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ABSTRACT OF DISSERTATION 
 
 
 
 
 

ADVANCED STUDIES ON SERIES IMPEDANCE IN WAVEGUIDES WITH AN 
EMPHASIS ON SOURCE AND TRANSFER IMPEDANCE 

 
Series impedances, including source and transfer impedances, are 

commonly used to model a variety of noise sources and noise treatment 

elements in duct systems. Particle velocity is assumed to be constant on the 

plane where the series impedances are defined. The research reported herein 

details investigations into measuring source and transfer impedance.  Especially, 

the measurement and prediction of the transfer impedance of micro-perforated 

panel (MPP) absorbers is considered. 

A wave decomposition method for measuring source impedance and 

source strength was developed that was purely based on acoustic concepts 

instead of the equivalent circuit analysis.  The method developed is a two-load 

method.  However, it is not necessary to know the impedances of either load a 

priori.  The selection of proper loads was investigated via an error analysis, and 

the results suggested that it was best to choose one resistive and one reactive 

load. 

In addition, a novel type of perforated element was investigated.  MPP 

absorbers are metal or plastic panels with sub-millimeter size holes or slits.  In 

the past, Maa's equation has been used to characterize their performance.  

However, Maa's equation is only valid for circular perforations.  In this research, 

an inverse method using a nonlinear least square data fitting algorithm was 

developed to estimate effective parameters that could be used in Maa's theory. 



This inverse approach was also used to aid in understanding the effect of dust 

and fluid contamination on the performance of MPP absorbers. In addition, an 

approach to enhance the attenuation of MPP absorbers by partitioning the 

backing cavity was investigated experimentally and numerically.  Results 

indicated that partitioning improved the attenuating of grazing sound waves. 

The effect of modifying both the source and transfer impedances on the 

system response was also studied using the Moebius transformation. It was 

demonstrated that the Moebius transformation is a mathematical tool that can be 

employed to aid in determining and understanding the impact of acoustic 

impedance modifications on a vibro-acoustic system. 

 

 

KEYWORDS:  series impedance, source impedance, transfer impedance, micro-

perforated panel absorbers, Moebius transformation 
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CHAPTER 1  
INTRODUCTION 

 
1.1 Background 

 
Increasing noise pollution is well-acknowledged as an important hazard to human 

health. Reducing noise levels is not only a legal restriction but also a major factor 

in the marketability and competitiveness of industrial products. Meanwhile, the 

conflict between the need for more powerful equipment and the demand for 

quieter environments poses a challenging task for noise engineers. To mitigate 

noise emissions while keeping the equipment powerful and efficient, engineers 

must understand the principles of noise generation and transmission, and how to 

apply noise control strategies. (Crocker, 2007, Maling, 2007, Bockhoff, 2007).  

Noise control strategies can be classified according to their relationship to 

noise sources: (1) those that reduce noise and vibration at the source, (2) and 

those that reduce the noise and vibration in the propagation path. For the first 

type of approaches, it is possible to reduce noise at the source by reducing the 

power of the equipment or by redesigning its active components. The second 

type of approaches reduces noise in its structure-borne and airborne propagation 

paths by utilizing vibration isolation methods, acoustical enclosures, mufflers and 

silencers, and reducing radiation efficiency of the radiating surfaces, etc. 

(Crocker and Ivanov, 1993). Many noise control strategies involve utilizing 

impedance modification in the sound and vibration energy path. For example, 

impedance mismatches can be introduced into structures and acoustic 

waveguides by adding isolators and reactive muffler components, respectively 

(Fahy, 2001). 

In this document, the emphasis will be on reducing noise in waveguides 

(i.e., mufflers and silencers). Examples include engine exhaust noise, heating, 

ventilation, and air conditioning (HVAC) noise and fluid induced noise 

propagation in hydraulic power systems. The energy is produced by a source 

and is transmitted through a waveguide until it reaches a termination.  Sources 
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include engines, fans, and hydraulic pumps. The waveguide normally consists of 

straight pipes, and series of muffler and/or silencer components which are 

intended to either reflect sound back toward the source or absorb the sound.  

Normally, sound is emitted to the environment through an opening at the 

termination of the waveguide (Munjal, 1987). Figure 1.1 shows a typical airborne 

direct path including the source, duct and termination. In the figure, a muffler and 

a Helmholtz resonator are used to illustrate noise cancelling and absorbing 

treatments. 

 

 

 

 

 

 

Figure 1.1 A typical source-transmission-radiation path for engine exhaust pipe. 

In most case, the boundaries of waveguide models can be simulated by a 

combination of a source and an impedance.  For example, an engine exhaust 

source can be modeled as a frequency-varying source strength and source 

impedance.  Similarly, a termination can be modeled as an impedance typically 

denoted as a radiation or termination impedance.  Perforated plates or thin layers 

of absorbing materials divide a waveguide into upstream and downstream sound 

fields.  These sound fields are linked to one another by a transfer impedance. 

It is very important for acoustic engineers to be able to model acoustic 

elements using simplified representations, since computational modeling of these 

elements can be a formidable task. For example, source characterization of an 

internal combustion engine based on its thermodynamic processes is difficult. 

Furthermore, impedance provides a mechanism to model duct elements and 

acoustic materials. 

Engine Muffler 

Helmholtz Resonator 

Open end 

Noise Source Noise Treatment Units Noise Radiation 
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Each of the aforementioned impedances can be characterized as series 

impedances because the particle velocity is assumed to constant while there is a 

sound pressure difference on each side (Munjal, 1987, Melling, 1973). Two types 

of series impedances, source impedance and transfer impedance, will be 

reviewed in this dissertation, including their theoretical modeling, measurement 

techniques and applications (Boden, 1995, Wu, 2003).  

 The current research is an attempt to investigate the source impedance 

and transfer impedance as a group, and to improve measurement and modeling 

of these impedances by utilizing the concepts of series impedance, eventually to 

apply these impedances to better understand the acoustic performance of the 

duct system. 

 

1.2 Objectives 
 
The present research focuses on developing new measurement and 

modeling methods to characterize source impedance and transfer impedance. 

Specifically, the following objectives were accomplished. 

• A new incident wave decomposition method was utilized to model and 

measure source impedance.  

• The transfer impedance was measured by utilizing wave decomposition 

both upstream and downstream of the sample. 

• A process for determining effective parameters of microperforated panel 

(MPP) absorbers was developed.  MPP absorbers are novel acoustical 

materials that can be modeled as a transfer impedance.  

• The influence of modification of both source and transfer impedances on 

the system response was studied using the Moebius transformation. 

 

1.3 Organization 
 
This dissertation is organized in the following manner. The following chapter 

reviews the concepts of series and parallel acoustic impedances. Methods for 
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measuring and modeling series impedance are discussed.  Chapter 3 reviews 

transfer impedance models for ordinary perforated panels and micro-perforated 

panels. The effect of changing the porosity, hole diameter, thickness and backing 

cavity depth on the transfer impedance of micro-perforated panels is studied.   

The main contributions of this work are summarized in Chapters 4, 5, and 

6. In Chapter 4, a wave decomposition approach is developed to measure source 

impedance.  This is followed by an examination of the effect of load impedance 

on the accuracy of the developed approach. 

The emphasis in Chapter 5 is on MPP absorbers.  The first half of the 

chapter focuses on how MPP absorbers can be characterized using 

measurement and theory.  A direct single load method based on a series 

impedance assumption is used to measure transfer impedance of different 

perforated panels.  Then, effective parameters of MPP absorbers are determined 

using a nonlinear least square data fitting algorithm. 

The second half of the chapter examines how MPP absorbers are best 

installed and utilized in enclosures and silencers. It is demonstrated that 

partitioning of the adjoining air cavity enhances the absorptive performance.  To 

better understand the physics, the boundary element method (BEM) is used to 

model the MPP absorber and backing cavity in a sealed enclosure. The 

measured and BEM results demonstrate that attenuation of grazing sound waves 

is enhanced by partitioning the backing cavity. 

In Chapter 6, a simple optimization approach selecting impedances is 

demonstrated.  It is shown that that the acoustic response will trace a circle in the 

complex plane for straight line or circular modifications to mechanical or 

acoustical impedance.  This is due to the fact that the equations relating the 

acoustic response to the modification are in a form consistent with the Moebius 

transformation.  This is demonstrated for series and parallel mechanical and 

acoustic impedances. 

Conclusions and recommendations for future work are discussed in 

Chapter 7. 
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CHAPTER 2  
REVIEW OF SERIES IMPEDANCES 

 
In vibro-acoustic analysis, considerable research has focused on utilizing 

simplified representations to model complicated components and structures 

(Munjal, 1987, Kinsler, 1999). By applying the simplified models, researchers are 

able to reduce analysis time for quantifying noise transmission from sources to 

receivers, and for evaluating the effect of different noise reduction measures. 

Thus, noise reduction strategies can be assessed without resorting to trial-and-

error solutions. (Boden and Glav, 2007). 

When modeling acoustic problems, the concept of acoustic impedance is 

often useful for characterizing boundary conditions. This dissertation specifically 

focuses on the impedances classified as series impedances.  This category of 

impedance is often utilized for simulating the boundary conditions in waveguides.  

As a preface, the fundamentals of acoustic wave propagation and impedances 

will be reviewed. 

 

2.1 Acoustic Impedances 
 

2.1.1 Acoustic Wave Equation 
Acoustic waves are one of a variety of pressure disturbances that can 

propagate through a compressible fluid. When a sound wave passes a point in a 

compressible fluid such as air, the molecules move back and forth in the direction 

of propagation, producing adjacent regions of compression and expansion. Thus, 

it introduces momentary changes to the ambient values of the pressure and 

density (Seybert, 2000). The ambient pressure and density are assumed to be 

independent of position of the point, i.e. the fluid is assumed to be homogeneous.  

The disturbance to the ambient pressure is called the acoustic pressure, 

which is a scalar. The process of compression and expansion also results in 

motion of the particle of the fluid about the point. The velocity of this motion is 

called the particle velocity, which is a vector. The term particle of the fluid means 
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a volume element large enough to contain millions of molecules so that the fluid 

may be thought of as a continuous medium, yet small enough that all acoustic 

variables may be considered nearly constant throughout the volume element 

(Kinsler, 1999).  

In order to formulating the mathematical description of acoustic waves, 

several assumptions are commonly employed: (1) viscous forces are neglected, 

the fluid is inviscid; (2) Body forces such as gravity are neglected; (3) fluid 

properties are homogeneous, isotropic, and perfectly elastic (or obey the Ideal 

Gas Law); and (4) the acoustic disturbances are small.  In most cases of noise 

control, acoustic variables such as acoustic pressure and particle velocity are 

much less than the ambient value. The analysis of small disturbances to the 

ambient state of a fluid is referred to as linear acoustics (Seybert, 2000). 

For small (acoustic) changes about the ambient state of an ideal gas, the 

pressure-density relationship (or Equation of State) can be expressed as: 

ρ
ρ

′







∂
∂

=
0

Pp                                                       (2.1.1) 

where p  is the acoustic pressure fluctuation, P  is total value of ambient 

pressure ( 0P ) and acoustic pressure ( p ), ρ  is the total density of ambient 

density 0ρ  and density fluctuation ρ′ . For adiabatic processes, this relationship 

can be simplified as: 

ρ′= 2cp                                                       (2.1.2) 

where c  is the speed of sound. 

The conservation of mass principle states that the net rate with which 

mass flows into a spatially fixed volume through its surface must equal the rate 

with which the mass within the volume increases. Based on this principle, the 

linearized Equation of Continuity can be obtained as: 

u
t

⋅∇−=
∂
′∂

0ρ
ρ

                                                      (2.1.3) 

where  t is time, ⋅∇  is the divergence operator, and u  is the particle velocity. 
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To obtain the equation of motion for a fluid, Newton's second saw is 

applied to a moving fluid element which contains a specific mass.  According to 

Newton’s second law, the mass of a fluid element times its acceleration is equal 

to the net force acting on that fluid element. By neglecting the viscosity of the 

fluid, we can write a linearized inviscid force equation, called the Euler’s Equation 

of motion, as: 

p
t
u

−∇=
∂
∂

0ρ                                                  (2.1.4) 

By eliminating the density fluctuations from the mass conservation 

equation using the equation of state, we can combine the three linearized 

equations: the equation of state, the equation of continuity, and the Euler’s 

equation of motion, and obtain the acoustic wave equation as (Kinsler, 1999): 

.1
2

2

2
2

t
p

c
p

∂
∂

=∇                                               (2.1.5) 

In most cases, acoustic waves are time-harmonic waves, i.e., continuous 

waves at a constant frequency ω . The sound pressure p  at any point fluctuates 

sinusoidally with frequency ω : 
tjep ωp=                                                    (2.1.6) 

where p  is the complex amplitude of sound pressure fluctuation at any point.  

Substituting equation (2.1.6) into equation (2.1.5) yields: 

022 =+∇ pp k                                                  (2.1.7) 

where ck ω=  is called the wave number. Equation (2.1.7) is called the 
Helmholtz equation for homogeneous media. 

For time-harmonic acoustic waves, the relation between particle velocity 
and acoustic pressure can be obtained from the linearized equation of continuity: 

pu ∇=
0

1
ωρj

                                                   (2.1.8) 

where u  is the complex amplitude of the particle velocity. 
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2.1.2 Specific Acoustic Impedance 
Three common boundary conditions for the solution of the Helmholtz 

equation are classified into either active or passive boundary conditions. Active 

boundary conditions are those in which either the motion or sound pressure on 

the boundary is known (Seybert, 2000). 

The first type of active boundary condition occurs when the sound 

pressure is known. If the sound pressure is defined as ep  on the boundary of the 

fluid, then the appropriate boundary condition is: 

1spp e  on  =                                                       (2.1.9) 

This is called a pressure or Dirichlet boundary condition. 

The second type of active boundary condition occurs when the normal 

velocity is known. If the normal particle velocity is defined as nu  on the boundary 

of the fluid, then the appropriate boundary condition is: 

20 suj
n
p

n  on  ωρ−=
∂
∂                                              (2.1.10) 

This is termed a velocity or Neumann boundary condition. 

A passive boundary condition occurs when sound reflects from a passive 

surface, i.e. absorbing material, in contact with the medium. When acoustic 

waves contact with the surface of the fluid, the amplitude and the phase of the 

reflected wave relative to the incident wave depends on the acoustic impedance 

of the surface or boundary. Even though the sound pressure and particle velocity 

are unknown, their relationship can be described by the acoustic impedance. The 

appropriate boundary condition for known acoustic impedance is: 

3
1 sp
z

j
n
p

u
pz
n

 on   or ωρ−=
∂
∂

=                                    (2.1.11) 

This termed an impedance or Robin boundary condition. 

Similar to Equation (2.1.11), the specific acoustic impedance at any point 

in the acoustic field is defined as the ratio of pressure to the particle velocity 

(Kinsler, 1999): 

 
u
pz =                                                     (2.1.12) 
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It is the property of the medium and of the type of wave that is being propagated. 

The acoustic impedance determines the acoustic interaction between coupled 

regions of fluid because it indicates the degree of similarity between the acoustic 

properties of the regions. This determines the degree to which acoustic waves in 

one region are reflected and transmitted at the interface. It is also used to 

analyze the interaction between fluid and solid systems in relation to sound 

absorption, reflection and transmission. 

The acoustic impedance is a vector since it is the ratio of acoustic 

pressure as a scalar and particle velocity as a vector. The direction of impedance 

is determined by the direction of particle velocity. However, for acoustic waves in 

a uniform medium with no reflections or other interferences, the acoustic 

impedance is often called the characteristic impedance, since it is the 

characteristic property of the medium. The characteristic impedance is not 

directional. For example, the density of air is 1.21 kg/m3 and the speed of sound 

is 343 m/s at C20o and atmospheric pressure. Thus the characteristic impedance 

of air is 415 s/mpa ⋅ or rayls, which is the unit of acoustic impedance established 

in honor of Lord Rayleigh. 

In general, the acoustic impedance is complex since a phase relation 

exists between pressure and velocity. Its real part is called acoustic resistance, 

which represents the loss mechanisms an acoustic wave experiences, i.e. 

converting acoustic energy into heat; whereas its imaginary part is called 

acoustic reactance, which represents the ability of the medium to store the kinetic 

energy of the acoustic waves (Fahy, 2001). 

 

2.1.3 Acoustic Impedances in One-Dimensional (1-D) Waveguides 
If all the acoustic variables are functions of only one spatial coordinate, the 

phase of any variable is a constant on any plane perpendicular to this coordinate. 

Such a wave is called a plane wave.  

In duct acoustics, the plane wave assumption is desired because once 

sound pressure and particle velocity are constant across a plane perpendicular to 

the direction of propagation of the wave; functions of only one coordinate are 
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required to represent acoustic variables including acoustic impedance (Kinsler, 

1999). This simplifies the problem and reduces the analysis time. In order for 

plane waves to be present, a 1-D waveguide is required. A 1-D waveguide is 

usually a long duct with rigid walls and a uniform internal cross section. For 

circular cross-sections, the duct diameter must be smaller than a half wavelength 

of the maximum analysis frequency (ISO, 1998). In this document, the plane 

wave assumption is applied to simplify the duct acoustic problems. 

If the coordinate system is chosen so that this plane wave propagates 

along the x axis, the Helmholtz equation reduces to 

02
2

2

=+ pp k
dx
d                                                  (2.1.13) 

The complex form of the harmonic solution for the acoustic pressure of a plane 

wave is: 

( ) jkxjkx eex BAp += −                                             (2.1.14) 

where A  and B   are the complex amplitudes of the outgoing and reflected 

waves, respectively. The associated particle velocity can be derived from 

Equation (2.1.8) as: 

( ) ( )jkxjkx ee
c

x BAu −= −

0

1
ρ

                                         (2.1.15) 

The acoustic impedance at any given position x is given by: 

( ) ( )
( )

A
B
A
B

u
p

−

+
⋅==

−

−

kxj

kxj

e

e
c

x
xxz

2

2

0ρ                                          (2.1.16) 

where the ratio between reflected wave and incident wave  

A
BR =                                                         (2.1.17) 

is called reflection coefficient. For two positions 0=x  and dx = in the 1-D 

waveguide shown in Figure 2.1, acoustic impedances at these two positions can 

be expressed as: 

( )
R
R

−
+

⋅=
1
10 0cz ρ                                                  (2.1.18) 
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and 

( )
R
R

−
+

⋅= −

−

kdj

kdj

e
ecdz 2

2

0ρ                                                   (2.1.19) 

respectively. The relationship between these two acoustic impedances is given 

as (Fahy, 2001): 

( ) ( )
( ) kdjdz

kdjdzz
tan1

tan0
⋅+

+
=                                                (2.1.20) 

At position dx = , a few special boundary conditions can be summarized as: 

1. Closed end or rigid termination boundary condition 

( ) ( ) .0 dxdzd =∞==   at    or  u                                         (2.1.21) 

2. Pressure “release” boundary condition 

( ) ( ) .00 dxdzd ===   at    or  p                                          (2.1.22) 

3. Anechoic or no reflection boundary condition 

( ) .0 dxcdz ==   at  ρ                                                  (2.1.23) 

4. Unbaffled open end boundary condition (Kinsler, 1999) 

( ) ( ) ( )[ ] .16.02
0 <<=+= kadxkajkacdz  for  ,  at  ρ                     (2.1.24) 

where a is the radius of the duct. 

5. Baffled open end boundary condition (Kinsler, 1999) 

( ) ( ) .1
3
8

2

2

0 <<=







+= kadxkajkacdz  for  ,  at  

π
ρ                      (2.1.25) 

 
 
 
 
 
 
Figure 2.1 Acoustic impedances at two positions in 1-D waveguide. 
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2.1.4 Series impedance and parallel impedance 
Even though the use of specific acoustic impedance to characterize the 

acoustical behavior of 1-D waveguide is made possible by the plane wave 

assumption, the concept of the acoustic impedance is more useful when either 

the sound pressure or particle velocity is discontinuous over a duct cross-section. 

This occurs when sound waves encounter discontinuities in geometry or fluid 

properties, like, for example, a sudden area change or a perforated plate.  

One type of lumped acoustic impedance is categorized as a parallel 

impedance or acoustic compliance using an electro-acoustic analogy. Examples 

of parallel impedance include Helmholtz resonators and quarter wave tubes. A 

Helmholtz resonator and its electro-acoustic analogy are shown in Figure 2.2.  

 

 

 

 

 

 

(a)                                                               (b) 

Figure 2.2 A Helmholtz resonator (a) and its parallel impedance circuit analogy 

(b). 

It is assumed that two or more connected acoustic elements share the 

same acoustic pressure at the junction while each element has different volume 

velocity. The volume velocity is related to particle velocity at a surface by 
suv ⋅=                                                      (2.1.26) 

where s is the area of the surface. 

Assuming that the wavelength is long compared to the extent of the 

complicated flow pattern near the junction, we can apply the condition of 

continuity of pressure and obtain 

BA ppp ==                                                   (2.1.27) 

The condition of continuity of volume velocity requires that 

p, vA, zA 

p, vB, zB 

p, v, z 

v zB zA 

vB vA 



13 
 
 

BA vvv +=                                                    (2.1.28) 

Dividing Equation (2.1.28) by (2.1.27) yields 

BA zzz
111

+=                                                    (2.1.29) 

Impedance z  in Equation (2.1.29) is defined as pressure divided by volume 

velocity. It is related to the specific acoustic impedance z  at a surface by 

sz /=z                                                          (2.1.30) 

Another type of lumped acoustic impedance is series impedance or 

acoustic inertance. It is assumed that the particle velocity is continuous across 

the element while there exists a sound pressure difference or discontinuity. Thus, 

the series impedance is defined as the ratio of the pressure difference and the 

particle velocity. Examples of series impedance include perforated plates and 

internal engine acoustic impedance (Fahy, 2000, Morse and Ingard, 1987). A 

perforated plate and its electro-acoustic analogy are shown in Figure 2.3.   

 

 

 

 

 

(a)                                                          (b) 

Figure 2.3 A perforated plate (a) and its series impedance circuit analogy (b). 

The following sections will review current measurement and modeling 

practice for two types of series impedances, namely source impedances and 

transfer impedances. 
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2.1.5 Measurement of acoustic impedance 
Several measurement techniques involving a plane wave tube and 

microphones have been developed to determine the acoustic impedance. One 

method is the standing-wave-ratio (SWR) method where a traversing microphone 

is used to determine the location and magnitude of successive maxima and 

minima in a tube terminated by some unknown load impedance, as illustrated in 

Figure 2.4. The purpose of the measurement is to characterize the load 

impedance. 

  

 

 

 

 
Figure 2.4 Setup for measuring reflection coefficient using SWR method. 

As shown in Equation (2.1.17), the reflection coefficient is the ratio of the 

complex amplitude of the reflected wave ( B ) to that of the incident wave ( A ). It 

is not possible to measure A  and B  separately, but only sound pressure 

amplitude in the tube using one microphone.  The maximum sound pressure 

amplitude ( BA + ) occurs at a pressure antinode, and the minimum sound 

pressure amplitude ( BA − ) occurs at a node (Kinsler, 1999). The ratio of the 

amplitude at an antinode to that of a node is the standing wave ratio 

BA
BA

−
+

=SWR                                                      (2.1.31) 

The amplitude of reflection coefficient can be calculated from the standing wave 

ratio by 

1SWR
1SWR

−
+

==
A
BR                                                (2.1.32) 
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The phase angle of reflection coefficient can be evaluated from the distance of 

the first node from the rigid end. Once the reflection coefficient is measured, the 

acoustic impedance can be deduced from Equation (2.1.18). 

There are two standards that provide detailed derivations and guidelines 

for making the measurements: ASTM C384-03 and ISO10534-1:1996 (ASTM, 

2003, ISO, 1996). The technique can be time consuming since the traversing 

mechanism is usually operated manually and discrete frequency excitation is 

used. 

An alternative method is called the two-microphone random-excitation 

method (Seybert and Ross, 1977), or transfer function method (Chuang and 

Blaser, 1980). An acoustic driver with random noise signal is mounted at one end 

of an acoustic waveguide, and the test specimen or unknown duct system is 

mounted at the other. The microphones are located at the end of the waveguide 

opposite the source and are flush mounted to the waveguide, as shown in Figure 

2.5. 

 

 

 

 

 

 

 

 

Figure 2.5 Setup for measuring reflection coefficient using two-microphone 

method. 

Sound pressures at two positions ( 1p  and 2p ) can be written as the sums 

of incident waves and reflected waves using Equation (2.1.14). The complex 

transfer function 12H  between 1p  and 2p  is the ratio of these two sums. The 

transfer function is calculated from the auto-spectrum and cross-spectrum 

measured using two microphones.  The Reflection coefficient can be obtained 

from the measured transfer function 12H  by 
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( )slkj
jks

jks

e
He
eH +
−

−
−

= 2

12

12R                                                (2.1.33) 

The use of random excitation permits the evaluation of properties at all 

frequencies from a single test. This is a considerable savings of time and labor 

as compared to the standard SWR method.  

When using the two-microphone technique, the phase mismatch between 

microphones is unavoidable and can introduce considerable error into the 

impedance calculation. Both amplitude and phase mismatches need to be 

corrected.  The mismatches can be calculated by measuring transfer functions 

successively with the channels interchanged.  

The detailed guidelines can be found in both ASTM E1050-98 (ASTM, 

1998) and ISO 10534-2:1998 (ISO, 1998). The measurement accuracy and 

uncertainty propagation of different error sources, i.e. bias error and random 

error, has been studied both theoretically and numerically (Boden and Abom, 

1986, Abom and Boden, 1988, Seybert and Soenarko, 1981, Schultz, 2007). 

 

2.1.6 Network representations of acoustic impedance 
The practical advantage of using lumped acoustic impedances is that 

acoustic discontinuities can be represented as a black box in an acoustic network 

(Fahy, 2001, Morse and Ingard, 1987). The acoustic network representation of a 

duct system is made possible because of the existence of well-established 

analogies between electrical circuit and acoustical variables. In acoustic network 

theory, elements can be modeled as acoustic two-ports or one-ports. An example 

of acoustic network representation of a duct system is shown in Figure 2.6.  
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(a) 

 

 

 

 

(b) 

 

Figure 2.6 A duct system (a) and its acoustic network representation (b) (Munjal, 

2006). 

A two-port is a black box with one inlet and one outlet. Mufflers, perforated 

panels and resonators can all be modeled as a two-port (Glav and Abom, 1997). 

For two-port theory, there are two additional assumptions aside from the plane 

wave assumption. First, the acoustic field in a duct system is linear; second, the 

black boxes modeling the inlet and outlet must be passive (Boden and Glav, 

2007). Acoustic two ports can be modeled using a transfer matrix or four-pole. 

The transfer matrix relates the pressure and particle velocity pair at the inlet to 

the outlet, as shown in Figure 2.7. T11, T12, T21 and T22 are four poles of the 

transfer matrix. For example, the transfer matrix of a straight duct with length L 

can be expressed as: 

( ) ( )
( ) ( ) ( ) 















=









2

2

1

1

cossin
sincos

v
p

kLkLcj
kLcjkL

v
p

o

o

ρ
ρ

               (2.1.34) 

where pi’s are sound pressures, and vi’s are particle velocities.  The velocity is 

selected as a particle, volume, or mass velocity depending on preference and 

utility. 
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Figure 2.7 Transfer matrix relates pressures and velocities on both sides. 

Alternatively, muffler components can be modeled using either a 

scattering or impedance matrix.  A scattering matrix relates the incident and 

reflected complex wave amplitudes of the inlet to the outlet (Glav and Abom, 

1997).  An impedance matrix relates the sound pressure to the particle velocity at 

the inlet and outlet (Wu, 1998). These three models are interchangeable and can 

be chosen depending on the nature of the problem. 

A one-port is an element used to represent an acoustic input or source 

and its impedance. This element can be used to model sources such as engines 

or fans that drive a system. In order to describe the one-port element, the 

impedance, instead of the transfer matrix, is usually used to relate pressure and 

velocity at the opening of the element. For example, an acoustic one-port can be 

described by: 

ssl zupp ⋅−=                                              (2.1.35) 

where sp  and sz  are source strength and source impedance, and lp  and u  are 

the resulting acoustic pressure and particle velocity at the port. 

If acoustic input sp  is set to zero, the element can also be used to model a 

duct termination. One-port model of a duct termination can be described as: 

tt zup ⋅=                                              (2.1.36) 

where tp  and u  are the acoustic pressure and particle velocity at the termination, 

and  tz  is termination impedance.  
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One-port representations of a source and a termination can also be 

illustrated using electro-acoustic analogies, as shown in Figure 2.8 (a) and (b). 

 

 

 

 

 

(a)                                                                (b) 
Figure 2.8 One port representations of a source (a) and a termination (b). 

In the following sections, two types of series impedances, namely source 

impedance, and transfer impedance will be introduced. Their modeling and 

measurement techniques will be surveyed. 

 

2.2 Source impedance 
 

In order to thoroughly investigate the muffler system, HVAC duct, fluid 

machine or refrigerant line, it is necessary to characterize the acoustic sources 

(for example, engine, fan, or compressor) (Rammal and Abom, 2007, Boden, 

2007, Knutsson 2007, Boden, 1995). These sources are commonly represented 

by a combination of source strength and source impedance, as illustrated by a 

source-duct system and its equivalent electro-acoustic 1-port analogy in Figure 

2.9. In this figure, ps and zs are source strength and source impedance, and pl 

and zl are load pressure and load impedance. x=0 is the separation point 

between source and load. The load impedance represents the downstream duct 

system including attenuating elements and termination. Based on electro-

acoustic analogy, the relationship between source and load can be described as: 

.
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Figure 2.9 Source-duct system and its equivalent electro-acoustic analogy. 

The acoustic descriptions of a duct system that requires the knowledge of 

source characteristics are insertion loss and radiated sound pressure levels 

(Prasad, 1983, Munjal and Sreenath 1970). Prior to 1975, researchers were 

aware of the importance of the source impedance, but they tried to model source 

impedance as a constant for simplicity instead of measuring it (Munjal and 

Sreenath 1970, Galaitsis and Bender 1975). Three values were commonly 

assumed: i) an infinite source impedance which assumes a velocity source, ii) 

the characteristic impedance which assumes a reflection-free source, or iii) zero 

impedance which assumes a pressure source.  These simplifications are still 

used in the absence of information regarding the source (Herrin, 2006). 

Researchers have noted insertion loss variations of 10 to 40 dB at medium to 

high frequencies depending on the assumed source impedance (Munjal and 

Sreenath 1970, Galaitsis and Bender 1975). 

The first reported source impedance measurement was performed by 

Galaitsis and Bender (1975). In their experiment, source impedance of a six-

cylinder diesel engine was measured using the standing wave method. A 

discrete frequency excitation was used to drive an external source, and a 

traversing microphone was used to measure the standing wave ratio. It was 
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observed that the source impedance was irregular at low frequencies and should 

not be assumed constant.  At high frequencies, the source impedance 

approached the constant characteristic impedance. Ross and Crocker (1983) 

used a similar technique to measure the source impedance of an eight cylinder 

engine.  In order to eliminate differences between speed and load settings and 

longtime delay between tests, a random noise source was used to evaluate 

standing wave parameters. Their test results showed that measured engine 

internal source impedance appeared to fluctuate around the characteristic 

impedance, and the measured source impedance had a weak dependence on 

engine load but a strong dependence on engine speed.  

Researchers quickly adopted the two-microphone random excitation 

method (Seybert and Ross, 1977), which had been developed to measure 

acoustic material properties, to measure source impedance (Prasad and Crocker, 

1983).  Instead of traversing a microphone at discrete frequencies, the two-

microphone random excitation method allows all frequencies to be excited and 

measured simultaneously.  Additionally, the microphone positions are fixed. 

However, the two-microphone method requires sufficient signal-to-noise to 

separate the white noise source signal from the broadband flow noise in the tube. 

The measured results by Prasad and Crocker (1983) were in opposition to those 

previously reported by Ross and Crocker (1983). Prasad and Crocker’s results 

showed that variation in engine speed did not seem to have any significant effect 

on source impedance of an eight-cylinder internal combustion engine.  

The measurement techniques mentioned above (Galaitsis and Bender 

1975, Ross and Crocker, 1983) can be categorized as a direct method where a 

secondary source with a much greater amplitude is used to provide excitation to 

measure the source impedance. Therefore, the noise output from the engine can 

be neglected. The impedance of the primary source is measured by assuming 

that it is passive, i.e. a special type of absorbing material. The advantage of the 

direct method is its measurement accuracy and simplicity. The primary difficulty 

of the direct method is finding a secondary source that is powerful enough.  This 

is especially difficult for the case of engine combustion. Additionally, the direct 
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method can only measure source impedance, and is not capable of measuring 

source strength. Despite these disadvantages, the direct method is still being 

applied to measure the source impedance of low energy sources due to its 

simplicity and accuracy (Rammal and Abom, 2007, Edge and Johston, 1990). 

Alternative methods that do not require a secondary source and can 

measure both source strength and source impedance have also been developed. 

These attractive methods are categorized as indirect methods. Using indirect 

methods, the source strength and impedance are determined by varying the 

acoustic load.  This can be accomplished by changing the termination or varying 

the duct length as illustrated in Figure 2.10. For straight ducts, the load 

impedance can be determined theoretically.  However, it is preferred to measure 

each load experimentally, especially when mufflers or absorptive terminations 

are used for loads.  

 

 

 

 

 

 

 

Figure 2.10 Two-load Method for indirect source characteristics measurement. 

Since there are two unknowns, two loads are sufficient. This has been 

called the two-load method (Kathuriya and Munjal, 1979, Boden, 1988, Egolf and 

Leonard, 1977). Source impedance and source strength are calculated from the 

measured load pressures and impedances using 
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Each of the variables in Eqation (2.2.3) is complex.  Accordingly, the phase 

information measured using each acoustic load must be preserved. Therefore, as 

Boden stated (Boden, 1995), “a reference signal unaffected by acoustic load 

variations and related to the sound generating mechanism of the source is 

needed.”  Typical reference signals have included accelerometers placed on the 

running engine or input voltages. (Tao, 2007).  

Alternatively, least squares methods can be used to take advantage of 

measuring additional loads. Based on Equation 2.2.1, an overdetermined 

problem can be formed which calculates source impedance and source strength 

with less sensitivity to the loads (Boden, 1988, 1991, 1992).  Nevertheless, care 

should be taken to insure that the loads are as different as possible to avoid 

linear dependency. For instance, the combination of an anechoic termination and 

open-ended tube is preferred to a combination of two open-ended tubes of 

similar length (Boden, 1988, Liu, 2009). 

It is not always practical to have a suitable reference signal. For example, 

the signal from an accelerometer placed on the engine body can correlate the 

harmonic components in the engine exhaust noise spectrum but not the 

broadband components caused by gas flow turbulence. In many situations, 

microphones cannot be placed inside the duct due to the temperature and flow.  

It is then desirable to measure outside of the duct.  

Alternative methods like the three-load (Alves, 1986, 1987) and the four-

load (Prasad, 1987) methods were developed for this very reason. By taking the 

square magnitude of Equation 2.2.1, four unknowns, the real and imaginary parts 

of ps and zs respectively, are reduced to three; magnitude of ps and real and 

imaginary parts of zs. Meanwhile, the phase information for the load pressure is 

eliminated from the equation. Therefore, three sound pressure levels measured 

outside of the duct for three known load impedances are sufficient to determine 

the source strength and impedance. However, two second-order nonlinear 
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equations need to be solved in order to obtain the real and imaginary parts of the 

source impedance. This could lead to more than one real-valued solution. Large 

measurement error has also been reported for the three-load method.  

In order to solve the nonlinear problem, Prasad (1987) proposed a four-

load method that reduced three nonlinear equations to two linear equations using 

a fourth measurement. Several approaches have been developed to improve the 

three-load and four-load methods (Jang and Ih, 2002, Boden, 1991, Coulon, 

1993, Desmons, 1994). Most of the improvement techniques mentioned above 

involve a least square or optimization algorithm (Desmons, 1994, Jang and Ih, 

2000). Regardless of the approach, researchers have concluded that accurate 

measurement of source strength and impedance is contingent on selecting 

appropriate load combinations. These studies suggest a few guidelines for 

selecting appropriate load combinations in order to minimize the measurement 

error (Jang and Ih, 2002, Desmons, 1995).  

All the measurement methods mentioned above are based on the 

assumption that the source is time-invariant and linear. However, this is not 

always the case.  For example, engine speed and combustion processes may 

vary over time.  In addition, changing the acoustic load will change the pressure 

drop.  This will in turn impact the combustion process. The time variance of the 

source may lead to large measurement error and negative source resistance 

which is physically implausible (Lavrentjev, 1992, Peat and Ih, 2001, Ih and Peat, 

2002). Time-variant and nonlinear models that include these effects and a time-

domain representation of the source were developed to improve the multi-load 

approaches assuming sufficient data is available. (Rammal and Abom, 2007, 

Boden, 1995, Peat and Ih, 2001).  

Instead of measurement, it is also possible to extract source data from 

simulation. Hota and Munjal (2008, 2009, 2010), Knutsson and Boden (2007), 

and Boden (2007) have successfully used numerical multi-load methods to 

obtain the source impedance and source strength with some accuracy based on 

the CFD simulations.  The pressure time history of the source, usually an engine 

intake or exhaust, is computed by means of time-domain finite-volume numerical 
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simulation. From this pressure time history, the source impedance and source 

strength can be virtually measured using a combination of models (linear or 

nonlinear, time-invariant or time-variant) and measurement techniques (two-load 

or multi-load methods). Hota and Munjal (2008, 2009, 2010) performed 

parametric studies of the engine source as a function of the air fuel ration, engine 

speed, engine capacity and the number of cylinders, and developed empirical 

equations for the source characteristics of typical engines which can be 

immediately applied to muffler performance simulation. This idea could be used 

to characterize other sources (i.e. fluid machines and HVAC equipment) and 

develop a database of different sources. 

The source impedance and source strength measurement techniques are 

summarized in Table 2.1.  

Table 2.1 Summary of source characteristics measurement techniques. 

 

 

2.3 Transfer impedance 
 

Transfer impedance, also known as separation impedance (Morfey, 2000) 

or acoustic flow resistance (Ingard, 1985), is used to acoustically characterize 

thin permeable materials. This includes protective cloths of muffler linings (Wu, 

2003), permeable ceramic walls in Diesel Particulate Filter (DPF) (Allam and 

Abom, 2005), and perforated plates in HVAC ducts (Wu, 1997). Since the 

material is thin and permeable, the velocities in front and back of the material can 
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be assumed to be the same. The two-port representation of a transfer impedance 

is shown in Figure 2.11 where 1p  and 2p  are the respective sound pressures 

anterior and posterior to the material and 1u  and 2u  are the respective particle 

velocities. trz  is the transfer impedance. 

 

 

 

 

 

 

Figure 2.11 Two-port representation of transfer impedance. 
By assuming a single particle velocity across the material thickness, i.e. u 

= u1 = u2, transfer impedance is defined as the ratio between acoustic pressure 

drop through the material and the normal particle velocity, and can be written as 
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where Δp is the pressure difference in front and back of the material. 

The transfer matrix representation of Equation (2.3.1) can be written as: 

(Wu, 2003, Lee and Kwon, 2004, Tao, 2005) 
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Once transfer impedance is obtained, it can be used to evaluate the 

acoustic performance of the thin materials and perforates in built-up systems.  

The representation in Equation 2.3.2 is especially convenient for modeling 

waveguides. Wu et.al (2003) used the measured transfer impedance of a 

protective cloth in a direct-mixed body BEM analysis of a packed silencer.  Good 

agreement was obtained with measurement. Lee and Kwon (2004) evaluated the 

absorption coefficient of multi-layer perforated plates by multiplying transfer 

matrices of perforated plates and adjoining airspace. Tao et.al (2005) used an 

identical approach to calculate the absorption coefficient of multi-layer 

ztr 

u1 

p1 p2 

u2 
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microperforated panels with good agreement with measured results, and Allam 

and Abom (2005) used transfer impedance to model the permeable walls of a 

diesel particulate filter. 

The transfer impedance can be obtained by theoretical modeling if the 

geometry and material properties of the material are known. For example, 

several models for perforated plates have been developed (Atalla and Sgard, 

2007, Melling, 1973, Maa, 1983, Allam et.al, 2009). However, for most materials, 

exact geometry and material properties are difficult to obtain. Hence, the transfer 

impedance is best measured in most cases.  

Melling (1973) proposed a two-microphone method to measure the 

transfer impedance of perforates. The first microphone is placed in front of the 

perforate, and the second microphone is mounted in the back wall of the back 

cavity posterior to the sample as shown in Figure 2.12. 

 

 

 

 

 

 

 

Figure 2.12 Experimental setup for direct measurement of transfer impedance. 

Both the particle velocity and the sound pressure directly behind the 

perforate can be derived the sound pressure measured by the second 

microphone. The sound pressure anterior to the sample is measured directly 

using the first microphone. Ingard and Dear (1985) used a similar impedance 

tube and microphone arrangement to measure the transfer impedance, named 

acoustic flow resistance in the paper, of a thin piece of porous material. In order 

to calculate transfer impedance directly from measured sound pressures, the 

distance between sample and rigid termination was chosen to be an odd number 

of quarter wavelengths. The major drawback of this approach is that the transfer 

impedance is only obtained at discrete frequencies. However, Ren and Jacobsen 
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(1993) further developed this method to measure the dynamic flow impedance as 

a continuous function of the frequency.  

As suggested by Ingard (1985), for a thin layer of material at sufficiently 

low frequencies, the steady-state flow resistance is expected to be applicable to 

the fluctuating acoustic field. This approximation provided a different means for 

characterizing transfer impedance. Mechel et.al (1965), earlier than Ingard, had 

measured both flow resistance and acoustic flow resistance, i.e. real part of 

transfer impedance, of a 1 mm thick porous foil. A blower sucked the air through 

the absorptive wedge at the end of the impedance tube. A loudspeaker was 

installed at the other end of the tube, and a hot-wire anemometer was placed in 

front of the sample to measure flow velocity. The difference between the static 

pressures at front and rear were measured with a pressure gauge. The 

measurement setup is shown in Figure 2.13.  

 

 

 

 

 

 
Figure 2.13 Experimental setup for impedance and flow resistance measurement 

(Mechel, 1965).  

Acoustic flow resistance was calculated at a single frequency, i.e. 1000 Hz, 

using SWR method. Flow resistance is calculated based on static pressure drop 

and flow velocity. The measurement results comparison shows that error 

between acoustic flow resistance and flow resistance is about 20 percent. 

Mechel’s research demonstrated that it is possible to use “DC” flow resistance to 

represent transfer impedance of a thin layer of material at low frequencies. This 

approach was used by Allam and Abom (2005) to measure real part of transfer 

impedance, i.e. wall resistance, of DPF. Wall resistance from one channel to 

another was calculated based on pressure drop through the whole unit, the flow 

velocity in the transmission line, and number and size of channels.  Researchers 
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at University of Kentucky measured flow resistances of micro-perforated panels 

using simple weighted-piston device developed by Ingard (2010). The flow 

resistances were then compared to acoustically measured transfer impedances. 

It was noticed that the real part of transfer impedance was roughly constant 

below 2000 Hz, and was correlated but not equal to the measured flow 

resistance. However, there has not been an empirical equation developed to 

relate measured flow resistance to transfer impedance for micro-perforated 

panels. 

Since thin permeable materials can also be represented as transfer 

matrices, as shown in Equation 2.3.2, the transfer impedance can be calculated 

from the measured transfer matrix. Transfer matrix measurements usually 

involve two basic measurements with either two different terminations, i.e. Two-

load method (Song and Bolton, 2000), or two different sources, i.e. Two-source 

method (Munjal and Doige, 1990). For each configuration, four sound pressures 

or three transfer functions are measured and used to calculate four poles. A 

typical Two-source measurement setup is shown in Figure 2.14. Lee et.al (2004), 

Tao et.al (2005) and Yoo (2008) measured transfer matrix of perforated plates or 

micro-perforated panels using Two-load or Two-source method. Once transfer 

matrix is measured, transfer impedance can be calculated from four poles(Yoo, 

2008). For example, if T11, T12, T21 and T22 are four poles of the transfer matrix, 

then reflection coefficient of material plus anechoic termination can be expressed 

as  
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Transfer impedance can be calculated from reflection coefficient using Equation 

2.3.4. 
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Figure 2.14 Two-source method set up for measuring transfer matrix. 

An alternative method to measure the transfer impedance was developed 

by Wu et.al (2003). The measurement setup is very similar to the two-cavity 

method (Utsono, 1989) except that the cavity length does not need to be 

changed. Equation 2.3.1 suggests that transfer impedance is essentially the 

difference between the impedances in front and back of the panel. Impedance in 

front of the panel is the impedance combining panel and back cavity, which can 

be measured using the two-microphone method (Seybert and Ross, 1977). The 

impedance behind the panel is the impedance of the back cavity which can be 

calculated theoretically. This method was used to measured transfer impedance 

of protective cloth and micro-perforated panels with good agreement with 

theoretical results.  
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CHAPTER 3  
MODELING AND MEASUREMENT OF PERFORATED PANELS 

 
Perforated plates and screens have been used very effectively as tube in 

mufflers (Allam et al., 2009, Elnady, 2003), insert layers in composite absorptive 

materials, and as stand-alone absorptive panels (Wu, 1997). If the porosity is 

high, perforated panels can be used as protective layers with minimal acoustic 

effect. As has been discussed in the previous chapter, a perforated panel can be 

modeled as a transfer impedance, which will depend on the porosity, perforation 

size and panel thickness. 

Depending on the perforation size, perforated panels can be divided into 

two categories. The term macro-perforated is adopted to describe panels with 

diameter of perforations ranging from 1 mm to 1 cm. Panels with sub-millimeter 

diameter are called micro-perforated panels; a term adopted by most researchers 

in the area (Maa, 1975, Atalla, 2007).  

In this chapter, classical models for macro-perforated and micro-

perforated panels will be reviewed. This will be followed by a survey of different 

measurement techniques. 

 

3.1 Modeling and measurement of macro-perforated panels 
 

This section will review the prior research aimed at characterizing the 

transfer impedance of macro-perforated panels. A typical configuration consists 

of a flat rigid panel with periodically arranged circular holes. Figure 3.1 shows a 

stand-alone macro-perforated panel in a plane wave field. Assuming negligible 

interaction effect between perforations, a macro-perforated panel can be 

considered as a lattice of short narrow tubes. The classical approaches 

determine the global properties of the macro-perforated panel by considering the 

acoustic impedance of a single perforation, and then then using the porosity to 

determine the impedance for a panel. (Zwikker and Kosten, 1949).  
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Figure 3.1 Perforated plate in plane wave field (Atalla, 2007). 

Crandall (1927) first assumed the perforated hole to be an infinite length 

tube. He simplified works by Lord Rayleigh (1877) on propagation of sound in a 

narrow tube, and then added an end correction term to the impedance to account 

for the finite length of the perforated holes. Depending on the hole size and 

frequency range, Crandall’s simplification yields two types of energy loss 

mechanisms: Poiseuille and Helmholtz type respectively. For small holes or low 

frequencies, the loss mechanism is described by Poiseuille’s law of resistance for 

laminar flow of viscous fluids in narrow tubes. These losses are frequency 

independent.. For large holes or higher frequencies, the energy dissipated is due 

to the friction between the tube wall and the air moving in the tube. This type of 

loss is called Helmholtz-type and is frequency dependent (Ingard, 1953).  

For perforated panel with small holes, the panel thickness and the hole 

diameter are small compared to an acoustic wavelength. The air in the hole 

moves as a rigid piston. The effective mass of this piston will be equivalent to a 

cylinder of air whose length is slightly longer than the thickness of the panel. This 

is called the end correction (Elnady, 2003). Sivian (1935) and Ingard (1953) 

examined this piston effect theoretically and experimentally. The end correction 

for the resistance term accounts for viscous effects at both sides of the orifice. 

The end correction for the reactance term accounts for the oscillation of the 

additional mass.  

The previously described physical phenomena in a single hole of a 

perforated plate are illustrated in Figure 3.2. The left schematic figure shows that 

t 

d 
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the resistive part of the impedance of the hole is induced by: i) viscous boundary 

layers inside the hole, ii) viscous boundary layers at the panel surface, and iii) 

distorted flow at the edge of the hole. The right schematic figure shows that the 

reactance is induced by: i) motion of the air cylinder in the hole, ii) inertia effects, 

and iii) viscous effects. 

 

 

 

 

 

 

 

 

 

Figure 3.2 Illustration of physical phenomena involved in resistive (left) and 

reactive (right) parts of impedance in a single hole (Atalla, 2007). 

The classical approaches determine the global properties of a perforated 

panel by generalizing the acoustic impedance of a single hole to the whole panel. 

It is based on the assumption that the holes are far apart; therefore no interaction 

exists between adjacent holes. However, for panels with high porosity, the 

assumption may not be valid. The interaction between adjacent holes was 

studied by Ingard (1953) and Melling (1973). They found that the interaction 

reduced the shear region between two interacting holes and resulted in a 

modification factor for the end correction. For example, the reactive end 

correction is larger, by a factor of 2 , for two separate holes than for one hole 

with area equal to the sum of the two separate holes (Melling, 1973). 

In applications such as HVAC ducts and mufflers, perforated panels are 

usually exposed to the mean gas flow. It is known that flow has an effect on the 

acoustic performance of the perforated panels (Cummings, 1986). Penetrating 

flow increases acoustic resistance because more energy is dissipated due to 

higher particle velocity in perforations (Dean, 1976).  
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Perforated panels are commonly used in high sound pressure level 

environments. Once the sound pressure level exceeds 120~130 dB (Ingard, 

1953), the acoustic performance is no longer independent of sound pressure. 

This nonlinear effect becomes significant for particle velocities around 5 m/s. 

Meling (1973) included nonlinear effects and also showed results. 

In the following sections, a detailed description of macro-perforated panel 

modeling is presented. 

 

3.1.1 Crandall’s theory of acoustic propagation in a single tube 
Crandall (1927) considered a single hole in a perforated panel as an 

infinite tube. The fluid can be modeled as a collection of shear layers that result 

from the viscous retardation near the wall. An exaggerated illustration of these 

annular rings of fluid at radius r is shown in Figure 3.3. 

 
 

 

 

 

 

 

Figure 3.3 Illustration of annular rings of fluid caused by viscous resistive forces 

near the wall (Kundu, 2004). 

Layers move at different velocities and the fluid's viscosity arises from the 

shear stress between the layers that oppose resistive force. For a plane wave 

traveling in the x-direction in a tube having radius (R), the viscous resistive force 

is proportional to the gradient of particle velocity and the contact area between 

layers. Figure 3.4 illustrates particle velocity and viscous force distribution on a 

cross section of a tube. 
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Figure 3.4 particle velocity distribution (a) and viscous force distribution (b) 

(Kundu, 2004). 

The fluid in the tube is assumed to be air, which has a dynamic viscosity 

coefficient η. The net viscous force dFη imposed on the fluid can be expressed as: 
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where x is the longitudinal axis and r is the radial axis. The driving force 

produced by pressure difference is 

rdrdx
x
Pdp π2
∂
∂

−=                                                       (3.1.2) 

and the inertial force of the thin layer of air is: 
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where ω is angular frequency and j is the imaginary unit. The combined driving 

force caused by pressure difference and viscosity is balanced by the inertial force 

of air: 
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Equation 3.1.4 above can be rewritten in a form with left side similar to the 

Bessel’s equation of order zero: 
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where ηωρ0
2 jk −=  is the wave number of the viscous Stokes wave (Melling, 

1973).  

When the length of the tube (thickness of the panel) is much smaller than 

a wavelength, the pressure difference term xp ∂∂  can be approximated using the 

ratio between the pressure drop through the thin plate and the plate thickness

tp∆ . Mean particle velocity across the tube cross-section can be obtained by 

averaging the velocity solved from Equation 3.1.5. Mean velocity is expressed as 
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where )(0 xJ  and )(1 xJ are Bessel functions of the first kind of order's zero and 

one, respectively. 

Then the specific acoustic impedance of a circular tube can be 

approximated by (Maa, 1983, Allard, 1993): 
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where R
η
ωρβ 0=  is called the shear wave number (Zwikker and Kosten, 1949), 

the Stokes number (Melling, 1973) or the perforate constant (Maa, 1997). β is 

proportional to the ratio of the tube radius and viscous boundary layer thickness. 

The perforate constant β compares the importance of inertial to viscous forces.  

Historically, Equation 3.1.7 has not been used to calculate the impedance 

of a perforate, due to the difficulty in calculating the Bessel function with a 

complex valued argument, and in separating the real and imaginary components 

of the impedance function (Elnady, 2003). Simplified equations to approximate 

the Bessel functions were developed based on ranges for the perforate constant. 

For small perforate constants (β<1), i.e. low frequency and small hole size, a 

series expansion for the Bessel functions can be used, and the first two terms 

considered. For large perforate constants (β>10), an approximation to the Bessel 

function ratio jjJjJ −=−− )()( 01 ββ  is used (Melling, 1973). This results in: 
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(3.1.8) 

 

(3.1.9) 

 

The real part of Equation 3.1.8 is Poiseuille’s law of resistance for laminar flow of 

viscous fluid in narrow tubes. The real part of Equation 3.1.9 is frequency 

dependent and named Helmholtz-type resistance. Figure 3.5 compares the 

resistive impedance calculated using the three different equations.  The dashed 

lines mark the perforate constant values of 1 and 10.. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.5 Resistances of a single hole calculated using three different equations. 

For most of the macro-perforated panels, the condition β>10 can be 

satisfied at mid to low frequencies. For example, the perforate constant for a hole 

of 1 mm radius is geater than 10 above240 Hz.  

In recent years, commercial codes such as Matlab can calculate Bessel 

functions with complex arguments easily using compiled commands (for example, 

BESSELJ in MATLAB (2009)). Therefore, it is more accurate to use Equation 

3.1.7 other than its approximate forms. 

For a slit-shaped perforation with length of 2l and width of d = 2a as shown 

in Figure 3.6, Allard (1993) rewote Newton’s Second Law as: 
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where y is the slit width direction. This equation is the equivalent of Equation 

3.1.4. Following the procedure identical to that for a circular tube, the transfer 

impedance of a single slit can be obtained as: 
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where 
η
ωρβ 0a= is the slit perforate constant. Note that this equation is for a 

single rectangular slit only. 

 

 

 

 

 

 

 

Figure 3.6 A single slit in plane wave field (Maa, 2000). 

 

3.1.2 End corrections 
For the case of short tubes, like perforations in plates, the end correction 

is necessary for both real and imaginary parts of transfer impedance. The 

resistive end correction accounts for the frictional losses on the surface of the 

plate, as the airflow is squeezed into the small area of the inlet end of the hole. 

The reactive end correction is due to the imaginary part of the radiation 

impedance at the tube’s ends, which can be approximated by a circular piston of 

diameter d mounted in an infinite baffle. This effect can be represented by an 

effective additional tube length (Maa, 1975, Fenech, 2004). Figure 3.2 illustrates 

the physical phenomenon of the viscous effect on the plate and motion of 

additional mass, which result in end corrections for resistance and reactance 

respectively.  
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Ingard (1953) calculated the energy dissipation resulting from viscous 

friction over the parallel plate surfaces on both sides of the hole   as: 

dsuRW rs sv
2

2
1
∫=                                                 (3.1.12) 

where s is the plate surface area surrounding the hole, 21
0 )2(

2
1 ωηρ=sR  is the 

surface resistance, and ur is the tangential velocity over the plate surface. This 

led to a total end correction length of R. 

The reactance of a hole results from the viscous and mass inertia effects 

in the hole. Ingard (1953) adopted Rayleigh’s derivation of vibrating piston for the 

inertia effect. Rayleigh (1878) derived that a vibrating piston in an infinite baffle is 

equivalent to an attached mass of ( )sR π38  at each end. 

Several models for end correction due to resistance and reactance are 

summarized in Table 3.1 (Elnady, 2003, Thurston, 1952, Stinson, 1985, Bauer, 

1977). Figure 3.7 shows comparison of end corrections calculated using different 

models. 

 

Table 3.1 Summary of different end correction models 

 
 

 

 

 

 
 

 

 

 

 

 

 

End correction models Resistance Reactance 

Sivian, 1935 8d/3π 8d/3π 

Ingard, 1953 0.5d 8d/3π 

Bauer, 1977 8d/3π 0.25d 

Elnady, 2003 0.5d 32 160002002.0 ddd ++
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Figure 3.7 Comparison of end corrections obtained from different models 

(Elnady, 2003).  

 
3.1.3 Interaction between two holes 

In prior research efforts, it has been assumed that the behavior of a panel 

with an array of holes can be determined by the transfer impedance of a single 

hole and the porosity. The underlying assumption is that there is no interaction 

between two adjacent holes. This assumption should be appropriate if the two 

holes are widely separated. However, the interaction cannot be neglected if they 

are fairly close, which is the case for high porosity. Ingard (1953) considered the 

case of two adjacent circular apertures interacting and found that the effect of 

interaction mainly reduces end correction. For resistance, the end correction is 

reduced by a factor to account of the interaction between adjacent apertures. 

This affects the shear layer surrounding the apertures. The end correction for the 

reactive part is reduced by a factor of 2 . Ingard suggested that the end 

correction should be multiplied by the factor 

21int
σ−=f                                          (3.1.13) 

where σ is porosity of perforated panel. 

Melling (1973) considered an infinitely thin plate and deduced the Fok 

function which is function of the porosity and can be expressed as 

32 160002002.0 ddd ++

 d5.0
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++++= 3
321int 1 σσσ aaaf                               (3.1.14) 

where   ,0,33818.0 ,0 ,4092.1 4321 ===−= aaaa  

Elnady (2003) referred to Muller who introduced another form of the 

interaction factor 

3
int 47.047.11 σσ +−=f                              (3.1.15) 

A plot in Elnady’s paper compares different interaction factors, and the factors 

suggested by Melling and Muller produce similar results (Elnady, 2003). 

 

3.1.4 Perforated panel with penetrating or grazing flow 
In the present research, flow is neither measured nor considered.  

Nevertheless, it will be of interest to review the literature on the effect of flow 

because flow substantially impacts the absorptive properties.  Figure 3.8 

compares grazing and penetrating flow for mufflers and penetrating tubes. 

The existence of penetrating flow (also called through flow or bias flow) 

will increase resistance while decreasing the reactance. The resistance becomes 

less dependent on frequency and sound pressure level as the penetrating flow 

increases. 

 

 

 

 

 

 

Figure 3.8 Comparison of perforated tubes with penetrating flow (left) and 

grazing flow (right). 

The penetrating flow is usually treated by modifying the acoustic particle velocity 

in Crandall’s theory. Dean (1976) replaced the acoustic particle velocity with the 

penetrating flow velocity by assuming the flow velocity to be much greater than 

the acoustic particle velocity. Other researchers used different algebraic 

summations of particle velocity and flow velocity to replace the particle velocity 

Flow Plug 
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(Chung, 1978, Premo, 1999). Bauer’s model treated penetrating flow by directly 

multiplying a factor of 1.15 M to resistance (Bauer, 1977), where M is the Mach 

number for the penetrating flow through the perforated holes. Sullivan (1979) 

developed an empirical formula including the effect of the penetrating flow in 

perforate tubes.  The transfer impedance was expressed as 

( )



 ++= dtkj

l
Mdztr 75.095.0514.01 1

σσ
                         (3.1.16) 

where d1 is diameter of the perforated tube, M is the mean flow mach number in 

tube, l is the length of perforate, σ is porosity, k is wave number, t is thickness of 

the tube, and d is hole diameter. 

Elnady (2003) explained that grazing flow reduces the end effects and 

results in a decrease of the so-called attached mass.  This implies that some of 

the stored kinetic energy in the oscillating medium across the orifice is lost.  This 

results in an increase in resistance and decrease in the reactance. Lee and Ih 

(2003) also found that the magnitude of the resistance increases as the mean 

grazing flow Mach number increases, and that the rate of decrease of resistance 

with frequency is nearly the same for every Mach number condition. Kooi and 

Sarin (1981) proposed an empirical equation for an end correction modification 

factor to represent the effect of grazing flow. The factor is the ratio of end 

correction length at the grazing flow condition to that in the absence of the 

grazing flow. Later, Cummings (1986) modified Kooi’s empirical impedance 

model suggest a more general equation. 

Rao and Munjal (1986) proposed an empirical model, considering all 

involved parameters such as diameter and thickness of the perforate, porosity, 

and grazing mean flow velocity. The grazing flow effect was limited to only the 

resistive term. The normalized acoustic impedance was given by: 

( ) ( )( )[ ]dfjMztr 20415151514.0102245.223.72110337.71 53 ++×++×= −−

σ
      (3.1.17) 

where f is the frequency. 
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3.1.5 Nonlinearity under high sound pressure level 
In most prior impedance models, linearity has been assumed.  Thus, the 

impedance has been assumed to be independent of the sound pressure level. 

However, in practice, transfer impedance is sensitive to the incident sound 

pressure once the sound pressure level reaches a certain level. The exact level 

will depend on dimensions of the perforate. For most perforated panels, the 

changes in impedance become apparent when SPL is above 130 dB. High sound 

pressure levels increase the real part of the resistance and decrease the 

reactance. (Melling, 1973).  

At high sound pressure level, the acoustic particle velocity induces vortex 

shedding and forms a “jet” at the exit of the aperture. In the nonlinear regime, the 

pressure difference has a component which is in phase with the particle velocity, 

resulting in acoustic energy loss. The loss results from the kinetic energy of the 

jet being dissipated by turbulence (Elnady, 2003). 

Based on the measurement of particle velocities and driving sound 

pressures, Ingard (Ingard and Ising, 1967) observed that for particle velocity 

above some threshold level, the sound pressure in the opening is proportional to 

the squared velocity, i.e. 2
0up ρ≈ . According to Bernoulli’s equation, at low sound 

pressure levels, the resistive component is proportional to the velocity amplitude 

.  uRtr 0ρ≈                                                                  (3.1.18) 

According to Ingard's equation, this resistance is independent of frequency. 

For reactance, Ingard an Ising (1967) proposed that the mass reactance 

decreases and approaches a value of approximately one-half of the linear value. 

Melling (1973) derived the nonlinear impedance as a function of velocity: 

uRtr π
ρ

3
4 0≈                                                    (3.1.19) 

Melling related the reactance to the perforate constant. He derived 

function of a combination of three important parameters, namely perforate 

constant, ratio of plate thickness to hole diameter and square root of porosity. For 

most samples measured, the mass reactance could be approximated as 220 

Rayls for mass reactance of perforated panels.  
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Perforates are normally characterized by their transfer impedance.  

Section 2.3 summarized the measurement of transfer impedance.  The transfer 

impedance of perforates has been measured using a variety of approaches. 

Melling (1973) measured the transfer impedance of perforates at single 

frequencies using one microphone in front of sample and one microphone at the 

back wall of the impedance tube. Lee and Kwon (2004) and Tao et.al (2005) 

calculated the transfer impedance based on measuring four-poles.  

An alternative measurement method is impedance subtraction method, 

which is similar to two-cavity method (Wu, 2003). For instance, transfer 

impedance of a perforated plate with 1.4 mm hole diameter, 1mm panel 

thickness and 2.5% porosity was measured using the impedance subtraction 

method. Measured resistance and reactance are shown in Figure 3.9. Notice that 

the resistance is usually small for perforated panel with hole diameter larger than 

1mm. 

 

 

 

 

 

 

 

 

 

Figure 3.9 Measured transfer impedance of perforated panel using impedance 

subtraction method. 

 
3.2 Modeling and measurement of micro-perforated panels 

 
Traditional sound absorbing materials like fiberglass and foam deteriorate 

over time and are non-renewable. Small particles become dislodged travelling 

through ventilation ducts reducing the air quality inside of buildings.  Though the 
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long term health effects are unknown, it is recommended that exposure to these 

materials is minimized.  Certainly, alternative materials should be used in both 

health and food processing facilities. Sometimes facings are introduced to 

fiberglass and foam to prevent deterioration and to guard against dirt and oil 

being trapped.  However, these facings are combustible and typically reduce the 

sound absorbing capabilities. 

One of the more attractive alternatives to fibers and foams are micro-

perforated panel (MPP) absorbers.  For macro-perforated panels, pore diameters 

are on the order of millimeters or even centimeters with little acoustic resistance.  

MPP absorbers have pore diameters sub-millimeter in size.  Due to the small 

holes, MPP absorbers provide acoustic resistance which enhances the sound 

attenuation.   

MPP absorbers are normally manufactured from plastic or metal.  In the 

past, holes were circular in shape and were cut using a laser.  Consequently, 

MPP absorbers were considered to be too costly for commercial uses.  

Manufacturers have recently developed lower cost micro-slit panel (MSP) 

absorbers.  Slits are non-circular and are cut or pressed into metal or plastic.  

Maa determined that micro-slit absorbers have a slightly smaller acoustic 

resistance, but function like MPP absorbers for all practical purposes (Maa, 

2000).  Figure 3.10 is a photograph showing a MPP and MSP sample.  

 

 

 

 

 

 

 

 

Figure 3.10 Photographs of MPP and MSP under light. 

Due to its unique properties, MPP absorbers have been utilized in 

construction equipment, building interiors, HVAC ducts and mufflers etc.  
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Probably, the most noteworthy example is their utilization in the Deutscher 

Bundestag (the New German Federal Parliament Building). Fuchs and Zha (1997) 

developed an acrylic-glass MPP absorber, the first transparent sound absorber in 

the world. This novel MPP absorber provided the required diffusivity of the sound 

field in the parliament hall while preserving the architectural design intention to 

achieve transparency and ‘clarity’. Since MPP absorbers are fiber-free, they can 

be used to replace fibrous materials in clean environments or equipment. For 

example, MPP absorbers can be used in HVAC systems in medical, food 

processing and microelectronics manufacturing facilities (Wu, 1997). Li and 

Mechefske (2010) reported utilized MPP absorbers to reduce the noise of 

magnetic resonance imaging (MRI) equipment.  

As mentioned earlier, MPP absorbers are rugged, non-combustible and do 

not deteriorate over time. This makes them a very attractive option for long-term 

use in harsh and corrosive environments. For example, MPP absorbers have 

been used in noise barriers on mining sites (Pan, 2004), in engine enclosures as 

an acoustical heat shield (Corin and Weste, 2005), and inside mufflers (Masson, 

2008). 

The following sections review MPP absorber theory and measurement. 

 

3.2.1 Theoretical modeling 
Similar to macro-perforated panel theory, Maa (1975, 1997, 1998) 

considered the MPP as a lattice of short narrow tubes, separated by distances 

much larger than their diameters though small compared to the wavelength of the 

impinging sound wave. Building on the tube model of Lord Rayleigh (1945), and 

Crandall’s (1927) simplifications for viscous effects in narrow short tubes, Maa 

developed a theoretical model for the transfer impedance of an MPP.   

Maa used the same expression as Equation 3.1.7 for impedance of a 

single tube. For most micro-perforated panels with hole diameter of 0.1 mm to 1 

mm, the perforate constant is between 1 to 10. Thus, neither Equation 3.1.8 nor 

Equation 3.1.9 is suitable to represent the transfer impedance. Maa developed a 
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solution based on simplifying the Bessel functions for perforate constants 

between 1 and 10, written as 

( )291132132 2
0

2
2 βωρβη

++++= tj
d

tz                     (3.2.1) 

Maa used Ingard’s end correction model for resistance and reactance (see Table 

3.1). 

For micro-perforated panels with sub-millimeter holes and low porosity, 

individual holes can be viewed as sufficiently spaced apart. Therefore, interaction 

between adjacent holes can be ignored in this case. For normal incidence sound 

waves, the wave motion in all the short tubes is in-phase and additive. By 

averaging impedance over the entire panel, the normalized transfer impedance 

of the MPP can be expressed as 

( ) 





 ++++








++=

t
d

c
tj

t
d

cd
tztr 85.02911

32
232132 22

2
0

β
σ
ωββ

σρ
η          (3.2.2) 

where ω is the angular frequency, c is the speed of sound, d is hole diameter, t is 

panel thickness, σ is porosity, and β is a perforate constant dependent on the 

properties of the fluid.  β is given as ηωρβ 4/d= , where η is the viscosity and ρ 

is the mass density of air. 

MPP absorbers always require a rigid wall and a spacing D as shown in 

Figure 3.11.  By arranging a plate containing holes smaller than 1 mm in front of 

this “air cushion”, the vibration of the air (i.e. the sound) in the very small holes is 

damped by shearing forces and a relatively broadband absorber can be created.  

The surface impedance for a MPP plus air cavity combination can be expressed 

as 

.  
c
Djzz tr

ωcot−=                                                               (3.2.3) 

Once the surface impedance is determined, the reflection coefficient and 

absorption coefficient can be calculated.  

The cavity depth (D) determines the frequency range in which the MPP is most 

effective.  MPP absorbers have maximum attenuation when the particle velocity 
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in the pore is high.  This will occur at approximately one-quarter acoustic 

wavelength from a rigid wall. (when the particle velocity is maximized). Therefore, 

Thus, MPP absorbers are easily tuned by varying the cavity depth. 

 

 

 

 

 

 

 

Figure 3.11 Schematic of MPP and adjoining air cavity. 

For slit-shaped perforated panels, Allard (1993) developed exact formulae 

for the acoustical impedance.  Maa (2000) applied the formulae and developed 

an expression for the transfer impedance of MPP absorbers with slit-shaped 

perforations. The transfer impedance of a single micro-slit with length and width 

of 2l and 2a, respectively is shown in Equation 3.1.11. For perforate value 

between 1 and 10, the approximate equation is 

( )2
0

2
2 2251118112 βωρβη

++++= tj
d

tz                        (3.2.4) 

Maa used Ingard’s end correction model for the resistance, which is 

02
2
1 ωηρ

 
. For the reactance, Maa treated the rectangular opening with length of 

2l and width of 2a as an elliptical opening. The added length of a rectangular 

opening can be approximated by: 

( )eFd ⋅=
2
1δ                                           (3.2.5) 

where e is the eccentricity for an ellipse which can be calculated as 
2

2

1
l
a

− , and 

F is the incomplete elliptic integral of the first kind and is expressed as 

Air Cavity 
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( ) .  ∫
−

= 2
0 22 sin1

π

θ
θ

e
deF                                (3.2.6) 

By averaging impedance over whole panel, the normalized transfer impedance of 

the MPP with slit-shaped perforation can be expressed as 

( ) 





 ++++








++=

t
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c
tj

t
d

cd
tztr 2

122511
12

218112 22
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0

β
σ
ωββ

σρ
η     (3.2.7) 

the transfer impedance for circular and slit shaped perforations (Equations 

3.2.2 and 3.2.7 respectively) , it is evident that the resistive part for slit-shaped 

perforations is smaller whiled the reactive part is larger. This change in transfer 

impedance usually results in a lower sound absorption coefficient. In order to 

improve the acoustic performance of MPP absorbers with slit-shaped 

perforations, Maa (2000) proposed an improved design with smaller slit widths 

and larger panel thicknesses to compensate for the lower resistances.  

Maa (2000) also developed equations for slit-shaped perforations in high 

sound pressure environments. High sound intensity/pressure levels lead to high 

particle velocity (u0) in and around the hole, which leads to “jet” loss in the hole. 

Particle velocity in the hole can be calculated as a function of the sound pressure 

and is expressed as: 

( ) ( )








+−++= 022

0

2
00 181

2
r

c
prcu

σρ
σ                          (3.2.8) 

where r0 is the resistive part of the transfer impedance as shown in Equation 

3.2.2. 

“Jet” losses increase the resistance end correction by 
c

u
σ

0 , and reduce the 

reactance end correction by 
1

01
−







 +

c
u
σ

. The transfer impedance for MPP 

absorbers under high sound pressure level is given by: 

 

 

(3.2.9) 
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For a MPP absorber with 0.25 mm diameter, 0.3 mm thickness, 1% 

porosity and 25 mm cavity depth, the transfer impedance and absorption 

coefficient under different sound pressure levels are simulated using Equation 

3.2.9.  The results are compared in Figure 3.12 and measured results are shown 

in Figure 3.13. It can be observed from the simulated and measured results that 

high sound pressure levels increase transfer resistance and compromise the 

absorbing ability of a MPP absorber.  

 

 

 

 

 

 

 

 
Figure 3.12 Simulated transfer resistance (left) and absorption coefficient (right) 

of MPP absorber under different sound pressure levels. 

 

 

 

 

 

 

 

 
Figure 3.13 Measured transfer resistance (left) and absorption coefficient (right) 

of MPP absorber under different sound pressure levels. 
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Since micro-perforated panels can be categorized as a special type of 

transfer impedance, measurement methods of transfer impedance described in 

chapter 2 can be applied to micro-perforated panels. The simplest method to 

measure the transfer impedance was the impedance subtraction method 

developed by Wu et.al (2003).  

Alternatively, transfer impedance can be calculated from reflection 

coefficient using Equation 2.3.3 and 2.3.4 once transfer matrix is measured using 

two load or two source methods (Yoo, 2008).  

 

3.2.2 The Transfer matrix of For MPP Absorbers and its applications 
Once the transfer impedance is either predicted or measured, the transfer 

matrix can be expressed as 









=

10
1 trz

T                                          (3.2.10) 

This matrix can be utilized to estimate the performance of composite absorbers 

and can also be used in numerical models. For example, Lee and Kwon (2004) 

and Tao (2005) calculated the sound absorption of multiple MPP absorbers 

separated by air cavities. Liu (2008) calculated the sound absorption of 

composite absorbers consisting of foams and micro-perforated panels. For 

example, a multiple-layer micro-perforated panel absorber is shown in Figure 

3.15. Its overall transfer matrix can be obtained by multiplying the individual 

transfer matrices for each perforated panel and airspace.  The overall transfer 

matrix can be expressed as 

Airspace2MPP2Airspace1MPP1overall TTTTT ⋅⋅⋅=              (3.2.11) 

where MPP1T  and MPP2T  are transfer matrices for the first and the second panel, 

respectively. Airspace1T  and Airspace2T  are transfer matrices for the cavities behind the 

first and the second panel, respectively. Since this absorber is placed against a 

rigid termination, the particle velocity at the termination is zero ( 00 =u ).The 

surface impedance can be expressed as 
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1

1
1 T

T
u
pz ==                                                 (3.2.12) 

 

 

 

 

 

 

Figure 3.15 Configuration of multiple-layer micro-perforated panel absorber. 

Once the surface impedance is obtained, the absorption coefficient can be 

calculated. Figure 3.16 compares the measured and predicted absorption 

coefficient for the double-layer MPP absorber.  The predicted results agree well 

with the measured. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16 Absorption coefficients of double layer micro-perforated panel 
absorber (Tao, 2005). 
 
3.2.3 Effect of geometric parameters 

For a single layer MPP absorber with air cavity behind it, as illustrated in 

Figure 3.11, its transfer impedance and surface impedance are calculated using 

Equations 3.2.2 and 3.2.3, respectively. By examining these two equations, it can 

be shown that the performance of a MPP absorber depends mainly on the hole 
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diameter, panel thickness, porosity and cavity depth. Wu (1997) conducted a 

parametric study experimentally.  In the current work, the different parameters 

are varied using Equation 3.2.3The trends from both studies were comparable.  

Naturally, the advantage of the simulation is that a wide range of parameters can 

be examined without conducting time-consuming experiments. Each of the 

design parameters were varied while holding the other parameters constant.  

Figure 3.17 shows the effect of varying hole diameter with all other 

parameters held constant.  All other parameters were held constant (D = 25 mm; t 

= 0.4 mm; σ = 1.5%). The left plot is a contour map of absorption coefficient with 

respect to frequency and hole diameter. The right plot shows absorption 

coefficient curves for three distinct hole diameters extracted from the contour 

map. Notice that the attenuation band can be broadened by reducing the hole 

diameter. Smaller holes increase the viscous friction which in turn improves the 

sound absorption.  For the parameters selected, the optimum range for hole 

diameter is between 0.4 and 0.6 mm. 

 

  

 

 

 

 

 

 

 

 

Figure 3.17 Effect of hole diameter on absorption coefficient: contour map (left) 
and absorption coefficient curves for several diameters (right).  

Figure 3.18 shows the impact of porosity on the absorption. Other 

parameters were held constant and the porosity was varied from 0 to 3 percent.  

Notice that the increasing porosity forces the central frequency of the absorption 
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coefficient band higher in frequency. However, porosity will not greatly impact the 

absorption coefficient provided that modifications are small. 

 

  

 

 

 

 

 

 

 

Figure 3.18 Effect of perforation porosity on absorption coefficient: contour map 
(left) and absorption coefficient curves for several porosities (right). 

Figure 3.19 shows the impact of panel thickness on the absorption. Other 

parameters were held constant and the thickness was varied from 0 to 2 mm.  

Notice that increasing thickness forces the central frequency of the absorption 

coefficient band slightly lower in frequency. However, thickness will not greatly 

impact the absorption coefficient provided changes are small. Wu (1997) 

explained that the end correction is on the same order or larger than the 

thickness for most MPP absorbers. Since the thickness of micro-perforated 

panels is usually very close to the hole diameter, the total thickness including end 

correction is 1.7 times the geometric length of the orifice. As a result, doubling 

the panel thickness only increases the total effective thickness of the panel by 

37%. Therefore, increasing or reducing the panel thickness has a small effect on 

the acoustic panel resistance. 
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Figure 3.19 Effect of panel thickness on absorption coefficient: contour map (left) 
and absorption coefficient curves for several panel thicknesses (right). 

 

 

 

 

 

 

 

 

 

Figure 3.20 Effect of cavity depth on absorption coefficient: contour map (left) 
and absorption coefficient curves for two cavity depths (right). 

Figure 3.20 shows the effect of varying the depth of the air cavity from 0 to 

160 mm. As the figure indicates, cavity depth determines the frequency range in 

which the MPP is most effective. Increasing cavity depth forces the central 

frequency of the absorption coefficient band dramatically lower in frequency.   

The MPP absorber will have the maximum attenuation when the particle velocity 

in the pore is high. The first attenuation peak is approximately one-quarter 
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wavelength from the rigid wall (when the depth of the cavity is one-quarter 

wavelength) if it is assumed that the MPP is a purely resistive locally reacting 

element. Higher order peaks occur for cavity depths that correspond to odd 

numbers of quarter wavelengths. In practice, the peak is always shifted a little to 

lower frequency because of the reactive part of the impedance.  
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CHAPTER 4  
SOURCE IMPEDANCE 

 
4.1 Introduction 

 
In duct acoustics, Transmission Loss (TL) is defined as the difference between 

the power incident to a muffler (or more generally any sound attenuating element) 

and that transmitted downstream.  In the plane wave regime, it is a property of 

the attenuating element itself and not the complete exhaust system.  In fact, the 

reported transmission loss for an attenuating element may bear little 

resemblance to its performance as a component in an actual exhaust system. 

In practice, insertion loss, defined as the difference between the radiated 

sound power with and without the attenuating element, is preferred for assessing 

the performance.  Insertion loss is dependent on the attenuating element, but is 

also sensitive to the source and termination characteristics. 

While transmission loss in many instances can be easily predicted using 

plane wave theory or simulation, insertion loss is more easily measured.  For 

example, in small engine applications, a number of different attenuation elements 

are fabricated, placed into the exhaust system, and then their corresponding 

radiated sound pressures are measured in order to compare their respective 

insertion losses. 

Though an analytical procedure would be preferred, this is predicated on 

not only obtaining a realistic model of the attenuating element, but also a realistic 

representation of the source and termination. Insertion loss of an attenuating 

element is a function of transfer matrix, and source and termination impedances. 

The insertion loss (IL) of an attenuating element is expressed as (Munjal, 2006): 

sTsT

sTsT

zDzzDDzD
zTzzTTzTIL
⋅+⋅++⋅

⋅+⋅++⋅
=

22211211

22211211log20                                      (4.1.1) 

where T11, T12, T21, T22 are transfer matrix elements of the attenuating element, 

and  D11, D12, D21, D22 are transfer matrix elements of the replaced straight duct, 
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and zT and zs are the respective termination and source impedances. Note that 

both source and termination impedances are series impedances. 

Sound pressure level at the outlet of the duct system can be calculated 

based on overall transfer matrix, source strength, source impedance, and 

termination impedance, as  

( ) 5
22211211 102

log20 −×⋅⋅+⋅++⋅
⋅

=
sTsT

Ts
outlet zTzzTTzT

zpL                 (4.1.2) 

where ps is source strength (Munjal, 2006). 

While the termination can often be estimated using handbook equations, 

source characteristics are determined experimentally.  Realistic sources, such as 

internal combustion engines, fans, or even loudspeakers can be characterized by 

their source impedance and source strength, as described in chapter 2. Both 

quantities are determined experimentally assuming that the source is time 

invariant and propagates sound according to the plane wave assumption.  While 

measuring the source strength is essential when predicting the radiated power, 

source strength is unimportant for predicting insertion loss. 

The acoustic source impedance concept was initially developed by making 

an analogy to electrical systems (Munjal, 1987).  The source strength and the 

source impedance are analogous to the voltage and the internal impedance 

respectively of an electrical source. Referencing Figure 4.1, the relationship 

between source and load is: 

L

L

Ls

s

z
p

zz
p

=
+

                                                          (4.1.3) 

where ps and zs are the source strength and source impedance, respectively; pL 

and zL are the load sound pressure and load impedance, respectively.   
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Figure 4.1  Equivalent circuit analogy for acoustic source impedance. 
While useful, this analogy is not an ideal representation of the acoustic 

system.  First of all, the source strength (ps) must be measured or simulated 

except in the case of idealized sources.  In addition, sound pressure, using the 

electric analogy, cannot be decomposed into incident and reflected sound waves 

(Davies, 1991). 

In order to develop the source model based on acoustical concepts, an 

intermediate model based on the mechanical-acoustical coupling analogy is 

introduced. As shown in Figure 4.2, the source can be represented by a spring-

mass-damper system driven by the source pressure on the left side. On the right 

side, the mass acts like a piston, which drives the acoustic system. 

 

 

 

 

 

Figure 4.2 Schematic illustrating the mechanical analogy of a source. 

The coupled system shown above can be described as:  

.  s
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By defining source impedance using mechanical concepts, as shown in 

Equation 4.1.5, and load impedance based on acoustical concepts, as shown in 

Equation 4.1.6, Equation 4.1.4 can be proven identical to Equation 4.1.3. 

Therefore, instead of using equivalent circuit analogy, the mechanical-acoustical 
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coupling analogy can be employed in the future to aid in better understanding the 

source impedance. The source and load impedances can be expressed as 

s

kmjc

s
zz m

s













 −+

==
ω

ω
                                                           (4.1.5) 

and 

.  
0u

pz l
l =                                                                              (4.1.6) 

respectively. Figure 4.3 illustrates the effect of source impedance inside of a 

waveguide. The sound waves generated by the source propagate along the duct.  

While a portion of the energy propagates through the attenuating element, some 

of the energy is reflected by the attenuating element back towards the source.  

The reflected sound waves though partially absorbed by the source also reflect 

back from the source. The amount of sound energy reflected or absorbed by the 

source is a function of the source impedance. 

 

 

 

 

 

 

Figure 4.3 Schematic illustrating the behavior of a realistic source. 

 

4.2 Measurement methods based on electrical analogy 
 

As described in Chapter 2, due to the practical difficulties of a direct 

measurement, indirect methods are often preferred.  Figure 4.4 shows a 

schematic for the indirect measurement approach.  Referring to Figure 4.1 and 

Equation 4.1.3, the source sound pressure and impedance can be solved if two 

sets of load impedances (zL) and acoustic pressures (pL) are known.  This is 
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known as the two-load method in which the minimum of two loads is used to 

solve for the unknown source sound pressure and impedance.  If more than two 

loads are used, one obtains an overdetermined problem which can be useful for 

reducing the dependence on the load. 

The load impedance is most easily changed by adjusting the length Li.  

However, the load impedance can also be changed by adding side branches, or 

adding absorption at the termination.  The load impedances (zLi) are normally 

determined using plane wave theory, but may also be measured.  On the other 

hand, the acoustic pressures (pLi) at the load are measured.  Due to temperature 

and flow concerns, the pressures (pri) may be alternatively measured outside the 

pipe.  The acoustic pressures (pLi) at the load can be calculated using plane 

wave theory from the pressures (pri) measured outside the pipe. 

 

 

 

 

 

 

Figure 4.4  Schematic showing the indirect measurement concept. 
 

4.2.1 Two-Load Method  
Referencing Equation 4.1.3, with two known load pressures (pL1 and pL2) 

and load impedances (zL1 and zL2), the source impedance and source pressure 

can be expressed as  

 )(

1221

2121

LLLL

LLLL
s pzpz

ppzzz
−

−
=                                            (4.2.1) 

and 

1221

2121 )(

LLLL

LLLL
s pzpz

zzppp
−

−
=                                                               (4.2.2) 

respectively (Munjal,1987). 
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Both the load impedance (zLi) and sound pressure (pLi) are complex.   In order to 

establish the phase for the sound pressure (pLi), a non-acoustic reference signal 

related to the sound-generating mechanism of the source, such as the vibration 

signal of the engine, is required. 

 

4.2.2 Least Squares Method  
Similar to the two-load method, the least squares method takes advantage 

of additional loads and consequently additional measurement data (Desmons, 

1994).  It should be noted that other multiple load methods have been developed 

(Prasad, 1987, Boden, 1995 ) though the phase of the load pressure (pLi) is often 

ignored in those approaches.   

For the least squares method, the expression for the source impedance is 

given as                             
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where uLi is the particle velocity at the load and can be expressed as the ratio of 

the load pressure (pLi) to the load impedance (zLi).  Notice that the load pressures 

(pLi) should be referenced to a source mechanism since the phase cannot be 

ignored.  Similarly, the source sound pressure can be expressed as 

. 
)(1

1
∑
=

+
=

N

i L

LsL
s

i

ii

z
zzp

N
p                                            (4.2.4) 

The advantage of the lease squares method is that the source impedance 

and source sound pressure are less sensitive to the loads because the 

measurement error is minimized.  Nevertheless, care should be taken to insure 

that the loads are as different as possible. 

 

4.2.3 Move source position 
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The source impedance provided by the 2-load method or least squares 

method is usually determined at the microphone position, as shown in Figure 

4.5a. However, this source impedance includes the source itself as well as the 

straight duct between the source and microphone. It is suggested that it is more 

appropriate to transfer the impedance measured at the microphone position to 

the actual source position (Figure 4.5b). 

 

 

 

 

Figure 4.5  Schematic showing how the source position can be moved along a 

duct. 

It is well known that the relationship between the impedances at two 

positions along the duct, shown in Figure 4.6, can be described using transfer 

matrix theory (Munjal, 1985, Fahy, 2001). Notice that the source should be 

regarded as downstream to the load when using the convention described by 

Fahy (2001) due to the direction in which source impedance is measured. 

 

 

 

 

Figure 4.6 Transfer matrix between two positions in a duct. 

Thus, the impedance at point 1 (z1) can be written in terms of the 

impedance at point 2 (z2) via 

1tan1
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ρ
                                                        (4.2.5) 

where L is the length shown in Figure 4.6, ρ is the density of air, c is the speed of 

sound, and k is the wave number. For the case of source impedances, this 
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amounts to transferring the impedance in the negative direction of incident wave 

propagation. 

 

4.2.4 Experimental validation 
The aforementioned procedure was validated for a loudspeaker.  The 

loudspeaker was connected to an impedance tube as shown in Figure 4.7.  The 

source impedance was measured using the two-load approach and was verified 

using the direct measurement approach.    The load was varied by simply 

opening and closing the tube at the termination thereby changing the load. 

 

 

 

 

 

 

 

Figure 4.7  Photograph showing the experimental setup. 

 The measured source impedance comparisons are shown in Figures 

4.8 to 4.11 at the microphone and loudspeaker positions respectively.  Notice 

that the source impedance at the microphone position (Figures 4.8 and 4.9) has 

several peaks as a result of resonances in the tube.  In contrast, the source 

impedance exhibits less resonant behavior when it is measured close to the 

source itself (Figures 4.10 and 4.11).  Also, notice the agreement between the 

direct and two-load methods.  It is believed that the discrepancy at lower 

frequencies is due to the external source (in this case another loudspeaker) not 

being powerful enough.  It is our opinion that the two-load method is more 

accurate in this case since the curves in Figures 4.10 and 4.11 are much 

smoother. 
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Figure 4.8  Normalized real part of source impedance at microphone position. 

 

 

 

 

 

 

 

 

 

 

Figure 4.9  Normalized Imaginary part of source impedance at microphone 
position. 
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Figure 4.10  Normalized real part of source impedance at loudspeaker position. 

 

 

 

 

 

 

 

 

 

 

Figure 4.11  Normalized imaginary part of source impedance at loudspeaker 

position. 

 

4.2.5 Source impedance measurement of engine intake system 
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temperature and flow turbulence inside of the pipe, a pressure transducer was 

used to measure the sound pressure instead of a microphone. The sound 

pressure measurements were referenced to an accelerometer placed on the 

engine.  Additionally, the sound pressure was measured at the termination so 

that it could be compared with the sound pressure predicted at the termination 

using the source strength and the source impedance as a check. The test setup 

is shown in Figures 4.12 and 4.13. 

 

 

 

 

 

 

Figure 4.12 Engine intake source impedance measurement setup. 

 

 

 

 

 

 

 

 

 

Figure 4.13 Engine intake source impedance measurement. 

 Four different loads were used which provided 6 different combinations 

of measurements for the two-load method. This produced six independent 

predictions for the source impedance.  Those results were averaged and 

compared to the least squares method.  For the least squares method, the same 

measured data from the four different load cases was processed. The source 
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impedance results measured at the pressure transducer position are shown in 

Figures 4.14 and 4.15.   Notice that the two different processing schemes 

produce similar results. The measured source strength level is shown in Figure 

4.16.  

 

 

 

 

 

 

 

 

 

 

Figure 4.14 Source resistance comparison for the engine intake system. 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 Source reactance comparison for the engine intake system. 
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Figure 4.16 Measured source strength level of the engine intake system. 

Once the source impedance and source strength are measured, the 

sound pressure at the termination of the pipe can be predicted using plane wave 

theory. This is predicated on knowing the length of the pipe and the termination 

impedance.  In this case, the termination was an unflanged pipe opening.  Figure 

4.17 show the comparison between measured and predicted sound pressure 

level outside the 6” pipe. 

 

 

 

 

 

 

 

 

 

 

Figure 4.17 Measured and predicted sound pressure level outside of the 
pipe. 
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4.3 Incident Wave Decomposition Method 
 

4.3.1 Background of Wave Decomposition 
As discussed in Chapter 2, the solution to Helmholtz Equation consists of a 

positive- traveling or incident wave, and a negative-traveling or reflected wave.  

This can be expressed as 

.  jkxjkx BeAexp += −)(                                                          (4.3.1) 

where A and B are the complex amplitudes of the incident and reflected waves, 

respectively. Total pressure at a point is simply the linear superposition of the 

incident and reflected waves (Fahy, 2001). Based on Equation 4.3.1, the 

complex amplitudes, A and B, can be determined if there are two measured 

complex pressures. This requires two transfer function measurements between 

sound pressures inside the tube and a reference signal. Several duct acoustic 

measurement techniques has been developed based on wave decomposition. 

For instance, two wave decomposition approaches have been used to 

measure the reflection coefficient in a tube.  The reflection coefficient can be 

used to determine the impedance at a point in the tube or the sound absorption.  

The standing-wave-ratio (SWR) method, the earliest approach, calculates the 

ratio of the reflected to incident complex wave amplitudes by determining the 

positions of the maximum and minimum sound pressures in a tube.  On the other 

hand, the two-microphone method (illustrated in Figure 4.18) utilizes the 

measured transfer function between two positions in the tube (Seybert, 1977). 

The measured transfer function (H12) can be related to the reflection coefficient (R) 

using 
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                              (4.3.2) 

Material properties such as the acoustic impedance and sound absorption 

coefficient can be derived from the reflection coefficient.  
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Figure 4.18 Schematic of the experimental setup for two-microphone method 

Recently, Bonfiglio (2008) used similar wave decomposition approaches 

to develop a single-load approach to measure the normal incidence transmission 

loss. The schematic of the experimental setup is shown in Figure 4.19. In order 

to derive the transmitted wave C*, the travelling wave B in the upstream and the 

travelling wave C in the downstream are decomposed. 

 

 

 

 

 

 

Figure 4.19 Schematic of the experimental setup for single load TL 

measurement. 

The negative-travling wave B in the upstream can be decomposed into: 

the reflected wave from the surface of sample (A*R) and the transmitted 

contribution from the end termination (D*T). This is expressed equationally as 
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Sound source Material sample 

x 

x1 

x2 
A 

B 

P(x1) P(x2) 

1 3 4 2 

A 

B 

C 

D 

Source Termination 



72 
 
 

where d is the thickness of the sample, Teff is the transmission coefficient of the 

sample, and R is the reflection coefficient. A similar analysis can be considered 

on the right hand side of the specimen. The downstream positive-traveling wave 

having complex amplitude C is the summation of the transmitted contribution of 

the positive-traveling wave through the specimen (A*T) and the reflected 

contribution of the negative traveling wave (D*R). This can be expressed as 

RDTeAC eff
jkd ⋅+⋅⋅= −

                                                         (4.3.4) 

Bonfiglio assumed that the reflection coefficient was the same on each side.  

If that is the case, the transmission coefficient can be solved using the complex 

amplitudes obtained by wave-decomposition.   In this thesis, the approach 

developed by Bonfiglio is modified and applied to measuring the source strength 

and source impedance. 

 

4.3.2 Theoretical Development 
Instead of using the equivalent circuit analogy, the source impedance can be 

obtained using wave decomposition.  Boden and Abom (1995) related this wave 

decomposition concept in a manner similar to the following discussion.  However, 

they did not apply the concept to the measurement of source impedance via the 

2-load method.  As illustrated in Figure 4.20, the major premise is that the 

incident sound wave (A) consists of two parts. 

a. The outgoing wave from the source (Ps+). 

b. The reflected wave from the source boundary (BRS). 

Thus, A can be expressed as 

ss RBPA ⋅+= +                                                         (4.3.5) 

The incident wave A and the reflected wave B can be obtained from the 

measured sound pressure at two locations (P1, P2) via wave decomposition 

(Seybert, 1977).  
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Figure 4.20 Schematic illustrating the wave decomposition premise. 

By applying two different acoustic loads and measuring the sound 

pressures (P1, P2), two different sets of A’s and B’s are determined. Then, the two 

unknowns Ps+ and Rs can be solved using  

21

21

BB
AARs −

−
=                                                                    (4.3.6) 

and 

 

(4.3.7) 

If multiple loads are applied, then a least squares algorithm can be utilized 

to achieve smoother and more accurate results. The source impedance can be 

obtained from the reflection coefficient Rs and expressed as 

 

(4.3.8) 

With source impedance and reflection coefficient known, the source 

absorption coefficient can be calculated using 

21 ss R−=α                                                                      (4.3.9) 

 

4.3.3 Relation to Two-load Method 
If the equivalent circuit analogy is compared to the wave decomposition 

approach, a relationship between Ps+ and Ps can be developed.   Figure 4.21 

places the equivalent circuit analogy side by side with the wave decomposition 
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approach.  Notice that the load pressure (pL) and load impedance can be 

expressed in terms of the incident and reflected waves as 

 (4.3.10) 

and 

 

(4.3.11) 

respectively.  Substituting Equations 4.3.8, 4.3.10 and 4.3.11 into Equation 4.1.3 
yields: 

 

(4.3.12) 

 

which can be simplified to 

 

(4.3.13) 

Comparing equation 4.3.13 to equation 4.3.5, it is evident that the source 

reflection coefficient (Rs) obtained by the 2-load and wave decomposition 

approach are identical.  However, the source impedance will differ between the 

two approaches because of dissimilar data processing approaches.  The 2-load 

method requires the load impedances to be known and a load pressure for each 

condition.  In contrast, the wave decomposition approach does not require the 

load impedance to be known, but instead requires two sound pressures to be 

measured for each acoustic load. 
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Figure 4.21 Schematic comparing wave decomposition and circuit analogy. 

As noted earlier, the outgoing source strength (Ps+) is determined using 

the wave decomposition approach.  This can be related to the source strength (Ps) 

via  

  

 (4.3.14) 

Note that Ps+ is outgoing source strength and it can be physically defined 

as the sound pressure PL (or outgoing wave A) at the source-load separation 

position when there is no reflection B (i.e., with an anechoic termination), as 

illustrated by Figure 4.22. 

  

 

 

Figure 4.22 Schematic comparing source strength and outgoing source strength. 

As shown in Figure 4.2, the source can be represented by a spring-mass-

damper system driven by the source pressure on the left side. On the right side, 

the mass acts like a piston, which drives the acoustic system. By replacing the 

acoustic part by a unit damper, as shown in Figure 4.23, the outgoing source 

strength can be related to source strength by 
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Figure 4.23 Mechanical analogy of source strength and outgoing source strength. 

 

4.3.4 Experimental Validation 
A simple experiment was conducted to investigate the utility of the wave 

decomposition method.  The source impedance of a loudspeaker was measured 

using the direct, 2-load, and wave decomposition methods. The loudspeaker is 

rated for use above 500 Hz.  Thus, the low frequency cut-off is 500 Hz. For both 

the two-load and wave decomposition approaches, three different loads were 

employed (open end, closed end, and closed end with absorbing material). Then 

a least squares algorithm was used to smooth the result.  Figure 4.24 shows a 

photograph of the measurement setup. 

 

 

 

 

 

Figure 4.24 photograph showing measurement setup 

Figures 4.25 and 4.26 compare respectively the real and imaginary parts of 

the source impedance.  Notice the excellent agreement between the approaches.  

However, it is notable that results obtained by the wave decomposition method 

exhibit less noise.  Figure 4.27 compares the outgoing source strength between 
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two-load and wave decomposition methods.  Similarly, the source strength 

acquired using wave decomposition method has less noise. Figure 4.28 shows 

the source absorption coefficient of the loudspeaker. 

 

 

 

 

 

 

 

 

 

Figure 4.25 Source resistance comparison 

 

 

 

 

 

 

 

 

 

 

Figure 4.26 Source reactance comparison 
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Figure 4.27 Outgoing Source Strengths comparison 

 

 

 

 

 

 

 

 

 

Figure 4.28 Source absorption coefficient 
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frequencies because the source sound pressure is higher than the acoustic 

signal generated by most off-the-shelf external sources (Lavrentjev, 1992).  This 

is the predominant source of error when using a direct measurement approach. 

In contrast, indirect measurements are prone to errors which are commonly 

manifested as a negative resistance (Ih and Peat, 2002). Researchers have 

suggested that these problems are caused by the presumed linear and time-

invariant model (Lavretjev, 1992) and have recommended the linearity coefficient 

as a “source coherence” index to check model validity (Lavretjev, 1992, Boden, 

2007). Others have suggested that the error is introduced by the load 

combinations being too similar at some frequencies (Ih and Peat, 2002). In the 

discussion that follows, this second source of error is investigated. 

A significant difference between the incident wave decomposition and two-

load methods is that the former does not require the load impedance to be 

known.  Thus, there is no error introduced by measuring or calculating the load 

impedance. However, different load impedances impact the magnitude and 

phase of the incident and reflected waves which in turn influence the calculation 

of source strength and impedance. 

In order to investigate the choice of load, a constant source impedance (zs) 

and outgoing source strength (ps+) of  and , respectively were 

selected.  The termination impedance (ztr) was assumed to be that of an 

unflanged opening.  By varying the tube lengths L1 and L2, the incident wave A 

and reflected wave B can be calculated from zs, ps+ and ztr. By writing the wave 

decomposition equation for two different tube lengths, two simultaneous 

equations can be expressed in matrix form as  

.
1
1

2

1

2

1









=
















+ A
A

p
R

B
B

s

s
                                              (4.4.1) 

As introduced in perturbation theory (Demmel, 1997), the condition 

number of matrix D for an equation of the form can be expressed as 

( ) .1 DDD ⋅= −κ                                                             (4.4.2) 

( )i−12/2 ( )i+15

[ ]{ } { }yxD =
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The condition number can be used to relate measurement errors in A and B to 

the error in source impedance. Figure 4.29 shows a contour plot of the reciprocal 

of the condition number ( ) as a function of the lengths L1 and L2.  

 

 

 

 

  

 

 

 

 

 

Figure 4.29 Reciprocal of Condition Number ( ) for Equation (4.4.1) as a 

function of kL1 and kL2. 

Notice the ill-conditioning in the bands (Notice the dark blue diagonal 

bands) where  

...2,1,0,12 =+= nnkLkL π                                                  (4.4.3) 

where k is the acoustic wavenumber.  This implies that the load conditions are 

overly similar.  Similarly, ill-conditioning is also evident for tube resonances which 

occur when 
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==

+
= nandinkLi π                             (4.4.4) 

Excluding the two bands specified by Equations 4.4.3 and 4.4.4, notice that the 

matrix is well-conditioned when 

...2,1,0,1,2...,
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+= nnkLkL π                        (4.4.5) 

)(/1 Dκ

)(/1 Dκ

 

 

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

kL1

kL2

L1 = 2L2



81 
 
 

This occurs when the load impedances are out of phase by 90 degrees 

(indicated in dark red). 

Additionally, notice that any length combination can be represented by a 

line beginning at the origin. For example, the condition number for a length 

combination L2 = 2L1 is shown on the contour plot in Figure 4.29. Notice that 

traversing the line amounts to varying the frequency.  Thus, most length 

combinations will exhibit both well- and ill- conditioning in several frequency 

bands. The condition number analysis aids in choosing appropriate tube lengths 

in order to avoid ill-conditioning in frequency bands of interest. 

 

4.4.2 Error Analysis 
The different methods to determine source impedance and source strength 

will not give the same results due to the different processing schemes and input 

data used (Boden, 1988). Seybert (1970) and Soenarko (1980) investigated the 

effect of error in the spectra and microphone spacing.  They provided 

recommendations to minimize the error.  Boden (1988) investigated the effect of 

errors in the input spectra if the two-load method is used.  The sensitivity to 

errors was calculated using first order Taylor expansions and direct numerical 

simulation. 

For the two-load method, the errors in measured source impedance and 

source strength are a result of 1) the errors in the measured sound pressures 

and the measured or calculated load impedances, and 2) the sensitivity of the 

calculation to errors in the input data.  Errors in the measured load impedances 

can be determined using the approach suggested by Seybert (1981).  Boden 

developed equations to determine the sensitivity of the two-load method 

equations to errors in the input data.  If the errors in the input data are assumed 

to be small, then Equations 4.2.1 and 4.2.2 can be expanded as a first order 

Taylor series.  The relative errors of the source impedance and source strength 

can be expressed as: 
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(4.4.7) 

 It can be observed from the above equations that the relative errors of 

source impedance and source strength are small when one load impedance is on 

the same order as the source impedance while the other one is very different. 

The relative errors increase dramatically when the two load impedances are 

approximately equivalent. Alves (1986) suggested that the two-load method is 

less sensitive to errors when an absorptive and open-ended termination is used 

instead of using two open ended terminations. 

An error analysis of the wave decomposition approach is presented in this 

section. In order to solve source strength and source impedance using Equation 

4.3.7 and 4.3.8, the complex wave amplitudes should be calculated from the 

measured sound pressures at two locations.  The complex amplitudes (A and B) 

can be expressed as 

( ) ( )2112

12
21

xxjkxxjk

jkxjkx

ee
epepA −− −

−
=                                        (4.4.8) 

and 

( ) ( )2112

21
12

xxjkxxjk

jkxjkx

ee
epepB −−

−−

−
−

=                                        (4.4.9) 

where p1 and p2 are measured complex pressures at the two the microphone 

positions, and x1 and x2 are distances from the microphone positions to the 

source-load separation point. By substituting equations 4.4.8 and 4.4.9 into 
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equation 4.3.8, source impedance and source strength can be expressed in 

terms of the four measured sound pressures as 

( )( ) ( )( )
( )( ) ( )( )1122

1122

2211

2211
jkxjkx

ab
jkxjkx

ba

jkxjkx
ba

jkxjkx
ab

s eeppeepp
eeppeeppz

+−++−
−−+−−

= −−

−−

    (4.4.10) 

where p1a, p1b, p2a and p2b are sound pressures at microphone positions 1 and 2, 

respectively.  The indices a and b indicate the two different loads.. 

The errors in the wave decomposition method depend on the errors in the 

measured sound pressures and the sensitivity of the equations to errors in the 

input data.  The approach used is similar to that used by Boden (1988).  The 

source impedance’s sensitivity to errors in each of the measured sound 

pressures can be expressed as:  

( ) ( ) ( )( )
( )( ) ( )( )[ ]22211

22

1 1122

12212
jkxjkx

ab
jkxjkx

ba

xxjkxxjk
ba

a

s

eeppeepp
eepp

p
z

+−++−

−−⋅
=

∂
∂

−−

−−

      (4.4.11) 

( ) ( ) ( )( )
( )( ) ( )( )[ ]22211

22

1 1122

21122
jkxjkx

ab
jkxjkx

ba

xxjkxxjk
ba

b

s

eeppeepp
eepp

p
z

+−++−

−−⋅
=

∂
∂

−−

−−

      (4.4.12) 

( ) ( ) ( )( )
( )( ) ( )( )[ ]22211

11

2 1122

21122
jkxjkx

ab
jkxjkx

ba

xxjkxxjk
ba

a

s

eeppeepp
eepp

p
z

+−++−

−−⋅
=

∂
∂

−−

−−

      (4.4.13) 
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Consider a case when the measured sound pressures are similar for two 

different loads.  This results in a singularity since the denominators in Equations 

4.4.11-4.4.14 approaches zero.  This result is similar to Boden's error analysis of 

the two-load method. Additionally, the effect of errors due to the microphone 

locations can be analyzed.  The respective sensitivity coefficients for the two 

microphone distances are:  
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The sensitivity coefficients for distances are directly proportional to the frequency 

via the wavenumber. This suggests that measurements at high frequencies will 

be prone to error. The total error for measuring source impedance can be 

determined based on the errors in the input data and error propagation rules as 

21

2
2

2

2

2
1

2

1

2
2

2

2

2
2

2

2

2
1

2

1

2
1

2

1






∆⋅

∂
∂

+∆⋅
∂
∂

+






∆⋅

∂
∂

+∆⋅
∂
∂

+∆⋅
∂
∂

+∆⋅
∂
∂

=∆

x
x
zx

x
z

p
p
zp

p
zp

p
zp

p
zz

ss

b
b

s
a

a

s
b

b

s
a

a

s
s

 

(4.4.17) 

The analytical approach of error analysis is suitable for drawing general 

conclusions, while direct numerical simulation is the simplest way to estimate the 

error sensitivity for a given measurement situation. The effect of measurement 

error was investigated by introducing random perturbation to the incident and 

reflected waves A and B.  This error is averaged over the frequency range.  The 

error for a selected length combination is compared to the case in which one of 

the loads is anechoic.  The anechoic load is expected to be very different from a 

tube length with flanged opening.  Input errors of 0.01%, 0.1%, 1%, 10% and 

100% are applied to incident and reflected waves A and B since they are the only 

sources of measurement error.  As shown in Figure 4.30, utilizing an anechoic 

load should reduce the effects of measurement errors. 
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Figure 4.30 Comparison of relative error for different acoustic loads. 

 

4.4.3 Negative Source Resistance 
 The measured source resistance of an internal combustion engine is 

frequently found to be negative. For example, the source resistance of the 

internal combustion engine intake shown earlier (Figure 4.31) was negative at 

some frequencies. Negative source resistance is related to negative source 

absorption coefficient, which suggests that more energy is reflected than is 

incident. It follows that negative source resistance is physically impossible. In 

most cases, proper measurement of source impedance by the direct method will 

yield a positive resistance.  Negative source impedance normally occurs in the 

case of indirect measurements (Ih, 2002). 

A positive source resistance implies a positive absorption coefficient or a 

source reflection coefficient having an absolute value smaller than 1.  According 

to Equation 4.3.6, the reflection coefficient can be replaced by incident and 

reflected waves. The source resistance will be positive when 

2121 BBAA −≤−                                                           (4.4.18) 

This criterion suggests that changing the load should affect the reflected wave 

more than the incident wave.  For example, Figure 4.32 shows the incident and 
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reflected wave amplitudes for a loudspeaker source impedance measurement.  

Clearly, the difference between the two reflected waves is much greater than that 

of the two incident waves.   This insures that the measured source resistance will 

be positive as shown in Figure 4.26.   

 

 

 

 

 

 

 

 

 

 

Figure 4.31 Source impedance of an internal combustion engine intake. 

 

 

 

 

 

 

 

 

 

Figure 4.32 Comparison between incident and reflected waves for two loads. 

 

 

 

-5
-4
-3
-2
-1
0
1
2
3
4
5

0 200 400 600 800 1000
Frequency (Hz)

Zs
 / 

Z0
Real
Imaginary

 

60

70

80

90

100

110

120

0 1000 2000 3000 4000

Frequency (Hz)

SP
L 

(d
B)

ps+
A1
B1
A2
B2



87 
 
 

4.5 Applying the Measured Source Impedance to Insertion Loss Prediction 
 

Insertion loss is defined as the change in the radiated sound pressure 

resulting from the insertion of the attenuation element. Insertion loss is generally 

more useful to noise control engineers since it evaluates how well an attenuation 

device will perform in the actual system.  It provides an insight into the coupling 

between the source, termination, and the attenuating elements. 

Based on its definition, the measurement of insertion loss is 

straightforward. It requires a sound pressure level measurement at a given 

position for the system with and without the attenuating element. It is common to 

use a straight duct have the same length as the system with attenuation element 

as a reference (the "without attenuation element" case).  The measurement 

approach is illustrated in Figure 4.33.  The insertion loss of a muffler equals the 

difference between the two sound pressure levels (SPL1 and SPL2) in dB.  

 

 

 

 

 

Figure 4.33 Schematic of insertion loss measurement. 

During the design stage, it is desirable to predict the performance of the 

attenuation element before the prototype is made. However, this is difficult 

because the source impedance is often unknown. 

To show explicitly the importance of source impedance, insertion loss of 

an simple expansion chamber was predicted for various assumed source 

impedances and then compared with that predicted for a measured source 

impedance. The various values assumed for source impedance are zero, 

anechoic and infinity. The source impedance for the engine intake shown in 

Figures 4.14 and 4.15 is used as the measured data. Figure 4.34 shows a 

schematic of the simple exhaust system that was considered.  Predictions of the 
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insertion loss are shown in Figure 4.35 for different source impedances. It is 

notable that the source impedance has a large impact on the insertion loss.  

Additionally, the insertion loss can sometimes be negative due to resonances in 

the pipe. 

 

 

 

 

 

 

Figure 4.34 Schematic showing example exhaust system. 

 

 

 

 

 

 

 

 

 

 

Figure 4.35 Insertion loss comparisons as a function of source impedance. 

A small engine muffler was used to demonstrate the prediction of insertion 

loss from measured data. A loudspeaker and an unflanged open pipe were used 

as the source and termination conditions. The transfer matrix for the muffler was 

measured using the two-source method, and Figure 4.36 shows the setup for the 

two-source method. The measured four-pole parameters are shown in Figure 

4.37. Real parts are shown in blue, and imaginary parts are shown in green. The 

transfer matrix for a reference duct having the same length was determined 

theoretically using Equation 2.1.35. 
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Figure 4.36 Muffler in transfer matrix measurement setup. 

 
Figure 4.37 Measured four pole parameters of the muffler. 

The source impedance for the loudspeaker was measured using the wave 

decomposition approach, as shown in Figure 4.38. The impedance is normalized 

by the characteristic impedance ( c0ρ ) in the figure. The termination impedance 

of the unflanged open duct was measured using the two-microphone method as 

shown in Figure 4.39. 
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Figure 4.38 Measured source impedance of the loudspeaker. 

 

 

 

 

 

 

 

 

Figure 4.39 Measured termination impedance of the unflanged open pipe. 

Using the measured source and termination impedances, and the 

measured transfer matrix for the muffler; the insertion loss was predicted using 

Equation 4.1.1.  Figure 4.40 compares the measured to the predicted insertion 

loss.  The results compare well and demonstrate how insertion loss can be 

predicted accurately if the source and termination impedances are known in 

advance. 
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Figure 4.40 Insertion loss comparison. 

 

4.6 Summary 
 

The source impedance of an engine intake system was determined using 

both the two-load and least squares methods.  The load was varied by using 

different lengths of pipe affixed to the intake.  The results were similar for both 

techniques particularly when the source impedance results from the two-load 

method were averaged. 

A wave decomposition method has been developed and compared with 

the existing 2-load approach. It has been demonstrated that this simplified 

method uses the reflection of the primary source energy as an external source.  

In that sense, it is similar to the direct method.   The primary source itself can be 

used as the reference signal.  This may be advantageous since the source itself 

can be used to obtain the desired data without the necessity of adding a 20 dB 

higher external source (typically required for the direct method). This similarity to 

the direct method may also explain why the simplified 2-load method produces 

smoother results than the existing 2-load approach. 

The error analysis shows that selecting different tube lengths to modify 

acoustic load has little effect on the frequency wide source impedance accuracy.  
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However, tube lengths could be strategically selected so as to enhance 

measurement accuracy in particular frequency bands. Changing the termination 

configuration can improve measurement accuracy if the two terminations 

produce very different acoustic loads. If possible, near anechoic and open-flange 

load combinations should improve measurement accuracy reducing the 

possibility of negative source resistance. 

The importance of source impedance was demonstrated by examining the 

impact of varying the source impedance on the insertion loss for a simple 

exhaust system. Measured source impedance was used to predict the insertion 

loss of a small muffler with good agreement with measured data. 
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CHAPTER 5  
TRANSFER IMPEDANCE AND MICRO-PERFORATED PANELS 

 
5.1 Transfer Impedance Measurement for Micro-perforated Panel 

 
Micro-perforated panel (MPP) absorbers can be modeled using a series 

impedance or transfer impedance.  It is assumed that the volume velocity will be 

the same on both sides of the panel. The simplest method to measure the 

transfer impedance is the impedance subtraction method developed by Wu et al. 

(2003). The measurement setup is shown below in Figure 5.1.  The impedance is 

measured with and without the perforated panel placed in the tube. 

 

 

 

 

 

 

 

 

 

Figure 5.1 Experiment setup for impedance subtraction method. (a) with MPP, (b) 

without MPP. 

The transfer impedance is the difference between the impedances in front and 

back of the panel. The impedance in front of the panel (Z1) is that of the 

combined panel and backing cavity while the impedance behind the panel (Z2) is 

that of the backing cavity alone. Both impedances can be measured using the 

two-microphone method (Seybert, 1977). Absorptive material is often added to 

the end of the tube in order to reduce the sound reflection from the termination. 

The transfer impedance can be expressed as 

21
21 ZZ

u
ppztr −=

−
=                                               (5.1.1) 
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where p1 and p2 are the sound pressures in front and back of the panel, and u is 

the particle velocity which is assumed to be the same on both sides of the panel. 

Z1 and Z2 are the impedances with and without the MPP. Alternatively, the 

transfer impedance can be calculated from reflection coefficient using Equations 

2.3.3 and 2.3.4 after the transfer matrix is measured using either the two-load or 

two-source method (Yoo, 2008).  

In this section, an explicit equation is developed for the transfer impedance of 

micro-perforated panels based on impedance tube measurements with four 

microphones. In this case, the transfer matrix is not measured.  The 

measurement setup, which is identical to the two-load method, is shown in Figure 

5.2. 

 

 

 

 

 

 

 

 

Figure 5.2 Setup for four microphone transfer impedance measurement. 

Wave decomposition pairs in front and back of the MPP can be expressed as  
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where l1 is the distance between microphone 2 and the sample, l2 is distance 

between the microphone 3 and the sample, s1 is the distance between 

microphones 1 and 2, s2 is the distance between microphones 3 and 4 (ASTM, 
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2009). Based on wave decomposition approaches, the sound pressures and 

particle velocities can be calculated as: 

( )
( ) .                        

                     
cDCuDCp

cBAuBAp

0

0

ρ
ρ

−=+=
−=+=

−−

++
                              (5.1.3) 

The transfer impedance can be calculated by taking the ratio of the difference 

between the sound pressures on both sides of the panel, and the particle velocity.  

The particle velocity on each side of the panel should theoretically be equal 

according to the transfer impedance assumption.  In practice, there will be 

differences between the particle velocities and they should be averaged in order 

to calculate the transfer impedance.  Thus, the transfer impedance can be 

expressed as 

( ) ( ) .   
22 0 DCBA

DCBAc
uu

ppztr −+−
−−+

⋅=
+
−

=
−+

−+ ρ                             (5.1.4) 

Though the transfer impedance can be measured using a number of different 

approaches, the impedance subtraction method was selected for this dissertation. 

 
5.2 Effective Geometric Parameters Estimation 

 
Cutting circular-shaped perfortions is normally accomplished by using either a 

laser or a drill press (Yoo, 2008). As a result, high manufacturing costs preclude 

their use in most products.  However, lower cost MPP absorbers with slit-shaped 

perforations are being produced that perform similar. Figure 5.3 shows a 

magnified view and an illustrated cross-section view of a single slit. Notice that 

the slit shape is complicated, slit dimensions vary with thickness, and the slit is 

angled through the metal.  Consequently, geometric parameters, namely slit size 

and porosity, are difficult to measure, and difficult to relate to Maa’s equation 

directly.  
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Figure 5.3 Magnified view and illustrated cross-section view of a single slit. 

Efforts have been made to measure these geometric parameters. For example, 

the porosity has been estimated by measuring the light intensity through the 

panel. Slit size has been calculated by averaging the measured widths of many 

holes at different depths. However, substituting these approximate geometric 

parameters into either Equation 3.2.2 or Equation 3.2.7 yields transfer 

impedances that do not correlate well with measured results. As a result, the 

absorption coefficient and transmission loss cannot be predicted and used in 

models using estimated geometric parameter.  

In order to provide these necessary geometric parameters for noise control 

engineers during the design and simulation stage, an effective parameter 

estimation method for MPP absorbers having slit-shaped perforations is 

proposed. The slit parameters are calculated backward using measured 

absorption data and a nonlinear least square data fitting algorithm. The estimated 

parameters can be directly used in the commonly adopted Maa’s equation. The 

feasibility of this approach is considered in the section that follows. 

 

5.2.1 Feasibility of Data Fitting 
When the MPP absorber thickness and cavity depth are known, two geometric 

parameters, hole size and panel porosity, determine the acoustic performance. In 

order to study the feasibility and uniqueness of an inverse calculation, the effect 

of these two parameters on absorption is investigated. For a single layer MPP 

absorber, a parametric study was reported in Chapter 3. Detailed results were 

Thickness 

3.75 mm 
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shown in Chapter 3. Figures 3.17 and 3.18 are revisited in this section. Figure 

3.17 shows the effect of varying the hole diameter with the other design 

parameters held constant.  Notice that the hole diameter controls the band width 

and peak value of the absorption. However, hole diameter has no effect on the 

center frequency of the absorption band. Figure 3.18 shows that the panel 

porosity affects both the center frequency and the peak value of the absorption. 

Increasing porosity moves the central frequency of the absorption band higher in 

frequency. It can be observed that a unique combination of hole diameter and 

panel porosity will produce an absorption curve that has a unique combination of 

peak absorption value, band width, and center frequency. Figure 5.4 shows 

different porosity and hole diameter combinations that produce the resulting 

absorption coefficients at a single frequency (1000 Hz).  Notice that for a given 

absorption, there are numerous candidate porosity and hole diameter 

combinations.  

However, the absorption curve is frequency dependent.  Accordingly, there will 

be multiple porosity and hole diameter combinations at each frequency. For 

example, the measured absorption coefficient of a micro-perforated panel is 0.44 

at 850 Hz, and the porosity and hole diameter combinations that produce sound 

absorption coefficients within 1% error are shown as a strip of red circles. The 

absorption coefficient is 0.52 at 3250 Hz, and the porosity and hole diameter 

combinations that can produce a sound absorption coefficient within 1% error are 

shown as a strip of blue circles. Notice that the overlap region is very small for 

only two absorption coefficient values, and the exact solution is shown as a black 

dot. When there are 800 absorption coefficient values to fit, the overlap region 

can be narrowed down into a small region within the error criteria. 
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Figure 5.4 Absorption coefficient dependency on porosity and hole diameter. 

 

 

 

 

 

 

 

Figure 5.5 Overlap of candidates of porosity and hole diameter combination. 

 

5.2.2 Nonlinear Least Square Data Fitting Algorithm 
In order to calculate perforation diameter and panel porosity based on the 

measured absorption coefficient, two assumptions are made. First of all, the 

acoustic performance of an irregular-shaped slit can be represented by a circular 

or rectangular shaped hole with effective geometric parameters. That is, either 

Equation 3.2.2 or Equation 3.2.7 can be used to represent the transfer 
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impedance of an MPP with slit-shaped perforations. Of cause, the estimated 

geometric parameters will be different when different models are used.  Second, 

measurement error of normal incidence absorption coefficient can be ignored. 

Thus, it is desirable to have small error in the measured sound absorption over 

the frequency range used for the curve fit. That being the case, measured data 

below 100 Hz and above 4000 Hz was discarded (measured using the 1.375 inch 

diameter tube). 

The objective is to determine a combination of porosity and hole diameter that 

can minimize the difference between measured absorption coefficients and 

calculated absorption coefficients using equation 3.2.2 and 3.2.7 over the whole 

frequency range. The basic algorithm takes some function, ( )d,σα  as shown in 

Equation 3.2.2, and a series of measured data points, and determines a vector (σ 

*, d*) of fitted geometric parameters such that the sum of the squares of the 

residues (i.e., the differences between the function and the measured data 

points). The least square data fitting problem can be stated as:  

 (5.2.1) 

subjected to  

3241
%5%1.0
−≤≤−

≤≤
ede

σ
                                                        (5.2.2) 

where   ⋅  denotes the 2-norm, and the i subscripts represent a particular data 

point at frequency fi. 

The numerical procedure used for this nonlinear least-square data fitting (NLLSF) 

is a modification of the basic Gauss-Newton procedure (Coleman, 1994, 

Coleman, 1996). This procedure is simply an algorithm which when given an 

initial guess, i.e. (1%, 1e-3), will find an appropriate search direction and step 

size, and therefore a better guess for the vector ( )d,σ . The procedure is then 

applied in an iterative fashion until the searching gradient is sufficiently small, 

within some specified tolerance.  
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i
imeasuredidmeasuredd

ffdd 2

,

2

2,
,,min,min ασαασα

σσ
 



100 
 
 

After the data fitting is done, the quality of the fit is evaluated by the coefficient of 

determination, also known as pseudo-R2, of the absorption coefficient α. The 

pseudo-R2 is defined as 

total

residual

SS
SSR −=12

                                                                     (5.2.3) 

where SSresidual is the sum-of-squares for distance of each measured point from 

the best-fit curve, while SStotal is the sum-of-squares for distance of each 

measured point from the mean of all measured data. The pseudo-R2 is a fraction 

between 0 and 1, and has no units. Higher values indicate that the model fits the 

data better. The Pseudo-R2 value indicates how well the curve approximates the 

measured points, but does not indicate whether the fit is unique.  

In order to evaluate how certain the best-fit parameters are, the confidence 

region should be calculated and examined. The precision the parameter fit can 

also be evaluated by computing the confidence region of vector (σ, d) for certain 

confidence probability. The boundary of the confidence region can be determined 

by calculating the mean and covariance matrix of the bivariate vector (σ, d) 

(Chew, 1966, Rencher, 1995, Schultz, 2007). For bivariate problems, the 

boundary of the confidence region is defined as: 

( ) ( )( ) ( )2,1,cov 21 γχ
µ
µσ

σµµσ σ
σ −=








−
−

⋅⋅−− −

d
d d

ddn                    (5.2.4)  

where n is the number of measured absorption coefficient (i.e. frequency lines), 

and σ and d are unknown boundaries of the confidence region for porosity and 

hole diameter, respectively.   σµ  and dµ are the means of all candidate 

porosities and hole diameters for the given absorption coefficients. ( )d,cov σ  is 

the covariance matrix and ( )2,12 γχ −  is the bivariate Chi-Square Value for given 

confidence probability γ . The equation is a quadratic and represents an ellipse. 

A higher confidence probability means that it is more likely for the confidence 

region to include the best-fit value. For a given confidence level, a smaller 

confidence region implies that the model is more likely to uniquely fit the data. A 
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flow chart (Figure 5.6) summarizes the process for estimating the effective 

geometric parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Flow chart of geometric parameter estimation algorithm. 

 

5.2.3 Numerical Considerations and Results 
The procedure described above was used to estimate the geometric parameters 

of an MPP absorber with slit-shaped perforations with 1 mm thickness, as shown 

in Figure 5.3. Porosity measured using a light meter is 1%, and the averaged 

measured slit width is 0.2 mm. Absorption coefficient was measured from 100 Hz 

up to 5000 Hz with 6.25 Hz increments using the two-microphone method in a 

1.370 inch diameter impedance tube. In order to minimize the effect of 

measurement error at low and high frequencies, only frequencies from 500 Hz up 

to 4000 Hz are chosen for data fitting. The porosity and hole diameter estimated 
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using the circular hole model (Equation 3.2.2), are 4.4% and 0.22 mm, 

respectively. The rectangular slit model (Equation 3.2.7) yields 3.7% porosity and 

0.13 mm slit width. It was anticipated that the estimates for porosity and slit 

dimension would be small for the rectangular slit model because resistance of 

rectangular slit is smaller than that of circular perforation. Figure 5.7 compares 

the measured absorption coefficient and fitted results. Notice that both models fit 

the measured data well.  

 

 

 

 

 

 

 

Figure 5.7 Comparison between measured and fitted absorption coefficients. 

The pseudo-R2 for the least squares curve fit was 99.87% and 99.81% for the 

circular and rectangular shaped perforate models, respectively. Confidence 

region in (σ, d) plane for fitting using the circular-shaped perforate model is 

shown in Figure 5.8. Notice that the best-fit point falls into the ellipses for both 

the 95% and 68% confidence regions. This indicates that the estimated 

parameters fit the data well and suggest that the algorithm is suitable for precise 

estimation of geometric parameters.  
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Figure 5.8 Confidence region for (σ, d) bivariate model fitting. 

Once the geometric parameters are estimated, the transfer impedance can be 

calculated. Figure 5.9 compares the measures and calculated transfer 

impedance. Both the real and imaginary parts of the impedance compare well to 

the measured values.  

 

 

 

 

 

 

 

 

Figure 5.9 Comparison between measured and predicted transfer impedances. 
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subtraction method is noisy at low frequencies due to low output from the 

loudspeaker and small differences between the sound pressures measured at 

the two microphone locations at low frequencies. For example, the transfer 

impedance of a MPP absorber with slit-shaped perforations with 1.5 mm 

thickness measured in a 4 inch diameter impedance tube is noisy below 300 Hz. 

By applying this method to fit the measured absorption coefficient from 300 Hz 

up to 2000 Hz, the hole diameter is estimated to be 0.24 mm and porosity is 

2.95%. The fitted curve compares well to the measured absorption coefficient, as 

shown in Figure 5.10. The estimated parameters can then be used to calculate 

the transfer impedance at low frequencies. The predicted transfer impedance will 

be much smoother than the measured data below 300 Hz.  This is illustrated in 

Figure 5.11. 

 

 

 

 

 

 

 

 

Figure 5.10 Comparison between measured and fitted absorption coefficients. 
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Figure 5.11 Comparison between measured and predicted transfer impedances. 

In summary, MPP absorbers with slit-shaped perforations are difficult to model 

due to the fact that geometric parameters, i.e. slit size and porosity, are difficult to 

measure. An inverse method using a nonlinear least square data fitting algorithm 

was developed to estimate geometric parameters from the measured absorption 

coefficient data. Both the circular and rectangular perforation models can be 

used in the algorithm. The estimated geometric parameters can then be used to 

calculate transfer impedance and transfer matrix with good agreement compare 

to measured data. The same algorithm is used to aid in understanding the effect 

of dust and fluid contamination on the performance of MPP absorbers in the next 

section. 

 

5.3 Effect of Dust and Fluid Contamination 
 

As mentioned earlier, MPP absorbers are rugged, non-combustible, and do not 

deteriorate over time. This makes them a very attractive option for long-term use 

in harsh and corrosive environments. For example, it has been reported that 

MPP absorbers were used in noise barriers on mining sites (Pan, 2004), in 
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engine enclosures as an acoustical heat shield (Corin, 2005), and inside mufflers 

(Masson, 2008).  However, after being exposed to these hostile environments for 

a certain amount of time, the MPP absorber openings are very likely to be filled 

with different types of contamination. Contamination can be either dust, dirt or 

fluid (i.e. oil, water). To our knowledge, there have been no prior studies to 

assess MPP performance when contaminated.  Naturally, this effect will be 

important for engine enclosures, sound barriers and other industrial applications. 

By understanding this effect and the mechanism behind it, cleaning protocols can 

be established or absorbers can be designed to function well for known levels of 

contaminant accumulation. 

In order to study the contamination effect, effective parameters can be estimated 

that predict the absorptive performance of a contaminated MPP absorber. 

Transfer impedances and absorption coefficients of MPP absorbers with and 

without contamination were measured and compared to determine the effect of 

contamination on performance. This was followed by simulation to explain the 

effect of contamination. 

 
5.3.1 Dust contamination 
Charcoal and aluminum oxide powder were chosen as dust contamination 

materials. The particle sizes of charcoal powder and aluminum oxide are 

approximately 40 and 80 microns, respectively.  In order to allow the powder to 

accumulate evenly in an MPP slit, an airbrush was used to blow the powder 

inside a spray booth.   The MPP was mounted in a direction normal to the flow. 

The flow speed was adjusted so that it would accumulate while not dislodging 

standing dust in the slit. The setup for this accumulation process is shown in 

Figure 5.12. After a certain amount of accumulation, the panel was removed from 

the booth and excess dust on the surface was carefully brushed off. Figure 5.13 

shows MPP absorbers with slit-shaped perforations with different levels of 

charcoal dust accumulation. 
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Figure 5.12 Setup for dust accumulating on MPP. 
 
 

 

 

 

 

Figure 5.13 MPP with different levels of dust contamination. 
Dust accumulation was quantified by placing a panel in between a luminance 

meter and a light pad, and measuring the light intensity through the panel. An 

estimate of the contamination was determined by measuring the light 

transmittance, which is the ratio of light intensities with and without the panel. 

The level of dust contamination can be estimate by comparing the porosities of 

the clean and contaminated samples. Though this process is prone to error, 

measurement using lumination can be used to quantify different accumulation 

levels in a relative sense. 
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Figure 5.14 Vertical impedance tube measurement setup. 

After measuring the contamination level, the absorption coefficient and transfer 

impedance of the panel can be measured in the impedance tube. Normally, the 

impedance tube is placed horizontally on a flat surface. In this case, the 

impedance tube was hung vertically so that the accumulated dust in the slit was 

undisturbed during the measurement. The measurement setup is shown in 

Figure 5.14. 

Figures 5.15 and 5.16 show the transfer resistance and reactance respectively of 

an MPP (1 mm thick with 1% porosity estimated from light transmittance), 

respectively with different levels of charcoal dust accumulation. Accumulation 

levels from 0% to 100% are defined as percentage of perforation filled with dust. 

It is the ratio between light transmittances with and without contamination. Figure 

5.17 shows the corresponding absorption coefficients with a 1 inch backing cavity. 
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Figure 5.15 Transfer resistance of MPP with different levels of dust 
contamination. 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.16 Transfer reactance of MPP with different levels of dust 
contamination. 
It can be observed from Figures 5.15 and 5.16 that dust contamination increases 

both the resistive and reactive parts of the transfer impedance.  Dust 

contamination decreases the absorption and shifts the absorption band lower in 

frequency, as shown in Figure 5.17. This demonstrates that dust contamination 

can compromise the performance. Similar results were obtained for aluminum 

oxide contamination. 
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Figure 5.17 Absorption coefficients of MPP with different levels of dust 

contamination. 

However, dust contamination does not necessarily decrease the absorption 

coefficient. In some cases, dust contamination might actually improve the 

absorption. For example, for a very thin MPP, the small thickness limits its 

resistance. When placed 1 inch in front of a wall, the peak value of its absorption 

coefficient is around 0.75 as shown in Figure 5.18.  

 

 

 

 

 

 

 

Figure 5.18 Dust contamination improves the acoustic performance of a thin 
MPP. 
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With dust contamination, the peak value is increased from 0.75 to nearly 1.0 and 

the absorbing band is broadened.  Notice that the peak absorption shifts to lower 

frequencies.  In order to obtain a peak value around 1400 Hz without 

contamination, a cavity depth of 1.5 inches is required as shown in Figure 5.18. 

Contamination enables the MPP to provide better acoustic performance while 

reducing the volume of the absorber by a third. This suggests that if the dust 

accumulation level is known in advance, it can be included as a design 

parameter so that the uncontaminated MPP porosity and slit dimensions are 

optimized in advance.  

 

5.3.2 Fluid contamination 
Distilled water and gasoline were used to investigate the effect of fluid 

contamination. The fluid is first sprayed onto the panel until the slit is fully filled 

and then the surface is carefully wiped with cloth.  Light transmittance 

measurement is skipped since the fluid is somewhat transparent. The panel was 

measured in an impedance tube. After each measurement, there is a 

vaporization step to gradually reduce the amount of fluid in the slit.  Vaporization 

is accomplished by slowly blowing hot air (80 ºC) on the panel.  

An MPP absorber with slit-shaped perforations (1 mm thick with 1% porosity 

estimated from light transmittance) was used to investigate the effect of fluid 

contamination. Figures 5.19 and 5.20 show the transfer resistance and reactance 

respectively with water contamination.  
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Figure 5.19 Transfer resistance of MPP with water contamination. 
 

 

 

 

 

 

 

 

 

 

Figure 5.20 Transfer reactance of MPP with water contamination. 

Figure 5.21 shows corresponding absorption coefficients of the MPP absorber 

with a 1 inch backing cavity. Similar to the effect of dust contamination, fluid 

contamination increases both the transfer resistance and reactance.  The results 

suggest that fluid contamination has a larger effect than dust contamination 

though the trend is similar.  Similar results were obtained for gasoline 

contamination. 
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Figure 5.21 Absorption coefficients of MPP with different levels of fluid 

contamination. 

 

5.3.3 Simulation 
In the previous section, a least square approach was developed to evaluate the 

effective parameters for irregular-shaped slit MPP absorbers based on Maa’s 

equation and the measured absorption coefficient. It was assumed that a MPP 

absorber with slit-shaped perforations could be simulated in Maa's equation, 

which assumes circular-shaped perforations, using an effective porosity and hole 

diameter. It was hypothesized that the effect of contamination is equivalent to 

reducing the porosity and hole diameter simultaneously, while the effect of fluid 

contamination is equivalent to increasing the dynamic viscous factor in the 

perforation.  

In order to test the first hypothesis, the effective parameters estimation approach 

was applied to measured absorption coefficients for different levels of dust 

accumulation. The target parameters are still effective porosity and hole diameter. 

The porosity measured using the light intensity approach is used to indicate the 

dust accumulation levels. Notice that this porosity is not an accurate measure of 

dust level and serves merely as an indicator in a relative sense. Figures 5.22 and 
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5.23 show comparisons between simulated and measured transfer impedance 

and absorption, respectively. The simulated results are calculated by substituting 

effective parameters into Maa’s equation. Notice the good agreement between 

simulation and measurement.  

 

 

 

 

 

 

 

 

 

 

Figure 5.22 Transfer impedance comparison for MPP with dust contamination. 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.23 Absorption coefficient comparison for MPP with dust contamination. 

By applying this approach for different levels of dust accumulation, the estimated 

effective parameters can be obtained in each case. Figure 5.24 shows the 

measured absorption coefficients and measured accumulation levels. 
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Accumulation levels from 0% to 77% are defined as percentage of perforation 

filled with dust. Additionally, the corresponding fitted absorption coefficients, and 

estimated porosity and hole diameter are also shown. Notice the good 

agreement between measured and fitted absorption coefficients. It can be 

observed that the dust contamination reduces both the effective porosity and 

hole diameter simultaneously, which confirms the hypothesis. 

 

 

 

 

 

 

 

Figure 5.24 Estimated parameters and corresponding absorption coefficient 
prediction. 
It seemed that the aforementioned least square approach would be a suitable 

candidate for estimating the amount of fluid contamination inside of the 

perforations. In order to estimate the amount of fluid contamination, the target 

effective parameter is the percentage of the perforation filled with fluid.  In the 

perforation, there are two acoustic paths with two different fluid viscous factors: 

one is through air (viscous factor 1.83×10-5  Pa﹒s)  and the other is through the 

fluid or water (8.9×10-4  Pa﹒s). These two paths are in parallel with each other. 

Therefore the transfer impedance of each portion of perforation occupied by 

different fluids can be individually calculated based on viscous factor and the 

percentage of perforation occupied. Overall transfer impedance can be 

calculated based on equivalent circuit analogy of impedances. The equivalent 
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where x is the percentage of the perforation filled with fluid, it varies from 0%, i.e. 

dry, to 100%, i.e. fully covered with fluid. The least square data fitting problem 

can be stated as: 

( ) ( ) ( )( )∑ −=−
i

imeasuredixmeasuredx
ffxx 22

2
,minmin αααα       (5.3.2) 

subjected to 10 ≤≤ x , where   ⋅  denotes the 2-norm, and the i subscripts 

represent a particular data point at frequency fi. Figure 5.25 shows a comparison 

between measured and simulated absorption coefficients. 

As shown in Figure 5.25, the simulated results suggest that there is 0.1% of 

perforation filled with water when the panel is dry, and 99% of perforation filled 

with water when the panel is fully covered with water. Using this approach, it’s 

evident that the estimated percentages accurately represent the acoustic 

performance of the contaminated absorber. 

 

 

 

 

 

 

 

 

 

 

Figure 5.25 Measured and simulated absorption coefficients comparison. 

In summary, dust and fluid contamination increase both the transfer resistance 

and reactance. Both contamination effects can be simulated by varying effective 

parameters which plausibly explain the effect. Simulations suggest dust 
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contamination reduces both the effective porosity and hole diameter 

simultaneously, while fluid contamination leads to a parallel impedance in the 

hole through the air and fluid. Results demonstrate that contaminations may 

compromise or improve the acoustic performance depending on the panel design 

and the contamination accumulation levels. By understanding this effect and the 

mechanism behind it, cleaning protocols can be established or absorbers can be 

designed to function well for known levels of contaminant accumulation. 
 

5.4 Enhancing Microperforated Panel Attenuation by Partitioning the 
Adjoining Cavity 

 
5.4.1 Application of MPP as lining in HVAC duct 
An experimental study was undertaken to compare the performance of a MPP to 

that of open cell foam in a silencer.  In this case, the MPP was of the micro-slit 

absorber type. A 1 m x 0.5 m x 0.5 m silencer was constructed as shown in 

Figure 5.26. A 1 m x 0.5 m micro-slit absorber with 2.5% porosity and 1.2 mm 

thickness was attached to one side of the plenum as shown. The depth of the air 

cavity was intentionally set to 30 mm so that maximum attenuation was 

anticipated around 1500 Hz. A piece of wood was inserted into the middle of the 

plenum to obstruct the line-of-sight sound path between inlet and outlet ducts. 

During the experiment, the sound pressure level at the inlet and outlet of the 

plenum was measured so that the noise reduction could be obtained.   
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Figure 5.26 Experiment configuration for MPP in silencer. 

The noise reduction of the silencer without the MPP was compared to that of 

open cell PUR foam with the same thickness (30 mm).  Thus, both the MPP and 

foam occupied the same volume in the silencer.  Figure 5.27 shows the inside of 

the silencer with the accompanying MPP and foam. 

 

 

 

 

 

 

 

 

 

 

Figure 5.27 Silencer with MPP and foam lining. 

Figure 5.28 shows a comparison of the noise reduction.  The baseline without 

any MPP or foam absorber is also included.  Notice that the MPP improves upon 

the baseline configuration especially at frequencies above 1000 Hz.  However, 

the noise reduction accomplished using a foam absorber having the same 

thickness is approximately 3 dB higher than that of the MPP. 
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Figure 5.28 Noise reduction comparison. 

Figure 5.29 shows a comparison of the absorption measured in an impedance 

tube for the foam and MPP used in the aforementioned experiment.  The 

absorption of the normal incident sound wave was measured using the ASTM E-

1050 standard. Notice that the measurement indicates a high absorption 

coefficient of close to 1.0 for the MPP at approximately 1500 Hz.  Though normal 

incidence of the sound is expected in the impedance tube, oblique incidence is 

expected within the silencer.  Thus, the high absorption coefficient measured in 

the tube is not achievable in practice for a silencer. The noise reduction 

difference between the MPP and foam can be explained by considering the 

sound wave propagation in the lateral or transverse direction. Foam is an 

isotropic and porous material with high flow resistivity.  It can be assumed to be 

locally reacting because there is almost no sound propagation in the transverse 

direction.  However, the sound propagation for an MPP in the transverse 

direction cannot be ignored. Modes in the backing cavity will be excited adversely 

affecting the noise reduction performance of the MPP. 
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Figure 5.29 Absorption comparison between foam and MPP. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.30 A summary of various improvement strategies. 

In order to improve the MPP performance, various strategies to treat the air 

cavity have been proposed and examined (Zhang, 1998, Yairi, 2005, Sum, 2006).  

These include partitioning the air cavity, arranging absorbers in parallel while 

varying cavity depths, layering absorbers, and introducing tube bundles to the 

back of the MPP. These enhancing strategies are summarized in Figure 5.30. 
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Yairi et al (2005) discovered that partitioning the air cavity was especially 

effective. Partitioning the backing cavity is the focus of this study. The results in 

this section agreed with what Yairi et al observed.  

 

5.4.2 Partitioning the Backing Cavity 
Partitioning the air cavity was considered to improve the noise reduction of the 

MPP.  To implement this strategy, a honeycomb structure, with 30 mm depth and 

a cell size of 40 mm x 40 mm was inserted behind the MPP. The MPP was 

affixed to the front of the cardboard partitioning.  It should be noted that the 

honeycomb structure itself provided almost no noise reduction by itself. The 

Experimental setup is shown in Figure 5.31.  The figure also shows a schematic 

of a grazing sound wave.  

 

 
 
 
 
 
 
 
 
 
 
 

Figure 5.31 illustration and experimental setup of silencer with partitioned cavity. 

Figure 5.32 shows a comparison of the noise reduction with a partitioned cavity.  

Notice that partitioning the cavity improves the noise reduction by close to 2 dB. 
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Figure 5.32 Comparison of noise reduction for MPP with partitioned cavity. 

It is hypothesized that partitioning prevents grazing sound propagation behind 

the MPP, and forces the particle velocity to be normal to the panel.  Thus, the 

panel becomes locally reacting at higher frequencies.  Figure 5.33 illustrates the 

hypothesized effect.  The next section explores this hypothesis in further detail 

(Astley, 1987).  

 

 

 

 

 

 

Figure 5.33 Schematic showing the effect of adding portioning behind the MPP. 

The effect of partitioning the air cavity has been noticed by several researchers. 

Toyoda and Takahashi investigated the effect of subdividing the adjoining air 

cavity on the oblique incident transmission loss of an MPP (Toyoda, 2008). Their 

results suggested that partitioning the air cavity improved the transmission loss at 

mid-frequencies by means of providing a motion-constraint condition to the 
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particles so that the acoustic wave could only propagate normal to the MPP.  Yairi 

et al (2005) tested the MPP’s with an alternative honeycomb partitioning in the 

adjoining cavity.  Agreeing with Toyoda and Takahashi, they showed that the 

honeycomb affected only the oblique incidence absorption coefficient and had a 

minimal effect on normal incidence absorption. 

Hillereau et al (Hillereau, 2005) considered a more complicated case where 

honeycomb cell walls themselves were also porous.  They studied the sound 

attenuation of an ordinary perforated panel under grazing incidence, and 

concluded that the variation of the honeycomb porosity had a significant impact 

on the acoustic attenuation of a given perforated facing panel.  In this situation, 

the partitioning cannot be simplified as a device that merely forces the oblique 

incident wave into a normal incident wave in the cell. 

The purpose of this section is to experimentally investigate the effect of 

partitioning the adjoining air cavity on plenum acoustics.  Yairi and Toyoda’s work 

investigated the physics of an MPP with adjoining cavity for different incident 

wave angles.  The current work builds on this by looking at the effect of the MPP 

and adjoining cavity on the plenum cavity (the cavity of interest).   The 

partitioning behind the MPP is non-porous though it is light and not rigid.  

The objective of this work was to better understand acoustic behavior inside a 

plenum with and without honeycomb partitioning.  Fenech et al (Fenech, 2006) 

conducted a similar study where the effect of a MPP on the acoustic modes 

inside of a closed cavity was investigated.  They noted that the MPP was 

effective at damping the acoustic cavity modes normal to the MPP but ineffective 

at damping modes tangential to the MPP.  This paper examines the significance 

of partitioning the adjoining cavity on the acoustic modes in a plenum. Figure 

5.34 shows an end view of the silencer with the honeycomb partitioning of the air 

cavity.  For this investigation, a loudspeaker was attached via a short tube to a 

plenum having dimensions 0.96 m x 0.57 m x 0.42 m.  The experimental setup is 

shown in Figure 5.35. 
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Figure 5.34 Photograph showing cardboard partitioning in the end of cavity 

behind the MPP. 

 
 
 
 
 
 
 

 

Figure 5.35  Schematic showing measurement setup. 

The MPP utilized had slit-shaped perforations. The transfer impedance was 

measured in impedance tube using the impedance subtraction method and is 

shown in Figure 5.36.  
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Figure 5.36  Measured Transfer Impedance of an aluminum micro-slit Absorber.  
Figure 5.37 compares the normal incident absorption coefficient of an MPP with 

65 mm cavity predicted using the transfer impedance with that measured directly 

using the two-microphone method (ASTM, 1998). 

 

 

 

 

 

 

 

Figure 5.37 Normal incident absorption coefficient of MPP with 65 mm air cavity. 

The MPP treatment was placed on the side of the plenum opposite the source. 

Several different configurations were applied and tested.  These included three 

cases: 
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• Untreated. 

• MPP absorber with 65 mm back cavity and no partitioning. 

• MPP absorber with 65 mm back cavity with a cardboard partitioning.   

Cells are honeycomb shaped.  If the partitioning is placed in the plenum 

without a MPP facing, negligible additional attenuation was noted.  This 

suggested that the cardboard did not absorb the sound. 

For each condition, sound pressure was measured at a plane located 95 mm 

from the treated end of the plenum (30 mm anterior to the MPP with a 65 mm 

adjoining cavity depth).  In each case, the measurement plane consisted of 54 

points. Measurement points were spaced 3.8 cm and 5.6 cm apart in the 

horizontal and vertical directions, respectively.     

The natural frequencies of the plenum can be calculated using 
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in which, l, m, n are mode indices indicating the x, y, and z directions, 

respectively.  L, W, and H indicate the respective length, width and height of the 

plenum. The modes involving a single dimension are termed axial modes.  For 

example, this would include the (1,0,0) and (0,2,0) modes.  Tangential modes 

involve 2 dimensions (i.e the (1,0,1) and (0,2,1) modes). Oblique modes involve 

3 dimensions (i.e. the (1,1,1) or (2,1,2) modes).  The error between measured 

and predicted natural frequencies is less than 5 Hz. 

Figure 5.38 demonstrates the attenuation due to introducing an MPP absorber.  

In this plot, a type of insertion loss is shown.  The difference was determined 

between a spatial average of pressure (from 54 sound pressure measurements) 

on a plane 30 mm anterior to the MPP absorber and a baseline case with no 

MPP absorber treatment.  This insertion loss is shown in 1/12 Octave bands.  

The figure also includes a curve showing the effect of partitioning added posterior 
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to the MPP absorber.  As anticipated, introducing partitioning improves the 

effectiveness of the treatment.  The overall insertion loss of the MPP absorber 

without posterior partitioning is 1.5 dB while adding partitioning improves the 

performance by 3.2 dB.  Overall insertion loss is calculated by determining the 

overall spatially averaged sound pressure on the measurement plane for the 

treated and untreated cases and taking the difference.  Notice the distinct lower 

frequency peaks due to the acoustic modes in the plenum.  At higher 

frequencies, the response is quasi diffuse in nature, and the attenuation of the 

MPP absorber is less irregular. 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 5.38  Insertion loss comparison in 1/12 Octave bands. 

Figure 5.39 shows the narrowband insertion loss from 0 to 1000 Hz, and also 

notes the acoustic modes which correspond to some of the more prominent 

insertion loss peaks.  Observe that the insertion loss peaks and nadirs occur at 

acoustic resonances and anti-resonances respectively.   
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Figure 5.39 Insertion loss below 1000 Hz including corresponding modes in 
narrow bands.  
This information is summarized in Table 5.1.  Table 5.1 shows the insertion loss 

at different modal frequencies for the MPP with and without partitioning.  The 

table separates the modes by their different behavior (i.e. axial, tangential or 

oblique).   

Notice that the MPP is effective without partitioning for axial modes in the x-

direction (11.2 dB average insertion loss).  This corresponds to the effect noticed 

by Fenech et al (Fenech, 2006).  This can be likened to a normal incident wave 

being absorbed.  In contrast, axial modes in the y- and z- directions have an 

average insertion loss of less than 1 dB without partitioning posterior to the MPP.  

Notice that partitioning improves the attenuation by over 8 dB for axial modes in 

the y- and z- directions.  However, the effect is modest for modes in the x-

direction (2.2 dB).  The results suggest that the partitioning disrupts the mode 

shape in the neighborhood of the MPP.  This will be illustrated via contour maps 

in the subsequent section. 

The tangential and oblique modes further support this mode disruption premise.  

Notice that the insertion loss improves by over 8 dB for tangential modes that do 
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not involve the x-direction.  However, the insertion loss gains are more modest 

for tangential and oblique modes involving the x-direction (4.4 dB improvement). 

Table 5.1.  Insertion Loss at Modal Frequencies for MPP with and without 

Partitioning. 

 

 

 

 

 

 

 

 

 

 

Figure 5.40 shows a measured sound pressure contour map (for a plane 30 mm 

anterior to the MPP absorber) at a frequency corresponding to the (0,0,1) mode 

in the z- direction.  Contour maps are shown for the aforementioned three 

conditions (untreated, MPP absorber, MPP absorber with partitioning).  Notice 

that the contour maps are essentially identical for the first two conditions.  

However, introducing partitioning reduces the sound pressure while also 

disrupting the acoustic mode. 
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Figure 5.40 Measured Sound pressure contour map at 418 Hz, corresponding to 

z - axial mode (0, 0, 1). (a) untreated, (b) with MPP absorber, (c) MPP absorber 

with partitioning. 

 

5.4.3 BEM Simulation of the MPP with Cavity Partitioning 
Since the measurement was made on single plane, a BEM simulation was 

conducted in order to better understand the modal behavior inside of the duct.  

Simulations were conducted for the three cases mentioned earlier.  The indirect 

BEM (Vlahopoulos, 2000) was used for each simulation. The MPP itself was 

modeled via a transfer impedance relationship. This transfer impedance was 

defined on the boundary elements representing the MPP. 

The BEM mesh with MPP and partitioning is shown in Figure 5.41.  The mesh 

consisted of 6532 nodes and 4845 elements.  The partitioning was modeled as 

being square in cross-section instead of hexagonal due to ease of discretization.  

The cells were approximately 5.25 cm in length and height which was less than 

the acoustic wavelength for the maximum frequency of interest (34.3 cm).  It was 

(a) (b) 

(c) 
dB 
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assumed that the MPP, the partitioning, and the sides of the plenum were rigid.  

However, a small amount of absorption was added to the plenum cavity for each 

case by using a complex speed of sound with a small imaginary component as 

described in reference (Herrin, 2006). 

 

 

 

 

 

 

Figure 5.41 BEM mesh of Plenum with MPP and partitioning. 
Figure 5.42 shows insertion loss for the MPP with partitioning.  The measured 

results are compared to BEM simulation.  Notice the good agreement in the 

results between 300 and 1000 Hz.  In particular, the BEM simulation correctly 

predicts most of the peaks and nadirs in the insertion loss.  Below 300 Hz, the 

simulation did not compare well.   

This might partially be due to background noise since a bookshelf loudspeaker 

was used and it produces little sound power at low frequencies.  Furthermore, 

the measurement results are questionable at low frequencies because it is not 

expected that the MPP would provide much attenuation below the first mode of 

the plenum since the measured absorption was quite low.  It is also possible that 

the cardboard partitioning provides a small amount of absorption at low 

frequencies.  Nevertheless, the good agreement above 300 Hz suggests that the 

model is realistic. 
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Figure 5.42  Insertion loss Comparison of MPP with Partitioning. 
Notice the negative insertion loss in both the measurement and simulation at 

several frequencies.  This is because the MPP adds damping to the cavity at 

both the resonances and anti-resonances.  At the anti-resonances, this manifests 

itself as a negative insertion loss.  In both simulation and the measurement, 

plenum resonant frequencies shifted little.  The MPP and adjoining cavity may 

have little effect because the cavity depth (6.5 cm) is small compared to the 

dimensions of the plenum. 

Figure 5.43 shows BEM sound pressure contour plots inside of the plenum.  

Several field point planes were constructed along the length of the plenum as 

indicated in the figure.  Results are shown for the (0,1,0) mode.   
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Figure 5.43 Simulated Sound pressure contour map at 294 Hz, corresponding to 

y - axial mode (0, 1, 0). (a) untreated, (b) with MPP absorber, (c) MPP absorber 

with partitioning. 

Figures 5.43 (a) and (b) show the contour plots for the sound pressure for the 

untreated and MPP unpartitioned cases.  Notice that the MPP has very little 

effect because the particle velocity in the direction normal to the MPP panel is 

quite low.  This suggests that the pressure difference between sides of the panel 

will also be low.  Figure 5.43(c) shows the sound pressure contour for the MPP 

with partitioning.  The partitioning insures that the (0,1,0) mode behavior will not 

manifest itself behind the MPP.  Furthermore, this leads to a higher particle 

velocity in the perforate resulting in energy dissipation or damping in the 

perforate.  Notice that the sound pressure is low close to the MPP but the (0,1,0) 

mode is still present close to the source (further from the MPP). 
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Figure 5.44. BEM simulated particle velocity (normal to the MPP) contour map at 

294 Hz, corresponding to y-axial mode (0, 1, 0). (a) Untreated, (b) with MPP 

absorber, (c) MPP absorber with partitioning. 

Figure 5.44 shows particle velocity (normal to the MPP) on a plane 25 cm 

anterior to the MPP. Note that particle velocity is not shown right on the BEM 

mesh since field point results for particle velocity is inaccurate when located on 

the BEM mesh itself. Nevertheless, 2.5 cm is much less than an acoustic 

wavelength at 295 Hz so the results shown should approximate the particle 

velocity at the MPP. Notice that the unpartitioned MPP (Figure 5.44 b) has very 

little effect because the particle velocity in the direction normal to the MPP panel 

is quite low (nearly the same as for the untreated case shown in Figure 5.44 a). 

This suggests that the pressure difference between sides of the panel is low. The 

partitioning insures that the (0,1,0) mode behavior will not manifest itself behind 
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the MPP. This leads to a higher particle velocity in the perforate (Figure 5.44c) 

resulting in greater energy dissipation or damping in the perforate. 

As a summary, the effect of adding a partition in the back cavity of an MPP 

absorber has been investigated.  The results indicate that partitioning improves 

the performance of the absorber by disrupting wave propagation behind the MPP 

that would be present without it.  The effect is particularly noticeable at low 

frequencies where the acoustic response is resonant in nature.  In that case, 

partitioning improved the MPP performance by over 8 dB for the example 

included in this paper.  However, attenuation gains are more modest if the modes 

propagate perpendicular or oblique to the MPP absorber (less than 5 dB).  

Contour maps at a few frequencies of interest confirmed the hypothesis. 

Additionally, a BEM analysis was conducted to simulate the effect of the MPP 

plus air cavity.  Analyses were conducted with and without partitioning in the 

adjoining cavity.  The simulation agreed well with experimental results when it 

was assumed that the MPP could be modeled via a transfer impedance 

boundary condition.  The simulation illustrated that the MPP was most effective 

when the particle velocity (in the direction normal to the MPP) in the perforations 

was high.  
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CHAPTER 6  
APPLICATION OF MOEBIUS TRANSFORMATION TO ACOUSTIC 

IMPEDANCES 
 

The Moebius transformation maps straight lines or circles in one complex domain 

into straight lines or circles in another complex plane. This chapter will 

demonstrate that the acoustic response will trace a circle in the complex plane 

for straight line or circular modifications to mechanical or acoustical impedance. 

This is due to the fact that the equations relating the acoustic response to the 

modification are in a form consistent with the Moebius transformation. This is 

demonstrated for series and parallel mechanical and acoustic impedances. The 

principles for the case of mechanical impedance are in essence equivalent to 

what has been termed the generalized Vincent circle. 

 

6.1 Moebius Transformation and its Properties 

 
A Moebius transformation of one complex variable z is a mapping of the 

form 

 

(6.1.1) 

where a, b, c and d are complex constants and satisfy ad-bc ≠ 0.  

A Moebius transformation can be decomposed into a sequence of simple 

transformations, as shown below (Needham 1997). 
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Of the four transformations above, the complex inversion mapping holds the key 

to understanding the transformation. The image of θirez = under complex 

inversion is ( ) θier −1 : the new length is the reciprocal of the original, and the new 

angle is the negative of the original. A point outside the unit circle C is mapped to 

a point inside C, and vice versa, as shown in Figure 6.1. 

 

 

 

 

 

 

Figure 6.1 Illustration of complex inversion for a single point (Needham 1997). 

One special property of a complex inversion is the preservation of generalized 

circles. A generalized circle is either a circle or a line, the latter being considered 

as a circle through the point at infinity. This property can be stated in the 

following manner.  If a line L does not pass through the center q of unit circle K, 

the inversion in K maps L to a circle that passes through center q. This property 

is illustrated in Figure 6.2. 

 

 

 

 

 

 

 

 

Figure 6.2 Illustration of preservation of generalized circle (Needham 1997). 



138 
 
 

Note that a Moebius transformation does not necessarily map lines to circles; it 

can also map lines to lines or circles to circles. 

 

6.2 Review of Vincent Circle and its Application 
 

6.2.1 The Vincent Circle 
Discovered by A. H. Vincent of Westland Helicopters in 1972, it was apparently 

overlooked in the intervening years until a recent paper by Tehrani et al (2006).  

Vincent limited his scope to structures excited at a single point and assumed a 

stiffness modification between two positions on a structure.  Tehrani et al (2006) 

made an important contribution by discovering that the principle could be 

generalized to a dynamic stiffness modification in one dimension thereby 

incorporating mass and damping modifications. 

The development of the method that follows is similar to that shown by Done and 

Hughes (1975) over 30 years ago.  Figure 6.3 shows a schematic of a structure 

with a modification (in this case a spring) between points r and s.  The structure is 

excited at a point p and the response will be computed at a point q.  Done and 

Hughes supposed that point q was on the structure and the response was a 

structural vibration.  However, the derivation shown herein will assume a 

structural force at point p and an acoustic response at a point q.  Whether the 

excitation or the response is structural or acoustic has little bearing on the 

applicability of the principle.  It will be shown later that the modification need not 

be structural.  Assuming acoustic plane waves, a modification to the admittance 

is equally valid.  However, the modification should be one-dimensional whether 

structural or acoustic. 
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Figure 6.3 Schematic to illustrate the development of the Vincent Circle principle. 

Assume that the spring is replaced by two forces Fr and Fs.  In that case, the 

vibrational responses at points r and s, and the acoustic response at point q can 

be written in terms of the applied forces Fp, Fr, and Fs.  Thus, 

                                                     (6.2.1a) 

(6.2.1b) 

(6.2.1c) 

where Hij are the unmodified transfer functions between the vibration or acoustic 

responses at point i and the forces or inputs at point j. 

Note that the forces Fr and Fs can be expressed in terms of the spring stiffness k 

and the displacement responses xr and xs as 

                                                                         (6.2.2) 

and then substituted into Equation 6.2.1.  This results in a set of 3 simultaneous 

equations with 3 unknown responses xr, xs, and pq.  Solving for the modified 

transfer function (pq/Fp), the following expression is obtained 
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(6.2.3) 

 

Tehrani et al (2006) observed that Equation 6.2.3 is a particular case of the 

Moebius Transformation.  It is recommended that the reader consult the 

aforementioned paper by Tehrani et al (2006) for a more complete discussion of 

the Moebius Transformation. 

What is most relevant to this discussion is that Equation 6.2.3 can be written in 

the form 

                                                                                (6.2.4) 

 

Where a, b, c, and d are complex numbers defined as 

                                             (6.2.5a) 

(6.2.5b) 

(6.2.5c) 

(6.2.5d) 

And D is the modification (k in Equation 6.2.3).  A characteristic of the Moebius 

Transformation is that the complex number a will trace a circle in the complex 

plane as a real or imaginary D varies from plus to minus infinity given that b, c, 

and d are complex numbers. For a real modification, Done and Hughes (1975) 

showed that the radius ρ and center ξ of this circle can be expressed as 

                                                                   (6.2.6) 

 

and 
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respectively.  If D is purely imaginary (i.e. a viscous damper modification), the 

radius ρ and center ξ of this circle can be expressed as 

                                                                  (6.2.8) 

and 

 

(6.2.9) 

respectively.  As mentioned previously, Tehrani et al (2006) noted that the 

modification D is a dynamic stiffness modification.  Thus,  

                                                                    (6.2.10) 

 

in which k, m and cD are stiffness, mass and damping respectively. 

The minimum value of a in Equation 6.2.4, which corresponds to the possible 

maximum suppression of the response, should be the point on the circle closest 

to the origin of the complex plane. Hence, the approach is ideal for selecting a 

passive control mechanism for minimizing noise at a particular frequency. 

 

6.2.2 Application to Two Series or Parallel Impedances 
It is also interesting to consider two separate cases where zm is replaced by two 

impedances zm1 and zm2 in series or in parallel. Utilizing the equivalence of 

Equations 6.2.1 and 6.2.5 shown earlier, Equation 6.2.4 can be written in the 

form 

 

(6.2.11) 

where 111 ,, γβα  and 1δ are complex constants. Now, if ZM in Equation 6.2.11 is 

replaced by two impedances ZM1 and ZM2 placed in series so that 
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Equation 6.2.12 can be written in the form 

(6.2.13) 

 

where 

(6.2.14a) 

(6.2.14b) 

(6.2.14c) 

(6.2.14d) 

Note that Equation 6.2.13 is in the form of the Moebius transformation shown in 

Equation 6.2.11. Thus, the transfer function relating pq to Fp will trace a circle in 

the complex plane for straight line modifications in the complex plane to either 

ZM1 or ZM2.  

A similar expression can be developed for the case of impedances in parallel. 

Replace ZM by two impedances ZM1 and ZM2 in parallel so that 

(6.2.15) 

Equation 6.2.11 can be rewritten in the form of equation 6.2.13 where 

(6.2.16a) 

(6.2.16b) 

(6.2.16c) 

(6.2.16d) 

Thus, modifying particular impedance in a combination of series and parallel 

impedances will map the response or transfer function relating pq to Fp to a circle 

in the complex plane. 
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6.3 Application to Acoustic Impedance 
 

The Moebius transformation may also be applied to acoustic impedance. This will 

be demonstrated using a development very similar to that for mechanical 

impedance. Referring to Figure 6.4, assume that a velocity source is applied (vp) 

at point p and the response of interest is the pressure at point q (pq).  In this case, 

the modification is the acoustic admittance at position r (Yr).  This assumes plane 

wave behavior at positions r and p though not necessarily at q. 

 

 

 

 

 

Figure 6.4 Schematic to illustrate the application of the Moebius transformation 

to acoustic impedance 

The modified pressure at point q (pq) can be expressed as 

(6.3.1a) 

(6.3.1b) 

where Hij are the unmodified transfer functions between the sound pressure 

responses at point i and the particle velocities point j.  The particle velocity at 

position r (vr) can be expressed in terms of the admittance as 

(6.3.2) 

When the identity in Equation 6.2.20 is used in Equations 6.2.19a and 6.2.19b, 

one obtains 
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(6.3.3) 

which once again has the same form as Equation 6.2.4.  As noted earlier, 

modifications of the admittance Yr or its reciprocal (the impedance Zr) along a line 

or circle in the complex plane will map circles in the complex plane for pqvp. 

Additionally, the Moebius transformation can be proven to be applicable to both 

series and parallel acoustic impedances using the identical analysis in Equations 

6.2.11 to 6.16. In duct acoustics, series and parallel acoustic impedances are 

commonly denoted as transfer (used for modeling perforates) and branch (used 

for modeling side branches) impedances. 

Fahy (2001) noted that the specific acoustic impedances at positions (shown in 

Figure 6.5) upstream (z1) and downstream (z2) could be related to one another via 

the expression 

(6.3.4) 

 

where k is the acoustic wavenumber and L is the distance separating positions 1 

and 2. Plane wave propagation of sound is assumed in the duct. Note that the 

expression is already in the form of the Moebius transformation for both 

modifications of tan(kL) and z2. Fahy previously demonstrated that z1 traces a 

circle in the complex plane as tan(kL) varies from minus to plus infinity though not 

by utilizing the Moebius transformation. Similarly, it is apparent that if z2 is 

modified along a straight line or circle, z1 will similarly trace a circle in the 

complex plane according to the Moebius transformation. 
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Figure 6.5 Schematic showing impedance at two locations in a duct separated 

by length L. 

 

6.4 Application to Duct Systems 
 

A separate development is shown for the special cases of acoustic impedances 

in duct systems.  This development is based on the transfer matrix methodology 

summarized by Munjal (1987).  At lower frequencies, the duct cross-sectional 

dimensions are small compared to the acoustic wavelength.  Accordingly, it can 

be assumed that plane waves propagate inside the duct system simplifying the 

analysis.  In this case, a duct system can be described as an acoustic network 

using the well known transfer matrix.  The transfer matrix is composed of four-

pole parameters A, B, C, and D is defined according to the matrix equation 

(6.4.1) 

where p1 and p2 are sound pressures and v1 and v2 are particle velocities. 

The four-pole parameters for certain components like rigid-walled straight pipes 

or ducts are well-known (Munjal, 1987).  However, numerical or experimental 

methods must be used to determine the four-pole parameters of more 

sophisticated components like large expansion chambers and elbows. 

Figure 6.6 shows a duct system including the source (ZS) and termination 

impedance (ZT).  AT, BT, CT, and DT are the overall four-pole parameters including 

the effect of the inlet and outlet pipes. 

The source pressure pS can be related the load pressure pL via 
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(6.4.2) 

where ZS and ZL are the source and load impedances respectively.  In turn, the 

load and termination impedances can be expressed as 

(6.4.3) 

and 

(6.4.4) 

By inserting Equations 6.4.3 and 6.4.4 into Equation 6.4.2, the pressure at the 

termination (pT which is identical to p1) can be expressed as 

(6.4.5) 

where pS is the source pressure.  Note that Equation 6.4.5 is already in the form 

of the Moebius transformation (Equation 6.2.11) for modifications to either source 

or termination impedance.  If the modification is for source impedance, the 

complex constants identified in Equation 6.2.11 can be expressed as 

(6.4.6a) 

(6.4.6b) 

(6.4.6c) 

(6.4.6d) 

(6.4.6e) 

Similarly, if the termination impedance is modified, the complex constants can be 

expressed as 
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Furthermore, the Moebius transformation is also directly applicable to a series or 

branch impedance inserted into a duct system as shown in Figure 6.6. In that 

case the pressure and particle velocity on the inlet side (indicated by the 

subscript 1) of the panel can be related to that at the outlet (indicated by the 

subscript 2) by 

 

(6.4.8) 

where Ztr is the transfer impedance.   

 

 

 

 

 

Figure 6.6 Schematic showing a parallel (zb) or series (ztr) impedance inserted 

into an acoustic system. 

The four pole parameters for the duct work to the left of the transfer impedance 

are given as A1, B1, C1, and D1 and to right of the transfer impedance as A2, B2, 

C2, and D2.  By determining the overall transfer matrix by multiplying the transfer 

matrices together and then inserting into Equation 6.4.5, the transfer function 

relating pT to pS can be expressed in the form of the Moebius transformation 

(Equation 6.2.11) with 
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sTsT ZDCZZCCDAZCA 21212121 +++=γ                 (6.4.9d) 

( ) ( ) ( ) ( ) STST ZDDBCZZDCACDBBAZCBAA 2121122121212121 +++++++=γ     (6.4.9e) 

The Moebius transformation is also directly applicable to a side branch with 

impedance ZB inserted into a duct system as shown in Figure 6.6.  In this case, 

the four pole parameters describing the relationship between the inlet and outlet 

sides of the side branch can be expressed as 

(6.4.10) 

 
By calculating the overall four-pole parameters and then inserting into Equation 

6.4.5, the resulting transfer function relating pT to pS can be expressed in the form 

of the Moebius transformation (Equation 6.2.11) with 

(6.4.11a) 

(6.4.11b) 

(6.4.11c) 

(6.4.11d) 

(6.4.11e) 

 
The application of the Moebius transformation is demonstrated on the duct 

system shown in Figure 6.7. Dimensions are shown in the figure. The duct 

system consists of source, termination, transfer, and branch impedances. The 

fluid was assumed to be aire with characteristic impedance of 415 Rayls. Plane 

wave behavior was assumed and all responses were computed making use of 

transfer matrix theory. All analysis was conducted at 1000 Hz. 
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Figure 6.7 Duct system including dimensions utilized for demonstration of 

Moebius transformation.  

 

6.4.1 Source Impedance Modification 

The initial value for source impedance is defined as ( ) 21 ic −ρ , based on 

Munjal’s empirical equations (Munjal 2008). The transfer function between 

source strength (Ps) and radiated pressure (Pt) is simulated for a source 

impedance modification. Figure 6.8 shows the variation of real and imaginary 

parts of transfer function with respect to the variation of the real part of source 

impedance. On the right side of the figure, the projection of transfer function is 

plotted as ‘+’ on the complex plane. The real part of the source impedance was 

modified from -20 to 20 while the imaginary part was held constant.  Notice that 

the projection of transfer function between Pt and Ps on a complex plane traces 

a circle. A similar plot is shown in Figure 6.9 for a modification to the imaginary 

part of the source impedance. 
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Figure 6.8 Transfer function between Pt and Ps plotted  for a modification to 
source resistance. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9 Transfer function between Pt and Ps plotted for a modification to 
source reactance. 
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6.4.2 Parallel Impedance Modification 
An example of a parallel impedance is a closed side branch (i.e. quarter wave 

tube). The specific acoustic impedance can be expressed as 

(6.4.12) 

where L is the length of the close side branch. 

The transfer function between the source strength (Ps) and radiated pressure (Pt) 

is simulated for a side branch modification. The diameter of the side branch is 2 

inches and the initial length of the side branch is 9 inches, and the length is 

varied from 0 to 15 inches. Figure 6.10 shows the variation of real and imaginary 

parts of transfer function with respect to the variation of the side branch length. 

Notice that the projection of the transfer function between Pt and Ps on a 

complex plane traces a circle.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10 Transfer function between Pt and Ps plotted for a modification to 
side branch length. 
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6.4.3 Transfer Impedance Modification 

The initial value for transfer impedance is defined as ( )ic 9.065.0 +ρ , based on 

measured transfer impedance of a MPP at 1000 Hz. The transfer function 

between source strength (Ps) and radiated pressure (Pt) is simulated for a 

transfer impedance modification. Figure 6.11 shows the variation of real and 

imaginary parts of transfer function with respect to the variation of the real part of 

transfer impedance. On the right side of the figure, the projection of the transfer 

function is plotted as ‘+’ on the complex plane. The real part of the transfer 

impedance was modified from -20 to 20 while the imaginary part was held 

constant.  Notice that the projection of the transfer function between Pt and Ps on 

a complex plane traces a circle. Figure 6.12 shows the variation of the transfer 

function for modification on imaginary part of the transfer impedance. Similar 

result was also obtained for imaginary part of transfer impedance. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11 Transfer function between Pt and Ps plotted  for a modification to 
transfer resistance. 
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Figure 6.12 Transfer function between Pt and Ps plotted  for a modification to 
transfer reactance. 
 
6.4.4 Termination Impedance Modification 

The initial value for termination impedance is defined as ( )ic 79.043.0 +ρ , based 

on the theoretical model for a flanged termination at 1000 Hz. The impedance of 

a flanged termination impedance can be expressed as 

(6.4.13) 

where r is the radius of the duct (Kinsler, 1999). 

The transfer function between source strength (Ps) and radiated pressure (Pt) is 

simulated for a termination impedance modification. Figure 6.13 shows the 

variation of real and imaginary parts of transfer function with respect to the 

variation of the real part of termination impedance. On the right side of the figure, 

the projection of transfer function is plotted as ‘+’ on the complex plane. The real 

part of the termination impedance was modified from -20 to 20 while the 

imaginary part was held constant.  Notice that the projection of transfer function 
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between Pt and Ps on a complex plane traces a circle. Figure 6.14 shows 

variations of transfer function for modification on imaginary part of termination 

impedance. Similar result was obtained for imaginary part of termination 

impedance. 

 

 

 

 

 

 

 

 

 

 

Figure 6.13 Transfer function between Pt and Ps plotted  for a modification to 
termination resistance. 

 

 

 

 

 

 

 

 

 

 

Figure 6.14 Transfer function between Pt and Ps plotted  for a modification to 
termination reactance. 
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The previous simulation is done by modifying one part of the complex number 

while holding the other part constant. In real applications, both real and imaginary 

parts of impedance will change simultaneously. In order to study the effect of 

modifying both parts of a impedance, a more general form of Moebius 

transformation is investigated. In this case, both real and imaginary parts of the 

termination impedance were modified from -20 to 20.The transfer function 

between source strength (Ps) and radiated pressure (Pt) is simulated for this 

termination impedance modification. Each termination impedance in the plane 

shown in Figure 6.15 (a) was transformed into a transfer function in Figure 6.15 

(b). This particular shape of transfer function in Figure 6.18 (b) is a result of 

complex inversion. In the short animation Arnold (2007) created to explain the 

Moebius transformation, he explained that the complex inversion turns the 

square plane inside out. This effect is illustrated by a sequence of animations 

shown in Figure 6.16. Figure 6.17 shows the variation of real and imaginary parts 

of transfer function with respect to the variation of the imaginary part of 

termination impedance. 

  

 

 

 

 

 

 

 

Figure 6.15 Termination impedances (a) were transformed into a transfer 

functions (b). 
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Figure 6.16 The sequence showing that complex inversion turns a square plane 
inside out (Arnold, 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.17 Transfer function between Pt and Ps plotted for a modification to 
both real and imaginary parts of termination impedance. 
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6.4.5 Expansion Chamber Length Modification 
The transfer matrix of an expansion chamber can be expressed as 

(6.4.14) 

 

where L is the length of the chamber and m is the area ratio. Modification to the 

length will change the four poles by changing sin(kL) and cos(kL). The transfer 

function between source strength (Ps) and radiated pressure (Pt) is simulated for 

an expansion chamber length modification. The diameter of the chamber is 6 

inches and the initial length of the chamber is 18 inches. Then the length is 

varied from 0 to 22 inches. Figure 6.18 shows the variation of real and imaginary 

parts of transfer function with respect to the variation of the chamber length. 

Notice that the projection of transfer function between Pt and Ps on a complex 

plane does not trace a circle, but instead traces a curve called “an elliptic 

lemniscate of Booth” and it is the image of an ellipse under inversion with respect 

to its center (Coffman, 2006). 

 

 

 

 

 

 

 

 

 

 

Figure 6.18 Transfer function between Pt and Ps plotted for a modification to 
expansion chamber length. 
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In order to explain the effect of modifying the chamber length, the simplest form 

of the duct system was constructed. Source and termination impedances are 

directly attached to the inlet and outlet of the simple expansion chamber. 

Substituting Equation 6.4.14 to Equation 6.4.5 yields: 

( ) ( ) ( )kL
c
miZZ

m
cikLZZ

Z
p
p

STST

T

s

t

sincos ⋅






 ⋅
+

⋅
+⋅+

=

ρ
ρ             (6.4.15) 

Modifying chamber length will change four poles simultaneously, which can be 

viewed as a combination of sin(kL) and cos(kL). Therefore, the variable for 

Moebius transformation in Equation 6.4.15 is 

( ) ( )kLkLz sincos βα +=                                   (6.4.16) 

where α and β are 

ST ZZ +=α                                                       (6.4.17a) 

c
miZZ

m
ci

ST ρ
ρβ ⋅

+
⋅

=                                               (6.4.17b) 

In this case, the complex constants of Moebius transformation as shown in 

Equation 6.1.1 are: 

0;1;;0 ==== dcZba T                                              (6.4.18) 

Variable z is essentially an elliptic function of kL, as shown in blue in Figure 6.19. 

The complex inversion of z is shown in green. This plot explains the reason of 

transfer function tracing an elliptic lemniscate of Booth with chamber length 

variation. 
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Figure 6.19 Complex conversion of an ellipse is an elliptic lemniscate of Booth. 
 

6.5 Summary 
 

 It has been demonstrated that the Moebius transformation – which maps 

straight lines and circles in one complex domain to circles in another complex 

domain – is a mathematical tool that can be employed to aid in determining and 

understanding the impact of mechanical and acoustic impedance modifications 

on a vibro-acoustic system. The Moebius transformation is applicable to both 

series and parallel impedance modifications. This was shown to be especially 

enlightening for understanding the impact of impedance modifications to the 

response in waveguides. Acoustic impedance modifications in ducts are more 

easily controlled than mechanical impedances. As was previously noted, the 

method is amenable to any parallel or series impedance modification. For the 

case of a side branch, the impedance can be most easily adjusted by adjusting 

the length. Modifications in series impedances like source, transfer and 

termination impedances are also simulated to demonstrate the Moebius 

transformation. 
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 One potential application is to select the impedance utilizing the 

Moebius transformation such that the acoustic response is optimized. However, 

the application is limited to analysis in single frequency and in a single degree of 

freedom. 
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CHAPTER 7  
CONCLUSIONS AND RECOMMENDATIONS 

 
In 1-Dimensional acoustic waveguides where the wavelength of the wave is 

much greater than the cross-sectional dimensions of the duct, the wave motion is 

quite analogous to the flow of electric current in a transmission line. One can 

make use of the well-established electrical circuit representation for acoustic 

elements because of the complete analogies between electrical system variables 

and acoustical ones. The analogy is very useful in understanding behavior of 

combinations of acoustic elements. This is made possible by studying 

combinations of their impedances. In 1-D acoustic waveguides, lumped acoustic 

impedance can be used to model geometric discontinuities, acoustic elements, 

etc.  Based on electro-acoustic analogy, the combinations of lumped acoustic 

elements can be represented by either parallel impedances or series 

impedances. When modeled as parallel impedances, the acoustic elements 

share the same sound pressure at the junction. Meanwhile, when modeled as 

series impedances, the acoustic elements share the same particle velocity at the 

junction. Therefore, the combined admittance for parallel impedances equals the 

sum of the admittances of acoustic elements; while the combined impedance for 

series impedance equals the sum of the impedances of acoustic elements. In 1-

D waveguides, example of parallel impedances is the combination of a Helmholtz 

resonator and its upstream and downstream elements; example of series 

impedances is the combination of a perforated plate and its upstream and 

downstream elements. 

The research of this dissertation is focused on two types of series 

impedances, namely source impedance and transfer impedance. By utilizing their 

common characteristics as series impedances, the current research attempted to 

investigate source and transfer impedances under one category. The wave 

decomposition approach was applied to measure both source and transfer 

impedances. The Moebius transformation was used to investigate the influence 

of modifications of both source and transfer impedances on the system response.  
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The primary contributions and recommendations for future research for 

each topic of series impedance will be summarized. 

 

7.1 Source Impedance 
 

Source impedance, together with source strength, is used to characterize 

the acoustic sources connected to 1-D waveguides. Examples include the engine 

intake and exhaust, air moving devices in HVAC ducts, and pumps in hydraulic 

systems, etc. Source impedance can be modeled as internal impedance using a 

circuit analogy concept. Based on the circuit analogy, measurement methods 

such as the two-load method (Kathuriya, 1979) were developed and applied to 

measure the source impedance. 

In the current research, an incident wave decomposition method for 

measuring source impedance and source strength was developed. This method 

was purely based on acoustic concepts instead of the equivalent circuit analogy. 

Compared to the source strength defined using the circuit analogy concept, 

which has no physical meaning, the outgoing source strength measured using 

this method represents a real acoustic component in a duct system, i.e. the 

acoustic source strength with an anechoic termination. The incident wave 

decomposition method was validated theoretically and experimentally. 

The load effect based on condition number analysis was conducted for 

load combinations using different duct lengths. The study shows that, for wave 

decomposition method, selecting different duct lengths to modify acoustic load 

has little effect on the frequency wide source impedance accuracy.  However, 

duct lengths could be strategically selected so as to enhance measurement 

accuracy in particular frequency bands. Furthermore, error analysis for wave 

decomposition method was conducted both theoretically and numerically. Error 

analysis suggests that changing the termination configuration can improve 

measurement accuracy if the two terminations produce very different acoustic 

loads. If possible, near anechoic and open flange load combinations should 
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improve measurement accuracy reducing the possibility of negative source 

resistance. 

Finally, measured source impedance, together with termination 

impedance, was applied to predict the insertion loss of a small engine muffler 

with good agreement with measured data. 

It is suggested that further source impedance work could be focused on 

the combination of the acoustic reciprocity principle and the wave decomposition 

method. The reciprocity principle states that the transfer functions between a 

source and receiver are identical if their positions are interchanged (Fahy, 2001).  

The combination may produce a new test method which measures the sound 

pressures outside of the duct and calculates the source impedances indirectly. 

 

7.2 Transfer Impedance of Micro-perforated Panel (MPP) Absorbers 
 

Transfer impedance can be used to characterize most of thin permeable 

materials such as protective cloths in muffler linings, perforated and micro-

perforated panel absorbers, etc. MPP absorbers are novel acoustical materials 

which can be used as alternatives to traditional absorbing materials such as 

fibers and foams. Due to pore diameters sub-millimeter in size, MPP absorbers 

provide acoustic resistance which enhances the sound attenuation. Its acoustic 

performance is determined by the perforation size, porosity, panel thickness and 

air cavity depth posterior to it. In current research, a parametric study based on 

Maa’s equation (Maa, 1975) provided directions for manufacturers to control 

MPP geometric parameters in order to obtain the desired acoustic performance.  

For MPP manufactures, cutting circular-shaped perforations is normally 

accomplished by using either a laser or a drill press (Yoo, 2008). As a result, high 

manufacturing costs preclude their use in most products.  However, lower cost 

MPP absorbers with irregular slit-shaped perforations are being produced that 

perform similar. For MPP with irregular slit-shape, geometric parameters such as 

slit size and porosity are difficult to measure. Thus, it is impossible to correlate 

the manufacturing parameters to the acoustic performance for MPP with irregular 
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slit shape. Because of the very reason, the acoustic performance of MPP with 

irregular slit shape is usually achieved by try-and-error approach which is very 

time-consuming. 

In current research, an inverse method using a nonlinear least square 

data fitting algorithm was developed to estimate “effective” geometric parameters 

from measured absorption coefficient data. Both circular-perforation and 

rectangular-slit models were validated in the algorithm. The “effective” geometric 

parameters were used to further calculate transfer impedance with good 

agreement with the measured data. The merit of this approach is that it 

generates the “effective” geometric parameters based on the acoustic 

performance when the “actual” geometric parameters are unavailable. Just like 

the “actual” parameters, these “effective” parameters can be used to direct the 

manufacturing in order to obtain the desired acoustic performance. 

This inverse approach was also used to aid to understand the effect of 

dust and fluid contamination on the performance of MPP absorbers. Experiments 

suggest that dust and fluid contamination increase both transfer resistance and 

reactance. By applying the inverse approach to the measured absorption, the 

effective parameters of contaminated absorber was obtained. The inverse 

calculation suggests that dust contamination reduces both the “effective” porosity 

and perforation size simultaneously, while fluid contamination leads to parallel 

impedance in the hole through the air and fluid. By understanding the effect and 

the mechanism behind it, cleaning protocols can be established or MPP 

absorbers can be designed to function well for known levels of contaminant 

accumulation. 

It is suggested that further effective parameter study could be focused on 

reducing the “effective” parameters to one: flow resistance of MPP absorbers. 

The empirical equations that relate flow resistivity and characteristic impedance 

of porous materials were developed (Wu, 1988). Based on the same concept, an 

empirical equation can be developed to relate flow resistance and transfer 

impedance of MPP absorbers. 
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7.3 Enhancement of MPP Performance in Duct 
 

In the current research, application of MPP absorbers with adjoining air 

cavity as noise treatment in duct system was investigated. An improvement 

strategy, partitioning the air cavity, was studied experimentally and numerically. 

For MPP absorber with and without partitioning, the sound pressures inside the 

duct was measured and compared.  The results indicate that partitioning 

improves the performance of the absorber by disrupting wave propagation 

behind the MPP that would be present without it.  The effect is particularly 

noticeable at low frequencies where the acoustic response is resonant in nature.  

Boundary element analysis was conducted to simulate the effect of the MPP 

absorbers with air cavity.  Analyses were conducted with and without partitioning 

in the adjoining cavity.  The simulation agreed well with experimental results 

when it was assumed that the MPP could be modeled via a transfer impedance 

boundary condition.  The simulation illustrated that the MPP was most effective 

when the particle velocity (in the direction normal to the MPP) in the perforations 

was high. 

It is suggested that further MPP work could be focused on HVAC and 

muffler applications.  The impact of partitioning could also be evaluated for 

engine enclosures, aircraft fuselages and building interiors. 

 

7.4 Application of Moebius Transformation to Impedance Modification 
 

In current research, the influence of modifications of both source and 

transfer impedances on the system response was studied using the Moebius 

transformation. It was demonstrated that the Moebius transformation – which 

maps straight lines and circles in one complex domain to circles in another 

complex domain – was a mathematical tool that can be employed to aid in 

determining and understanding the impact of acoustic impedance modifications 

on a vibro-acoustic system. The Moebius transformation is applicable to 
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modifications of any parallel or series impedances. Other acoustic elements 

including termination impedance, parallel impedance, and muffler were modified 

to study the system response. For the case of parallel impedances, i.e. side 

branch, the impedance can be most easily adjusted by adjusting the length. For 

the case of muffler, the modification was achieved by adjusting the length of a 

simple expansion chamber. 

The methodology of the Moebius Transformation warrants further 

investigation and might be especially helpful if implemented in more advanced 

duct acoustic optimization schemes.  The approach seems to be especially 

promising to provide intuition in engine exhaust acoustic system design. 
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