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In the past decades, a great variety of model fitting and model free (isoconversional) methods 
have been developed for extracting kinetic parameters for solid state reactions from thermally 
stimulated experimental data (TGA, DSC, DTA etc.). However, these methods have met with 
significant controversies about their methodologies. Firstly, model-fitting methods have been 
strongly criticized because almost any reaction mechanism can be used to fit the experimental 
data satisfactorily with drastic variations of the kinetic parameters, and no good criterion exists to 
tell which mechanism is the best choice. Secondly, previous model free methods originated from 
the isoconversional principle, which is often called the basic assumption; previous studies 
comparing the accuracy of model free methods have not paid attention to the influence of the 
principle on model free methods and, therefore, their conclusions are problematic.  
 
This work gives, firstly, a critical study of previous methods for evaluating kinetic parameters of 
solid state reactions and a critical analysis of the isoconversional principle of model free methods. 
Then an analysis is given of the invariant kinetic parameters method and recommends an 
incremental version of it. Based on the incremental method and model free method, a 
comprehensive method is proposed that predicts the degree of the dependences of activation 
energy on heating programs, and obtains reliable kinetic parameters. In addition, this work also 
compares the accuracy of previous methods and gives recommendations to apply them to kinetic 
studies.   
 

KEYWORDS: Thermal Analysis Kinetics, Model Fitting method, Model Free Method, Comprehensive 
Method, Activation Energy 
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CHAPTER 1: INTRODUCTION 

1.1 Kinetics of Thermally Stimulated Solid Reactions 

Thermal activation is, probably, the most common means to stimulate solid state reactions, 

although the applications of photo activation, magnetic field, pressure, and electrochemical 

potentials are also possible. By activating by external heating or cooling stimuli, the structure, 

phase state, and chemical properties of solids are changeable; thermal analysis techniques 

measure the physical and chemical changes of solids as a function of temperature in controlled 

thermal conditions. Thermal analysis techniques have been employed since the early 20th century 

and are increasingly important as an analytical tool in the fields of chemistry, physics, materials, 

geology, metallurgy, medicine, and combustion. 

The development of thermal analytical instruments and thermal analysis methods have provided a 

useful tool to obtain the kinetic parameters of solid state reactions with a small amount of solid 

sample. The most common and widely used thermal analysis techniques are Thermogravimetric 

Analysis (TGA) and Differential Scanning Calorimetry (DSC). TGA is a method commonly used 

to measure selected characteristics of materials’ mass changes due to decomposition, oxidation, 

or loss of volatiles (e.g., moisture and combustibles) and to record information digitally as a 

function of increasing temperature and/or of time (Fig. 1.1). Most typical TGA applications are 

studies of reaction kinetics and degradation mechanisms, materials characterization by analysis of 

characteristic decomposition patterns, and determination of organic or inorganic contents in 

samples. DSC is a thermoanalytical technique that measures the difference in the amount of heat 

needed to increase the temperature of a sample and a reference as a function of temperature. The 

fundamental mechanism underlying this technique is that, more or less, the reactions will be 

exothermic or endothermic, and heat will need to flow to or from the sample and reference to 

keep them at the same temperature when the sample experiences a physical transformation. For 

instance, a phase transition from solid to liquid absorbs heat; when a solid sample melts, it will 
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take more heat to increase its temperature at the same rate as the reference, and DSC is able to 

measure the amount of heat absorbed or released during the reaction (Fig. 1.1). DSC is also 

applied to observe more subtle physical changes (e.g., glass transitions and polymer curing). A 

similar technique is differential thermal analysis (DTA) in which heat flows to the reference and 

the sample and is kept the same rather than the temperature. Hence, DSC and DTA provide 

similar information. Solid state kinetic data obtained by TGA and DSC are of an increasing 

practical interest because a growing number of technologically important processes like thermal 

energetic materials and crystalline solids, thermal oxidation and pyrolysis of fuels and polymers, 

crystallization of glasses and polymers, and the solidification of metallic alloys are fruitfully 

studied using these techniques [1].  

 

Figure 1.1                 Schematic of TG and DSC plots 

Thermal Analysis Kinetics (TAK) seeks to quantitatively analyze the relationships between 

temperature and physical properties (e.g., the mass change as a function of time) measured by the 

thermal analysis techniques. The development of TAK is based on chemical thermodynamics, 
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chemical kinetics and thermal analysis techniques. By analyzing data obtained by thermal 

analysis techniques, TAK is able to provide  kinetic parameters, estimate the thermal stability and 

life span of materials, and the best operation conditions of polymers, quantitatively describe the 

reaction rate and reaction mechanisms, and provide supporting information for estimating 

properties of energetic materials and combustibles [2].  

Interests in TAK were awakened in the early 20th century, and tremendous developments 

occurred during the recent decades. TAK has been developed for no less than one hundred 

analytical methods and applied in various fields. It is capable of quantitatively characterizing 

reactions and phase change processes, determining the most probable reaction mechanisms, and 

extracting activation energies and pre-exponential factors of solid state reactions. 

1.2 Kinetic Triplets and Equations 

Non-isothermal, heterogeneous thermal analysis kinetics originated from the theory of isothermal 

and homogenous gas or liquid phase kinetics, the basis of which had been established by the end 

of 19th century. Its description equation is 

( ) ( )cfTk
dt
dc

=                                                                 (1.1) 

where c is the concentration, t is the time, T is temperature, k(T) is the rate constant that 

dependent on temperature, and ( )cf  is the reaction mechanism. In isothermal and homogenous 

reactions it is often represented by ( ) ( )nccf −= 1 . 

Early solid state kinetic studies were carried out under isothermal conditions [3-5], and used the 

following kinetic equation 

( ) ( )αα fTk
dt
d

=                                                               (1.2) 
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whereα  is the extent of reaction expressed by 

fmm
mm

−
−

=
0

0α                                                                 (1.3) 

Expression 1.3 is analogous to molar concentrations of gas reactants and/or products, of which m 

is the mass of the reactant, the subscripts 0 and f designate the initial and final states, respectively, 

and ( )αf  is the reaction model related to the solid reaction mechanism. Unlike in gas, molecular 

motion is highly restricted in solids and reactions are dependent on local structure and activity; 

some of the models are derived strictly according to their mechanistic basis such as nucleation, 

geometrical contraction, diffusion, and reaction order [6, 7]. -Most common reaction models are 

listed in Table 1.1. 

The temperature dependence of the rate of solid state reactions is typically parameterized through 

the Arrhenius equation [8] 

( ) ( )RTEATk /exp −=                                                       (1.4) 

where A is the pre-exponential factor, E is the activation energy, and R is the universal gas 

constant. 

The use of the Arrhenius equation to parameterize temperature dependence has generated 

problems of interpreting experimentally determined values of E and A, and have been criticized 

from a physical standpoint [9, 10]. Reference [10] has stressed that the Arrhenius equation is only 

meaningfully applicable to reactions that take place under homogeneous conditions. However, as 

pointed out  in Ref. [11], thermal decomposition has been demonstrated successfully [12, 13] in 

the framework of an activated theory from an Arrhenius-like equation for the temperature 

dependence of the process. Moreover, the Arrhenius equation is useful for describing ( )Tk of 

many thermally activated, heterogeneous solid state reactions such as diffusion [14], nucleation 
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and nuclei growth [15], presumably because the system has to overcome an energy barrier and the 

energy distribution along the relevant coordinate is controlled by Boltzmann statistics. In 

addition, Galwey and Brown [16] have demonstrated that the statistics of Fermi-Dirac and Bose-

Einstein give rise to Arrhenius-like equations, even in cases where the density of available state is 

sparse. Therefore, Ref. [11] concluded that the use of the Arrhenius equation is justifiable in terms 

of a rational parameterization, and its use and physical interpretation are on a sound theoretical 

basis. 

Table 1.1  Expressions of functions of the most common reaction mechanisms 

Number Model Differential form 𝑓(𝛼) Integral form 𝐺(𝛼) 
 Nucleation models   

1   Power law 𝑃1 1 𝛼 
2   Power law 𝑃3/2 (2/3)𝛼−1/2 𝛼2/3 
3*   Power law 𝑃2 2𝛼1/2 𝛼1/2 
4*   Power law 𝑃3 3𝛼2/3 𝛼1/3 
5*   Power law 𝑃4 4𝛼3/4 𝛼1/4 

 Sigmoidal rate equations   
6 Avarami-Erofe’ev𝐴3/2 (3/2)(1 − 𝛼)[−𝑙𝑛(1 − 𝛼)]1/3 [−𝑙𝑛(1 − 𝛼)]2/3 
7* Avarami-Erofe’ev𝐴2 2(1 − 𝛼)[−𝑙𝑛(1 − 𝛼)]1/2 [−𝑙𝑛(1 − 𝛼)]1/2 
8* Avarami-Erofe’ev𝐴3 3(1 − 𝛼)[−𝑙𝑛(1 − 𝛼)]2/3 [−𝑙𝑛(1 − 𝛼)]1/3 
9* Avarami-Erofe’ev𝐴4 4(1 − 𝛼)[−𝑙𝑛(1 − 𝛼)]3/4 [−𝑙𝑛(1 − 𝛼)]1/4 
10 Prout-Tomkins 𝐴𝑢 𝛼(1 − 𝛼) 𝑙𝑛⌊𝛼/(1 − 𝛼)⌋ 

 Geometrical contraction 
models   

11*   Contracting area R2 2(1 − 𝛼)1/2 1 − (1 − 𝛼)1/2 
12*   Contracting volume R3 3(1 − 𝛼)2/3 1 − (1 − 𝛼)1/3 

 Diffusion models   
13*   1D Diffusion 𝐷1 1/2𝛼 𝛼2 
14*   2D Diffusion 𝐷2 [−𝑙𝑛(1 − 𝛼)]−1 (1 − 𝛼)𝑙𝑛(1 − 𝛼) + 𝛼 
15*   3D Diffusion-Jander𝐷3 (3/2)(1 − 𝛼)2/3 �1 − (1 − 𝛼)1/3��  �1 − (1 − 𝛼)1/3�2 

16* Ginstling-Brounshtein𝐷4 (3/2)/�(1 − 𝛼)−1/3 − 1� 1 − (2𝛼/3)
− (1 − 𝛼)2/3 

17 Zhuravlev, lesokin, 
Tempelman𝐷5 

(3/2)(1 − 𝛼)4/3/�(1 − 𝛼)−1/3

− 1� �(1 − 𝛼)−1/3 − 1�2 

18   Anti-Jander𝐷6 (3/2)(1 + 𝛼)2/3/�(1 + 𝛼)1/3 − 1� �(1 + 𝛼)1/3 − 1�2 
 Reaction-order models   

19   One-third order 𝐹1/3 (3/2)(1 − 𝛼)1/3 1 − (1 − 𝛼)2/3 
20   Three-quarters order 𝐹3/4 4(1 − 𝛼)4/3 1 − (1 − 𝛼)1/4 
21   One and a half order 𝐹3/2 2(1 − 𝛼)4/2 (1 − 𝛼)−1/2 − 1 
22*   First-order 𝐹1 1 − 𝛼 −𝑙𝑛(1 − 𝛼) 
23*   Second-order 𝐹2 (1 − 𝛼)2 (1 − 𝛼)−1 − 1 
24*   Third-order 𝐹3 (1 − 𝛼)3 [(1 − 𝛼)−2 − 1]/2 
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As pointed out in Ref. [11], Vallet studied the first kinetic evaluations of non-isothermal data that 

were carried out at a constant heating rate, dtdT /=β . To extract values of the kinetic 

parameters, Vallet suggested replacing the temporal differential in Eq. (1.2) by  

β/dTdt =                                                                   (1.5) 

Note the transformation of Eq. (1.5) implicitly contains an assumption that the change in 

experimental conditions from isothermal to non-isothermal does not affect reaction kinetics; this 

assumption may have serious implications for multi-step reaction kinetics [11]. 

Based on the aforementioned theories, the equation of heterogeneous solid state reaction rate 

under isothermal condition can be described as 

( )αα f
RT
EA

dt
d







−= exp                                                     (1.6) 

which under non-isothermal conditions with a constant heating rate leads to  

( )α
β

α f
RT
EA

dT
d







−= exp                                                    (1.7) 

The parameters of E, A, and ( )αf  are often called the kinetic triplet, which are to be determined 

during the kinetic analyses of solid state reactions.  

Currently, the core of TAK is to study the kinetics of non-isothermal solid state reactions 

(including physical effects). The reason for using non-isothermal conditions is because of the 

difficulty to attain strict isothermal conditions, especially during the initial stage of a reaction 

process; using isothermal conditions is also more time consuming. Moreover, theoretically, a 

thermal experimental curve obtained under non-isothermal conditions could carry information 

equivalent to that in multiple data curves obtained from isothermal conditions.  
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Almost all currently existing methods start from Eq. (1.6) and Eq. (1.7), but quite different results 

for the kinetic values are often given even by different researchers for a simple reaction. A typical 

example is the activation energy for dehydrating calcium oxalate monohydrate (C2H2CaO5), a 

representative example of a single-step reaction:  literature values for activation energy range 

from less than 50 kJ/mol to more than 200 kJ/mol [17]. This wide variation has been shown to be 

influenced by experimental conditions [18]. However, none of the currently available thermal 

analysis techniques is capable of providing experimental data without important influences from 

the experimental conditions, even with strict control of the heating program, sample size, and 

initial mass. Especially, disparate heating programs that are required for some methods may affect 

solid-state kinetics by influencing physical processes of the reaction, like diffusion, adsorption, 

and desorption of gaseous products or reactants from the solid surface. Therefore, effects of 

experimental conditions, especially of the heating program, on the apparent model function 

should be examined extensively. Recall that current solid-state kinetic theory came from classical 

kinetic concepts of homogeneous reactions, and the usage and interpretation of the Arrhenius 

equation in solid state kinetics were supported by both empirical tests and theoretical 

examinations [19-21]. In homogeneous reactions, the thermodynamic meaning of activation 

energy is the heat absorbed in the process of transforming inactive molecules into active ones.  

In addition, more than one hundred methods have been developed with a great difference in both 

methodology and applicability, and the accuracy and reliability of them needs to be carefully 

examined. More importantly, a comprehensive method needs to be developed that surmounts the 

influences of experimental procedures and enables simplification of them, while offering more 

accurate and repeatable kinetic parameters. 

1.3 Outline of Dissertation 

This study contains six (6) chapters, the structure of which is organized as follows. 
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Chapter 1 introduces the study of solid state thermal analysis kinetics, the development of a 

general kinetic equation, and the task of thermal analysis kinetics. 

Chapter 2 presents, methodically, a review of previous methods for evaluating kinetic parameters 

of solid state reactions, including the model fitting method, invariant kinetic parameter method, 

and model free methods. 

Chapter 3 uses two specific examples to give a detailed analysis of previous methods, which is 

useful for better understanding about how previous studies compare the accuracy of model free 

methods, and their achievements and problems. 

Chapter 4 is the main focus of this study. Firstly, it shows theoretically that the activation energy 

for complex reactions is both functions of reaction degree and heating programs. Model free 

methods that try to extract dependences of activation energy on conversion degree without 

considering the dependences of heating programs are problematic. Then, an analysis of the 

invariant kinetic parameters method is presented and discussed, and an incremental version of it 

is described. Based on the incremental, invariant kinetic parameters method and model free 

method, a comprehensive method is proposed that predicts the degree of the dependencies of 

activation energy on heating programs, selects reliable values of activation energy, and extracts 

values of the variable pre-exponential factor.  

Chapter 5 gives an additional analysis of the accuracy of previous model free methods by 

considering the influence of the isoconversional principle. 

Finally, Chapter 6 makes a conclusion of this study. 
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CHAPTER 2: PREVIOUS METHODS AND COMPARISONS 

In the past decades, a variety of methods have been developed for extracting single pair of or 

variable kinetic parameters for solid state reactions from thermal stimulated experimental data 

(TGA, DSC, DTA etc.) that could be unified and visualized as the conversion curves of α  and/or 

/d dTα  as a function of temperature or time. These methods have been categorized generally 

into model fitting methods and model free methods.  

2.1 General Equation and Temperature Integral 

Nearly all the thermal analysis methods start from the general differential kinetic Eqs. (1.6) and 

(1.7) or the integral forms of them, 

( ) ( ) ( )0 0

1 exp
t Eg d A dt

f RT t
α

α α
α

 
= = −  

 
∫ ∫                                     (2.1) 

For a linear heating program, dtdT /=β , the above equation leads to 

( ) ( )20
exp

xT

x

A E AE e AEg dT dx p x
RT R x R

α
β β β

−∞ = − = = 
 ∫ ∫                       (2.2) 

where “x” denotes E/RT, and p(x) is the temperature integral. Note that the derivation of the 

above equation involves an assumption that E must be a constant with respect toα .  

For a specific value x, the temperature integral, p(x), has no analytical solution but has been 

approximated by hundreds of possibilities [22-27]. Doyle [22-24] suggested a linear 

approximation of the logarithm of p(x),  

( )log = 0.4567 2.315p x x− −                                                (2.3) 

which is equivalent to 
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( ) ( )= exp 1.0518 5.330p x x− −                                               (2.4) 

The approximation given by Coats and Redfern [25] is, 

( ) ( )
2

exp 2= 1
x

p x
x x
−  − 

 
                                                      (2.5) 

A more popular, fourth order approximation is given by Senum and Yang [26], 

( ) ( ) 4 3 2

2 4 3 2

exp 18 86 96=
20 120 240 120

x x x x xp x
x x x x x
− + + +

+ + + +
                                (2.6) 

Analyses of accuracies of the approximations have been discussed [28, 29], with the conclusion 

that the fourth order Senum and Yang approximation is the most accurate. Other approximations 

result in greater errors although they may be more convenient to apply than the Senum and Yang 

approximation. It should be kept in mind that these analyses are based on the assumption that the 

value of /x E RT=  is a constant.  

2.2 Model Fitting Methods 

Model-fitting methods are the major methods used during analyses of thermal analysis kinetics in 

which TG and DSC experimentation determine mass or heat change as a function of temperature 

or time. A model-fitting method is a one that fits different reaction models ( )f α  or ( )g α into 

the general kinetic equation, Eq. (1.7) or Eq. (2.2), and values of the activation energy and pre-

exponential factor are calculated by regression analyses [1]. Then, different groups of kinetic 

triplet values are used to fit one of the above equations, and the curves generated by the equation 

with the best to the actual experimental curves would be considered the proper one to be selected. 

For brevity, all equations in this study are derived with a linear heating rate because it is the most 

commonly used approach, although an arbitrary heating program can be derived by replacing

( )1/ /d dTβ α with /d dtα . In the following, the Gorbatchev  [30] and Coats-Redfern methods 
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[25] are presented and discussed to give a better understanding of the detailed procedure 

associated with model-fitting methods. 

From the temperature integral ( )p x , one gets: 

( ) 2

xu ep x dx
x

−

∞

−
= ∫  

= 2
2

x xx xe e dx
x

−
− −

∞ ∞
− ∫  

= 3
2 2
x x xe x de

x

−
− −

∞
− ∫  

= 4
2 3

2 ( 6)
x xx xe e e x dx

x x

−
− − −

∞
− + −∫  

= 4
2 3

2 6
x xx xe e x de

x x

−
− − −

∞
− + ∫  

= 2 3 4 4

2 6 6x xx x x xe e e e d
x x x x

−
− − −

∞ ∞
− + − ∫  

=…= 

2 2 3

2! 3! 41 ...
xe

x x x x

−  − + − + 
 

！
                                                    (2.7) 

Then Eq. (2.2) leads to 

 2 2 30

2! 3! 4exp 1 ...
xT E E edT

RT R x x x x

−   − = − + − +   
   ∫

！

 
                                (2.8) 

Using the first two terms leads to the following approximation of the temperature integral  
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2

0

2exp 1 exp
T E ET RT EdT

RT R E RT
     − = − −     
     ∫                                 (2.9) 

Equation 2.9 is the Coats-Redfern approximation. 

Multiplying the term of ( )1 2 /RT E+  to both sides gives, 

 

22

0

21
exp exp21

T

ET RT
R EE EdT RTRT RT

E

  −        − = −   
   +

∫                             (2.10) 

In most cases T is in a moderate range and E is bigger than 60kJ/mol so that the term

2 / 1RT E <<  and equation 2.10 simplifies to 

 

2

2

0

exp
exp exp2 21

T

ET E
E ET ER RTdT RTRT E RT RT

E

 −     − = = −   +   +
∫                 (2.11) 

This equation is the Gorbatchev approximation. 

Combining Eq. (2.2) and Eq. (2.11) leads to 

 
( )

( )2ln ln
2

g AR E
T E RT RT
α

β
  

= −   +   
                                        (2.12) 

If we approximate the first term on the right hand side as a constant, for a proper ( )g α  a plot of 

( ) 2ln /g Tα    and 1 / T will be a straight line or linear function from which can be obtained the 

values of E and A from the slope and (0,0) intersect, respectively. If the first term cannot be 

approximated as a constant, Eq. (2.12) can be transformed to 



 

13 
 

 
( )( )

2

2
ln ln

g E RT AR E
T RT

α
β

+   
= −   

  
                                        (2.13) 

Then use of iteration and the least square method enables the calculation of E、A and a logically 

reasonable ( )g α . This approach is called the Gorbatchev method [30]. 

If Eq. (2.2) and Eq. (2.9) are combined, and set ( ) ( )1 nf α α= −  while using a first order 

approximation of ( )P x , the following equation is obtained 

 
( )

2

0

21 exp
1 n

d A RT RT E
E E RT

α α
βα

   = − −   
   −∫                                  (2.14) 

Taking the logarithm of both sides (if 1n ≠ ) gives, 

 
( )
( )

1

2

1 1 2ln ln 1
1

n
AR RT E

T n E E RT
α

β

− − −   = − −    −     
                                (2.15) 

If 1n = , then 

 
( )

2

ln 1 2ln ln 1AR RT E
T E E RT

α
β

− −    = − −       
                                 (2.16) 

The above two equations are the Coats-Redfern method. Since in most cases / 1E RT >> , 

(1 2 / ) 1RT E− ≈  and the first term on the right hand side of the above two equations is 

approximately a constant.  Plotting ( )( ) ( )( )1 2ln 1 1 / 1n T nα − − − −
 

 with respect to 1 / T when 

1n ≠  or plotting ( )( ) 2ln ln 1 / Tα − −   with respect to 1 / T when 1n = , a straight line is 

obtained if the value of n is chosen properly and the value of the activation energy is obtained 
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from the slope. In cases where the above two equation fails to satisfy (1 2 / ) 1RT E− ≈ , the 

following evaluation functions may be applied: 

[ ]2

1
.3.15 .3.15

L

i
LHS termof Eq RHS terms of Eq

=

Ω = −∑  

[ ]2

1
.3.16 .3.16

L

i
LHS termof Eq RHS terms of Eq

=

Ω = −∑  

where LHS and RHS designate left hand side and right hand side, respectively. 

The use of the above two evaluation functions to calculate a minimum value then gives the values 

of E, A and n. If 1n ≠ , another procedure is to transform Eq. (2.11) and Eq. (2.12) to, 

( )

( )

1

2

1 1
ln ln

21 1

n
AR E

RT E RTT n
E

α
β

−
 
 − −    = −     − −    

                                   (2.17) 

If 1n = , the following equation is obtained, 

( )
2

ln 1
ln ln

21

AR E
RT E RTT
E

α
β

 
 −    = −     −    

                                        (2.18) 

The values of E, A and n can be obtained by applying an iteration or least squares method, the 

approach of which is called the Coats-Redfern method [25, 31]. If the value of n is close to 0, Eq. 

(2.18) leads to 

 2

2ln ln 1AR RT E
T E E RT
α

β
    = − −        

                                        (2.19) 
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Then, a plot of ( )2ln / Tα  against 1 / T  gives the value of E from the slope and the value of A 

from the (0, 0) intercept.  

Combining Eq. (2.2) and the first order approximation of the temperature integral, 

( ) 2/xp x e x−= , and doing some transformations give another form of Coats-Redfern integral, 

 
( )

2ln ln
g AR E
T E RT
α

β
   

= −   
  

                                               (2.20) 

A plot of ( )( )2ln /g Tα  as a function of 1 / T  gives the values of E and A from the slope and 

intercept, respectively. [2] 

Though a great number of model fitting methods have been developed by researchers, the 

principle of these methods is the same as in the discussion heretofore:  fit different reaction 

models into the kinetic equation and calculate the activation energy and pre-exponential factor, 

and then select the model which gives the best fit. All of these model fitting methods give a single 

pair of values for the activation energy and pre-exponential factor. In general, model-fitting 

methods have been strongly criticized [2, 32-38] because almost any ( )f α  can be used to fit the 

experimental data satisfactorily even though drastic variations in the kinetic parameters occur;  no 

good criterion exists to distinguish which result  best reflects or describes actual physiochemical 

processes occurring during the reactions.. 

2.3 Invariant Kinetic Parameters Method 

Model-fitting methods involve the use of different reaction models to fit one single conversion 

curve or multiple curves, and then attempt to determine the kinetic parameters E  and A  by 

regression analyses. When a model-fitting method is applied to a single-heating rate test, widely 

varying values of the activation parameters are obtained when using different model functions 



 

16 
 

that can be correlated to the so-called “compensation effect” relation [39-45]: 

lnA a bE= +                                                           (2.21) 

where a  and b are constants. It has been theoretically and experimentally postulated that  

1/ maxb RT=  and in some literature, 2/ maxa E RTβ= , where the index max  means the 

maximum reaction rate [45-50]. 

The invariant kinetic parameter (IKP) method, suggested by Lesnikovich and Levchik [40, 46, 

51], employs the compensation effect. Since the linear regression lines, represented by Eq. (2.21), 

for several sets of different heating rates, jβ , tend to intersect at a point or a narrow common 

area, the kinetic parameters, , inv invlnA E , can be obtained by, 

inv j j invlnA a b E= +                                                       (2.22) 

where the subscript j refers to the parameters of Eq. (2.21) obtained at different heating rates jβ . 

2.4 Model Free Method 

Methodically, model free methods can be classified into three categories:  differential 

isoconversional, integral isoconversional and modulated thermogravimetry methods [52].  

2.4.1 Isoconversional Principle 

All isoconversional methods originate from the so called “isoconversional principle” that assumes 

reaction rates at a given conversion degree are only a function of temperature [53]; this principle 

forms the cornerstone of isoconversional analyses [1, 54, 55]. Taking the logarithmic derivative 

of the reaction rate of the general kinetic equation, Eq. (1.7), at a given α , one gets 
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( ) ( ) ( )
ααα

αα






∂
∂

+





∂
∂

=





∂
∂

−−− 111
lnln/ln

T
f

T
Tk

T
dtd

                              (2.23) 

Note that at a given α , ( )αf  remains constant and the second term on the right hand side of the 

above equation is zero. Thus, 

( )
R

E
T

dtd α

α

α
−=





∂
∂

−1

/ln
                                                 (2.24) 

In order to obtain the activation energy, αE ,  three-to-five  experimental tests  at different heating 

protocols, such as at different heating rates, have to be performed. Of particular importance is that 

the procedure for extracting activation energy values does not require any assumption about or 

determination of the reaction model. For this reason, isoconversional methods are often called 

model-free methods. However, it has to keep in mind that although they do not require the 

reaction model to be identified, they do assume that the conversion dependence of the rate follow 

the same reaction model of const=α . 

A large number of isoconversional methods have been developed. In general, the methodology of 

model free methods can be classified into three categories:  differential isoconversional [56-58], 

integral isoconversional and modulated thermogravimetry methods [52]; integral isoconversional 

methods include regular integral methods [59-66] and advanced (or “incremental” in some 

studies) integral methods [67-71]. 

2.4.2 Differential Isoconversional Methods 

The differential isoconversional methods start directly from Eq. (1.7). A classic differential 

isoconversional method is the Friedman (FR) method [56], which is derived by taking logarithms 

of both sides of the general kinetic equation under different heating protocols, iβ , 
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( )ln ln lni
i

d E A f
dT RT
αβ α  = − + + 

 
                                        (2.25) 

The index i is used to denote various temperature programs and Ti  is the temperature at which 

the given conversion degree, α , is reached under the corresponding heating program. Using the 

isoconversional principle, the term ( )ln lnA f α+  in Eq. (2.25) remains unchanged for a given

α ; then, a plot of ( )ln /i d dTβ α    against 1/ iRT  determines the value of Eα . However, the 

FR method and other differential isoconversional methods are very sensitive to experimental 

noise, resulting in large deviations of Eα , which limits their application in assessing solid state 

reactions [54]. 

2.4.3 Regular Integral Methods 

Regular integral methods start from the integral form of the general kinetic equation, Eq. (2.2). In 

past decades, a variety of regular integral methods have been developed. This section presents in 

detail the methodology of some of the most popular methods. 

2.4.3.1 Ozawa-Flynn-Wall Method 

The Ozawa-Flynn-Wall (OFW) method [72, 73] starts from Eq. (2.2) and employs the Doyle 

approximation [22-24] of ( )p x  to yield, 

( ) 331.5ln052.1ln −+−=
α

β
Rg

AE
RT
E

i
i                                          (2.26) 

The value of  αE  is then evaluated from the slope of the linear plot of iβln  against iRT/1 . 

Note that the OFW method involves two systematic errors sources. First, it starts from Eq. (2.2), 

which involves the assumption that E must remain constant with respect to α , while for complex 
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reactions E varies with α . Second, even if E is a constant, the OFW method still contains the 

error sources associated with the Doyle approximation [74] of p(x). 

2.4.3.2 Vyazovkin Method 

The method [67] proposed by Vyazovkin also starts from the integral form of the general kinetic 

equation, 

( ) [ ]
0 0

exp ,
T

i
i i i

A E Ad dt A J E T
f RT

αα
α α α

α α
α
α β β

 −
= = 

 
∫ ∫                                (2.27) 

It employs a given conversion and a set of experiments performed under n arbitrary heating 

programs: 

[ ] [ ] [ ]1 2
1 2

, , , n
n

A A AJ E T J E T J E Tα α α
α α αβ β β

= = =                               (2.28) 

Numerically, after canceling Aα  the value of Eα can be determined by minimizing the following 

function: 

( )
( )1

,
,

n n
i

i j i j

J E T t
J E T t

α α

α α= ≠

  
  

∑∑                                                      (2.29) 

Both the model fitting method and IKP method, as well as some other methods such as the 

Kissinger method [61], provide only a single pair of E and A while the value of E obtained by an 

isoconversional method varies with the progress of conversion degree, α . Vyazovkin 

recommended the concept of “variable activation energy” in a review article [75] entitled ‘kinetic 

concepts of thermally stimulated reactions in solids: a view from a historical perspective’ but it 

has aroused strong controversies [76-78]. For example, Galwey [78] gave critical scrutiny of the 

consequences of using the concept to the theory of the subject. It stated that in some systems the 
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initial solid state reactant would have melted before the reaction of interest or the kinetic behavior 

pattern would have been adequately explained by contributions from complex or secondary 

controls. Therefore, it argued that the supporting information provided in the article [75] was 

insufficient, unsatisfactory and unnecessary for introducing the concept of variable activation 

energy. It also claimed that, although considerable theoretical problems exist in current 

understanding of reactions proceeding in solid phases, the long term development of the subject is 

best approached by individually identifying and quantitatively determining the contributing 

factors controlling or influencing the rate of any reaction of interest. It concluded that the 

introduction of variable activation energy was a retrograde step, unlikely to progress science 

through the development of theory, and does not recommend to use. In a short article [79], 

Vyazovkin replied [80] that for the condensed phase the free energy of activation did not have to 

be the free energy or enthalpy of activation but, rather, a function of  temperature dependent 

properties of the reaction medium;  hence,  it claimed that the term of  variable activation energy, 

which is often called ‘actual, effective, empirical and not merely theoretical’, was a reasonable 

compromise between the complexity of solid reactions and oversimplified methods used to 

describe their kinetics . Vyazovkin expressed the viewpoint that, by accepting variable activation 

energy as a practical compromise, people would forego the methods producing single values of 

the activation energy and begin using multiple run methods (such as isoconversional methods) 

that allow for detecting reaction complexity [81]. And in recent years, the terms ‘variable 

activation energy’ and ‘model free methods’ have become popular and widely used. 

2.4.3.3 Li-Tang Method 

Li and Tang [64-66] proposed an isoconversional method for the analysis of thermoanalytical 

data. It firstly transforms the general equation into the following equation,  

( )∫ ∫∫∫ +−=−=





=






 α ααα

αααααβαα
0 000

lnln G
T

d
R
Ed

TR
Ed

dT
dd

dt
d

                    (2.30) 
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where ( ) ( )[ ]∫+=
α

αααα
0

lnln dfAG . Because of the isoconversional principle applied in 

model free methods, ( )αG  would be a constant for several different heating programs for a given

α ; a plot of ( )∫
α

αα
0

/ln ddtd  against ( )∫
α

α
0

/1 dT would determine the values of activation 

energy from the slope of the linear plot. Like the FR method, the Li-Tang (LT) method removes 

systematic errors associated with approximating the exponential integral. However, the derivation 

of Eq. (2.26) also involves the assumption that E must be a constant with a change in α . Note 

that this method is more tolerant of noise than the FR method because the FR method uses the 

differential data within plots of ( )[ ]dTdi /ln αβ  versus iRT/1 ; in the LT method, the logarithms 

followed by the integration decreases the influence of noise.  

Budrugeac et al. [82] pointed out that it is difficult to determine initiation temperatures of a 

reaction when using the LT method and recommended a similar equation with a non-zero lower 

limit of α  for integration, 

( )∫ ∫ +−=





α

α

α

α
ααααβ

1 1

ln G
T

d
R
Ed

dT
d

                                            (2.31) 

where the lower limit of integral could be 01 >α , and ( ) ( ) ( )[ ]∫+−=
α

α
ααααα

1

lnln1 dfAG . 

However, it has been shown that the activation energy obtained by this method depends on the 

lower limit of integration, 1α , and the activation energy is missed when 1α α<  [82]. Thus, 

Budrugeac et al. considered the LT method unsuitable for determining the dependence of E  as a 

function of conversion degree [82]. 

2.4.3.4 Kissinger-Akahira-Sunose Method 

The Kissinger-Akahira-Sunose (KAS) method [61, 83] employs the Coats-Redfern [25] 
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approximations of p(x)  to yield, 

( ) ii RT
E

Eg
AR

T
−=

α
β lnln 2                                                     (2.32) 

The value of αE can be evaluated by plotting the left side of the equation versus iRT/1 .   

2.4.4 Advanced Integral Methods 

In the derivation of Eq. (2.2) for regular methods, it is assumed that E must be a constant; this 

assumption is especially problematic if multiple reaction and/or complex reaction mechanisms 

are involved. To avoid this disadvantage, advanced integral methods have been developed that 

start from a modified version of the integral form of the general kinetic equation, 

( ) ( ) ∫∫
∆−







−==∆−

∆−

α

ααβ
α

α
ααα

α

αα

T

T
dT

RT
EAd

f
g exp1,                         (2.33) 

where α∆  is a small reaction segment. Since the integration is applied to a small segment of 

conversion degree, it is reasonable to take E as a constant. 

2.4.4.1 Advanced Vyazovkin Method 

The modified Vyazovkin method [67] assumes E to be constant only for a small segment α∆  

and uses integration over small time segments for Eq. (2.27), 

( ) ( ) ( )1exp ,
a

t

t
i

Ed A dt A J E T t
f RT t

α

α

α
α

α α α αα α

α
α −∆−∆

 −
= =      

 
∫ ∫                         (2.34) 

The procedure utilizes a given conversion and a set of experiments performed under n arbitrary 

heating programs: 

( ) ( ) ( )1 2, , , nA J E T t A J E T t A J E T tα α α α α α α α α= = =                              (2.35) 
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Numerically, after canceling Aα , the value of Eα can be determined by minimizing the following 

function: 

( )
( )1

,
,

n n
i

i j i j

J E T t
J E T t

α α

α α= ≠

  
  

∑∑                                                   (3.36) 

2.4.4.2 Advanced Li-Tang Method 

During the deviation of the LT method or the procedure improved by Budrugeac [82], E and A 

should be independent of the conversion degree. Otherwise the integration from 0 or 1α  to the 

current α   will lead to systematic errors. However, systematic errors can be minimized if the 

equation is integrated over a very small interval of conversion degree, α∆ , since the activation 

energy can be regarded as constant within this very small segment. Thus, Eq. (2.30) can be 

converted into, 

( )ln d E dd G
dt R T

α α

α α α α

α αα α
−∆ −∆

  = − + 
 ∫ ∫                                   (2.37) 

where: 

( ) ( )ln lnG A f d
α

α α
α α α α

−∆
= ∆ +   ∫                                     (2.38) 

in which, α  varies from 3 / 2α∆  to 1 / 2α−∆  with a step ( )1/ 1mα∆ = + , and where m is the 

number of the equidistant values of α . Plotting the left side of Eq. (2.38) versus the integration 

of the reciprocal of the temperature should give a linear plot with Eα obtained from the slope of 

the regression line. 
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2.4.5 Modulated Thermogravimetry Methods 

Modulated thermogravimetry methods [84-91] use nonlinear heating rate programs during 

thermal analyses. Since they are rarely used, this section presents only a brief discussion about 

their methodology. For example, the temperature-jump method [91] modulates the temperature 

by making it quickly increase from one value to another at a certain moment in time; during this 

‘jump’ transition it is assumed that the extent of conversion remains unchanged. The value of Eα  

at the given conversion degree is then obtained from a single heating program rather than 

multiple ones.  In fact, the modulated thermogravimetry method indeed uses the isoconversional 

principle, and the test results can be taken as experimental realization of the principle [1]. Other 

modulated programs [92, 93] may employ other temperature modulation forms such as 

( )0 sin 2T T t L tβ πω= + + , where ω and L are the frequency and amplitude of the modulation.  

However, all of them cannot avoid depending upon the isoconversional principle. 
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CHAPTER 3: MODIFICATION OF REGULAR LI-TANG METHOD AND ORTEGA 

METHOD 

Differential methods have been considered to be potentially more accurate than integral methods 

(like the OFW method) because differential methods do not employ any approximations [2]. 

However, the practical use of differential methods unavoidably involves some inaccuracy:  first, 

if differential methods are applied to assess differential data from DSC or DTA significant 

inaccuracy may be introduced because of the difficulty to accurately determine the data baseline. 

Second, experimental noise could lead to significant errors to applying the differential methods 

like FR and may also introduce inaccuracies when the raw data are smoothed. A major advantage 

of the integral methods is that they avoid these limitations due to the usage of integral data. It 

should also be noted that, in the derivation of regular integral methods, E must be independent of 

α  or otherwise the integration from 0 to α  in Eq. (2.2) would result in serious systematic errors 

[29, 94]. All regular integration methods [61, 64-66, 72, 73, 95-97] are prone to the same 

problems, some of which are also influenced by the temperature integral approximation. 

Fortunately, this kind of limitation can be overcome by using the advanced Vyazovkin (AIC) 

method [67]. Other recently developed methods [58, 68, 70, 98-100] have made minor 

modifications to the AIC method to decrease computational efforts. Overall, the key idea behind 

these incremental methods is to calculate Eα  within a small segment. 

This chapter discusses two examples to make a clear understanding of the above general 

comments on model free methods. In the first example, a simple and precise incremental 

isoconversional integral method based on Li-Tang (LT) method is proposed for kinetic analysis of 

solid thermal decomposition in order to evaluate the activation energy as a function of conversion 

degree. This new approach overcomes the limitation of the LT method and eliminates the problem 

of the calculated activation energy being influenced by the lower limit of integration. Shown is 

the dependence of activation energy on conversion degree evaluated by this new method that is 
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consistent with results obtained by the Friedman (FR) method and the modified Vyazovkin 

method for the kinetic analysis of both simulated nonisothermal data and experimental data from 

the decomposition of strontium carbonate. Because the new method is free from approximating 

the temperature integral and not sensitive to kinetic data noise, it is believed to be more 

convenient for assessing nonisothermal kinetic data acquired during solid decomposition.  

The second example examines the average linear integral isoconversional method developed by 

Ortega and its improvement. Because evaluations of the activation energies of solid state 

reactions may be hindered by experimental noise and the uncertainties associated with selecting 

appropriate reaction segments, this research suggested a procedure, called the modified Ortega 

method, which can avoid or minimize these hindrances.  A more consistent dependence of the 

activation energy on the extent of reaction conversion was found when using this modified Ortega 

method to assess both simulated and experimental data and these results were more in-line with 

those calculated using the modified Vyazovkin method and the Friedman method. 

3.1 Advanced Li-Tang Method 

3.1.1 Methodology of Advanced Li-Tang Method 

The integral form of the general kinetic equation is, 

( ) ( ) ( )
0 0

exp
Td A E AEg dT p x

f RT R
α αα

α β β
 = = − = 
 ∫ ∫                              (3.1) 

where ( )p x  is the temperature integral, which has no analytical solution. In the classic integral 

isoconversional methods, such as the Ozawa-Flynn-Wall method (OFW) [72, 73], the 

approximations of ( )p x  [23, 25, 26] should be adopted, the result of which is the introduction of 

systematic errors in calculating the activation energy [101]. 
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To avoid the usage of the temperature integral approximation, Li and Tang [64, 66, 97] proposed 

an isoconversional method for analyzing thermal analytical data. Their method takes the 

logarithm and integrates both sides of Eq. (3.1), 

( )
0 0 0

ln lnd d E dd d G
dt dT R T

α α αα α αα β α α   = = − +   
   ∫ ∫ ∫                              (3.2) 

where 

( ) ( )
0

ln lnG A f d
α

α α α α= +   ∫                                             (3.3) 

Because ( )G α  is constant for a given α  for different heating programs, a plot of 

( )
0

ln /d dt d
α

α α∫ against ( )
0

1/ T d
α

α∫  will be a straight line and the value of the activation 

energy Eα can be obtained from the slope of the line. 

In agreement with the Friedman (FR) method [56], the Li-Tang method (LT) avoids systematic 

errors introduced by the temperature integral approximations during the calculation of activation 

energy. Moreover, this method is more tolerant of data noise in calculating activation energy than 

the Friedman method because the data sets of  ( )
0

ln /d dt d
α

α α∫ ~ ( )
0

1/ T d
α

α∫ of the LT 

method are less sensitive to raw data noise than those of ( )ln /d dtα ~1/T of the Friedman 

method. 

Budrugeac et al [82] pointed out that it is difficult to determine the initiation point of a solid 

reaction when using the LT method, and thus recommended an improved version of Eq. (3.2) 

with a non-zero lower limit of α  for integration, 

( )
1 1

ln d E dd G
dt R T

α α

α α

α αα α  = − + 
 ∫ ∫                                           (3.4) 
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where the lower limit of the integral is 1 0α > , and  

( ) ( ) ( )
1

1 ln lnG A f d
α

α
α α α α α= − +   ∫                                       (3.5) 

However, it has been shown that the activation energy obtained by this improved method depends 

on the lower limit of integration, 1α , and the activation energy with 1α α<  is missed [82]. Thus, 

Budrugeac et al. considered that the LT method was not suitable to find the dependence of 

( )E E α= [82]. 

In this dissertation, an incremental version of the LT method, which is independent of the lower 

limit of integration, is proposed and verified by numerical and experimental examples. The values 

of activation energy calculated by this new method are compared with those obtained by other 

isoconversional methods, such as the LT method and its improved version by Budrugeac et al., 

the OFW method, the FR method and the modified Vyazovkin method (AIC) [67]). 

In the deviation of the LT method or the procedure improved by Budrugeac et al., E and A should 

be independent of the conversion degree. Otherwise, the integration from 0 or 1α  to a current α

value will lead to systematic errors. However, the systematic error can be minimized if Eq. (1) is 

integrated over a very small interval of conversion degree, α∆ , since the activation energy can 

be regarded as constant within a very small segment. Thus Eq. (3.2) can be changed to 

( )ln d E dd G
dt R T

α α

α α α α

α αα α
−∆ −∆

  = − + 
 ∫ ∫                                   (3.6) 

where 

( ) ( )ln lnG A f d
α

α α
α α α α

−∆
= ∆ +   ∫                                     (3.7) 
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in which α  varies from 3 / 2α∆  to 1 / 2α−∆  with a step ( )1/ 1mα∆ = + , where m is the 

number of the equidistant values of α . The plot of the left side of Eq. (3.7) versus the integration 

of the reciprocal of temperature should be a linear and Eα can be obtained from the slope of the 

regression line. 

Obviously, the above incremental isoconversional method avoids the problem of the LT method 

having its calculated activation energy dependent on the lower limit of integration. Hence, this 

new method is expected to give more consistent results with those from Friedman method (for 

noise-free data) or the modified Vyazovkin method. 

3.1.2 Numerical Applications 

This section will verify the advantage of the new incremental isoconversional method by 

numerical examples. Unlike experimental data on solid state reactions, the simulated data are not 

affected by noise and therefore are most suitable to test the newly proposed method. To evaluate 

the performance of the new method, the FR and AIC methods are also used to analyze the 

simulated data and the results are compared. The FR method is chosen because it is directly based 

on the general kinetic equation, and thus gives reliable activation energy values for the simulated 

data which are not encumbered by noise. Similarly, the AIC method is chosen because it is 

believed to be an accurate integral isoconversional method although it is complex to perform 

[67].  It is noted that this approach to test the quality of an isoconversional method appears in 

many published manuscripts [58, 67, 68, 96, 98, 102]. 

In this dissertation, a process that involves two parallel reactions and a variation in the effective 

activation energy is simulated. The overall kinetic equation of this process is described as: 

( ) ( )21 1 2 2exp 1 exp 1A E A Ed
dT RT RT
α α α

β β
   = − − + − −   
   

                                (3.8) 
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where 1E = 80kJ/mol, 1A = 810 1min− , 2E = 160 kJ/mol, 2A = 1610 1min− ;  four linear heating 

rates, 1 4β − =1, 2, 4, 8 K/min, are used. Note that equations similar to Eq. (3.8) are used in the 

aforementioned papers [58, 67, 68, 96, 98, 102] but with different Arrhenius parameters or model 

functions. 

The dependence of the apparent activation energy as a function of the conversion degree obtained 

by aforementioned isoconversional methods is displayed in Fig. 3.1. It indicates that: 

-The Eα  dependence calculated by the new method is practically identical to that estimated by 

FR method and AIC method, i.e. newE ≈ AICE ≈ FRE ; 

 

 

 

 

 

 

 

 

Figure 3.1 Eα dependencies evaluated for the simulated process by Li-Tang method 

with different lower limit of the integral, αl, as well as by OFW, AIC, FR and the new 

method 
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-The Eα  dependence estimated by the LT method (Eq. (3.2)) and the version improved by 

Budrugeac et al. (Eq. (3.4)) deviates noticeably from the dependence estimated by the FR 

method; 

-As noted by Budrugeac et al.[82] , the activation energy values obtained by LT method depend 

on the lower limit of the integral 1α .With the increases of the lower limit of 1α , the information 

of Eα  for 1α α< will be lost. 

These simulated data suggest that the new method gives reliable activation energy when E varies 

with the degree of conversion. It can be concluded that the new method is much better than the 

regular LT method and the method improved by Budrugeac. 
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Figure 3.2 Eα dependencies evaluated for the SrCO3 decomposition by the new 

method, FR method and AIC method 
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3.1.3 Experimental Example 

The thermal decomposition of strontium carbonate ( 3SrCO ), which is used as the experimental 

example in this dissertation, was carried out in a 50 ml/min flow of 2N with heating rates of 0.5, 

5, 7.5 K/min from room temperature (300K) to 1000K on a Shimadzu DTG-60H TGA/DTA 

Analyzer. The 3SrCO sample (purity of >99.99%) was supplied by Tianjin Guangfu at the Fine 

Chemical Research Institute. The sample was dried for two hours at 450oC and then between 

23.8-24.3 mg was loaded into the TGA/DTA sample holder. Although heating rates of 0.5, 5, 7.5 

K/min were to be used during the testing, actual heating rate values were calculated from the 

recorded sample temperature against time.  
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Figure 3.3  Eα dependencies obtained for the SrCO3 decomposition by the new 

method and Li-Tang method with different lower integral limit,αl , and by OFW method 

The dependence of activation energy on the conversion degree obtained by aforementioned 

isoconversional methods is shown in Fig. 3.2 and Fig. 3.3. From Fig. 3.2, it can be seen that the 

activation energy decreases with the increasing conversion degrees. The results obtained by the 
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new method and AIC method are consistent, while those obtained using the FR method seem less 

consistent, perhaps because of effects of experimental noise. Taking the values calculated by the 

Modified Vyazovkin method as a reference, the overall standard deviation of the E values 

determined by new method was 4.14 while the overall standard deviation of the values calculated 

by FR method was 17.79. Moreover, from Fig. 3.3 it can be seen that:  

-the OFW method gave much lower values near the onset ( 0.15α < ) of the reaction, and then 

rather stable values for 0.15α > .  

-the LT method gave consistent values in the beginning of the process but also led to rather stable 

values for 0.15α > . As expected, the dependence of Eα  values obtained by the Budrugeac et al. 

method depended on the lower limit 1α  in Eq. (3.4). 

-The values of the activation energy obtained by the OFW method, LT method, and the method 

improved by Budrugeacet et al. differed considerably from the results obtained by AIC (Fig. 3.2). 

From Figs. 3.2 and 3.3 it can be shown  that the proposed new approach has distinct advantages 

over some integral isoconversional methods (OFW, LT etc.). It can be concluded that the new 

approach is capable of providing consistent values of activation energy obtained by AIC even if E 

varies strongly with the conversion degree. 

3.2 Modified Ortega Method 

3.2.1 Methodology of Modified Ortega Method 

Recently, Ortega developed a simple average integral isoconversional method [98] (the original 

Ortega method) for the most frequently used linear heating program, ( ) /dT t dtβ = , of 

nonisothermal experiments , which is based on the integral form of the general kinetic equation, 

( ) ( )0

1 exp
t

o

Eg d A dt
f RT

α
α α

α
 = = − 
 ∫ ∫                                            (3.9) 
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  It leads to 

( ) ( )0 0
exp

Td A Eg dT
f RT

α αα
α β

− = =  
 ∫ ∫                                             (3.10) 

For a small segment α∆ , Eq. (3.10) can be approximated by 

( ), exp exp
a

T

T

E EA A Tg dT
RT RT

α

α

α α

α

α α α
β β−∆

 − ∆ − ∆ = ≈ −  
   

∫                      (3.11) 

where T T Tα α α−∆∆ = − .  

Taking the log of Eq. (3.11) yields 

( )ln , ln ln ETg A
RT

α

α

α α α
β

 ∆
−∆ ≈ + − 

 
                                     (3.12) 

For a given conversion and set of n experiments carried out at different linear heating programs 

iβ  ( i =1, …, n ) , Eq. (3.12) leads to 

, ,

ln .i

i i

Econs
T RT

α

α α

β 
= −  ∆ 

                                                (3.13) 

Then a plot of ( ),ln /i iTαβ ∆  versus ,1/ iRTα  will be a straight line and the value of Eα  can be 

determined from the slope of the line.  

Using a traditional integral isoconversional method, such as the Ozawa-Flynn-Wall (OFW) 

method [72, 73], creates system errors when the value of E varies with the conversion degree α . 

To avoid these errors, the Ortega method and some other newly developed methods [67, 68, 70] 

also use small integral segments, α∆ . However, when α∆  is small, the use of a single 

temperature Tα  prevents accurate characterization of the reaction segment and creates a source of 

systematic error. Hence, the Ortega method requires accurate values of Tα α−∆ and Tα , and 

potentially large α∆ , to minimize the influence of temperature measurement noise; errors in the 

temperature interval T∆  compromise the accuracy of Eα  values. The accuracy of the improved 
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version of the Ortega method is examined using both numerical and experimental examples, and 

some recommendations for using this method are discussed in the following. 

The derivation of Eq. (3.11) imposes the integration range from α α−∆ to α . Because of the 

importance of selecting an appropriate temperature to characterize the temperature segment when 

using the modified Ortega method, the integration of Eq. (3.11) with respect to α is changed 

between / 2α α−∆ and / 2α α+ ∆ ,  which yields 

( ) /2

/2

/ 2, / 2 exp exp
T

T

E EA Ag dT T
RT RT

α α

α α

α α

ε

α α α α
β β

+∆

−∆

 − − ∆ + ∆ = = − ∆  
   

∫             (3.14) 

where /2 /2T T Tα α α α+ −∆ = − , /2 /2nT T Tα α ε α α−∆ +∆≤ ≤ .  

As the second step, a number, n, of temperatures, nTε , are selected to characterize the temperature 

for different reaction segments; hence, nTε  varies from /2Tα α−∆  to /2Tα α+∆  with the step 

( )/ 1h nα= ∆ −  and n an odd number, as shown below: 

if 1n = , 1T Tε α=  

if 3n = , 1 /2T Tε α −∆= , 2T Tε α= , 3 /2T Tε α +∆=  

if 5n = , 1 /2T Tε α −∆= , 2 /4T Tε α −∆= , 3T Tε α= , 4 /4T Tε α +∆= , 5 /2T Tε α +∆=  

… 

Finally, the characteristic temperature of the aforementioned n temperatures is defined as 

1

1 n

i
i

T T
nε ε

=

= ∑                                                          (3.15) 
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Thereby, noise created by temperature measurements when using small α∆  can be minimized 

because a relatively large reaction segment α∆  is used for a large number n  temperatures. For a 

set of experiments carried out at different heating rates, Eq. (3.13) can be modified to  

,

ln .i

i

Econs
T RT

α

α ε

β 
= −  ∆ 

                                             (3.16) 

The activation energy, Eα , is obtained from a plot of ( ),ln /i iTαβ ∆  against 1/ RTε .  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Dependence of Eα on the value α evaluated by FR, AIC, OFW, the original 

Ortega method, and the modified Ortega method with ∆α=0.04 

It is proposed that this modified Ortega method can minimize the systematic error caused by large 

α∆  segments and increase tolerance to experimental noise as n is increased. In the following 

section, the modified Ortega method [71] is assessed for the case of n = 5. 
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3.2.2 Results and Discussion 

Both simulated and experimental data were assessed to validate the modified Ortega method. The 

first simulation procedure described below used two parallel reactions without noise:  one was a 

first order reaction and the other a second order reaction. In the second simulation discussed 

below, a single step reaction with noise was assessed to explore effects of noise on the calculated 

Eα  values. As for applicability of the modified Ortega method to experimental data, data during 

the decomposition of strontium carbonate ( 3SrCO ) were analyzed using the modified Ortega and 

other methods.  

3.2.2.1 Simulation without Noise 

The modified Ortega method was compared to the original Ortega method, and the Friedman 

(FR) and modified Vyazovkin (AIC) methods, when using simulated data. The FR method is 

known to be very sensitive to experimental noise that can lead to serious deviations, but without 

noise it can give reliable activation energies. Similarly, the AIC method is known to be one of the 

most accurate integral isoconversional methods with good tolerance of noise although it is more 

complex to perform. Because it was considered beneficial to compare results when using the 

modified Ortega method and the Ortega, FR and AIC methods with a more traditional integral 

method, the OFW method was also used to calculate activation energies. 

For a process having two parallel reactions, the activation energy varies with α  and the overall 

kinetic equation is described as 

( ) ( )21 1 2 2exp 1 exp 1A E A Ed
dT RT RT
α α α

β β
   = − − + − −   
   

                   (3.17) 

where 1E =100 kJ/mol, 1A = 910 1min− , 2E =75 kJ/mol, 2A = 810 1min− ; four linear heating rates 

of 1 4β − = 2, 4, 6, 8 K/min were studied.  
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Figure 4.4 compares the dependence of calculated Eα  values as a function of α  for the five 

different isoconversional methods when an integral segment α∆ = 0.04. The following 

summarizes the findings: 

• The Eα  dependence determined by the modified Ortega method leads to practically the 

same result estimated by FR and AIC methods; 

• The Eα  dependence calculated by the original Ortega method had larger systematic 

errors as compared to its dependence calculated by the FR method; and 

• The Eα  dependence obtained by OFW method differed noticeably from the results 

calculated by other methods, because traditional isconversional methods that assume E is 

independent of α  lead to a large systematic error when E varies with α [16, 17]. 
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Figure 3.5 Dependence of Eα on the value α for the simulated single step reaction 

FR, AIC, and the original Ortega method with ∆α =0.01, and the modified Ortega 

method with ∆α =0.04 
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3.2.2.2 Simulation with Noise 

To evaluate the effect of noise on the value of Eα , a small-order, random temperature noise 

(−0.01 to 0.01 K) was introduced into the simulated data when using a single step reaction: 

( )exp 1d A E
dT RT
α α

β
 = − − 
 

                                              (3.18) 

where E=100 kJ/mol (a setting value), A = 910  and 1 4β − = 2, 4, 6, 8 K/min.  
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Figure 3.6 Dependence of Eα on the value α obtained for the experiments of SrCO3 

decomposition by AIC, the modified Ortega method, and the original Ortega method, all 

with ∆α =0.04 

Figure 3.5 compares the results, and the following summarizes them: 

-The Eα  dependence estimated by the modified Ortega method ( α∆  = 0.04 in this simulation) 

gave results consistent with the AIC method if relatively large segments α∆  were used; 
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-The Eα  dependence calculated by both the original Ortega method ( α∆  = 0.01) and FR method 

led to noticeable deviations;  

-Also, the original Ortega method led to larger deviations as smaller Δα segments were used. 

3.2.2.3 Experimental Application 

The thermal decomposition of 3SrCO [70] was examined again, using a 2N  flow rate of 50 

ml/min and three different heating rates:  2.379, 4,734, and 7.007 K 1min− ; the data were 

acquired using a Shimadzu DTG-60H simultaneous TGA/DTA analyzer. The results from 

analyzing the data using the five different methods were then assessed to check on the accuracy 

of the dependence of Eα  on the value of α . 
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Figure 3.7 Dependence of Eα on the value α obtained for the experiments of SrCO3 

decomposition by AIC, FR and Ortega method all with ∆α=0.04 
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For α∆  = 0.04, Fig. 3.6 shows that the Eα  dependence calculated by the modified Ortega 

method and AIC methods agreed very well, while the original Ortega method data deviated from 

the modified Ortega method and AIC data due to the expected influence of systematic error and 

experimental noise. Taking the values obtained by the AIC method as the reference benchmark, 

the standard deviation (SD) of Eα  calculated by the modified Ortega method was SD = 0.53; in 

contrast, the original Ortega method resulted in SD = 17.14, more than 30 times larger. Figure 3.7 

shows that both FR and OFW methods largely disagreed with the benchmark AIC method.  

3.3 Conclusions 

The original Ortega’s average integral isoconversional method only uses the upper temperature 

limit to characterize selected reaction segments to evaluate the activation energy for solid state 

reactions. In this study, a modified procedure based on the original method was developed 

without any additional assumptions. The modified method chose larger reaction segments and 

several temperature values rather than a single temperature to characterize the integral segment. 

Using the modified Ortega method not only eliminated systematic errors but also effectively 

reduced the influence of experimental noise. The validity of the modified Ortega method was 

shown by both simulated and experimental data. 

During the development of the modified Ortega method, it was found that certain specifications 

for the analyses were important in providing the best results, and did not impart unwanted errors 

or misrepresentations of the actual data. These specifications included: (1) The segment of 

temperature to characterize temperature corresponding to α should not be too small, i.e. 

Δα ≥ 0.04, and (2) the number of characteristic temperatures used should be n ≥ 5. 

An incremental isoconversional method has been developed based on Li-Tang method without 

any additional assumptions. The incremental version not only avoided the integration of the rate 

equation and lowered the effects of noise which are encountered in Friedman method, but also 
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eradicated the limitation of Li-Tang method that the activation energy would depend on lower 

limit of the integration. Moreover, the procedure was very simple and gave consistent activation 

energy values with those obtained by Friedman and the modified Vyazovkin methods.  

However, it should keep in mind that original LT, Ortega methods, the modified version of them, 

and all other isoconversional methods, are based on the isoconversional principle, the influences 

of which are not taken into consideration in the analyses of this chapter. Therefore, in next 

chapter, additional examinations of the conclusions in this chapter are given and a comprehensive 

method is proposed which is able to take advantage and avoid the limitations of these methods. 
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CHAPTER 4: COMPREHENSIVE METHOD BASED ON MODEL-FREE AND IKP 

METHODS TO EVALUATE KINETIC PARAMETERS 

Evaluating Eα  without any previous knowledge of ( )f α  is considered a substantial advantage 

of using model free methods. Moreover, having an variable activation energy, Eα , that varies as 

a function of conversion degree, α , is believed beneficial for revealing the complexities inherent 

to solid-state kinetics [35, 36]. However, the phenomenon of E  varying with α  and the 

inconsistencies in results obtained during various studies [17] have caused debate and controversy 

[103, 104]. Explanations of these inconsistencies have often focused on the complexities 

associated with solid state experiments [105-107] and the introduction of systematic errors 

associated with computational methods, one of which is the approximation made during 

integration, as shown in Eq. (2.2) [108]. To perform model free analysis accurately, great care 

should be taken to ensure that each experiment is performed at the same conditions with  constant 

mass and size of samples, and constant gas purge rate, etc. Variations in experimental conditions 

can be minimized and systematic errors associated with computational methods can be eliminated 

by using incremental approaches such as the AIC and the MLT methods. However, although 

some studies [11] showed that the results obtained by isoconversional methods depend on the 

heating rate, few in-depth assessments of the validity of the isoconversional principle have been 

published even though it is the foundation of model free methods - as embodied by Eq. (2.24). To 

begin such an assessment, this study used a linear heating program to provide critical information 

for assessing the isoconversional principle. More importantly, a comprehensive method is 

proposed that extracts more meaningful and reliable kinetic parameters of solid state reactions. 

The structure of this chapter is set as follows. In Section 4.1, a theoretical approach is suggested 

that is used to assess whether the “isoconversional principle” of Eq. (2.24) is valid for single step 

and complex reactions. In Section 4.2, the traditional IKP method is modified to simultaneously 

determine variable activation energies and pre-exponential factors for complex reactions. In 
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Section 4.3 a comprehensive method is proposed that is based on both isoconversional and IKP 

methods.  

4.1 Critical Analysis of Model Free Methods 

The overall kinetic equations of parallel independent reactions are given as, 

( ) ( ) ( ) ( )1 2 1 1 2 2
1 1 2 21 exp 1 expd d A E A Ed c c c f c f

dT dT dT RT RT
α αα α α

β β
   = + − = − + − −   
   

     (4.1) 

where ( )0,1c∈  is the contribution percentage of the first reaction to the change in the overall 

reaction, ( )1 21c cα α α= + − . Then, the “apparent”, “overall”, “empirical” or “global” [54] 

activation energy for expressing the activation energy at a given α  is, 

( )

( )

( )1 2 1 2
1 2 1 2

1 1 2 2
1 2

1 1

1

d d d dc E c E c E c E
dT dT dT dTE f E f Ed d dc c

dTdT dT

α

α α α α

α α α

+ − + −
= = = +

+ −
               (4.2) 

where 1f  and 2f  are contribution percent of the overall reaction rate /d dTα , and 1 2 1f f+ = . 

It is expected that, for a given conversion degree, the value of 1f  and 2f  will vary with heating 

rate; consequently, E  is not only a function of α  but also a function of β , as is shown 

explicitly in the following simulations. 

Consider a simple case in which the values of ( )Af α  for two reactions are the same, i.e., 

( ) ( )1 21 exp 1 expE Ed c c Af
dT RT RT
α α

β
    = − + − −    

    
                               (4.3) 
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Because temperatures vary with β  for a given α , the ratio of ( )1exp /c E RT−  -to- 

( ) ( )21 exp /c E RT− −  of Eq. (4.3) will vary and then the ratio of 1f  -to- 2f will also change 

with β . Therefore, Eα  is expected to also vary with β , that is 

( ),appE E α β=                                                             (4.4) 

where appE  is defined as the overall or apparent energy for the complex reaction at given α  and 

β .  Similarly, it is reasonable to express the pre-exponential factor as  

( ),appA A α β=                                                            (4.5) 

Therefore, the starting point of model free methods in which ( )appE E α=  is problematic, which 

implies the isoconversional principle embodied by Eq. (2.24) cannot be used without taking into 

considerations the heating programs.  

Similar analyses are possible for other types of complex reactions, such as parallel competitive 

reactions: 

( ) ( )1 1 2 2
1 2exp expA E A Ed f f

dT RT RT
α α α

β β
   = − + −   
   

                           (4.6) 

 and reversible reactions [109], M N↔ :  

( ) ( )1 2exp expN N NM M M
M N

d A Ed A E f f
dT dT RT RT

αα α α
β β

  = − = − − −   
   

              (4.7)       

where Mα   and Nα  are the corresponding conversion degrees of substance M  and N . In other 

words, for complex reactions the dependence of Eα  on β  has to be tested if the method that 

gives activation energies as a function of conversion degree. 
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Figure 4.1 The dependences of E and lnA on α of a single step reaction determined by 

IIKP method 

4.2 Analysis of IKP Method 

Eqs. (2.21) and (2.22) lead to, 

2

1inv
inv inv

max max

ElnA E
RT RT
β

= +                                                   (4.8) 

where the subscript “ max ” means the maximum reaction rate, and “ inv ” refers to invariant 

parameters, which historically have been calculated by applying a model-fitting method to a full 

reaction range, that is, ( )0,1α ∈ , in a single experimental run. The compensation relations still 

hold if a model-fitting method is applied to a small reaction segment α∆ , i.e., from  α α−∆  to 

α :  the characteristic temperature can be approximated as the mean temperature of the selected 

computation segment. Therefore, the incremental IKP (IIKP) method has a wider applicability 
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than the IKP method, the possibility of which is seen by considering a simple first order reaction 

described by: 

( )exp 1  d A E
dT RT
α α

β
 = − − 
 

                                              (4.9) 

where E = 100 kJ/mol, lnA = 20.7 and 1 4β − = 5, 10, 15, 20 K/min. The values obtained by using 

the IIKP method are shown in Fig. 4.1 for an increment of 0.1 and computation range 

0.05α∆ =  for each point. It can be seen that the values of E  and lnA  are quite reliable at all 

points. Applications of the IIKP method to complex reactions will be discussed in the following 

section. 

4.3 Proposition of a Comprehensive Method 

A schematic for applying the IIKP principle to complex reactions at three different heating rates 

is shown in Fig. 4.2.  Considering the parallel independent reactions represented by Eq. (4.1), for 

a given heating program, β , the temperature of the two reactions is the same at any overall 

conversion degree, ( )1 21c cα α α= + − . If the two reactions are assumed to be decoupled, then 

each reaction would have individual invariant points, ( )1 1,   lnA E and ( )2 2, lnA E , as is shown in 

Fig. 4.2. For a given iβ , the slopes of the compensation lines for two reactions would be 

identical, i.e, 

1 2
1

i i ib b b
RTα

= = = ,   1, 2,3i =                                          (4.10) 

Therefore, the equations for two reactions can be described as: 

for reaction 1- 
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1 1 1 11 1

1 2 1 21 2

1 3 1 31 3

,           
,             
,           

lnA b E a for
lnA b E a for
lnA b E a for

β
β
β

= +
= +
= +

                                       (4.11) 

for reaction 2- 

2 1 2 12 1

2 2 2 22 2

2 3 2 32 3

,           
,             
,           

lnA b E a for
lnA b E a for
lnA b E a for

β
β
β

= +
= +
= +

                                     (4.12) 

where 1b , 2b , 3b , 11a , 21 a …  are constants.  

 

Figure 4.2 Schematic of IIKP principle for complex reactions 

Note the coefficients of E  for a specific β  in Eqs. (4.11) and (4.12) are the same. Taking 1β  as 

an example, the two lines from Eqs. (4.11) and (4.12) are parallel; the combination line is 

determined by the contribution ratio, 11 12:f f , of their intercept values, which leads to a 

combination of 11 11 12 12f a f a+ . The overall Eq. (4.1) for a given iβ  produces the following: 

∆E

E1 Einv

lnA1

lnA2

E

P

O

E2

lnAinv

lnA β1

β2

β3
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1 11 11 12 12 1

2 21 21 22 22 2

3 31 31 32 32 3

,           
,            
,           

lnA b E f a f a for
lnA b E f a f a for
lnA b E f a f a for

β
β
β

= + +
= + +
= + +

                                           (4.13) 

From Eq. (4.2), if the contribution percentage remains unchanged, 1 2:i if f m= , for different iβ , 

or if the contribution percentage changes within a narrow range the three lines determined by Eq. 

(4.13) intersect at a common point P ( ( ) ( )1 2 / 1mE E m+ + , ( ) ( )1 2 / 1mlnA lnA m+ + ) (see Fig. 

4.2) or within a narrow range (Case 1). Otherwise, the three lines intersect in a wider range, E∆ , 

or have no obvious common intersection (Case 2). Note that the “apparent” or “overall” 

activation energy appE  is determined by the contributions percentage of two individual reactions, 

and the activation energy at given α  for the Case 1 is independent or weakly dependent on β  

whereas for Case 2 it is strongly depend on β .  

Taking the log of the general kinetic equation, Eq. (1.7), and differentiating over 1/ T , and then 

rearranging it yields, 

( )
1 1 1

dln lnfE lnAdT
T R T T

α

αβ α
− − −

 ∂   ∂∂  = − + +
∂ ∂ ∂

                                            (4.14) 

If a common point P or narrow range of it exists, then lnA  has no or only a weak dependence on 

T , in which case the term 1/ 0lnA T −∂ ∂ = . Moreover, considering the assumption of 

isoconversional methods that the reaction model remains unchanged for different heating rates, 

the last term in Eq. (4.14), ( ) 1/lnf Tα −∂ ∂ , can also be zero. Because the compensation 

equation, Eq. (2.21), does not contain ( )f α , the phenomenon of the compensation effect would 

determine that the reaction models would have no, or weak, dependence on heating rate. 

Therefore, for Case 1, it is reasonable that the activation energy at a given α  has no or weak 
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dependence on heating rates and the isoconversional principle gives reliable Eα . These 

conclusions suggest the IIKP principle can be used to judge the reliability of the values.  

 

 

 

 

 

 

 

 

Figure 4.3        Flow chart of comprehensive method 

Thereby, it is clear that the new comprehensive method based on model free and IIKP methods 

can be proposed, the relationship of which with previous methods are shown in the  flow chart 

above, in which the blue texts indicates the contributions by the author. The chart shows that the 

combination of model free method and IIKP method generates a comprehensive method [110], 

which has obvious advantages over previous methods. The steps of the comprehensive method 

are described below:  

1. Use an incremental model free method to determine values of Eα  as a function of α ; 

2. Use the IIKP method to calculate both Eα  and Aα and check whether the compensation lines at 

different heating rates intersect at a common point or within a narrow range. If so, the 

Comprehensive method 
Do not need f(α) 
Applicable to complex reactions 
Test the reliability of basic assumption 
Much more reliable 

Model free method 
Involved with basic assumption 
Give only E value 

Incremental IKP method (IIKP) 
Applicable to complex reaction 

Model fitting 
 

IKP method 
Applicable to single step reaction 

Use data of ∆α ~ ∆T 

Use all data of 
α ~ T 
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corresponding value calculated in step 1 is reliable and can be selected, otherwise the value will 

be discarded according to IIKP principle; 

3. Use the compensation effect as evidenced by the values determined in step 2 to predict the 

values of Aα  for the selected values of Eα  (this step is discussed more in the simulation section).  

It is suggested that the comprehensive method can be applied successfully to other types  of 

complex reactions, such as parallel dependent reactions. Moreover, it is worth mentioning that the 

IIKP principle can be used for arbitrary heating program experiments by replacing /d dTβ α

with /d dtα  in the related equations. 

 

Figure 4.4 Values of activation energy determined by FR and IIKP methods for 

simulation test S1(The meaning of beta1-4 is the true values calculated by Eq. (4.2) for 

β1-4; it applies to Figs. 4.4-4.9) 
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Figure 4.5 Values of activation energy determined by FR and IIKP methods for 

simulation test S2 

 

Figure 4.6 Values of activation energy determined by FR and IIKP methods for 

simulation test S3 
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Figure 4.7 Values of activation energy determined by FR and IIKP methods for 
simulation test S4 

 

Figure 4.8 Values of activation energy determined by FR and IIKP methods for 
simulation test S5 
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Figure 4.9 Values of activation energy determined by FR and IIKP methods for 

simulation test S6 

4.4 Simulation Validations 

A parallel independent reaction was simulated that involved two different reactions, as given by 

the following: 

( ) ( ) ( )2
222

1
11 1exp11exp α

β
α

β
α

−





−−+−






−=

RT
EAc

RT
EAc

dT
d

                (4.15) 

where 1 4β − = 5, 10, 15, 20 K/min, 1lnA = 18.42 1min− , 1E =100 kJ/mol, 2lnA = 36.84 1min− , 2E

= 180 kJ/mol, and the contributions c = 0.1, 0.3, 0.5, 0.7, 0.9 for tests S1-S5 respectively. The 

reactions involving S1-S5 may be heavily or totally overlapped. A test S6 with no heavily 

overlapped reaction was designed with 2lnA = 28.78.  
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The test S7 simulated a competitive parallel reaction: 

( ) ( )α
β

α
β

α
−






−+−






−= 1exp1exp 22211

RT
EA

RT
EA

dT
d

                       (4.16) 

where the values of the parameters were identical to those for S1-S5 except 2lnA = 35.69.  

The invariant values of E  and lnA  determined by the IIKP method are shown in Table 2. 

To enable reliable comparisons, the isoconversional method used for calculation was the FR 

method. Among the isoconversional methods, it is directly derived from the kinetic equation of 

Eq. (1.7) [52], and can give the most reliable values of  Eα  when Eα  is not dependent on β . 

The values of Eα  shown in Figs. 4.4-4.10 were calculated using Eq. (4.2) for every heating rate 

along with the values of Eα  calculated by the FR method and IIKP method (only the most 

frequently used models were applied, noted as ‘*’ in Table 4.1). The major results from the S1-S7 

tests are presented below: 

1. The apparent activation energy values were dependent on the heating rates. If a dominant 

reaction existed - for example for S1 where c = 0.1 or S5 where c = 0.9, the dependence of Eα  on 

β  was weak; if no dominant reaction existed, this dependence was strong. 

2. The use of an isoconversional method cannot recognize dependencies of Eα on β , and it can 

lead to serious errors even when a dominant reaction exists. 

3. The values determined by the IIKP method and the isoconversional method were directly 

correlated, and accordingly to the relation of the compensation lines, three cases are presented 

below: 
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Case 1: A common intersection point (P in Fig. 4.2) or a narrow intersection domain was found 

for which E∆ < 5kJ (empirically). The values of Eα  did not depend or weakly depended on β ; 

hence, Eα  values calculated by the isoconversional method were reliable; 

Case 2: A relatively large range (noted as ‘*’ in Table 4.1) in the intersection domain was found. 

The values of Eα  may have a dependency on β ; the values obtained by the isoconversional 

method may be acceptable; 

 

 

Figure 4.10 Values of activation energy determined by FR and IIKP methods for 

simulation test S7 

Case 3: The compensation lines were widely separated or were randomly intersected over a wide 

range,   E∆ ≥  20kJ for example. Hence, Eα  was strongly dependent on β ; hence, the values 

obtained were not reliable – and are not presented herein. 
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4. From the previous discussion, it can be recognized that when results are obtained that reflect 

the Case 3 situation, and in many cases the Case 2 situation, the starting point of estimating 

activation energy on the given conversion degree is problematic for any model free method, 

independent of whether linear heating rates or nonlinear heating programs were implemented.   

Table 4.1  The values of E_inv and A_inv obtained by IIKP method 

 𝛼 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

S1 E 
lnA 

179.1 
36.05 

177.3 
35.65 

176.2 
35.4 

175.4 
35.22 

174.9 
35.13 

175.1 
35.21 

177.3 
35.77 

188.8* 
38.42 ____ 

S2 E 
lnA 

176.8 
35.27 

169.8 
33.78 

165.2 
32.76 

160.9 
31.81 

157.5 
31.07 

158.2* 
31.26 

188.0* 
37.85 ____ 100.0 

19.03 

S3 E 
lnA 

173.2 
34.14 

156.7 
30.68 

144.2 
27.97 

130.5* 
25 

115.6* 
21.75 

114.0* 
21.5 ____ 100.0 

18.31 
100.0 
18.58 

S4 E 
lnA 

161.5 
31.20 

131.0 
24.88 

99.0* 
18.12 

60.0* 
9.85 

48.0* 
7.08 

77.0* 
13.02 

100.0 
17.68 

100.0 
17.94 

100.0 
18.18 

S5 E 
lnA 

131.4 
24.35 

84.5* 
14.75 

52.0* 
7.95 

88.0* 
14.64 

105.0 
18.05 

100.0 
17.23 

100.0 
17.43 

100.0 
17.69 

100.0 
17.93 

S6 E 
lnA 

101.5 
16.31 

106.5 
16.02 

134 
19.42 ____ 212* 

33.35 
181* 
28.06 

181.5 
28.7 

181.9 
28.78 

187.6 
29.8 

S7 E 
lnA 

178.0* 
34.53 

179.0 
34.98 

174.0 
34.14 

168.0 
32.99 

165.0 
32.38 

163.0 
31.93 

164.0 
32.05 

168.0 
33.77 

173.0 
33.67 

 

5. When the reactions were partially separated, such as for S1 and S5, or when the reactions were 

insignificantly overlapped, such as for S6, the E and A  values are considered reliable at the 

beginning and/or ending points for both methods. Also, it can be expected that the IIKP method 

can be used to extract representative single pairs of E  and A  for similarly well-separated 

reactions. For S7, the trends for the competitive reactions were the same as for S1-S5. 

6. The Eα  values as determined by the IIKP method deviated from true values to a much greater 

degree than by the model free method when a dependence of Eα  on β  existed. This situation 

occurred because the slopes of the compensation lines (the coefficients b  in Eqs. (2.21), (2.22) 

and (4.8)) were very close. When the heating rate increased from 5 K/min to 40 K/min (most 

experimental range), the temperature gap, mT∆ , generated for a given α  was generally about 

40K, while the characteristic temperature mT  tended to be more than 600K. In this situation, the 
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order of the change of coefficient b  was much smaller than that of a . For example, in the 

simulated data of Eq. (4.9) when the heating rate increased from 5 K/min to 20 K/min the 

temperature at α = 0.5 increased about 30 K (533 to 565 K). These variation ranges can be 

estimated from: 

( )4 41 2.257 10 ,2.129 10b
RT

− −= ∈ × ×  

( )2 3.162, 3.279Ea ln
RT

= ∈ − −  

It is to be realized that even a small change in the relative contribution percentage, 1 2:i if f  in 

Eqs. (4.11) and (4.12), significantly influenced 1 1 2 2i i i if a f a+  in Eq. (4.13) as compared to the 

much smaller differences of the slopes, ib ; the result of this influence was that the calculated invE  

and invlnA  values were noticeably deviated from true values. In general, calculations using 

isoconversional methods are based on regression analysis such as least square approaches, and the 

results are less influenced by changes in 1 2:i if f  than is the IIKP method. For this reason, the 

IIKP principle was used to judge the reliability of values obtained by the model free method 

rather than directly selecting the values extracted by the IIKP method. 

Moreover, it was found that the values of invlnA  and invE  obtained by using the IIKP method at 

different conversion rates were linearly correlated. It is probable this linear relation explains the 

existence of single pair values of ( ,inv invlnA E ) that can be determined by using the IKP method. 

Because of linearity, it is possible to predict values of lnAα  for the selected Eα  values. As an 

example, if the S3 test was selected for determining lnAα , the conversion degrees selected would 

be α = 0.1, 0.2, 0.3, 0.8, 0.9, and the corresponding Eα = 157.89, 159.54, 156.98, 99.99, 100.01 

kJ/mol. By using the linear relation and interpolation analysis, the values of pre-exponential 
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factor are then: lnAα = 30.94, 31.29, 30.74, 18.31, 18.31 1min− . Similar calculations could be 

accomplished for the other tests. 

4.5 Experimental Validation 

The thermal decomposition of high purity (> 99%) calcium carbonate ( 3CaCO ) was carried out 

in a 40 ml/min flow of 2N  using 4.97, 9.92, 14.85, 19.83 K/min linear heating program from 

room temperature to 1150K on a NETZSCH STA 409C Analyzer. To minimize variability 

between the experiments, the sample was carefully weighted to be between 7.750-to-7.890 mg 

before decomposition testing at the different heating rates. 

To apply the comprehensive method, two incremental isoconversional methods (AIC, MLT) and 

the FR method were applied to analyze the experimental data. Considering that the selection and 

use of a reaction model can influence the accuracy of the IIKA method, all the reaction models 

listed in Table 1.1 were applied to the experimental data. Data from models having poor fitting 

(coefficient < 0.97) were discarded, and the remaining data were selected for determining E  

values and then A  values with the IIKA method. It can be seen in Fig. 4.11 that: 

1. The AIC and MLT methods produced identical Eα  dependencies so their curves were merged 

in the figure, while the FR method resulted in certain deviations from the AIC and MLT methods 

because the FR method is more sensitive to experimental noise;  

2. As expected, the Eα  dependencies calculated using the IIKA method deviated more seriously 

than the AIC and MLT methods. According to the intersection area of the four regression lines 

obtained at a given conversion degree, the values determined by the IIKA method were divided 

into three levels. The first level was four compensation lines for a given point that intersected 

over a narrow range (< 10 kJ/mol) for which the Eα  values calculated by the isoconversional 

methods were reliable; the second level was four lines that intersected over a range of 10 to 20  
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Figure 4.11 Values of activation energy obtained by different methods for experiment 

data 

 

Figure 4.12 Values of selected activation energy determined by comprehensive method 
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kJ/mol (noted with ‘*’), for which the  values calculated by isoconversional methods may not 

be reliable; and, the third level was four lines that intersected over a range greater than 20kJ or 

did not have a common area, the results were not reliable (not displayed).  

3. The lnAα  values calculated by the IIKA method varied with α  and provided a reasonable 

compensation relation with Eα  that gave 0.1126 1.5944lnA Eα α= − .  

In this study, the range of Eα  values as determined by the AIC and MLT methods was

175 Eα≤ ≤  200 kJ/mol; these values are in agreement with previous studies [111, 112] of the 

decomposition of 3CaCO  in which the range was 170 210Eα≤ ≤  kJ/mol. However, as 

discussed herein, these values are considered problematic because they include unreliable values. 

Only by applying the comprehensive method proposed in this study is it possible to obtain the 

reliable Eα  values displayed in Fig. 4.12 with a range of 191.15 194.91Eα≤ ≤ kJ/mol. Using the 

relation determined for lnAα , 0.1126 1.5944lnA Eα α= − , that was calculated by the IIKA 

method and for which Eα  varied with α with a reasonable compensation relation, the values of 

lnAα  for the selected Eα  at corresponding reaction degrees were 119.93 20.36lnA min−≤ ≤ . 

These reliable Eα and lnAα values encompass a very narrow range and can be reasonably 

approximated as constants with E =192.5 kJ/mol and 120.15lnA min−= . 

4.6 Conclusion 

Many methods that have been developed to obtain activation energies of solid-state reactions 

consider E  to be a function only of α . However, after a theoretical study along with examples 

presented herein, it is proposed that for complex reactions the values of E  is not only a function 

of α  but also a function of the heating programs. This dependency needs to be considered when 

methods are used to obtain Eα  dependencies.  

Eα



 

62 
 

It is generally believed that the IKA method requires more computation than other methods and 

yet provides only single pair of E and A ; as a consequence, the IKA method is rarely used in  

kinetic studies. However, it has been determined that the potential applications and benefits of 

this method are underestimated. This research has shown the development and use of the IIKA 

method that is based on the original IKA method and gives variable Eα  and Aα  values for solid 

state reactions. It can provide reliable values of Eα  and Aα  at any given reaction degree for 

single-step reactions for simulation data. For experimental data that can be complex reactions and 

have a variety of influencing factors such as experimental noise, sample weight and sample size 

IIKA can be used to successfully determine the reliability of values obtained by model free 

methods, after which a comprehensive method based on IKP and method free methods is 

proposed. 

This comprehensive method was tested on both simulation and experimental data of the 

decomposition of 3CaCO  and provided results showing noticeable advantages over other 

methods. It can: evaluate the reliability of the results calculated by model free methods; 

determine the dependence of E  on the heating programs used; select reliable E  and provide 

variable A  values for complex reactions; and to a certain degree, help to judge the quality of the 

experimental data.  
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CHAPTER 5: ACCURACY OF ISOCONVERSIONAL METHODS WITH A 

CONSIDERATION OF BASIC ASSUMPTION 

The comprehensive method proposed in Chapter 4 has many advantages over other existing 

methods including isoconversional methods. However, it takes time for people to accept a newly 

developed method especially when the current isoconversional methods are widely applied in 

almost every field that thermal kinetic analysis is used. In this chapter results are given to 

compare the accuracy of existing isoconversional methods by considering the influence of the 

isoconversional principle, which is often called the basic assumption. This discussion is helpful 

for researchers to select a better isoconversional method that matches with the incremental 

invariant kinetic parameters method for different types of complex reactions. 

5.1 Previous Comments about Isoconversional Methods 

A conclusion of the ICTAC Kinetic Project [32] was that the kinetic analysis of  heterogeneous 

reactions should use an isoconversional method because it is able to evaluate the activation 

energy without any prior knowledge of reaction model. For complex reactions E   varies with α . 

Studies [29, 94, 113, 114] examining the accuracy of the different types of isoconversional 

methods conclude that:  

1. the differential methods [56, 58] are very sensitive to experimental noise, resulting in large 

deviations of activation energy [54];  for  simulation data that do not contain experimental noise, 

these methods allows the evaluation of the exact value of activation energy;  

2. the regular integral methods [61, 64, 72, 73, 83, 95-97] have good tolerance of noise but, 

compared to the “exact” values obtained by the differential methods, they lead to significant 

systematic errors because they involve the use of  approximations of the temperature integral and 

assume E is  a constant in the integration of the Eq. (3.2) [94]; 
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3. the advanced integral methods [67, 68, 70, 98, 99, 115] that use small integration ranges of the 

variables not only have good tolerance of experimental noise but also produce values in 

agreement with those obtained by the use of differential methods. 

The advanced integral methods are highly recommended and have become popular. For example, 

leading up to Jan. 2014, the most popular advanced integral method (AIC) [67] was that proposed 

by Vyazovkin in 2001; it was cited more than 400 times on Google Scholar. Most of these 

citations relate to obtaining activation energies of various solid reactions, while some use it along 

with the Friedman differential (FR) method [56] as a standard to  analyze the reliability of other 

methods, especially newly developed ones [52, 68, 70, 98, 116, 117]. To the authors’ knowledge 

of the literature review, all publications have agreed that the advanced integral methods 

(including the differential methods if data do not contain noise) are more accurate than other 

isoconversional methods. 

The conclusions concerning the accuracy of isoconversional methods correlate directly to the 

basic assumption; they may be not reliable if this assumption is problematic. By theoretical and 

simulation analyses, this study provides critical information concerning the generally accepted 

conclusions about these models and provides some recommendations about using isoconversional 

methods to evaluate the activation energies of parallel independent reactions and competitive 

reactions. 

For brevity, this study focuses on the Friedman (FR) [56], Ozawa-Flynn-Wall (OFW) [72, 73] 

and Kissinger-Akahira-Sunose (KAS) [61, 83], and AIC methods because they are   

representative and the most popularly-used differential, regular integral, and advanced integral 

isoconversional methods, respectively. 

5.2 Error Sources of Isoconversional Methods 

The overall kinetic equation of a competitive reaction is given as, 
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where the contribution percent 121 =+ ff . 

Some authors [117] suggest  the contribution ratio 21 : ff should be dependent on the heating rate, 

in which case E  is not only a function of α  but also of β , i.e., 

( )βα ,EEapp =                                                             (5.3) 

where appE  is defined as the overall or apparent energy for a complex reaction at given α and β. 

The same dependence is obtained for other types of complex reactions like parallel independent 

reactions. However, the starting point inherent to isoconversional methods is to obtain E as a 

function only of α . This is a problematic assumption that would introduce error into any of the 

isoconversional methods, and is labeled as “error source 1” (ES1) in the following discussion. 

The reason that the AIC and FR methods are considered to provide “exact” values is that they 

may use small ranges of α∆  or α∆  close to zero, and so they only suffer from ES1. 

Comparatively, the OFW and KAS methods have two additional error sources (ES2 and ES3, as 

discussed in the following): 

ES2:  employing the temperature integral approximation leads to inaccurate values of E; many 

analyses [29, 108] have been carried out on this topic. It was concluded that the KAS method 

offers significant improvements in accuracy of E values relative to  the OFW method because it 

uses a more accurate approximation[54]; 
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ES3: the integration from 0 to α  in Eq. (2.2) assumes E is a constant; otherwise it would 

introduce significant systematic errors. 

Therefore, the following equation can represent the essence of the differences in error for the AIC 

and FR methods relative to the OFW and KAS methods: 

3211 ESESESES ++<                                                 (5.4) 

 

Figure 5.1 Simulation results obtained from test T1, (beta1-3 are true values for 

different βi: it also applies all Figures) 

However, the term ES2 + ES3 does not have to increase, a priori, the overall value of

321 ESESES ++ . Actually, in some cases, the source of error for the AIC and FR methods 

may be singular and lead to more serious errors than for the OFW and KAS methods.  

In general, the isoconversional methods try to obtain a one dimensional parameter αE , usually  

labeled as the “apparent”, “overall”, “empirical” or “global” activation energy, to characterize a 
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two dimensional parameter ( )βα ,E . It is proposed that no isoconversional method can provide 

“exact” αE  values; instead, the accuracy of an isoconversional method should be judged by its 

overall performance when testing one kind of reaction as compared to the overall performance of 

other isoconversional methods on the same reaction.  

 

Figure 5.2 Simulation results obtained from test T2 

5.3 Simulations and Analysis 

5.3.1 Parallel Independent Reaction 

A parallel independent reaction is simulated that has two different reactions, as given below: 
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where 31−β = 5, 10, 20 K/min, 1A = 15.20 min10 − , 1E =240 kJ/mol, 2A = 18 min10 − , 2E = 100 

kJ/mol, and c = 0.1, 0.5, 0.9, for tests T1-T3 respectively. For test T4, c = 0.5, and the value of 

1A  is 5.1910 . The reactions T1-T3 involve different contributions and are totally or heavily 

overlapped. Two tests with partly overlapped reactions are labeled as T5 and T6, for which c =  

0.5, and the value of 1A  is 5.1810  and 123 min10 − , respectively.  

 

Figure 5.3 Simulation results obtained from test T3 

The true values of αE  for different iβ  that are calculated using Eq. (5.2) and the values 

determined by various methods are shown in Figs. 5.1-5.6. The major results from the T1-T6 tests 

are presented below: 

1. The apparent activation energies have strong dependency on the heating rates. If no dominant 

reaction exists - for example, for T2 where c = 0.5, the average differences between 5 K/min and 

20 K/min heating rates,  calculated by ∑=
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difference attained was 28.09 kJ/mol. If a dominant reaction existed, the dependence was 

relatively weak; for example, for T1 where c = 0.1, the average difference was 8.62 kJ/mol. 

2. The use of the FR and AIC methods led to almost the same dependencies of αE  on α , as 

indicated in the figure by  their lines having been merged; the use of the OFW and KAS methods 

led  to same trends  of αE variation with α  and was not able to detect if  advantages existed for 

using the KAS method relative to the OFW method; the accuracy of the temperature integral is 

trivial and does not require attention as compared to the errors introduced by the basic assumption 

of the isoconversional methods; 

 

Figure 5.4 Simulation results obtained from test T4 

3. In all tests except for T4, the behaviors of the OFW and KAS results were better than of the FR 

and AIC results in evaluating the dependencies of αE  on α  for parallel independent reactions. 

Specifically, if the reactions were partly overlapped, the use of the OFW and KAS methods was 
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better than the use of the FR and AIC methods. If the reactions were totally or heavily 

overlapped, the dependences of αE  on α obtained by the FR and AIC methods may seriously 

deviate from the true values, as is observed in Figs. 5.1-5.3 where dependences obtained by the 

FR and AIC methods were far from any of the three true αE lines; in contrast the dependencies 

obtained by OFW and KAS methods did not have suffer from this inaccuracy.  For T4, the 

behavior of the FR and AIC results was a little better than of the OFW and KAS methods, but 

they also captured true overall trends of the dependencies of αE on α . 

 

 

Figure 5.5 Simulation results obtained from test T5 

4. The use of the FR and AIC methods led to false values that were smaller or bigger than both 
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(these are not shown for brevity). In contrast, the use of the OFW and KAS methods never 

suffered from these significant problems.  

5. When the reactions were partially separated- as for T5 and T6- the αE  values were considered 

reliable at the beginning and/or ending points for all methods; when the contribution of one of the 

reactions was dominant- as for T1 and T3 – the αE  values for the dominating reaction could be 

obtained by all the methods. 

Hence, in summary, the OFW and KAS methods gave better results than the values obtained by 

the FR and AIC methods; Eq. (6.4) was not suitable for use with parallel independent reactions; 

and, the introduction of ES2 and ES3 for the OFW and KAS methods a flattened or “averaged” 

influence decrease the error caused by ES1. 

 

 

Figure 5.6 Simulation results obtained from test T6 
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Figure 5.7 Simulation results obtained from test T7 

5.3.2 Parallel Competitive Reaction 

A parallel competitive reaction is simulated that has two different reactions, as given by: 
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where 31−β = 5, 10, 20 K/min, 1A = 15.20 min10 − , 1E = 240 kJ/mol, 2A = 18 min10 −  and 2E = 100 

kJ/mol. The two reactions in this Test (T7) were equally weighted, which means that in the 

overall reaction ( ) ( )21 /~/ dTddTd αα  and no dominating reaction existed. Another two tests 

were conducted where one dominating reaction existed (T8) that had 1A = 15.19 min10 − ; using this 

1A  value led to ( ) ( )21 // dTddTd αα << ,  i.e. the reaction was dominated by reaction 2. The 
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other test with a dominating reaction (T9) had 1A = 122 min10 − ; using this 1A  value led to

( ) ( )21 // dTddTd αα >> , i.e. the reaction was dominated by reaction 1.  

1. The values of αE  had strong dependencies on the heating rates independent of  whether a 

dominating reaction existed or not: the average αE  differences when using 5 K/min, 10 K/min 

and 20 K/min for T7-T9 were 30.70, 13.09, and 17.10 kJ/mol, respectively, and the maximum 

differences were 34.46, 18.14, 32.13 kJ/mol at α  = 0.35, 0.70, 0.05, respectively; 

The true values of αE  and the values obtained by various methods are shown in Figs. 5.7-5.9. A 

discussion of the results from the T7-T9 tests is presented below. 

 

 

Figure 5.8 Simulation results obtained from test T8 
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and AIC methods also led to the same dependencies of αE on α . Comparatively, the use of the 

OFW and KAS methods also captured the overall trend of the dependencies but caused over 

smoothing of the true values. 

In these tests, the dependency of αE  on α  obtained by the FR and AIC methods were almost 

identical to the dependency on true values of 2β . It is worth noting, however, that this observation 

does not mean to imply that the same trends could be expected for cases that use different values 

and model functions. However, the dependence of αE  on α  for competitive reactions obtained 

by the FR and AIC methods tended to be better than that obtained by the OFW and KAS 

methods; this observation then suggests Eq. (6.4) holds for competitive reactions. 

 

 

Figure 5.9 Simulation results obtained from test T9 
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Galway [118] collected 404 sets of E and A values from a wide range of solid state reactions for 

which  the range of pre-frequency factors and activation energies for a majority of the reactions 

were within 30060 ≤≤ E  kJ/mol and 196 1010 ≤≤ A 1min− , respectively.  During this study, 

many simulation tests using various combinations of iβ  and ( )αf , and of E and A, were 

performed besides those values that were discussed in the previous sections. The overriding result 

of these simulations was that the behaviors discussed for reactions T1-T9 also held for these other 

simulations. Therefore, it is reasonable to conclude that the results of T1-T9 have common and 

important significance. 

5.4 Conclusion 

Studies of the accuracy of using isoconversional methods to evaluate the activation energy from 

non-isothermal solid state reaction data have concluded that the advanced integral 

isoconversional methods (and the differential ones if no noise involved) are more accurate than 

the regular integral ones. This research suggests this conclusion is problematic; the use of regular 

isoconversional methods involve a temperature integral approximation and the assumption that E 

is constant over the integration from 0 to α , but  has failed to consider the influence of the basic 

assumption on isoconversional methods. 

This study showed that there are three kinds of error sources involved in various isoconversional 

methods: the basic assumption (ES1); the temperature integral approximation (ES2); and the 

assumption that E is constant over the integration from 0 to α  (ES3). The differential methods, 

such as the FR method, and the advanced integral ones, such as the AIC method, suffer from 

source ES1; the regular integral methods such as the OFW and KAS methods suffer from all three 

(ES1, ES2 and ES3). However, this study for the first time gave critical insight into information 

about the generally accepted idea that advanced integral isoconversional methods (and 
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differential ones if the data do not contain noise) are more accurate than the regular integral 

isoconversional methods.  

Simulations have been carried out for parallel independent reactions and competitive reactions. 

The results of these simulations were:  the idea that the FR and AIC methods would give exact 

values of Eα  was not correct; for parallel independent reactions the use of the OFW and KAS 

methods was better than the use of FR and AIC methods; for competitive reactions, the use of the 

FR and AIC methods was better than the use of the OFW and KAS methods; the error introduced 

by the source of temperature integral approximation was much less important than the other two 

sources and can be neglected for complex reactions. 

Therefore, if one wants to apply an isoconversional method, the following recommendations are 

made. Additional studies testing the accuracy of the isoconversional methods or the reliability of 

newly developed methods should use the true values of the heating programs rather than the 

values determined by the advanced integral methods or the differential ones. Studies should also 

give more attention to the basic assumption inherent to the isoconversional methods and the 

assumption that E is a constant over the integration range from 0 to α  rather than the simplified 

the temperature integral. Finally, the use of the AIC and FR methods should yield to the use of 

regular integral methods such as the OFW and KAS methods for parallel independent reactions. 

Based on theoretical and simulation analyses, it is proposed that the use of advanced methods is 

better than regular ones for competitive reactions, but for parallel independent reactions this 

research shows for the first time that the use of regular integral methods is better than the use of 

the advanced integral ones. 
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CHAPTER 6: CONCLUSION  

 
This study talked in detail of model-fitting, model free and invariant kinetic parameters methods 

that have been developed, and proposed a comprehensive method based on previous methods for 

obtaining kinetic parameters for solid state reactions. The conclusions are as follows: 

Firstly, this study examined the advantages and disadvantages of previously existing methods. 

Model-fitting methods are easy to apply and are able to obtain single pair values for the activation 

energy and pre-exponential factor. However, model-fitting methods are highly unreliable because 

they require an existing knowledge of reaction mechanism, which is difficult to tell in most 

situations. Model free methods originated from the isoconversional principle, which is often 

called the basic assumption. This assumption provides model free methods - the freedom to avoid 

the usage of pre-knowledge of reaction mechanism. Additionally, model free methods are able to 

provide variable values of activation energy as a function of reaction degree. Previous studies 

comparing the reliability of those methods have not paid attention to the influence of the basic 

assumption on model free methods, and therefore, earlier conclusions are problematic. The 

invariant kinetic parameters method is also able to provide more reliable single pair values of 

activation energy and pre-exponential factor than model-fitting methods, but it is not applicable 

for complex reactions where the kinetic parameters such as activation energy vary with reaction 

degree and heating programs. 

Secondly, this study has determined that the benefits of the invariant kinetic parameters method 

are underestimated and an incremental version of the method has been developed. This 

incremental method is able to provide values for both the activation energy and pre-exponential 

factor for complex reactions. Although those values often deviates heavily from true values, this 

study showed that the incremental invariant kinetic parameters method can be used to 

successfully determine the reliability of values obtained by model free methods.  

Thirdly, based on model free methods and the invariant kinetic parameters method, this study 

proposed a comprehensive method. This method was tested on both simulation and experimental 

data of the decomposition of calcium carbonate and provided results showing noticeable 

advantages over other methods. The comprehensive method can evaluate the reliability of the 

results calculated by model free methods, determine the dependence of activation energy on the 

heating programs used, select reliable activation energy and provide variable pre-exponential 
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factor values for complex reactions, and to a certain degree, help to judge the quality of the 

experimental data.  

In addition, this work compares the accuracy of existing model free methods by considering the 

influence of the basic assumption. This discussion is helpful for researchers to select a better 

isoconversional method that matches with the incremental invariant kinetic parameters method 

for different types of complex reactions. 
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