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 ABSTRACT OF DISSERTATION 

  
  
  

 ASSESSING AND MITIGATING AIRBORNE NOISE FROM POWER 
GENERATION EQUIPMENT 

 

This dissertation examines the assessment and mitigation of airborne 
noise from power generation equipment.   

The first half of the dissertation investigates the diagnosis and treatment of 
combustion oscillations in boilers. Sound is produced by the flame and is 
reflected downstream from the combustion chamber.  The reflected sound waves 
perturb the mixture flow or equivalence ratio increasing the heat release 
pulsations and the accompanying sound produced by the flame.  A feedback 
loop model for determining the likelihood of and diagnosing combustion 
oscillations was reviewed, enhanced, and then validated. The current work 
applies the feedback loop stability model to two boilers, which exhibited 
combustion oscillations. Additionally, a feedback loop model was developed for 
equivalence ratio fluctuations and validated.  For the first boiler, the combustion 
oscillation problem is primarily related to the geometry of the burner and the 
intake system.  For the second boiler, the model indicated that the combustion 
oscillations were due to equivalence ratio fluctuations.  Principles for both 
measuring and simulating the acoustic impedance are summarized.  An 
approach for including the effect of structural-acoustic coupling was developed.  
Additionally, a method for determining the impedance above the plane wave cut-
off frequency, using the acoustic FEM, of the boiler was proposed.  

The second half of the dissertation examines the modeling of bar silencers.  
Bar silencers are used to mitigate the airborne noise from large power generation 
equipment (especially gas turbines).  Due to the large dimensions of the full 
cross section, a small representative cell is isolated from the entire array for 
analysis purposes.  To predict the acoustical performance of the isolated cell for 
different geometric configurations, a numerical method based on the direct 
mixed-body boundary element method (BEM) was used.   An analytical solution 
for a simplified circular geometry was also derived to serve as a comparison tool 
for the BEM.  Additionally, a parametric study focusing on the effects of flow 



 
 

resistivity, perforate porosity, length of bars, and cross-sectional area ratio was 
performed. A new approach was proposed to evaluate the transmission loss 
based on a reciprocal work identity.  Moreover, extension of the transmission 
loss computation above the plane wave cut-off frequency was demonstrated. 

 

KEYWORDS: Combustion-Driven Oscillations, Feedback Loop Stability Models,  
Acoustic Load Impedance, Bar Silencers, Reciprocal Work Identity 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

As the population grows, demand for energy will increase. In order to meet these 

needs, various types of power equipment have been designed and manufactured 

since the first industrial revolution. Though wind, solar, and nuclear are viable 

alternatives, fossil fuel usage will continue to be the primary source of our 

growing energy needs. However, in all fossil fuel combustion processes, noise 

will be produced and will need to be reduced or minimized. This is certainly the 

case in the heating, ventilation and air-conditioning systems (HVAC) and gas 

turbine industries. 

1.1.1 Power Equipment 

Among the popular power equipment, two types, namely boilers and gas turbines, 

are extensively used in heating systems and power generation industries. 

Boilers  

Boilers are pressure vessels designed to transfer released heat (produced by 

combustion) to a fluid which is usually water in the form of liquid or steam [1]. 

They consist of a combustion chamber made of cast-iron, stainless steel, 

aluminum or copper, and a jacket in which cold fluid is heated. A piping system is 

then used to convey heated fluid to the use point and then return the cooled fluid 

to the boiler. Boilers are typically categorized into various groups depending on 

their working pressure and temperature, fuel used, material of construction, type 

of draft (natural or mechanical), whether they use condensing or non-condensing 

fuel gas, their shape and size, the application (such as heating or process), and 

the state of the output medium (steam or water) [1]. 

Gas Turbines 

Gas turbines, also called combustion turbines, are similar to internal combustion 

engines and essentially large compressors. However, in contrast to internal 

combustion engines which rely on serial piston strokes to maintain air and fuel 

flow, gas turbines maintain a continuous air and fuel flow [2]. In addition to high 
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operating efficiency and lower pollutant emission, gas turbines require low capital 

investment, and can be built and installed quickly.  Moreover, there are fewer 

regulations for operation when compared to other power generation equipment 

[3]. These advantages are why gas turbines are commonly used for power 

generation.  

There are three main components in gas turbines, a) upstream compressor, b) 

downstream turbine and c) the combustion chamber in between.  Air is sucked 

into the compressor and then forced through the compressor at an elevated 

pressure and flow velocity. Mixed with the fuel injected by the fuel injector, the 

pressurized air goes through the combustor and is ignited. The gas leaving the 

combustor at a higher temperature and flow velocity is directed towards the 

downstream turbine. The turbine provides the energy to generate power. Gas 

turbines can be categorized into five broad groups: frame type heavy-duty gas 

turbines, aircraft-derivative gas turbines, industrial type gas turbines, small gas 

turbines and micro-turbines [4]. 

1.1.2 Combustion Noise 

As the requirements for reducing the pollutant emissions such as oxides of 

nitrogen (NOx) and carbon monoxide (CO) are becoming increasingly stringently, 

as a result, efforts are being made to increase combustion efficiency and lower 

the level of pollutant emissions in both the boiler and gas turbine industries [3]. 

Consequently, lean premixed gas combustion is becoming more widely adopted. 

It produces excess air, which helps in maintaining the temperature of the 

products of combustion below the threshold value that is required for production 

of thermal NOx [5].  

Although lean premixed design minimizes the emission level of pollutants and 

performs at high efficiency, it is more likely to lead to combustion oscillation 

problems or thermo-acoustic instabilities [6, 7]. Putnam [8] pointed out that 

combustion systems often generate acoustical oscillations and it is difficult to 

design a combustion system exhibiting no oscillations. Instabilities in the 

combustion produce a sound source due to the fluctuating (or acoustic) volume 
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velocity at the flame.  Sound is then reflected back from the combustion chamber 

and disturbs the gas flow rate or mixture composition. Ali et. al. [9]  investigated 

the effect of acoustic-combustion interaction. They pointed out that the acoustic 

effect can reduce NOx formation from combustion in some cases. However, the 

sound is usually abnormal and objectionable. 

There are several noise sources in a typical combustion system including 

periodic combustion-driven oscillations, panel vibrations, fan noise, and transient 

start-up and shut-down noise [10]. The noise radiated due to the combustion can 

be grouped into two classes: tonal and broadband noise. The former 

phenomenon usually happens in the boiler industry while the latter one is often 

the case in the gas turbine industry. These two different types of noise are 

treated using different approaches. Noise caused by the combustion process can 

be further categorized into two types: turbulent combustion noise (combustion 

roar and hiss) and combustion-driven oscillations [8]. These two types of 

combustion noise are caused by different mechanisms [6].  

Turbulent Combustion Noise 

Turbulent combustion noise, which is also called combustion roar and hiss, is a 

random phenomenon and therefore has a broadband spectrum [6]. The acoustic 

energy might be concentrated in a certain frequency range but it is not usually at 

a single frequency. It is caused by turbulent fluctuations in heat release, which 

results from turbulent velocity fluctuations in the flow supply [10]. The turbulence 

induced noise radiates from the source (the turbulent motion of the flame front) 

and there is no significant feedback from the radiated acoustic field back to the 

flame front. Levels of turbulent combustion noise are heavily dependent on the 

levels of turbulence in the flame [11].  

Combustion-driven Oscillations 

In contrast to turbulent combustion noise, combustion-driven oscillations are self-

excited and characterized by a feedback cycle that converts chemical energy to 

acoustic energy [12]. Taking the flame as the sound source, the sound is 

radiated from the flame and reflected back to the source due to the confinement 
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of the combustion chamber. The reflected sound pressure fluctuation perturbs 

the flame via the mixture supply system which normally amplifies the heat 

release rate and therefore forms what Baade called  “a vicious cycle” [6] as 

shown in Figure 1.1. The amplitude of the pressure grows exponentially in time 

following the onset of oscillations, until non-linear effects limit this growth [10]. 

 

Figure 1.1 Schematic showing the vicious cycle. 

It is also pointed out that combustion-driven oscillations often produce tonal noise 

and are dominated by a single frequency associated with side-bands and/or 

higher harmonics of that frequency [6]. This tonal sound is abnormal and 

objectionable. 

The other important characteristic of combustion-driven oscillations only occur at 

certain operating conditions of firing rate, equivalence ratio, flow speed, vent 

length, and intake length [6]. Though the instabilities only occur at specific 

operating conditions, it is likely that a combination of conditions will lead to a 

problem at few particular frequencies. In that case, measures must be taken to 

diagnose and alleviate the problem. 

Combustion instabilities not only may be annoying, but at times may become so 

violent as to damage or destroy the equipment [8]. They also deteriorate 

combustion efficiency and increase pollutant emission. In extreme cases, severe 

structural damage may occur [13].  

Though combustion instabilities are a common phenomenon in both the gas 

turbine and HVAC industries, the focus in this work is on HVAC components like 
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boilers, furnaces, and water heaters. This problem is especially prevalent when 

using lean premixed combustion. During the development of higher efficiency, 

lower emission boilers, unacceptable noise is produced which must be treated. 

1.1.3 Noise Diagnosis 

Most combustion instability problems are solved in a “trial-and-error” fashion. In 

boiler, furnace, and water heater industry, this consumes an inordinate amount of 

time and effort. Putnam noted: “Because of the uniqueness of almost every individual 

combustor installation, if only in regard to the associated ducting and surroundings, the 

acoustic acceptability of a given installation is often unpredictable on the basis of past 

performance of similar units. Furthermore, specific information on the acoustic behavior 

of components is ordinarily not available to the extent that unqualified predictions of 

pulsation-free performance can be made, even if the mechanism by which the pulsations 

could occur is known.” [8] However, researches are now capable of modeling most 

of the components upstream or downstream of the flame. 

Numerous researchers have tried to predict combustion instabilities.  However, 

much of the research has focused exclusively on the combustion process with 

little effort on examining the acoustic dynamics. Elsari and Cummings [14] 

proposed a simple one-dimensional model based on standard acoustic 

transmission line theory, and used it to predict the instability frequencies of a 

system. Nevertheless, the flame dynamics were not included in the model, so it 

could not predict the instability regimes. They also pointed out that no universal 

model for predicting combustion instabilities exists. 

Baade proposed a feedback loop stability model for diagnosing the combustion-

driven oscillations 30 years ago [6, 15, 16]. The model assumed that the 

oscillations are caused by the volume flow fluctuations in the mixture supply 

system (not equivalence ratio fluctuations). Three transfer functions are identified 

either experimentally or by simulation, and are used to construct the positive 

feedback loop of the combustion system. One is the transfer function describing 

the dependence of the volume flow rate on the pressure fluctuation in the 

combustion chamber. The second transfer function represents the acoustic 
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driving point impedance of the combustion chamber at the flame front. The third 

one is the flame transfer function which was experimentally determined by 

Goldschmidt et al. [17] There is also an empirical model available [18]. The 

criterion for diagnosing the occurrence of combustion-driven oscillations has 

been established and is detailed in Section 2.2.1. 

Apart from the consideration of volume flow fluctuations, Lieuwen et al. [7, 19] 

found that combustors operating in a lean premixed mode of combustion are 

highly sensitive to variations in the equivalence ratio of the mixture that enters 

the combustor.  They also found that equivalence ratio fluctuations can be 

induced by interactions of the pressure and flow oscillations along with the 

reactant supply rates. The convective time from the point of formation of the 

reactive mixture at the fuel injector to the flame front controls whether or not 

instabilities will occur. Moreover, Lieuwen [19] summarized how premixed 

combustion-acoustic wave interactions can be modeled. 

Similarly, Sattelmayer [20, 21, 22]  investigated the influence of the combustor 

aerodynamics on combustion instabilities from equivalence ratio fluctuations. The 

fluctuations of equivalence ratio are convected into the flame which leads to heat 

release fluctuations. Spatial dispersion of equivalence ratio convected from the 

gas injector downstream to the flame front was also included. Sattlelmayer 

concluded that equivalence ratio fluctuations are often the cause of instabilities. 

1.1.4 Noise Suppression 

There is no universal approach or equipment which mitigates combustion 

instabilities for all applications. A vast amount of abatement research has been 

conducted in the past, passive, active and hybrid control have been used to solve 

issues. Passive control generally refers to the static modification of the engine 

combustion systems to damp combustion instabilities, while active control refers 

to the class of control techniques that use actuators to reduce the gain of the 

combustion system [23]. Passive and active control techniques are combined in 

the hybrid control. 
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Active noise control uses externally powered actuators to generate sound to 

reduce the unwanted disturbances in a system [24]. The source and system 

responses are monitored by a set of reference sensors. A simple example is to 

use a loudspeaker as a source to generate a feedback sound wave that is 

opposite in phase and cancels the source wave.  Sound pressure is measured by 

sensors in the vicinity of the flame and is used to cancel sound pressure 

oscillations in the vicinity of the flame [25]. See References [26, 27] for more 

information. 

In contrast to active control, passive control utilizes static devices and sound 

absorbing material to alleviate the noise problem. There are a variety of 

strategies for implementing passive control techniques including absorption 

material, damping, and changing the intake and exhaust lengths.  

1.1.5 Bar Silencers 

Silencers are devices used to abate noise. There are two types: reactive and 

dissipative. Reactive silencers mitigate the sources through successive 

reflections of sound by means of impedance mismatching [28]. Dissipative 

silencers convert the incident sound energy into heat [28].  

A bar silencer is primarily type of dissipative silencers and uses sound absorbing 

materials, such as foams, fiberglass and perforates. Nilsson and Söderqvist 

proposed the idea of bar silencers in 1983 [29]. Bar silencers, usually with large 

dimensions, consist of an array of rectangular or round bars made of sound 

absorbing materials packed in a rectangular lattice arrangement.   Each bar is 

covered by a perforated facing sheet to protect the material from being blown 

away by the exhaust gas.  Sound absorbing materials have excellent broadband 

frequency absorption capabilities, especially at high frequencies. Bar silencers 

are commonly used to attenuate the turbulent combustion noise in the gas 

turbine and HVAC industries. 
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1.2 Objectives 

This dissertation has two different sets of objectives. The first set focuses on 

combustion instabilities and the second on simulation of bar silencers. The 

objectives are as follows: 

I. The low-order feedback loop stability models for the combustion-driven 

oscillations were validated. 

i. The combustion-driven oscillations were identified under certain 

operating conditions via experimental investigation. 

ii. The driving impedance of combustion chambers as well as 

impedance of the mixture supply systems was measured and 

modeled. 

iii. The burners were characterized by the transfer impedance. 

iv. The flame transfer functions were measured using the built test rig 

and also simulated using existing models. 

v. The low-order feedback loop model for mixture flow oscillations was 

validated based on the measured and simulated data. 

vi. A low-order feedback loop model for equivalence ratio oscillations 

was proposed and used for diagnosing the combustion-driven 

oscillations. 

vii. Panel vibrations were incorporated into the low-order acoustic 

models. 

viii. A design approach was proposed for preventing and solving 

combustion oscillation problems. 

II. The acoustic performance of bar silencers was analyzed via analytical and 

numerical solutions. 

i. The direct mixed-body boundary element method was used to 

model the bar silencers. 

ii. An analytical model based on pressure and velocity matching, was 

investigated and used for assessing the sound attenuation in bar 

silencers. 
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iii. A parametric study was performed to evaluate the effects of 

different parameters, such as flow resistivity of material, perforate 

porosity of the facing sheet, length of bars and cross-sectional area 

ratio, on the acoustic performance of bar silencers. 

iv. A new approach based on the reciprocal work identity was 

proposed and extended to calculate the TL above plane wave cut-

off frequency. 

1.3 Organization 

This dissertation is arranged in the following fashion: 

CHAPTER 1 introduces the background knowledge for power equipment and 

combustion noise due to roar or instabilities.  

CHAPTER 2 to CHAPTER 4 discuss low-order models for diagnosing and 

alleviating the combustion-driven oscillations. CHAPTER 2 describes the 

feedback loop stability model for mixture flow oscillations and the newly 

developed model for equivalence ratio oscillations. Both models are then applied 

to two commercial boilers which exhibited mixture flow or equivalence ratio 

fluctuations respectively. In addition, the measurement and simulation of the 

flame transfer function, which is one of the three significant components in low-

order models, is detailed. CHAPTER 3 proceeds to investigate the other two 

acoustic transfer functions, namely the driving impedance of the combustion 

chambers and impedance of the mixture supply. Transfer matrix theory, which is 

the basis for the low-order model, is reviewed. For complicated boilers, the 

procedure using acoustic FEM to predict the impedance is described. 

Additionally, a transfer matrix element for including structural vibrations for a flat 

plate is developed and validated. CHAPTER 4 introduces a design approach for 

preventing and solving combustion oscillation problems. 

The broadband noise mitigation using dissipative bar silencers is emphasized in 

CHAPTER 5 to CHAPTER 6. In CHAPTER 5, the direct mixed-body boundary 

element method is employed to evaluate the acoustic performance of bar 

silencers. Serving as a comparison tool, the analytical approach based on the 
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pressure and velocity matching technique is elaborated and applied to determine 

the transmission loss of a hypothetical bar silencer. Due to the large dimension of 

bar silencers, it is not practical to evaluate the acoustic performance above the 

plane wave cut-off frequency using the conventional definition of TL. TL is then 

defined above plane wave cut-off frequency. A parametric study is carried out to 

detect the effects of four important parameters: flow resistivity, perforate porosity, 

length of bars and cross-sectional area ratio. To calculate the TL above the plane 

wave cut-off frequency numerically, a new approach is proposed which is 

detailed in CHAPTER 6. First, CHAPTER 6 reviews the current techniques for 

obtaining the TL of silencers and details a new approach which is based on the 

reciprocal work identity. Further, the extension including higher order modes is 

discussed and a test case is studied.  

Summary, conclusions and suggestions for future work are presented in 

CHAPTER 7.  
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CHAPTER 2 ASSESSING THE CAUSES OF COMBUSTION-

DRIVEN OSCILLATIONS IN BOILERS USING A FEEDBACK 

LOOP STABILITY MODEL 

2.1 Introduction 

When a new boiler is developed, it is probable that a tonal noise will develop that 

is both abnormal and objectionable.  This tonal noise results from a thermo-

acoustic instability known as a combustion-driven oscillation.  Combustion-driven 

oscillations occur when sound is reflected from the combustion chamber into the 

mixture supply chamber or even further upstream to the gas valve.   The sound, 

which is a fluctuating pressure, leads to either mixture flow or composition (i.e., 

equivalence ratio) fluctuations.  This results in a fluctuating heat release or 

volume velocity, which is an acoustic disturbance in the combustion chamber. 

Baade [6] noted that this phenomenon is a positive feedback loop that will lead to 

higher amplitude combustion oscillations until the behavior is no longer linear. 

At the present time, boiler, water heater, and furnace manufacturers solve these 

problems in a trial-and-error fashion and in a variety of different ways.  Typical 

solutions include modifying the geometry of the combustion chamber, adding 

acoustic absorption, switching burners and gas valves, and setting the boiler 

controls to avoid certain operating conditions.  However, problems are not 

generally solved by the industry in a systematic manner. 

The aim of this work documented herein is to assist the boiler industry in moving 

towards a more systematic approach.  Specifically, a low-order model for the 

combustion oscillation phenomenon is documented and then demonstrated on 

two boilers that exhibited oscillations.  The model, proposed by Baade [6, 15] 

over 30 years ago, was targeted towards combustion oscillations that arise from 

a fluctuating mixture flow.  Since oscillations can also result from a fluctuating 

mixture composition, a complementary model has been developed based on 

work by Sattelmayer [20, 21].  
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It appears that Higgins [30] was the first to document the existence of 

combustion oscillations.  In his classic work, Lord Rayleigh later explained the 

phenomenon stating: “If heat be periodically communicated to, and abstracted from, a 

mass of air vibrating (for example) in a cylinder bounded by a piston, the effect produced 

will depend upon the phase of the vibration at which the transfer takes place.  If heat be 

given to the air at the moment of greatest condensation, or taken from it at the moment of 

greatest rarefaction, the vibration is encouraged.” [31] Lord Rayleigh noted that a 

primary requirement for amplification of the instability via the feedback process is 

the phase relationship between the acoustic pressure and the heat transfer. 

In the 1950’s, Putnam [8] mathematically described the Rayleigh criterion and 

suggested that thermo-acoustic instabilities may occur if 

 ∫  ( ) ( )    
 

 

 (2.1) 

where  ( ) is the acoustic pressure and  ( ) the pulsating portion of the heat 

release rate. It was assumed that the acoustic particle velocity (  ( ) ) is 

proportional to the pulsating portion of the heat release of the flame ( ( )).  It 

follows that the left hand side of Equation (2.1)  is also proportional to the 

acoustic energy generated for a cycle (i.e. the sound power).  For thermo-

acoustic instabilities to occur, the left hand side must be positive and greater than 

the amount of acoustic energy dissipated. 

Perturbations in the burn rate are unavoidable.  However, these perturbations will 

not necessarily lead to thermo-acoustic instabilities unless a self-exciting 

mechanism is present.  Instabilities occur when small modulations of the flow 

rate or composition of the mixture lead to heat release oscillations.  Heat release 

oscillations result in a fluctuating volume velocity (i.e. an acoustic disturbance) 

leading to acoustic oscillations that feed back into the mixture. 
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2.2 Low-Order Model for Mixture Flow Oscillations 

2.2.1 Feedback Loop Stability Model 

Baade [6, 15] contributed significantly by 1) restating Putnam’s equation in the 

form of a feedback loop and 2) defining this relationship in the frequency domain.  

In doing so, Baade identified three transfer functions that need to be determined.  

Two of the transfer functions (  and  ) are acoustic and can be determined 

experimentally or by simulation.  The other transfer function (  ) is related to the 

flame and is best determined experimentally though a few models are available.  

Figure 2.1 shows a schematic of Baade’s feedback loop stability model (Baade [6, 

15]) for the prediction of combustion oscillations.  Perturbations to the volume 

velocity of the flame, which are external to the feedback loop, are indicated by 

 ̃   .  The driving point impedance ( ) of the combustion chamber is the ratio of 

the oscillating pressure ( ̃) to the volume velocity in the combustion chamber 

( ̃    or  ̃).    is the transfer function relating the perturbation of the mixture flow 

( ̃ ) to the acoustic pressure in the combustion chamber ( ̃). 

 

Figure 2.1 Feedback loop stability model defined by Baade [6, 15]. 
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In order to close the loop, a transfer function describing the flame is required 

which Baade [6] terms the flame transfer function (  ).  In a companion paper to 

Baade’s work, Goldschmidt et al. [17] defined    as the ratio of the volume flow 

oscillations ( ̃) to the volume velocity of the mixture flow ( ̃ ).  Thus, 

    
 ̃

 ̃ 
 (2.2) 

The flame transfer function can alternatively be defined as the ratio of the 

fluctuating part of the burned mass flow rate to the injected mass flow rate 

(Goldschmidt et al. [17]).  This transfer function is typically measured and will be 

described in greater detail later. 

After defining the three transfer functions ( ,  , and   ), it is straightforward to 

derive an expression for the stability criterion based on the feedback loop (Baade 

[6]).  If all three transfer functions are multiplied together, one obtains 

        
 ̃ 

 ̃
 

 ̃

 ̃ 
 

 ̃

 ̃   ̃   
 

 ̃

 ̃   ̃   
 (2.3) 

If  ̃    is assumed to be zero, the ratio on the right hand side of the equation is 

unity.  Thus, 

          (2.4) 

There is an alternative to obtain Equation (2.4).    relates the fluctuating pressure 

to the volume velocity in the combustion chamber and can be defined as 

   
 ̃

 ̃
 (2.5) 

In addition, the volume velocity consists of two parts: 1) fluctuating flame and 2) 

external fluctuating volume input and can be defined as 

  ̃   ̃        ̃ (2.6) 
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Rearranging the Equation (2.5) and Equation (2.6), the fluctuating pressure and 

the external fluctuating volume velocity can be related and expressed as 

 
 ̃

 ̃   

 
 

      
 (2.7) 

If  ̃      is assumed, then the above equation becomes infinite and hence 

Equation (2.4) is obtained.  

Equation (2.4) defines a threshold for when self-excited oscillations maintain 

themselves but do not grow (Baade [6]).  Note that   ,  , and    are each 

complex functions of frequency.  However, the right hand side of Equation (2.4) 

is real.  This implies that instabilities can only occur at frequencies where the 

summation of the phase angles of  ,  , and    is equal to 0 or a multiple of 360.  

Accordingly, conditions for thermo-acoustic instabilities are favorable at 

frequencies where the left hand side of Equation (2.4) exceeds 1 and is real.  For 

simplicity, Baade [15] and Baade and Tomarchio [16] recast Equation (2.4) as 

the inequality 

 |   |  
 

|  |
 (2.8) 

Combustion oscillations are more likely to occur at frequencies where the left 

hand side of Equation (2.8) exceeds the right hand side. 

2.2.2 Acoustic Model of the System 

In the following discussion, we have chosen to follow the line of reasoning in 

Elsari and Cummings [14] to describe the acoustic model.  The model assumes 

 Plane wave propagation inside the duct. 

 Low Mach number flow. 

 The length of the flame is small compared to an acoustic wavelength. 

The validation of plane wave propagation in burner is detailed in APPENDIX A. 
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Figure 2.2 shows a diagram of a duct with heat release.  The flame can be 

assumed to be a volume velocity source having volumetric source strength ( ).  

Conservation of mass requires that 

      ̃     ̃  (2.9) 

where  ̃  and  ̃  are the acoustic particle velocities in the upstream and 

downstream duct respectively and    and    are the corresponding cross-

sectional areas. 

Assuming that   is small compared to an acoustic wavelength, the acoustic 

pressures  ̃  and  ̃  (indicated in Figure 2.2) should be equal to each other due 

to continuity of acoustic pressure.    and    are the upstream and downstream 

acoustic impedance (ratio of sound pressure to volume velocity) respectively. 

 

Figure 2.2 Schematic of flame showing upstream and downstream impedances. 

An acoustic circuit can be constructed as shown in Figure 2.3.  The constructed 

circuit is analogous to an electrical circuit in which the sound pressure and 

volume velocity correspond to voltage and current respectively.  Note that the 

upstream and downstream impedances (   and   ) are in parallel to one another.  

It follows that   is the equivalent acoustic impedance of the acoustic circuit 

shown in Figure 2.3 and can be written as 
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 ̃

 ̃   
 

    

     
 (2.10) 

Baade [6] noted that  ̃    and  ̃ are not the input and output to the combustion 

chamber but are instead the respective inputs and outputs to the dynamic 

process taking place within the combustion chamber. 

Perturbation of the volume velocity of the mixture flow is indicated by  ̃  and is 

equal to the negative of    ̃  in Figure 2.2. Therefore,   is the negative 

admittance (admittance is the reciprocal of acoustic impedance) of the burner 

ports looking into the mixture supply (Baade [6]) and can be expressed as 

   
 ̃ 

 ̃
 

    ̃ 

 ̃
  

 

  
 (2.11) 

Again,  ̃  and  ̃ are not the input and output to the mixture supply but instead 

describe the dynamic process taking place at the mixture supply. 

 

Figure 2.3 Schematic showing equivalent acoustic circuit illustrating that the 

upstream and downstream impedances at then flame are in parallel. 

2.2.3 Measurement of Flame Transfer Function 

The flame transfer function is the ratio of the fluctuating burned mass flow rate to 

injected mass flow rate [17].  Goldschmidt et al. [17] used an acoustic approach 
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to measure the flame transfer function.  A loudspeaker was used as an excitation 

below the burner to fluctuate the burner inlet flow and sound pressure was 

measured with and without the flame. 

 

Figure 2.4 Schematic illustrating the approach to measure flame transfer function 

from Goldschmidt et al. [17] 

Figure 2.4 shows a schematic of the approach suggested by Goldschmidt et al. 

[17] to oscillate the inlet flow and measure the flame oscillation.  Notice that the 

loudspeaker is placed in the fuel-air mixing chamber.  Sound pressure is 

measured in both the mixing chamber (Microphone 1) and after the combustion 

(Microphone 2).  The sound pressure (measured at Microphone 2) with the flame 

off (    ) is proportional to the fluctuating volume flow in the burner inlet (  ).   

Similarly, the sound pressure with the flame on (   ) is proportional to the volume 
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flow oscillations ( ) in the combustion chamber.  Microphone 1 is used to monitor 

the input to insure that it is consistent between both tests.  The flame transfer 

function    is then defined as 

    
 ̃

 ̃ 
 

 ̃    ̃   

 ̃   
 (2.12) 

Alternatively, Kornilov [18] and Kornilov et al. [32] and Khanna [5] used chemi-

luminescence to detect OH+ as a heat release rate indicator which can be directly 

related to  ̃ .  In the case of Kornilov, a hot wire anemometer was used to 

measure the flow velocity oscillations ( ̃ ) with the flame off.  The gain of the 

flame transfer function was found by taking the ratio of the amplitude of the 

Fourier transform of the IOH+ signal to the amplitude of the acoustic velocity signal 

measured by the hot wire anemometer.  Like Goldschmidt et al. [17], the flow 

rate was perturbed by a loudspeaker excitation. 

2.2.4 Prediction of Flame Transfer Function 

Kornilov [18] developed an empirical formula, which was modified by Baade and 

Tomarchio [16], for the flame transfer function for a Bunsen burner. The flame 

transfer function is expressed as 

    
 

    
(

      

(      ) 
   ) (

  

  
  ) (2.13) 

where    denotes the offset term of flame transfer function,    time delay 

parameter,    attenuation parameter,   the angular frequency,    density of the 

unburned mixture and    density of the combustion products. 

   is defined as 

    
    

   
 (2.14) 

where    represents the mean gas velocity,   flame height and    an empirical 

constant. 
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   is defined as 

    
  

√   

 (2.15) 

where     is the flame propagation velocity and    an empirical constant. 

Kornilov’s model should be useful as an estimate. The model was developed for 

Bunsen burners and most commercial burners can be thought of an array of 

Bunsen burners.  However, the model does not take into account the actual 

burner geometry, the presence of diffusers to control flow, or the effect of metal 

or ceramic meshes on the burner surface. 

2.3 Boiler 1 – Mixture Flow Fluctuations 

Boiler 1 was a 58 kW (200,000 BTU/hour) capacity propane gas boiler 

representative of relatively massive and rigid fire tube boilers.  The heat 

exchanger is cast aluminum with numerous fingers in the lower chamber to 

facilitate heat transfer.  The combustion oscillation problem occurred when the 

boiler was running lean at approximately 2100 Hz.  If the equivalence ratio was 

increased, the instability did not occur. A simplified schematic of the heat 

exchanger for Boiler 1 is shown in Figure 2.5. 

Table 2.1 and Table 2.2 list the operating conditions and whether or not 

combustion oscillations occurred.  Additionally, temperature measurements were 

also made inside of the combustion chamber using thermocouples.  There were 

three ports in the chamber (upper, middle, and lower) where temperature 

measurements could be made.   
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Figure 2.5 Schematic showing the heat exchanger for Boiler 1. 

The sound pressure level at the combustion oscillation frequency exceeded 80 

dB at some positions.  Background noise had been checked as a first step, and 

noise levels were below 50 dB. 

Table 2.1 Operating conditions for Boiler 1 
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Table 2.2 Operating conditions for Boiler 1 Continued. 

 

Table 2.3 Temperature measurements for Boiler 1.  

 

Temperature measurements were made in the positions shown in Figure 2.6. 

Three thermocouples were inserted into the top, middle and lower combustion 

chamber respectively. The temperature measurements were conducted twice in 

the top position: one was   ⁄  inch from burner and the other was 1 inch from 

burner. In addition, the temperature at the lower and upper flue outlet as well as 

inlet air were monitored. Temperature measurements are tabulated in Table 2.3. 

The number indicates the operating condition number in Table 2.1 and Table 2.2. 
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Figure 2.6 Schematic showing thermocouple insertion points for Boiler 1. 

2.4 Results for Boiler 1 

2.4.1 Boiler 1 Measurement of Flame Function 

The flame transfer function was measured using the method of Goldschmidt et al. 

[17] described in Section 2.2.3.  Figure 2.7 shows the flame transfer function 

measurement test rig that was created by the team.  The burner was mounted 

horizontally in order to better represent the manner in which the burner was 

installed. Two microphones were utilized in the experiment. One was placed in 

the mixture tube and used as a phase reference. The other microphone is 

positioned away from the test rig and used to measure the sound pressure with 

flame on and flame off. 
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Figure 2.7 Flame transfer function measurement rig. 

A loudspeaker was placed inside the mixture tube and was excited using 

sinusoidal excitation.  White noise excitation was also attempted but there was 

not enough sound energy produced for accurate measurement of the flame 

transfer function.  The phase, in particular, was difficult to measure. 

At each frequency examined, measurements were performed with the flame on 

and off.  The sound pressure level inside the mixture tube was monitored and 

adjusted to be at the same level for each test. The fan controller was unchanged 

for both tests to insure the same flow rate. 

Switching burners eliminated the combustion oscillation for Boiler 1.  Accordingly 

the flame transfer function was measured for the original burner and for the 

burner that eliminated the instability.  Before measuring, the equivalence ratio 

was fixed by adjusting the air and fuel flow. The flow rates were adjusted to 

match the operating cases for both burners.  The flow velocity of the air was 

measured using a hot wire and the gas flow with a flow meter (Figure 2.7). 
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Figure 2.8 and Figure 2.9 compare the flame transfer function magnitude and 

phase for both burners.  With Burner 1 installed, the boiler exhibited combustion 

oscillations.  Notice that the flame transfer function is similar in each case, which 

suggests that the effect of switching burners on the flame transfer function is 

minimal.  The fact that the phase is stable and relatively smooth lends confidence 

to the measurement. 

 

Figure 2.8 Comparison of flame transfer function magnitude with different 

burners. 
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Figure 2.9 Comparison of flame transfer function phase with different burners. 

2.4.2 Boiler 1 Feedback Loop Model Results 

Switching the burner alleviated the instability.  Figure 2.10 shows a schematic of 

a typical burner and Table 2.4 shows the primary dimensions for both Burners 1 

and 2.  With Burner 1, the boiler exhibited the combustion oscillation.  Burner 1 

consisted of a perforated metal cylinder with a ceramic fabric sock.  A ring 

diffuser is positioned 12.5 cm (5 in) from the burner base.  Burner 2 had a higher 

flow resistance and consisted of three layers; two perforated cylinders with a 

small gap between them and a sintered metal sock wrapping the outer cylinder.  

Both burners are similar in diameter but Burner 1 is 5 cm (2 in) longer. In Burner 

2, a distributor panel is located at the attachment point.  The panel incorporated a 

pattern of 5 mm (0.2 in) and 11 mm (0.43 in) circular holes.   

If no inlet or vent pipe was attached, combustion-driven oscillations were not 

produced (Table 2.1). However, oscillations were induced if the intake or exhaust 

openings were partially blocked with masking tape (see Figure 2.11).  The tape 
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has low mass so the acoustics will not be affected appreciably.  However, the 

blockage will reduce the flow rate.  A similar reduction in flow rate is achieved by 

adding length to the intake and/or exhaust pipes.  By adding additional lengths to 

the intake and exhaust pipes, it was determined that the combustion oscillations 

primarily occurred for intake flow rates around 6.5 m/s.   Flow rate was measured 

using an anemometer. 

 

Figure 2.10 Schematic showing the configuration of the burner. 

Table 2.4 Overall dimensions of Burners 1 and 2. 
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Figure 2.11 Photograph showing partially blocked intake. 

The feedback loop stability model for Boiler 1 was determined using the 

calculated impedances downstream and upstream, and the measured flame 

transfer functions [33]. The impedance was determined using the approach 

discussed in CHAPTER 3. The impedance of the burner was added to the 

upstream impedance at the burner attachment.  Plane wave propagation was 

assumed inside the burner.  This appears reasonable since the speed of sound 

is very different inside and outside the burner due to the high temperatures.  

Accordingly, there is a significant difference in characteristic impedance between 

the higher and lower temperature gas media. 

Since the oscillation occurred above 2000 Hz, the acoustic wavelength will be on 

the order of 15 cm (6 in).  At high frequencies, the dimensions of the burner itself 

will be important (i.e., small compared to an acoustic wavelength).  As shown in 

Figure 2.10,     is the distance from the burner base to the lower burner port 

openings, and    is the distance from the lower burner port openings to the 

approximate center of the burner port surface (the approximate center of the 

flame which is the acoustic source). No visualization techniques were used so 

the dimension of    is an estimate. For Burner 1, 12.5 cm (5 in) was assumed for 

  .  
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The combined length of tube (     ) can be considered as a duct with cross-

sectional area equal to that of the burner.  Using the methods described in 

Reference [34], a transfer matrix can be developed for the combined length with 

four-pole parameters  ,  ,  , and  .  The burner can be treated as a transfer 

impedance (   ) which can be measured or predicted according to Wu et al. [35] 

and Liu et al. [36].  More details are presented in CHAPTER 3. In that case, the 

total upstream impedance can be expressed as 

    
(      )           

       
 (2.16) 

where      is the impedance at the burner attachment. 

Using the simulation model, the length of the burner from the attachment point to 

the burner surface (  ) was varied. Figure 2.12 compares |   | for various 

selected lengths.  Notice that the variation is significant around 2100 Hz.  As 

shown in Figure 2.13, the effect of switching from one burner port pattern to 

another on |   | was also investigated but was found to be less significant. 

The results suggest that the geometry of the burner is more important than the 

burner port pattern or the material selected for the sock (i.e., sintered metal or 

ceramic fiber) placed over the burner port cylinder. 

The plots of magnitude and phase for     and      are shown in  Figure 2.14 

and  Figure 2.15 for Burner 1 and Figure 2.16 and  Figure 2.17 for Burner 2.  

Thermo-acoustic instabilities are possible when the magnitude of     exceeds 

     and when the phases of     and      are equivalent.  The results 

indicate that a combustion oscillation is possible at 2100 Hz for the selected 

(     ).  However, this selected length is somewhat arbitrary so the validation 

of the model is inconclusive. 



30 
 

 

Figure 2.12 Effect of varying distance from burner attachment on |   |. 

 

Figure 2.13 Effect of switching burner surface on |   |. 
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 Figure 2.14 Magnitude of     and   ⁄
  with Burner 1. 

 

 Figure 2.15 Phase of     and    ⁄  with Burner 1. 
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Figure 2.16 Magnitude of     and    ⁄  with Burner 2. 

 

 Figure 2.17 Phase of     and    ⁄  with Burner 2. 
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As noted earlier, the geometry was different between Burners 1 and 2 (see Table 

2.4) and the results from Figure 2.12 demonstrate that small changes to the 

overall geometry can greatly affect |   | at high frequencies.  Accordingly, the 

model suggests that the difference in burner geometry may have alleviated the 

instability.  However, the validation of the model is inconclusive, and further 

experimental work is recommended to investigate the effect of burner geometry 

on combustion oscillations. 

2.5 Low-Order Model for Equivalence Ratio Oscillations 

2.5.1 Feedback Loop Stability Model 

Combustion oscillations can also be produced by a fluctuating equivalence ratio 

[21, 7].  Sattelmayer [21] developed a model, which combined the effects of 

equivalence ratio and mixture flow fluctuations.  However, the model assumed a 

simple geometry for the combustor and a flat burner.  Moreover, the model was 

judged to be overly complex for the HVAC community since it requires the 

solution of 16 simultaneous equations. 

 

Figure 2.18 Feedback loop stability model for equivalence ratio oscillations. 

It was decided to develop a feedback loop model similar to that shown earlier.  

Though Sattelmayer showed that combustion oscillations could result from a 
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combination of the two mechanisms (mixture flow and equivalence ratio 

fluctuations), one mechanism is more likely to be dominant.  Moreover, solutions 

to combustion oscillation problems in equipment will be targeted for one or the 

other mechanism and not for a combination of the two.  Hence, a separate 

feedback loop for equivalence ratio fluctuations was developed and no attempt 

was made to merge the two models into a unified model.  In fact, Sattelmayer [21] 

demonstrated that a unified model was nonlinear. 

The model is shown in Figure 2.18.    and    are both purely acoustic transfer 

functions.    is the combustion chamber impedance and is identical to that used 

in the mixture flow model and    relates the fluctuating velocity ( ̃ ) at the gas 

valve to the fluctuating pressure ( ̃) at the burner.    describes the relationship 

between the equivalence ratio ( ̃) to the fluctuating velocity at the gas valve.  

The flame transfer function (   ) should also be defined in terms of the 

equivalence ratio fluctuations.  Accordingly,  

    
 ̃

 ̃
 (2.17) 

where  ̃ is the fluctuating heat release. 

In this case, combustion oscillations can occur if 

 | |  |  |  |  |  |  |    (2.18) 

which can be restated as: 

 | |  |  |  
 

|  |  |  |
 (2.19) 

if 

                  (2.20) 
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2.5.2 Acoustic Model of the System 

For equivalence ratio perturbations,   is identical to that described in Section 

2.2.2. However, the acoustic model of the intake system is now described by the 

transfer function    which relates the fluctuating particle velocity ( ̃ ) at the gas 

valve to the fluctuating pressure (  ̃) at the flame. Figure 2.19 illustrates the 

variables considered. The determination of    is detailed in Section 2.5.4. 

2.5.3 Fluctuating Equivalence Ratio at Gas Valve 

The combustion intensity between a fuel and an oxidizer depends on their 

relative molar (or volume) concentrations. When their concentration ratio is 

chemically correct, all the reactants can be totally consumed by the reaction so 

that the combustion intensity is as high as possible. This combustion mode of 

burning is called the stoichiometric combustion. The stoichiometric combustion 

generates the products with the highest value of heat. In the C-H-O-N system, 

these products are water (gas or liquid phase), carbon dioxide, and nitrogen. 

 

Figure 2.19 Schematic showing the variables relating the sound pressure at the 

flame to the volume flow velocity at the fuel intake. 

To measure the relative molar concentration of fuel and oxidizer in a mixture, we 

define a fuel-oxidizer ratio,     ⁄  as the ratio of the mass of fuel to the mass of 

oxidizer in the mixture. Similarly, if air is the oxidizer then    is the mass of air.  
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To specify the deviation of practical combustion from stoichiometric burning, the 

equivalence ratio   is defined as 

   
(    ⁄ )

   

(    ⁄ )
    

 (2.21) 

where the subscripts “act” and “stoi” designate the actual and stoichiometric 

states. The actual fuel and oxidizer (i.e., air) molar concentrations are obtained 

from measurements. 

From Equation (2.21),     corresponds to stoichiometric combustion, and 

    and     respectively correspond to fuel-lean and fuel-rich combustion. 

Note that the air-to-fuel equivalence ratio is sometimes used, which is simply the 

reciprocal of the current definition of  . 

Oscillations of air and fuel lead to a fluctuation of equivalence ratio.  The 

equivalence ratio can be decomposed into a constant portion ( ̅) and fluctuating 

portion ( ̃).  Thus, the equivalence ratio can be expressed as 

    ̅   ̃ (2.22) 

The fluctuating portion is  

  ̃  
(    ⁄ )

   

(    ⁄ )
    

 
( ̅  ̅ ⁄ )

   

(    ⁄ )
    

 (2.23) 

Using the definitions     ̅   ̃  and      ̅   ̃ , Equation (2.23) can be 

rearranged and the fluctuating part of the equivalence ratio can then be 

expressed as 

 
 ̃

 ̅
 

 ̃  ̅   ̃  ̅ ⁄⁄

   ̃  ̅ ⁄
 (2.24) 

where  ̅  and  ̃  denote the constant and fluctuating mass of fuel respectively, 

 ̅  and  ̃  denote the constant and fluctuating mass of air individually. 
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It is reasonable to assume that the acoustic impedance is large at the gas 

injection since the cross-sectional area of the injection port is small compared to 

the main duct.  In that case, there will be no fuel fluctuation, which implies a 

constant fuel mass flow. In addition, the fluctuation part of the air mass is small 

compared to the total amount of air mass flow.  Equation (2.24) can then be 

simplified as  

 
 ̃

 ̅
  

 ̃ 

 ̅ 
  

  ̃ 

  ̅ 
  

 ̃ 

 ̅ 
 (2.25) 

where  ̅   and  ̃  represent the constant and fluctuating parts of mass flow rate 

respectively. 

It follows that the transfer function relating the fluctuation of equivalence ratio to 

the acoustic particle velocity (  ) can be expressed as 

     
 ̃

 ̃ 
  

 ̅

 ̅ 
 (2.26) 

It should be noticed that    is constant with frequency and is defined in terms of 

the constant parts of the equivalence ratio and mass flow rate, which are easily 

measured. 

2.5.4 Determination of    

The transfer function between the particle velocity at the gas valve and the 

source pressure (   as identified in Section 2.5.1) can be derived using silencer 

transfer matrices.  The transfer matrix between the flame and gas valve is 

defined as    and between the gas valve and inlet opening as    as shown in 

Figure 2.19. 

The impedance of the pipe at the gas valve (   ) can be determined from the 

transfer matrix between the gas valve and inlet opening   , and the impedance at 

the inlet opening (    ). CHAPTER 3 describers the theory in details.      can be 

expressed as 
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 (2.27) 

where   ,   ,    and    are the four-pole parameters for   .  This impedance is 

in parallel with the impedance of the gas valve.  However, it can be assumed that 

the impedance of the gas valve is much larger than     since the area of the gas 

valve opening is much smaller than the area of the inlet pipe.  It follows that the 

transfer function (  ) relating the volume velocity fluctuations at the gas valve to 

the sound pressure at the flame can be expressed as 

 
   

 ̃ 

 ̃
 

 

        
 (2.28) 

Details about determining transfer matrices can be found in Reference [34].  

2.5.5 Prediction of the Flame Transfer Function 

In the case of equivalence ratio fluctuations, the flame transfer function (  ) is 

defined as the ratio of the fluctuating heat release to the fluctuating equivalence 

ratio.  Sattelmayer [21] expressed the flame transfer function as 

         
  

 ̅
(
  

  
  ) (2.29) 

where    is the mean flow velocity at the burner,    and    are the gas densities 

at the upstream and downstream of burner respectively. 

A time delay parameter ( ) is defined as 

   
 

 
 (2.30) 

where   is the distance from the gas valve to the burner surface and   is the 

mean flow velocity. 

Equation (2.25) assumes that the fluctuating equivalence ratio is the same at 

both the gas valve and burner surface. However, Sattelmayer [21] showed that 

the fluctuating equivalence ratio changes due to convective effects as the air-fuel 
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mixture travels from the valve to the burner.  Nevertheless, it was found that 

these changes are minimal at lower frequencies. 

2.6 Boiler 2 – Equivalence Ratio Fluctuations 

Boiler 2 was a much larger 147 kW (500,000 BTU/hour) capacity propane gas 

boiler with a stainless steel heat exchanger.  Coils were arranged cylindrically in 

both the upper and lower parts of the heat exchanger.  The cause of the 

oscillation was a fluctuating equivalence ratio.  This was determined in the 

following manner.  The manufacturer increased the distance between the gas 

supply and the burner until the combustion oscillation was eliminated. In doing so, 

the acoustics of the intake should not change significantly since the gas valve 

has a small effect on the acoustic impedance.  However, the flame transfer 

function relating the fluctuating heat release to the fluctuating equivalence ratio 

will change significantly. Especially, note the dependence of time delay on the 

distance from the gas valve to the burner.  Ultimately, the manufacturer opted to 

change the intake system and the gas valve to eliminate the instability.  

Table 2.5 and Table 2.6 list the operating conditions.  Table 2.5  indicates 

whether or not combustion oscillations occurred.  For Boiler 2, there was only a 

single port where a thermocouple could be inserted into the combustion chamber.  

Consequently, the temperature was only measured in the upper combustion 

chamber.  Temperature at the outlet is typically in the neighborhood of 40°C 

(105°F).  However, temperature will have a minimal effect on the acoustics at low 

frequencies.   

Figure 2.20 demonstrates the setup for temperature measurements. The 

thermocouple was positioned in combustion chamber 17, 9 and 2 inches from 

burner surface respectively. Additionally, temperature at inlet and outlet of water 

and intake of air were recorded. Temperature measurements are tabulated in 

Table 2.7. The number indicates the operating condition number in Table 2.5 and 

Table 2.6. 
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Table 2.5 Operating conditions for Boiler 2. 

 

Table 2.6 Operating conditions for Boiler 2 Continued. 

 

Table 2.7 Temperature measurements for Boiler 2. 
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Figure 2.20 Schematic showing thermocouple insertion points for Boiler 2. 

2.7 Results for Boiler 2 

2.7.1 Boiler 2 Prediction of Flame Transfer Function 

In the case of Boiler 2, the flame transfer function was calculated.  Since the 

instability occurred at close to 10 Hz, it was difficult to measure the flame transfer 

function with any accuracy.  The flame transfer functions for mixture flow and 

equivalence ratio fluctuations were determined using Equations (2.13) and (2.29) 

respectively.  The parameters for each model are shown in Table 2.8 and Table 

2.9 respectively.  The two different transfer functions are compared in Figure 

2.21 and Figure 2.22 up to 100 Hz.  The equivalence ratio flame transfer function 

is somewhat sensitive to the input parameters provided.  Many of these like the 

flame height and flame propagation velocity are estimated. 
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Table 2.8 Parameters used in Equation (2.13) for mixture flow fluctuations. 

 

Table 2.9 Parameters used in Equation (2.29) for equivalence ratio fluctuations. 

 

Variable Symbol SI English 

Density of unburned mixture ρu 1.21 kg/m3 4.37E-5 lb/in3 

Density of combustion products ρd 0.325 kg/m3 1.16E-5 lb/in3 

Flame height H 1 cm 0.39 in 

Mean gas velocity V0 10.3 m/s 40.6 in/s 

Flame propagation velocity SL 40 cm/s 15.7 in/s 

Time delay τ0 3.4E-4 s 3.4E-4 s 

Attenuation parameter τ1 0.003 s 0.003 s 

Empirical constant T0 5.3 5.3 

Empirical constant T1 0.12 cm3/2 4.4E-4 in3/2 

Offset term A0 0.001 0.001 

 

Variable Symbol SI English 

Density of unburned mixture ρu 1.21 kg/m3 4.375E-5 lb/in3 

Density of Combustion products ρd 0.325 kg/m3 1.16E-5 lb/in3 

Time delay τ 0.084 s 0.084 s 

Mean flow velocity at burner ub 24.4 m/s 961 in/s 

Mean flow velocity at gas valve uv 10.3 m/s 406 in/s 

Mean equivalence ratio at burner φb 0.9 0.9 

Mean equivalence ratio at gas valve φv 0.9 0.9 

Distance from gas valve to burner L 1.03 m 40.6 in 

Mean velocity u 12.2 m/s 480.3 in/s 
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Figure 2.21 Comparison of magnitude of flame transfer function. 

 

Figure 2.22 Comparison of phase of flame transfer function. 
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2.7.2 Boiler 2 Feedback Loop Model Results 

The frequency of the oscillation was approximately 10 Hz and the entire unit 

vibrated violently.  The frequency of oscillation was determined by measuring the 

vibration of the boiler with an accelerometer. The frequency of oscillation was 

most affected by increasing the vent length, which decreased the instability 

frequency. 

For Boiler 2, both mixture flow and equivalence ratio fluctuations were 

considered for the feedback stability model. The downstream impedance was 

modeled and accounted for the elevated temperatures in the combustion 

chamber.  In this case, the length from the burner base to the center of the 

burner port cylinder (     ) was not included since it is very short compared to 

an acoustic wavelength of 34.3 m (112.5 ft) at low frequencies (i.e., 10 Hz).  

Additionally, the burner transfer impedance was found to be unimportant at low 

frequencies.  The flame transfer functions for both fluctuating mixture and 

equivalence ratio fluctuations were found using Equations (2.13) and (2.29) 

respectively.  The values used in Equations (2.13) and (2.29) are shown in Table 

2.8 and Table 2.9 respectively. 

Table 2.10 Comparison of measured and predicted instability.   

 

Table 2.10 compares the combustion instability frequencies identified using the 

mixture flow and equivalence ratio models to the frequencies that were measured.  

The numbers correspond to operating conditions in Table 2.5 and Table 2.6. The 

results point to a fluctuating equivalence ratio as the primary cause of the 

instability.  There are some differences between the prediction and measurement.  

However, these differences are expected for a couple reasons.  First, the boiler 
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vibrated violently which implies that structural resonances were strongly coupled 

to the acoustic resonance.  This is likely to result in a frequency shift.  

Additionally, the phase of the flame transfer function for equivalence ratio 

fluctuations (Equation (2.29)) is sensitive to the inputs, which are estimates.  

Accordingly, the model suggests that modifying the fuel intake system best 

solves the problem.  The results also indicate that equivalence ratio fluctuations 

are more likely to be a concern at low frequencies. 

Figure 2.23 and Figure 2.24 show the magnitude and phase for      and 

 (     )⁄  (for equivalence ratio oscillations) for Case 2 in Table 2.1.  

Combustion instabilities are possible if the magnitude of      exceeds 

 (     )⁄  and when the phases are equivalent.  Figure 2.25 and Figure 2.26 

show the magnitude and phase     and    ⁄  for mixture flow fluctuations for 

Case 2. Figure 2.27 and Figure 2.28 show the magnitude and phase for      

and  (     )⁄  (for equivalence ratio oscillations) for Case 3 in Table 2.1.  

Figure 2.29 and Figure 2.30 show the magnitude and phase     and    ⁄  for 

mixture flow fluctuations for Case 3. 

 

Figure 2.23 Magnitude of      and  (     )⁄  for case 2. 

0.01

0.1

1

10

100

0 20 40 60 80 100

D
im

e
n
s
io

n
le

s
s
 M

a
g

n
it
u

d
e

 

Frequency (Hz) 

 
𝑍  𝐻  

  (𝐻  𝐺𝜙) 



46 
 

 

Figure 2.24 Phase of      and  (     )⁄  for case 2. 

 

Figure 2.25 Magnitude of     and    ⁄  for case 2. 
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Figure 2.26 Phase of     and   ⁄
  for case 2. 

 

Figure 2.27 Magnitude of      and  (     )⁄  for case 3. 
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Figure 2.28 Phase of      and  (     )⁄  for case 3. 

 

Figure 2.29 Magnitude of     and    ⁄  for case 3. 
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Figure 2.30 Phase of     and    ⁄  for case 3. 

2.8 Summary 

Combustion oscillations are produced when sound produced by the flame is 

reflected from the combustion chamber towards the mixture chamber. The 

amount of reflection depends primarily on the geometry of the combustion 

chamber and attached ductwork.  The reflection feeds back to the flame and 

disturbs it. The fluctuating flame oscillates the sound pressure in the combustion 

chamber which in turn fluctuates the mixture flow and equivalence ratio. 

The low-order model originally developed by Baade [6] for identifying and 

preventing combustions oscillations was applied to two boilers. The original 

model has been enhanced by including a feedback loop to deal with equivalence 

ratio fluctuations.  In each case, the model identified probable causes and 

possible solutions.  CHAPTER 3 details the measurement and simulation of the 

downstream impedance for both boilers.  

For Boiler 1, the instability was resolved by switching burners.  By applying the 

model, it was determined that the higher acoustic resistance of the new burner 
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could provide some benefit.  However, the primary reason that the second burner 

resolves the problem is likely the difference in geometry.  The model showed that 

the upstream impedance is significantly affected by small changes to the burner 

geometry. 

For Boiler 2, the instability was resolved by switching gas valves.  The model 

identified equivalence ratio fluctuations as the primary cause of the instability.  

However, the model also indicated that oscillations could occur due to mixture 

flow fluctuations as well but at higher frequencies. 

The research demonstrated the usefulness of the feedback loop stability model 

as a diagnostic tool.  In each case, the model pointed towards a probable cause 

for the instability.  
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CHAPTER 3 MEASUREMENT AND SIMULATION OF 

ACOUSTIC LOAD IMPEDANCE FOR BOILERS 

3.1 Introduction 

What we know as sound is a result of fluid density or pressure fluctuations.  The 

distinctive feature of these fluctuations is that they propagate rapidly away from 

the source at a speed that depends on the type of fluid [37].  The disturbance 

propagates as a wave with no net mass transport and the propagation speed is 

known as the speed of sound.  The acoustic wavelength is the speed of sound 

(343 m/s or 1125 ft/s at room temperature for air) divided by the frequency of the 

disturbance. 

If noise is produced in a duct or pipe system, the sound pressure will be constant 

across the duct cross-section at low frequencies.  This is known as plane wave 

propagation, and will occur if the cross-sectional dimensions are less than half an 

acoustic wavelength.  For a square cross-section, the plane wave cut-off 

frequency is equal to    ⁄  where   is the speed of sound and   is a 

characteristic dimension of the duct cross-section.  Similarly, Eriksson [38] 

showed that the cut-off frequency for a circular duct is        ⁄ (  is the diameter 

in this case). 

When a sound wave encounters an abrupt geometric change or an obstacle, the 

wave will at the very least be partially reflected.  For example, a silencer uses 

cross-sectional area changes to reflect sound back towards the source.  Sound is 

also reflected from the end of a pipe or duct due to the abrupt change in 

geometry.  In the case of plane wave propagation, the sound field consists of an 

incident and a reflected wave.  The superposition of these two waves results in a 

standing wave where the positions of high and low amplitude sound pressure 

inside a duct do not change. 

Combustion oscillations are a common happening in boilers, furnaces, and water 

heaters.  Oscillations in the burning rate result in a perturbation of the acoustic 

particle velocity.  For the most part, the flame is a benign sound source.  
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However, the sound reflected back from the combustion chamber produces a 

standing wave that will perturb the mixture flow or composition.  At certain 

frequencies, a sympathetic resonance develops resulting in a tone. 

Changing the geometry of the system can eliminate these tones. Changes might 

include modifications to the combustion chamber, or the intake and vent pipe 

lengths.  Additionally, problems have been solved by adding small holes into 

pipes [15, 16]. 

The acoustic metric that is most relevant to the combustion oscillation problem is 

the acoustic impedance.  In fact, the acoustic impedance upstream and 

downstream of the flame is used as an input in the feedback loop model 

developed by Baade [6, 15] and Baade and Tomarchio [16].  In Reference [39], 

the feedback loop stability model developed by Baade is applied to two boilers 

that exhibited combustion oscillation problems. 

The acoustic impedance relates the perturbation in particle velocity ( ̃) directed 

away from the source to the acoustic pressure ( ̃) and can be expressed as 

   
 ̃

  ̃
 (3.1) 

where   denotes the cross-sectional area. 

Hence, a relationship between the acoustic pressure and volume velocity of the 

source (i.e. flame) can be established by measuring or calculating the acoustic 

impedance at the location of the flame. The next section details how the 

upstream and downstream impedances are in parallel with each other at the 

source.  The sections that follow describe how the acoustic impedance can be 

measured and simulated. 

3.2 Determination of Acoustic Impedance 

3.2.1 Measurement of Acoustic Impedance 

Acoustic impedance is most commonly measured using the two-microphone 

method [40].  The two-microphone method is shown schematically in Figure 3.1.  



53 
 

A loudspeaker is placed at one end of the tube and the sound pressure is 

measured at the two microphone locations.  The microphone closest to the 

source is the reference and the transfer function between the two microphones 

(   ) is measured.  The transfer function can be used to determine the sound 

pressure reflection coefficient ( ) using the equation 

   
         

        
 (3.2) 

where   is the acoustic wavenumber and   the microphone spacing. 

 

Figure 3.1 Schematic showing the two microphone measurement. 

The acoustic load impedance (  ) can then be determined from the reflection 

coefficient via 

    
  

  

   

   
 (3.3) 

where   is the mass density of air and   the speed of sound,    is the area of the 

tube. 

Both the upstream and downstream impedances (   and   ) shown in Figure 2.2 

can be measured in this way.   



54 
 

Instrumentation is used to measure quantities that are harmonic in time.  

Accordingly, there will be a time lag between quantities.  Accurate measurement 

of the phase is crucial to acquiring an accurate measurement of the impedance 

(  ).  Phase differences between the microphones, pre-amplifiers, and the 

channels of the spectrum analyzer can lead to errors in the measurement of the 

load impedance.  The phase between the microphones can be calibrated by 

switching the positions between the two microphones for an identical source and 

load, as explained in the ASTM Standard [40]. 

The Spectronics impedance tube and software [41] were used to acquire all the 

data in this work.  The impedance tube is brass and the microphone holders are 

well sealed to prevent sound leakage.  The source is a compression driver 

loudspeaker (JBL 2426J).  For Boiler 2, the compression driver was replaced 

with a bookshelf loudspeaker in order to boost the source energy at low 

frequencies.  

It is also important to insure that the signal to noise ratio is high.  The field sound 

pressure should be substantially higher than the background noise in the pipe or 

tube.  Standards recommend that the sound pressure level in the tube is at least 

10 dB higher than the background noise though 20-30 dB is preferred [42]. 

3.2.2 Calculation of Impedance using Transfer Matrix Theory 

The upstream and downstream acoustic impedances (    and   ) can be 

determined using a model based on transfer matrix theory [28, 43, 44].  Transfer 

matrix theory relates the sound pressure and particle velocity at the inlet to that 

at the outlet of a component.  The main assumption is that plane acoustic waves 

can be assumed at the inlet and outlet of each component though sound waves 

need not be planar within the components.  Provided that each component in the 

upstream or downstream piping system can be modeled as a transfer matrix, the 

impedance can be determined after multiplying the transfer matrices together. 

The numerical computing software MATLAB® [45] was used for all calculations.   
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A transfer matrix [ ] is composed of four-pole parameters  ,  ,  , and  .  These 

four pole parameters relate the sound pressure and particle velocity at the inlet 

and outlet of a particular duct section.   This can be expressed mathematically as 

 {
 ̃ 

   ̃ 
}  [

  
  

] {
 ̃ 

   ̃ 
} (3.4) 

where  ̃  and  ̃  are sound pressures and  ̃  and  ̃  are particle velocities as 

defined in Figure 3.2 for an arbitrary duct component. 

 

Figure 3.2 Arbitrary duct component with inlet and outlet variables. 

 

Figure 3.3 Schematic showing transfer matrices for a duct system. 
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Figure 3.3 shows a schematic for duct system.  The transfer matrix for the 

complete system [ ]  can be found by multiplying each of the transfer matrices 

together.  Thus, 

 [ ]  [  ][  ][  ][  ][  ] (3.5) 

for the case shown in Figure 3.3.  The impedance at the left hand side can be 

determined from the four-pole parameters   ,   ,   , and    for the system 

transfer matrix [ ] and the radiation impedance at the end of the duct or piping 

system (    ).  The impedance can be expressed as 

   
         

         
 (3.6) 

3.2.3 Four-pole Matrices for Common Duct Elements 

 

Figure 3.4 Common transfer matrices for heating equipment: a) straight pipe, b) 

quarter wave tube, c) cone and d) structural element modeled as a side branch. 
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The most commonly used duct elements in boilers, furnaces and water heaters 

are shown in Figure 3.4 [28].  The transfer matrix for a straight duct (Figure 3.4a) 

or tube can be expressed as 

       [

   (  )  
  

 
   (  )

 
 

  
   (  )    (  )

] (3.7) 

The transfer matrix for a quarter wave tube (Figure 3.4b) or structural element 

modeled as a side branch (Figure 3.4d) can be expressed as 

          [
  

   ⁄  ] (3.8) 

For the case of a quarter wave tube,  

           (   )     (3.9) 

The impedance (  ) for a vibrating plate which is modeled as a side branch can 

be found in the next section 3.2.6. 

The transfer matrix for a cone (Figure 4c) can be expressed as [46] 

       [
          

          
] (3.10) 

where 

       
  

  
   (  )  

   (  )

   
 (3.11) 

        
  

  

  

  
   (  ) (3.12) 

        
  

  
(
  

  
(  

 

      
)    (  )  (  

  

  
)
   (  )

   
) (3.13) 
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   (  )

   
 

  

  
   (  ) (3.14) 

In Figure 3.3, a straight duct is used to model [  ] , [  ] and [  ].  A quarter wave 

tube is used to model [  ]  and a cone to model [  ]. 

Figure 3.5 illustrates how a quarter wave tube can be configured as an extended 

outlet (or inlet).  For an extended inlet or outlet, the Equation (3.9) can be used 

but    must be adjusted to include near field effects at the flanged end [47].  

Accordingly, 

         (3.15) 

where 

    
   

  
 ( )  ( )  {

     (   )(       )        
                                                    

 (3.16) 

and  

   √   ⁄  (3.17) 

 

Figure 3.5 a) Quarter wave tube and b) quarter wave tube as extended outlet. 
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3.2.4 Measurement of Transfer Impedance of Burners 

The upstream impedance (  ) should include the impedance of the burner itself.  

The burner can be treated as a series or transfer impedance since the thickness 

of the burner element is very small compared to an acoustic wavelength.  The 

approach described below is commonly used to predict the impedance of 

perforates [48, 49]. 

The transfer impedance can be expressed as 

     
 ̃   ̃ 

  ̃
 (3.18) 

where  and  are the respective sound pressures on opposing sides.   

Particle velocity ( ) is assumed continuous on both sides of the sample.  Figure 

3.6 illustrates the concept.  The transfer matrix can be expressed as 

 {
 ̃ 

  ̃ 
}  [

    

  
] {

 ̃ 

  ̃ 
} (3.19) 

which can be incorporated into the low-order acoustic model. 

 

Figure 3.6 Schematic of perforate (burner) showing important variables. 

p1 p2

u
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Mechel et al. [48] demonstrated that the real part of the transfer impedance (the 

acoustic resistance) of a perforate depends on the Mach number and that the 

static flow resistance could be used to approximate the transfer impedance at 

low frequencies. Normally, the imaginary part of the transfer impedance (the 

transfer reactance) is negligible at low frequencies.  Hence, the static flow 

resistance can be measured using ASTM C522 [50] at low frequencies and used 

directly. 

However, the transfer impedance is more accurately measured using an 

impedance tube. This can be accomplished using the approach illustrated in 

Figure 3.7.  The impedance at the surface of the sample can be measured twice 

using the two-microphone approach, once with the sample (  ) and the second 

without (  ) [35].  The transfer impedance is the difference between the two 

measurements.  Normally, it is best to place some absorption at the end of the 

tube to eliminate any strong tube resonances. 

 

Figure 3.7 Schematic illustrating measurement of transfer impedance. 
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3.2.5 Calculation of Transfer Impedance of Burners 

Burners are very similar to micro-perforated panel absorbers.  Hole and slit 

dimensions are typically sub-millimeter in size.  As a result, acoustic attenuation 

is expected due to viscous friction in the holes.  Maa’s theory [51, 52] has 

typically been used to characterize the transfer impedance of micro-perforated 

panels and was adopted for burners as well. Three parameters control the 

transfer impedance of a micro-perforate: pore diameter  , panel porosity  , and 

thickness  .  The transfer impedance sans flow (   ) can be expressed as 

     
  ̃

  ̃
 

    

      
((  

  

  
)

 
 ⁄

 
√ 

 
 

 

 
)   (

  

  
(  (   

  

 
)

  
 ⁄

     
 

 
)) (3.20) 

where   is the angular frequency,   is the speed of sound,   is the viscosity, and 

  is a perforate constant dependent on the properties of the fluid.    is given as 

    √    ⁄  (3.21) 

where   is the mass density of air.  The real part of the transfer impedance will 

increase with flow.  In that case, the transfer impedance with flow can be 

expressed as [53] 

              
  

  
 (3.22) 

where   is the Mach number and   is a constant (0.044 and 0.079 for grazing 

and normal flow respectively). 

For some burners, both porosity and hole or slit dimensions are difficult to 

measure using traditional means.  Additionally, many burners have a metal fabric 

cover.  In these cases, effective dimensions for the hole size and the porosity can 

be obtained by curve fitting the data to Maa’s equation.  Porosity and hole 

diameter can be assumed in Maa’s equation.  Then, the predicted transfer 

impedance is compared to that measured in a least square sense.  The transfer 

impedance of different combinations of porosity and hole diameter are calculated 
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until optimum values were determined.  This method has been documented in 

Reference [36]. 

One application of this method is to extrapolate the measured data to lower 

frequencies. For example, transfer impedance measured using the 

aforementioned subtraction method at low frequencies is noisy due to 

measurement difficulties (low source strength and microphone spacing). By 

applying this method, the fitted transfer impedance at low frequencies is much 

smoother than the measured data.  Fitted data is compared to measured data 

with good agreement for a typical burner in Figure 3.8. The burner sample is 

inserted in the picture. The normalized transfer impedance is the magnitude of 

the transfer impedance defined in Equation (3.20) multiplied by    ⁄ . 

 

Figure 3.8 Comparison of measured to fitted data for the transfer impedance. 

3.2.6 Inclusion of Structural Vibration in Transfer Matrix 

It has been observed in practice that stiffening or adding damping to panels can 

eliminate combustion oscillations in some cases.  This is especially the case for 
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combustion chambers with thin flat plates.  A simple model (Figure 3.4d) can be 

used to include the structural vibration of the plate.  The plate can be treated as a 

side branch or parallel impedance similar to a quarter wave tube if it is assumed 

that the sound pressure is constant across the panel.  This assumption should be 

appropriate at low frequencies since the acoustic wavelength is long compared to 

the panel dimension. 

The impedance of the panel can be determined by considering the plate as being 

simply supported [54].  The natural frequencies of the plate are then 

       ((
 

 
)
 

 (
 

 
)
 

)√
 

   
 (3.23) 

where   and   denote the number of harmonics along the   and  -coordinate 

directions respectively.   and   are the length and width of the plate and   is the 

thickness.    is the density of the plate.  At low frequencies, the mode most likely 

to couple strongly with the acoustics is the first mode (    and    ).  The 

flexural rigidity of the plate ( ) is defined as 

   
   

  (    )
 (3.24) 

where   is the elastic modulus and   is the Poisson’s ratio. 

The modal participation factors (   ) can be determine using 

               (3.25) 

where 

     
   

   
 √(  (    ⁄ ) )      

 (    ⁄ ) 
 (3.26) 

where   is angular frequency and     modal damping coefficient. 
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The modal damping coefficient is best determined experimentally.  A frequency 

response function can be measured using an impact hammer and an 

accelerometer.  The modal damping coefficient can be determined by identifying 

the peak amplitude and the half power frequencies from the frequency response 

function.  See Ewins [55] for more information. 

     can be determined using 

     
  (      (  ))(      (  ))

      
 (3.27) 

where   is the pressure which can be set to 1 for determining the impedance.  

The phase lag is defined as 

          
    (    ⁄ )

  (    ⁄ ) 
 (3.28) 

The vibrational velocity for the first mode can then be expressed as 

  ̃(   )          (
  

 
)    (

  

 
) (3.29) 

Then, the branch impedance can be approximated as 

    
  

   ( ̃)  
 (3.30) 

where     is the area of the plate.  

The velocity of the plate ( ̃) was averaged in a root mean square sense and the 

phase was averaged as well.  The branch impedance (  ) found in Equation 

(3.30) can then be inserted into Equation (3.8). 

3.2.7 Calculation of Transfer Matrix using Acoustic FEM 

In some cases, the combustion chamber cannot be simulated using the transfer 

matrices described earlier because the geometry is too complex or the plane 

wave cut-off frequency has been exceeded.  For example, sand-cast combustion 
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chambers have a complicated geometry and it is difficult to model the chamber 

using plane wave approximations.  More importantly, the cut-off frequency is 

exceeded in all combustion chambers above the cut-off frequency.  However, 

transfer matrix theory can still be used if it is assumed that plane waves exist at 

the inlet and outlet to the combustion chamber.  However, analytical solutions for 

the transfer matrices above the plane wave cut-off are not available in the 

literature for most geometries.  Accordingly, the transfer matrix itself should be 

determined using a deterministic method like the acoustic finite (FEM) or 

boundary element method (BEM).   

 

Figure 3.9 Schematic of a combustion chamber. 

A schematic of a combustion chamber is shown in Figure 3.9.  When using 

numerical methods, it is normally easier to first find modified four-pole 

parameters [56, 57, 58] which are defined as 

 

    ̃ | ̃     ̃        
   ̃ | ̃     ̃     

    ̃ | ̃     ̃        
   ̃ | ̃     ̃     

(3.31a,b,c,d) 

To determine these modified four-pole parameters, two BEM/FEM analyses need 

to be completed.  The four-pole parameters can be found by applying a unit 

velocity on the left end (  ̃   ).  Then, a subsequent analysis should be 

performed with a unit velocity on the right end ( ̃    ).  The first run is used to 

determine both     and    .  The second run is used to find     and    .  The 
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BEM/FEM model should include a length of duct on both the inlet and outlet 

sides in order to ensure plane wave behavior so that the transfer matrix approach 

is valid. 

The four pole parameters in Equation (3.31a,b,c,d) can then be obtained from the 

modified four pole parameters using the expression 

 

  
  

  
      

 

  
(   

    

  
) 

  
  

  
                     

  

  

  

  
 

(3.32a,b,c,d) 

3.2.8 Measurement of the Transfer Matrix 

The geometry for some components like blowers is too difficult to simulate using 

plane wave methods or even acoustic FEM.  For complicated cases, transfer 

matrices should be measured using either the two-load [59] or two-source [60] 

methods.  For the two-source method, the duct component is excited first on the 

inlet side and then on the outlet side using a source such as a loudspeaker.  In 

the similar two-load method, the load or termination is changed.  

A schematic illustrating the two-load method, which was used in this work, is 

shown in Figure 3.10 and a photograph of the measurement setup for a blower is 

shown in Figure 3.11.  Transfer functions are measured between microphone 1 

and the other 3 microphones for each of the two load cases.  The acoustic load 

(i.e., impedance) is most easily modified by adding sound absorbing material to 

the end of the tube as illustrated in Figure 3.10.  The use of ASTM 2611 [61] 

contains the recommended algorithm for determining the four-pole matrices.  The 

essentials of the algorithm are presented next. 

The transfer matrix can be determined in the following manner from the 

measurements.  The incident pressure amplitudes upstream and downstream 

are expressed as 
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(3.33a,b,c,d) 

where    ,    , and     are the respective transfer functions assuming 

microphone 1 is used as a reference for phase.    ,   ,    and    are dimensions 

between microphones and the sample as shown in Figure 3.10.  The sound 

pressure and particle velocity at the inlet and outlet to the sample can be 

expressed as 

 

               (     )   ⁄  

      
                  (              )   ⁄  

(3.34a,b,c,d) 

and then the transfer matrix can be expressed as 
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{
 ̃ 

   ̃ 
} (3.35) 

where the subscripts   and   indicate the respective loads. 

 

Figure 3.10 Schematic showing microphone setup for the two-load method. 
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Figure 3.11 Photograph of measurement setup. 

3.2.9 Determination of the Termination Impedance 

The termination impedance (    ) can be determined analytically for unflanged 

and flanged openings shown in Figure 3.12.  The termination impedance for an 

unflanged opening [44, 62] is 

      
  (   )

 (   )
 (3.36) 

The reflection coefficient ( ) is given as  

       
        (3.37) 

where   is the radius at the orifice,    is the amplitude of the reflection coefficient 

and    is the end correction. The amplitude of the reflection coefficient (  ) is 

written as 

                       (  )         (  )         (  )         (3.38) 
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and the end correction (  ) as 

    {
             (  )        

                        
 (3.39) 

For the flanged or baffled opening [44, 63], the radiation impedance (    ) is 

defined as 

      
  

 
(  (   )     (   )) (3.40) 

where 

      
  (   )

  
       

  (   )

  
 (3.41a,b) 

   and    are the Bessel function and Struve function of first order respectively. 

 

Figure 3.12 a) unflanged and b) flanged terminations. 

3.3 Impedance Comparisons 

The downstream impedance of three boilers was simulated and measured using 

the procedures described.  Each of these boilers has distinguishing features that 

make them representative of the range of commercial boiler, water heater, and 

furnace applications.  For Boiler 1, the combustion oscillation problem was at 

high frequencies (around 2100 Hz at elevated temperatures) and the geometry of 

the combustion chamber was very complicated.  Acoustic FEM had to be relied 
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on in order to simulate the combustion chamber.  For Boiler 2, the combustion 

oscillation problem occurred at low frequencies (around 10 Hz) and the geometry 

was simple. Consequently, plane wave methods were sufficient for the entire 

frequency range of interest.  For Combustion chamber with thin panel, a panel 

resonance at approximately 220 Hz proved to be the source of the oscillation 

problem.  Combustion chamber with thin panels was simulated using plane wave 

methods with the thin panel included as a side branch. 

3.3.1 Downstream Impedance of Boiler 1 

The combustion oscillation problem occurred at approximately 2100 Hz when the 

boiler was running lean.  The predicted and measured impedances at room 

temperature compare well up to 1300 Hz.  The speed of sound is proportional to 

the square root of absolute temperature.  Accordingly, low frequencies at room 

temperature directly correspond to high frequencies at elevated temperatures.  

When realistic operating temperatures (approximately 800°F or 425°C) are 

included, the model should be acceptable up to and above 2100 Hz. 

The downstream impedance of Boiler 1 was measured using ASTM E1050 [16].  

See Section 3.2.1 for more details about the measurement.  A 1.375-inch (35 

mm) diameter impedance tube was used for the measurements and 0.5-inch 

(1.25 cm) condenser microphones (PCB 426E01) were used to measure the 

impedance.  The microphone spacing was 1.35-inch (3.4 cm).  All measurements 

were performed in a hemi-anechoic chamber in order to minimize background 

noise contamination. 

The combustion oscillation occurred at approximately 2100 Hz.  Consequently, 

the simulation model needed to be valid above the plane wave cut-off frequency 

of the combustion chamber.  Hence an acoustic FEM model of the combustion 

chamber was created.  As a first step, a simplified solid model of the combustion 

chamber was created and meshed.  The acoustic FEM model is shown in Figure 

3.13.  A large acoustic resistance of 82,500 rayls was added to the inside surface 

of the combustion chamber in order to add a small amount of acoustic absorption.  

The transfer matrix was determined by applying a velocity of 1.0 m/s at the 
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burner inlet and then the exhaust in sequential runs.  See Section 3.2.7 for the 

methodology. 

 

Figure 3.13 Acoustic FEM model of the Boiler 1 combustion chamber. 

 

Figure 3.14 Schematic illustrating modeling approach for Boiler 1 downstream 

impedance. 

Plane wave theory was used for each of the other elements in the model.  A 

schematic of the model is shown in Figure 3.14.  Table 3.1 shows the specific 

dimensions that were used for each of the elements.   

The magnitude and phase of the impedance for a vent length of 1m or 35.4 in are 

compared in Figure 3.15 and Figure 3.16 respectively.  These results are 
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representative of other vent lengths.  Vent length had little impact on the 

impedance. The predicted and measured impedances at room temperature 

compare well up to 1300 Hz.  At elevated temperatures, the speed of sound will 

increase and acoustic wavelengths will also increase as well.  As a result, the 

model should be acceptable up to 2300 Hz. 

Table 3.1 Dimensions and details of simulation model for Boiler 1 downstream 

impedance 

 

The magnitude and phase of the impedance for a vent length of 5.5m or 217 in 

are compared in Figure 3.17 and Figure 3.18 respectively.   

 

Figure 3.15 Comparison of the magnitude of the downstream impedance of 

Boiler 1 (vent length 1 m or 35.4 in). 
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Figure 3.16 Comparison of the phase of the downstream impedance of Boiler 1 

(vent length 1 m or 35.4 in). 

 

Figure 3.17 Comparison of magnitude of downstream impedance of Boiler 1 

(vent length of 5.5 m or 217 in). 
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Figure 3.18 Comparison of phase of downstream impedance of Boiler 1 (vent 

length of 5.5m or 217 in). 

3.3.2 Upstream Impedance of Boiler 1  

The upstream impedance was measured in the same manner as downstream.  In 

this case, the blower and gas valve assembly were too difficult to measure using 

either plane wave techniques or acoustic FEM.  Hence, the transfer matrix for the 

assembly was measured using the method described in Section 3.2.8.  A 

photograph of the measurement setup is shown in Figure 3.11.  Not all 

components were determined by measurement.  The intake pipe was modeled 

using plane wave theory.  The simulation model for the system is shown in 

Figure 3.19 and details about the model and dimensions are provided in Table 

3.2. 

The magnitude and phase of the upstream impedance for an inlet pipe length of 

0.4 m or 15.7 in are compared in Figure 3.20 and Figure 3.21 respectively.  The 

inlet length had little effect on the upstream impedance. The simulation using the 

measured transfer matrix for the blower assembly compares well with 

measurement over most the frequency range. 
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Figure 3.19 Schematic illustrating modeling approach for Boiler 1 upstream 

impedance. 

Table 3.2 Dimensions and details of simulation model for Boiler 1 upstream 

impedance. 

 

The magnitude and phase of the upstream impedance for with no inlet pipe are 

compared in Figure 3.22 and Figure 3.23 respectively.   

 

Figure 3.20 Comparison of the magnitude of the upstream impedance of Boiler 1 

(vent length 0.4 m or 15.7 in) 
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Figure 3.21 Comparison of the phase of the upstream impedance of Boiler 1 

(vent length 0.4 m or 15.7 in). 

 

Figure 3.22 Comparison of magnitude of upstream impedance of Boiler 1 (no 

inlet pipe). 
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Figure 3.23 Comparison of phase of upstream impedance of Boiler 1 (no inlet 

pipe). 

3.3.3 Measurement of Burner Transfer Impedance for Boiler 1 

Switching burners eliminated the instability at 2100 Hz for Boiler 1.  Both the 

original burner (Burner 1) and the new burner (Burner 2) are shown lit in Figure 

3.24.  Both burners are similar in diameter but Burner 1 is 5 cm (2 in) longer.  

Additionally, a ring diffuser is positioned 12.5 cm (5 in) from the burner 

attachment (Figure 3.24) whereas the diffuser in Burner 2 is at the attachment 

point.  Burner 1 has a perforated metal inner layer and ceramic fabric outer layer 

as shown in Figure 3.25.  Burner 2 consists of three layers:  the inner cylinder is 

a perforated plate with large diameter holes.  The outer two layers are in contact 

with one another and consist of a metallic mesh affixed to another perforated 

plate with higher porosity than the first plate but smaller perforations.  The three 

layers are shown in Figure 3.26.  For both burners, each layer was measured 

(with the exception of the inner layer of Burner 1) according to the methodology 

described in Sections 3.2.4 and 3.2.5 and fitted to Maa’s equation.  The effective 

parameters for each burner layer are shown in Table 3.3. 
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Figure 3.24 Photographs of Burners 1 and 2. 

 

Figure 3.25 Inner and outer burner layers for Burner 1. 

 

Figure 3.26 Three layers for Burner 2. 
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After determining the burner transfer impedance for each layer, the impedances 

were summed to determine the total transfer impedance.  In the case of Burner 1, 

the inner layer is acoustically transparent because the porosity is so high and 

was ignored.  The transfer impedance with flow was determined using Equation 

(2.24). 

Table 3.3 Effective parameters for each burner layer. 

 

 

Figure 3.27 Normalized impedance magnitude for Burners 1 and 2 with and 

without flow. 
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Figure 3.28 Normalized transfer impedance phase for Burner 1 and 2 with and 

without flow. 

The transfer impedance magnitude and phase are compared for each burner 

with and without flow in Figure 3.27 and Figure 3.28.  Notice that the acoustic 

impedance is higher for Burner 2. The increase in acoustic resistance should be 

beneficial in preventing combustion oscillations especially at higher frequencies. 

3.3.4 Downstream Impedance of Boiler 2 

The downstream impedance for Boiler 2 was measured using ASTM E1050 [40] 

and simulated using plane wave theory [28].  For Boiler 2, the instability occurred 

at close to 10 Hz, and plane wave theory was viable for the entire frequency 

range of interest. 

Measuring the impedance at very low frequencies is challenging for a few 

reasons.  Most loudspeakers do not put out sufficient sound energy below 100 

Hz and condenser microphones do not measure sound pressure accurately 
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below 20 Hz.   Additionally, background noise levels are high even in a hemi-

anechoic chamber below 50 Hz. 

Several steps were taken to improve the measurements so that the simulation 

model could be compared.  A bookshelf loudspeaker was used rather than a 

compression driver to increase the sound energy at low frequencies, and the 

spacing between the microphones in the impedance tube was increased to 21.4 

in to improve the accuracy of the measurement at low frequencies.  Figure 3.29 

shows the loudspeaker and impedance tube. 

 

Figure 3.29 Impedance tube with bookshelf loudspeaker. 

Additionally, the exhaust pipe was either removed entirely or only a short length 

was used.  Though this does not match the boiler in operation, the first 

resonance frequency (also known as the Helmholtz frequency) of the combustion 

chamber was moved higher in frequency with a shorter exhaust pipe.  Moving the 

first acoustic resonance higher in frequency (above 20 Hz) enables the 
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measurement to capture the first resonance.  The measured first resonance can 

then be correlated with plane wave simulation.  Figure 3.30 shows the 

impedance tube, boiler, and the exhaust pipe. 

 

Figure 3.30 Impedance tube with Boiler 2. 

The downstream impedance of Boiler 2 was modeled as shown in Figure 3.31.  

Detailed dimensions are shown in Table 3.4.  For good agreement between 

measurement and simulation, it was important to model Element 4 as a quarter 

wave tube or extended outlet.  Section 3.2.3 details the equations used for a 

quarter wave tube. 

The magnitude and phase of the impedance for a vent length of 0 m (0 in) are 

shown in Figure 3.32 and Figure 3.33 respectively.  As the results show, there is 

good agreement from 20 to 230 Hz.  Below 20 Hz, the measurement is suspect 

due to the microphones used, background noise, and insufficient source strength.   
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Above 230 Hz, acoustic FEM should be used since the plane wave cut-off 

frequency is exceeded in the combustion chamber.   The magnitude and phase 

of the impedance for a vent length of 1.8 m (71 in) are shown in Figure 3.34 and 

Figure 3.35 respectively.   

 

Figure 3.31 Schematic illustrating modeling approach for Boiler 2 downstream 

impedance. 

Table 3.4 Dimensions and details of simulation model for Boiler 2 downstream 

impedance. 
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Figure 3.32 Comparison of magnitude of downstream impedance (no vent pipe). 

 

Figure 3.33 Comparison of phase of downstream impedance (no vent pipe). 
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Figure 3.34 Comparison of magnitude of downstream impedance of Boiler 2 

(vent length of 1.8 m or 71 in). 

 

Figure 3.35 Comparison of phase of downstream impedance of Boiler 2 (vent 

length of 1.8 m or 71 in). 

0.0001

0.001

0.01

0.1

1

10

0 50 100 150 200 250

N
o
rm

a
liz

e
d

 I
m

p
e

d
a

n
c
e

 

Frequency (Hz) 

Measurement

Simulation

-120

-60

0

60

120

0 50 100 150 200 250

P
h

a
s
e

 (
D

e
g
re

e
s
) 

Frequency (Hz) 

Measurement

Simulation



86 
 

3.3.5 Upstream Impedance of Boiler 2 

The upstream impedance for Boiler 2 was also modeled measured using ASTM 

E1050 [40] with a bookshelf loudspeaker and a microphone spacing of 0.54 m 

(21.4 in).  Figure 3.36 shows the impedance tube attached to the intake system.  

The length of the intake pipe was varied.   

The impedance was simulated using plane wave theory [28].  All components in 

the inlet system were modeled as ducts or cones. The cone element can be used 

for any element with a gradually increasing or decreasing cross-sectional area.  

The cross-section need not be circular.  Figure 3.37 shows a schematic of the 

plane wave model and Table 3.5 shows the detailed dimensions.   

 

Figure 3.36 Impedance tube attached to intake system for Boiler 2. 

 

Figure 3.37 Schematic illustrating modeling approach for Boiler 2 upstream 

impedance 
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Table 3.5 Dimensions and details of simulation model for Boiler 2 upstream 

impedance 

 

The most challenging element was the blower, which was modeled as a cone.  

The length of the cone was tuned so that it would compare well with the 

measurement.  A length of approximately 75% of blower circumference was 

ultimately selected. 

Magnitude and phase comparisons of the impedance are shown in Figure 3.38 

and Figure 3.39 respectively.   The simulation results compared well with 

measurement above 20 Hz.  The intake pipe length was 1.8 m (71 in) for the 

results shown though other intake lengths were considered as well. 

 

Figure 3.38 Comparison of magnitude of upstream impedance (1.8m or 71 inch 

inlet pipe). 
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Figure 3.39 Comparison of phase of upstream impedance (1.8m or 71 inch inlet 

pipe). 

 

Figure 3.40 Comparison of magnitude of upstream impedance of Boiler 2 (2.9 m 

or 114 in intake pipe). 
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Figure 3.41 Comparison of phase of upstream impedance of Boiler 2 (2.9 m or 

114 in intake pipe). 

3.3.6 Combustion Chamber with Thin Panel 

A combustion chamber was selected which had a thin and nearly flat panel on 

one side.  The combustion chamber is shown in Figure 3.42.  Since the plate was 

thin, it was believed that the vibration of the plate would affect the measured 

impedance at certain frequencies.  The downstream impedance of the 

combustion chamber was measured and simulated to determine if this was 

indeed the case.  The impedance for the combustion chamber was measured in 

a manner identical to the measurements for Boilers 1 and 2.  A vent pipe was 

added to one end of the chamber.   

A schematic of the plane wave model is shown in Figure 3.43.  The thin plate 

was modeled as a side branch.  The theoretical approach for dealing with a thin 

plate is detailed in Section 3.2.6.  Table 3.6 provides details about the 

dimensions and individual transfer matrix elements.  Table 3.7 summarizes the 

plate dimensions and material properties. 
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Figure 3.42 Combustion chamber with thin and nearly flat panel. 

 

Figure 3.43 Schematic illustrating modeling approach for combustion chamber. 
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Table 3.6 Dimensions and details of simulation model for combustion chamber 

impedances. 

 

Table 3.7 Dimensions and material properties for the thin panel. 

 

 

Figure 3.44 Comparison of magnitude of downstream impedance (no vent). 
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Figure 3.45 Comparison of phase of downstream impedance (no vent). 

 

Figure 3.46 Comparison of magnitude of downstream impedance of a 

combustion chamber with a thin panel (vent length of 1.5 m or 59 in). 

-120

-60

0

60

120

0 100 200 300 400 500

P
h

a
s
e

 (
D

e
g
re

e
s
) 

Frequency (Hz) 

Measurement

Simulation with Vibration

Simulation without Vibration

0.001

0.01

0.1

1

0 100 200 300 400 500

N
o
rm

a
liz

e
d

 I
m

p
e

d
a

n
c
e

 

Frequency (Hz) 

Measurement

Simulation with Vibration

Simulation without Vibration



93 
 

 

Figure 3.47 Comparison of phase of downstream impedance of a combustion 

chamber with a thin panel (vent length of 1.5 m or 59 in). 

The magnitude phase of the impedance is compared in Figure 3.44 and Figure 

3.45 for no vent case.  Measured results are compared with simulation with and 

without Element 4 (the thin plate in Table 3.6). The results demonstrate that the 

resonance at 220 Hz is due to the thin plate and will be present regardless of the 

vent length.  Additionally, the good agreement with simulation demonstrates that 

the effect of structural vibration can be incorporated into the plane wave model.  

The magnitude phase of the impedance is compared in Figure 3.46 and Figure 

3.47 for the case with 1.5 m or 59 in long vent pipe.   

3.4 Summary 

The acoustic impedance is the ratio of sound pressure to the volume velocity at a 

given position.  Accordingly, it is directly applicable to characterizing the sound 

pressure at the flame produced by volume velocity perturbations of the flame.  

This chapter presents the measurement technique and simulation procedure for 

determining the acoustic load impedance for boilers, water heaters, and furnace.  
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In the basis of transfer matrix theory, assuming the characteristic dimension of 

the system is less than a wave length, each component of the boiler system is 

analyzed as an acoustic element using four-pole parameters and is used to 

assemble the entire system. In case of complicated system with characteristic 

dimension exceeds the interested wave length, it is not suitable to employ the 

transfer matrix theory to simulate the system. Rather, numerical acoustics, such 

as FEM and BEM, becomes the appropriate analysis tool. By building a finite 

element model of the combustion chamber, the four-pole parameters are 

determined assuming plane wave propagation in the inlet and outlet pipes. In 

order to take burner into account, the transfer impedance of burners is 

characterized first experimentally and then curve-fitted using a nonlinear least 

square algorithm. In addition, the vibration of flexible panel is modeled as a side 

branch which could be incorporated into the impedance model. This chapter 

details the most commonly used duct elements and their transfer matrices.  In 

additions, a transfer matrix element has been developed for combustion 

chambers consisting of thin and flat plates.   

The acoustic impedance of boilers can be determined at room temperatures by 

experimentation.  However, simulation is required to determine the impedance at 

elevated temperatures if the temperature is varied from element to element.  In 

this study, simulation models for three combustion chambers have been 

correlated with measured results. 
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CHAPTER 4 A DESIGN APPROACH FOR PREVENTING AND 

SOLVING COMBUSTION OSCILLATION PROBLEMS 

4.1 Introduction 

The flame in a boiler, furnace, or water heater is a source of sound that is benign 

at most frequencies.  However, it is very likely that the sound produced by the 

flame will excite either an acoustical or structural resonance at certain 

frequencies.  Sound reflected back from the combustion chamber will produce a 

fluctuating mixture flow or equivalence ratio that will feed back onto the flame.  

As the sound power of the flame increases, a tone that is clearly abnormal and 

unacceptable will develop. 

The previous two chapters detail efforts to further develop and validate a 

feedback loop stability model for combustion oscillations.  The model that was 

used was originally developed by Baade [6] over 30 years ago.  In CHAPTER 2, 

Baade’s model is reviewed and enhanced.  The model, as originally formulated, 

assumed that the root cause of the instability was a fluctuating mixture flow.  A 

complementary model was developed for equivalence ratio fluctuations partially 

based on work by Sattelmayer [21].  The model was demonstrated to be useful 

for determining the cause of combustion oscillations for two commercial boilers. 

CHAPTER 3 is a guide for determining the impedance upstream or downstream 

of the flame.  This chapter provides a fairly exhaustive set of equations for 

modeling the individual acoustic elements that are commonly found in 

combustion chambers and intake systems.  Moreover, the chapter details how to 

measure acoustic impedance if the geometry is difficult to model and directed 

readers to the appropriate measurement standards. 

While the aforementioned chapters and other work [6, 15, 17]  communicate the 

theory for the feedback loop stability model and how to implement it, most 

engineers working in the boiler, furnace, or water heater industry neither have the 

acoustic knowhow or time to apply the model to their specific problem.   
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The model is based on knowing the downstream (  ) and upstream (  ) 

impedances and the flame transfer function (  ).  However, most labs do not 

have the necessary equipment or knowhow in house. For example, an 

impedance tube or silencer simulation software is very useful for determining the 

upstream and downstream acoustic impedances but few manufacturers have this 

capability.  Additionally, few, if any, burner manufacturers supply their customers 

with flame transfer functions and most manufacturers do not have access to a rig 

to measure the flame transfer functions. Accordingly, most manufacturers rely on 

solving problems in a trial-and-error fashion or hiring the few acoustical 

consultants who have some experience with thermo-acoustic instabilities. 

This chapter presents steps that can be taken by engineers to prevent and treat 

combustion oscillations.  Though the recommendations are based on having a 

basic understanding of Baade’s low order model, the model need not be fully 

implemented for a particular design to take advantage of the tips presented 

herein.  To my knowledge, the work by Baade and Tomarchio [16, 64] is the only 

one aimed directly at the practicalities of solving combustion oscillation problems.  

4.2 The Design Process and Combustion Oscillations 

The traditional design process consists of the following four steps: 

1.  Clarification of Task 

2.  Conceptual Design 

3.  Detailed Design 

4.  Prototyping 

ISO/TR 11688-1 [65] and Bockhoff [66] discuss what may be done regarding 

noise control during each step of the process.  For the most part, combustion 

oscillation problems are in no way addressed until the prototyping step.  Even 

then, most manufacturers solve the problem in a trail-and-error fashion while not 

understanding the science.  The goal of the current work is to indicate what may 

be accomplished at each step the design process.  Table 4.1 summarizes the 

steps that can be taken during each step of the design process. 
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Table 4.1 Design process for preventing and diagnosing combustion instabilities. 

1 

Clarification of Task 

Log information from prior equipment (temperatures, instability 

frequencies, etc.) 

Obtain flame transfer functions from burner suppliers 

2 

Conceptual Design 

Dampen all structural resonances in the combustion chamber 

Add absorption to the combustion chamber 

Add absorption or sound reflecting elements upstream 

3 

Detailed Design 

Select dimensions for combustion chamber, exhaust, and inlet  

Develop the feedback loop stability model 

Identify and solve possible combustion instability frequencies a priori  

4 

Prototyping 

Perform operational tests varying exhaust and inlet length, air fuel 

ratio, and flow speed. 

Identify running combustion instability frequencies 

Add absorption or structural damping 

Drill holes below the flame in the combustion chamber 

Change the burner port size or air fuel ratio to stretch the flame 

Change the burner geometry for high frequency instabilities 

Change the intake system or gas valve for problems caused by 
equivalent ratio fluctuations 
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4.2.1 Clarification of Task 

If combustion oscillations have occurred with similar products, they are likely to 

occur again.  Hence, it will be very beneficial for management and engineering to 

make a commitment to addressing these issues when a new product is initiated.  

A few steps can be taken early on. 

First, data from past equipment should be recorded.  This would include air fuel 

ratios, flow rates, and temperatures in the combustion chamber and exhaust pipe.  

Also, it would be advantageous to record the instability frequencies of past 

problems that have occurred.    

Secondly, it would be beneficial to require the burner suppliers to measure and 

provide flame transfer functions. The measured flame transfer function can then 

be integrated into the feedback loop model in later stages of the design process. 

4.2.2 Conceptual Design 

In the conceptual design step, design rules can be applied to dampen and 

minimize the number of resonances in the combustion chamber.  Resonances 

are inescapable in any enclosed space, but many strong resonances can be 

avoided.  A few design rules are listed below. 

Dampen all Structural Resonances in the Combustion Chamber 

It has been shown that structural resonances can sometimes lead to combustion 

oscillations [34, 67].  In CHAPTER 3, we showed that a structural resonance led 

to a peak at a single frequency in the downstream impedance.  Figure 4.1  shows 

the measured downstream impedance for a combustion chamber with and 

without damping added to a panel.  Notice that the impedance is much higher at 

220 Hz if the panel is not damped.  Accordingly, it is recommended that each 

panel in the combustion chamber have sufficient damping.  The frequency 

response function for each panel can be measured by hitting each panel with an 

impact hammer and measuring the acceleration, and the damping for each mode 

can be determined [55]. 
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Figure 4.1 Measured downstream impedance for a combustion chamber with and 

without damping added to a panel. 

After a prototype is in place, each panel can be tapped with a hammer.  If a tap 

causes a panel to ring, it is probable that a combustion instability will occur at the 

ringing frequency. 

Adding Absorption into the Combustion Chamber 

Fiber absorption can be added to dampen the acoustic modes inside of the 

combustion chamber.  Adding absorption or damping will decrease or increase 

the impedance at a resonance or anti-resonance respectively. 

Adding absorption (fiber in most cases) can be effective in two ways.  First, the 

acoustic losses will be much higher especially above 200 Hz if sound absorption 

is added to the combustion chamber.  However, sound absorption is generally 

not effective at low frequencies. 
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For example, a schematic of a hypothetical combustion chamber and exhaust is 

shown in Figure 4.2 and key dimensions are provided in Table 4.2.  The size and 

topology of the combustion chamber are similar to those examined in Section 

3.3.6. Figure 4.3 shows the effect of adding 2 inch (5 cm) fiber on the 

downstream impedance (   ) of the combustion chamber.  In the plot, the 

impedance (  ) is normalized by multiplying by      where   is the cross-

sectional area,   is the mass density of the gas, and   is the speed of sound.  

These results were found using plane wave simulation [34, 28].  It can be seen 

that the downstream impedance is much lower at the resonances of the 

combustion chamber which will decrease the likelihood of an instability.  Another 

benefit is that fiber can isolate a panel from the combustion chamber airspace 

preventing a structural resonance from leading to a combustion instability. 

 

Figure 4.2 Hypothetical combustion chamber with exhaust pipe in lower part. 

 

 

Lc Le Lo 

dt 

dc 

ZD
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Table 4.2 Dimensions of hypothetical combustion chamber and exhaust. 

Variables cm in Description 

Lc 100 39.4 Length of chamber 

Le 50 19.7 Length exhaust pipe in chamber 

Lo 100 39.4 Length of outlet 

dc 60 23.6 Diameter of chamber 

dt 10 3.9 Diameter of exhaust 
 

 

 

Figure 4.3 Normalized downstream impedance amplitude for the hypothetical 

combustion chamber 

Increase the Upstream Impedance by Adding Damping 
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 |   |  |
  

     
| (4.1) 

From Equation (4.1), it can be seen that combustion oscillations are more likely if 

the upstream impedance (  ) is (1) small or (2) is out of phase with the 

downstream impedance (  ).  In the first case, the upstream impedance will be 

small if there is an anti-resonance in the inlet system.  This can be avoided by 

adding absorption to the inlet system.  Figure 4.4 shows a hypothetical inlet 

system with dimensions in Table 4.3.  If a lined expansion chamber is added 

(Figure 4.4), the upstream impedance will change as shown in Figure 4.5.  Notice 

that the nadirs of the impedance have all increased. 

However, instabilities are also likely to occur if the downstream and upstream 

impedances are out of phase and equal in magnitude.  In that case, the 

denominator in Equation (4.1) will approach zero.  This possibility can be 

addressed easier after dimensions have been settled on in the next stage.  

 

Figure 4.4 Schematic showing a hypothetical intake system with burner on the 

right.  In the low figure, an expansion chamber with fiber lining is shown. 
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Table 4.3 Dimensions of hypothetical intake system. 

Variables cm in Description 

L1 20 7.9 Length from inlet to expansion chamber 

L2 30 11.8 Expansion chamber with fiber 

L3 100 39.4 Length from expansion chamber to burner 

D1 5 2.0 Diameter of the intake 

D2 10 3.9 Diameter of the chamber 

 

 

 

Figure 4.5 Normalized upstream impedance showing the effect of adding a lined 

expansion chamber. 
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4.2.3 Detailed Design 

During the detailed design stage, the size and arrangement of the combustion 

chamber and intake system will be determined.  With this information, the 

feedback loop stability model can be applied.  The details for the model are 

presented in CHAPTER 2.  Additionally, commercial software [44, 68, 69] is 

available for determining the upstream and downstream impedance.  

Commercial software is recommended because there are specialized elements 

for lined ducts and perforated elements. 

Figure 4.6 and Figure 4.7 show results for the combustion chamber and intake 

system shown in Figure 4.2 and Figure 4.3 respectively.  Published results are 

used for the flame transfer function [16].  If the magnitude of     exceeds      

and the phases match, then a combustion oscillation may occur.  With the model 

in place, potential instability frequencies can be identified a priori. 

Figure 4.6 and Figure 4.7show the magnitude and phase plots, respectively, for 

the feedback loop stability model.  Prior to treatments, the model suggests that 

combustion oscillations are likely at around 310 Hz.  Moreover, the model 

indicates that an instability is on the threshold of occurring at 220 Hz.  Treating 

the downstream, by adding fiber to the combustion chamber, will decrease the 

likelihood of an oscillation occurring at 310 Hz.  However, it will have little benefit 

at 220 Hz.  Adding the expansion chamber with fiber (Figure 4.4) will further 

minimize the possibility of a combustion oscillation.   

It is best to reduce the possibility of problems before building a prototype as 

much as possible.  However, a positive check does not necessarily mean that the 

problem will arise on the actual unit.  Accordingly, it is not necessary to treat 

each potential problem at this juncture. 
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Figure 4.6 loop stability plot showing magnitude of      and     .   

 

Figure 4.7 loop stability plot showing phase of      and     .   
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4.2.4 Prototyping 

After a prototype is in place, the boiler, furnace, or water heater should be 

evaluated at for a number of different intake and vent lengths.  Additionally, the 

equipment should be tested for a number of different air fuel ratios and flow 

speeds.  One way to change the flow rate while not adjusting the acoustics is to 

place masking tape over the intake or the exit.  The tape is too thin and light to 

impact the acoustics appreciably, but the tape will restrict the flow. 

Once testing is completed, the resulting combustion instabilities can be 

correlated with predictions from the detailed design stage (4.2.3).  If instabilities 

correlate with frequencies from the model, the following different solution options 

can be considered.   

1. There may be opportune locations to add absorption to either the combustion 

chamber or the intake system. 

2. Baade and Tomarchio [16, 64] suggested stretching the flame.  “The longer 

the flame, the longer it takes before the heat release of the flame responds to a 

change in the mixture flow through the burner ports. This time delay amounts to a 

phase shift between pressure and heat release.”  They noted that this could be 

accomplished in two ways.  The air fuel ratio can be changed or the burner port 

size can be increased. 

3. Putnam [28] noted that drilling a hole in front of the combustion chamber will 

sometimes prevent oscillations.  Indeed, this is one of the tricks that Baade and 

Tomachio [16, 64] suggested as well.  Putnam, quoting the trade literature, 

recommended drilling a hole (or holes) in the in the combustion chamber just 

below the flame.  Baade [64] showed that adding holes increases the frequency 

of the downstream resonances.  Additionally, it slightly reduces the peak 

amplitude.  This approach is likely to be more advantageous if an instability is on 

the threshold of occurring. 
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4. At high frequencies (above 500 Hz), simulation results showed that small 

changes to the burner geometry could drastically alter the upstream impedance 

[39].  Accordingly, changing the length from the base of the burner to the burner 

port surface can solve problems. 

It is possible that a combustion oscillation will occur that the aforementioned 

feedback loop stability model did not predict.  In that case, first verify that a 

structural resonance is not causing the problem.  This can be accomplished by 

tapping panels with an impact hammer as noted earlier. 

At low frequencies, equivalence ratio fluctuations can lead to instabilities as 

indicated in CHAPTER 2.  Though this is less common, this problem can 

sometimes be solved by changing the gas valve or by moving the gas valve 

further away from the burner.  In CHAPTER 2, a similar feedback loop stability 

model that can be used for diagnosing this particular mechanism is detailed.  

4.3 Summary and Conclusions 

To my knowledge, this is the first attempt to detail the prevention, diagnosis, and 

treatment of combustion oscillations throughout the design process.  That being 

the case, it should be regarded as a starting point for further work.  Moreover, it 

should be understood that combustion oscillations are sometimes difficult to 

solve.  In some cases, there are connections between the upstream and 

downstream portions of the equipment.  In that case, Baade’s model is not 

directly applicable.  Moreover, there are sometimes multiple paths for the intake 

air. 

Additionally, the presence of an intake fan is difficult to model.  It is also possible 

that a flow instability leading to an aero-acoustic source could be the primary 

cause in some situations.  Accordingly, it is probable that the recommendations 

presented herein will need to be revised and expanded on in the coming years. 
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CHAPTER 5 ANALYTICAL AND BEM SOLUTIONS OF BAR 

SILENCERS 

5.1 Introduction 

A silencer is a device used in a flow duct to prevent sound from reaching the 

openings of the duct and radiating as far-field noise [70]. Silencers are necessary 

devices to attenuate noise in the intake or exhaust system of internal combustion 

engines, compressors and pumps as well as heating, ventilation and air-

conditioning systems (HVAC) [70, 28]. Basically, there are two types: reactive 

and dissipative. Reactive silencers take advantage of sound reflections due to 

acoustic impedance mismatch. Mismatches occur at sudden geometry changes 

(area expansion, contraction and abrupt openings). Dissipative silencers 

attenuate sound using sound absorbing materials and convert the sound energy 

into heat. Common reactive acoustic elements include Helmholtz resonators, 

quarter-wave tube side branches and simple expansion chambers. In dissipative 

silencers, sound absorbing materials such as foams, fibrous materials, and 

recently, micro-perforated panels or micro-slit panels are used [51, 71, 72]. 

Reactive silencers are used to attenuate sound at discrete tones, especially at 

low-frequencies where dissipative silencers are designed to mitigate high-

frequency broadband noise [73].  

Dissipative silencers, or absorptive silencers, have the advantages of broadband 

sound attenuation in many applications such as locomotive or automotive 

exhaust systems. There are a number of different designs and types of 

dissipative silencers.  One common type is the lined-duct where sound absorbing 

material is placed around the duct circumference. Another prevailing type is a 

splitter design where the sound absorbing material is placed centrally and is in 

the longitudinal direction of the duct. For instance, parallel-baffle silencers are a 

commonly used splitter design. The sound attenuation of such a silencer is 

proportional to the perimeter-to-area ratio and length [43]. There have been a 

number of analytical, numerical and experimental studies on lined-ducts and 

splitter silencers [74, 75, 76, 77, 78, 79].  
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In 1983, Nilsson and Söderqvist proposed the idea of bar silencers and claimed 

that an array of square bars made of sound absorbing materials have certain 

advantages over the similar splitter configurations [29]. Bar silencers are 

comprised of an array of rectangular or round bars made of sound absorbing 

materials packed in a rectangular lattice arrangement within a rigid-walled duct.   

To protect the material from being blown away by the exhaust gas, each bar is 

covered by a perforated facing sheet.  Bar silencers are used in a noise 

suppression test cell built by Hedemora Industriakustic for the testing gas 

turbines [80]. 

5.2 Metrics for Sound Attenuation 

The most commonly used metrics for evaluating the sound attenuation of 

silencers are insertion loss (IL), transmission loss (TL) and noise reduction (NR) 

[70, 73, 28, 43]. IL is the decrease in sound pressure or sound intensity in dB 

when an attenuating element is inserted into the path between source and 

receiver. TL is the difference in sound power level in dB between incident and 

transmitted power. NR is the difference in sound pressure level in dB measured 

upstream and downstream of a sound-attenuating element. The standard 

procedures for transmission loss or insertion loss measurement have been 

established [61, 81, 82]. In this work, TL is used as the metric. Tao and Seybert 

[83] presented a good review on the techniques for measuring silencer 

transmission loss including the two-load method [59] and the two-source method 

[60]. 

5.3 Determination of TL using numerical simulation 

Numerical models have been widely employed to investigate the acoustic 

performance of silencers. Astley and Cummings [74], Cummings and Astley [84] 

and Herrin et al. [85] applied the finite element method (FEM) to study lined 

silencers such as bar silencers. Wu and his co-workers [86, 87, 88, 89] 

developed a direct-mixed body boundary element method (BEM) to study various 

reactive and packed silencers. Glav and Åbom [90], and Mimani and Munjal [91] 

analyzed silencer systems using transfer matrix theory. Selamet et al. [75] used a 
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pressure and velocity matching technique to compute the transmission loss of a 

perforated dissipative silencer.  

Cummings and Astley [84] proposed a finite element formulation to evaluate the 

acoustic performance of square bar silencers. They used an isolated single 

module in their model, assuming the axial attenuation is the same within each 

cell of such an array and therefore the acoustic performance of the silencer as a 

whole can be deduced from the attenuation in a single module [84]. They 

compared the prediction to the measurement with generally reasonable 

agreement.  

The direct-mixed body boundary element method (BEM) proposed by Wu and his 

co-workers [35, 87, 88] is another candidate numerical method for bar silencers. 

It is well known that BEM has an advantage over FEM since only the boundary 

surface must be modeled. 

Unlike the traditional BEM, which is limited to a single homogeneous medium, 

the direct mixed-body BEM can handle multiple bulk-reacting materials along 

with a baseline medium, i.e. air. All this can be accomplished in a single BEM 

model without having to resort to the tedious multi-domain approach. In addition, 

the substructuring technique [88] is ideally suited to bar silencer analysis 

because the cross-sectional geometry does not change along the length of a bar 

silencer, and the impedance matrix of a small substructure cut from the middle 

section can be repeatedly used in the BEM analysis.  This allows the BEM to be 

applied to a bar silencer with little computational cost for additional length.    

5.4 Single Cell Module Analysis 

Due to the large dimensions, it is not always possible to obtain the transmission 

loss data experimentally for bar silencers. Alternatively, an analytical solution can 

be utilized to serve as a validation tool for numerical solutions. Cummings and 

Astley noted that an analytical solution for square bar silencers is difficult to 

obtain [84]. Instead, a simplified circular geometry is used to derive the analytical 

solution for simplicity.  The simplified geometry involves a round bar housed 

inside a rigid cylindrical chamber so that axisymmetric cylindrical coordinates can 
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be used.  Selamet et al. [75] used a similar analytical technique for lined ducts.  

The sound pressure and particle velocity are explicitly expressed by modal 

expansion, which can then be used to compute the transmission loss (TL) by 

applying a pressure and velocity matching technique [75, 78].  Although a rigid 

cylindrical chamber with a cylindrical bar inside is not representative of real-world 

lattices, the analytical solution can serve as a comparison tool to validate a 

numerical method.  

In addition, it is computationally intensive and time-consuming to model the entire 

array numerically.  To simplify the problem, a small representative cell module is 

isolated from the lattice for analysis purposes.  If a uniform acoustic field across 

the inlet plane is assumed, the axial attenuation is then the same within each cell 

and therefore the acoustic performance of the bar silencer can be deduced from 

the attenuation in a single module [84].  As a result, there should be no 

appreciable difference between any two cells.  This assumption applies to both 

the analytical and the numerical models. 

 

Figure 5.1 An array of square bars; dotted lines enclose a representative cell. 
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Symmetry is selected so that cell modules can be viewed as a building block for 

the entire lattice.   The rigid-wall boundary condition is then applied to the 

boundary of the cell module.  For the square-bar silencer array shown in Figure 

5.1, the smallest building block is a rectangular duct with a single bar inside, as 

shown in Figure 5.2.  The dotted lines in Figure 5.2  represent the rigid wall 

boundary of the isolated module.  For round bars, depending on how the round 

bars are arranged, the smallest building block could be isolated in different ways, 

as demonstrated by the dotted lines in Figure 5.3 and Figure 5.4. 

 

Figure 5.2 An isolated cell module for analysis. 

Normally, the sound absorbing material is covered by a perforated facing sheet 

to protect the material from being blown away by the exhaust gas.  Both ends of 

the bar are covered by a rigid end cap.  For modeling purposes, it is assumed 

that the two end caps are flat and the poles that hold the bar silencers together 

are ignored.    Figure 5.5 shows the side view of an isolated cell module with a 

round bar inside.  The cell module is divided into three different sections along its 

length: domain   is the inlet duct, domain   is the main duct with an absorbing 

bar at the center, and domain   is the outlet duct.       
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Figure 5.3 One possible arrangement of round bars; dotted lines enclose a 

representative cell. 

 

Figure 5.4 Another possible arrangement of round bars; dotted lines enclose a 

representative cell. 
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Even for a single cell module, the cross sectional area of the inlet and outlet 

could still be quite large and the plane wave cut-off frequency will be exceeded in 

the analysis.  The TL computation and even the TL definition itself above the cut-

off frequency are not well established yet.  Consequently, two different 

approaches are used to compute the TL, one for the BEM and the other for the 

analytical solution.  In the BEM, the TL is still computed from the traditional four-

pole parameters as usual.  However, the four-pole matrix is defined as the matrix 

that relates the “averaged sound fields” at the inlet to the “averaged sound fields” 

at the outlet.  Thus, a simple average is taken to average out the sound fields at 

the inlet and at the outlet, respectively, so that the conventional four-pole matrix 

can still be defined above the cut-off frequency.   

 

Figure 5.5 Side view of an isolated round bar. 

5.5 BEM Solution of A Square Bar Silencer 

As mentioned earlier, the analytical solution for a square bar silencer is 

challenging.  In this work, the BEM is compared to an existing test case 

described by Cummings and Astley [84].  The test case is a 0.4m 0.4m 2m 

rectangular bar inside a 0.6m 0.6m rigid duct.  The bar is made of an anisotropic 

sound absorbing material with a flow resistivity 19,600 Rayl/m parallel to the 

direction of the fiber and 31,500 Rayl/m normal to the fiber direction.   

Unfortunately, the BEM approach used can only deal with isotropic materials, so 

only the longitudinal flow resistivity 19,600 Rayl/m  is used in the model.  The bar 
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is covered by a perforated facing sheet with 33% porosity.   In the direct mixed-

body BEM, the perforated facing sheet is modeled by a special element type 

called “IP”, which represents a perforated interface between air and a bulk-

reacting material.  The two end caps are modeled by another special element 

type called “ATB”, which represents an air-thin plate-bulk material interface.    

Figure 5.6 compares the BEM result to that of Cumming and Astley [84].  The 

BEM result compares fairly well to the FEM and experimental results even 

though the BEM only uses the longitudinal flow resistivity in all directions.  The 

BEM calculation is performed using MAP [92], an in-house BEM program 

developed at University of Kentucky. 

 

Figure 5.6 Comparison of TL results on one Cummings and Astley’s test case; 

solid read - BEM result; solid black – FEM result; circles – measured data; the 

other two are FEM results from an equivalent lined duct and an equivalent splitter 

silencer, respectively. 

5.6 Analytical Solution of a Simplified Round Bar Silencer 

An analytical solution on a simplified geometry was used to validate the 

numerical method, which can be used for more complex geometries.  It is difficult 

to develop analytical solutions for the square bar (Figure 5.1) and round bar 
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configurations (Figure 5.3 or Figure 5.4).  Accordingly, the hypothetical and 

simplified round bar silencer as shown in Figure 5.7 was used for the purpose of 

deriving an analytical solution as a validation tool for numerical solutions.   The 

simplified geometry in Figure 5.7 cannot be used as a building block for any real-

world design, but it will simplify the analysis since axisymmetric cylindrical 

coordinates can be used.     

 

Figure 5.7 A hypothetical round bar silencer. 

5.6.1 Helmholtz Equation in Cylindrical Coordinates 

The Helmholtz equation in general form can be expressed as 

           (5.1) 

In the cylindrical coordinate system  (     ), the Laplacian operator becomes 
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If axisymmetry is assumed, then the Laplacian operator is independent of angle 

( ) and becomes 
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In order to obtain the solution to the Helmholtz equation in cylindrical coordinate, 

the technique of separation of variables can be employed to simplify the problem. 

Using separation of variables method, the solution can be written as a product of 

functions of   and   and expressed as  

  (   )   ( ) ( ) (5.4) 

Substituting the previous expression into Helmholtz equation, one obtains 
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The solution to Equation (5.6) is  

  ( )      (   )      (   ) (5.8) 

where    and    are amplitude coefficients,    the Bessel function of the first kind 

of order zero and    the Bessel function of the second kind of order zero,    is 

the radial wavenumber. 

The solution to Equation (5.7) is 

  ( )     
         

      (5.9) 

where    and    are amplitude coefficients,    is the longitudinal wavenumber. 
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Therefore, the general solution to Helmholtz equation in cylindrical coordinates is  

  (   )  ∑(     (    )       (    ))(                     )

 

   

 (5.10) 

where subscript   denotes the mode number. 

5.6.2 Modal Expansion 

The analytical solution is based on the same approach used for packed silencers 

in References [75, 78].  The primary difference is that the positions of air and the 

bulk-reacting material are switched.  Instead of packing the bulk-reacting material 

on the chamber wall, the absorption is positioned at the center.  The side view of 

the round bar silencer is shown in Figure 5.5. 

The solution to the Helmholtz equation for each domain is obtained by modal 

expansion.  In domain   (the inlet duct), the sound pressure is  

   (   )  ∑(  
            

         )   ( )

 

   

 (5.11) 

where the subscripts  ,   and   denote domain  , axial direction and mode 

number, respectively.   
  and   

  are the modal amplitudes of the right-travelling 

and reflecting waves respectively.      are the axial wavenumbers.     ( ) are 

the eigenfunctions of the inlet duct defined as 

    ( )     (     ) (5.12) 

where       is the radial wavenumber and can be obtained by applying the rigid-

wall boundary condition of 

   
 (     )    (5.13) 

The     axial wavenumber is 
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where       ⁄  is the wavenumber in air,   the frequency and   the speed of 

sound. 

Euler’s equation relates the sound pressure to the particle velocity and can be 

expressed as 
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Based upon Euler's equation, the axial particle velocity in domain   is 
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where   is the air density and   is the angular frequency. 

In domain   where there are two media, the wavenumbers in the axial direction 

of both media (the sound absorbing material and air) are assumed to be identical.  

The axial wavenumbers can be solved by an iterative scheme (Section 5.6.3). 

The radial wavenumbers in both media are related to the wavenumbers   (for air) 

and    (for the sound absorbing material), and the axial wavenumbers      by 
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       (5.18) 

The sound pressure for each medium in domain   is 
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 (5.19) 
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where the subscript   denotes domain  .    
  and   

  are modal amplitudes of 

the right-travelling and reflecting waves, respectively.      are the axial 

wavenumbers.     ( ) are the eigenfunctions in the radial direction.  Since there 

are two media, the sound pressure can be written in different regions 

   (   )  {
  

 (   )     
  

 (   )        
 (5.20) 

with the eigenfunction 

     ( )  {
    

 
( )     

    
 ( )        

 (5.21) 

where superscripts   and   denote the sound absorbing material and 

surrounding airway, respectively. 

From the general solution to the Helmholtz equation in cylindrical coordinates, 

the eigenfunction  

     ( )  {
    

 ( )      (    
  )      (    

  )     

    
 ( )      (     )      (     )        

 (5.22) 

can be obtained. 

In order to express the eigenfunction, in a more concise form, four boundary 

conditions are used: 

(1) At     the sound pressure must be finite which excludes    in     
 

 

      (5.23) 

(2) At      the particle velocity is zero due to the rigid wall boundary condition 

    (  )    (5.24) 

(3) At      the particle velocity is continuous  
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 (  )     

 (  ) (5.25) 

(4)The transfer impedance of the perforated facing sheet is defined at      

     
 (  )      

 (  )        
 (  ) (5.26) 

By assuming      and solving the aforementioned four boundary conditions, 

the eigenfunction can be written as 
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with 
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where    is the complex density of the sound absorbing material and can be 

calculated by an empirical formula.   is the normalized transfer impedance of the 

perforated facing sheet.  A simple empirical formula [93] for transfer impedance 

of a perforate is used and is expressed as  

   (                   )   (5.29) 

where   is frequency and   is the porosity.   

The characteristic impedance    and complex wavenumber    of the fibrous 

material, from which the complex density    and speed of sound    can be 

derived, can be determined by the empirical model proposed by Delany and 

Bazley [94] and are expressed as 

      (                             ) (5.30) 

      (                            ) (5.31) 
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where   denotes a dimensionless parameter in terms of density of air  , 

frequency   and the flow resistivity of the material  . 

   
  

 
 (5.32) 

   is the characteristic impedance of air and    the wavenumber in the air. 

The axial particle velocity for each medium in domain   is 
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where the radial modal eigenfunctions of the velocity are  
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Moreover, the characteristic equation, which will be used to calculate the 

longitudinal wavenumber (    )  in Section 5.6.3, is  

 

      

     
 (

  (    
   )

  (    
   )

 
       

   (    
   )

    
) 

 
  (      )  (      )    (      )  (      )

  (      )  (      )    (      )  (      )
 

(5.35) 

The sound pressure in domain   is 

   (   )  ∑(  
        (   )    
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 (5.36) 

where the subscript   indicates domain  ,   
  and   

  are modal amplitudes of the 

right-travelling and reflecting waves respectively.      are the axial wavenumbers. 

   ( ) are the eigenfunctions of domain   and can be written as 
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    ( )     (     ) (5.37) 

The axial particle velocity in domain   is 
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5.6.3 Iterative Scheme for Solving       

Rearranging the characteristic equation (5.35), the axial wavenumber (    ) in 

domain   can be obtained by iteratively solving the equation 

  (          )          (5.39) 

where 
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Since the derivative of  (       
   

) is not readily obtained, the secant method 

[95], replacing the derivative evaluation in Newton’s method with a finite 

difference approximation based on the two most recent iterates, is better suited. 

The solutions of the root of Equation (5.39) provided an initial guess for         

and the loop 
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 (5.42) 

is used, where                is the secant defined as 
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 (5.43) 
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The loop will be terminated as the difference between the most recent iterates 

approaches a designated small number. 

Selamet et al. [75] pointed out that the selection of a suitable initial estimate for 

the desired axial wavenumber        is critical in this approach. Following 

Selamet et al. [75], the axial wavenumber      is calculated using the secant 

method. 

5.6.4 Pressure and Velocity Continuity Conditions 

The pressure and velocity are continuous in the annular part (air pathway) at the 

interface between domains   and  , and at the interface between domains   and 

  as well.  At the two rigid end caps, sound pressure will not be continuous but 

the particle velocity will be zero. These interface conditions are summarized as 

follows: 
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Expressing the above interface conditions in the modal expansion leads to 
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5.6.5 Transmission Loss  

Below the plane wave cut-off frequency, only plane wave modes propagate 

through the silencer. The conventional definition of the TL is the difference 

between the incident and transmitted sound power embedded in the plane wave 

mode. However, once the frequency exceeds the plane wave cut-off frequency, 

the higher order modes [96] start propagating as well so that the power conveyed 

by these higher order modes must be taken into account when evaluating TL. 

The TL above the plane wave cut-off frequency is defined as the difference 

between the summation of the incident and transmitted modal sound powers. 

 

Figure 5.8 Schematic showing a silencer. 

Usually, the inlet and outlet ducts of an arbitrary silencer system are cylindrical 

tubes as shown in Figure 5.8. Hence, only radial modes are assumed to be 
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excited. Applying modal expansion series theory (Equation (5.11)), the sound 

wave field in the inlet and outlet tubes can be expressed conveniently. 

The incident sound wave can be expressed as 

   (   )  ∑    
            ( )

 

   
 (5.52) 

where subscript   represents the incident wave,   the mode number and   the 

axial direction.    
  is the modal amplitude,      the wavenumber and    ( ) the 

eigenfunction which equals to  

    ( )    (     ) (5.53) 

where      is the radial wavenumber and    the Bessel function of the first kind, 

order zero. 

The particle velocity of the incident wave can be written as 
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where   denotes the density of air and   the angular frequency. 

The intensity of the incident wave then can be calculated 

    
 

 
  (    

 ) (5.55) 

where   denotes the conjugant and   ( ) denotes the real part of a complex 

number. 

With the intensity available, the sound power can be determined by integrating 

the intensity over the cross-sectional area of the inlet 

    ∫      
  

 (5.56) 

where    is the cross-sectional area of the inlet. 
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Since the eigenfunctions are orthogonal, Equation (5.56) can be simplified as 
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where   is the speed of sound in air,   the wavenumber and    the radius of the 

inlet.  

In a similar way, the sound power of the transmitted wave can be written as 
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where    is the cross-sectional area of the outlet,      the wavenumber,    
  the 

modal amplitude,    (  ) the eigenfunction and    the radius of the outlet. 

It should be noted that in order to evaluate the TL, a unit planar incident wave 

can be assumed and therefore Equation (5.58) can be reduce as 

    
  

   
 (5.59) 

However, in the outlet pipe, when the     higher order mode starts propagating 

in the inlet, the wavenumber                 .  Based upon the definition of 

transmission loss, the transmission loss is the difference between the incident 

and transmitted sound power. 

           

  

  
 (5.60) 

5.6.6 Prediction of Transmission Loss  

To solve the system of equations, the modal expansion, which is an infinite 

series, must be truncated to an appropriate finite series (a total of   modes). In 

addition, the incident wave is assumed planar and   
  is set to a unity.  The 

higher-order incident waves   
  (   )  are assumed zero.  An anechoic 

termination is imposed at the outlet, which eliminates all   
 .  Therefore, a total of 
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   coefficients (   
 ,   

 ,   
  and   

 ) need to be solved, which requires 

   equations based on the interface conditions. Discretizing the cross-sectional 

area into   equal subareas (    (   )             ⁄ ) and performing 

integration of the sound pressure and particle velocity over the   discretized 

subareas at the two interface locations,     equations can be established as  
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By solving the above    equations, the    unknowns (  
 ,   

 ,   
  and   

 ) are 

determined and finally the transmission loss can be evaluated by Equation (5.60) 

5.7 BEM solution of a Simplified Round Bar Silencer with Conical 

Adapters 

Another approach to estimate the TL above the cut-off frequency is to reduce the 

non-planar wave phenomenon to a planar wave problem. This idea originates 

from the TL measurement when a geometry mismatch between the test object 

and the test rig occurs. To measure the TL of a silencer whose inlet and/or outlet 

tube are larger than the impedance tube, adapters, normally conical adapters, 

have to be designed and built up for the connection as shown in Figure 5.9.  

 

Figure 5.9 A round bar silencer with a pair of conical adapters. 

Since the TL of a pair of conical adapters is fairly low at higher frequencies, it is 

practical to estimate the TL of the silencer using the TL of the entire system in 

the high frequency range. 

5.8 Test Case and Results 

With reference to Figure 5.5, the dimensions of the test case are   =0.254m, 

  =0.342m,  =6m, and  =0.2m.   is not used in the analytical solution but is 

needed for the BEM model.  The flow resistivity of the sound absorbing material 

is 16000 Rayl/m and the porosity of the perforate facing sheet is 10%. The cut-off 

frequency of the duct is 611 Hz.  In the analytical solution, the modal expansion 

series is truncated at  =9.  In the BEM, a uniform velocity distribution is applied 

at the inlet and at the outlet to obtain the impedance matrix, which is then 

converted into the four-pole matrix [56].  
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The dimensions of the adapters are       m,       m and       m. Figure 

5.10 shows the TL comparison between the analytical solutions and the BEM 

solutions.  The analytical solution and the BEM without adapter compare well 

below the cut-off frequency. The BEM model with adapters results in higher TL in 

the plane wave range. Above the plane wave cut-off frequency, all three models 

behave similarly. The analytical solution predicts higher TL at the higher 

frequencies. The BEM model with adapters produces a smoother curve than the 

one without adapters. In general, these three methods provide acceptable 

agreement with each other and suggest that the simulation approach proposed is 

suitable for determining TL above the plane wave cut-off frequency. 

 

Figure 5.10 TL comparison of a bar silencer above plane wave range. 

5.9 Parametric Studies 

A parametric study is conducted to assess the effects of different parameters, 

such as flow resistivity, perforate porosity, length of bar and cross-sectional area 

ratio. The analytical approach is used in the examples which follow. The default 
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case is the test case used in Section 5.8. While investigating a specific 

parameter, the others are fixed according to the default case. 

5.9.1 Effect of Flow Resistivity 

Analytical TL results for the bar silencer with different flow resistivities are 

presented in Figure 5.11. The flow resistivities are 2000, 4000, 8000, 16000 and 

20000 Rayls/m. As shown in the plot, TL improves as the flow resistivity 

increases at higher frequencies (above 800Hz) but reduces the attenuation at 

lower frequencies (below 800Hz). 

 

Figure 5.11 TL results for bar silencer with different flow resistivities. 

5.9.2 Effect of Perforate Porosity 

Perforate porosities of 1%, 5%, 10%, 20% and 30% are considered. The porosity 

impacts the result significantly as shown in Figure 5.12. With 1% opening area, 
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functionality of the enclosed fibrous material. A larger porosity greatly improves 

the acoustic performance of the bar silencer. Above 500 Hz, both 20% and 30% 

are almost acoustically transparent, and their TL’s are similar. 

 

Figure 5.12 TL results for bar silencer with different porosity. 

5.9.3 Effect of Length of Bars 

The amount of sound absorbing material plays a critical role in TL at higher 

frequencies. It is of interest to investigate the effect of length of bar on TL 

(  =4,5,6,7,8m).  

As shown in Figure 5.13, longer bars produce better TL as expected, especially 

in the frequency range of 500 – 1500Hz. However, as shown Figure 5.14, the 

acoustic attenuation has a linear relation to the length of bars, i.e. attenuation of 

a unit length of bars is constant. 
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Figure 5.13 TL results for bar silencer with different length of bars. 

 

Figure 5.14 TL normalized with respect to the length of bars. 
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5.9.4 Effect of Cross-Sectional Area Ratio 

The last parameter under investigation is percentage of fibrous material in the 

sense of cross-sectional area ratio as shown in Figure 5.7. The ratio can be 

expressed as 

 
  

  

  
 (5.69) 

where    and    are the cross-sectional area of the single bar and the entire cell 

module respectively. 

   is fixed while    varied (   =16,15,13.5,13,12.5 in) to obtain different cross-

sectional area ratios (  =39%,44%,55%,59%,64%). 

 

Figure 5.15 TL results for bar silencer with different cross-sectional area ratios. 

0

50

100

150

200

250

0 500 1000 1500 2000 2500

T
ra

n
s
m

is
s
io

n
 L

o
s
s
 (

d
B

) 

Frequency (Hz) 

39%

44%

55%

59%

64%



135 
 

Similar to the effect of varying the length of bars, a larger cross-sectional area 

ratio provides greater sound attenuation especially above 500Hz. 

5.10 Summary 

Bar silencers have broadband sound attenuation as a result of sound absorbing 

materials embedded. A single cell module is used for the sound attenuation 

analyses of bar silencers using the direct mixed-body BEM and analytical 

solutions. It is demonstrated that the direct-mixed body boundary element 

method is feasible to model bar silencers. An analytical solution based on the 

modal expansion theory and pressure and velocity matching technique is used to 

serve as a comparison tool. 

Due to the large dimension of bar silencers, higher order modes start 

propagating beyond the plane wave cut-off frequency. The sound waves in the 

inlet and outlet pipes are no longer planar. Two approaches using BEM are 

developed to consider the non-planar wave propagation: 1) averaging the sound 

pressure and particle velocity at the inlet and outlet pipes; 2) adding a pair of 

conical adapters to increase the cut-off frequency of the inlet and outlet pipes. 

The analytical solution calculates the incident and transmitted powers including 

all the propagating modes. 

In addition, a parametric study including the effects of flow resistivity, perforate 

porosity, length of bars and cross-sectional area ratio is conducted. 

  



136 
 

CHAPTER 6 USING THE RECIPROCAL WORK IDENTITY TO 

EVALUATE THE TRANSMISSION LOSS OF SILENCERS  

6.1 Introduction 

Silencers, both reactive and dissipative types, are devices to attenuate exhaust 

noise in various environments. The reactive silencers take advantage of 

impedance mismatch due to geometry changes, for instance, area contraction 

and expansion.  The dissipative silencers, on the other hand, use sound 

absorbing materials to dissipate the sound energy.  In practice, most silencers 

are a combination of the two types since the reactive type is to abate sound 

consisting of discrete tones, especially in the low frequency range, while the 

dissipative type is best suited to addressing high frequency broadband noise [73]. 

The use of a silencer is prompted by the need to reduce the radiated noise of 

source but, in most applications, the final selection is based on trade-offs 

between the predicted acoustical performance, back pressure, mechanical 

strength, volume/weight ratio, and cost [43].  To evaluate the acoustical 

performance of silencers, basic criteria are required to provide quantitative 

description. The most frequently used performance metrics are in terms of 

insertion loss (IL), transmission loss (TL) and noise reduction (NR) [28]. The 

transmission loss is a good performance measure of silencers since it represents 

the inherent capability of sound attenuation of silencers if we assume no 

reflection from the source and the termination. The TL is defined as the 

difference in dB between the incident sound power at the upstream     and the 

transmitted sound power at the downstream      [28]: 

            (6.1) 

Several analytical approaches have been used to determine the attenuation of 

silencers. Certainly, the most ubiquitous technique is the transfer matrix 

approach detailed by Munjal in his classic text [28]. Other approaches have been 

developed that are ideal for analyzing complex systems of interconnecting ducts. 

For instance, Glav and Åbom [90] proposed a general formalism for analyzing 
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acoustic 2-port network systems using a scattering matrix approach.  Kar and 

Munjal [97] posed an alternative matrix approach. 

Numerical simulation is also commonly used to evaluate the performance of 

silencers.  Commonly used approaches include acoustic finite [98, 99, 100, 101, 

102] and boundary [56, 57, 58, 103, 104] element methods.  Numerical 

simulation is especially useful when the plane wave cut-off frequency is 

exceeded in the silencer. 

If the plane wave analysis is used, transmission loss is normally calculated 

directly from the four-pole parameters [28] . If numerical simulation is used, the 

four-pole parameters can be determined by selecting appropriate boundary 

conditions [56, 105, 106, 107].  Alternatively, the four-pole parameters can be 

determined from an impedance matrix [56] .   

Other approaches have abandoned an explicit determination of the four-pole 

parameters.  For example, Munjal [28]  utilized a two-port approach to calculate 

the transmission loss from the sound pressure at the source and termination, and 

particle velocity at the source.  Alternatively, wave decomposition can be used to 

determine the incident and transmitted power.  Both the two-port and three-point 

approaches assume an anechoic termination.   

In this study, an alternative approach for determining transmission loss is 

developed based on the reciprocal work identity and the wave decomposition 

theory.  No plane wave assumption has to be made in the inlet/outlet ducts and 

no explicit anechoic termination impedance has to be applied at the outlet.  Just 

imagine how hard it would be to construct the true anechoic termination 

impedance beyond the cut-off frequency when the conventional characteristic 

impedance      does not hold anymore.  Below the cut-off frequency, there is 

no difference between the proposed method and the conventional four-pole 

method.  A fairly complex silencer example is used to demonstrate the proposed 

method and verify the equivalency between the proposed method and the 

conventional four-pole method below the plane wave cut-off frequency.  At 
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frequencies above the cut-off, the feasibility is demonstrated using a simple 

expansion chamber silencer. 

6.2 Review of Current Techniques 

6.2.1 Conventional Four-Pole Method 

One of the most common methods to evaluate the TL is the conventional four-

pole method.  Below the cut-off frequency of the inlet/outlet ducts, the inherent 

property of a silencer shown in Figure 6.1 can be described by using the four-

pole parameters  ,  ,   and   [56]: 

 {
  

  
}  [

  
  

] {
  

   
} (6.2) 

where    and    are the sound pressures,    and    the normal particle velocities 

at the inlet and the outlet, respectively.  Due to the inward normal direction used 

in most boundary element method (BEM) software, a negative sign is added to 

   in Equation (6.2).  By imposing two different sets of boundary conditions, the 

four-pole parameters  ,  ,   and   can be obtained from 
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(6.3a,b,c,d) 

Two separate BEM runs have to be carried out in order to obtain all these four-

pole parameters at each frequency.  

Once the four-pole parameters  ,  ,   and   are available, the transmission loss 

of the silencer can be evaluate by 

 
          (

 

 
|  

 

  
      |)         

  

  
 (6.4) 

where    and    denote the cross-sectional area of the inlet and outlet 

respectively,   the density of air and   is the speed of sound. 
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Figure 6.1 Schematic showing a silencer with four-pole parameters. 

Wu et al. [56] pointed out that since two sets of boundary conditions are distinct, 

two BEM runs do not share the same BEM coefficient matrix. Hence, the matrix 

decomposition routine needs to be called twice at each frequency, which makes 

the conventional four-pole method an impractical choice for computing the 

transmission loss. 

6.2.2 Improved Four-Pole Method 

Instead of computing the four-pole parameters directly, an improved method was 

proposed by Wu et al. [56].  The method also requires two BEM runs but in a 

more efficient way.  Rearrange the four-pole matrix in Equation (6.2) to get the 

impedance matrix: 

 
{
  

  
}  [

      

      
] {

  

   
} (6.5) 

where 

       |                   |           

      |                   |           
(6.6a,b,c,d) 

Like the conventional four-pole method, two separate BEM runs are still required 

to compute the impedance matrix.  Nonetheless, two BEM runs share the same 

coefficient matrix because the two sets of boundary conditions are both velocity 
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boundary conditions. Therefore, the second BEM run only requires a trivial back-

substitution procedure.   The impedance matrix can be easily converted into the 

four-pole parameters by 

 
  

   

   
           

      

   
       

 

   
        

   

   
 (6.7a,b,c,d) 

Eventually, the TL now can be calculated by Equation (6.4). 

6.2.3 Three-Point Method 

The three-point method [86, 108] is based on the same simple plane wave 

decomposition as in the two-microphone method.  Compared to the four-pole 

method, the three-point method requires only one single BEM run.  To do so, 

     is applied at the inlet and an anechoic termination impedance is applied at 

the outlet. 

With reference to Figure 6.2, let    and    be the coordinates of two field points in 

the inlet duct. The corresponding sound pressures    and    can be written as 

 

Figure 6.2 Schematic showing the three-point method. 

       
         

      

      
         

      

(6.8a,b) 

where    and    denote the incident and reflected wave respectively,   denotes 

the wavenumber in the medium air. 
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The incident wave    can be extracted by solving Equation (6.8a,b) 

simultaneously, 

 
   

   
         

     

     ( (     ))
 (6.9) 

provided that    ( (     ))   . The transmitted sound pressure can be found 

anywhere in the outlet tube. The TL then can be determined by  

 
          

|  |

|  |
        

  

  
 (6.10) 

6.2.4 Two-Port Method 

The two-port method is documented in the book by Munjal [28].  Like the three-

point method, the two-port method requires only one BEM run at each frequency 

with      at the inlet and the anechoic termination impedance at the outlet.  

Without using any field points inside the silencer, the method relies only on 

solutions at the inlet and the outlet.  Below the plane wave cut-off frequency, the 

anechoic termination implies 

          (6.11) 

Substitute the above condition into the four-pole matrix in Equation (6.2) and 

rearrange.  The four-pole relationship becomes 

 
  

 

  
  

  

    
 (6.12) 

        
  

  
 (6.13) 

Finally, the TL in Equation (6.4) can be rewritten as 

 
          (

 

 
|
       

    
|)         

  

  
 (6.14) 
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It is noted that neither the three-point method nor the two-port method can 

produce the four-pole matrix as a by-product.     

6.3 Reciprocal Work Identity Method 

6.3.1 Reciprocal Work Identity 

In a homogeneous medium, the sound propagation is governed by the Helmholtz 

equation 

           (6.15) 

where   is the sound pressure.  For an arbitrary silencer system shown in Figure 

6.1, we may apply different sets of boundary conditions on its boundary.  For 

each different set of boundary conditions, the sound field is expected to be 

different.  Let    and    represent two different sound fields corresponding to the 

two boundary condition sets   and  , respectively.  Both sound fields,    and    

satisfy the Helmholtz equation, 

             (6.16) 

             (6.17) 

The Green’s second identity is then applied to relate these two sound fields, 

 
∫(             )   
 

 ∫ (  

   

  
   

   

  
)    

  

 (6.18) 

where   denotes the normal direction,   the physical domain and    the 

boundary of the physical domain. 

Substituting Equations (6.16) and (6.17) into Equation (6.18), we obtain 

 
∫ (  

   

  
   

   

  
)    

  

   (6.19) 

In linear acoustics, the momentum equation relates the normal derivative of 

sound pressure to the normal particle velocity by 
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       (6.20) 

where   the angular frequency and   the particle velocity in the normal direction.  

Equation (6.19) becomes 

 
∫ (         )   
  

   (6.21) 

where    and    are the particle velocities in the normal direction.  Equation 

(6.21) is the so-called the reciprocal work identity.  

All boundary surfaces except the inlet and the outlet are either rigid or covered by 

a sound absorbing lining.  In the simplest case, assume all chamber surfaces are 

rigid, and hence, all normal velocity terms are zero except at the inlet and outlet.  

It is easy to see that the boundary integral in Equation (6.21) reduces to the inlet 

and outlet surfaces only.  On the other hand, if the chamber wall has a lining that 

can be represented by a local impedance  , 

        (6.22) 

Equation (6.21) will also reduce to the inlet and outlet surfaces only, due to the 

“reciprocal” relationship in Equation (6.21).  Even if the silencer has some 

complex internal components, such as extended inlet/outlet tubes, thin baffles, 

flow plugs, perforated tubes, and bulk-reacting materials, we can always divide 

the silencer interior into different homogeneous sub-domains, and apply Equation 

(6.21) individually to each sub-domain.  All the sub-domain boundary integrals 

are then added together.  The integrals along any interface between two 

neighboring sub-domains will cancel out due to the opposite normal directions, 

and in the end, the integral will always reduce to the inlet and outlet surfaces only.  

In any event, Equation (6.21) becomes 

 
∫ (         )     
     

 (6.23) 
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where    is the inlet surface, and    is the outlet surface.  In the frequency range 

where the plane wave theory still applies, sound pressure and particle velocity 

are both uniform over any cross-sectional area and Equation (6.23) becomes 

 (             )   (             )     (6.24) 

where the subscripts     denote the two different sound fields, and     denote 

the inlet and outlet, respectively.  At frequencies above the cutoff, integration 

over the inlet and outlet cross-sectional areas is required. 

6.3.2 Transmission Loss Computation 

Using the reciprocal work identity, let   represent the sound field with an 

anechoic termination so that the TL is defined.  However, we will not explicitly 

apply the anechoic condition in the BEM model.  Instead, in the inlet and outlet 

ducts, an analytical wave decomposition expression up to an order as high as 

required by a particular frequency will be used to represent sound field  .  Doing 

so will eliminate the need to find an appropriate impedance boundary condition at 

the anechoic termination.   It should be noted that      can no longer represent 

an anechoic termination at high frequencies. 

For sound field  , the BEM simulation is performed multiple times with different 

boundary condition sets.  The boundary conditions are neither tied to an 

anechoic termination nor to the four-pole matrix.  After all, the four-pole matrix is 

no longer defined at high frequencies.  In the following, we will demonstrate the 

idea by still staying below the plane wave cut-off frequency of the inlet/outlet 

ducts.  The idea can be easily extended to high frequencies later (see Section 

6.5).  At low frequencies, the plane wave theory still holds, and there are two 

plane waves in the inlet duct for sound field  .  If we set     at the inlet location, 

then the sound pressure there is   

        
     

  (6.25) 

where    
  and    

  represent the complex amplitudes of the incident and reflected 

waves, respectively.  The corresponding particle velocity is 
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(   

     
 ) (6.26) 

In the outlet duct with an anechoic termination, there is no reflection.  If we also 

set     locally at the outlet location, then  

        
  (6.27) 

where    
  is the complex amplitude of the transmitted wave.  The corresponding 

particle velocity is 

 
    

 

  
   

  (6.28) 

To find the TL, we will need to know how much power is transmitted for a given 

incident power.  Basically there are two unknowns,    
  and    

 , for a given 

incident wave    
 .  Normally a reflection coefficient   and a transmitted 

coefficient   both normalized to the incident wave are preferred.   Therefore, we 

will need two equations to solve for the two unknowns.  This is when the BEM will 

come into play.  The BEM with any two random boundary condition sets for 

sound field   can provide two such equations.  For example, we could apply 

    at the inlet and     at the outlet for the first set, and     at the inlet and 

     at the outlet for the second set, just as in the improved four-pole method.  

Both sets are meant for sound field  , but only one set at a time.  Then the 

subscript   is replaced by the numeric subscripts, 1 and 2.  In other words, 1 

represents   , and 2 represents   .  Apply the reciprocal work identity, Equation 

(6.24), twice, one between   and   , and the other between   and   , the 

following two simultaneous equations are obtained:    

 (             )   (             )     (6.29) 

 (             )   (             )     (6.30) 
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Substituting Equations (6.25) - (6.28) as well as              ,      , and 

      , into Equations (6.29) and (6.30) to get 

 
[
(      )        

      (      )  
] {

 
 
}  {

(      )  

     
} (6.31) 

where   and   are defined by 

 
  

   
 

   
  (6.32) 

 
  

   
 

   
  (6.33) 

Finally, the TL can be determined by 

 
           | |         

  

  
 (6.34) 

It can be proved that Equations (6.4) and (6.34) are mathematically equivalent 

(Section 6.4). There is no difference between the new method and the improved 

four-pole method below the plane wave cut-off frequency.  Both methods apply 

the same sets of boundary conditions in the BEM.  It is just how the TL is 

evaluated.  However, the new method has a potential advantage at high 

frequencies when the plane wave theory does not hold anymore. 

6.3.3 Test Case 

A fairly complex silencer model shown in Figure 6.3 is used to test the new TL 

method using the reciprocal work identity.  The BEM computation is done in MAP 

[92]. 

The porosity of the perforated tube in the third chamber is 20%. Equation (5.29) 

is employed to calculate the transfer impedance of perforates. The chamber is 

lined with polyester (flow resistivity   16,000 MKS rayl/m) of 0.05m thickness. 
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Figure 6.3 Configuration and dimension of the test silencer (SI Unit). 

 

Figure 6.4 TL comparison between methods of four-pole and reciprocal work 

identity. 
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The BEM simulation results are shown in Figure 6.4. It is seen that the TL 

prediction from the new reciprocal work identity method matches very well with 

the one from the four-pole method below 1000 Hz, the plane wave cut-off 

frequency of the inlet/outlet ducts.  The new reciprocal work identity method has 

not been fully extended to high frequencies yet.  The purpose of this test case is 

to simply confirm that the new method does produce the same TL as the 

conventional four-pole method below the plane wave cut-off frequency.  

6.4 Equivalency to the Four-Pole Method 

In the conventional four-pole method, if the boundary condition (         ) is 

imposed, Equation (6.2) can be rewritten as 

 {
   

 
}  [

  
  

] {
   

 
} (6.35) 

where subscript 1 denotes the first boundary condition,   and   denote the inlet 

and outlet. 

If the second condition (          ) is imposed, Equation (6.2) can be 

rewritten as 

 {
   

 
}  [

  
  

] {
   

 
} (6.36) 

where subscript 2 denotes the second boundary condition. 

Combining Equations (6.35) and (6.36), we have 

 
[
  
  

]  
 

   
[
                

     
] (6.37) 

Hence, the TL can be calculated by substituting the four-pole parameters into 

Equation (6.4) 

 
          |

      

(      )(      )        
|         

  

  
 (6.38) 
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Due to the acoustic reciprocity theory, the determinant of the four-pole matrix is 

unity (       ), we can derive the relation from Equation (6.37) 

          (6.39) 

In the method of reciprocal identity, the transmission coefficient can be obtained 

by solving Equation (6.31) 

 
  

      

       (      )(      )
 (6.40) 

Therefore, the TL can be determined by 

 
          |

      

       (      )(      )
|         

  

  
 (6.41) 

Using relation in Equation (6.40), it can be proved that Equation (6.38) is identical 

to Equation (6.42). 

6.5 TL beyond the Plane Wave Cut-Off Frequency 

6.5.1 Theory 

In this section, the reciprocal work identity method is used to evaluate the TL at 

high frequencies.  For demonstration purposes, we will focus on axisymmetric 

modes only.  At frequencies above the plane wave cut-off frequency, the radial 

modes will appear, and the general axisymmetric representation of sound 

pressure in the inlet and outlet ducts is 

 
 ( )  ∑ (  

           
        )  (    )

 

   
 (6.42) 

where subscripts   and   denote the axial and radial directions, respectively,    is 

the Bessel function of the first kind of order zero, and the superscripts   and – 

represent the incident and reflected waves, respectively. Although the series 

expansion goes to infinity in Equation (6.42), there will only be a finite number of 

propagating modes in each frequency range.  For demonstration purposes, we 
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will just focus on the occurrence of one higher-order mode beyond the plane 

wave cut-off frequency.  In other words, below the second plane wave cut-off 

frequency, there are only two propagating modes,      .  

Recall that the sound field with an anechoic termination for the TL definition is 

labeled “sound field  ” in the reciprocal work identity.  Therefore, the sound 

pressure at the inlet location (where we set    ) is 

    ( )      
      

    (   )    
  (6.43) 

where the subscript   represents the waves in the inlet duct, and 0 and 1 are two 

propagating modes,     and    , respectively. The corresponding particle 

velocity is 

 
   ( )  

 

  
[ (    

      
 )       (   )    

 ] (6.44) 

In the outlet duct, there is no reflection due to the anechoic termination.  

Therefore, the sound pressure at the outlet location (where we also set   

  locally) is 

    ( )      
    (   )    

  (6.45) 

where the subscript   represents the waves in the outlet duct. The corresponding 

particle velocity there is 

 
   ( )  

 

  
[     

       (   )    
 ] (6.46) 

There are five wave amplitudes in Equations (6.43) - (6.46),     
 ,     

 , ,     
 ,     

  

and     
 . If we assume a unit incident plane wave (    

   ), the remaining four 

amplitudes can be solved in the reciprocal work identity by imposing four different 

boundary condition sets in the BEM model (sound fields    to   ).  

If four sound field    (         ) are chosen, the sound pressure            and 

the normal particle velocities           can be obtained from BEM analysis(    
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represent the inlet and outlet respectively). The 4 x 4 system of equations can be 

derived from the reciprocal work identity, Equation (6.23), as 

      (6.47) 

where   [   ](            ) is the system matrix,   [    
      

      
      

 ]  

is vector of the unknown wave amplitudes and   [  ]
 
 (         ) is the right 

hand side vector. 

 The expressions for     are 

     ∫ (     
    

  
)    

  

 (6.48) 

     ∫ (     
   

  
    )   (    )   
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     ∫ (     
    

  
)    
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     ∫ (     
   

  
    )   (    )   
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The expression for    is 

     ∫ (     
    

  
)    

  

 (6.52) 

With all the magnitude available, the TL can be evaluated by (5.60). 

It should be pointed out that the TL can be extended to take into account 

additional higher order modes beyond the first one since the transmitted power is 

simply the summation of the modal power. If   modes are considered including 

the plane wave mode, then    boundary conditions will be required to solve the 

system of equations since there are    unknown wave amplitudes. 
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6.5.2 Test Case 

To validate the TL beyond the cut-off frequency as discussed above, a simple 

expansion chamber, shown in Figure 6.5 (SI Unit), is used as a test case since 

its analytical solution is widely available in the literature [75, 104].  

 

Figure 6.5 A simple expansion chamber. 

Following Selamet [75], the analytical solution based on pressure and velocity 

matching technique is developed. In addition, four different boundary conditions, 

listed in Table 6.1, were imposed to obtain the TL via boundary element method 

in MAP [92].  

Table 6.1 Four boundary conditions (SI Unit) in BEM 

BC Inlet Outlet 

1         

2         

3           

4           
 

The TL comparison is shown in Figure 6.6. The plane wave cut-off frequency for 

the inlet/outlet pipe is 1000Hz and the first higher order mode cut-off frequency is 
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1832Hz. TL from BEM agrees with the analytical solution well in the frequency 

range. 

 

Figure 6.6 TL comparison between analytical and BEM solutions. 

6.6 Summary 

A new computational method based on the reciprocal work identity is proposed to 

evaluate the TL of silencers at all frequencies. At frequencies below the plane 

wave cut-off frequency of the inlet/outlet ducts, the new method is equivalent to 

the improved four-pole method in terms of accuracy and computational efficiency.  

Since the new method does not assume plane waves in the inlet and outlet ducts, 

and does not explicitly apply the anechoic termination impedance condition, it 

can be extended to the TL computation beyond the plane wave cut-off frequency.  

In this study, we have demonstrated the method below the cut-off frequency 

using a fairly complex silencer model.  In addition, the proposed method is used 

to evaluate the TL including the first higher order mode for a simple expansion 
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chamber. It shows this approach can be used to calculate the TL including 

additional higher order modes. 
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CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS 

Airborne noise from power generation equipment is diagnosed and treated in this 

dissertation. First of all, a feedback loop model is used to diagnose the 

occurrence of combustion oscillations. The model has been validated and 

enhanced.  Secondly, a numerical model for evaluating the acoustic performance 

of bar silencers is developed and validated. To support that effort, a reciprocal 

work identity method is proposed to assess the transmission loss at frequencies 

above the plane wave cut-off frequency. 

7.1 Diagnosing Combustion-Driven Oscillations 

Combustion-driven oscillations are a common problem with power generation 

equipment that normally occurs under very specific operating conditions. Sound 

is generated by the flame and is reflected from the combustion chamber into the 

mixture supply or even further upstream to the gas valve. The reflected sound 

waves disturb the mixture flow or equivalence ratio and therefore lead to a 

fluctuating heat release which causes the fluctuations of the flame. The resulting 

oscillations are clearly abnormal and objectionable. They also deteriorate 

combustion efficiency, increase pollutant emission, and damage or destroy the 

equipment. 

A feedback loop stability model for mixture flow fluctuations is reviewed and 

summarized. Three components must be determined prior to the diagnosis: 1)  , 

the driving point impedance of the combustion chamber; 2)  , the transfer 

function relating the perturbation of the mixture flow to the acoustic pressure in 

the combustion chamber; and 3)   , the flame transfer function. Oscillations are 

more likely to occur at frequencies where the magnitude of     exceeds    ⁄  

and the phase of     equals to   ⁄
 .  

The model was adjusted to include equivalence ratio fluctuations.  In this case,   

is replaced by two components: 1)   , the transfer function relating the 

fluctuating velocity at the gas valve to the fluctuating pressure at the burner; and 
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2)    relates the equivalence ratio at the gas valve to the fluctuating velocity at 

the gas valve.  

The two feedback loop stability models were then applied to two commercial 

boilers which exhibited combustion-driven oscillations. In each case, the model 

successfully identified the likely causes and also possible solutions. Accordingly, 

the feedback loop stability model is a useful tool for approach combustion 

instability problems. 

As noted earlier, the upstream and downstream acoustic impedances are 

important inputs for both models. In this work, principles for determining the 

acoustic impedance by simulation and measurement are summarized. Prior 

literature had paid little attention to realistically simulating the acoustics for HVAC 

equipment like boilers, furnaces, and water heaters.  An approach for including 

the effect of structural-acoustic coupling was developed and validated. Secondly, 

acoustic FEM was used to determine the acoustic impedance above the plane 

wave cut-off frequency. Thirdly, experimental determination of hard to model 

boiler components was also demonstrated.  Finally, a method of characterizing 

the transfer impedance of burners was proposed.  The transfer impedance was 

measured and effective parameters (porosity and hole diameter) were estimated. 

Due to the perforation characteristic of burners, the transfer impedance is used. 

A design approach is proposed to formalize a process for preventing, diagnosing 

and treating combustion. Potential solutions to solve combustion-driven 

oscillations are developed. 

In summary, the main contributions from this work are as follows. 

 A low-order feedback loop model was developed to identify equivalence 

ratio fluctuations. 

 An acoustic finite element model was integrated into the low-order model 

for determining acoustic impedances.  This allows the model to be 

extended to higher frequencies for certain elements. 
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 The transfer matrix of the blower was measured.  The approach 

documented permits the modeling of components that are difficult to 

model using plane wave theory or acoustic finite element analysis. 

 The acoustic transfer impedance of burners was measured.  This was the 

first study where this quantity was measured for burners. 

 A method was proposed and validated for measuring the burner transfer 

impedance and fitting the measured data to Maa’s theory [51, 52].  The 

method permits the calculation of an effective hole diameter and porosity.  

The advantage of this approach is that the fitted transfer impedance 

results are smoother and more accurate at low frequencies. 

 The flexible plate vibration is incorporated into the plane wave model. 

 A design approach for preventing and solving combustion oscillation 

problems was proposed. 

The following recommendations for future work are recommended. 

 A more in depth study on burners should be conducted experimentally 

determined how changing the geometry of burners will impact the onset of 

combustion instabilities. 

 The proposed design process should be substantiated and enhanced by a 

number of case studies. 

 Acoustic methods for determining the flame transfer function should be 

further enhanced and developed. 

 Empirical models for the flame transfer function should be developed and 

validated for different burner types and fuels. 

 Combustion driven oscillations likely occur in cases of flue gas 

recirculation and for flow instabilities.  More research into these areas is 

required. 

7.2 Simulation of Bar Silencers 

In contrast to combustion-driven oscillations, turbulent combustion noise has a 

broadband spectrum. In the gas turbine industry, bar silencers are often used to 

attenuate the broadband noise. 
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A bar silencer is comprised of an array of rectangular or round bars made of 

sound absorbing materials packed in a rectangular lattice arrangement. Each bar 

is covered by a perforated facing sheet to protect the material from being blown 

away by the exhaust gas. The dimensions of bar silencers are typically large. 

The direct-mixed body BEM is employed to simulate the acoustic performance of 

bar silencers.  Assuming a uniform acoustic field across the inlet plane, the 

acoustic performance can be deduced from the attenuation in a single module 

since the axial attenuation within each cell is the same. Due to the difficulty of 

obtaining measurement data, an analytical solution for a simplified circular 

geometry is developed to serve as a validation tool for the model. It is based on 

the pressure and velocity matching technique.  A method is proposed to calculate 

the incident and transmitted power beyond the plane wave cut-off frequency 

which included the higher order mode effects above the cutoff. In addition, a 

parametric study focusing on the effects of flow resistivity, perforate porosity, 

length of bars, and cross-sectional area ratio is performed.  

To numerically investigate the transmission loss beyond the plane wave cut-off 

frequency, a novel approach is developed and validated based on the reciprocal 

work identity. Imposing no anechoic termination boundary condition, it can 

indirectly calculate the incident and transmitted sound waves via the reciprocal 

work identity. For simplicity, the procedure is illustrated using a simple expansion 

chamber. 

The main contributions of the work on bar silencers are as follows. 

 The direct mixed-body boundary element method was applied to simulate 

the acoustic performance of bar silencers. 

 An analytical model based on the pressure and velocity matching 

technique was developed and used as a validation tool for the BEM model. 

 A parametric study is conducted to investigate the influence of varying 

different bar silencer parameters. 

 The higher order propagation modes are included the transmission loss 

calculation. 
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 A new numerical approach which is based on the reciprocal work identity 

is developed to determine the transmission loss. 

 The feasibility of the reciprocal work identity method is demonstrated 

using a fairly complex silencer. 

 Extension of TL computation above the plane wave cut-off frequency is 

demonstrated using a simple expansion chamber. 

The following recommendations for future work are recommended. 

 Analytical models should be developed for more realistic geometries (i.e., 

square bars).  The work presented in this research was for a simplified 

round bar. 

 The BEM model should be validated experimentally for a large silencer 

arrangement. 

 The BEM should be used to investigate the effects of different 

configurations and cross-sectional areas of bars. 

 The mean flow effect should be included in the model. 

 The reciprocal work identity should be applied to determining the 

transmission loss for a bar silencer configuration. 
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APPENDIX A PLANE WAVE ASSUMPTION IN BURNERS 

It was also assumed that plane waves propagate in the burners as well. In order 

to validate the assumption, a FEM analysis was conducted as follows. 

As shown in Figure A.1, burner is placed in a simplified combustion chamber. 

Eight unit constant monopoles are evenly distributed around the burner 

circumference at the mid-length of the burner. An anechoic termination is 

imposed at the bottom of burner. The temperature in the burner and combustion 

chamber is assumed 20 and 811 Celsius degrees respectively. The density of air 

and speed of sound were correspondingly assigned. 

 

Figure A.1 Schematic showing a burner in a combustion chamber. 

The results show that planar wave propagation exists at all frequencies. Figure 

A.2 and Figure A.3 demonstrate plane wave propagation at 10Hz and 1500Hz 

respectively. It concludes that the transfer matrix theory is applicable in the 

burner region. 
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Figure A.2 Plane wave propagation at 10Hz. 

 

Figure A.3 Plane wave propagation at 1500Hz. 
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