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ABSTRACT OF THESIS

DECENTRALIZED ADAPTIVE CONTROL FOR
UNCERTAIN LINEAR SYSTEMS:

TECHNIQUES WITH LOCAL FULL-STATE FEEDBACK OR LOCAL
RELATIVE-DEGREE-ONE OUTPUT FEEDBACK

This thesis presents decentralized model reference adaptive control techniques for
systems with full-state feedback and systems with output feedback. The controllers
are strictly decentralized, that is, each local controller uses feedback from only local
subsystems and no information is shared between local controllers.
The full-state feedback decentralized controller is effective for multi-input systems,

where the dynamics matrix and control-input matrix are unknown. The decentralized
controller achieves asymptotic stabilization and command following in the presence of
sinusoidal disturbances with known spectrum. We present a construction technique
of the reference-model dynamics such that the decentralized controller is effective for
systems with arbitrarily large subsystem interconnections.
The output-feedback decentralized controller is effective for single-input single-

output subsystems that are minimum phase and relative degree one. The decen-
tralized controller achieves asymptotic stabilization and disturbance rejection in the
presence of an unknown disturbance, which is generated by an unknown Lyapunov-
stable linear system.

KEYWORDS: Adaptive control, Decentralized control, Large-scale systems, Distur-
bance rejection, Command following
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Chapter 1 Introduction

1.1 Overview of Model Reference Adaptive Control

The objective of model reference adaptive control (MRAC) is to force an uncertain

system to asymptotically follow the trajectory of a known reference model [1–16].

Classical MRAC techniques are divided into two categories: (i) systems with full-

state feedback and (ii) systems with output feedback.

Classical full-state-feedback MRAC applies to multi-input linear time-invariant sys-

tems, where the dynamics and input matrices are unknown [1–8]. The goal of full-

state-feedback MRAC is to design a control such that all closed-loop signals are

bounded and the state of the plant asymptotically follows the state of a reference

model. Full-state-feedback MRAC operates under the assumption of matched uncer-

tainty, that is, the plant and reference-model matrices satisfy matching conditions.

Full-state-feedback MRAC has been extended to address systems with nonlineari-

ties [9, 10].

Classical output-feedback MRAC applies to single-input single-output (SISO) linear

time-invariant systems that are minimum phase [1–8, 11–16]. The goal of output-

feedback MRAC is to design a control such that all closed-loop signals are bounded

and the output of the plant asymptotically follows the output of a reference model.

Output-feedback MRAC operates under the assumptions that the plant is minimum

phase, the sign of the high-frequency gain is known, an upper bound on the order

of the plant is known, and the relative degree is known. While output-feedback

MRAC techniques apply to systems with arbitrary-but-known relative degree, this

1



thesis focuses on output-feedback MRAC for relative-degree-one systems.

1.2 Background and Motivation for Decentralized Adaptive Control

Decentralized control systems are composed of interconnected subsystems, where

each local controller has access to information from only the local subsystem. The goal

of decentralized control is to design local controllers such that each local subsystem

behaves in a desired manner, while no information is exchanged between the local

controllers. The performance of each local subsystem is affected by the local control

as well as the nonlocal dynamics and nonlocal controls.

The need for decentralized control arises in large-scale complex systems such as

interconnected power networks, large flexible structures, and water systems. Decen-

tralized control techniques divide the complex control problem into subproblems, and

generally reduce the computational power required for control. Figure 1.1 shows a

decentralized control architecture, where each subsystem contains a local sensor, local

controller, and local actuator. Each local controller has access to local sensors but

does not have access to nonlocal sensors and does not have knowledge of the nonlocal

control objectives. See [17–21] for more details on decentralized control.

Classical full-state-feedback MRAC has been extended to address decentralized

control with local full-state feedback [22–27]. The controllers in [22], [23] are strictly

decentralized, that is, each local controller requires only local full-state measurement

and no information is shared between the local controllers. However, the controllers

in [22], [23] do not yield asymptotically perfect command following. Furthermore,

the errors in [22], [23] converge to residual sets that depend on the interconnection

matrices and the controller design parameters. In contrast, asymptotically perfect

command following is achieved in [24–27], but these controllers are not strictly de-

centralized. More specifically, the controllers in [24–27] rely on centralized reference

models, meaning that each local controller has access to all reference-model states.

2



Large-scale

complex system

sensor actuator

controller

sensor

actuatorcontroller

sensor

actuator controller

Figure 1.1: Schematic diagram of a decentralized control architecture for a large-scale
complex system.

Thus, each local subsystem has knowledge of the control objectives of all nonlocal

subsystems.

The controllers in [24–27] require some knowledge of the subsystem-interconnection

matrices. For example, [24–26] assumes that an upper bound on the maximum singu-

lar value of each subsystem-interconnection matrix is known. In [27], the maximum

singular value of each subsystem-interconnection matrix must be less than a fixed

bound, which is no larger than 1. Thus, the controller in [27] requires weak subsys-

tem interconnection.

While the adaptive controllers in [24–27] address command following, none of these

techniques address disturbance rejection. Furthermore, the approaches of [24–27]

are restricted to local subsystems that are single-input, and require that the local

control-input matrices are known.

Classical output-feedback MRAC has been extended to address decentralized con-

trol for SISO subsystems with local output feedback [28–30]. The approaches of

[28–30] address stabilization and command following provided that each local sub-

system is minimum phase. The controllers in [28–30] guarantee bounded tracking

3



errors, but do not drive the tracking errors to zero. In particular, each local tracking

error converges to a residual set that depends on the interconnection matrices and

the local controller design parameters. The results in [28] are limited to local subsys-

tems that are exactly proper, that is, subsystems with nonzero direct feedthrough.

The results in [29] address local subsystems that are relative degree one or two, and

the results in [30] address local subsystems that are relative degree greater than two.

Decentralized adaptive control using neural networks is addressed in [31–33].

In this thesis, we present decentralized adaptive control techniques for local subsys-

tems with full-state feedback and local subsystems with relative-degree-one output

feedback. In Chapter 3, we present a strictly decentralized adaptive controller that

uses local full-state feedback and does not require a centralized reference model or

sharing of nonlocal reference-model signals. This decentralized adaptive controller

allows for multi-input local subsystems, where the local control-input matrices are

uncertain. The controller yields asymptotic stabilization and command following in

the presence of sinusoidal disturbances with known spectrum. The technique is ef-

fective for arbitrarily large subsystem interconnections, provided that a bounding

matrix, related to the subsystem-interconnection matrices, is known and that the

reference-model dynamics matrix is designed to admit a positive-definite solution to

a bounded-real Riccati equation. We provide a construction of the reference-model

dynamics matrix, which does admit a positive-definite solution to the Riccati equa-

tion.

In Chapter 5, we present an output-feedback decentralized adaptive controller for

subsystems that are minimum phase and relative degree one. This controller is strictly

decentralized and yields asymptotic stabilization and disturbance rejection, where the

disturbance is unknown but generated from a Lyapunov-stable linear system. The

technique relies on the assumption that the magnitudes of the subsystem intercon-

nections satisfy a bounding condition.

4



1.3 Summary of Chapters

Summary of Chapter 2

Chapter 2 presents the classical full-state feedback MRAC technique for linear time-

invariant systems. Full-state-feedback MRAC allows for multi-input systems, where

the dynamics and control-input matrices are unknown. Full-state feedback MRAC

operates under the assumption of matched uncertainty, where three matching as-

sumptions are invoked. The goal of full-state-feedback MRAC is to design a control

such that all closed-loop signals are bounded and the state of the plant asymptotically

follows the state of a reference model.

Summary of Chapter 3

Chapter 3 presents a decentralized MRAC technique for linear time-invariant sys-

tems, where each local controller uses full-state feedback from the local subsys-

tem. The controller is strictly decentralized, meaning that no information (includ-

ing reference-model dynamics) is shared between local controllers. This decentralized

adaptive controller achieves asymptotically perfect stabilization and command follow-

ing in the presence of sinusoidal disturbances with known spectrum. Furthermore, the

controller is effective for systems with arbitrarily large subsystem interconnections.

Summary of Chapter 4

Chapter 4 presents classical output-feedback MRAC for SISO linear time-invariant

systems that are minimum phase and relative degree one. Classical MRAC is effective

for stabilization and command following. In this thesis, we extended classical MRAC

to address disturbance rejection, where the disturbance is unknown but generated

from a Lyapunov-stable linear system.

Summary of Chapter 5

Chapter 5 presents a decentralized MRAC method for SISO linear time-invariant

subsystems that are minimum phase and relative degree one. The decentralized adap-

5



tive controller is strictly decentralized, that is, no information is shared between lo-

cal controllers. This decentralized adaptive controller is effective for stabilization

and disturbance rejection, where the disturbance is unknown but generated from a

Lyapunov-stable linear system.

All notation is introduced in the chapter where the notation is used. Furthermore,

notation may change between chapters. Thus, notation is specific to the chapter in

which it appears.
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Chapter 2 Full-State-Feedback Model Reference Adaptive Control

This chapter presents classical model reference adaptive control (MRAC), where

all states of the system are available for feedback. The controller is effective for

stabilization and command following.

2.1 Introduction

In this chapter, we present the classical full-state-feedback MRAC technique for

linear time-invariant systems. Full-state-feedback MRAC allows for multi-input sys-

tems, where the dynamics matrix and control-input matrix are unknown. Full-state-

feedback MRAC operates under the assumption of matched uncertainty, where three

matching assumptions are invoked. The goal of classical MRAC is to design a control

such that all closed-loop signals are bounded and the state asymptotically follows

the state of a reference model. The classical full-state-feedback adaptive controller

can be used for stabilization and asymptotic command following. Full-state-feedback

MRAC techniques are described in [1–8].

In Section 2.2, we introduce the full-state-feedback MRAC problem. We present

a controller for adaptive stabilization in Section 2.3, and extend the controller to

address command following in Section 2.4. Examples are given in Section 2.5, and

conclusions are given in Section 2.6.

7



2.2 Problem Formulation

For t ≥ 0, consider the system

ẋ(t) = Ax(t) + Bu(t), (2.1)

where x(t) ∈ R
n is the state, x(0) ∈ R

n is the initial condition, and u(t) ∈ R
m is the

control input.

Next, consider the reference model

ẋm(t) = Amxm(t) + Bmr(t), (2.2)

where xm(t) ∈ R
n is the reference-model state, xm(0) ∈ R

n is the initial condition,

r(t) ∈ R
q is the bounded reference-model command, Am ∈ R

n×n is the reference-

model dynamics matrix, and Bm ∈ R
n×q is the reference-model input matrix. We

assume that Am is asymptotically stable, that is, the eigenvalues of Am are contained

in the open-left-half complex plane. Our goal is to develop an adaptive controller

that generates u(t) such that x(t) asymptotically follows xm(t). Thus, our goal is to

drive the performance

e(t)
�
= x(t)− xm(t)

to zero.

We make the following assumptions regarding the system (2.1) and the reference

model (2.2):

(A2.1) There exists a positive-definite matrix F ∈ R
m×m, which need not be known,

such that B̂
�
= BF is known.

(A2.2) There exists K∗ ∈ R
m×n, such that Am = A+BK∗.

8



(A2.3) There exists L∗ ∈ R
m×q such that Bm = BL∗.

The system (2.1) is otherwise unknown. Specifically, A, B, and x(0) are otherwise

unknown. Assumptions (A2.1)–(A2.3) are the standard full-state-feedback MRAC

matching conditions. See [1–8] for more details. Note that (A2.2) does not require

that K∗ be known.

2.3 Adaptive Stabilization

In this section, we address adaptive stabilization, where the reference-model com-

mand is zero (i.e., r(t) ≡ 0). Consider the controller

u(t) = K(t)x(t), (2.3)

where K : [ 0,∞) → R
m×n is given by

K̇(t) = −B̂TPx(t)xT(t)Γ, (2.4)

where Γ ∈ R
n×n is positive definite, and P ∈ R

n×n is the positive-definite solution to

AT
mP + PAm +Q = 0, (2.5)

where Q ∈ R
n×n is positive definite. The adaptive stabilization architecture is shown

in Figure 2.1.

Next, define

K̃(t)
�
= K(t)−K∗, (2.6)

9



Plant

ẋ = Ax+Bu

x

u

Adaptive Controller

u = Kx

Adaptation

K̇ = −B̂TPxxTΓ

Figure 2.1: Schematic diagram of adaptive stabilization architecture given by (2.1),
(2.3), and (2.4).

and it follows from (2.1) and (2.3) that

ẋ(t) = Amx(t) + BK̃(t)x(t). (2.7)

The following theorem is the main result on full-state-feedback adaptive stabiliza-

tion.

Theorem 2.1. Consider the closed-loop system (2.4) and (2.7), where the open-loop

system (2.1) satisfies (A2.1)–(A2.2), and r(t) ≡ 0. Then, the equilibrium (x, K̃) ≡ 0

is Lyapunov stable. Furthermore, for all initial conditions x(0) ∈ R
n and K(0) ∈

R
m×n, the following statements hold:

(i) x(t), u(t), and K(t) are bounded.

(ii) limt→∞ x(t) = 0.

10



Proof. Define the Lyapunov function

V (x, K̃)
�
= xTPx+ trF−1K̃Γ−1K̃T,

where P ∈ R
n×n is the positive-definite solution to (2.5). Evaluating the derivative

of V along the trajectory of (2.4) and (2.7), and using (A2.1) yields

V̇ (x, K̃) = ẋTPx+ xTPẋ+ 2trF−1K̇Γ−1K̃T

= xT(AT
mP + PAm)x+ 2xTK̃TBTPx+ 2trF−1K̇Γ−1K̃T

= −xTQx+ 2tr (BTPxxTK̃T + F−1K̇Γ−1K̃T)

= −xTQx,

where Q ∈ R
n×n is positive definite. Therefore, the equilibrium (x, K̃) ≡ 0 is Lya-

punov stable, and for all initial conditions, x and K̃ are bounded. Since x and K̃ are

bounded, it follows from (2.3) and (2.6) that K and u are bounded, which confirms

(i).

Next, since V is positive definite and radially unbounded, and V̇ (x, K̃) = −xTQx,

it follows from LaSalle’s invariance principle [34, Theorem 4.4] that for all initial

conditions, limt→∞ x(t) → 0, which confirms (ii).

2.4 Adaptive Command Following

In this section, we address adaptive command following. Consider the controller

u(t) = K(t)x(t) + L(t)r(t), (2.8)

where K : [ 0,∞) → R
m×n and L : [ 0,∞) → R

m×q are given by

K̇(t) = −B̂TPe(t)xT(t)Γ, (2.9)

11



L̇(t) = −B̂TPe(t)rT(t)Λ, (2.10)

where Γ ∈ R
n×n and Λ ∈ R

q×q are positive definite, and P ∈ R
n×n is the positive-

definite solution to (2.5). The MRAC architecture is shown in Figure 2.2.

Plant

ẋ = Ax+Bu

x

u

Adaptive Controller

u = Kx+ Lr

Reference Modelr

ẋm = Amxm +Bmr

e

xm

Adaptation

K̇ = −B̂TPexTΓ

L̇ = −B̂TPerTΛ

Figure 2.2: Schematic diagram of adaptive command following architecture given by
(2.1) and (2.8)–(2.10).

The following theorem is the main result on adaptive command following.

Theorem 2.2. Consider the closed-loop system (2.1) and (2.8)–(2.10), where the

open-loop system (2.1) satisfies (A2.1)–(A2.3). Then, for all initial conditions x(0) ∈
R

n, K(0) ∈ R
m×n, and L(0) ∈ R

m×q, the following statements hold:

(i) x(t), u(t), K(t), and L(t) are bounded.

12



(ii) limt→∞ e(t) = 0.

Proof. Define

K̃(t)
�
= K(t)−K∗,

L̃(t)
�
= L(t)− L∗,

and it follows from (2.1) and (2.8) that

ẋ(t) = Amx(t) + BK̃(t)x(t) + BL(t)r(t). (2.11)

Next, subtracting (2.2) from (2.11), and using (A2.3) yields

ė(t) = Ame(t) + BK̃(t)x(t) + BL̃(t)r(t). (2.12)

Define the Lyapunov-like function

V (e, K̃, L̃)
�
= eTPe+ trF−1K̃Γ−1K̃T + trF−1L̃Λ−1L̃T,

where P ∈ R
n×n is the positive-definite solution to (2.5). Evaluating the derivative

of V along the trajectory of (2.9), (2.10), and (2.12), and using (A2.1) yields

V̇ (e, K̃, L̃) = ėTPe+ eTP ė+ 2trF−1K̇Γ−1K̃T + 2trF−1L̇Λ−1L̃T

= eT(AT
mP + PAm)e+ 2xTK̃TBTPe+ 2rTL̃TBTPe

+ 2trF−1K̇Γ−1K̃T + 2trF−1L̇Λ−1L̃T

= −eTQe+ 2tr (BTPexTK̃T +BTPerTL̃T

+ F−1K̇Γ−1K̃T + F−1L̇Λ−1L̃T)

= −eTQe, (2.13)

13



where Q ∈ R
n×n is positive definite. Thus, 0 ≤ eTQe = −V̇ (e, K̃, L̃). Moreover,

integrating from 0 to ∞ yields

0 ≤
∫ ∞

0

eT(t)Qe(t) dt

= V (e(0), K̃(0), L̃(0))− lim
t→∞

V (e(t), K̃(t), L̃(t))

≤ V (e(0), K̃(0), L̃(0)), (2.14)

where the upper and lower bounds imply that
∫∞
0

eT(t)Qe(t) dt exists. Thus, it follows

from (2.14) that V is bounded, which implies that e, K̃, and L̃ are bounded. Since

r is bounded and Am is asymptotically stable, (2.2) implies that xm is bounded.

Moreover, since e, xm, K̃, and L̃ are bounded, it follows that x, u, K, and L are

bounded, which confirms (i).

To show (ii), it follows from (2.14) that
∫∞
0

eT(t)Qe(t) dt exists. Next, since e, x,

r, K̃, and L̃ are bounded, (2.12) implies that ė is bounded. Next, since e and ė are

bounded, it follows that

d

dt

[
eT(t)Qe(t)

]
= 2ėT(t)Qe(t)

is bounded. Thus, f(t)
�
= eT(t)Qe(t) is uniformly continuous. Since

∫∞
0

f(t) dt exists

and f(t) is uniformly continuous, Barbalat’s Lemma implies that limt→∞ f(t) = 0.

Thus, limt→∞ e(t) = 0, which confirms (ii).

2.5 Numerical Examples

We now present examples to demonstrate adaptive stabilization and command fol-

lowing with full-state-feedback MRAC.

14



Example 2.1. Adaptive stabilization. Consider the system (2.1), where

A =

⎡
⎢⎢⎢⎢⎣

2 0 −5

−1 −5 −1

3 2 1

⎤
⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎣

2 0 0

0 1 0

0 0 3

⎤
⎥⎥⎥⎥⎦ . (2.15)

Note that A in (2.15) is unstable with eigenvalues at −4.55 and 1.28± j3.74. We let

B̂ = I3, which satisfies (A2.1). Next, let

Am =

⎡
⎢⎢⎢⎢⎣

−5 0 0

0 −12 0

0 0 −8

⎤
⎥⎥⎥⎥⎦ , (2.16)

where Am is asymptotically stable, and it follows that (A2.2) is satisfied. Next, let

Q = I3, and let P be the positive-definite solution to (2.5).

The adaptive controller (2.3) and (2.4) is implemented in feedback with the system

(2.1) and (2.15), where Γ = 103I3. Figure 2.3 shows a time history of x(t) and

u(t), where the initial condition is x(t) = [ −2 2 −1 ]T. The state x(t) converges

asymptotically to zero. 	

Example 2.2. Adaptive command following for a mass-spring-dashpot system.

Consider the serially connected structure shown in Figure 2.4, where u1 and u2 are

control forces, and q1 and q2 are the positions of the first and second masses, respec-

tively. The equations of motion for the system are given by (2.1), where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− c1+c2
m1

−k1+k2
m1

c2
m1

k2
m1

1 0 0 0

c2
m2

k2
m2

− c2+c3
m2

−k2+k3
m2

0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
m1

0

0 0

0 1
m2

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (2.17)
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Figure 2.3: Adaptive stabilization. The adaptive controller (2.3) and (2.4) is im-
plemented in feedback with the system (2.1) and (2.15). The state x(t) converges
asymptotically to zero.

x =

[
q̇1 q1 q̇2 q2

]T
. (2.18)

The masses are m1 = 0.2 kg and m2 = 0.4 kg; the damping coefficients are c1 = 5

kg/s, c2 = 2 kg/s, and c3 = 3 kg/s; and the spring constants are k1 = 8 kg/s2, k2 = 9

kg/s2, and k3 = 14 kg/s2.

We let

B̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0

0 0

0 1

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (2.19)
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c1

k1

m1

q1

c2

k2

m2

q2

c3

k3

u1 u2

Figure 2.4: A serially connected, two-mass structure used in Example 2.2.

which satisfies (A2.1). Next, let

Am =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−20 −30 0 0

1 0 0 0

0 0 −20 −30

0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, Bm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

30 0

0 0

0 30

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (2.20)

which satisfy (A2.2) and (A2.3), respectively. Next, let Q = I4, and let P be the

positive-definite solution to (2.5).

The reference-model command is r(t) = [ r1(t) r2(t) ]T, where r1(t) = 0.1 sin 0.25πt

and r2(t) = 0.2 cos 0.125πt. The adaptive controller (2.8)–(2.10) is implemented in

feedback with the two-mass system (2.1), (2.17), and (2.18), where Γ = 104I4 and

Λ = 104I2. Figure 2.5 provides a time history of x(t), xm(t), e(t), and u(t), where the

initial conditions are q1(0) = q2(0) = 0 m and q̇1(0) = q̇2(0) = 0 m/s. The two-mass

system is allowed to run open-loop for 10 seconds, then the adaptive controller is

turned on. Figure 2.5 shows limt→∞ e(t) = 0. 	
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Figure 2.5: Adaptive command following for a mass-spring-dashpot system. The
adaptive controller (2.8)–(2.10) is implemented in feedback with the two-mass system
(2.1), (2.17), and (2.18). The error e(t) converges asymptotically to zero.

18



2.6 Conclusions

This chapter reviewed the classical full-state feedback MRAC technique for multi-

input linear time-invariant systems. The adaptive controller operates under the as-

sumption of matched uncertainty. The controller yields stabilization and asymptotic

command following.
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Chapter 3 Decentralized Adaptive Control with Local Full-State Feed-

back

This chapter presents a decentralized model reference adaptive control method,

where each local controller uses full-state feedback from the local subsystem. The

controller is strictly decentralized, meaning that no information (including reference-

model dynamics) is shared between local controllers. This decentralized controller

achieves asymptotically perfect stabilization and command following in the presence

of sinusoidal disturbances with known spectrum. Furthermore, the controller is effec-

tive for systems with arbitrarily large subsystem interconnections. We provide con-

troller and reference-model design examples to demonstrate the decentralized adap-

tive controller. The results from this chapter have been submitted for publication

in [35].

3.1 Introduction

In this chapter, we present a strictly decentralized adaptive controller that uses

local full-state feedback and does not require a centralized reference model or sharing

of nonlocal reference-model signals. This decentralized adaptive controller allows for

multi-input local subsystems, where the local control-input matrices are uncertain.

The controller yields asymptotic stabilization and command following in the presence

of sinusoidal disturbances with known spectrum. The technique is effective for ar-

bitrarily large subsystem interconnections, provided that a bounding matrix on the

subsystem-interconnection matrices is known and that the reference-model dynam-
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ics matrix is designed to admit a positive-definite solution to a bounded-real Riccati

equation. We provide a construction of the reference-model dynamics matrix, which

does admit a positive-definite solution to the Riccati equation.

In Section 3.2, we introduce the decentralized adaptive control problem. We present

a controller for decentralized adaptive stabilization in Section 3.3, and extend the

controller to address command following and disturbance rejection in Section 3.4.

Examples are given in Section 3.5, and conclusions are given in Section 3.6.

3.2 Problem Formulation

For t ≥ 0, consider the system

ẋ1(t) =
�∑

j=1

A1,jxj(t) + B1u1(t) +D1w1(t), (3.1)

...

ẋ�(t) =
�∑

j=1

A�,jxj(t) + B�u�(t) +D�w�(t), (3.2)

where I
�
= {1, 2, . . . , �}, for all i ∈ I, xi(t) ∈ R

ni is the state, xi(0) ∈ R
ni is the

initial condition, ui(t) ∈ R
mi is the control input, and wi(t) ∈ R

di is the exogenous

disturbance.

For each i ∈ I, xi is the local state, and ui is the local control. Moreover, for each

i ∈ I, the local control ui(t) uses feedback of the local state xi(t), but does not use

feedback of the nonlocal states {xj(t)}j∈I\{i}. Unless otherwise stated, all statements

in this chapter that involve the subscript i are for all i ∈ I.

Next, consider the reference model

ẋm,i(t) = Am,ixm,i(t) + Bm,iri(t), (3.3)
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where xm,i(t) ∈ R
ni is the state, xm,i(0) ∈ R

ni is the initial condition, ri(t) ∈ R
qi is

the reference-model command, Am,i ∈ R
ni×ni is the reference-model dynamics matrix,

and Bm,i ∈ R
ni×qi is the reference-model input matrix. We assume that Am,i is

asymptotically stable, that is, the eigenvalues of Am,i are contained in the open-left-

half complex plane. Our goal is to develop a series of local adaptive controllers that

generate ui(t) such that xi(t) asymptotically follows xm,i(t) in the presence of the

disturbance wi(t). Thus, our goal is to drive the performance

ei(t)
�
= xi(t)− xm,i(t)

to zero.

In Section 3.3, we develop a controller for decentralized adaptive stabilization.

Specifically, we focus on the case where wi(t) ≡ 0, ri(t) ≡ 0, and the goal is to

stabilize the origin of (3.1)–(3.2). In Section 3.4, we address command following and

disturbance rejection.

We make the following assumptions regarding the system (3.1)–(3.2) and the ref-

erence model (3.3):

(A3.1) There exists a positive-definite matrix Fi ∈ R
mi×mi , which need not be

known, such that B̂i
�
= BiFi is known.

(A3.2) There exists K∗,i ∈ R
mi×ni such that

Am,i = Ai,i +BiK∗,i. (3.4)

(A3.3) There exists a known positive-semidefinite matrix Ωi ∈ R
ni×ni such that

Ωi ≥
∑

j∈I\{i}
Ai,jA

T
i,j. (3.5)
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(A3.4) There exists a positive-definite matrix Pi ∈ R
ni×ni such that

AT
m,iPi + PiAm,i +Qi + PiΩiPi ≤ 0, (3.6)

where Qi ∈ R
ni×ni is positive definite and satisfies Qi > �Ini

.

The system (3.1)–(3.2) is otherwise unknown. Specifically, A1,1, . . . , A1,�, . . . , A�,�,

B1, . . . , B�, and x1(0), . . . , x�(0) are otherwise unknown.

Assumptions (A3.1) and (A3.2) are standard full-state-feedback MRAC matching

conditions [1–8]. For example, if (Ai,i, Bi) is in controllable canonical form, then

(A3.2) is satisfied by a reference-model dynamics matrix Am,i that is also in control-

lable canonical form. Note that (A3.2) does not require that K∗,i be known.

Assumption (A3.3) is satisfied if upper bounds on the maximum singular values of

{Ai,j}j∈I\{i} are known. Specifically, Ωi ≥
∑

j∈I\{i} σ
2
max(Ai,j)Ini

, where σmax( · ) is the
maximum singular value, satisfies (A3.3). However, Ωi appears in the Riccati expres-

sion (3.6), which may not have a positive-definite solution for all Ωi. Furthermore,

the existence of a positive-definite solution Pi to (3.6) depends on the reference-model

dynamics matrix Am,i. Thus, assumptions (A3.2)–(A3.4) are coupled. In order to sat-

isfy (A3.2)–(A3.4), the known reference-model dynamics matrix Am,i and the known

uncertainty bound Ωi must satisfy (3.4) and (3.5), respectively, and admit a positive-

definite solution Pi to (3.6). Note that the solutions P1, . . . , P� are used to construct

the decentralized adaptive controller.

Define K
�
= {(i, j) | i ∈ I, j ∈ I, i 
= j}. The following result considers the system

(3.1)–(3.2), where mi = 1, (Ai,i, Bi) is in controllable canonical form, and for all

(i, j) ∈ K, Ai,j has matched uncertainty. This result provides constructions of Am,i,

Ωi, and B̂i such that (A3.1)–(A3.4) are satisfied. The proof is in Appendix A.
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Proposition 3.1. Consider the system (3.1)–(3.2), where mi = 1. Assume that

Ai,i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−ai,n−1 · · · −ai,1 −ai,0

1 0 0

. . .
...

0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, Bi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

bi

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (3.7)

and for all (i, j) ∈ K, Ai,j = BiΔ
T
i,j, where Δi,j ∈ R

nj×1; ai,0, . . . , ai,n−1 ∈ R; and

bi ∈ R. Let αi(s) = αi,n−1s
n−1 + · · · + αi,1s + αi,0 be asymptotically stable, where

αi,0, . . . , αi,n−1 are positive. Let

Am,i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−ηiαi,n−1 · · · −ηiαi,1 −ηiαi,0

1 0 0

. . .
...

0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, B̂i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

βi

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (3.8)

where ηi > 0 and biβi > 0. Furthermore, let Qi > �Ini
, and let γi > 0 satisfy

γi ≥
∑

j∈I\{i}

b2i
β2
i

ΔT
i,jΔi,j. (3.9)

Then, the following statements hold:

(i) There exists Fi > 0 such that B̂i = BiFi.

(ii) For all ηi > 0, there exists K∗,i ∈ R
1×ni that satisfies (3.4).

(iii) Ωi
�
= γiB̂iB̂

T
i satisfies (3.5).

(iv) For sufficiently large ηi > 0, Am,i is asymptotically stable, and there exists a

positive-definite matrix Pi ∈ R
ni×ni that satisfies (3.6).

Proposition 3.1 provides sufficient conditions under which (A3.1)–(A3.4) are satis-
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fied. Specifically, if the reference-model dynamics matrix Am,i is given by (3.8) and

ηi > 0 is sufficiently large, then (i)–(iv) of Proposition 3.1 imply that (A3.1)–(A3.4)

are satisfied. Note that there is no restriction on the magnitude of the subsystem-

interconnection matrices {Ai,j}j∈I\{i}. The parameter ηi > 0 can be designed using the

known bound Ωi. Specifically, ηi > 0 can be increased until (3.6) admits a positive-

definite solution. Note that the conditions of Proposition 3.1 are not necessary to

satisfy (A3.1)–(A3.4).

3.3 Decentralized Adaptive Stabilization

In this section, we address decentralized adaptive stabilization, where the distur-

bances and reference-model commands are zero (i.e., ri(t) ≡ 0 and wi(t) ≡ 0). Con-

sider the controller

ui(t) = Ki(t)xi(t), (3.10)

where Ki : [ 0,∞) → R
mi×ni is given by

K̇i(t) = −B̂T
i Pixi(t)x

T
i (t)Γi, (3.11)

where Γi ∈ R
ni×ni is positive definite, and Pi ∈ R

ni×ni is the positive-definite solution

to (3.6). The decentralized adaptive stabilization architecture is shown in Figure 3.1.

Next, define

K̃i(t)
�
= Ki(t)−K∗,i, (3.12)

and it follows from (3.1)–(3.2) and (3.10) that

ẋi(t) = Am,ixi(t) + BiK̃i(t)xi(t) +
∑

j∈I\{i}
Ai,jxj(t). (3.13)
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Figure 3.1: Schematic diagram of decentralized adaptive stabilization architecture
given by (3.1)–(3.2), (3.10), and (3.11).

The following theorem is the main result on decentralized adaptive stabilization.

Theorem 3.1. Consider the closed-loop system (3.11) and (3.13), where the open-

loop system (3.1)–(3.2) satisfies assumptions (A3.1)–(A3.4), wi(t) ≡ 0, and ri(t) ≡ 0.

Then, the equilibrium (x1, . . . x�, K̃1, . . . , K̃�) ≡ 0 is Lyapunov stable. Furthermore,

for all initial conditions xi(0) ∈ R
ni and Ki(0) ∈ R

mi×ni, the following statements

hold:

(i) xi(t), ui(t), and Ki(t) are bounded.

(ii) limt→∞ xi(t) = 0.

Proof. For all i ∈ I, define the partial Lyapunov function

Vi(xi, K̃i)
�
= xT

i Pixi + trF−1
i K̃iΓ

−1
i K̃T

i , (3.14)
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where Pi ∈ R
ni×ni is the positive-definite solution to (3.6). Evaluating the derivative

of Vi along the trajectory of (3.11) and (3.13), and using (A3.1) yields

V̇i(xi, K̃i) = xT
i (A

T
m,iPi + PiAm,i)xi + 2xi

TK̃T
i B

T
i Pixi + 2trF−1

i K̇iΓ
−1
i K̃T

i

+ 2
∑

j∈I\{i}
xT
i PiAi,jxj

=xT
i (A

T
m,iPi + PiAm,i)xi + 2tr (BT

i Pixix
T
i K̃

T
i + F−1

i K̇iΓ
−1
i K̃T

i )

+ 2
∑

j∈I\{i}
xT
i PiAi,jxj

=xT
i (A

T
m,iPi + PiAm,i)xi + 2

∑
j∈I\{i}

xT
i PiAi,jxj. (3.15)

Next, note that

0 ≤
∑

j∈I\{i}
(AT

i,jPixi − xj)
T(AT

i,jPixi − xj)

=
∑

j∈I\{i}
xT
i PiAi,jA

T
i,jPixi + xT

j xj − 2xT
i PiAi,jxj,

which combined with (A3.3), implies that

2
∑

j∈I\{i}
xT
i PiAi,jxj ≤

∑
j∈I\{i}

xT
i PiAi,jA

T
i,jPixi + xT

j xj

≤ xT
i PiΩiPixi +

∑
j∈I\{i}

xT
j xj. (3.16)

Using (3.16) and (A3.4), it follows from (3.15) that

V̇i(xi, K̃i) ≤ xi
T(AT

m,iPi + PiAm,i + PiΩiPi)xi +
∑

j∈I\{i}
xT
j xj

≤ −xi
TQixi +

∑
j∈I\{i}

xT
j xj. (3.17)
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Next, define the Lyapunov function

V (x1, . . . , x�, K̃1, . . . , K̃�)
�
=
∑
i∈I

Vi(xi, K̃i),

and it follows from (3.17) that the derivative of V along the trajectory of (3.11) and

(3.13) is

V̇ (x1, . . . , x�, K̃i, . . . , K̃�) =
∑
i∈I

V̇i(xi, K̃i)

≤
∑
i∈I

⎛
⎝−xT

i Qixi +
∑

j∈I\{i}
xT
j xj

⎞
⎠

=
∑
i∈I

−xT
i Qixi + (�− 1)xT

i xi

=
∑
i∈I

−xT
i Rixi,

where Ri
�
= Qi − (� − 1)Ini

is positive definite because Qi > �Ini
. Therefore, the

equilibrium (x1, . . . , x�, K̃1, . . . , K̃�) ≡ 0 is Lyapunov stable, and for all initial condi-

tions, xi and K̃i are bounded. Since xi and K̃i are bounded, it follows from (3.10)

and (3.12) that Ki and ui are bounded, which confirms (i).

Finally, since V is positive definite and radially unbounded, and V̇ ≤∑
i∈I−xT

i Rixi,

it follows from LaSalle’s invariance principle [34, Theorem 4.4] that for all initial

conditions, limt→∞ xi(t) = 0, which confirms (ii).

Example 3.1. Decentralized adaptive stabilization with local scalar dynamics. Con-

sider the system (3.1)–(3.2), where � = 3,

⎡
⎢⎢⎢⎢⎣

A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

2.5 0.5 −0.5

−1.5 −0.5 −1

3 2 1.5

⎤
⎥⎥⎥⎥⎦ , (3.18)
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and B1 = 2, B2 = 1.5, and B3 = 2.5. Note that (3.18) is unstable with eigenvalues

at 1 and 1.25 ± j1.39. We assume that for all i, j ∈ I, Ai,j is unknown. However,

we assume that for all (i, j) ∈ K, an upper bound on the absolute value of Ai,j is

known. Specifically, for all (i, j) ∈ K, |Ai,j| < 10, and the upper bound 10 is known.

We also assume that sgn(Bi) is known. Our goal is to stabilize the origin of (3.1)–

(3.2) using the decentralized adaptive control (3.10) and (3.11). In this example, the

disturbances are zero. We consider nonzero disturbances in the next section.

We let B̂i = sgn(Bi) = 1, which satisfies (A3.1). Since Bi 
= 0, it follows that

(A3.2) is satisfied. Since for all (i, j) ∈ K, |Ai,j| < 10, and the bound 10 is known,

we let Ωi = 200, which satisfies (A3.3). Next, let Qi = 4, which satisfies Qi > �. If

Am,i ≤ −√
ΩiQi = −20

√
2, then it follows from the quadratic equation that there

exists Pi > 0 that satisfies (3.6), which implies that (A3.4) is satisfied. In this

example, we let Am,i = −30.

The adaptive controller (3.10) and (3.11) is implemented in feedback with the

system (3.1)–(3.2) and (3.18), where Γi = 105. Figure 3.2 shows a time history

of xi(t) and ui(t), where the initial conditions are x1(0) = 0.5, x2(0) = 0.25, and

x3(0) = −0.5. Moreover, Figure 3.2 shows limt→∞ xi(t) = 0, which agrees with

Theorem 3.1. 	

Example 3.2. Decentralized adaptive stabilization with local vector dynamics. Con-

sider the system (3.1)–(3.2), where � = 3, and

A1,1 =

⎡
⎢⎢⎢⎢⎣

2 −2 −6

1 0 0

0 1 0

⎤
⎥⎥⎥⎥⎦ , A2,2 =

⎡
⎢⎢⎢⎢⎣

−3 4 −3

1 0 0

0 1 0

⎤
⎥⎥⎥⎥⎦ , A3,3 =

⎡
⎢⎢⎢⎢⎣

2 4 6

1 0 0

0 1 0

⎤
⎥⎥⎥⎥⎦ , (3.19)

B1 =

[
5 0 0

]T
, B2 =

[
−3 0 0

]T
, B3 =

[
4 0 0

]T
. (3.20)
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Figure 3.2: Decentralized adaptive stabilization with local scalar dynamics. The adap-
tive controller (3.10) and (3.11) is implemented in feedback with the system (3.1)–
(3.2) and (3.18). The state xi(t) converges asymptotically to zero.

Furthermore, for all (i, j) ∈ K,

Ai,j = BiΔ
T
i,j, (3.21)

where

Δ1,2 =

[
5 −2 −2

]T
, Δ1,3 =

[
−6 4 −2

]T
, (3.22)

Δ2,1 =

[
−1 6 −3

]T
, Δ2,3 =

[
−5 4 2

]T
, (3.23)

Δ3,1 =

[
5 −3 1

]T
, Δ3,2 =

[
3 −1 −8

]T
. (3.24)

Note that the dynamics matrix associated with (3.1)–(3.2) and (3.19)–(3.24) is un-
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stable with eigenvalues at −3.75, −0.26± j0.36, 0.20± j1.57, 0.65, 1.38± j6.57, and

1.47. For all i, j ∈ I, Ai,j is unknown. However, we assume that for all (i, j) ∈ K, an

upper bound on ΔT
i,jΔi,j is known. Specifically, for all (i, j) ∈ K, ΔT

i,jΔi,j < 300, and

the upper bound 300 is known. Furthermore, we assume the sign and an upper bound

on the magnitude of bi is known, where bi denotes the first entry in Bi. Specifically,

|bi| < 10, and the upper bound 10 is known.

We let B̂1 = [ 1 0 0 ]T, B̂2 = [ −1 0 0 ]T, and B̂3 = B̂1, which satisfy (A3.1).

We let Ωi = γiB̂iB̂
T
i , where γi = 6 × 104. Since γi ≥

∑
j∈I\{i} 100Δ

T
i,jΔi,j, it follows

from Proposition 3.1 that Ωi satisfies (3.5), which implies that (A3.3) is satisfied. We

let Qi = 4I3, which satisfies Qi > �Ini
. Next, let

Am,i =

⎡
⎢⎢⎢⎢⎣

−ηi −5ηi −6ηi

1 0 0

0 1 0

⎤
⎥⎥⎥⎥⎦ , (3.25)

where ηi > 0. It follows from Proposition 3.1 that for sufficiently large ηi > 0, Am,i

is asymptotically stable and there exists a positive-definite matrix Pi that satisfies

(3.6), which implies that (A3.4) is satisfied. In this example, for all ηi > 492, there

exists a positive-definite matrix Pi that satisfies (3.6). We let ηi = 600.

The adaptive controller (3.10) and (3.11) is implemented in feedback with the

system (3.1)–(3.2) and (3.19)–(3.24), where Γi = 106I3. Figure 3.3 shows a time

history of xi(t) and ui(t), where the initial conditions are x1(0) = [ 0.2 −0.5 0.2 ]T,

x2(0) = [ 0.4 −0.2 0.4 ]T, and x3(0) = [ −0.2 −0.5 −0.2 ]T. The state xi(t)

converges asymptotically to zero. 	
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Figure 3.3: Decentralized adaptive stabilization with local vector dynamics. The adap-
tive controller (3.10)–(3.11) is implemented in feedback with the system (3.1)–(3.2)
and (3.19)–(3.24). The state xi = [ xi,1(t) xi,2(t) xi,3(t) ]T converges asymptoti-
cally to zero.
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3.4 Decentralized Adaptive Command Following and Disturbance Rejec-

tion

In this section, we extend the decentralized adaptive stabilization controller pre-

sented in Section 3.3 to address command following and disturbance rejection.

We make the following assumptions regarding the reference-model input matrix

Bm,i and the disturbance input matrix Di:

(A3.5) There exists L∗,i ∈ R
mi×qi such that Bm,i = BiL∗,i.

(A3.6) There exists T∗,i ∈ R
mi×di such that Di = BiT∗,i.

Assumptions (A3.5) and (A3.6) are standard full-state-feedback MRAC matching

conditions [1–5]. If the control and disturbance are collocated (i.e., Bi = Di), then

(A3.6) is satisfied by T∗,i = Imi
.

Next, we make the following assumptions regarding the reference-model command

ri(t) and the disturbance wi(t):

(A3.7) There exists Gi ∈ R
qi×2p and Hi ∈ R

di×2p such that ri(t) = GiΨ(t) and

wi(t) = HiΨ(t), where

Ψ(t)
�
=

[
sinω1t . . . sinωpt cosω1t . . . cosωpt

]T
∈ R

2p, (3.26)

and ω1, . . . , ωp are nonnegative and known.

(A3.8) There exists N1 ∈ R
m1×2p, . . . , N� ∈ R

m�×2p such that for all i ∈ I,

∫ ∞

0

∥∥∥∥∥∥BiNiΨ(t) +
∑

j∈I\{i}
Ai,jxm,j(t)

∥∥∥∥∥∥
2

dt (3.27)

exists, where ‖ · ‖ denotes the Euclidean norm.
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Assumption (A3.7) implies that ri(t) and wi(t) consist of sinusoids with known

frequencies. However, the amplitudes and phases are unknown. Note that constant

signals are achieved in (3.26) if the frequency is zero.

Assumption (A3.8) is a condition on the trajectories Ψ and xm,i as well as the

structure of Bi and Ai,j. Nevertheless, (A3.8) can be verified by matrix matching

conditions alone. We now present two results that provide sufficient conditions under

which (A3.8) is satisfied. Proofs of these results are in Appendix A.

Proposition 3.2. Assume that r1(t), . . . , r�(t) satisfy (A3.7). Furthermore, assume

that for all W1 ∈ R
n1×2p, . . . ,W� ∈ R

n�×2p, there exists N̂1 ∈ R
m1×2p, . . . , N̂� ∈ R

m�×2p

such that for all i ∈ I,

BiN̂i +
∑

j∈I\{i}
Ai,jWj = 0. (3.28)

Then, there exists N1 ∈ R
m1×2p, . . . , N� ∈ R

m�×2p such that for all i ∈ I, (3.27) is

satisfied.

Proposition 3.2 provides matrix matching conditions under which (A3.8) is satisfied.

However, the condition (3.28) in Proposition 3.2 cannot be verified without knowledge

of Bi and Ai,j. The next result provides a sufficient condition on the structure of Ai,j

under which (A3.8) is satisfied.

Proposition 3.3. Assume that r1(t), . . . , r�(t) satisfies (A3.7). Furthermore, as-

sume that for all (i, j) ∈ K,

Ai,j = BiΔ
T
i,j, (3.29)

where Δi,j ∈ R
nj×mi. Then, there exists N1 ∈ R

m1×2p, . . . , N� ∈ R
m�×2p such that for

all i ∈ I, (3.27) is satisfied.
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Next, consider the controller

ui(t) = Ki(t)xi(t) + Li(t)ri(t) +Mi(t)Ψ(t), (3.30)

where Ki : [ 0,∞) → R
mi×ni , Li : [ 0,∞) → R

mi×qi , and Mi : [ 0,∞) → R
mi×2p are

given by

K̇i(t) = −B̂T
i Piei(t)x

T
i (t)Γi, (3.31)

L̇i(t) = −B̂T
i Piei(t)r

T
i (t)Λi, (3.32)

Ṁi(t) = −B̂T
i Piei(t)Ψ

T(t)Υi, (3.33)

where Γi ∈ R
ni×ni , Λi ∈ R

qi×qi , and Υi ∈ R
2p×2p are positive definite, and Pi ∈

R
ni×ni is the positive-definite solution to (3.6). The decentralized adaptive command

following and disturbance rejection architecture is shown in Figure 3.4.

The following theorem is the main result on decentralized adaptive command fol-

lowing and disturbance rejection.

Theorem 3.2. Consider the closed-loop system (3.1)–(3.2) and (3.30)–(3.33),

where the open-loop system (3.1)–(3.2) satisfies assumptions (A3.1)–(A3.8). Then,

for all initial conditions xi(0) ∈ R
ni, Ki(0) ∈ R

mi×ni, Li(0) ∈ R
mi×qi, and Mi(0) ∈

R
mi×2p, the following statements hold:

(i) xi(t), ui(t), Ki(t), Li(t), and Mi(t) are bounded.

(ii) limt→∞ ei(t) = 0.

Proof. Define

K̃i(t)
�
= Ki(t)−K∗,i,

L̃i(t)
�
= Li(t)− L∗,i,
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Figure 3.4: Schematic diagram of decentralized adaptive command following and
disturbance rejection control architecture given by (3.1)–(3.3) and (3.30)–(3.33).
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M̃i(t)
�
= Mi(t)−Ni + T∗,iHi,

where Ni is given by (A3.8). Thus, it follows from (3.1)–(3.2) and (3.30) that

ẋi(t) = Am,ixi(t) + BiK̃i(t)xi(t) + BiLi(t)ri(t) + BiMi(t)Ψ(t)

+Diwi(t) +
∑

j∈I\{i}
Ai,jxj(t). (3.34)

Next, subtracting (3.3) from (3.34), and using (A3.5) yields

ėi(t) = Am,iei(t) + BiK̃i(t)xi(t) + BiL̃i(t)ri(t) + BiMi(t)Ψ(t)

+Diwi(t) +
∑

j∈I\{i}
Ai,jxj(t),

which implies that

ėi(t) = Am,iei(t) + BiK̃i(t)xi(t) + BiL̃i(t)ri(t) + BiM̃i(t)Ψ(t)

+BiNiΨ(t)− BiT∗,iHiΨ(t) +Diwi(t) +
∑

j∈I\{i}
Ai,jej(t) + Ai,jxm,j(t). (3.35)

Then, using (A3.6) and (A3.7), it follows from (3.35) that

ėi(t) = Am,iei(t) + BiK̃i(t)xi(t) + BiL̃i(t)ri(t) + BiM̃i(t)Ψ(t)

+BiNiΨ(t) +
∑

j∈I\{i}
Ai,jej(t) + Ai,jxm,j(t). (3.36)

Next, for all i ∈ I, define the partial Lyapunov-like function

Vi(ei, K̃i, L̃i, M̃i)
�
= eTi Piei + trF−1

i K̃iΓ
−1
i K̃T

i + trF−1
i L̃iΛ

−1
i L̃T

i + trF−1
i M̃iΥ

−1
i M̃T

i ,

where Pi ∈ R
ni×ni is the positive-definite solution to (3.6). Evaluating the derivative
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of Vi along the trajectory of (3.31)–(3.33) and (3.36), and using (A3.1) yields

V̇i(ei, K̃i, L̃i, M̃i) = ėTi Piei + eTi Piėi + 2trF−1
i K̇iΓ

−1
i K̃T

i + 2trF−1
i L̇iΛ

−1
i L̃T

i

+ 2trF−1
i ṀiΥ

−1
i M̃T

i

= eTi (A
T
m,iPi + PiAm,i)ei + 2eTi PiBiNiΨ

+ 2
∑

j∈I\{i}

[
eTi PiAi,jej + eTi PiAi,jxm,j

]

+ 2xi
TK̃T

i B
T
i Piei + 2ri

TL̃T
i B

T
i Piei + 2ΨTM̃T

i B
T
i Piei

+ 2trF−1
i K̇iΓ

−1
i K̃T

i + 2trF−1
i L̇iΛ

−1
i L̃T

i + 2trF−1
i ṀiΥ

−1
i M̃T

i

= eTi (A
T
m,iPi + PiAm,i)ei + 2eTi PiBiNiΨ

+ 2
∑

j∈I\{i}

[
eTi PiAi,jej + eTi PiAi,jxm,j

]

+ 2tr
[
BT

i Pieix
T
i K̃

T
i +BT

i Pieir
T
i L̃

T
i +BT

i PieiΨ
TM̃T

i

− F−1
i

(
FiB

T
i Pieix

T
i Γi

)
Γ−1
i K̃T

i − F−1
i

(
FiB

T
i Pieir

T
i Λi

)
Λ−1

i L̃T
i

− F−1
i

(
FiB

T
i PieiΨ

TΥi

)
Υ−1

i M̃T
i

]
= eTi (A

T
m,iPi + PiAm,i)ei + 2eTi PiBiNiΨ

+
∑

j∈I\{i}

[
2eTi PiAi,jej + 2eTi PiAi,jxm,j

]
. (3.37)

Next, note that

0 ≤
∑

j∈I\{i}
(AT

i,jPiei − ej)
T(AT

i,jPiei − ej)

=
∑

j∈I\{i}
eTi PiAi,jA

T
i,jPiei + eTj ej − 2eTi PiAi,jej,

which combined with (A3.3), implies that

∑
j∈I\{i}

2eTi PiAi,jej ≤
∑

j∈I\{i}
eTi PiAi,jA

T
i,jPiei + eTj ej
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≤ eTi PiΩiPiei +
∑

j∈I\{i}
eTj ej. (3.38)

Using (3.6) and (3.38), it follows from (3.37) that

V̇i(ei, K̃i, L̃i, M̃i) ≤ eTi (A
T
m,iPi + PiAm,i + PiΩiPi)ei + 2eTi PiBiNiΨ

+
∑

j∈I\{i}

[
eTj ej + 2eTi PiAi,jxm,j

]

≤− eTi Qiei + 2eTi PiBiNiΨ+
∑

j∈I\{i}

[
eTj ej + 2eTi PiAi,jxm,j

]
,

=− eTi Qiei + 2eTi Piξi +
∑

j∈I\{i}
eTj ej, (3.39)

where

ξi(t)
�
= BiNiΨ(t) +

∑
j∈I\{i}

Ai,jxm,j(t).

Then, note that

0 ≤‖ei − Piξi‖2 = eTi ei + ‖Piξi‖2 − 2eTi Piξi,

which implies that

2eTi Piξi ≤ eTi ei + ‖Piξi‖2 ≤ eTi ei + λmax(Pi)
2ξTi ξi, (3.40)

where λmax(Pi) is the maximum eigenvalue of Pi.

Using (3.40), it follows from (3.39) that

V̇i(ei, K̃i, L̃i, M̃i) ≤ −ei
T(Qi − Ini

)ei + λmax(Pi)
2ξTi ξi +

∑
j∈I\{i}

eTj ej. (3.41)
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Next, define the Lyapunov-like function

V (e1, . . . , e�, K̃1, . . . , K̃�, L̃1, . . . , L̃�, M̃1, . . . , M̃�)
�
=
∑
i∈I

Vi(ei, K̃i, L̃i, M̃i),

and it follows from (3.41) that the derivative of V along the trajectory of (3.31)–(3.33)

and (3.36) is given by

V̇ =
∑
i∈I

V̇i(ei, K̃i, L̃i, M̃i)

≤
∑
i∈I

⎡
⎣−eTi (Qi − Ini

)ei + λmax(Pi)
2ξTi ξi +

∑
j∈I\{i}

eTj ej

⎤
⎦

=
∑
i∈I

−eTi (Qi − Ini
)ei + λmax(Pi)

2ξTi ξi + (�− 1)eTi ei

=
∑
i∈I

−eTi Riei + λmax(Pi)
2ξTi ξi,

where Ri
�
= Qi − �Ini

, which is positive definite from (A3.4). Thus,

0 ≤
∑
i∈I

eTi Riei ≤ −V̇ +
∑
i∈I

λmax(Pi)
2ξTi ξi. (3.42)

Moreover, integrating (3.42) from 0 to ∞ yields

0 ≤
∫ ∞

0

∑
i∈I

eTi (t)Riei(t) dt ≤ V (0)− V (∞) +

∫ ∞

0

∑
i∈I

λmax(Pi)
2ξTi (t)ξi(t) dt

≤ V (0) +
∑
i∈I

λmax(Pi)
2

∫ ∞

0

ξTi (t)ξi(t) dt, (3.43)

which exists because (A3.8) implies that
∫∞
0

ξTi (t)ξi(t) dt exists. Thus, it follows from

(3.43) that V is bounded, which implies that ei, K̃i, L̃i, and M̃i are bounded. Since

ri is bounded and Am,i is asymptotically stable, (3.3) implies that xm,i is bounded.

Moreover, since ei, xm,i, K̃i, L̃i, and M̃i are bounded, it follows that xi, ui, Ki, Li,
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and Mi are bounded, which confirms (i).

To show (ii), it follows from (3.43) that
∫∞
0

∑
i∈I e

T
i (t)Riei(t) dt exists. Next, since

ei, xi, ri, Ψ, xm,i, K̃i, L̃i, and M̃i are bounded, (3.36) implies that ėi is bounded.

Next, since ei and ėi are bounded, it follows that

d

dt

[∑
i∈I

eTi (t)Riei(t)

]
= 2

∑
i∈I

ėTi (t)Riei(t)

is bounded. Thus, f(t)
�
=
∑

i∈I e
T
i (t)Riei(t) is uniformly continuous. Since

∫∞
0

f(t) dt

exists and f(t) is uniformly continuous, Barbalat’s lemma implies that limt→∞ f(t) =

0. Thus, limt→∞ ei(t) = 0, which confirms (ii).

3.5 Numerical Examples

We now present examples that demonstrate the decentralized adaptive controller.

Example 3.3 shows perfect command following and disturbance rejection for a sys-

tem with local scalar dynamics. Example 3.4 demonstrates asymptotically perfect

command following for a mass-spring-dashpot system. This result is extended to ad-

dress disturbance rejection in Example 3.5 and a mass-spring-dashpot system with

ten masses in Example 3.6. Finally, Example 3.7 examines the behavior of a nonlinear

planar double pendulum.

Example 3.3. Decentralized adaptive command following and disturbance rejection

with local scalar dynamics. Reconsider the unstable system in Example 3.1, but

consider nonzero reference-model commands and nonzero disturbances. The plant,

reference model, and control parameters satisfying (A3.1)–(A3.4) are the same as in

Example 3.1.

The reference-model input constants are Bm,1 = Bm,2 = Bm,3 = 30, which satisfy

(A3.5). The reference-model commands are r1(t) = 2 sin 1.5πt, r2(t) = 1.5 cosπt and

r3(t) = sin 0.5πt. The disturbance input constants are D1 = 0.5, D2 = 1, and D3 =
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1.5, which satisfy (A3.6). The disturbances are w1(t) = 2 sin 1.5πt, w2(t) = 3.5 sin πt

and w3(t) = 10. We let

Ψ(t) =

[
sin 0.5πt sin πt sin 1.5πt sin 2πt cos 0.5πt cos πt cos 1.5πt cos 2πt 1

]T
,

(3.44)

and it follows that ri(t) and wi(t) satisfy (A3.7). Since Ai,j has the form given by

(3.29), Proposition 3.3 implies that (A3.8) is satisfied.

The adaptive controller (3.30)–(3.33) is implemented in feedback with the system

(3.1)–(3.2) and (3.18), where Γi = 104, Λi = 104 and Υi = 104I9. Figure 3.5 shows a

time history of xi(t), xm,i(t), ei(t), and ui(t), where the initial conditions are x1(0) =

0.5, x2(0) = 0.25, and x3(0) = −0.5. The state xi(t) converges asymptotically to

xm,i(t), and thus, limt→∞ ei(t) = 0, which agrees with Theorem 3.2. 	

Example 3.4. Decentralized adaptive command following for a mass-spring-dashpot

system. Consider the serially connected structure shown in Figure 3.6, where � = 3;

u1, u2 and u3 are control forces; and w1, w2 and w3 are disturbance forces. Further-

more, q1, q2 and q3 are the positions of the first, second and third masses, respectively.

The equations of motion for the system are given by (3.1)–(3.2), where for all i ∈ I,

Ai,i =

⎡
⎢⎣ −(ci + ci+1)/mi −(ki + ki+1)/mi

1 0

⎤
⎥⎦ , (3.45)

Bi =

⎡
⎢⎣ 1/mi

0

⎤
⎥⎦ , (3.46)

Di = Bi, (3.47)

xi =

⎡
⎢⎣ q̇i

qi

⎤
⎥⎦ , (3.48)
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local scalar dynamics. The adaptive controller (3.30)–(3.33) is implemented in feed-
back with the system (3.1)–(3.2) and (3.18). The error ei(t) converges asymptotically
to zero.
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and for all (i, j) ∈ K,

Ai,j =

⎧⎪⎪⎨
⎪⎪⎩
Bi

[
cmax {i,j} kmax {i,j}

]
, if |i− j| = 1,

02×2, otherwise.

(3.49)

The masses are m1 = 0.5 kg, m2 = 0.2 kg and m3 = 0.3 kg; the damping coefficients

are c1 = 3 kg/s, c2 = 3 kg/s, c3 = 4 kg/s, and c4 = 5 kg/s; and the spring constants

are k1 = 10 kg/s2, k2 = 12 kg/s2, k3 = 8 kg/s2, and k4 = 11 kg/s2.

The decentralized adaptive controller in (3.30)–(3.33) is implemented using limited

information of the dynamics of the system (3.1)–(3.2). Specifically, the masses m1,

m2 and m3; damping coefficients c1, c2, c3, and c4; and spring constants k1, k2, k3, and

k4 are unknown. However, we assume bounds on the parameter values are known.

For all i ∈ I, mi > 0.1 kg; and for all i = 1, . . . , 4, ci < 10 kg/s and ki < 15 kg/s2,

and we assume that the bounds 0.1 kg, 10 kg/s, and 15 kg/s2 are known.

For all i ∈ I, we let B̂i = [ 1 0 ]T, which satisfies (A3.1). We let Ωi = γiB̂iB̂
T
i ,

where γ1 = γ3 = 3.25 × 104 and γ2 = 6.5 × 104. Note that γi is determined from

the bounds on mi, ci and ki. Since γi satisfies (3.9), it follows from Proposition 3.1

that Ωi satisfies (3.5), which implies that (A3.3) is satisfied. We let Qi = 4I2, which

satisfies Qi > �Ini
. Next, let

Am,i =

⎡
⎢⎣ −2ηi −22ηi

1 0

⎤
⎥⎦ , Bm,i =

⎡
⎢⎣ 22ηi

0

⎤
⎥⎦ , (3.50)

where ηi > 0. It follows from Proposition 3.1 that for sufficiently large ηi > 0, Am,i

is asymptotically stable and there exists a positive-definite matrix Pi that satisfies

(3.6). In this example, for all ηi > 255, there exists a positive-definite matrix Pi that

satisfies (3.6). We let ηi = 400. Furthermore, Am,i satisfies (A3.2), and Bm,i satisfies

(A3.5).

44



The reference model commands are r1(t) = 0.1 sin 0.5πt, r2(t) = 0.02 and r3(t) =

0.1 sin πt. In this example, the disturbances are zero. We let Ψ(t) be the same as in

Example 3.3, and it follows that ri(t) satisfies (A3.7). Since Ai,j has the form given

by (3.29), Proposition 3.3 implies that (A3.8) is satisfied.

The adaptive controller (3.30)–(3.33) is implemented in feedback with the system

(3.1)–(3.2) and (3.45)–(3.49), where Γ1 = Γ2 = Γ3 = 106I2, Λ1 = Λ2 = Λ3 = 106,

Υ1 = 103I9, Υ2 = 104I9 and Υ3 = 103I9. Figure 3.7 provides a time history of xi(t),

xm,i(t), ei(t), and ui(t), where the initial conditions are q1(0) = q2(0) = q3(0) = 0 m

and q̇1(0) = q̇2(0) = q̇3(0) = 0 m/s. The three-mass system is allowed to run open-

loop for 5 seconds, then the decentralized adaptive controller is turned on. Figure 3.7

shows limt→∞ ei(t) = 0. 	

c1

k1

m1

q1

c2

k2

m2

q2

c3

. . .

c�

k3
. . .

k�

m�

q�

c�+1

k�+1

w1 w2 w�

u1 u2 u�

Figure 3.6: The serially connected, �-mass structure used in Examples 3.4–3.6.

Example 3.5. Decentralized command following and disturbance rejection for a

mass-spring-dashpot system. Reconsider the three-mass structure in Example 3.4,

but consider nonzero disturbances. The plant, reference model, and control parame-

ters satisfying (A3.1)–(A3.8) are the same as in Example 3.4. The disturbances are

w1(t) = 0.1 sin 1.5πt, w2(t) = 0.005 and w3(t) = 0.05 sin 0.5πt, which satisfy (A3.7),

where Ψ(t) is the same as in Example 3.4.

The adaptive controller (3.30)–(3.33) is implemented in feedback with the system

(3.1)–(3.2) and (3.45)–(3.49). Figure 3.8 provides a time history of xi(t), xm,i(t), ei(t),

and ui(t). The three-mass system is allowed to run open-loop for 5 seconds, then the
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Figure 3.7: Decentralized adaptive command following for a mass-spring-dashpot sys-
tem. The adaptive controller (3.30)–(3.33) is implemented in feedback with the three-
mass system (3.1)–(3.2) and (3.45)–(3.49). The error ei(t) converges asymptotically
to zero.
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decentralized adaptive control is turned on. The error ei(t) converges asymptotically

to zero. 	

Example 3.6. Decentralized command following and disturbance rejection for a

mass-spring-dashpot system with ten masses. Consider the serially connected shown

in Figure 3.6, where � = 10. The equations of motion for the system are given

by (3.1)–(3.2), where m1 = · · · = m10 = 0.5 kg, c1 = · · · = c11 = 5 kg/s, and

k1 = · · · = k11 = 10 kg/s2; and for all i ∈ I, Ai,i, Bi, Di, xi, and Ai,j are given by

(3.45)–(3.49), respectively. We assume bounds on the parameter values are known.

For all i ∈ I, mi > 0.1 kg; and for all i = 1, . . . , 11, ci < 10 kg/s, and ki < 15 kg/s2,

and we assume that the bounds 0.1 kg, 10 kg/s, and 15 kg/s2 are known.

For all i ∈ I, we let B̂i = [ 1 0 ]T, which satisfies (A3.1). We let Ωi = γiB̂iB̂
T
i ,

where γi = 3.25× 104. Note that γi is determined from the bounds on mi, ci, and ki.

Since γi satisfies (3.9), it follows from Proposition 3.1 that Ωi satisfies (3.5), which

implies that (A3.3) is satisfied. We let Qi = 11I2, which satisfies Qi > �Ini
. Next, let

Am,i =

⎡
⎢⎣ −2ηi −8ηi

1 0

⎤
⎥⎦ , Bm,i =

⎡
⎢⎣ 8ηi

0

⎤
⎥⎦ , (3.51)

where ηi > 0. It follows from Proposition 3.1 that for sufficiently large ηi > 0, Am,i

is asymptotically stable and there exists a positive-definite matrix Pi that satisfies

(3.6). In this example, for all ηi > 423, there exists a positive-definite matrix Pi that

satisfies (3.6). We let ηi = 600. Furthermore, Am,i satisfies (A3.2) and Bm,i satisfies

(A3.5).

The reference model commands are r1(t) = r3(t) = r5(t) = r7(t) = r9(t) =

0.1 sin 0.5πt and r2(t) = r4(t) = r6(t) = r8(t) = r10(t) = −0.1 sin 0.5πt. The distur-

bance input matrix Di satisfies (A3.6). The disturbances are w1(t) = · · · = w10(t) =

0.05 sin πt. We let Ψ(t) be given by (3.44), and it follows that ri(t) and wi(t) satisfy

(A3.7). Since Ai,j has the form given by (3.29), Proposition 3.3 implies that (A3.8)
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Figure 3.8: Decentralized adaptive command following and disturbance rejection for
a mass-spring-dashpot system. The adaptive controller (3.30)–(3.33) is implemented
in feedback with the three-mass system (3.1)–(3.2) and (3.45)–(3.49). The error ei(t)
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is satisfied.

The adaptive control (3.30)–(3.33) is implemented in feedback with the system

(3.1)–(3.2) and (3.45)–(3.49), where for all i ∈ I, Γi = 105I2, Λi = 104, and Υi =

104I8. Figure 3.9 provides a time history of qi(t), qm,i(t), and ui(t), where the initial

conditions are qi(0) = 0 m and q̇i(0) = 0 m/s. The ten-mass system is allowed to run

open-loop for 5 seconds, then the decentralized adaptive control is turned on. Figure

3.9 shows that qi(t) converges asymptotically to qm,i(t). 	

Example 3.7. Decentralized disturbance rejection for a planar double pendulum.

Consider the planar double pendulum shown in Figure 3.10. The nonlinear equations

of motion for the planar double pendulum are

M̂(θ1, θ2)

⎡
⎢⎣ θ̈1

θ̈2

⎤
⎥⎦+ F̂ (θ1, θ2, θ̇1, θ̇2) =

⎡
⎢⎣ u1 + w1

u2 + w2

⎤
⎥⎦ , (3.52)

where

M̂(θ1, θ2)
�
=

⎡
⎢⎣ 1

3
m1l

2
1 +m2l

2
1

1
2
m2l1l2 cos(θ1 − θ2)

1
2
m2l1l2 cos(θ1 − θ2)

1
3
m2l

2
2

⎤
⎥⎦ , (3.53)

F̂ (θ1, θ2, θ̇1, θ̇2)
�
=

⎡
⎢⎣1

2
m2l1l2 sin(θ1 − θ2)θ̇

2
2 + (c1 + c2)θ̇1 − c2θ̇2 + (k1 + k2)θ1 − k2θ2

−1
2
m2l1l2 sin(θ1 − θ2)θ̇

2
1 − c2θ̇1 + c2θ̇2 − k2θ1 + k2θ2

⎤
⎥⎦ ,

(3.54)

and for i = 1, 2, mi is the mass of the ith link, li is the length of the ith link, ci is

the damping at the ith joint, ki is the stiffness at the ith joint, and θi is the angle

from the ith link to the horizontal plane. Furthermore, ui and wi are the control and

disturbance, respectively, at the ith joint. See [36] for more details on the equations

of motion.
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Figure 3.9: Decentralized adaptive command following and disturbance rejection for
a mass-spring-dashpot system with ten masses. The adaptive controller (3.30)–(3.33)
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Figure 3.10: All motion of the planar double pendulum is in the horizontal plane.

Let xi
�
= [ θ̇i θi ]

T and

Am,i =

⎡
⎢⎣ −2ηi −10ηi

1 0

⎤
⎥⎦ ,

where ηi > 0. In this example, we let ηi = 500. Note that (3.52)–(3.54) can be

expressed in state-space form, with the state xi and where all uncertainty is matched.

Let m1 = 2 kg, m2 = 3 kg, l1 = 2 m, l2 = 1 m, c1 = 10 kg−m2

rad
, c2 = 8 kg−m2

rad
, k1 = 7

N−m
rad

, and k2 = 5 N−m
rad

.

We let Qi = 3I2, B̂i = [ 1 0 ]T, and Ψ(t) = [ sin πt sin 1.5πt ]T. Next, let

Ωi = γiB̂iB̂
T
i , where γi = 5 × 104. The disturbances are w1(t) = sin πt and w2(t) =

2 sin 1.5πt. The adaptive control is implemented in feedback with the system (3.52)–

(3.54), where Γi = 107I2 and Υi = 104I8. Figure 3.11 provides a time history of θi(t)

and ui(t), where the initial conditions are θ1(0) = θ2(0) = 0 rad and θ̇1(0) = θ̇2(0) = 0

rad/s. The nonlinear system is run open-loop and closed-loop, with the decentralized

adaptive controller (3.30)–(3.33) implemented in feedback. 	

3.6 Conclusions

This chapter presented a decentralized adaptive controller for multi-input subsys-

tems with local full-state feedback. This controller is strictly decentralized, that is,
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Figure 3.11: Decentralized adaptive stabilization and disturbance rejection for a planar
double pendulum. The adaptive controller (3.30)–(3.33) is implemented in feedback
with the nonlinear system (3.52)–(3.54).

the controller requires only local full-state measurement and no information (includ-

ing reference-model dynamics) is shared between the local controllers. The controller

is effective for stabilization, command following, and disturbance rejection, where

the command and disturbance spectrum is known. Furthermore, the controller is

effective for systems with arbitrarily large subsystem interconnections provided that

the reference-model dynamics matrix Am,i admit a positive-definite solution to the

bounded-real Riccati equation (3.6). We presented sufficient conditions on Am,i such

that (3.6) is satisfied. In this case, the controller yields asymptotically perfect stabi-

lization, command following, and disturbance rejection.
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Chapter 4 Relative-Degree-One Output-Feedback Model Reference Adap-

tive Control with Exogenous Disturbance

This chapter presents classical model reference adaptive control (MRAC) for single-

input single-output (SISO) linear time-invariant systems that are minimum phase and

relative degree one. Classical MRAC is effective for stabilization and command fol-

lowing. In this chapter, we extend classical MRAC to address disturbance rejection,

where the disturbance is unknown, but generated from a Lyapunov-stable linear sys-

tem.

4.1 Introduction

In this chapter, we present the classical output-feedback MRAC technique for SISO

linear time-invariant systems that are minimum phase and relative degree one [1–6].

The goal of output-feedback MRAC is to design a control such that the output of

the plant asymptotically follows the output of a reference model. Relative-degree-one

output-feedback MRAC operates under the assumptions that the plant is minimum

phase, the sign of the high-frequency gain is known, and an upper bound on the order

of the plant is known. The classical output-feedback adaptive controller can be used

for stabilization and asymptotic command following. In this chapter, classical MRAC

is extended to address disturbance rejection. Specifically, the controller presented

in this chapter is effective for command following in the presence of an unknown

disturbance, provided that the disturbance is generated from a Lyapunov-stable linear

system (i.e., the disturbance is a sum of sinusoids).
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In Section 4.2, we introduce the output-feedback MRAC problem. We present an

ideal fixed-gain controller in Section 4.3, and address command following and distur-

bance rejection in Section 4.4. Examples are given in Section 4.5, and conclusions are

given in Section 4.6.

4.2 Problem Formulation

For t ≥ 0, consider the system

ẋ(t) = Ax(t) + Bu(t) + w(t), (4.1)

y(t) = Cx(t), (4.2)

where x(t) ∈ R
n is the state, x(0) ∈ R

n is the initial condition, u(t) ∈ R is the control

input, w(t) ∈ R
n is the exogenous disturbance, y(t) ∈ R is the output, and (A,B,C)

is controllable and observable.

We make the following assumptions regarding the system (4.1) and (4.2):

(A4.1) If λ ∈ C and det

⎡
⎢⎣ λIn − A B

C 0

⎤
⎥⎦ = 0, then Reλ < 0.

(A4.2) h
�
= CB is nonzero and the sign of h is known.

(A4.3) There exists a known integer n̄ such that n ≤ n̄.

The system (4.1) and (4.2) is otherwise unknown. Specifically, A, B, C, and x(0)

are otherwise unknown. Assumption (A4.1) states that the system (4.1) and (4.2)

is minimum phase, that is, the zeros of the transfer function from u to y lie in the

open-left-half complex plane. Assumption (A4.2) implies that the transfer function

from u to y is relative degree one.

Let p = d
dt

denote the differential operator. We make the following assumptions

regarding the exogenous disturbance w(t):
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(A4.4) For all t ≥ 0, w(t) is bounded and satisfies

αw(p)w(t) = 0, (4.3)

where αw(s) is a nonzero monic polynomial with distinct roots that lie on

the imaginary axis.

(A4.5) There exists a known integer n̄w such that nw
�
= degαw(s) ≤ n̄w.

Assumption (A4.4) implies that w(t) consists of a sum of sinusoids; however, the

disturbance w(t) and its spectrum are not assumed to be known.

Next, consider the reference model

αm(p)ym(t) = hmβm(p)r(t), (4.4)

where t ≥ 0; r(t) ∈ R is the bounded reference-model command; ym(t) ∈ R is the

reference-model output; αm(s) is a monic Hurwitz polynomial with degree nm; βm(s)

is a monic Hurwitz polynomial with degree nm−1; αm(s) and βm(s) are coprime; and

hm is nonzero. Define

Gm(s)
�
= hm

βm(s)

αm(s)
. (4.5)

We now define a strictly positive real transfer function and review the Meyer-

Kalman-Yakubovich lemma.

Definition 4.1. [3] A real rational function Ĝ(s), with relative degree one, is

strictly positive real if

(i) Ĝ(s) is asymptotically stable.

(ii) For all ω ∈ R, Re(Ĝ(jω)) > 0.
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(iii) limω→∞ ω2 Re(Ĝ(jω)) > 0.

Lemma 4.1. [4, 37] Let Â ∈ R
n̂×n̂, B̂ ∈ R

n̂×1, and Ĉ ∈ R
1×n̂. If Â is asymptoti-

cally stable and

Ĝ(s) = Ĉ(sI − Â)−1B̂ (4.6)

is strictly positive real, then there exist positive-definite matrices P̂ ∈ R
n̂×n̂ and Q̂ ∈

R
n̂×n̂ such that

ÂTP̂ + P̂ Â+ Q̂ = 0, (4.7)

P̂ B̂ = ĈT. (4.8)

We make the following assumption regarding the reference model (4.4):

(A4.6) Gm(s) is strictly positive real.

Our goal is to develop an adaptive controller that generates u(t) such that y(t)

asymptotically follows ym(t) in the presence of the disturbance w(t). Thus, our goal

is to drive the performance

z(t)
�
= y(t)− ym(t) (4.9)

to zero.

4.3 Ideal Controller

In this section, we develop the ideal fixed-gain controller. To construct this con-

troller, we assume that the plant (4.1) and (4.2) is known. In the following sections,

we relax this condition, but first we consider the ideal fixed-gain controller.
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Let nc be an integer that satisfies

nc ≥ max {nm − 1, n̄+ n̄w}, (4.10)

define

Λ(s)
�
=

[
snc−1 snc−2 · · · s 1

]T
, (4.11)

and let ρ(s) be a monic Hurwitz polynomial with degree nc − (nm − 1), which is non-

negative. Next, the matrix transfer function 1
βm(s)ρ(s)

Λ(s) has the minimal realization

(Af , Bf , Inc), where

Af
�
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−anc−1 · · · −a1 −a0

1 0 0

. . .
...

0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

nc×nc , Bf
�
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

nc×1, (4.12)

and a0, . . . , anc−1 ∈ R. Note that βm(s)ρ(s) = snc + anc−1s
nc−1 + · · ·+ a1s+ a0.

For t ≥ 0, consider the system (4.1) and (4.2) with u(t) = u∗(t), where u∗(t) is

the ideal control generated by an ideal fixed-gain controller. Specifically, for t ≥ 0,

consider the system

ẋ∗(t) = Ax∗(t) + Bu∗(t) + w(t), (4.13)

y∗(t) = Cx∗(t), (4.14)

where

u∗(t) = θT∗ φ∗(t), (4.15)
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and

θ∗
�
=

⎡
⎢⎢⎢⎢⎣

L∗

M∗

N∗

⎤
⎥⎥⎥⎥⎦ ∈ R

2nc+1, φ∗(t)
�
=

⎡
⎢⎢⎢⎢⎣

U∗(t)

Y∗(t)

r(t)

⎤
⎥⎥⎥⎥⎦ ∈ R

2nc+1, (4.16)

where L∗ ∈ R
nc , M∗ ∈ R

nc , and N∗ ∈ R; and U∗(t) ∈ R
nc and Y∗(t) ∈ R

nc satisfy

U̇∗(t) = AfU∗(t) + Bfu∗(t), (4.17)

Ẏ∗(t) = AfY∗(t) + Bfy∗(t), (4.18)

where U∗(0) ∈ R
nc and Y∗(0) ∈ R

nc .

Therefore, the ideal closed-loop system, which consists of (4.13)–(4.18), is given by

˙̃x∗(t) = Ãx̃∗(t) + B̃r(t) + D̃w(t), (4.19)

y∗(t) = C̃x̃∗(t), (4.20)

where

x̃∗(t)
�
=

⎡
⎢⎢⎢⎢⎣

x∗(t)

U∗(t)

Y∗(t)

⎤
⎥⎥⎥⎥⎦ ∈ R

n+2nc , (4.21)

Ã
�
=

⎡
⎢⎢⎢⎢⎣

A BLT
∗ BMT

∗

0 Af +BfL
T
∗ BfM

T
∗

BfC 0 Af

⎤
⎥⎥⎥⎥⎦ , B̃

�
= N∗

⎡
⎢⎢⎢⎢⎣

B

Bf

0

⎤
⎥⎥⎥⎥⎦ , D̃

�
=

⎡
⎢⎢⎢⎢⎣

I

0

0

⎤
⎥⎥⎥⎥⎦ , (4.22)

C̃
�
=

[
C 0 0

]
. (4.23)

The following lemma guarantees the existence of an ideal fixed-gain controller with

certain properties that are used to develop the adaptive controller in the following
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section.

Lemma 4.2. Let nc satisfy (4.10), and let N∗ = hm/h. Then, there exists L∗ ∈ R
nc

and M∗ ∈ R
nc such that the following statements hold regarding the ideal closed-loop

system (4.19)–(4.23):

(i) Ã is asymptotically stable.

(ii) For all initial conditions x̃∗(0) and all t ≥ 0,

αm(p)ρ(p)y∗(t) = hmβm(p)ρ(p)r(t). (4.24)

(iii) C̃(sI − Ã)−1B̃ = Gm(s).

(iv) For all initial conditions x̃∗(0), limt→∞[y∗(t)− ym(t)] = 0.

(v) There exists x̃∗(0) ∈ R
n+2nc such that for all t ≥ 0, y∗(t) = ym(t).

Proof. To show (ii), define Gyu(s)
�
= C(sI−A)−1B, and it follows from (A4.2) that

Gyu(s) can be written as

Gyu(s) = h
β(s)

α(s)
, (4.25)

where α(s) is a monic polynomial with degree n, and β(s) is a monic polynomial with

degree n − 1. Moreover, it follows from (A4.1) that β(s) is Hurwitz. Next, define

Gyw(s)
�
= C(sI − A)−1I, and it follows that Gyw(s) can be written as

Gyw(s) =
1

α(s)
σ(s), (4.26)

where σ(s) is a 1× n matrix polynomial with degree at most n− 1. Thus, it follows

from (4.13), (4.14), (4.25), and (4.26) that for all t ≥ 0,

α(p)y∗(t) = hβ(p)u∗(t) + σ(p)w(t). (4.27)
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Next, it follows from (4.15)–(4.18) that u∗(t) satisfies

βm(p)ρ(p)u∗(t) = LT
∗Λ(p)u∗(t) +MT

∗ Λ(p)y∗(t) +N∗βm(p)ρ(p)r(t),

which implies that

�∗(p)u∗(t) = m∗(p)y∗(t) +N∗βm(p)ρ(p)r(t), (4.28)

where �∗(s)
�
= βm(s)ρ(s)−LT

∗Λ(s) and m∗(s)
�
= MT

∗ Λ(s). Since βm(s)ρ(s) is a monic

polynomial with degree nc, it follows that the choice of L∗ ∈ R
nc uniquely determines

�∗(s) and admits all possible monic polynomials with degree nc. Therefore, it suffices

to show that there exists �∗(s) and m∗(s) such that (4.24) is satisfied.

Next, let �∗(s) = �̄∗(s)αw(s)β(s), where �̄∗(s) is a monic polynomial with degree

nc − nw − n+ 1. Now, it suffices to show that there exists �̄∗(s) and m∗(s) such that

(4.24) is satisfied.

Multiplying (4.27) by �̄∗(p)αw(p) yields

�̄∗(p)αw(p)α(p)y∗(t) = h�∗(p)u∗(t) + �̄∗(p)αw(p)σ(p)w(t).

Since (A4.4) implies that �̄∗(p)αw(p)σ(p)w(t) = 0, it follows that

�̄∗(p)αw(p)α(p)y∗(t) = h�∗(p)u∗(t). (4.29)

Next, combining (4.28) and (4.29) yields

�̄∗(p)αw(p)α(p)y∗(t) = hm∗(p)y∗(t) + hN∗βm(p)ρ(p)r(t),
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which implies that

[
�̄∗(p)αw(p)α(p)− hm∗(p)

]
y∗(t) = hN∗βm(p)ρ(p)r(t).

Since N∗ = hm/h, it follows that

[
�̄∗(p)αw(p)α(p)− hm∗(p)

]
y∗(t) = hmβm(p)ρ(p)r(t). (4.30)

Next, we show that there exist polynomials �̄∗(s) andm∗(s) such that �̄∗(s)αw(s)α(s)

− hm∗(s) = αm(s)ρ(s). First, note that deg �̄∗(s)αw(s)α(s) = nc + 1 = degαm(s)ρ(s)

and degm∗(s) = nc − 1. Thus, since �̄∗(s) is a monic polynomial with degree

nc−nw −n+1 and m∗(s) is a polynomial with degree nc− 1, it follows from [2, The-

orem 2.3.1] that the roots of �̄∗(s)αw(s)α(s)− hm∗(s) can be assigned arbitrarily by

choice of �̄∗(s) and m∗(s). Therefore, there exists polynomials �̄∗(s) and m∗(s) such

that

�̄∗(s)αw(s)α(s)− hm∗(s) = αm(s)ρ(s). (4.31)

For all t ≥ 0, (4.24) follows from (4.30) and (4.31). Thus, we have confirmed (ii).

To show (iii), note that Gm(s) = hmβm(s)/αm(s). Next, it follows from (4.19),

(4.20), and (4.24) that C̃(sI − Ã)−1B̃ = Gm(s), which confirms (iii).

To show (iv), it follows from (4.4) that ym(t) satisfies

αm(p)ρ(p)ym(t) = hmβm(p)ρ(p)r(t). (4.32)

Subtracting (4.32) from (4.24) implies that

αm(p)ρ(p)[y∗(t)− ym(t)] = 0. (4.33)
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Since αm(s)ρ(s) is Hurwitz, (4.33) implies that limt→∞[y∗(t) − ym(t)] = 0, which

confirms (iv).

To show (i), it follows from (4.24) and (iii) that the roots of αm(s)ρ(s) are eigenval-

ues of Ã. Furthermore, since �∗(s) = �̄∗(s)αw(s)β(s), it follows from (4.28) and (4.29)

that the roots of β(s) are eigenvalues of Ã. Thus, n+nc eigenvalues of Ã coincide with

the n + nc roots of αm(s)β(s)ρ(s). The remaining nc eigenvalues of Ã coincide with

the eigenvalues of Af , which are the roots of βm(s)ρ(s). It follows from (A4.1) that

β(s) is Hurwitz, and it follows from (A4.6) that αm(s) and βm(s) are Hurwitz. Since,

in addition, the eigenvalues of Ã coincide with the roots of αm(s)βm(s)β(s)ρ
2(s) and

ρ(s) is Hurwitz, it follows that Ã is asymptotically stable, which confirms (i).

To show (v), it follows from (iii) that (4.4) has the realization

˙̃xm(t) = Ãx̃m(t) + B̃r(t), (4.34)

ym = C̃x̃m(t), (4.35)

where x̃m(0) ∈ R
n+2nc .

Subtracting (4.34) and (4.35) from (4.19) and (4.20), respectively, yields

ė∗(t) =Ãe∗(t) + D̃w(t), (4.36)

z∗(t) =C̃e∗(t), (4.37)

where e∗(t)
�
= x̃∗(t)− x̃m(t), e∗(0) = x̃∗(0)− x̃m(0), and z∗(t)

�
= y∗(t)− ym(t).

Next, note that (4.3) has the realization

ẋw(t) = Awxw(t), (4.38)

w(t) = Cwxw(t), (4.39)

where Aw ∈ R
nw×nw , Cw ∈ R

n×nw , and xw(0) ∈ R
nw . Thus, it follows from (4.36)–
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(4.39) that

ės(t) = Ases(t), (4.40)

z∗(t) = Cses(t), (4.41)

where

es(t)
�
=

⎡
⎢⎣ e∗(t)

xw(t)

⎤
⎥⎦ , As

�
=

⎡
⎢⎣ Ã D̃Cw

0 Aw

⎤
⎥⎦ , (4.42)

Cs
�
=

[
C̃ 0

]
. (4.43)

It follows from (iv) that limt→∞ z∗(t) = 0. Since limt→∞ z∗(t) = 0 and Ã is asymp-

totically stable, [38, Lemma 3.1] implies that there exists S ∈ R
(n+2nc)×nw such that

ÃS − SAw = D̃Cw, (4.44)

C̃S = 0. (4.45)

Define

Q
�
=

⎡
⎢⎣ I −S

0 I

⎤
⎥⎦ ,

and it follows from (4.42)–(4.45) that

ēs(t)
�
= Q−1es(t), (4.46)

Ās
�
= Q−1AsQ =

⎡
⎢⎣ Ã −ÃS + D̃Cw + SAw

0 Aw

⎤
⎥⎦ =

⎡
⎢⎣ Ã 0

0 Aw

⎤
⎥⎦ , (4.47)

C̄s
�
= CsQ =

[
C̃ −C̃S

]
=

[
C̃ 0

]
. (4.48)
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Thus, using the change of basis (4.46)–(4.48), it follows from (4.40) and (4.41) that

˙̄es(t) = Āsēs(t), (4.49)

z∗(t) = C̄sēs(t), (4.50)

which implies that

z∗(t) = C̄se
Āstēs(0) = C̃eÃt[e∗(0) + Sxw(0)]. (4.51)

Next, let x̃∗(0) = x̃m(0) − Sxw(0), which implies that e∗(0) = −Sxw(0). Thus, it

follows from (4.51) that there exists x̃∗(0) such that for all t ≥ 0, z∗(t) = 0, which

confirms (v).

4.4 Relative-Degree-One Model Reference Adaptive Control with Distur-

bance Rejection

Let U(t) ∈ R
nc and Y (t) ∈ R

nc satisfy

U̇(t) = AfU(t) + Bfu(t), (4.52)

Ẏ (t) = AfY (t) + Bfy(t), (4.53)

where U(0) ∈ R
nc and Y (0) ∈ R

nc , and Af and Bf are given by (4.12). Define

φ(t)
�
=

⎡
⎢⎢⎢⎢⎣

U(t)

Y (t)

r(t)

⎤
⎥⎥⎥⎥⎦ ∈ R

2nc+1, (4.54)

and consider the controller

u(t) = θT(t)φ(t), (4.55)
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where θ : [ 0,∞) → R
2nc+1 is given by

θ̇(t) = − sgn (h)z(t)Γφ(t), (4.56)

and Γ ∈ R
(2nc+1)×(2nc+1) is positive definite. The MRAC architecture is shown in

Figure 4.1.

Plant

ẋ = Ax+Bu+ w

y = Cx

U

Y

y

φ

u

w

Adaptive

Controller

u = θTφ

U̇ = AfU +Bfu

Ẏ = AfY +Bfy

Reference Model

αm(p)ym = hmβm(p)r

rym

z

θ
Adaptation

θ̇ = − sgn (h)zΓφ

Figure 4.1: Schematic diagram of MRAC architecture given by (4.1), (4.2), and
(4.52)–(4.56).

Theorem 4.1. Consider the closed-loop system (4.1), (4.2), and (4.52)–(4.56),

where nc satisfies (4.10) and the open-loop system (4.1) and (4.2) satisfies assump-

tions (A4.1)–(A4.6). Then, for all initial conditions x(0) ∈ R
n, U(0) ∈ R

nc, Y (0) ∈
R

nc, and θ(0) ∈ R
2nc+1, the following statements hold:
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(i) x(t), u(t), θ(t), U(t), and Y (t) are bounded.

(ii) limt→∞ z(t) = 0.

Proof. Let θ∗ ∈ R
2nc+1 be given by (4.16), where N∗

�
= hm/h, and L∗ ∈ R

nc

and M∗ ∈ R
nc are the ideal controller parameters given by Lemma 4.2. Define

θ̃(t)
�
= θ(t) − θ∗, and it follows that the closed-loop system (4.1), (4.2), and (4.52)–

(4.55) is given by

˙̃x(t) = Ãx̃(t) +
1

N∗
B̃θ̃T(t)φ(t) + B̃r(t) + D̃w(t), (4.57)

y(t) = C̃x̃(t), (4.58)

where Ã, B̃, C̃, and D̃ are given by (4.22) and (4.23), and

x̃(t)
�
=

⎡
⎢⎢⎢⎢⎣

x(t)

U(t)

Y (t)

⎤
⎥⎥⎥⎥⎦ ∈ R

n+2nc .

Next, consider the ideal closed-loop system (4.19)–(4.23), where N∗ = hm/h; L∗

and M∗ are given by Lemma 4.2; and x̃∗(0) is the initial condition given by part (v)

of Lemma 4.2.

Define e(t)
�
= x̃(t)− x̃∗(t), and subtracting (4.19) and (4.20) from (4.57) and (4.58),

respectively, yields

ė(t) = Ãe(t) +
1

N∗
B̃θ̃T(t)φ(t), (4.59)

z(t) = C̃e(t), (4.60)

where part (v) of Lemma 4.2 implies that y(t)− y∗(t) = y(t)− ym(t) = z(t).

Assumption (A4.6) and part (iii) of Lemma 4.2 imply that Gm(s) = C̃(sI− Ã)−1B̃
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is strictly positive real. Since, in addition, part (i) of Lemma 4.2 implies that Ã is

asymptotically stable, it follows from Lemma 4.1 that there exist positive-definite

matrices P ∈ R
(n+2nc)×(n+2nc) and Q ∈ R

(n+2nc)×(n+2nc) such that

ÃTP + PÃ+Q = 0, (4.61)

PB̃ = C̃T. (4.62)

Next, define the Lyapunov-like function

V (e, θ̃)
�
= eTPe+

1

|N∗| θ̃
TΓ−1θ̃, (4.63)

where P ∈ R
(n+2nc)×(n+2nc) is the positive-definite solution to (4.61).

Evaluating the derivative of V along the trajectory of (4.56) and (4.59), and using

(4.61) and (4.62) yields

V̇ (e, θ̃) = eTP

(
Ãe+

1

N∗
B̃θ̃Tφ

)
+

(
Ãe+

1

N∗
B̃θ̃Tφ

)T

Pe+ 2
1

|N∗| θ̃
TΓ−1θ̇

= −eTQe+ 2

(
1

N∗

)
eTPB̃θ̃Tφ+ 2

1

|N∗| θ̃
TΓ−1θ̇

= −eTQe+ 2

(
1

N∗

)
eTC̃Tθ̃Tφ+ 2

1

|N∗| θ̃
TΓ−1θ̇ (4.64)

= −eTQe+ 2zθ̃Tφ

(
1

N∗
− sgn (h)

|N∗|
)
. (4.65)

Next, it follows from (4.62) that

hm = C̃B̃ = B̃TPB̃T > 0. (4.66)

Since N∗ = hm/h, it follows from (4.66) that sgn (h) = sgn (hm/h) = sgn (N∗). Then,

67



it follows from (4.65) that V̇ (e, θ̃) = −eTQe, which implies that

0 ≤ eT(t)Qe(t) = −V̇ (e(t), θ̃(t)). (4.67)

Integrating (4.67) from 0 to ∞ yields

0 ≤
∫ ∞

0

eT(t)Qe(t) dt = V (e(0), θ̃(0))− lim
t→∞

V (e(t), θ̃(t)) ≤ V (e(0), θ̃(0)), (4.68)

where the upper and lower bounds imply that
∫∞
0

eT(t)Qe(t) exists. Thus, it follows

from (4.68) that V is bounded, which implies that e and θ̃ are bounded. Since r and

w are bounded and Ã is asymptotically stable, (4.19) implies that x̃∗ is bounded.

Since e and x̃∗ are bounded, it follows that x̃ is bounded, which implies that x, U ,

and Y are bounded. Then, (4.54) and (4.55) imply that u is bounded. Thus, x, u, θ,

U , and Y are bounded, which confirms (i).

To show (ii), it follows from (4.68) that
∫∞
0

eT(t)Qe(t) dt exists. Next, since e, θ̃,

and φ are bounded, (4.59) implies that ė is bounded. Next, since e and ė are bounded,

it follows that

d

dt

[
eT(t)Qe(t)

]
= 2ėT(t)Qe(t)

is bounded. Thus, f(t)
�
= eT(t)Qe(t) is uniformly continuous. Since

∫∞
0

f(t) dt exists

and f(t) is uniformly continuous, Barbalat’s Lemma implies that limt→∞ f(t) = 0.

Thus, limt→∞ e(t) = 0, and it follows from (4.60) that limt→∞ z(t) = 0, which confirms

(ii).

4.5 Numerical Examples

We now present examples to demonstrate adaptive command following for SISO

systems that are relative degree one and minimum phase.
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Example 4.1. Adaptive command following for an asymptotically stable SISO

relative-degree-one system. Consider the system (4.1) and (4.2), where

A =

⎡
⎢⎣ −3 −2

1 0

⎤
⎥⎦ , B =

⎡
⎢⎣ 1

0

⎤
⎥⎦ , (4.69)

C =

[
1 8

]
, (4.70)

which satisfies (A4.1) and (A4.2). Note that A in (4.69) is asymptotically stable with

eigenvalues at −2 and −1. We let n̄ = n = 2, which satisfies (A4.3). For this example,

we let w(t) = 0, and consider the command following problem without disturbance.

Next, consider the reference model (4.5), where

Gm(s) =
2(s+ 9)

s2 + 7s+ 6
, (4.71)

which satisfies (A4.6). The reference-model command is r(t) = 0.4 sin 2πt+0.1 sin πt.

Next, let nc = 2, which satisfies (4.10), and consider (4.52) and (4.53), where

Af =

⎡
⎢⎣ −14 −45

1 0

⎤
⎥⎦ , (4.72)

which has eigenvalues at −9 and −5. Note that Af has an eigenvalue equal to the

zero of Gm(s), which is −9.

The adaptive controller (4.52)–(4.56) is implemented in feedback with the system

(4.1), (4.2), (4.69), (4.70), and (4.72), where Γ = 105I5. Figure 4.2 provides a time

history of y(t), ym(t), z(t), and u(t), where the initial conditions are zero. The system

is allowed to run open-loop for 5 seconds, then the adaptive controller is turned on.

The performance z(t) converges asymptotically to zero. 	
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Figure 4.2: Adaptive command following for an asymptotically stable SISO relative-
degree-one system. The adaptive controller (4.52)–(4.56) is implemented in feedback
with the system (4.1), (4.2), (4.69), (4.70), and (4.72). The performance z(t) con-
verges asymptotically to zero.

Example 4.2. Adaptive command following and disturbance rejection for an asymp-

totically stable SISO relative-degree-one system. Reconsider the system in Exam-

ple 4.1, but consider nonzero disturbance. The plant and reference-model param-

eters, satisfying (A4.1)–(A4.3) and (A4.6), are the same as in Example 4.1. The

disturbance is w(t)
�
= [ w1(t) w2(t) ]T, where we let w1(t) = 0.02 sin 0.5πt and

w2(t) = 0.04 sin 2πt, which satisfies (A4.4). Note that the disturbance spectrum

is unknown and the disturbance is unmeasured. We let n̄w = nw = 4, which satisfies
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(A4.5). Next, let nc = 6, which satisfies (4.10), and consider (4.52) and (4.53), where

Af =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−18 −107 −268 −327 −194 −45

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.73)

which has eigenvalues at −9, −5, and four at −1.

The adaptive controller (4.52)–(4.56) is implemented in feedback with the system

(4.1), (4.2), (4.69), and (4.70), where Γ = 105I13. Figure 4.3 provides a time history

of y(t), ym(t), z(t), and u(t), where the initial conditions are zero. The system is

allowed to run open-loop for 5 seconds, then the adaptive controller is turned on.

The performance z(t) converges asymptotically to zero. Thus, y(t) follows ym(t),

while rejecting the disturbance w(t). 	

Example 4.3. Adaptive command following for an unstable SISO relative degree-

one-system. Consider the system (4.1) and (4.2), where

A =

⎡
⎢⎣ −1 2

1 0

⎤
⎥⎦ , B =

⎡
⎢⎣ 1

0

⎤
⎥⎦ , (4.74)

C =

[
1 6

]
, (4.75)

which satisfies (A4.1) and (A4.2). Note that A in (4.74) is unstable with eigenvalues

at −2 and 1. We let n̄ = n = 2, which satisfies (A4.3). For this example, we let

w(t) = 0, and consider the command following problem without disturbance. Next,
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Figure 4.3: Adaptive command following and disturbance rejection for an asymptoti-
cally stable SISO relative-degree-one system. The adaptive controller (4.52)–(4.56) is
implemented in feedback with the system (4.1), (4.2), (4.69), (4.70), and (4.73). The
performance z(t) converges asymptotically to zero.

consider the reference model (4.5), where

Gm(s) =
2(s+ 4)

s2 + 7s+ 6
, (4.76)

which satisfies (A4.6). The reference-model command is r(t) = 4 sin 2πt+3 sin 1.5πt.

Next, let nc = 2, which satisfies (4.10), and consider (4.52) and (4.53), where

Af =

⎡
⎢⎣ −9 −20

1 0

⎤
⎥⎦ , (4.77)
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which has eigenvalues at −5 and −4. Note that Af has an eigenvalue equal to the

zero of Gm(s), which is −4.

The adaptive controller (4.52)–(4.56) is implemented in feedback with the system

(4.1), (4.2), (4.74), (4.75), and (4.77), where Γ = 102I5. Figure 4.4 provides a time

history of y(t), ym(t), z(t), and u(t), where the initial conditions are zero. The

performance z(t) converges asymptotically to zero. 	
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Figure 4.4: Adaptive command following for an unstable SISO relative-degree-one
system. The adaptive controller (4.52)–(4.56) is implemented in feedback with the
system (4.1), (4.2), (4.74), (4.75), and (4.77). The performance z(t) converges asymp-
totically to zero.
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4.6 Conclusions

This chapter presented an adaptive controller for SISO linear time-invariant systems

that are minimum phase and relative degree one. This controller is effective for

command following and disturbance rejection, where the disturbance spectrum is

unknown.
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Chapter 5 Decentralized Relative-Degree-One Output-Feedback Adaptive

Control with Exogenous Disturbance

This chapter presents a strictly decentralized model reference adaptive controller

for single-input single-output (SISO) linear time-invariant subsystems that are min-

imum phase and relative degree one. This decentralized adaptive controller requires

only local output measurement and no information is shared between the local con-

trollers. The controller is effective for stabilization and disturbance rejection, where

the disturbance is unknown, but generated from a Lyapunov-stable linear system.

5.1 Introduction

In this chapter, we present an output-feedback decentralized model reference adap-

tive control (MRAC) technique for SISO linear time-invariant subsystems that are

minimum phase and relative degree one. The decentralized adaptive controller is

strictly decentralized, meaning that no information is shared between local controllers.

Moreover, the decentralized adaptive controller presented in this chapter is effective

for stabilization and disturbance rejection in the presence of an unknown disturbance,

provided that the disturbance is generated from a Lyapunov-stable linear system (i.e.,

the disturbance is a sum of sinusoids). The decentralized adaptive controller operates

under the assumption that the magnitude of the subsystem interconnections satisfy

a bounding condition.

In Section 5.2, we introduce the output-feedback decentralized MRAC problem.

We present an ideal decentralized controller in Section 5.3. We address adaptive
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stabilization and disturbance rejection in Section 5.4. Examples are given in Section

5.5, and conclusions are given in Section 5.6.

5.2 Problem Formulation

For t ≥ 0, consider the system

ẋ1(t) =A1x1(t) + B1u1(t) + B1

∑
j∈I\{1}

δ1,jyj(t) +D1w(t), (5.1)

...

ẋ�(t) =A�x�(t) + B�u�(t) + B�

∑
j∈I\{�}

δ�,jyj(t) +D�w(t), (5.2)

y1(t) = C1x1(t), (5.3)

...

y�(t) = C�x�(t), (5.4)

where I
�
= {1, 2, . . . , �}, for all i ∈ I, xi(t) ∈ R

ni is the state, xi(0) ∈ R
ni is the initial

condition, ui(t) ∈ R is the control input, w(t) ∈ R
m is the exogenous disturbance,

yi(t) ∈ R is the output, and (Ai, Bi, Ci) is controllable and observable.

For each i ∈ I, xi is the local state, ui is the local control, and yi is the local output.

Moreover, for each i ∈ I, the local control ui uses feedback of the local output yi, but

does not use feedback of the nonlocal outputs {yj}j∈I\{i}. Unless otherwise stated, all
statements in this chapter that involve the subscript i are for all i ∈ I.

We make the following assumptions regarding the system (5.1)–(5.4):

(A5.1) If λ ∈ C and det

⎡
⎢⎣ λIni

− Ai Bi

Ci 0

⎤
⎥⎦ = 0, then Reλ < 0.

(A5.2) hi
�
= CiBi is nonzero and the sign of hi is known.

(A5.3) There exists a known integer n̄i such that ni ≤ n̄i.
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The system (5.1)–(5.4) is otherwise unknown. Specifically, A1, . . . , A�, B1, . . . , B�,

C1, . . . , C�, D1, . . . , D�, δ1,1, . . . , δ1,�, . . . , δ�,�, and x1(0), . . . , x�(0) are otherwise un-

known. Assumption (A5.1) states that each local subsystem of (5.1)–(5.4) is minimum

phase, that is, the zeros of the transfer function from ui to yi lie in the open-left-half

complex plane. Assumption (A5.2) implies that the transfer function from ui to yi is

relative degree one.

Let p = d
dt

denote the differential operator. We make the following assumptions

regarding the exogenous disturbance w(t):

(A5.4) For all t ≥ 0, w(t) is bounded and satisfies

αw(p)w(t) = 0, (5.5)

where αw(s) is a nonzero monic polynomial with distinct roots that lie on

the imaginary axis.

(A5.5) There exists a known integer n̄w such that nw
�
= degαw(s) ≤ n̄w.

Assumption (A5.4) implies that w(t) consists of a sum of sinusoids; however, the

disturbance w(t) and its spectrum are not assumed to be known.

Next, consider the reference model

αm,i(p)ym,i(t) = hm,iβm,i(p)ri(t), (5.6)

where t ≥ 0; ri(t) ∈ R is the bounded reference-model command; ym,i(t) ∈ R is

the reference-model output; αm,i(s) is a monic Hurwitz polynomial with degree nm,i;

βm,i(s) is a monic Hurwitz polynomial with degree nm,i − 1; αm,i(s) and βm,i(s) are

coprime; and hm,i is nonzero. Define

Gm,i(s)
�
= hm,i

βm,i(s)

αm,i(s)
, (5.7)
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let γi > 0, and define

Fi(s)
�
=

Gm,i(s)

1− γiGm,i(s)
=

hm,iβm,i(s)

αm,i(s)− γihm,iβm,i(s)
. (5.8)

We make the following assumption regarding the reference model (5.7):

(A5.6) Fi(s) is strictly positive real.

Note that Fi(s) depends on the parameter γi > 0, which is discussed in the following

section.

Our goal is to develop an adaptive controller that generates the control ui(t) such

that yi(t) asymptotically follows ym,i(t) in the presence of the disturbance w(t). Thus,

our goal is to drive the performance

zi(t)
�
= yi(t)− ym,i(t)

to zero.

5.3 Ideal Decentralized Controller

In this section, we develop the ideal decentralized controller. To construct this

controller, we assume the plant (5.1)–(5.4) is known. In the following sections, we

relax this assumption, but first we consider the ideal decentralized controller.

Let nc,i be an integer that satisfies

nc,i ≥ max{nm,i − 1, n̄i + n̄w}, (5.9)

define

Λi(s)
�
=

[
snc,i−1 snc,i−2 · · · s 1

]T
, (5.10)
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and let ρi(s) be a monic Hurwitz polynomial with degree nc,i − (nm,i − 1), which

is nonnegative. Next, the matrix transfer function 1
βm,i(s)ρi(s)

Λi(s) has the minimal

realization (Af,i, Bf,i, Inc,i
), where

Af,i
�
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−anc,i−1 · · · −a1,i −a0,i

1 0 0

. . .
...

0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

nc,i×nc,i , Bf,i
�
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

nc,i×1, (5.11)

and a0,i, . . . , anc,i−1 ∈ R such that βm,i(s)ρi(s) = snc,i +anc,i−1s
nc,i−1+ · · ·+a1,is+a0,i.

For t ≥ 0, consider the system (5.1)–(5.4) with ui(t) = u∗,i(t), where u∗,i(t) is the

ideal control generated by an ideal decentralized controller. Specifically, for t ≥ 0,

consider the system

ẋ∗,i(t) = Aix∗,i(t) + Biu∗,i(t) + Bi

∑
j∈I\{i}

δi,jy∗,j(t) +Diw(t), (5.12)

y∗,i(t) = Cix∗,i(t), (5.13)

where

u∗,i(t) = θT∗,iφ∗,i(t), (5.14)

and

θ∗,i
�
=

⎡
⎢⎢⎢⎢⎣

L∗,i

M∗,i

N∗,i

⎤
⎥⎥⎥⎥⎦ ∈ R

2nc,i+1, φ∗,i(t)
�
=

⎡
⎢⎢⎢⎢⎣

U∗,i(t)

Y∗,i(t)

ri(t)

⎤
⎥⎥⎥⎥⎦ ∈ R

2nc,i+1, (5.15)

where L∗,i ∈ R
nc,i , M∗,i ∈ R

nc,i , and N∗,i ∈ R; and U∗,i(t) ∈ R
nc,i and Y∗,i(t) ∈ R

nc,i
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satisfy

U̇∗,i(t) = Af,iU∗,i(t) + Bf,iu∗,i(t), (5.16)

Ẏ∗,i(t) = Af,iY∗,i(t) + Bf,iy∗,i(t), (5.17)

where U∗,i(0) ∈ R
nc,i and Y∗,i(0) ∈ R

nc,i .

Therefore, the ideal closed-loop system, which consists of (5.12)–(5.17), is given by

˙̃x∗,i(t) = Ãix̃∗,i(t) + B̃iri(t) + Ẽi

∑
j∈I\{i}

δi,jC̃jx̃∗,j(t) + D̃iw(t), (5.18)

y∗,i(t) = C̃ix̃∗,i(t), (5.19)

where

x̃∗,i(t)
�
=

⎡
⎢⎢⎢⎢⎣

x∗,i(t)

U∗,i(t)

Y∗,i(t)

⎤
⎥⎥⎥⎥⎦ ∈ R

ni+2nc,i , (5.20)

Ãi
�
=

⎡
⎢⎢⎢⎢⎣

Ai BiL
T
∗,i BiM

T
∗,i

0 Af,i +Bf,iL
T
∗,i Bf,iM

T
∗,i

Bf,iCi 0 Af,i

⎤
⎥⎥⎥⎥⎦ , B̃i

�
= N∗,i

⎡
⎢⎢⎢⎢⎣

Bi

Bf,i

0

⎤
⎥⎥⎥⎥⎦ , (5.21)

C̃i
�
=

[
Ci 0 0

]
, (5.22)

Ẽi
�
=

⎡
⎢⎢⎢⎢⎣

Bi

0

0

⎤
⎥⎥⎥⎥⎦ , D̃i

�
=

⎡
⎢⎢⎢⎢⎣

Di

0

0

⎤
⎥⎥⎥⎥⎦ . (5.23)

The following result provides properties of the ideal closed-loop system (5.18)–

(5.23).

Lemma 5.1. Let nc,i satisfy (5.9), and let N∗,i = hm,i/hi. Then, there exists
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L∗,i ∈ R
nc,i and M∗,i ∈ R

nc,i such that the following statements hold regarding the

ideal closed-loop system (5.18)–(5.23):

(i) Ãi is asymptotically stable.

(ii) For all initial conditions x̃∗,1(0), . . . , x̃∗,�(0), all t ≥ 0, and all i ∈ I,

αm,i(p)ρi(p)y∗,i(t) = hm,iβm,i(p)ρi(p)ri(t) + hi�∗,i(p)
[ ∑

j∈I\{i}
δi,jy∗,j(t)

]
, (5.24)

where �∗,i(s)
�
= βm,i(s)ρi(s)− LT

∗,iΛi(s).

(iii) C̃i(sI − Ãi)
−1B̃i = Gm,i(s).

Proof. To show (ii), define Gyu,i(s)
�
= Ci(sI − Ai)

−1Bi, and it follows from (A5.2)

that Gyu,i(s) can be written as

Gyu,i(s) = hi
βi(s)

αi(s)
, (5.25)

where αi(s) is a monic polynomial with degree ni, and βi(s) is a monic polynomial

with degree ni − 1. Moreover, it follows from (A5.1) that βi(s) is Hurwitz. Next,

define Gyw,i(s)
�
= Ci(sI − Ai)

−1Di, and it follows that Gyw,i(s) can be written as

Gyw,i(s) =
1

αi(s)
σi(s), (5.26)

where σi(s) is a 1×m matrix polynomial with degree at most ni−1. Thus, it follows

from (5.12), (5.13), (5.25), and (5.26) that for all t ≥ 0,

αi(p)y∗,i(t) = hiβi(p)u∗,i(t) + hiβi(p)

[ ∑
j∈I\{i}

δi,jy∗,j(t)
]
+ σi(p)w(t). (5.27)
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Next, it follows from (5.14)–(5.17) that u∗,i(t) satisfies

βm,i(p)ρi(p)u∗,i(t) = LT
∗,iΛi(p)u∗,i(t) +MT

∗,iΛi(p)y∗,i(t) +N∗,iβm,i(p)ρi(p)ri(t),

which implies that

�∗,i(p)u∗,i(t) = m∗,i(p)y∗,i(t) +N∗,iβm,i(p)ρi(p)ri(t), (5.28)

where m∗,i(s)
�
= MT

∗,iΛi(s). Since βm,i(s)ρi(s) is a monic polynomial with degree nc,i,

it follows that the choice of L∗,i ∈ R
nc,i uniquely determines �∗,i(s) and admits all

possible monic polynomials with degree nc,i. Therefore, it suffices to show that there

exists �∗,i(s) and m∗,i(s) such that (5.24) is satisfied.

Next, let �∗,i(s) = �̄∗,i(s)αw(s)βi(s), where �̄∗,i(s) is a monic polynomial with degree

nc,i − nw − ni + 1. Now, it suffices to show that there exists �̄∗,i(s) and m∗,i(s) such

that (5.24) is satisfied.

Multiplying (5.27) by �̄∗,i(p)αw(p) yields

�̄∗,i(p)αw(p)αi(p)y∗,i(t) = hi�∗,i(p)u∗,i(t) + hi�∗,i(p)
[ ∑

j∈I\{i}
δi,jy∗,j(t)

]

+ �̄∗,i(p)αw(p)σi(p)w(t). (5.29)

Since (A5.4) implies that �̄∗,i(p)αw(p)σi(p)w(t) = 0, it follows from (5.29) that

�̄∗,i(p)αw(p)αi(p)y∗,i(t) = hi�∗,i(p)u∗,i(t) + hi�∗,i(p)
[ ∑

j∈I\{i}
δi,jy∗,j(t)

]
. (5.30)

Next, combining (5.28) and (5.30) yields

�̄∗,i(p)αw(p)αi(p)y∗,i(t) = him∗,i(p)y∗,i(t) + hiN∗,iβm,i(p)ρi(p)ri(t)
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+ hi�∗,i(p)
[ ∑

j∈I\{i}
δi,jy∗,j(t)

]
,

which implies that

[
�̄∗,i(p)αw(p)αi(p)− him∗,i(p)

]
y∗,i(t) = hiN∗,iβm,i(p)ρi(p)ri(t)

+ hi�∗,i(p)
[ ∑

j∈I\{i}
δi,jy∗,j(t)

]
.

Since N∗,i = hm,i/hi, it follows that

[
�̄∗,i(p)αw(p)αi(p)− him∗,i(p)

]
y∗,i(t) = hm,iβm,i(p)ρi(p)ri(t)

+ hi�∗,i(p)
[ ∑

j∈I\{i}
δi,jy∗,j(t)

]
. (5.31)

Next, we show that there exist polynomials �̄∗,i(s) and m∗,i(s) such that

�̄∗,i(s)αw(s)αi(s) − him∗,i(s) = αm,i(s)ρi(s). First, note that deg �̄∗,i(s)αw(s)αi(s) =

nc,i + 1 = degαm,i(s)ρi(s) and degm∗,i(s) = nc,i − 1. Thus, since �̄∗,i(s) is a monic

polynomial with degree nc,i−nw−ni+1 andm∗,i(s) is a polynomial with degree nc,i−1,

it follows from [2, Theorem 2.3.1] that the roots of �̄∗,i(s)αw(s)αi(s)−him∗,i(s) can be

assigned arbitrarily by choice of �̄∗,i(s) andm∗,i(s). Therefore, there exist polynomials

�̄∗,i(s) and m∗,i(s) such that

�̄∗,i(s)αw(s)αi(s)− him∗,i(s) = αm,i(s)ρi(s). (5.32)

For all t ≥ 0, (5.24) follows from (5.31) and (5.32). Thus, we have confirmed (ii).

To show (iii), note that Gm,i(s) = hm,iβm,i(s)/αm,i(s). Next, it follows from (5.18),

(5.19), and (5.24) that C̃i(sI − Ãi)
−1B̃i = Gm,i(s), which confirms (iii).

To show (i), it follows from (5.24) and (iii) that the roots of αm,i(s)ρi(s) are eigen-

values of Ãi. Furthermore, since �∗,i(s) = �̄∗,i(s)αw(s)βi(s), it follows from (5.28) and
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(5.30) that the roots of βi(s) are eigenvalues of Ãi. Thus, ni + nc,i eigenvalues of Ãi

coincide with the ni + nc,i roots of αm,i(s)βi(s)ρi(s). The remaining nc,i eigenvalues

of Ãi coincide with the eigenvalues of Af,i, which are the roots of βm,i(s)ρi(s). It

follows from (A5.1) that βi(s) is Hurwitz, and it follows from (A5.6) that αm,i(s) and

βm,i(s) are Hurwitz. Since, in addition, the eigenvalues of Ãi coincide with the roots

of αm,i(s)βm,i(s)βi(s)ρ
2
i (s) and ρi(s) is Hurwitz, it follows that Ãi is asymptotically

stable, which confirms (i).

Let N∗,i = hm,i/hi, and let L∗,i ∈ R
nc,i and M∗,i ∈ R

nc,i be the ideal controller

parameters given by Lemma 5.1. Part (iii) of Lemma 5.1 implies that Gm,i(s) =

C̃i(sI − Ãi)
−1B̃i, and thus, it follows from (5.8) that

Fi(s) = C̃i(sI − Ãi − γiB̃iC̃i)
−1B̃i. (5.33)

Moreover, since (A5.6) states that Fi(s) is strictly positive real, and part (i) of Lemma

5.1 states that Ãi is asymptotically stable, it follows from Lemma 4.1 that there exist

positive-definite matrices Pi ∈ R
(ni+2nc,i)×(ni+2nc,i) and Qi ∈ R

(ni+2nc,i)×(ni+2nc,i) such

that

(Ãi + γiB̃iC̃i)
TPi + Pi(Ãi + γiB̃iC̃i) +Qi = 0, (5.34)

PiB̃i = C̃T
i . (5.35)

Next, we invoke an assumption regarding the interconnections δ1,i, . . . , δ�,i:

(A5.7) For all i ∈ I,

∑
j∈I\{i}

δ2j,i ≤ 2γi

(
min
j∈I

λmin (Qj)

�λmax (PjẼjẼT
j Pj)

)
. (5.36)

Assumption (A5.7) limits the magnitude of the interconnections. Note that the
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upper bound given by (5.36) depends on γi, which can be arbitrarily large provided

that (A5.6) is satisfied. However, (A5.6) also involves the reference model (5.7), which

affects Qi and Pi, which also appear in the upper bound given by (5.36).

The next result provides additional properties of the ideal closed-loop system (5.18)–

(5.23) with ri(t) ≡ 0.

Lemma 5.2. Consider the ideal closed-loop system (5.18)–(5.23), which satisfies

assumptions (A5.1)–(A5.7). Let N∗,i = hm,i/hi, and let L∗,i ∈ R
nc,i and M∗,i ∈ R

nc,i

be given by Lemma 5.1. Assume that ri(t) ≡ 0. Then, the following statements hold:

(i) If w(t) ≡ 0, then the equilibrium (x̃∗,1, . . . , x̃∗,�) ≡ 0 of (5.18) is asymptotically

stable.

(ii) For all initial conditions x̃∗,1(0), . . . , x̃∗,�(0) ∈ R
ni+2nc,i, limt→∞ y∗,1(t) = · · · =

limt→∞ y∗,�(t) = 0.

(iii) There exists x̃∗,1(0), . . . , x̃∗,�(0) ∈ R
ni+2nc,i such that for all t ≥ 0, y∗,1(t) =

· · · = y∗,�(t) = 0.

Proof. To show (i), define the partial Lyapunov function

Vi(x̃∗,i)
�
= x̃T

∗,iPix̃∗,i, (5.37)

where Pi is the positive-definite solution to (5.34). Evaluating the derivative of Vi

along the trajectory of (5.18) with ri(t) ≡ 0 and w(t) ≡ 0 yields

V̇i(x̃∗,i) = x̃T
∗,i(Ã

T
i Pi + PiÃi)x̃∗,i + 2

∑
j∈I\{i}

δi,jx̃
T
∗,iPiẼiC̃jx̃∗,j. (5.38)

Next, define

εi
�
=

λmin (Qi)

�λmax (PiẼiẼT
i Pi)

, (5.39)
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and note that

0 ≤
∑

j∈I\{i}

[√
εiẼ

T
i Pix̃∗,i − 1√

εi
δi,jC̃jx̃∗,j

]T[√
εiẼ

T
i Pix̃∗,i − 1√

εi
δi,jC̃jx̃∗,j

]

= (�− 1)εix̃
T
∗,iPiẼiẼ

T
i Pix̃∗,i +

∑
j∈I\{i}

1

εi
δ2i,jx̃

T
∗,jC̃

T
j C̃jx̃∗,j − 2δi,jx̃

T
∗,iPiẼiC̃jx̃∗,j

≤ (�− 1)λmin (Qi)

�
x̃T
∗,ix̃∗,i +

∑
j∈I\{i}

1

εi
δ2i,jx̃

T
∗,jC̃

T
j C̃jx̃∗,j − 2δi,jx̃

T
∗,iPiẼiC̃jx̃∗,j,

which implies that

∑
j∈I\{i}

2δi,jx̃
T
∗,iPiẼiC̃jx̃∗,j ≤ (�− 1)λmin (Qi)

�
x̃T
∗,ix̃∗,i +

1

εi

∑
j∈I\{i}

δ2i,jx̃
T
∗,jC̃

T
j C̃jx̃∗,j.

(5.40)

Next, using (5.40), it follows from (5.38) that

V̇i(x̃∗,i) ≤ x̃T
∗,i

(
ÃT

i Pi + PiÃi +
(�− 1)λmin (Qi)

�
I

)
x̃∗,i +

1

εi

∑
j∈I\{i}

δ2i,jx̃
T
∗,jC̃

T
j C̃jx̃∗,j.

(5.41)

Next, define the Lyapunov function

V (x̃∗,1, . . . , x̃∗,�)
�
=
∑
i∈I

Vi(x̃∗,i),

and it follows from (5.41) that the derivative of V along the trajectory of (5.18) is

given by

V̇ (x̃∗,1, . . . , x̃∗,�) =
∑
i∈I

V̇i(x̃∗,i)

≤
∑
i∈I

[
x̃T
∗,i

(
ÃT

i Pi + PiÃi +
(�− 1)λmin (Qi)

�
I

)
x̃∗,i
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+
1

εi

∑
j∈I\{i}

δ2i,jx̃
T
∗,jC̃

T
j C̃jx̃∗,j

]

=
∑
i∈I

x̃T
∗,i

(
ÃT

i Pi + PiÃi +
(�− 1)λmin (Qi)

�
I

)
x̃∗,i

+
∑
j∈I

∑
i∈I\{j}

1

εi
δ2i,jx̃

T
∗,jC̃

T
j C̃jx̃∗,j

=
∑
i∈I

x̃T
∗,i

(
ÃT

i Pi + PiÃi +
(�− 1)λmin (Qi)

�
I

)
x̃∗,i

+
∑
i∈I

x̃T
∗,iC̃

T
i C̃ix̃∗,i

( ∑
j∈I\{i}

1

εj
δ2j,i

)

≤
∑
i∈I

x̃T
∗,i

(
ÃT

i Pi + PiÃi +
(�− 1)λmin (Qi)

�
I

)
x̃∗,i

+
1

ε
x̃T
∗,iC̃

T
i C̃ix̃∗,i

( ∑
j∈I\{i}

δ2j,i

)
, (5.42)

where ε
�
= minj∈I εj. Since (A5.7) implies that

∑
j∈I\{i} δ

2
j,i ≤ 2γiε, it follows from

(5.34), (5.35), and (5.42) that

V̇ (x̃∗,1, . . . , x̃∗,�) ≤
∑
i∈I

x̃T
∗,i

(
ÃT

i Pi + PiÃi +
(�− 1)λmin (Qi)

�
I + 2γiC̃

T
i C̃i

)
x̃∗,i

=
∑
i∈I

x̃T
∗,i

(
−Qi +

(�− 1)λmin (Qi)

�
I

)
x̃∗,i

≤
∑
i∈I

−1

�
λmin (Qi)x̃

T
∗,ix̃∗,i,

which is negative definite. Therefore, it follows from Lyapunov’s direct method that

the equilibrium (x̃1,∗, . . . , x̃�,∗) ≡ 0 is asymptotically stable, which confirms (i).

To show (ii), it follows from (5.18) and (5.19) that

˙̃x∗(t) = Ãx̃∗(t) + B̃r(t) + D̃w(t), (5.43)

y∗(t) = C̃x̃∗(t), (5.44)
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where

x̃∗(t)
�
=

⎡
⎢⎢⎢⎢⎣

x̃∗,1(t)
...

x̃∗,�(t)

⎤
⎥⎥⎥⎥⎦ ∈ R

ñ∗ , (5.45)

y∗(t)
�
=

⎡
⎢⎢⎢⎢⎣

y∗,1(t)
...

y∗,�(t)

⎤
⎥⎥⎥⎥⎦ ∈ R

�, r(t)
�
=

⎡
⎢⎢⎢⎢⎣

r1(t)

...

r�(t)

⎤
⎥⎥⎥⎥⎦ ∈ R

�, (5.46)

Ã
�
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ã1 δ1,2Ẽ1C̃2 · · · δ1,�Ẽ1C̃�

δ2,1Ẽ2C̃1 Ã2 δ2,�Ẽ2C̃�

...
. . .

δ�,1Ẽ�C̃1 δ�,2Ẽ�C̃2 Ã�

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

ñ∗×ñ∗ , (5.47)

B̃
�
=

⎡
⎢⎢⎢⎢⎣

B̃1 0

. . .

0 B̃�

⎤
⎥⎥⎥⎥⎦ ∈ R

ñ∗×�, D̃
�
=

⎡
⎢⎢⎢⎢⎣

D̃1

...

D̃�

⎤
⎥⎥⎥⎥⎦ ∈ R

ñ∗×m (5.48)

C̃
�
=

⎡
⎢⎢⎢⎢⎣

C̃1 0

. . .

0 C̃�

⎤
⎥⎥⎥⎥⎦ ∈ R

�×ñ∗ , (5.49)

and ñ∗
�
=
∑

i∈I ni + 2nc,i. It follows from (i) that Ã is asymptotically stable.

Next, it follows from part (ii) of Lemma 5.1 that

α̃(p)y∗(t) = β̃(p)r(t), (5.50)
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where

α̃(s)
�
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

αm,1(s)ρ1(s) −δ1,2h1�∗,1(s) · · · −δ1,�h1�∗,1(s)

−δ2,1h2�∗,2(s) αm,2(s)ρ2(s) −δ2,�h2�∗,2(s)
...

. . .

−δ�,1h��∗,�(s) −δ�,2h��∗,�(s) αm,�(s)ρ�(s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (5.51)

β̃(s)
�
=

⎡
⎢⎢⎢⎢⎣

hm,1βm,1(s)ρ1(s) 0

. . .

0 hm,�βm,�(s)ρ�(s)

⎤
⎥⎥⎥⎥⎦ . (5.52)

Note that (5.43)–(5.52) imply that C̃(sI − Ã)−1B̃ = α̃−1(s)β(s). Then, since Ã is

asymptotically stable, it follows that det α̃(s) is Hurwitz. Next, since r(t) ≡ 0, it

follows that α̃(p)y∗(t) = 0. Since det α̃(s) is Hurwitz, it follows that for all ini-

tial conditions x̃∗(0), limt→∞ y∗(t) = 0, which implies that for all initial conditions

x̃∗,1(0), . . . , x̃∗,�(0), limt→∞ y∗,1(t) = · · · = limt→∞ y∗,�(t) = 0, which confirms (ii).

To show (iii), note that (5.5) has the realization

ẋw(t) = Awxw(t), (5.53)

w(t) = Cwxw(t), (5.54)

where Aw ∈ R
nw×nw , Cw ∈ R

m×nw , and xw(0) ∈ R
nw .

Since r(t) ≡ 0, it follows from (5.43)–(5.49), (5.53), and (5.54) that

ẋs(t) = Asxs(t), (5.55)

y∗(t) = Csxs(t), (5.56)
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where

xs(t)
�
=

⎡
⎢⎣ x̃∗(t)

xw(t)

⎤
⎥⎦ ∈ R

ñ∗+nw , As
�
=

⎡
⎢⎣ Ã D̃Cw

0 Aw

⎤
⎥⎦ , (5.57)

Cs
�
=

[
C̃ 0

]
. (5.58)

Next, it follows from (ii) that limt→∞ y∗(t) = 0. Since limt→∞ y∗(t) = 0 and Ã is

asymptotically stable, [38, Lemma 3.1] implies that there exists S ∈ R
ñ∗×nw such that

ÃS − SAw = D̃Cw, (5.59)

C̃S = 0. (5.60)

Define

R
�
=

⎡
⎢⎣ Iñ∗ −S

0 Inw

⎤
⎥⎦ ∈ R

(ñ∗+nw)×(ñ∗+nw),

and it follows from (5.57)–(5.60) that

x̄s(t)
�
= R−1xs(t), (5.61)

Ās
�
= R−1AsR =

⎡
⎢⎣ Ã −ÃS + D̃Cw + SAw

0 Aw

⎤
⎥⎦ =

⎡
⎢⎣ Ã 0

0 Aw

⎤
⎥⎦ , (5.62)

C̄s
�
= CsQ =

[
C̃ −C̃S

]
=

[
C̃ 0

]
. (5.63)

Thus, using the change of basis (5.61)–(5.63), it follows from (5.55) and (5.56) that

˙̄xs(t) = Āsx̄s(t), (5.64)

y∗(t) = C̄sx̄s(t), (5.65)
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which implies that

y∗(t) = C̄se
Āstx̄s(0) = C̃eÃt[x̃∗(0) + Sxw(0)]. (5.66)

Next, let x̃∗(0) = −Sxw(0). Thus, it follows from (5.66) that there exists x̃∗(0) such

that for all t ≥ 0, y∗(t) = 0, which confirms (iii).

5.4 Relative-Degree-One Decentralized Adaptive Stabilization and Dis-

turbance Rejection

In this section, we address decentralized adaptive stabilization and disturbance

rejection for relative-degree-one subsystems. Let Ui(t) ∈ R
nc,i and Yi(t) ∈ R

nc,i

satisfy

U̇i(t) = Af,iUi(t) + Bf,iui(t), (5.67)

Ẏi(t) = Af,iYi(t) + Bf,iyi(t), (5.68)

where Ui(0) ∈ R
nc,i and Yi(0) ∈ R

nc,i , and Af,i and Bf,i are given by (5.11). Define

φi(t)
�
=

⎡
⎢⎢⎢⎢⎣

Ui(t)

Yi(t)

ri(t)

⎤
⎥⎥⎥⎥⎦ ∈ R

2nc,i+1, (5.69)

and consider the controller

ui(t) = θTi (t)φi(t), (5.70)

where θi : [ 0,∞) → R
2nc,i+1 is given by

θ̇i(t) = − sgn(hi)zi(t)Γiφi(t), (5.71)
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where Γi ∈ R
(2nc,i+1)×(2nc,i+1) is positive definite. The relative-degree-one decentral-

ized adaptive architecture is shown in Figure 5.1.

Let θ∗,i ∈ R
2nc,i+1 be given by (5.15), where N∗,i

�
= hm,i/hi, and L∗,i ∈ R

nc,i and

M∗,i ∈ R
nc,i are the ideal controller parameters given by Lemma 5.1. Define

θ̃i(t)
�
= θi(t)− θ∗,i. (5.72)

Thus, it follows from (5.1)–(5.4) and (5.67)–(5.70) that the closed-loop system is given

by

˙̃xi(t) = Ãix̃i(t) +
1

N∗,i
B̃iθ̃

T
i (t)φi(t) + B̃iri(t) + Ẽi

∑
j∈I\{i}

δi,jC̃jx̃j(t) + D̃iw(t), (5.73)

yi(t) = C̃ix̃i(t), (5.74)

where Ãi, B̃i, C̃i, Ẽi, and D̃i are given by (5.21)–(5.23), and

x̃i(t)
�
=

⎡
⎢⎢⎢⎢⎣

xi(t)

Ui(t)

Yi(t)

⎤
⎥⎥⎥⎥⎦ ∈ R

ni+2nc,i . (5.75)

The following theorem is the main result on decentralized adaptive stabilization,

where the reference-model commands and the disturbances are zero (i.e., ri(t) ≡ 0

and w(t) ≡ 0).

Theorem 5.1. Consider the closed-loop system (5.71) and (5.73), where nc,i sat-

isfies (5.9), the open-loop system (5.1)–(5.4) satisfies assumptions (A5.1)–(A5.7),

w(t) ≡ 0, and ri(t) ≡ 0. Then, the equilibrium (x̃1, . . . , x̃�, θ̃1, . . . , θ̃�) ≡ 0 is Lyapunov

stable. Furthermore, for all initial conditions xi(0) ∈ R
ni, Ui(0) ∈ R

nc,i, Yi(0) ∈ R
nc,i,

and θi(0) ∈ R
2nc,i+1, the following statements hold:

(i) xi(t), ui(t), θi(t), Ui(t), and Yi(t) are bounded.
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∑
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...
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ẋ1 = A1x1+B1u1 +B1

∑
j∈I\{1} δ1,jyj+D1w

y� = C�x�

U�

Y�

y1u1

φ�

u�

u1

φ1

Local adaptive

controller 1

u1 = θT1 φ1

Local adaptation 1

θ̇1 = − sgn (h1)z1Γ1φ1

Ẏ1 = Af,1Y1+Bf,1y1

U̇1 = Af,1U1+Bf,1u1

θ1

Y1

U1

ym,�

ym,1

z�

z1

Local adaptive

controller �

u� = θT� φ�

U̇� = Af,�U�+Bf,�u�

Ẏ� = Af,�Y�+Bf,�y�
r�

r1

θ�
Local adaptation �

θ̇� = − sgn (h�)z�Γ�φ�

Figure 5.1: Schematic diagram of relative-degree-one decentralized adaptive architec-
ture given by (5.1), (5.4), and (5.67)–(5.71).
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(ii) limt→∞ x̃i(t) = 0.

Proof. Define the partial Lyapunov function

Vi(x̃i, θ̃i)
�
= x̃T

i Pix̃i +
1

|N∗,i| θ̃
T
i Γ

−1
i θ̃i, (5.76)

where Pi ∈ R
(ni+2nc,i)×(ni+2nc,i) is the positive-definite solution to (5.34).

Evaluating the derivative of Vi along the trajectory of (5.71) and (5.73) with w(t) ≡
0 and ri(t) ≡ 0, and using (5.35) and (5.74) yields

V̇i(x̃i, θ̃i) = x̃T
i (Ã

T
i Pi + PiÃi)x̃i +

2

N∗,i
x̃T
i PiB̃iθ̃

T
i φi +

2

|N∗,i| θ̃
T
i Γ

−1
i θ̇i

+ 2
∑

j∈I\{i}
δi,jx̃

T
i PiẼiC̃jx̃j

= x̃T
i (Ã

T
i Pi + PiÃi)x̃i +

2

N∗,i
x̃T
i C̃

T
i θ̃

T
i φi +

2

|N∗,i| θ̃
T
i Γ

−1
i θ̇i

+ 2
∑

j∈I\{i}
δi,jx̃

T
i PiẼiC̃jx̃j

= x̃T
i (Ã

T
i Pi + PiÃi)x̃i + 2yiθ̃

T
i φi

(
1

N∗,i
− sgn (hi)

|N∗,i|
)
+2

∑
j∈I\{i}

δi,jx̃
T
i PiẼiC̃jx̃j.

(5.77)

Next, it follows from (5.35) that hm,i = C̃iB̃i = B̃T
i PiB̃i > 0. Since N∗,i = hm,i/hi,

it follows that sgn(hi) = sgn(hm,i/hi) = sgn(N∗,i). Then, it follows from (5.77) that

V̇i(x̃i, θ̃i) = x̃T
i (Ã

T
i Pi + PiÃi)x̃i + 2

∑
j∈I\{i}

δi,jx̃
T
i PiẼiC̃jx̃j. (5.78)

Next, define

εi
�
=

λmin (Qi)

�λmax (PiẼiẼT
i Pi)

, (5.79)
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and note that

0 ≤
∑

j∈I\{i}

[√
εiẼ

T
i Pix̃i − 1√

εi
δi,jC̃jx̃j

]T[√
εiẼ

T
i Pix̃i − 1√

εi
δi,jC̃jx̃j

]

= (�− 1)εix̃
T
i PiẼiẼ

T
i Pix̃i +

∑
j∈I\{i}

1

εi
δ2i,jx̃

T
j C̃

T
j C̃jx̃j − 2δi,jx̃

T
i PiẼiC̃jx̃j

≤ (�− 1)λmin (Qi)

�
x̃T
i x̃i +

∑
j∈I\{i}

1

εi
δ2i,jx̃

T
j C̃

T
j C̃jx̃j − 2δi,jx̃

T
i PiẼiC̃jx̃j,

which implies that

∑
j∈I\{i}

2δi,jx̃
T
i PiẼiC̃jx̃j ≤ (�− 1)λmin (Qi)

�
x̃T
i x̃i +

1

εi

∑
j∈I\{i}

δ2i,jx̃
T
j C̃

T
j C̃jx̃j. (5.80)

Next, using (5.80), it follows from (5.78) that

V̇i(x̃i, θ̃i) ≤ x̃T
i

(
ÃT

i Pi + PiÃi +
(�− 1)λmin (Qi)

�
I

)
x̃i +

1

εi

∑
j∈I\{i}

δ2i,jx̃
T
j C̃

T
j C̃jx̃j.

(5.81)

Next, define the Lyapunov function

V (x̃1, . . . , x̃�, θ̃1, . . . , θ̃�)
�
=
∑
i∈I

Vi(x̃i, θ̃i),

and it follows from (5.81) that the derivative of V along the trajectory of (5.71) and

(5.73) is given by

V̇ (x̃1, . . . , x̃�, θ̃1, . . . , θ̃�) =
∑
i∈I

V̇i(x̃i, θ̃i)

≤
∑
i∈I

[
x̃T
i

(
ÃT

i Pi + PiÃi +
(�− 1)λmin (Qi)

�
I

)
x̃i

+
1

εi

∑
j∈I\{i}

δ2i,jx̃
T
j C̃

T
j C̃jx̃j

]
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=
∑
i∈I

x̃T
i

(
ÃT

i Pi + PiÃi +
(�− 1)λmin (Qi)

�
I

)
x̃i

+
∑
j∈I

∑
i∈I\{j}

1

εi
δ2i,jx̃

T
j C̃

T
j C̃jx̃j

=
∑
i∈I

x̃T
i

(
ÃT

i Pi + PiÃi +
(�− 1)λmin (Qi)

�
I

)
x̃i

+
∑
i∈I

x̃T
i C̃

T
i C̃ix̃i

( ∑
j∈I\{i}

1

εj
δ2j,i

)

≤
∑
i∈I

x̃T
i

(
ÃT

i Pi + PiÃi +
(�− 1)λmin (Qi)

�
I

)
x̃i

+
1

ε
x̃T
i C̃

T
i C̃ix̃i

( ∑
j∈I\{i}

δ2j,i

)
, (5.82)

where ε
�
= minj∈I εj. Since (A5.7) implies that

∑
j∈I{i} δ

2
j,i ≤ 2γiε, it follows from

(5.34), (5.35), and (5.82) that

V̇ (x̃1, . . . , x̃�, θ̃1, . . . , θ̃�) ≤
∑
i∈I

x̃T
i

(
ÃT

i Pi + PiÃi +
(�− 1)λmin (Qi)

�
I + 2γiC̃

T
i C̃i

)
x̃i

=
∑
i∈I

x̃T
i

(
−Qi +

(�− 1)λmin (Qi)

�
I

)
x̃i

≤
∑
i∈I

−1

�
λmin (Qi)x̃

T
i x̃i,

which is nonpositive. Therefore, the equilibrium (x̃1, . . . , x̃�, θ̃1, . . . , θ̃�) ≡ 0 is Lya-

punov stable, and for all initial conditions, x̃i and θ̃i are bounded. Since x̃i is bounded,

it follows from (5.75) that xi, Ui, and Yi are bounded. Moreover, since θ̃i, Ui, and

Yi are bounded, it follows from (5.70) and (5.72) that θi and ui are bounded, which

confirms (i).

Finally, since V is positive definite and radially unbounded, and

V̇ ≤ −
∑
i∈I

1

�
λmin (Qi)x̃

T
i x̃i,
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it follows from LaSalle’s invariance principle [34, Theorem 4.4] that for all initial

conditions, limt→∞ x̃i(t) = 0. Thus, it follows from (5.74) that limt→∞ yi(t) = 0,

which confirms (ii).

Next, we extend the analysis for the relative-degree-one decentralized adaptive con-

troller to address disturbance rejection. The following theorem is the main result

on decentralized adaptive disturbance rejection for SISO relative-degree-one subsys-

tems that are minimum phase, where the reference-model commands are zero (i.e.,

ri(t) ≡ 0).

Theorem 5.2. Consider the closed-loop system (5.1)–(5.4), and (5.67)–(5.71),

where nc,i satisfies (5.9), the open-loop system (5.1)–(5.4) satisfies assumptions

(A5.1)–(A5.7), and ri(t) ≡ 0. Then, for all initial conditions xi(0) ∈ R
ni, Ui(0) ∈

R
nc,i, Yi(0) ∈ R

nc,i, and θi(0) ∈ R
2nc,i+1, the following statements hold:

(i) xi(t), ui(t), θi(t), Ui(t), and Yi(t) are bounded.

(ii) limt→∞ yi(t) = 0.

Proof. Consider the closed-loop system (5.73) and (5.74) with ri(t) ≡ 0, which is

given by

˙̃xi(t) = Ãix̃i(t) +
1

N∗,i
B̃iθ̃

T
i (t)φi(t) + Ẽi

∑
j∈I\{i}

δi,jC̃jx̃j(t) + D̃iw(t), (5.83)

yi(t) = C̃ix̃i(t). (5.84)

Next, consider the ideal closed-loop system (5.18) and (5.19) with ri(t) ≡ 0, which

is given by

˙̃x∗,i(t) = Ãix̃∗,i(t) + Ẽi

∑
j∈I\{i}

δi,jC̃jx̃∗,j(t) + D̃iw(t), (5.85)

y∗,i(t) = C̃ix̃∗,i(t), (5.86)
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where N∗,i = hm,i/hi; L∗,i ∈ R
nc,i and M∗,i ∈ R

nc,i are the ideal controller parameters

given by Lemma 5.1; and x̃∗,i(0) is the initial condition given by part (iii) of Lemma

5.2.

Define ei(t)
�
= x̃i(t) − x̃∗,i(t), and subtracting (5.85) and (5.86) from (5.83) and

(5.84), respectively, yields

ėi(t) = Ãiei(t) +
1

N∗,i
B̃iθ̃

T
i (t)φi(t) + Ẽi

∑
j∈I\{i}

δi,jC̃jej(t), (5.87)

yi(t) = C̃iei(t), (5.88)

where part (iii) of Lemma 5.2 implies that yi(t)− y∗,i(t) = yi(t).

Define the partial Lyapunov-like function

Vi(ei, θ̃i)
�
= eTi Piei +

1

|N∗,i| θ̃
T
i Γ

−1
i θ̃i, (5.89)

where Pi ∈ R
(ni+2nc,i)×(ni+2nc,i) is the positive-definite solution to (5.34).

Evaluating the derivative of Vi along the trajectory of (5.71) and (5.87) with ri(t) ≡
0, and using (5.35) and (5.88) yields

V̇i(ei, θ̃i) = eTi (Ã
T
i Pi + PiÃi)ei +

2

N∗,i
eTi PiB̃iθ̃

T
i φi +

2

|N∗,i| θ̃
T
i Γ

−1
i θ̇i

+ 2
∑

j∈I\{i}
δi,je

T
i PiẼiC̃jej

= eTi (Ã
T
i Pi + PiÃi)ei +

2

N∗,i
eTi C̃

T
i θ̃

T
i φi +

2

|N∗,i| θ̃
T
i Γ

−1
i θ̇i

+ 2
∑

j∈I\{i}
δi,je

T
i PiẼiC̃jej

= eTi (Ã
T
i Pi + PiÃi)ei + 2yiθ̃

T
i φi

(
1

N∗,i
− sgn (hi)

|N∗,i|
)
+ 2

∑
j∈I\{i}

δi,je
T
i PiẼiC̃jej.

(5.90)
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Next, it follows from (5.35) that hm,i = C̃iB̃i = B̃T
i PiB̃i > 0. Since N∗,i = hm,i/hi,

it follows that sgn(hi) = sgn(hm,i/hi) = sgn(N∗,i). Then, it follows from (5.90) that

V̇i(ei, θ̃i) = eTi (Ã
T
i Pi + PiÃi)ei + 2

∑
j∈I\{i}

δi,je
T
i PiẼiC̃jej. (5.91)

Next, define

εi
�
=

λmin (Qi)

�λmax (PiẼiẼT
i Pi)

, (5.92)

and note that

0 ≤
∑

j∈I\{i}

[√
εiẼ

T
i Piei − 1√

εi
δi,jC̃jej

]T[√
εiẼ

T
i Piei − 1√

εi
δi,jC̃jej

]

= (�− 1)εie
T
i PiẼiẼ

T
i Piei +

∑
j∈I\{i}

1

εi
δ2i,je

T
j C̃

T
j C̃jej − 2δi,je

T
i PiẼiC̃jej

≤ (�− 1)λmin (Qi)

�
eTi ei +

∑
j∈I\{i}

1

εi
δ2i,je

T
j C̃

T
j C̃jej − 2δi,je

T
i PiẼiC̃jej,

which implies that

∑
j∈I\{i}

2δi,je
T
i PiẼiC̃jej ≤ (�− 1)λmin (Qi)

�
eTi ei +

1

εi

∑
j∈I\{i}

δ2i,je
T
j C̃

T
j C̃jej. (5.93)

Next, using (5.93), it follows from (5.91) that

V̇i(ei, θ̃i) ≤ eTi

(
ÃT

i Pi + PiÃi +
(�− 1)λmin (Qi)

�
I

)
ei +

1

εi

∑
j∈I\{i}

δ2i,je
T
j C̃

T
j C̃jej. (5.94)

Next, define the Lyapunov-like function

V (e1, . . . , e�, θ̃1, . . . , θ̃�)
�
=
∑
i∈I

Vi(ei, θ̃i),
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and it follows from (5.94) that the derivative of V along the trajectory of (5.71) and

(5.87) is given by

V̇ (e1, . . . , e�, θ̃1, . . . , θ̃�) =
∑
i∈I

V̇i(ei, θ̃i)

≤
∑
i∈I

[
eTi

(
ÃT

i Pi + PiÃi +
(�− 1)λmin (Qi)

�
I

)
ei

+
1

εi

∑
j∈I\{i}

δ2i,je
T
j C̃

T
j C̃jej

]

=
∑
i∈I

eTi

(
ÃT

i Pi + PiÃi +
(�− 1)λmin (Qi)

�
I

)
ei

+
∑
j∈I

∑
i∈I\{j}

1

εi
δ2i,je

T
j C̃

T
j C̃jej

=
∑
i∈I

eTi

(
ÃT

i Pi + PiÃi +
(�− 1)λmin (Qi)

�
I

)
ei

+
∑
i∈I

eTi C̃
T
i C̃iei

( ∑
j∈I\{i}

1

εj
δ2j,i

)

≤
∑
i∈I

eTi

(
ÃT

i Pi + PiÃi +
(�− 1)λmin (Qi)

�
I

)
ei

+
1

ε
eTi C̃

T
i C̃iei

( ∑
j∈I\{i}

δ2j,i

)
, (5.95)

where ε
�
= minj∈I εj. Since (A5.7) implies that

∑
j∈I{i} δ

2
j,i ≤ 2γiε, it follows from

(5.34), (5.35), and (5.95) that

V̇ (e1, . . . , e�, θ̃1, . . . , θ̃�) ≤
∑
i∈I

eTi

(
ÃT

i Pi + PiÃi +
(�− 1)λmin (Qi)

�
I + 2γiC̃

T
i C̃i

)
ei

=
∑
i∈I

eTi

(
−Qi +

(�− 1)λmin (Qi)

�
I

)
ei

≤
∑
i∈I

−1

�
λmin (Qi)e

T
i ei

=
∑
i∈I

−ξie
T
i ei,
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where ξi
�
= 1

�
λmin (Qi), which is positive. Therefore, V̇ is nonpositive and V̇ ≤

−∑i∈I ξie
T
i ei implies that

0 ≤
∑
i∈I

ξie
T
i ei ≤ −V̇ . (5.96)

Moreover, integrating (5.96) from 0 to ∞ yields

0 ≤
∫ ∞

0

∑
i∈I

ξie
T
i (t)ei(t) ≤ V (0)− lim

t→∞
V (t) ≤ V (0), (5.97)

where the upper and lower bounds imply that
∫∞
0

∑
i∈I ξie

T
i (t)ei(t) exists. Thus, it

follows from (5.97) that V is bounded, which implies that ei and θ̃i are bounded. Since

w is bounded, it follows from part (ii) of Lemma 5.2 that x̃∗,i is bounded. Since ei and

x̃∗,i are bounded, it follows that x̃i is bounded. Since x̃i is bounded, it follows from

(5.75) that xi, Ui, and Yi are bounded. Moreover, since θ̃i, Ui, and Yi are bounded, it

follows from (5.70) and (5.72) that θi and ui are bounded, which confirms (i).

To show (i), it follows from (5.97) that
∫∞
0

∑
i∈I ξie

T
i (t)ei(t) exists. Next, since ei,

θ̃i, and φi are bounded, (5.87) implies that ėi is bounded. Next, since ei and ėi are

bounded, it follows that

d

dt

[∑
i∈I

ξie
T
i (t)ei(t)

]
= 2

∑
i∈I

ξiė
T
i (t)ei(t) (5.98)

is bounded. Thus, f(t)
�
=
∑

i∈I ξie
T
i (t)ei(t) is uniformly continuous. Since

∫∞
0

f(t) dt

exists and f(t) is uniformly continuous, Barbalat’s Lemma implies that limt→∞ f(t) =

0. Thus, limt→∞ ei(t) = 0, and it follows from (5.88) that limt→∞ yi(t) = 0, which

confirms (ii).
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5.5 Numerical Examples

We now present examples that demonstrate the decentralized adaptive controller

for SISO subsystems that are relative degree one and minimum phase. Examples

5.1 and 5.3 show stabilization for second-order subsystems, where � = 2 and � = 4,

respectively. Examples 5.2 and 5.4 show asymptotic disturbance rejection for second-

order subsystems, where � = 2 and � = 4, respectively. Example 5.5 examines the

command following problem for second-order subsystems, where � = 2.

Example 5.1. Decentralized adaptive stabilization for an unstable system with � =

2. Consider the system (5.1)–(5.4), where � = 2,

A1 =

⎡
⎢⎣ −1 6

1 0

⎤
⎥⎦ , A2 =

⎡
⎢⎣ −1 2

1 0

⎤
⎥⎦ , (5.99)

B1 = B2 =

⎡
⎢⎣ 1

0

⎤
⎥⎦ , (5.100)

C1 = C2 =

[
1 2

]
, (5.101)

D1 =

⎡
⎢⎣ 2 0 1 0

0 0 1 0

⎤
⎥⎦ , D2 =

⎡
⎢⎣ 0 2 0 0

0 0 0 1

⎤
⎥⎦ , (5.102)

which satisfies (A5.1) and (A5.2). The interconnections are given by δ1,2 = 2 and

δ2,1 = 1. Moreover, the complete dynamics matrix

A
�
=

⎡
⎢⎣ A1 δ1,2B1C2

δ2,1B2C1 A2

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 6 2 4

1 0 0 0

1 2 −1 2

0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

is unstable. We let n̄i = ni = 2, which satisfies (A5.3). For this example, we let
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w(t) ≡ 0 and ri(t) ≡ 0, and consider the stabilization problem.

Next, we consider the reference model

Gm,i(s) =
s+ 7

s2 + 20s+ 79
,

and let γi = 10. Thus, Fi(s), given by (5.8), satisfies (A5.6). Next, let nc,i = 2, which

satisfies (5.9), and consider (5.67) and (5.68), where

Af,i =

⎡
⎢⎣ −8 −7

1 0

⎤
⎥⎦ ,

which has eigenvalues at −7 and −1. Note that Af,i has an eigenvalue equal to the

zero of Gm,i(s), which is −7.

The adaptive controller (5.67)–(5.71) is implemented in feedback with the system

(5.1)–(5.4) and (5.99)–(5.102), where Γi = 103I5, w(t) ≡ 0, and ri(t) ≡ 0. Figure 5.2

provides a time history of xi(t) and ui(t), where the initial conditions are x1(0) =

[ 1 0 ]T, x2(0) = [ −1 0 ]T, and U1(0) = U2(0) = Y1(0) = Y2(0) = [ 0 0 ]T. The

state xi(t) converges asymptotically to zero. 	

Example 5.2. Decentralized adaptive disturbance rejection for an unstable system

with � = 2. Reconsider the system in Example 5.1, but consider nonzero disturbance.

The plant and reference-model parameters, satisfying (A5.1)–(A5.3) and (A5.6), are

the same as in Example 5.1. The disturbance is

w(t) =

[
sin 0.25πt sin 0.5πt sin 0.75πt sin πt

]T
,

which satisfies (A5.4). Note that the disturbance spectrum is unknown and the

disturbance is unmeasured. We let n̄w = nw = 8, which satisfies (A5.5). Next, let
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Figure 5.2: Decentralized adaptive stabilization for an unstable system with � = 2.
The adaptive controller (5.67)–(5.71) is implemented in feedback with the system
(5.1)–(5.4) and (5.99)–(5.102). The state xi(t) converges asymptotically to zero.
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nc,i = 10, which satisfies (5.9), and consider (5.67) and (5.68), where

Af,i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−16 −99 −336 −714 −1008 −966 −624 −261 −64 −7

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which has one eigenvalue at −7 and nine at −1.

The adaptive controller (5.67)–(5.71) is implemented in feedback with the system

(5.1)–(5.4), and (5.99)–(5.102), where Γi = 107I21 and ri(t) ≡ 0. Figure 5.3 provides

a time history of yi(t) and ui(t), where the initial conditions are x1(0) = x2(0) =

[ 0 0 ]T and U1(0) = U2(0) = Y1(0) = Y2(0) = [ 0 0 0 0 0 0 0 0 0 0 ]T.

The output yi(t) converges asymptotically to zero while rejecting the disturbance

w(t). 	

Example 5.3. Decentralized adaptive stabilization for an unstable system with � =

4. Consider the system (5.1)–(5.4), where � = 4,

A1 = A3 =

⎡
⎢⎣ −5 14

1 0

⎤
⎥⎦ , A2 = A4 =

⎡
⎢⎣ −4 5

1 0

⎤
⎥⎦ , (5.103)

B1 = · · · = B4 =

⎡
⎢⎣ 1

0

⎤
⎥⎦ , (5.104)
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Figure 5.3: Decentralized adaptive disturbance rejection for an unstable system with
� = 2. The adaptive controller (5.67)–(5.71) is implemented in feedback with the
system (5.1)–(5.4) and (5.99)–(5.102). The output yi(t) converges asymptotically to
zero while rejecting the disturbance w(t).

C1 = · · · = C4 =

[
1 2

]
, (5.105)

D1 = D3 =

⎡
⎢⎣ 2 0 1 0

0 0 1 0

⎤
⎥⎦ , D3 = D4 =

⎡
⎢⎣ 0 1 0 1

0 0 0 0

⎤
⎥⎦ , (5.106)

which satisfies (A5.1) and (A5.2). The interconnections are given by δ1,2 = δ2,1 =

δ2,3 = δ2,4 = δ3,4 = 2, δ3,2 = δ4,2 = δ4,3 = 1, and δ1,3 = δ1,4 = δ3,1 = δ4,1 = 0.
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Moreover, the complete dynamics matrix

A
�
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A1 δ1,2B1C2 δ1,3B1C3 δ1,4B1C4

δ2,1B2C1 A2 δ2,3B2C3 δ2,4B2C4

δ3,1B3C1 δ3,2B3C2 A3 δ3,4B3C4

δ4,1B4C1 δ4,2B4C2 δ4,3B4C3 A4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5 14 2 4 0 0 0 0

1 0 0 0 0 0 0 0

2 4 −4 5 2 4 2 4

0 0 1 0 0 0 0 0

0 0 1 2 −5 14 2 4

0 0 0 0 1 0 0 0

0 0 1 2 1 2 −4 5

0 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is unstable. We let n̄i = ni = 2, which satisfies (A5.3). For this example, we let

w(t) ≡ 0 and ri(t) ≡ 0, and consider the stabilization problem.

Next, we consider the reference model

Gm,i(s) =
s+ 7

s2 + 21s+ 88
,

and let γi = 10. Thus, Fi(s), given by (5.8), satisfies (A5.6). Next, let nc,i = 2, which

satisfies (5.9), and consider (5.67) and (5.68), where

Af,i =

⎡
⎢⎣ −8 −7

1 0

⎤
⎥⎦ ,

which has eigenvalues at −7 and −1. Note that Af,i has an eigenvalue equal to the

zero of Gm,i(s), which is −7.
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The adaptive controller (5.67)–(5.71) is implemented in feedback with the system

(5.1)–(5.4) and (5.103)–(5.106), where Γi = 102I5, w(t) ≡ 0, and ri(t) ≡ 0. Figure

5.4 provides a time history of xi(t) and ui(t), where the initial conditions are x1(0) =

x3(0) = [ 1 0 ]T, x2(0) = x4(0) = [ −1 0 ]T, and U1(0) = · · · = U4(0) = Y1(0) =

· · · = Y4(0) = [ 0 0 ]T. The state xi(t) converges asymptotically to zero. 	

Example 5.4. Decentralized adaptive disturbance rejection for an asymptotically

stable system with � = 4. Consider the system (5.1)–(5.4), where � = 4,

A1 = A3 =

⎡
⎢⎣ −10 −21

1 0

⎤
⎥⎦ , A2 = A4 =

⎡
⎢⎣ −12 −27

1 0

⎤
⎥⎦ , (5.107)

and B1, . . . , B4, and C1, . . . , C4 are given by (5.104)–(5.105), respectively, and

D1 = D3 =

⎡
⎢⎣ 2 1

0 1

⎤
⎥⎦ , D2 = D4 =

⎡
⎢⎣ 1 1

0 0

⎤
⎥⎦ , (5.108)

which satisfies (A5.1) and (A5.2). The interconnections δ1,1, . . . , δ1,4, . . . , δ4,4 are the

same as in Example 5.3. Moreover, the complete dynamics matrix

A
�
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A1 δ1,2B1C2 δ1,3B1C3 δ1,4B1C4

δ2,1B2C1 A2 δ2,3B2C3 δ2,4B2C4

δ3,1B3C1 δ3,2B3C2 A3 δ3,4B3C4

δ4,1B4C1 δ4,2B4C2 δ4,3B4C3 A4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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Figure 5.4: Decentralized adaptive stabilization for an unstable system with � = 4.
The adaptive controller (5.67)–(5.71) is implemented in feedback with the system
(5.1)–(5.4) and (5.103)–(5.106). The state xi(t) converges asymptotically to zero.
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=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−10 −21 2 4 0 0 0 0

1 0 0 0 0 0 0 0

2 4 −12 −27 2 4 2 4

0 0 1 0 0 0 0 0

0 0 1 2 −10 −21 2 4

0 0 0 0 1 0 0 0

0 0 1 2 1 2 −12 −27

0 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is asymptotically stable. We let n̄i = ni = 2, which satisfies (A5.3). For this example,

we let ri(t) ≡ 0, and consider the disturbance rejection problem. The reference-model

parameters satisfying (A5.6) are the same as in Example 5.3. The disturbance is given

by w(t) = [ sin 0.25πt sin 0.5πt ]T, which satisfies (A5.4). Note that the disturbance

spectrum is unknown and the disturbance is unmeasured. We let n̄w = nw = 4,

which satisfies (A5.5). Next, let nc,i = 6, which satisfies (5.9), and consider (5.67)

and (5.68), where Af,i is given by

Af,i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−12 −45 −80 −75 −36 −7

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which has one eigenvalue at −7 and five at −1.

The adaptive controller (5.67)–(5.71) is implemented in feedback with the system

(5.1)–(5.4), (5.104)–(5.106), and (5.107), where Γi = 105I13 and ri(t) ≡ 0. Figure 5.5

provides a time history of yi(t) and ui(t), where the initial conditions are x1(0) =
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x3(0) = [ 1 0 ]T, x2(0) = x4(0) = [ −1 0 ]T, and U1(0) = · · · = U4(0) = Y1(0) =

· · · = Y4(0) = [ 0 0 0 0 0 0 ]T. The system is allowed to run open-loop for

10 seconds, then the decentralized adaptive control is turned on. The output yi(t)

converges asymptotically to zero while rejecting the disturbance w(t). 	

Example 5.5. Decentralized adaptive command following for an asymptotically

stable system with � = 2. Consider the system (5.1)–(5.4), where � = 2,

A1 =

⎡
⎢⎣ −10 −16

1 0

⎤
⎥⎦ , A2 =

⎡
⎢⎣ −11 −28

1 0

⎤
⎥⎦ , (5.109)

and B1 and B2, C1 and C2, and D1 and D2 are given by (5.100)–(5.102), respectively,

which satisfies (A5.1) and (A5.2). Furthermore, the interconnections are given by

δ1,2 = 2 and δ2,1 = 1. Moreover, the complete dynamics matrix

A
�
=

⎡
⎢⎣ A1 δ1,2B1C2

δ2,1B2C1 A2

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−10 −16 2 4

1 0 0 0

1 2 −11 −28

0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

is asymptotically stable. We let n̄i = ni = 2, which satisfies (A5.3). For this example,

we let w(t) ≡ 0, and consider the command following problem. Although Theorems

5.1 and 5.2 do not address command following, we use this example to explore the

command following properties of the decentralized adaptive controller. The reference-

model parameters, satisfying (A5.6), are the same as in Example 5.1. The reference-

model commands are r1(t) = 0.5 sin 0.25πt and r2(t) = 0.4 sin 0.5πt. Next, let nc,i = 2,
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Figure 5.5: Decentralized adaptive disturbance rejection for an asymptotically stable
system with � = 4. The adaptive controller (5.67)–(5.71) is implemented in feedback
with the system (5.1)–(5.4), (5.104)–(5.106), and (5.107). The output yi(t) converges
asymptotically to zero while rejecting the disturbance w(t).
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which satisfies (5.9), and consider (5.67) and (5.68), where

Af,i =

⎡
⎢⎣ −8 −7

1 0

⎤
⎥⎦ ,

which has eigenvalues at −7 and −1. Note that Af,i has an eigenvalue equal to the

zero of Gm,i(s), which is −7.

The adaptive controller (5.67)–(5.71) is implemented in feedback with the system

(5.1)–(5.4), (5.100)–(5.102), and (5.109), where Γi = 102I5 and w(t) ≡ 0. Figure 5.6

provides a time history of yi(t), ym,i(t), zi(t), and ui(t), where the initial conditions

are zero. The system is allowed to run open-loop for 5 seconds, then the decentralized

adaptive control is turned on. The performance zi(t) does not converge to zero, but

does remain bounded. 	

5.6 Conclusion

This chapter presented a decentralized adaptive controller for SISO subsystems that

are minimum phase and relative degree one. This controller is strictly decentralized,

that is, the controller requires only local output measurement and no information

is shared between the local controllers. The controller is effective for stabilization

and disturbance rejection, where the disturbance is unknown but generated from a

Lyapunov-stable linear system. The decentralized adaptive controller requires that

the magnitude of the subsystem interconnections satisfy a bounding condition. In a

command following example, the controller yields bounded-but-nonzero performance.
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Figure 5.6: Decentralized adaptive command following for an asymptotically stable
system with � = 2. The adaptive controller (5.67)–(5.71) is implemented in feedback
with the system (5.1)–(5.4), (5.100)–(5.102), and (5.109). The performance zi(t) does
not converge to zero, but does remain bounded.
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Chapter 6 Conclusions and Future Work

This thesis presented decentralized adaptive control techniques for subsystems with

local full-state feedback and local output feedback with relative degree one. In Chap-

ter 2, we introduced classical full-state-feedback model reference adaptive control

(MRAC) for multi-input linear time-invariant systems. We presented three matching

conditions for the dynamics matrix and control-input matrix. Classical MRAC yields

asymptotic stabilization and command following.

In Chapter 3, we presented a strictly decentralized adaptive controller for linear

time-invariant systems that use local full-state measurements and do not share in-

formation between local controllers. The controller does not require a centralized

reference model, meaning that nonlocal reference-model signals are unknown to each

local controller. The controller yields asymptotic stabilization and command follow-

ing in the presence of sinusoidal disturbance with known spectrum. The technique

is effective for arbitrarily large subsystem interconnection matrices, provided that a

bounding matrix on the subsystem interconnection matrices is known and that the

reference-model dynamics matrix is designed to admit a positive-definite solution to a

bounded-real Riccati equation. We presented a construction for the reference-model

dynamics matrix, which guarantees that a positive-definite solution to the Riccati

equation exists. Future work for the decentralized controller in Chapter 3 includes

extensions to unmatched uncertainties and unknown nonlinearities.

Chapter 4 presented classical output-feedback MRAC for SISO linear time-invariant

systems that are relative degree one. The output-feedback adaptive controller oper-
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ates under the assumptions that the plant is minimum phase, the sign of the high-

frequency gain is known, and an upper bound on the order of the plant is known. In

this chapter, classical MRAC was extended to address disturbance rejection, where

the disturbance is unknown but generated from a Lyapunov-stable linear system. The

adaptive controller yields asymptotic command following in the presence of unknown

sinusoidal disturbances.

In Chapter 5, we presented a strictly decentralized adaptive controller for SISO

linear time-invariant systems that are relative degree one and minimum phase. This

decentralized adaptive controller requires only local output measurements and does

not share information between the local controllers. The controller is effective for

stabilization in the presence of unknown sinusoidal disturbances. The decentralized

adaptive controller operates under the assumption that the magnitudes of the subsys-

tem interconnections satisfy a bounding condition. However, this bounding condition

relies on information that is not assumed to be known. Developing a method for

verifying this bounding condition with the assumed model information is an open

problem. Moreover, an extension to address asymptotically perfect command follow-

ing is an open problem.
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Appendices

A Proofs of Propositions 3.1 , 3.2, and 3.3

Proof of Proposition 3.1. To show (i), let Fi
�
= βi/bi, which is positive because

biβi > 0. It follows from (3.7) and (3.8) that B̂i = BiFi, which confirms (i).

To show (ii), let

K∗,i
�
=

[
(−ηiαi,n−1+ai,n−1)/bi · · · (−ηiαi,0+ai,0)/bi

]
.

Next, it follows from (3.7) and (3.8) that for all ηi > 0, Am,i = Ai,i + BiK∗,i, which

confirms (ii).

To show (iii), let Ωi
�
= γiB̂iB̂

T
i . Next, it follows from (3.9) that

Ωi ≥
∑

j∈I\{i}

(
bi
βi

)2

B̂iΔ
T
i,jΔi,jB̂

T
i =

∑
j∈I\{i}

BiΔ
T
i,jΔi,jB

T
i =

∑
j∈I\{i}

Ai,jA
T
i,j, (A.1)

which confirms (iii).

To show (iv), let εi > 0 and letQi ∈ R
ni×ni be positive definite and satisfyQi > �Ini

.

It follows from [39, part (ii) of Lemma A.2] that there exists ηs,i > 0 such that for all

ηi > ηs,i, there exists positive definite P̂i ∈ R
ni×ni such that

AT
m,iP̂i + P̂iAm,i +Qi + εiIni

= 0. (A.2)

Next, [39, part (iii) of Lemma A.2] implies that there exists η∗,i > ηs,i such that for
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all ηi > η∗,i,

B̂T
i P̂

2
i B̂i ≤ εi

γi
, (A.3)

where γi is given by (3.9). Thus, it follows from (A.3) that for all ηi > η∗,i,

P̂iΩiP̂i = γiP̂iB̂iB̂
T
i P̂i ≤ γiB̂

T
i P̂

2
i B̂iIni

≤ εiIni
. (A.4)

Combining (A.2) and (A.4) yields for all ηi > η∗,i,

AT
m,iP̂i + P̂iAm,i +Qi + P̂iΩiP̂i ≤ 0. (A.5)

Thus, for all ηi > ηi,∗, Am,i is asymptotically stable and Pi = P̂i satisfies (3.6), which

confirms (iv).

Proof of Proposition 3.2. Note that xm,i(t) is the solution to the asymptotically

stable linear time-invariant system (3.3), where the input is ri(t). Since, in addition,

ri(t) satisfies (A3.7), it follows that there exists Ŵi ∈ R
ni×2p and fi : [ 0,∞) → R

ni

such that

xm,i(t) = ŴiΨ(t) + fi(t), (A.6)

where
∫∞
0
‖fi(t)‖2 dt exists. Next, it follows from the assumptions of Proposition 3.2

that there exists N̂1 ∈ R
m1×2p, . . . , N̂� ∈ R

m�×2p such that for all i ∈ I,

BiN̂i +
∑

j∈I\{i}
Ai,jŴj = 0. (A.7)
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Therefore, it follows from (A.6) and (A.7) that

∫ ∞

0

∥∥∥∥BiN̂iΨ(t) +
∑

j∈I\{i}
Ai,jxm,j(t)

∥∥∥∥
2

dt =

∫ ∞

0

∥∥∥∥
[
BiN̂i +

∑
j∈I\{i}

Ai,jŴj

]
Ψ(t)

+
∑

j∈I\{i}
Ai,jfj(t)

∥∥∥∥
2

dt

=

∫ ∞

0

∥∥∥∥ ∑
j∈I\{i}

Ai,jfj(t)

∥∥∥∥
2

dt

≤ 2�−1
∑

j∈I\{i}

∫ ∞

0

‖Ai,jfj(t)‖2dt

≤ 2�−1
∑

j∈I\{i}
λmax(A

T
i,jAi,j)

∫ ∞

0

‖fj(t)‖2dt

exists because
∫∞
0
‖fj(t)‖2 dt exists. Thus, N1 = N̂1, . . . , N� = N̂� satisfies (3.27).

Proof of Proposition 3.3. Let W1 ∈ R
n1×2p, . . . ,W� ∈ R

n�×2p. Define

N̂i
�
= −

∑
j∈I\{i}

ΔT
i,jWj,

and it follows that

BiN̂i +
∑

j∈I\{i}
BiΔ

T
i,jWj = 0.

Since Ai,j = BiΔ
T
i,j, it follows that

BiN̂i +
∑

j∈I\{i}
Ai,jWj = 0.

Thus, it follows from Proposition 3.2 that there exists N1 ∈ R
m1×2p, . . . , N� ∈ R

m�×2p

such that for all i ∈ I, (3.27) is satisfied.

119



Bibliography

[1] G. Tao. Adaptive Control Design and Analysis. Wiley, 2003.

[2] P. Ioannou and J. Sun. Robust Adaptive Control. Prentice Hall, 1996.

[3] P. Ioannou and B. Fidan. Adaptive Control Tutorial. SIAM, 2006.

[4] K. S. Narendra and A. M. Annaswamy. Stable Adaptive Systems. Prentice Hall,

1989.
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