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ABSTRACT OF THESIS 
 
 
 
 

NUMERICAL MODELING OF THE DYNAMIC RESPONSE OF A  
MULTI-BILINEAR-SPRING SUPPORT SYSTEM 

 
 

The Alpha Magnetic Spectrometer is an International Space Station Experiment 
that features a unique nonlinear support system with no previous flight heritage.  The 
experiment consists of multiple straps with piecewise-linear stiffness curves that support 
a cryogenic magnet in three-dimensional space inside of a vacuum chamber.  The 
stiffness curves for each strap are essentially bilinear and switch between two distinct 
slopes at a specified displacement.  This highly nonlinear support system poses many 
questions in regards to feasible computational methods of analysis and possible response 
behavior.  This thesis develops a numerical model for a multi-bilinear-spring support 
system motivated by the Alpha Magnetic Spectrometer design.  Methods of analysis 
applied to the single bilinear oscillator served as the foundation of the model developed 
in this thesis.  The model is developed using MATLAB and proves to be more 
computationally efficient than ANSYS finite element software.  Numerical simulations 
contained herein demonstrate the variety of response behaviors possible in a multi-
bilinear-spring support system, thus aiding future endeavors which may use a support 
system similar to the Alpha Magnetic Spectrometer.  Classic nonlinear responses, such as 
subharmonic and chaotic, were found to exist. 
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Chapter 1: Introduction 

 The Alpha Magnetic Spectrometer (AMS) is an International Space Station 

experiment to be launched via shuttle in the second half of 2010.  The project, under the 

sponsorship of the United States Department of Energy, is truly international in scope.  

The work effort spans over 15 different countries and various institutions and 

organizations including MIT, NASA and CERN [1].   

Fundamentally, the AMS is a particle physics detector that uses a magnet to bend 

the path of charged cosmic particles as they pass through one of five on-board detectors.  

There are two different hardware versions of the Alpha Magnetic Spectrometer.  AMS-

01, which first flew aboard Discovery in 1998, utilized an ordinary magnet, while AMS-

02 utilizes a large cryogenic superconducting magnet housed within a vacuum chamber.  

Evaporative cooling caused by the bleeding off of extremely cold liquid helium is used to 

keep the AMS-02 superconducting magnet cool and thus fully operational.  A vacuum 

case serves as insulation of the complete magnet assembly, ensuring the helium itself 

remains cold and thus low temperatures are maintained during the experiment’s planned 

three year lifespan.   

Maintaining critically low temperatures required that a support system with 

minimal heat transfer be designed to mount the magnet within the vacuum chamber.  The 

chosen system consists of 16 nonlinear straps that are fabricated with a low thermal 

conductivity material, further ensuring the cryogenic environment is not compromised by 

heat transfer to the magnet through the straps from outside the vacuum chamber.  The 

support strap configuration and how they attach to the vacuum casing and magnet is 

presented in Figure 1.1 [2], [3].   
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                          a)                                                                     b) 
Figure 1.1: a) AMS-02 Magnet Support Straps [2], b) AMS-02 Magnet Vacuum 

Case [3] 
 

The straps are considered nonlinear due an abrupt change in stiffness that occurs 

when any individual strap is stretched past a critical limit.  The stiffness curves for each 

strap are actually piecewise-linear (PWL).  PWL stiffness curves consist of various linear 

regions connected at points where stiffness changes, denoted as knees of the stiffness 

curve.  The abrupt changes in stiffness of the PWL straps limit the range of magnet 

motion allowed and prevent an undesired source of heat transfer through contact with the 

walls of the vacuum case.   

The actual straps used on the AMS-02 are bilinear or trilinear depending on the 

operation temperature.  Representative stiffness models for AMS-02 straps are given in 

Figure 1.2.  Each support strap is preloaded to a point within the yellow region on the 

curve at static equilibrium.  The PWL stiffness curves globally appear bilinear, with 

distinct upper and lower stiffness values. 
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Figure 1.2: Representative AMS-02 Nonlinear Support Strap Stiffness Curve 

 
  The AMS-02 nonlinear support system is a new design with no prior flight 

heritage.  The design poses many interesting challenges as a result of the nonlinear 

nature, such as determining a suitable method of analysis and exploring the wide range of 

possible response types.  After the work for this thesis was completed, there was 

speculation as to which magnet, the AMS-01 or the AMS-02, would be used on the final 

International Space Station experiment [4].  All stated reasons of uncertainty associated 

with the AMS-02 cryogenic magnet were independent of the nonlinear support system 

and instead were inspired by the desired life span of the experiment.  Regardless of which 

magnet is chosen for the final system, the PWL support strap system is a promising 

development for future space applications that may use the AMS-02 design as legacy. 

 The primary objective of this thesis is to develop a feasible method of 

computational analysis for a multi-bilinear-spring (MBS) support system motivated by 

the AMS-02 design that enables the range of possible nonlinear behavior to be studied.  

The system of interest consists of a point mass supported by four bilinear springs in a 

two-dimensional plane.  The springs were assumed bilinear as a result of the essentially 

bilinear nature previously noted in the AMS-02 support strap stiffness curve.  A general 
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bilinear spring consists of two distinct stiffness values, K1 and K2, joined together at a 

point that is called the knee of the stiffness curve, denoted by the letter s.  Several 

examples of bilinear springs are given in Figure 1.3.  Each of these is identical in 

extension, but differs in their compressive behavior.  Additional information on each type 

of bilinear spring is provided in the introduction of Chapter 3.  The four-spring MBS 

support system studied in this thesis, and presented in Chapter 3, is part of the larger class 

of PWL systems.  Both single and multi-spring systems require nonlinear dynamic 

analysis.   

   

           

                     a)                                              b)                                              c) 

Figure 1.3: Sample Bilinear Spring Stiffness Curves, a) Symmetric, b) Asymmetric 
with Compressive Resistance, c) Asymmetric with no Compressive Resistance 

 
 Chapter 2 of this thesis contains a brief summary of terminology necessary when 

studying nonlinear dynamics followed by a review of literature pertaining to nonlinear 

and PWL dynamic systems.  Chapter 3 presents a derivation of equations of motion for 

two PWL systems.  The single degree-of-freedom (DOF) bilinear oscillator is considered 

first, and serves as the starting point for a thorough derivation of the piecewise-

continuous equations of motion for the two-dimensional four-spring MBS support 

system.  Chapter 4 explores the potential energy associated with the MBS system in 
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different positions as well as variation of static equilibrium positions due to changes in 

system parameters.  Chapter 5 contains dynamic simulation results primarily obtained via 

numerical integration of differential equations of motion in MATLAB.  The familiar 

single bilinear oscillator is once again used as a starting point to motivate actions taken 

when exploring the more complicated four-spring MBS support system.  Nonlinear 

behavior in the four-spring MBS support system is documented.  Additional topics 

include comparison of numerical integration results with ANSYS nonlinear transient 

results and exploration of approximating bilinear stiffness curves with polynomials.  

Chapter 6, the final chapter of this thesis, contains a summary and conclusions as well as 

recommendations for future expansions of this work. 
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Chapter 2: Literature Review 

2.1 Definitions 

 Nonlinear dynamics has a vast language not readily encountered in other fields of 

study.  It is first necessary to summarize essential definitions prior to a review of the 

literature.  Much of this language will also be used in subsequent chapters.  The aim of 

this section is to improve the overall flow of the thesis and aid in understanding the 

material. 

State variables refer to quantities used to describe the state of the system [5].  In 

dynamic analysis, position and velocity are frequently chosen as state variables.  The 

space in which state variables evolve is known as the phase space. 

Phase plane portraits are projections of state variable solutions onto the phase 

space [5].  For dynamic system analysis, phase plane portraits are frequently velocity 

plotted versus position.  Solutions projected onto the phase space create trajectories in 

phase plane portraits.  Periodic solutions are represented by closed-curve trajectories. 

Poincaré maps are generated by marking the location of the system at particular 

state variables on the phase plane portrait at discrete time intervals.  The forcing period is 

typically used as the discretized time interval.   

Subharmonic responses occur at frequencies lower than the frequency of external 

forcing.  Subharmonic responses are frequently denoted as period-k responses, where the 

response period is k times larger than the forcing period.  Similarly, a superharmonic 

response occurs at a frequency greater than the frequency of external forcing. 

Chaos is an apparently random response of a nonlinear system to a fixed 

excitation that occurs when “periodic excitation leads to a nonperiodic response” [6].  
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Nayfeh defines chaos as “a bounded steady state behavior that is not an equilibrium 

solution or a periodic solution or a quasiperiodic solution” as well as a “constrained 

random-like behavior” [5].   

A bifurcation

2.2 Introduction to Nonlinear Dynamic Analysis 

 refers to a change in the number or type of solutions that occurs as a 

system parameter, such as forcing frequency or damping ratio, is varied in small 

intervals. 

Piecewise-linear dynamic systems, such as the Alpha Magnetic Spectrometer 

cryogenic magnet support structure, are part of a larger class known as nonlinear dynamic 

systems.  The study of nonlinear dynamic systems has seen rapid growth in the last 

century as increases in scientific awareness and computational capacity have allowed 

researchers to explore these systems in great detail.  Nonlinear system dynamic analysis 

frequently requires repetition of computationally expensive calculations that have been 

expedited with the advent of the modern computer.  However, many of the methods and 

tools utilized today were developed during or adapted from early foundational studies of 

nonlinear systems.  

French mathematician Henri Poincaré encountered nonlinear systems during his 

study of the n-body problem in celestial mechanics during the late 1800’s [5].  Poincaré is 

considered by many to be the father of chaos theory.  Poincaré maps, named in honor of 

Henri Poincaré, have become a standard means of detecting chaos within a dynamic 

system.  A more general discussion on nonlinear systems was documented in Den 

Hartog’s Mechanical Vibrations, originally published in 1934 [7].  A chapter of the text is 

devoted to systems with variable or nonlinear characteristics, whereby the mass, 
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damping, or stiffness are functions of time or displacement.  Integration of governing 

equations of motion for free and forced vibrations are discussed for both mechanical and 

electrical systems.  Subharmonic resonance, a phenomenon not possible in linear 

systems, was discussed.  One of the earliest comprehensive textbooks on nonlinear 

dynamics, Minorsky’s Introduction to Nonlinear Mechanics, was published in 1947 [8].  

The text utilized topological methods of nonlinear analysis, such as phase plane plots, 

trajectories and bifurcation theory, as well as analytical methods popular at the time.  

Numerous textbooks and journal articles have since been published within the 

field of nonlinear dynamics.  Most modern texts on vibrations contain at least one chapter 

dedicated to nonlinear analysis [9].  Nonlinear systems exhibit many response 

characteristics that are not possible in their linear counterparts, such as the existence of 

multiple subharmonic responses.  In cases where multiple responses are possible, the 

initial conditions of the system determine which motion is physically realized.  This 

strong dependence on initial conditions has become a key trait of nonlinear systems.  

However, perhaps the most important aspect of research in the field of nonlinear 

dynamics is the discovery and establishment of the branch of physics known as chaos.  

Modern chaos theory has become a standard and acceptable aspect of nonlinear dynamic 

analysis.  

Chaos, by nature, cannot be defined by a simple mathematical model.  It is 

important to note that chaos is not completely random.  Poincaré maps provide visual 

justification of the bounded nature of the seemingly random phenomenon.  Harmonic and 

subharmonic responses are represented by a single or a finite number of points on the 

Poincaré map, respectively.  Chaos is represented by strange attractors on the maps.  
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Strange attractors, such as the famous Lorenz attractor, are composed of an infinite 

number of points arranged in bounded, fractal shapes.  A truly random phenomenon 

would not have recognizable attractors on the Poincaré map, but rather a completely 

random distribution of points with no bounds or shapes. 

Bifurcation diagrams are another tool frequently used to identify chaotic motion.  

Bifurcation diagrams often reveal repeated period doubling as the path to chaos in 

nonlinear systems.  A period-1 response may bifurcate into a period-2 response.  The 

period-2 response has a period that is twice that of the period-1 response.  Thus, in forced 

systems, two forcing periods will occur before the period-2 response begins to repeat.  In 

general, a period-k response has a period that is k times larger than the forcing period for 

the system.  These period doublings, or triplings in some instances, continue to occur as 

the system parameter is varied until chaotic motion appears.  It is possible for regions of 

chaotic motion to once again become harmonic or subharmonic as the system parameter 

is varied. 

Ueda successfully simulated chaos exhibited by Duffing’s equation using analog 

and digital computers in 1980 [10].  Duffing’s equation is a second order differential 

equation with cubic stiffness nonlinearity.  Ueda found that forced Duffing oscillatory 

systems exhibited harmonic, subharmonic, ultrasubharmonic and chaotic response for 

certain system parameters (damping and forcing amplitude).  These regions were 

identified on a damping-forcing amplitude parameter plane.  This parameter plane was 

reproduced by Thompson and Stewart and has been included for reference in Figure 2.1 

[11].  Twenty-one major regions were identified, ranging from strictly chaotic, periodic, 

or subharmonic responses to coexisting chaotic, periodic or subharmonic responses.  In 
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agreement with typical chaotic systems, the obtained response varied with initial 

conditions.   

 

Figure 2.1: Damping-Forcing Amplitude Parameter Plane for Duffing’s Equation, 
created by Ueda [10].  Thompson and Stewart Reproduction is Presented with 

Permission (Copyright © 1986 John Wiley & Sons) [11]. 
 

Phase plane plots highlighted various regions of coexisting responses as well as 

detected chaotic regions.  Figure 2.2, the result of numerical simulations reproducing 

Ueda [10], demonstrates the nonlinear system’s dependence on initial conditions.  For 

given values of damping and forcing amplitude, the response is chaotic or period-1 

depending on the initial position and velocity.  These parameter values correspond to 
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Region (o) as noted in Figure 2.1.  The nonlinear behavior of Duffing’s equation has also 

been explored experimentally and results compare well with Ueda’s paper [12]. 
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Figure 2.2: Coexisting chaotic and period-1 trajectories, recreated from Ueda [10] 
 

2.3 Introduction to Piecewise Linear Dynamic Systems 

Bilinear springs, the specific focus of the effort in this thesis, belong to the subset 

of general nonlinear systems known as piecewise-linear (PWL).  Their name is derived 

from the fact that the governing differential equations of motion can be written by piecing 

together two or more linear equations at distinct locations.  When the governing equation 

switches from one linear solution to another, the system response changes abruptly.  This 

abrupt change in behavior is often caused by physical contact with another object or a 

change in material properties designed to alter the system response.  Impact oscillators, 

such as a bouncing ball contacting a rigid surface [13], mooring lines [14], [15], [16], 

spring mass systems with clearance [17], [18], [19], [20], preloaded compliance systems 

[21], elastic beams with nonlinear boundary conditions [22], and cracked concrete 
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structures [23] are all examples of piecewise linear dynamic systems.  All of these 

examples use modeling equations composed of a series of linear differential equations. 

Den Hartog was perhaps the first individual to research PWL dynamic systems.  

During the 1930’s, Den Hartog published two papers that investigated one-dimensional, 

single DOF spring mass systems with PWL stiffness behavior [24], [25].  In 1932, Den 

Hartog and Mikina obtained the steady state solution for an oscillatory system with initial 

spring set [24].  The solution was obtained by piecing together the linear solutions which 

pertained to the two portions of the oscillatory motion.  The second order differential 

equation of motion was nondimensionalized, boundary conditions were imposed, and an 

equation which governed the shape of the response was obtained.  Numerical methods 

were required to solve transcendental equations in time to determine the actual maximum 

response amplitude for a given forcing function.   

Four years later, Den Hartog and Heiles investigated the steady state response of a 

symmetric bilinear oscillator [25].  Denoting the lower portion of the stiffness curve K1, 

and the upper portion of the stiffness curve K2, the response amplitude was plotted for 

various forcing frequencies and K1/K2 ratios of 0, 0.5, 2, and ∞.  It was determined that 

bilinear system response with large forcing approached that of a purely linear system 

with stiffness K2.  For cases where external forcing did not engage the second portion of 

the stiffness curve, the system behaved as the expected linear spring mass structure with 

stiffness K1.   

Chaotic solutions of single DOF PWL oscillators were discovered in the early 

1980’s [26].  After the work of Ueda and others in years prior, chaos was an accepted 

aspect of general nonlinear dynamic systems.  Previously studied systems were typically 
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nonlinear because of the presence of terms that were not first order in time dependent 

variables.  Unlike these systems, PWL oscillators possess differential equations that are 

first order in the dependent variables but still exhibit chaotic response.  Schulman studied 

the case of a single DOF forced oscillator with stiffness K1 for x > 0 and stiffness K2 for x 

< 0 in 1983.  This system is a simplistic model of the human eardrum, where the elastic 

coefficient is larger for inward displacement than it is for outward displacement [26].  

Damping time, defined as the inverse of the nondimensionlized damping coefficient, was 

chosen as the varied system parameter.  The damping times at which period doublings 

occurred were presented in tabular form and ranges of damping time that resulted in 

chaotic motion were discovered.  A maximum value of damping time above which no 

chaotic solutions were found was discussed within the paper. 

In the same year of Schulman’s study, Shaw and Holmes published an article on 

periodically forced piecewise linear oscillators where harmonic, subharmonic, and 

chaotic responses were found to exist [17].  Their general model was a single DOF 

asymmetric bilinear oscillator with two stiffness values, K1 and K2, and critical knee 

location at displacement value x0.  Two distinct scenarios, one with x0 = 0 and the other 

an impact oscillator with K2 = ∞, were discussed.  The governing differential equations of 

motion were written in piecewise form.  This resulted in two second order differential 

equations because of the two potential stiffness values.  Exact solutions governing the 

motion in each region were obtained with traditional ODE theory.  Each occurrence of 

the knee location x0, which serves as the switching point between the two solutions, was 

located using simple Newton-Rhapson iterations on digital computers.  The times at 

which x0 was reached are referred to as crossing times, and these times were determined 
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through use of the Newton-Rhapson scheme.  The use of digital computers allowed Shaw 

and Holmes to locate the crossing points with high precision.  Locating the crossing point 

was the only approximation in their model since exact ODE solutions were used rather 

than numerical ODE methods to predict the motion for time spans between back-to-back 

crossing point times. 

For the special case x0 = 0, Shaw and Holmes located a series of period doubling 

bifurcations and presented a case with coexisting stable period-1 and period-3 motions.  

Analysis of the impact oscillator (K2 = ∞) was simplified by taking the time of flight 

during impact to be zero.  A coefficient of restitution model was implemented to account 

for energy loss during the impact.  Digital computation was only needed to locate one 

crossing time (the time at which the impact occurred).  A bifurcation diagram was 

constructed by carrying out a large number of simulations on the computer.  A variety of 

single impact and period-k orbits were found.  Orbits up to period-32 were observed for 

the impact oscillator.  Strange attractors were discovered for various impact oscillator 

cases, but no rigorous mathematical theory was utilized to confirm that chaos was 

present.  At the time of publication, fairly general mathematical theory had been 

completed for one-dimensional mappings, but not for two dimensions, limiting the 

authors to digital evidence of chaotic responses. 

2.4 Methods of Analysis for Nonlinear Dynamic Systems 

Solutions for nonlinear dynamic problems where the exact time histories are not 

easily obtained or are potentially nonexistent are obtained with a variety of methods.  If 

an analytical solution is obtainable without extremely large increases in computation 

time, this will be the most desirable due to the low amount of error introduced.  
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Complications in deriving closed form solutions and complexity of calculation normally 

lead researchers to utilize approximate methods of solution.  Perturbation theory, 

harmonic balance, and numerical integration are a few of the approximate techniques 

frequently used to solve nonlinear dynamic problems.  Other methods, such as mapping 

dynamics [27] and graph theory [28] can also be applied to nonlinear system analysis, but 

are not addressed in this review due to their infrequent use compared to other methods of 

analysis.  Each method has inherent benefits and drawbacks, as well as others that depend 

on the particular nonlinearity being modeled.  For example, numerical integration allows 

for the full time history to be obtained, while harmonic balance methods provide the 

steady state motion only.  Depending on the desired outcome, the lack of transient 

solution information may be acceptable. 

Very few papers have made use of closed form solution techniques for piecewise-

linear systems.  Shaw and Holmes used exact solutions for each linear region of the 

piecewise linear system, but used digital computers to approximate the switching point 

between their two governing differential equation solutions [17].  This solution type is 

not truly closed form.  Additionally, piecing together closed form solutions for a simple 

one-dimensional, single DOF PWL oscillator is easily done, but higher order systems 

would require complex theory to obtain the solutions in each PWL region.  Chicurel-

Uziel presented an exact, closed-form solution for a piecewise-linear spring and mass 

system that could be written in a single equation [29].  Their methodology was to use the 

Heaviside unit step function to write a single equation of motion.  The unit step function 

can be used to activate different portions of the PWL stiffness curve.  The author suggests 

that a closed algebraic expression for the Heaviside unit step function is possible, but 
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most likely software such as Mathematica or Maple would be used to handle the function 

and make calculations.  This approach is not typically seen in other PWL studies.  

Perturbation theory is based on the idea of splitting a problem into the 

combination of a solvable problem and a small perturbation parameter, ε [30].  Allowing 

ε to tend to 0 results in a problem where the solution is easily obtained.  Modifications 

are then made to account for the effect of the small perturbation, ε, from the easily 

obtained solution.  By accounting for small deviations from linear problems, perturbation 

theory can be used to solve problems with relatively weak nonlinearities, such as certain 

instances of cubic stiffness nonlinearities.  The abrupt changes encountered in PWL 

oscillators imply they are strongly nonlinear systems, thus classical perturbation methods, 

such as Krylov-Bogoliubov-Mitropolsky and multiple scales, are not appropriate solution 

techniques [31], [32]. 

The harmonic balance method (HBM) is a frequency domain approach used to 

obtain steady state solutions of nonlinear dynamic systems.  This method is capable of 

handling systems with strong nonlinearities.  In cases where more accurate periodic 

solutions are desired, the HBM must be reformulated to add additional harmonic terms 

[31].  Cheung and Lau proposed using the incremental harmonic balance method (IHBM) 

for nonlinear periodic vibrations in 1981 [33].  A series of solutions are obtained in a 

step-by-step manner until the desired solution accuracy is obtained.  Choosing a suitably 

small increment almost guarantees that the IHBM will converge regardless of the 

complicated response nature.  The authors demonstrated proper application of their 

proposed IHBM on thin-walled plates and shallow shell problems.  Their results 

compared well with previously published results [33].   
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Lau and Zhang extended IHBM analysis to systems with PWL stiffness [34].  

Plots of response amplitude versus forcing frequency were generated for two classic 

PWL stiffness examples.  The first, a single DOF system with clearance, gave rise to 

superharmonic and subharmonic resonances.  The second example was a single DOF 

system with symmetric PWL stiffness, also known as a symmetric bilinear spring.  The 

authors presented a convergence study for the second case.  Time histories for two 

different forcing frequencies were tabulated for three, five, and eight harmonic term 

models.  Three-harmonic-term models provided very good results when compared to the 

higher-order models, but it is still recommended to use more harmonic terms when 

analyzing superharmonic and subharmonic resonances.  Both stable and unstable 

vibration states are obtained with the IHMB, contrary to numerical integration.  This 

facilitates stability analysis of PWL systems [34].   

In 2003, Xu et al applied the IHBM to a single DOF oscillator with both PWL 

stiffness and damping terms [31].  Period-3 responses were discovered with the IHBM.  

Chaotic responses arising from successive period doubling bifurcations were also found, 

in agreement with Li and Yorke’s famous assertion that existence of period-3 motion 

implies chaotic motion will also occur [35].  Xu et al compared many of their results with 

fourth order Runge-Kutta simulations and the two methods matched extremely well.  

Successful applications suggest the IHBM is a promising solution technique to analyze 

forced periodic vibrations of PWL systems. 

Numerical integration schemes are perhaps the most prevalent nonlinear response 

analysis technique seen in the literature.  High-order Runge-Kutta (RK) methods allow 

for full time histories of motion with both the transient and steady state solutions to be 
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accurately obtained.  RK methods are criticized for being time consuming when 

conducting parametric studies or if unstable solutions are desired [31].  However, once 

equations of motion are obtained, RK schemes are easily implemented and compute 

reasonably quickly on modern computers.  RK schemes have been used in general 

nonlinear dynamic problems as well as PWL problems. 

Ravindra and Mallik used RK to numerically integrate the governing equation of 

motion for a harmonically excited mass and isolator with cubic stiffness and pth-power 

damping nonlinearities [36].  A parametric study revealed that while critical forcing 

values at which bifurcations occured changed as the the power of damping and damping 

ratio varied, the bifurcation structure of this Duffing type oscillator was not affected by 

the specific power of the nonlinearity.  Changes in the nonlinear damping model showed 

potential for passive control of chaos.  Nayfeh et al used a fifth and six-order RK scheme 

when studying the nonlinear free and forced responses of a buckled beam [37].  RK56 

results obtained with a digital computer agreed with analytical solutions obtained with an 

analog computer.  Kahraman also used RK56 when numerically simulating the response 

of a one-dimensional single DOF PWL oscillator with a clearance deadzone [20].  

Previous studies on PWL oscillators that used RK schemes to obtain accurate results 

were listed in Kahraman’s paper.  Due to its frequent use as the approximate solution 

technique of choice and as a benchmark for validating new methods of nonlinear system 

analysis, RK is an extremely promising method when considering numerical modeling of 

multi-bilinear-spring support systems. 

The time step of integration is a key parameter when numerically integrating 

equations of motion.  All numerical integration schemes, such as RK or Newmark’s 
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method, require that a finite time step be selected.  Larger time steps generally imply less 

accurate results.  In theory, an infinite number of time steps in a given simulation time 

would result in the highest accuracy obtainable, but this is not possible due to limitations 

in computational capacity.  If a chosen time step is too small, numerical error can be 

introduced via subtractive cancellation.  Subtractive cancellation occurs when the 

computer attempts to take the difference between two extremely small numbers [38].  If 

the precision required to accurately represent the difference is higher than the computers 

binary representation capacity, errors are introduced.  This provides a realistic lower 

bound for time steps of integration.  However, it is still important to select a time step 

that accurately resolves the dynamic behavior of the system. 

Koh and Liaw studied the effects of time step size on a bilinear system response 

[39].  A one-dimensional single DOF spring mass model with symmetric bilinear 

stiffness behavior was simulated numerically with Newmark’s method.  As a general rule 

of thumb, the authors state that the number of time steps per natural period of the 

structural system in its linear range should be at least ten.  In cases where the bilinear 

stiffness hardens at the knee, this criterion for time step is more stringent.  The validity of 

this statement was analyzed parametrically by running simulations with an increasing 

number of time steps per forcing period. 

The authors found that an insufficient number of time steps per forcing cycle 

resulted in incomplete chaotic attractors and false existence of subharmonic responses 

[39].  A critical number of time steps per forcing cycle was found to exist.  If the number 

of time steps was below this critical value, there was a potential for false or incomplete 

results, and if the number of time steps was above this number, the results appeared 
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unchanged.  In some cases, an insufficient number of time steps resulted in the correct 

chaotic attractor shape, but points on the Poincaré map tended to stay in the top or bottom 

of the attractor for long periods of time, rather than being evenly distributed as seen in 

cases with more time steps. 

Furthermore, it was determined that an even number of time steps per forcing 

cycle resulted in more accurate simulations than an odd number.  The critical number of 

time steps per forcing period, above which spurious results were not seen, was found to 

be higher for the odd case than the even case.  This effect is believed to be a result of the 

difficulty in representing a symmetric sine wave (the forcing function) with an odd 

number of segments.  The odd representation does not preserve symmetry of each half 

sine wave.  As the number of odd time steps increases, this effect becomes less 

noticeable.  Practically speaking, using an odd number of time steps per forcing cycle, 

rather than an even number, required that more time steps be used to obtain accurate 

results for the bilinear system.  The authors also made note that chaotic time histories are 

greatly affected by the number of time steps, even if the number is above the critical 

amount.  In light of the variation of response with time step, it is advised that numerical 

simulations of chaotic time histories be viewed in a more qualitative than quantitative 

light. 

2.5 PWL System Studies of Interest and Adaptations 

Hossain et al studied the effect of the bilinear spring stiffness ratio on obtaining 

chaotic motion from quasi-periodic motion [18].  A single DOF asymmetric bilinear 

spring mass system with clearance was experimentally and numerically simulated.  The 

asymmetric nature is intended to account for preloaded conditions that may be present in 
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the spring.  A small spring could be inserted into the clearance region, allowing the 

clearance stiffness to range from 0 to an arbitrary small amount, denoted K1.  The second 

portion of the stiffness curve was denoted by stiffness K2.  Numerical and experimental 

results revealed that multiple periodic motions occurred more frequently when the ratio 

K1/K2 was decreased from 0.25 to 0 [18].  Similarly, bifurcation analysis revealed that 

larger chaotic regions of motion occurred in the case of K1/K2 = 0, suggesting that more 

chaotic and subharmonic motions result for a free clearance system than one with a low 

stiffness spring inserted in the clearance.  Decreasing the value of the clearance ratio, a 

measure of the length of the clearance region, also resulted in more chaotic motion. 

In addition to spring stiffness and clearance ratios in a bilinear system, Hossain et 

al investigated the effect of preloading in an asymmetric single DOF bilinear model of a 

clutch-power transmission [19].  This paper made use of the low stiffness clearance 

spring addressed in their work on stiffness ratio effects.  Physically, elastic materials such 

as rubber are often used to lessen the harsh nonlinearity of a true bilinear spring with zero 

stiffness clearance region.  Numerical and experimental studies were conducted for a 

range of preloaded initial conditions.  By setting the initial preload, a new equilibrium 

position for the spring mass system was set, governing how close the system was to the 

knee in the bilinear stiffness model.  The equilibrium position proved to greatly affect the 

nonlinear dynamic response.  Specifically, chaotic responses occurred more frequently 

for cases where the initial preload was close to the knee in the stiffness curve.  

Discrepancies between numerical and experimental results were present due to friction 

and inability to match damping coefficients, yet both methods demonstrated qualitative 
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similarities and both revealed the increase in chaotic motion for preloading conditions 

near the knee. 

Previously addressed papers on PWL systems presented foundational studies and 

exploration of key behavior parameters, such as stiffness ratios and location of the knee 

in the stiffness model.  A portion of the literature on PWL systems has simply aimed to 

further explore the nonlinear behavior that may arise from the case of harmonically 

forcing a system with PWL stiffness.  Often times a new method of analysis is presented 

to effectively conduct bifurcation and stability analysis, such as Cao et al’s use of the 

Chen-Langford method to obtain averaged system equations for an asymmetric PWL 

oscillator [40].  Other researchers have further expanded the analysis by exploring more 

involved forcing functions than simple harmonic.  Choi and Noah examined the response 

of a PWL oscillator subjected to multiple harmonic forces at different frequencies [41].  

The fixed point algorithm (FPA), previously referred to as the “shooting method,” was 

used to identify stable and unstable solutions for multiple forcing frequency systems 

applied to an offshore articulated loading platform.  Such a system consists of an 

asymmetric bilinear stiffness curve which softens at the knee (K2 < K1).  Articulated 

loading platforms subjected to two different forcing frequencies were found to exhibit 

chaotic motion more frequently than forcing the system at a single frequency.  

Narayanan and Sekar added flow-induced excitations in addition to harmonic 

forcing when modeling the vibration of a square prism in fluid flow [32].  The prism is 

modeled as a single DOF asymmetric PWL oscillator with softening nonlinearity.  Vortex 

shedding and galloping are sources of flow-induced excitation a square prism in fluid 

flow may encounter.  The Fast-Galerkin and Runge-Kutta methods of analysis were 
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compared and displayed high levels of agreement for this particular model.  Typical 

nonlinear responses, such as subharmonic and chaotic, were found.  Initial condition 

maps visually characterized system response by clarifying which initial conditions lead to 

specific responses.  Overall, the dynamic behavior with flow induced excitations was 

qualitatively similar to the simple case of harmonic forcing. 

Xueqi et al presented a two-step method to identify parameters of symmetric 

PWL oscillators from experimental data [42].  While nonlinear system identification has 

frequently been addressed, very few have considered the case of PWL systems.  System 

parameters that are identified include mass, damping, lower stiffness (K1), upper stiffness 

(K2), and the location of the knee in the stiffness curve.  The Legendre polynomial 

approximation is a key aspect of the two step method.  PWL stiffness curves are 

represented by their Legendre polynomials curve fittings.  Assuming that position, 

velocity, acceleration, and forcing are known at each point in the experimental data, the 

first step is to use the direct parameter estimation method to estimate the mass and 

Legendre polynomial coefficients from the assumed general form of spring mass system 

equations.  Identification of the stiffness properties is achieved by relating Legendre 

polynomial coefficients to the desired parameters.  The author presents the Legendre 

polynomial curve fitting process when applied to PWL systems by means of the least 

squares method.  This allows for the relationship between stiffness and Legendre 

coefficients to be determined in advance.  This relationship is then used in the reverse 

order when translating estimated Legendre coefficients from the experimental data into 

stiffness curve properties.  The method was verified by treating numerical integration 

results obtained from fourth-order Runge-Kutta as experimental data.  The two-step 
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method was applied, and estimated parameters were compared to those used in the 

numerical simulation.  For high-order Legendre polynomial approximations, results were 

almost identical to the original simulation values.  The authors note that their method 

accurately obtains parameters without need of search procedures or iterations. 

Most of the literature on PWL oscillators is dedicated to one-dimensional, single 

DOF systems, such as a single mass and bilinear spring oscillator.  Studies presented up 

to this point in this review have dealt with this particular case.  Other studies have 

extended the scope to one-dimensional multiple DOF systems that consist of several 

masses connected in series by linear springs and one location where stiffness changes.  

Often this is achieved by applying a physical stop in one blocks’ path of motion, thus 

creating an impact oscillator, or by inserting a clearance region, creating a bilinear spring 

acting on one mass.  Wagg and Bishop explored modeling techniques for an N-DOF 

impact oscillator system using a coefficient of restitution model [43].  In their study, only 

the Nth mass is assumed to impact a rigid wall, at which point the restitution model is 

introduced.  The authors explore the relationship between modal energy and the 

coefficient of restitution; connections are made to physical systems such as an impacting 

beam [43].  Additional studies of one-dimensional multiple DOF oscillators with PWL 

stiffness in different regions include [44], [45], [46], and [47].  

Piecewise systems are not limited to PWL applications.  Piecewise nonlinear-

linear systems, whereby a nonlinear stiffness/damping is connected to a region of linear 

stiffness/damping, have also been addressed in the literature.  Ji and Hansen developed an 

approximate solution and carried out numerical integration with Runge-Kutta schemes 

for a one-dimensional single DOF piecewise nonlinear-linear system [48].  Many of the 
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previously discussed phenomena, such as chaotic motions and coexisting subharmonic 

responses depending on initial conditions, were discovered.  The authors employed the 

same notion of joining various solution regions at a specific location in space and time as 

seen in PWL system analysis.   

A recent dissertation submitted at Ohio State University explored the dynamic 

response of piecewise nonlinear oscillators with time varying stiffness coefficients [49].  

The author presented a classification system for general piecewise systems that included 

PWL time invariant, PWL time varying, piecewise nonlinear time invariant, and 

piecewise nonlinear time varying.  Papers previously addressed in this literature review 

focus on what the author terms PWL time invariant, whereas the main objective of the 

dissertation was to develop a general method to obtain the steady state response of 

piecewise nonlinear time varying systems.  The proposed methodology made use of the 

multi-term HBM and discrete Fourier transforms.  Single DOF and multiple DOF 

systems were considered.   For further information in regards to piecewise systems with 

time varying coefficients, consult [49].  The focus of this work remains the PWL time-

invariant bilinear spring featured in MBS support systems. 

 2.6 Accounting for Geometric Nonlinearities 

  A key difference between the Alpha Magnetic Spectrometer cryogenic magnet 

support system and the literature previously addressed is the existence of multiple PWL 

spring supports.  Literature provides a thorough treatment of one-dimensional single DOF 

PWL spring oscillators, but not systems that consist of multiple PWL springs or multiple 

DOF in the same context as the aforementioned support system.  Previously discussed 

multiple DOF PWL oscillators discussed one-dimensional motion of several masses 
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connected by springs in series.  The AMS consists of a single mass supported by an array 

of multiple straps, each of which is PWL in nature.  The magnet is able to move in all 

three dimensions. Additional complications in modeling arise due to the existence of 

several locations where the governing equations of motion change.  Each individual strap 

has its own PWL stiffness curve, resulting in multiple knees in the behavior, whereas 

one-dimensional single DOF PWL oscillators had a single location where the equations 

must switch.   

Geometric nonlinearities must also be accounted for in systems such as the AMS 

support structure.  As the magnet moves in three-dimensional space, the strap orientation 

will change with respect to the original configuration.  Depending on the amplitude of 

motion, the corresponding changes in angles of the straps with respect to the global x, y 

and z axes will lead to variations in the stiffness component in each of those directions.  

Euromech (European Mechanics Society) colloquium 483, entitled Geometrically non-

linear vibrations of structures, consisted of presentations over recent geometric 

nonlinearity research.  A special issue in the Journal of Sound and Vibration contained 

extended versions of some papers presented at the colloquium and is available for 

consultation [50].  Kovacic et al studied a vibration isolator that consisted of three 

springs, a vertical spring which was linear and two oblique springs which had cubic 

stiffness nonlinearities [51].  The physical arrangement, shown in Figure 2.3, of the 

oblique springs required that geometric nonlinearities also be addressed. 
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Figure 2.3: Isolator with Linear Vertical Spring and Nonlinear Oblique Springs, 

Copied from [51] with Permission (Copyright © 2008 Elsevier Ltd) 
 

Introducing nonlinear oblique springs, as opposed to solely linear, proved desirable for 

static characteristics, but the nonlinearity, in combination with the geometric 

nonlinearity, allowed for undesired dynamic response.  Period doubling bifurcations were 

found to occur for certain combinations of system parameters.  Period-doubling 

bifurcations are a common route to chaos, and such a response is not desired for vibration 

isolation.  The authors note that for certain ranges of forcing frequency, no bifurcations 

were discovered.  

 The analysis of moored bodies is one area of research that simultaneously 

encompasses PWL nonlinearities and geometric nonlinearities simultaneously.  Mooring 

lines are frequently modeled in a manner similar to impact oscillators (ie taut and slack 

behavior only), and are used to restrain vessels, buoys, and similar structures in bodies of 

water.  Plaut and Farmer studied motion of a breakwater anchored to the sea floor by 

mooring lines that were modeled as inextensible cables [14].  Their general two-

dimensional model is seen in Figure 2.4. 
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Figure 2.4: Point Mass and Inextensible Mooring Cable Breakwater Model, Copied 

from [14] with Permission (Copyright © 2000 Kluwer Academic Publishers) 
 

A survey of possible motions for the point mass in two-dimensions, as well as results for 

a rigid body model, was presented in the paper via two-dimensional trajectory plots and 

phase plane portraits.  Plaut et al also extended the study to three-dimensions and found 

chaotic motions were possible [15].  One-dimensional surge motion of a moored vessel 

has been studied by Gottlieb and Yim using four mooring lines [52] and by Umar et al 

using six mooring lines [53].  Subharmonic and chaotic motions were discovered at 

various system parameter combinations in both one-dimensional surge motion studies.  

Similar nonlinear responses are anticipated in PWL support structures, such as the AMS-

02 strap system, due to physical similarities to the moored body problem. 

2.7 Alpha Magnetic Spectrometer 

The AMS-02 support strap system is a complex PWL oscillator with multiple 

PWL straps and three-dimensional motion.  Due to its complexity, many of the analysis 

tools discussed in this review are not readily applicable.  Structural verification of the 

AMS-02 support strap system began with modeling a two strap in-line configuration with 

closed-form techniques, but dynamic response analysis for the complete AMS-02 magnet 
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support system with 16 straps was carried out in NASTRAN software [2].  The AMS-02 

support straps are initially preloaded to a force value just prior to the first change in 

stiffness behavior.  Limitations in NASTRAN implied there was no direct method for 

preloading the elements used to model support straps [2].  This difficulty was overcome 

by shifting the origin of each strap’s stress-strain curve to correspond to the preloaded 

condition.  The validity of this approach will be explored further in Chapter 4. 

2.8 Concluding Remarks 

 Future on-orbit systems may make use of PWL support structures similar to the 

AMS-02 design.  A review of the literature on PWL dynamic systems revealed most of 

the focus to date has been on one-dimensional, single DOF systems, with less work 

available on two and three-dimensional systems with multiple PWL supports.  This work 

effort is motivated by the AMS-02 support strap system, but aims to provide a more 

general understanding of the possible motions for this unique design, as well as identify 

and develop additional simulation methodology for similar systems.  The existence of 

classic nonlinear responses is also of interest.  In the chapters to follow, equations of 

motion are derived and nondimensionalized for a multi-bilinear-spring (MBS) support 

system with four bilinear springs supporting a single point mass in a two-dimensional 

plane.  Many of the techniques discussed in this literature review are applied to numerical 

simulations of this MBS support system.  
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Chapter 3: Developing Numerical Models 

3.1 Introduction to Bilinear Springs 

 A four-spring MBS support system will be the main focus of this work.  

Justification for choosing this two-dimensional, two DOF system is given later in this 

chapter.  However, thorough understanding of the equations of motion for a one-

dimensional, single DOF bilinear spring mass oscillator, as addressed in much of the 

literature review, is required prior to developing equations of motion for the MBS system 

with additional springs and higher dimensions of motion.   

A general bilinear spring consists of two distinct stiffness values, K1 and K2, 

implying the restoring force is piecewise-linear (PWL) in nature.  In this work, the 

location at which the stiffness changes is referred to as the knee of the bilinear spring 

stiffness model, denoted by the letter s.  This variable will always be a positive value, and 

will be preceded by a negative sign if required in equations.  Bilinear springs can be 

classified by their behavior under tension or compression.  A brief overview of different 

types of bilinear springs is given in this section, but the discussion does not include all 

possible configurations. 

For a symmetric bilinear spring, the compressive region of the stiffness curve is a 

reflection of the tensile region.  A symmetric bilinear spring has two knee locations, one 

under tension and one under compression.  The PWL restoring force for a symmetric 

bilinear spring is 

( )
( )

( ) sx
sx
sx

sKKxK
xK

sKKxK
xF

>
≤
−<









−+

−+
=

,
,

,

212

1

1
'
2

'
2

    (3.1) 



31 

K2 and K2’, seen in Equation 3.1, are assumed to be equal for the symmetric bilinear 

spring.  Often times a symmetric bilinear spring stiffness curve may be shifted with 

respect to the origin to account for preloading.  In this case, the plane of symmetry simply 

shifts from the origin to another location of the force-versus-displacement curve.  The 

symmetric bilinear spring stiffness curve with and without preloading is seen in Figure 

3.1.   

   
                                   a)                                                                           b) 
Figure 3.1: Symmetric Bilinear Spring Stiffness Model, a) without preload, b) with 

preload 
 

Any deviation that does not allow for a plane of symmetry, such as K2' having a 

different value from K2, results in what will be referred to as an asymmetric bilinear 

spring.  An asymmetric bilinear spring with no knee under compression maintains the 

stiffness value K1 for all x  ≤ s.  The PWL restoring force for the asymmetric bilinear 

spring with a tension knee but no knee under compression is  
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Figure 3.2 illustrates the stiffness curve for an asymmetric bilinear spring with no 

compressive knee. 
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Figure 3.2: Asymmetric Bilinear Spring with Compressive Resistance Stiffness 

Model 
 

The last situation presented is an asymmetric bilinear spring with no compressive 

resistance.  The PWL restoring force for the asymmetric bilinear spring with no 

compressive resistance is 
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A classic example of the zero compressive resistance bilinear spring is a tension only 

mooring line.  In that particular case, the knee of the stiffness curve is located at the 

origin, implying a stiffness of K2 for any positive displacement, and zero stiffness 

otherwise.  The general stiffness model for an asymmetric bilinear spring with zero 

compressive resistance is given in Figure 3.3a).  One should note that shifting the origin 

of Figure 3.3a), as is done in Figure 3.3b), results in an asymmetric bilinear spring with 

an artificial region of compressive resistance and changes the location of the knee with 

respect to the newly placed origin.   
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                                a)                                                                              b) 
Figure 3.3: Asymmetric Bilinear Spring with no Compressive Resistance, a) general 

curve, b) with origin shift 
 

This artificial compression region is of finite length, governed by the distance that the 

origin was shifted.  The significance of this shifting is addressed later when potential 

energy of the MBS support system is discussed in Chapter 4.  As previously mentioned, 

there are other adaptations, such as combining two opposing bilinear springs, which 

could be presented but are excluded from the present work because they are not as central 

to the thesis as these models. 

3.2 One-Dimensional Single DOF Bilinear Oscillator Equations of Motion 

Development of the equations of motion for the MBS support system started with 

modeling the simplified asymmetric bilinear spring oscillator with no compressive knee.  

First consider the simple linear oscillator in Figure 3.4 where x  is measured with respect 

to the equilibrium position.  The equation of motion can be derived using Newton’s 

Second Law. 

 
Figure 3.4: Simple Linear Oscillator 
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The solution to this second order differential equation is readily obtained via traditional 

ODE theory, via numerical ODE solution schemes such as Runge-Kutta, or may be found 

in standard vibration texts [9].  

Similarly, for the asymmetric bilinear spring with a tension knee at a 

displacement value of s and x  measured with respect to the equilibrium position, 

Newton’s Second Law yields 
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Mass normalization yields 
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where, mK1
2
1 =Ω .  The bilinear spring stiffness ratio, defined as 12 KK=α , has also 

been introduced.  Finally, the equation of motion is written in dimensionless form, 
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where sxx = , 1Ω= tt , 12 Ω= mCζ , 1sKAA = , and 1Ω=ωω .  An overdot now 

represents differentiation with respect to dimensionless time, t. 

 The dimensionless equation of motion for the asymmetric bilinear spring 

oscillator with tension knee is piecewise-linear in nature due to the two distinct governing 

differential equations of motion.  The appropriate differential equation to use depends on 

the value of the dimensionless position.  When obtaining the solution for a particular span 

of dimensionless time, there are several options.  The simplistic nature of the differential 

equations implies that exact solutions could be written for each region of motion.  Each 

occurrence of the switching point could then be located with a Newton-Rhapson scheme, 

as previously mentioned in the literature review [17]. 

 A general solution may also be obtained by implementing a numerical ODE 

solution scheme that is capable of changing which equation is integrated depending on 

the value of x.  Many computer software packages, such as MAPLE or MATLAB have 

predefined numerical ODE solvers, including Runge-Kutta schemes with varying orders 

of accuracy, capable of solving user defined systems of equations.  The MATLAB ode45 

command is an explicit one-step Runge-Kutta solver based on the Dormand-Prince 

method [56].  For a general differential equation, ode45 will numerically solve and 

provide a solution over the desired time duration.  While the overall desired simulation 
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time for an asymmetric bilinear spring is user defined, specifying this time span is not 

sufficient to solve the problem.   

The time of flight in each region of motion is not known ahead of time, and must 

therefore be determined during integration.  The event location property of the ode45 

command can be used to successfully locate the switching points in time.  Specifically, 

zeros of user defined event functions are intelligently detected during integration.  Once a 

particular event occurs, the user can specify whether or not to stop integration.  An 

alternation scheme can then be developed to simulate the asymmetric bilinear spring 

oscillator.  Initial conditions determine which portion of the piecewise-linear equation of 

motion should be used to start the simulation, and that equation will be numerically 

integrated until the event function detects that a knee has been reached.  When the knee is 

reached, integration will be stopped and the state variables will be stored.  For a single 

asymmetric bilinear spring, the occurrence of the knee implies switching to the second 

differential equation.  The Runge-Kutta scheme is called again with initial conditions 

governed by the ending state variables of the last numerical integration pass.  This 

alternating process is continued until the full simulation time is realized.  Appendix A 

contains the MATLAB code with this logic implemented for a single asymmetric bilinear 

oscillator. 

Alternately, the MATLAB switch command could be used without starting and 

stopping integration.  The switch command allows several cases to be defined yet have a 

single case execute based on a changing status variable.  This approach, however, does 

not intelligently locate the switching points.  Rather, at each time step, MATLAB checks 

if it has moved beyond the switching point, and if so, it changes equations, implying the 
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switching point location is not fully resolved.  Overstepping the switching point, even by 

small amounts, may potentially alter the dynamic response, and thus is not desired 

behavior.  The ode45 event detection capabilities, which do allow for intelligent location 

of switching points, will be used instead.  A review of typical one-dimensional, single 

DOF bilinear oscillator dynamic simulations using this approach is given in the 

preliminary section of Chapter 5. 

3.3 MBS Support System Equations of Motion 

 This section details the derivation of equations of motion via Newton’s Second 

Law for a two-dimensional, two DOF support system consisting of four bilinear springs.  

The system was obtained by collapsing the magnet to a point mass in a top-view of the 

AMS-02 strap support system, seen in Figure 3.5.  The general schematic is given in 

Figure 3.6.  This new system reduces the level of complexity as compared to the full 

AMS-02 geometry, yet still serves as an appropriate phenomenological representation, as 

discussed later in this section.  The point mass assumption implies that rotational degrees-

of-freedom, which would be present when considering a rigid mass, are neglected in this 

study. 

The anchor points where one end of each spring attaches are considered fixed in 

space and in-line with the x and y axes of the two-dimensional plane.  The undeformed 

length of each spring can be less than or equal to the distance from the origin of the plane 

to its corresponding anchor point.  If the undeformed length is equal to that distance, the 

springs are assumed to be “cut-to-length” and possess an asymmetric bilinear stiffness 

model (the springs experience tension and compression as the mass oscillates).  The “cut-
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to-length” assumption implies there is no initial preload in any of the springs and that the 

equilibrium position corresponds to the origin of the two-dimensional plane.   

 

Figure 3.5: Top-View of AMS-02 Magnet and Support Straps [2] 
 

If the undeformed length of each spring is less than the distance from the origin to 

each corresponding anchor point, the springs are initially preloaded.  This scenario is 

similar to the physical AMS-02 support straps, which are tension-only elements that are 

stretched and attached to the magnet.  In the four-spring MBS system, each individual 

spring is assumed to have an asymmetric bilinear stiffness curve with no compressive 

resistance (individual springs always remain in tension as the mass oscillates).  Each 

spring applies a different force on the mass and provides a component of the total 

resultant force.  Due to the preloaded initial state, the equilibrium position is not 

guaranteed to coincide with the origin of the plane, and its location is governed by the 

location of anchor points and each spring’s parameter definitions. 

 

Point  
Mass Model 

(in red) 
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a) 

 

b) 
Figure 3.6: Schematic of MBS Support System with Four Bilinear Springs: a) 
Undeformed Lengths and Anchor Coordinate Definitions, b) Angle Definitions 
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Geometric nonlinearities must now be accounted for in addition to the bilinear 

stiffness curve of each individual support spring.  As the mass moves in the two-

dimensional plane, the orientation of the straps will change with respect to the original 

configuration as seen in Figure 3.6b.  These geometric nonlinearities will be addressed by 

calculating the angle of the springs at each iteration and updating the equations of motion 

accordingly.  Geometric nonlinearities were a non-issue in the case of one-dimensional 

bilinear spring mass oscillators of one, or even multiple, DOF.  Even in higher 

dimensions, such as the system of interest in Figure 3.6, geometric nonlinearities may be 

a non-issue if large displacement of the mass is not possible.  However, in the general 

sense, whereby the mass is allowed to move throughout the two-dimensional plane with 

large or small amplitude displacement, the geometric nonlinearity cannot be ignored.  

The effect of the geometric nonlinearity when large amplitude displacement occurs is 

discussed in more detail in Chapter 5.  The presence of both geometric and bilinear 

nonlinearities makes the four-spring MBS an appropriate phenomenological 

representation of the AMS-02 support structure. 

The single asymmetric bilinear spring had a piecewise equation of motion that 

consisted of two options.  The governing equations of motion for the four-spring MBS 

support system will be piecewise with 16 different differential equation sets, where each 

set consists of two equations, one for each independent DOF.  The total number of 

piecewise differential equation sets for a MBS support system is governed by the simple 

equation 

( ) SpringsBilinearofNumberSetsofNumber 2=    (3.12) 
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The number of equations in each set depends on the dimension of the model in 

consideration.  This equation is applicable for any system where no more than two 

regions of the bilinear spring stiffness curve are encountered during the motion of 

interest.  For example, a system consisting of asymmetric bilinear springs with no 

compressive resistance would not follow this equation if all three regions of the stiffness 

curve were encountered during the motion.  Spring deformations are assumed to be 

within reasonable bounds given the physical constraints of the system, implying factors 

such as material failure and additional nonlinear end effects are not considered.  A MBS 

support system, similar to the AMS support strap system, consisting of 16 bilinear 

springs would have 536,65216 = differential equation sets.  If a full three-dimensional 

model were considered, each of these sets would contain three differential equations, one 

for each independent DOF, for a total of 196,608 equations. 

 As previously stated, the two-dimensional nature of the four-spring MBS support 

system implies the system has two independent DOF.  The 2 DOF chosen to develop the 

equations of motion align with the horizontal and vertical directions of the original model 

configuration, labeled as x and y , respectively.  The bars are used to denote 

dimensioned quantities.  Nondimensional quantities, in contrast, will use symbols without 

additional overbars.   

The governing differential equations of motion in each direction are once again 

obtained via Newton’s 2nd Law.  The equations of motion are initially developed in detail 

for the case where all springs are assumed to be stretched to a value below the knee of 

their individual stiffness curves.  Viscous damping and general harmonic forcing are 

assumed present in the x and y  directions.  The equations of motion are easily adapted 
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to accommodate different force disturbances, but harmonic forcing only is presented here 

for simplicity.  Appendix B contains the MATLAB script capable of simulating the four-

spring MBS support system. 
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Similarly, in the vertical direction 
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These equations are simplified through introduction of several parameters.  The lower 

stiffness of Springs 2 through 4 are scaled in relation to the lower stiffness of Spring 1 

with the primary stiffness ratio, denoted β and subscripted accordingly, such 

that 11221 KK β= , 11331 KK β= , 11441 KK β= .  Furthermore, each spring has a bilinear 

spring stiffness ratio, denoted α and subscripted accordingly, where 11112 KK α= ,  

112221222 KKK βαα == , 113331332 KKK βαα == , and 114441442 KKK βαα == .  

Introducing these definitions and normalizing with respect to mass yields 

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )x
td

dt
m
A

x
td

d
m
C

x
yyaLuyyx

xx
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
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
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














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β
 

and 

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )y
td

dt
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A

y
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d
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2
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1
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












 −




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
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


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






−




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β

 

where mK11
2
1 =Ω .  Finally, the equations of motion are written in dimensionless form 

For ( ) 11
22

1 ≤




 −+− uLyxx , ( ) 22

2
2

2 σ≤




 −−+ uLyyx ,  

(3.17) 

(3.18) 
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( ) 33
22

3 σ≤




 −+− uLyxx , ( ) 44

2
4

2 σ≤




 −−+ uLyyx  

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) xtAx
x
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and 

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ytAy
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
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1

 

where 1sxx = , 1syy = , 1Ω= tt , 12 Ω= mCζ , 111KsAA xx = , 111KsAA yy =  

1Ω= xx ωω , 1Ω= yy ωω , 111 sLuuL = , 122 sLuuL = , 133 sLuuL = , 144 sLuuL = , 

122 ss=σ , 133 ss=σ , and 144 ss=σ .  An overdot now represents differentiation with 

respect to dimensionless time. 

The same process is used to write the remaining 15 of 16 cases in dimensionless 

form.  Each spring’s corresponding contributions to the equations of motion have two 

options, depending on whether or not the spring is stretched past its knee.  The two 

options each spring can contribute to the equations of motion are listed below 

(3.19) 

(3.20) 
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Spring 1, x direction contribution options 

( ) ( )

( ) ( ) ( )

( )

( ) 1

1

,cos1

,cos

1
22

1

1
22

1

111
22

11

11
22

1
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



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≤
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

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
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uLyxx

uLyxx

uLyxx

uLyxx

θαα

θ
   (3.21) 

where ( )








−

=
xx

ya
1

1 tanθ  

Spring 1, y direction contribution options 

( ) ( )

( ) ( ) ( )

( )

( ) 1

1

,sin1

,sin

1
22

1

1
22

1

111
22

11

11
22
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θ
   (3.22) 

Spring 2, x direction contribution options 
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( ) ( ) ( )
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2 tanθ  

Spring 2, y direction contribution options 
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Spring 3, x direction contribution options 

( ) ( )

( ) ( ) ( )

( )
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3
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


 −+−

≤


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



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


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=
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yaθ  

 

(3.23) 

(3.24) 

(3.25) 
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Spring 3, y direction contribution options 
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Spring 4, x direction contribution options 
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Spring 4, y direction contribution options 
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These individual contributions can be used to quickly generate equations of motion for 

each remaining scenario.  The following demonstrates the end result for the case where 

Springs 1, 3, and 4 are below the knee of their stiffness curve but Spring 2 is above its 

knee. 

For ( ) 11
22

1 ≤




 −+− uLyxx , ( ) 22

2
2

2 σ>




 −−+ uLyyx ,  

( ) 33
22

3 σ≤




 −+− uLyxx , ( ) 44

2
4

2 σ≤




 −−+ uLyyx  

(3.26) 

(3.27) 

(3.28) 
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( ) ( )

( ) ( ) ( )
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  (3.29) 

and 

( ) ( )
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  (3.30) 

3.4 MBS Support System Equations of Motion via Finite Element Method 
Formulation 

 
 Equations of motion for one-dimensional spring mass systems are frequently 

derived with the Finite Element Method (FEM) formulation.  Global mass, damping, and 

stiffness matrices are quickly assembled using superposition of the individual element 

matrices and allow for quick derivation of the governing differential equations of motion.  

In theory, this same process happens behind the scenes in FEM software packages such 

as ANSYS.  However, deriving the equations of motion by hand allows for a more 

thorough understanding of the FEM and gives the user the freedom to obtain transient 

simulation data with other numerical integration tools, such as MATLAB Runge-Kutta.  

Efforts were made to derive the equations of motion for the four spring MBS support 

system via the FEM and the appropriate transformation matrices.  However, it was found 

that underlying assumptions of the model and applied methodology resulted in inaccurate 
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numerical time histories.  The derivation and validation processes are presented in detail 

for others that may consider this approach.  In this section, the equations of motion have 

not been nondimensionalized, and all springs are assumed to be linear and cut-to-length, 

implying only the geometric nonlinearity is being addressed. 

 The four spring MBS support system discussed in this work consists of elements 

that are rotated with respect to the global x and y directions.  Prior to assembling a 

global stiffness matrix with superposition, a rotation matrix must be used to transform 

each element’s local stiffness matrix to the proper global orientation.  Each element is 

rotated in the yx  plane with respect to the z axis.  For a general two node axial element, 

such as a spring, rotated through an angle ϕ, where + ϕ is always measured 

counterclockwise from global to local, -π ≤ ϕ ≤ π , the rotation matrix is given by  

 



















−

−
=
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00
00

00
00

      (3.31) 

For a spring element between nodes i and j with stiffness k, the global stiffness matrix is 

then given by 
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
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
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





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

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x
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kTkTk

φ
φφφ
φφφφ
φφφφφφ

2

2

22

22



        (3.32) 

This technique can be used to generate the global stiffness matrix for the MBS support 

system presented in Section 3.3.  The model is initially developed with the assumption of 

linear springs; implying geometric nonlinearities are the only nonlinearities present.  
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Consider the system model, composed of five nodes and four elements, presented in 

Figure 3.7.  Recall the cut-to-length assumption is utilized for this section. 

 
Figure 3.7: FEM Node Definitions for Multi-Linear Spring Support Model 

 
Applying Equation 3.32 to each of the four springs produces the following global 

stiffness matrices for each spring element.  The red lines cross out parts of the matrices 

where boundary conditions are applied, accounting for the fixed anchor nature of nodes 

1-4. 
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  (3.33) 
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Spring 2 Global Stiffness Matrix 
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  (3.34) 

Spring 3 Global Stiffness Matrix 
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Spring 4 Global Stiffness Matrix 
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These four matrices are added together for the total global stiffness matrix after boundary 

conditions have been applied.  The resulting matrix is given by 
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For a point mass positioned at node 5, the mass matrix is of the form 
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The damping matrix is of the form 
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The differential equations of motion are then obtained via the following formula 
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In order to numerically integrate with MATLAB, the equations must be converted to state 

space form.  This is accomplished by making the following definitions: 
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From these definitions we can write 
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Solving for { }q yields 
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This form of the equations is ready to be numerically integrated with the MATLAB 

ode45 command.  Recall the present state of the equations assumes the four springs are 

linear, and only geometric nonlinearities are taken into account.  At this point in time, 

verification of the code was accomplished by comparing free vibration results to those 

obtained from the Newton’s 2nd Law formulation.  Significant discrepancies at early 

stages of simulations were found between the two methods.  In Chapter 5, the Newton’s 

2nd Law formulation is verified and proven to match results from ANSYS, allowing one 

to assume that the FEM formulation developed here is indeed incorrect.  Test cases with 

different initial conditions were conducted with the following system parameters: K1 = K2 
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= K3 = K4 = 125, m = 5, and 4321 LuLuLuLu === = 5.  Results of two particular cases 

are shown in Figures 3.8 and 3.9 to demonstrate the error associated with the FEM 

formulation detailed in this section. 
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b) 

Figure 3.8: FEM Formulation Validation Test Case 1, IC (1.0, 0.5), a) x time history, 
b) y time history 
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b) 

Figure 3.9: FEM Formulation Validation Test Case 2, IC (1.0, 0.1), a) x time history, 
b) y time history 

 

While qualitatively similar, the time histories reveal significant quantitative deviation at 

early stages of the simulation.  These differences continue in magnitude for longer 
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simulations.  These results motivated further analysis of the FEM formulation to 

determine the source of error.  The answer is discovered by considering the simplified 

case given in Figure 3.10, where only Spring 3 remains in the model.  System parameters 

are maintained from the previous test cases, that is, K3 = 125, m = 5, and 3Lu = 5.   

 
Figure 3.10: FEM Node Definitions for Simplified Linear Spring Support Model 

 
Assume that a known displacement is imposed at node 5, such that d5x = 1 and d5y 

= 0.5.  The static force in the spring is computed via 

( ) ( ) 




 −++×= 3

2
5

2
533_ LuddLuKForceSpring yx   (3.44) 

( ) ( ) 




 −++×= 55.015125_ 22ForceSpring = 127.6  (3.45) 

Using the FEM formulation presented above, the force would be computed in the 

following manner. 
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The two methods do not yield a consistent spring force value.  It is worth noting that the 

force yielded by the FEM formulation would be correct if the total stretch in the spring 

was equal to the total displacement of node 5.  However, this assumption is incorrect for 

any instance where the imposed displacement is not in line with the spring’s initial 

orientation.  Even if the imposed displacement at node 5 was such that it resulted in the 

correct force for Spring 3, adding the remaining spring supports would result in 

additional inaccuracies, as it is not possible to displace node 5 along the original 

orientation of all four springs at the same time.  This revelation led to the decision to end 

pursuit of FEM formulated equations and to move forward with use of the Newton’s 2nd 

Law formulation. 

 The Newton’s 2nd law formulation will be used to study nonlinear dynamic 

behavior of the four-spring MBS support system in Chapter 5.  Prior to that, a study of 

potential energy associated with various four-spring MBS systems is presented in 

Chapter 4. 
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Chapter 4: Potential Energy 

4.1 Introduction  

One unanswered question regarding MPWL support systems such as the AMS-02 

strap system was whether or not it was possible to have multiple equilibrium states.  The 

question is answered by looking for the possibility of multiple local potential energy 

minimums.  Recall that the AMS-02 system consists of 16 PWL straps that are each 

ideally preloaded to a position just prior to the knee of their stiffness curves.  Assuming 

all springs are perfectly identical in length and stiffness characteristics, one would 

accurately expect a single equilibrium state to be located in the center of the bounding 

space.  However, statistical variations and manufacturing anomalies in the straps prevent 

the real world system from consisting of 16 truly identical PWL straps.  Variations must 

be expected in upper and lower stiffness values, knee locations, and undeformed lengths 

of the springs.  In some cases, it is possible for a preloaded spring to initially be past its 

stiffness knee.   

The aim of this section is to explore potential energy curves that result when 

various system parameters are allowed to vary, as well as to explore the differences 

between the cut-to-length and preloaded model assumptions.  In this chapter, the two-

dimensional, two DOF MBS support system with four bilinear springs is the primary 

simulation model studied after an initial discussion of the PE for a single bilinear spring. 

4.2 Deriving the Potential Energy Expression for a Single Bilinear Spring 

The potential energy stored in a deformed linear spring can be found by 

integrating the restoring force with respect to the stretch in the spring 

2'

0

'

2
1 xkdxkxU

x

== ∫      (4.1) 
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By definition, this value is the area under the force versus displacement curve when the 

spring is stretched by a value of x . 

The potential energy for an asymmetric bilinear spring with tension knee, s, and 

total stretch, x , is found in the same manner 
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 (4.2) 

Making use of the bilinear spring stiffness ratio α, the scaled potential energy is given by 
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where 
1k

UU scaled = . 

The scaled potential energy expression is piecewise continuous, just like the 

restoring force for a bilinear spring.  The scaled PE curves consist of two distinct second 

order polynomials that meet at the knee of the bilinear spring.  Figure 4.1 compares 

several scaled PE curves for different values of α. 
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Figure 4.1: Single Bilinear Spring Scaled PE curves for various values of α 

 
When α = 1, the scaled PE curve is a simple parabola.  As α increases, the second 

derivative of the portion of Equation 4.3 for displacements past the knee, which is equal 

to α, also increases, which leads to the higher values of scaled PE past x = 1 seen in 

Figure 4.1.  In all cases, the equilibrium position of the system corresponds to the 

minimum value of potential energy that occurs at the origin of the curves.  This same 

concept of potential energy minimum and equilibrium extends to higher order systems 

and will be addressed in the discussion of energy plots for the MBS support system. 

 4.3 Scaled PE Study of MBS Support System 

Equation 4.3 can be used to generate scaled PE plots for the four-spring MBS 

support system.  The MBS system consists of fixed anchor points for each of the four 

bilinear springs.  These anchor points define an overall bounding box for the system.  The 
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potential energy plots are three-dimensional curves that show the total energy stored in 

all four springs if the mass were to be located at a particular x and y coordinate within the 

bounding space.  Contour plots of the associated data reveal more information as to the 

shape of the energy curve and are included with each scaled PE surface plot.  The total 

stretch in a particular spring, denoted by x , is calculated from the coordinate location, the 

anchor point of the spring, and the undeformed length by 

( ) ( ) #
2

#
2

## Luyyxxx −−+−=          (4.4) 

 For each (x,y) point in the region of interest, the stretch of Springs 1-4 is calculated, 

compared to the knee of each spring, and used to calculate the total potential energy of 

the system at that point.  A typical scaled PE surface plot and associated contour for a 

four-spring MBS support system is featured in Figure 4.2.  The MATLAB script used to 

calculate the scaled PE for the four-spring MBS is given in Appendix C. 

 
Figure 4.2: Scaled PE Surface and Contour Plots, uL1 = uL2 = uL3 = uL4 = 5, s1 = 1, 

σ2 = σ3 = σ4 = 1, α1 = α2 = α3 = α4 = 20, β1 = β2 = β3 = β4 = 1 
 
 In this case, all of the springs are identical asymmetric bilinear springs that are assumed 

to be cut-to-length.  The single equilibrium position, which corresponds to the minimum 
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scaled PE value of 0, is located at the origin of the two-dimensional plane.  Identical 

spring definitions result in perfectly symmetric surface and contour plots. 

 Practically, the mass is not designed to move much beyond the knee of any given 

spring, as their intended purpose is to limit the motion of the supported mass.  Thus in 

some cases, the energy study is focused on a smaller region of the overall bounding box 

dictated by the anchor points.  The smaller region of focus is loosely chosen based on 

location of the knee-engagement curve.  The knee-engagement curve is defined as the 

curve that bounds the region where all springs are below their corresponding knee.  The 

curve is fully determinable and is a function of the undeformed lengths, knee locations, 

and anchor coordinates of each spring.  The curve is determined by drawing a circle 

centered at each anchor point with a radius (undeformed length plus knee location) for 

the associated spring.  This process is demonstrated in Figure 4.3 for symmetric springs. 

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

x

y

 
Figure 4.3: Determining the Knee-Engagement Curve 
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The red circles in Figure 4.3 represent the fixed anchor points of the four springs.  The 

yellow shaded rectangle represents the global rectangular bounding box based on the 

fixed anchor points of the system.  It is assumed that the mass will not move outside of 

the rectangular bounding box.  The four black circles can be used to classify which 

springs are past their knee in various regions within the bounding box.  The region 

contained in all four circles defines the knee-engagement curve.  Figure 4.4 is a replot of 

Figure 4.3 with the axes adjusted to the rectangular bounding box. 
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Figure 4.4: Classifying Knee Status of and Defining Knee-Engagement Curve 

 
The plot contains labels that classify the knee status in each possible region.  Spring 

numbers given in the region correspond to the springs which are not stretched past their 

knee in that zone.  As previously mentioned, the knee-engagement curve bounds the 

region where all four springs are below their corresponding knee.  By design, the mass is 

not intended to move very far outside of this curve, which motivates the decision to study 
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energy plots in a smaller space than that of the full bounding rectangle.  Figure 4.5 

demonstrates shifting the region of focus based on location of the knee-engagement curve 

on a scaled PE contour plot. 

   
                                    a)                                                                      b) 

Figure 4.5: Knee-Engagement Curve Overlapping Scaled PE Contour, a) Full 
Bounding Rectangle, b) Shifted Region of Focus 

 
4.4 Cut-to-Length versus Preloaded Springs Assumptions 

 Most physical springs are not able to provide both tension and compression 

behavior relative to their undeformed state.  The straps supporting the AMS-02 magnet, 

for example, offer no compressive resistance, and are preloaded to a position just prior to 

the knee of their force versus displacement curve.  The straps always remain in tension 

during operation.  Consultation with Jacobs Engineering team members responsible for 

designing and modeling AMS-02 straps led to the discovery that modeling this preloaded 

state was not directly possible in NASTRAN software used for their analysis.  The 

elements used for defining straps did not allow for easy definition of a preloaded initial 

state.  The work-around solution was to shift the origin of the element definition to the 

desired preloaded position and define the straps with no initial preload.  This behavior is 

identical to creation of the asymmetric bilinear spring, as discussed in Chapter 3, by 
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shifting the origin of the asymmetric bilinear spring with no compressive resistance.  In 

essence, the researchers shifted their preloaded model to a cut-to-length model.  The 

validity of this approach is explored in this section through the study of scaled PE curves 

for both cases. 

4.4.1 One-Dimensional Two Spring Support System 

 Initial studies of the preloaded versus cut-to-length configuration problem were 

conducted with a one-dimensional model including a mass and two bilinear springs 

supporting the mass.  The general model for both cases is given in Figure 4.6.   

 

Figure 4.6: Two-Bilinear Spring In-Line Configuration 
 
Case 1 represents the preloaded assumption.  Case 1 is defined by the parameters given in 

Table 4.1.  Case 2 represents the cut-to-length model, which is created from the 

preloaded model, and is similarly defined in Table 4.1.  The key parameters to take note 

of are the undeformed lengths, uL1 and uL2, and the knee location, s1.  Both cases share 

common anchor points, but the knees are engaged at the same x coordinates relative to 

the fixed global coordinate system.  This is accomplished by shifting the origin of the cut-

to-length spring stiffness models, which results in a longer undeformed length and a knee 

location closer to the origin of the stiffness curve. 

 Figure 4.7 presents physical representations of the preloaded and cut-to-length 

assumptions.  As previously stated, the undeformed lengths and knee locations are the 

key parameters which define the two models.  The figure reveals how these two 

2uL

1uL

( )11, yx

( )22 , yx
x

y



64 

parameters can be varied to yield the same knee engagement location in space for two 

different cases. 

Table 4.1: Two Spring Preloaded vs. Cut-to-Length Parameter Definitions 
Parameters Case 1 Case 2 

(x1, y1) (5, 0) (5, 0) 
(x2, y2) (-5, 0) (-5, 0) 

uL1, uL2 4.25 5 
s1 1 0.25 

α1, α2 20 20 
β2 1 1 
σ2 1 1 

 

 
a) 
 

 
b) 

Figure 4.7: Two-Bilinear Springs, a) Preloaded Configuration, b) Cut-to-Length 
Configuration 
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The scaled PE curves for Case 1 and Case 2 are both given in Figure 4.8 a).  The 

plots reveal a high degree of qualitative similarity.  A zero potential energy state is 

possible in the cut-to-length case, but not in the preloaded case, which is consistent with 

the underlying assumptions.  However, the curves appear to be a simple translation of 

each other.  Figure 4.8 b) plots Case 1 and Case 2 scaled PE curves on top of each other 

after shifting the minimum of the Case 1 curve to coincide with the Case 2 curve.   
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                                    a)                                                                     b) 

Figure 4.8: Scaled PE Curves for Two-Spring Model, a) Actual Curves, b) Shifted 
Curves with Coinciding Minimums 

 
The curves overlap, suggesting they are perfect translations of each other.  This fact is 

confirmed by calculating the potential energy at several points along the curve for each 

case and determining the shift between the curves at each point.  Results of this study are 

given in Table 4.2. 
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Table 4.2: Calculating Translation between Two-Spring Preloaded and Cut-to-
Length Configurations 

Point of 
Interest 

Scaled PE 
Case 1 Case 2 Shift 

-1 6.90625 6.34375 0.5625 
-0.5 1.40625 0.84375 0.5625 

0 0.5625 0 0.5625 
0.5 1.40625 0.84375 0.5625 
1 6.90625 6.34375 0.5625 

 

Pure translation of the PE curves implies identical dynamic behavior.  The concept is 

easily understood if one imagines a ball traversing the surface of the scaled PE curves, 

whereby a shift of the curve’s height in space does not affect the resulting motion.  For 

the case of one-dimensional two bilinear spring support systems, the cut-to-length model 

obtained by shifting the origin of the bilinear stiffness curves fully captures the dynamic 

response of the preloaded model. 

4.4.2 Two-Dimensional Four-Spring Support System 

 Results of the one-dimensional two bilinear spring support system motivated 

further study of systems with additional DOF.  The four-spring MBS support system 

introduced in Chapter 3 was used to compare the two-dimensional preloaded 

configuration (Case 1) versus cut-to-length configuration (Case 2).  Each case is fully 

defined by the parameters given in Table 4.3.    

 

 

 

 

 

 



67 

Table 4.3: Four-Spring Preloaded vs. Cut-to-Length Parameter Definitions 
Parameters Case 1 Case 2 

(x1, y1) (5, 0) (5, 0) 
(x2, y2) (0, 5) (0, 5) 
(x3, y3) (-5, 0) (-5, 0) 
(x4, y4) (0, -5) (0, -5) 

uL1, uL2, uL3, uL4 4.25 5 
s1 1 0.25 

α1, α2, α3, α4 20 20 
β2, β3, β4 1 1 
σ2, σ3, σ4 1 1 

 
 

The scaled PE curves and associated contours for Case 1 and Case 2 are both shown in 

Figure 4.9. 

 

Figure 4.9: Scaled PE Curves and Associated Contours for Four-Spring MBS Model 
 
The plots once again appear qualitatively very similar.  The cut-to-length model (Case 2) 

has zero scaled PE at (0, 0), while the preloaded model (Case 1) has a finite value of 

scaled PE at (0, 0).  Previously, this offset at the scaled PE minimum governed the 

translation value of the two curves.  Figure 4.10 presents the surface plots for Case 1 and 

Case 2 on the same set of axes with Case 1 data shifted down so that the minimum value 

Case 1 

Case 2 
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coincides with the Case 2 minimum.  Recall this implies that the curves are perfectly on 

top of each other at their global minimums. 

 

  

  

 
 

Figure 4.10: Shifted Scaled PE Curves and Associated Contours for Four-Spring 
MBS with Coinciding Minimums 

 
Close inspection of the outer edges of the two curves plotted on top of each other reveals 

that scaled PE curves for Case 1 and Case 2 are not simply translations of each other as 

they were in the one-dimensional study.  To quantify how large these differences are, the 

shift in scaled PE was calculated at a series of points for Case 1 and Case 2.  The results 

of this study are given in Table 4.4. 
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Table 4.4: Calculating Translation between Four-Spring Preloaded and Cut-to-
Length Configurations 

Point of Interest 
Scaled PE 

Case 1 Case 2 Shift 
(0, 0) 1.125 0.000 1.125 

(0, 0.25) 1.197 0.063 1.134 
(0, 0.5) 2.007 0.844 1.162 

(0.25, 0.5)  2.110 0.938 1.172 
(0.5, 0.5) 3.110 1.909 1.201 

 

Rather than having a consistent translation at all points, the data implies that the deviation 

between scaled PE curves for the preloaded and cut-to-length models grows as you move 

further away from the scaled PE global minimum, contrary to the behavior seen in the 

two spring one-dimensional study.  This behavior does not rely on the bilinear nature of 

the springs, and can be shown to occur because of the geometric nonlinearities present in 

the system by noting that the inconsistent translation discovered above occurs even if the 

four springs are assumed linear. 

Fundamentally, different scaled PE curves imply different dynamic responses, 

suggesting that the work-around solution of shifting the origin of the bilinear stiffness 

curves to turn a preloaded configuration into a cut-to-length configuration does not 

perfectly capture the dynamics of the original problem for higher DOF systems, such as 

the AMS-02 support straps.  This deviation was not originally anticipated, in light of the 

fact that the two scenarios have identical knee-engagement curves.  Practically, the 

amount of deviation seen in the four-spring MBS cases, especially within the knee-

engagement curve, is very slight.  As a result, any deviation in the energy of the actual 

AMS-02 configuration and the cut-to-length model used for analysis may have proven 
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insignificant.  However, in keeping with the real world motivation, the preloaded model 

will be used for all further study in this work.  

4.5 Searching for Local Minimums in the Preloaded Four-Spring MBS Model 

 Returning to the question initially posed in this Chapter, this section explores 

whether or not local energy minimums that lead to multiple equilibrium positions can 

exist.  Applying Newton’s 2nd Law in each direction leads to two equations that can be 

solved for the two unknowns that mark the global PE minimum, but does not necessarily 

reveal if other local minimums have arisen due to variation in system parameters.  A 

search for local scaled PE minimums was conducted with the four-spring MBS system by 

examining numerous cases with spring parameters randomly generated from specified 

statistical variations.  The undeformed length of each spring, the bilinear spring stiffness 

ratio for each spring, the primary stiffness ratio for Springs 2-4, and the knee ratio for 

Springs 2-4 were all randomly chosen from pre-defined Gaussian distributions.   

Table 4.5 contains the assumed nominal values and standard deviations associated 

with each parameter varied during the study.  The standard deviations allow a 99.7% 

interval of confidence to be determined for each random parameter.  Random numbers 

were always accepted except in cases where the undeformed length exceeded the distance 

between the origin and the corresponding anchor point.  In other words, the cut-to-length 

assumption governed the upper limit for the undeformed length of each spring. 

A total of 10,000 cases were run.  In each case, the system parameters were 

randomly chosen from their Gaussian distribution and the total potential energy in the 

system was calculated via the methodology presented earlier in this chapter.  Figure 4.11 
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displays the distribution of parameters used for Spring 2 definitions in the 10,000 cases.  

The Gaussian nature of the chosen parameters is easily discerned. 

Table 4.5: Gaussian Distributions for Four-Spring MBS System Parameters 

  Nominal 
Standard 
Deviation 

  (x1, y1) (5, 0) N/A 
  (x2, y2) (0, 5) N/A 
  (x3, y3) (-5, 0) N/A 
  (x4, y4) (0, -5) N/A 
  s1 1 N/A 99.7 % Range 

uL1, uL2, uL3, uL4 4.25 0.2125 3.6125 4.8875 
α1, α2, α3, α4 20 1.667 15 25 

β2, β3, β4 1 0.083 0.75 1.25 
σ2, σ3, σ4 1 0.083 0.75 1.25 

 

 

Figure 4.11: Histograms of Spring 2 Parameters Chosen from Gaussian 
Distributions 
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 A MATLAB function developed by Carlos Adrián Vargas Aguilera at the 

University of Guadalajara [54] was used to locate any and all local minimums in the 

three-dimensional surface plot of scaled PE.  In all 10,000 cases, only one local minimum 

was found and corresponded to the global minimum of the curve.  This result suggests 

that multiple equilibrium positions are not possible in the four-spring MBS system.  

While it is believed the conclusion extends to higher dimensions, such as the full three-

dimensional AMS-02 magnet strap support system, further investigation of that particular 

system would have to be completed to conclusively state multiple equilibrium positions 

are not a possibility. 

The qualitative natures of the scaled potential energy surfaces were similar in all 

cases.  The single potential energy minimum was located at the base of a general bowl-

like shape for each case studied.  Various examples of the scaled potential energy curves 

encountered in the study are presented in Figure 4.12 through 4.14.  Tables 4.6, 4.7 and 

4.8 contain the parameter definitions for the presented cases.  The energy curves have 

different gradient values near their corresponding minimums, but globally they still fall 

under the bowl-like shape.  The small blue “x’s” in the contour plots mark the global 

minimum of the scaled PE curve. 

Table 4.6: Parameter Definitions for Four-Spring MBS Energy Plot in Figure 4.12 

Parameters Spring  
1 2 3 4 

uL 4.262 3.963 4.390 3.992 
α 22.454 17.971 19.565 18.054 
β N/A 0.997 1.080 0.962 
σ N/A 0.906 1.011 0.978 

 



73 

 

Figure 4.12: Four-Spring Scaled PE Example, Parameters Chosen from Gaussian 
Distributions (see Table 4.6) 

 

Table 4.7: Parameter Definitions for Four-Spring MBS Energy Plots in Figure 4.13 

Parameters Spring  
1 2 3 4 

uL 4.448 4.299 4.564 4.235 
α 17.801 20.019 18.350 21.897 
β N/A 0.946 0.943 0.962 
σ N/A 1.067 0.892 0.978 

 

 

Figure 4.13: Four-Spring Scaled PE Example, Parameters Chosen from Gaussian 
Distributions (see Table 4.7) 
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Table 4.8: Parameter Definitions for Four-Spring MBS Energy Plots in Figure 4.14 

Parameters Spring  
1 2 3 4 

uL 4.071 4.299 4.070 4.124 
α 19.449 20.830 19.589 19.800 
β N/A 1.124 1.055 0.995 
σ N/A 0.955 0.929 1.040 

 

 

Figure 4.14: Four-Spring Scaled PE Example, Parameters Chosen from Gaussian 
Distributions (see Table 4.8) 

 

The remaining cases had scaled PE curves that looked similar to those presented 

above with slight variations.  Rather than provide exhaustive coverage of the types of 

bowl-like energy curves obtained, a study of the location of the global minimum is 

presented.  The y-coordinates of the global minimum are plotted versus the x-coordinates 

of the global minimums in Figure 4.15.   
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Figure 4.15: Coordinates of the Minimum in all 10,000 Scaled PE Study Cases 

 
The figure reveals that the minimum of the scaled PE is still largely located near the 

origin of the system when parameters are chosen from their corresponding Gaussian 

distributions.  A large portion of minimums have x and y-coordinates in the -0.4 to 0.4 

range.  The relative density of each minimum coordinate location is given by a three-

dimensional histogram in Figure 4.16.  This plot further reveals that the majority of cases 

had minimums at or extremely close to the origin.  Thus, not only did all 10,000 cases 

feature a single equilibrium position, but the equilibrium locations in two-dimensional 

space for the were all very close together in light of the random variation in system 

parameters. 
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Figure 4.16: Three-Dimensional Histogram of Coordinates of the Global Minimum 
in all 10,000 Scaled PE Study Cases 

 
4.6 Extreme Cases 

 Multiple equilibrium positions were determined not to exist in Section 4.5 when 

choosing parameters for the four-spring MBS system at random from Gaussian 

distributions.  An additional question was whether scaled PE curves could take on shapes 

other than the general bowl-like configuration seen in Section 4.5.  Practically, the 

answer is no when studying reasonable variation in springs which are designed to be 

similar in properties.  This section presents the resulting scaled PE curves for two 

extreme cases that arise when the four springs are not nominally the same.  

The first extreme case is that of one spring being extremely stiff in comparison to 

the others.  In this case α1 = … = α4 = 20, β2 = β3 = 1, σ2 = … = σ4 = 1, and β4 = 50, 

implying Spring 4 is fifty times stiffer than Springs 1 through 3.  The scaled PE takes on 
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a horseshoe shape with a slight indention in the side of the curve seen in the plots of 

Figure 4.17.  

 

Figure 4.17: First Extreme Scaled PE Study Case 
 
The scaled PE curve still only possesses a single local minimum in the presence of the 

horseshoe.  Furthermore, the horseshoe is only seen when exploring regions of motion 

way outside of the knee-engagement curve, which contradicts the intended application 

whereby the knees prevent further motion in a particular direction.  These facts, in 

addition to the impractical nature of having one spring fifty times stiffer than the rest, 

suggest that the horseshoe shaped curve is unlikely to be encountered in real applications. 

 Another extreme case is when one or multiple springs are missing and thus have 

zero stiffness.  The second extreme case presented is missing Springs 2 and 3, implying 

Springs 1 and 4 are the only active support springs in the system.  The associated energy 

plots are given in Figure 4.18.  The two inactive springs result in one corner of the two-

dimensional plane of motion having much lower scaled PE than the rest of the plane.  

However, just as previously encountered, there is only a single scaled PE minimum, 

denoted by the small “x” on the contour plot. 
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Figure 4.18: Second Extreme Scaled PE Study Case 
 
This scenario is more plausible than the first extreme case.  Springs may not intentionally 

be left out of the support system, but a malfunction or failure may lead to a similar 

situation.  

 The present chapter has resolved the differences between the preloaded and cut-

to-length assumptions and found that the four-spring MBS system consists of a single 

equilibrium position in the form of a global PE minimum.  The next chapter explores 

transient simulations of the four-spring MBS support system.  Free and forced vibrations 

are considered, and the effects of the nonlinearities in the system are documented.  

Classic nonlinear behavior found in the single bilinear oscillator, and discussed in 

Chapter 2, is proven to exist in the four-spring MBS system. 
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Chapter 5: Dynamic Responses 

5.1 Introduction 

  Numerical models developed in Chapter 3 can be used to simulate dynamic 

responses of the single bilinear oscillator and the four-spring MBS system.  Free and 

forced responses reveal more information about how these nonlinear systems behave.  

The effect of a bilinear spring is first discussed in the single bilinear oscillator.  Time 

histories and phase plane portraits provide a quick overview of nonlinear behavior, 

including subharmonic responses and bifurcations.  Background knowledge obtained 

from studying the single bilinear oscillator lays the groundwork for studying the more 

complicated four-spring MBS system.  This chapter also includes validation studies with 

ANSYS FEM software and a feasibility study of approximating bilinear stiffness curves 

with polynomials. 

5.2 One-Dimensional Single DOF Bilinear Oscillator Transient Responses 

 In Chapter 3, the piecewise equation of motion for a single bilinear oscillator was 

developed.  As previously discussed, the numerical integration scheme capable of 

switching between the two equations based on the active region of the stiffness curve is 

presented in Appendix A.  This section provides a brief overview of the types of motion 

that arise in the single bilinear oscillator.  Recall the equations were nondimensionalized 

such that the knee of the bilinear curve occurs at a dimensionless displacement of 1. 

5.2.1 Single Bilinear Oscillator Free Response 

 The key parameter which defines the bilinear spring is the bilinear stiffness ratio, 

α.  Figure 5.1 demonstrates the effect of increasing α in a given system’s free response by 
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presenting the phase plane portrait and dimensionless time history for various values 

ranging from α = 1 (linear oscillator) to α = 100.  In all cases, A = ζ = 0. 
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                                        a)                                                                            b)                                   

Figure 5.1: Effect of Increasing α in Single Bilinear Oscillator Free Response, a) 
Phase Plane Portrait, b) Dimensionless Time History 

 
When α = 1, the system is equivalent to the simple mechanical oscillator, the phase plane 

portrait is a pure ellipse and the time history is a pure sine wave.  As α increases, hitting 

the knee of the bilinear spring becomes more and more like hitting a wall.  The limiting 

case of α = ∞ is equivalent to a hard wall placed at the knee and is often referred to as an 

impact oscillator.  It should be noted that as α increases, the natural frequency of the 

bilinear oscillator increases and the corresponding period decreases, as evident in the 

dimensionless time histories.  This increase in response natural frequency implies that the 

system is sensitive to higher frequency forced disturbances for higher α. 

5.2.2 Single Bilinear Oscillator Forced Response 

 The concept of subharmonic response can be demonstrated by adding harmonic 

forcing to the single bilinear oscillator.  Figure 5.2 contains the dimensionless time 

history and phase plane portrait for a period-2 subharmonic response and is contrasted 

with a period-1 response in Figure 5.3.  The forcing amplitude, frequency, and damping 
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ratio are given in the figure captions.  Note that the only difference between the two 

systems is a slight increase in damping for the system in Figure 5.3 compared to that of 

Figure 5.2. 
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                                      a)                                                                        b) 
Figure 5.2: Period-2 Response of Single Bilinear Oscillator (α = 2, ζ = 0.01, A = 2, ω 

= 0.75, IC = (0, 0)) 
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              a)                                                                          b) 

Figure 5.3: Period-1 Response of Single Bilinear Oscillator (α = 2, ζ = 0.025, A = 2, ω 
= 0.75, IC = (0, 0)) 

 

The dots featured in the phase plane portraits correspond to sinusoidal forcing function 

cycles.  When presented by themselves in the phase plane, these dots compose the 
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Poincaré map discussed in the definitions section of Chapter 2.  The number of dots in 

the Poincaré map is directly correlated to the response type.  One dot implies period-1, 

two dots imply period-2, and an infinite number of dots arranged in a strange attractor 

imply chaos.  The dots of the Poincaré map can also be used to generate bifurcation 

diagrams. 

 Recall that a bifurcation fundamentally refers to a change in system response.  

These changes are frequently discovered by running numerous simulations with all 

parameters held constant but one.  The bifurcation parameter is incrementally increased 

and the subsequent response is observed.  A bifurcation found in the single bilinear 

oscillator from period-2 to period-1 motion is shown in Figure 5.4.  The damping ratio ζ 

is used as the bifurcation parameter. 

0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026 0.028 0.03
-5

-4

-3

-2

-1

0

1

2

3

Damping Ratio

x

 

Figure 5.4: Single Bilinear Oscillator Bifurcation Diagram, (α = 2, A = 2, ω = 0.75, ζ 
= 0.01 to 0.03) 

 
The response type switches from period-2 to period-1 approximately at ζ = 0.02.  Slicing 

the bifurcation diagram at a particular value of the bifurcation parameter and counting the 
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dots yields the same information as counting dots on the Poincaré map.  In fact, the x 

coordinate of the dots found in the phase plane portraits of Figures 5.1 and 5.2 

correspond to the dots found in the bifurcation diagram at the respective damping ratios.   

5.3 Four-Spring MBS Support System Transient Responses  

 The equations of motion for the two-dimensional four-spring MBS support 

system were derived in Chapter 3.  The equations are piecewise, consisting of 16 possible 

differential equation sets depending on the active region of each spring’s stiffness curve.  

Appendix B contains the MATLAB script used to numerically integrate and switch the 

active differential equation set employing the ode45 event detection capabilities.  The 

script can handle both free and forced response in the form of harmonic forcing.  

Additional forcing profiles could easily be implemented into the code, but are not studied 

in this work. 

5.3.1 Four-Spring MBS Free Response 

 The geometric and bilinear nonlinearities present in the four-spring MBS system 

have two distinct effects on the free vibration response.  Geometric nonlinearities arise 

due to large amplitude motion of the mass.  The x and y components of each spring’s 

force on the mass change as the angle of orientation changes with respect to the global x 

and y axes.  Mathematically, the two differential equations of motion are coupled, 

whereby changes in the x coordinate affect the equation governing y motion, and vice 

versa.  Physically, this leads to interaction of the underlying small motion x and y modes 

of vibration. 

This phenomenon is demonstrated in the free response by setting the bilinear 

stiffness ratio, α, equal to one for each spring and providing reasonably large initial 
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conditions.  Setting the bilinear stiffness ratio to one nullifies the effect of the bilinear 

spring, which results in linear springs, implying only geometric nonlinearities are present. 

The results are given in Figure 5.5.   

Unless otherwise noted, the anchor points for all MBS simulations in this chapter 

are assumed equal to the values given in Table 5.1.  Changing the location of anchor 

points was found to affect the dynamic response, particularly by altering the magnitude of 

the geometric nonlinearities.  However, this notion is not explored further in this work 

but is noted as a potential area for future study. 

Table 5.1: Fixed Anchor Points used for Four-Spring MBS Simulations 
 (x1, y1) (5, 0) 
(x2, y2) (0, 5) 
(x3, y3) (-5, 0) 
(x4, y4) (0, -5) 
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Figure 5.5: Free Vibration Demonstrating Effect of Geometric Nonlinearities, uL1 = 

uL2 = uL3 = uL4 = 4.25, α1 = α2 = α3 = α4 = 1, β2 = β3 = β4 = 1, σ2 = σ3 = σ4 = 1, IC = 
(0.55, 0.35, 0, 0) 
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The interaction between the two modes is seen in the dimensionless time 

histories, given in the upper left hand corner of Figure 5.5, through fluctuation in 

oscillation amplitude.  The amplitude of oscillation in the x-direction gradually decreases 

as the amplitude of y-direction oscillation increase.  Given different initial conditions in 

the x and y directions, the amplitude of oscillation in the x direction will eventually 

fluctuate from its starting value to the y direction starting value, and vice versa.  The two-

dimensional plane of motion, given in the upper right hand corner, and the phase plane 

portraits for each direction, given on the bottom row, also reflect the fluctuation in 

response amplitude.  If the two initial conditions are identical, there is no interaction.  

This is seen in Figure 5.6.  The motion trajectories in the x and y directions are identical, 

with no fluctuation in behavior between the two. 
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Figure 5.6: Free Vibration Demonstrating Effect of Geometric Nonlinearities, uL1 = 

uL2 = uL3 = uL4 = 4.25, α1 = α2 = α3 = α4 = 1, β2 = β3 = β4 = 1, σ2 = σ3 = σ4 = 1, IC = 
(0.55, 0.55, 0, 0) 
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 The bilinear stiffness models of each spring in the MBS system effect the free 

vibration in a manner similar to the single bilinear oscillator.  Previously with the single 

bilinear oscillator there was a single location in space where a knee was engaged.  The 

four-spring MBS has four different knees that can be engaged independently at various 

locations in accordance with the knee-engagement curve discussed in Chapter 4.  The 

simulation parameters used to generate Figures 5.7 and 5.8 are identical to those used in 

Figures 5.5 and 5.6, respectively, with the exception of the bilinear stiffness ratio, which 

now has a value greater than unity.  Both figures demonstrate that the knees present in the 

system give the phase plane portraits rectangular shapes as opposed to the pure elliptical 

phase plane portraits seen when using linear springs.  Changing the value of α for each 

spring changes how drastic the linear spring elliptical shape is altered, as previously 

noted with the single bilinear oscillator free response. 

 When the initial x and y-coordinates are different, as is the case in Figure 5.7, the 

interaction of the underlying modes of vibration is not as strong as that seen with linear 

springs.  The amplitude of oscillation in the x and y-directions no longer fluctuates from 

one initial condition to the other.  The fluctuation is much smaller and happens on a 

different time scale, suggesting the bilinearity negates some of the effect of the geometric 

nonlinearity.  Furthermore, a much greater range is seen in the two-dimensional plane of 

motion.  This behavior was seen in systems with various parameter definitions, but 

further study is required to fully understand the interaction between the bilinearity and 

the geometric nonlinearities in MBS support systems. 
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Figure 5.7: Free Vibration with Bilinear Springs, uL1 = uL2 = uL3 = uL4 = 4.25, α1 = 

α2 = α3 = α4 = 20, β2 = β3 = β4 = 1, σ2 = σ3 = σ4 = 1, IC = (0.55, 0.35, 0, 0) 
 

 When the initial conditions in the x and y-directions are identical, the MATLAB 

script does not yield the correct response with α greater than unity.  It appears as though 

the bilinear nature of the support springs leads to fluctuations in the oscillation amplitude 

in both directions, as seen in Figure 5.8.  This behavior is contrary to the linear spring 

equivalent, whereby identical initial conditions correctly resulted in no fluctuation of 

amplitude.  The discrepancy is a direct result of issues associated with the MATLAB 

ode45 event detection function used to locate knees in space and time.  The default event 

detection function is capable of handling simultaneous events, as is required by the case 

of identical initial conditions.  However, when repeatedly detecting events and resuming 

integration, an apparent glitch in the default algorithm causes issues when a change in the 

number of events occurs from one stop to the next.  In other words, if at some point in a 
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given simulation two events were detected simultaneously and at the next stopping point 

only one event was detected, there may be an issue.  Due to numerical error, theoretically 

simultaneous events will not always be detected as such, implying this problem will 

inevitably be encountered in certain situations. 
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Figure 5.8: Free Vibration with Bilinear Springs, uL1 = uL2 = uL3 = uL4 = 4.25, α1 = 

α2 = α3 = α4 = 20, β2 = β3 = β4 = 1, σ2 = σ3 = σ4 = 1, IC = (0.55, 0.55, 0, 0) 
 

Resolution of this issue was sought through modifying the associated default 

MATLAB scripts and through contact with MathWorks employees.  A formal solution 

was not found at the time of this writing, which led to the following work-around 

solution.  When identical initial conditions are desired, a very small discrepancy must be 

included between the numbers, forcing what normally would be simultaneous events to 

be separated by extremely small differences in space and time.  This methodology works 

fine if the springs are assumed linear.  The plots in Figure 5.6 were generated with this 
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approach and properly demonstrate zero interaction between the underlying modes of 

vibration.    

The methodology does not work successfully once the bilinear nature of the 

springs is introduced.  A perfectly symmetric support system with identical x and y initial 

conditions should display zero interaction regardless of the spring stiffness model.  The 

slight discrepancy in initial conditions, once paired with the bilinear stiffness models, 

results in enough deviation to alter the correct response.  Fortunately, the scope of this 

issue is limited to simulations requiring repeated simultaneous occurrence of events.  In 

most cases this behavior is not required, but does limit the scope of studies possible in 

both free and forced vibrations.  In the next section, free vibration results obtained from 

MATLAB are verified with ANSYS nonlinear transient simulation results, providing 

confidence in MATLAB simulations that avoid this issue. 

5.3.2 Modeling MBS Support Systems with ANSYS 

 MBS support systems may also be simulated in the popular finite element 

software package ANSYS by defining physical systems with predefined elements.  The 

principle of superposition is used to generate global mass, damping, and stiffness 

matrices which are then used to solve the requested analysis type, such as static, transient, 

or modal.  Combin39, shown in Figure 5.9, is an ANSYS nonlinear spring element 

capable of representing general PWL springs [55].   



90 

 

Figure 5.9: ANSYS Combin39 Nonlinear Spring Element [55] 
 
The user defines the force versus displacement curve for the element by specifying up to 

20 points on the curve.  Compressive behavior can be explicitly defined, assumed to be a 

reflection of the tensile region, or set to 0 for all compressive loads.   

 Contrary to numerical integration of derived equations of motion in MATLAB, 

using ANSYS for simulation of the MBS support system does not require that the user 

hard code each of the piecewise differential equation sets ahead of time.  The switching 

of equations of motion is handled automatically.  During an ANSYS transient analysis, 

solutions are calculated via Newmark’s Method at what are known as substeps.  Substeps 

are usually chosen to satisfy a minimum time step increment for accurate time histories.  

When nonlinear analysis is conducted, additional equilibrium iterations are calculated at 

each substep to aid in convergence.  The displacement results of the previous equilibrium 

iteration are used to determine what segment of the Combin39 force versus displacement 

curve should be active at each point of the transient simulation.   

 The Combin39 element does not have an explicit way to specify initial preload in 

the spring.  This same difficulty was addressed in Chapter 4 in regards to AMS-02 strap 

team simulations in NASTRAN.  It was shown that opting to shift the origin of the 
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stiffness curves and using a cut-to-length model, rather than modeling the preload, 

resulted in a slightly different problem.  A simplistic solution to model preload when 

using the Combin39 element is to specify fixed displacements of the anchor nodes.  

These displacements are specified in addition to desired initial conditions of the mass.  

The initial displacement of the anchor nodes moves them to their desired location, 

preloads the system, and forces the mass to move to the proper equilibrium position.  

Once the springs are preloaded, ANSYS completes the nonlinear transient simulation.  

The ANSYS script capable of simulating the four-spring MBS support system is given in 

Appendix D.  The simulation previously presented in Figure 5.7 was recreated in ANSYS 

and comparisons between the MATLAB and ANSYS results are presented in Figures 

5.10 and 5.11. 

 Figure 5.10 presents the x and y dimensionless time histories at the beginning and 

end of the simulation.  Initially, the two modeling approaches yield identical responses.  

The two results, which eventually deviate from each other as a result of numerical error 

that builds up as simulation time progresses, remain qualitatively similar throughout the 

simulation as seen in Figure 5.11.  Similarity in trajectories exhibited in the phase plane 

portraits and two-dimensional plane of motion suggest that both modeling approaches are 

converged and yielding the correct solution.  Presently, it is believed that MATLAB stays 

closer to the actual solution throughout the simulation.  The period of motion in both the 

x and y time histories was estimated from data at the beginning of the simulation and 

projected through the rest of simulation time.  It was found that MATLAB maintained the 

most consistent period (free response period should not change), and ANSYS deviated 

more through a gradual period elongation during the simulation. 
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Figure 5.10: Time History Comparison between MATLAB and ANSYS Nonlinear 

Simulations 
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Figure 5.11: Phase Plane Portrait and Two-Dimensional Plane of Motion 

Comparison between MATLAB and ANSYS Nonlinear Simulations 
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The time step size is an important aspect of both simulation techniques.  A 

practical rule of thumb states having at least ten time steps per natural period is required 

for converged results [39].  When numerically integrating in MATLAB, the user cannot 

directly specify the time step used to obtain the solution as can be done in ANSYS 

transient simulations.  However, the time step was indirectly controlled through 

modifying the default absolute and relative error tolerances used by the ode45 command.  

With over one thousand time steps per natural period in ANSYS and MATLAB 

simulations, both approaches more than satisfied the minimum. 

Another important aspect of the time step is how knee location and switching 

between equations of motion is handled.  ANSYS checks at each iteration if a change is 

required, but maintains a set global time step.  The MATLAB ode45 event detection 

algorithm attempts to intelligently locate the switching point.  This detection, along with 

the starting and stopping of integration in MATLAB, implies that the time step gets 

smaller in the vicinity of a knee.  This behavior is demonstrated in Figure 5.12.  The 

regularly spaced blue dots represent time steps taken by ANSYS, and the red dots with 

variable spacing correspond to MATLAB time steps.  If fixed time step data is desired 

from MATLAB, a cubic spline can be fit to the curves at desired nodes post simulation.  

This technique is used later when generating Poincaré maps and bifurcation diagrams, 

both of which require a consistent time step for sampling data. 
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Figure 5.12: Comparing the Time Step Behavior near a Knee in MATLAB and 
ANSYS 

 
The two methods differ in their required computational time.  The runtime 

statistics for the two simulations are given in Table 5.2.  ANSYS took approximately five 

hundred times longer than the corresponding MATLAB simulation, yet took less 

programming time beforehand.  Generally speaking, runtimes on the order of seconds in 

MATLAB took on the order of hours in ANSYS.   

Table 5.2: Comparing MATLAB and ANSYS MBS Free Vibration Runtime 

 
Time Step Simulation 

Time 
Runtime 

(s) 
 

Min Max Mean 
MATLAB 1.97E-06 0.004 0.002 200  16 
ANSYS 0.0015 0.0015 0.0015 200  8100 

 

This trade-off was the crucial factor when choosing which simulation approach to 

utilize.  The four-spring system, which consists of 16 different differential equations sets, 

did not require an unreasonable amount of time to program into MATLAB.  A much 

larger system, such as the 16 strap AMS-02 support system with over 65 thousand 

differential equation sets, could not practically be implemented into a MATLAB 
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simulation script with event detection, but could somewhat easily be programmed into 

ANSYS.  In that case, opting to use a software package might be the only viable solution.  

However, for systems with less straps and thus less differential equation sets, or in work 

efforts where large quantities of simulations are desired, such as this thesis, the drastic 

reduction in simulation time was attractive and motivated the decision to use MATLAB 

for studying MBS support system dynamics. 

5.3.3 Four-Spring MBS Forced Response 

 Applying a harmonic forcing function to the mass in the four-spring MBS system 

allows for further exploration of the nonlinear behavior possible in such a configuration.  

Nonlinear systems, as discussed in the literature review, are extremely sensitive to 

parameter values and initial conditions.  An exhaustive parameter response plot, such as 

the example cited in the literature review created by Ueda [10], is not feasible for the 

four-spring MBS support system.  The undeformed length and bilinear stiffness ratio for 

Springs 1-4, the primary stiffness ratio and knee ratio for Springs 2-4, the forcing 

amplitude and frequency, the initial position and velocity in the x and y directions, as 

well as the damping ratio, are all among the parameters whose effect on system response 

could be explored.  Many papers discussed in the literature review examined the effect of 

a single parameter on the single bilinear spring oscillator.  Here, rather than a thorough 

study of each parameters effect, select cases of interest with important engineering 

implications are presented for particular combinations of system parameters to 

demonstrate dynamic behavior possible with MBS support systems.   

Simulations are addressed for the case of harmonic forcing applied along the 

global x-axis.  When forcing is assumed along the x-axis, the y time history, the two-
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dimensional plane of motion, and the y phase plane portrait are not shown due to their 

trivial nature.  Similarly, forcing could be applied along the global y-axis and the 

corresponding x-axis plots be neglected. 

5.3.3.1 Effect of α on Four-Spring MBS Forced Response 

The effect of the bilinear stiffness ratio of the springs on the dynamic response is 

an important question associated with MBS support systems.  The primary goal of the 

bilinear springs in an MBS support system is to restrict the motion of the mass to a region 

nearly within the knee-engagement curve.  One may naïvely consider that increasing α 

will lead to less penetration outside of the knee-engagement curve without further 

thought of additional implications of the nonlinearities on the dynamic response.   

In this section, bifurcation diagrams are generated for several values of α in the 

MBS support system using forcing frequency as the bifurcation parameter.  The diagrams 

have been color coded so that response types, such as period-1 or period-3, have a unique 

color, as specified in the included legend.  Three α values (used for all four springs) and 

two forcing amplitudes in the x-direction were considered.  Figures 5.13 through 5.15 

correspond to a forcing amplitude of Ax = 0.5 and all four α’s = 5, 20, and 100, 

respectively.  In Figures 5.16 through 5.18, the forcing amplitude is increased to Ax = 

0.75 and the same three α values are considered.  The remaining system parameter 

definitions are given in the figure captions. 

It should be noted that a relatively coarse frequency step was used due to time 

limitations.  Forced response studies require longer simulation times than free response 

studies because transient behavior must die out and steady state achieved before the 
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response type is classified.  If in-depth analysis of a particular bifurcation is desired, a 

much smaller frequency interval in the region of interest would be required. 

 
Figure 5.13: Four-Spring MBS Support System Bifurcation Diagram (uL1 = uL2 = 
uL3 = uL4 = 4.25, α1 = α2 = α3 = α4 = 5, β2 = β3 = β4 = 1, σ2 = σ3 = σ4 = 1, IC = (0, 0, 0, 

0), Ax = 0.5, ζ =0.01, ωx = 0.5 to 2.12) 
 

 
Figure 5.14: Four-Spring MBS Support System Bifurcation Diagram (uL1 = uL2 = 

uL3 = uL4 = 4.25, α1 = α2 = α3 = α4 = 20, β2 = β3 = β4 = 1, σ2 = σ3 = σ4 = 1, IC = (0, 0, 0, 
0), Ax = 0.5, ζ =0.01, ωx = 0.5 to 2.5) 
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Figure 5.15: Four-Spring MBS Support System Bifurcation Diagram (uL1 = uL2 = 
uL3 = uL4 = 4.25, α1 = α2 = α3 = α4 = 100, β2 = β3 = β4 = 1, σ2 = σ3 = σ4 = 1, IC = (0, 0, 

0, 0), Ax = 0.5, ζ =0.01, ωx = 0.5 to 2.5) 
 
 

 
Figure 5.16: Four-Spring MBS Support System Bifurcation Diagram (uL1 = uL2 = 
uL3 = uL4 = 4.25, α1 = α2 = α3 = α4 = 5, β2 = β3 = β4 = 1, σ2 = σ3 = σ4 = 1, IC = (0, 0, 0, 

0), Ax = 0.75, ζ =0.01, ωx = 0.5 to 2.04) 
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Figure 5.17: Four-Spring MBS Support System Bifurcation Diagram (uL1 = uL2 = 

uL3 = uL4 = 4.25, α1 = α2 = α3 = α4 = 20, β2 = β3 = β4 = 1, σ2 = σ3 = σ4 = 1, IC = (0, 0, 0, 
0), Ax = 0.75, ζ =0.01, ωx = 0.5 to 2.5) 

 

 
Figure 5.18: Four-Spring MBS Support System Bifurcation Diagram (uL1 = uL2 = 

uL3 = uL4 = 4.25, α1 = α2 = α3 = α4 = 100, β2 = β3 = β4 = 1, σ2 = σ3 = σ4 = 1, IC = (0, 0, 0, 
0), Ax = 0.75, ζ =0.01, ωx = 0.5 to 2.5) 

 
The period-doubling bifurcations frequently noted in the single bilinear oscillator 

system are not readily seen in these studies.  The subharmonic responses are 

predominately odd, such as period-3 or period-5, rather than even subharmonic responses 

that are typically discussed with period-doubling.  The bifurcation diagrams also reveal 
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more subharmonic and chaotic responses as the value of α increases.  This trend was 

apparent in the diagrams for both forcing function amplitude values.  This behavior is 

consistent with Hossain et al, who noted that single bilinear oscillators with higher values 

of α exhibited more subharmonic and chaotic regions of motion than those with lower 

values of α [18].  The increase in α further restricts the motion of the mass, but the 

increase in subharmonic and chaotic response regions may be undesirable in practical 

applications. 

Underlying the increase in nonlinear responses is sensitivity to small changes in 

forcing frequency.  Slight changes in the forcing frequency value lead to very different 

response types.  Consider the bifurcation diagram previously presented in Figure 5.14 

with Ax = 0.5 and α = 20.  Period-1 and period-5 responses are found within a ωx range of 

1.18 to 1.20.  The dimensionless time history and phase plane portraits for these 

responses are given in Figures 5.19 and 5.20.  The plots suggest a bifurcation near ωx = 

1.19 leads to an abrupt change in behavior that may not be acceptable in physical uses. 
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Figure 5.19: Period-1 Response, (uL1 = uL2 = uL3 = uL4 = 4.25, α1 = α2 = α3 = α4 = 20, 

β2 = β3 = β4 = 1, σ2 = σ3 = σ4 = 1, IC = (0, 0, 0, 0), Ax = 0. 5, ζ =0.01, ωx = 1.18) 
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Figure 5.20: Period-5 Response, (uL1 = uL2 = uL3 = uL4 = 4.25, α1 = α2 = α3 = α4 = 20, 

β2 = β3 = β4 = 1, σ2 = σ3 = σ4 = 1, IC = (0, 0, 0, 0), Ax = 0. 5, ζ =0.01, ωx = 1.2) 
 

5.3.3.2 Effect of Preload on Four-Spring MBS Forced Response 

 An important consideration associated with MBS support systems is how much 

initial preload to introduce into the system.  This is accomplished by changing how close 

the bilinear springs are to the knee of their stiffness curves when in static equilibrium.  

The preloaded assumption, as opposed to the “cut-to-length” model discussed in Chapter 

4, requires that the springs operate in tension, even at static equilibrium.  However, the 

initial preload can be controlled by changing the undeformed length of each spring and/or 

the location of the fixed anchor points.  In effect, changing the preload moves the knee-

engagement curve and changes how close each spring is to its stiffness knee at 

equilibrium.   

 Hossain et al conducted a study on the equilibrium position relative to the knee 

location in the single bilinear oscillator [19].  In their study, it was found that moving the 

equilibrium position closer to the knee resulted in an increase in chaotic response 
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regimes.  A similar study has been conducted here with the four-spring MBS support 

system.  Previously, the bifurcation diagram in Figure 5.13 revealed period-1, period-2, 

and period-3 for the particular system parameters specified.  A second bifurcation 

diagram was created with identical parameters, except the undeformed length, which was 

changed from 4.25 to 4.05, thus preloading all four-springs much closer to their knees.  

The anchor points, as previously stated, were kept at the positions specified in Table 5.1. 

The magnitude of this change is demonstrated in Figure 5.21, which compares the knee-

engagement curves for the two different scenarios.  When the undeformed length is 

shortened to 4.05 for each spring, the mass has a much smaller range of motion prior to 

knee engagement.  Both scenarios are symmetric, implying all four bilinear springs are 

identical, and the equilibrium position lies at the origin of the two-dimensional plane.  

The new bifurcation diagram is given in Figure 5.22. 
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Figure 5.21: Comparing the knee-engagement curves for = uL2 = uL3 = uL4 = 4.25 

and 4.05.  In both cases, σ2 = σ3 = σ4 = 1 
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Figure 5.22: Four-Spring MBS Support System Bifurcation Diagram (uL1 = uL2 = 
uL3 = uL4 = 4.05, α1 = α2 = α3 = α4 = 5, β2 = β3 = β4 = 1, σ2 = σ3 = σ4 = 1, IC = (0, 0, 0, 

0), Ax = 0.5, ζ =0.01, ωx = 0.5 to 2.12) 
 

The figure does not reveal any chaotic response regions, but does reveal an 

overall increase in the number of forcing frequencies at which subharmonic responses 

occur.  Period-5 responses, which were not found when using an undeformed length of 

4.25, have also been found with the new preload distance.  This study, while not 

exhaustive, suggests that the preload in each spring, governed by the undeformed length 

and/or the fixed anchor point locations, does play a significant role in affecting the 

system response. 

5.3.3.3 Asymmetric Four-Spring MBS Support Systems 

The forced response studies up to this point have involved symmetric 

configurations, implying that the four bilinear springs have identical properties and that 

the equilibrium position of the mass corresponds to the origin of the two-dimensional 

plane of motion.  The potential energy discussion in Chapter 4 addressed the fact that 

symmetric systems are unlikely to occur in real world applications and that variations 

about a nominal value are likely to be present.  Asymmetry can be introduced into the 
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system in a variety of ways, such as discrepancies in undeformed lengths, bilinear 

stiffness ratios, primary stiffness ratios, and knee ratios of the bilinear springs. 

Consider a period-1 response that occurs in a symmetric MBS support system 

configuration given in Figure 5.23.  The system parameters are defined in the figure 

caption.  The period-1 behavior can be converted to chaotic with one simple change that 

results in an asymmetric configuration.  Consider Figure 5.24, which contains the 

response for a system with parameters identical to those used in Figure 5.23, except σ3, 

which has been changed from 1 to 0.75.  This places a knee at the origin of the two-

dimensional plane of motion and leads to a chaotic response.   

 
Figure 5.23: Period-1 Response, (uL1 = uL2 = uL3 = uL4 = 4.25, α1 = α2 = α3 = α4 = 20, 

β2 = β3 = β4 = 1, σ2 = σ3 = σ4 = 1, IC = (0, 0, 0, 0), Ax = 1, ζ =0.05, ωx = 0.75) 
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Figure 5.24: Chaotic Response, (uL1 = uL2 = uL3 = uL4 = 4.25, α1 = α2 = α3 = α4 = 20, 
β2 = β3 = β4 = 1, σ2 = σ4 = 1, σ3 = 0.75, IC = (0, 0, 0, 0), Ax = 1, ζ =0.05, ωx = 0.75) 

 
 The cluster of Poincaré points on the phase plane portrait in Figure 5.24 are part 

of a strange attractor.  Strange attractors were discussed in the literature review section of 

Chapter 2.  A closer view of the strange attractor is given in Figure 5.25.  It is important 

to note that chaos is not completely random, thus the fractal, bounded shape of the 

attractor.  Recall, this response was found by changing a single parameter which results 

in an asymmetric configuration, demonstrating the sensitive nature of MBS support 

systems.  A more thorough investigation of asymmetric systems including cases where 

multiple parameters are changed would be a logical extension for future work.   
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Figure 5.25: Close-up View of Strange Attractor in Figure 5.24 

 
5.4 Utilizing Polynomial Approximations of Bilinear Stiffness Models 

The objective of this section is to explore the feasability and effect of replacing 

bilinear springs with polynomial approximations in the MBS support system.  Making 

use of polynomial approximations simplifies the analysis by eliminating the need to 

constantly switch among differential equation sets as individual springs move from their 

lower to upper stiffness regions, or vice versa.  If successful, using polynomial 

approximations would simplify the piecewise equations of motion for the four-spring 

MBS support system into two expressions and expedite programming required prior to 

simulation. 

Developing the equations of motion utilizing polynomial approximations requires 

that the bilinear stiffness models, now represented by dimensionless parameters, be fit 

with a polynomial of specified degree.  In general, a polynomial approximation of degree 

n to a given set of data is given by 
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The coefficients of the best-fit polynomial can be determined via linear least-squares 

regression.  The coefficients which define the polynomial approximation for each bilinear 

stiffness curve are unique, and will not be equal unless the bilinear springs are identical.  

During simulations, all four bilinear stiffness models are defined and used to calculate 

each polynomial approximation prior to integration of the equations of motion. 

The user must specify the range of interest on each bilinear stiffness model to be 

used when determining the best-fit polynomial in addition to the degree of the 

approximation.  Ideally, the range of interest used to solve for the coefficients will 

bracket the range of deformation the spring experiences during the desired simulation.   

Lastly, the simplest form of linear regression will not ensure that the polynomial 

approximation pass through the origin of the stiffness curve as physically required.  

However, equality constraints can be applied that force the best-fit polynomial to pass 

through specified points, such as the origin.  Throughout this section, a single constraint 

is assumed to be applied at the origin of all four bilinear stiffness curves. 

Once the required coefficients have been determined, the governing differential 

equations of motion for the four-spring MBS support system, when using polynomial 

approximations of degree n, are given by 
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and 
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These equations are easily substituted into the existing MATLAB simulation script.  The 

m-file which utilizes polynomial approximations is given in Appendix E. 

The validity of this approximation was explored by comparing a bifurcation 

diagram produced with the bilinear assumption to bifurcation diagrams generated by 

using various order polynomial approximations.  A known bifurcation in a symmetric 

configuration with all α’s = 20 was studied using damping ratio as the bifurcation 

parameter.  Some polynomial approximations utilized are presented in Figure 5.26.   

 
Figure 5.26: Various Order Polynomial Approximations of Bilinear Stiffness Model 

(α = 20, range of interest 0 to 2) 
 

(5.3) 
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The bifurcation diagrams are presented in Figure 5.27.  When using bilinear springs, 

three distinct bifurcations are seen.  Period-3 bifurcates to period-1, period-1 bifurcates 

back to period-3, and period-3 bifurcates back to period-1.   

 
Figure 5.27: Bifurcation Diagrams for Four-Spring System (uL1 = uL2 = uL3 = uL4 = 

4.25, α1 = α2 = α3 = α4 = 20, β2 = β3 = β4 = 1, σ2 = σ3 = σ4 = 1, IC = (0, 0, 0, 0), Ax = 
0.75, ωx = 0.75, ζ =0.015 to 0.045) and Various Polynomial Approximations 

 
The figure reveals that using polynomial approximations of degrees 3, 5, and 7 

does not result in subharmonic motion or bifurcations, suggesting those order 

approximations are not adequate for capturing nonlinear behavior seen in the original 

system.  The 9th order polynomial approximation does capture the nonlinear behavior, but 

has slight discrepancies such as the numerous regions of period-1 response found at low 
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damping ratios.  The 11th order polynomial approximation, however, does not capture any 

of the nonlinear behavior, yielding only period-1 response.  The results suggest it is 

extremely difficult to predict which order approximation will be adequate for a given 

system.  Simply increasing the polynomial degree does not guarantee a valid 

approximation, perhaps due to the increase in the number of concavity changes with 

higher order approximations. 

Further investigation is required to conclusively state if polynomial 

approximations can accurately be used in place of bilinear stiffness models.  In particular, 

the range of interest used to solve for coefficients and the placement of any additional 

linear constraint points to improve the polynomial approximation are two areas that may 

prove to greatly affect their validity.  Another unanswered question is whether bilinear 

springs with lower α values are more accurately represented with polynomials.  As α 

decreases, the harshness of the nonlinearity decreases, which may suggest that lower 

order polynomials would be sufficient approximations as opposed to the 9th order 

polynomial when α = 20. 

5.5 Configurations for Future Study 

For the range of parameters studied and forcing applied along the x-axis, the four-

spring MBS system has essentially been a two knee system (Springs 1 and 3) with 

oblique springs (Springs 2 and 4).  Encountering the knees associated with Springs 2 and 

4 in the chosen geometric configurations was not possible unless extremely large forcing 

amplitude was applied.  Realistically, it is feasible, and may be desired, for the knees of 

the oblique springs to be engaged when forced along a global axis.  However, due to the 

previously discussed unresolved issue associated with repeated detection of simultaneous 
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events, the scope of symmetric forced four-spring MBS studies was limited.  Once the 

issue has been resolved, studying the case of engaging oblique spring knees would serve 

as an interesting expansion upon the current work.  The nonlinearities associated with 

additional knees will undoubtedly impact the system response. 

Another interesting extension would involve applying the forcing function along 

an arbitrary axis at an angle with respect to the global coordinate system.  Such a force 

would allow for all four knees to be more readily encountered during forced vibration 

simulations.  Physically, this corresponds to discrepancies between the system orientation 

and the forcing function direction.  A study of the effect of the arbitrary axis angle 

definition would be beneficial for real world systems where forcing and disturbances will 

not always be applied in the same foreknown direction.  
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Chapter 6: Conclusion 

 The main objective of this thesis was to develop numerical modeling techniques 

capable of simulating the dynamic response of a multi-bilinear-spring (MBS) support 

system motivated by a future International Space Station Experiment known as the Alpha 

Magnetic Spectrometer (AMS).  One possible AMS design, denoted as AMS-02, features 

a cryogenic magnet supported in three-dimensional space by 16 straps with piecewise-

linear (PWL) stiffness models.  This highly nonlinear system has no previous flight 

heritage, and poses many questions in regards to possible dynamic responses.  A two-

dimensional, two DOF four-spring MBS support system was created by simplifying the 

AMS-02 geometry and feasible numerical modeling schemes were developed and used 

for analysis of the nonlinear system. 

 The following sections provide a summary of key material featured in the 

previous chapters of this thesis. 

6.1 Literature Review 

• A brief overview of terminology frequently used in the study of nonlinear dynamics 

was presented to aid the reader in understanding of material throughout this thesis. 

• Literature concerning the one-dimensional, single DOF bilinear oscillator was 

reviewed.  Classic nonlinear behavior, such as subharmonic motion, chaotic motion, 

and sensitivity to initial conditions was documented.  Modeling approaches utilized in 

the various studies were also discussed. 

• The AMS-02 support system consists of multiple PWL straps supporting a mass 

which moves in more than one dimension, contrary to the single DOF bilinear 

oscillator.  The latter has been thoroughly documented in the literature, but the former 
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system type has not.  Dynamic analysis of moored bodies was noted as the existing 

research most similar to analysis of MBS support systems. 

• The concept of geometric nonlinearity, and its relevance to MBS support systems, 

was introduced.  

6.2 Developing Numerical Models 

• The piecewise differential equation of motion for the one-dimensional single DOF 

asymmetric bilinear oscillator was derived and nondimensionalized.  

• A numerical integration scheme capable of switching which part of the piecewise-

continuous equation is integrated based on spatial position of the mass was developed 

using MATLAB. 

• Similar to the single bilinear oscillator, the piecewise-continuous differential equation 

of motion was derived for the two-dimensional, two DOF four-spring MBS support 

system.  

• The MATLAB numerical integration script was adapted to handle the four-spring 

MBS support system piecewise equations of motion, which consist of 16 differential 

equation sets.  The developed scheme switches which of the 16 sets are integrated as 

the mass moves in the two-dimensional plane. 

• An effort to derive the equations of motion for the four-spring MBS support system 

via the Finite Element Method (FEM) formulation was documented.  The approach 

derived in this work was proven to be inaccurate, but was included as reference for 

those who may consider a similar approach for future applications. 
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6.3 Potential Energy 

• An expression for the PE in a single asymmetric bilinear spring was derived via 

integration of the restoring force equation.  The scaled PE was defined as a scalar 

multiple of the non-scaled PE.   

• The scaled PE equation for a single spring was used to create the scaled PE curves for 

the four-spring system.  The scaled PE curves were used to quantify the difference 

between the preloaded model and the “cut-to-length” model assumptions, and 

revealed that accounting for the preload in the equations of motion for MBS support 

systems is required to perfectly capture the dynamic response. 

• An exhaustive numerical search for multiple equilibrium positions, in the form of 

local potential energy minimums, was conducted.  No such points were found, 

suggesting that MBS support systems are not capable of having multiple equilibrium 

positions, even with statistical variation in system parameters. 

6.4 Dynamic Responses 

• The distinct effects of the geometric and bilinear nonlinearities were demonstrated in 

the free response of the four-spring MBS system.  The free response was also used to 

validate MATLAB numerical integration results with nonlinear transient analysis 

results from ANSYS.  The MATLAB script proved to compute solutions quicker than 

ANSYS, but required more programming prior to simulation. 

• Bifurcation diagrams were utilized to demonstrate the effect of increasing α for all 

springs in a harmonically forced four-spring MBS system.  The diagrams revealed 

more regions of chaotic and subharmonic motion as the value of α increased. 
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• Changing the initial preload in each spring or introducing asymmetry into the support 

system by changing spring parameters both proved to alter the dynamic response, 

confirming that MBS support systems are extremely sensitive to slight changes in any 

defining parameters. 

• The validity of approximating MBS support system bilinear stiffness models with 

polynomials was explored.  Preliminary studies suggest that degree of the 

polynomial, the region of interest used to solve for coefficients, and the location of 

any linear constraint points all greatly influenced the obtained dynamic response.  In 

most cases analyzed, the polynomial approximations were not sufficient to capture 

nonlinear behavior seen in the corresponding bilinear system. 

6.5 Contribution 

 At the top level, this thesis has raised awareness of the AMS-02 and its unique 

support system that may be utilized on future space experiments.  Although the analysis 

in this thesis was conducted on a simplified model of the physical experiment, it has 

answered many questions associated with MBS support systems in general.  In this thesis, 

feasible numerical simulation techniques were developed using MATLAB that greatly 

reduce the computational time required as compared to more traditional finite element 

programs, such as ANSYS.  The drastic reduction in run-time allowed for a broad range 

of simulations to be run.  As a result, this thesis has demonstrated the extreme sensitivity 

of MBS support systems to variations in system parameters such as the initial preload and 

the bilinear stiffness ratio of the support springs.  By revealing some of the nonlinear 

phenomena that can occur, this thesis will hopefully motivate any who may pursue a 

system similar to the AMS-02 design to conduct rigorous analysis of this highly 
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nonlinear system, thus insuring all possible behaviors are known.  Lastly, the work 

contained herein has applied many of the analysis tools discovered in the literature on 

single bilinear oscillators to the more complicated and less frequently studied system of 

higher dimensions and multiple springs. 

6.6 Future Work 

 There are many extensions of the work presented in this thesis that would be 

valuable.  As stated in the Dynamic Responses chapter, a full examination of the effect of 

each system parameter was not possible due to the sheer number of variations.  Studies 

could be conducted on parameters not emphasized in this thesis, such as the effect of 

changing the anchor points for each spring.  Additional forcing functions, such as 

impulse and random, could be applied to the four-spring MBS model instead of the 

harmonic forcing used in this work.  The model could also be used to further explore the 

interaction between the geometric and bilinear nonlinearities, which was briefly 

addressed via observations in the free response in Chapter 5.   

In addition to the four-spring system, the work could be expanded by applying the 

methodology developed in this thesis to a three-dimensional system with additional 

support springs.  This model would be closer to the physical AMS-02 configuration.  An 

important question that could be addressed is what the minimum phenomenological 

representation is in three-dimensional space.  Furthermore, the point mass assumption 

utilized in this thesis implied that rotational degrees-of-freedom were neglected.  

Including a rigid mass, such as the ring-like magnet shape seen in AMS-02, would further 

complicate the nonlinear system through coupling of the translational and rotational 
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degrees-of-freedom.  This additional coupling may lead to nonlinear behavior not 

possible with the point mass assumption.  

The topic of polynomial approximations could be further explored.  Recall that 

the actual AMS-02 straps were PWL with three or more segments, depending on the 

temperature of operation.  The straps were assumed bilinear due to the globally bilinear 

appearance of the stiffness curves.  One question of interest is if polynomial 

approximations would yield more accurate results when compared to simulations using 

multi-PWL stiffness models as opposed to the bilinear models used in this thesis.   

Last, two and three-dimensional support systems could be built and used for 

experimental validation of the numerical models developed in this work. 
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APPENDIX A 

MATLAB script capable of simulating the response of the asymmetric bilinear oscillator 
 
function [tout,qout,teout,qeout,ieout,tspan,qout_sp]= rk1bi_nd() 
%********************DIMENSIONLESS***************************** 
%clear all; close all; clc %Housekeeping 
  
%% Dimensionless Parameters 
alpha1 = 5;      %Bilinear Spring Stiffness Ratios (K12/K11) 
Ax = 1;          %Forcing Amplitude 
wx = 0.75;       %Forcing Frequency 
dmprat = 0.01;  %Damping Ratio 
  
%% State Space Function 
qdots1 = @(t,q) [q(2); -q(1)-2*dmprat*q(2)+Ax*sin(wx*t)]; 
qdots2 = @(t,q) [q(2); -alpha1*q(1)-(1-alpha1)-
2*dmprat*q(2)+Ax*sin(wx*t)]; 
  
%% Time Information 
T = 2*pi/wx; 
Tmult = 100; 
tspan = 0:T/100:T*Tmult; 
tstart = tspan(1); 
tend = tspan(end); 
  
%Initial Conditions (position and velocity) 
q0 = [0;0];  
  
%% Determine which set of equations to start with 
if (q0(1,1) > 1) 
    flag1 = 1; 
else 
    flag1 = 0; 
end 
  
%Accumulators for ODE solve output 
tout = tstart;   %global solution time 
qout = q0.';          %global solution position 
teout = [];         %time at which events occur 
qeout = [];         %position at which events occur 
ieout = [];         %flags which event triggered the switch 
  
%Options for ODE solver 
options = odeset('RelTol',1e-6,'AbsTol',1e-8,'Events',@events); 
  
%% Main Loop 
while (tout(end)<tend) 
if flag1 == 1 
[t,q,te,qe,ie] = ode45(qdots2,tspan,q0(:,1),options); 
flag1 = 0; 
  
else 
[t,q,te,qe,ie] = ode45(qdots1,tspan,q0(:,1),options);   
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flag1 = 1;    
end    
  
%Accumulate output.   
nt = length(t); 
tout = [tout; t(2:nt)]; 
qout = [qout; q(2:nt,:)]; 
teout = [teout; te];    % Events at tstart are never reported. 
qeout = [qeout; qe]; 
ieout = [ieout; ie]; 
   
tspan = [t(end), tend]; %reset time span,'where you just ended to tend' 
q0 = [q(end,1);q(end,2)]; %reset IC as where you just ended 
end %end while 
  
%% -------------------------------------------------------------------- 
function [value,isterminal,direction] = events(t,q) 
value = [q(1)-1,q(1)-1];     % Detect zero of event functions 
isterminal = [1,1];   % Stop the integration? 
direction = [-1,1];   % Direction 
%---------------------------------------------------------------------- 
end %end function events 
  
%% Interpolate the data at desired time steps (via cubic spline) 
tspan = 0:T/100:T*Tmult; 
qout_sp(:,1) = spline(tout,qout(:,1),tspan); 
qout_sp(:,2) = spline(tout,qout(:,2),tspan); 
  
end %end function rk1bi_nd 
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APPENDIX B 

MATLAB script capable of simulating the response of the four-spring MBS support 
system 
 
function [tout,qout,teout,qeout,ieout,tspan,qout_sp] = rk4bi_nd_pre() 
%********************DIMENSIONLESS***************************** 
%clear all; close all; clc %Housekeeping 
  
%% Dimensionless Parameters 
alpha1 = 5;       %Bilinear Spring Stiffness Ratios (K_2/K_1) 
alpha2 = 5; 
alpha3 = 5; 
alpha4 = 5; 
  
beta2 = 1;       %Primary Stiffness Ratio (K_1/K11) 
beta3 = 1; 
beta4 = 1; 
  
sigma2 = 1;     %Knee Ratio (s_/s1) 
sigma3 = 1; 
sigma4 = 1; 
  
dmprat = 0.01;     %Damping Ratio 
  
Amp = 1.0; Ang = 0; 
Ax = Amp*cos(pi*Ang/180);         %x harmonic forcing amplitude 
wx = 0.75;         %x " " frequency 
Ay = Amp*sin(pi*Ang/180);         %y " " 
wy = 0.75;         %y " " 
  
x1 = 5; y1 = 0; %Anchor x & y coordinates 
uL1 = 4.25; %Undeformed Length of Spring 
  
x2 = 0; y2 = 5;  
uL2 = 4.25; 
  
x3 = -5; y3 = 0;  
uL3 = 4.25; 
  
x4 = 0; y4 = -5;  
uL4 = 4.25; 
  
%% Simulation Parameters 
%Initial Conditions (Positions, Velocities) 
IC = [0,0,0,0];  %(x y u v) 
  
%Time Information 
T = 2*pi/wx; 
Tmult = 500; 
tdiv = 400; 
tspan = 0:T/tdiv:T*Tmult;  %Initial time span, changes as events occur 
tstart = tspan(1); 
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tend = tspan(end); 
  
%Determine Which Springs are Past the Knee Initially 
fltrans = [1 1 %Translates the event number into proper flag setting 
           2 2 
           3 1 
           4 2 
           5 1 
           6 2 
           7 1 
           8 2]; 
        
%% Calculate Stretches in Springs Initially     
%Calculate stretch in each spring 
d1 = sqrt((IC(1)-x1)^2+(IC(2)-y1)^2)-uL1; 
d2 = sqrt((IC(1)-x2)^2+(IC(2)-y2)^2)-uL2; 
d3 = sqrt((IC(1)-x3)^2+(IC(2)-y3)^2)-uL3; 
d4 = sqrt((IC(1)-x4)^2+(IC(2)-y4)^2)-uL4; 
     
%Check knee status of 1st spring 
if (d1 < 1) 
    fl(1) = 1; 
else 
    fl(1) = 2; 
end 
  
%Check knee status of 2nd spring 
if (d2 < sigma2) 
    fl(2) = 1; 
else  
    fl(2) = 2; 
end 
  
%Check knee status of 3rd spring 
if (d3 < sigma3) 
    fl(3) = 1; 
else 
    fl(3) = 2; 
end 
  
%Check knee status of 4th spring 
if (d4 < sigma4) 
    fl(4) = 1; 
else 
    fl(4) = 2; 
end 
  
%% Accumulators for ODE45 output (t,q start new after each ode45 call) 
tout = tstart;      %global solution time 
qout = IC;          %global solution position 
teout = [];         %time at which events occur 
qeout = [];         %position at which events occur 
ieout = [];         %flags which event triggered the switch 
  
 



122 

%% -------------------------------------------------------------------- 
%               RK Solver and Output Accumulators 
%---------------------------------------------------------------------- 
%Set options for the ODE solver 
options = odeset('RelTol',1e-10,'AbsTol',1e-11,'Events',@events); 
  
%Call the RK solver until tend reached (recall at each knee) 
while (tout(end)<tend) 
[t,q,te,qe,ie] = ode45(@qdots,tspan,IC,options); 
  
%Determine how many events occured 
ne = length(ie); 
  
%Accumulate output.   
nt = length(t); 
tout = [tout; t(2:nt)]; %2:nt so ending and next IC are not reported 2x 
qout = [qout; q(2:nt,:)]; 
teout = [teout; te];    % Events at tstart are never reported. 
qeout = [qeout; qe]; 
  
tspan = [t(end), tend]; %reset time span,'where you just ended to tend' 
IC = [q(end,1),q(end,2),q(end,3),q(end,4)]; %reset IC as  
                                            %where you just ended 
%Reset Proper Flags because of Event that triggered 
for i = 1:ne 
fl(ceil(ie(i)/2)) = fltrans(ie(i),2); 
end %end flag setting 
end %end while 
  
%% -------------------------------------------------------------------- 
%               State Space Function for Each Case (16 cases) 
%---------------------------------------------------------------------- 
function qdot = qdots(t,q) 
%x and y components of deformed length for each spring 
Lx1 = x1-q(1);    Ly1 = q(2);  
Lx2 = q(1);        Ly2 = y2-q(2); 
Lx3 = q(1)-x3;    Ly3 = q(2); 
Lx4 = q(1);       Ly4 = q(2)-y4; 
  
%Calculate Total Deformed Length @ each iteration (always (+)) 
L1 = sqrt((Lx1^2)+(Ly1^2)); 
L2 = sqrt((Lx2^2)+(Ly2^2)); 
L3 = sqrt((Lx3^2)+(Ly3^2)); 
L4 = sqrt((Lx4^2)+(Ly4^2)); 
  
%------------------------------1,2,3,4 Below--------------------------- 
if (fl(1) == 1 && fl(2) == 1 && fl(3) == 1 && fl(4) == 1) 
    %Calculate Spring Force based on Stretch in Spring 
    %(+) when any spring is in tension (+ direction depends on 
orientation) 
    fs1 = (L1-uL1);  
    fs2 = beta2*(L2-uL2);  
    fs3 = beta3*(L3-uL3);  
    fs4 = beta4*(L4-uL4); 
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%------------------------------(1 Above) 2,3,4 Below------------------- 
elseif (fl(1) == 2 && fl(2) == 1 && fl(3) == 1 && fl(4) == 1) 
    fs1 = alpha1*(L1-uL1)+(1-alpha1);  
    fs2 = beta2*(L2-uL2);  
    fs3 = beta3*(L3-uL3);  
    fs4 = beta4*(L4-uL4); 
  
%------------------------------(2 Above) 1,3,4 Below------------------- 
elseif (fl(2) == 2 && fl(1) == 1 && fl(3) == 1 && fl(4) == 1) 
    fs1 = (L1-uL1);  
    fs2 = alpha2*beta2*(L2-uL2)+(beta2-alpha2*beta2)*sigma2;  
    fs3 = beta3*(L3-uL3);  
    fs4 = beta4*(L4-uL4); 
      
%------------------------------(3 Above) 1,2,4 Below------------------- 
elseif (fl(3) == 2 && fl(1) == 1 && fl(2) == 1 && fl(4) == 1) 
    fs1 = (L1-uL1); 
    fs2 = beta2*(L2-uL2);  
    fs3 = alpha3*beta3*(L3-uL3)+(beta3-alpha3*beta3)*sigma3;  
    fs4 = beta4*(L4-uL4); 
      
%------------------------------(4 Above) 1,2,3 Below------------------- 
elseif (fl(4) == 2 && fl(1) == 1 && fl(2) == 1 && fl(3) == 1) 
    fs1 = (L1-uL1); 
    fs2 = beta2*(L2-uL2);   
    fs3 = beta3*(L3-uL3);  
    fs4 = alpha4*beta4*(L4-uL4)+(beta4-alpha4*beta4)*sigma4; 
  
%------------------------------(1,2 Above) 3,4 Below------------------- 
elseif (fl(1) == 2 && fl(2) == 2 && fl(3) == 1 && fl(4) == 1) 
    fs1 = alpha1*(L1-uL1)+(1-alpha1); 
    fs2 = alpha2*beta2*(L2-uL2)+(beta2-alpha2*beta2)*sigma2;  
    fs3 = beta3*(L3-uL3);   
    fs4 = beta4*(L4-uL4); 
  
%------------------------------(1,3 Above) 2,4 Below------------------- 
elseif (fl(1) == 2 && fl(3) == 2 && fl(2) == 1 && fl(4) == 1) 
    fs1 = alpha1*(L1-uL1)+(1-alpha1); 
    fs2 = beta2*(L2-uL2);  
    fs3 = alpha3*beta3*(L3-uL3)+(beta3-alpha3*beta3)*sigma3;  
    fs4 = beta4*(L4-uL4); 
  
%------------------------------(1,4 Above) 2,3 Below------------------- 
elseif (fl(1) == 2 && fl(4) == 2 && fl(2) == 1 && fl(3) == 1) 
    fs1 = alpha1*(L1-uL1)+(1-alpha1); 
    fs2 = beta2*(L2-uL2);  
    fs3 = beta3*(L3-uL3);  
    fs4 = alpha4*beta4*(L4-uL4)+(beta4-alpha4*beta4)*sigma4; 
  
%------------------------------(1,2,3 Above) 4 Below------------------- 
elseif (fl(1) == 2 && fl(2) == 2 && fl(3) == 2 && fl(4) == 1) 
    fs1 = alpha1*(L1-uL1)+(1-alpha1); 
    fs2 = alpha2*beta2*(L2-uL2)+(beta2-alpha2*beta2)*sigma2;  
    fs3 = alpha3*beta3*(L3-uL3)+(beta3-alpha3*beta3)*sigma3;  
    fs4 = beta4*(L4-uL4); 



124 

  
%------------------------------(1,2,4 Above) 3 Below------------------- 
elseif (fl(1) == 2 && fl(2) == 2 && fl(4) == 2 && fl(3) == 1) 
    fs1 = alpha1*(L1-uL1)+(1-alpha1); 
    fs2 = alpha2*beta2*(L2-uL2)+(beta2-alpha2*beta2)*sigma2;  
    fs3 = beta3*(L3-uL3);  
    fs4 = alpha4*beta4*(L4-uL4)+(beta4-alpha4*beta4)*sigma4; 
  
%------------------------------(1,3,4 Above) 2 Below------------------- 
elseif (fl(1) == 2 && fl(3) == 2 && fl(4) == 2 && fl(2) == 1) 
    fs1 = alpha1*(L1-uL1)+(1-alpha1); 
    fs2 = beta2*(L2-uL2);  
    fs3 = alpha3*beta3*(L3-uL3)+(beta3-alpha3*beta3)*sigma3;  
    fs4 = alpha4*beta4*(L4-uL4)+(beta4-alpha4*beta4)*sigma4; 
  
%------------------------------(2,3 Above) 1,4 Below------------------- 
elseif (fl(2) == 2 && fl(3) == 2 && fl(1) == 1 && fl(4) == 1) 
    fs1 = (L1-uL1);  
    fs2 = alpha2*beta2*(L2-uL2)+(beta2-alpha2*beta2)*sigma2;   
    fs3 = alpha3*beta3*(L3-uL3)+(beta3-alpha3*beta3)*sigma3;  
    fs4 = beta4*(L4-uL4); 
  
%------------------------------(2,4 Above) 1,3 Below------------------- 
elseif (fl(2) == 2 && fl(4) == 2 && fl(1) == 1 && fl(3) == 1) 
    fs1 = (L1-uL1); 
    fs2 = alpha2*beta2*(L2-uL2)+(beta2-alpha2*beta2)*sigma2;  
    fs3 = beta3*(L3-uL3);  
    fs4 = alpha4*beta4*(L4-uL4)+(beta4-alpha4*beta4)*sigma4; 
  
%------------------------------(2,3,4 Above) 1 Below------------------- 
elseif (fl(2) == 2 && fl(3) == 2 && fl(4) == 2 && fl(1) == 1) 
    fs1 = (L1-uL1); 
    fs2 = alpha2*beta2*(L2-uL2)+(beta2-alpha2*beta2)*sigma2;  
    fs3 = alpha3*beta3*(L3-uL3)+(beta3-alpha3*beta3)*sigma3;  
    fs4 = alpha4*beta4*(L4-uL4)+(beta4-alpha4*beta4)*sigma4; 
  
%------------------------------(3,4 Above) 1,2 Below------------------- 
elseif (fl(3) == 2 && fl(4) == 2 && fl(1) == 1 && fl(2) == 1) 
    fs1 = (L1-uL1); 
    fs2 = beta2*(L2-uL2);  
    fs3 = alpha3*beta3*(L3-uL3)+(beta3-alpha3*beta3)*sigma3;   
    fs4 = alpha4*beta4*(L4-uL4)+(beta4-alpha4*beta4)*sigma4; 
  
%------------------------------(1,2,3,4 Above)------------------------- 
elseif (fl(1) == 2 && fl(2) == 2 && fl(3) == 2 && fl(4) == 2) 
    fs1 = alpha1*(L1-uL1)+(1-alpha1); 
    fs2 = alpha2*beta2*(L2-uL2)+(beta2-alpha2*beta2)*sigma2;  
    fs3 = alpha3*beta3*(L3-uL3)+(beta3-alpha3*beta3)*sigma3;  
    fs4 = alpha4*beta4*(L4-uL4)+(beta4-alpha4*beta4)*sigma4; 
end 
%---------------------------------------------------------------------- 
  
%Calculate x and y components of spring forces  
fx1 = fs1*cos(atan(Ly1/Lx1));     fy1 = -fs1*sin(atan(Ly1/Lx1)); 
fx2 = -fs2*sin(atan(Lx2/Ly2));    fy2 = fs2*cos(atan(Lx2/Ly2)); 
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fx3 = -fs3*cos(atan(Ly3/Lx3));    fy3 = -fs3*sin(atan(Ly3/Lx3)); 
fx4 = -fs4*sin(atan(Lx4/Ly4));    fy4 = -fs4*cos(atan(Lx4/Ly4)); 
        
%Total Spring Forces in x and y direction on the mass (N2 Law) 
fx = fx1+fx2+fx3+fx4+Ax*sin(wx*t); 
fy = fy1+fy2+fy3+fy4+Ay*sin(wy*t); 
  
%Calculate the qdot vector 
qdot(1,1) = q(3);   %x velocity 
qdot(2,1) = q(4);   %y velocity 
qdot(3,1) = fx-2*dmprat*q(3);  %x accel = sum x forces 
qdot(4,1) = fy-2*dmprat*q(4);  %y accel = sum y forces 
  
end %function qdots 
  
%% -------------------------------------------------------------------- 
%               Events Function (Detects when knees are reached) 
%---------------------------------------------------------------------- 
function [value,isterminal,direction] = events(t,q) 
value = [(sqrt((q(1)-x1)^2+(q(2)-y1)^2)-uL1)-1,... 
         (sqrt((q(1)-x1)^2+(q(2)-y1)^2)-uL1)-1,... 
         (sqrt((q(1)-x2)^2+(q(2)-y2)^2)-uL2)-sigma2,... 
         (sqrt((q(1)-x2)^2+(q(2)-y2)^2)-uL2)-sigma2,... 
         (sqrt((q(1)-x3)^2+(q(2)-y3)^2)-uL3)-sigma3,... 
         (sqrt((q(1)-x3)^2+(q(2)-y3)^2)-uL3)-sigma3,... 
         (sqrt((q(1)-x4)^2+(q(2)-y4)^2)-uL4)-sigma4,... 
         (sqrt((q(1)-x4)^2+(q(2)-y4)^2)-uL4)-sigma4]; %Detect 0s 
isterminal = [1,1,1,1,1,1,1,1];   % Stop the integration for any event 
direction = [-1,1,-1,1,-1,1,-1,1];   % Direction 
end %function events 
  
%% Interpoloate data at desired time steps (via cubic spline) 
%Piecing together ode45 calls between knee engagements results in  
%undesirable timestep.  This produces the desired global timestep. 
tspan = 0:T/tdiv:T*Tmult; 
qout_sp(:,1) = spline(tout,qout(:,1),tspan); 
qout_sp(:,2) = spline(tout,qout(:,2),tspan); 
qout_sp(:,3) = spline(tout,qout(:,3),tspan); 
qout_sp(:,4) = spline(tout,qout(:,4),tspan); 
  
end %function rk4bi_nd_pre 
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APPENDIX C 

MATLAB script capable of calculating the scaled potential energy in the four-spring 
MBS support system 
 
%clear all; close all; clc %Housekeeping 
  
%Spring 1 Constants 
k11 = 1;     %Lower stiffness 
alpha1 = 20;       %Bilinear Spring Stiffness Ratios (K_2/K_1) 
k12 = k11*alpha1;    %Upper stiffness 
L1 = 4.25; 
s1 = 1;         %Knee Location  
x1 = 5;         %Anchor x coordinate 
y1 = 0;         %Anchor y coordinate 
  
%Spring 2 Constants 
alpha2 = 20; 
beta2 = 0;       %Primary Stiffness Ratio (K_1/K11) 
sigma2 = 1;      %Knee Ratio (s_/s1) 
L2 = 4.25; 
x2 = 0; 
y2 = 5; 
k21 = beta2*k11; 
k22 = alpha2*k21; 
s2 = sigma2*s1; 
  
%Spring 3 Constants 
alpha3 = 20; 
beta3 = 0; 
sigma3 = 1; 
L3 = 4.25; 
x3 = -5; 
y3 = 0; 
k31 = beta3*k11; 
k32 = alpha3*k31; 
s3 =sigma3*s1; 
  
%Spring 4 Constants 
alpha4 = 20; 
beta4 = 1; 
sigma4 = 1; 
L4 = 4.25; 
x4 = 0; 
y4 = -5; 
k41 = beta4*k11; 
k42 = alpha4*k41; 
s4 = sigma4*s1; 
  
%Vectors For Reasonable Box 
x = -5:10/1200:5; 
y = -5:10/1200:5; 
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%Initialize Scaled PE Matrix 
U = zeros(numel(x),numel(y)); 
  
%Calculate the Potential Energy 
for i = 1:numel(x) 
    for j = 1:numel(y) 
         
        %Calculate stretch in each spring 
        d1 = (sqrt((x(i)-x1)^2+(y(j)-y1)^2)-L1); 
        d2 = (sqrt((x(i)-x2)^2+(y(j)-y2)^2)-L2); 
        d3 = (sqrt((x(i)-x3)^2+(y(j)-y3)^2)-L3); 
        d4 = (sqrt((x(i)-x4)^2+(y(j)-y4)^2)-L4); 
     
        %Check knee status of 1st spring 
        if (d1 < s1) 
            U(j,i) = U(j,i) + 0.5*k11*d1^2; 
        else 
            U(j,i) = U(j,i) + 0.5*k12*d1^2+0.5*(s1^2)*(k12-k11)+... 
                (k11-k12)*s1*d1; 
        end 
  
        %Check knee status of 2nd spring 
        if (d2 < s2) 
            U(j,i) = U(j,i) + 0.5*k21*d2^2; 
        else  
            U(j,i) = U(j,i) + 0.5*k22*d2^2+0.5*(s2^2)*(k22-k21)+... 
            (k21-k22)*s2*d2; 
        end 
  
        %Check knee status of 3rd spring 
        if (d3 < s3) 
            U(j,i) = U(j,i) + 0.5*k31*d3^2; 
        else 
            U(j,i) = U(j,i) + 0.5*k32*d3^2+0.5*(s3^2)*(k32-k31)+... 
                (k31-k32)*s3*d3; 
        end 
  
        %Check knee status of 4th spring 
        if (d4 < s4) 
            U(j,i) = U(j,i) + 0.5*k41*d4^2; 
        else 
            U(j,i) = U(j,i) + 0.5*k42*d4^2+0.5*(s4^2)*(k42-k41)+... 
                (k41-k42)*s4*d4; 
        end 
    end 
end 
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APPENDIX D 

ANSYS script capable of simulating the free response of the four-spring MBS support 
system 
 
finish    !*******DIMENSIONLESS********* 
/clear 
/config,nres,250000  !The number of results able to store 
/prep7 
!------------Piecewise-Linear spring 
et,1,combin39 
keyopt,1,2,0  !Follow defined compression behavior (reflect if not given) 
keyopt,1,4,3  !2d Longitudinal spring 
keyopt,1,6,1  !Print Force Deflection table 
 
!------------Lumped 2D Mass 
et,2,mass21 
keyopt,2,3,4   !2D w/out rotarty inertia 
 
!Set the lumped mass value (always 1 for dimensionless simulation) 
r,5,1 
 
!------------Geometry Inputs 
!Define coordinates for anchors and undeformed lengths(dimensionless) 
x1 = 5 
y1 = 0 
uL1 = 4.25 
move1 = x1-uL1 
 
x2 = 0 
y2 = 5 
uL2 = 4.25 
move2 = y2-uL2 
 
x3 = -5 
y3 = 0 
uL3 = 4.25 
move3 = x3+uL3 
 
x4 = 0 
y4 = -5 
uL4 = 4.25 
move4 = y4+uL4 
 
!------------Define Dimensionless Parameters 
alpha1 = 20 
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alpha2 = 20 
alpha3 = 20 
alpha4 = 20 
 
beta2 = 1 
beta3 = 1 
beta4 = 1 
 
sigma2 = 1 
sigma3 = 1 
sigma4 = 1 
 
!------------the Bilinear Spring curve(s) 
s1 = 1 !Knee Locations 
s2 = sigma2*s1 
s3 = sigma3*s1 
s4 = sigma4*s1 
k11 = 1 !Lower Stiffness Values 
k21 = beta2*k11 
k31 = beta3*k11 
k41 = beta4*k11 
xend1 = 10 !Just for reference(if exceeded slope is maintained) 
xend2 = 10 
xend3 = 10 
xend4 = 10 
compx1 = -10 !Used to define behavior under compression 
compx2 = -10 
compx3 = -10 
compx4 = -10 
 
!------------Autocalc 
ys1 = s1*k11 !Force Value at Knee 
ys2 = s2*k21 
ys3 = s3*k31 
ys4 = s4*k41 
k12 = alpha1*k11 !Upper Stiffness Values 
k22 = alpha2*k21 
k32 = alpha3*k31 
k42 = alpha4*k41  
yend1 = ys1+k12*(xend1-s1) 
yend2 = ys2+k22*(xend2-s2) 
yend3 = ys3+k32*(xend3-s3) 
yend4 = ys4+k42*(xend4-s4) 
compy1 = compx1*k11 
compy2 = compx2*k21 
compy3 = compx3*k31 



130 

compy4 = compx4*k41 
 
!Defining Bilinear Curves for each Spring 
r,1,compx1,compy1,0,0,s1,ys1 
rmore,xend1,yend1 
r,2,compx2,compy2,0,0,s2,ys2 
rmore,xend2,yend2 
r,3,compx3,compy3,0,0,s3,ys3 
rmore,xend3,yend3 
r,4,compx4,compy4,0,0,s4,ys4 
rmore,xend4,yend4 
 
!Nodal Definitions 
n,1,uL1,y1 
n,2,x2,uL2 
n,3,-uL3,y3 
n,4,x4,-uL4 
n,5,0,0 
 
!Define Elements 
type,1 
real,1 
e,1,5 
real,2 
e,2,5 
real,3 
e,3,5 
real,4 
e,4,5 
type,2 
real,5 
e,5 
 
!------------Turn the nonlinear behavior on 
nlgeom,on 
 
!------------Transient Analysis 
/solu 
sstif,on 
antype,trans 
solcontrol,on 
ic,5,ux,0.55,0 !Initial Conditions 
ic,5,uy,0.55,0 
kbc,1 
time,200 
deltim,0.0015 
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!betad,0.9 
outres,all,all 
 
!Preload the springs initially by moving anchor points 
d,1,ux,move1 
d,1,uy,0 
d,2,ux,0 
d,2,uy,move2 
d,3,ux,move3 
d,3,uy,0 
d,4,ux,0 
d,4,uy,move4 
 
solve 
 
!Save the displacement and velocities of the mass 
/post26 
nsol,2,5,u,x,ux 
nsol,4,5,vel,x,velx 
 
nsol,3,5,u,y,uy 
nsol,5,5,vel,y,vely 
 
!Adjust number of lines before repeating header in any printouts 
lines,200000 
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APPENDIX E 

MATLAB script capable of simulating the response of the four-spring MBS support 
system using polynomial approximations for bilinear stiffness models 

 

function [tout,qout] = rk4poly_nd_pre() 
%********************DIMENSIONLESS***************************** 
%clear all; close all; clc %Housekeeping 
  
%% Dimensionless Parameters 
alpha1 = 20;       %Bilinear Spring Stiffness Ratios (K_2/K_1) 
alpha2 = 20; 
alpha3 = 20; 
alpha4 = 20; 
  
beta2 = 1;       %Primary Stiffness Ratio (K_1/K11) 
beta3 = 1; 
beta4 = 1; 
  
sigma2 = 1;     %Knee Ratio (s_/s1) 
sigma3 = 1; 
sigma4 = 1; 
  
dmprat = 0.03;     %Damping Ratio 
  
Ax = 1;         %x harmonic forcing amplitude 
wx = 0.75;         %x " " frequency 
Ay = 0;         %y " " 
wy = 0;         %y " " 
  
x1 = 5; y1 = 0; %Anchor x & y coordinates 
uL1 = 4.25; %Undeformed Length of Spring 
  
x2 = 0; y2 = 5;  
uL2 = 4.25; 
  
x3 = -5; y3 = 0;  
uL3 = 4.25; 
  
x4 = 0; y4 = -5;  
uL4 = 4.25; 
  
%% Generate Bilinear Stiffness Curves for Reference 
xref = (0:0.001:2)'; %Try to bracket the range of spring deformation  
fref1 = zeros(numel(xref),1);fref2=fref1; fref3 = fref1; fref4 = fref1; 
for i = 1:numel(xref) 
    if xref(i,1) <= 1 
        fref1(i,1) = xref(i);  
    else 
        fref1(i,1) = alpha1*xref(i)+(1-alpha1); 
    end 
    if xref(i,1) <= sigma2 
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        fref2(i) = beta2*xref(i); 
    else 
        fref2(i,1) = alpha2*beta2*xref(i)+(beta2-alpha2*beta2)*sigma2;  
    end 
    if xref(i,1)<= sigma3 
        fref3(i,1) = beta3*xref(i);  
    else 
        fref3(i,1) = alpha3*beta3*xref(i)+(beta3-alpha3*beta3)*sigma3;  
    end 
    if xref(i,1) <= sigma4 
        fref4(i) = beta4*xref(i); 
    else 
        fref4(i,1) = alpha4*beta4*xref(i)+(beta4-alpha4*beta4)*sigma4;  
    end 
end 
  
%% Specify polynomial degree and any linear constraints 
polydeg = 5; 
xpass = 0'; %input as row vector if multiple points 
ypass = 0'; 
  
%% Generate Vandermonde Matrix for Reference Curve x values 
V(:,polydeg+1) = ones(length(xref),1); 
for j = polydeg:-1:1 
V(:,j) = xref.*V(:,j+1); 
end 
  
%% Parameters for Linear Constraint 
Aeq(:,polydeg+1)=ones(length(xpass),1); %Vandermonde matrix for xpass 
for k = polydeg:-1:1 
Aeq(:,k) = xpass.*Aeq(:,k+1); 
end 
beq = ypass; %desired value at xpass 
  
%% Regression with Linear Constraints 
options = optimset('LargeScale','off'); 
pc1 = lsqlin(V,fref1,[],[],Aeq,beq,[],[],[],options); 
pc2 = lsqlin(V,fref2,[],[],Aeq,beq,[],[],[],options); 
pc3 = lsqlin(V,fref3,[],[],Aeq,beq,[],[],[],options); 
pc4 = lsqlin(V,fref4,[],[],Aeq,beq,[],[],[],options); 
  
%% Simulation Parameters 
%Initial Conditions (Positions, Velocities) 
IC = [0,0,0,0];  %(x y u v) 
  
%Time Information 
T = 2*pi/wx; 
Tmult = 100; 
tdiv = 400; 
tspan = 0:T/tdiv:T*Tmult;  %Initial time span, changes as events occur 
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%% -------------------------------------------------------------------- 
%               RK Solver and Output Accumulators 
%---------------------------------------------------------------------- 
%Set options for the ODE solver 
options = odeset('RelTol',1e-10,'AbsTol',1e-12); 
  
%Call the RK solver  
[tout,qout] = ode45(@qdots,tspan,IC,options); 
  
%% -------------------------------------------------------------------- 
%               State Space Function for Each Case (16 cases) 
%---------------------------------------------------------------------- 
function qdot = qdots(tout,qout) 
  
%x and y components of deformed length for each spring 
Lx1 = x1-qout(1);    Ly1 = qout(2);  
Lx2 = qout(1);        Ly2 = y2-qout(2); 
Lx3 = qout(1)-x3;    Ly3 = qout(2); 
Lx4 = qout(1);       Ly4 = qout(2)-y4; 
  
%Calculate Total Deformed Length @ each iteration (always (+)) 
L1 = sqrt((Lx1^2)+(Ly1^2)); 
L2 = sqrt((Lx2^2)+(Ly2^2)); 
L3 = sqrt((Lx3^2)+(Ly3^2)); 
L4 = sqrt((Lx4^2)+(Ly4^2)); 
  
fs1 = 0; fs2 = 0; fs3 = 0; fs4 = 0; 
for m = 1:polydeg+1 
     fs1 = fs1+(L1-uL1)^(polydeg-m+1)*pc1(m); 
     fs2 = fs2+(L2-uL2)^(polydeg-m+1)*pc2(m); 
     fs3 = fs3+(L3-uL3)^(polydeg-m+1)*pc3(m); 
     fs4 = fs4+(L4-uL4)^(polydeg-m+1)*pc4(m); 
end 
%---------------------------------------------------------------------- 
%Calculate x and y components of spring forces  
fx1 = fs1*cos(atan(Ly1/Lx1));     fy1 = -fs1*sin(atan(Ly1/Lx1)); 
fx2 = -fs2*sin(atan(Lx2/Ly2));    fy2 = fs2*cos(atan(Lx2/Ly2)); 
fx3 = -fs3*cos(atan(Ly3/Lx3));    fy3 = -fs3*sin(atan(Ly3/Lx3)); 
fx4 = -fs4*sin(atan(Lx4/Ly4));    fy4 = -fs4*cos(atan(Lx4/Ly4)); 
        
%Total Spring Forces in x and y direction on the mass (N2 Law) 
fx = fx1+fx2+fx3+fx4+Ax*sin(wx*tout); 
fy = fy1+fy2+fy3+fy4+Ay*sin(wy*tout); 
  
%Calculate the qdot vector 
qdot(1,1) = qout(3);   %x velocity 
qdot(2,1) = qout(4);   %y velocity 
qdot(3,1) = fx-2*dmprat*qout(3);  %x accel = sum x forces 
qdot(4,1) = fy-2*dmprat*qout(4);  %y accel = sum y forces 
  
end %function qdots 
  
end %function rk4poly_nd_pre 
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