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ABSTRACT OF THE THESIS 
 

EVALUATION OF MECHANICAL PROPERTIES AND EFFECTIVE THICKNESS 

OF THE INTERFACES BY FINITE ELEMENT ANALYSIS 

 

The nanoindentation technique has been used to identify the interfaces between dissimilar 

materials and subsequently to evaluate the physical and mechanical properties across the 

interfaces. The interfaces could represent the interface (transition face) between oxidized 

and unoxidized polymers, the interface between rigid fiber and polymer matrix, or other 

similar situations. It is proposed to use a nanoindenter equipped with small spherical tip 

to indent across the interfaces of dissimilar materials. The proposed method has been 

validated by conducting a large number of virtual experiments through 3-dimensional 

finite element simulations, by varying the properties of the two dissimilar materials, 

including various combinations of modulus (E1/E2), yield strength (σy1/σy2), hardening 

index (n1/n2), interface sizes (R/T), Poisson’s ratio (ν), etc.  The mechanical properties 

across the interfaces have been obtained, and a quantitative model for predicting the 

interface sizes has been established.   

 

KEYWORDS:  Nanoindentation; Interfacial thickness; Polymer interfaces; Finite element 
method. 
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CHAPTER 1  -  INTRODUCTION 

 

1.1 Background 

 

Polymer matrix composites (PMCs) have been increasingly used for high temperature 

applications in automotive and aerospace industries. Example applications include the 

automotive engine covers and turbine engine exhaust structures. The matrix systems in 

the high temperature PMCs are predominantly thermoset polymers. These polymers are 

chosen since they have highly cross-linked structures that form during the curing process. 

Typical thermosets include polyimides, epoxies, unsaturated polyesters, vinyl esters, etc.  

One of the major concerns in using polymer matrix composites at high temperature 

environments is the thermo-oxidative degradation of the polymer matrix and the matrix-

fiber interfaces. Exposed to elevated temperature, the free surfaces of PMCs are 

susceptible to oxidation. When exposed to thermo-mechanical loading, the result is 

accelerated degradation and ply cracking which in turn introduces new free surfaces. 

Ultimately, the thermo-oxidative degradation reduces the life and durability of the 

composite system. Thus, the ability to fully understand and characterize the physical and 

mechanical responses resulting from thermo-oxidative processes is paramount to the 

continued development and increased use of high temperature PMCs in the industry.  

 

The degradation of polymer resins used in high temperature applications can be a result 

of either physical aging or chemical aging, or both. The physical aging is a 

thermodynamically reversible volumetric response due to slow evolution toward 

thermodynamic equilibrium.  The decreased molecular mobility and free-volume 

reduction lead to strain and damage development in the material. The chemical aging is a 

nonreversible volumetric response due to chain-scission reactions and/or additional cross-

linking, hydrolysis, depolymerization, and plasticization. A dominant chemical aging 

process for high temperature PMCs is thermo-oxidative aging. According to Schoeppner, 

et al. [1, 2], the thermo-oxidative aging of polymers is “a nonreversible, surface diffusion 
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response in which chemical changes occur during the oxidation of a polymer, [where] 

oxidation leads to a reduction in molecular weight as a result of chemical bond breakage 

and weight loss due to out-gassing of low-molecular weight gaseous species.”   

 

A three-region model has been proposed by Tandon, et al [3], to explain the mechanism 

of the thermo-oxidative degradation in polymers. According to this model, the surface 

oxidative layer is separated from the unoxidized polymer with an active reaction zone 

(Figure 1.1). The oxygen (O2) in air diffuses through the polymer and then consumed by 

the oxidation reaction. The parameter φ shown in Figure 1.1 is called the polymer 

availability state variable and the parameter φox characterizes the completely oxidized 

polymer. Once a region is fully oxidized (called the Oxidized Layer), the oxidation 

reaction is terminated and oxygen can diffuse through it. Then, oxygen begins to react in 

the adjoining region (called the Transition Region), where φox<φ<1.  In the region far 

from the exposed surface (called the Unoxidized Interior), no polymer has been oxidized 

(φ=1). 

 

 

Figure 1.1 Schematic of the three-zones in thermo-oxidation of polymers [3]. 

Because of the thermo-oxidative degradation, it is expected that the physical and 

mechanical properties will change in the polymer resins.  However, depending upon the 

material systems, it can be rather difficult to observe and characterize such changes by 

using conventional techniques, such as the light microscopy, scanning electron 

O2 
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microscopy, etc.  Figure 1.2(a) shows a photomicrograph of PMR-15 polymer resin 

isothermally aged in ambient air at 343oC for a period of 196 hrs [4]. The optical 

micrograph clearly shows the three regions due to oxidation: oxidized region, transition 

region, and unoxidized region. This observation at least helps measuring and 

characterization of the transition region, although the exact boundaries of the transition 

zone are still hard to be determined.  Figure 1.2(b) is the photomicrograph of the AFR-

PE-4 polymer resin aged for 1200 hrs at 343oC [4]. Unlike PMR-15, the oxidized layer 

could not be observed for AFR-PE-4 by light microscopy.  Thus, new technique for 

identifying and characterizing the interface (transition zone) is needed.  

 

 

 

 

 

 

 

 

 

Similar issue can be extended to the interfaces in the fiber reinforced polymer composites 

[5]. The interface between reinforcing fibers and matrix is believed to play an important 

role in the overall composite properties (Figure 1.3).  However, due to the small size, it is 

often difficult to properly characterize the properties of the interfaces.  

 

 

Figure 1.2 Photomicrographs showing the structure changes due to thermo-
oxidization.   (a) PMR-15 resin after 196 hrs of aging at 343oC; (b) AFR-PE-4 resin 

after 1200 hrs of aging at 343oC [4]. 

 

 

interface 
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Figure 1.3 Photomicrographs showing the interface at the fiber reinforced polymer 
composites [5]. 

1.2 Objectives of the Thesis 

This thesis proposes the use of nanoindentation method to identify the interface between 

dissimilar materials and subsequently to evaluate the physical and mechanical properties 

across the interface. It is proposed to use a nanoindenter with spherical tip to indent the 

interface between dissimilar material, which could represent the interface (transition face) 

between oxidized and unoxidized polymers, the interface between rigid fiber and polymer 

matrix, or other similar situations. The nanoindentation test will be simulated by using 

the finite element method.  To evaluate the effective size (thickness) and the properties of 

the interface, a series of nanoindentation tests are conducted with the spherical indenter 

across the interface. Various interface scenarios will be considered by varying the 

properties of the two dissimilar materials,  including various combinations of modulus, 

yield strength, hardening index, and interface sizes. Methods will be developed to predict 

the sizes (thickness) of the interfaces as well as their mechanical properties.   

 

1.3 Organization of the Thesis 

Chapter 2 gives the review of literatures on the characterization of interface of dissimilar 

materials (primarily the thermo-oxidized polymers) and the use of nanoindentation 

interface 
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technique. Chapter 3 presents the detailed procedures of the finite element modeling of 

interfaces. Results and discussion are given in Chapter 4, including the mechanical 

properties at the interfaces and the estimation of effective thickness of the interfaces. 

Finally Chapter 5 includes the summary of the present work and the scope of possible 

future work related to the interface research. 
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CHAPTER 2 - REVIEW OF LITERATURES 

 

2.1 Characterization of Interface of Dissimilar Materials 

 

The interface is defined as a region that separates two dissimilar materials. In the present 

study, our primary interest is the interface between oxidized and unoxidized polymer 

resins, which exists in polymer matrix composites used at elevated temperatures. 

 

Hot structures for helicopters and aircrafts are subjected to severe thermo-mechanical 

conditions for the long periods of time. This kind of exposure to drastic conditions at high 

temperatures has significant effects on the performance of these structures. When these 

materials are exposed to high temperatures and to oxygen, thermo-oxidative degradation 

of the polymer resin occurs. The oxidative degradation occurs at the exposed surfaces 

causing the oxygen to diffuse into the polymer resin. This causes the formation of the 

oxidized layer due to the chemical reaction taking place between the exposed surface of 

the polymer resin and oxygen. Thus oxidized region, interface and the unoxidized region 

are the three regions formed in the polymer resin due to the thermo-oxidative 

degradation, as shown in (Figure 2.1). 

 

The identifications of the oxidized regions in high temperature polymer resins have been 

mostly achieved through various optical techniques, such as dark-field imaging, polarized 

light microscopy, and scanning electron microscopy in backscatter mode. With optical 

microscope (Nikon Microphoto-FXL, Model F84006) using a bright-field light, Lu et al 

[6] had examined the oxidized PMR-15 resin (Figure 2.1).Polymerization of monomeric 

reactants (PMR-15), originally developed by NASA Lewis Research Center in 1970’s, 

has been the most widely used resin material in high-temperature polymer matrix 

composites due to its thermo-oxidative stability and high glass transition temperature, Tg 

~340°C, which permits composites having an extended service temperature of 288°C. 

The micrograph of a PMR-15 aged at 316°C for 651 h reveals the three material regions, 
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representing different levels of oxidation. They are: Zone I - the fully oxidized surface 

layer, Zone II - the interface or the transition zone (where a mix of oxidized and 

unoxidized polymers exist), and Zone III - an unoxidized interior.  In contrast with the 

oxidized region, the actual size (thickness) of the interface (Zone II) is rather hard to 

determine. The thickness of the interface further depends upon the environmental 

conditions (time, temperature and pressure).  

 

Figure 2.1 Optical micrographs of oxidized PMR-15 polymide aged at 316oC for 651 h in 
0.414-MPa pressurized air. 

 

 

Figure 2.2 Optical micrograph showing the oxidized PMR-15 neat resin sample aged for 
1000 h at 288°C in air [7]. 
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Using a digital microscope (Nikon EPIPHOT) with fluorescence imaging technique, 

Broeckert [7] also obtained the picture of oxidized PMR-15 resin (Figure 2.2).  Under 

this method, the oxidized layer is clearly different from the unoxidized region, but the 

interface is hard to define. 

 

The newest ultra-high temperature polyimide resin, AFR-PE-4, is capable of 

withstanding long term exposure to temperatures up to 700°F (371°C). The thermo-

oxidative degradation of AFR-PE-4 has been studied by Ripberger et al [4]. Figure 2.3 

shows the optical microscopy image of the AFR-PE-4 specimen aged for 1200 hrs at 

343oC. Unlike other high temperature resins, the oxidation layers for AFR-PE-4 do not 

change the optical characteristics of the material, and the oxidized layer could not be 

observed.  

 

Clearly, the conventional optical technique has limitations in identifying and 

characterizing the interfaces.   

 

Figure 2.3 Optical micrographs showing the oxidized AFR-PE-4 neat resin aged at 
elevated temperature [4]. 
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Interface study has also been a very important subject in fiber-reinforced polymer 

composites.  The classical definition of interface in fiber reinforced composites is that “an 

interface is a surface formed by the common boundary of reinforcing fiber and matrix in 

contact which constitutes the bond in-between for transfer of load. It has physical and 

mechanical properties which are unique and not those of either the fiber or the matrix” 

[31].  

 

Figure 2.4 Optical micrographs showing the interface in fiber reinforced composites (a) 
optical micrograph of the composites, (b) height image of the cross-section, (c) phase 

image of cross-section, (d) height image and (e) phase image of  the interface [5]. 
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The quality of stress transfer in the interphase is the deciding factor for the performance 

of a composite as a structural material. The interphase in the fiber-reinforced composite 

material extends from a few nanometers to microns. Also, the mechanical properties in 

this interphase region vary continuously from those of the fiber to the polymer. And it is 

believed that the nature of the interphase would vary with the specific composite system 

[8, 9]. A properly designed interphase can help improve the performance of the structure 

by improving its strength, toughness and environmental stability of the composites [8]. 

For instance, when the interphase is made softer than the surrounding polymer it would 

give lower overall stiffness and strength to the composite but has greater resistance to 

fracture. Whereas, when an interphase is made stiffer than its surrounding polymer it 

leads to less fracture resistance but makes the polymer stronger and stiff. Hence, it’s clear 

that better understanding of the interphase can help in better evaluation of the fiber-

reinforced composite [8].  

 

However, when the interphase is no more than a few microns it is difficult to be studied 

by conventional experimental procedures. The common methods of characterizing the 

interface properties in fiber reinforced composites have been testing the macroscopic size 

specimens: either a laminate (many fibers) or an individual fiber embedded in specially 

constructed matrix [32]. The specimens are tested in the mode of either tension, 

compression, or shear, from which the properties of the interface are extrapolated [32]. 

The results obtained from those tests are often inconsistent because the interface regions 

are not directly tested. In addition, the identification of the interface dimensions 

(thickness) has been lacking.  

 

2.2 Quantitative Nanoindentation 

 

It is proposed that the quantitative nanoindentation technique be used to study the 

properties at the interfaces. Nanoindentation is a new method to characterize the 

mechanical properties of very small volumes like thin films or interfaces, coatings and 



 

11 
 

surface layers including those modified by ion implantation since the layer need not be 

removed from the substrate. The spatial variation of the properties can also be obtained 

by indentation on the scales of micro, nano and pico levels with good resolution. 

Employing high-resolution sensors and actuators, nanoindentation can continuously 

monitor the loads and displacements during loading and unloading as the indenter is 

driven into and withdrawn from the test material. From the load-depth curves, many 

quantitative information such as contact area, contact depth, stiffness, hardness, and 

elastic modulus are obtained. For this purpose, nanoindentation is used to characterize the 

characteristics at the interfaces of dissimilar materials. The nanoindentation tests will be 

conducted by using finite element simulation. Extensive literatures exist on the use of 

nanoindentation technique. The review is focused on the numerical simulation of the 

nanoindentation method, which is most relevant to the present research.   

 

Numerical methods such as finite element method can be employed to simulate the 

nanoindentation technique to test the material properties. Bhattacharya and Nix [10], 

[11], Pharr and Bolshakov [12], Larsson et al [13] have used the finite element method to 

simulate the nanoindentation experiment to validate the use of the stiffness method for 

analyzing nanoindentation data.  

 

Shih et al. [14], Cheng and Cheng [15], have used finite element simulation to evaluate 

the effect of the indenter tip on contact area and indentation depth. The blunt tip 

geometry of the so-called nano-indenter is modeled by a spherical cap of various radii 

and the effect of indenter tip roundness on indentation measurement was 

comprehensively studied.  

 

The elastoplastic deformation during indentation is much more complex, and numerical 

analysis has become a major technique to study this type of indentation. Shu and Fleck 

[16], Sinisa, Mesarovic and Fleck [17], conducted the finite element simulation to 

analyze the elastic-plastic deformation under a spherical tip. Taljat et al. [18, 19], 
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performed finite element simulation on a wide range of materials with different elastic 

moduli, yield strength, strain hardening exponents, and friction coefficients. The material 

pile-up occurring around elastic-plastic indentation was studied.   

 

Numerical simulations have been further used to study structures with finite size (as in 

the case of thin films, interfaces, etc.). King [20], Doerner et al [21], has studied the 

elastic properties of thin films.  It was found that the substrate played an important role 

on the hardness of the thin films examined.  The contact stresses in the indentation of 

coating/substrate systems were investigated by Djabella and Arnell [22], Cai [23]. Page 

and Hainsworth [24] simulated the indentation of thin films and found that the critical 

ratio of thickness is a function of the yield strength ratio of the coating to the substrate 

and the indenter tip radius. A more comprehensive study on layered systems was 

conducted by Mesarovic and Fleck [25], using finite element simulation. 

 

Most finite element simulations of the indentation problems have been 2-dimensional, 

axisymmetric (Figure 2.5), which is valid for indenting structures that have homogeneous 

properties.      
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(a) 

   

(b) 
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 (c) 

Figure 2.5 Finite element simulation of nanoindentation problems by using (a) a sharp 
indenter, (b) a spherical indenter, and (c) a flat indenter. 

  

To summary, existing work has been so far limited to the examinations of mechanical 

properties of materials/structure in homogeneous and bi-layered structures. The proposed 

work is to use nanoindentation to study the interface of dissimilar materials, with the 

goals of both extracting mechanical properties and estimating the effective thickness of 

the interfaces.  Three-dimensional finite element modeling will be conducted since the 

bimaterial structure is of heterogeneous nature. 
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CHAPTER 3 -  GENERAL PROCEDURE OF FINITE ELEMENT MODELING 

 

In the present work, the finite element method is used to analyze the indentation 

deformation at the interface of a thermo-oxidized polymer. The materials are treated as 

elastic-plastic and modeled by a power-law constitutive relationship between stress and 

strain. The indenter is assumed to be having spherical profile. The detailed procedures of 

the finite element modeling are presented in this chapter. 

 

3.1 Nanoindentation as a Tool to Probe Interfaces of Dissimilar Materials 

 

The nanoindentation method is used to probe the interface between dissimilar materials. 

The goals are to evaluate: 1) the mechanical properties of the interface and 2) the 

effective thickness of the interface. The interface could represent the region between 

oxidized and unoxidized polymer resins or the region between rigid fiber and polymer 

matrix.  A general interface model can be sketched as seen in Figure 3.1. It is proposed to 

use a nanoindenter with spherical tip to indent across the interface region, from which 

quantitative information are obtained and then used to estimate the properties of the 

interface. The nanoindentation experiments will be conducted through the finite element 

simulation. 
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3.2 Spherical Indentation as a Boundary Value Problem 

 

The indentation at the interface of a polymer material by a spherical indenter is illustrated 

as see in Figure 3.2. 

spherical nanoindenter 

material I       interface        material II 

Fiber-polymer composite 

oxidized resin 

interface 

interface 

Figure 3.1 A generic model representing the interface of dissimilar materials. 



 

17 
 

 

Figure 3.2 Schematic of the spherical indentation of an elastic-plastic structure. 

 

Without any body force, the mechanical equilibrium conditions are valid during 

indentation,Equation 0-1 

0ij

jx
∂σ

=
∂                       ----------------3.1                                   

 

where ijσ  ( ,  1,  2,  3i j = ) are the components of the stress tensor and ix  are the 

components of the position vector of a material point. 

 

As shown in Figure 3.2, a rigid spherical indenter is pressed onto the surface of a semi-

infinite elasto-plastic material. The contact boundary conditions in a cylindrical 

coordinate ( ,  ,  )r zθ  are 

r 

z 

R 
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Equation 0-2 

( ,0) 0rz rσ =     for r a<      ----------------3.2 

Equation 0-3 

( ,0) ( )zu r f r= − δ  for r a<                 ----------------3.3 

 

where rzσ  and zzσ  are respectively the shear and normal components of the stress 

tensor, zu  is the displacement component along the loading direction, ( )f r  is the surface 

profile of the indenter tip, δ  is the displacement of the indenter, and a  is the radius of 

the contact area to be determined in the simulation.  

 

Equation 0-2Equation 3.2 and Equation 3.3 represent the condition of frictionless contact 

between the indenter and the material. Outside the contact area, the surface is at stress-

free state, i.e. 

Equation 0-4 

( ,0) ( ,0) 0rz zzr rσ = σ =  for  r a>        --------------3.4 

 

The far field condition requires, ( , ) 0rz r zσ → , ( , ) 0zz r zσ → , ( , ) 0ru r z → , and 

( , ) 0zu r z →  as r →∞  or z →−∞ . The indentation load applied to the indenter can be 

calculated as 

Equation 0-5 

0
2 ( ,0)

a

zzF r rdr= − π σ∫         --------------3.5  

 

The general purpose finite element program, ABAQUS, is used for the present project. 

Developed by Hibbitt, Karlsson & Sorensen, Inc [26], ABAQUS is known for capable of 



 

19 
 

performing complex nonlinear simulations. The indentation procedure is assumed to be 

quasi-static problem, in which no time effect is considered. Hence ABAQUS-Standard is 

used in this work. ABAQUS process of solving usually consists of three distinct stages: 

preprocessing, simulation and post processing. ABAQUS-CAE is the total ABAQUS 

working interface that includes all the options to generate ABAQUS models, to submit 

and monitor jobs for analysis and also a means to review the results. In the present work, 

ABAQUS-CAE is used as the preprocessor of different stages of the model creation 

starting from the creation of Part, Property, and Assembly, defining the Step, Interaction, 

Load, Mesh, and generating the Job from the respective module and as the postprocessor 

to extract the results using Visualization module. 

 

3.3 Finite Element Model 

 

Due to symmetry, only half of the structure was modeled (Figure 3.3). Much of the 3D 

analysis is made easy with the options available in the part module of Abaqus/Standard. 

Once the 2D model is built, it is rather easier to either extrude, revolve or sweep about an 

edge or axis. As a result of which, the 3D model used in the present analysis to study the 

material hardness and elastic modulus was made easy since the already existing 2D 

model that was built in x-y plane was extruded in the z direction by the required depth.  
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 Figure 3.3 Model showing half of the structure  due to symmetry. 
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After generating the 2D model in Abaqus-CAE the 3D model can be generated by 

extruding the existing 2D model in the third direction.  The thickness of the extrusion was 

considered to be 500mm and the 3D extruded model was generated. The element type 

used for the analysis is C3D8R: Eight node brick element with reduced integration.  

“This is a general purpose linear brick element, with reduced integration (1 integration 

point). The shape functions are the same as for the C3D8 element” [26]. The node 

numbering follows the convention of Figure 3.4(a) shown below and the 2x2x2 

integration point scheme in hexahedral elements is shown in Figure 3.4(b). Figure 3.4(c) 

shows 1x1x1 integration point scheme in hexahedral elements. Although the structure of 

the element is straightforward, it should not be used in the following situations: 

 

• due to the full integration, the element will behave badly for isochoric material 

behavior, i.e. for high values of Poisson's coefficient or plastic behavior. 

• the element tends to be too stiff in bending, e.g. for slender beams or thin plates 

under bending.” 

           

 

 

 

 

 

(a)                                    (b)                                          (c) 

Figure 3.4 Sketches of C3D8 elements used in the finite element model. 
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Due to the reduced integration, the locking phenomena observed in the C3D8 element do 

not show. However, the element exhibits other shortcomings [26]: 

 

• The element tends to be not stiff enough in bending. 

• Stresses, strains are most accurate in the integration points. The integration point 

of the C3D8R element is located in the middle of the element. Thus, small 

elements are required to capture a stress concentration at the boundary of a 

structure. 

• There are 12 spurious zero energy modes leading to massive hourglassing: this 

means that the correct solution is superposed by arbitrarily large displacements 

corresponding to the zero energy modes. Thus, the displacements are completely 

wrong. Since the zero energy modes do no lead to any stresses, the stress field is 

still correct. In practice, the C3D8R element is not very useful without hourglass 

control. ” 

 

This element type was chosen as the poison’s ratio used was suitable for the present 

analysis and the material type and hence this avoids the bad behavior for isochoric 

material type. Also since fine mesh was employed in the area of interest, that made the 

element size to be small enough. This in turn enabled to capture proper stress 

concentration at the boundary of the test material although C3D8R has one integration 

point at the middle of the element. Due to the default hourglass control available in 

Abaqus C3D8R element could be used effectively in the present work. 

 

3.4 Meshing the 3D model 

Meshing is the one of the most critical and important module in the numerical methods 

that has a direct affect on the accuracy of the results. Depending on the type of element 

used the region of interest, i.e. here the interface and its immediate neighborhood the 

mesh needs to be designed. In the present model since the region subjected to nano-
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indentation testing is the interface, a fine mesh is necessary in this region. Also since the 

element type used is C3D8R which requires the element size to be as less as possible in 

order to properly capture the stresses at the integration point that is the middle of the 

element, the mesh in and around the interface was made to be fine. To avoid the longer 

running times by the solver and to save memory the regions far away from the interface 

were meshed coarsely without sacrificing the accuracy of the results obtained. Figure 3.5 

below the shows the meshed 3D model with proper fine mesh and coarse mesh 

throughout the model as required by the analysis.  

 

Figure 3.5 The 3D finite element model representing the layered polymer. 
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3.5 Boundary Conditions 

As one or more degrees of freedom were to be arrested for a particular node, single point 

constraints (SPC), were used in the present analysis. Nodes on one face in x-y plane were 

completely arrested by inputting a prescribed value of zero and hence constraining any 

displacements in the x-y plane. Figure 3.6 shows the first boundary condition with the 

nodes in the x-y plane arrested to avoid the deformation in the z-direction. Figure 3.7 

shows the encastre boundary condition applied to the base of the test specimen, Figure 

3.8 shows the displacement boundary condition where the necessary displacement was 

given to the indenter to apply the load on the material, and Figure 3.9 shows the 

displacement boundary condition given to the reference point for the unloading step.  

 

 

Figure 3.6 Image showing the first boundary condition with the nodes in the x-y plane 
arrested to avoid the deformation in the z-direction 
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Figure 3.7 Image showing the encastre boundary condition applied to the base of the test 
specimen 

 

Figure 3.8 Image showing the displacement boundary condition where the necessary 
displacement was given to the indenter to apply the load on the material. 
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Figure 3.9 Image showing the displacement boundary condition given to the reference 
point for the unloading step. 

 

3.6 Contact Interaction 

 

Since Indentation is an example of typical contact problem, it is very important to define 

the contact formulation in ABAQUS. In general the interaction between contacting 

surfaces consists of two components: one normal to the surfaces and one tangential to the 

surfaces. The normal component may be referred as contact pressure and the tangential 

component generates the relative motion (sliding) of the surfaces involving friction. 

ABAQUS uses Coulomb friction model to define the interaction of contacting surfaces. 

The model characterizes the friction behavior between the surfaces using a coefficient of 

friction μ. The product μP, where P is the contact pressure between the two surfaces, 

gives the limiting frictional shear stress. The contact surfaces will not slip (sliding 

relative to each other) until the shear stress across their interface equals the limiting 

frictional shear stress, μP.   
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In our work it is assumed that the friction effect is negligible and μ=0 is defined in all the 

models assuming there is no slip between the surfaces in contact. The interaction between 

the indenter and the specimen is modeled as contact pair without any friction. According 

to ABAQUS user manual [26], the indenter surface is defined as the ‘master’ surface 

since the indenter is rigid body. The top of the specimen is the ‘slave’ surface.  

3.7 Material Characteristics 

3.7.1 Linear Elastic Model 
 

Elastic deformation is observed in all the materials, when the deformation is small. For 

isotropic linear elastic materials, the deformation is proportional to the applied load. For a 

uniaxial tension state the stress-strain relationship can be expressed as 

Equation 0-1 

σ = Eε    ----------------3.6 

where ε is the uni-axial strain, σ is the uni-axial stress, and E, is the elastic modulus, the 

proportional coefficient  also known as Young’s modulus. 

 

In three dimensional state, the stress-strain relationship of a linear elastic material can be 

expressed as   

Equation 0-2  

            𝜎𝑖𝑗 = 𝐸
1+𝜐

𝜀𝑖𝑗 + 𝐸𝜐
(1+𝜐)(1−2𝜐)

𝛿𝑖𝑗𝜀𝑘𝑘  ----------------3.7 

 

where 𝜎𝑖𝑗 and 𝜀𝑖𝑗 are the stress components and strain components respectively. υ is the 

Poisson’s ratio which is a measure of transverse strain against axial strain when a uniaxial 

stress is applied. 
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3.7.2 Power Law Work Hardening Models 
 

Once the external force applied on a material cross its elastic limit, the material will 

undergo plastic deformation. A power law work hardening model is accepted by most 

engineering materials such as metals and alloys approximately which is a material 

constitutive relation, the modified uniaxial stress-strain (σ-ε) curve of a stress free 

material can be expressed as 

Equation 0-3 

   �
𝜎 = 𝐸𝜀              𝑓𝑜𝑟 𝜀 ≤ 𝜎𝑦

𝐸

𝜎 = 𝐾𝜀𝑛           𝑓𝑜𝑟 𝜀 ≥ 𝜎𝑦
𝐸

�   --------------3.8 

 

where E is elastic modulus, σy is yield stress, n is the work hardening exponent and   K= 

σy(
𝐸
𝜎𝑦

)n is the work hardening rate. When n is zero, the above (Equation 0-3) reduces to an 

elastic-perfectly plastic material. To completely characterize the elasto-plastic properties 

of a power-law material, four independent parameters, i.e., elastic modulus E, yield stress 

σy, work-hardening exponent n, and Poisson’s ratio υ, are needed. One of the major 

objectives of this thesis, is to relate these parameters (E, σy, n, υ) with the indentation 

responses. Since indentation induces very complicated stress and strain field beneath the 

indenter, FEM results obtained are useful in guiding future experiments. 

 

To define the plastic properties of a material in ABAQUS the power law hardening 

material model is used, a true stress strain data spreadsheet at first is generated from the 

Equation 3.8. Then using the below equation, plastic strain (εp) is calculated.  

Equation 0-4 

   𝜀𝑝 = 𝜀 − 𝜎𝑦
𝐸

     ----------------3.9 
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One thing to point out is the unit system in the FEM simulation. Since the ABAQUS does 

not specify a unit system, the users could use a unit system arbitrarily, as long as they are 

in consistency in one problem. In this problem, we are considering Newton (N) for the 

force (load) and millimeter (mm) as the unit for the penetration (displacement). So the 

input mechanical properties values are to be converted to maintain the consistency of the 

units.  

 

The interface problem can be sketched as seen in Figure 3.10, which consists of three 

distinct regions: region I made of material I, interface, and region II made of material II. 

The material properties at region II were fixed: E2=1200 MPa, σy=59 MPa, n2=0.5, 

ν=0.33.  The material properties at region I were changed to various ratios, as 

summarized in Table 3.1.  The same hardness exponent (n) was used for material I. The 

elastic Poisson’s ratio was set to 0.33 for both materials. 

 

 

Figure 3.10 Sketch showing the interface surrounded by the bimaterial with the indenter 
positioned. 
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Table 3. 1 Material  Properties Used in Finite Element Analysis. 

Interface thickness, R/T 0, 0.25, 1, 2 
 

Modulus ratio, E1/E2 1.5, 2, 2.5, 3, 4.175 
 

Yield strength ratio, σy1/σy2 1.5, 2, 2.5, 3, 4.175 
 

Hardening index, n1, n2 0.4, 0.5 
 

Poisson’s ratio, ν1, ν2 0.33 
 

 

 

The thickness of the interface (T) was varied with respect to the indenter radius (R): 

T/R=0, 1, 2. The interfacial region with thickness ‘T’ was modeled with the properties 

continuously varying from region I to region II. Material interlocking was used to obtain 

the properties of the interface region. 

 

3.8 Analysis Procedure 

 

To evaluate the properties and effective thickness of the interface, a series of indentation 

tests were conducted with the spherical indenter along the surface of the specimen. To 

study the relationship between the interfacial material properties and the interfacial 

thickness, various scenarios were considered for the interface, including various 

combinations of E1/E2 (varied from 1.5, 2, 2.5, 3, 3.5, 4.175), σy1/σy2 ((varied from 1.5, 2, 

2.5, 3, 3.5, 4.175), n1=n2 (0.5, 0.4), and T/R (varied from, 0, 0.25, 1, 2).  For each case, an 

average of 12 indents was conducted across the interface.  The total indentation tests 

were over 1300.  

 

The ‘control displacement’ method was used in the analysis. That is, a displacement was 

specified as input, which is equal to an indentation depth of 0.3R (R-indenter radius). For 

the applied displacement the reaction load (F) on the indenter was the summation of force 
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over the contact zone along the penetration direction. Hence the F-δ curves were obtained 

for each analysis, from which the mechanical properties (stiffness, hardness, and 

modulus) and the effective thickness of the interface were extrapolated. 
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CHAPTER 4 -  RESULTS AND DISCUSSION  

 

This chapter presents the results from various finite element simulations. First, the results 

from indentation on homogeneous material were given and then compared with the 

Hertz’s analytical solution. That was used to validate the finite element model.  

Subsequently, the results from indentation on interface were presented. Various 

mechanical properties at the interfaces were calculated, including load-depth curves, 

stiffness, hardness, and modulus. The effective thickness of the interface was also 

estimated. 

 

4.1 Finite Element Modeling of Homogeneous Materials 

 

The analytical solution for the elastic indentation with a spherical tip has been derived by 

Hertz [27]. In the context of F-δ measurements on a flat surface (with infinite radius of 

curvature), which is indented by an elastic sphere, Hertz showed that: 

Equation 0-1 

       𝐹 = 𝐶δ
3
2        ----------------4.1 

Equation 0-2 

     𝐶 = 2√2
3

E𝐷
1
2       ----------------4.2 

 

where D is the diameter of the sphere and E is the reduced Young’s modulus of the 

specimen indenter system.  Assuming spherical indenter to be perfectly rigid the above 

equation for the force reduces to 

Equation 0-3 

            𝐹 = 2√2
3

𝐸√𝐷
1−𝜈2

𝛿
3
2           ----------------4.3 
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With Hertz’s analytical solution, the finite element models can be validated. By using the 

elastic input (E=5010 MPa and ν=0.33) in the FE model, the indentation load-depth 

response is obtained, as shown in Figure 4.1. It can be noticed from Figure 4.1 that, for 

the elastic problem, the finite element solution agrees exactly with the Hertz solution. 

Thus, it can be concluded that the present finite element model (mesh, element sizes, 

boundary conditions, etc.) is valid for simulating the indentation of a half-space by a rigid 

sphere. 

 

 

 

Figure 4.1 Comparison of Reaction Force from FEM Models and Hertz Model for 
Spherical Indenter 
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Figure 4.2 Comparison of Reaction Force from FEM Models and Hertz Model for 
Spherical Indenter 

 

 

When the plastic definition is presented (E=5010 MPa, ν=0.33, n=0.5 in the power law 

model), it is seen that the Hertz’s solution can only predict well the small deformation 

(δ/R<10%) and then become invalid at large displacements (Figure 4.2).  This indicates 

that the Hertz solution cannot be used to model the elastic-plastic problems. 

 

To validate the elastic-plastic finite element model, the indentations on homogeneous 

materials are performed first. A range of known materials are tested and the moduli are 

calculated from the indentation load-depth responses. The procedures for analyzing 

nanoindentation experiment have been well established. As an indenter is driven into and 

withdrawn from the testing material, the resultant load-displacement curve can be 

recorded continuously, as shown in Figure 4.3. It is assumed that during the initial 

0 

0.02 

0.04 

0.06 

0.08 

0.1 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 

F/
πR

2 E
 

δ/R 

FEM (Elastic-plastic problem) 

Hertz solution 



 

35 
 

unloading the deformation is purely elastic [28], thus, the slope of the initial portion of 

the unloading curve yields the elastic contact stiffness, S: 

 

                                       S = dP/dh                                                        ----------------4.5 

 

Where P is the load and h is the displacement at the indenter tip. 

 

Following Oliver and Pharr [29, 30], the contact depth, hc, can be further determined 

from the loading-unloading curve: 

                                 hc = h-0.75P/S,                                                     ----------------4.6 

 

Where h is the total indentation depth and P the maximum load. 

 

Using the contact depth, the projected contact area, A, can be estimated through the 

impression radius a: 

 

                                                           A = πa2                                          ----------------4.7 

 

The indenter-sample contact radius (a) is then computed via the standard procedure  

 

                                                   
2
cc hRh2a −=                                    ----------------4.8 

  

Once the contact area is determined the hardness and reduced modulus and can be 

calculated as: 

                                                             H = P/A                                     ----------------4.9 
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Ei

1 2
i

Er

1

1E
2

ν−
−

ν−=               ---------------- 4.10 

where 
2r

a

S
2

E
π

π
=

.     
Ei  and νi are the elastic modulus and Poisson’s ratio of the 

indenter (for diamond indenter: Ei=1140 GPa and ν=0.07).  

 

 

Figure 4.4 shows the indentation load-depth curves of various homogeneous materials 

with known modulus (E=1020~5010 MPa).  Based upon the information obtained from 

the load-depth curves (stiffness S, contact depth d, maximum load P), the modulus of 

each material is extracted by using Equation 4.10. A comparison of modulus from 

 
Figure 4.3 Schematic of typical load-displacement data defining key experimental 

quantities. 
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indentation tests and the given values is shown in Figure 4.5. It is seen that the results 

from indentation tests agrees well with the input values, with a error less than 7%.  This 

indicates that the present elastic-plastic FE model is appropriate for studying the interface 

problems. 

   

 

 

Figure 4.4 Indentation load-depth curves of homogeneous materials. 
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Figure 4.5 Comparison of modulus from indentation tests and input values for a variety 
of homogeneous materials. 

 

4.2 Stress Distribution at the Interface 

 

The contours of von Mises stress, σMises, at the peak displacement are shown in Figure 4.6 

at different positions for a given set of material properties: E1/E2=3, R/T=0.25, n1=n2=0.5. 

At positions far away from the interface, the materials are essentially homogeneous and 

thus the von Mises contours are continuous and not affected by the presence of the 

interface. Within the interface, the materials are inhomogeneous and the resultant von 

Mises contours are seen to be discontinuous.      

 

Figures 4.6-4.8 show the contours of von Mises at peak displacement at the center of the 
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distributions within the interface are strongly affected by the modulus of the bulk 

materials. The higher the modulus ratio, the more irregular of the stress trajectory is.      

                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        

                                

   

 

Figure 4.6 von Mises stress distribution across the interface for E1/E2=3 and R/T = 0.25. 
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Figure 4.7 von Mises stress distribution across the interface for E1/E2 = 3 and R/T = 1. 
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Figure 4.8 von Mises stress distribution across the interface for E1/E2=3 and R/T = 2. 
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Figure 4.9 von Mises stress distribution at the interface: R/T=0.25, E1=5010 MPa, 
E2=1200 MPa 

 

  

 

 

    

Figure 4.10 von Mises stress distribution at the interface: R/T=0.25, E1=4534 
MPa, E2=1200 MPa 
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Figure 4.11 von Mises stress distribution at the interface: R/T=0.25, E1=4058 
MPa, E2=1200 MPa 

 

 

        

Figure 4.12 von Mises stress distribution at the interface: R/T=0.25, E1=2153 
MPa, E2=1200 MPa 

 

 



 

44 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          

Figure 4.13 von Mises stress distribution at the interface: R/T=0.25, E1=1676 
MPa, E2=1200 MPa 

 

 

        

Figure 4.14 von Mises stress distribution at the interface: R/T=0.25, E1=1200 MPa, 
E2=1200 MPa 
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4.3 Mechanical Properties of the Interface 

 

The nanoindentation tests are conducted at positions across the interfaces, as sketched in 

Figure 3.2. The indentation load depths curves across the interfaces are obtained, as 

shown in Figures 4.15-4.17.  At locations far away from the interfaces, the materials are 

essentially homogeneous, representing the hardest and softest material, respectively. 

Within the interfaces, the materials have varying properties, resulting in progressively 

lower indentation loads.   

 

 

Figure 4.15 Indentation load-depth curves across the interface: E1/E2=2.5, R/T=0.5. 
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Figure 4.16 Indentation load-depth curves across the interface: E1/E2=2.5, R/T=1. 

 

Figure 4.17  Indentation load-depth curves across the interface: E1/E2=2.5, R/T=2. 
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By analysing the load-depth curves, the materials properties (S, H, E) across the 

interfaces can be calculated by using Equations 4.5-4.10. Figures 4.18-4.26 show the 

plots for material properties vs position with different interface thickness: R/T=0, 1, and 

2.  

 

 

Figure 4.18 Stiffness vs. position across the interface: R/T=0. Dashed lines indicate the 
boundaries of the interface. 
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Figure 4.19 Stiffness vs. position across the interface: R/T=1. Dashed lines indicate the 
boundaries of the interface. 
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Figure 4.20 Stiffness vs. position across the interface: R/T=2. Dashed lines indicate the 
boundaries of the interface. 
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From the table above it can be seen that the stiffness in the interface region increased as 

the radius of the indenter is increased relative to the interface thickness for each modulus 

ratio ranging from 1.5 to 4.175.  

 

Table 4.3. 1 Shows the comparison of stiffness in the interface region for different 
ratios of elastic modulus of the oxidized to unoxidized regions and for different cases 

of R/T. 

Stiffness in the interface (N/mm) 

E1/E2 R/T=0 R/T=1 R/T=2 

1.5 0.030331 
 

0.030394 
 

0.058906 
 

2 0.03674 
 

0.036846 
 

0.071094 
 

2.5 0.043035 
 

0.043197 
 

0.082459 
 

3 0.060348 
 

0.049354 
 

0.094337 
 

4.175 0.076073 
 

0.074854 
 

0.143271 
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Figure 4.21 Hardness vs. position across the interface: R/T=0. Dashed lines indicate the 
boundaries of the interface. 
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Figure 4.22 Hardness vs. position across the interface: R/T=1. Dashed lines indicate the 
boundaries of the interface. 
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Figure 4.23 Hardness vs. position across the interface: R/T=2. Dashed lines indicate the 
boundaries of the interface. 
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From the values of hardness in the table it can be seen that the hardness has increased as 

the ratio of elastic modulus of oxidized to un-oxidized regions increased. And also with 

the increase in the radius of the indenter relative to the interface thickness, hardness has 

consistently remained the same or decreased for different modulus ratios.  

 

 

 

 

 

 

Table 4.3. 2 Shows the comparison of hardness in the interface region for different 
ratios of elastic modulus of the oxidized to unoxidized regions and for different 

cases of R/T. 

Hardness in the interface (GPa) 

E1/E2 R/T=0 R/T=1 R/T=2 

1.5 0.1354 
 

0.1303 
 

0.1248 
 

2 0.1597 
 

0.154 
 

0.1484 
 

2.5 0.1876 
 

0.171 
 

0.1716 
 

3 0.2775 
 

0.1925 
 

0.1937 
 

4.175 0.3069 
 

0.312 
 

0.2885 
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Figure 4.24 Modulus vs. position across the interface: R/T=0. Dashed lines indicate the 
boundaries of the interface. 
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Figure 4.25 Modulus vs. position across the interface: R/T=1. Dashed lines indicate the 
boundaries of the interface. 
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Figure 4.26 Modulus vs. position across the interface: R/T=2. Dashed lines indicate the 
boundaries of the interface. 
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From the table it can be seen that the values of elastic modulus in the interface region 
increases as the ratio of E1/E2 increased. 

As shown in the von Mises contours (Figures 4.6-4.8), the interfaces exhibit 

inhomogeneous structure. Thus, the conventional analysis for calculating modulus from 

indentation experiments (Equations 4.5-4.10) becomes invalid.  However, the results can 

still be used to show the variations of properties at the interfaces. Figures 4.24-4.26 show 

the variation of modulus across the interfaces for different radii of the indenter to the 

thickness ratios over a varying range of modulus ratios from 1.5 to 4.175. It can be seen 

that the modulus variations clearly shows the three regions in the materials: material1, the 

interface, and materials 2.  Material 1 and material 2 are the regions that are far away 

from the interface and thus can be considered as homogeneous. The moduli of these two 

regions correspond to the values as obtained from testing homogeneous materials Figure 

Table 4.3. 3 Shows the comparison of  modulus in the interface region for different 
ratios of elastic modulus of the oxidized to unoxidized regions and for different cases 

of R/T. 

Elastic modulus in the interface (GPa) 

E1/E2 R/T=0 R/T=1 R/T=2 

1.5 1.3402 
 

1.349 
 

1.2917 
 

2 1.6158 
 

1.628 
 

1.5552 
 

2.5 1.8852 
 

1.9118 
 

1.8032 
 

3 2.6727 
 

2.1792 
 

2.0585 
 

4.175 3.3057 

 

3.2716 

 

3.1186 
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4.5. Within the transition regions (interfaces), the moduli decrease progressively.   For all 

the structure analyzed, material 2 (the left region) has varying properties while material 1 

(the right region) has the same properties. As we move from material 1 to material 2 of 

the sample we see that the modulus values for different E1/E2 ratios tend to be close to 

each other and reach a constant value.  

 

Figures 4.21 - 4.23 shows the variation of hardness across the interfaces for different radii 

of the indenter to the thickness ratios over a varying range of modulus ratios from 1.5 to 

4.175.  The hardness results display the similar trends as the modulus, showing the 

variations of properties across the interfaces. However, in comparing to modulus values, 

which are calculated from formulas derived for homogeneous materials, the hardness 

values can be considered as “true” properties of the materials, since the hardness is 

simply defined as the average pressure within a contact area (H=P/A).  

 

4.5 Effective Thickness of the Interface 

 

One important objective of the present study is to estimate the effective interfacial 

thickness. A numerical method for estimating the interface thickness has been proposed 

recently by Yang et al [34], however, the analysis was based upon a 2-dimensional, 

wedge indentation model. Based on the hardness distribution across the interface, the 

apparent interfacial thickness (width), W, can be estimated [34]:  

 

k
HHW 21 −=      ---------------- 4.11 

 

where H1 and H2 are the hardness of the two bulk materials, which are the hardness 

calculated from locations far away from the interface. The hardness data across the 

interface can be fit to a straight line and the slope is k.  
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Figure 4.27 Shows the variation of hardness in the interface region for R/T = 1, n = 0.4 
and for different modulus ratios of oxidized to unoxidized region varying from 4.175 to 

1.5. 
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Figure 4.28 Shows the variation of hardness in the interface region for R/T = 1, n = 0.5 
and for different modulus ratios of oxidized to unoxidized region varying from 4.175 to 

1.5. 
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Figure 4.29 Shows the variation of hardness in the interface region for R/T = 2, n = 0.4 
and for different modulus ratios of oxidized to unoxidized region varying from 4.175 to 

1.5. 

 

In all of the above Figures 4.27- 4.29 it can be seen that the hardness decreased across the 

interface from the oxidized to unoxidized zones. As the stiffness decreases it makes the 

interior of the sample more susceptible to fracture thus decreasing its resistance to 

fracture.  

 

In the FE model, the true interfacial thickness (width), WT, is known, so the relationship 

between apparent thickness (W) and true thickness (WT) can be established, as seen in 

Figure 4.30. To make the results independent upon the indenter size, the thickness values 

are normalized with the indenter radius, R. 
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Figure 4.30 Plots of apparent interfacial thickness (W/R) and true interfacial thickness 
(WT/R). 

 

 

It is seen that the relationships between apparent thickness (W) and true thickness (WT) 

follow the same trend, which can be simply expressed as [34]: 

 

R
W

R
W

R
W 0T +ζ=    ---------------- 4.12 

 

Where ζ is the slope of each W-WT curve corresponding to different material properties. 

The values of ζ are found to be identical with an average being: ζ=0.92.   Although all 

curves have similar slopes, but they have different intercepts (W0). Here W0 can be 

interpreted as an uncertainty term, whose magnitude depends upon the material properties 

of the bimaterials, and can be expressed as: 
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where E, σy, n, ν are modulus, yield strength, strain hardening index, and Poisson’s ratio, 

respectively, and the subscripts, 1 and 2, refer to two bulk materials next to the interface 

(Figure 3.10). Extensive analyses have been carried out on materials with a wide range of 

properties. A plot of W0 vs. 1
n
n

E
E

2

1

2y

1y

2

1 −
σ

σ
 is shown in Figure 4.31.  

 

 

Figure 4.31 The generalized relations between interfacial thickness uncertainty (W0/R) 
and material properties. 

 

The data are seen to follow a power function [34]: 
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where the two coefficients are estimated as: α=0.29 and β=2.8.  

 

Combining Equations 4.12 and 4.14, the true interfacial thickness WT for any unknown 

interface can then be estimated: 
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CHAPTER 5 - CONCLUSIONS AND FUTURE WORK 

 

High temperature polymers and polymer matrix composites have been increasingly used 

under extreme environments for applications across the automotive and aerospace 

industries. One major concern in using polymers and polymer matrix composites at such 

environments is the thermo-oxidative degradations of the polymer resins and the matrix-

fiber interfaces. The interfaces (the regions between oxidized and unoxidized polymers, 

or between fiber and polymer matrix) are often the regions for failure initiations. Thus, 

the ability to characterize the physical and mechanical properties of the interfaces is 

paramount to the continued development and increased use of high temperature polymers 

in the industry.  

 

The identifications of the interfaces in oxidized polymers or composites have been mostly 

achieved through various optical techniques, such as dark-field imaging, polarized light 

microscopy, and scanning electron microscopy. However, in many cases, the traditional 

optical methods fail to reveal the interfaces since the interfaces exhibit no visible 

differences from surrounding bulk materials. Furthermore, the traditional optical methods 

could not yield quantitative information about the properties of the interfaces. In this 

project, a navel technique, nanoindentation, has been used to identify the interfaces 

between dissimilar materials, and subsequently to evaluate the physical and mechanical 

properties across the interfaces. It is proposed to use a nanoindenter with spherical tip, 

<40 nanometers in radius, to indent across the interfaces of dissimilar materials. The 

nanoindentation tests have been conducted through 3-dimensional finite element 

simulations. Various interface models have been considered by varying the properties of 

the two dissimilar materials, including various combinations of modulus (E1/E2), yield 

strength (σy1/σy2), hardening index (n1/n2), interface sizes (R/T), etc.  

 

The finite element simulations of indentation experiments were first conducted on 

homogeneous materials. For pure elastic materials, the indentation load-depth curves 
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were obtained and found to agree exactly with the Hertz analytical solution. For elastic-

plastic materials, the load-depth curves were obtained, from which the modulus were 

calculated using standard Oliver-Pharr formula. The modulus results agreed well with the 

input values in the finite element models. All these indicate that the present finite element 

models (mesh, element sizes, boundary conditions, etc.) are valid for simulating the 

indentation of a half-space by a rigid sphere.  

 

The finite element simulations of indentation experiments were then conducted on 

dissimilar materials containing interfaces. A large number of interface scenarios were 

investigated, including various combinations of modulus (E1/E2), yield strength (σy1/σy2), 

hardening index (n1/n2), interface sizes (R/T), Poisson ratio (ν), etc. Results show that the 

stress distributions at the interfaces are strongly affected by the properties of the 

surrounding materials. By indenting across the interfaces, the mechanical properties 

(stiffness, modulus, and hardness) were calculated.  The mechanical properties at 

interfaces are seen to increases with the increase of modulus ratios E1/E2, yield strength 

ratios σy1/σy2, and hardening index ratios n1/n2, and with the decrease of interface size 

(R/T).  

 

Finally, a quantitative equation for predicting the sizes (thickness) of the interfaces by 

nanoindentation has been established. Nanoindentation has been extensively used to 

examine the mechanical properties of low-dimensional materials structures, but it has not 

been frequently used to evaluate the sizes of the interfaces. Moreover, an accurate 

formula for quantifying the interface size (thickness) is lacking. Considering the hardness 

as the true properties of the interfaces, the apparent interfacial thickness (W) could be 

estimated. Then, the apparent interfacial thickness was found to relate to the true 

interfacial thickness (WT) through a simple power-law function.  
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Future Works: 

The nanoindentation method has been proposed to identify the interfaces between 

dissimilar materials, and subsequently to evaluate the physical and mechanical properties 

across the interfaces. The method has been validated by conducting a large number of 

virtual experiments through 3-dimensional finite element simulations, by varying the 

properties of the two dissimilar materials, including various combinations of modulus 

(E1/E2), yield strength (σy1/σy2), hardening index (n1/n2), interface sizes (R/T), Poisson’s 

ratio (ν), etc. Quantitative model for predicting the interface sizes has been established.  

 

Future work may include conducting physical experiments to test and refine the model. 

The materials properties (E1/E2, σy1/σy2, n1/n2, R/T, ν) used in the present simulations 

were based on the properties of typical high temperature polymers and composites such 

as PMR-15 resin and carbon fiber reinforced PMR-15 composites.  Specimens from such 

materials have been previously obtained. It is thus suggested to conduct nanoindentation 

experiments on those materials and then to refine the model. One challenge that may 

occur in actual experiments would be to obtain sufficient data points across an interface, 

due to its small size.  A typical thickness (width) of an interface in oxidized polymer or 

fiber reinforced composite may be just a few microns or less.  That essentially limits the 

number of nanoindentation tests that can be performed (especially considering the effect 

of stress field from neighboring indents).      
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