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ABSTRACT OF THESIS

INVESTIGATION OF
FILTERING METHODS FOR LARGE-EDDY SIMULATION

This thesis focuses on the phenomenon of aliasing and its mitigation with two
explicit filters, i.e., Shuman and Padé filters. The Shuman filter is applied to velocity
components of the Navier–Stokes equations. A derivation of this filter is presented
as an approximation of a 1-D “pure math” mollifier and extend this to 2D and 3D.
Analysis of the truncation error and wavenumber response is conducted with a range
of grid spacings, Reynolds numbers and the filter parameter, β. Plots of the relation-
ship between optimal filter parameter β and grid spacing, L2-norm error and Reynolds
number to suggest ways to predict β are also presented. In order to guarantee that
the optimal β is obtained under various stationary flow conditions, the power spectral
density analysis of velocity components to unequivocally identify steady, periodic and
quasi-periodic behaviors in a range of Reynolds numbers between 100 and 2000 are
constructed. Parameters in Padé filters need not be changed. The two filters are
applied to velocities in this paper on perturbed sine waves and a lid-driven cavity.
Comparison is based on execution time, error and experimental results.

KEYWORDS: Implicit filters, explicit filters, Shuman filters, Padé filters, lid-
driven cavity

Weiyun Liu

11/05/2014



INVESTIGATION OF
FILTERING METHODS FOR LARGE-EDDY SIMULATION

By

Weiyun Liu

Dr. J. M. McDonough
Director of Thesis

Dr. J. M. McDonough
Director of Graduate studies

11/05/2014
Date



To Lin and Chunling



ACKNOWLEDGMENTS

The thesis is a product of effort and commitment. I wish to thank my advisor and

Thesis Chair, Dr. James M. McDonough, who teaches me so many helpful study tips,

from edit tool Latex to plot tool Gnuplot, from programming language Fortran 77 to

English grammar. I learn from him that research is a strict topic, and one should pay

attention not only to subject but also details. I am fortunate that he could accept my

application to be his student three years ago. Dr. McDonough patiently guided me

to finish this paper and gave me good suggestions. It is an honor to be his student.

What I learned from him is helpful in my future research career.

I also wish to acknowledge my parents, Lin Liu and Chunling Wei. In the days

of working on my thesis, it is them that give me power, trust me, and encourage

me. They know nothing about professional engineering research, but they always

tell me to follow the guidance of advisors, step by step and finally I can make it.

Without their support, I cannot survive in these tough days filled with thesis, jobs,

applications, and school work. Thank them for supporting me to go abroad to study

alone and supporting me in every depressing day in the past three years. Without

them, I would never be able to pursue my dream. They are the power to me when I

feel helpless, hopeless and get into trouble.

Last, I wish to thank all people in 216, RGAN Building. They are the person who

support me, comfort me, and help me in the process of finishing this thesis. And I

hope that all of them can have a bright future.

iii



Contents

Acknowledgements iii

List of Tables vi

List of Figures vii

1 Introduction 1

2 Analysis 6

2.1 Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Filtering Models: implicit and explicit filtering . . . . . . . . . 9

2.2 Introduction to Shuman filter . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Shuman filter in one dimension . . . . . . . . . . . . . . . . . 11

2.2.2 Shuman filter in higher space dimensions . . . . . . . . . . . . 17

2.3 Introduction to Padé filter . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Mathematical Description . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Relationship to Shuman filter . . . . . . . . . . . . . . . . . . 22

2.3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Results and Discussions 24

3.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

iv



3.2.1 Simulation results with Re = 1000, 113 grid points . . . . . . . 27

3.2.2 Simulation results with Re = 2000, 813 grid points . . . . . . . 31

3.2.3 Additional simulation results . . . . . . . . . . . . . . . . . . . 34

3.2.4 Selection of optimal β . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Comparison between Shuman and Padé filters . . . . . . . . . . . . . 50

3.3.1 Applications of filters to perturbed sine wave . . . . . . . . . . 50

3.3.2 Comparison of Shuman and Padé filters: laminar LDC flow . . 57

3.3.3 Comparison of Shuman and Padé filters: turbulent LDC flow 66

4 Conclusion 73

4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 What still is needed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Appendix 76

A L2-norm error code 76

B Filters applied to perturbed sine waves in 1D code 82

C Filters applied to perturbed sine waves in 3D code 91

Bibliography 108

Vita 113

v



List of Tables

2.1 Interior-point Padé filter coefficients . . . . . . . . . . . . . . . . . . . 21

2.2 Padé filter coefficients near boundaries . . . . . . . . . . . . . . . . . 21

3.1 Flow status at different Re with different β . . . . . . . . . . . . . . 35

3.2 L2 error with different β values . . . . . . . . . . . . . . . . . . . . . 38

3.3 L2 error with different β values . . . . . . . . . . . . . . . . . . . . . 39

3.4 L2-norm error with different β . . . . . . . . . . . . . . . . . . . . . 40

3.5 Error and execution time for the two filters . . . . . . . . . . . . . . . 52

3.6 Error and execution time for 3-D signal . . . . . . . . . . . . . . . . . 56

vi



List of Figures

1.1 Lid-driven cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Discrete and pure math mollifiers. . . . . . . . . . . . . . . . . . . . . 12

2.2 Wavenumber response with different filter parameter values [34]. . . . 16

2.3 Discrete mollifier in 2D. . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Values of Weight Factors and the Numbers of Vanishing Moments for

Different Minimally Constrained Discrete Filters [14] . . . . . . . . . 23

3.1 Experimental results with Re = 1970; (a) Dimensionless time evolution

of u velocity component, (b) Fourier transform of u velocity component,

solid red and dash blue lines correspond to experiments with water and

glycerin solution, respectively [39]. . . . . . . . . . . . . . . . . . . . . 25

3.2 u component velocity with different Shuman filter values for 113 grid

points, Re = 1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Velocity, PSD and phase-portrait with 113 grid points; Re = 1000,

β = 1800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Velocity, PSD and phase-portrait with 113 grid points; Re = 1000,

β = 2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Velocity, PSD and Phase-portrait with 113 grid points; Re = 1000,

β = 3000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 PSD and Phase-portrait with 113 grid points; Re = 1000, β = 5000 . 31

vii



3.7 Velocity, PSD and phase portrait with 813 grid points, Re = 2000,

β = 25; (a) Velocity, (b) Power spectral density, (c) Phase portrait. . 32

3.8 Velocity, PSD and phase portrait with 813 grid points, Re = 2000,

β = 50; (a) Velocity, (b) Power spectral density, (c) Phase portrait. . 33

3.9 Velocity, PSD and phase portrait with 813 grid points, Re = 2000,

β = 100; (a) Velocity, (b) Power spectral density, (c) Phase portrait. . 34

3.10 Dimensionless time evolution of the u velocity component with optimal

β, Re = 1500; (a) grid spacing=0.1, β = 910, (b) grid spacing=0.05,

β = 2620, (c) grid spacing=0.0125, β = 1700, (d) experimental results

[39]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.11 Dimensionless time evolution of the u velocity component with optimal

β, Re = 1700; (a) grid spacing=0.1, β = 840, (b) grid spacing=0.05,

β = 1300, (c) grid spacing=0.0125, β = 1700, (d) experimental results.

[39] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.12 Dimensionless time evolution of the u velocity component with optimal

β, Re = 2000; at the cavity middle plane (a) grid spacing=0.1, β =

1175 (b) grid spacing=0.05, β = 830 (c) grid spacing=0.025, β = 2140

(d) grid spacing=0.0125, β = 1500 . . . . . . . . . . . . . . . . . . . . 45

3.13 Power vs. frequency; (a) Re = 2000, h=0.1, optimal β=1175, (b) Re =

2000, h=0.025, β=2140 . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.14 Optimal filter parameter value vs. grid spacing in two cases; (a) Re =

1500, (b) Re = 2000. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.15 L2-norm error vs. filter parameter, Re = 1500; (a) h = 0.1, (b) h =

0.05, (c) h = 0.025, (d) h = 0.0125. . . . . . . . . . . . . . . . . . . . 48

3.16 L2-norm error vs. filter parameter, Re = 2000; (a) h = 0.1, (b) h =

0.05, (c) h = 0.025, (d) h = 0.0125. . . . . . . . . . . . . . . . . . . . 49

viii



3.17 Comparison of u vs. t with only Fourier aliasing, only random and

both; (a) only Fourier aliasing, (b) zoomed in, (c) only random, (d)

zoomed in, (e) combination, (f) zoomed in. Red line, pure sine wave;

green line, aliasing; blue line, Shuman filter; purple line, Padé filter. . 53

3.18 Comparison of u vs. t with only Fourier aliasing, only random and

both; (a) only Fourier aliasing, (b) zoomed in, (c) only random number

perturbation, (d) zoomed in, (e) combination, (f) zoomed in. Red line,

pure sine wave; purple line, aliasing; blue line, Shuman filter; green

line, Padé filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.19 Lid-driven cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.20 Time series (a) without filtering, (b) with Shuman filter . . . . . . . . 59

3.21 Re = 2000 without filters; (a) Power spectral density, (b) Phase-portrait 60

3.22 Magnitude of vorticity at time step 20000; (a) without filtering, (b)

with Shuman filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.23 Magnitude of vorticity at time steps 40000; (a) without filtering, (b)

with Shuman filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.24 Wavenumber response (a) Shuman filter, (b) Padé filter . . . . . . . . 62

3.25 Magnitude of vorticity at time step 20000; (a) with Shuman filter, (b)

with Padé filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.26 Magnitude of vorticity at time step 40000; (a) with Shuman filter, (b)

with Padé filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.27 Time series at Re = 2000; (a) experimental results [39], (b) without

filters, (c) with Shuman filter, (d) with Padé filter. . . . . . . . . . . . 65

3.28 Velocity at the mid-plane with filters at Re = 1500; (a) Shuman filter,

(b) Padé filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.29 Time series; (a) without filters, (b) with Shuman filter, (c) with Padé

filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

ix



3.30 Magnitude of vorticity at time 250 s; (a) with Shuman filter (b) with

Padé filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.31 Magnitude of vorticity at time steps at time 500 s; (a) with Shuman

filter (b) with Padé filter. . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.32 Phase portrait with Padé filter . . . . . . . . . . . . . . . . . . . . . 70

3.33 Velocity at the mid-plane with filters (a) with Shuman filter, (b) with

Padé filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.34 Power spectral density when using Padé filter. . . . . . . . . . . . . . 72

x



Chapter 1

Introduction

The phenomenon of aliasing is common in many engineering problems, especially in

signal processing, and it occurs in many numerical simulations. Numerical simulation

sometimes cannot represent high-wavenumber components (Fourier modes) in a signal

(or solution), that is how aliasing arises by Olshausen [1]. The aliasing “problem” is

ubiquitous in computational fluid dynamics (CFD), especially in direct numerical

simulation (DNS) and large-eddy simulation (LES) of turbulence. In this thesis,

large eddy simulation is employed (LES). LES is a numerical method where large

scales are calculated and small scales are modeled. Its accuracy is between RANS

and DNS. There are three main classes of methods to treat this problem: artificial

dissipation by Pulliam [2], flux modification [3] and filtering [4], [5], all of which

introduce additional diffusion (dissipation) to a solution of the differential equations,

thus resulting in smoothing (hence, removal of high-wavenumber modes). Here only

the third method is studied.

The first filter of the type studied in this thesis was possibly first used in a fluid

dynamics setting by Shuman [6] but not in the context of CFD. Rather, Shuman

was simply smoothing meteorological data to be utilized in weather prediction. The

filter employed by Shuman was possibly first used in CFD as a method for discretiz-
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ing advective fluxes, viz., in a flux modification context [6]. Stephan [7] gave the

derivation and introduction of its response function in details. It was later used as a

post-processing filter by Yang and McDonough [8], and it is now receiving increasing

attention in LES algorithms by Vasilyev [9], and Lund [10]; But there seems to be no

formal derivation of this filter beyond the heuristics of a weighted average constructed

so as to maintain consistency, and its formula contains an unknown parameter, de-

noted by β herein. Behavior of the filter depends on the value of β in a fairly strong

way; yet, there seems to be no specific prescription for these values, say, in terms of

grid spacing and Reynolds number, Re.

In the present research, effectiveness of the filter is demonstrated via the lid-driven

cavity model problem depicted in Fig. 1.1. Investigations have been made of 3-D flows

of an incompressible fluid in a square (aspect ratios equal unity) cubical cavity. The

flows are driven by sliding the upper surface (the lid) of the cavity at a constant

speed following an impulsive start. This model is attractive because of its simple

geometry and easily implemented (no-slip) boundary conditions. The introduction

of basic properties is presented by Ercan Erturk [11]: numerically, it is possible to

obtain numerical solutions of 2-D incompressible cavity flow at high Reynolds numbers

when fine grid meshes are used; 3-D DNS solutions for bifurcation Reynolds number

differ an order from that obtained from 2-D DNS solutions of the driven cavity flow

problem. Moreover, flow within the cavity exhibits a wide variety of behaviors at

different locations, and from a mathematical perspective it displays singularities in

the upper corner by Boppana and Gajjar [12]. Hence, in neighborhoods of these

corners solutions are not classical.

The lid-driven cavity problem has been extensively investigated by numerical

methods and laboratory experiments. However, most of the prior numerical work, un-

til rather recently, has been confined to treating 2-D flow situations. Two-dimensional

studies have disclosed that the global flow structure could be characterized by a pri-
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mary eddy and secondary eddies that formed near corners of the lower solid walls

by Bruneau and Saad [13]. The present research focuses on 3-D flow which can be

considerably more complicated. The key method of the work of thesis is based on

Figure 1.1: Lid-driven cavity

formal mathematical treatment of partial differential equations, namely, use of molli-

fication. This is equivalent to the typical convolution filters widely used in LES, and

the Shuman filter is derived via approximation of this mollification process. Then

a truncation error analysis is presented to demonstrate that the Shuman filter is

second-order accurate and dissipative at leading order. Furthermore, the normaliza-

tion typically applied to mollifiers will be shown to lead to consistency of the discrete

Shuman filter.

As already noted, the Shuman filter contains a single unknown parameter that

regulates the number of high-wavenumber modes that are removed by its application,

and this parameter must be prescribed, a priori, by the user. There currently is no

theoretical method for predicting values of this parameter, and one of the goals of

this research is to produce at least a semi-empirical prediction technique based on

Reynolds number and finite-difference grid spacing.

Three-dimensional lid-driven cavity flow simulated at Re = 1000, Re = 1500 and
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2000 using a standard projection method applied to a finite-volume discretization of

the 3-D Navier–Stokes equations will be used to initiate this study. Employ grids of

113, 213, and 413 points and change the filter parameter value and Re separately. The

goal of this work is to provide some guidance toward choosing a proper filter value

when Re and number of grid points are known, leading, hopefully, to an automatic

implementation. Finally, note that the Shuman filter is not necessarily an appropriate

one in some contexts, but it is computationally very inexpensive.

The Padé filter is another explicit filter that is becoming more and more widely

used. Derivations and parameters of Padé filters are introduced by Vasilyev [14].

In Liu’s paper [15], one set of Padé parameters is also presented. In the present

research, the same Padé parameters are used and the filtered results with those of

Shuman filters for a range of β are compared. The comparison is based on two parts.

One is a perturbed sine wave without consideration of the LES problem, in order

to isolate fundamental behaviors of the fitlers, and the other is the lid-driven cavity

problem, that is more complicated.

Besides Shuman and Padé filters, Kalman filters, described by Grewal [16], for

example, Gaussian filters and top-hat filters are all used in various applications. The

Gaussian filter is used to blur images and remove noise and details. In recent research,

Gaussian filters, computationally efficient, are still widely used, and the coefficients

by Liu [15] employed for the Padé filter cause it to have the properties similar to those

of a sharp cutoff Gaussian filter. Gaussian filters are linear low-pass filters, so in some

cases where high-pass filters are needed, they cannot be effective enough. Kalman

filters are usually applied to electrical signals [17]. They first produce estimates of

the current state with uncertainties, then update the estimation according to the

next measurement with higher certainties by Ribeiro [18]. Kalman filters can be used

to track objects and they also have some computer vision applications, e.g., feature

tracking and cluster tracking; Kalman filters, on one hand, take full advantage of all
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the information stored in the covariance matrix, so it is lot smarter than a low pass

filter can be. On the other hand, it is computational complicated. Top-hat filters are

a class of nonlinear signal processing algorithms which have been applied extensively

in computer vision, image processing and, more recently, for target detection by Wang

[19]. When transformed from Fourier space to physical space, top-hat filters present

the possibility of producing Gibbs-like oscillations Nathan [20], which of course is not

desirable. According to the discussions above and the wide use of Shuman and Padé

filters, decision is made to do research on the latter two filters in this thesis. Shuman

filters only have one filtering parameter, therefore, it is not complicated to implement

them. For the Padé filters, the parameters are already fixed, and consider the high

accuracy of Padé filters, it only needs to investigate the effectiveness of them.

Derivations of the Shuman filter, both in 1D and higher dimensions, are presented

in the next chapter. Chapter 2 also presents the derivation and parameters of the

Padé filter used in this thesis. Comparisons of Shuman and Padé filters are made

in Chapter 3 for one-dimensional signals in the framework of error removal and run

time, and this is repeated for the more relevant 3-D case. The results lead to the

conclusion that Shuman filters are more effective than Padé filters when applied to a

simple perturbed sine wave. Then the two filters are applied to the lid-driven cavity

problem where the flow movement is more complicated. In this case, the Reynolds

number is set to 1500, 2000, and 10000 separately. In previous research, flow is lam-

inar at Re 1500 and 2000, and turbulent at Re 10000. In this way, the research

includes both the laminar and turbulent phenomena. In Chapter 4, conclusions and

future work are presented. According to the comparison, Shuman filters work better

than Padé filters on perturbed sine waves, but on the more complicated lid-driven

cavity problem, Padé filters are more effective on high Re situations, e.g., turbulence.
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Chapter 2

Analysis

In the world, most fluid flows are turbulent. The turbulent behavior is one of the

most important but the most challenging problems in all the classical physical. Even

though fluid flow is widespread, the problem of turbulence remains to this day the

last unsolved problem. In the 21st Century, most analysis of fluid flow could be

performed via CFD. CFD saves money and time. In some special occasions such as

high temperature where experiments cannot easily be carried out, CFD is a helpful

tool to make simulations or predictions. But it also has its own issues. In this section,

issues of CFD are discussed, and treatment is also provided. In this chapter, the

mathematical explanation of aliasing is first presented. In this way, the root reason of

aliasing is known. Then two filtering methods Shuman and Padé filters are introduced.

Their derivations and how they work are presented from the mathematical viewpoint.

Aliasing is ubiquitous in CFD, especially in the research of direct numerical simu-

lation (DNS) and large-eddy simulation (LES) of turbulence. However, aliasing is not

the only issue in CFD. The reason is that no matter which numerical method is cho-

sen, it cannot represent-wavenumber components in its solution. Cell-Re problem is

another issue. The cell-Re problem easily causes grid-point to grid-point oscillations

in numerical computations, and this oscillation is nonphysical. If the solution mag-
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nitude increases, the magnitude of these oscillations tends to increase, corresponding

to increasing cell Re [21]. Cell-Re problems arise due to centered differencing of first-

order derivatives. Suggested remedies involve replacing centered differencing with

some other differencing. It has been suggested that a difference approximation us-

ing only information that is carried in the flow direction would be more accurate in

Pathankar [22]. The most widely-used approach is 1st-order upwinding. Even though

the symptoms of cell-Re problem are similar to aliasing, it should be noted that the

root cause is rather different.

2.1 Aliasing

In order to have a better understanding of aliasing, it can be explained from a math-

ematical viewpoint. Ames [23] gives the details as described below. Let f(x) be a

function in L2(−1, 1) and consider its Fourier representation:

f(x) =
∞∑

k=−∞

ake
ikπx (2.1)

with

ak =
1

2

∫ 1

−1

f(x)eikπxdx. (2.2)

Partition the interval [−1, 1] with 2N uniformly-spaced points; therefore, xj = j/N ,

where −N ≤ j ≤ N . In this way, it can be constructed the Fourier polynomial for

the value fj at x = xj

fj =
N−1∑
m=−N

Ame
imπj/N , (2.3)

where

Am =
1

2N

N−1∑
j=−N

fje
−imπj/N . (2.4)
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In order to find how the Ams which are obtained from the discrete approximation,

are related to the actual Fourier coefficients, the aks, f(x) can be evaluated at the

discrete point x = xj = j/N :

f(xj) =
∞∑

k=−∞

ake
ikπxj =

∞∑
k=−∞

ake
ikπj/N . (2.5)

There is an very important property of the complex exponential that it is periodic,

and there can be only 2N distinct values of eikπj/N . For any finite N , rewrite the

infinite sum as

∞∑
k=−∞

ake
ikπj/N =

∞∑
k=−∞

N−1∑
n=−N

an+2Ne
i(n+2Nk)πj/N . (2.6)

Now substitute the right-hand side of Eq. 2.6 instead of fj into Eq. 2.4 to obtain

Am =
1

2N

N−1∑
j=−N

∞∑
k=−∞

ake
ikπj/Ne−imπj/N

=
∞∑

k=−∞

am+2Nk

= am +
∑
|k|>0

am+2Nk.

(2.7)

If ak = 0, ∀ k, ∃ | k | > N , then there is no contribution to aliasing from the series.

Also suppose N is sufficiently large that am+2Nk is small ∀ k, then contributions are

negligible. If f ∈ L2, but not much better, then am+2Nk can be fairly large, even for

very large N . This is the aliasing effect: Am then is not close am.

In order to treat the aliasing, additional diffusion needs to be introduced to a

solution of the differential equations. In this way, it results in smoothing, i.e., removal

of high wavenumber modes. In McDonough and Yang [24], three main classes of

methods to treat this aliasing are presented: flux modification, artificial dissipation

and filtering. Flux modification is relatively expensive, which essentially doubles run
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time; artificial dissipation is not as expensive or as effective and usually contains

unknown scaling constants; filters are inexpensive and fairly effective. In this thesis,

the author focuses attention on the third method in this thesis.

2.1.1 Filtering Models: implicit and explicit filtering

From a mathematical viewpoint, it can be known that aliasing occurs automatically

in nonlinear evolution problems since, e.g., the square of a discrete Fourier series,

corresponding to the numerical solution method, contains unresolved modes due to

nonlinearities in the differential equations, even with formally well-resolved discretiza-

tions, as noted by Shapiro [25]. Moreover, aliasing can occur due to under resolution

in essentially any circumstance, including linear and/or non-evolving situations. Two

approaches to filtering have been distinguished in the large-eddy simulation (LES)

context by Vasilyev et al. [14]: use of implicit and explicit filters. Implicit filtering

refers to formally applying a filter to governing equations and until recently has been

the usual practice in construction of LES methods. As is well known, no specific filter

is applied; but the formalism contains subgrid-scale (SGS) stresses, the modeling of

which results in dissipation analogous to what occurs in Reynolds-averaged Navier–

Stokes (RANS) methods, and very much like use of artificial dissipation for shock

capturing. Nevertheless, new aliasing problems can appear after every time step in

an implicit filtering method because of the nonlinear terms in the Navier–Stokes, or

similar, equations as noted above. Use of implicit filters will not be the subject of the

current studies.

Explicit filtering is a solution filtering technique wherein the governing equations

are not filtered. Governing equations are solved directly on a grid (or otherwise), and

this grid can be coarser than required by a fully-resolved direct numerical simulation;

then the solution is filtered (formally, mollification) at each time step to mitigate

effects of aliasing. Since filtered solutions are used in subsequent time steps, the
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aliasing phenomenon can be well controlled. In principle, this is no different than

employing filters for image and signal processing. Implicit filtering can cause simula-

tion results to be sensitive to the mesh resolution for several technical reasons, while

explicit filters alleviate grid sensitivities to a significant extent, as described by You

et al. [26].

In using explicit filtering, the filtering operation and the differentiation need to

commute. This is not the case in inhomogeneous flow fields. The required smallest

resolved length scales vary throughout the flow fields in inhomogeneous flows. The

varying filter width, ∆, introduces a commutation error of O(∆2) [27][28]. Most of

the explicit filters are usually used in homogeneous flow fields or in homogeneous

directions of more general flows by Gullbrand [29]. Vasilyev et al. [14] proposed a set

of rules for constructing discrete filters and a general theory of discrete filtering for

LES in complex geometries.

2.2 Introduction to Shuman filter

What is now termed the Shuman filter was first devised by Shuman [5], and has been

successfully employed in operational practice to eliminate short-wavelength compo-

nents from fields of meteorological variables. Numerical weather prediction, mak-

ing use of finite-difference approximation of the equations of motion and computers,

has invariably suffered from amplification of high-frequency components often be-

yond physical reality in computed solutions. Furthermore, attendant alteration of

short-wavelength components detracts from the appearance of results, is annoying

to analysis, and can be misleading to the uninitiated. A simple, weighted-average

method of constructing filtering, or “smoothing,” operators was devised by Shuman

to mitigate these difficulties; and this has been analyzed in Shapiro [25]. Harten and

Zwas [30] employed the Shuman filter in one of their early shock-capturing schemes,
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and in recent years it has begun to see application for removal of aliasing in LES.

In this section first derive a 1-D version of the Shuman filter, analyze its trunca-

tion error and obtain its wavenumber response (transfer function). Then extend the

resulting formulas to higher dimensions.

2.2.1 Shuman filter in one dimension

The use of mollification is one of the modern analytical tools in PDE theory. It

converts non-smooth (non-classical) solutions to ones that are in C∞ in a well-defined

way that permits control of error induced by this smoothing procedure (see, e.g.,

Gustafson [31]). Discrete implementations of such mollifiers can be used to treat

aliasing of numerical solutions. An early example of such a filter was presented by

Majda et al. [32]. Mollification significantly reduces the number of terms needed

to represent the solution by a Fourier series and thus, in principle, to the ability to

approximate solutions with rather coarse discretizations without concern for effects

of aliasing.

In McDonough [33], (pp: 90-96, some words are from the reference directly) the

derivation of Shuman filters is presented as similar to the following, which corrects

this derivation.

Suppose u(x) is not smooth; it can be mollified as follows:

uε(x) =

∫ ε

−ε
u(ξ)δε(x− ξ) dξ (2.8)

where δε is a normalized C∞0 function with support → 0 as ε → 0. This is clearly

a filter expressed as a convolution analogous to the formal representation of filters

employed in LES. The approximate solution uε can now be represented by a finite

number of terms in a Fourier series—or even a Taylor series, and correspondingly

only a finite number of grid points will be needed for a numerical simulation. In 1D,
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the formula presented by Shuman is

ũi =
ui−1 + βui + ui+1

2 + β
, (2.9)

where ui are grid-point values; and β = 2 is used. Derive this formula as an approxi-

mation to the above convolution, Eq. (2.8).

To begin, consider Fig. 2.1 which compares the graph of a typical mollifier kernel,

say,

δε(x) = cεe
−1/(ε2−x2) |x| < ε ,

with the numerical approximation embodied in Eq. (2.9). Formally, it can be written

this as

ũh(xi) =

∫ xi+h

xi−h
uh(ξ)δh(xi − ξ)dξ ≡ F (δh)uh, (2.10)

and define a function δh (which is not C∞ but which does have compact support) as

indicated in Fig. 2.1. Notice, in particular, that the support of δh is 2h about any

particular point xi, and that δh is constructed from two straight lines sitting above a

rectangle of unit height.

Figure 2.1: Discrete and pure math mollifiers.
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The normalization of δε is

cε ≡
[∫ ε

−ε
e−1/(ε2−x2) dx

]−1

,

and normalization δh is based on the geometry Fig. 2.1 and the definition of δh by

formally employing trapezoidal quadrature:

∫ xi+h

xi−h
δh(x)dx = 2h+ (β? − 1)h

= (β? + 1)h.

This is exact for the geometry of Fig. 2.1 and leads to a normalization constant

Ch =
1

(β? + 1)h

Now apply δh to a grid function, again employing trapezoidal quadrature. Consider

the grid function values ui−1, ui, ui+1; then

ũh(xi) =

∫ xi+h

xi−h
uh(ξ)δh(xi − ξ)dξ

=

h

[
1

2
(u(xi − h) + u(xi + h)) + β?u(xi)

]
(β? + 1)h

=
u(xi − h) + 2β?u(xi) + u(xi + h)

2 + 2β?
.

Now define β ≡ 2β? to obtain the Shuman filter:

ũ(xi) =
u(xi − h) + βu(xi) + u(xi + h)

2 + β
, (2.11)

where the value of β is arbitrary except that β > −2 + ε, ε > 0, must hold with ε not

the same as in Eq. (2.8) and the following.

Observe that if ui ≡ const in a neighborhood of xi, then ũi = ui in that neighborhood.
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This is known as “consistency” of the filter.

Furthermore, it is clear from the definition of the discrete mollifier, that ũh(xi) →

uh(xi) as h → 0. While this is not obvious from the final form of the Shuman filter

given in Eq. (2.9), it can be demonstrated via a simple truncation error analysis

which now can be carried out. First return to the grid point notation of Eq. (2.9)

and expand ui−1 and ui+1 in Taylor series:

ui−1 = ui − hux
∣∣∣
i
+
h2

2
uxx

∣∣∣
i
−h

3

6
uxxx

∣∣∣
i
± · · · , (2.12a)

ui+1 = ui + hux

∣∣∣
i
+
h2

2
uxx

∣∣∣
i
+
h3

6
uxxx

∣∣∣
i
+ · · · . (2.12b)

Here, subscripts of the spatial independent variables denote partial differentiation.

Then substitution of Eq. (2.12a) and Eq. (2.12b) into Eq. (2.9) yields

ũi = ui +
h2

2 + β
uxx

∣∣∣
i
+ O(h4). (2.13)

This representation displays two important features of this filter. As discussed before,

one of the main requirements for successful treatments of aliasing is adding dissipation.

Here, ui is being replaced with a quantity containing this property. In particular, it

can be seen that the dominant truncation error is diffusive, corresponding to addition

of a Laplacian (with diffusion coefficient h2/(2+β)). At the same time, the parameter

β and the grid spacing h control the actual amount of added diffusion. Thus, even

though a modified equation would contain extra diffusion at the level of the physical

second-order operators, this goes to zero with h2 rather than only with h as in the

first-order upwinding. Moreover, it can be shown (by carrying more terms in the above

Taylor expansions) that the O(h4) term is anti-diffusive, leading to some cancellation

of the effects at second order [33].

In the simulations relevant to time-dependent solutions in CFD, where the filter must
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be applied at each time step, the cumulative dominant error due to filtering after n

discrete time steps can be shown to be

n
h2

2 + β
uxx

∣∣∣n (2.14)

for a 1-D Burgers’ equation. It is clear from this that if the number of time steps

becomes excessive, this term could potentially completely damp all aspects of the

computed solution; this is a major disadvantage in this approach. But it can be seen

from this term that it can be controlled, at least to some extent, by the choice of

β. In addition, remark that Eq. (2.14) extends to multidimensions in the expected

way, viz., ∂2/∂x2 → ∆, where ∆ is the Laplace operator in the appropriate space

dimension.

There are additional items that should be investigated for the filter given in Eq.

(2.9). One of these is “frequency response” in the context of signal processing (in

which the signals are typically functions of time), and which will here, more appro-

priately for our purposes, be called wavenumber response since usually the filter is

applied spatially. Wavenumber response, Yang and McDonough [8], shows the effect

of β on magnitudes of all Fourier coefficients. Increasing β results in retaining more

high-wavenumber effects, hence reducing the ability to control aliasing; decreasing

β increases control of aliasing, but also increases diffusive truncation error: small β

implies large dissipation and truncation error; and large β leads to insufficient control

of aliasing—usually resulting in instability in nonlinear problems. Therefore choosing

a proper value of β is important, and this is to be investigated below.

To determine the wavenumber response in 1D, start with a more detailed Taylor

expansion of the Shuman filtered quantity ũ:

ũ = u+
1

2 + β

[
h2uxx +

h4

12
uxxxx +

h6

360
uxxxxxx + · · ·

]
. (2.15)
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Fourier transforming the above expansion, and considering only a single term from

the corresponding Fourier series, leads to

ãm = am +
1

2 + β

[
−m2h2 +

m4h4

12
+ · · ·

]
am,

=

[
1− 1

2 + β
(m2h2 − m4h4

12
± · · · )

]
am.

(2.16)

Using the Taylor expansion of the cosine function, it is obtained

ãm =

[
1− 2

2 + β
(1− cosmh)

]
am, (2.17)

where h is π/N ; and N is the number of “grid” points. This shows that if h → 0,

ãm = am,∀ m.

Wavenumber response curves, ãm/am vs. wavenumber, are shown for various val-

ues of β in Fig. 2.2. From this figure, it can be seen that different values of β result

in different filtering effects. Small values of β, e.g., 2, completely remove the high-

wavenumber components of a Fourier representation, which is what is needed to treat

aliasing. If β is increased, filtering is less effective and possibly not good enough, and

it can be seen that aliasing still exists at higher wavenumbers.

Figure 2.2: Wavenumber response with different filter parameter values [34].
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2.2.2 Shuman filter in higher space dimensions

As is true for the 1-D filter, this 2-D case can be derived from a mathematical mollifier

via the same procedure described above.

ũh(xi, yj) =

∫ yj+h

yj−h

∫ xi+h

xi−h
uh(ξ, η)δh(xi − ξ, yj − η)dξdη

=

h

[
1

4
(ui−1,j + ui,j−1 + ui,j+1 + ui+1,j) + β?ui,j

]
(β? + 1)h

=
ui−1,j + ui,j−1 + 4β?ui,j + ui,j+1 + ui+1,j

4 + 4β?
.

Figure 2.3: Discrete mollifier in 2D.

The discrete mollifier is the volume of the pyramid composed by x(i, j−1), x(i, j+
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1), x(i + 1, j), x(i − 1, j) and the top point. The edge length of every element is h.

Now define β ≡ 4β?. In 2D, the formula for the Shuman filter is, by analogy with

Eq. (2.9),

ũi,j =
ui−1,j + ui,j−1 + βui,j + ui,j+1 + ui+1,j

4 + β
. (2.18)

Note, however, that Eq. (2.18) is not the only possibility; in particular, there are no

terms such as ui−1,j−1. Including such terms results in additional filter parameters,

and it is preferred to avoid this here. Observe that the complete formula, used

in multigrid restriction operators, Briggs [35], includes these terms, and is highly

diffusive.

Then expand ui−1,j, ui,j−1, ui,j+1, and ui+1,j in Taylor series:

ui−1,j = ui,j − hux |i,j +
h2

2
uxx |i,j −

h3

6
uxxx |i,j ± · · · (2.19a)

ui,j−1 = ui,j − huy |i,j +
h2

2
uyy |i,j −

h3

6
uyyy |i,j ± · · · (2.19b)

ui+1,j = ui,j + hux |i,j +
h2

2
uxx |i,j +

h3

6
uxxx |i,j + · · · (2.19c)

ui,j+1 = ui,j + hux |i,j +
h2

2
uxx |i,j +

h3

6
uxxx |i,j + · · · (2.19d)

Substitution of Eq. (2.19) into the Eq. (2.18) yields

ũi,j = ui,j +
h2

4 + β
(uxx + uyy)

∣∣∣
i,j

+ O(h4). (2.20)

Note that Eq. (2.20) is not the form typically used in smoothing meteorological data.

In particular, in higher dimensions, more points than nearest neighbors are typically

used, as in multigrid restriction operators. This results in a more complicated—as

discussed above—and generally a more dissipative filter.
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The Shuman filter studied here can be extended to 3D as

ũi,j,k =
ui−1,j,k + ui,j−1,k + βui,j,k + ui,j+1,k + ui+1,j,k + ui,j,k−1 + ui,j,k+1

6 + β
, (2.21)

again, using only nearest-neighbor data. Expansion in Taylor series results in:

ũi,j,k = ui,j,k +
h2

6 + β
(uxx + uyy + uzz)

∣∣∣
i,j,k

+ O(h4).

The expressions in 2D and 3D involve, respectively, four and six nearest points, and

they show that the Shuman filter is a weighted average of nearest-neighbor solution

values. This property suggests that if grid-point spacing is coarse, filtered results may

not accurately represent the data from which they were obtained. In fact, it is likely

that such consideration—probably actual observations—led to use of more elaborate

forms of the Shuman filter in higher dimensions: nine- and 27-point, respectively,

filters in 2D and 3D. Nevertheless, as shown in the Taylor expansions, the leading

truncation errors,
h2

4 + β
(uxx + uyy) in 2D, and

h2

6 + β
(uxx + uyy + uzz) in 3D, are

diffusive (as in 1D), as is required for mollification.

2.3 Introduction to Padé filter

2.3.1 Mathematical Description

Padé filters are considered as examples of discrete filters with vanishing moments.

Wavelet analysis is performed using a single function called a wavelet, which can be

regarded as a filter. Wavelet transform and Fourier transform are both approaches

to signal analysis. In the analysis of wavelets, fine temporal analysis is done with

high-frequency versions, while fine frequency analysis uses low-frequency versions.

The essence of the wavelet transform is to view signals at different scales [36]. A

wavelet [37] has p vanishing moments if and only if the wavelet scaling function can
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generate polynomials up to degree p−1. The “vanishing” part means that the wavelet

coefficients are zero for polynomials of degree at most p− 1. The wavelet analysis is

not applicable to the Padé filter, which corresponds to Fourier transform.

The algorithm used in Padé filter construction is given in [14] and references

therein. The derivation of Padé filters is cited from [38]. The basic form is

Nj∑
m=−Mj

vjmφ̄j+m =

Lj∑
l=−Kj

wjl φj+l, (2.22)

requiring solution of a linear system of equations, as noted earlier. φ is a 1-D field

function, and φ̄ is the corresponding filtered function. vjm, w
j
l are constraints, and

Mj, Lj, Kj, Nj are numbers of constraints. The Fourier transform, Ĝ(k), associated

with a Padé filter is given by

Ĝ(k) =

∑Lj

l=−Kj
wji e

−i∆kl∑Nj

m=−Mj
vjme−i∆km

, (2.23)

and in light of the filter definition, weight factors should satisfy the properties,

Lj∑
l=−Kj

wjl = 1, (2.24a)

Nj∑
m=−Mj

vjm = 1, (2.24b)

Nj∑
m=−Mj

mivjm =

Lj∑
l=−Kj

liwjl , i = 1, 2, ...., n− 1. (2.24c)

Note that the first two of constraints provide consistency as discussed earlier for the

Shuman filter. It is straightforward to constrain Padé filters to a specific frequency

(wavenumber) range; and use of Padé filters gives more flexibility in constructing

filters which are closer to spectral cutoff filters. In this thesis, a symmetric Padé filter
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is employed, namely, Mj = Nj and Kj = Lj.

In the present work, explicit filtering was performed using an optimized high-

accuracy and maximum-resolution (HAMR) scheme [15]. To obtain φ̄, by filtering a

variable φ, the HAMR formula employed is given by

φ̄i + α(φ̄i−2 + φ̄i+2) + β(φ̄i−1 + φ̄i+1) =
3∑
l=0

Pl
2

(φi+l + φi−l)

for interior points. Values for the filter coefficients are given in Table 2.1.

Table 2.1: Interior-point Padé filter coefficients

α β P0

0.5673952755 0.1209216774 0.9931634217

P1 P2 P3

1.2890384701 0.2965587062 0.0006836578

Near the boundary, it is impossible to maintain Padé filter symmetry (unlike the

Shuman filter case) due to higher-order accuracy; an asymmetric scheme of the form

is ai · [φ̄1, . . . , φ̄5] = bi · [φ1, . . . , φ6], i = 2, 3. The coefficients a2, b2 and a3, b3 for the

second point and third points near the boundary are given respectively in Table 2.2.

Table 2.2: Padé filter coefficients near boundaries
a2 b2 a3 b3

0.3096256995 0.3084688023 0.1477868412 0.1470348738

1.0 1.0057844862 0.6357553622 0.6395151994

1.1380646293 1.1264956568 1.0 0.9924803256

0.4106696169 0.4222385894 0.6357553622 0.6432750366

0.0 -0.0057844862 0.1477868412 0.1440270040

- 0.0011568972 - 0.0007519674

This allows construction of filters that closely approximate spectral cutoff filters
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without the expense of transforming the solution to the spectral domain. Parameters

in Padé filters need not be changed, unlike the Shuman filter where β can adjust

the simulation accuracy. Which filter is more effective will be presented in the next

section.

2.3.2 Relationship to Shuman filter

Eq. (2.24c) contains n constraints on wjl and is solvable if and only if Lj +Kj +1 ≥ n.

If Lj +Kj + 1 > n then additional constraints must be applied.

For derivative and filtering operations to commute to order n, the minimum num-

ber of degrees of freedom for a discrete filter is given by Eqs. (2.24). This condition

gives the minimum filter support, which can be altered depending on the desired

shape of the Fourier transform. If different shapes of the Fourier transform Ĝ(k) asso-

ciated with filters are desired, the additional linear (or nonlinear) constraint(s) should

be changed. A desirable constraint on a filter is that its Fourier transform be zero at

the cutoff frequency, i.e.,
Lj∑

l=−Kj

(−1)wjl = 0. (2.25)

Eqs. (2.24) and Eq. (2.25) represent the minimum number of constraints which

should be imposed on the filter. In [14], Vasilyev et al. show that with increase in the

number of vanishing moments, a filter becomes a better approximation to the sharp

cutoff filter.
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Figure 2.4: Values of Weight Factors and the Numbers of Vanishing Moments for

Different Minimally Constrained Discrete Filters [14]

In case 1, only one vanishing moment is applied, and this is equivalent to the

Shuman filter. It indicates that the Padé filter with only one vanishing moment is

the same as the Shuman filter.

2.3.3 Implementation

The accuracy of the Padé filter depends on how many filter coefficients used. For

interior points, the Padé filter has five vanishing moments, so the commutation error

is O(∆6); for boundary points, the Padé filter has four vanishing moments, so the

commutation error is O(∆5), where ∆ is the associated filter width, and it is equal to

the grid spacing in this thesis. This shows that the Padé filter can be a high-accuracy

filter. If different accuracies are required, the number of vanishing moments can be

changed. This is different from Shuman filter, which is second-order accurate.
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Chapter 3

Results and Discussions

In this chapter, the experimental results at Re = 1000 and Re = 2000 are shown, and

the comparison of Shuman and Padé filters is based on them. Cases with Re = 1000

and 2000 are used to prove that improper Shuman filter parameters will lead to wrong

results. There are two parts of comparison of Shuman and Padé filters. One is based

on perturbed sine waves and the other one is based on the lid-driven cavity problem.

3.1 Experimental Results

The lid-driven cavity problem is a fundamental problem in CFD, and many compli-

cated engineering problems are based on it. Liberzon et al. performed experiments

showing flow status with different Reynolds numbers in [39]. They report that flow

is steady for Re < 1700 at least; in the range 1700 < Re < 1970, steady-unsteady

transition occurs; the flow becomes oscillatory when Re ≥ 1970. However, in the

stability analysis, flow is quasiperiodic at Re = 1970, and their statements regarding

this do not agree; but their PSDs and time series do agree in [39]. Comparison be-

tween experimental results and numerical simulations are made in the next section to

show that improper Shuman filter parameter values will result in inconsistency with

physical experimental results.
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(a) (b)

Figure 3.1: Experimental results with Re = 1970; (a) Dimensionless time evolution

of u velocity component, (b) Fourier transform of u velocity component, solid red

and dash blue lines correspond to experiments with water and glycerin solution,

respectively [39].

In [39], Re = 1970 is employed, which is close to the value 2000 used in the present

research. The physical experimental location of measurements is (−0.325,−0.378, 0)

in meters within a 1m cube [39]. Flow oscillations with a significantly large amplitude

are shown in Fig. 3.1. The corresponding power spectral density shows that the flow

is quasiperiodic, although the authors describe it as periodic at Re = 1970. It was

pointed out in [39] that some oscillations were caused by finite-amplitude experimental

noise. This is not true from what can be seen in Fig. 3.1. It can be seen from Fig. 3.1

(a) that some peaks are two thirds of the highest magnitude. If they are noises, then

the experiment in [39] does not make any sense. Besides, it can be seen from Fig. 3.1

(b) that the flow is quasiperiodic since there are some incommensurate harmonics.
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3.2 Simulations

In previous research, the Shuman filter parameter is usually set to be 2. In this

section, different Shuman filter values are explicitly applied to velocities computed for

the lid-driven cavity. Reynolds numbers employed are 500, 1000, 1500 and 2000. The

physical location (0.175, 0.122, 0.5) is analyzed in this thesis, which is corresponding

to the experimental location (−0.325,−0.378, 0) in [39], left bottom corner of the lid

driven cavity. In order to match this location on a discrete computational grid, the

nearest grid point to the physical location is chosen to get the most accurate results.

The following two sections take two examples of all simulation work, Re = 1000 with

grid points 113 and Re = 2000 with grid points 813. In the first case, β = 1800,

2000, 3000 and 5000 are applied to each velocity component. In the second case, β

is set to 2, 25, 50 and 100. Time series, power spectral densities and phase portraits

are analyzed for the u velocity component in every case. Applying power spectral

analysis to a data set (usually a time series, but sometimes a spatial distribution)

yields the power spectral density (PSD), a Fourier-space representation of energy (in

the L2 sense) of a signal as a function of frequency (or wavenumber). PSDs can

provide good information of flow status.

The program used in this thesis solves the 3-D incompressible Navier–Stokes equa-

tions of fluid flow. The pressure-velocity coupling is treated via Gresho’s Projection

1 method [40]. Spatial derivatives are approximated using a 2nd-order, centered

finite-volume discretization with staggered indexing. Time integration is performed

with the trapezoidal method, with delta-form Douglas and Gunn time splitting [41].

Nonlinearities are handled with Delta-form Newton-Kanorovich (quasilinearization)

implemented in a “block-Jacob” diagonal fashion [33].
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3.2.1 Simulation results with Re = 1000, 113 grid points

In this case, different Shuman filter parameter values are applied to velocities, and

through trying various filter parameters, it is found that near β = 100, 500, 1000,

3000 and 5000, the flow status changes.

Figure 3.2: u component velocity with different Shuman filter values for 113 grid

points, Re = 1000

In Fig. 3.2, it is obvious that under different filter parameter values, the flow

status is different. From β = 2 to 1000, flow is steady. When β = 3000, the flow

behaves in a turbulence fashion. Flow usually does not change directly from steady

to a turbulent status, therefore, there must be transition steps. One sequence of

transitions that a flow will undergo as Re is increased to arrive at a chaotic state is

steady, periodic, quasiperiodic and turbulent. This theoretical sequence is presented

by Ruelle and Takens [42]. Although Re is fixed, the change of filter parameter value

causes the computed flow to undergo this same sequence, showing the importance

of choosing a proper filter parameter. An improper filter parameter value can result

in qualitatively incorrect flow behavior predictions. Transitions (bifurcations) of flow

states with different filter parameters are investigated in the following.
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Figure 3.3: Velocity, PSD and phase-portrait with 113 grid points; Re = 1000, β =

1800

The time series of Fig. 3.3, corresponding to β = 1800, appears to be periodic. In

order to prove this, the power spectral density and phase portrait are analyzed. A

phase portrait is a plot of two components of a dynamical system against one another

as time evolves by Alligood [43]. It is a way quantitatively to assess the flow state.

If a flow is steady, trajectories of the initial point (u0, v0) will ultimately end at one

point (us, vs), and this ending point is termed the attractor; if a flow is periodic, the

structure of attractor takes the form of a “limit cycle”; if a flow is subharmonic, the

trajectory is two overlapping circles [43]. Part(b) of the figure shows that the interval

between harmonics is the same, implying that the flow is periodic.
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Figure 3.4: Velocity, PSD and phase-portrait with 113 grid points; Re = 1000, β =

2000

With β = 2000, from Fig. 3.4(a), it is seen that the flow behaves somewhat

periodically, but the magnitude of velocity does not exactly repeat. Velocities at

some points are over the green line provided to detect perfect periodicity. From the

time series, it is expected that the flow is probably quasiperiodic. From Fig. 3.4(b),

the power spectral density, it can be seen that the intervals of harmonics are not

the same with a suggestion of an incommensurate frequency. In (c), phase portrait

shows more than one circle; however, they are interweaved. Therefore, the flow is

quasiperiodic at Re = 1000, β = 2000. The flow should be steady at Re = 1000 [39];

therefore, the simulation results are inconsistent with physical phenomena.
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Figure 3.5: Velocity, PSD and Phase-portrait with 113 grid points; Re = 1000, β =

3000

With β = 3000, from Fig. 3.5 (a), the flow seems to be both quasiperiodically and

turbulently. The same structure does repeat except during the initial transient. In the

Fortran code, the time step size, time steps and total time are set to be 0.0125, 40000

and 500 sec, respectively. The PSD is calculated using data between 400 and 500 sec

because velocity time series has passed the transitive state and appears stationary.

The PSD shows that the intervals of harmonics are not the same. The phase portrait

shows one big cycle and one small cycle. Therefore, the flow is quasiperiodic with

noise at β = 3000, which is again inconsistent with physical phenomena.
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Figure 3.6: PSD and Phase-portrait with 113 grid points; Re = 1000, β = 5000

With β = 5000, from Fig. 3.2 above, the time series shows the flow is turbu-

lence. The time step size, time steps and total time are 0.0125, 40000 and 500 sec.,

respectively, for the simulation. The PSD is calculated as in the preceding case. In

Fig. 3.6 (a), the power spectral density obviously shows that the intervals are not the

same. There is no obvious cycle in the phase portrait, and lines are interweaved with

each other. The power spectral density and the phase portrait suggest the flow is

turbulent.

In this case, it is obvious that different Shuman filtering values result in different

flow states, proving the importance of choosing a proper filter parameter value.

3.2.2 Simulation results with Re = 2000, 813 grid points

In order to investigate the effect of Shuman filtering values more deeply, 813 grid

points are employed with Re = 500, 1000, 1500 and 2000 shown in Table 3.1 below.
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Figure 3.7: Velocity, PSD and phase portrait with 813 grid points, Re = 2000, β = 25;

(a) Velocity, (b) Power spectral density, (c) Phase portrait.

For Re = 2000, flow is periodic. In order to demonstrate this, the power spectral

density is shown in the Fig. 3.7(b). The corresponding time series and phase portrait,

Fig. 3.7(a) and (c), respectively are in agreement with this. However, this is not

consistent with the experimental results. In [39], it is pointed out that flow exhibits

oscillations and has subsequent multiple harmonics in the power spectral density

analysis shown in Fig. 3.1.
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Figure 3.8: Velocity, PSD and phase portrait with 813 grid points, Re = 2000, β = 50;

(a) Velocity, (b) Power spectral density, (c) Phase portrait.

In Fig. 3.8, the flow seems periodic from the time series alone; but some peaks go

over the green line indicating that the magnitude is not a constant. The power spectral

density shows harmonics with different intervals, and the phase portrait also shows

the flow is “mildly” quasiperiodic, consistent with experimental results of Liberzon et

al. [39].

33



-0.2

-0.15

-0.1

-0.05

 0

 0  50  100  150  200  250  300  350  400  450  500

u

t

(a)

-100

-90

-80

-70

-60

-50

-40

-30

-20

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

P
o
w

e
r

Frequency

(b)

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

-0.01  0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08

u

v

(c)

Figure 3.9: Velocity, PSD and phase portrait with 813 grid points, Re = 2000, β =

100; (a) Velocity, (b) Power spectral density, (c) Phase portrait.

There is no repeating structure in the time series shown in Fig. 3.9; the intervals

of harmonics are obviously not the same in Fig. 3.9(b); and no clear-cut cycles exist

in Fig. 3.9(c), the phase portrait. All indicate that the computed flow is turbulent,

which is inconsistent with experimental results.

Through Fig. 3.1 to Fig. 3.9, it is obvious that flow status changed with different filter

parameter values. It is easy to get a wrong flow status conclusion with improper β.

3.2.3 Additional simulation results

In the preceding sections, simulation results are analyzed at Re = 1000 with 113

grid points and Re = 2000 with 813 grid points. In this section further simulation
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results are presented to prove that improper filter parameter values result in incorrect

prediction of flow status.

Table 3.1: Flow status at different Re with different β

Grid=113 Re = 500 Re = 1000 Re = 1500 Re = 2000

β=2 steady steady steady steady

β=100 steady steady steady steady

β=500 steady steady steady steady

β=1000 steady steady steady steady

β=1800 steady periodic -

β=2000 steady quasiperiodic -

β=3000 steady quasiperiodic with noise turbulent turbulent

β=5000 steady turbulent turbulent turbulent

Grid=813 Re = 500 Re = 1000 Re = 1500 Re = 2000

β=2 steady steady steady steady

β=25 steady steady steady periodic

β=50 steady steady steady quasiperiodic

β=100 steady steady periodic turbulent

β=500 steady steady - turbulent

β=1000 steady steady quasiperiodic turbulent

β=3000 steady steady - turbulent

β=5000 steady steady - turbulent

From the above table, it can be seen that with 113 grid points, the simulation

results are not as accurate as results computed with 813 grid points. The way to gage

accuracy is the physical flow status. For example, when Re = 1000, flow should be

steady, but the simulation results with 113 grid points show some incorrect behaviors;

when Re = 2000 with 813 grid points, incorrect behaviors are also showed. The flow

experienced steady, period, quasiperiodic and turbulent, which indicates that β can

be regarded as a bifurcation parameter. On one hand, how many grid points employed

affects the results; on the other hand, an improper filter parameter value will produce
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wrong results.

3.2.4 Selection of optimal β

It is clear from the mathematics of the Navier–Stokes equations that solutions become

less smooth as Re increases (see, e.g., Foias et al. [44]). This implies that in order to

get an adequate discretization, more terms are needed in Fourier representations, and

hence, more grid points are required. In turn, this suggests that for if grid is fixed,

increasing Re will result in increased aliasing, so more filtering (smaller values of β)

will be necessary. Conversely, for fixed Re, as the number of grid points is decreased,

aliasing can be expected to become more prevalent.

Discretization errors—simple truncation errors—are also present, and it is not

straightforward to establish to what extent these are interacting with aliasing. More-

over, the Shuman filter produces its own truncation error, which depends on β, as

already described. In order to minimize the total error, an optimal β needs to be

selected.

The N.–S. equations are nonlinear; therefore, with each new time step of a numeri-

cal solution, they may generate new, higher Fourier modes. Except for highly-resolved

DNS calculations this will result in aliasing if Re is sufficiently high. It is difficult

to predict the degree to which this occurs in detail. Moreover, aliasing of sufficiently

high magnitude is sufficient to destabilize evolution of a numerical solution. On the

other hand, if it is controlled, but not entirely removed, a robust numerical scheme

may remain stable but produce completely wrong solutions. The method used in this

thesis exhibits this property (as shown in the preceding sections), which means that

the optimal values of β are needed to lead to at least qualitatively correct solutions

with respect to experimental results and those of relatively low-Re DNS.

Analysis of truncation error, however, is fairly straightforward since computed

solutions have been mollified. Thus, our approach to finding optimal β values is to
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set the grid spacing and Re. Then calculate solutions for a range of β so as to find the

one that produces the smallest solution residual in the L2 norm, that is, R(h,Re, β),

which is related to grid space, the Reynolds number and the filter parameter value.

Then seek the value of β for which this is smallest (see Appendix A to obtain L2

norm). Observe that this residual is discrete. Hence, its value arises from iteration

error arising from iteratively (at each time step) solving the N.–S. equations and

from the truncation error of the filter. An absolute iteration tolerance of 10−6 which

should be smaller than the filter truncation error is employed. There is an additional

truncation error arising from numerical approximation of the above integral, but

for fixed grid spacing and Re this is expected to be relatively constant. Thus, the

residuals are expected to depend almost entirely on truncation error induced by the

Shuman filter.

When an optimal value of β is found in this manner, the corresponding solu-

tion is compared with experimental and/or DNS results to verify correct qualitative

behavior.

Generation of numerical data

In this section, it is tried to find the optimal β using the approach suggested above

in conjunction with experimental results. The Reynolds number is global in this

research, e.g., Re = UL/ν, where U is the global velocity, and L is the length of lid

driven cavity. The errors are calculated using trapezoidal method. The standard to

judge the best β is the minimal error. In this thesis the best β values for grid sizes

113, 213, 413, 513 and 813 at Reynolds numbers 1500, 1700 and 2000 are found. Part

of these results is shown as in Tables 3.2 to 3.4. Define ‖x‖ to measure the size of

a vector x; here we use the L2 norm, ||x||2 =
√
x1

2 + x2
2 + · · ·xN 2, where x1 to xN

are the components of x. In the analysis of L2-norm error here, ‖x‖ represents the

residual error. The residual error should be the value of the left side minus right side
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of Eq. (3.6b) since the values on both sides are not equal anymore.

Table 3.2: L2 error with different β values

Grid Re β L2 norm error

11 1500 875 5.644E-05

11 1500 895 5.614E-05

11 1500 900 5.607E-05

11 1500 905 5.600E-05

11 1500 910 5.591E-05

11 1500 915 5.632E-05

11 1500 925 6.244E-05

11 1500 1000 7.300E-05

21 1500 2500 2.491E-05

21 1500 2550 2.489E-05

21 1500 2600 2.48740E-05

21 1500 2610 2.48719E-05

21 1500 2620 2.48716E-05

21 1500 2630 2.48744E-05

21 1500 2650 2.490E-05

21 1500 2700 2.499E-05

41 1500 500 1.273E-05

41 1500 700 1.259E-05

41 1500 900 1.254E-05

41 1500 2000 1.245E-05

41 1500 3000 1.239E-05

41 1500 4000 1.235E-05

41 1500 5000 1.233E-05

41 1500 8000 1.231E-05
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Table 3.3: L2 error with different β values

Grid Re β L2 norm error

11 1700 810 5.653E-05

11 1700 830 5.618E-05

11 1700 840 5.612E-05

11 1700 850 6.563E-05

11 1700 875 7.032E-05

21 1700 1290 2.4971E-05

21 1700 1295 2.4966E-05

21 1700 1300 2.4964E-05

21 1700 1305 2.4969E-05

21 1700 1310 2.4986E-05

41 1700 1000 1.230E-05

41 1700 2000 1.221E-05

41 1700 3000 1.217E-05

41 1700 4000 1.214E-05

41 1700 5000 1.214E-05

41 1700 8000 1.208E-05

In order to show simulated flow is steady, plots of velocity in the x direction in

terms of time (shown in next section) are made. In Tables 3.2 and 3.3, Reynolds num-

bers are 1500 and 1700, respectively. The minimal L2-norm error which corresponds

to the best β for different grid spacing from these tables is shown underlined.

Whenever solutions to a problem are obtained via numerical approximation, it is

necessary to investigate the accuracy of the solutions. The theoretical ratio of the

errors for two different step sizes is known to be simply [45]

erhi
ehi

= rq1 . (3.1)

where ei is the dominant error, h and rh are the step sizes, and r is the step size
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ratio. In our research, r = 1/2 which means a reduction in the step size by a factor

of two, and q1, the order of accuracy, needs to be known.

All the error in this research is calculated through the equation

e =

√√√√i=N∑
i=1

e2
i . (3.2)

The sum of error at all points needs to be known. So the accurate equation should

be

e =

√√√√i=N∑
i=1

e2
ih =

√∑
e2
i

√
h. (3.3)

From Table 3.4, choose β = 1000, grid points 213 (h = 0.05) and 413 (h =

0.025) as an example. We get eh/eh/2 is around 3.45, where eh is the summation of

R(0.05, 2000, 1000) at all points, and eh/2 is the summation of R(0.025, 2000, 1000) at

all points. Through (1/r)q1 = 1/3.45, where r = 2, we get q1 ' 2, so the accuracy

of the scheme is second order. This indicates that Shuman filter is second order

accuracy, and if higher-order accuracy is required, then Shuman filter is not a good

option.

Table 3.4: L2-norm error with different β

11 2000 1000 7.2450093E-05

11 2000 1100 7.4679097E-05

11 2000 1150 6.9222246E-05

11 2000 1170 6.4424952E-05

11 2000 1175 6.0191185E-05

11 2000 1170 6.5623688E-05

11 2000 1200 7.0535665E-05

21 2000 600 2.6201233E-05

21 2000 700 2.5623269E-05
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21 2000 800 2.5174551E-05

21 2000 810 2.5134406E-05

21 2000 820 2.5097004E-05

21 2000 830 2.5064319E-05

21 2000 840 2.5235737E-05

21 2000 900 2.8475570E-05

21 2000 1000 2.9091771E-05

21 2000 1100 2.9451430E-05

21 2000 1300 2.9747631E-05

21 2000 1400 3.0740241E-05

41 2000 1000 1.1939765E-05

41 2000 1500 1.1838957E-05

41 2000 2000 1.1753959E-05

41 2000 2100 1.1748787E-05

41 2000 2130 1.1748333E-05

41 2000 2140 1.1748234E-05

41 2000 2150 1.1748326E-05

41 2000 2150 1.1748508E-05

41 2000 2250 1.1753145E-05

41 2000 2500 1.1791923E-05

41 2000 3000 1.1891751E-05

41 2000 4000 1.1883767E-05

81 2000 5000 5.4794937E-06

81 2000 4000 5.3762151E-06

81 2000 3000 8.1433909E-06

81 2000 2500 5.3700232E-06

81 2000 1700 7.1109876E-06

81 2000 1600 5.5168016E-06

81 2000 1500 5.2395458E-06

81 2000 1450 7.1159921E-06

81 2000 1400 5.5401320E-06

81 2000 1350 7.2279677E-06
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81 2000 1200 6.3525194E-06

81 2000 1000 5.2403352E-06

81 2000 800 6.9271482E-06

Time series and PSDs

Figs. 3.10 and 3.11 show the dimensionless time evolution of the u velocity component

vs optimal filter parameter β.
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(a) (b)

(c) (d)

Figure 3.10: Dimensionless time evolution of the u velocity component with optimal

β, Re = 1500; (a) grid spacing=0.1, β = 910, (b) grid spacing=0.05, β = 2620, (c)

grid spacing=0.0125, β = 1700, (d) experimental results [39].

From the experimental results [39], the state for Re = 1500 should be steady,

and this is also supported by theory [46]. This also holds in Figs. 3.10 (a) and (b).

However, it is not the case in (c). In the experimental results (d), there are some
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small oscillations and they are noises from the experiment device proved in [39].

The calculation of L2 norm-error is not the only standard needed to choose the

optimal value of β. In order to choose the best β, experimental results must be used

as reference.

(a) (b)

(c) (d)

Figure 3.11: Dimensionless time evolution of the u velocity component with optimal

β, Re = 1700; (a) grid spacing=0.1, β = 840, (b) grid spacing=0.05, β = 1300, (c)

grid spacing=0.0125, β = 1700, (d) experimental results. [39]
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From Fig. 3.11, in cases (a) and (b), i.e. grid points 113 and 213, the flow is steady

[39]. This indicates that the velocities have been smoothed too much.

(a) (b)

(c) (d)

Figure 3.12: Dimensionless time evolution of the u velocity component with optimal

β, Re = 2000; at the cavity middle plane (a) grid spacing=0.1, β = 1175 (b) grid

spacing=0.05, β = 830 (c) grid spacing=0.025, β = 2140 (d) grid spacing=0.0125,

β = 1500

The location used in above figures still is (0.175, 0.122, 0.5), corresponding to the

experimental location (−0.325,−0.378, 0) in [39]. Note that in the case Re = 1500,

no matter which spacing size is used, the velocity is steady except at beginning of

time. But in case Re = 2000, when grid spacing is 0.1, it can be seen the solution is

quasiperiodic (oscillations that appear to follow a regular pattern but which do not

have a fixed period); for grid spacing 0.05, it is steady; for grid spacing 0.025, it is
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noisy periodic.

From previous research, further increase of the Reynolds number up to Re = 2000

leads to the flow oscillations with a significantly larger amplitude. Solution behavior

is the same as before: when 213 grid points are used, and the optimal β is chosen

according to the L2-norm error, the flow is steady; this is not in accordance with

experimental data.

(a) (b)

Figure 3.13: Power vs. frequency; (a) Re = 2000, h=0.1, optimal β=1175, (b) Re =

2000, h=0.025, β=2140

Next, use power spectral density to make a more detailed analysis. Fig. 3.13

shows power vs. frequency for grid spacings 0.1 and 0.025. Compute the same time

series length, and the same number of points (8192) for the PSD for both cases.

β=1175 and β=2140 are chosen here because they produced the minimal L2-norm

error respectively. The PSD analysis further proves that the flow status is consistent

with the times series result.

Relation among Re, grid spacing, optimal β

In this analysis, two cases are studied, Re = 1500 and Re = 2000. In each case,

consider four different grid sizes, 113, 213, 413 and 813. In the preceding subsection,

optimal β under various conditions is found. In Fig. 3.14 the optimal filter parameter
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value is plotted (based on minimum L2 norm of error) versus grid spacing. Grid

points 113, 213, 413 and 813 correspond to grid spacings 0.1, 0.05, 0.025 and 0.0125,

respectively.

It can be seen that for the case Re = 1500, optimal β decreases monotonically with

increasing grid spacing. In Fig. 3.14 it can be seen that when grid spacing is 0.025

optimal β is very large indicating almost no need to filter. In case 2 (Re = 2000),

the optimal parameter decreases monotonically until a minimum is reached, and then

rises monotonically. This possibly can be explained by viewing discrete solutions

as if they were weak analytical solutions. Initially, as grid spacing is decreased the

solutions appear to be more irregular; thus a smaller filter parameter corresponding

to stronger filtering is required. When nearly complete resolution is achieved, further

decrease in grid spacing leads to more regular behavior and an attendant ability to

employ less filtering indicating a higher filter parameter value.

(a) (b)

Figure 3.14: Optimal filter parameter value vs. grid spacing in two cases; (a) Re =

1500, (b) Re = 2000.
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(a) (b)

(c) (d)

Figure 3.15: L2-norm error vs. filter parameter, Re = 1500; (a) h = 0.1, (b) h = 0.05,

(c) h = 0.025, (d) h = 0.0125.
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(a) (b)

(c) (d)

Figure 3.16: L2-norm error vs. filter parameter, Re = 2000; (a) h = 0.1, (b) h = 0.05,

(c) h = 0.025, (d) h = 0.0125.

Figures 3.15 and 3.16 display the L2-norm error plotted against the filter pa-

rameter value β. It is readily observed that filtering error decreases monotonically

with grid spacing by comparing parts (a) through (d). But once the grid spacing is

sufficiently small to provide nearly full resolution, the optimal filter value begins to

increase slightly. The L2 norm of error here is total error including all grid points.

This also shows one disadvantage of the Shuman filter: it is hard to choose an optimal

filter parameter value and hard to give an equation to get it.
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3.3 Comparison between Shuman and Padé filters

This section makes direct comparisons between Shuman and Padé filters. It is based

on two parts; one is a simple perturbed sine wave in 1D and 3D; the other one is the

3-D lid-driven cavity.

3.3.1 Applications of filters to perturbed sine wave

Shuman and Padé filters in 1D

In this section, both Shuman and Padé filters are applied to a perturbed sine wave.

In order to investigate the two filters’ effect, three different types of noise are added

to the this function.

The first perturbation is produced by adding terms analogous to Fourier aliasing.

In mathematics, a Fourier series represents functions, or signals, as the sum of a set

of (usually) simple oscillating functions, namely sines and cosines. Therefore, the

Fourier aliasing can be constructed as

0.1 cos

(
2N

3
t(i)

)
+ 0.05 sin

(
3N

5
t(i)

)
, i = 1, 2, . . . , ns,

where ns is the sample size (taken to be 101), and N is a number larger than the

sample size used for a discrete reconstruction. The perturbed sine wave becomes,

u(i) = s(i) + 0.1 cos

(
2N

3
t(i)

)
+ 0.05 sin

(
3N

5
t(i)

)
, (3.4)

where N = 101 will be used herein, and s is the pure sine wave. Constants 0.1 and

0.05 are used to adjust the relative amplitudes of added noise. This form was chosen

to represent the fact that modes leading to aliasing have wavenumber starting at 2N ,

but they affect all lower wavenumbers; see, e.g., Ames [23].

The second noise is produced randomly by averaging (pseudo) random numbers r1
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and r2 obtained from the Fortran 90 intrinsic subroutine RANDOM_NUMBER,

[47]. Then the perturbed sine wave is,

u(i) = s(i) + 0.5(r1(i) + r2(i)), i = 1, 2, . . . , 101. (3.5)

The third perturbation is generated by a linear combination of the former two.

Shuman and Padé filters are applied separately to filter these noises. Filters are

applied 100000 times to the same signal in order to produce better timing results. In

particular, the Fortran timer employed is the intrinsic subroutine SECNDS which has

only millisecond resolution. In a Gflops context, the filters are studied must be run

many times to produce reliable timing results. But in a sense, this is not unrealistic

because a typical CFD calculation will be run for many thousands of time steps, with

filtering required for each of these.

In most research, the Shuman filter parameter value is usually set to β = 2 for

reasons that are obvious from Fig. 2.2; it is adhered to this in the present work. As

can be seen from Eq. (2.8) and Fig. 2.2, if a large filter parameter is employed, the

filtering effect would be very small; use of β = 2 ensures that sufficient filtering is

applied to the perturbed sine wave to remove all wavenumber contributions beyond

those actually computed.
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Table 3.5: Error and execution time for the two filters

Fourier aliasing only

Induced error 7.8482× 10−3

Error after Shuman filtering 4.0897× 10−3

Error after Padé filtering 4.8700× 10−3

Shuman filter execution time 0.2969

Padé filter execution time 0.9648

Random number generator only

Induced error 2.1978× 10−3

Error after Shuman filtering 2.2969× 10−3

Error after Padé filtering 1.8594× 10−3

Shuman filter execution time 0.3125

Padé filter execution time 0.8789

Combination

Induced error 7.8730× 10−3

Error after Shuman filtering 4.1631× 10−3

Error after Padé filtering 4.8608× 10−3

Shuman filter execution time 0.2891

Padé filter execution time 0.8750

Two standards used in this analysis to assess filter performance are execution time

and error after application of the filter. Results are summarized in Table 3.5 if only

Fourier noise exists, error added to the pure sine wave (termed “Induced error” in

the above table) is 7.8482 × 10−3. The Shuman filter removes approximately half

of this error; and the Padé filter also decreases the error, but not as effectively. If

only random error exists, error added to the pure sine wave is 2.1978 × 10−3. The
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Shuman filter does not decrease this error; but the Padé filter does, and this is the

only case where the Shuman filter works worse than the Padé filter, as can be seen

in Table 3.5. It is easily seen by comparing arithmetic operations that the Shuman

filter is significantly more efficient than the Padé filter, even when several passes of

the former are used. The third case included in the table is a combination of the two

forms of noise; similar to the first case, the Shuman filter decreases the error and is

more efficient than the Padé filter. Again, the Shuman filters require significantly less

execution time than does the Padé filter, approximately a factor of three.

Figure 3.17: Comparison of u vs. t with only Fourier aliasing, only random and

both; (a) only Fourier aliasing, (b) zoomed in, (c) only random, (d) zoomed in, (e)

combination, (f) zoomed in. Red line, pure sine wave; green line, aliasing; blue line,

Shuman filter; purple line, Padé filter.

As shown in Fig. 3.17, no matter which type of error is chosen, both Shuman and

Padé filters work reasonably well for this 1-D problem. Figures 3.17 (a)(c)(e) show

that after application of either Shuman or Padé filters, the filtered perturbed waves

nearly overlap the original (noise-free) pure sine wave. Nevertheless, the perturbation
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is still obvious in the zoom ins; but both Shuman and Padé filters smooth the results.

Remark that the Shuman filter seems to underestimate the pure sine wave, while

Padé filter leads to overshot. One should expect that somewhat different choices of

filter parameters would result in different overall behaviors of both filters.

Application of Shuman and Padé filters in 3D

In this section, the same three types of noise previously added to the pure sine wave

in 1D are used, in three directions as shown in the following

u(i) = s(i) + 0.1 cos

(
2N

3
t(i)

)
+ 0.05 sin

(
3N

5
t(i)

)

v(i) = s(i) + 0.1 cos

(
2N

3
t(i)

)
+ 0.05 sin

(
3N

5
t(i)

)

w(i) = s(i) + 0.1 cos

(
2N

3
t(i)

)
+ 0.05 sin

(
3N

5
t(i)

)
in the first case;

u(i) = s(i) + 0.5(r1(i) + r2(i))

v(i) = s(i) + 0.5(r1(i) + r2(i))

w(i) = s(i) + 0.5(r1(i) + r2(i))

in the second case;

u(i) = s(i)0.1 cos

(
2N

3
t(i)

)
+ 0.05 sin

(
3N

5
t(i)

)
+ 0.5(r1(i) + r2(i))

v(i) = s(i)0.1 cos

(
2N

3
t(i)

)
+ 0.05 sin

(
3N

5
t(i)

)
+ 0.5(r1(i) + r2(i))

w(i) = s(i)0.1 cos

(
2N

3
t(i)

)
+ 0.05 sin

(
3N

5
t(i)

)
+ 0.5(r1(i) + r2(i))
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in the third case. Shuman and Padé filters are separately applied to these noise

types. Both filters decrease the effect of aliasing, but from the error shown in the

tables below, it is evident that Padé filters are less efficient in 3D; the Shuman filter

still works well in 3D. The advantage of the Shuman filter on execution time is more

pronounced in 3D. Its execution time is approximately one ninth that of the Padé

filter’s, as can be seen in Table 3.6, and as should be expected based on 1-D timings.

In general, pentadiagonal banded-matrix systems must be solved, line by line, in each

of the three directions for the Padé filter being used here. Although the required

arithmetic is O(N), where N is the total number of points, it is still significantly

greater than required by explicit applications of the Shuman filter.
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Table 3.6: Error and execution time for 3-D signal

Fourier aliasing only

Induced error 0.6789

Error after Shuman filtering 0.4386

Error after Padé filtering 0.6053

Shuman filter execution time 0.0547

Padé filter execution time 0.4102

Random number generator only

Induced error 0.1815

Error after Shuman filtering 0.1392

Error after Padé filtering 0.1678

Shuman filter execution time 0.0547

Padé filter execution time 0.4258

Combination

Induced error 0.7120

Error after Shuman filtering 0.4672

Error after Padé filtering 0.6327

Shuman filter execution time 0.0547

Padé filter execution time 0.4219
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Figure 3.18: Comparison of u vs. t with only Fourier aliasing, only random and both;

(a) only Fourier aliasing, (b) zoomed in, (c) only random number perturbation, (d)

zoomed in, (e) combination, (f) zoomed in. Red line, pure sine wave; purple line,

aliasing; blue line, Shuman filter; green line, Padé filter.

As shown in Fig. 3.18, in the left column, noise is more obvious, and filters are

not as effective as in 1D. The right column is the zoomed-in second peak in the left

column. The Padé filter tries to follow noise, while the Shuman filter tries to smooth

it. The filtering performance is not as effective as in 1D for either filter; but generally,

the Shuman filter is superior to the Padé filter on these perturbed sine waves.

3.3.2 Comparison of Shuman and Padé filters: laminar LDC

flow

In this section, Shuman and Padé filters are applied to laminar flows in a lid-driven

cavity. If a filter is effective, it is supposed to produce flow states consistent with

experimental results; besides, it can make the simulation results smooth. The flow in
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the lid-driven cavity is described by the continuity and momentum equations,

∇ · u = 0 (3.6a)

∂u/∂t+ (u · ∇)u = −∇p+
1

Re
∆u. (3.6b)

Define the domain Ω ≡ (0, Lx) × (0, Ly) × (0, Lz) as shown in Fig. 3.19 and let

Figure 3.19: Lid-driven cavity

Lx = Ly = Lz = 1. Initial conditions are u = 1 at y = 1, u ≡ 0 in Ω̄ (x, 1, z).

Boundary conditions can be described as u ≡ 0 at five walls except the top one

(no-slip boundary condition).

Results with Shuman filter, Re=2000

According to experimental results [39], flow is oscillatory at Re = 1970. It is pointed

out in [39] that some high-frequency vibrations are caused by the experimental

device—the motor driving the lid. But from the time series and power spectral

density from Fig. 3.1 at Re = 1970, it can be seen that flow is quasiperiodic.

In order to investigate effects of Shuman filter, results without filtering are pro-

vided. Plots shown below are at different time steps (total time steps are 40000),
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e.g., time steps 20000 and 40000. For the present simulations, the time interval,

times steps and total time are set to be 0.0125, 40000 and 500 sec., respectively. The

power spectral density is calculated from u-velocity time series using data between

400 and 500 sec with 813 grid points. There are 40000 time points totally and the

PSDs use points from 31808 to 39999. First, investigate the time series to see whether

fluid appears to be quasi-periodic. In order to have the same physical location inves-

tigated in the experiment [39], the point studied here is (0.175, 0.122, 0.5), toward the

left bottom of the cavity in the central z plane and with 813 grid points. Magnitude

of vorticity shown below corresponds to this middle section.
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(b)

Figure 3.20: Time series (a) without filtering, (b) with Shuman filter

Figure 3.20 (a) shows solutions are in chaotic oscillation without filtering, which

is inconsistent with the physical measurements [39]. In Fig. 3.20 (b), flow is quasi-

periodic since the peaks are not exactly repeating, (Shuman filter parameter value is

50) indicating that the Shuman filter can make the solutions close to real phenomena.

Making filtered results consistent with the physical phenomenon is only one expected

effect; how much Shuman filter can smooth results must also be studied.

In order to check the status without filters, the power spectral density and phase

portrait are analyzed. It is obvious that intervals of harmonics are not the same; the

phase portrait also does not show any identifiable cycles, and what can be observed
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is an interweaved mixture.

(a) (b)

Figure 3.21: Re = 2000 without filters; (a) Power spectral density, (b) Phase-portrait

(a) (b)

Figure 3.22: Magnitude of vorticity at time step 20000; (a) without filtering, (b) with

Shuman filter.

From Figure 3.22 (a), it can be seen that without filtering, the vorticity near the

moving top is large, especially at the left and right corners. When fluids with velocity

reach and hit the right wall, large vorticity is produced. At the right bottom corner

of the cavity, the vorticity also decreases after application of Shuman filter.
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As seen in Figure 3.22 (b), at the early time steps, Shuman filter does make

positive effects on smoothness of velocities.

(a) (b)

Figure 3.23: Magnitude of vorticity at time steps 40000; (a) without filtering, (b)

with Shuman filter.

As time evolves, effects of the Shuman filter are obvious. In general, it is observed

easily that the whole vorticity decreases (more blue color) with Shuman filter. Sec-

ondly, without filtering, there are ‘vorticity spots’ (red area in the figure) at which

vorticity is high. Thirdly, at top, bottom and left side of lid-driven cavity, vorticity

decreases noticeably. There are also some new ‘weak spots’ appearing after applica-

tion of Shuman filter. In general, the total vorticity in lid-driven cavity decreases;

hence, the Shuman filter does smooth velocities as expected.

Comparison between Shuman and Padé filter

Before the comparison of vorticities with the implementation of the two filters, some

main differences between them need be demonstrated. The Shuman filter has only

one parameter that needs to be adjusted to change filter’s effect, while Padé filter

has several parameters which makes it a bit more difficult to set. The Shuman filter
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represents a simple linear operator, derivable form formal mathematical mollification,

and is a weighted average of nearest neighbor solution values. The Padé filter on the

other hand, requires the solution of linear systems of equations (more computational

work), but Padé filters give more flexibility in constructing filters which are closer to

approximations of sharp cutoff filters (see, e.g., Liu et al. [15]). Their wavenumber

response is demonstrated by Fig. 3.24 below ((a) McDonough [24] and (b) Vasilyev

et al. [14]).

(a) (b)

Figure 3.24: Wavenumber response (a) Shuman filter, (b) Padé filter

Figure 3.24 (b) indicates the Padé filter’s good approximation to sharp cutoff.

Figure 3.24 (b) provides results for a symmetric Padé filters with five vanishing mo-

ments and different linear constraints [14]. From Fig. 3.24 (a) it is clear that the

filter parameter in the Shuman filter influences its effectiveness. Previous research,

presented earlier in this thesis, has shown that the optimal filter parameter is related

to Reynolds number and number of grid points, but not in a straightforward way.

Application of the two filters separately at each time step leads to results shown

below.
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(a) (b)

Figure 3.25: Magnitude of vorticity at time step 20000; (a) with Shuman filter, (b)

with Padé filter.

From Fig. 3.25, it is easy to see that the Padé filter does not improve the smooth-

ness of velocity at the top of lid-driven cavity. However, the Padé filter smooths more

than the Shuman filter in other areas, especially at the right bottom corner of the

cavity. Compared with the results without application of filters in Fig. 3.22, it can

be seen that there is not much improvement with the application of filters.
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(a) (b)

Figure 3.26: Magnitude of vorticity at time step 40000; (a) with Shuman filter, (b)

with Padé filter.

At later time steps, e.g, time step 40000, the Padé filter seems not to work better

than the Shuman filter generally. At the four corners of the cavity, circulations are

obvious and the Padé filter does not work as well as the Shuman filter. But it does

reduce the ‘vorticity spot’ (red area).

In order to make a further comparison of Shuman and Padé filters, time series of

velocities with the Shuman filter, Padé filters and without filters are investigated at

Re = 2000. From Fig. 3.21 (a) (shown earlier as Fig. 3.1 (a)) experimental results, the

time series showing multiple frequencies with noise, indicates that flow is quasiperi-

odic; if no filter is applied, flow behaves like turbulence or quasiperiodic with noise, as

shown in (b); with application of the Shuman filter with β = 50, flow is quasiperiodic.

In part (d), it can be seen that with the Padé filter, the flow is totally steady, which

is inconsistent with experimental results. From the above comparison, Shuman and

Padé filters both have an effect on the solutions; a proper Shuman filter value can

produce good results consistent with experiments. Padé filters in this case filter too

strongly, leading to wrong qualitative predictions of flow status.
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Figure 3.27: Time series at Re = 2000; (a) experimental results [39], (b) without

filters, (c) with Shuman filter, (d) with Padé filter.

In order to make a further comparison of Shuman and Padé filters, v component

velocities at the mid-plane along the x axis are shown below. It seems that the

two filters both work reasonably well, and results are almost consistent with the

experimental results. However, it should be noticed that, Padé filters do better than

Shuman filters near the maximal velocities, due mainly to higher formal accuracy of
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the Padé filter.

(a) (b)

Figure 3.28: Velocity at the mid-plane with filters at Re = 1500; (a) Shuman filter,

(b) Padé filter.

3.3.3 Comparison of Shuman and Padé filters: turbulent LDC

flow

In this section, both Shuman and Padé filters are applied to the lid-driven cavity

problem for turbulent flow. Re is 10000 in this research; obviously the flow is turbu-

lent [39]. Spatial resolution consists of 813 grid points, so the grid spacing is 0.0125

m, which is rather coarse. The turbulence model employed in this thesis is deconvo-

lution. If deconvolution is applied to the filtered solution, an accurate representation

of the filtered nonlinear combination of solution components with discontinuity can

be obtained [48]. Deconvolution methods are techniques employed to build sub-grid

scale models in large-eddy simulation; the mechanism is extracting information from

the highest resolved wavenumber parts of a solution and using this to infer behavior

of the lowest wavenumber unresolved parts. This method is based on the assumption

“scale similarit”, which presumes that the behavior at the lowest wavenumbers of the

unresolved part is similar to that of the highest wavenumbers of the resolved scale.
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Results with Shuman filter

Exercises of the preceding section are now repeated with a turbulent Re; e.g., vortic-

ities are shown without filter, and with Shuman and Padé filtering.

Because of the change of flow status, from laminar to turbulent flow, the appli-

cation of Shuman filter also changes correspondingly. In order to solve the Navier–

Stokes equation, large eddy simulation (LES) is applied in this research. For LES,

larger scales are solved directly while small scales are modeled.

(a) (b)

(c)

Figure 3.29: Time series; (a) without filters, (b) with Shuman filter, (c) with Padé

filter.

As in laminar flow, time series are first investigated. The spatial point chosen here

is the center point of the cavity. Spatial discretization consisted of 813 uniformly-

spaced points; β = 500 for low-pass filtering, and a second set of filter values for
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small scales is 150; time step size is 0.0125, and total time is 500 s. It is clear that

without the application of filtering, the time series is nearly steady early in time,

and it then blows up at later time. With application of the Shuman filter, the time

series is steady, which is inconsistent with properties of turbulence. In order to get

high-pass filtering, β needs to be increased. However, the flow is still steady at β =

10000.

(a) (b)

Figure 3.30: Magnitude of vorticity at time 250 s; (a) with Shuman filter (b) with

Padé filter.

From the Fig. 3.30, it can be seen that the intensity of vorticity on the top of the

cavity is decreased to some extent. However, compared with Padé filters, the vorticity

increased in the right side of the cavity when Shuman filter is applied. This indicates

that Shuman filter cannot filter too well, making the solution too smooth.
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(a) (b)

Figure 3.31: Magnitude of vorticity at time steps at time 500 s; (a) with Shuman

filter (b) with Padé filter.

Solutions without filters blow up finally. Compared with Fig. 3.30(b), the vor-

ticity magnitude in Fig. 3.31(b) increased. This is because turbulence has not fully

developed at the beginning, when at later time, the properties of turbulence appear.

In the above figure, it is obvious that vorticity decreases significantly when the

Padé filter is employed. This indicates that the Padé filter smooths solutions less than

does the Shuman filter in turbulent flow. It should be noticed here that no matter

what β is, the flow is steady with application of Shuman filter, which is inconsistent

with experimental results.

Through the time series, it can be seen that the flow is turbulent. In further

analysis of the phase portrait, it also shows that the flow is turbulent, and that is

consistent with experimental results.
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(a)

Figure 3.32: Phase portrait with Padé filter

In order to make a better comparison between Shuman and Padé filters, the v

component of velocity along the centerline in the middle plane is compared. First,

it is obvious that the results of DNS [46] [51] are good, and almost overlap with

experimental results. After application of the Shuman filter, the results are not as

expected. It cannot produce a good prediction of maximal and minimal velocity

magnitudes. Compared with Shuman filters, Padé filters work better at other places

along the middle plane. Velocities after application of Padé filters are almost the

same as experimental and DNS results. On the other hand, it proves that if a proper

filtering method is applied, LES can produce results nearly as good as DNS, while it

saves time and arithmetic calculations.
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(a) (b)

Figure 3.33: Velocity at the mid-plane with filters (a) with Shuman filter, (b) with

Padé filter.

One of the characterizations of a turbulent flow is its wide range of length and

time scales [49], as is well known. In fact, if such scales did not cover wide ranges,

the “turbulence problem” would have been solved long ago. Begin by noting that

there are, in general, four main sets of scales in a turbulent flow (there may be more

if other physical phenomena, e.g., heat transfer and/or combustion are important);

these are large scale, integral scale, Taylor microscale, and Kolmogorov scale [50]. It

is worthwhile to compare these scales in terms of (spatial) wavenumbers.

Based on this, there is a widely-quoted Kolmogorov k−5/3 inertial-range scaling of

the turbulent energy spectrum. This theory provides a way to show the effectiveness

of Padé filters. It can be see below that in part of the power spectral density, results

with application of Padé filters are consistent with what is expected.
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Figure 3.34: Power spectral density when using Padé filter.

The wavenumber corresponding to beginning of the dissipation scales is strongly

influenced by Re, and the wavenumber range covered by the inertial scales must

increase with increasing Re. In our case, the Re is not high enough, so the length

of Kolmogorov k−5/3 is not long. It should be noted that the Kolmogorov k−5/3 is

expected in homogeneous and isotropic turbulence, and little of the LDC flow would

correspond to this.
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Chapter 4

Conclusion

In this chapter, summary of the present study and conclusions are introduced in Sec.

1. Section 2 presents recommendations for future work.

4.1 Conclusions

In this investigation, a very common problem in computational fluid dynamics, termed

aliasing, is studied. Its mathematical explanation and treatment via filtering are pro-

vided. Two different explicit filters are introduced. In the case of the Shuman filter,

derivations are made in 1D and 2D with obvious extensions to 3D. Simulation work

is made with different Reynolds numbers, number of grid points and filter parameter

values. Following this, two cases Re = 1500 and 2000 are shown. In each case, differ-

ent grid-spacing sizes 0.1, 0.05, 0.025 are used, and optimal β is found for different Re

and grid spacing. For the latter of these, power spectral density analysis was made.

In order to prove the importance of Shuman filter parameter values, experimental

results are chosen as a reference to check the simulation results. The results show

that flow states could be inconsistent with experimental results when inappropriate

filter parameters are used. In the case of the Padé filter, its mathematical description

is provided.
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Comparison of Shuman and Padé filters on sine waves with perturbations in 1D

and 3D is made. Noise is generated by Fourier noise, a random number generator,

and the combination of them. Two aspects are taken into consideration to assess

the effectiveness of two filters: error after application and execution time. Results

show that the Shuman filter saves time and more effectively reduces error than does

the Padé filter in both 1D and 3D. The Padé filter seems to follow noise rather than

remove it, while the Shuman filter tries to smooth noise.

In an industrial setting, problems are not as simple as the perturbed sine wave

studied here. We apply the same filters to a lid-driven cavity (LDC) problem to

investigate the effectiveness in more complicated situations. In the study of the LDC

problem, laminar and turbulent flows are both investigated. By the analysis of time

series, magnitude of vorticity and comparison with experimental results, it can be

seen at the conclusion that the Padé filter treats the aliasing problem better than the

Shuman filter with filter parameter value 500 in turbulence but does less well in the

laminar case.

4.2 What still is needed

In this thesis, both Shuman filters and Padé filers are analyzed based on perturbed

sine waves and the lid-driven cavity problem. In the case of Shuman filters, different

filter parameter values are applied in an attempt to find the optimal one. This

proved to be unsuccessful. The best filter parameter value is related to number of

grid points, Reynolds number and other possible parameters. In further studies,

an equation for optimal Shuman filtering value should be sought. Besides, in this

work, both Shuman and Padé filters are applied to the LDC problem only with

uniform grid-point geometry, which means grid points are spaced the same in all

three directions. More research needs to be done for nonuniform grid-point geometry,
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where optimal Shuman filter values and Padé filter moments may be different from

uniform cases. Moreover, both Shuman filter and Padé filters can be applied together

for deconvolution subgrid-scale models. In the comparison of Shuman and Padé filters

on the LDC problem in turbulent flows, more filter parameter values of the Shuman

filter can be tried. In this thesis, only filter parameter value 500 is used, and if other

values are used, there is a possibility that the Shuman filter works better than the

Padé filter.
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Appendix A

L2-norm error code

PROGRAM NS3DLMNR
PARAMETER (NX=101 ,NY=101 ,NZ=101)
IMPLICIT REAL∗4 (A−H,O−Z)

character∗14 f i l e x y z , f i l e q q q

DIMENSION E(NX,NY,NZ) ,E1(NX,NY,NZ) ,E2(NX,NY,NZ) ,E3(NX,NY,NZ)

DIMENSION X(NX,NY,NZ) ,Y(NX,NY,NZ) ,Z(NX,NY,NZ) ,U(NX,NY,NZ) ,
1 V(NX,NY,NZ) ,W(NX,NY,NZ) ,P(NX,NY,NZ) ,PX(NX,NY,NZ) ,
2 PY(NX,NY,NZ) ,PZ(NX,NY,NZ)

DIMENSION UX(NX,NY,NZ) ,UY(NX,NY,NZ) ,UZ(NX,NY,NZ) ,
1 VX(NX,NY,NZ) ,
2 VY(NX,NY,NZ) ,VZ(NX,NY,NZ) ,WX(NX,NY,NZ) ,WY(NX,NY,NZ) ,
3 WZ(NX,NY,NZ) ,UXX(NX,NY,NZ) ,UYY(NX,NY,NZ) ,
4 UZZ(NX,NY,NZ) ,
5 VXX(NX,NY,NZ) ,VYY(NX,NY,NZ) ,VZZ(NX,NY,NZ) ,
6 WXX(NX,NY,NZ) ,WYY(NX,NY,NZ) ,WZZ(NX,NY,NZ)

BETA = 1 . e3

write (∗ ,∗ ) ’ Enter ␣ va lue ␣ o f ␣ beta ’
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read (∗ ,∗ ) beta

RE = 2 .D2
write (∗ ,∗ ) ’ en te r ␣ va lue ␣ o f ␣Re ’
read (∗ ,∗ ) Re

UREF = 1 .D0
LREF = 1 .D0

∗ READ GEOMETRY

ccc write (∗ ,∗ ) ’ Input ␣geometry␣ f i l ename ’
ccc read (∗ ,∗ ) f i l e x y z

CALL GEOMETRY(U,V,W,P,X,Y, Z ,NX0,NY0,NZ0)

∗ GET THE DERIVATIVE OF VELOCITY AND PRESSURE
CALL DERIVATIVE(U,V,W,P,UX,UY,UZ,UXX,UYY,UZZ,

1 VX,VY,VZ,VXX,VYY,VZZ,WX,WY,WZ,WXX,WYY,
2 WZZ,PX,PY,PZ,X,Y, Z ,DX,DY,DZ,NX0,NY0,NZ0)

RMU = UREF∗LREF/RE

CALL NS_EQUATION(E1 , E2 , E3 ,E,U,V,W,UX,UY,UZ,UXX,UYY,UZZ,
1 VX,VY,VZ,VXX,VYY,VZZ,WX,WY,WZ,WXX,WYY,
2 WZZ,PX,PY,PZ,RMU,NX0,NY0,NZ0)

OPEN(12 ,FILE=’ETOTAL.DAT’ ,ACCESS = ’APPEND’ ,
STATUS=’UNKNOWN’ )

ETOTAL1=0.D0
ETOTAL2=0.D0

DO K=2,NZ0−1
DO J=2,NY0−1
DO I=2,NX0−1

ETOTAL1=ETOTAL1+E( I , J ,K)

ETOTAL2=ETOTAL2+E( i , j , k )∗∗2
ENDDO

ENDDO
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ENDDO
ETOTAL3=E(2 , 2 , 2 )
DO K=2,NZ0−1
DO J=2,NY0−1
DO I=2,NX0−1
IF (E( i , j , k ) . gt .ETOTAL3) THEN

ETOTAL3=E( i , j , k )
end i f

end do
end do

end do

ETOTAL1 = ETOTAL1∗dx∗dy∗dz
ETOTAL2 = ( sq r t (ETOTAL2))∗ dx∗dy∗dz
ETOTAL3 = ETOTAL3∗DX∗DY∗DZ

WRITE (∗ ,∗ ) nx0 , ny0 , nz0 ,Re , beta ,ETOTAL1,ETOTAL2,ETOTAL3
WRITE (12 ,∗ ) nx0 , ny0 , nz0 ,Re , beta ,ETOTAL1, e to ta l 2 , e t o t a l 3
CLOSE (12)
STOP
END

SUBROUTINE GEOMETRY(U,V,W,P,X,Y, Z ,NX0,NY0,NZ0)
IMPLICIT REAL∗4(A−H,O−Z)

ccc character∗14 f i l e x y z , f i l e q q q

PARAMETER (NX=101 ,NY=101 ,NZ=101)
DIMENSION X(NX,NY,NZ) ,Y(NX,NY,NZ) ,Z(NX,NY,NZ)
DIMENSION U(NX,NY,NZ) ,V(NX,NY,NZ) ,
1 W(NX,NY,NZ) ,P(NX,NY,NZ)

∗ g r id f i l e i s to be read

ccc write (∗ ,∗ ) f i l e x y z

OPEN (7 , f i l e=’ output3 ldc . xyz ’ , status=’unknown ’ )
READ ( 7 ,∗ ) NX0,NY0,NZ0
READ ( 7 ,∗ ) ( ( (X( I , J ,K) , I=1,NX0) , J=1,NY0) ,K=1,NZ0) ,

1 ( ( (Y( I , J ,K) , I=1,NX0) , J=1,NY0) ,K=1,NZ0) ,
2 ( ( ( Z( I , J ,K) , I=1,NX0) , J=1,NY0) ,K=1,NZ0)
CLOSE (7 )

OPEN (7 ,FILE=’ l d c l 0 50 . qqq ’ ,STATUS=’UNKNOWN’ )
READ ( 7 ,∗ ) NX0,NY0,NZ0

78



READ ( 7 ,∗ ) ( ( (P( I , J ,K) , I=1,NX0) , J=1,NY0) ,K=1,NZ0) ,
1 ( ( (U( I , J ,K) , I=1,NX0) , J=1,NY0) ,K=1,NZ0) ,
2 ( ( (V( I , J ,K) , I=1,NX0) , J=1,NY0) ,K=1,NZ0) ,
3 ( ( (W( I , J ,K) , I=1,NX0) , J=1,NY0) ,K=1,NZ0)
CLOSE (7 )

RETURN
END

SUBROUTINE DERIVATIVE(U,V,W,P,UX,UY,UZ,UXX,UYY,UZZ,
1 VX,VY,VZ,VXX,VYY,VZZ,WX,WY,WZ,WXX,WYY,
2 WZZ,PX,PY,PZ,X,Y, Z ,DX,DY,DZ,NX0,NY0,NZ0)

IMPLICIT REAL∗4(A−H,O−Z)
PARAMETER (NX=101 ,NY=101 ,NZ=101)
DIMENSION X(NX,NY,NZ) ,Y(NX,NY,NZ) ,Z(NX,NY,NZ) ,

1 U(NX,NY,NZ) ,
2 V(NX,NY,NZ) ,W(NX,NY,NZ) ,P(NX,NY,NZ) ,PX(NX,NY,NZ) ,
3 PY(NX,NY,NZ) ,PZ(NX,NY,NZ)

DIMENSION UX(NX,NY,NZ) ,UY(NX,NY,NZ) ,UZ(NX,NY,NZ) ,
1 VX(NX,NY,NZ) ,
2 VY(NX,NY,NZ) ,VZ(NX,NY,NZ) ,WX(NX,NY,NZ) ,WY(NX,NY,NZ) ,
3 WZ(NX,NY,NZ) ,UXX(NX,NY,NZ) ,UYY(NX,NY,NZ) ,
4 UZZ(NX,NY,NZ) ,
5 VXX(NX,NY,NZ) ,VYY(NX,NY,NZ) ,VZZ(NX,NY,NZ) ,
6 WXX(NX,NY,NZ) ,WYY(NX,NY,NZ) ,WZZ(NX,NY,NZ)

DX=X(2 ,1 ,1)−X(1 , 1 , 1 )
DY=Y(1 ,2 ,1)−Y(1 , 1 , 1 )
DZ=Z(1 ,1 ,2)−Y(1 , 1 , 1 )
HX2I=0.5D0/DX
HY2I=0.5D0/DY
HZ2I=0.5D0/DZ
HX5Q=1.D0/( (DX)∗∗2)
HY5Q=1.D0/( (DY)∗∗2)
HZ5Q=1.D0/( (DZ)∗∗2)

∗ DEFINE THE DERIVATIVE OF VELOCITY AND PRESSURE

79



DO K=2,NZ0−1
DO J=2,NY0−1

DO I=2,NX0−1
UX( I , J ,K)=(U( I+1,J ,K)−U( I−1,J ,K))∗HX2I
UY( I , J ,K)=(U( I , J+1,K)−U( I , J−1,K))∗HY2I
UZ( I , J ,K)=(U( I , J ,K+1)−U( I , J ,K−1))∗Hz2I
UXX( I , J ,K)=(U( I+1,J ,K)−2∗U( I , J ,K)+U( I−1,J ,K))∗HX5Q
UYY( I , J ,K)=(U( I , J+1,K)−2∗U( I , J ,K)+U( I , J−1,K))∗HY5Q
UZZ( I , J ,K)=(U( I , J ,K+1)−2∗U( I , J ,K)+U( I , J ,K−1))∗HZ5Q
PX( I , J ,K)=(P( I+1,J ,K)−P( I−1,J ,K))∗HX2I
PY( I , J ,K)=(P( I , J+1,K)−p( I , J−1,K))∗HY2I
PZ( I , J ,K)=(P( I , J ,K+1)−P( I , J ,K−1))∗HZ2I

ENDDO
ENDDO

ENDDO
RETURN
END

SUBROUTINE NS_EQUATION(E1 , E2 , E3 ,E,U,V,W,UX,UY,UZ,
1 UXX,UYY,UZZ,
2 VX,VY,VZ,VXX,VYY,VZZ,WX,WY,WZ,WXX,WYY,
3 WZZ,PX,PY,PZ,RMU,NX0,NY0,NZ0)

PARAMETER (NX=101 ,NY=101 ,NZ=101)
DIMENSION E1(NX,NY,NZ) ,E2(NX,NY,NZ) ,E3(NX,NY,NZ) ,

1 E(NX,NY,NZ) ,U(NX,NY,NZ) ,V(NX,NY,NZ) ,W(NX,NY,NZ) ,UX(NX,NY,NZ) ,
2 UY(NX,NY,NZ) ,UZ(NX,NY,NZ) ,VX(NX,NY,NZ) ,VY(NX,NY,NZ) ,
3 VZ(NX,NY,NZ) ,WX(NX,NY,NZ) ,WY(NX,NY,NZ) ,WZ(NX,NY,NZ) ,
4 uXX(NX,NY,NZ) ,uYY(NX,NY,NZ) ,uZZ(NX,NY,NZ) ,
5 vXX(NX,NY,NZ) ,vYY(NX,NY,NZ) , vZZ(NX,NY,NZ) ,
6 wXX(NX,NY,NZ) ,wYY(NX,NY,NZ) ,wZZ(NX,NY,NZ) ,
7 PX(NX,NY,NZ) ,PY(NX,NY,NZ) ,PZ(NX,NY,NZ)

DO K=2,NZ0−1
DO J=2,NY0−1

DO I=2,NX0−1
E1( I , J ,K)=U( I , J ,K)∗UX( I , J ,K)+V( I , J ,K)∗UY( I , J ,K)+

1 W( I , J ,K)∗UZ( I , J ,K)+PX( I , J ,K)−RMU∗(UXX( I , J ,K)
2 +UYY( I , J ,K)+UZZ( I , J ,K) )

E2( I , J ,K)=U( I , J ,K)∗VX( I , J ,K)+V( I , J ,K)∗VY( I , J ,K)+
1 W( I , J ,K)∗VZ( I , J ,K)+PY( I , J ,K)−RMU∗(VXX( I , J ,K)
2 +VYY( I , J ,K)+VZZ( I , J ,K) )

E3( I , J ,K)=U( I , J ,K)∗WX( I , J ,K)+V( I , J ,K)∗WY( I , J ,K)+
1 W( I , J ,K)∗WZ( I , J ,K)+PZ( I , J ,K)−RMU∗(WXX( I , J ,K)
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2 +WYY( I , J ,K)+WZZ( I , J ,K) )
E( I , J ,K)=ABS(E1( I , J ,K))+ABS(E2( I , J ,K))+ABS(E3( I , J ,K) )

ENDDO
ENDDO

ENDDO
RETURN
END

81



Appendix B

Filters applied to perturbed sine

waves in 1D code

program padete s t

implicit real ∗8 (a−h , o−z )
real ∗4 r t s e c , r t secp , r t s e c s

parameter (nmx=1001)
parameter ( alpha =0.5673952755 , beta =0.1209216774)

dimension q2 (nmx) , f (nmx) , u(nmx) , q (nmx) , r (nmx) ,
1 r2 (nmx) , s (nmx)
dimension a (nmx) , b(nmx) , c (nmx) , d(nmx) , e (nmx)
dimension pa (4 ) , a2 ( 5 ) , a3 ( 5 ) , pp (5 ) , b2 (6 ) , b3 (6 ) , p (7 )
dimension u1 (nmx) , s1 (nmx) , s2 (nmx) , t (nmx)

∗∗∗∗∗∗∗∗ bu i ld the o r i g i n a l s i n wave function , the per iod
∗∗∗∗∗∗∗∗ i s 2∗pi ,
∗∗∗∗∗∗∗∗ and the s i n wave v e l o c i t y i s u1 , s t o r e r e s u l t s
∗∗∗∗∗∗∗∗ in f i l e
∗∗∗∗∗∗∗∗ output , the f i r s t column i s t , the second i s u1 .

nx = 101
npass = 1
amp = 5 . d−2
betas = 2 . d0
p i = dacos (−1.d0 )
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r t2 = 2∗nx /3 . d0 ! remove s q r t to g e t l i n e a r behav ior
∗ s q r t ( 5 . d0 )
exp3 = 3∗nx /5 . d0 ! remove exp to ge t l i n e a r behav ior
∗exp ( 1 . d0 )
dt = 5 . d0 /(nx−1)

do i =1,nx
t ( i ) = 2 . d0∗( i −1)∗dt∗ pi
s ( i ) = s i n ( t ( i ) )
ca l l random_number ( r ( i ) )
ca l l random_number ( r2 ( i ) )
r ( i ) = 2 . d0∗ r ( i ) − 1 . d0
r2 ( i ) = 2 . d0∗ r2 ( i ) − 1 . d0
i f ( i . gt . 1 . and . i . l t . nx ) then

u1 ( i ) = s ( i )
c 1 + 0 .1 d0∗ cos ( r t2 ∗ t ( i ) ) +0.05∗ s i n ( exp3∗ t ( i ) )

1 + 0 .5 d0∗amp∗( r ( i )+r2 ( i ) ) ! random noise
else

u1 ( i ) = s ( i )
end i f

end do

ca l l l 2 e r r ( s , u1 , e r r r , nx )

write (∗ ,∗ ) ’ ␣␣␣ ’
write (∗ ,∗ ) ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’
write (∗ ,∗ ) ’ random␣number␣ induced ␣ e r r o r ␣ ’ , e r r r
r t s e c = secnds ( 0 . 0 )
ca l l shuman(u1 , s1 , betas , nx , npass )
r t s e c s = secnds ( r t s e c )

ca l l l 2 e r r ( s , s1 , e r r s , nx )

write (∗ ,∗ ) ’ e r r o r ␣ a f t e r ␣Shuman␣ f i l t e r i n g ’ , e r r s

OPEN(8 ,FILE=’ output−r . s ’ ,STATUS=’unknown ’ )

do i =1,nx
WRITE( 8 ,∗ ) t ( i ) , s ( i ) , u1 ( i ) , s1 ( i ) , 0 . 5∗amp∗( r ( i )+r2 ( i ) )
end do

CLOSE(8 )
r t s e c = secnds ( 0 . 0 )
ca l l pad e f l t r ( u1 , s2 , nx )
r t s e cp = secnds ( r t s e c )

83



ca l l l 2 e r r ( s , s2 , errp , nx )

write (∗ ,∗ ) ’ e r r o r ␣ a f t e r ␣Pade␣ f i l t e r i n g ␣␣ ’ , e r rp

write (∗ ,∗ ) ’ ␣␣ ’
write (∗ ,∗ ) ’Shuman␣ f i l t e r ␣ execut ion ␣ time : ’ , r t s e c s , ’ ␣ seconds ’
write (∗ ,∗ ) ’Pade␣ f i l t e r ␣ execut ion ␣ time : ␣␣ ’ , r t secp , ’ ␣ seconds ’
write (∗ ,∗ ) ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’
write (∗ ,∗ ) ’ ␣␣␣ ’

OPEN(12 ,FILE=’ output−r . p ’ ,STATUS=’unknown ’ )

do i =1,nx
WRITE(12 ,∗ ) t ( i ) , s ( i ) , u1 ( i ) , s2 ( i ) , 0 . 5∗amp∗( r ( i )+r2 ( i ) )
end do

CLOSE(12)

stop
end

subroutine shuman(u1 , s1 , betas , nx , npass )

implicit real ∗8 (a−h , o−z )

parameter (nmx=1001)

dimension u1 (nmx) , s1 (nmx) , tmp(nmx)

nexe = 100000

do i i =1,nexe

f r a c = 1 . d0 / ( 2 . d0+betas )
tmp = u1
s1 = u1

do k=1, npass
do i =2,nx−1
s1 ( i ) = f r a c ∗( u1 ( i−1)+betas ∗u1 ( i )+u1 ( i +1))

end do
u1 = s1

end do
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u1 = tmp

end do

return

end

subroutine pad e f l t r ( u1 , s2 , nx )

implicit real ∗8 (a−h , o−z )

parameter (nmx=1001)
parameter ( alpha =0.5673952755 , beta =0.1209216774)

dimension u1 (nmx) , s2 (nmx)
dimension q (nmx) , q2 (nmx)

c dimension a (nmx) , b(nmx) , c (nmx) , d(nmx) , e (nmx)
dimension pa (4 ) , a2 ( 5 ) , a3 ( 5 ) , pp (5 ) , b2 (6 ) , b3 (6 ) , p (7 )

∗ Load Pade f i l t e r c o e f f i c i e n t s

pa = (/ 0.9931634217d0 ,1 .2890384701 d0 ,0 .2965587062 d0 ,
1 0.0006836578d0 /)
p = (/ pa (4 ) , pa (3 ) , pa ( 2 ) , 2 . d0∗pa (1 ) , pa ( 2 ) , pa ( 3 ) , pa (4 ) /)
pp = (/ beta , alpha , 1 . d0 , alpha , beta /)

a2 = (/ 0.3096256995d0 , 1 d0 ,1 .1380646293 d0 ,
10.4106696169d0 , 0 . d0 /)
a3 = (/ 0.1477868412d0 ,0 .6357553622 d0 , 1 . d0 ,

1 0.6357553622d0 ,0 .1477868412 d0 /)
b2 = (/ 0.3084688023d0 ,1 .0057844862 d0 ,1 .1264956568 d0 ,

1 0.4222385894d0 , −0.0057844862d0 , 0 .0011568972d0 /)
b3 = (/ 0.1470348738d0 ,0 .6395151994 d0 ,0 .9924803256 d0 ,

1 0.6432750366d0 ,0 .1440270040 d0 ,0 .0007519674 d0 /)

a2 = a2/sum( a2 )
a3 = a3/sum( a3 )
b2 = b2/sum(b2 )
b3 = b3/sum(b3 )
p = p/sum(p)
pp = pp/sum(pp)
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∗ Store i−d i r e c t i o n rows o f u3d , v3d , w3d in q and ca l l l i n e
∗ f i l t e r

nexe = 100000

do i i =1,nexe

do i =1,nx
q ( i ) = u1 ( i )

end do
ca l l pade l ine (q , q2 , a2 , a3 , b2 , b3 , p , pp , nx )
do i =1,nx
s2 ( i ) = q2 ( i )

end do

end do

return

end

subroutine pade l ine (q , q2 , a2 , a3 , b2 , b3 , p , pp , nd )

implicit real ∗8 (a−h , o−z )

parameter (nmx=1001)

dimension q (nmx) , q2 (nmx) , f (nmx)
dimension a (nmx) , b(nmx) , c (nmx) , d(nmx) , e (nmx)
dimension pa (4 ) , a2 ( 5 ) , a3 ( 5 ) , pp (5 ) , b2 (6 ) , b3 (6 ) , p (7 )

a = 0 . d0
b = 0 . d0
c = 1 . d0
d = 0 . d0
e = 0 . d0

a ( 3 : nd) = pp (1)
b ( 2 : nd) = pp (2)
c ( 2 : nd−1) = pp (3)
d ( 1 : nd−1) = pp (4)
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e ( 1 : nd−2) = pp (5)

∗ boundary cond i t i on s
d (1 ) = 0 . d0
e (1 ) = 0 . d0

b (2 ) = a2 (1 )
c (2 ) = a2 (2 )
d (2 ) = a2 (3 )
e (2 ) = a2 (4 )

ccc write (∗ ,∗ ) nd

a (3 ) = a3 (1 )
b (3 ) = a3 (2 )
c (3 ) = a3 (3 )
d (3 ) = a3 (4 )
e (3 ) = a3 (5 )

a (nd) = 0 . d0
b(nd) = 0 . d0

d(nd−1) = a2 (1 )
c (nd−1) = a2 (2 )
b(nd−1) = a2 (3 )
a (nd−1) = a2 (4 )

e (nd−2) = a3 (1 )
d(nd−2) = a3 (2 )
c (nd−2) = a3 (3 )
b(nd−2) = a3 (4 )
a (nd−2) = a3 (5 )

f (1 ) = q (1)
f (2 ) = dot_product ( q ( 1 : 6 ) , b2 )
f (3 ) = dot_product ( q ( 1 : 6 ) , b3 )
do j =4,nd−3
f ( j ) = dot_product (p , q ( j −3: j +3))

end do
f (nd−2) = dot_product ( q (nd : nd−5:−1) ,b3 )
f (nd−1) = dot_product ( q (nd : nd−5:−1) ,b2 )
f (nd) = q(nd)
ca l l pentdiag (a , b , c , d , e , f , q2 , nd )
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c do m=1,3
c f (1 ,m) = q (1 ,m)
c f (2 ,m) = dot_product ( q ( 1 : 6 ,m) , b2 )
c f (3 ,m) = dot_product ( q ( 1 : 6 ,m) , b3 )
c do j =4,nd−3
c f ( j ,m) = dot_product (p , q ( j −3: j +3,m) )
c end do
c f (nd−2,m) = dot_product ( q (nd : nd−5:−1,m) , b3 )
c f (nd−1,m) = dot_product ( q (nd : nd−5:−1,m) , b2 )
c f (nd ,m) = q(nd ,m)
c ca l l pentdiag (a , b , c , d , e , f ( : ,m) , q2 ( : ,m) , nd )
c end do

return

end

subroutine pentdiag (a , b , c , d , e , f , u , n )

implicit real ∗8 (a−h , o−z )

parameter (nmx=1001)

dimension a (nmx) , b(nmx) , c (nmx) , d(nmx) , e (nmx) , f (nmx) ,
1 u(nmx) , p(nmx) , q (nmx)

save

∗ I n i t i a l i z e e l im ina t i on and back s ub s t i t u t i o n ar rays
i f ( c ( 1 ) . eq . 0 . d0 ) stop ! e l im ina t e u2 t r i v i a l l y
bet = 1 . d0/c (1 )
p (1 ) = −d (1)∗ bet
q (1 ) = −e (1)∗ bet
u (1 ) = f (1)∗ bet

bet = c (2 ) + b(2)∗p (1)
i f ( bet . eq . 0 . d0 ) stop
bet = −1.0d0/bet
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p (2) = (d(2)+b(2)∗ q (1 ) )∗ bet
q (2 ) = e (2)∗ bet
u (2 ) = (b (2)∗u(1)− f ( 2 ) )∗ bet

∗ Construct upper−t r i a n gu l a r matrix
do i =3,n
bet = b( i ) + a ( i )∗p( i −2)
den = c ( i ) + a ( i )∗q ( i −2) + bet∗p( i −1)
i f ( den . eq . 0 . d0 ) then
write (∗ ,∗ ) ’ ␣␣ s i n g u l a r i t y ␣ in ␣ pentd iagona l ␣matrix ’
stop

end i f
den = −1.d0/den
p( i ) = (d( i )+bet∗q ( i −1))∗den
q ( i ) = e ( i )∗den
u( i ) = ( a ( i )∗u( i−2)+bet∗u( i−1)− f ( i ) )∗ den

end do

∗ Perform back sub s t i t u t i o n
u(n−1) = u(n−1) + p(n−1) ∗ u(n)
do i=n−2,1,−1
u( i ) = u( i ) + p( i )∗u( i +1) + q( i )∗u( i +2)

end do

return
end

subroutine l 2 e r r ( exct , aprx , err , nx )

implicit real ∗8 (a−h , o−z )

parameter (nmx=1001)

dimension exct (nmx) , aprx (nmx)

err = 0 . d0

do i =1,nx
err = err + (( exct ( i )−aprx ( i ) ) / ( nx−1))∗∗2

end do

err = sqr t ( err )

return
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Appendix C

Filters applied to perturbed sine

waves in 3D code

program padete s t

implicit real ∗8 (a−h , o−z )
real ∗4 r t s e c , r t secp , r t s e c s

parameter (nmx=101)
parameter ( alpha =0.5673952755 , beta =0.1209216774)

dimension q2 (nmx) , f (nmx) , u(nmx,nmx,nmx) , q (nmx) , r (nmx)
dimension r2 (nmx)
dimension a (nmx) , b(nmx) , c (nmx) , d(nmx) , e (nmx)
dimension u11 (nmx) , u12 (nmx) , u13 (nmx) , sx (nmx) ,

1 sy (nmx) , sz (nmx)
dimension pa (4 ) , a2 ( 5 ) , a3 ( 5 ) , pp (5 ) , b2 (6 ) , b3 (6 ) , p (7 )
dimension tx (nmx) , ty (nmx) , tz (nmx)
dimension u1 (nmx,nmx,nmx) , s2 (nmx,nmx,nmx) ,

1 s (nmx,nmx,nmx)
dimension s1 (nmx,nmx,nmx) , x (nmx,nmx,nmx) ,

1 y (nmx,nmx,nmx) , z (nmx,nmx,nmx)

∗∗∗∗∗∗∗∗ bu i ld the o r i g i n a l s i n wave function , the per iod
∗∗∗∗∗∗∗∗ i s 2∗pi , and the s i n wave v e l o c i t y i s u1 , s t o r e
∗∗∗∗∗∗∗ r e s u l t s in f i l e
∗∗∗∗∗∗∗∗ output , the f i r s t column i s t , the second i s u1 .
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nx = 101
ny = 101
nz = 101
npass = 1
amp = 5 . d−2
betas = 2 . d0
p i = dacos (−1.d0 )
r t2 = 2∗nx /3 . d0 ! remove s q r t to g e t l i n e a r behav ior
∗ s q r t ( 5 . d0 )

exp3 = 3∗nx /5 . d0 ! remove exp to ge t l i n e a r behav ior
∗exp ( 1 . d0 )
dt = 2 . d0 /(nx−1)
do k=1,nz
tz (k)=2.d0∗(k−1)∗dt∗ pi
do j =1,ny
ty ( j )=2.d0∗( j−1)∗dt∗ pi
do i =1,nx
tx ( i )=2.d0∗( i −1)∗dt∗ pi
x ( i , j , k)=tx ( i )
y ( i , j , k)=ty ( j )
z ( i , j , k)=tz (k )

end do
end do

end do

do i =1,nx
tx ( i )=2.d0∗( i −1)∗dt∗ pi
sx ( i ) = s i n ( tx ( i ) )
ca l l random_number ( r ( i ) )
ca l l random_number ( r2 ( i ) )
r ( i ) = 2 . d0∗ r ( i ) − 1 . d0
r2 ( i ) = 2 . d0∗ r2 ( i ) − 1 . d0

i f ( i . gt . 1 . and . i . l t . nx ) then

u11 ( i ) = sx ( i )
1 + 0 .1 d0∗ cos ( r t2 ∗ tx ( i ) ) + 0.05∗ s i n ( exp3∗ tx ( i ) )
1 + 0 .5 d0∗amp∗( r ( i )+r2 ( i ) ) ! random noise

else
u11 ( i ) = sx ( i )
end i f

end do
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c OPEN(12 ,FILE=’ u11 . p ’ ,STATUS=’unknown ’ )
c do i =1,nx
c WRITE(12 ,∗ ) tx ( i ) , u11 ( i )
c end do
c CLOSE(12)

do j =1,ny
ty ( j )=2.d0∗( j−1)∗dt∗ pi
sy ( j ) = s i n ( ty ( j ) )
ca l l random_number ( r ( j ) )
ca l l random_number ( r2 ( j ) )
r ( j ) = 2 . d0∗ r ( j ) − 1 . d0
r2 ( j ) = 2 . d0∗ r2 ( j ) − 1 . d0

i f ( j . gt . 1 . and . j . l t . ny ) then

u12 ( j ) = sy ( j )
1 + 0 .1 d0∗ cos ( r t2 ∗ ty ( j ) ) + 0.05∗ s i n ( exp3∗ ty ( j ) )
1 + 0 .5 d0∗amp∗( r ( j )+r2 ( j ) ) ! random noise

else
u12 ( j ) = sy ( j )
end i f

end do

c OPEN(12 ,FILE=’ u12 . p ’ ,STATUS=’unknown ’ )
c do j =1,ny
c WRITE(12 ,∗ ) ty ( j ) , u12 ( j )
c end do
c CLOSE(12)

do k=1,nz
tz (k)=2.d0∗(k−1)∗dt∗ pi
sz ( k ) = s i n ( tz ( k ) )
ca l l random_number ( r ( k ) )
ca l l random_number ( r2 (k ) )
r ( k ) = 2 . d0∗ r ( k ) − 1 . d0
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r2 ( k ) = 2 . d0∗ r2 ( k ) − 1 . d0

i f ( k . gt . 1 . and . k . l t . nz ) then
u13 (k ) = sz (k )

1 + 0 .1 d0∗ cos ( r t2 ∗ tz ( k))+ 0.05∗ s i n ( exp3∗ tz ( k ) )
1 + 0 .5 d0∗amp∗( r ( k)+r2 (k ) ) ! random noise

else
u13 (k ) = sz (k )
end i f

end do

c OPEN(12 ,FILE=’ u13 . p ’ ,STATUS=’unknown ’ )
c do k=1,nz
c WRITE(12 ,∗ ) tz ( k ) , u13 (k )
c end do

c CLOSE(12)

do k=1,nz
do j =1,ny
do i =1,nx
i f ( i . gt . 1 . and . i . l t . nx . and . j . gt . 1 . and . j . l t . ny . and

1 . k . gt . 1 . and .
2 k . l t . nz ) then

u1 ( i , j , k ) =u11 ( i )∗u12 ( j )∗u13 (k )
else

u1 ( i , j , k ) = sx ( i )∗ sy ( j )∗ sz ( k )
end i f

end do
end do
end do

do k=1,nz
do j =1,ny
do i =1,nx
s ( i , j , k ) = sx ( i )∗ sy ( j )∗ sz ( k )
end do

end do
end do
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c OPEN(12 ,FILE=’ n o f i l t e r . p ’ ,STATUS=’unknown ’ )
c do k=1,nz
c do j =1,ny
c do i =1,nx

c WRITE(12 ,∗ ) ( ( ( u1 ( i , j , k ) , i =1,nx ) , j =1,ny ) , k=1,nz )
c write (12 ,∗ ) tx ( i ) , ty ( j ) , t z ( k ) , s ( i , j , k ) , u1 ( i , j , k )
c end do
c end do
c end do

c CLOSE(12)

ca l l l 2 e r r ( s , u1 , e r r r , nx , ny , nz )

write (∗ ,∗ ) ’ ␣␣␣ ’
write (∗ ,∗ ) ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’
write (∗ ,∗ ) ’ random␣number␣ induced ␣ e r r o r ␣ ’ , e r r r

r t s e c = secnds ( 0 . 0 )
ca l l shuman(u1 , s1 , betas , nx , ny , nz , npass )

r t s e c s = secnds ( r t s e c )

ca l l l 2 e r r ( s , s1 , e r r s , nx , ny , nz )

write (∗ ,∗ ) ’ e r r o r ␣ a f t e r ␣Shuman␣ f i l t e r i n g ’ , e r r s
∗∗∗∗∗∗ the l i s t are c o r r e c t code . but in order to use
∗∗∗∗∗∗ f i e l dv i ew , we need
∗change i t to plot3d format∗∗∗∗
c OPEN(8 ,FILE=’ output . s ’ ,STATUS=’unknown ’ )
c do k=1,nz
c do j =1,ny
c do i =1,nx
c end do
c end do
c end do
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c CLOSE(8 )
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗∗∗
r t s e c = secnds ( 0 . 0 )

ca l l pad e f l t r ( u1 , s2 , nx , ny , nz )
r t s e cp = secnds ( r t s e c )
ca l l l 2 e r r ( s , s2 , errp , nx , ny , nz )

write (∗ ,∗ ) ’ e r r o r ␣ a f t e r ␣Pade␣ f i l t e r i n g ␣␣ ’ , e r rp

write (∗ ,∗ ) ’ ␣␣ ’
write (∗ ,∗ ) ’Shuman␣ f i l t e r ␣ execut ion ␣ time : ’ ,

1 r t s e c s , ’ ␣ seconds ’
write (∗ ,∗ ) ’Pade␣ f i l t e r ␣ execut ion ␣ time :

␣␣␣␣␣1␣ ’ , r t secp , ’ ␣ seconds ’

∗∗∗∗∗ Plot3d output format∗∗∗∗
OPEN(8 ,FILE=’ output . qqq ’ , form=’ formatted ’ ,STATUS=’unknown ’ )
write (8 , ’ (4 I5 ) ’ )nx , ny , nz , 4
WRITE(8 , ’ ( 5 ( e13 . 6 , 1 x ) ) ’ ) ( ( ( u1 ( i , j , k ) , i =1,nx ) , j =1,ny ) ,

1 k=1,nz ) ,
2 ( ( ( s1 ( i , j , k ) , i =1,nx ) , j =1,ny ) , k=1,nz ) ,
3 ( ( ( s2 ( i , j , k ) , i =1,nx ) , j =1,ny ) , k=1,nz ) ,
4 ( ( ( s ( i , j , k ) , i =1,nx ) , j =1,ny ) , k=1,nz )

close (8 )

OPEN(8 ,FILE=’ output . xyz ’ , form=’ formatted ’ ,
1 STATUS=’unknown ’ )

write (8 , ’ (3 I5 ) ’ )nx , ny , nz
WRITE(8 , ’ ( 5 ( e13 . 6 , 1 x ) ) ’ ) ( ( ( x ( i , j , k ) , i =1,nx ) , j =1,ny ) ,

1 k=1,nz ) ,
2 ( ( ( y ( i , j , k ) , i =1,nx ) , j =1,ny ) , k=1,nz ) ,
3 ( ( ( z ( i , j , k ) , i =1,nx ) , j =1,ny ) , k=1,nz )

CLOSE(8 )

c OPEN(12 ,FILE=’ output . p ’ ,STATUS=’unknown ’ )
c do k=1,nz
c do j =1,ny
c do i =1,nx
c
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c end do
c end do
c end do
c close (12)

c OPEN(12 ,FILE=’ s2 . p ’ ,STATUS=’unknown ’ )
c do k=1,nz
c do j =1,ny
c do i =1,nx
c write (12 ,∗ ) tx ( i ) , ty ( j ) , t z ( k ) , s2 ( i , j , k )
c 1 0 .5∗amp∗( r ( i )+r2 ( i ) )
c end do
c end do
c end do

c CLOSE(12)

stop
end

∗∗∗∗shuman f i l t e r in 1D∗∗∗∗
subroutine shuman(u1 , s1 , betas , nx , ny , nz , npass )
implicit real ∗8 (a−h , o−z )
parameter (nmx=101)

dimension u1 (nmx,nmx,nmx) , s1 (nmx,nmx,nmx) , tmp(nmx,nmx,nmx)
c nexe = 100000
c do i i =1,nexe

f r a c = 1 . d0 / ( 6 . d0+betas )
c tmp = u1

s1 = u1
c do k=1, npass

do k=2,ny−1
do j =2,nz−1
do i =2,nx−1
s1 ( i , j , k ) = f r a c ∗( u1 ( i −1, j , k)+u1 ( i , j −1,k)+

1 u1 ( i , j , k−1)+
2 betas ∗u1 ( i , j , k)+u1 ( i +1, j , k)+u1 ( i , j +1,k)+u1 ( i , j , k+1))

end do
end do
end do

c u1 = s1
c end do
c u1 = tmp
c end do
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return
end

∗∗∗ pade f i l t e r ∗∗∗∗

subroutine pad e f l t r ( u1 , s2 , nx , ny , nz )
implicit real ∗8 (a−h , o−z )

c real ∗4 u3d , v3d ,w3d , p3d
c real ∗4 u3d

parameter (mnx=101 ,mny=101 ,mnz=101 ,
1 maxnxyz=max(mnx,mny,mnz) )
parameter ( alpha =0.5673952755 , beta =0.1209216774)

dimension u1 (mnx,mny,mnz) , s2 (mnx,mny,mnz)
dimension q (maxnxyz ) , q2 (maxnxyz ) , f (maxnxyz )
dimension a (maxnxyz ) , b (maxnxyz ) , c (maxnxyz ) , d (maxnxyz ) ,

1 e (maxnxyz )
dimension pa (4 ) , a2 ( 5 ) , a3 ( 5 ) , pp (5 ) , b2 (6 ) , b3 (6 ) , p (7 )

∗ Load Pade f i l t e r c o e f f i c i e n t s

pa = (/ 0.9931634217d0 ,1 .2890384701 d0 ,0 .2965587062 d0 ,

1 0.0006836578d0 /)

p = (/ pa (4 ) , pa (3 ) , pa ( 2 ) , 2 . d0∗pa (1 ) , pa ( 2 ) , pa ( 3 ) , pa (4 ) /)

pp = (/ beta , alpha , 1 . d0 , alpha , beta /)

a2 = (/ 0.3096256995d0 , 1 d0 ,1 .1380646293 d0 ,
1 0.4106696169d0 ,
2 0 . d0 /)

a3 = (/ 0.1477868412d0 ,0 .6357553622 d0 , 1 . d0 ,
1 0.6357553622d0 ,

2 0.1477868412d0 /)

b2 = (/ 0.3084688023d0 ,1 .0057844862 d0 ,1 .1264956568 d0 ,

1 0.4222385894d0 , −0.0057844862d0 , 0 .0011568972d0 /)

b3 = (/ 0.1470348738d0 ,0 .6395151994 d0 ,0 .9924803256 d0 ,

1 0.6432750366d0 ,0 .1440270040 d0 ,0 .0007519674 d0 /)
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a2 = a2/sum( a2 )

a3 = a3/sum( a3 )

b2 = b2/sum(b2 )

b3 = b3/sum(b3 )

p = p/sum(p)

pp = pp/sum(pp)

∗ Store i−d i r e c t i o n rows o f u3d , v3d , w3d in q and ca l l
∗ l i n e f i l t e r

do k=1,nz

do j =1,ny

do i =1,nx

q ( i ) = u1 ( i , j , k )

c q ( i , 2 ) = v3d ( i , j , k )

c q ( i , 3 ) = w3d( i , j , k )

end do

ca l l pade l ine (q , q2 , a2 , a3 , b2 , b3 , p , pp , nx )

do i =1,nx

s2 ( i , j , k ) = q2 ( i )

c v3d ( i , j , k ) = q2 ( i , 2 )

c w3d( i , j , k ) = q2 ( i , 3 )
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end do

end do

end do

∗ Store j−d i r e c t i o n rows o f u3d , v3d , w3d in q and ca l l
∗ l i n e f i l t e r

do k=1,nz

do i =1,nx

do j =1,ny

q ( j ) = u1 ( i , j , k )

c q ( j , 2 ) = v3d ( i , j , k )

c q ( j , 3 ) = w3d( i , j , k )

end do

ccc write (∗ , 2 01 ) ( j , q ( j , 2 ) , j =1,ny )

201 format (1x , i3 , 2 x , 1 pe13 . 6 )

ca l l pade l ine (q , q2 , a2 , a3 , b2 , b3 , p , pp , ny )

ccc write (∗ , 2 01 ) ( j , q2 ( j , 2 ) , j =1,ny )

do j =1,ny

s2 ( i , j , k ) = q2 ( j )

c v3d ( i , j , k ) = q2 ( j , 2 )

c w3d( i , j , k ) = q2 ( j , 3 )

end do
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end do

end do

∗ Store k−d i r e c t i o n rows o f u3d , v3d , w3d in q and ca l l
∗ l i n e f i l t e r

do i =1,nx

do j =1,ny

do k=1,nz

q (k ) = u1 ( i , j , k )

c q (k , 2 ) = v3d ( i , j , k )

c q (k , 3 ) = w3d( i , j , k )

end do

ca l l pade l ine (q , q2 , a2 , a3 , b2 , b3 , p , pp , nz )

do k=1,nz

s2 ( i , j , k ) = q2 (k )

c v3d ( i , j , k ) = q2 (k , 2 )

c w3d( i , j , k ) = q2 (k , 3 )

end do

end do

end do

return
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end

subroutine pade l ine (q , q2 , a2 , a3 , b2 , b3 , p , pp , nd )

implicit real ∗8 (a−h , o−z )

parameter (nmx=101)

dimension q (nmx) , q2 (nmx) , f (nmx)
dimension a (nmx) , b(nmx) , c (nmx) , d(nmx) , e (nmx)

c dimension q (maxnxyz ) , q2 (maxnxyz ) , f (maxnxyz )

dimension pa (4 ) , a2 ( 5 ) , a3 ( 5 ) , pp (5 ) , b2 (6 ) , b3 (6 ) , p (7 )

a = 0 . d0

b = 0 . d0

c = 1 . d0

d = 0 . d0

e = 0 . d0

a ( 3 : nd) = pp (1)

b ( 2 : nd) = pp (2)
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c ( 2 : nd−1) = pp (3)

d ( 1 : nd−1) = pp (4)

e ( 1 : nd−2) = pp (5)

∗ boundary cond i t i on s

d (1 ) = 0 . d0

e (1 ) = 0 . d0

b (2 ) = a2 (1 )

c (2 ) = a2 (2 )

d (2 ) = a2 (3 )

e (2 ) = a2 (4 )

ccc write (∗ ,∗ ) nd

a (3 ) = a3 (1 )

b (3 ) = a3 (2 )

c (3 ) = a3 (3 )

d (3 ) = a3 (4 )

e (3 ) = a3 (5 )

a (nd) = 0 . d0

b(nd) = 0 . d0
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d(nd−1) = a2 (1 )

c (nd−1) = a2 (2 )

b(nd−1) = a2 (3 )

a (nd−1) = a2 (4 )

e (nd−2) = a3 (1 )

d(nd−2) = a3 (2 )

c (nd−2) = a3 (3 )

b(nd−2) = a3 (4 )

a (nd−2) = a3 (5 )

c do m=1,3

f (1 ) = q (1)

f (2 ) = dot_product ( q ( 1 : 6 ) , b2 )

f (3 ) = dot_product ( q ( 1 : 6 ) , b3 )

do j =4,nd−3

f ( j ) = dot_product (p , q ( j −3: j +3))

end do

f (nd−2) = dot_product ( q (nd : nd−5:−1) ,b3 )

f (nd−1) = dot_product ( q (nd : nd−5:−1) ,b2 )
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f ( nd ) = q(nd)

ca l l pentdiag (a , b , c , d , e , f , q2 , nd )

c end do

return

end

subroutine pentdiag (a , b , c , d , e , f , u , n )

implicit real ∗8 (a−h , o−z )

parameter (nmax=101)

dimension a (nmax) , b(nmax) , c (nmax) , d(nmax) ,
1 e (nmax) , f (nmax) , u(nmax) , p(nmax) , q (nmax)

save

∗ I n i t i a l i z e e l im ina t i on and back s ub s t i t u t i o n ar rays

i f ( c ( 1 ) . eq . 0 . d0 ) stop ! e l im ina t e u2 t r i v i a l l y

bet = 1 . d0/c (1 )

p (1 ) = −d (1)∗ bet

q (1 ) = −e (1)∗ bet
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u (1) = f (1)∗ bet

bet = c (2 ) + b(2)∗p (1)

i f ( bet . eq . 0 . d0 ) stop ! s i n g u l a r i t y in
pentd iagona l matrix

bet = −1.0d0/bet

p (2 ) = (d(2)+b(2)∗ q (1 ) )∗ bet

q (2 ) = e (2)∗ bet

u (2 ) = (b (2)∗u(1)− f ( 2 ) )∗ bet

∗ Construct upper−t r i a n gu l a r matrix

do i =3,n

bet = b( i ) + a ( i )∗p( i −2)

den = c ( i ) + a ( i )∗q ( i −2) + bet∗p( i −1)

i f ( den . eq . 0 . d0 ) then

write (∗ ,∗ ) ’ ␣ s i n g u l a r i t y ␣ in
␣␣␣␣␣␣1␣ pentd iagona l ␣matrix ’

stop

end i f

den = −1.d0/den
p( i ) = (d( i )+bet∗q ( i −1))∗den
q ( i ) = e ( i )∗den
u( i ) = ( a ( i )∗u( i−2)+bet∗u( i−1)− f ( i ) )∗ den
end do

∗ Perform back sub s t i t u t i o n
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u(n−1) = u(n−1) + p(n−1) ∗ u(n)
do i=n−2,1,−1
u( i ) = u( i ) + p( i )∗u( i +1) + q( i )∗u( i +2)
end do
return
end

subroutine l 2 e r r ( exct , aprx , err , nx , ny , nz )
implicit real ∗8 (a−h , o−z )
parameter (nmx=101)
dimension exct (nmx,nmx,nmx) , aprx (nmx,nmx,nmx)

err = 0 . d0
do k=1,nz
do j =1,ny
do i =1,nx
err = err + (( exct ( i , j , k)−aprx ( i , j , k ) ) / ( nx−1))∗∗2

end do
end do
end do
err = sqr t ( err )

return

end

107



Bibliography

[1] Bruno A. Olshausen, Aliasing, PSC 129, Sensory Process, 2000.

[2] Thomas H. Pulliam, Artificial dissipation models for the Euler equations, AIAA
Journal, 24, 12, 1986.

[3] G. de Vahl Davis and G. D. Mallinson. An evaluation of upwind and central
difference approximations by a study of recirculating flow, Computers and
Fluids 4, 29–43, 1976.

[4] J. M. McDonough, V. E. Garzon and D. Schulte. Effect of film-cooling hole
location on turbulator heat transfer enhancement in turbine blade internal
air-cooling circuits, presented at ASME TURBO EXPO 99, Indianapolis, IN,
June 7–10, 1999.

[5] J. M. McDonough, T. Yang and M. Sheetz. Parallelization of a modern CFD
incompressible turbulent flow code, presented at Parallel CFD 2003, Moscow,
May 13–15, 2003.

[6] F. G. Shuman, Numerical methods in weather prediction: q Smoothing and
filtering, Monthly Weather Review, 85, 357–361, 1957.

[7] Stephan P. Nelson, Michanel L. Weible, Three-dimensional Shuman filter,
Journal of applied meteorology, 19, 464–469, 1998.

[8] T. Yang and J. M. McDonough, Solution filtering technique for solving Burgers’
equation, The Fourth International Conference on Dynamical Systems and
Differential Equations, University of North Carolina at Wilmington, U.S.A.,
May 23–27, 2002.

108



[9] Oleg V Vasilyev, A study of the effect of smooth filtering in LES, Department
of mechanical and aerospace engineering, University of Missouri-Columbia.

[10] Lund, T.S. On the use of discrete filters for large eddy simulation, Annual
Research Briefs, Center for Turbulence Research, NASA Ames/Stanford Univ.,
83-95,1997.

[11] Ercan Erturk, Discussions on driven cavity flow, Int, J. Numer. Meth. Fluids,
60, 275–294, 2009.

[12] V. B. L. Boppana and J. S. B. Gajjar, Global flow instability in a lid-driven
cavity. Int. J. for numer. meth. in fluids, 2009.

[13] Charles-Henri Bruneau, Mazen Saad, The 2D lid-driven cavity problem revisited.
Computers and Fluids, 35, 326–348, 2006.

[14] Oleg V. Vasilyev, Thomas S. Lund, and Parviz Moin, A general class of commu-
tative filters for LES in complex geometries, J. Comp. Phys., 146, 82–104, 1998.

[15] Liu, Z., Huang, Q., Zhao, Z., and Yuan, J., Optimized compact finite difference
schemes with high accuracy and maximum resolution, Int. J. Aeroacous., 7,
123–146, 2008.

[16] M. S. Grewal, Kalman Filtering: Theory Practice, Englewood Cliffs, NJ,
Prentice-Hall, 1993.

[17] Vauhkonen, M, A Kalman filter approach to track fast impedance changes in
electrical impedance tomography, IEEE Transactions on Biomedical Engineer-
ing, 45, Issue 4, 486–493, 1998.

[18] Maria Isabel Ribeiro, Kalman and extended Kalman filters: concept, derivation
and properties, Institute for Systems and Robotics, 2004.

[19] Jiangang Wang, Deyuan Gao, Improved morphological top-hat filter optimized
with genetic algorithm, CISP 2nd International Congress on Image and Signal
Processing, 2009.

109



[20] N. E. Grube, M. Pino Martin, Assessment of subgrid-scale models and
shock-confining filters in large-eddy simulation of highly compressible isotropic
turbulence, 47th AIAA Aerospace Science Meeting, 5–8, January 2009, Orlando,
FL.

[21] Weinan E, Numerical methods for viscous incompressible flows: some re-
cent advances, Princeton University, Available as a downloadable PDF file
athttps://web.math.princeton.edu/ weinan/papers/cfd1.pdf.

[22] S. V. Patankar. Numerical heat transfer and fluid flow, McGraw-Hill Book Co.,
New York, 1980.

[23] W. A. Ames, Numerical methods for partial differential equations, Academic
Press, New York, 304-306, 1977.

[24] J. M. McDonough a T. Yang, A solution Filtering Technique for treat-
ing Under-Resolved Solutions to Partial Differential Equations: Burg-
ers’ equation model problem. Available as a downloadable PDF file at
�http://www.engr.uky.edu/ acfd/filter2.pdf.

[25] R. Shapiro, Smoothing, filtering and boundary effects, Rev. Geophys. and Space
Phys., 8, 359–387, 1970.

[26] D. You, S. T. Bose and P. Moin, Grid-independent large-eddy simulation of
compressible turbulent flows using explicit filtering, Center for Turbulence
Research, Proceedings of the Summer Program, 203–211, 2010.

[27] Ghosal, S. An analysis of numerical errors in large-eddy simulations of turbu-
lence. J. Comp. Phys. 125, 187–206, 1995.

[28] Ghosal, S. Moin, P. The basic equations of the large eddy simulation of
turbulent flows in complex geometry. J. Comp. Phys. 118, 24–37, 1995.

[29] Jessica Gullbrand, Explicit filtering and subgrid-scale models in turbulent
channel flow, Center for Turbulence Research Annual Research Briefs, 2001.

[30] A. Harten and G. Zwas, Switched numerical Shuman filters for shock calcula-
tions, J. Eng. Math. 6, No. 2, 207–216, 1972.

110



[31] K. E. Gustafson, Introduction to partial differential equations and Hilbert space
methods, John Wiley Sons, New York, 1980.

[32] A. Majda, J. Harlim and B. Gershgorin, Dis. Cont. Dyn. Sys., 27, 441–486, 2010.

[33] J. M. McDonough, Lectures on computational fluid dynamics of incompressible
flow: mathematics, algorithms and implementations,Available as a downloadable
PDF at http://www.engr.uky.edu/ acfd/me691-lctr-nts.pdf.

[34] J. M. McDonough. Lectures on Computational numerical analysis of par-
tial differential equations, 2008. Available as a downloadable PDF file at
http://www.engr.uky.edu/ acfd/me690-lctr-nts.pdf.

[35] William L. Briggs, Van Emden Henson, and Steve F. McCormick, A Multigrid
Tutorial (2nd ed.), Philadelphia: Society for Industrial and Applied Mathemat-
ics, ISBN 0-89871-462-1, 2000.

[36] Martin Vetterli and Cormac Herley, Wavelets and Filter Banks: Theory and
Design, IEEE Transactions on Signal Processing. 40, 1992.

[37] G. Beylkin, On the representation of operators in bases of compactly supported
wavelets, SIAM J. Numer. Anal. 29, 1716 (1992).

[38] Joshua Strodtbeck, A filter-forcing turbulence model for large eddy simulation
incorporating the compressible “poor man’s navier–stokes equations”. Doctoral
Dissertation, University of Kentucky, 2012.

[39] A. Liberzon, Yu. Feldman and A. Yu. Gelfgat, Experimental observation of the
steady-oscillatory transition in a cubic lid-driven cavity, Physics of fluids, 23,
084106, 2011.

[40] P. Gresho, On the theory of semi-implicit projection methods for viscous
incompressible flow and its implementation via a finite element method that
also introduce a nearly consistent mass matrix, part 1: Theory, Int. J. Numer.
Meth. Fluids, vol. 11, 587–620, 1990.

[41] J. Douglas, Jr. and J. E. Gunn. A general formulation of alternating direction
methods, part I. parabolic and hyperbolic problems, Numer. Math., 6, 428–453,
1964.

111



[42] David Ruelle and Floris Takens, On the nature of turbulence, Comm. Math.
phys. 20, 167–192, 1971.

[43] Alligood, K.T., Sauer, T.D., Yorke, J.A., Chaos, an introduction to dynamical
systems, Springer-Verlag, New York, 1996.

[44] Constantin, P. and Foias, C., Navier-Stokes Equations, University of Chicago
Press, Chicago, 1988.

[45] J. M. McDonough. Lectures on Basic computational numerical analysis, 2007.
Available as a downloadable PDF file at http://www.engr.uky.edu/ acfd/lec-
turenotes1.html

[46] P. N. Shankar and M. D. Deshpande, Fluid mechanics in the Driven Cavity,
Annu. Rev. Fluid Mech., 32:93–136, 2000.

[47] W. S. Brainerd, C. H. Goldberg, and J. C. Adams, Programmer’s Guide to
Fortran 90, Springer, New York, 1996.

[48] Adams, N. A. and Stolz, S., Deconvolution methods in subgrid-scale approxi-
mationsin LES, Modern Simulation Strategies for Turbulent Flow, edited by B.
J. Geurts, Vol. 50, R. T. Edwards, Inc., pp. 21–44, 2001.

[49] Chanson, H. and Carosi, G., Turbulent Time and Length Scale Measurements
in High-Velocity Open Channel Flows. Experiments in Fluids, 42 (3), 385–401,
2007.

[50] Kolmogorov, A. N., The local structure of turbulence in incompressible fluid for
very large Reynolds number. Dokl. Akad. Nauk SSSR 30, 299–303, 1941.

[51] Srinivasan R. Accurate solutions for steady plane flow in the driven cavity.
I.Stokes flow. Z. Angew Math. Phys. 46:524–45, 1995.

112



Vita

Weiyun Liu, was born in Jinan, China. After obtaining the Bachelor’s degree in China

University of Petroleum, she studied at the computational fluid dynamics research

group in University of Kentucky. She did the research on the Shuman filter and the

Padé filter on a lid-driven cavity problem. Her research areas include petrochemistry,

petromechanics, large eddy simulation and turbulence.

113


	University of Kentucky
	UKnowledge
	2014

	INVESTIGATION OF FILTERING METHODS FOR LARGE-EDDY SIMULATION
	Weiyun Liu
	Recommended Citation


	Title page
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Analysis
	Aliasing
	Filtering Models: implicit and explicit filtering

	Introduction to Shuman filter
	Shuman filter in one dimension
	Shuman filter in higher space dimensions

	Introduction to Padé filter
	Mathematical Description
	Relationship to Shuman filter
	Implementation


	Results and Discussions
	Experimental Results
	Simulations
	Simulation results with Re=1000, 113 grid points
	Simulation results with Re=2000, 813 grid points
	Additional simulation results
	Selection of optimal bold0mu mumu 

	Comparison between Shuman and Padé filters
	Applications of filters to perturbed sine wave
	Comparison of Shuman and Padé filters: laminar LDC flow
	Comparison of Shuman and Padé filters: turbulent LDC flow 


	Conclusion
	Conclusions
	What still is needed

	Appendix
	Bibliography
	Vita

