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ABSTRACT OF THESIS 

 

SIMULATION AND EXPERIMENTAL VALIDATION OF AIRBORNE AND STRUCTURE-
BORNE NOISE TRANSMISSION IN HVAC PLENUMS 

 

This research demonstrates the usage of numerical acoustics to model sound and vibrational 
energy propagation in HVAC ducts and plenums.  Noise and vibration in HVAC systems 
propagates along three primary paths that can be classified as airborne direct, airborne indirect 
and structure-borne. The airborne direct path was simulated using acoustic FEM with special 
boundary conditions to handle the diffuse acoustic field loading and the baffled termination. The 
insertion loss for a number of different plenum geometries was compared to published 
measurement results.  Results were in good agreement both below and above the cutoff 
frequency. Additionally, the airborne indirect path, often termed breakout noise by the HVAC 
community, was assessed using Statistical Energy Analysis (SEA).  This path was examined 
experimentally by placing a loudspeaker inside the air handler and measuring the sound power 
transmitted through the walls.  SEA results compared favorably with the measured results in one-
third octave bands even at low frequencies. Finally, the structure-borne path was considered by 
exciting the walls of the aforementioned air handler using an electromagnetic shaker.  The panel 
vibration and the sound power radiated from the panels were measured.  Results were compared 
with the SEA with good agreement provided that SEA loss factors were determined 
experimentally. 

KEYWORDS: HVAC, Acoustic FEM, Statistical Energy Analysis (SEA), Airborne, Structure-
Borne, Breakout Noise 
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CHAPTER 1 

 INTRODUCTION 

1.1 Introduction 
Noise in the buildings affects occupants most of the time.  Sound from heating, 

ventilation, and air conditioning (HVAC) equipment normally exceeds the American 

National Standards Institute (ANSI) sound pressure level for desired human living 

(Technology for a Quieter America (2010)[1]).  Nevertheless, noise is normally 

secondary to other design concerns, and the best design, simulation, and analysis tools are 

not presently used in the building industry.  

Building noise is primarily caused by power generating equipment in HVAC 

systems.  Chillers, boilers, furnaces, fans and pumps are all sources of noise.  Energy can 

propagate through the duct airspace (airborne) or through the duct structure (structure-

borne) itself. Airborne noise is mostly due to fan or flow noise (i.e. turbulence or vortex 

shedding caused by flow over a cavity or sharp edge). Airborne noise propagates through 

the duct airspace to the rooms.  Airborne noise is typically reduced by using sound 

absorbing material like fiber or foam, adding silencers or plenums, or by extending the 

length of the ducts. 

Structure-borne noise is propagated through ductwork, piping, and mounts and 

transmitted to other parts of the building.  Sound then radiates from vibrating walls, 

floors and ceilings. Additionally, sound can be radiated from the ductwork or plenum 

itself.   This is typically referred to as breakout noise. The structure borne noise in the 
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duct system can be attenuated by using proper isolation or adding additional damping to 

the structure. 

Figure 1.1 illustrates the different noise transmission paths to a receiving room 

from an air-handling unit.  In the figure, structure-borne paths are indicated in red and 

include propagation through the wall, floor, roof, HVAC Plenum, mounts and ductwork.  

Duct breakout noise in the inlet duct is indicated in green.  Airborne paths are indicated 

in blue and include propagation through the duct airspace. Figure 1.2 shows the 

frequency ranges at which different types of equipment contribute to the sound spectra. 

 

 

 

 

 

 

 

 

Figure 1.1 Typical paths of noise and vibration propagation in HVAC systems 
(ASHRAE Handbook (2007)[2]) 
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Figure 1.2 Frequency spectrums of noise for different HVAC equipment propagates 
noise (ASHRAE Handbook (2011)[3]). 

Building noise can be reduced by a) reducing the noise level at the source, b) 

modifying the energy transmission path, or c) reducing the noise level to the occupant by 

adding sound absorption or by enclosing the occupant.  Noise and vibration at the source 

can be reduced by operating fan and power equipment at lower speeds and eliminating 

imbalances. Alternatively, the transmission path can be modified utilizing silencers (i.e. 

plenums), and introducing sound absorbing materials like fiber and foam to the HVAC 

ducting.  Structure-borne noise can be reduced by using isolators, and by adding damping 

to the HVAC ductwork. While not desirable, the noise level at the receiver can be 

reduced by building an enclosure around the applicant, using hearing protection, or by 

adding sound absorption to the room (Crocker (2007)[4]; ASHRAE Handbook 

(2007)[2]). 
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This thesis will focus on the problem of sound propagation through ductwork and 

plenums.  This can include propagation through the air space (airborne noise) or through 

the ductwork (structure-borne).  For the most part, building designers and engineers 

utilize the ASHRAE Handbook (2007)[2] equations in order to predict the acoustic 

attenuation associated with HVAC ductwork. 

The most commonly used model for predicting the airborne attenuation of HVAC 

plenums is an energy-based formula first developed by Wells (1958)[5]. However, Wells’ 

formula is approximate and does not fully account for the wide variety of HVAC plenum 

geometries.  For instance, the Wells’ model does not fully account for effects like inlet 

and outlet duct orientation, multiple inlet and outlet ducts, or even the first few acoustic 

modes of the plenum. Figure 1.3 compares the measured insertion loss to the Wells’ 

prediction for a plenum.  Notice that the Wells’ model is within 3 dB at higher 

frequencies where energy models are more appropriate.  However, it is clear that the 

Wells’ model does not agree with measurement at low frequencies.  

 

Figure 1.3 Comparison of Insertion loss of the duct system. 
This research work details numerical simulation approaches which includes 

acoustic FEM and SEA. The Acoustic FEM is utilized to determine airborne noise 
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whereas SEA is utilized for structure-borne noise in plenums. The numerical approaches 

can be extended beyond the cutoff frequency for inlet and outlet ducts as well as 

plenums.  The acoustic FEM approach meets an important need in predicting the airborne 

noise since the plane wave cutoff frequency is quite low in frequency for duct and 

plenum systems.  For instance, the cutoff frequency for a 0.61 m x 0.61 m (2 ft x 2 ft) 

square duct is only 280 Hz.  The suggested technique is a modal approach where modes 

are first determined using a finite element (FE) model.  Stochastic boundary conditions at 

the source and termination are then applied in modal coordinates. The boundary 

conditions include a diffuse acoustic field at the inlet and radiation impedance (baffled 

termination)  at the termination.  

Duct breakout or rumble is a common problem for ductwork that extends into a 

receiver room. The duct breakout noise is defined as the sound radiated from the duct 

walls into the receiver room.  Sometimes this noise is caused by sources in the duct like 

turbulence in the airflow or by strong noise sources upstream such as fans.  The 

ASHRAE Handbook includes several tables, which catalog the wall transmission loss for 

a number of different wall types.  However, models of the source itself are not included.  

Moreover, structure-borne energy propagation along the length of the duct is not 

considered in the model. 

In each case, simulation is compared to measurement. The primary objectives of 

the current research effort are to  

1. Model the airborne sound transmission using acoustic FEM with special boundary 

conditions at the inlet and the outlet ducts.  The suggested approach is 
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advantageous over ASHRAE Handbook because the simulation agrees very well 

with the measured insertion loss both above and below plane wave cutoff 

frequency. The other important advantage is the simulation can account for wide 

variety of HVAC plenum geometries. It also includes the effect of first several 

acoustic modes of the plenum in the analysis. 

2. Apply SEA to model the insertion loss of both sealed and partial enclosures. This 

approach should be suitable for modeling breakout noise. 

3. Apply experimental SEA to simulate structure borne noise for a typical air 

handler. This approach will be especially beneficial in modeling structure borne 

energy propagation from machinery. Application of experimental SEA in a 

HVAC plenum is novel to HVAC industry.  
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CHAPTER 2 

CALCULATION OF AIRBORNE ATTENUATION IN PLENUMS 

2.1 Analysis above the Plane Wave Cutoff  
Sound waves propagating through small ducts possess wavelengths that are much 

larger than the duct itself.  This simplifies the analysis since the sound pressure across the 

duct cross-section can be assumed to be constant.  If such is the case, transfer matrix 

theory (also known as four-pole theory) pioneered by Munjal (1982)[6] can be used to 

determine the transmission loss. The transfer matrix uses the acoustic wave equation to 

relate the sound pressure and particle velocity on one side of a muffler or silencer 

element to the other side.  The approach is general enough to consider elements with 

three-dimensional wave behavior.  However, the wave behavior at the inlet duct and 

outlet must be plane wave.  

The plane wave cutoff frequency for duct sections can be determined based on the 

speed of sound (c) and characteristic duct dimension (d).  The plane wave cutoff 

frequency for a square duct is equal to c/2d.  Ericsson (1980)[7] determined that the cut-

off frequency for circular ducts (for non-axisymmetric waves) was equal to c/1.71d 

whereas the cut off frequency equals c/0.82d for axi-symmetric modes. 

It should be noted that there are two classic models for analyzing HVAC plena 

above the cutoff frequency. The first is Wells’ (1958) [5] model based on room acoustics 

theory, and the second is by Cummings (1978)[8] who extended the Wells model to 

include directivity between the inlet and outlet ducts and included baffles in the 

expansion chamber or plenum. Neither approach accounted for the acoustic modes in the 

inlet and outlet ducts, or the plenum itself. Later, Mouratidis and Becker (2003) [9] 
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documented two separate empirical models of HVAC plenums for frequencies above and 

below the cutoff. However, the developed models were only applicable for inline 

plenums. Detailed descriptions about Wells’ and Mouratidis and Becker’s models are 

documented in Sections 2.2.1 and 2.2.2 respectively.  

There have been numerous investigations where transfer matrix theory is 

extended beyond the cutoff frequency to include three-dimensional effects. Most of these 

investigations assume plane wave behavior in the inlet and outlet ducts (Ih, Lee 

(1985)[10]; Ih, Lee (1987)[11]; Yi and Lee (1986)[12]; Yi and Lee (1987)[13]; Ih 

(1992)[14]; Munjal (1987)[15]; Selamet and Radavich (1997)[16] and Selamet and Ji 

(1998)[17]). For example, Ih and Lee (1985) [10] investigated the effect of higher order 

modes in a circular expansion chamber with mean flow. The effect of higher order modes 

was included using a Fourier Bessel expansion to express the four pole parameters.  The 

developed model also considered cases in which the inlet and outlet ducts were not 

centered.  Likewise, Ih and Lee (1987) [11] developed a mathematical model for the 

transmission loss of a reversing chamber muffler with circular cross section. By reversing 

chamber, it is meant that both the inlet and the outlet of the muffler are located on the 

same side of the chamber. Also the relative offset location of the inlet and outlet and the 

length to diameter ratio of the inlet and the outlet is considered.  

Similarly Yi and Lee (1986[12], 1987[13]) determined the transmission loss for 

cylindrical expansion chambers for side-in / side-out and side-in / end-out configurations. 

Munjal (1997)[18] concluded that the side in / side out configuration behaved in essence 

like an extended inlet and outlet plenum configuration especially for acoustically long 

chambers i.e. length of the chamber is greater than or equal to two times the diameter of 
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the inlet and the outlet.  In similar work, Selamet and Radavich (1998) [16] analyzed 

circular expansion chambers with extended inlet and outlet ducts. Their work examined 

the effect of length of the chamber on the acoustical attenuation performance by using a 

2D analytical approach and a 3D computational solution based on the boundary element 

method (BEM).  The models were experimentally validated using an extended impedance 

tube setup. 

Ih (1992) [14] also developed a theoretical method to investigate the effect of the 

higher order modes using a three dimensional analysis (Ih (1992)[14]).  The model 

developed was valid for rectangular shaped plenums.  More recently, Venkatesham et al 

(2009) [19] used Green’s functions expressed in terms of the rectangular cavity modes to 

model rectangular expansion chambers assuming plane wave behavior with no mean flow 

and no acoustic source inside the chamber. 

The aforementioned papers (Cummings (1978)[8]; Ih and Lee (1985)[10]; Ih and  

Lee (1987)[11]; Yi and Lee (1986)[12]; Yi and Lee (1987)[13]; Ih (1992)[14]; Munjal 

(1987)[15]; Selamet and Radavich (1997) [16] and Venkatesham et al (2009)[19]) 

document useful models for extending plane wave based transfer matrix theory to include 

muffler components (expansion chambers) which exhibit three dimensional wave 

behaviors. However, plane wave behavior was assumed in the inlet and outlet ducts to the 

muffler components in each case. 

In the same way, deterministic approaches like the finite element method and 

boundary element method have been used. Craggs (1976[20], 1977[21]) utilized 

axisymmetric finite element models for reactive and dissipative mufflers. Subsequently, 
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Peat (1982)[22] and Sasrabudhe et al (1991)[23] used three-dimensional finite element 

models to determine the transfer matrices for muffler components. 

Wu et al. (1998)[24] first used the improved four-pole to determine the 

transmission loss of plenums. More recently, Barbieri et al. (2004)[25] has used the 

improved four-pole method to determine the four-pole parameters and thereby the 

transmission loss and compared with FEM and experiment.  Similarly, Herrin et al. 

(2007)[26] have used similar approaches to determine the transmission loss for plenums. 

Wang et al. (1993)[27] used the 3-D boundary element method to determine the four- 

pole and the transmission loss. In all the aforementioned finite element and boundary 

element studies, results were reported at frequencies such that plane wave behavior was 

present in both inlet and outlet ducts.  In most of the studies, the four-pole parameters 

were determined as a precursor to determining transmission loss.  

2.2 Typical Methods to Simulate Plenums and Ducts 
Five different methods have been used to determine the attenuation (transmission or 

insertion loss) of HVAC plenums.  These include: 

• Wells’ (1958) energy model 

• Mouratidis and Becker’s (2003) empirical model 

• Statistical energy analysis (SEA) 

• Boundary element (BEM) analysis  

• Finite element (FEM) analysis. 
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The limitations of the aforementioned methods and their applicability towards 

determining the airborne sound transmission of HVAC duct systems are discussed in the 

following sections. 

2.2.1 Wells Energy Model 
At the present, the equation in the ASHRAE Handbook (ASHRAE, 2011[3]) is 

the primary tool used by designers to estimate the insertion loss of plenums in the design 

stage.  This equation developed by Wells (1958) [5] over 50 years ago is based on room 

acoustics theory.  

Wells (1958) [5] developed an expression to estimate plenum attenuation based 

on conservation of energy.  The total sound energy density at the outlet is assumed to be 

the summation of the direct and reverberant field energy densities (Wells (1958)[5]).  The 

plenum attenuation was defined as the difference between the sound power entering the 

plenum and the sound power exiting the plenum.  This definition of attenuation is broad 

and is strictly speaking neither a transmission or insertion loss.  However, insertion loss 

will be less sensitive to the boundary conditions at the source and termination at high 

frequencies and should be roughly the same as the attenuation defined in this manner.  

The ASHRAE Handbook equation for attenuation is given as 
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Where IL is insertion loss or attenuation, Se is the plenum exit area, d is the slant distance 

between the entrance and exit, θ  is the angle of incidence for the direct sound field at 
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exit, Sw is the total wall surface area, and α is the average sound absorption coefficient for 

the walls.  Q is a directivity factor which is equal to 2, 4, or 8 depending on whether the 

opening is at the center of the wall, a bihedral corner, or a trihedral corner respectively.  

The average sound absorption coefficient can be determined from 

  ∑
=

=
n

i
iiw SS

1
αα         (2.2) 

Where iα and iS  are the absorption coefficient and area for each plenum wall. 

In order to verify his numerical model, Wells built a plenum of dimension 0.8483 

x 0.635 x 0.31242 m3 with 0.0127 m fiberglass lining. Measurements were conducted for 

a single plenum and for two or three plenums in series.  The net attenuation prediction 

also included the effect of the end corrections for each chamber considered for 

measurement.   

Wells’ (1958) [5] concluded that at low frequencies (below the cutoff frequency) 

where the wavelength exceeds the plenum dimensions, the mathematical prediction 

underestimates the measurement by 5 to 10 dB because of the chamber end corrections 

and acoustic resonances. Moreover, factors such as inlet area, location of the outlet 

opening, and the presence of airflow were not considered for predicting the acoustic 

performance of the plenum.   

2.2.2 Mouratidis and Becker Empirical Model: 
Mouratidis and Becker (2003) [9] conducted numerous experiments on HVAC 

plenums with various inlet/outlet duct configurations to determine the insertion loss. The 

HVAC plenum configurations include inlet and outlet ducts being inline, offset by 90 
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degrees, with elbow, side in/end out, end in/side out, and multiple outlets. The detailed 

discussion about the measurements carried out by Mouratidis and Becker is documented 

in Chapter 3. From the measured insertion loss, they performed a curve fit and developed 

empirical equations for the insertion loss of the HVAC plenums. One equation 

corresponds to the insertion loss below the plane wave cut off and the other equation 

corresponds to the insertion loss above the plane wave cutoff.  However, the equations 

were limited to inline plenums and results were only compared for a few cases.  Below 

the cutoff frequency insertion loss was expressed as 

ew WSAIL +⋅=   (2.3) 
 

where A and We were empirically determined for different wall constructions.  Above the 

cutoff frequency, insertion loss was expressed as 
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where b and n were determined empirically and were respectively 3.505 and-0.359.  

Above the plane wave cut off frequency, the insertion loss is similar to Wells’ 

model (eq. 2.1) with the logarithm of the total sound energy density at the outlet being 

replaced by empirically derived proportionality constants. Below the plane wave cut off 

frequency, a regression analysis between the low frequency test data and the geometry of 

the plenums was conducted. Factors such as plenum surface area produced strong 

correlation with low error residuals.  

In contrast, the regression analysis between the expansion ratio, which is used to 

characterize sound attenuation in Wells’ model, and the test data showed weak 
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correlation. Further, a trend analysis on the wall effects (effect of surface absorption in 

plenums) results in a standard deviation between 1 to 6 dB below the cutoff and is 

independent of expansion ratio.  

Therefore, Mouratidis and Becker concluded that the direct correlation with the 

magnitude of the plenum surface area and corresponding surface absorption 

characteristics (wall effect) were the key factors for sound attenuation in plenums for 

frequency less than the plane wave cut off frequency. Hence, direct application of the 

expansion ratio to characterize sound attenuation below cutoff is incorrect. This enables 

the Mouratidis and Becker prediction (Mouratidis and Becker, 2003[9]) to be more 

accurate when compared to Wells model (1958) [5] especially at frequencies below the 

cutoff frequency.   

 

2.2.3 Statistical Energy Analysis (SEA) 
The foundation for statistical energy analysis (SEA) was laid in the 1960’s.  Since 

that time, a number of authors have documented the background of SEA and also its 

applicability in noise and vibration analysis of mechanical structures. (Burroughs et al. 

(1997)[28]; Lyon, DeJong (1995)[29]; Langley (1981)[30]; Woodhouse (1981)[31] ; 

Fahy (1994)[32]; Lalor (1989)[33]; De Langhe and Sas (1996)[34]).  SEA has been 

successfully applied in building structures to determine the structure borne noise 

transmission (Craik (1982)[35]; Stimpson (1986)[35]), and for both the airborne 

(Cimmerman et al (1997)[36]) and structure-borne (Yamazaki et al (2003)[37]) sound 

transmission in automobiles.  
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SEA is a power and energy balance approach.  The basic assumption of SEA is 

that the total energy in each subsystem, which is the sum of the energies of each mode in 

the subsystem, resides only in the resonant frequencies that are uniformly distributed 

within each of the frequency bands in the analysis.  Since SEA assumes only resonant 

modes, the total assumed degrees of freedom in the SEA analysis is greatly reduced for 

complicated structures. Accordingly, SEA is computationally inexpensive compared to 

finite element and boundary element analyses. 

For SEA, the system is normally divided up into a number of subsystems and an 

energy balance equation is constructed for each subsystem. A global energy balance 

equation is formed for the entire system, and the average energy density can be calculated 

for each subsystem. For example, a simple expansion chamber considered for analysis is 

showed in Figure 2.1. The panels of the inlet, outlet ducts and the expansion chamber are 

assumed to be individual structural subsystems. But the air cavity in the simple expansion 

chamber is modeled as a single acoustic subsystem. Each subsystem is assumed to 

contain groups of resonant modes with energy equally distributed among the modes.  

Input forces or acoustic sources are modeled as an input power, and the damping for each 

subsystem is an energy sink.  Upon solving the energy balance equation, the energy 

density in each subsystem can be obtained which can be directly related to the spatially 

averaged vibration velocity or sound pressure.    

Oldham and Hillarby (1991) [38, 39] applied SEA for high and low frequency 

problems for the airborne path in enclosures. Two separate expressions were developed 

based on SEA to predict the insertion loss for close fitting enclosures. One equation 

corresponds to low frequency noise problem and the other equation corresponds to high 
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frequency noise problem (Oldham and Hillarby (1) (1991)[38]).The aforementioned 

mathematical equations developed by Oldham and Hillarby (1) were compared to the 

measured insertion loss of close fitting enclosures (Oldham and Hillarby (2) (1991)[39]). 

From the measurements, it was concluded that the high frequency model agreed well with 

the measured results. The low frequency model agreed with the measured results only 

when the sound source vibrates in (1, 1) mode shape.  If the source vibrates in other mode 

shapes, then the agreement between the low frequency model and the measured data is 

affected because of strong coupling between the source mode shapes and the resonant 

mode shapes of the panels of the enclosure.  

 

 

 

 

Figure 2.1 SEA model of a simple expansion chamber 
 

2.2.4 Acoustic Boundary Element (BEM) Analysis  
The boundary element method (BEM) is a deterministic approach used to solve 

the acoustic wave equation. The advantage of BEM over other deterministic approaches 

is the numerical solution of the boundary integral equation can be achieved by 

discretizing only the boundary surface of the domain into a finite number of elements 

using collocation techniques. (Seybert et al (1985)[40]; Seybert and Wu (1997)[41]; 

Selamet and Ji (1999)[42]; Zhang et al (2003)[43]; .Ji  (2010)[44]).  

Power Input  
Inlet Duct  Outlet Duct  Expansion Chamber  Baffled Termination  

Subsystems  
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Boundary element methods have been successfully used in the determining sound 

transmission in applications such as the interior cabin noise with complicated boundary 

conditions (Bernhard et al (1987)[45]; Suzuki et al. (1988)[46]), noise reduction using 

bulk reacting sound absorbing materials (Utsuno et al. (1990)[47]), scattering problems 

(Demkowicz et al. (1990)[48]; Desanto (2010)[49]) and flow problems (Mushtaq et al. 

(2010)[50]).  The BEM may also be coupled with structural finite element modes for 

solving coupled problems (.Felippa (1981)[51];  Vlahopoulos et al. (1999)[52]).  Since 

the current research work deals with airborne sound attenuation in plenums, emphasis is 

placed on the application of BEM to simulate the airborne path in HVAC plenums. 

Herrin et al. (2007)[26] utilized the BEM to determine the transmission loss of 

HVAC plenums.  Plane wave behavior was assumed in the inlet and the outlet ducts so 

that the transmission loss could be determined using four-pole theory.  

The four pole parameters are expressed in the form of matrix equation. 
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where P1 and P2 are the sound pressures, V1 and V2 are the particle velocities at the 

locations shown in Figure 2.2. A, B, C and D are the four pole parameters. 
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Figure 2.2 Schematic diagram of a simple expansion chamber illustrating the transfer 
matrix approach. 

Herrin et al. (2007) [26] used two BEM analyses to determine the transfer matrix. 

A unit velocity boundary condition is applied first to the inlet and the BEM analysis is 

conducted to determine the modified four pole parameters A* and C*. Similarly a unit 

velocity boundary condition is applied to the outlet and a BEM analysis is performed to 

determine the modified four pole parameters B* and D*. From the modified four pole 

parameters, the original four pole parameters are expressed as  
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Once the four-pole parameters (A, B, C, and D) are obtained, the transmission 

loss can be determined using (Munjal, 1987) [15] 
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where inS is the inlet duct cross sectional area, outS is the outlet duct cross sectional area, 

ρ is the fluid density, and c  is the fluid speed of sound. 
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2.2.5 Acoustic Finite Element (FEM) Analysis  
The finite element method is a deterministic approach, which is used extensively 

to predict the structural vibration response of mechanical components. FEM 

approximates the exact solution to the governing differential equation using standard 

techniques such as the Galerkin or Ritz methods over several small regions called 

elements. Thus the system is divided into a finite number of degrees of freedom. Then the 

matrix equation of each element is assembled in the form of a global matrix satisfying the 

continuity conditions between the elements and the boundary conditions so that the 

unknown field variables can be solved at each degree of freedom. 

The acoustic FEM can be used to determine the acoustic attenuation of silencers 

or HVAC plenums (Craggs (1976)[20]; Craggs (1977)[21]; Peat (1982)[22]; 

Sahasrabudhe et al. (1991)[23]).  Several authors have used acoustic FEM to solve the 

acoustic wave equation including interior and exterior problems and scattering problems 

(Cook et al. (1989)[53]; Nefske at al. (1982)[54]). 

Craggs (1976)[20] developed a finite element model to determine the 

transmission loss for reactive mufflers. The transmission loss of a muffler with extended 

inlet and outlet was compared to a one-dimensional mathematical model developed by 

Davis (1975)[55] with good agreement at low frequencies. At high frequencies, the 

agreement was not as good because of the error due to discretization and the difficulty in 

correlating high frequency modes. This problem can be overcome in part by refining the 

mesh, but with more computational time. Craggs (1977)[21] also investigated dissipative 

mufflers including absorbing lining.  He observed that the lining improves the 
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transmission loss of the muffler at high frequencies whereas negligibly affecting the 

transmission loss at low frequencies.    

Similarly, Sahasrabudhe et al. (1991)[23] developed a 3-D finite element model to 

determine the acoustic behavior of a simple expansion chamber with an extended inlet 

and outlet.  Plane wave behavior was assumed in the inlet and outlet ducts so that the 

transfer matrix approach could be utilized to determine the transmission loss. 

2.3 Summary 
A literature survey about analysis above the plane wave cutoff frequency in duct 

systems was discussed. The chapter also includes a discussion about the theoretical 

background of the various methods to determine the airborne sound attenuation in HVAC 

plenums. The different methods discussed in this chapter include the Wells’ energy 

model, Mouratidis and Becker empirical model, statistical energy analysis, boundary 

element analysis and finite element analysis. 

In this research work, the insertion loss is used as a metric to characterize noise 

attenuation in HVAC plenums. Further, the application of acoustic FEM with special 

boundary conditions on HVAC plenums to determine the insertion loss is discussed in 

Chapter 3. Plane wave behavior in the inlet and the outlet ducts is not assumed for the 

analysis.  
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CHAPTER 3 

APPLICATION OF ACOUSTIC FEM TO PLENUM SIMULATION 

3.1 Acoustic FEM with Special Boundary Condition: 
 

 The discussion, which follows, details the methodology used to apply acoustic 

FEM to determine the insertion loss.  The strategy to determine insertion loss is 

illustrated in Figure 3.1.  Two models are compared.  In the first model, the output power 

at the termination is predicted without the plenum in place.  Notice that the straight duct 

has the same length and cross-sectional dimensions as the duct and plenum combined.  

The second model includes the plenum. The same input power is used for the second 

model as was used for the first model, and the insertion loss is calculated directly by 

subtracting the output power from the second model from that of the first.  Results are 

computed first in narrowband, and then are converted to one-third octave band before 

computing insertion loss.  

 

Figure 3.1 Side View of the straight duct with and without the HVAC plenum 
 

Straight Duct  

Straight Duct with Plenum  
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The mesh of the plenum and the boundary conditions are shown in Figure 3.2. 

The acoustic FEM model consists of the HVAC plenum and inlet and outlet ducts. The 

input is a diffuse acoustic field or reverberant field.  The termination is assumed to be a 

baffled termination. These boundary conditions are now considered in more detail. Also, 

observe that an absorptive lining can be added to the plenum FEM model via an 

impedance boundary condition.   

 

Figure 3.2 FEM model of the HVAC plenum with inlet/outlet ducts.   
The diffuse acoustic field loading is applied via a reciprocity relationship between 

direct field radiation and diffuse reverberant loading developed by Shorter and Langley 

(2005)[56]. The most notable application of this relationship has been the development of 

hybrid junctions (Shorter and Langley (2005)[57]) between FEM and SEA subsystems. 

However, there are other important applications of the reciprocity relationship besides the 

development of hybrid junctions. For example, the reciprocity relationship also provides 

a mechanism for applying a diffuse field loading to a FE model. Shorter and Langley 
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(2005) [57] concluded that the cross-spectral matrix of the force or sound pressure is 

proportional to the imaginary part of the direct field dynamic stiffness matrix. The input 

to the model is expressed mathematically as a cross-spectral force matrix. Shorter and 

Langley (2005) [57], Langley (2007)[58, 59], and Shorter and Mueller (2008)[60] 

expressed the cross-spectral force matrix (Sff) as 

{ }aRMSDAFff
cp DS Im8
3

2
, ρω

π
=          (3.1) 

where pDAF, RMS is the RMS Sound pressure of the diffuse acoustic field (DAF), c is the 

speed of the sound, ρ  is the density of the fluid, and ω is the frequency spectrum. Da is 

the direct field stiffness dynamic matrix of the loaded boundary. The cross-spectral force 

matrix (Sff) describes the reverberant loading on the FEM.  

The radiation impedance at the outlet is determined using a wavelet approach 

developed by Lanley (2007)[59] in which jinc functions are selected as the wavelet basis. 

The dynamic stiffness matrix at the outlet (radiation boundary) is found by multiplying 

the radiation impedance by ωi1  (Langley (2007) [59]).   

The plenum modeling is carried out using a deterministic approach for the plenum 

itself whereas the source and the termination boundary conditions are modeled in a 

statistical sense. The ensemble average acoustic pressure response <Sqq> of the FEM 

model is expressed as  

H
totfftotqq DSDS −−= 1

           (3.2) 
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where Dtot is the summation of the dynamic stiffness for the finite element model and the 

direct field dynamic stiffness at the inlet (Da), Termination (Drad) and for any impedance 

boundary condition (Dimp).  The time and ensemble averaged sound power radiated (Prad) 

at the termination can be expressed as 

{ }{ }.Im
2 ∑=

jk
qqarad SDP ω

         (3.3) 

The time and spatially averaged sound pressure can be related to the sound 

pressure radiated. Additionally, absorption can be added to the models in one of two 

ways.  For fiberglass lining, the absorption is modeled using a complex impedance matrix 

expressed in modal coordinates that describes the impedance of the lining on the acoustic 

cavity.  For unlined plenums, the procedure suggested by Lyon and DeJong (1995)[29] 

Herrin et al. (2007)[26] was adopted to determine an appropriate loss factor (η) and is 

expressed as  
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24         (3.4) 

where f is the frequency in Hertz, V is the plenum volume, and αw is the absorption 

coefficient of the lining, Sw is the total surface area of the absorption lining in the plenum 

and c is the speed of sound in air. The sound absorbing coefficient for the plenum walls 

(αw) was chosen using the ASHRAE Handbook (2011)[3]. 

3.2 Experimental work by Mouratidis and Becker (2003) 
The simulation results in this work were compared to insertion loss measurements for 

HVAC plena made by Mouratidis and Becker (2003)[9]. As mentioned in the earlier 
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chapter, the measurements were made in accordance with ASTM-E477 (2006)[61]. A 

loudspeaker array was located in the noise source room and produced pink noise. The 

source room was connected to a receiving room (a 12.5 m x 8.5 m x 5.2 m reverberation 

room) via an unlined duct in which plenums could be inserted. The concrete 

reverberation room used in the measurement of insertion loss was qualified in accordance 

to ANSI S12.31 procedure for third octave band measurements. The distance between the 

source chamber and reverberant room was 38 m. The plenum was constructed such that 

the base was open and rested on concrete.  

 

 

 

Figure 3.3 Schematic diagrams illustrating the calculation of insertion loss of a plenum 
 

Insertion loss (IL) was determined by measuring the sound pressure level in one-

third octave bands in the receiving room with and without the plenum inserted into the 

duct connecting source and receiving rooms and is expressed as 

         (3.5) 

where SPL1 is the sound pressure level in dB in the empty duct and SPL2 is the sound 

pressure level in dB in the duct with plenum as shown in figure 3.3. 

Several different plenum configurations were measured. These included examples 

with the inlet and outlet ducts inline, offset, and at right angles to one another. The inlet 

and outlet ducts were unlined for each case, and fiber lining was placed on all sides of the 

 

 

 
 

 
  

 

Source 

Source Plenum 

Reverberation 
Chamber 

Reverberation 
Chamber 

Straight duct without plenum 

Inlet Outlet 

SPL
1
 

SPL
2
 



26 
 

plenum except the base. The experimental investigation also examined the effect of inlet 

and outlet duct areas, and multi-outlet plenums. Figure 3.4 shows different types of 

silencers considered for analysis. 

  

 

 

 

             Inlet/Outlet inline unlined        Inlet/Outlet with absorption lining 

   

 

 

 

 

                    Inlet/Outlet offset           Inlet/Outlet at right angle 

 

 

 

 

 

 

               Multiple outlet              End in / side out (elbow effect) 

Figure 3.4 Types of mufflers measured by Mouratidis and Becker, 2003[9] 
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For the inlet and outlet ducts at right angles, Mouratidis and Becker (2003) [9] 

measured the noise reduction instead of insertion loss. Measuring insertion loss, while 

preferable, requires acoustic facilities with reverberation rooms positioned appropriately. 

Instead, a type of noise reduction was determined by comparing the sound power of the 

inlet duct without the plenum installed to the sound power at the outlet of the plenum.   

The sound power was measured using sound intensity scanning according to ISO 9614-

2[62]. Noise reduction in this research work is defined as the difference in sound power 

at the inlet duct without the plenum installed to the sound power at the outlet opening of 

the plenum. The noise reduction of a simple expansion chamber is shown in figure 3.5 

and is expressed as  

21 WW LLNR −=          (3.6) 

where NR is the noise reduction, 1WL is the sound power level without the plenum in dB, 

and 2WL is the sound power level with the plenum in dB 

 

 

 

 

 

Figure 3.5 Two models used for Noise Reduction Calculation 
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The measured noise reduction was comparable to the measured insertion loss 

above the cutoff frequency for cases where both measurement techniques were applied. 

In fact, Mouratidis and Becker (2003)[9] compared over 40 cases and found both metrics 

to be in good agreement above the plane wave cutoff. However, there were significant 

variations below the cutoff frequency.  

3.3 Comparison of Measurement and Simulation 
The acoustic FEM analysis was compared with the measured insertion loss and 

noise reduction.  Additionally, insertion loss was compared with the classical theory for 

plenum attenuation developed by Wells (1958)[5], the empirical models developed by 

Mouratidis and Becker (2003) [9], and statistical energy analysis (SEA). 

For the Acoustic FEM simulation, linear tetrahedral acoustic finite elements are 

used. The mesh resolution was selected to allow at least four elements per acoustic 

wavelength up to 1150 Hz.  ESI (VA-One, 2010[63]) conducted a study on mesh 

convergence for a rectangular cavity, and the error between predicted and analytical 

natural frequencies was below 10% for 4 elements per wavelength and was below 4% 

with 6 elements per wavelength. The accuracy at frequencies above the plane wave cutoff 

frequency should be sufficient since the excitation is broadband and the respective sound 

powers are summed in one-third octave bands. Moreover, the length of the inlet and the 

outlet ducts are reduced from 38 m to 1.524 m for the analysis because of the 

computational difficulties.  
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For the SEA analysis, the inlet and outlet ducts, and the plenum are modeled as 

single acoustic subsystem. The input boundary condition to the SEA model is a diffuse 

acoustic field and the termination is connected to a semi-infinite fluid (an energy sink) as 

shown in Figure 3.6.  The absorption of the plenum is simulated by an appropriate loss 

factor.  Additionally, a damping of 0.1% is applied to the plates of the plenum. 

 

 

Figure 3.6 SEA model of a HVAC Plenum with an input power and semi-infinite fluid 
termination. 

The eight different plenum cases considered are summarized in Table 3.1. The 

first six cases are for the inlet and outlet ducts inline while the last two are for inlet and 

outlet ducts perpendicular to one another (Figure 3.7). Three different plenum sizes and 

two different inlet/outlet duct cross-sectional areas were considered. 

 

 

Diffuse Acoustic Field 

Semi Infinite Fluid  
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Figure 3.7 Acoustic FEM mesh of right angle duct configuration  
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TABLE 3.1 PLENUM CASES CONSIDERED FOR ANALYSIS 

 

Case 

Plenum Description Inlet/Outlet 

Dimensions 

Duct cross section 

(m2) 

 

Absorptive 

Lining 

 

Inlet/Outlet 

duct orientation 

Plenum dimensions 

(in meters) 

Width    Height     Length 

1 1.22         1.22        0.91 0.31x0.31 Unlined Inline 

2 1.22         1.22        0.91 0.31x0.31 0.102 m Fiber Inline 

3 1.22         1.83        1.52 0.61x0.61 Unlined Inline 

4 1.22         1.83        1.52 0.61x0.61 0.102 m Fiber Inline 

5 1.22         1.83        3.05 0.61x0.61 Unlined Inline 

6 1.22         1.83        3.05 0.61x0.61 0.102 m Fiber Inline 

7 1.22         1.83        1.52 0.61x0.61 0.203 m Fiber Right Angle 

8 1.22         1.83        3.05 0.61x0.61 0.203 m Fiber Right Angle 

 

The results are shown in Figures 3.8 to 3.15 for Cases 1 through 8 respectively. In 

the plots the FEM refers to analysis utilizing special boundary conditions, and ASHRAE 

Handbook refers to the mathematical model for plenum attenuation developed by Wells 

(1958)[5]. Notice that the cutoff frequency (which is related to the cross-sectional 

dimensions) of inlet and outlet ducts is 570 Hz for Cases 1 and 2, and 285 Hz for Cases 3 

through 8.  

One important difference between the simulation and the measurement is the 

length of inlet and outlet duct. The combined 38 m length of inlet and outlet ducts was 

not modeled in FEM and SEA. Instead, the inlet and outlet duct lengths were shortened to 
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1.52 m to decrease the model size. Below the plane wave cutoff frequency, the modal 

frequencies are highly sensitive to the inlet and outlet duct lengths. However, it should be 

borne in mind that the insertion loss below the cutoff frequency is less important for most 

HVAC components. Additionally, measurements are difficult at low frequencies and 

signal to noise ratio is often low because of the low source strength and also 

environmental noise.  

The following conclusions can be made based upon the comparisons. 

• Above the cutoff frequency the acoustic FEM simulation is within 3 dB compared 

to the measurement. Additionally, the acoustic FEM agrees well with measured 

insertion loss even below the cutoff frequency except the 125 Hz band of Case 8 

(Figure 3.14). In Figure 3.14, the insertion loss calculated from acoustic FEM is 

compared to the measured noise reduction. Even though the noise reduction is 

close to the insertion loss above the cut off frequency, there were significant 

variations below the cutoff frequency. Additionally, the measured data is suspect 

below the plane wave cutoff frequency due to background noise. From Figures 

3.8 to 3.15, it is evident that the acoustic FEM can be used to determine the 

insertion loss of HVAC plenums both below and above the cutoff frequency. 

• SEA compares well (within 3 dB) with the measured insertion loss above the 

cutoff frequency.  Below the cutoff frequency, SEA does not compare well 

because the insertion loss depends on individual plenum modes. At frequencies 

below the cutoff, SEA under predicts the insertion loss by 10 dB because SEA 

assumes that total energy in each subsystem resides only in the resonant 
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frequencies. In other words, the total energy in each subsystem is uniformly 

distributed within each of the frequency bands in the analysis.  

• The ASHRAE Handbook (2007)[2] or Wells’ model (1958) [5] is nearly the same 

as the SEA model.  This is expected since both approaches are energy based. 

Additionally, at low frequencies, insertion loss will be more sensitive to the 

boundary conditions at the source and termination.  

• The empirical model developed by Mouratidis and Becker (2003) [9] is inferior to 

the Wells’ model in most of the cases, especially above the cutoff. Below the 

cutoff frequency, Mouratidis and Becker model has better agreement with the 

measured insertion loss compared to the Wells’ model. 
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Figure 3.8 Insertion loss comparison for a 1.22 x1.22 x 0.91 m3 plenum with inlet and 
outlet ducts in line.  The plenum is unlined. 

   
Figure 3.9 Insertion loss comparison for a 1.22 x 1.22 x 0.91 m3 plenum with inlet and 

outlet ducts in line. The plenum is lined with 10.2 cm fiber.  
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Figure 3.10 Insertion loss comparison for a 1.22 x 1.83 x 1.52 m3 plenum with inlet and 
outlet ducts in line. The plenum is unlined.  

        Figure 3.11 Insertion loss comparison for a 1.22 x 1.83 x 1.52 m3 plenum with inlet 
and outlet ducts in line. The plenum is lined with 10.2 cm fiber. 
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 Figure 3.12 Insertion loss comparison for a 1.22 x 1.83 x 3.05 m3 plenum with 
inlet and outlet ducts in line. The plenum is unlined.  

 Figure 3.13 Insertion loss comparison for a 1.22 x 1.83 x 3.05 m3 plenum with 
inlet and outlet ducts in line. The plenum is lined with 10.2 cm fiber. 
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 Figure 3.14 Insertion loss comparison for a 1.22 x 1.83 x 1.52 m3 plenum with 
inlet and outlet ducts offset by 90 degrees. The plenum is lined with 20.3 cm fiber. 

Figure 3.15 Insertion loss comparison for a 1.22 x 1.83 x 3.05 m3 plenum with inlet and 
outlet ducts offset by 90 degrees. The plenum is lined with 20.3 cm fiber. 
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3.4 Summary 
The measured insertion loss and measured noise reduction of the HVAC plenums 

with different geometries are compared with the acoustic FEM and SEA models of the 

HVAC plenums. Additionally, the ASHRAE Handbook (2007)[2] or Wells model 

(1958)[5] and the empirical model developed by Mouratidis and Becker (2003) [9] are 

also compared with the measurements.  

From the comparisons, the Acoustic FEM with special boundary conditions has 

the best agreement with the measurements over the entire frequency band (below and 

above the cutoff frequency) when compared to the other models. Most importantly, the 

analysis does not assume plane wave behavior in the inlet and the outlet ducts.  

The SEA and the ASHRAE handbook models are similar to each other as both the 

models are energy based. Furthermore, both the SEA and the ASHRAE handbook models 

differ by as much as 10 dB, below the cutoff frequency with the measured insertion loss. 

Above cut off frequency, both the approaches compare better.  Additionally, the 

ASHRAE Handbook model is superior to the Mouratidis and Becker model above cut off 

frequency. However, the Mouratidis and Becker model has better agreement with 

measurement when compared to the Wells’ or the ASHRAE handbook model below the 

cutoff. Moreover, the Mouratidis and Becker model was developed for HVAC Plenums 

with inlet/outlet ducts inline.  

Therefore it can be concluded that Acoustic FEM can be used to determine the 

airborne noise transmission in HVAC Plenums in place of extensive and costly 

measurements.  
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CHAPTER 4 

BREAKOUT NOISE IN DUCT SYSTEMS 

4.1 Theoretical Background 
Structure-borne noise in heating, ventilating, and air conditioning (HVAC) duct 

systems can be separated into two primary categories: (1) vibration caused by rotating 

machinery and (2) acoustic breakout.  In the first case, rotating machinery transmits 

energy through the connected HVAC ductwork into building spaces.  Machinery will 

excite the floor, wall or ceiling of a source room transmitting energy to other parts of a 

building (ASHRAE Handbook (2007)[2]).  Most vibrational problems are at low 

frequencies and are best treated by isolation mounts or damping. 

The second mechanism is known as acoustic breakout.   Energy is transmitted 

from the HVAC duct air space to the surrounding duct walls, which in turn radiate energy 

into building spaces.  This noise transmission through the duct wall is commonly referred 

to as breakout noise.  Breakout noise is primarily a low frequency problem since fans and 

other equipment are dominated by lower frequency tones (Cummings (1978)[8]).  

For breakout noise, energy is primarily transmitted through the HVAC duct wall.  

Accordingly, the sound attenuation through the duct wall, also known as the wall 

transmission loss, is the primary metric for assessing duct breakout noise.  Duct breakout 

noise is documented in this chapter and the machinery noise is considered in Chapter 5. 

There are several studies that discuss the determination of wall transmission loss 

of duct systems. Cummings (1978) [8] assumed plane wave behavior in the duct and 

coupled the structural and acoustic wave solutions together.   The duct was assumed to be 

a line source radiating sound. In follow-on work, Cummings (1983)[64] determined the 
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duct breakout for higher order acoustic mode propagation through rectangular duct walls. 

Subsequently, Astley and Cummings (1984)[65] determined the wall transmission loss of 

rectangular duct system using FEM by including the coupling between the duct vibration 

and the external sound field in the FEM model. 

 Cummings and Chang (1986)[66] developed two mathematical models to predict 

wall transmission loss for oval ducts. The first model was based on forced wave theory 

assuming an infinite panel. The model accounts for the sound transmission through both 

flat and curved duct walls. The second model utilizes finite difference methods to solve 

the Reissner-Naghdi-Berry equations of motion for an arbitrarily shaped cylindrical shell 

in order to predict the wall transmission loss assuming only the plane acoustic modes 

within the duct. Cummings and Chang (1986) [66] concluded that the acoustic radiation 

that emanates from the flat wall of the duct results in higher transmission loss than the 

normal rectangular duct especially at low frequencies .  

 Later, Cummings (2001)[67] documented an excellent review on the sound 

transmission through duct walls where he discussed the effect of cross sectional geometry 

of the ducts on wall transmission loss and reciprocity relations between breakout and 

break-in noise. He also documented the method of stiffening the duct walls to reduce 

breakout noise.  

 Venkatesham et al. (2008) [68] predicted the breakout noise of rectangular 

cavities assuming one compliant wall when all the other walls of the plenum are rigid.  

Flexural vibration caused by compliant plenum walls due to the internal acoustic 

excitation radiates noise as breakout noise. 
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Venkatesham et al. (2008) [68] assumed a strong coupling between the compliant 

plate and the inside cavity and a weak coupling between the compliant plate and the 

exterior radiated acoustic field for a rectangular cross-section. An impedance mobility 

approach is used to calculate the inside sound pressure of the cavity and normal cavity 

wall vibration, from which the radiated sound power is calculated. Then, the transverse 

transmission loss is determined from the incident sound power inside the cavity and the 

radiated sound power. The incident sound power, radiated sound power and the 

transverse transmission loss of the rectangular cavity were expressed as  

Y
A

Win 2

2

=                      (4.1)  

Re
2
1 H

rad bW = [ ]Z b                 (4.2)  
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rad
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transverse W

WTL log10                (4.3)  

where Win is the incident sound power, A is the amplitude of the incident sound power, Y 

is the characteristic impedance of the cavity plane waves, Wrad is the radiated sound 

power, b is the amplitude of the vibration velocity mode, H is the Hermitian of a matrix, 

Z is the radiation impedance of the un-baffled plate and TLtransverse is the transverse 

transmission loss of the rectangular cavity.  

 Venkatesham et al. (2010)[69] extended his previous work by developing a 3D 

approach to predict breakout noise from rectangular plenums with four compliant walls. 

The mathematical model is expressed in terms of the acoustic impedance and the 



42 
 

mobility, for the acoustic pressure inside the plenum chamber and the displacement 

caused by the flexible wall vibration respectively.  Venkatesham et al. (2010) [69] 

compared the mathematical model to FEM models with good agreement. Alternatively, 

the acoustic pressure inside the rectangular cavity and the vibration displacement of the 

compliant wall can also be expressed using a Green’s function (Venkatesham et al. 

2011)[70]. The advantage of using a Green’s function to express vibrational displacement 

and acoustic pressure is that this method permits different end conditions and irregular 

geometries. 

4.2 Determination Wall Transmission Loss Using Energy Methods 
Energy methods have various applications in acoustics. One such application is 

the determination of wall transmission loss of panels. As mentioned earlier in Section 4.1, 

wall transmission loss can be used as a primary metric to assess the breakout noise. 

Additionally, wall transmission loss is also used to characterize the ability of an insulated 

partition to attenuate sound.  

In order to explain the application of energy methods in determining the wall 

transmission loss, two case studies are considered. Firstly, the energy method is applied 

to a simple insulated plate and a mathematical model is developed to determine the wall 

transmission loss. Secondly, the energy method is used to develop a mathematical model 

to determine the sound transmission between two rooms separated by an insulated 

partition (wall). 
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4.2.1 Simple Plate model 
 The energy method is applied to a simple plate model. It is assumed that the plate 

is insulated with an absorption lining. Figure 4.1 shows a power balance for a sound field 

incident upon an insulated plate. The sound reduction index, R is expressed as  







=
τ
1log10R           (4.4) 

with 

i

t

W
W

=τ           (4.5) 

where Wi is the incident sound power, Wt is the transmitted sound power and τ is the 

transmission factor.  

 

                                     

                                                               

                                                         

                                            
 Figure 4.1 Power balance for a sound field incident upon an insulated plate 

 

The power balance equation for a sound field incident on the panel is developed based on 

balancing the energy. The power balance equation is expressed as  

disstri WWWW ++=          (4.6) 

Wdiss 
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where Wr is the reflected sound power and Wdiss is the sound power dissipated by 

damping due to the sound absorption applied to the panel. Upon dividing Eqn. 4.6 by Wi, 
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and 

δτα +=           (4.9) 

where 
i

r

W
W

−=1α  is the absorption coefficient, 
i

t

W
W

=τ  is the transmission coefficient and 

i

diss

W
W

=δ is the dissipation factor. 

For an absorbent mounted on a plate, τ  is always less than δ  ( δτ << ) (HP 

Wallin (2011)[71]). In other words, the power transmitted from the wall is always less 

when compared to the power dissipated due to the damping except in the mid-frequency 

range where there are only a few modes that dominate the plate behavior. Therefore, it 

can be concluded from Eq. (4.9) that the absorption factor (α) is significantly influenced 

by the power dissipated due to the damping. Therefore, the wall transmission loss can be 

increased significantly by using insulation with the absorbent factor close to 

1.Additionally, the transmission loss for an incident sound field on a plate is expressed as   
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where Wi is the incident sound power, Wt is the transmitted sound power, and TLpanel is 

the plate transmission loss. From the Eqns. 4.5 and 4.10, the transmission factor and the 

transmission loss of a plate are related directly to each other. Therefore, the transmission 

loss of a panel can be directly determined using energy methods by calculating the 

transmission factor of the panel.  

4.2.2 Sound transmission between two rooms separated by a wall  
The energy method is applied to determine the sound transmission between the 

two rooms (H P Wallin et al (2011) [71]; Ver and Beranek (2006)[72]). Figure 4.2 shows 

two rooms separated by a partition. From Figure 4.2, it is also noted that the sound source 

is placed in room 1. The sound field is incident on the partition and transmits to room 2. 

Again, the sound is reflected back from the walls back into room 1 through the partition. 

 

 

 

 

 

 

 

Figure 4.2 Sound Transmission between two rooms. 
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An energy balance equation is applied for room 1 and room 2 separately and expressed as 

dissin WW
dt

dE
,1,1

1 −=          (4.11) 

dissin WW
dt

dE
,2,2

2 −=          (4.12) 

For the case of room 1, 

2111,1 WWW in +=          (4.13) 

1211,1 WEW diss += ωη          (4.14) 

where W1,in is the net power input into room 1, W11 is the power input into room 1 from 

sound source, W21 is the power input into room 1 from room 2, W1,diss is the power 

dissipated from room 1, E1 is the total energy in room 1, η1 is the loss factor of room 1 

and ω is the angular frequency. 

Similar expressions for room 2 can be developed.  These are expressed as 

12,2 WW in =           (4.15) 

2122,2 WEW diss += ωη          (4.16) 

where W2,in is the net power input into room 2, W12 is the power input into room 2 from 

room 1, W2,diss is the power dissipated from room 2, E2 is the total energy in room 2 and 

η2 is the loss factor of room 2  

Substituting Eqns. 4.13 to 4.16 in Eqns. 4.11 and 4.12, one obtains 
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21111211
1 WWWE

dt
dE

+=++ ωη        (4.17) 

and 

122122
2 WWE

dt
dE

=++ ωη         (4.18) 

Eqns. 4.16 and 4.17 represents the energy balance equations for the two coupled systems 

(rooms). The equations are valid only for sound sources placed in both the rooms (i.e. the 

equations do not include vibratory sources or energy flow).  If the sound field that is 

emitted by the sound source is stationery, then the Eqns. 4.17 and 4.18 are reduced to  

21111211 WWWE +=+ωη         (4.19) 

and  

122122 WWE =+ωη          (4.20) 

From the power balance equations, Eqns. 4.19 and 4.20, the wall transmission 

loss of the wall that separates the two rooms can be determined. To predict the power 

transmission between the rooms, it is assumed that the diffuse fields are incident upon the 

wall separating the rooms. From Eqn. 4.5, the transmission factor of the wall can be 

determined. The transmission factor from room 1 to 2 (τd) can be expressed as 

1

12

d
d W

W
=τ           (4.21) 

with 
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SIW dd 1,1 =           (4.22) 

where Id,1 is the sound intensity in room 1 and  S is the cross-sectional area of the wall. 

Similarly, the transmission factor from room 2 to room 1 is expressed as  

2

21

d
d W

W
=τ           (4.23) 

with 

SIW dd 2,2 =           (4.24) 

where τd is the transmission factor of the wall and Id,2 is the sound intensity. 

It should be noted that the transmission factor from room 1 to room 2 is the same 

as the transmission factor from room 2 to room 1 because the partition between the rooms 

remains the same. Further, the field energy and the sound intensity are expressed as  

VE ε=            (4.25) 

4
c

I d
d

ε
=           (4.26) 

2
0

2~

c
p d

d ρ
ε =           (4.27) 

where E is the field energy, ε is the energy density, Id is the diffuse field intensity, c is the 

speed of sound, V is the volume of the room, εd is the energy density of the diffuse field, 

dp~  is the diffuse sound pressure and 0ρ  is the air density. Eqns. 4.25-4.27 are also 
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utilized in the Sabine room acoustic model (Wallin et al (2011) [71]; Ver and Beranek 

(2006) [72]; Kinsler and Frey[73]). 

Substituting Eqn. 4.26 into Eqns. 4.21 and 4.23 

4
1

12
cS

W ddετ
=          (4.28) 

4
2

21
cS

W ddετ
=          (4.29) 

Substituting Eqns. 4.28 and 4.29 in Eqn. 4.20 

ScScE dddd 44 1,2,22 τετεωη =+        (4.30) 

Dividing Eqn. 4.30 by Sc
dd 42, τε  and substituting 

2

2
2 4 V

CA
ω

η = (Lyon and DeJong 
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Substituting 4.27 in 4.31, one obtains 
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Taking the log on both sides of Eqn. 4.32, one obtains 
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where 1,pL  is the sound pressure level at room 1 and 2,pL  sound pressure level at room 2 

and A2 is the equivalent absorption areas in room 2.   

 Thus Eqn. 4.33 can be used to determine the wall transmission loss, which is 

developed using energy methods.  Furthermore, the wall transmission loss can also be 

determined experimentally from Eqn. 4.33 by assuming the rooms to be reverberant and 

by placing a sound source in one of the reverberant rooms.  

4.3 Determination of Insertion loss of an Air Handler using Energy Methods 
The insertion loss of an air handler was determined experimentally. Then, a SEA model 

was created using the commercial software VA-One. The theory used is similar to that 

described in the prior section.  This section discusses the procedure to determine the 

insertion loss of an air handler experimentally. Then, the different test cases that are 

considered to validate the experimental results with simulation are documented. 

4.3.1 Procedure to Determine the Insertion Loss of an Air Handler Experimentally 
The air handler that is used for the measurement is shown in Figure 4.3. The air 

handler is built with panels made of galvanized steel. Each panel of the air handler is 

treated with absorption. Figure 4.4 shows two-inch fiber inserted into a high porosity 

perforated panel and attached to the panels of the air handler. 

In the case of an enclosure (air handler), it is more appropriate to consider the 

insertion loss as the primary metric instead of the transmission loss, due to measurement 

ease. Moreover, for an enclosure 

ILTL ≈           (4.34) 
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if the external sound field is anechoic and TL and IL are wide frequency band averages 

(at least one-third octave band) (Crocker (2007)[4]). 

 

Figure 4.3 Air handler utilized for acoustic measurement 

            
Figure 4.4 Fiberglass embedded into a perforated panel 

 

The insertion loss of the air handler can be determined by placing the air handler inside 

an anechoic chamber. First, the sound power level of the source is measured without the 

Fiberglass embedded into a perforated panel 
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air handler. Then, the sound source is placed inside the air handler and the sound power is 

measured 

 

level of the air handler and enclosed source is measured. Figure 4.5 shows the insertion 

loss measurement setup. 

 

 

 

Figure 4.5 Insertion loss measurement setup for an air handler 
The insertion loss of the air handler (IL) is determined as  

21 WW LLIL −=          (4.35) 

where 1WL is the sound power level of the source alone in dB, and 2WL  is the sound power 

level of the source with the enclosure in dB. The sound power is measured in accordance 

with ISO 9614-2 standard which is discussed in detail in Chapter 5. 

4.3.2 Validation Study 
In this section, the air handler shown in Figure 4.3 is considered for the validation 

study. The insertion loss of the air handler is measured as explained in Section 4.3.1. 

Then, the SEA model of the air handler is developed using VA-One (2010)[63] and is 

shown in figure 4.6. Additionally, Figure 4.7 shows the air handler with an opening. 

 

Sound Source 

Anechoic Chamber Anechoic Chamber 

LW1 LW2 

Air Handler 
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Figure 4.6 SEA model of the air handler 
 

 

 

 

 

 

 

 

Figure 4.7 Original and SEA model of the air handler with an opening 
The connections between the plates are modeled as junctions and the coupling 

loss factor of the two connected plates were automatically determined by VA-One. 

Junctions 

Opening Length =18 inch 
Opening Width =9 inch 
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Additionally, 0.1% damping is assumed in each plate of the air handler. Furthermore, the 

sound source to the air handler is modeled as a diffuse acoustic field and the exterior 

sound field is modeled as semi-infinite fluid. The semi-infinite fluid is analogous to an 

anechoic room surrounding the air handler.  Four test cases are considered for the 

validation study.  These include a 

• Fully sealed air handler with fiber. 

• Fully sealed air handler without fiber. 

• Air handler with an opening and with fiber.  

• Air handler with an opening and without fiber. 

 Figures 4.8-4.11 show the results for the four test cases. Both the measurement 

and the simulation results are recorded in one-third octave bands. From Figures 4.8-4.11, 

the following observations can be made: 

• The measured insertion loss of the air handler fully sealed with fiberglass has an 

excellent agreement with SEA over the entire frequency spectrum (Figure 4.7). 

The deviation between the measurement and the simulation is less than 3 dB over 

the entire frequency range measured. 

• For the air handler fully sealed without fiberglass, it is apparent from Figure 4.8 

that the simulation over predicts the measurement. The lack of agreement below 

2000 Hz between the SEA prediction and the measurement is due to the 

absorption in the enclosure and the damping in the walls being estimated. 
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Furthermore, modal behavior in the walls of the air handler is not considered in 

the SEA analysis. 

• Figures 4.9 and 4.10 compare the insertion loss an air handler with an opening, 

with and without the fiberglass respectively. The SEA agrees well with the 

measurement except for a few dips and peaks in measurement data at certain 

frequency bands. This is because the sound source used in the measurement is a 

loudspeaker which is not a monopole. Thus the location or the placement of the 

loudspeaker inside the air handler also influences the sound power radiating 

outside the air handler if the air handler has an opening.  Additionally, the 

damping in the walls of the air handler also influences the SEA prediction unless 

determined experimentally. 

 

Figure 4.8 Enclosure fully sealed with fiberglass 
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Figure 4.8 Enclosure fully sealed without fiberglass 

  Figure 4.9 Enclosure fully sealed without fiberglass 
 

 

 

 

 

 

 

 

Figure 4.10 Enclosure with an opening with fiberglass 
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Figure 4.11 Enclosure with an opening without fiberglass 

4.4 Summary 
Prior work on breakout noise has been summarized in this chapter.  In the 

research presented, energy methods are used to determine the wall transmission loss, 

which is the primary metric to assess the breakout noise. The power balance equations for 

a single subsystem and two subsystem cases are derived based on energy methods. 

Furthermore, the insertion loss of the air handler considered for this study was 

determined using energy methods (SEA) and compared experimentally. 

The SEA prediction and the measured insertion loss are in good agreement with 

each other for each case.  Results are not quite as good when there is very little 

absorption in the air handler. Moreover, the insertion loss of the air handler predicted 

using SEA could be improved by determining the SEA parameters experimentally. The 

aforementioned claim is validated by comparing the SEA model and measured machinery 

noise in the air handler, which will be discussed in Chapter 5. 
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CHAPTER 5 

MACHINERY NOISE 

5.1 Background 
Rotating machinery such as compressors, fans, and power generating equipment 

in HVAC systems produce dynamic loads, which lead to structure-borne noise in the 

building spaces (ASHRAE Handbook (2007)[2]).   Isolation or damping is normally used 

to treat structure-borne noise.  

  Several studies have documented the use of statistical energy analysis (SEA) to 

model structure-borne noise transmission due to the machinery.  For building 

applications, Craik (1982)[74] modeled the energy propagation through the walls and 

floor. The coupling loss factors between the rooms and the walls were measured and 

compared with mathematical models. Additionally, different types of sound sources such 

as an electromagnetic shaker, impact machine and an airborne sound source (loud 

speaker) were used to check the applicability of SEA to determine the vibration velocity 

of the walls and the sound power level.  

In addition to building applications, SEA has been used extensively in the 

automobile and ship industries. Cimerman et al. (1997)[36] determined the structure-

borne noise paths in an automobile. An impact hammer and a loudspeaker were used as 

sources for the structural and the acoustic subsystems respectively. Further, Cimerman et 

al (1997) [36] used SEA to determine the interior cabin noise of a truck operating at 55 

mph. Additionally, SEA was utilized to determine the contributions inside the truck 

cabin.  
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In similar work, Steel (1996)[75] and Yamazaki (2003)[37] applied SEA to 

predict the structure borne noise transmission in automobiles by determining the 

appropriate loss factors experimentally. Steel (1996) [75] determined the structure-borne 

sound transmission at the plate joints of a car body by exciting the plates with a plastic 

head hammer. Additionally, he determined the sound transmission at the rubber seals and 

the effect of coupling at the door hinges. Similarly, Yamazaki (2003) [37] applied 

experimental SEA on a V-6 automotive engine to determine the structure-borne noise 

transmission determining the coupling loss factors and the damping loss factors 

experimentally.  Lalor (1989)[33] used a two subsystem method to determine the 

coupling loss factors and the decay test to determine the damping loss factors. Finally, in 

doing so good agreement between the measured and the estimated vibration velocity of 

the engine was achieved. 

 Hynna et al. (1995) [76] applied SEA to the machinery noise transmission in 

large ship structures. Hynaa et al determined the sound pressure level and the vibration 

velocity in the compartment spaces using analytical SEA. The sound pressure levels were 

calculated by using diffuse field approximation in octave bands. 

5.2 Statistical Energy Analysis Background 
Systems consisting of a number of components are most easily modeled using 

energy methods instead of deterministic approaches. For built-up systems, deterministic 

models will be large and computationally expensive.  Furthermore, the response results 

from an ensemble of modes at high frequencies.  Modes are closely spaced and results are 

typically averaged in one-third octave bands.  In such cases, SEA will be preferred 

(Oldham and Hillarby (1991)[39]). SEA requires less detail about the model and 
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considers only resonant modes of the structure.  SEA is generally more accurate when the 

modal density is high which normally occurs at high frequencies. 

SEA predicts the acoustic behavior based on the energy flow in the system. The 

energy flow in the system is influenced by factors such as the coupling loss factor, 

damping loss factor and modal density. In order to improve the SEA predictions the 

aforementioned factors should be measured (Langley (1989)[30]; Lyon and DeJong, 

(1995)[29]). 

SEA has been well documented by Fahy (1994)[32], Burroughs et al (1997)[28], 

Woodhouse (1981)[31], Langley (1989) [30], Lyon and DeJong (1995) [29], and Oldham 

and Hillarby (1991)[38, 39]. Fahy (1994) [32] reviewed the underlying assumptions of 

SEA.  Burroughs et al. (1997)[28] illustrated SEA with two coupled oscillators and 

derived the SEA power balance equation. Burroughs et al. (1997) [28] also illustrated the 

difference between weak and strong coupling considering the damping and mass of the 

coupled oscillators.  

 SEA is a lumped parameter approach. By lumped parameter approach, it is 

assumed that the system has sufficient modal density to treat it in statistical sense. SEA 

assumes that the total energy in each subsystem, which is the sum of the energies of each 

mode in the subsystem, resides only in the resonant frequencies, and that those resonant 

frequencies are uniformly distributed over an analysis frequency band.  The spatially and 

frequency averaged energy densities for subsystems are the degrees of freedom for an 

SEA model.  Accordingly, SEA is computationally fast since the total number of degrees 

of freedom is much less than for a deterministic analyses even for large systems. 
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The chief assumptions of SEA are as follows (Lyon and DeJong (1995)[29]; 

Burroughs et al (1997)[28]). 

• The power flow between two coupled subsystems is proportional to the difference 

between the modal energies of the subsystems. 

• A power balance is maintained as the power transmitted to the subsystem is either 

dissipated by the subsystem itself due to damping or is transmitted to other subsystems 

through coupling.  

• The input power spectrum is assumed to be broadband.   Thus, there should be no 

strong pure tone in the input power spectra. 

• Energy is dissipated from the subsystems through connections. Energy may not be 

created or added to the subsystem at junctions 

• The damping loss factor remains constant irrespective of the modes in the 

subsystem and the frequency band.  

• The modes within the subsystem interact to share an equipartition of energy and 

the modal responses are incoherent. 

5.2.1 Statistical Energy Analysis of Two Coupled Subsystems 
A two-subsystem system is shown in Figure 5.1. The energy dissipated from a 

subsystem is proportional to the energy in the system.  Thus, the power dissipated from 

subsystem 1 (Π1, diss) is 

Π1, diss =ωE1η1,            (5.1) 
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where ω is the angular frequency, E1 is the energy in subsystem 1 due to the input power 

Π1, and η1 is the damping loss factor of subsystem 1.  The net power flow (Π12) between 

the two subsystems can be expressed as 

Π12, =ωE1η12- ωE2η21           (5.2) 

where E1 and E2 are the energies in subsystems 1 and 2, respectively. η12 is the coupling 

loss factor between the two subsystems.  The coupling loss factors from system 1 to 2 

(η12), and from 2 to 1 (η21) can be related to each other by  

221112 nn η=η              (5.3) 

where n1 and n2 are the modal densities in subsystems 1 and 2, respectively. Substituting 

Eqn. 5.3 into Eqn. 5.2, one obtains 
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Enωη           (5.4) 

From Eqn. 5.4, it is evident that the power flows from the subsystem with higher modal 

energy to the subsystem with lower modal energy.  

Using Eqns 5.1 and 5.2, a simple power balance equation for the two-subsystem 

case (Fig. 5.1) can be derived. The net power flow into a subsystem is equal to the power 

flow between the coupled subsystems and the power dissipated from the subsystem itself. 

For subsystem 1 and 2, 

       (5.5) 

and  
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 121212222 ηω−ηω+ηω=Π EEEnet          (5.6) 

The power input, coupling loss factor and the damping loss factors in Eqns. 5.5 

and 5.6 can be determined experimentally. Once the loss factors and the input power are 

known, the energy flow in the subsystems can be determined by solving the two 

simultaneous equations with energies in the two subsystems as two unknowns.  Once the 

energy in each subsystem is calculated the vibration velocity and the sound pressure level 

can be determined using the expressions 

1

12

M
Ev =

            (5.7)  

V
cEp

2
12

1
ρ

=
              (5.8) 

where v  is the time and spatially averaged vibration velocity, p is the time and spatially 

averaged sound pressure level, ρ  is the density of air, c is the speed of sound, M is the 

equivalent mass of the panel, and V is the total volume of the subsystem.  

 

 

 

 

Figure 5.1 Two Subsystem SEA model 
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5.3 Application of Experimental SEA to an Air Handler to determine the Structure-
Borne Noise 

  In this research work, the applicability of the experimental SEA in determining 

the structure-borne noise in HVAC plenums is studied. The air handler discussed in 

Chapter 4 is considered. Figure 5.2 shows the air handler of volume 0.72771 x 0.6095 x 

0.6095 m3. The air handler in the Figure 5.2 is a fairly complex structure assembled using 

panels made of galvanized steel. The panels are fastened to a well assembled framework 

which is also made of galvanized steel. Figure 5.3 shows how the panels are fastened and 

connected to each other by the frames. Two inch fiber is used to treat each panel of the 

air handler. The fiberglass is embedded into a perforated panel and is attached to each 

panel of the air handler. 

The air handler is an excellent candidate for SEA because the thickness of the 

panels of the air handler is mm. Therefore the panels possess enough structural modes 

even at frequencies less than 100Hz. Hence, SEA was applied to the air handler from 100 

Hz up, since most of the structure-borne noise problems are above 100 Hz. 

Hence, the vibration velocity and the sound power radiated from the panels of the 

air handler are determined experimentally. The SEA parameters such as the damping and 

coupling loss factors were measured, and input into  the SEA model of the air handler. 

Then, the measured vibration velocity and the sound power radiated from the panels of 

the air handler were compared to SEA prediction.  The technique used to determine the 

loss factors experimentally is discussed extensively in Chapter 6.  
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Figure 5.2 Air handler used in this research work 

 

Figure 5.3 Panels of the air handler fastened to the frames 
 

Frames 
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5.3.1 Procedure to determine the input power at the point of excitation 
The SEA prediction is highly influenced by the input power that is used to excite 

the structure. The power input can either be measured experimentally or predicted using a 

numerical procedure by first determining the driving point impedance. In this research 

work, the input power is measured experimentally and averaged over one-third octave 

band. Figure 5.4 shows a pictorial representation of the power input measurement setup. 

For a structural excitation, the power input is expressed as 

( ) [ ]YFFV ReRe 2* ==Π          (5.9)  

F
AY =           (5.10) 

where Π  is the input power, F is the force at the point of excitation, V* is the RMS 

amplitude of the vibration velocity of the structure, Y is the mobility and A is acceleration 

of the structure at the point of excitation  

In order to measure the input power, a load cell and an accelerometer are used. 

Firstly, the transfer function between the acceleration and the force at the point of 

excitation i.e. the mobility is measured. The force is measured by the load cell and the 

acceleration is measured by the accelerometer.  Then by substituting Eqn. 5.10 in Eqn. 

5.9, the input power can be determined experimentally. 

  Additionally, as the loss factors are independent of the position of the excitation, 

it is important to normalize the power input by calculating the average power per unit 

force squared in order to avoid unequal forces affecting the measurement. Moreover, it is 

essential to maintain the phase relationship between the force transducer and the 
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accelerometer in order to avoid errors. The aforementioned problem can be overcome by 

using an impedance head where the force transducer and the accelerometers are phase 

calibrated. In this research work, a load cell and anaccelerometer are maintained was 

placed in close proximity to each other during the power input measurement.  

 

 

 

 

 

  

     

Figure 5.4 Power input measurement setup 

5.3.2 Procedure to determine the Vibration Velocity and Sound Power 
  The vibration velocity of each panel of the air handler was measured using 

an accelerometer. An electromagnetic shaker was used to excite the panels of the air 

handler and the corresponding vibration velocity in each panel is measured. Additionally, 

the measured panel velocities are spatially averaged i.e. velocities are measured at 9 

discrete points on each panel of the air handler and then averaged. The velocities are 

averaged over one-third octave bands. Figure 5.5 shows the experimental setup to 

determine the vibration velocity. The vibration velocity is expressed as  
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ω
av =            (5.11) 

where v is the spatially averaged vibration velocity, a is the spatially averaged  measured 

acceleration and ω is the angular frequency. 

   

 

 

 

 

 

Figure 5.5 Setup to determine the vibration velocity 
Similarly, the sound power radiated from each panel of the air handler was 

measured using a two-microphone sound intensity probe. The sound intensity 

measurement is made in accordance with ISO 9614-2[62]. Then, the sound power 

radiated from the panel due to the structural excitation is calculated from the measured 

sound intensity. The sound intensity and the sound power are expressed as  

*~~Re
2
1

nupI =         (5.12) 

and 

SILW *=          (5.13) 
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where I is the sound intensity, p~  is the sound pressure, nu~  is the normal velocity, S is the 

surface area of the panel and LW is the sound power radiated from the panel. The 

experimental setup to determine the sound intensity is shown in Figure 5.3. 

 

 

   

 

 

 

Figure 5.6 Sound power measurement setup 

5.4 Validation Study 
 The validation study was performed to check the accuracy of experimental SEA 

in determining the structure-borne sound transmission in HVAC Plenums. The validation 

study compared the measured vibration velocity and the sound power radiated from the 

panels of an air handler (HVAC Plenum) with a SEA model.  The air handler discussed 

in Section 5.3 is considered for the validation study. 

The vibration velocity and the sound power radiated from the panels of the air 

handler was measured by exciting the air handler using an electromagnetic shaker. The 

measurement procedure is discussed in Section 5.3.2. Additionally the input power at the 

point of excitation is also measured based on the measurement procedure documented in 

section 5.3.1. 
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The SEA model of the air handler is created using VA-One(2010)[63] and is 

shown in Figure 5.7. Further the loss factors of the air handler were determined 

experimentally and input into the SEA model. The measured input power was used as the 

power source. 

The validation study also considered the applicability of experimental SEA to 

determine the structure-borne noise for a HVAC plenum with multiple structural sources. 

Hence, for the validation study, two cases were considered  

• Air handler with single structural source 

• Air handler with two structural sources  

 

Figure 5.7 SEA model of the Air Handler. 
 

Junctions 



71 
 

 5.4.1 Single Structural Source 
The air handler is excited using an electromagnetic shaker which was used as the 

single structural source. The electromagnetic shaker excited the rear panel of the air 

handler as shown in Figure 5.8. As the shaker excites the air handler, the vibration 

velocity of the excitation (rear) panel and the opposite (front) panel were measured at 9 

discrete points on the panel. Then the velocities were spatially averaged and in one-third 

octave bands. Additionally, the sound power radiating from the left side panel of the air 

handler was measured as the rear panel was excited.  

The measured vibration velocity of the rear and the front panel and the sound 

radiation measured from the left side panel are compared to the SEA model in Figures 5.9 

to 5.11 respectively. In Figures 5.9 to 5.11, experimental SEA refers to the SEA model of 

the air handler with the loss factors being measured. Measurement refers to the measured 

sound power and vibration velocity and software default refers to the SEA model that 

uses the default loss factors value specified in the software for the analysis. VA-One 

assumes 1% as the default damping loss factors for the plates. The software default case 

is chosen for comparison because engineers often use the default loss factors in 

commercial software if measured data is not available, in order to predict the structure- 

borne noise 

The vibration velocity predicted using the experimental SEA agrees well with the 

measurement. Both the measurement and the experimental SEA predictions are averaged 

over the third octave band. However, the software default parameters do not provide 

good agreement with measurement and overestimate the measured vibration velocity 

(especially in Figure 5.10).  
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Figure 5.11 compares the radiated sound power from the left side panel. 

Experimental SEA agrees well with measurement above 300 Hz. In this case, low modal 

density in the panel below 300 Hz might influence the sound power radiated 

Additionally, it is noted from figure 5.11 that using the software default 

parameters will lead to erroneous prediction for the entire frequency range. Thus, it can 

be concluded that SEA prediction will be more accurate, if loss factors are measured 

.   

 

Figure 5.8 Air handler excited by single source (electromagnetic shaker)  
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Figure 5.9 Excitation (rear) panel velocity 
 

 

 

 

 

 

 

 

Figure 5.10 Opposite (front) panel velocity 
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Figure 5.11 Sound power radiated from the adjacent (left side) panel 

5.4.2 Multiple Structural Sources 
Another case was considered in which the air handler was excited using two 

electromagnetic shakers as shown in Figure 5.12. From the figure, it can be noted that the 

rear and the right side panels of the air handler were excited using the electromagnetic 

shakers. The spatially averaged vibration velocity and the sound power radiated from the 

front and the top panels of the air handler were measured and compared with the SEA 

model. Again, all the comparisons are made in third-octave bands. Figure 5.13 compares 

the input power from the two electromagnetic shakers that are used to excite the air 

handler. It can be seen that the input power from the two electromagnetic shakers was 

similar over the entire frequency range.  
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  Figures 5.14 and 5.15 compare measured and SEA predicted front panel 

and top panel vibration velocities, respectively. Again, the velocities were measured at 9 

discrete points on the front and top panels and were spatially averaged. Figures 5.16 and 

5.17 show the sound power radiated from the front and the top panels of the air handler.  

In the graphs, the experimental SEA refers to the SEA model of the air handler, which 

used measured damping and coupling loss factors. Additionally, measurement refers to 

the measured vibration velocities and radiated sound power. 

From the Figures 5.14 to 5.17, it can be noted that, experimental SEA agrees well 

with measured vibration velocity as well as the sound power radiated from the panels 

except at very low frequencies. It is evident that experimental SEA can be used to 

accurately predict the structure borne noise for HVAC plenums (air handler), even if 

multiple sound sources excite the plenum. 
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 Figure 5.12 Air handler excited by two shakers 
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Figure 5.13 Power input from the two electromagnetic shakers shown in figure 5.9 
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Figure 5.14 Comparison of measured and predicted front panel velocity 

 

Figure 5.15 Comparison of measured and predicted top panel velocity 
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Figure 5.16 Comparison of measured and predicted sound power radiated from the front 
panel 

Figure 5.17 Comparison of measured and predicted sound power radiated from the top 
panel 
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5.5 Summary 
The theoretical background on machinery noise and the statistical energy analysis 

(SEA) was documented. The power balance equation for a two subsystem system is 

derived based on modal densities, loss factors and input power. Loss factors were 

determined experimentally to determine the structure-borne noise transmission for an air 

handler.  The vibration velocity and the sound power radiated from the panels were 

measured and validated analytically using SEA. 

The experimental SEA predictions agree very well with the measurement above 

250 Hz. It is observed that the SEA agreed well with measurement irrespective of the 

number of sound sources that excited the air handler. Moreover, experimental SEA 

proved to be significantly more accurate than a similar SEA model which utilized the 

default loss factors from the commercial software. It can be concluded that the coupling 

loss factors and damping loss factors used in the SEA model should be determined 

experimentally. The detailed discussion on the determination of the loss factors 

experimentally is documented in Chapter 6. 
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CHAPTER 6 

NOTES ON EXPERIMENTAL SEA 

6.1 Experimental SEA Background 
The techniques to determine important SEA parameters experimentally are 

discussed in this chapter.  Specifically, approaches for determining coupling and damping 

loss factors are examined. The determination of the SEA parameters will significantly 

influence the accuracy of the structural energy prediction, which will correspondingly 

improve predictions for the sound radiated from structures.  It was demonstrated in 

Section 5.4.1 that determining the SEA coupling loss factors experimentally improved 

the results.  

The coupling loss factor accounts for the energy flow between the two connected 

subsystems. On the other hand, the damping loss factor is the rate of energy flowing out 

of the subsystem through a dissipation mechanism ( Lyon and Dejong (1995))[29].  It is 

well known that dissipation mechanisms are difficult to model.  Accordingly, these loss 

factors are best determined experimentally 

Prior to determining the loss factors, parameters such as the modal energy and the 

input power are determined, as the loss factor calculation includes all the aforementioned 

parameters. Measurement of input power is discussed in Section 5.3.1 and the details 

about the modal energy measurement are reviewed in the next section. 

6.2 Modal Energy 
The acoustic response of each subsystem can be obtained from measuring the 

spatially averaged energy level .The spatially averaged energy level of a structural 

subsystem depends on the equivalent mass of the subsystem and the spatially averaged 
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velocity. The methodology to determine the equivalent mass of a subsystem is discussed 

in Section 6.3. The spatially averaged energy level of an acoustic subsystem depends on 

the sound pressure level of the subsystem at the near field and the volume of the acoustic 

cavity. The spatially averaged energy level (E) of a structural subsystem can be expressed 

as  

2vmE =         (6.1) 

where m is the equivalent mass of the subsystem and v is the spatially averaged vibration 

velocity of the subsystem.  The spatially averaged vibration can be estimated 

experimentally by measuring acceleration at a number of points and averaging.  For the 

investigation detailed here, 9 points were averaged on each panel. 

Likewise, the spatially averaged energy level for an acoustic subsystem can be expressed 

as 

2
2 p

c
VE
ρ

=         (6.2) 

where V is the volume of the airspace, c and ρ are the respective speed of sound and air 

density, and p is the spatially averaged sound pressure level.  The spatially averaged 

sound pressure level can be estimated experimentally by averaging at a number of points 

or by roving a microphone.  For this investigation, sound pressure results were averaged 

at 9 points. 

 

 



82 
 

6.3 Equivalent Mass 
 The concept of equivalent mass was developed by Lalor (1989)[33]. Similarly Wu 

et al. (1996)[77] and Gelat and Lalor (2001)[78] suggested that the estimation of the 

equivalent mass of a subsystem depends on the complexity of the structure, structural 

modes, and the homogeneity of the structure. In addition, the spatial sampling of the 

velocity will also affect the prediction of the mass of the subsystem, which can be 

explained from the Eqn.6.1. 

At first glance, Eqn. 6.1 appears to offer a straightforward relationship between 

the energy and the velocity. In practice, deriving the subsystem energy from the 

measurement of a set of velocities presents some difficulties because the spatial 

sampling of the velocity is made at discrete locations that may not yield an accurate 

representation of the subsystem space averaged velocity. Moreover, only the normal 

velocity is measured. Thus, the energy stored by longitudinal and in-plane waves is 

overlooked. 

Secondly, it is evident from Eqn. 6.1 that the total energy in the subsystem is 

equal to twice the kinetic energy.  This implies that the energy is stored in resonant 

modes since the kinetic and potential energy are equal to each other at a mode. However 

this SEA assumption is not always validated during measurement. 

  Wu et al. (1996)[77] concluded that, at low frequencies, the equivalent mass of a 

subsystem would be greater than the actual mass. As frequency increases, the agreement 

between the actual mass and equivalent mass of the subsystem should improve and will 

be similar. 

 In this study, the equivalent mass of the subsystem was determined 

experimentally. The equivalent mass is determined using the decay rate method. The 
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decay rate method depends on the transient response of a resonant mode with linear 

damping ( Lyon and DeJong, 1995[29]). In order to determine the transient response, the 

modes in the subsystem are initially excited and then the excitation is stopped. After 

terminating the excitations of the modes, the energy of the mode E at its resonant 

frequency f will decay in time at a rate proportional to  

tfeE ηπ2−∝          (6.3) 

where η is the damping in the subsystem, t is the decay time.  

 Moreover, the energy of the mode E is proportional to the square of the peak 

response amplitude C. The peak response amplitude refers to the amplitude of the 

displacements, pressure, etc. Hence, 

 CE ∝           (6.4)         

Since the energy in the mode is proportional to the square of the peak response 

amplitude, the peak response amplitude will decay at the rate of tfe ηπ−  .Therefore from 

Eqn. 6.4,  

 tfeC ηπ−≈          (6.5) 

Hence, at two successive times t1 and t2, the amplitude decays and can be expressed as  
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where C1and C2 are the response peak amplitudes at time t1 and t2  respectively.  

Eqn.6.6 can be written as 
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Further simplifying Eqn.6.7, one obtains 
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Finally, the decay rate is defined as the slope of the decay in dB/sec. From Eqn.6.8, 
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=        (6.9) 

and therefore 

 
f3.27

γη =          (6.10) 

where η is the damping loss factor of the subsystem, γ is decay rate in dB/sec and  f is the 

center frequency. 

 For an isolated subsystem, the input power to the subsystem is defined as the 

power absorbed by the subsystem (Gelat and Lalor, 2002 [78]). The input power to the 

isolated subsystem is expressed as  

 iii Eηω=Π          (6.11) 

where  iΠ is the input power, ω is the angular frequency, iE is the total energy, and iη is 

the damping loss factor for the subsystem i.  

From the Eqn.6.1, the total energy in the subsystem can be expressed as 

 2
ii

eq
ii VME =         (6.12) 

Substituting Eqn.6.12 into Eqn. 6.11, 

 iii
eq
ii VM ηω 2=Π         (6.13) 

Eqn.6.13 can be expressed in terms of eq
iM  as 
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iii

ieq
i
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M

ηω 2

Π
=         (6.14) 

Substituting Eqn.6.10 into Eqn.6.14 one obtains 

 

f
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ieq
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3.27
2 2 γπ

Π
=         (6.15) 

which can be simplified as 

 
223.0 iii

ieq
i V

M
γ
Π

=

        (6.16)

 

where eq
iM  is the equivalent mass , iΠ  is the input power, Vii is the spactially averaged 

velocity, and iγ  is the initial decay rate coefficient for the subsystem i.   

It is evident from Eqn. 6.16 that the initial decay rate coefficient is required to 

determine the equivalent mass. The initial decay rate coefficient can be obtained from a 

decay test. The initial slope of the transient response of the subsystem for an impulse 

excitation is obtained by impacting the subsystem using an impact hammer. Figure 6.1 

shows the top panel of the air handler being tapped using an impact hammer and the 

corresponding transient response is measured using an accelerometer. Figure 6.2 

represents the transient response of the top panel of the air handler, from which the slope 

of the initial decay is determined.  A filter, which is an inbuilt module in the LabVIEW 

based data acquisition system, is used to filter the transient response of the panel in one 

third octave bands. 
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Figure 6.1 Decay Test conducted on the top panel of the air handler 
 

 

 

 

 

 

 

 

Figure 6.2 Transient response of the top panel 
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6.4 Coupling Loss Factor 
The coupling loss factor is the rate of energy flow out of a subsystem through 

coupling to another subsystem. In other words, the coupling loss factor between two 

subsystems is defined as the ratio of the average power flow between the coupled mode 

groups (subsystems) to the difference between the dynamic modal energies of the 

coupled mode groups. (Lyon and DeJong, 1995[29]) Thus the net power between the 

systems can be expressed as 
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nωη        (6.17) 

where ijη  is the coupling loss factors and ω is the angular frequency, iE  and jE  are the 

energy, and ni  and nj are the modal densities of subsystems i and j respectively. 

The results in Sections 5.4.1 and 5.4.2 demonstrated, that SEA predictions are 

more accurate if the coupling loss factors are measured since it is very hard to model 

dissipation mechanisms and connections between subsystems in a complex structure.  

The coupling loss factors in a mechanical structure can be measured by using:  

• The Inverse Matrix Method 

• The Two Subsystem Method 

Both approaches will be discussed in the sections that follow. 

6.4.1 Inverse Matrix Method 
 The inverse matrix method was directly derived from the SEA power balance 

equation and was developed by Lalor (1989)[33]. He proposed that, for a system with N 

subsystems, N matrix equations of order (N-1) x (N-1) can be formulated, from which the 

coupling loss factors of the subsystems may be calculated. For example, the air handler 
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that is presented in Chapter 5 consists of 6 subsystems. By using Lalor’s approach, 6 sets 

of energy matrices of order 5 x 5 are formulated which can be used to determine the 

coupling loss factors. The matrix equation of order (N-1) x (N-1) can be expressed as 

      

           

            (6.18) 

 

 

where Eji is the energy of response panel j with respect to the excitation panel i, Πi  is the 

input power to the excitation panel i, ω is the angular frequency and ηij is the coupling 

loss factor between the subsystems i and j. 

The coupling loss factors of the air handler shown in Figure 6.3 are determined 

experimentally using Eqn. 6.18.  According to Lalor (1989)[33], the coupling loss factors 

of the air handler are measured by exciting each panel separately. For each panel 

excitation, the corresponding energy level in each of the six panels is measured.  

Therefore, an energy matrix of order 5 x 5 can be formed for each input power location. 

Hence, six energy matrices of order 5 x 5 can be wrote for the air handler.
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 Figure 6.3 Air handler used for coupling loss factors measurement 

Additionally, the inverse matrix expressed in Eqn. 6.18 is a well-conditioned 

matrix since the diagonal terms in the matrix are much larger than the off-diagonal terms. 

This can be verified by calculating the condition number of the inverse matrix. Figure 6.4 

compares the condition numbers of the inverse matrix formed from the front, top and rear 

panel excitation of the air handler. 

  

   Figure 6.4 Condition number of the inverse matrix. 
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Golub and Van Loan (1996)[79] commented that a matrix of order 5x5 will be 

well conditioned provided that the condition number doesn’t exceed 105. Accordingly, it 

is apparent that, for the inverse energy matrix of order 5 x 5, the condition number will 

not exceed 104 over the entire frequency band.  It can be concluded that the matrices 

which are inverted should be well conditioned. Therefore, once the energy matrix is 

formed, the coupling loss factor between the subsystems is calculated. Figure 6.5 shows 

the coupling loss factors of the rear and the top panel as the front panel of the air handler 

is excited.  Note that the coupling loss factors will be much higher for connected panels.  

Figure 6.6 shows the setup for the measurement. 

 

Figure 6.5 Comparison of the coupling loss factors 
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Figure 6.6 Representation of the coupling loss factors between the panels 
 

It is evident from Figure 6.5 that the coupling loss factor between the front and 

top panel is much higher than the coupling loss factor between the front and the rear 

panel. This is because the front and the top panel are directly connected to each other as 

indicated in Figure 6.6. On the other hand, the front and the rear panel are opposite to 

each other and there is no direct coupling between the two panels.  Thus, the energy 

transfer from the front to the rear panel is mainly through the frames, which are used to 

fasten the panels. 

Furthermore, Figures 6.7-6.9 show the coupling loss factors between all the 

panels of the air handler as the top panel, left side panel and the front panel are excited 

respectively. Notice that the panels that are directly connected to the excitation panel 

have high coupling loss factors when compared to the panels that are not directly 

connected. In other words, the coupling loss factors are high for subsystems (panels) with 

direct coupling when compared to the subsystems with indirect coupling. This implies 

that more energy should go through the connections.Moreover, the coupling loss factors 

are sometimes negative at low frequencies for subsystems that are not directly connected. 

W4 Rear 
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Front-Rear 

Front-Top 
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This is likely a result of measurement error since the energy transmitted to the indirectly 

connected panel is so low. 

Notice that the inverse matrix method requires measurement for each subsystem  

in order to determine the loss factors irrespective of the coupling between the subsystems. 

Accordingly, the inverse matrix method will only be feasible for systems having a 

reasonable number of subsystems. If the system is complex with more subsystems, then 

the resulting order of the inverse matrix will be higher and the level of effort for the 

measurement will be too high.  These limitations can be overcome by utilizing the two-

subsystem method to determine the coupling loss factors.   

 Figure 6.7 Comparison between the coupling loss factors between all the panels 

of the air handler as the top panel is excited. 
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 Figure 6.8 Comparison between the coupling loss factors between all the panels 
of the air handler as the left side panel is excited. 

 Figure 6.9 Comparison between the coupling loss factors between all the panels 
of the air handler as the front panel is excited. 
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6.4.2 Two-Subsystem Method 
The two-subsystem method is a simpler approach to determine the coupling loss 

factors. Using this approach, only two subsystems, which have direct coupling with each 

other, are measured. Thus, the two-subsystem method doesn’t consider the entire system 

to determine the coupling loss factors. Rather, it considers a pair of subsystems that are 

directly coupled. Figure 6.10 shows a schematic illustrating the two-subsystem approach. 

 

 

 

 

 

 

 

 

Figure 6.10 Two Subsystem Method 
 

 The two subsystem method (Lalor (1990)[80]) assumes that coupling between the 

subsystems should be weak. In other words the modal energy of the excited subsystem 

must be greater than that of the modal energy of the passive subsystem connected to it. 

This is achieved by increasing the damping of the response subsystem. In the case of the 

air handler, which is used in this research, the response panel was heavily damped using 

sand bags. By increasing the damping of the response panel, it is assumed that the power 

flows directly from the excited subsystem, to the response subsystem, even if there is a 
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Subsystem 2 (response panel) 

Response Panel Heavily Damped 
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secondary energy path i.e. even if a third panel is attached to the excitation and the 

response panel.  

Figure 6.11 shows an SEA model of a three panel system with the response panel 

being heavily damped (5% damping) and the excitation panel and the third panel, which 

is the secondary path, assumed to have a damping of 1% each. Figure 6.12 shows the 

comparison of the energy flow in the response panel with and without the secondary 

energy path. It is evident from the Figure 6.12 that the presence of the secondary path 

doesn’t affect the energy flow into the response panel if the response panel is heavily 

damped. Further, the effect of measurement error is minimized by making the response 

panel energy sink. 

 

 

 

 

 

 

 

 

 

 

Figure 6.11 SEA model of a two subsystem system with a secondary path 
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Figure 6.12 Comparison of the energy flow in the response panel 
 

Figure 6.13 shows the panels of the air handler with sand bags attached. 

Additionally, Figures 6.14 and 6.15 compare damping loss factors of the right side panel 

and left side panel of the air handler respectively. It is evident from Figures 6.14 and 6.15 

that the damping loss factor of the panels is increased by nearly an order of magnitude 

when sand bags are attached. The methods to determine the damping loss factors are 

extensively discussed in Section 6.5 

 

Figure 6.13 Panels heavily damped using sand bags 
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 Figure 6.14 Damping Loss Factor of the right side panel of the air handler 

 

Figure 6.15 Damping Loss Factor of the left side panel of the air handler 
 

Thus coupling loss factor for subsystems with direct coupling can be determined 

using  
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It is assumed that the energy in the directly driven subsystem is greater than the 

subsystem connected to it. Therefore 

0
22

12 ≅
E
E          (6.20) 

Substituting Eqn. 6.20 into Eqn. 6.19 gives 
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which can be rewritten as 
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The coupling loss factor (ηij is the coupling loss factor between the subsystems i and j) in 

Eqn. 6.22 is generalized as 
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where Πj is the input power to the excitation panel j, Eii is the energy in the excitation 

panel i , Ejj is the energy in the excitation panel j, and Eji is the energy in the response 

panel j for an excitation panel i. 

Figures 6.16 to 6.18 compare the coupling loss factor of the left side panel and the 

rear panel, the rear panel and the top panel, and the right side panel and the top panel of 

the air handler, respectively. In each case, coupling loss factors are compared between the 

inverse matrix method and the two-subsystem method. 
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Figure 6.16 Comparison of the coupling loss factors between the left side panel and the 
rear panel of the air handler.     

 Figure 6.17 Comparison of the coupling loss factors between the rear panel and 
the top panel of the air handler. 
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Figure 6.18 Comparison of the coupling loss factors between the right side panel and the 
top panel of the air handler. 

 

From Figures 6.16 to 6.18, the following observations can be made. The coupling 

loss factors obtained using either approach agrees well except in low frequency bands. 

For air handlers, it can be concluded that the two subsystem method can be utilized 

instead of the inverse matrix because 

• The measurement time and the computational time are much less since 

only two subsystems are considered for measurement 

• The two-subsystem method doesn’t involve inverse matrices and hence 

the coupling loss factor predictions are less prone to ill conditioning. 

• The results presented demonstrate that coupling is unimportant between 

indirectly connected panels for air handlers  
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6.5 Damping Loss Factor 
The damping loss factor is defined as the amount of power dissipated by the 

subsystem to the maximum potential energy of the subsystem (Lyon and DeJong 

(1995)[29]). Generally, damping is due to various factors such as friction and viscosity, 

and will depend on how subsystems are connected to each other. The two most common 

methods of determining the damping loss factors are  

•  The Decay Rate Method 

•  The Energy Matrix Method 

6.5.1 Decay Rate Method 
The response of the subsystem is measured in the time domain by exciting the 

subsystem using an impulse. The modal energy at resonance frequencies decays as shown 

in the Figure 6.2, and the initial slope of the transient response is determined using a band 

pass filter in particular frequency bands and is called the decay rate (DR). Accordingly, 

the damping loss factor (η) is expressed from Eqn. 6.10 as  

f
DR

3.27
=η           (6.24) 

where f is the center frequency of the third octave band.   

6.5.2 Energy Matrix Method 
Alternatively, the loss factors can also be found using the energy matrix approach 

described earlier. From the power balance equation of an isolated subsystem (Lalor 

(1989)[33]), the damping loss factor η  can be expressed as  

intotE Π= −11
ω

η           (6.25) 



102 
 

where totE is the total energy in the subsystem, and inΠ  is the input power to the 

subsystem 

For a system with N subsystems, the damping loss factor expression involves an 

inverse energy matrix of order N x N. Hence, the damping loss factors ( ) for a system 

consisting of N subsystems is expressed as 

















Π

Π
















=
















−

NNNN

N

N EE

EE









1

1

1

1111 1
ω

η

η
       (6.26) 

where  is the power input to the subsystem i, and  is the measured energy in 

subsystem i due to an excitation in subsystem j. 

In this research work, the aforementioned methods to determine the damping loss 

factors are applied to the air handler. Figures 6.19 to 6.24 compares the damping loss 

factors measured using the decay rate method and the energy matrix method for the front 

panel, right side panel, rear panel, left side panel, top panel and the bottom panel of the 

air handler, respectively.  
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Figure 6.19 Damping loss factor of the front panel of the air handler. 

Figure 6.20 Damping loss factor of the right side panel of the air handler. 
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Figure 6.21 Damping loss factor of the rear panel of the air handler. 

Figure 6.22 Damping loss factor of the left side panel of the air handler. 
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Figure 6.23 Damping loss factor of the top panel of the air handler. 

 

 Figure 6.24 Damping loss factor of the bottom panel of the air handler. 

  
From Figures 6.19-6.24, the following observations can be made. The damping 

loss factors calculated using the decay rate method and the energy matrix method have a 

good agreement with each other over the entire frequency range. Furthermore, in the case 
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of a complex system, which involves more than 6 subsystems, the decay rate method is 

preferred because the energy matrix method involves an inverse matrix. Furthermore, the 

order of the inverse matrix increases as the number of subsystems increases. Moreover, it 

is likely that method will be more prone to error as the order of the matrix increases. 

6.6 Summary 
The methods to determine the coupling and damping loss factors have been 

discussed extensively in this chapter. Furthermore, the importance of measuring the loss 

factors and their influence on the SEA predictions are also documented.  Specifically, the 

methods to determine the modal energy and the equivalent mass, which are used in 

determining the loss factor, have been detailed.  

Secondly, the determination of the coupling loss factors based on the inverse 

matrix and the two-subsystem method has been discussed. A good agreement is seen 

between the coupling loss factors predicted using each approach. The two-subsystem 

method is recommended for air handlers because the measurements are easier to make, 

and the method does not entail a matrix inversion. 

Finally, the determination of the damping loss factors using the decay rate method 

and the energy matrix method has been surveyed. The damping loss factors predicted by 

the aforementioned methods have good agreement over the entire frequency band. 

Further, the decay rate method is recommended over the energy matrix method, as the 

energy matrix method requires a matrix inversion.  
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CHAPTER 7 

CONCLUSIONS 

7.1 Summary and Conclusions 
Noise problems in building spaces are primarily induced by HVAC power 

generating equipment including fans, compressors, chillers, pumps, and boilers. For the 

most part, the noise generated by the power generating equipment is propagated either 

structurally or acoustically through the duct systems.  

Generally, the sound energy propagated through the duct air space is called 

airborne noise and the sound transmission through the duct structure itself is termed 

structure-borne noise. The structure-borne noise in the HVAC system can be categorized 

as two types: (i) duct breakout or (ii) machinery noise. The duct breakout, which is an 

indirect airborne path, propagates energy from the duct air space to the surrounding duct 

walls, which in turn radiate energy into building spaces. On the other hand, rotating 

machinery transmits sound energy to other parts of the building by exciting the floor, 

wall, or ceiling of a source room.  The focus of this thesis was to assess different ways to 

model each of the three energy transmission paths.   

7.2 Airborne Attenuation in Plenums 
The first energy path investigated was the airborne path through the duct systems.  

Insertion loss is normally used instead of transmission loss as the metric to characterize 

the attenuation in HVAC plenums since it is easier to measure.  Furthermore, it is an 

appropriate metric above the plane wave cutoff frequency.  

The acoustic FEM with special boundary condition was used to determine the 

insertion loss.  A diffuse acoustic field input was used along with a baffled termination.  
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The acoustic FEM was compared to published measured results (Mouratidis and Becker, 

2003[9]), the ASHRAE Handbook (2007)[2] model developed by Wells (1958)[5], SEA, 

and an empirical model developed by Mouratidis and Becker (2003) [9]. Eight different 

duct configurations were considered including cases with inlet/outlet ducts inline or at 

right angles, and lined and unlined with fiber.  

It was concluded that the acoustic FEM with special boundary condition agreed 

well with the measured insertion loss over the entire frequency spectrum except at low 

frequencies. Comparisons were made in one third-octave bands and were within 3 dB 

except for a few isolated frequency bands. It was notable that plane wave behavior was 

not assumed in the plenum or even in the inlet/outlet ducts. 

 The ASHRAE Handbook (2007) [2] model agreed well with the measured 

insertion loss above the plane wave cutoff frequency for inline ducts. For plenums with 

inlet/outlet ducts offset by 90 degrees, the Handbook did not compare well with the 

measured noise reduction above the plane wave cutoff frequency. Below the plane wave 

cutoff, the Handbook is off by as much as 10 dB since insertion loss will be sensitive to 

the individual plenum modes. The Handbook does not account for the modal character of 

the duct cavities since it is an energy approach. SEA was similar to the ASHRAE 

Handbook (2007) as both techniques are based on energy principles. 

The empirical model developed by Mouratidis and Becker (2003) [9] appeared to 

be superior to the ASHRAE Handbook (2007) at low frequencies though results were 

mixed at high frequencies. However, the empirical model has limited in application since 

it was only developed for plenums with inlet and outlet ducts configured inline with each 

other.  
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7.3 Breakout Noise in Duct Systems  
The insertion loss of an enclosure was used as the primary metric to assess the 

airborne indirect path, which is often referred to as breakout noise. An air handler 

(HVAC plenum) was used as a test case and the insertion loss was measured and results 

were compared with SEA predictions. The SEA model of the air handler was modeled 

and analyzed using VA-One in narrowband, and results were later summed in third-

octave bands. Four different air handler configurations were examined.  These included a: 

• Full enclosure with fiber lining. 

• Full enclosure with no fiber lining. 

• Partial enclosure with fiber lining. 

• Partial enclosure with no fiber lining. 

 SEA agreed well with the measured insertion loss for the full enclosure with fiber 

lining over the entire frequency spectrum. For unlined cases, the SEA under predicted the 

insertion loss of the air handler by 5 dB. In that case, the absorption and damping of the 

walls were assumed.  Accordingly, one would anticipate that the result would improve 

significantly if damping was measured instead.  For the partially enclosed air handler, 

SEA agreed well with the measurement except at the enclosure resonances. 

7.4 Machinery Noise in HVAC Plenums 
In this research work, the structure-borne noise path due to vibrations caused by 

the machinery in HVAC plenums was examined using SEA.  SEA was used since the air 

handler walls are thin and should be modally dense.  In order to test the applicability of 

SEA, the air handler was excited with an electromagnetic shaker(s) at a single location 

and at two locations.  
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Damping and coupling loss factors were determined experimentally and the 

measured loss factors were then incorporated into the SEA model of the air handler. The 

spatially averaged vibration velocity of the panels and the sound power radiated from 

individual panels of the air handler were measured and compared with the SEA model. It 

was concluded that experimental SEA agreed well with measurement over the entire 

frequency spectrum.  It was observed that the SEA model was very sensitive to the 

selection of loss factors and assumed loss factors were not sufficient.  Accordingly, it was 

concluded that he loss factors used in the SEA model should be determined 

experimentally. Furthermore, SEA was used successfully to determine the response 

irrespective of the number of energy sources exciting the plenum.  However, it was 

crucial to measure the input power of the source. 

7.4.1 Determination of Loss Factors 
Experimental SEA was used to determine the coupling and damping loss factors. 

Though experimental SEA is utilized heavily in the automotive industry, the approach is 

novel to the HVAC industry to our knowledge.  Coupling loss factors were determined 

between the panels of the air handler using the energy matrix and two-subsystem 

methods.  Both methods agreed well. However, the two-subsystem method was preferred 

because of ease and the fact that the energy matrix approach is prone to errors 

particularly for a high number of subsystems since the matrix must be inverted. The two-

subsystem method can only be used to find loss factors between directly coupled 

subsystems.  However, the results suggest that direct coupling is most important for air 

handlers and ducts. 
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Loss factors were determined using the (i) decay rate and (ii) energy matrix 

methods. The damping loss factors of the panels of the air handler determined by the 

aforementioned methods were in good agreement with one another.  However, the decay 

rate method was preferred over the energy matrix method in order to avoid the necessity 

of performing a matrix inversion. 

7.5 Future Work 
The research documented in this thesis, demonstrates various techniques to assess 

the airborne direct, airborne indirect and the structure borne noise paths in the HVAC 

plenums. In the aforementioned sections, the viability of the approaches used by the 

ASHRAE community is documented. In this section the possible follow-on work is 

outlined.  

Firstly, it is recommended to the ASHRAE community to utilize the modeling 

approach (acoustic FEM with special boundary conditions) to determine the airborne path 

in an assortment of HVAC plenum and duct configurations. Then, an empirical equation 

can be devised based on the simulation results similar to the empirical model developed 

by Mouratidis and Becker (2003) [9]. Thus an improved empirical model to predict the 

airborne direct path in HVAC plenums can be developed. The ASHRAE community can 

utilize the newly developed model instead of the existing models like the ASHRAE 

Handbook model (2007)[2] or the  Mouratidis and Becker model (2003) [9]) which have 

limited application for some  plenum configurations and are problematic at low 

frequencies. 

Secondly, the experimental SEA can be used to determine the damping loss 

factors and coupling loss factors of the HVAC plenums. The advantage of using 
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experimental SEA is that once the damping loss factors and the coupling loss factors of a 

plenum are determined, the data can be used to model similar plenums and ducts. 

Therefore, a database on the damping loss factors and the coupling loss factors of 

plenums with a particular design configuration can be formed.  
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