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ABSTRACT OF THESIS

ROOT LOCUS TECHNIQUES WITH NONLINEAR GAIN
PARAMETERIZATION

This thesis presents rules that characterize the root locus for polynomials that are
nonlinear in the root-locus parameter k. Classical root locus applies to polynomials
that are affine in k. In contrast, this thesis considers polynomials that are quadratic
or cubic in k. In particular, we focus on constructing the root locus for linear feedback
control systems, where the closed-loop denominator polynomial is quadratic or cubic
in k. First, we present quadratic root-locus rules for a controller class that yields a
closed-loop denominator polynomial that is quadratic in k. Next, we develop cubic
root-locus rules for a controller class that yields a closed-loop denominator polynomial
that is cubic in k. Finally, we extend the quadratic root-locus rules to accommodate
a larger class of controllers.
We also provide controller design examples to demonstrate the quadratic and cubic

root locus. For example, we show that the triple integrator can be high-gain stabilized
using a controller that yields a closed-loop denominator polynomial that is quadratic
in k. Similarly, we show that the quadruple integrator can be high-gain stabilized
using a controller that yields a closed-loop denominator polynomial that is cubic in k.

KEYWORDS: Linear Systems, Root Locus, Feedback Control,
Single-Input Single-Output
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Chapter 1 Introduction and Review of Classical Root Locus

1.1 Introduction

Classical root locus is an established technique for controller design as well as control

system analysis [1–7]. The root locus can be interpreted as a graphical representation

of the achievable closed-loop poles as a function of a root-locus parameter k. For

example, consider the loop transfer function kL(s) = kz(s)/p(s), where z(s) and

p(s) are coprime monic polynomials. In this case, the root locus is the set of all

achievable poles of the closed-loop transfer function 1/(1 + kL(s)), for all real values

of k. The root locus for positive k is referred to as the positive (or 180◦) root locus,

while the root locus for negative k is referred to as the negative (or 0◦) root locus.

Extensions to classical root locus include: multivariable root locus [8–12], root locus

for time-varying systems [13], variable gain plots [14], root locus for fractional order

systems [15], and logarithmic root locus [16].

In classical root locus, the loop transfer function kL(s) = kz(s)/p(s) is linear in

k, and the closed-loop denominator polynomial kz(s) + p(s) is affine in k. In this

case, the root locus can be characterized without explicit dependence on k. More

specifically, the positive root locus is the set of points λ in the complex plane such

that ∠L(λ) = (2n + 1)π, where n is a nonnegative integer; and the negative root

locus is the set of points λ in the complex plane such that ∠L(λ) = 2nπ, where n

is a nonnegative integer. The angle characterizations of the root locus lead to the

classical (or affine) root-locus rules, which can be used, along with knowledge of the

poles and zeros of L(s), to draw the root locus. However, the affine root-locus rules
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apply if and only if the loop transfer function and thus the controller are linear in k.

In this thesis, we develop rules that characterize the root locus for classes of loop

transfer functions that are nonlinear in k. More specifically, Chapters 2 and 3 consider

controllers that are rational functions of k and result in closed-loop denominator poly-

nomials that are quadratic and cubic in k, respectively. As an example, consider the

plant z(s)/p(s) and the controller k2/(s+k). In this case, the closed-loop denominator

polynomial is k2z(s) + kp(s) + sp(s), which is quadratic in k. Controller construc-

tions, which depend nonlinearly on a single parameter k, are considered in [17–20].

For certain minimum-phase systems, the controllers of [17–20] are high-gain stabi-

lizing, meaning that these controllers stabilize the closed-loop system for sufficiently

large k. While the results of [17–20] characterize the asymptotic behavior of the

closed-loop poles (i.e., the behavior for sufficiently large k), these results do not char-

acterize the locations of the closed-loop poles for either large or small k. In contrast,

Chapters 2 and 3 characterize the closed-loop pole locations for all positive k.

Controller structures other than those considered in Chapters 2 and 3 lead to closed-

loop denominator polynomials that are quadratic or cubic in k. Chapter 4 presents

root-locus rules for a general polynomial that is quadratic in k. These quadratic

root-locus rules apply to a linear controller that is a rational function of k and

yields a closed-loop denominator polynomial that is quadratic in k. For example,

the quadratic root-locus rules in Chapter 4 specialize to the root-locus rules in Chap-

ter 2 if the appropriate controller class is considered.

Some of the rules developed in quadratic and cubic root locus are analogous to

affine root locus. For example, portions of the real axis of the quadratic and cubic

root loci behave similarly to portions of the real axis of the affine root locus. In

contrast, the quadratic and cubic root loci possess other features that differ from

affine root locus. For example, quadratic and cubic root loci feature portions of the

real axis that may be “double covered” or “triple covered” meaning that there exists
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two or three distinct k > 0 such that a point on the root locus is a closed-loop pole.

This cannot occur in affine root locus.

To demonstrate a potential benefit of quadratic and cubic root locus, recall that

affine root locus is not high-gain stabilizing for systems, where the relative degree

exceeds two. In this case, high gain causes at least one closed-loop pole to diverge

to infinity through the open-right-half complex plane. In contrast, the quadratic

root locus can be high-gain stabilizing for minimum-phase systems that are relative

degree one, two or three. Moreover, the cubic root locus can be high-gain stabilizing

for minimum-phase systems that are relative degree one, two, three, or four.

Before discussing quadratic and cubic root locus techniques, we first review the

classical or affine root locus.

1.2 Review of Classical Root Locus

Consider the single-input single-output linear time-invariant system

y(s) = βG(s)u(s), (1.1)

where

G(s)
�
=

zp(s)

pp(s)
, (1.2)

where u(s) is the input; y(s) is the output; β ∈ R; and zp(s) and pp(s) are coprime

monic polynomials, where deg zp(s) < deg pp(s). Next, consider the control

u(s) =
1

β
Ĝk(s)(v(s)− y(s)), (1.3)

where

Ĝk(s)
�
= k

zc(s)

pc(s)
, (1.4)
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where v(s) is an external signal; zc(s) and pc(s) are monic polynomials, where deg

zc(s) ≤ deg pc(s); and z(s)
�
= zp(s)zc(s) and p(s)

�
= pp(s)pc(s) are coprime.

The closed-loop system (1.1)–(1.4) is shown in Figure 1.1, and the closed-loop

transfer function from v to y is given by

G̃k(s)
�
=

G(s)Ĝk(s)

1 +G(s)Ĝk(s)
=

kz(s)

p̃k(s)
,

where

p̃k(s)
�
= kz(s) + p(s). (1.5)

1
β
Ĝk(s)

�u(s)
βG(s) �y(s)

�
��v(s) �

Figure 1.1: The closed-loop system depends on the root-locus parameter k.

We use the following classical definition of the positive root locus.

Definition 1.1. The root locus is {λ ∈ C : 1 +G(λ)Ĝk(λ) = 0, where k > 0}.

We now present rules that can be used to draw the classical root locus. For more

information on the classical root locus, see [21, pp. 381–389]. Facts 1.1 and 1.2

define the root locus starting points for k = 0 and describe the root locus symmetry,

respectively.

Fact 1.1. As k → 0, the roots of p̃k(s) approach the roots of p(s).

Fact 1.2. The root locus is symmetric about the real axis.

Next, we present a rule to determine the points on the real axis that are on the

root locus. The behavior of the root locus on the real axis depends on the roots of

p(s) and z(s) only.
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Fact 1.3. Let σ ∈ R. Then σ is on the root locus if and only if σ lies to the left of

an odd number of real roots of p(s)z(s). Furthermore, if σ is on the root locus, then

there exists exactly one k > 0 such that p̃k(σ) = 0.

Note that the last sentence of Fact 1.3 is usually not included in the statement

of the classical root-locus real axis fact. However, the last sentence of Fact 1.3 is a

consequence of the closed-loop denominator polynomial (1.5) being affine in k, which

implies that there exists at most one k > 0 such that p̃k(σ) = 0. In contrast, the

quadratic and cubic root loci can yield multiple k > 0 such that p̃k(σ) = 0.

We now describe the asymptotic properties of affine root locus, that is, the prop-

erties for sufficiently large k > 0. We define

n
�
= deg p(s), m

�
= deg z(s), d

�
= n−m.

Furthermore, let z1, z2, . . . , zm be the roots of z(s), and let p1, p2, . . . , pn be the roots

of p(s). Fact 1.4 characterizes the asymptotic properties of the root locus.

Fact 1.4. As k tends to infinity, m roots of p̃k(s) converge to the roots of z(s),

and the d remaining roots of p̃k(s) are approximated by λ1, λ2, . . . , λd, where for i =

1, 2, . . . , d,

λi
�
= k1/dejθi + α,

where

θi
�
=

2πi− π

d
,

α
�
=

∑n
j=1 pj −

∑m
j=1 zj

d
.

Fact 1.4 implies that as k tends to infinity, d roots of p̃k(s) tend to infinity along

asymptotes centered at α with angles θ1, θ2, . . . , θd, where θ1, θ2, . . . , θd are equally

spaced between 0 and 2π radians.
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We now examine a point τ ∈ R, where there exists kτ > 0 such that τ is a root of

p̃kτ (s) and where an infinitesimal perturbation to kτ causes the the root of p̃kτ (s) at

τ to become complex. These points are break-in and breakaway points. Specifically,

roots that become complex under positive perturbation are breakaway points, while

roots that become complex under negative perturbation are break-in points.

Definition 1.2. Let τ ∈ R be on the root locus. Then τ is a break-in or breakaway

point if, for all ε > 0, there exists σ ∈ C and kσ > 0 such that |σ− τ | < ε, p̃kσ(σ) = 0,

and the imaginary part of σ is nonzero.

Fact 1.5 characterizes the break-in and breakaway points along the real axis.

Fact 1.5. Let τ ∈ R be on the root locus. Then τ is a break-in or breakaway point

if and only if
m∑
i=1

1

τ − zi
=

n∑
i=1

1

τ − pi
.

Facts 1.1–1.5 provide rules for constructing the classical root locus. In subsequent

chapters, we develop analogous rules for the root locus, where the closed-loop de-

nominator polynomial is quadratic and cubic in the root-locus parameter k. We now

present a summary of the subsequent chapters.

1.3 Summary of Chapters

Summary of Chapter 2

Chapter 2 presents the root locus for a controller class that yields a closed-loop

denominator polynomial that is quadratic in k. Specifically, Chapter 2 considers con-

trollers where the numerator polynomial is proportional to k2, and the denominator

polynomial includes a pole, whose location is proportional to k. The controller class

in Chapter 2 results in a closed-loop denominator polynomial that is quadratic in k.

Thus, the root locus rules for this controller require techniques for a polynomial that

6



is quadratic in k. Chapter 2 presents quadratic root-locus rules that are analogous

to the classical root-locus rules given by Facts 1.1–1.5.

Summary of Chapter 3

Chapter 3 presents the root locus for a controller class that yields a closed-loop

denominator polynomial that is cubic in k. Specifically, Chapter 3 considers con-

trollers where the numerator polynomial is proportional to k3, and the denominator

polynomial includes two poles, whose locations are proportional to k. The controller

class in Chapter 3 results in a closed-loop denominator polynomial that is cubic in

k. Thus, the root locus rules for this controller require techniques for a polynomial

that is cubic in k. Chapter 3 presents cubic root-locus rules that are analogous to

the classical root-locus rules given by Facts 1.1–1.4.

Summary of Chapter 4

Chapter 4 presents root-locus rules for a polynomial that is quadratic in k. In con-

trast to the quadratic root-locus rules in Chapter 2, Chapter 4 does not use a specific

controller class to construct the quadratic root-locus rules. If the appropriate con-

troller class is considered, then the quadratic root-locus rules in Chapter 4 specialize

to the rules in Chapter 2.

All notation is introduced in the chapter where the notation is used. Furthermore,

some notation may change between chapters. Thus, notation is specific to the chapter

where it appears.
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Chapter 2 Root Locus for a Controller Class that Yields Quadratic Gain

Parameterization

This chapter presents rules for constructing the root locus for a class of linear

feedback systems, where the closed-loop denominator polynomial is quadratic in the

root-locus parameter k. These quadratic root-locus rules apply to a class of controllers

that are rational functions of k. In contrast, classical root locus applies to controllers

that are linear in k, and thus result in closed-loop denominator polynomials that

are affine in k. We provide controller design examples to demonstrate the quadratic

root locus. For example, we use quadratic root locus to high-gain stabilize the triple

integrator; this is not possible with classical root locus. The results from this chapter

have been submitted for publication in [22].

2.1 Introduction

In this chapter, we consider a class of controllers that yield a closed-loop denomi-

nator polynomial that is quadratic in the root-locus parameter k. More specifically,

we consider a controller class, where the numerator is proportional to k2, and the

denominator includes a pole, whose location is proportional to k. For this controller

class, we develop rules that characterize the starting points of the root locus, the

segments of the real axis that are on the root locus, the asymptotic behavior of the

root locus, and the break-in and breakaway points.

We provide two controller design examples to demonstrate the quadratic root locus.

Specifically, we use quadratic root locus to high-gain stabilize the triple integrator.
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We also use the quadratic root locus on a minimum-phase system, where the relative

degree is two, and show that the settling time can be reduced by increasing k.

2.2 Problem Formulation

Consider the single-input single-output linear time-invariant system

y(s) = βG(s)u(s), (2.1)

where

G(s)
�
=

zp(s)

pp(s)
, (2.2)

where u(s) is the input; y(s) is the output; β ∈ R; and zp(s) and pp(s) are coprime

monic polynomials, where deg zp(s) < deg pp(s). Next, consider the control

u(s) =
1

β
Ĝk(s)(v(s)− y(s)), (2.3)

where

Ĝk(s)
�
=

k2zc(s)

(s− ρ+ γk)pc(s)
, (2.4)

where v(s) is an external signal; ρ ∈ R; γ > 0; zc(s) and pc(s) are monic polynomials,

where deg zc(s) ≤ deg pc(s) + 1; and z(s)
�
= zp(s)zc(s) and p(s)

�
= pp(s)pc(s) are

coprime. The controller Ĝk(s) is a nonlinear but rational function of k.

The closed-loop system (2.1)–(2.4) is shown in Figure 1.1, and the closed-loop

transfer function from v to y is given by

G̃k(s)
�
=

G(s)Ĝk(s)

1 +G(s)Ĝk(s)
=

k2z(s)

p̃k(s)
, (2.5)

where

p̃k(s)
�
= k2z(s) + γkp(s) + (s− ρ)p(s). (2.6)
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In classical root locus, the denominator polynomial of the closed-loop transfer func-

tion is an affine function of k. In contrast, p̃k(s) is a quadratic function of k. Nev-

ertheless, we use the classical definition of the positive root locus, which is given by

Definition 1.1.

This chapter considers the quadratic root locus where k > 0. The techniques in

this chapter can also be used to develop root locus rules for k < 0.

In the next three sections, we present nine facts that characterize the quadratic

root locus. Proofs of these facts are provided in Section 2.8.

2.3 Quadratic Root-Locus Rules

In this section, we present four rules for the quadratic root locus. These rules are

analogous to Facts 1.1–1.4 of the classical root locus. Facts 2.1 and 2.2 define the root

locus starting points for k = 0 and describe the root locus symmetry, respectively.

These two facts are consistent with classical root locus.

Fact 2.1. As k → 0, the roots of p̃k(s) approach the roots of (s− ρ)p(s).

Fact 2.2. The root locus is symmetric about the real axis.

Next, we present a rule to determine the points on the real axis that are on the

root locus. We define

t(s)
�
= γ2p(s)− 4(s− ρ)z(s), (2.7)

and note that t(s)p(s) is the discriminant of p̃k(s) with respect to k. The polynomial

t(s) is not necessarily monic. Furthermore, if deg p(s) ≤ deg z(s)+1, then the leading

coefficient of t(s) can be negative. The behavior of classical root locus on the real

axis depends on the roots of p(s) and z(s) only. In contrast, the real axis rule for the

quadratic root locus depends on the roots of p(s), z(s) and t(s); the leading coefficient

of t(s); and ρ.
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Fact 2.3. Let σ ∈ R. Then σ is on the root locus if and only if either of the

following statements hold:

(a) σ ≥ ρ and p(σ)z(σ) < 0.

(b) σ < ρ, p(σ) 	= 0 and t(σ)p(σ) ≥ 0.

Furthermore, if σ is on the root locus, then the following statements hold:

(i) If σ ≥ ρ, then there exists exactly one k > 0 such that p̃k(σ) = 0.

(ii) If p(σ)z(σ) ≥ 0 or t(σ) = 0, then there exists exactly one k > 0 such that

p̃k(σ) = 0.

(iii) If σ < ρ, p(σ)z(σ) < 0 and t(σ) 	= 0, then there exists two distinct k > 0 such

that p̃k(σ) = 0.

Part (a) of Fact 2.3 implies that the real axis to the right of ρ is consistent with

classical root locus. Specifically, σ ≥ ρ is on the root locus if and only if σ lies to the

left of an odd number of real roots of p(s)z(s). In contrast, part (b) of Fact 2.3 shows

that the real axis to the left of ρ differs from classical root locus.

It follows from part (b) of Fact 2.3 that real roots of t(s) that have odd multiplicity

and lie to the left of ρ are boundary points that separate segments of the real axis

that are on the root locus from segments of the real axis that are not on the root

locus. Furthermore, part (b) of Fact 2.3 implies that real zeros (i.e., real roots of

z(s)), which lie to the left of ρ, can be closed-loop poles (i.e., roots of p̃k(s)) for finite

k. These features are not present in classical root locus.

We now describe the asymptotic properties of the quadratic root locus, that is, the

properties for sufficiently large k > 0. We define

n
�
= deg p(s) + 1, m

�
= deg z(s), d

�
= n−m. (2.8)
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Furthermore, let z1, z2, . . . , zm be the roots of z(s), and let p1, p2, . . . , pn−1 be the

roots of p(s). Fact 2.4 characterizes the asymptotic properties of p̃k(s), that is, the

properties for sufficiently large k > 0.

Fact 2.4. As k → ∞, m roots of p̃k(s) converge to the roots of z(s), and the d

remaining roots satisfy the following statements:

(a) If d = 1, then the remaining root of p̃k(s) is approximated by

λ1
�
= −k2 − γk + ρ. (2.9)

(b) If d = 2, then the two remaining roots of p̃k(s) are approximated by λ1 and λ2,

where, for i = 1, 2,

λi
�
= kejθi + α, (2.10)

where

θi
�
= arg

(
−γ

2
+ j

(−1)i
√

4− γ2

2

)
, (2.11)

α
�
=

n−1∑
j=1

pj −
m∑
j=1

zj. (2.12)

(c) If d = 3, then the three remaining roots of p̃k(s) are approximated by

λ1
�
= α + j

√
k/γ + ρ/γ2 − α2, (2.13)

λ2
�
= α− j

√
k/γ + ρ/γ2 − α2, (2.14)

λ3
�
= − γk − γ−2 + ρ, (2.15)

where

α
�
=

∑n−1
j=1 pj −

∑m
j=1 zj + γ−2

2
. (2.16)
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(d) If d ≥ 4, then the d remaining roots of p̃k(s) are approximated by λ1, λ2, . . . , λd,

where for i = 1, 2, . . . , d− 1,

λi
�
=

(
k

γ

) 1
d−1

ejθi + α, (2.17)

where

θi
�
=

2πi− π

d− 1
, (2.18)

α
�
=

∑n−1
j=1 pj −

∑m
j=1 zj

d− 1
; (2.19)

and

λd
�
= −γk − (−γ)1−d/kd−3 + ρ. (2.20)

2.4 Break-in and Breakaway Points

In this section, we examine the break-in and breakaway points of the quadratic root

locus. We use the classical break-in and breakaway point definition, which is given

by Definition 1.2.

For i = 1, 2, define κi : {σ ∈ R : z(σ) 	= 0} → C by

κi(σ)
�
=

−γp(σ) + (−1)i−1
√

t(σ)p(σ)

2z(σ)
, (2.21)

which maps the real numbers excluding the real roots of q(s) to the complex numbers.

Note that if κ1(σ) > 0 or κ2(σ) > 0, then there exists k > 0 such that p̃k(σ) = 0, and

σ is on the root locus.

We now present facts that characterize break-in and breakaway points. Fact 2.5

characterizes the break-in and breakaway points along the real axis, excluding the

real roots of t(s)z(s). Furthermore, Facts 2.6 and 2.7 demonstrate when roots of z(s)

and t(s), respectively, are break-in and breakaway points.
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Fact 2.5. Let τ ∈ R be a point on the root locus, and assume τ is not a root of

t(s)z(s). Then τ is a break-in or breakaway point if and only if either of the following

statements hold:

(a) κ1(τ) > 0 and dκ1(σ)/dσ|σ=τ = 0.

(b) κ2(τ) > 0 and dκ2(σ)/dσ|σ=τ = 0.

Fact 2.6. Let τ be a real root of z(s), and define kτ
�
= (ρ − τ)/γ. Then τ is a

break-in or breakaway point if and only if τ < ρ and p̃kτ (s) has multiple roots at τ .

Fact 2.7. Let τ be a real root of t(s), and define kτ
�
= 2(ρ − τ)/γ. Then the

following statements are equivalent:

(a) τ is a break-in or breakaway point.

(b) τ < ρ and p̃kτ (s) has multiple roots at τ .

(c) τ < ρ and t(s) has multiple roots at τ .

2.5 Additional Real Axis Rules

In classical root locus, it is not possible for roots of z(s) to be closed-loop poles. In

contrast, Fact 2.3 of quadratic root locus implies that the real roots of z(s) can be

closed-loop poles for finite k > 0. The following two facts characterize finite values

of k > 0 for which real roots of z(s) and real roots of t(s) are closed-loop poles.

Fact 2.8. Let σ be a real root of z(s). Then p̃k(σ) = 0 if and only if k = (ρ−σ)/γ.

Furthermore, σ is on the root locus if and only if σ < ρ.

Fact 2.9. Let σ be a real root of t(s). Then p̃k(σ) = 0 if and only if k = 2(ρ−σ)/γ.

Furthermore, σ is on the root locus if and only if σ < ρ.
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2.6 Numerical Examples

In classical root locus, systems where the relative degree exceeds two are not high-

gain stabilizable, that is, stable for sufficiently large k > 0. In contrast, quadratic

root locus can high-gain stabilize minimum-phase systems that are relative degree

one, two or three. We consider a relative-degree-three example.

Example 2.1. Consider the system y(s) = G(s)u(s), where G(s) = 1/s3, which is

minimum phase and relative degree 3. Part (c) of Fact 2.4 states that the asymptote

angles for d = 3 are −π/2, π/2 and π. Thus, if d = 3, zc(s) is asymptotically stable

and α < 0, then the closed-loop transfer function G̃k(s), given by (2.5), is high-gain

stable. We let pc(s) = s + 30, zc(s) = (s + 10)(s + 15) and γ = 1, and it follows

that α = −2 < 0 and d = 3. Next, we let ρ = −5. Note that ρ does not impact the

asymptote center α or asymptote angles for d = 3. Thus, the controller (2.3), where

Ĝk(s) = k2(s+ 10)(s+ 15)/((s+ 5+ k)(s+ 30)), high-gain stabilizes the closed-loop

transfer function G̃k(s), where G(s) is the triple integrator.

To draw the quadratic root locus, we apply the rules from Section 2.3. First,

Fact 2.1 implies that the root locus begins at the roots of (s + 5)p(s). Next, Fact

2.3 specifies which points of the real axis are on the root locus. Since p(s)z(s) has

no roots in the open-right-half complex plane, part (a) of Fact 2.3 implies (0,∞)

is not on the root locus. Since [−5, 0), which includes ρ as a boundary point, is

to the left of an odd number of real roots of p(s)z(s), part (a) of Fact 2.3 implies

that [−5, 0) is on the root locus. Now, part (b) of Fact 2.3 is used to determine

the points on the real axis to the left of ρ that are on the root locus. Note that

t(s) = (s + 28.96)(s − 8.47)(s + 2.76 + j2.16)(s + 2.76 − j2.16). Thus, (−28.96,−5)

and (−∞,−30) are on the root locus, while (−30,−28.96) is not on the root locus.

Furthermore, since (−28.96,−15) and (−10,−5) are also to the left of an even number

of real roots of p(s)z(s), it follows from (iii) of Fact 2.3 that these intervals are “double

15



−40 −35 −30 −25 −20 −15 −10 −5 0 5 10
−300

−200

−100

0

100

200

300

Real Axi s

Im
a
g
in

a
ry

A
x
is

 

 
Roots of t(s)
Roots of p (s)

Roots of z (s)
ρ

Figure 2.1: The quadratic root locus shows that the triple integrator G(s) = 1/s3 is
high-gain stabilized by the controller Ĝk(s) = k2(s+10)(s+15)/((s+5+k)(s+30)).
In fact, the closed-loop system is asymptotically stable for all k > 1414.
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covered”, that is, there exist two distinct k > 0 such that each point in the interval

is a closed-loop pole of G̃k(s). The quadratic root locus is plotted in Figure 2.1, and

the plot confirms that the closed-loop transfer function G̃k(s) is high-gain stable. In

fact, G̃k(s) is asymptotically stable for all k > 1414. 


In classical root locus, a relative-degree-two system has two closed-loop complex-

conjugate poles that diverge to infinity along asymptotes with angles ±π/2 rad. The

real part of these poles converge to the asymptote center, which is finite and deter-

mines the settling time associated with the poles. In contrast, the quadratic root

locus for a relative-degree-two system has two closed-loop complex-conjugate poles

that diverge to infinity along asymptotes with angles that can be selected by choice

of γ. We demonstrate this feature in the following example.

Example 2.2. Consider the inverted-pendulum model θ̈− (g/l) sin θ = u, where θ

is the angle from the inverted position, g is the acceleration due to gravity, l is the

length of the pendulum, and u is the control torque. Let g/l = 100 s−2, and assume

that the output is the angular velocity, that is, y = θ̇. The linearized transfer function

from u to y is G(s) = s/((s− 10)(s+ 10)).

First, we consider the controller

u(s) =
k(s+ 5)

(s− 5)(s+ 20)
(v(s)− y(s)),

where v(s) is an external signal, and we consider the classical root locus, which is

shown in Figure 2.2 and demonstrates that two closed-loop poles diverge along asymp-

totes centered at −5 with angles ±π/2 rad. The closed-loop system is asymptotically

stable for sufficiently large k > 0, but the settling time associated with the diverging

poles cannot be changed by choice of k.
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Figure 2.2: The classical root locus shows that, for sufficiently large k > 0, the two
closed-loop poles diverge along asymptotes centered at −5 with angles ±π/2 rad.
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Figure 2.3: The quadratic root locus shows that, for sufficiently large k > 0, two
closed-loop poles diverge along asymptotes centered at −10 with angles ±2.42 rad.
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Next, we consider the controller

u(s) =
k2(s+ 5)

(s− 5)(s+ 20 + 1.5k)
(v(s)− y(s)),

and the associated quadratic root locus, which is shown in Figure 2.3. The quadratic

root locus demonstrates that two closed-loop poles diverge along asymptotes, which

are determined using part (b) of Fact 2.4 and are centered at −10 with angles ±2.42

rad. The closed-loop system is asymptotically stable for sufficiently large k > 0.

Furthermore, the settling time associated with the diverging poles can be reduced

relative to the settling time of the diverging poles in the classical root locus shown in

Figure 2.2. 


2.7 Conclusions

This chapter presented rules for constructing a root locus, where the closed-loop

denominator polynomial is quadratic in the root-locus parameter k. These quadratic

root-locus rules apply to a controller class that is rational in k. Specifically, this

chapter considered the controller class (2.3) and (2.4), where the closed-loop denom-

inator polynomial is quadratic in k. The techniques used in this chapter to develop

Facts 2.1, 2.2, 2.3, and 2.5 can be generalized to other controller structures that lead

to closed-loop denominator polynomials that are quadratic in k. For example, the

real axis rule (i.e., Fact 2.3) determines the real values of σ that are on the root

locus by determining the real values of σ such that p̃k(σ), which is quadratic in k,

has positive roots. This technique can be applied to any closed-loop denominator

polynomial that is quadratic in k, and can thus be generalized to other controller

structures. In contrast, the techniques used to develop the asymptotic properties in

Fact 2.4 cannot be directly extended to other controller structures. Fact 2.4 relies

on the specific controller class considered in this chapter. Generalizing the quadratic
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root locus rules to other controller structures is considered in Chapter 4.

2.8 Proofs for Facts 2.1–2.9

Proof of Fact 2.1. If k = 0, then p̃k(s) = (s− ρ)p(s).

Proof of Fact 2.2. Since for all k > 0, p̃k(s) has real coefficients, it follows that

the roots of p̃k(s) are either on the real axis or occur in complex conjugate pairs.

Proof of Fact 2.3. First, we show that real roots of p(s) are not on the root

locus. Assume p(σ) = 0, and it follows from (2.6) that p̃k(σ) = k2z(σ). Since p(s)

and z(s) are coprime, it follows that z(σ) 	= 0. Thus, there does not exist k > 0 such

that p̃k(σ) = 0, and σ is not on the root locus.

Next, define

a2
�
= z(σ), a1

�
= γp(σ), a0

�
= (σ − ρ)p(σ), (2.22)

and note from (2.6) that p̃k(σ) = a2k
2 + a1k + a0.

We show that (a) or (b) is necessary for σ to be on the root locus. Assume σ is on

the root locus and consider three cases: (A.I) σ > ρ, (A.II) σ = ρ and (A.III) σ < ρ.

First, assume (A.I) σ > ρ, and it follows that a1a0 = γ(σ − ρ)p(σ)2 > 0. Since

σ is on the root locus, p̃k(σ) has at least one positive root on the root locus, which

implies that a2 has the opposite sign of a1 and a0. Thus, a2a0 < 0. Furthermore,

since a2a0 = (σ − ρ)p(σ)z(σ) < 0 and σ − ρ > 0, it follows that p(σ)z(σ) < 0. Next,

assume (A.II) σ = ρ, which implies that p̃k(σ) = k(a2k+a1). Since p̃k(σ) has at least

one positive root, it follows that −a1/a2 > 0, or equivalently a2a1 < 0. Furthermore,

since a2a1 = γp(σ)z(σ) < 0 and γ > 0, it follows that p(σ)z(σ) < 0. Thus, combining

cases (A.I) and (A.II), we obtain σ ≥ ρ and p(σ)z(σ) < 0, which implies (a).

Finally, assume (A.III) σ < ρ, and consider two cases: (A.III.a) a2 = 0 and (A.III.b)

a2 	= 0. First, assume (A.III.a) a2 = 0, which implies that a21− 4a2a0 = a21 ≥ 0. Next,

assume (A.III.b) a2 	= 0. Since p̃k(σ) has at least one positive root, it follows that
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the roots of p̃k(σ) are not complex, which implies that a21 − 4a2a0 ≥ 0. Thus, in both

cases, we obtain a21 − 4a2a0 = t(σ)p(σ) ≥ 0, which implies (b).

Conversely, assume (a) or (b) hold. Assume (a) holds and consider two cases: (B.I)

σ > ρ and (B.II) σ = ρ. First, assume (B.I) σ > ρ. Since σ > ρ and p(σ)z(σ) < 0, it

follows that a2a0 = (σ − ρ)p(σ)z(σ) < 0. Thus, part (a) of Lemma 1 in Appendix A

implies that there exists exactly one k > 0 such that p̃k(σ) = 0. Next, assume (B.II)

σ = ρ, and it follows that kσ
�
= −a1/a2 and 0 are the roots of p̃k(σ) = k(a2k + a1).

Since γ > 0 and p(σ)z(σ) < 0, it follows that kσ = −γp(σ)/z(σ) is positive. Therefore,

there exists exactly one k > 0 such that p̃k(σ) = 0. Thus, combining cases (B.I) and

(B.II), we obtain that (a) implies that there exists exactly one k > 0 such that

p̃k(σ) = 0, which implies that σ is on the root locus, and confirms (i).

Next, assume (b) holds, and consider two cases: (C.I) t(σ) = 0, and (C.II) t(σ) 	= 0.

First, assume (C.I) t(σ) = 0, which implies from (2.7) that γ2p(σ) = 4(σ − ρ)z(σ).

Furthermore, since σ − ρ < 0, it follows that p(σ) and z(σ) have opposite signs,

which implies that p(σ)z(σ) < 0. Therefore, a21 − 4a2a0 = t(σ)p(σ) = 0 and a2a1 =

γp(σ)z(σ) < 0. Thus, part (b) of Lemma 1 in Appendix A implies that p̃k(σ) has

repeated positive roots. Therefore, there exists exactly one k > 0 such that p̃k(σ) = 0.

Thus, σ is on the root locus.

Next, assume (C.II) t(σ) 	= 0, which implies that a21 − 4a2a0 = t(σ)p(σ) > 0.

We consider three cases: (C.II.a) p(σ)z(σ) > 0, (C.II.b) p(σ)z(σ) = 0 and (C.II.c)

p(σ)z(σ) < 0. First, assume (C.II.a) p(σ)z(σ) > 0, and it follows that a2a0 =

(σ−ρ)p(σ)z(σ) < 0. Therefore, part (a) of Lemma 1 in Appendix A implies that there

exists exactly one k > 0 such that p̃k(σ) = 0. Next, assume (C.II.b) p(σ)z(σ) = 0,

which implies that z(σ) = 0 since p(σ) 	= 0. Therefore, p̃k(σ) = p(σ)(γk + σ − ρ) has

the sole root −(σ− ρ)/γ, which is positive. Therefore, there exists exactly one k > 0

such that p̃k(σ) = 0. Next, assume (C.II.c) p(σ)z(σ) < 0. Since γ > 0, σ− ρ < 0 and

p(σ)z(σ) < 0, it follows that a2a1 = γp(σ)z(σ) < 0, and a2a0 = (σ − ρ)p(σ)z(σ) > 0.
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Furthermore, since a21 − 4a2a0 > 0, a2a1 < 0 and a2a0 > 0, part (c) of Lemma 1

in Appendix A implies that there exists two distinct k > 0 such that p̃k(σ) = 0.

Thus, combining cases (C.I)–(C.II), we obtain that (b) implies that σ is on the root

locus. Furthermore, cases (C.II.a) and (C.II.b) confirm (ii), and case (C.II.c) confirms

(iii).

Proof of Fact 2.4. To show that m roots of p̃k(s) converge to the roots of z(s),

it follows from (2.6) that

p̃k(s)

k2
= z(s) +

γp(s)

k
+

(s− ρ)p(s)

k2
,

which implies that, for sufficiently large k > 0, p̃k(s)/k
2 ≈ z(s). Thus, as k → ∞, m

roots of p̃k(s) converge to the roots of z(s).

Next, define R
�
= maxi=1,...,m|zi| and write p(s) = sn−1 + a1s

n−2 + · · · + an−1 and

z(s) = sm + b1s
m−1 + · · ·+ bm, where a1, a2, . . . , an−1 ∈ R and b1, b2, . . . , bm ∈ R.

First, we show (a). Since d = 1, it follows that for all s ∈ C such that |s| > R, the

Laurent series expansion of p(s)/z(s) is given by

p(s)

z(s)
= 1 +

∞∑
i=1

ci
si
, (2.23)

where the real numbers c1, c2, . . . are coefficients of the Laurent series expansion.

Next, it follows from (2.2), (2.4) and (2.9) that

1

G(λ1)Ĝk(λ1)
=

−p(λ1)

z(λ1)
. (2.24)

Since |λ1| → ∞ as k → ∞, it follows from (2.23) that, for sufficiently large k > 0,

p(λ1)/z(λ1) ≈ 1. Therefore, for sufficiently large k > 0, (2.24) yields

1

G(λ1)Ĝk(λ1)
≈ −1,
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or equivalently 1 +G(λ1)Ĝk(λ1) ≈ 0. Thus, as k → ∞, one root of p̃k(s) is approxi-

mated by λ1, which confirms (a).

Next, we show (b). Since d = 2, it follows that, for all s ∈ C such that |s| > R, the

Laurent series expansion of p(s)/z(s) is given by

p(s)

z(s)
= s+ c0 +

∞∑
i=1

ci
si
, (2.25)

where the real numbers c0, c1, ... are coefficients of the Laurent series expansion. Fur-

thermore, note that c0 = a1 − b1 = −(
∑n−1

j=1 pj −
∑m

j=1 zj) = −α.

Next, for i = 1, 2, define

λ̄i
�
= k

(
uk + j(−1)i−1vk

)
+ α. (2.26)

where

uk
�
= − γ

2
− α

2k
+

ρ

2k
, (2.27)

vk
�
=

√
4− (γ + α/k − ρ/k)2

2
. (2.28)

Since, |uk + jvk| = |uk − jvk| = 1, it follows that (2.26) can be expressed as

λ̄i = kejθ̄i + α, (2.29)

where, for i = 1, 2,

θ̄i
�
= arg

(
uk + j(−1)i−1vk

)
. (2.30)

It follows from (2.26)–(2.28) that, for i = 1, 2,

(λ̄i − ρ+ γk)(λ̄i − α)

k2
= (−kuk + j(−1)ikvk)

× (kuk + j(−1)ikvk)/k
2
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= − 1. (2.31)

Furthermore, it follows from (2.29) and (2.30) that, as k → ∞, |λ̄1| → ∞ and

|λ̄2| → ∞. Thus, for i = 1, 2 and sufficiently large k > 0, it follows from (2.25) that

p(λ̄i)

z(λ̄i)
≈ λ̄i + c0 = λ̄i − α. (2.32)

Using (2.32) followed by (2.31) yields, for i = 1, 2 and sufficiently large k > 0,

1

G(λ̄i)Ĝk(λ̄i)
=

(λ̄i − ρ+ γk)p(λ̄i)

k2z(λ̄i)

≈ (λ̄i − ρ+ γk)(λ̄i − α)

k2
= −1,

or equivalently 1 + G(λ̄i)Ĝk(λ̄i) ≈ 0. Thus, as k → ∞, two roots of p̃k(s) are

approximated by λ̄1 and λ̄2. Finally, it follows from (2.11), (2.27), (2.28), and (2.30)

that, as k → ∞, θ̄i approaches θi . Thus, as k → ∞, λ̄i approaches λi, which implies

that, as k → ∞, two roots of p̃k(s) are approximated by λ1 and λ2, which confirms

(b).

Next, we show (c). First, we show that two roots of p̃k(s) approach λ1 and λ2. Since

d = 3, it follows that, for all s ∈ C such that |s| > R, the Laurent series expansion of

p(s)/z(s) is given by

p(s)

z(s)
= s2 + f1s+ c0 +

∞∑
i=1

ci
si
, (2.33)

where the real numbers f1, c0, c1, . . . are coefficients of the Laurent series expansion.

Furthermore, note that f1 = a1 − b1 = −(
∑n−1

j=1 pj −
∑m

j=1 zj) = −2α + γ−2.

Next, we consider the Taylor series expansion of k2/(s − ρ + γk) about ρ. For all

s ∈ C such that |s− ρ| < γk, the Taylor series expansion of k2/(s− ρ+ γk) about ρ
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is given by

k2

s− ρ+ γk
=

∞∑
j=0

(−1)j

γj+1kj−1
(s− ρ)j

=
k

γ
− s− ρ

γ2
+

∞∑
j=2

(−1)j

γj+1kj−1
(s− ρ)j. (2.34)

For i = 1, 2, |λi| =
√
k/γ + ρ/γ2, which implies that as k → ∞, |λ1| → ∞ and

|λ2| → ∞. Thus, for i = 1, 2 and sufficiently large k > 0, it follows from (2.33) that

p(λi)

z(λi)
≈ λ2

i + (−2α + γ−2)λi. (2.35)

Next, since for i = 1, 2, |λi| =
√
k/γ + ρ/γ2, it follows that as k → ∞, (λi − ρ)2/k

approaches a constant and for all j = 3, 4, . . . , (λi−ρ)j/kj−1 approaches zero. In addi-

tion, since for i = 1, 2 and sufficiently large k > 0, |λi−ρ| = √
k/γ + ρ/γ2 − 2αρ+ ρ2 <

γk, it follows from (2.34) that for sufficiently large k > 0,

k2

λi − ρ+ γk
≈ k

γ
− λi − ρ

γ2
. (2.36)

Using (2.35) followed by (2.36) yields, for i = 1, 2 and sufficiently large k > 0,

pc(λi)

G(λi)zc(λi)
=

p(λi)

z(λi)

≈ λ2
i + (−2α + γ−2)λi

=
−k

γ
+

λi − ρ

γ2

≈ − k2

λi − ρ+ γk

= − Ĝk(λi)pc(λi)

zc(λi)
,

or equivalently 1 + G(λi)Ĝk(λi) ≈ 0. Thus, as k → ∞, two roots of p̃k(s) are
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approximated by λ1 and λ2.

Next, to show that the one remaining root of p̃k(s) approaches λ3, it follows from

(2.4) and (2.15) that

Ĝk(λ3)pc(λ3)

zc(λ3)
=

k2

λ3 − ρ+ γk
= −γ2k2. (2.37)

Next, since, as k → ∞, |λ3| → ∞, it follows from (2.33) that for sufficiently large

k > 0,

p(λ3)

z(λ3)
≈ λ2

3 = γ2k2(1 + ck), (2.38)

where

ck
�
=

ρ2

γ2k2
− 2ρ

γ4k2
− 2ρ

γk
+

1

γ6k2
+

2

γ3k
. (2.39)

As k → ∞, ck approaches zero. Thus, as k → ∞, (2.38) implies that p(λ3)/z(λ3) ≈
γ2k2, which combined with (2.37) yields

pc(λ3)

G(λ3)zc(λ3)
=

p(λ3)

z(λ3)
≈ γ2k2 = −Ĝk(λ3)pc(λ3)

zc(λ3)

or equivalently 1 +G(λ3)Ĝk(λ3) ≈ 0. Thus, as k → ∞, one root of p̃k(s) approaches

λ3, which confirms (c).

Finally, we show (d). First, we show that d − 1 roots of p̃k(s) are approximated

by λ1, λ2, . . . , λd−1. Since d ≥ 4, it follows that, for all s ∈ C such that |s| > R, the

Laurent series expansion of p(s)/z(s) is given by

p(s)

z(s)
= sd−1 + fd−2s

d−2 + · · ·+ f1s+ c0 +
∞∑
i=1

ci
si
, (2.40)

where the real numbers f1, f2, . . . , fd−2, c0, c1, . . . are real coefficients of the Laurent

series expansion. Furthermore, note that fd−2 = a1 − b1 = −
(∑n−1

j=1 pj −
∑m

j=1 zj

)
=
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−(d − 1)α. For all s ∈ C such that |s − ρ| > (k/γ)
1
d and sufficiently large k > 0, it

follows from (2.40) that

p(s)

z(s)
≈ sd−1 − (d− 1)αsd−2. (2.41)

Next, for all s ∈ C such that (k/γ)
1
d < |s− ρ| < (k/γ)

1
2 , it follows that, as k → ∞,

(s− ρ)2/k approaches a constant and for j = 3, 4, . . . , (s− ρ)j/kj−1 approaches zero.

Therefore, for sufficiently large k > 0 and for all s ∈ C such that (k/γ)
1
d < |s− ρ| <

(k/γ)
1
2 , it follows from the Taylor series expansion (2.34) that

k2

s− ρ+ γk
≈ k

γ
− s− ρ

γ2
. (2.42)

Next, adding (2.41) and (2.42) yields, for sufficiently large k > 0 and for all s ∈ C

such that (k/γ)
1
d < |s− ρ| < (k/γ)

1
2 ,

p(s)

z(s)
+

k2

s− ρ+ γk
≈ dk(s), (2.43)

where

dk(s)
�
= sd−1 − (d− 1)αsd−2 − (s− ρ)/γ2 + k/γ. (2.44)

For k > 0, let λ̄1, λ̄2, . . . , λ̄d−1 be the roots of dk(s). It follows from classical root

locus that as k → ∞, |λ̄i| → ∞. Furthermore, since dk(λ̄i) = 0, it follows that

−k/γ = λ̄d−1
i − (d− 1)αλ̄d−2

i − (λ̄i − ρ)/γ2. (2.45)

Taking the (d− 1)th root of both sides of (2.45) then yields

(−k/γ)
1

d−1 = λ̄i (1 + ek)
1

d−1 , (2.46)
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where

ek
�
= −(d− 1)α

λ̄i

− λ̄i − ρ

γ2λ̄d−1
i

. (2.47)

Since as k → ∞, ek approaches zero, we use the binomial approximation (1 + ek)
q ≈

(1 + qek) , where q = 1/(d− 1), on (2.46), which yields

(
−k

γ

) 1
d−1

≈ λ̄i

(
1− α

λ̄i

− λ̄i − ρ

(r − 1)γ2λ̄d−1
i

)

= λ̄i − α− λ̄i − ρ

(d− 1) γ2λ̄d
i

. (2.48)

As k → ∞, (λ̄i−ρ)/((d−1)γ2λ̄d
i ) approaches zero, and (2.48) implies that (−k/γ)

1
d−1 ≈

λ̄i − α. Thus, for i = 1, 2, . . . , d− 1 and sufficiently large k > 0, solving for λ̄i yields

λ̄i ≈ (k/γ)
1

d−1 ejφi + α = λi. (2.49)

Next, since for i = 1, 2, . . . , d − 1, dk(λ̄i) = 0 and (k/γ)
1
d < |λ̄i − ρ| < (k/γ)

1
2 , it

follows from (2.43) that sufficiently large k > 0,

pc(λ̄i)

G(λ̄i)zc(λ̄i)
=

p(λ̄i)

z(λ̄i)
≈ −k2

λ̄i − ρ+ γk

=
−Ĝk(λ̄i)pc(λ̄i)

zc(λ̄i)
,

or equivalently 1 + G(λ̄i)Ĝk(λ̄i) ≈ 0. Thus, as k → ∞, d − 1 roots of p̃k(s) ap-

proach λ̄1, λ̄2, . . . , λ̄d−1. Furthermore, as k → ∞, it follows from (2.49) that, for

i = 1, 2, . . . , d − 1, λ̄i approaches λi. Therefore, as k → ∞, d − 1 roots of p̃k(s) are

approximated by λ1, λ2, . . . , λd−1.

Next, to show that the one remaining root of p̃k(s) approaches λd, it follows from

(2.4) that

Ĝk(λd)pc(λd)

zc(λd)
=

k2

λd − ρ+ γk
= −(−γk)d−1. (2.50)
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Next, since as k → ∞, |λd| → ∞, it follows from (2.40) that for sufficiently large

k > 0,

p(λd)

z(λd)
≈ λd−1

d = (−γk)d−1 (1 + gk)
d−1 , (2.51)

where

gk
�
= − ρ

γk
+

k2

(−γk)d
. (2.52)

Since d ≥ 4, it follows that, as k → ∞, gk approaches zero. Thus, as k → ∞, (2.51)

implies that p(λd)/z(λd) ≈ (−γk)d−1, which combined with (2.50) yields

pc(λd)

G(λd)zc(λd)
=

p(λd)

z(λd)
≈ (−γk)d−1 =

−Ĝk(λd)pc(λd)

zc(λd)

or equivalently 1 +G(λd)Ĝk(λd) ≈ 0. Thus, as k → ∞, one root of p̃k(s) is approxi-

mated by λd, which confirms (d).

Proof of Fact 2.5. First, we show that real roots of p(s) are not break-in or

breakaway points. Let μ ∈ R be a real root of p(s). Since p(μ) = 0 and p(s) and z(s)

are coprime, it follows from (2.6) that p̃kμ(μ) = 0 if and only if kμ = 0. Thus, μ is

not on the root locus, and it follows from Definition 1.2 that μ is not a break-in or

breakaway point.

Next, let τ ∈ R be on the root locus, and assume t(τ)p(τ)z(τ) 	= 0. Since τ is

on the root locus, it follows from (2.6) and (2.21) that κ1(τ) > 0 or κ2(τ) > 0. We

consider three cases: (A) κ1(τ) > 0 and κ2(τ) > 0, (B) κ1(τ) > 0 and κ2(τ) ≤ 0,

and (C) κ1(τ) ≤ 0 and κ2(τ) > 0. First, assume (A) κ1(τ) > 0 and κ2(τ) > 0. It

follows that there exists a ∈ R and b ∈ R such that: τ ∈ (a, b); there is at most one

break-in or breakaway point on (a, b); for all σ ∈ (a, b), t(σ)p(σ)z(σ) 	= 0; and for all

σ ∈ (a, b), κ1(σ) > 0 and κ2(σ) > 0. It follows from Definition 1.2 that τ is a break-in

or breakaway point if and only if τ is the minimizer or maximizer of κ1(σ) or κ2(σ)

on (a, b). Furthermore, τ is the minimizer or maximizer of κ1(σ) or κ2(σ) on (a, b)
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if and only if dκ1(σ)/dσ|σ=τ = 0 or dκ2(σ)/dσ|σ=τ = 0, respectively. Thus, τ is a

break-in or breakaway point if and only if dκ1(σ)/dσ|σ=τ = 0 or dκ2(σ)/dσ|σ=τ = 0.

Next, assume (B) κ1(τ) > 0 and κ2(τ) ≤ 0. It follows that there exists a ∈ R

and b ∈ R such that: τ ∈ (a, b); there is at most one break-in or breakaway point

on (a, b); for all σ ∈ (a, b), t(σ)p(σ)z(σ) 	= 0; and for all σ ∈ (a, b), κ1(σ) > 0. It

follows from Definition 1.2 that τ is a break-in or breakaway point if and only if τ

is the minimizer or maximizer of κ1(σ) on (a, b). Furthermore, τ is the minimizer or

maximizer of κ1(σ) on (a, b) if and only if dκ1(σ)/dσ|σ=τ = 0. Thus, τ is a break-in

or breakaway point if and only if dκ1(σ)/dσ|σ=τ = 0.

Finally, assume (C) κ1(τ) ≤ 0 and κ2(τ) > 0. Using the same argument as the previ-

ous case yields that τ is a break-in or breakaway point if and only if dκ2(σ)/dσ|σ=τ = 0.

Combining these three cases yields that τ is a break-in or breakaway point if and only

if (a) or (b) from Fact 2.5 holds.

Proof of Fact 2.6. Assume τ is a break-in or breakaway point, and it follows

from Definition 1.2 that τ is on the root locus. Since τ is a real root of z(s) and on

the root locus, it follows from Fact 2.8 that τ < ρ and kτ = (ρ− τ)/γ is the only root

of p̃k(τ). Thus, τ < ρ and p̃kτ (s) has multiple roots at τ .

Conversely, assume τ < ρ and p̃kτ (s) has multiple roots at τ . Since τ < ρ and

z(τ) = 0, Fact 2.8 implies that τ is on the root locus. Thus, Definition 1.2 implies

that τ is a break-in or breakaway point.

Proof of Fact 2.7. It follows from (2.7) that γ2p(s) = t(s)+4(s−ρ)z(s). Substi-

tuting p(s) = (t(s)+4(s−ρ)z(s))/γ2 into (2.6) and evaluating at k = kτ = 2(ρ−τ)/γ

yields

p̃kτ (s) =
(
4 (s− τ)2 z(s) + (2(ρ− τ) + 1) t(s)

)
/γ2. (2.53)

First, we show that (a) implies (b). Assume τ is a break-in or breakaway point,
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and it follows from Definition 1.2 that τ is on the root locus. Since τ is a real root

of t(s) and on the root locus, it follows from Fact 2.9 that τ < ρ and kτ is the only

root of p̃k(τ). Thus, τ < ρ and p̃kτ (s) has multiple roots at τ .

Next, we show that (b) implies (c). Assume that τ < ρ and p̃kτ (s) has multiple

roots at τ . It follows from (2.53) that that t(s) has multiple roots at τ .

Finally, we show that (c) implies (a). Assume τ < ρ and t(s) has multiple roots

at τ , and it follows from (2.53) that p̃kτ (s) has multiple roots at τ . Since τ < ρ and

p̃kτ (s) has multiple roots at τ , it follows from Definition 1.2 that τ is a break-in or

breakaway point.

Proof of Fact 2.8. Since z(σ) = 0, it follows from (2.6) that p̃k(σ) = p(σ)(σ −
ρ+γk). Therefore, p̃k(σ) = 0 if and only if p(σ) = 0 or k = (ρ−σ)/γ. Since z(σ) = 0

and p(s) and z(s) are coprime, it follows that p(σ) 	= 0. Thus, p̃k(σ) = 0 if and only

if k = (ρ− σ)/γ. Furthermore, (ρ− σ)/γ > 0 if and only if σ < ρ, which implies that

σ is on the root locus if and only if σ < ρ.

Proof of Fact 2.9. Since t(σ) = 0, it follows from (2.7) that γ2p(σ) = 4(σ −
ρ)z(σ). Substituting p(σ) = 4(σ − ρ)z(σ)/γ2 into (2.6) yields

p̃k(σ) = k2z(σ) + γk

(
4

γ2
(σ − ρ)z(σ)

)

+ (σ − ρ)

(
4

γ2
(σ − ρ)z(σ)

)

= z(σ)

(
k +

2

γ
(σ − ρ)

)2

.

Therefore, p̃k(σ) = 0 if and only if z(σ) = 0 or k = 2(ρ− σ)/γ.

Next, we show by contradiction that z(σ) 	= 0. Assume that z(σ) = 0. Thus,

p(σ) = 4(σ − ρ)z(σ)/γ2 = 0, which is a contradiction, because p(s) and z(s) are

coprime. Since z(σ) 	= 0, it follows that p̃k(σ) = 0 if and only if k = 2(ρ − σ)/γ.

Furthermore, 2(ρ− σ)/γ > 0 if and only if σ < ρ, which implies that σ is on the root

locus if and only if σ < ρ.
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Chapter 3 Root Locus for a Controller Class that Yields Cubic Gain Pa-

rameterization

This chapter presents rules for constructing the root locus for a class of linear

feedback systems, where the closed-loop denominator polynomial is cubic in the root-

locus parameter k. These cubic root-locus rules apply to a class of controllers that

are rational functions of k and result in closed-loop denominator polynomials that

are cubic in k. We provide controller design examples to demonstrate the cubic root

locus. For example, we use the cubic root locus to high-gain stabilize the quadruple

integrator; this is not possible with classical root locus. The results from this chapter

have been submitted for publication in [23].

3.1 Introduction

In Chapter 2, quadratic root-locus rules are developed for a class of controllers that

are rational functions of k and yield closed-loop denominator polynomials that are

quadratic in k. The controller class considered in Chapter 2 features a numerator

polynomial that is proportional to k2, and a denominator polynomial that includes

a pole, whose location is proportional to k. The rules in Chapter 2 can be used to

draw the root locus, where the plant is z(s)/p(s) and the controller is k2/(s+ k). In

this case, the closed-loop denominator polynomial is k2z(s) + kp(s) + sp(s), which is

quadratic in k.

In this chapter, we extend the techniques of Chapter 2 to develop cubic root-

locus rules for a class of controllers that are rational functions of k and that yield
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closed-loop denominator polynomials that are cubic in k. In particular, the controller

class considered in this chapter features a numerator polynomial that is proportional

to k3, and a denominator polynomial that includes two poles, whose locations are

proportional to k. For example, consider the plant z(s)/p(s) and the controller k3/(s+

k)2. In this case, the closed-loop denominator polynomial is k3z(s)+k2p(s)+2ksp(s)+

s2p(s), which is cubic in k. The cubic root-locus rules developed in this chapter can

be used to draw the root locus for k3z(s) + k2p(s) + 2ksp(s) + s2p(s). In fact, this

chapter considers the cubic root locus for a more general class of controllers than the

one described above. Controller structures that are not considered in this chapter

also lead to closed-loop denominator polynomials that are cubic in k. The cubic root

locus for other controller structures is discussed in the conclusion.

This chapter develops cubic root-locus rules that describe the behavior of closed-

loop poles for small k, the behavior of closed-loop poles for large k, and the segments

of the real axis that are on the root locus. The cubic root locus shares certain features

with the classical root locus and the quadratic root locus of Chapter 2. For example,

some points on the real axis obey the classical root-locus real-axis rule. However,

the cubic root locus possesses other features that differ from both the classical root

locus and the quadratic root locus. For example, consider a system that is relative

degree four. Using classical root locus or quadratic root locus, two of the closed-loop

poles diverge to infinity along asymptotes that are directed into the open-right-half

complex plane. Thus, neither classical root locus nor quadratic root locus is high-gain

stabilizing for systems that are relative degree four. In contrast, the cubic root locus

can be high-gain stabilizing for minimum-phase systems that are relative degree one,

two, three, or four. The relative-degree-four case is examined in more detail in Section

3.4, where we consider high-gain stabilization of the quadruple integrator.
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3.2 Problem Formulation

Consider the single-input single-output linear time-invariant system

y(s) = βG(s)u(s), (3.1)

where

G(s)
�
=

zp(s)

pp(s)
, (3.2)

where u(s) is the input; y(s) is the output; β ∈ R; zp(s) and pp(s) are coprime monic

polynomials; and deg zp(s) < deg pp(s). Consider the control

u(s) =
1

β
Ĝk(s)(v(s)− y(s)), (3.3)

where

Ĝk(s)
�
=

k3zc(s)

(s− ρ1 + γ1k)(s− ρ2 + γ2k)pc(s)
, (3.4)

where v(s) is an external signal; ρ1, ρ2 ∈ R; γ1, γ2 > 0 ; zc(s) and pc(s) are monic

polynomials, where deg zc(s) ≤ deg pc(s) + 2; and z(s)
�
= zp(s)zc(s) and p(s)

�
=

pp(s)pc(s) are coprime. Without loss of generality, we assume ρ1 ≤ ρ2.

The closed-loop system (3.1)–(3.4) is shown in Figure 1.1, and the closed-loop

transfer function from v to y is given by

G̃k(s)
�
=

G(s)Ĝk(s)

1 +G(s)Ĝk(s)
=

k3z(s)

p̃k(s)
, (3.5)

where

p̃k(s)
�
= k3z(s) + k2γ1γ2p(s) + k (γ1(s− ρ2) + γ2(s− ρ1)) p(s) + (s− ρ1)(s− ρ2)p(s).

(3.6)

Note that the closed-loop denominator polynomial is a cubic function of k. We use
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the classical definition of the positive root locus, which is given by Definition 1.1.

This chapter considers the cubic root locus for k > 0. The techniques in this chapter

can also be used to develop root locus rules for k < 0.

3.3 Cubic Root-Locus Rules

In this section, we present four facts that characterize the cubic root locus. Proofs

of these facts are provided in Section 3.6. Facts 3.1 and 3.2 define the root locus

starting points for k = 0 and describe the root locus symmetry, respectively. These

two facts are consistent with classical root locus.

Fact 3.1. As k → 0, the roots of p̃k(s) approach the roots of (s− ρ1)(s− ρ2)p(s).

Fact 3.2. The root locus is symmetric about the real axis.

Next, we present a rule to determine the points on the real axis that are on the

root locus. We define

t(s)
�
= γ2

1γ
2
2(γ1(s− ρ2)− γ2(s− ρ1))

2p(s)2

− 27(s− ρ1)
2(s− ρ2)

2z(s)2

− 2[γ1(s− ρ2) + γ2(s− ρ1)][γ1(s− ρ2)− 2γ2(s− ρ1)]

× [2γ1(s− ρ2)− γ2(s− ρ1)]p(s)z(s), (3.7)

and note that t(s)p(s)2 is the cubic discriminant of p̃k(s) with respect to k. See [24,

pp. 153-154] for more information on the discriminant of a cubic polynomial. The

behavior of classical root locus on the real axis depends on the roots of p(s) and z(s)

only. In contrast, the real axis rule for the cubic root locus depends on the roots of

p(s), z(s) and t(s); the leading coefficient of t(s); and ρ1 and ρ2.

Fact 3.3. Let σ ∈ R. Then σ is on the root locus if and only if any of the following

statements hold:
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(a) σ ≥ ρ2 and p(σ)z(σ) < 0.

(b) σ < ρ2 and (σ − ρ1)p(σ)z(σ) > 0.

(c) σ < ρ2, p(σ) 	= 0 and t(σ) ≥ 0.

Part (a) of Fact 3.3 implies that the real axis to the right of ρ2 is consistent with

classical root locus. Specifically, σ ≥ ρ2 is on the root locus if and only if σ lies to

the left of an odd number of real roots of p(s)z(s).

Parts (b) and (c) of Fact 3.3 imply that the real axis rule to the left of ρ2 differs

from classical root locus. Part (b) of Fact 3.3 implies that the real axis behavior

differs to the right and left of ρ1. Specifically, if σ lies between ρ1 and ρ2, and σ lies

to the left of an even number of real roots of p(s)z(s), then σ is on the root locus. If,

on the other hand, σ < ρ1 lies to the left of an odd number of real roots of p(s)z(s),

then σ is on the root locus.

Part (c) of Fact 3.3 implies that additional values of σ < ρ2 are on the root locus.

Part (c) of Fact 3.3 implies that real zeros (i.e., real roots of z(s)) which lie to the left

of ρ2 can be closed-loop poles (i.e., roots of p̃k(s)) for finite k > 0. In fact, it follows

from (3.7) and part (c) of Fact 3.3 that all real roots of z(s) that lie to the left of ρ2

are on the root locus.

We now describe the asymptotic properties of the root locus, that is, the properties

for sufficiently large k > 0. We define

n
�
= deg p(s) + 2, m

�
= deg z(s), d

�
= n−m. (3.8)

Furthermore, let z1, z2, . . . , zm be the roots of z(s), and let p1, p2, . . . , pn−2 be the roots

of p(s). Fact 3.4 characterizes the asymptotic properties of this controller, where γ1

and γ2 are equal.

Fact 3.4. Let γ1 = γ2 = γ, where γ > 0. As k → ∞, m roots of p̃k(s) converge to

37



the roots of z(s), and the d remaining roots satisfy the following statements:

(a) If d = 1, then the remaining root of p̃k(s) is approximated by

λ1
�
= −k3 − γk + ρ1. (3.9)

(b) If d = 2, then the two remaining roots of p̃k(s) are approximated by

λ1
�
= − γk +

(ρ1 + ρ2)

2
+ j

√
k3 − (ρ1 − ρ2)2

4
, (3.10)

λ2
�
= − γk +

(ρ1 + ρ2)

2
− j

√
k3 − (ρ1 − ρ2)2

4
. (3.11)

(c) If d = 3 and γ ≥ 3
√

27/4, then the three remaining roots of p̃k(s) are approxi-

mated by λ1, λ2 and λ3, where for i = 1, 2, 3,

λi
�
= −2γk

3

(
1− cos

(
φ+ 2πi

3

))
, (3.12)

where

φ
�
= cos−1

(
1− 27

2γ3

)
. (3.13)

(d) If d = 3 and γ < 3
√

27/4, then the three remaining roots of p̃k(s) are approxi-

mated by

λ1
�
= − k (2γ/3− x− w) , (3.14)

λ2
�
= − k(x+ w +

√
xw)ejθ, (3.15)

λ3
�
= − k(x+ w +

√
xw)e−jθ, (3.16)

where

θ
�
= arg

(
x+ w + 4

√
xw

2
− j

√
3(x− w)

2

)
, (3.17)
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x
�
=

3

√
(2γ3 − 27)/54 +

√
1/4− γ3/27, (3.18)

w
�
=

3

√
(2γ3 − 27)/54−

√
1/4− γ3/27. (3.19)

(e) If d = 4, then the four remaining roots of p̃k(s) are approximated by λ1, λ2, λ3,

and λ4, where for i = 1, 2,

λi
�
=

(
k2

γ2k + sgn(ρ1 + ρ2)γ|ρ1 − ρ2|
) 1

2

ejθi + α, (3.20)

where

θi
�
=

2πi− π

2
, (3.21)

α
�
=

∑n−2
j=1 pj −

∑m
j=1 zj + 2γ−3

2
; (3.22)

and for i = 3, 4,

λi
�
= −γk + (−1)ij

√
k/γ. (3.23)

(f) If d ≥ 5, then the d remaining roots of p̃k(s) are approximated by λ1, λ2, . . . , λd,

where for i = 1, 2, . . . , d− 2,

λi
�
=

(
k2

γ2k + sgn(ρ1 + ρ2)γ|ρ1 − ρ2|
) 1

d−2

ejθi + α,

where

θi
�
=

2πi− π

d− 2
, (3.24)

α
�
=

∑n−2
j=1 pj −

∑m
j=1 zj

d− 2
; (3.25)
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and for i = d− 1, d,

λi
�
= −γk +

ρ1 + ρ2
2

+ (−1)i
ρ1 − ρ2

2
. (3.26)

Part (b) of Fact 3.4 implies that if d = 2, then the real parts of the two excess

roots of p̃k(s) approach minus infinity. Part (c) of Fact 3.4 implies that that if d = 3

and γ ≥ (27/4)1/3 ≈ 1.78, then the three excess roots of p̃k(s) all approach minus

infinity along the real axis. In contrast, part (d) of Fact 3.4 implies that if d = 3

and γ < (27/4)1/3, then one excess root of p̃k(s) approaches minus infinity along

the real axis and the two remaining excess roots tend to infinity along asymptotes,

whose angles are determined by γ. Furthermore, part (d) of Fact 3.4 implies that if

γ > 0.794, then θ > π/2 and thus the asymptotes are directed into the open-left-half

complex plane. Therefore, parts (a)–(d) of Fact 3.4 imply that for d ≤ 3, the d

excess roots of p̃k(s) all diverge to infinity through the open-left-half complex plane,

provided that the controller design parameter γ > 0.794 for the d = 3 case.

Part (e) of Fact 3.4 implies that if d = 4, then as k tends to infinity, two roots

of p̃k(s) tend to infinity along the asymptotes centered at α with angles π/2 and

3π/2, and the two remaining roots of p̃k(s) tend to infinity through the open-left-half

complex plane at angles that tend to π. Thus, if α < 0 and z(s) is asymptotically

stable, then the closed-loop transfer function G̃k(s), given by (3.5), is high-gain stable.

Finally, part (f) of Fact 3.4 implies that if d ≥ 5, then two excess roots of p̃k(s)

approach minus infinity along the real axis, and the d − 2 remaining roots of p̃k(s)

obey the classical root locus rule for relative degree d − 2. More specifically, these

d − 2 roots of p̃k(s) diverge to infinity along asymptotes centered at α with angles

θ1, θ2, . . . , θd−2.
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3.4 Numerical Examples

In classical root locus, systems where the relative degree exceeds two are not high-

gain stabilizable, that is, stable for sufficiently large k > 0. In contrast, cubic root

locus can high-gain stabilize minimum-phase systems that are relative degree one,

two, three, or four. We consider the quadruple integrator, which is relative degree

four.

Example 3.1. Consider the system y(s) = G(s)u(s), where G(s) = 1/s4, which is

minimum phase and relative degree 4. Part (e) of Fact 3.4 states that the asymptote

angles for d = 4 are −π/2, π/2, π, and π. Thus, if d = 4, zc(s) is asymptotically

stable and α < 0, then the closed-loop transfer function G̃k(s), given by (3.5), is

high-gain stable. We let pc(s) = s+40, zc(s) = (s+8)(s+9)(s+10) and γ1 = γ2 = 1,

and it follows that α = −5.5 and d = 4. Next, we let ρ1 = ρ2 = −5. Note that ρ1 and

ρ2 do not impact the asymptote center α or asymptote angles for d = 4. Thus, the

controller (3.3), where Ĝk(s) = k3(s+ 8)(s+ 9)(s+ 10)/((s+ 5 + k)2(s+ 40)), high-

gain stabilizes the closed-loop transfer function G̃k(s), where G(s) is the quadruple

integrator.

To draw the cubic root locus, we apply the rules from Section 3.3. Fact 3.1 implies

that the root locus begins at the roots of (s+ 5)(s+ 5)p(s). Next, Fact 3.3 specifies

the points on the real axis that are on the root locus. Since p(s)z(s) has no roots in

the open-right-half complex plane, part (a) of Fact 3.3 implies (0,∞) is not on the

root locus. Since ρ2 = −5 and [−5, 0) is to the left of an even number of real roots of

p(s)z(s), part (a) of Fact 3.3 implies that [−5, 0) is not on the root locus. Now, parts

(b) and (c) of Fact 3.3 are used to determine the real values to the left of ρ2 that are

on the root locus. Part (b) of Fact 3.3 implies that (−40,−10) and (−9,−8) are on

the root locus. Next, note that t(s) = 4(s− 11.89)(s+ 2.98)(s+ 5)(s+ 8)(s+ 9)(s+

10)(s+37.44)(s+2.36+ ı3.57)(s+2.36− ı3.57)(s+5+ ı2.1×10−4)(s+5− ı2.1×10−4).
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Figure 3.1: The cubic root locus shows that the quadruple integrator G(s) = 1/s4 is
high-gain stabilized by the controller Ĝk(s) = k3(s+7)(s+8)(s+9)/((s+5+k)2(s+
40)). In fact, the closed-loop system is asymptotically stable for all k > 10.6× 106.
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Thus, part (c) of Fact 3.3 implies that [−37.44,−10] and [−9,−8] are on the root

locus. Combining parts (b) and (c) of Fact 2.3 yields that (−40,−10] and [−9,−8] is

on the root locus. The cubic root locus is plotted in Figure 3.1, and the plot confirms

that the closed-loop transfer function G̃k(s) is high-gain stable. In fact, G̃k(s) is

asymptotically stable for all k > 10.6× 106. 


In classical root locus, it is not possible to high-gain stabilize the two-degree-of-

freedom mass-spring-dashpot system shown in Figure 3.2. However, in cubic root

locus, it is possible to high-gain stabilize this system, which is demonstrated in the

following example.

c1

���
���

���
����

k1

m1

�
y(t)

c2

���
���

���
����

k2

m2 �u(t)

Figure 3.2: The two-degree-of-freedom mass-spring-dashpot system.

Example 3.2. Consider the two-degree-of-freedom mass-spring-dashpot system

shown in Figure 3.2, where u(t) is the force input on m2 and y(t) is the position of

m1. Let m1 = 0.5 kg, m2 = 0.2 kg, c1 = 8 kg/s, c2 = 5 kg/s, k1 = 10 kg/s2, and

k2 = 15 kg/s2. Thus, the open-loop system from u(t) to y(t) is (3.1), where β = 50

and G(s) = (s+3)/((s+38.5)(s+7.4)(s+3.7)(s+1.4)), which is minimum-phase and

relative degree three. Since G(s) is relative degree three, classical root locus cannot

high-gain stabilize G(s). Specifically, as k increases, two closed-loop poles tend to

infinity through the open-right-half complex plane.

Next, we consider the controller (3.4), where Ĝk(s) = k3(s+10)3/(s(s+7k)2). Note

that ρ1 = ρ2 = 0 and γ1 = γ2 = 7, and Ĝk(s) incorporates an integrator. It follows

from Fact 3.3 that (−∞,−37.4), [−10,−7.4) and (−3.7,−3] are on the root locus.
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Figure 3.3: The cubic root locus shows that G(s) = (s + 3)/((s + 38.5)(s + 7.4)(s +
3.7)(s+1.4)) is high-gain stabilized by the controller Ĝk(s) = k3(s+10)3/(s(s+10k)2).
As k tends to infinity, three closed-loop poles tend to minus infinity.

Since d = 3 and γ = 7 ≥ 3
√

27/4, it follows from part (c) of Fact 3.4 that the three

excess roots of p̃k(s) tend to minus infinity along the real axis.

The cubic root locus is shown in Figures 3.3 and 3.4, which demonstrates that,

as k tends to infinity, four closed-loop poles tend to the roots of z(s), which are

in the open-left-half complex plane, and three remaining closed-loop poles tend to

minus infinity as indicated by part (c) of Fact 2.4. Thus, G̃k(s) is high-gain stable.

Furthermore, since Ĝk(s) incorporates an integrator, it follows that the closed-loop

system has zero steady-state error to a step input, as shown in Figure 3.5. 
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Figure 3.4: A close-up view of the cubic root locus, shown in Figure 3.3, demonstrates
that four closed-loop poles converge to the roots of z(s), which are −3, −10, −10,
and −10.
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Figure 3.5: The step response of G(s) = (s+3)/((s+38.5)(s+7.4)(s+3.7)(s+1.4))
with the controller Ĝk(s) = k(s+10)3/(s(s+7k)2), where k = 1000 has zero steady-
state error to a step command.

3.5 Conclusions

We presented rules for constructing the root locus for a class of controllers that

result in closed-loop denominator polynomials that are cubic in the root-locus pa-

rameter k. The cubic root-locus rules apply to a controller class that is rational in

k.

To develop the cubic root locus, we extended the techniques of Chapter 2. In

principle, the techniques of this chapter and Chapter 2 could be extended further to

address a class of controllers that result in closed-loop denominator polynomials that

are quartic (i.e., 4th order) in k. However, developing root-locus rules for the quartic

case may rely on the solution to the quartic equation. The quadratic and cubic root-

locus rules do not explicitly use the solutions to quadratic and cubic equations, but the

rules are developed using the solutions to quadratic and cubic equations. Moreover,

the quadratic and cubic root-locus rules use the quadratic and cubic discriminants,

respectively. For example, the real axis rule (i.e., Fact 3.3) for the cubic root locus
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relies on t(s), which along with p(s) determines the cubic discriminant of p̃k(s) with

respect to k. Thus, we anticipate that extending the techniques of this chapter to the

quartic case may rely on the solution to the quartic equation.

The techniques used in this chapter to develop the real axis rule (i.e., Fact 3.3) can

be generalized to other controller structures that result in closed-loop denominator

polynomials that are cubic in k. Specifically, Fact 3.3 is developed by using the

cubic-polynomial results in Appendix B to determine the real values of σ such that

p̃k(σ), which is cubic in k, has at least one positive root. These values of σ are on the

root locus. This technique can be applied to any closed-loop denominator polynomial

that is quadratic in k, and can thus be generalized to other controller structures. In

contrast, the techniques used to develop the asymptotic properties in Fact 3.4 cannot

be directly extended to other controller structures. Generalizing Fact 3.4 to other

control structures is an open problem.

3.6 Proofs for Facts 3.1–3.4

Proof of Fact 3.1. If k = 0, then p̃k(s) = (s− ρ1)(s− ρ2)p(s).

Proof of Fact 3.2. Since for all k > 0, p̃k(s) has real coefficients, it follows that

the roots of p̃k(s) are either on the real axis or occur in complex conjugate pairs.

Proof of Fact 3.3. First, we show that real roots of p(s) are not on the root

locus. Assume p(σ) = 0, and it follows from (3.6) that p̃k(σ) = k3z(σ). Since p(s)

and z(s) are coprime, it follows that z(σ) 	= 0. Thus, there does not exist k > 0 such

that p̃k(σ) = 0, and σ is not on the root locus.

Next, define

a3
�
= z(σ), (3.27)

a2
�
= γ1γ2p(σ), (3.28)
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a1
�
= (γ1(σ − ρ2) + γ2(σ − ρ1))p(σ), (3.29)

a0
�
= (σ − ρ1)(σ − ρ2)p(σ), (3.30)

and note from (3.6) that p̃k(σ) = a3k
3 + a2k

2 + a1k + a0. Next, it follows that

a3a2 = γ1γ2p(σ)z(σ), (3.31)

a3a1 = (γ1(σ − ρ2) + γ2(σ − ρ1))p(σ)z(σ), (3.32)

a3a0 = (σ − ρ1)(σ − ρ2)p(σ)z(σ), (3.33)

a2a1 = γ1γ2(γ1(σ − ρ2) + γ2(σ − ρ1))p(σ)
2, (3.34)

a2a0 = γ1γ2(σ − ρ1)(σ − ρ2)p(σ)
2, (3.35)

a1a0 = (γ1(σ − ρ2) + γ2(σ − ρ1))(σ − ρ1)(σ − ρ2)p(σ)
2, (3.36)

and we define

D
�
= t(σ)p(σ)2, (3.37)

which is the cubic discriminant of p̃k(σ) with respect to k.

We show that (a), (b), or (c) is necessary for σ to be on the root locus. Assume σ

is on the root locus, and consider two cases: (A) z(σ) = 0 and (B) z(σ) 	= 0. First,

assume (A) z(σ) = 0, which implies that p̃k(σ) = a2k
2 + a1k + a0. Furthermore,

since z(σ) = 0, it follows from (3.7) that t(σ) ≥ 0. We consider three cases: (A.I)

a2 = 0, (A.II) a0 = 0 and (A.III) a2 	= 0 and a0 	= 0. First, assume (A.I) a2 = 0,

which implies that p̃k(σ) = a1k + a0. Since there exists k > 0 such that p̃k(σ) = 0, it

follows that a1a0 < 0. Furthermore, since a1a0 < 0 and ρ1 ≤ ρ2, it follows from (3.36)

that σ < ρ2. Next, assume (A.II) a0 = 0, which implies that p̃k(σ) = k(a2k + a1).

Since there exists k > 0 such that p̃k(σ) = 0, it follows that a2a1 < 0. Furthermore,

since a2a1 < 0 and ρ1 ≤ ρ2, it follows from (3.34) that σ < ρ2. Finally, assume

(A.III) a2 	= 0 and a0 	= 0. Since σ is on the root locus, parts (a)–(c) of Lemma 1
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in Appendix A imply that either a2a1 < 0 or a2a0 < 0. First, assume a2a1 < 0, and

since ρ1 ≤ ρ2, it follows from (3.34) that σ < ρ2. Next, assume a2a0 < 0, and since

ρ1 ≤ ρ2, it follows from (3.35) that σ < ρ2. Thus, (A.I), (A.II) or (A.III) imply that

σ < ρ2, t(σ) ≥ 0. (3.38)

Next, assume (B) z(σ) 	= 0, which implies that a3 	= 0. We consider five mutually

exclusive and collectively exhaustive cases: (B.I) σ > ρ2, (B.II) σ = ρ2 and σ 	= ρ1,

(B.III) σ = ρ2 and σ = ρ1, (B.IV) σ < ρ2 and σ 	= ρ1, and (B.V) σ < ρ2 and σ = ρ1.

First, assume (B.I) σ > ρ2. Since γ1 > 0, γ2 > 0 and σ > ρ2 ≥ ρ1, it follows from

(3.28)–(3.30) that a2, a1 and a0 have the same sign. Next, assume for contradiction

that a3a0 > 0. Lemma 2 in Appendix B implies that p̃k(σ) does not have exactly one

positive root, and Lemma 4 in Appendix B implies that p̃k(σ) does not have three

positive roots. Since σ is on the root locus, it follows that p̃k(σ) has exactly two

positive roots. Finally, it follows from (ii) in Lemma 3 of Appendix B that a3, a2,

a1, and a0 do not have the same sign, which is a contradiction. Therefore, a3a0 ≤ 0,

which implies a3a0 < 0 because a3 	= 0 and a0 	= 0. Since a3a0 < 0 and σ > ρ2 ≥ ρ1,

it follows from (3.33) that p(σ)z(σ) < 0. Thus, (B.I) implies that

σ > ρ2, p(σ)z(σ) < 0. (3.39)

Next, assume (B.II) σ = ρ2 and σ 	= ρ1, which implies that p̃k(σ) = k(a3k
2 + a2k+

a1). Since p̃k(σ) has at least one positive root, it follows that a3, a2 and a1 do not all

have the same sign. Since γ1 > 0, γ2 > 0, σ > ρ1, and σ = ρ2, it follows from (3.34)

that a2a1 > 0. Therefore, a3 has a different sign from a2 and a1, which implies that

a3a2 < 0, and thus (3.31) implies that p(σ)z(σ) < 0. Therefore, (B.II) implies that

σ = ρ2, p(σ)z(σ) < 0. (3.40)

49



Next, assume (B.III) σ = ρ1 and σ = ρ2, which implies that p̃k(σ) = k2(a3k + a2).

Since p̃k(σ) has at least one positive root, it follows that a3a2 < 0, and thus (3.31)

implies that p(σ)z(σ) < 0. Therefore, (B.III) implies that

σ = ρ2, p(σ)z(σ) < 0. (3.41)

Next, assume (B.IV) σ < ρ2 and σ 	= ρ1, and it follows from (3.30) that a0 	= 0.

We consider three cases: (B.IV.a) p̃k(σ) has exactly one positive root, (B.IV.b) p̃k(σ)

has three positive roots, and (B.IV.c) p̃k(σ) has exactly two positive roots. First,

assume (B.IV.a) p̃k(σ) has exactly one positive root. Thus, Lemma 2 in Appendix

B implies that a3a0 < 0. Since σ < ρ2 and a3a0 < 0, it follows from (3.33) that

(σ − ρ1)p(σ)z(σ) > 0. Thus, (B.IV.a) implies that

σ < ρ2, (σ − ρ1)p(σ)z(σ) > 0. (3.42)

Next, assume (B.IV.b) p̃k(σ) has three positive roots. Thus, Lemma 4 in Appendix

B implies that D ≥ 0, a3a2 < 0 and a3a0 < 0. Since γ1γ2 > 0 and a3a2 < 0, it

follows from (3.31) that p(σ)z(σ) < 0. Furthermore, since σ < ρ2, p(σ)z(σ) < 0 and

a3a0 < 0, it follows from (3.33) that σ < ρ1. Thus, (B.IV.b) implies that

σ < ρ2, (σ − ρ1)p(σ)z(σ) > 0. (3.43)

Next, assume (B.IV.c) p̃k(σ) has exactly two positive roots. Therefore, Lemma 3 in

Appendix B implies that D ≥ 0 and a3a0 > 0. Since D ≥ 0, it follows from (3.37)

that t(σ) ≥ 0. Thus, (B.IV.c) implies that

σ < ρ2, t(σ) ≥ 0. (3.44)
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Finally, assume (B.V) σ < ρ2 and σ = ρ1, which implies that p̃k(σ) = k(a3k
2+a2k+

a1), where it follows from (3.29) that a1 	= 0. Since p̃k(σ) has at least one positive

root, it follows that the two nonzero roots of p̃k(σ) are real. Thus, the discriminant

of a3k
2 + a2k + a1 is nonnegative, which implies that a22 − 4a3a1 ≥ 0. Since σ = ρ1,

it follows from (3.7) that

t(σ) = (γ1(σ − ρ2))
2 (γ2

1γ
2
2p(σ)

2 − 4γ1(σ − ρ2)p(σ)z(σ)
)

= (γ1(σ − ρ2))
2 (a22 − 4a3a1

)
,

which is nonnegative. Thus, (B.V) implies that

σ < ρ2, t(σ) ≥ 0. (3.45)

We now use cases (A.I)–(A.III) and (B.I)–(B.V) to show that (a), (b) or (c) holds.

First, case (B.I), (B.II) or (B.III) implies (3.39), (3.40) or (3.41), respectively, which

implies (a). Case (B.IV.a) or (B.IV.b) implies (3.42) or (3.43), respectively, which

implies (b). Case (A), (B.IV.c) or (B.V) implies (3.38), (3.44) or (3.45), respectively,

which because p(σ) 	= 0 implies (c).

Conversely, assume (a), (b) or (c) holds. First, assume (a) holds, and consider two

cases: (C.I) σ > ρ2 and (C.II) σ = ρ2. First, assume (C.I) σ > ρ2. Since γ1 > 0,

γ2 > 0, σ > ρ2 ≥ ρ1, and p(σ)z(σ) < 0, it follows from (3.31), (3.33) and (3.34) that

a3a0 < 0, a3a2 < 0 and a2a1 − a3a0 > 0. Thus, part (c) of Lemma 2 in Appendix B

implies that there exists exactly one k > 0 such that p̃k(σ) = 0. Therefore, σ is on

the root locus.

Next, assume (C.II) σ = ρ2, which implies that p̃k(σ) = k(a3k
2 + a2k + a1). Since

γ1 > 0, γ2 > 0, σ ≥ ρ1, σ = ρ2, and p(σ)z(σ) < 0, it follows from (3.32) that

a3a1 ≤ 0. We consider two cases: (C.II.a) a3a1 < 0, and (C.II.b) a3a1 = 0. First,
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assume (C.II.a) a3a1 < 0, and part (a) of Lemma 1 in Appendix A implies that there

exists exactly one k > 0 such that p̃k(σ) = 0. Thus, σ is on the root locus. Next,

assume (C.II.b) a3a1 = 0. Since a3 	= 0, it follows that a1 = 0, which implies that

p̃k(σ) = k2(a3k + a2). Since γ1γ2p(σ)z(σ) < 0, it follows from (3.31) that a3a2 < 0,

which implies that there exists exactly one k > 0 such that p̃k(σ) = 0. Therefore, σ

is on the root locus.

Next, assume (b) holds, which implies that σ 	= ρ1. We consider two cases: (D.I)

σ > ρ1 and (D.II) σ < ρ1. First, assume (D.I) σ > ρ1. Since σ > ρ1 and (σ −
ρ1)p(σ)z(σ) > 0, it follows that p(σ)z(σ) > 0. Since γ1γ2 > 0, σ > ρ1, σ < ρ2, and

p(σ)z(σ) > 0, it follows from (3.31) and (3.33) that a3a2 > 0 and a3a0 < 0. Thus,

part (b) of Lemma 2 in Appendix B implies that there exists exactly one k > 0 such

that p̃k(σ) = 0. Therefore, σ is on the root locus.

Next, assume (D.II) σ < ρ1. Since σ < ρ1 and (σ− ρ1)p(σ)z(σ) > 0, it follows that

p(σ)z(σ) < 0. Since γ1 > 0, γ2 > 0, σ < ρ1, σ < ρ2, and p(σ)z(σ) < 0, it follows from

(3.31)–(3.33) that a3a2 < 0, a3a1 > 0 and a3a0 < 0. We consider four cases: (D.II.a)

t(σ) < 0, (D.II.b) t(σ) ≥ 0 and a2a1−a3a0 > 0, (D.II.c) t(σ) ≥ 0 and a2a1−a3a0 = 0,

and (D.II.d) t(σ) ≥ 0 and a2a1 − a3a0 < 0. First, assume (D.II.a) t(σ) < 0, and thus

(3.37) implies that D < 0. Since a3a0 < 0 and D < 0, part (a) of Lemma 2 in

Appendix B implies that p̃k(σ) has exactly one positive root. Thus, σ is on the root

locus. Next, assume (D.II.b) t(σ) ≥ 0 and a2a1 − a3a0 > 0. Since a3a0 < 0, a3a2 < 0

and a2a1 − a3a0 > 0, it follows from part (c) of Lemma 2 in Appendix B that there

exists exactly one positive k > 0 such that p̃k(σ) = 0. Therefore, σ is on the root

locus. Next, assume (D.II.c) t(σ) ≥ 0 and a2a1 − a3a0 = 0. Since t(σ) ≥ 0, (3.37)

implies that D ≥ 0. Since a2a1 − a3a0 = 0 and a3a1 > 0, it follows from Lemma 5

in Appendix B that p̃k(σ) has complex roots on the imaginary axis. Thus, [24, pp.

153-154] implies that D < 0. Therefore, case (D.II.c) cannot occur. Next, assume

(D.II.d) t(σ) ≥ 0 and a2a1 − a3a0 < 0. Since t(σ) ≥ 0, it follows from (3.37) that
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D ≥ 0. Since D ≥ 0, a3a0 < 0, a3a2 < 0, and a2a1 − a3a0 < 0, Lemma 4 in Appendix

B implies that p̃k(σ) has three positive roots. Thus, σ is on the root locus.

Finally, assume (c) holds. We consider three cases: (E.I) (σ − ρ1)p(σ)z(σ) > 0,

(E.II) (σ − ρ1)p(σ)z(σ) < 0, and (E.III) (σ − ρ1)p(σ)z(σ) = 0. First, assume (E.I)

(σ−ρ1)p(σ)z(σ) > 0. Since σ < ρ2 and (σ−ρ1)p(σ)z(σ) > 0, it follows that this case

is identical to (b), which implies from (D.I) and (D.II) that σ is on the root locus.

Next, assume (E.II) (σ − ρ1)p(σ)z(σ) < 0. Since t(σ) ≥ 0, it follows from (3.37)

that D ≥ 0. Since σ < ρ2 and (σ − ρ1)p(σ)z(σ) < 0, it follows from (3.33) that

a3a0 > 0. We consider two cases: (E.II.a) σ > ρ1 and (E.II.b) σ < ρ1. First, assume

(E.II.a) σ > ρ1. Since σ > ρ1 and (σ− ρ1)p(σ)z(σ) < 0, it follows that p(σ)z(σ) < 0.

Since γ1γ2 > 0 and p(σ)z(σ) < 0, it follows from (3.31) that a3a2 < 0. Since D ≥ 0,

a3a0 > 0 and a3a2 < 0, part (a) of Lemma 3 in Appendix B implies that there exists

one or two k > 0 such that p̃k(σ) = 0. Thus, σ is on the root locus. Next, assume

(E.II.b) σ < ρ1. Since σ < ρ1 and (σ− ρ1)p(σ)z(σ) < 0, it follows that p(σ)z(σ) > 0.

Since γ1 > 0, γ2 > 0, σ < ρ1, σ < ρ2, and p(σ)z(σ) > 0, it follows from (3.31),

(3.33) and (3.34) that a3a2 > 0, and a2a1 − a3a0 < 0. Thus, part (b) of Lemma 3 in

Appendix B implies that exists one or two k > 0 such that p̃k(σ) = 0. Therefore, σ

is on the root locus.

Finally, assume (E.III) (σ−ρ1)p(σ)z(σ) = 0, which implies that z(σ) = 0 or σ = ρ1.

We consider four cases: (E.III.a) z(σ) = 0 and σ > ρ1; (E.III.b) z(σ) = 0 and σ = ρ1;

(E.III.c) z(σ) = 0 and σ < ρ1; and (E.III.d) z(σ) 	= 0 and σ = ρ1. First, assume

(E.III.a) z(σ) = 0 and σ > ρ1. Since z(σ) = 0, it follows from (3.27) that a3 = 0,

which implies that p̃k(σ) = a2k
2 + a1k + a0. Since γ1γ2 > 0, σ > ρ1 and σ < ρ2, it

follows from (3.35) that a2a0 < 0. Thus, part (a) of Lemma 1 in Appendix A implies

that there exists exactly one k > 0 such that p̃k(σ) = 0. Therefore, σ is on the root

locus. Next, assume (E.III.b) z(σ) = 0 and σ = ρ1, which implies from (3.27) and

(3.30) that a3 = 0 and a0 = 0, respectively. Thus, p̃k(σ) = k(a2k+ a1). Since γ1 > 0,
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γ2 > 0, σ = ρ1, σ < ρ2, and p(σ) 	= 0, it follows from (3.34) that a2a1 < 0. Therefore,

there exists k > 0 such that p̃k(σ) = 0. Thus, σ is on the root locus. Next, assume

(E.III.c) z(σ) = 0 and σ < ρ1. Since z(σ) = 0, it follows from (3.27) that a3 = 0,

which implies that p̃k(σ) = a2k
2 + a1k + a0. Since t(σ) ≥ 0, it follows from (3.37)

that D ≥ 0. Since γ1 > 0, γ2 > 0, σ = ρ1, σ < ρ2, and p(σ) 	= 0, it follows from

(3.34) that a2a1 < 0. Since γ1γ2 > 0 and σ < ρ1 ≤ ρ2, it follows from (3.35) that

a2a0 < 0. Thus, part (c) of Lemma 1 in Appendix A implies that there exists two

distinct k > 0 such that p̃k(σ) = 0. Therefore, σ is on the root locus.

Lastly, assume (E.III.d) z(σ) 	= 0 and σ = ρ1. Since σ = ρ1, it follows from (3.30)

that a0 = 0, which implies that p̃k(σ) = k(a3k
2 + a2k + a1, where it follows from

(3.27) that a3 	= 0 because z(σ) 	= 0. Furthermore, since σ < ρ2 and p(σ) 	= 0,

(3.29) implies that a1 	= 0. We consider two cases: (E.III.d.i) p(σ)z(σ) > 0, and

(E.III.d.ii) p(σ)z(σ) < 0. First, assume (E.III.d.i) p(σ)z(σ) > 0. Since γ1 > 0,

σ = ρ1, σ < ρ2, and p(σ)z(σ) > 0, it follows from (3.32) that a3a1 < 0. Thus, (a)

of Lemma 1 in Appendix A implies that there exists exactly one k > 0 such that

p̃k(σ) = 0. Therefore, σ is on the root locus. Next, assume (E.III.d.ii) p(σ)z(σ) < 0.

Since σ = ρ1 	= ρ2 and t(σ) ≥ 0, it follows from (3.7) that

t(σ) = (γ1(σ − ρ2))
2 (γ2

1γ
2
2p(σ)

2 − 4γ1(σ − ρ2)p(σ)z(σ)
)

= (γ1(σ − ρ2))
2 (a22 − 4a3a1

) ≥ 0,

which implies that a22 − 4a3a1 ≥ 0. Since γ1 > 0, γ2 > 0, σ = ρ1 < ρ2, and

p(σ)z(σ) < 0, it follows from (3.31) and (3.32) that a3a2 < 0 and a3a1 > 0. Since

a22 − 4a3a1 ≥ 0, a3a2 < 0 and a3a1 > 0, part (c) of Lemma 1 in Appendix A implies

that there exists two distinct k > 0 such that p̃k(σ) = 0. Therefore, σ is on the root

locus.
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Proof of Fact 3.4. To show that m roots of p̃k(s) converge to the roots of z(s),

it follows from (3.6) that

p̃k(s)

k3
= z(s) +

γ2p(s)

k
+

(2γs− γρ1 − γρ2)p(s)

k2
+

(s− ρ1)(s− ρ2)p(s)

k3
,

which implies that, for sufficiently large k > 0, p̃k(s)/k
3 ≈ z(s). Thus, as k → ∞, m

roots of p̃k(s) converge to the roots of z(s).

To show (a)–(e), define R
�
= maxi=1,...,m|zi| and write p(s) = sn−2 + a1s

n−3 + · · ·+
an−2 and z(s) = sm+b1s

m−1+ · · ·+bm, where a1, a2, . . . , an−2 ∈ R and b1, b2, . . . , bm ∈
R.

First, we show (a). Since d = 1, it follows that for all s ∈ C such that |s| > R, the

Laurent series expansion of p(s)/z(s) is given by

p(s)

z(s)
=

1

s
+

∞∑
i=2

ci
si
, (3.46)

where the real numbers c2, c3, . . . are real coefficients of the Laurent series expansion.

Next, it follows from (3.2), (3.4) and (3.9) that

1

G(λ1)Ĝk(λ1)
=

−(λ1 + γk − ρ2)p(λ1)

z(λ1)
. (3.47)

Since |λ1| → ∞ as k → ∞ and (γk − ρ2)/λ1 → 0 as k → ∞, it follows from (3.46)

that, for sufficiently large k > 0,

(λ1 − ρ2 + γk)p(λ1)

z(λ1)
= 1 +

γk − ρ2
λ1

+ (λ1 − ρ2 + γk)
∞∑
i=2

ci
λi
1

≈ 1. (3.48)

Therefore, for sufficiently large k > 0, combining (3.46) and (3.47) yields

1

G(λ1)Ĝk(λ1)
≈ −1,
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or equivalently 1 +G(λ1)Ĝk(λ1) ≈ 0. Thus, as k → ∞, one root of p̃k(s) is approxi-

mated by λ1, which confirms (a).

Next, we show (b). Since d = 2, it follows that, for all s ∈ C such that |s| > R, the

Laurent series expansion of p(s)/z(s) is given by

p(s)

z(s)
= 1 +

∞∑
i=1

ci
si
, (3.49)

where the real numbers c1, c2, . . . are real coefficients of the Laurent series expansion.

Next, for i = 1, 2 define

λ̄i
�
= −γk +

ρ1 + ρ2
2

+ j(−1)i−1

√
4k3 − (ρ1 − ρ2)2

2
. (3.50)

For i = 1, 2, it follows from (3.4) and (3.50) that

zc(λ̄i)

Ĝk(λ̄i)pc(λ̄i)
=

(λ̄i − ρ1 + γk)(λ̄i − ρ2 + γk)

k3

=
(λ̄i − ρ1 + γk)(λ̄i − ρ1 + (ρ1 − ρ2) + γk)

k3

=
(λ̄i − ρ1 + γk)2 + (ρ1 − ρ2)(λ̄i − ρ1 + γk)

k3

=
(
(ρ2 − ρ1)

2/4 + j(ρ2 − ρ1)(−1)i
√
4k3 − (ρ1 − ρ2)2/2

− (
4k3 − (ρ1 − ρ2)

2
)
/4− (ρ2 − ρ1)

2/2

−j(ρ2 − ρ1)(−1)i
√
4k3 − (ρ1 − ρ2)2/2

)
/k3

= − 1. (3.51)

Furthermore, for i = 1, 2, it follows from (3.2), (3.5) and (3.51) that

1

G(λ̄i)Ĝk(λ̄i)
= −p(λ̄i)

z(λ̄i)
. (3.52)

Since |λ̄i| → ∞ as k → ∞, it follows from (3.49) that, for sufficiently large k > 0,
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p(λ̄i)/z(λ̄i) ≈ 1. Therefore, it follows from (3.52) that, for sufficiently large k > 0,

1/(G(λ̄i)Ĝk(λ̄i)) ≈ −1, or equivalently 1 + G(λ̄i)Ĝk(λ̄i) ≈ 0. Thus, as k → ∞,

two roots of p̃k(s) are approximated by λ̄1 and λ̄2. Furthermore, for i = 1, 2 and

sufficiently large k > 0, it follows from (3.10), (3.11) and (3.50) that λ̄1 and λ̄2 are

approximated by λ1 and λ2, respectively, which confirms (b).

Next, we show (c) and (d). Since d = 3, it follows that, for all s ∈ C such that

|s| > R, the Laurent series expansion of p(s)/z(s) is given by

p(s)

z(s)
= s+ c0 +

∞∑
i=1

ci
si
, (3.53)

where the real numbers c0, c1, . . . are coefficients of the Laurent series expansion. For

sufficiently large k > 0 and for all s ∈ C such that |s| > √
k, it follows from (3.53)

that p(s)/z(s) ≈ s. Thus, for sufficiently large k > 0 and for all s ∈ C such that

|s| > √
k, it follows from (3.53) that

p(s)

z(s)
(s− ρ1 + γk)(s− ρ2 + γk) + k3

≈ s(s− ρ1 + γk)(s− ρ2 + γk) + k3

= s3 + (2γk − ρ1 − ρ2)s
2 + (γk − ρ1)(γk − ρ2)s+ k3

≈ μk(s), (3.54)

where

μk(s)
�
= s3 + 2γks2 + γ2k2s+ k3. (3.55)

Next, we define

Δk
�
= k6(4γ3 − 27), (3.56)

which is the cubic discriminant of μk(s) with respect to s. We consider two cases:

(A) 4γ3 − 27 ≥ 0 and (B) 4γ3 − 27 < 0. First, assume (A) 4γ3 − 27 ≥ 0, which
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implies that Δk ≥ 0 because k > 0. Since the cubic discriminant Δk ≥ 0, it follows

from [25, p. 97] that μk(s) has three real roots. Furthermore, it follows from the

closed-form solution of a cubic polynomial with three real roots that, for i = 1, 2, 3,

the roots of μk(s) are given by (3.12) and (3.13). Next, assume (B) 4γ3 − 27 < 0,

which implies that Δk < 0 because k > 0. Since the cubic discriminant Δk < 0,

it follows from [25, p. 97] that μk(s) has one real root and two complex conjugate

roots. Furthermore, it follows from the closed-form solution of a cubic polynomial

with one real root and two complex-conjugate roots that the roots of μk(s) are given

by (3.14)–(3.19).

Since for sufficiently large k > 0 and i = 1, 2, . . . , 6, |λi| >
√
k and μk(λi) = 0, it

follows from (3.54) that

p(λi)

z(λi)
(λi − ρ1 + γk)(λi − ρ2 + γk) + k3 ≈ μk(λi) = 0,

which implies that

−1 ≈ p(λi)(λi − ρ1 + γk)(λi − ρ2 + γk)

k3z(λi)

=
1

G(λi)Ĝk(λi)
,

or equivalently 1 + G(λi)Ĝk(λi) ≈ 0. Thus, for case (A) 4γ3 − 27 > 0, as k → ∞,

three roots of p̃k(s) are approximated by λ1, λ2 and λ3, which confirms (c). Similarly

for case (B) 4γ3 − 27 < 0, as k → ∞, three roots of p̃k(s) are approximated by λ4, λ5

and λ6, which confirms (d).

Finally, we show (e) and (f). If |ρ1| ≤ |ρ2|, then let ρ̄1
�
= ρ1 and ρ̄2

�
= ρ2. If

|ρ1| > |ρ2|, then let ρ̄1
�
= ρ2 and ρ̄2

�
= ρ1. Since d ≥ 4, it follows that, for all s ∈ C
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such that |s| > R, the Laurent series expansion of p(s)/z(s) is given by

p(s)

z(s)
= sd−2 + fd−3s

d−3 + . . .+ f1s+ c0 +
∞∑
i=1

ci
si
, (3.57)

where the real numbers f1, . . . , fd−3, c0, c1, . . . are real coefficients of the Laurent series

expansion. Furthermore, note that fd−3 = a1 − b1 = −
(∑n−2

j=1 pj −
∑m

j=1 zj

)
=

−(d− 2)α. For all s ∈ C such that |s− ρ̄2| > (k/γ2)
1
d and for sufficiently large k > 0,

it follows from (3.57) that

p(s)

z(s)
≈ sd−2 − (d− 2)αsd−3. (3.58)

Next, we consider the Taylor series expansion of k3/((s − ρ̄1 + γk)(s − ρ̄2 + γk)

about ρ̄2. For all s ∈ C such that |s − ρ̄2| < γk, the Taylor series expansion of

k3/((s− ρ̄1 + γk)(s− ρ̄2 + γk) about ρ̄2 is given by

k3

(s− ρ̄1 + γk)(s− ρ̄2 + γk)
=

k2

γ(ρ̄2 − ρ̄1 + γk)
− 2k2(s− ρ̄2)

γ(ρ̄2 − ρ̄1 + γk)2

+
k(ρ̄1 − ρ̄2)(s− ρ̄2)

γ(ρ̄2 − ρ̄1 + γk)2
+ . . .

Next, for all s ∈ C such that (k/γ2)
1
d < |s − ρ̄2| < (k/γ2)

1
2 , it follows that as

k → ∞, k(ρ̄1 − ρ̄2)(s− ρ̄2)/(γ(ρ̄2 − ρ̄1 + γk)2) approaches zero and the higher-order

terms of the Taylor series approach zero. Therefore, for sufficiently large k > 0 and

for all s ∈ C such that (k/γ2)
1
d < |s− ρ̄2| < (k/γ2)

1
2 , it follows from the Taylor series

expansion that

k3

(s− ρ̄1 + γk)(s− ρ̄2 + γk)
≈ k2

γ(ρ̄2 − ρ̄1 + γk)
− 2k2(s− ρ̄2)

γ(ρ̄2 − ρ̄1 + γk)2
. (3.59)

Adding (3.58) and (3.59) yields, for sufficiently large k > 0 and for all s ∈ C such
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that (k/γ2)
1
d < |s− ρ̄2| < (k/γ2)

1
2 ,

p(s)

z(s)
+

k3

(s− ρ̄1 + γk)(s− ρ̄2 + γk)
≈ νk(s), (3.60)

where

νk(s)
�
= sd−2 − (d− 2)αsd−3 +

k2

γ(ρ̄2 − ρ̄1 + γk)
− 2k2(s− ρ̄2)

γ(ρ̄2 − ρ̄1 + γk)2
. (3.61)

For k > 0, let λ̄1, λ̄2, . . . , λ̄d−2 denote the roots of νk(s). Note that as k → ∞,

k2/(γ(ρ̄2 − ρ̄1 + γk)) − 2k2(s − ρ̄2)/(γ(ρ̄2 − ρ̄1 + γk)2) approaches infinity. Thus, it

follows from classical root locus that, as k → ∞, |λ̄i| → ∞. Furthermore, since

νk(λ̄i) = 0, it follows that

−k2

γ(ρ̄2 − ρ̄1 + γk)
= λ̄d−2

i − (d− 2)αλ̄d−3
i − 2k2(λ̄i − ρ̄2)

γ(ρ̄2 − ρ̄1 + γk)2
.

Taking the (d− 2)th root of both sides yields

( −k2

γ(ρ̄2 − ρ̄1 + γk)

) 1
d−2

= λ̄i(1 + ok)
1

d−2 (3.62)

where

ok
�
= −(d− 2)α

λ̄i

− 2k2(λ̄i − ρ̄2)

γ(ρ̄2 − ρ̄1 + γk)2λ̄d−2
i

. (3.63)

Since as k → ∞, ok approaches zero, we use the binomial approximation (1 + ok)
q ≈

(1 + qok), where q = 1/(d− 2), on (3.62), which yields

( −k2

γ(ρ̄2 − ρ̄1 + γk)

) 1
d−2

≈ λ̄i

(
1− α

λ̄i

− 2k2(λ̄i − ρ̄2)

γ(d− 2)(ρ̄2 − ρ̄1 + γk)2λ̄d−2
i

)

= λ̄i − α− 2k2(λ̄i − ρ̄2)

γ(ρ̄2 − ρ̄1 + γk)2λ̄d−3
i

. (3.64)

For d = 4, as k → ∞, −2k2(λ̄i − ρ̄2)/(γ(ρ̄2 − ρ̄1 + γk)2λ̄i) approaches −1/γ3. For
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d > 4, as k → ∞, −2k2(λ̄i − ρ̄2)/(γ(ρ̄2 − ρ̄1 + γk)2λ̄i) approaches 0. Let ᾱ denote

α given by (3.22) if d = 4, and let ᾱ denote α given by (3.25) if d ≥ 5. Thus, for

sufficiently large k > 0, (3.64) implies that

( −k2

γ(ρ̄2 − ρ̄1 + γk)

) 1
d−2

≈ λ̄i − ᾱ. (3.65)

Thus, for i = 1, 2, . . . , d− 2 and sufficiently large k > 0, solving for λ̄i yields

λ̄i ≈
(

k2

γ(ρ̄2 − ρ̄1 + γk)

) 1
d−2

ejφi + ᾱ = λi, (3.66)

Next, since for i = 1, 2, . . . , d − 2, νk(λ̄i) = 0 and (k/γ2)
1
d < |λ̄i − ρ̄2| < (k/γ2)

1
2 , it

follows from (3.60) that, for sufficiently large k > 0,

pc(λ̄i)

G(λ̄i)zc(λ̄i)
=

p(λ̄i)

z(λ̄i)
≈ −k3

(λ̄i − ρ̄1 + γk)(λ̄i − ρ̄2 + γk)
=

−Ĝk(λ̄i)pc(λ̄i)

zc(λ̄i)
,

or equivalently 1 + G(λ̄i)Ĝk(λ̄i) ≈ 0. Thus, as k → ∞, d − 2 roots of p̃k(s) are

approximated by λ̄1, λ̄2, . . . , λ̄d−2. For d = 4, (3.66) implies that as k → ∞, d − 2

roots of p̃k(s) are approximated by λ̄1 and λ̄2. Furthermore, as k → ∞, it follows from

(3.66) that λ̄1 and λ̄2 are approximated by λ1 and λ2. Therefore, as k → ∞, two roots

of p̃k(s) are approximated by λ1 and λ2. For d ≥ 5, (3.66) implies that as k → ∞, d−2

roots of p̃k(s) are approximated by λ̄1, λ̄2, . . . , λ̄d−2. Furthermore, as k → ∞, it follows

from (3.66) that λ̄1, λ̄2, . . . , λ̄d−2 are approximated by λ1, λ2, . . . , λd−2. Therefore, as

k → ∞, d− 2 roots of p̃k(s) are approximated by λ1, λ2, . . . , λd−2.

Next, we show that for d = 4, the two remaining roots are approximated by λ3 and

λ4, and for d ≥ 5, the two remaining roots approach −∞. For i = d− 1, d, define

λ̄i
�
= − γk + (ρ1 + ρ2)/2

+ (−1)i
√
−k5−d(−γ)2−d + (ρ1 − ρ2)2/4. (3.67)
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Next, it follows from (3.4) and (3.67) that, for i = d− 1, d,

−Ĝk(λ̄i)pc(λ̄i)

zc(λ̄i)
=

−k3

(λ̄i − ρ1 + γk)(λ̄i − ρ2 + γk)

= (−γk)d−2. (3.68)

For d ≥ 5, sufficiently large k > 0 and i = d − 1, d, (3.57) and (3.67) imply that

p(λ̄i)/z(λ̄i) ≈ (−γk)d−2. Combining with (3.68) implies that, for sufficiently large

k > 0,

p(λ̄i)

z(λ̄i)
≈ (−γk)d−2 =

−Ĝk(λ̄i)pc(λ̄i)

zc(λ̄i)
,

or equivalently 1 + G(λ̄i)Ĝk(λ̄i) ≈ 0. Thus, as k → ∞, two roots of p̃k(s) are

approximated by λ̄1 and λ̄2. Furthermore, it follows from (3.26) and (3.67) that as

k → ∞, λ̄d−1 and λ̄d are approximated by λd−1 and λd, respectively. Therefore, as

k → ∞, the two remaining roots of p̃k(s) are approximated by λd−1 and λd, which

confirms (f).

For d = 4 and sufficiently large k > 0, (3.57) and (3.67) imply that |p(λ̄i)/z(λ̄i)| ≈
γ2k2 and ∠p(λ̄i)/z(λ̄i) ≈ 0. Combining with (3.68) implies that, for sufficiently large

k > 0 and i = 3, 4, ∣∣∣∣p(λ̄i)

z(λ̄i)

∣∣∣∣ ≈
∣∣∣∣∣−Ĝk(λ̄i)pc(λ̄i)

zc(λ̄i)

∣∣∣∣∣ .
Since, in addition, both angles are approximately zero, it follows that as k → ∞, two

roots of p̃k(s) approach λ̄3 and λ̄4. Furthermore, it follows from (3.23) and (3.67)

that as k → ∞, λ̄3 and λ̄4 are approximated by λ3 and λ4, respectively. Therefore,

as k → ∞, the two remaining roots of p̃k(s) are approximated by λ3 and λ4, which

confirms (e).
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Chapter 4 Root Locus with Quadratic Gain Parameterization

In this chapter, we present rules for constructing the root locus for a polynomial

that is quadratic in the root-locus parameter k. These quadratic root-locus rules

extend the results of Chapter 2. Chapter 2 focuses on a controller class, where

the numerator polynomial is proportional to k2 and the denominator polynomial

includes a pole, whose location is proportional to k. In contrast, this chapter presents

quadratic root-locus rules for a more general class of polynomials with quadratic gain

parameterization.

4.1 Introduction

In Chapter 2, we consider a controller class that yields a closed-loop denominator

polynomial that is quadratic in the root-locus parameter k. Specifically, Chapter

2 considers a controller class, where the numerator is proportional to k2, and the

denominator includes a pole, whose location is proportional to k. The quadratic

root-locus rules in Chapter 2 only apply to controllers with the properties described

above.

In contrast, this chapter presents quadratic root-locus rules for a general polynomial

with quadratic gain parameterization. Thus, the root-locus rules presented in this

chapter apply to all linear controllers that yield a closed-loop denominator polynomial

that is quadratic in k and satisfy three relative degree requirements. More specifically,

the quadratic root-locus rules of this chapter apply to the polynomial k2q(s)+kr(s)+

t(s) provided that 0 ≤ deg q(s) < deg r(s) < deg t(s). Since the quadratic root-locus
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rules in Chapter 2 satisfy these three conditions, it follows that the quadratic root-

locus rules in Chapter 2 are a special case of the quadratic root-locus rules in this

chapter.

4.2 Problem Formulation

Consider the polynomial

p̃k(s)
�
= k2γ1q(s) + kγ2r(s) + t(s), (4.1)

where γ1 > 0; γ2 > 0; q(s), r(s) and t(s) are monic polynomials; and 0 ≤ deg q(s) <

deg r(s) < deg t(s). We use the following classical definition of the positive root

locus.

Definition 4.1. The root locus is {λ ∈ C : p̃k(λ) = 0, where k > 0}.

This chapter considers the quadratic root locus where k > 0. The techniques in

this chapter can also be used to develop root locus rules for k < 0. In the next two

sections, we present six facts that characterize the quadratic root locus. Proofs of

these facts are provided in Section 4.7.

4.3 Quadratic Root-Locus Rules

In this section, we present four facts that describe the quadratic root locus. Facts

4.1 and 4.2 define the root locus starting points for k = 0 and describe the root locus

symmetry. These two facts are consistent with classical root locus.

Fact 4.1. As k → 0, the roots of p̃k(s) approach the roots of t(s).

Fact 4.2. The root locus is symmetric about the real axis.

Next, we present a rule to determine the points on the real axis that are on the
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root locus. We define

w(s)
�
= γ2

2r(s)
2 − 4γ1q(s)t(s), (4.2)

which is the discriminant of p̃k(s) with respect to k. The polynomial w(s) is not

necessarily monic. Furthermore, if deg r(s) ≤ deg q(s)t(s), then the leading coefficient

of t(s) can be negative. The real axis rule for the quadratic root locus depends on

the roots of q(s), r(s), t(s), and w(s), and the leading coefficient of w(s).

Fact 4.3. Let σ ∈ R. Then σ is on the root locus if and only if any of the following

statements hold:

(a) q(σ)t(σ) < 0.

(b) q(σ) = 0 and r(σ)t(σ) < 0.

(c) w(σ) ≥ 0 and q(σ)r(σ) < 0.

Furthermore, if σ is on the root locus, then the following statements hold:

(i) If q(σ)t(σ) ≤ 0 or w(σ) = 0, then there exists exactly one k > 0 such that

p̃k(σ) = 0.

(ii) If w(σ) > 0, q(σ)r(σ) < 0 and q(σ)t(σ) > 0, then there exists two distinct k > 0

such that p̃k(σ) = 0.

We note that parts (a)–(c) of Fact 4.3 are not mutually exclusive, but these parts

are collectively exhaustive. For example, parts (a) and (c) of Fact 4.3 can occur

simultaneously. Part (a) of Fact 4.3 implies that the real axis to the left of an odd

number of real roots of q(s)t(s) is on the root locus. Part (b) of Fact 4.3 implies that

the real roots of q(s) that are to the left of an odd number of real roots of r(s)t(s) are

on the root locus. Part (c) of Fact 4.3 implies that if the discriminant of p̃k(σ) (i.e,

w(σ)) is nonnegative, then the real axis to the left of an odd number of real roots of
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q(s)r(s) is on the root locus. Moreover, parts (a)–(c) of Fact 4.3 demonstrate that

real roots of q(s), r(s) and t(s) can be on the root locus for finite k > 0.

In classical root locus, if σ is on the root locus, then there exists exactly one k > 0

such that the closed-loop denominator polynomial (i.e., p̃k(σ)) is zero. In contrast,

parts (i) and (ii) of Fact 4.3 imply that if σ is on the root locus, then there exists

either one or two k > 0 such that p̃k(σ) = 0.

We now describe the asymptotic properties of the quadratic root locus, that is, the

properties for sufficiently large k > 0. We define

l
�
= deg q(s), m

�
= deg r(s), n

�
= deg t(s), (4.3)

d1
�
= m− l, d2

�
= n−m, d

�
= d1 + d2 = n− l. (4.4)

Note that d1, d2 and d are positive integers. Let q1, q2, . . . , ql be the roots of q(s);

r1, r2, . . . , rm be the roots of r(s); and t1, t2, . . . , tn be the roots of t(s). Fact 4.4

characterizes the asymptotic properties of p̃k(s), that is, the properties for sufficiently

large k > 0. In Fact 4.4, we assume that γ1 = γ2 = 1. The extension of Fact 4.4 to

the case where γ1 > 0 and γ2 > 0 remains open.

Fact 4.4. Assume γ1 = γ2 = 1. As k → ∞, l roots of p̃k(s) converge to the roots

of q(s), and the d remaining roots satisfy the following statements:

(a) If d1 < d2−2, then the d remaining roots of p̃k(s) are approximated by λ1, λ2, . . . , λd,

where for i = 1, 2, . . . , d,

λi
�
= k2/dejθi + α, (4.5)

where

θi
�
=

2πi− π

d
, (4.6)

α
�
=

∑n
j=1 tj −

∑l
j=1 qj

d
. (4.7)
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(b) If d1 > d2+1, then the d remaining roots of p̃k(s) are approximated by λ1, λ2, . . . , λd,

where for i = 1, 2, . . . , d1,

λi
�
= k1/d1ejθi + α1, (4.8)

where

θi
�
=
2πi− π

d1
, (4.9)

α1
�
=

∑m
j=1 rj −

∑l
j=1 qj

d1
; (4.10)

and for i = 1, 2, . . . , d2,

λd1+i
�
= k1/d2ejφi + α2, (4.11)

where

φi
�
=
2πi− π

d2
, (4.12)

α2
�
=

∑n
j=1 tj −

∑m
j=1 rj

d2
. (4.13)

Part (a) of Fact 4.4 demonstrates that if d1 < d2−2, then the asymptotic properties

of p̃k(s) are similar to classical root locus. More specifically, as k tends to infinity, d

roots of p̃k(s) tend to infinity along asymptotes centered at α with angles θ1, θ2, . . . , θd.

Part (b) of Fact 4.4 demonstrates that if d1 > d2 + 1, then the asymptotic properties

of p̃k(s) are similar to a “double root locus”, that is, the asymptotic properties of

p̃k(s) are similar to the superposition of two classical root loci. More specifically, as

k tends to infinity, d1 roots of p̃k(s) tend to infinity along asymptotes centered at α1

with angles θ1, θ2, . . . , θd1 . In addition, as k tends to infinity, d2 roots of p̃k(s) tend
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to infinity along asymptotes centered at α2 with angles φ1, φ2, . . . , φd2 .

Note that parts (a) and (b) of Fact 4.4 are not collectively exhaustive. The following

conjecture describes the numerically observed asymptotic properties of p̃k(s) for all

d1 > 0 and d2 > 0 such that d2 − 2 ≤ d1 ≤ d2 +1. A proof of this conjecture remains

open.

Conjecture 4.1. Assume γ1 = γ2 = 1. As k → ∞, l roots of p̃k(s) converge to the

roots of q(s), and the d remaining roots satisfy the following statements:

(a) If d2 − 2 ≤ d1 < d2, then the d remaining roots of p̃k(s) are approximated by

λ1, λ2, . . . , λd, where for i = 1, 2, . . . , d,

λi
�
= k2/dejθi + α, (4.14)

where

θi
�
=

2πi− π

d
, (4.15)

α
�
=

∑n
j=1 tj −

∑l
j=1 qj

d
. (4.16)

(b) If d1 = d2, then the d remaining roots of p̃k(s) are approximated by λ1, λ2, . . . , λd,

where for i = 1, 2, . . . , d,

λi
�
= k1/d1ejθi + α, (4.17)

where

θi
�
=

⎧⎪⎨
⎪⎩

2πi+2π/3
d1

, i = 1, 2, . . . , d1,

2πi−2π/3
d1

, i = d1 + 1, d1 + 2, . . . , d,
(4.18)

α
�
=

∑n
j=1 tj −

∑l
j=1 qj

d
. (4.19)
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(c) If d1 = d2+1, then the d remaining roots of p̃k(s) are approximated by λ1, λ2, . . . , λd,

where for i = 1, 2, . . . , d1,

λi
�
= k1/d1ejθi + α1, (4.20)

where

θi
�
=

2πi− π

d1
, (4.21)

α1
�
=

∑m
j=1 rj −

∑l
j=1 qj + 1

d1
; (4.22)

and for i = 1, 2, . . . , d2,

λd1+i
�
= k1/d2ejφi + α2, (4.23)

where

φi
�
=

2πi− π

d2
, (4.24)

α2
�
=

∑n
j=1 tj −

∑m
j=1 rj − 1

d2
. (4.25)

It follows from part (a) of Conjecture 4.1 that if d2 − 2 ≤ d1 < d2, then the

asymptotic properties of p̃k(s) are expected to be similar to part (a) of Fact 4.4. If

d1 = d2, then part (b) of Conjecture 4.1 implies that the asymptote angles θ1, θ2, . . . , θd

given by (4.18) are not expected to be equally spaced between 0 and 2π radians. For

example, in Chapter 2, part (b) of Fact 2.4 demonstrates that θ1 and θ2 given by

(2.11) are not equally spaced between 0 and 2π radians.

Next, it follows from part (c) of Conjecture 4.1 that if d1 = d2+1, then the centers

α1 and α2 include terms in the numerator that do not depend on the roots of q(s),
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r(s) or t(s). For example, in Chapter 2, part (c) of Fact 2.4 demonstrates that the

center α given by (2.16) includes a term in the numerator that depends on γ, which

is equivalent to γ2 in this chapter.

Conjecture 4.1 assumes all polynomials are monic (i.e., γ1 = γ2 = 1). If γ1 	= 1

or γ2 	= 1, then part (b) of Fact 2.4 suggests that the asymptote angles θ1, θ2, . . . , θd

in part (b) of Conjecture 4.1 depend on γ1 and γ2. Moreover, part (c) of Fact 2.4

suggests that the centers α1 and α2 in part (c) of Conjecture 4.1 depend on γ1 and

γ2.

4.4 Break-in and Breakaway Points

In this section, we examine the break-in and breakaway points of the quadratic root

locus. We use the classical break-in and breakaway point definition, which is given

by Definition 1.2.

For i = 1, 2, define κi : {σ ∈ R : q(σ) 	= 0} → C by

κi(σ)
�
=

−γ2r(σ) + (−1)i−1
√
w(σ)

2γ1q(σ)
, (4.26)

which maps the real numbers excluding the real roots of q(s) to the complex numbers.

Note that if κ1(σ) > 0 or κ2(σ) > 0, then there exists k > 0 such that p̃k(σ) = 0, and

σ is on the root locus.

We now present two facts that characterize break-in and breakaway points. Fact

4.5 characterizes the break-in and breakaway points along the real axis that are not

real roots of q(s); and Fact 4.6 characterizes the break-in and breakaway points along

the real axis that are real roots of q(s).

Fact 4.5. Let τ ∈ R be a point on the root locus, and assume τ is not a root of

q(s). Then τ is a break-in or breakaway point if and only if either of the following

statements hold:

70



(a) κ1(τ) > 0 and dκ1(σ)/dσ|σ=τ = 0.

(b) κ2(τ) > 0 and dκ2(σ)/dσ|σ=τ = 0.

Fact 4.6. Let τ ∈ R be a root of q(s) that is on the root locus, and define kτ
�
=

−t(τ)/(γ2r(τ)). Then τ is a break-in or breakaway point if and only if p̃kτ (s) has

multiple roots at τ .

4.5 Numerical Examples

We now present examples that demonstrate the quadratic root locus. The first

three examples show how the degree of r(s) affects the asymptotic properties of p̃k(s).

The last example demonstrates the quadratic root locus for a controller that yields

quadratic gain parameterization.

Example 4.1. Consider the polynomial (4.1), where q(s) = s+10, r(s) = (s+40)2,

t(s) = (s+ 20)7, and γ1 = γ2 = 1, which implies that l = 1, m = 2 and n = 7. Thus,

d1 = m− l = 1, d2 = n−m = 5 and d = d1 + d2 = 6.

In order to determine the points of p̃k(s) that are on the real axis, note that w(s) =

−4(s+22.9)(s+10)(s+22.1+j2.2)(s−22.1−j2.2)(s+19.7+j3.3)(s+19.7−j3.3)(s+

16.8 + j1.9)(s+ 16.8− j1.9), which has real roots at −22.9 and −10. We apply Fact

4.3 to determine the points of p̃k(s) that are on the root locus. Part (a) of Fact 4.3

implies that (−20,−10) is on the root locus. Part (b) of Fact 4.3 implies that −10 is

not on the root locus. Part (c) of Fact 4.3 implies that [−22.9,−10) is on the root

locus. Combining parts (a)–(c) of Fact 4.3 implies that [−22.9,−10) is on the root

locus. Furthermore, part (i) of Fact 4.3 implies that for σ ∈ −22.9 ∪ [−20,−10),

there exists exactly one k > 0 such that p̃k(σ) = 0. Part (ii) of Fact 4.3 implies that

for σ ∈ (−22.9,−20), there exists two distinct k > 0 such that p̃k(σ) = 0. A close-up

view of the real axis of the quadratic root locus is shown in Figure 4.1.

Next, we examine the asymptotic properties of p̃k(s). Since d1 < d2 − 2, part
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Figure 4.1: The quadratic root locus for q(s) = s + 10, r(s) = (s + 40)2 and t(s) =
(s+ 20)7 shows that [−22.9,−10) is on the root locus.

72



(a) of Fact 4.4 implies that the six remaining roots of p̃k(s) approach infinity along

asymptotes centered at α = −21.7 with angles π/6, π/2, 5π/6, 7π/6, 3π/2, and

11π/6. The quadratic root locus is shown in Figure 4.2. 


−300 −200 −100 0 100 200 300
−300

−200

−100

0

100

200

300

Real Axi s

Im
a
g
in

a
ry

A
x
is

Roots of q (s)
Roots of r (s)
Roots of t(s)
Real Roots of w(s)

Figure 4.2: The quadratic root locus for q(s) = s + 10, r(s) = (s + 40)2 and t(s) =
(s+20)7 shows that six roots of p̃k(s) tend to infinity along the asymptotes centered
at α = −21.7 with angles π/6, π/2, 5π/6, 7π/6, 3π/2, and 11π/6.

Example 4.2. Reconsider Example 4.1, where r(s) = (s + 40)4 instead of r(s) =

(s+ 40)2. Thus, d1 = m− l = 3, d2 = n−m = 3 and d = d1 + d2 = 6.

In order to determine the points of p̃k(s) that are on the real axis, note that w(s) =

−3(s+28.7)(s− 93.9)(s+23.2+ j24.2)(s− 23.2− j23.2)(s+27.6+ j10.2)(s+27.6−
j23.2)(s + 28.5 + j4.2)(s + 28.5 − j4.2), which has real roots at −28.7 and 93.9. We

apply Fact 4.3 to determine the points of p̃k(s) that are on the root locus. Part (a) of

Fact 4.3 implies that (−20,−10) is on the root locus. Part (b) of Fact 4.3 implies that

−10 is not on the root locus. Part (c) of Fact 4.3 implies that [−28.7,−10) is on the
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root locus. Combining parts (a)–(c) of Fact 4.3 implies that [−28.7,−10) is on the

root locus. Furthermore, part (i) of Fact 4.3 implies that for σ ∈ −28.7∪ [−20,−10),

there exists exactly one k > 0 such that p̃k(σ) = 0. Part (ii) of Fact 4.3 implies that

for σ ∈ (−28.7,−20), there exists two distinct k > 0 such that p̃k(σ) = 0. A close-up

view of the real axis of the quadratic root locus is shown in Figure 4.3.
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Figure 4.3: The quadratic root locus for q(s) = s + 10, r(s) = (s + 40)4 and t(s) =
(s+ 20)7 shows that [−28.7,−10) is on the root locus.

Next, we examine the asymptotic properties of p̃k(s). Since d1 = d2, part (b) of

Conjecture 4.1 implies that the six remaining roots of p̃k(s) approach infinity along

asymptotes centered at α = −21.7 with angles 2π/9, 4π/9, 8π/9, 10π/9, 14π/9, and

16π/9. Note that the asymptote angles are not equally spaced between 0 and 2π

radians. The quadratic root locus is shown in Figure 4.4. 


Example 4.3. Reconsider Example 4.1, where r(s) = (s + 40)5 instead of r(s) =

(s+ 40)2. Thus, d1 = m− l = 4, d2 = n−m = 2 and d = d1 + d2 = 6.
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Figure 4.4: The quadratic root locus for q(s) = s+10, r(s) = (s+40)4 and t(s) = (s+
20)7 shows that the six remaining roots of p̃k(s) approach infinity along asymptotes
centered at α = −21.7 with angles 2π/9, 4π/9, 8π/9, 10π/9, 14π/9, and 16π/9.
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In order to determine the points of p̃k(s) that are on the real axis, note that w(s) =

(s + 64.3)(s + 31.4)(s + 50.4 + j17.3)(s + 50.4 − j17.3)(s + 37.1 + j13.8)(s + 37.1 −
j13.8)(s + 32.9 + j7.9)(s + 32.9 − j7.9)(s + 31.7 + j3.6)(s + 31.7 − j3.6), which has

real roots at −64.3 and −31.4. We apply Fact 4.3 to determine the points of p̃k(s)

that are on the root locus. Part (a) of Fact 4.3 implies that (−20,−10) is on the

root locus. Part (b) of Fact 4.3 implies that −10 is not on the root locus. Part (c) of

Fact 4.3 implies that [−31.4,−10) is on the root locus. Combining parts (a)–(c) of

Fact 4.3 implies that [−31.4,−10) is on the root locus. Furthermore, part (i) of Fact

4.3 implies that for σ ∈ −31.4 ∪ [−20,−10), there exists exactly one k > 0 such that

p̃k(σ) = 0. Part (ii) of Fact 4.3 implies that for σ ∈ (−31.4,−20), there exists two

distinct k > 0 such that p̃k(σ) = 0. A close-up view of the real axis of the quadratic

root locus is shown in Figure 4.5.
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Figure 4.5: The quadratic root locus for q(s) = s + 10, r(s) = (s + 40)5 and t(s) =
(s+ 20)7 shows that [−31.4,−10) is on the root locus.
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Next, we examine the asymptotic properties of p̃k(s). Since d1 > d2 + 1, part

(b) of Fact 4.4 implies that four of the remaining roots of p̃k(s) approach infinity

along asymptotes centered at α1 = −47.5 with angles π/4, 3π/4, 5π/4, and 7π/4.

Furthermore, the two remaining roots of p̃k(s) approach infinity along asymptotes

centered at α2 = 30 with angles π/2 and 3π/2 . The quadratic root locus is shown

in Figure 4.6. 
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Figure 4.6: The quadratic root locus for q(s) = s+10, r(s) = (s+40)5 and t(s) = (s+
20)7 shows that four of the remaining roots of p̃k(s) approach infinity along asymptotes
centered at α1 = −47.5 with angles π/4, 3π/4, 5π/4, and 7π/4. Furthermore, two of
the remaining roots of p̃k(s) approach infinity along asymptotes centered at α2 = 30
with angles π/2 and 3π/2.

Next, we reconsider the triple integrator from Chapter 2. Specifically, we show that

the triple integrator can be high-gain stabilized using a simpler controller class than

the controller class in Chapter 2.

Example 4.4. Consider the single-input single-output linear time-invariant system
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y(s) = G(s)u(s), (4.27)

where

G(s)
�
=

1

s3
. (4.28)

Note that G(s) is minimum phase and relative degree 3. In Chapter 2, we high-gain

stabilize (4.28) using the quadratic root locus for the special controller class considered

in Chapter 2. We now use the generalized quadratic root locus to construct a simpler

controller that high-gain stabilizes (4.28). Specifically, consider the control

u(s) = Ĝk(s)(v(s)− y(s)), (4.29)

where

Ĝk(s)
�
=

k2(s+ b)2

s2 + k(s+ a)
, (4.30)

where v(s) is an external signal and a and b are real numbers. Note that (4.30) cannot

be expressed given by (2.4), and thus, (4.30) is not in the controller class in Chapter

2.

The closed-loop transfer function from v to y is given by

G̃k(s)
�
=

G(s)Ĝk(s)

1 +G(s)Ĝk(s)
=

k2(s+ b)2

p̃k(s)
, (4.31)

where p̃k(s) is given by (4.1), where γ1 = γ2 = 1, and specifically,

q(s)
�
= (s+ b)2 = s2 + 2bs+ b2, (4.32)

r(s)
�
= (s+ a)s3 = s4 + as3, (4.33)

t(s)
�
= s5. (4.34)

Thus, d1 = 2, d2 = 1 and d = 3. Since d1 = d2 + 1, part (c) of Conjecture 4.1
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implies that as k tends to infinity, two roots of p̃k(s) approach −b, one root of p̃k(s)

approaches minus infinity, and the two remaining roots of p̃k(s) approach infinity

along asymptotes centered at α1 with angles π/2 and 3π/2. Moreover, note that∑m
j=1 rj = −a and

∑l
j=1 qj = −2b, which implies that α1 = (−a+2b+1)/2. Therefore,

if a > 2b + 1, then α1 < 0. Thus, if b > 0 and a > 2b + 1, the controller class (4.30)

high-gain stabilizes the triple integrator.

Next, let a = 10 and b = 1, which implies that q(s) is asymptotically stable and

α1 = −7/2 < 0. Since d1 = 2, d2 = 1, q(s) is asymptotically stable, and α1 < 0, it

follows that the closed-loop transfer function G̃k(s) given by (4.31) is high-gain stable.

Next, we apply the quadratic root-locus rules in Section 4.3. First, Fact 4.1 implies

that the root locus begins at the roots of t(s). In order to determine the points of p̃k(s)

that are on the real axis, note that w(s) = s5(s−0.04)(s+8.02+j5.32)(s+8.02−j5.32).

We apply Fact 4.3 to determine the points of p̃k(s) that are on the root locus. Part

(a) of Fact 4.3 implies that (−∞,−1) ∪ (−1, 0) is on the root locus. Part (b) of

Fact 4.3 implies that −1 is not on the root locus. Part (c) of Fact 4.3 implies that

(−∞,−1)∪ (−1, 0) is on the root locus. Combining parts (a)–(c) of Fact 4.3 implies

that (−∞,−1)∪(−1, 0) is on the root locus. Furthermore, part (i) of Fact 4.3 implies

that for σ ∈ (−∞,−1) ∪ (−1, 0), there exists exactly one k > 0 such that p̃k(σ) = 0.

The quadratic root locus is shown in Figure 4.7. Note that G̃k(s) is asymptotically

stable for all k > 6.2. 


4.6 Conclusions

We presented rules for constructing the root locus for a class of polynomials that

are quadratic in the root-locus parameter k. These quadratic root-locus rules apply to

controller classes that are rational functions of k and yield a closed-loop denominator

that is quadratic in k. The controller class in Chapter 2 is a special case of the more

general structure considered in this chapter.
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Figure 4.7: The quadratic root locus shows that the triple integrator G(s) = 1/s3 is
high-gain stabilized by the controller Ĝk(s) = k2(s + 1)2/(s2 + k(s + 10)). In fact,
the closed-loop system is asymptotically stable for all k > 6.2. Furthermore, the
quadratic root locus shows that (−∞,−1) ∪ (−1, 0) is on the root locus.
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To develop the quadratic root locus, we extended the techniques of Chapter 2. In

principle, the techniques of this chapter could be extended further to address closed-

loop denominator polynomials that are cubic in k, which would extend the techniques

developed in Chapter 3. For example, the asymptote rule in this chapter (i.e., Fact

4.4) is constructed in part by finding the four largest terms of p̃k(s) in an annulus

that depends on k. This technique can be applied to polynomials that are cubic in k.

4.7 Proofs for Facts 4.1–4.6

Proof of Fact 4.1. If k = 0, then p̃k(s) = t(s).

Proof of Fact 4.2. Since for all k > 0, p̃k(s) has real coefficients, it follows that

the roots of p̃k(s) are either on the real axis or occur in complex conjugate pairs.

Proof of Fact 4.3. First, we show that (a), (b) or (c) are necessary for σ to

be on the root locus. Assume σ is on the root locus, and consider three cases: (A)

q(σ)t(σ) < 0; (B) q(σ) = 0; (C) t(σ) = 0; and (D) q(σ)t(σ) > 0. First, assume

(A) q(σ)t(σ) < 0, which implies (a). Next, assume (B) q(σ) = 0, which implies that

p̃k(σ) = γ2r(σ)k+ t(σ). Since σ is on the root locus, it follows that there exists k > 0

such that p̃k(σ) = 0. Thus, −t(σ)/(γ2r(σ)) > 0, which implies that r(σ)t(σ) < 0

because γ2 > 0, which implies (b). Next, assume (C) t(σ) = 0, which implies that

p̃k(σ) = k(kγ1q(σ) + γ2r(σ)). Since σ is on the root locus, it follows that there

exists k > 0 such that p̃k(σ) = 0. Thus, −γ2r(σ)/(γ1q(σ)) > 0, which implies that

q(σ)r(σ) < 0 because γ1γ2 > 0. Furthermore, since t(σ) = 0, it follows from (4.2)

that w(σ) = γ2
2r(σ)

2 − 4γ1q(σ)t(σ) = γ2
2r(σ)

2 ≥ 0. Finally, assume (D) q(σ)t(σ) > 0.

Since σ is on the root locus, it follows that p̃k(σ) has at least one positive root. Since

γ1 > 0 and q(σ)t(σ) > 0, it follows that γ1q(σ)t(σ) > 0. Therefore, part (a) of Lemma

1 in Appendix A implies that p̃k(σ) does not have exactly one positive root. Thus,

p̃k(σ) has two positive roots. Therefore, parts (b) and (c) of Lemma 1 in Appendix
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A imply that w(σ) ≥ 0 and q(σ)r(σ) < 0. Combining (C) and (D) implies (c).

Conversely, assume (a), (b) or (c) holds. First, assume (a) holds. Since γ1 > 0 and

q(σ)t(σ) < 0, it follows that γ1q(σ)t(σ) < 0. Thus, part (a) of Lemma 1 in Appendix

A implies that there exists exactly one k > 0 such that p̃k(σ) = 0. Therefore, σ is on

the root locus.

Next, assume (b) holds. Since q(σ) = 0, it follows that p̃k(σ) = γ2r(σ)k + t(σ).

In addition, since r(σ)t(σ) < 0 and γ2 > 0, it follows that −γ2t(σ)/r(σ) > 0. Thus,

there exists exactly one k > 0 such that p̃k(σ) = 0, and σ is on the root locus.

Finally, assume (c) holds. We consider four cases: (D) w(σ) = 0; (E) w(σ) > 0 and

q(σ)t(σ) < 0; (F) w(σ) > 0 and q(σ)t(σ) = 0; and (G) w(σ) > 0 and q(σ)t(σ) > 0.

First, assume (D) w(σ) = 0. Since w(σ) = 0, γ1 > 0, γ2 > 0, and q(σ)r(σ) < 0,

it follows from (4.2) that t(σ) 	= 0. Therefore, part (b) of Lemma 1 in Appendix A

implies that there exists exactly one k > 0 such that p̃k(σ) = 0. Thus, σ is on the root

locus. Next, assume (E) w(σ) > 0 and q(σ)t(σ) < 0. Since γ1 > 0 and q(σ)t(σ) < 0,

it follows that γ1q(σ)t(σ) < 0. Therefore, part (a) of Lemma 1 in Appendix A implies

that there exists exactly one k > 0 such that p̃k(σ) = 0. Thus, σ is on the root locus.

Next, assume (F) w(σ) > 0 and q(σ)t(σ) = 0. Since q(σ)t(σ) = 0 and q(σ)r(σ) < 0,

it follows that t(σ) = 0. Therefore, p̃k(σ) = k(γ1q(σ)k+γ2r(σ)). Since γ1 > 0, γ2 > 0

and q(σ)r(σ) < 0, it follows that −γ2r(σ)/(γ1q(σ)) > 0, which implies that there

exists exactly one k > 0 such that p̃k(σ) = 0. Thus, σ is on the root locus. Finally,

assume (G) w(σ) > 0 and q(σ)t(σ) > 0. Since γ1 > 0, γ2 > 0, q(σ)r(σ) < 0, and

q(σ)t(σ) > 0, it follows that γ1γ2q(σ)r(σ) < 0 and γ1q(σ)t(σ) > 0. Since w(σ) > 0,

γ1γ2q(σ)r(σ) < 0 and γ1q(σ)t(σ) > 0, part (c) of Lemma 1 in Appendix A implies

that there exists two distinct k > 0 such that p̃k(σ) = 0. Therefore, σ is on the root

locus.

To show (i) and (ii), assume σ is on the root locus. First, we show (i). Assume

q(σ)t(σ) ≤ 0 or w(σ) = 0, and consider four cases: (H) q(σ)t(σ) < 0, (I) q(σ) = 0,
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(J) t(σ) = 0, and (K) w(σ) = 0. First, assume (H) q(σ)t(σ) < 0. Since γ1 > 0 and

q(σ)t(σ) < 0, it follows that γ1q(σ)t(σ) < 0. Thus, part (a) of Lemma 1 in Appendix

A implies that there exists exactly one k > 0 such that p̃k(σ) = 0. Next, assume (I)

q(σ) = 0, which implies that p̃k(σ) = γ2r(σ)k+ t(σ) and that there exists at most one

k > 0 such that p̃k(σ) = 0. Since σ is on the root locus, it follows that there exists

exactly one k > 0 such that p̃k(σ) = 0. Next, assume (J) t(σ) = 0, which implies that

p̃k(σ) = k(γ1q(σ)k + γ2r(σ)). Since σ is on the root locus and p̃k(σ) has one nonzero

root, it follows that there exists exactly one k > 0 such that p̃k(σ) = 0. Finally,

assume (K) w(σ) = 0, which implies that p̃k(σ) has repeated real roots. Since σ is on

the root locus and p̃k(σ) has repeated real roots, it follows that the repeated roots

are positive. Thus, there exists exactly one k > 0 such that p̃k(σ) = 0. Therefore,

cases (H), (I), (J), and (K) confirm (i).

Next, we show (ii). Assume w(σ) > 0, q(σ)r(σ) < 0 and q(σ)t(σ) > 0. Since

γ1 > 0, γ2 > 0, q(σ)r(σ) < 0, and q(σ)t(σ) > 0, it follows that γ1γ2q(σ)r(σ) < 0

and γ1q(σ)t(σ) > 0. Since w(σ) > 0, γ1γ2q(σ)r(σ) < 0 and γ1q(σ)t(σ) > 0, part (c)

of Lemma 1 in Appendix A implies that there exists two distinct k > 0 such that

p̃k(σ) = 0, which confirms (ii).

Proof of Fact 4.4. To show that l roots of p̃k(s) converge to the roots of q(s),

it follows from (4.1) that

p̃k(s)

k2
= q(s) +

r(s)

k
+

t(s)

k2
,

which implies that, for sufficiently large k > 0, p̃k(s)/k
2 ≈ q(s). Thus, as k → ∞, l

roots of p̃k(s) converge to the roots of q(s).

Next, write

q(s) = sl + a1s
l−1 + · · ·+ al, (4.35)
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r(s) = sm + b1s
m−1 + · · ·+ bm, (4.36)

and

t(s) = sn + c1s
n−1 + · · ·+ cn, (4.37)

where a1, a2, . . . , al, b1, b2, . . . , bm, c1, c2, . . . , cn ∈ R. Thus,

p̃k(s) = k2

(
sl +

l∑
i=1

ais
l−i

)
+ k

(
sm +

m∑
i=1

bis
m−i

)
+ sn +

n∑
i=1

cis
n−i. (4.38)

Note that a1 = −∑l
j=1 qj, b1 = −∑m

j=1 rj and c1 = −∑n
j=1 tj.

To show (a), assume d1 < d2−2. Let ε < 1/(dn2) be positive, and for k > 1, define

Tk
�
= {s ∈ C : k2/d−ε < |s| < k2/d+ε}. We show that for sufficiently large k > 0 and

for all s ∈ Tk, the four terms of (4.38) with the largest magnitude are k2sl, a1k
2sl−1,

sn, and c1s
n−1. For all k > 1 and all s ∈ Tk, it follows that

|s|n−1 > (k2/d−ε)n−1 = k(2n−2)/d−ε(n−1), (4.39)

k2|s|l−1 > k2(k2/d−ε)l−1 = k(2n−2)/d−ε(l−1). (4.40)

Since l < n and ε < 1/(dn2), it follows from (4.39) and (4.40) that for all k > 1 and

s ∈ Tk,

|s|n−1 > k(2n−2)/d−ε(n−1) > k(2n−2)/d−(n−1)/(dn2) = k(2n3−2n2−n+1)/(dn2),

k2|s|l−1 > k(2n−2)/d−ε(l−1) > k(2n−2)/d−ε(n−1) > k(2n3−2n2−n+1)/(dn2).

Moreover, for all k > 1 and s ∈ Tk, it follows that

|s|n > |s|n−1 > k(2n3−2n2−n+1)/(dn2), (4.41)
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k2|s|l > k2|s|l−1 > k(2n3−2n2−n+1)/(dn2). (4.42)

Next, we show that the magnitude of each of the remaining terms of (4.38) is smaller

than k(2n3−2n2−n+1)/(dn2). For all k > 1 and s ∈ Tk, it follows that

|s|n−2 < (k2/d+ε)n−2 = k(2n−4)/d+ε(n−2), (4.43)

k2|s|l−2 < k2(k2/d+ε)l−2 = k(2n−4)/d+ε(l−2), (4.44)

k|s|m < k(k2/d+ε)m = k(d+2m)/d+εm. (4.45)

Since l < n and ε < 1/(dn2), it follows from (4.43)–(4.45) that for all s ∈ Tk,

|s|n−2 < k(2n−4)/d+ε(n−2) < k(2n−4)/d+(n−2)/(dn2) = k(2n3−4n2+n−2)/(dn2), (4.46)

k2|s|l−2 < k(2n−4)/d+ε(l−2) < k(2n−4)/d+ε(n−2) < k(2n3−4n2+n−2)/(dn2), (4.47)

k|s|m < k(d+2m)/d+εm < k(d+2m)/d+m/(dn2) = k(n3−ln2+2mn2+m)/(dn2). (4.48)

Since n is a positive integer, it follows from (4.41), (4.42), (4.46), and (4.47) that for

sufficiently large k > 0 and all s ∈ Tk,

|c1||s|n−1 > k2|a2||s|l−2 > k2|a3||s|l−3 > · · · > k2|al|, (4.49)

k2|a1||s|l−1 > |c2||s|n−2 > |c3||s|n−3 > · · · > |cn|. (4.50)

Next, since d1 < d2−2, it follows that n+ l−2m−2 > 0. Since 0 ≤ l < m < n and

l,m and n are integers, it follows that n ≥ 2, which implies that n − 1 − n2 < −n.

Furthermore, since m ≤ n − 1, n + l − 2m − 2 > 0 and n − 1 − n2 < −n, it follows

that

n3 − ln2 + 2mn2 +m ≤ n3 − ln2 + 2mn2 + n− 1
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= 2n3 − 2n2 + n− 1− n2(n+ l − 2m− 2)

< 2n3 − 2n2 + n− 1− n2

< 2n3 − 2n2 − n,

which combined with (4.48) implies

k|s|m < k(2n3−2n3−n)/(dn2). (4.51)

Therefore, it follows from (4.41), (4.42) and (4.51) that for sufficiently large k > 0

and for all s ∈ Tk,

|c1||s|n−1 > k|s|m > k|b1||s|m−1 > k|b2||s|m−2 > · · · > k|bm|, (4.52)

k2|a1||s|l−1 > k|s|m > k|b1||s|m−1 > k|b2||s|m−2 > · · · > k|bm|. (4.53)

Thus, (4.41), (4.42), (4.49), (4.50), (4.52), and (4.53) imply that for sufficiently large

k > 0 and for all s ∈ Tk, the four terms of (4.38) with the largest magnitude are k2sl,

a1k
2sl−1, sn, and c1s

n−1.

Therefore, for sufficiently large k > 0 and for all s ∈ Tk,

p̃k(s) ≈ μk(s), (4.54)

where

μk(s)
�
= k2sl + k2a1s

l−1 + sn + c1s
n−1. (4.55)

Since a1 = −∑l
j=1 qj and c1 = −∑n

j=1 tj, Lemma 6 in Appendix C implies that as

k tends to infinity, d = n− l roots of μk(s) are approximated by λ1, λ2, . . . , λd given

by (4.5)–(4.7). Thus, it follows from (4.54) that for sufficiently large k > 0, d roots

of p̃k(s) are approximated by λ1, λ2, . . . , λd given by (4.5)–(4.7), which confirms (a).
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To show (b), assume d1 > d2 + 1. First, we show that d1 roots of p̃k(s) are ap-

proximated by λ1, λ2, . . . , λd1 . Let ε < 1/(d1n
2) be positive and, for k > 1, define

Uk
�
= {s ∈ C : k1/d1−ε < |s| < k1/d1+ε}. We show that for sufficiently large k > 0 and

for all s ∈ Uk, the four terms of (4.38) with the largest magnitude are k2sl, a1k
2sl−1,

ksm, and b1ks
m−1. For all k > 1 and s ∈ Uk, it follows that

k|s|m−1 > k(k1/d1−ε)m−1 = k1+(m−1)/d1−ε(m−1) = k(2m−l−1)/d1−ε(m−1), (4.56)

k2|s|l−1 > k2(k1/d1−ε)l−1 = k2+(l−1)/d1−ε(l−1) = k(2m−l−1)/d1−ε(l−1). (4.57)

Since l < m and ε < 1/(d1n
2), it follows from (4.56) and (4.57) that for all k > 1 and

all s ∈ Uk,

k|s|m−1 > k(2m−l−1)/d1−ε(m−1) > k(2m−l−1)/d1−(m−1)/(d1n2) = k(2mn2−ln2−n2−m+1)/(d1n2),

k2|s|l−1 > k(2m−l−1)/d1−ε(l−1) > k(2m−l−1)/d1−ε(m−1) > k(2mn2−ln2−n2−m+1)/(d1n2).

Moreover, for all k > 1 and s ∈ Uk, it follows that

k|s|m > k|s|m−1 > k(2mn2−ln2−n2−m+1)/(d1n2), (4.58)

k2|s|l > k2|s|l−1 > k(2mn2−ln2−n2−m+1)/(d1n2). (4.59)

Next, we show the magnitude of each of the remaining terms of (4.38) is smaller

than k(2mn2−ln2−n2−m+1)/(d1n2). For all k > 1 and all s ∈ Uk, it follows that

k|s|m−2 < k(k1/d1+ε)m−2 = k(2m−l−2)/d1+ε(m−2), (4.60)

k2|s|l−2 < k2(k1/d1+ε)l−2 = k(2m−l−2)/d1+ε(l−2), (4.61)

|s|n < (k1/d1+ε)n = kn/d1+εn. (4.62)
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Since l < m and ε < 1/(d1n
2), it follows from (4.60)–(4.62) that

k|s|m−2 < k(2m−l−2)/d1+ε(m−2) < k(2m−l−2)/d1+(m−2)/(d1n2)

= k(2mn2−ln2−2n2+m−2)/(d1n2), (4.63)

k2|s|l−2 < k(2m−l−2)/d1+ε(l−2) < k(2m−l−2)/d1+ε(m−2)

< k(2mn2−ln2−2n2+m−2)/(d1n2), (4.64)

|s|n < kn/d1+n/(d1n2) = k(n3+n)/(d1n2). (4.65)

Since m is a positive integer and n ≥ m+ 1, it follows that −m+ 1 > −n2 +m− 2,

which implies from (4.58), (4.59), (4.63), and (4.64) that for sufficiently large k > 0

and for all s ∈ Uk,

k|b1||s|m−1 > k2|a2||s|l−2 > k2|a3||s|l−3 > · · · > k2|al|, (4.66)

k2|a1||s|l−1 > k|b2||s|m−2 > k|b3||s|m−3 > · · · > k|bm|. (4.67)

Next, since d1 > d2 + 1, it follows that 2m − n − l − 1 > 0. Furthermore, since

m is a positive integer and n ≥ m + 1, it follows that n − n2 < −m + 1. Since

2m− l − n− 1 > 0 and n− n2 ≤ 1−m, it follows that

n3 + n = 2mn2 − ln2 − n2 + n− n2(2m− l − n− 1)

< 2mn2 − ln2 − n2 + n− n2

< 2mn2 − ln2 − n2 −m+ 1,

which combined with (4.65) yields

|s|n < k(2mn2−ln2−n2−m+1)/(d1n2). (4.68)

Therefore, it follows from (4.58), (4.59) and (4.68) that for sufficiently large k > 0
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and for all s ∈ Uk,

|b1|k|s|m−1 > |s|n > |c1||s|n−1 > · · · > |cn|, (4.69)

|a1|k2|s|l−1 > |s|n > |c1||s|n−1 > · · · > |cn|. (4.70)

Thus, (4.58), (4.59), (4.66), (4.67), (4.69), and (4.70) imply that for sufficiently large

k > 0 and for all s ∈ Uk, the four terms of (4.38) with the largest magnitude are k2sl,

a1k
2sl−1, ksm, and b1ks

m−1.

Therefore, for sufficiently large k > 0 and for all s ∈ Uk,

p̃k(s) ≈ νk(s), (4.71)

where

νk(s)
�
= k

(
ksl + ka1s

l−1 + sm + b1s
m−1

)
. (4.72)

Since a1 = −∑l
j=1 qj and b1 = −∑m

j=1 rj, Lemma 6 in Appendix C implies that as k

tends to infinity, d1 = m− l roots of νk(s) are approximated by λ1, λ2, . . . , λd1 given

by (4.8)–(4.10). Thus, it follows from (4.71) that for sufficiently large k > 0, d1 roots

of p̃k(s) are approximated by λ1, λ2, . . . , λd1 given by (4.8)–(4.10).

Next, we show that d2 = d−d1 roots of p̃k(s) are approximated by λd1+1, λd1+2, . . . , λd.

Let ε < 1/(d2n
2) be positive and, for k > 1, define Vk

�
= {s ∈ C : k1/d2−ε < |s| <

k1/d2+ε}. We show that for sufficiently large k > 0 and for all s ∈ Vk, the four terms

of (4.38) with the largest magnitude are ksm, b1ks
m−1, sn, and c1s

n−1. For all s ∈ Vk,

it follows that

sn−1 > (k1/d2−ε)n−1 = k(n−1)/d2−ε(n−1), (4.73)

k|s|m−1 > k(k1/d2−ε)m−1 = k1+(m−1)/d2−ε(m−1) = k(n−1)/d2−ε(m−1). (4.74)
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Since m < n and ε < 1/(d2n
2), it follows from (4.73) and (4.74) that for all s ∈ Vk,

|s|n−1 > k(n−1)/d2−ε(n−1) > k(n−1)/d2−(n−1)/(d2n2) = k(n3−n2−n+1)/(d2n2),

k|s|m−1 > k(n−1)/d2−ε(m−1) > k(n−1)/d2−ε(n−1) > k(n3−n2−n+1)/(d2n2).

Moreover, for all k > 1 and for all s ∈ Vk, it follows that

|s|n > |s|n−1 > k(n3−n2−n+1)/(d2n2), (4.75)

k|s|m > k|s|m−1 > k(n3−n2−n+1)/(d2n2). (4.76)

Next, we show the magnitude of each of the remaining terms of (4.38) is smaller

than k(n3−n2−n+1)/(d2n2). For all s ∈ Vk, it follows that

|s|n−2 < (k1/d2+ε)n−2 = k(n−2)/d2+ε(n−2), (4.77)

k|s|m−2 < k(k1/d2+ε)m−2 = k(n−2))/d2+ε(m−2), (4.78)

k2|s|l < k2(k1/d2+ε)l = kl/d2+εl. (4.79)

Since m < n and ε < 1/(d2n
2), it follows from (4.77)–(4.79) that

|s|n−2 < k(n−2)/d2+ε(n−2) < k(n−2)/d2+(n−2)/(d2n2) = k(n3−2n2+n−2)/(d2n2), (4.80)

k|s|m−2 < k(n−2)/d2+ε(m−2) < k(n−2)/d2+ε(n−2) < k(n3−2n2+n−2)/(d2n2), (4.81)

k2|s|l < kl/d2+εl < kl/d2+l/(d2n2) = k(ln2+l)/(d2n2). (4.82)

Since n is a positive integer, it follows from (4.75), (4.76), (4.80), and (4.81) that for

sufficiently large k > 0 and for all s ∈ Vk,

|c1||s|n−1 > k|b2||s|m−2 > k|b3||s|m−3 > · · · > k|bm|, (4.83)

k|b1||s|m−1 > |c2||s|n−2 > |c3||s|n−3 > · · · > |cn|. (4.84)
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Next, since l ≤ n− 2 and n is a positive integer, it follows that

ln2 + l ≤ (n− 2)n2 + n− 2

= n3 − 2n2 + n− 2

< n3 − n2 − n+ 1,

which combined with (4.82) yields

k2|s|l < k(n3−n2−n+1)/d2 . (4.85)

Therefore, it follows from (4.75), (4.76) and (4.85) that for sufficiently large k > 0

and for all s ∈ Vk,

|c1||s|n−1 > k2|s|l > |a1|k2|s|l−1 > · · · > k2|al|, (4.86)

|b1|k|s|m−1 > k2|s|l > |a1|k2|s|l−1 > · · · > k2|al|. (4.87)

Thus, (4.75), (4.76), (4.83), (4.84), and (4.86), and (4.87) imply that for sufficiently

large k > 0 and for all s ∈ Vk, the four terms of (4.38) with the largest magnitude

are k2sl, a1k
2sl−1, ksm, and b1ks

m−1.

Therefore, for sufficiently large k > 0 and for all s ∈ Vk,

p̃k(s) ≈ ηk(s), (4.88)

where

ηk(s)
�
= ksm + kb1s

m−1 + sn + c1s
n−1. (4.89)

Since b1 = −∑m
j=0 rj and c1 = −∑n

j=0 tj, Lemma 6 in Appendix C implies that as k

tends to infinity, d2 = d − d1 roots of ηk(s) are approximated by λd1+1, λd1+2, . . . , λd

given by (4.11)–(4.13). Thus, it follows from (4.88) that for sufficiently large k > 0, d2
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roots of p̃k(s) are approximated by λd1+1, λd1+2, . . . , λd given by (4.11)–(4.13), which

confirms (b).

Proof of Fact 4.5. Let τ ∈ R be on the root locus, and assume q(τ) 	= 0. Since

τ is on the root locus, it follows from (4.1) and (4.26) that κ1(τ) > 0 or κ2(τ) > 0.

We consider three cases: (A) κ1(τ) > 0 and κ2(τ) > 0, (B) κ1(τ) > 0 and κ2(τ) ≤ 0,

and (C) κ1(τ) ≤ 0 and κ2(τ) > 0. First, assume (A) κ1(τ) > 0 and κ2(τ) > 0. It

follows that there exists a ∈ R and b ∈ R such that: τ ∈ (a, b); there is at most

one break-in or breakaway point on (a, b); for all σ ∈ (a, b), q(σ) 	= 0; and for all

σ ∈ (a, b), κ1(σ) > 0 and κ2(σ) > 0. It follows from Definition 1.2 that τ is a break-in

or breakaway point if and only if τ is the minimizer or maximizer of κ1(σ) or κ2(σ)

on (a, b). Furthermore, τ is the minimizer or maximizer of κ1(σ) or κ2(σ) on (a, b)

if and only if dκ1(σ)/dσ|σ=τ = 0 or dκ2(σ)/dσ|σ=τ = 0, respectively. Thus, τ is a

break-in or breakaway point if and only if dκ1(σ)/dσ|σ=τ = 0 or dκ2(σ)/dσ|σ=τ = 0.

Next, assume (B) κ1(τ) > 0 and κ2(τ) ≤ 0. It follows that there exists a ∈ R and

b ∈ R such that: τ ∈ (a, b); there is at most one break-in or breakaway point on

(a, b); for all σ ∈ (a, b), q(σ) 	= 0; and for all σ ∈ (a, b), κ1(σ) > 0. It follows from

Definition 1.2 that τ is a break-in or breakaway point if and only if τ is the minimizer

or maximizer of κ1(σ) on (a, b). Furthermore, τ is the minimizer or maximizer of

κ1(σ) on (a, b) if and only if dκ1(σ)/dσ|σ=τ = 0. Thus, τ is a break-in or breakaway

point if and only if dκ1(σ)/dσ|σ=τ = 0.

Finally, assume (C) κ1(τ) ≤ 0 and κ2(τ) > 0. Using the same argument as the previ-

ous case yields that τ is a break-in or breakaway point if and only if dκ2(σ)/dσ|σ=τ = 0.

Combining these three cases yields that τ is a break-in or breakaway point if and only

if (a) or (b) from Fact 4.5 holds.

Proof of Fact 4.6. Assume τ is a break-in or breakaway point, and it follows

from Definition 1.2 that τ is on the root locus and that p̃k(s) has multiple roots at τ .
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Since q(τ) = 0, it follows from (4.1) that p̃k(τ) = γ2kr(τ) + t(τ), which implies that

kτ is the only root of p̃k(τ). Therefore, p̃kτ (s) has multiple roots at τ .

Conversely, assume p̃kτ (s) has multiple roots at τ , and it follows from Definition

1.2 that τ is a break-in or breakaway point.
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Chapter 5 Conclusions and Future Work

This thesis presented rules for constructing root loci, where the closed-loop de-

nominator polynomial is quadratic or cubic in the root-locus parameter k. These

root-locus rules apply to a class of controllers that are rational functions of k. In

Chapter 2, we characterized the root locus for a class of controllers that yields a

closed-loop transfer function, whose denominator polynomial is quadratic in k. More

specifically, we considered a controller class, where the numerator polynomial is pro-

portional to k2, and the denominator polynomial includes a pole, whose location is

proportional to k. We developed nine rules that characterize the starting points of

the root locus, the segments of the real axis that are on the real axis, the asymptotic

behavior of the root locus, and the break-in and breakaway points on the real axis.

We showed that the triple integrator can be high-gain stabilized using the quadratic

root locus. In Chapter 4, we extended the quadratic root locus rules to accommodate

a more general controller class than the controller class in Chapter 2.

In Chapter 3, we characterized the root locus for a class of controllers that yields

a closed-loop transfer function, whose denominator polynomial is cubic in k. More

specifically, we considered a controller class, where the numerator polynomial is pro-

portional to k3, and the denominator polynomial includes two poles, whose locations

are proportional to k. We developed four rules that characterize the starting points

of the root locus, the segments of the real axis that are on the real axis and the

asymptotic behavior of the root locus. We showed that the quadruple integrator can

be high-gain stabilized using the cubic root locus.
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Chapter 3 considered a specific controller class that yielded a closed-loop transfer

function, whose denominator polynomial is cubic in k. However, the cubic root-locus

rules in Chapter 3 could be extended to accommodate a more general controller class.

In principle, an extension of the cubic root-locus rules in Chapter 3 is similar to the

Chapter 4 extension of the quadratic root-locus rules in Chapter 2. For example,

the real-axis rule in Chapter 2 is a special case of the real-axis rule in Chapter 4.

Similarly, the real-axis rule in Chapter 3 is a special case of a real-axis rule for a

general polynomial that is cubic in k. This extension is an open problem.

In Chapter 4, we characterized the root locus for a polynomial is quadratic in

the root-locus parameter k. Chapter 4 extended the controller class of Chapter 4 by

considering a general polynomial that is quadratic in k. The quadratic root-locus rules

of Chapter 4 apply to a broad class of controllers that yield closed-loop denominator

polynomials that are quadratic in the root-locus parameter k. In Chapter 4, we

developed six rules that characterize the starting points of the root locus, the segments

of the real axis that are on the real axis, the asymptotic behavior of the root locus,

and the break-in and breakaway points on the real axis. The asymptote rule of

Chapter 4 (i.e., Fact 4.4) is not collectively exhaustive. In Conjecture 4.1, we provided

numerically demonstrated results for the cases that are not included in Fact 4.4. A

proof of Conjecture 4.1 is an open problem.
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Appendices

A Results for Quadratic Polynomials

Lemma 1. Consider the polynomial a(k) = a2k
2 + a1k + a0, where a2, a1, a0 ∈ R,

a2 	= 0, and a0 	= 0. The following statements hold:

(a) a(k) has exactly one positive root if and only if a2a0 < 0.

(b) a(k) has repeated positive roots if and only if a21 − 4a2a0 = 0 and a2a1 < 0.

(c) a(k) has two distinct positive roots if and only if a21 − 4a2a0 > 0, a2a1 < 0 and

a2a0 > 0.

Proof. Let σ1 ∈ C and σ2 ∈ C be the roots of a(k). Note that if Im(σ1) 	= 0, then

σ1 = σ̄2. It follows that

a(k) = a2(k − σ1)(k − σ2) = a2k
2 + a1k + a0,

where

a1
�
= −a2(σ1 + σ2), a0

�
= a2σ1σ2.

First, we show (a). Since a2a0 = a22σ1σ2 and a2a0 	= 0, it follows that a(k) has exactly

one positive root if and only if a2a0 < 0.

To show (b) and (c), the roots of a(k) are

σ1
�
=

−a1 +
√
a21 − 4a2a0
2a2

, σ2
�
=

−a1 −
√
a21 − 4a2a0
2a2

. (A.1)
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To show (b), assume σ1 and σ2 are repeated positive roots of a(k). Since σ1 = σ2, it

follows from (A.1) that a21 − 4a2a0 = 0. Next, since σ1 = −a1/(2a2) > 0, it follows

that a2a1 < 0. Conversely, assume a21 − 4a2a0 = 0 and a2a1 < 0, and it follows from

(A.1) that σ1 = σ2 = −a1/(2a2). Furthermore, since a2a1 < 0, it follows that σ1 > 0

and σ2 > 0. Thus, a(k) has repeated positive roots.

Finally, we show (c). Assume σ1 > 0, σ2 > 0 and σ1 	= σ2. It follows from (A.1)

that a21− 4a2a0 > 0. Furthermore, since −a1/a2 = σ1+σ2 > 0 and a0/a2 = σ2σ1 > 0,

it follows that a2a1 < 0 and a2a0 > 0. Conversely, assume a21 − 4a2a0 > 0, a2a1 < 0

and a2a0 > 0. Since a21−4a2a0 > 0, it follows from (A.1) that σ1 and σ2 are real roots

and σ1 	= σ2. Furthermore, since a2a1 = −a22(σ1 + σ2) < 0 and a2a0 = a22σ1σ2 > 0, it

follows that σ1 + σ2 > 0 and σ1σ2 > 0. Finally, since σ1 + σ2 > 0, σ1σ2 > 0, σ1 	= σ2,

σ1 ∈ R, and σ2 ∈ R, it follows that σ1 > 0, σ2 > 0 and σ1 	= σ2, which confirms

(c).

B Results for Cubic Polynomials

Consider the cubic polynomial a(k)
�
= a3k

3+a2k
2+a1k+a0, where a3, a2, a1, a0 ∈ R

and a3 	= 0. Since a(k) has real coefficients, it follows that a(k) has at least one real

root. Let σ1 be a real root, and let σ2 and σ3 be the remaining roots, which are

potentially complex. Next, it follows that a(k) = a3k
3+a2k

2+a1k+a0 = a3(k−σ1)(k−
σ2)(k − σ3), which implies that a2 = −a3(σ1 + σ2 + σ3), a1 = a3(σ1σ2 + σ1σ3 + σ2σ3)

and a0 = −a3σ1σ2σ3. Thus, it follows that

a3a0 = − a23σ1σ2σ3, (B.1)

a3a1 = a23(σ1σ2 + σ1σ3 + σ2σ3), (B.2)

a3a2 = − a23(σ1 + σ2 + σ3), (B.3)

a2a1 − a3a0 = − a23(σ1 + σ2)(σ1 + σ3)(σ2 + σ3). (B.4)
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Next, we define the discriminant of a(k), which is given by

D
�
= 18a3a2a1a0 − 4a32a0 + a22a

2
1 − 4a3a

3
1 − 27a23a

2
0. (B.5)

If D < 0, then a(k) has one real root and two complex roots with nonzero imaginary

parts [24, pp. 153-154]. If D ≥ 0, then a(k) has three real roots [24, pp. 153-154].

Lemma 2. Consider the polynomial a(k) = a3k
3+a2k

2+a1k+a0, where a3, a2, a1, a0 ∈
R, a3 	= 0 and a0 	= 0. Then a(k) has exactly one positive root if and only if any of

the following statements hold:

(a) a3a0 < 0 and D < 0.

(b) a3a0 < 0 and a3a2 ≥ 0.

(c) a3a0 < 0, a3a2 < 0 and a2a1 − a3a0 > 0.

Proof. First, we show that (a), (b) or (c) is necessary for a(k) to have exactly one

positive root. Assume a(k) has exactly one positive root. Without loss of generality,

let σ1 be the positive root. We consider three cases: (1) σ2 and σ3 are complex with

nonzero imaginary parts; (2) σ2 ≤ 0, σ3 ≤ 0 and σ1 + σ2 + σ3 ≤ 0; and (3) σ2 ≤ 0,

σ3 ≤ 0 and σ1 + σ2 + σ3 > 0.

First, assume σ2 and σ3 are complex with nonzero imaginary parts, and it follows

from [24, pp. 153-154] that D < 0. Since a(k) has real coefficients, it follows that σ2

and σ3 are complex conjugates, which implies that σ2σ3 = |σ2|2. Thus, (B.1) implies

that a3a0 = −a23σ1σ2σ3 = −a23σ1|σ2|2 < 0, which confirms (a).

Next, assume σ2 ≤ 0, σ3 ≤ 0 and σ1 + σ2 + σ3 ≤ 0. Since a3 	= 0 and a0 	= 0, it

follows from (B.1) that a3a0 = −a23σ1σ2σ3 	= 0. Since, in addition, σ1 > 0, it follows

that σ2 < 0 and σ3 < 0, which implies that a3a0 < 0. Since σ1 + σ2 + σ3 ≤ 0, it

follows that from (B.3) that a3a2 ≥ 0, which confirms (b).
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Finally, assume σ2 ≤ 0, σ3 ≤ 0 and σ1 + σ2 + σ3 > 0. Since a3a0 = −a23σ1σ2σ3 	= 0

and σ1 > 0, it follows that σ2 < 0 and σ3 < 0, which implies that a3a0 < 0. Since

σ1 + σ2 + σ3 > 0, it follows from (B.3) that a3a2 < 0. Next, since σ2 < 0, σ3 < 0 and

σ1 + σ2 + σ3 > 0, it follows that σ1 + σ2 > 0 and σ1 + σ3 > 0. Therefore, it follows

from (B.4) that a2a1 − a3a0 = −a23(σ1 + σ2)(σ1 + σ3)(σ2 + σ3) > 0. Thus, a3a0 < 0,

a3a2 < 0 and a2a1 − a3a0 > 0, which confirms (c).

Conversely, assume (a), (b) or (c) hold. First, assume (a) holds. Since D < 0, it

follows from [24, pp. 153-154] that σ2 and σ3 are complex conjugates, which implies

that σ2σ3 = |σ2|2. Furthermore, since a3a0 < 0, it follows from (B.1) that a3a0 =

−a23σ1σ2σ3 = −a23σ1|σ2|2 < 0, which implies that σ1 > 0. Therefore, a(k) has exactly

one positive root.

Next, assume (b) or (c) hold. Since a3a0 = −a23σ1σ2σ3 < 0, it follows that a(k)

has exactly one positive root or three positive roots. Assume for contradiction that

a(k) has three positive roots. It follows from (B.3) and (B.4) that a3a2 < 0 and

a2a1 − a3a0 < 0. Since a3a2 < 0 and a2a1 − a3a0 < 0, it follows that neither (b) nor

(c) hold, which is a contradiction. Thus, a(k) has exactly one positive root.

Lemma 3. Consider the polynomial a(k) = a3k
3+a2k

2+a1k+a0, where a3, a2, a1, a0 ∈
R, a3 	= 0 and a0 	= 0. Then a(k) has exactly two positive roots if and only if either

of the following statements hold:

(a) D ≥ 0, a3a0 > 0 and a3a2 < 0.

(b) D ≥ 0, a3a0 > 0, a3a2 ≥ 0, and a2a1 − a3a0 < 0.

Furthermore, if a(k) has exactly two positive roots, then the following statements

hold:

(i) The positive roots of a(k) are distinct if and only if D > 0.

(ii) a3, a2, a1, and a0 do not all have the same sign.
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Proof. First, we show that (a) or (b) is necessary for a(k) to have exactly two

positive roots. Assume a(k) has exactly two positive roots. Since a(k) has exactly

two positive roots, it follows that that the third root must be nonpositive and real,

which implies that D ≥ 0 [24, pp. 153-154]. Without loss of generality, let σ1 > 0,

σ2 > 0 and σ3 ≤ 0. Since a3 	= 0 and a0 	= 0, it follows that a3a0 = −a23σ1σ2σ3 	= 0.

Since, in addition, σ1σ2 > 0, it follows that σ3 	= 0, which implies that σ3 < 0 and

a3a0 > 0. To show that (a) or (b) hold, we consider two cases: (1) σ1 + σ2 + σ3 > 0

and (2) σ1 + σ2 + σ3 ≤ 0.

First, assume σ1+σ2+σ3 > 0, and it follows from (B.3) that a3a2 = −a23(σ1+σ2+

σ3) < 0. Thus, D ≥ 0, a3a0 > 0 and a3a2 < 0, which confirms (a).

Next, assume σ1+σ2+σ3 ≤ 0, and it follows from (B.3) that a3a2 = −a23(σ1+σ2+

σ3) ≥ 0. Next, since σ1 > 0, σ2 > 0 and σ1 + σ2 + σ3 ≤ 0, it follows that σ1 + σ3 < 0

and σ2+σ3 < 0. Therefore, it follows from (B.4) that a2a1−a3a0 = −a23(σ1+σ2)(σ1+

σ3)(σ2 + σ3) < 0. Thus, D ≥ 0, a3a0 > 0, a3a2 ≥ 0, and a2a1 − a3a0 < 0, which

confirms (b).

Conversely, assume (a) or (b) hold. Since D ≥ 0, it follows that a(k) has three real

roots [24, pp. 153-154]. Since, in addition, a3a0 = −a23σ1σ2σ3 > 0, it follows that

a(k) has exactly two positive roots or three negative roots. Assume for contradiction

that a(k) has three negative roots, which implies that σ1 < 0, σ2 < 0 and σ3 < 0.

Therefore, it follows from (B.3) and (B.4) that a3a2 > 0 and a2a1 − a3a0 > 0. Since

a3a2 > 0 and a2a1 − a3a0 > 0, it follows that neither (a) nor (b) hold, which is a

contradiction. Thus, a(k) has exactly two positive roots.

To show (i), assume a(k) has exactly two positive roots and D > 0, and it follows

from [24, pp. 153-154] that the two positive roots of a(k) are distinct. Conversely,

assume a(k) has exactly two positive roots and D = 0, and it follows from [24, pp.

153-154] that at least two roots of a(k) are equal. Furthermore, since a(k) has two

positive roots and one negative root, it follows that the positive roots are equal.
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To show (ii), assume a(k) has exactly two positive roots, which implies that (a)

or (b) hold. First, assume (a) holds. Since a3a2 < 0, it follows that a3 and a2 have

opposite signs. Next, assume (b) holds. Without loss of generality, let σ1 > 0, σ2 > 0

and σ3 ≤ 0. Since a3a2 ≥ 0, it follows from (B.3) that σ1 + σ2 + σ3 ≤ 0. Since σ1 > 0

and σ1+σ2+σ3 ≤ 0, it follows that σ2+σ3 < 0. Thus, σ1(σ2+σ3)+σ2σ3 = a1/a3 < 0,

which implies that a3 and a1 have opposite signs.

Lemma 4. Consider the polynomial a(k) = a3k
3+a2k

2+a1k+a0, where a3, a2, a1, a0 ∈
R, a3 	= 0 and a0 	= 0. Then a(k) has three positive roots if and only if D ≥ 0,

a3a0 < 0, a3a2 < 0, and a2a1 − a3a0 < 0. Furthermore, a(k) has three distinct

positive roots if and only if D > 0, a3a0 < 0, a3a2 < 0, and a2a1 − a3a0 < 0.

Proof. First, we show that D ≥ 0, a3a0 < 0, a3a2 < 0, and a2a1 − a3a0 < 0 are

necessary for a(k) to have three positive roots. Assume a(k) three positive roots.

Since σ1 > 0, σ2 > 0 and σ3 > 0, it follows from (B.1), (B.3) and (B.4) that a3a0 < 0,

a3a2 < 0 and a2a1 − a3a0 < 0. Since a(k) has three real roots, it follows from [24,

pp. 153-154] that D ≥ 0. Assume, in addition, that the roots of a(k) are distinct,

and [24, pp. 153-154] implies that D > 0.

Conversely, assume D ≥ 0, a3a0 < 0, a3a2 < 0, and a2a1 − a3a0 < 0. Since D ≥ 0,

it follows from [24, pp. 153-154] that a(k) has three real roots. Since, in addition,

a3a0 < 0, it follows from (B.1) that a(k) has one positive root and two negative roots,

or a(k) has three positive roots. Assume for contradiction that a(k) has one positive

root and two negative roots. Without loss of generality, let σ1 > 0, σ2 < 0 and σ3 < 0.

Since a3a2 < 0, it follows from (B.3) that σ1 + σ2 + σ3 > 0. Since σ2 < 0, σ3 < 0

and σ1 + σ2 + σ3 > 0, it follows that σ1 + σ2 > 0 and σ1 + σ3 > 0. Therefore, (B.4)

implies that a2a1 − a3a0 > 0, which is a contradiction. Thus, a(k) has three positive

roots. Assume, in addition, that D > 0, and [24, pp. 153-154] implies that the roots

of a(k) are distinct.
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Lemma 5. Consider the polynomial a(k) = a3k
3+a2k

2+a1k+a0, where a3, a2, a1, a0 ∈
R, a3 	= 0 and a0 	= 0. Then a(k) has nonzero roots on the imaginary axis if and only

if a2a1 − a3a0 = 0 and a3a1 > 0.

Proof. First, we show that a2a1 − a3a0 = 0 and a3a1 > 0 are necessary for a(k)

to have nonzero roots on the imaginary axis. Assume a(k) has nonzero roots on the

imaginary axis. Since σ2 and σ3 are complex conjugate roots on the imaginary axis,

it follows that σ2 + σ3 = 0 and σ2σ3 = |σ2|2 > 0. Thus, (B.2) and (B.4) imply that

a3a1 = a23|σ2|2 > 0 and a2a1 − a3a0 = 0.

Conversely, assume a2a1−a3a0 = 0 and a3a1 > 0. Since a3 	= 0 and a2a1−a3a0 = 0,

it follows from (B.4) that σ1+σ2 = 0, σ1+σ3 = 0 or σ2+σ3 = 0. Now, we show that

σ1 + σ2 	= 0 and σ1 + σ3 	= 0. Assume for contradiction that σ1 + σ2 = 0. Since σ1 is

real, it follows from (B.2) that a3a1 = a23σ1σ2 = −a23σ
2
1 < 0, which is a contradiction.

Thus, σ1+σ2 	= 0. The same argument shows that σ1+σ3 	= 0. Therefore, σ2+σ3 = 0,

and (B.2) implies that a3a1 = −a23σ
2
2. Since a3a1 = −a23σ

2
2 > 0, it follows that σ2

2 < 0,

which implies that Im σ2 	= 0. Thus, σ3 is the complex conjugate of σ2. Since

σ2 + σ3 = 0 and Im σ2 = − Im σ3 	= 0, it follows that σ2 and σ3 are on the imaginary

axis.

C Classical Root Locus Asymptotes

Let z(s) and p(s) be monic polynomials, and define

m
�
= deg z(s), n

�
= deg p(s), d

�
= n−m. (C.1)

Furthermore, let z1, z2, . . . , zm be the roots of z(s) and p1, p2, . . . , pn be the roots of

p(s). We present the following classical root locus asymptote rule.

Lemma 6. Consider the polynomial μk(s)
�
= kaz(s) + p(s), where k > 0, a is a

positive integer and deg z(s) < deg p(s). As k → ∞, m roots of μk(s) converge to
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the roots of z(s), and the d remaining roots are approximated by λ1, λ2, . . . , λd, where

for i = 1, 2, . . . , d,

λi = ka/dejθi + α, (C.2)

where

θi
�
=

2πi− π

d
, (C.3)

α
�
=

∑n
j=1 pj −

∑m
j=1 zj

d
. (C.4)

Proof. For sufficiently large k > 0, it follows that

μk(s)

ka
= z(s) +

p(s)

ka
≈ z(s),

which implies that, as k → ∞, μk(s)/k
a ≈ z(s). Thus, as k → ∞, m roots of μk(s)

converge to the roots of z(s).

Next, we show that the d remaining roots of μk(s) are approximated by λ1, λ2, . . . , λd.

We write z(s) = sm + a1s
m−1 + · · · + am and p(s) = sn + b1s

n−1 + · · · + bn, where

a1, a2, . . . , am, b1, b2, . . . , bn ∈ R. Furthermore, note that a1 = −∑m
j=1 zj and b1 =

−∑n
j=1 pj.

Define R
�
= max j=1,2,...,m|zj|. For all s ∈ C such that |s| > R, the Laurent series

expansion of p(s)/z(s) is

p(s)

z(s)
= sd + c1s

d−1 + · · ·+ cd +
∞∑
j=1

fj
sj
, (C.5)

where c1, c2, . . . , cd, f1, f2, · · · ∈ R. Furthermore, note that c1 = b1−a1 = −dα. Thus,

for sufficiently large k > 0 and all s ∈ C such that |s| > k1/2d, it follows from (C.5)

that

ka +
p(s)

z(s)
≈ μ̄k(s), (C.6)
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where

μ̄k(s)
�
= sd − dαsd−1 + ka. (C.7)

Next, let λ̄1, λ̄2, . . . , λ̄d be the roots of μ̄k(s), which implies that for i = 1, 2, . . . , d,

−ka = λ̄d
i − dαλ̄d−1

i . (C.8)

Taking the dth root of both sides yields

(−ka)1/d = λ̄i(1− dα)/λ̄i)
1/d. (C.9)

Since for i = 1, 2, . . . , d, as k → ∞, |λ̄i| → ∞, it follows that as k → ∞, | − dα/λ̄i|
tends to zero. Thus, we apply the binomial approximation (1−dα/λ̄i)

1/d ≈ 1−α/λ̄i,

which implies that for i = 1, 2, . . . , d,

(−ka)1/d = ka/dejθi ≈ λ̄i − α. (C.10)

Therefore, for sufficiently large k > 0 and i = 1, 2, . . . , d, it follows from (C.10) that

λ̄i ≈ ka/dejθi + α = λi. (C.11)

Next, it follows from (C.6) that for sufficiently large k > 0 and i = 1, 2, . . . , d,

ka +
p(λ̄i)

z(λ̄i)
≈ 0,

or equivalently μk(λ̄i) = kaz(λ̄i) + p(λ̄i) ≈ 0. Thus, for sufficiently large k > 0, d

roots of μk(s) are approximated by λ̄1, λ̄2, . . . , λ̄d. Moreover, it follows from (C.11)

that for sufficiently large k > 0, λ̄i ≈ λi, which confirms that d roots of μk(s) are

approximated by λ1, λ2, . . . , λd.
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