there is no reason to expect a universal value of Fsmooth. For the

shock ramp studied in the present work, cutting out points for Fsmooth > 0.2 proved

to be adequate and returned results close to using the pressure-gradient scheme [144].

Figs 6.7 and 6.8 show |uhi| for a Mach 2.9 compression ramp with and without shock

detection, respectively.
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Figure 6.7: Contours of |uhi| for a Mach 2.9 compression ramp with no shock de-
tection. Note the pronounced oscillations on both sides of the shock wave and its
reflection.

Figure 6.8: Contours of |uhi| for a Mach 2.9 compression ramp with simple shock
detection using Fsmooth = 0.2. Note the elimination of oscillations near the shock
wave, although turbulent regions are still effectively captured.

139



6.2 Homogeneous, isotropic, decaying turbulence

Direct numerical simulation of homogeneous, isotropic turbulence on a cube is a

popular method of studying features of turbulence and validating theoretical hy-

potheses that cannot be easily simulated by experiment. Because the goal of LES

is to accurately simulate the important large-scale dynamics of turbulence without

fully resolving the mesh, validating the turbulence model against DNS results is an

ideal place to begin. For example, Schmidt et al. [5] validated their ODT simulations

against the DNS results of Kang et al. [145]. This work is based on the DNS results

of Samtaney et al. [146]. However, unlike incompressible turbulence, the behavior of

compressible turbulence is influenced by shocklets, pressure waves, and dilatational

effects, so that compressible turbulence does not currently have a well-established,

universal law analogous to Kolmogorov’s k−5/3 law for incompressible turbulence.

The attempts of Shivamoggi to derive a universal scaling law for fully developed

compressible, isotropic turbulence resulted in a scaling law that depends on γ, but is

not thermodynamically consistent [147, 148]. More recent theoretical work by Aluie

[149] has argued that energy transfers in compressible turbulence occur via a local

cascade process; therefore an inertial subrange should exist with a power law behavior

decaying faster than k−1. The numerical experiments of Kritsuk et al. [150] exhibit

a power spectral scaling behavior of k−1.9; however, introducing a density-weighted

velocity, ṽ = ρ1/3v, returns a scaling close to k−5/3 [150]. Schmidt et al. [151] have

found via numerical experiment that Kritsuk’s density-weighted velocity correlations

of forced, compressible turbulence do not follow a universal scaling law and vary

with large-scale forcing (which implies that the inertial subrange does not follow a

universal law either). Because of these considerations, we make no attempt here to

relate our results to any universal laws. However, we do in part base them on the

specific DNS results of Samtaney et al. [146], as they provide detailed information

on the setup of the problem and comprehensive information on the time evolution of
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the system. We approximate those conditions for the numerical experiments in this

section.

6.2.1 Initial and boundary conditions

Simulations were carried out for air (γ = 1.4, Pr = 0.72) in the cube [0, 2π]3 with

periodic boundary conditions. A divergence-free, randomized initial condition was

generated following the formulation of Samtaney et al. [146]. In our specific imple-

mentation, the initial condition had a spectrum given by

E(k) = Ak4 exp

(
−2

(
k

k0

)2
)
, (6.12)

with peak wavenumber k0 = 8, and initial stagnation energy and density were con-

stant. The desired initial condition can then be generated by randomly generating

Fourier coefficients under the constraints

ŵjkl =
−jûjkl − kv̂jkl

l
, (6.13)

û2
jkl + v̂2

jkl + ŵ2
jkl = E(k), (6.14)

|k|2 ≤ 32, (6.15)

The Taylor microscale λ and Reynolds number Reλ are defined here as

λ2 =
u′2

〈(∂1u1)2〉
, Reλ =

u′λ〈ρ〉
〈µ〉

, (6.16)

where 〈 · 〉 denotes the volume average over the entire domain and

u′ =
〈uiui

3

〉(1/2)

(6.17)

We further define the turbulent Mach number by

M ′ =
〈uiui
c2

〉(1/2)

, (6.18)

where c is local speed of sound. Values of A, e0, and ρ were chosen such that M ′ = 0.3

and Reλ = 72. Simulations were run on 1293, 653, and 333 grids using values of
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CPMNS = 0, 10, 50, and 100. The initial conditions for the coarse grids were obtained

by downsampling the initial condition for the fine grid and applying the Padé filter.

Detailed results from the 333 grid are not included due to significant divergence from

the DNS results. With the peak wavenumber equal to the Nyquist wavenumber of 8,

the inertial subrange is not sufficiently resolved, so dissipation dominated the results,

and no turbulent behavior was observed. The turbulence model resulted in only very

small changes of O(10−2) between the statistical quantities computed for the different

runs. This confirmed that the inertial subrange must be at least partially resolved in

order for the backscatter model to be viable.

6.2.2 Numerical method

Discretization in space was done using 6th -order centered differencing, while time dis-

cretization used a 2nd -order linearized implicit method with Newton subiterations. A

sufficiently small time step and six Newton iterations were sufficient for RHS residuals

to drop eight orders of magnitude at each time step. No shock capturing was neces-

sary, as no shock waves were present in the solution field. For this set of experiments,

we avoided a high Mach number because shock-turbulent interactions pose additional

difficulties for LES due to the fact that length scales necessary to resolve shock cor-

rugation are typically on the order of the Taylor or Kolmogorov scales. Because eddy

shocklets can cause a significant contribution to enhancing the overall energy dissipa-

tion rate, and since we are not currently implementing a shocklet model, a low Mach

number is ideal here. The left-hand side matrix of the implicit solution procedure

was constructed using the ARC3D Beam-Warming [137] block tridiagonal scheme,

and the HAMR scheme was applied at the end of the Newton iterations at each time

step.
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Table 6.1: Parameters for the DNS and LES runs on the periodic cube. Note that
for the runs with filtering, but no explicit CPMNS model, CPMNS is assigned a value
of 0

Resolution CPMNS
1293 0
653 0
653 1
653 10
653 50
653 100
333 0
333 1
333 10
333 50
333 100

6.2.3 Results and analysis

Simulations were run under the conditions given in Table 6.1. To analyze the results,

we considered the time-evolution of four statistical quantities: the rms divergence,

θ′, the normalized mean kinetic energy, K, the velocity derivative skewness, S3, and

rms streamline curvature, κ′. We also computed PSDs for total, dilatational, and

solenoidal kinetic energy. Due to memory limitations on the machine used for post-

processing, averages were computed on the slice [0, 2π]× [0, 2π]× [0,∆]. Derivatives

were not directly compared between DNS and LES results. Rather, the DNS results

were filtered and downsampled to a 653 grid using a simple Shuman [142] filter with

the 1-D form

ûi =
ui−1 + 2ui + ui+1

4
, (6.19)

which is then applied in each spatial direction.

While the first three statistics are common in analyzing turbulence, κ′ is not. The

motivation for the use of κ′ is the visualization of the time-evolution of small-scale

turbulent structures. A high level of turbulence should be associated with streamlines

of high curvature due to irregular topology in the flow field. Of course, high-order
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statistical moments are common, such as flatness and skewness, but as seen below,

the rms curvature reveals significantly more fine-scale behavior.

The decay of the mean kinetic energy, K = 1
2
〈ρuiui〉, is normalized by K(0) and

plotted as a function of t in Fig. 6.9, where t is the solution time scaled by u′0/L,

with u′0 being the initial rms velocity and L = 1, which is simply OVERFLOW’s

internal length scaling. As is clear from the plot, the HAMR scheme alone introduces

excessive dissipation. The backscatter model (CPMNS > 0) improves the energy decay

rate, but does not appear to be capable of exactly matching the DNS in time, with

the largest discrepancies appearing early in the time evolution of the system. Recall

that the turbulence of the initial condition consists exclusively of the solenoidal mode,

which is divergence-free by definition. Thus early evolution of the flow field includes

net transfers of energy not only from larger to smaller scales, but from solenoidal to

dilatational modes. The mechanisms of this transfer are not adequately resolved on

the coarse grid, though it is apparent the backscatter model improves them. CPMNS =

50 appears to give the best match overall of those values employed. As seen from

the DNS results, K in the slice should decay monotonically over time, but this is

eventually broken by excessive forcing in the backscatter model. A model parameter

of CPMNS = 100 introduces excessive, nonphysical kinetic energy fluctuation, with

both rapid increases and decreases in K over time. Thus, in its current formulation,

the model limits the range of parameters that can be considered. However, it may

be possible that an orthogonal forcing, which would eliminate Eq. (4.40b) from the

model, would allow a greater range of parameters, since the energy input from the

forcing would be zero in a pointwise rather than a statistical sense.

Figure 6.10 shows the decay of θ′ versus t. Here, it is clear that CPMNS = 100

results in complete disagreement between LES and DNS results, while the best agree-

ment is again achieved by CPMNS = 50. While all LES solutions are all too dissipative

compared to DNS, it is clear that the backscatter model counteracts this effect.
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Figure 6.9: Decay of mean kinetic energy over time

Figure 6.10: Evolution of rms divergence versus time
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The derivative skewness S3 is defined by

S3 =
〈(∂xu1)3〉
〈(∂xu1)2〉3/2

(6.20)

and plotted in Fig. 6.11. Interestingly, the model has significant effects in the early

evolution of the system, due largely to the fact that the flow has far larger gradients

and overall irregularity. This confirms the model’s sensitivity to the irregularity of

the resolved flow. While no model parameter creates a good match for the derivative

skewness in the slice, CPMNS = 50 provides an overall magnitude comparable to the

DNS and a much better match for the decay rate than the lesser values.

Figure 6.11: Evolution of the skewness of ∂xu1 in time

In a vector field with well-defined derivatives, the curvature of a streamline through

the point x0 is given by Weinkauf and Theisal [152] as

κ(x0) =
|u× (∇u · u)|

|u|3
, (6.21)

leading naturally to the definition of rms curvature,

κ′ =
〈
κ2
〉(1/2)

. (6.22)
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Numerically, this may lead to singularities, so in practice, the denominator in Eq.

(6.21) is replaced by max(|u|3, 10−8). Figure 6.12 shows the change in κ′ over time.

Increasing the value of CPMNS results in the fluctuations in κ′ being more frequent

and more intense, indicating more creation and destruction of small-scale structures.

While none of the curves match the DNS results point by point in time, and we

are ignoring CPMNS = 100 due to the aforementioned nonphysical characteristics, the

peaks in the curve corresponding to CPMNS = 10 and 50 are of a similar frequency

and magnitude compared to those of the DNS.

Figure 6.12: Evolution of κ′ in time

Figure 6.13 shows the rms magnitude of the magnitude of the force vector, |f |,

versus time. Observe that for any value of CPMNS, the model eventually deactivates.

This is desirable, because as homogeneous, isotropic turbulence decays, the high-

wavenumber content decays the most rapidly as energy is permanently dissipated.

This manifests itself in the fineness and intensity of small-scale structures decreasing

over time. Conserved variable gradients decay as a consequence of this behavior,

resulting eventually in a solution that can be well resolved on a coarser mesh, as
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seen in Fig. 6.14. This confirms that the CPMNS turbulence model is unlike tradi-

tional Smagorinsky-type models in that it is not continuously active whenever flow is

nonuniform. Note that as CPMNS increases, its decay becomes more and more irreg-

ular, until the point where the backscatter model is active well into the range that it

is no longer necessary, as seen by comparing the curve for CPMNS = 100 with the KE

decay seen in Fig. 6.9.

Figure 6.13: Decay of rms |f | versus time.

While the above statistical and spectral analyses give a quantitative appraisal of

the model’s effect on small-scale behavior, density contour plots of LES and DNS

solutions give a qualitative view of how the backscatter model enhances small-scale

turbulent structures. Fig. 6.15 shows contours of density at t = 2.2, which is a value

deep in the time-evolution of the flow, but before dissipation dominates the dynamics.

All four plots use the same contour levels so that direct comparisons can be made.

It is clear that the PMNS model enhances the formation of small-scale turbulent

structures, as the results for CPMNS = 50 have a more visible similarity to the DNS

results than for CPMNS = 0. There are more local extrema, more areas of large
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Figure 6.14: Contour plots of ρ for DNS at t = 0.36 and t = 4.02. Note the loss
of small-scale structure and increase in overall smoothness as the solution evolves in
time.

gradients, and more overall small-scale structure, although it still does not have quite

as much fine-scale structure in the density field as the filtered DNS exhibits. We can

also see that excessive forcing corresponding to CPMNS = 100 results in a completely

unrealistic solution featuring excessively steep gradients, rather than enhancement of

small-scale structures.

Power spectral density (PSD) estimates of the u1 component of velocity in the x

direction for several experiments at t = 2.2, corresponding to 2220 time steps, can be

seen in Fig. 6.16. Data for CPMNS values of 1 and 10 are omitted due to their strong

similarity with the CPMNS = 0 series These estimates were found by averaging the

PSDs computed from a discrete Fourier transform (DFT) of the velocity for each row

of the slice. Both downsampled 653 and 1293 DNS results are included for comparison

purposes. On the 653 grid, the steep decay begins at k ≈ 10, while it begins at k ≈ 25

for the DNS. After 2220 time steps, the filter has created a significant attenuation

of the high wavenumbers in addition to any numerical dissipation. It appears that

CPMNS = 50 and CPMNS = 100 produce a slightly better match with the slope of the

high-wavenumber decay for the DNS (both filtered and unfiltered) than filtering alone.

Note that the results for CPMNS = 100 match the results for CPMNS = 50, showing

that spectral energy decay alone is not enough to establish physically realistic results.
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Figure 6.15: Contour plots of density at t = 2.2 for (a) CPMNS = 0, (b) CPMNS = 50,
(c) CPMNS = 100, and (d) DNS filtered and downsampled to the 653 grid

The PSDs for the dilatational and solenoidal kinetic energy are given by, respec-

tively,

Ed(k) =
1

2k2
Ediv(k) (6.23)

and

Es(k) =
1

2k2
Eω(k), (6.24)

where Ediv is the PSD of the divergence field, Eω is the PSD of the vorticity field.

The gradients used to construct these quantities were computed using Tecplot, which

uses second-order centered differencing. The spectra for LES, DNS, and filtered DNS

results can be seen in Figs 6.18 and 6.17. Here, the data for CPMNS = 100 is omitted

due to the non-physicality of these results. Of particular interest is the fact that
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the HAMR scheme has the strongest effect on the solenoidal mode. Because the

initial condition is entirely solenoidal, we expect the solenoidal kinetic energy to have

substantially more high-wavenumber content than the dilatational mode. Since the

HAMR scheme applies the most attenuation to high-k mode, it thus has the most

effect on the solenoidal mode. The addition of the backscatter model improves the

high wavenumber content of both modes; however, the most significant improvement

can be seen in the dilatational spectrum, where the decay rate in the upper part of the

range appears to match that of the filtered DNS fairly well. Clearly, to improve the

effectiveness of the model, something must be done to correct the excessive dissipation

of the solenoidal energy, either by reformulating the filter, or increasing the solenoidal

forcing in the model.

Figure 6.16: PSDs of the velocity field t = 2.2 for, CPMNS = 0, CPMNS = 50, CPMNS =
100, and both raw and downsampled DNS results
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Figure 6.17: PSDs of the solenoidal velocity field t = 2.2 for, CPMNS = 0, CPMNS = 50,
and both raw and downsampled DNS results

Figure 6.18: PSDs of the dilatational velocity field t = 2.2 for, CPMNS = 0, CPMNS =
50, and both raw and downsampled DNS results
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6.3 Mach 2.9 compression ramp with turbulent boundary layer

Due to geometric simplicity, two-dimensional compression ramps have been popular

tools for studying the interaction of turbulent boundary layers with strong, oblique

shock waves at high Mach numbers. This flow is of particular interest because the

boundary layer interaction creates a large separation bubble when the ramp angle and

Mach number are sufficiently high; thus it is an ideal context for studying interactions

of shock waves with turbulent boundary layers. An early comprehensive study was

done by Settles et al. [153], which provided detailed results for compression ramps

ranging from 8 to 24 degree angles, and for momentum thickness Reynolds number

Reθ = 67, 200. Later experiments by Selig et al. at a slightly lower Reynolds number

[154] gave more insight into effects deeper in the boundary layer. These experiments

established four critical features of the turbulent compression ramp low:

1. The boundary layer thickness δ, defined as the point where U/U∞ = 0.99, where

U denotes time averaging.

2. The dimensionless separation length, X/δ, where X is the average length of the

separation zone. Settles et al. [153] found that X/δ increases with decreasing

Reynolds number.

3. The separation shock, which occurs at the separation point and has approxi-

mately the same angle as the shock ramp due to the shape of the separation

zone.

4. The main ramp shock, which obeys the inviscid, oblique shock relations.

All of these structures exhibit significant unsteady behavior, as illustrated in the

general profile of the shock-turbulent interaction in Fig. 6.19. The separation bubble’s

size and shape fluctuate, small turbulent structures arise within the separation, the

separation shock oscillates in streamwise location, and it exhibits corrugations as it
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interacts with the incoming turbulent flow. Because of this, time-average quantities

are determined not just by the strength of the shock, but also by the proportion of

time it spends upstream or downstream of a given location.

Figure 6.19: Sketch of the key features of the shock structure near a compression
ramp

While the aforementioned physical experiments are important and shed a great

deal of light on the nature of shock-ramp/boundary-layer interactions, the Reynolds

numbers are simply too high for DNS comparisons. For DNS to be tractable on

such a geometry, it is necessary to have Reθ <∼ 10, 000. See, e.g., the computations

of Wu and Mart́ın [136]. This constraint led Bookey et al. [155], further expanded

upon by Ringuette et al. [135], to perform a series of experiments delivering high

quality measurements and characteristics of a Mach 2.9 compression ramp at a 24

degree angle. The DNS of Wu and Mart́ın [136] has excellent agreement with these

experimental results, demonstrating that the compressible NSEs do in fact provide

an adequate model of compressible, turbulent flow in this regime, and that therefore

non-continuum effects in the shock wave have minimal effects on the macroscopic

flow behavior. This validates the assertion in Sec. 3.3 that the purpose of a turbu-

lence model is to compensate for mathematical inadequacies of the numerical solution

procedure, as opposed to providing physics not captured in the governing equations.
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Unsteadiness of the separation shock location is particularly a problem for RANS

modeling, since the idea is to predict the time average of the flow. RANS modelers are

aware of this and attempt to account for this by modifying their turbulence production

and dissipation terms in such a way as to account for shock wave oscillation. See,

for example, the volume of work produced by K. Sinha with Candler [156] [157]

and Pasha [158]. In these works, Sinha and his various co-authors develop a shock-

turbulent interaction correction for existing RANS models based on modifying the

turbulence production and dissipation quantities behind the shock wave to match

experimental results. However, there is a critical oversight in these works—while

the authors discuss the effects of shock oscillation on the mean shock location, they

neglect to even mention that mean quantities up and downstream of the shock are

determined by the temporal distribution of the shock oscillation. This is an intrinsic

shortcoming of the RANS equations with Boussinesq hypothesis, as oscillation and

dissipation are completely different mechanisms.

To illustrate the problem, consider a uniform, inviscid flow field in air (γ = 1.4) at

an unspecified Mach number with a normal, oscillating shock at a location described

by x(t) = sin(t). To simplify the problem, we will ignore shock corrugation, boundary

layer effects, separation, etc. Assume the standard normal shock relations associated

with perfect gas,

p2

p1

= 1 +
2γ

γ + 1
(M2

1 − 1) (6.25)

where p1 and M1 are the upstream pressure and Mach number upstream of the shock.

Then pressure in the flow field is described by

p(x, t) =

 p1, x ≤ sin(t)

p2, x > sin(t).
(6.26)
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The Reynolds averaged pressure is then found by integrating

P (x) = lim
T→∞

1

T

∫ T

0

p(x, t)dt

=
1

2π

∫ 2π

0

p(x, t)dt

=


p1, x < −1

p1 + p2

2
+

sin−1(x)

π
(p2 − p1), x ∈ [−1, 1]

p2, x > 1,

(6.27)

which is no longer a jump condition. A plot of this function corresponding to M = 2,

i.e., p2/p1 = 4.5, can be seen in Fig. 6.20. Not only is there no discontinuity anywhere,

but the derivatives are all discontinuous at the terminal points of the oscillation

region, x = ±1. Similar analysis holds for any truncated Fourier expansion of a time

series, although there is likely no general, analytical form.

Because this result is independent of any considerations of turbulence or boundary

layer separation, it is incorrect to view the problem with standard RANS models as

simply under-predicting the size of the mean separation bubble or the mean shock

location. Rather, because time-averaged flow quantities near the shock arise due to

the temporal distribution of the shock location, there is no sharp distinction between

a time-averaged shock and a time-averaged separation zone. The classic experiments

of Gadd confirm this [159]. These experiments explored the interaction of a nearly

normal shock wave with an airfoil boundary layer. Even in cases with weaker shocks

and negligible separation, significant distributional effects on the wall pressure can

be observed. This is in fact even more consequential for the modeling of an oblique

shock. In the course of preparing this work, we observed that the entire separation

shock is corrugated by the turbulent flow, and and both its position and shape vary in

time. See, e.g., Figs 6.37–6.36 below. The distributional effects on the local pressure

therefore will affect the wall pressure in the entirety of the separation region.
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Figure 6.20: Time-averaged pressure for an oscillating shock

Figure 6.21: Experimental results (◦), Sinha’s modified k − ε (− · ·−) and k − ω
(− · −), and fit of Eq. (6.27) (−). Observe how the shape of the sin−1 function
is a better match to the experimental results than anything produced by the eddy
viscosity models. Figure adapted from [157].
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So although the boundary layer model of Sinha and Candler [157] manages to

obtain wall pressure results close enough to physical experiments for engineering pur-

poses, the overall shape of the curve does not match that of the experiment. Rather,

their model produces profile shapes consistent with a well-defined separation with a

sharp jump discontinuity at the separation shock. In fact, as can be seen in Fig. 6.21,

a fit of Eq. (6.27) provides a better match for experimental results of Settles and

Dodson [153] in front of the separation than either of the RANS models (this is prob-

ably coincidental, but it is both interesting and surprising). While this model creates

improved wall pressure results, likely sufficiently accurate for engineering purposes,

the mean velocity profiles contain significant divergence from the experimental results

in the separation region. In fact, in some areas, the modified k − ω mean velocity

profile is a worse match than the standard model. For accurate flow predictions, the

shock location and separation bubble length must be predicted in a distributional

sense. This may be beyond the capability of RANS models in general; it is almost

certainly beyond the capability of eddy viscosity models.

6.3.1 Geometry, grid, and methods

Two sets of numerical experiments have been performed by using two different meshes,

which we will denote as Mesh A and Mesh B. These experiments were done to observe

how the filter-forcing model behaves at different grid resolutions. The computational

geometry and boundary conditions in this first simulation are based on the physical

geometry of the 24-degree shock ramp used in the experiments of Ringuette et al.

[135]. In both cases, we have modeled the first 120 mm of the ramp. Free stream

conditions were imposed at the inlet with M∞ = 2.9, T∞ = 196.67◦ R, Re = 5909

based on a length scale of 1 mm, and γ = 1.4 was held constant. Boundary conditions

in the spanwise direction were periodic. The lower boundary was a viscous, adiabatic

wall with pressure extrapolation, and both the the upper boundary and the outflow
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used characteristic extrapolation based on Riemann invariants.

6.3.1.1 Mesh A

Mesh A is constructed of a single grid in order to avoid any errors associated with

the non-conservative chimera interpolation scheme. In terms of dimensionless wall

distance y+, the dimensions near the wall were (∆x,∆y,∆z) = (25, 1, 25) everywhere

with a vertical growth rate of ∆y,2

∆y,1
= 1.28. This is a typical resolution for a LES mesh.

See, e.g., the experiments of Knight and Yan [160] on the same flow conditions, where

they used a mesh with a resolution of (24, 1.9, 8.1). This mesh was 500 × 87 × 300,

with 13.05 million grid points and can be seen in Fig. 6.22.

Figure 6.22: Mesh A for the 24 degree shock ramp. Every 4th point is displayed.

6.3.1.2 Mesh B

For the second set of experiments, a mesh significantly coarser than typical LES

meshes, composed of two overset grids, has been used. The motivation behind this

mesh was to construct conditions similar to a typical engineering context, where

very fine meshes may not be computationally feasible, and to test the ability of the

filter-forcing model to enhance turbulence even in a highly under-resolved situation.

Exactly 200 mm in front of the ramp, a high-resolution grid, 160 mm in length and 93

mm in height, was created in order to develop a turbulent incoming boundary layer

for the coarse LES region. The near-wall resolution in this region was (∆x,∆y,∆z) =

(25, 1, 25) with a vertical growth rate of ∆y,2

∆y,1
= 1.28. The geometry and grid can
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be seen in Figs 6.23–6.25. In the low-resolution grid, the near-wall resolution was

(∆x,∆y,∆z) = (63, 1, 63) with a mesh growth rate again of 1.28. The high-resolution

grid was 318×65×250 points, and the low-resolution grid was 247×59×101 points,

for a total of 6.6 million grid points.

Figure 6.23: Mesh B for the 24 degree shock ramp. Note the coarse region containing
the ramp. Every 4th point is displayed.

Figure 6.24: Close-up of the overlap zone between the fine and the coarse regions of
Mesh B.

Figure 6.25: Close-up of the shock corner.
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6.3.1.3 Boundary layer turbulence

Generating a turbulent boundary layer is a non-trivial problem in compressible LES.

Unlike in incompressible LES, randomly generated inlet variables tend to be numer-

ically unstable. When using a mature engineering package such as OVERFLOW,

the structure of the code itself may prevent straightforward implementation of some

popular schemes, such as an inlet forcing function, a boundary impulse, or generating

an inlet condition from an entirely separate simulation. For example, the version of

OVERFLOW used in the current experiments allowed for a prescribed inlet condition,

but because the code was designed with RANS methods in mind, it does not allow

an unsteady prescribed condition as some commercial codes do. A spatially irregular,

time-constant boundary condition proved to be insufficient to generate turbulence.

Attempts to include a trip wire failed to generate turbulence, possibly due to the low

Reynolds number of the flow, the nonphysical smoothness of computational walls,

and any artificial dissipation induced by filtering and the numerical scheme. Simply

lengthening the mesh to the point where turbulence could evolve naturally over a flat

plate was computationally prohibitive, besides the fact that modeling transition to

turbulence is itself a nontrivial problem.

Because of these concerns, incoming turbulence was generated using a copy-

to/copy-from technique already included as a feature of OVERFLOW, where a section

of the flow near the ramp is copied to a section upstream. This technique was cho-

sen due to its ability to reduce the size of the mesh needed to achieve turbulence

as compared to modeling a trip wire and the ease of controlling the boundary layer

thickness by simply adjusting the number of points in the copy-to/copy-from regions.

Of course, this method was not without its issues. If the copy regions are too close

to overlap regions, they can cause instabilities, and the overall boundary zone must

be large enough to resolve all turbulent structures. In addition, boundary layer recy-

cling introduces a harmonic mode based on the length of the recycling zone, so the
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recycling must be long enough that this mode is not adversely affecting the length

scales of interest. Further, in order to create a self-similar boundary layer following

the usual law of the wall, rescaling must be done in addition to recycling. In the

viscous sublayer the scaled velocity obeys the law,

u+ = y+ =
yu∗

ν
, (6.28)

where u∗ is the friction velocity. Because u∗ decreases with Rex, rescaling the velocity

is necessary in order to achieve the canonical self-similarity profile of a typical flat

plate boundary layer. Because the version of OVERFLOW used in this investigation

lacks the ability to scale copied regions, the equilibrium boundary layer achieved by

this method does not have this profile.

The approaches in each case were slightly different, due to the same technique not

working on both meshes. In Mesh A, a pure recycling was used, with a small trip

placed near the inlet by using OVERFLOW’s hole-cutting feature to remove a small,

rectangular “wire” from the grid. In Mesh B, recycling with no trip was used, but

the mesh itself was geometrically scaled in order to induce a similarity profile. The

geometric scaling can be seen in Fig. 6.26.

Figure 6.26: Fine grid for Mesh A with similarity region outlined.
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Discretization was 2nd -order in time using the same implicit method with Newton

subiterations as before. Six Newton iterations resulted in right-hand side flux resid-

uals dropping at least three orders of magnitude at each step. Spatial discretization

used a 5th -order HLLC scheme with WENOM interpolation for the shock capturing,

and the left-hand side matrix of the implicit solution procedure was again constructed

using the ARC3D Beam-Warming block tridiagonal scheme [137]. Experiments were

run for CPMNS = 0 (no model), 1, 2, and 5. Note that these values are significantly

lower than those used for the periodic cube in Section 6.2. This is due to the fact that

large values of the model constant resulted in critical instabilities behind the shock.

This shows that, much like the Smagorinsky constant, CPMNS is not a universal value.

This will be elaborated upon in more detail in Section 7.2.

6.3.2 Results and analysis

Numerically, there is a fairly significant deviation of all LES results from the ex-

perimental results. Settles et al. [153] showed that separation behavior is strongly

dependent on Reθ, so we can expect errors due to excessive artificial dissipation,

which locally decreases effective Re, and discrepancies in the boundary layer struc-

ture between computational and experimental results.

An issue with both meshes arises due to the recycling technique used to generate

the turbulent boundary layer. The profiles are compared with DNS [139] and experi-

ment [135] in Fig. 6.27. In both cases, the viscous layer is clearly larger than in both

the physical and DNS experiments. This overshoot is particularly pronounced in the

case of the Mesh B. Thus as flow features, such as the separation zone, penetrate

upward from the wall into the higher regions of the boundary layer, they will be

advected downstream more quickly in this simulation than if the boundary layer had

matched the experimental or DNS profiles. As seen in Figs 6.28–6.29, the separation

thickness is O(δ), so it can be expected that the boundary layer profile, and not Reθ
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alone, will have a significant effect on the separation zone’s shape, size, and location.

Figure 6.27: Velocity profile of incoming boundary layer.

A second issue associated strictly with Mesh B can be traced back in part to the

overlap region between the boundary grid and the corner grid. As can be seen in

Fig. 6.30, OVERFLOW does not accurately interpolate the pressure between the two

meshes, and an adverse pressure gradient is initiated immediately within the overlap

region. This was true regardless of the distance between the overlap region and the

compression ramp, as several further grid manipulations revealed, although increasing

the distance allowed the gradient to settle to some degree and somewhat mitigate

early flow separation. Further numerical investigation revealed two influences on the

magnitude of this gradient and its influence on the separation point:

1. The artificial dissipation associated with the filter. Early experiments on a

mesh that was later discarded revealed that the highly dissipative 5th -order

differencing filter in OVERFLOW results in an excessively large separation

region, as can be seen in Fig. 6.31. Fig. 6.32 shows that the HAMR scheme

significantly reduces the severity of this phenomenon. Similarly, increasing other

dissipation parameters in the code increased the problem, so they were set to
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zero for this investigation. Comparisons without any filtering could not be done

due to the instability induced by aliasing.

2. The size of the overlap region. Early on, the overlap region was too small

to adequately support the numerical scheme. Increasing its size reduced the

severity of the adverse gradient, but did not eliminate it entirely.

This problem may be an interaction between filtering and the overset method. Be-

cause filtering is performed in computational space rather than physical space, this

results in a discontinuous jump in the physical space filter widths between grids. In

addition to these tests, horizontal grid refinement tests were also performed. These

had no apparent influence on the adverse pressure gradient, so the horizontal grid

resolution can be ruled out as a cause.

Because of these boundary layer discrepancies, there are significant differences

between the LES and experimental results. On Mesh A, the large separation zone

begins at x ≈ −0.5δ, whereas the experiments of Ringuette et al place it at x ≈ −4δ,

as seen in Fig 6.28. This means that the bulk of the separation is behind rather than

in front of the main shock. On Mesh B, we can see in Fig. 6.29 that the separation

zone begins at x ≈ −12, due to the nonphysical adverse pressure gradient initiated

by the overlap.

Table 6.2 quantifies the difference in boundary layer structure in terms of δ, the

momentum thickness Reynolds number, Reθ, the displacement thickness, δ∗, the mo-

mentum thickness, θ, and the shape factor, H = δ∗/θ. As can be seen, the fine LES

experiment provids the best overall match for the boundary layer profile, but Reθ

is about 67% too large. By contrast, the coarse LES runs provide the correct value

of Reθ, but the H is only a third of the value provided by the DNS. To make strict

one-to-one comparisons, then, a technique capable of generating the correct bound-

ary profile must be introduced into OVERFLOW, or the CPMNS model needs to be
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Table 6.2: Upstream boundary layer properties for the compression ramp

M Reθ δ, mm δ∗, mm θ, mm H
Mesh A 2.9 4000 8.7 2.29 0.678 3.37
Mesh B 2.9 2480 5.3 0.663 0.42 1.58
Experiment [135] 2.9 2400 6.7 2.36 0.43 5.49
DNS [136] 2.9 2300 6.4 1.80 0.38 4.74

tested in a different flow code.

Figure 6.28: Close-up of mean separation zone on Grid A, where coloring is by velocity
magnitude.

Figure 6.29: Close-up of mean separation zone on Grid B, where coloring is by velocity
magnitude.

Figure 6.33 is a plot of the density gradient for an instantaneous solution field

with the original filter and with the HAMR scheme. From this it is clear just how

critical minimizing the dissipation associated with the filter is. The 6th -differencing

filter results in heavy dissipation of the incoming boundary layer, with the smallest
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Figure 6.30: Wall pressure in the interface between the fine grid (blue) and coarse
grid (red) for Mesh B. Note the discontinuity between the zones and the immediate
beginning of an adverse pressure gradient in the coarse zone.

Figure 6.31: Contours of mean velocity for OVERFLOW’s 5th -order filtering with no
turbulence model on an earlier mesh. Note the very long, thin separation zone and
Gibbs phenomena upstream of the shock.

turbulent structures being two to three times larger and less frequently occuring than

those associated with the HAMR scheme. Further, in the critical shock-turbulent

interaction zone, coherent structures are almost entirely absent, especially just down-

stream of the of the interaction. Finally, the shock waves are not nearly as well

defined, and Gibbs phenomena can be seen in front of the shock associated with

the differencing filter, illustrating the need for shock-detection schemes when imple-

menting high-order filters in a supersonic flow. What this figure clearly illustrates is

that adequate filtering alone is capable of significantly improving the quality of LES

results even on highly coarse meshes.

Figure 6.34 is a plot of wall pressure results for the Grid B against the experimental
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Figure 6.32: Mean wall pressure for OVERFLOW’s 6th -difference filtering (black)
versus the HAMR scheme (red) on an earlier mesh. The black curve is not as smooth
due to being computed with fewer total time steps.

Figure 6.33: Density gradient contours for 6th -difference filtering versus the HAMR
scheme with shock detection.
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results of Settles et al. [153] and Ringuette et al. [135]. Quite clearly, early separation

has a severe effect on the distribution of the wall pressure. Some significant effects

of the CPMNS model can be observed. First is that the backscatter supplied by the

model tames the adverse gradient and pushes the beginning of this region back from

X ∼ −17 to X ∼ −9. Given that the results of Ringuette et al. have the adverse

region beginning at X ∼ −4.5, this is not sufficient, but it does represent an error

reduction of about 35%.

The model also causes some steepening of pressure gradient induced by the main

shock, indicating that it does indeed reduce dissipation. CPMNS = 2 gives the best

match to the results of Ringuette et al. in the main shock region, X ∈ [0, 8] The

difference between the computed and experimental results is probably within the

experimental variation in computing the boundary layer thickness and consequent

scaling to produce X. It should also be noted the interface between the inviscid

shock and the separation shock is fairly sharp in the Ringuette results, and that the

well-definedness of this interface is also improved by increasing CPMNS. Little effect

was observed on the wall pressures for the fine mesh.

As expected from the results discussed in Sec. 6.2, the filter-force model shows a

clear ability to induce high-frequency content in the turbulent boundary layer that

explicit filtering alone is unable to capture. Figures 6.36 and 6.37 and show density

gradient contours as CPMNS is varied. It is quite evident from these images that

increasing the value of CPMNS results in a rising turbulence intensity, with smaller

and smaller coherent structures appearing as the parameter increases. Of particular

note is that in Fig. 6.36, we can see that small-scale structures on the order of the

mesh size arise when CPMNS = 5, and the turbulent boundary layer looks qualitatively

more similar to numerical schlierens of DNS experiments, e.g., those of Wu and Mart́ın

[136] as in Fig. 6.35. Physical turbulence is characterized by irregular structures down

to the very smallest relevant length scales, as opposed to the large, rolling, coherent
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Figure 6.34: Mean wall pressure for the Grid B versus the experimental results of
Ringuette et al. (Reθ = 2400) [135] and Settles et al. (Reθ = 67, 200) [153]. Image
adapted from [135] .

structures observed when only filtering is used. While the behavior as CPMNS is

similar between both Mesh A and Mesh B, increasing it all the way to 5 on Mesh B

causes a critical instability that results in divergence of the solution. Recall also that

the optimal value of CPMNS was 50 for homogeneous, isotropic, decaying turbulence

on the cube, where the grid spacing was only twice as long as that used for DNS.

From these plots and those in Sec. 6.2, it appears that the optimal value of CPMNS

varies inversely with the grid spacing–the cube mesh was far more highly resolved

than the ramp mesh, and the optimal value of CPMNS was an order of magnitude

larger. This is due to the fact that forcing is proportional to qhi, which contains a

greater percentage of the total kinetic energy on coarser meshes.

The density gradient plots demonstrate that one of the chief values of the CPMNS
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Figure 6.35: Numerical schlieren of Mach 2.9 ramp from Wu and Martin. [139] Used
with permission.

model has little to do with macroscopic flow quantities, as in the current case of a

typically coarse LES mesh, the changes induced in flow integrals by varying CPMNS

are marginal. The fact is that very good predictions of engineering quantities can be

obtained with nothing more than a high-quality explicit filter, and we refer once again

to the results of Mathew et al. [92] [93] to confirm this. What this model provides

is a high level of mixing and overall irregularity into a turbulent flow, so that the

flow fields produced by it should be better able to model the kinds of small-scale

phenomena needed in multiphase flow simulations and chemical kinetics.

Something should be said about the additional irregularity in the free stream

region observable in Figs 6.37–6.36. The exact cause of this is unknown. The model

is inactive in this region of the flow, so these fluctuations are not being directly

generated. They could be propagated by the HAMR scheme, since it affects the

entire domain, or it could be that, since the domain of dependence for a single point

is the entire flow field, this is just due to effects of the increasingly fine-structure

turbulence propagating throughout the entire domain. We tend toward this latter

explanation, especially since the numerical schlierens of Wu and Mart́ın [136] show
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such effects downstream of the shock.

Figure 6.36: Density gradient contours for Mesh A with, beginning from the top,
CPMNS = 0, 1, and 5.
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While the results of LES on a Mach 2.9 compression ramp have only limited

comparability to the experiments of Ringuette et al. [135] due to discrepancies in the

boundary layer structure, there is a great deal of information to be obtained from

them. The first is that this model is indeed anti-dissipative, as it tends to reduce

or counteract the effects of dissipation on large-scale flow structures such as the

separation point. The second is that the model induces the formation of small-scale

flow structures on the order of only a few grid cells, something that pure dissipation is

completely unable to do on its own. Both of these results are consistent with what we

saw in Sec. 6.2. In addition, it gives some insight into the behavior of CPMNS, namely,

that the maximum permitted value of the parameter decreases with increasing mesh

spacing, ∆. This is likely because as ∆ increases, so does the filter width, meaning

that qhi is extracted from a lower part of the spectrum, which we naturally can expect

to contain more energy.

6.4 Turbulent flow over an open cavity

In this section, we demonstrate the feasibility of the turbulence model by comparing

numerical results to the detailed wall pressure measurements of Plentovich et al.

[140]. Because the authors obtained high-quality data for a wide variety of Reynolds

numbers, subsonic and transonic Mach numbers, and geometries, they have been used

by a variety of authors as a basis for developing new CFD techniques. Atvars et al.

[161] tested a URANS model using a cavity at M = 0.85, where they found that

this model was not capable of capturing some of the significant dynamics. Peng and

Leicher [162] had more success by using a hybrid RANS-LES model. However, cavity

flows are a natural target for LES rather than RANS methods because the unsteady

behavior creates dynamic acoustic phenomena of significant interest to engineers. See,

e.g., the experiments of Yang et al. [163], where they found that flow oscillations were

dependent on Lc/δ. Thus a true RANS simulation, with its lack of any unsteady
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information, will not be able to model this important behavior. Indeed, LES has

provided good predictions of large-scale flow phenomena in the past, such as the

experiments of Larchevêque et al. using an eddy viscosity form of LES [164].

This flow has some similarities with the familiar lid-driven cavity problem, such

as separations that occur in the lower corners, but there are some important differ-

ences. The key mechanism in an open cavity flow is the shear layer created when

the boundary layer suddenly encounters the cavity. But unlike the lid-driven cavity,

this shear layer is not fixed to the upper boundary of the cavity; rather, it moves

freely and tends to dip toward the cavity floor. Depending on the geometry and the

Reynolds number, it can even attach to the cavity floor. Also, when the incoming

boundary layer itself is turbulent, it will immediately induce turbulence in the cavity

as well, so that the dynamics of the cavity depend on the length of the cavity, Lc, the

free-stream Reynolds, Mach, and Prandtl numbers, and the thickness of the incoming

boundary layer. A sketch of the features of an open cavity flow can be seen in Fig.

6.38. Note the separation zones in the corners and the depressed shear layer.

Figure 6.38: Major features of an open cavity flow. Contours are of mean velocity
magnitude.
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6.4.1 Geometry, grid, and methods

The parameters for these numerical runs are identical to Table 11, Run 31, Point 786

in Plentovich et al. [140]. The cavity here had a depth of 2.4”, a length of 14.4”,

and a width of 2.4”. The free stream Mach number was set at 0.8, the free stream

temperature at 561.67◦ R, and the free stream Reynolds number was set at 3.15×105

based on a length scale of one inch.

At Mach 0.8, a turbulent flow can create local Mach numbers above unity, necessi-

tating shock capturing. Thus the same methods as in the case of the shock ramp were

used, ARC3D [137] for the implicit solves, and WENOM [134] for shock-capturing.

Discretization was second order in time, with a dimensionless time step of 0.005.

Six Newton subiterations were performed, which was sufficient to cause a drop of

at least two orders of magnitude in the right-hand side flux residuals at each time

step. Free-stream boundary conditions were imposed at the inlet, periodic conditions

were imposed on the spanwise boundaries, and the same characteristic extrapolation

condition used for the ramp was imposed at the upper boundary and the outlet.

Two overset grids were used to construct the mesh, as seen in Fig. 6.39. In terms

of dimensionless wall distance y+, the dimensions near the wall in the main flow grid

were (∆x,∆y,∆z) = (30, 1, 30) everywhere with a vertical growth rate of ∆y,2

∆y,1
= 1.3.

In the cavity grid, dimensional near-wall spacing was set to 5× 10−4 in. everywhere,

and the interior grid cells were approximately 0.06” × 0.1” × 0.06”. The main flow

grid was 658× 53× 211 points, and the cavity grid was 298× 95× 109 points, for a

total of 10.8 million grid points. Note that the turbulent boundary layer crosses the

overlap interface. As seen in in the shock ramp problem, we already know from Sec.

6.3 that this causes issues for LES in OVERFLOW, so that should be kept in mind

when discussing these results.

As with the shock ramp, generating a turbulent boundary layer proved to be

problematic. The recycling method that was successful for Mesh B in the ramp
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Figure 6.39: Overset mesh for the open cavity. Every fourth grid point is displayed.

problem proved to be unsuccessful here, likely due to the much higher Reynolds

number. For these experiments, a trip constructed by cutting a spanwise hole 0.16”×

0.05” in the mesh 8 inches in front of the cavity proved to be effective. The boundary

layer thickness induced by this method was estimated at δ = 0.8”, which is close to

the recorded experimental boundary layer thickness of 0.5” [140]. Since moving the

trip requires significant reconstruction of the mesh, this was judged as sufficient for

the present investigation. The effect of mesh resolution was tested by increasing the

mesh spacing to ∆1.5 ≡ 1.5∆ and ∆2.5 ≡ 2.25∆ in all directions, and comparing the

coefficient of pressure, Cp = 2(p − p∞)/(ρu2
∞), on the streamwise centerline of the

cavity floor. It was found that the quantity,(∫ 14.4

0

(Cp(x,∆)− Cp(x,∆α)dx)2

)1/2

, (6.29)

increased nearly linearly with α, where Cp(x,∆α) is the centerline floor Cp associated

with mesh spacing ∆α. This confirms that the mesh is significantly under-resolved

and is therefore a good candidate for an LES problem.

6.4.2 Results and analysis

One issue with this class of flows arises due to the unsteady harmonics associated with

the cavity length. These frequencies are of course much larger than the time scales
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associated with turbulence, and therefore it takes a very long time for time averages

to converge on this system. Due to the constraints we had on available facilities

and computation time, the time averages are not as well converged as they were

with the shock ramp, where only a relative few time steps were needed to compute

flow averages. The results shown here were computed using 40,000 time steps each,

corresponding to a flow time of 3.4 seconds.

Figure 6.40 is a contour plot of the forcing for CPMNS = 1. Forcing contour

plots for other values of CPMNS look qualitatively similar and have therefore been

omitted. What can be seen here is that that the model activates in turbulent zones

and deactivates in laminar zones, as is desired. This is consistent with the behavior

exhibited in Sec. 6.3, and demonstrates that the model does an excellent job detecting

turbulent and non-turbulent regions, as no modifications have been made to the

model other than adjustment of CPMNS. As shown by the numerical schlierens in

Fig. 6.41, as in the case of the shock ramp, increasing CPMNS does indeed increase

the qualitatively turbulent behavior of the flow and results in the emergence of more

small-scale structure than is seen when filtering alone is used.

Figure 6.40: Contours of forcing for CPMNS = 1.
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Figure 6.42 depicts wall pressure coefficients, Cp, for LES and the experiment.

The results here are inconclusive. Due to the limitations of available computational

resources and the large range of time scales associated with the cavity flow, time

averages are not as well-converged for this flow as they were for the shock ramp.

As mentioned before, these averages were computed over 3.4 seconds of physical

flow time. However, some broad trends can be noted. In particular, while the best

agreement with experimental Cp in the downstream region of the cavity appears

to be for CPMNS = 0, i.e., no backscatter modeling, this over-predicts Cp in the

upstream region. Increasing CPMNS improves the agreement between the experimental

and numerical values of Cp in the upstream region, but causes a sharper rise in the

downstream region. However, note that for CPMNS = 10, Cp in the downstream region

is closer to experiment than for CPMNS = 5. The match for x < 8” is somewhat better

for CPMNS = 10 than for CPMNS = 0. This suggests that some degree of the variation

is due to the insufficient convergence of the time averages. The slightly larger values

of CPMNS are consistent with the earlier observation that the ideal value of CPMNS

varies approximately inversely with the grid spacing. The resolution of the grid in

this numerical experiment is of the same order as that of the shock ramp, and we see

similar values of CPMNS.

6.5 Summary and conclusions

The three cases presented here demonstrate the capabilities and limitations of this

simple forcing model. As is expected due to the analysis in Ch. 3, filtering alone proves

to be excessively dissipative, and a backscatter model is capable of counteracting these

effects. All three cases show that this filter-forcing approach is in general capable of

inducing small-scale flow structures and high-wavenumber behavior that is ordinarily

lost when using a purely dissipative method. This is a highly desirable characteristic

if this model is to be developed for use in conjunction with models of Lagrangian
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Figure 6.42: Wall Cp on the floor of the open cavity for CPMNS = 0, 1, 5, and 10
compared with the experiments of Plentovich et al. [140], where we have assumed
the different spanwise locations recorded by Plentovich were obtained by moving the
walls of the experimental apparatus.

particle or chemical kinetics. Behaviors associated with dissipation, such as the decay

of K and flow separation, were mitigated by the model and behaviors associated with

backscatter, such as skewness and coherent, small-scale structures features of the

flow, were enhanced.

The experiments on the cube in Sec. 6.2 show that this model is capable of im-

proving the match between DNS and LES across a broad range of statistical and

spectral behavior. However, the more complex geometries in Secs 6.3 and 6.4 reveal

that, as is to be expected, CPMNS is not a universal constant, and that some kind of

dynamic model is necessary if the general form of this forcing is to be retained. It

does appear that in the case of inlet-forced turbulence, the range of CPMNS is more

consistent, with the ideal value being ∼ 5. As seen on both the shock ramp and the
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cavity flow, the “best” value of CPMNS is O(5) across a variety of grid resolutions,

Mach numbers, Reynolds numbers, and geometries.

Another conclusion of this investigation is the general unsuitability of OVER-

FLOW for LES. This conclusion was reached near the end of the preparation of this

work. The conservation errors associated with overlap regions cause significant issues

in precisely the areas where using overset meshes is desirable from the standpoint of

mesh construction. There is active research into developing overset methods suitable

for LES. See, e.g., the work of Morgan et al. [165]. Of particular interest is the fact

that they used a FD method rather than FV for the main solver. This seems more in-

trinsically consistent with chimera interpolation, which constructs ghost points rather

than ghost volumes or ghost fluxes. Further, the lack of options for inducing turbu-

lence increase this code’s unsuitability, although the recycling ability may be not

too difficult to enhance with rescaling. Unfortunately, these discrepancies mean that

many of the observations in this work are of the qualitative rather than the quan-

titative type, as more conclusive work cannot be done without using a completely

different code.

182



Chapter 7. Final Conclusions and Future Work

The filter-forcing model paradigm proposed in this work not only shows a great

deal of promise, but has a fairly rigorous theoretical and mathematical justification.

However, there is clearly much additional work to be done in order to develop such

models to a state where they can be used in general CFD. In Sec. 7.2 we give a

general assessment of the filter-forcing approach presented in this work. In Sec. 7.3,

we discuss open problems related to filtering and shock modeling that need to be

solved in order to improve compressible LES in general. In Sec. 7.4 and 7.5, we

present two alternative proposals for construction of the forcing term. Finally, in

Sec. 7.6 we summarize our findings in this dissertation.

7.1 Summary

After introducing this dissertation in Ch. 1, we gave an overview of existing turbulence

theory to provide a context for the development and investigation of the turbulence

model in this work in Ch. 2. Several important mathematical tools were defined:

the Kovasznay decomposition, various statistical methods, and spectral analysis. An

overview of dynamical systems theory was presented on the ground that turbulent

flows behave like chaotic dynamical systems with distinct bifurcation behavior, a

characteristic that must be preserved by turbulence models. Shock-turbulence in-

teractions were discussed as well; in particular, it was shown that the local isotropy

assumption is not valid behind a shock wave.

Chapter 3 was a thorough overview of the problems associated with CFD and

turbulence modeling, with a special attention given to LES. Careful attention was

given to aliasing, and it was formally demonstrated that traditional LES formula-

tions are subject to compounding aliasing error that is not avoided with traditional,
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unfiltered numerical methods. A thorough critique of eddy viscosity methods was

provided as well, and it was shown that the characteristics of eddy viscosity are sub-

stantially different from the effects it is intended to model. To address these issues,

a dealiased form of the LES equations was derived, and this form served as the basis

of the modeling in this work.

The CPMNS equations were completely derived and thoroughly analyzed in Ch.

4. This discrete dynamical system exhibited many of the same characteristics as

physical turbulence, such as quasiperiodic behavior and bifurcation to chaos. The

overall bifurcation behavior was shown to be qualitatively consistent with physical

turbulence, i.e., as changing dimensionless parameters in the NSEs cause transition,

corresponding changes in the parameters of the CPMNS equations cause bifurcation.

This chapter concluded with constructing the forcing term used to supply backscatter

in the simulations in this work.

Chapter 5 was an overview of the features and charcteristics of the OVERFLOW

compressible flow code. Special attention was given to chimera overset interpolation,

which causes conservation errors in overlap regions. A fairly detailed explanation

of WENOM shock capturing was given. The original scheme is prone to significant

accuracy loss near critical points, and the WENOM scheme corrects this error and

maintains 5th -order accuracy everywhere. It was shown that the code is highly effi-

cient and maintains near-ideal scaling into the hundreds of cores.

In Ch. 6, computations incorporating the CPMNS filter-forcing model were pre-

sented. Details of the HAMR scheme used for filtering were given, and it was shown

that this scheme has highly desirable characteristics for use as a filter within the con-

text of LES. Computations were performed on a periodic cube with homogeneous,

isotropic, decaying turbulence, on a Mach 2.9 compression ramp with a turbulent

boundary layer, and on a Mach 0.8 open cavity. All these cases demonstrated that

the model as currently formulated does indeed supply backscatter, tends to enhance
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a flow’s behavior to provide a better match with DNS or experiment, and moreover

activates only in those regions that appear to be turbulent.

7.2 Assessment of the filter-forcing model

We have presented a large-eddy simulation method based on explicit filtering and an

explicit, chaotic backscatter forcing term based on the compressible “poor man’s”

Navier–Stokes equations and validated it using DNS results computed in OVER-

FLOW. Explicit filtering rather than eddy viscosity has been rigorously justified in

Ch. 3 based on a careful analysis of aliasing and the filtered NSEs. The HAMR scheme

implemented in this work exhibits very low dissipation while sufficiently eliminating

parasitic modes in order to maintain stability. In addition, the simple shock-detecting

scheme proved sufficient to avoid filtering near shocks, which induces Gibbs phenom-

ena, while still applying adequate filtering in turbulent regions.

The forcing term has been demonstrated to enhance backscatter and the formation

of small-scale coherent structures. Computations of homogeneous, isotropic, decaying

turbulence on a periodic cube showed it to be capable of enhancing LES flow statistics

and spectra to provide a closer match to those of the DNS solution than what could

be obtained using the filter alone. When applied to a Mach 2.9 compression ramp,

the model displayed robustness in being able to sustain turbulent phenomena even

on a very under-resolved mesh, created qualitatively realistic small-scale structures

on a more resolved mesh, and overall demonstrated anti-dissipative behavior that

enhanced the turbulent features of the flow. Application of the model to a Mach

0.8 open cavity confirmed the model behaves consistently across a wide variety of

turbulent flow conditions.

The model in its current formulation has a single adjustable parameter, CPMNS,

that controls the intensity of the backscatter model; as with many other turbulence

models, a priori selection of this parameter is important. The numerical experiments
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in this work showed a wide range of ideal parameters, ranging from ∼ 5 to ∼ 50

depending on the flow. This range, however, is unsurprising. It is well known that

Smagorinksy’s original model [1] is inadequate due to a global constant, and so the

widely-used dynamic model [68] exhibits improved performance by computing a local

Smagorinsky parameter. This parameter does not just vary in order of magnitude,

but can even be negative. Hence, it is not surprising to expect or see such wide

variance in CPMNS. Also, note that in the two simulations of forced, wall-bounded

flow, CPMNS had approximately the same order of magnitude despite very different

Mach numbers, Reynolds numbers, and flow geometries.

It should also be emphasized that there is a great deal of flexibility in the formula-

tion of the model. The particular choice of any individual filter kernel is not intrinsic

to the structure of the model; it may very well be that a superior filtering method

would enhance the model’s overall agreement with DNS and experiment. In fact, the

forcing term could just as easily be combined with artificial viscosity rather than fil-

tering, similar to the approaches of Laval and Dubrulle [91], Leith [114], and Chasnov

[90], although we recommend explicit filtering due to its more direct mathematical

relationship with construction of the LES equations. Further, the forcing function as

currently formulated is hardly the only possible choice. Because the PMNS equations

return a dimensionless, chaotic set of variables, they could theoretically replace the

Gaussian term in any popular method of random forcing.

There were also a number of problems associated with the OVERFLOW code.

This code was designed for RANS rather than LES or DNS methods, and the chimera

interpolation method poses problems for constructing LES problems. To be able to

make strict comparisons to DNS and LES data, either the problems with chimera in-

terpolation and the generation of turbulent boundary layers must be solved within the

OVERFLOW code, or the filter-forcing model must be incorporated into a different

code.
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7.3 Open problems

There are two open problems that must be solved to increase the viability of the

filtering-forcing paradigm for supersonic, compressible flows. Neither filtering nor

shock modeling are directly applicable to any particular forcing formulation, but

they are nevertheless essential components of the problem.

7.3.1 Ideal filtering

The HAMR scheme used in this work seemed largely adequate for the flows examined.

However, this was based largely on trial-and-error. Less dissipative filters resulted in

instability, and more dissipative filters negatively affected the turbulence dynamics.

This leaves us with an open question—is there a universal, optimal filter for dealiasing

numerical solutions of the NSEs? If such a filter exists, it almost certainly depends

on the numerical scheme used. Not only that, but because filtering is generally done

in the computational (ξ, η, ζ) space rather than physical (x, y, z) space, the filter may

need to be formulated in terms of generalized coordinates. What is needed for an

ideal filter transfer function is a spectral estimate of aliasing error in generalized co-

ordinates. If a universal estimate can be found, then an optimal transfer function can

be formulated, and a Padé-type scheme can be constructed with a transfer function

closely matching the optimum.

7.3.2 Shock modeling

It is clear from analytical [36] and numerical work [35] that low-dissipation shock

capturing alone is insufficient for accurately capturing shock-turbulent interactions

of high Mach flow. It is entirely unknown how the filter-forcing model would interact

with any existing shock-thickness model. These models which are often based on

Monte Carlo methods (e.g., the hybrid model of Carlson et al. [37]) and may pose

additional complications for implementation of a filter-forcing method. It is important
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to find out whether a backscatter forcing mechanism would enhance or degrade the

performance of such a model in an LES context. Furthermore, because the location

of shock waves in an LES context is unsteady, adaptive meshing may be a necessary

addition to any method.

7.4 Proposal 1: Helmholtz-decomposed forcing

It is clear from the numerical experiments presented in this work that, much like

the Smagorinsky “constant,” the model parameter CPMNS is not universal. Further-

more, it is suggested by the work of Petersen [120] that a single forcing parameter

alone is insufficient in the context of compressible turbulence due to the non-constant

distribution of energy between solenoidal and dilatational modes. Recalling Eqs.

(4.40a)–(4.40b), the formulation of the forcing used in this work is given by

fi =ρ(CPMNS)uhi,i(ai − Ai)

fe =fiui.

We propose splitting the momentum forcing into solenoidal and dilatational compo-

nents. This requires either the development and application of at least an approximate

Helmholtz decomposition algorithm fast enough to be used in the context of a CFD

simulation. Suppose such a method exists, then let Hs be the solenoidal projection

operator, and Hd be the dilatational projection operator. Then we propose the initial

formula

fi,s =ρCsHs (uhi,i(ai − Ai)) (7.1)

fi,d =ρCdHd (uhi,i(ai − Ai)) (7.2)

fe =(fi,s + fi,d)ui. (7.3)

The two constants Cs and Cd should be computed dynamically from local flow quan-

tities. We propose the formulas based on formulas given by Petersen [120] for the
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equilibrium state of linearly forced isotropic turbulence. Here we make the heuristic

argument that because the filtering creates “energy-starved” resolved modes, these

modes will tend to absorb energy from the resolved modes. Further, because HAMR

schemes attenuate all modes, we argue that the attenuation between ∼ 0.5kmax and

∼ 0.75kmax tends to be excessive, resulting in the over-dissipation seen in Sec. 6.2. So

given an appropriate high-pass filter with kmin ≈ 0.5kmax, we argue that the backscat-

ter model should tend to ameliorate further attenuation of these modes. Hence we

propose

Cs =
〈εhi,s〉loc

2〈Khi,s〉loc
(7.4)

Cd =
〈εhi,d〉loc

2〈Khi,d〉loc − 〈(∂iuhi,i)p〉
, (7.5)

where εhi,s and εhi,d are computed from the vorticity and divergence of the high-pass

velocity field, Khi,s and Khi,d are the solenoidal and dilatational kinetic energies of the

high-pass field, and 〈 · 〉loc indicates a local spatial average. In all likelihood, this will

not work universally and will still require an adjustable parameter, but dependence

on local flow conditions should improve the performance and require less variation

from one flow to another.

7.5 Proposal 2: Self-similarity

The spectral profile generated by numerical experiments of the spectrally truncated

Euler equations in Fig. 2.1 suggests that “missing” backscatter causes significant

deterioration only of high-k modes. If we assume that turbulence locally obeys a

power law, then suppose we have three wavenumbers, ka < kb < kc < kd, where ka

and kb are wavenumbers chosen to be in the inertial subrange, kc is the wavenumber at

which significant attenuation due to filtering begins, and kd is the cutoff wavenumber

of the filter. Let Fa,b be the spectral filter that extracts the modes between ka and

189



kb, that is,

Fa,b(u) =
b∑

j=a

ûjφj, (7.6)

where {φ} is a set of Fourier basis functions on a given domain. If we assume that

the inertial subrange obeys a power law,

E(k) ≈ Ckα,

then the energy content between any two can be approximated by the Euler-Maclaurin

formula. In particular, assuming the spectrum between ka and kc has not been

significantly dissipated or decayed,

Kab =

kb∑
j=ka

E(k) ≈ C

(
1

2
(kαa + kαb ) +

∫ kd

ka

xαdx

)
. (7.7)

Kab and Kac can be computed directly from Fa,b(q) and Fa,c(q), so that C and α

can then be determined algebraically. We now can obtain an estimate for the missing

kinetic energy due to excessive dissipation:

KM = Kcd −
1

2

∫
Ω

Fcd(u) · Fcd(u). (7.8)

This energy can be induced by a forcing term constructed using the CPMNS equa-

tions. In the case of a complex geometry, the quantities in Eq. (7.8) should be

computed using local integrals. Additionally, this construction should be done in

terms of dilatational and solenoidal spectra if a fast Helmholtz decomposition can be

found.

7.6 Conclusion

The model presented in this work is in an early state. As a general paradigm, filtering

and forcing is not well-represented in CFD literature, as explicit filtering has only re-

cently gained traction in the research community, and the few examples of backscatter
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forcing functions, despite their successes even when paired with eddy viscosity mod-

els, have not gained a great deal of attention. However, in this work, we have provide

a comprehensive theoretical argument for the aliasing inherent the traditional LES

formulation, the necessity of explicit filtering in order to formally guarantee resolu-

tion on the mesh, and the consequent need for a backscattering model to counteract

excess dissipation.

Filter-forcing is a new paradigm in turbulence modeling. This approach is there-

fore not nearly so well-developed as eddy viscosity modeling, which has had decades

of research and development. The study in this work is therefore not the development

and presentation of an application-ready turbulence model, but is rather the theoret-

ical investigation and numerical validation of filter-forcing as a general approach, and

of ability of the CPMNS equations to provide a chaotic term in such a model. The

results in this work clearly demonstrate the potential and feasibility of this general

approach, although they also show that much work remains for filter-forcing to be

a viable turbulence model as part of a design process. Because of this, additional

proposals for improving this model have been presented here.

The maturity of forcing models at this time can arguably be compared to the

maturity of eddy viscosity models when J. Smagorinsky first proposed his model in

the mid-20th century. The general viability of the approach has been established,

and so the current challenge is to develop this basic concept into a technique viable

for incorporation into engineering processes. The specific approach presented shows

a great deal of promise, as the computational results in this dissertation show, but

there is clearly a great deal of work to be done in order to make it viable for industrial

CFD. We expect that some modification of the existing scheme, specifically a method

dynamically computing local values of CPMNS, will prove viable as an engineering-

quality turbulence model.
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Appendix A. Source Code

SUBROUTINE PMITER(Q,QQ, QHI ,VOL,XX,XY,XZ,YX,YY,YZ,ZX,ZY, ZZ ,
& IBLANK,VMUL,VGAMMA,VRGAS,DTPHYS, JD,KD,LD,
& REY,FSMACH, J ,K, L ,X,Y, Z ,GAUSSCO)

C In t h i s sub , we go through a l l the s t ep s nece s sa ry to
C compute the
C b i f u r c a t i o n parameters . We then i t e r a t e the PMNS
C equat ions at
C the po int g iven by (J ,K, L ) .
C CALLED BY: PMNS

#inc lude ” p r e c i s . h”

in t ege r , i n t e n t ( IN) : : JD, KD, LD, J ,K, L
i n t e g e r : : JJ ,KK, LL ,CTR,PMSTEP

c REAL , target , DIMENSION(JD,KD,LD, 1 3 ) ,INTENT (IN) : : GMET

REAL , INTENT (IN) : : VOL,XX,XY,XZ,YX,YY,YZ,
\& ZX,ZY, ZZ

REAL , DIMENSION(JD,KD,LD, 5 ) , INTENT(INOUT) : : QHI ,Q,QQ
INTEGER, DIMENSION(JD,KD,LD) ,INTENT(IN) : : IBLANK

REAL , DIMENSION(JD,KD,LD) , INTENT(IN) : : VMUL, x , y , z
REAL , DIMENSION(3) : : AA,USTAR,YPLUS, aamean
REAL , INTENT(IN) : : DTPHYS,VGAMMA,VRGAS,REY,FSMACH
REAL : : TAU, PI ,LAMBDA,MACHTUR,SPEED,SPDOFSND,

\& KSQ,BETAT,PECLET,REYAVG,EE, EE0 ,ETATERM,ZETATERM,
\& CP,VORTMAG,NU,LENGTH,MACHTUR2,SPDSML,
\& KFIL ,KVOL, KDISS ,USCALE,SPDLO, E0 , EI ,RHO

REAL , DIMENSION(3) : : ALPHA,REYSM, VHI ,KVEC,
\& BETA,EPSILON,AA0,VORT,LENSCALE,QLO

REAL , DIMENSION(3 ,3 ) : : XI ,ZETA,ETA,DELTA, D1
REAL , DIMENSION(−1:1 ,−1:1 ,−1:1) , INTENT(IN) : : GAUSSCO
REAL : : u , v ,w, r1 , r2 , r3

r e a l rand

QQ(J ,K, L , : ) = 0 . d0

IF (IBLANK(J ,K, L) /= 1) RETURN

192



rho = q ( j , k , l , 1 )

PI = ACOS( 0 . )
LAMBDA = −2./3.∗VMUL(J ,K, L)
CP = VGAMMA∗VRGAS/(VGAMMA − 1 . )
NU = VMUL(J ,K, L)/RHO

DELTA = 0 .
DO JJ = 1 ,3

DELTA( JJ , JJ ) = 1 .
END DO

SPEED = SQRT(DOT PRODUCT(Q(J ,K, L , 2 : 4 ) ,Q(J ,K, L , 2 : 4 ) ) )
SPDSML = SQRT(DOT PRODUCT(QHI(J ,K, L , 2 : 4 ) , QHI(J ,K, L , 2 : 4 ) ) )

QLO = Q(J ,K, L , 2 : 4 ) − QHI(J ,K, L , 2 : 4 )
SPDLO = SQRT(DOT PRODUCT(QLO,QLO) )

E0 = Q(J ,K, L , 5 ) /RHO
EI = E0 − 0 .5∗SPEED∗SPEED

u s c a l e = DTPHYS
SPDOFSND = SQRT(VGAMMA∗(VGAMMA−1)∗E0)
MACHTUR = SPDSML/SPDOFSND
MACHTUR2 = MACHTUR∗MACHTUR

USTAR = 0 .
YPLUS = 0 .

C Do nothing i f the f low isn ’ t moving here
IF (SPEED .EQ. 0 . ) THEN

!QQ(J ,K, L , : ) = 0
RETURN

END IF

C Likewise i f h ipa s s i s ze ro
IF (USCALE .EQ. 0 . ) THEN

!QQ(J ,K, L , : ) = 0
RETURN

END IF

c Compute d e r i v a t i v e s and v o r t i c i t y
c wr i t e (∗ ,∗ ) JD, ’DIFF1 ’
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CALL DIFF1(Q,IBLANK, D1 ,VOL,XX,XY,XZ,YX,YY,YZ,ZX,ZY, ZZ ,
& JD,KD,LD, J ,K, L)

LENSCALE(1) = VOL/(ABS(XX) + ABS(YX) + ABS(ZX) )
LENSCALE(2) = VOL/(ABS(XY) + ABS(YY) + ABS(ZY) )
LENSCALE(3) = VOL/(ABS(XZ) + ABS(YZ) + ABS(ZZ) )
LENGTH = SQRT(DOT PRODUCT(LENSCALE,LENSCALE) )

VORT(1) = D1(3 , 2 ) − D1(2 , 3 )
VORT(2) = D1(1 , 3 ) − D1(3 , 1 )
VORT(3) = D1(2 , 1 ) − D1(1 , 2 )
vortmag = dot product ( vort , vort )

c Vor t i c i ty−based time s c a l e . I f we have smal l v o r t i c i t y , r e turn .
IF ( vortmag < 1D−12) THEN

!QQ(J ,K, L , : ) = 0
RETURN

END IF
TAU = (1/SQRT(VORTMAG) )

KVEC = ( 1 . / 4 . ) /LENSCALE
KSQ = DOT PRODUCT(KVEC,KVEC)

c Compute our ” yplus . ” I f USTAR(KK) = 0 because o f a
c zero v o r t i c i t y component , s e t YPLUS(KK) to 1 . This i s
c to avoid d iv id e by zero e r r o r s .

DO KK = 1 ,3
USTAR(KK) = SQRT( abs (NU∗VORT(KK)/REY) )

YPLUS(KK) = REY∗LENSCALE(KK)∗USTAR(KK)/NU
c END IF

END DO

REYAVG = SUM(YPLUS) / 3 .

PECLET = 0.72 ∗ REYAVG
C B i f u r c a t i o n parameters
C

C S t u f f based on my notes , Tecplot t e s t s , s c a l i ng , e t c .

C Smagorinsky−based beta
do kk = 1 ,3

beta ( kk ) = 1 . d0−nu/max( l e n s c a l e ( kk )∗∗ ( 2 . d0 )∗
& abs ( vort ( kk ) )∗ rey , 1 . d−10)

beta ( kk ) = max( beta ( kk ) , 0 . )
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end do

beta = beta ∗0.955

IF (MAXVAL(BETA) < 0 .9 . or . minval ( beta ) < 0 .3 ) then
QQ(J ,K, L , : ) = 0
RETURN

e l s e
end i f

IF (MAXVAL(BETA) > 1) THEN
WRITE(∗ ,∗ ) ’∗∗ERROR∗∗ BETA > 1 ’
WRITE(∗ ,∗ ) BETA
WRITE(∗ ,∗ ) KVEC
WRITE(∗ ,∗ ) TAU, KSQ
WRITE(∗ ,∗ ) YPLUS
WRITE(∗ ,∗ ) LENSCALE

END IF

IF (TAU .NE. 0 . ) THEN
EPSILON = BETA/TAU

ELSE
!QQ(J ,K, L , : ) = 0
RETURN

END IF

ALPHA = TAU/MACHTUR2

DO KK = 1 ,3
DO JJ = 1 ,3

XI ( JJ ,KK) = min (TAU∗KVEC( JJ )∗KVEC(KK) / 3 . , 0 . 3 )
ZETA( JJ ,KK) = 2.∗TAU∗(VGAMMA−1.)∗MACHTUR2∗EPSILON( JJ )∗

& EPSILON(KK)∗KVEC(KK)∗KVEC( JJ ) / ( 3 . ∗ REYAVG)
ETA( JJ ,KK) = KVEC( JJ )∗EPSILON(KK)∗SQRT(TAU∗(VGAMMA−1)∗

& MACHTUR2/(2∗REYAVG) )
END DO
XI(KK,KK) = 0 .

END DO

BETAT = 1 .

C i f (QQ(J ,K, L , 1 ) .EQ. 0 ) THEN
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ee = qq ( j , k , l , 5 ) ! / max( qhi ( j , k , l , 5 )∗ rho∗ vo l ∗ s ca l e ,
aa = qq ( j , k , l , 2 : 4 )

do l l = 1 ,3
i f ( aa ( l l ) . eq . 0 ) aa = rand ( 0 ) / 3 . d0

end do
i f ( ee . eq . 0 ) ee = rand ( 0 ) / 3 . d0

CTR = 12

C Apply l i m i t e r s
DO LL = 1 ,3

IF (ALPHA(LL) > 2 . 8 ) ALPHA(LL) = 2 .8
DO KK = 1 ,3

IF (XI (KK, LL) > 0 . 2 ) XI (KK, LL) = 0 .2
IF (XI (KK, LL) < 0 . 01 ) XI (KK, LL) = 0.01
IF (ETA(KK, LL) > 7 . 0 ) ETA(KK, LL) = 7 .0
IF (ETA(KK, LL) < 0 . 01 ) ETA(KK, LL) = 0.01
IF (ZETA(KK, LL) > 300 .0 ) ZETA(KK, LL) = 300 .0
IF (ZETA(KK, LL) < 0 . 01 ) ZETA(KK, LL) = 0.01

END DO
END DO

aamean = 0 . d0

DO PMSTEP = 1 ,CTR
ee0 = ee
aa0 = aa ! dd0 − dd0∗sum(gammaD∗aa0 ) !+ a l s
aa = 4 .∗ beta∗aa0∗(1.− aa0 )

& − aa0∗DOT PRODUCT( beta , aa0 )
& − MATMUL( xi , aa0 )
& − alpha∗ ee0 + aa0∗beta∗aa0

etaterm = 0 . d0
zetaterm = 0 . d0
do KK=1,3

do j j =1,3
etaterm = etaterm + 2.∗ETA( JJ ,KK)∗ETA(KK, JJ )∗AA0( JJ )∗

& (AA0( JJ)+ AA0(KK) )
zetaterm = zetaterm + zeta ( JJ ,KK)∗

& aa0 ( JJ )∗ aa0 (KK)
enddo
i f ( aa ( kk ) > 1 . 0 . or . aa ( kk ) < 0) aa ( kk ) = rand (0)

enddo
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ee = ( ee0 ∗ ( 1 . d0 − VGAMMA∗DOT PRODUCT( beta , aa0 )
& )+ etaterm + zetaterm )/(1+betaT )

i f ( ee > 1 . 0 . or . ee0 < 0) ee0 = rand (0)

aamean = aamean+aa
END DO

aamean = aamean /14 . d0
aa = aa − aamean

DO JJ = 1 ,3
IF (ISNAN(AA( JJ ) ) . or .AA( JJ ) > 1 . ) THEN

WRITE (∗ ,∗ ) ’−−> Var iab le AA conta in s a NaN value <−−’
wr i t e (∗ ,∗ ) ’AA: ’ , AA
wr i t e (∗ ,∗ ) ’ beta : ’ , beta
wr i t e (∗ ,∗ ) ’ x i : ’ , x i ( 1 , : )
wr i t e (∗ ,∗ ) ’ x i : ’ , x i ( 2 , : )
wr i t e (∗ ,∗ ) ’ x i : ’ , x i ( 3 , : )
wr i t e (∗ ,∗ ) ’ e ta : ’ , e ta ( 1 , : )
wr i t e (∗ ,∗ ) ’ e ta : ’ , e ta ( 2 , : )
wr i t e (∗ ,∗ ) ’ e ta : ’ , e ta ( 3 , : )
wr i t e (∗ ,∗ ) ’ ze ta : ’ , e ta ( 1 , : )
wr i t e (∗ ,∗ ) ’ ze ta : ’ , e ta ( 2 , : )
wr i t e (∗ ,∗ ) ’ ze ta : ’ , e ta ( 3 , : )
wr i t e (∗ ,∗ ) ’ alpha : ’ , a lpha

CALL STOP ALL( ’PMITER’ )
end i f

END DO

C Sca l e v e l o c i t y

QQ(J ,K, L , 1 ) = TAU !USCALE

QQ(J ,K, L , 2 ) = AA( 1 ) ! SIGN(AA( 1 ) ,QHI(J ,K, L , 2 ) )
QQ(J ,K, L , 3 ) = AA( 2 ) ! SIGN(AA( 2 ) ,QHI(J ,K, L , 3 ) )
QQ(J ,K, L , 4 ) = AA( 3 ) ! SIGN(AA( 3 ) ,QHI(J ,K, L , 4 ) )

C D i s s i p a t i o n ra t e
R1 = 0 . d0
do j j = 1 ,3

do kk = 1 ,3
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R1 = r1+ ( d1 ( j j , kk)+d1 ( kk , j j ) )∗∗2
end do ! kk

end do ! j j
r1 = r1∗nu

C k i n e t i c energy
r2 = q ( j , k , l , 1 )∗ spdsml∗ spdsml ∗0 .5 d0

c time s c a l e
qq ( j , k , l , 5 ) = r2 / r1 ∗(REY/FSMACH)

END SUBROUTINE
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eines Differentiasystems,” Bericht der Math.-Phys. Klasse der Sächsischen
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