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ABSTRACT OF THESIS 

The fundamental physics governing wildland fire spread are still largely 
misunderstood. This thesis was motivated by the need to better understand the role of 
radiative and convective heat transfer in the ignition and spread of wildland fires. The 
focus of this work incorporated the use of infrared thermographic imaging techniques to 
investigate fuel particle response from three different heating sources: convective 
dominated heating from an air torch, radiative dominated heating from a crib fire, and an 
advancing flame front in a laboratory wind tunnel test. The series of experiments 
demonstrated the uniqueness and valuable characteristics of infrared thermography to 
reveal the hidden nature of heat transfer and combustion aspects which are taking place 
in the condensed phase of wildland fuelbeds. In addition, infrared thermal image-based 
temperature history and ignition behavior of engineered cardboard fuel elements 
subjected to convective and radiative heating supported experimental findings that 
millimeter diameter pine needles cannot be ignited by radiation alone even under long 
duration fire generated radiant heating. Finally, fuel characterization using infrared 
thermography provided a better understanding of the condensed phase fuel pyrolysis and 
heat transfer mechanisms governing the response of wildland fuel particles to an 
advancing flame front.   

KEYWORDS: Ignition, Fuelbed, Fuel Particle, Radiative Heat Transfer, Convective Heat 
Transfer 
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CHAPTER 1: LITERATURE REVIEW 

1.1 Introduction  

 Wildfires are extremely destructive events, resulting in considerable social and 

economic costs. This ongoing battle presses on as expenses continue to grow, particularly 

in the wildland-urban interface where numerous amounts of resources are utilized to 

protect homes and other structures. Fire suppression represents the most publicized cost 

associated with wildfires, as average annual expenditures of the U.S. Forest Service totaled 

$580 million dollars from 1991 to 2000 and then more than doubled to $1.2 billion from 

2001 to 2010. Additionally, state expenditures related to fighting wildland fires have also 

increased. In 2008, the National Association of State Foresters (NASF) reported more than 

$1.6 billion in annual expenses by State forestry agencies on wildfire protection, 

prevention, and suppression (including Federal funding exhausted by State agencies) [1]. 

 However, the costs associated with fire suppression represent only a small part of a 

much larger picture. Numerous other expenses are consumed in restoring and reviving the 

damages and losses accrued from wildfires, specifically, the cost to human health, life and 

well-being. The lives lost or injured due to a wildfire are a real and tragic consequence of 

one of nature’s most fierce and powerful forces that cannot be represented by dollar signs. 

One such example includes the 2013 Yarnell Hill wildfire, which claimed the lives of 19 

members of an elite firefighting crew known as the Granite Mountain Hotshots in Yarnell, 

Arizona. Such events provide the necessary drive and motivation to better understand 

wildfires, in hopes of preventing such tragedies from happening in the future. 

 The unpredictability and raw, cataclysmic power of wildfires presents an inherent 

difficulty in terms of understanding fire spread mechanisms. As such, predicting the path 
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of wildfires is extremely important in the efforts of forestry services and fire managers. 

Scientific advances in the form of spread rate models have paved the way in providing 

more effective means for firefighting and containment. Such fire behavior models form the 

core for decision support systems [2]. 

 Given the limitations and empirical nature of current fire behavior models, the question 

remains of how to enhance physical understanding and someday improve operational fire 

spread modeling [3]. To answer this question, it is imperative to expand upon our 

understanding of the heat transfer mechanisms that govern the ignition process and flame 

spread rate, specifically radiation and convection [4]. 

1.2 Radiation Driven Spread Models 

 As surmised by Finney et al. [4], correct application of the heat transfer mechanisms 

contributing to ignition have yet to be reliably applied to fire spread models. Therefore, a 

more thorough understanding of the underlying physics and ignition theory of forest fuels 

(including live fuels) is needed to develop a coherent theory on the heat transfer 

mechanism.  

 In the past, radiative heat transfer has typically been noted as the primary mechanism 

governing wildland fire spread  [5-15] similar to upward flame spread along vertical walls 

under natural convection [16, 17] and flame spread across a continuous horizontal fuel bed 

under a very high horizontal wind velocity [18]. These laboratory experiments used PMMA 

and wood samples under well controlled laboratory boundary conditions, while flame 

spread over forest fuel beds involves many other additional parameters. These parameters 

include complex mixtures of different types of live and dead fuels, non-uniform porous 

fuel structure, different terrain, and changing wind speed among others.  
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 Furthermore, Morvan and Dupuy [19] developed a multiphase formulation model used 

to simulate the decomposition of solid fuel constituting a wildland fuelbed. This approach 

consisted of solving the governing equations for mass, momentum and energy conservation 

for a surface fire in a pine needle fuel bed with a scaled control volume sufficient enough 

to contain several solid fuel particles in a surrounding gas mixture. The numerical results 

were then compared to experimental data obtained from laboratory tests. The results 

showed that the primary controlling mechanism driving fire spread along flat ground with 

no imposed flow was radiative heat transfer. 

 Rothermel [20] developed a mathematical model for predicting rate of spread for a 

variety of wildland fuels. This particular model utilized a set of mathematical equations to 

physically and chemically represent a wildland fire burning uniform, small, dead fuel 

particles on a forest floor. The model input parameters were independent of fuel species 

but instead included fuel loading, fuel depth, fuel particle surface-area-to-volume ratio, 

fuel particle heat content, fuel particle moisture and mineral content, and the moisture 

content required for extinction. Unfortunately, as the uniformity of the fuel elements 

diminishes, the accuracy of the model is also decreased. More significantly, the spatial 

inconsistency present in a forest cannot properly be accounted for in this particular model. 

As such, there is no way for the model to suitably predict fire spread rates through 

intermittent fuel elements.   

1.3 Infrared Thermography as a Method to Observe the Heating and Ignition 

Processes of Fuel Particles 

 Albini [5] articulated that a well-developed flame zone would block ambient winds 

thus preventing the ignition of adjacent fuel from convective heating. Others however, have 
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questioned whether radiative heat transfer is a sufficient means of driving wildland fire 

spread [21-26]. Fire spread models developed by Sullivan [27] and Weber [28] 

incorporated both radiative and convective heat transfer. Unfortunately, the process of 

ignition at the fuel particle scales has been assumed without any experimental data. Emori 

and Iguchi et al. [29] mimicked forest fuel with excelsior and vertically oriented paper 

strips coated with candle wax. The results from the experiment showed that flame spread 

over inclined fuel beds for the paper strip fuels and horizontal and inclined excelsior fuel 

beds was controlled by convection [29]. Adam et al. [30] further studied scaling laws on 

flame spread by bringing a Strouhal-Froude number flow instability to convection heat 

transfer, predicting that flame spread through forest fuelbeds would satisfy these 

convection-controlled scaling law conditions. 

  Lamentably, little wildland fire research has been devoted to investigating the role of 

convection in wildland fire spread [4]. Within the visible spectrum, there appears to be a 

gap between the observed fuel particle response to an advancing flame front and the 

mechanisms driving the heating process. Therefore, it is suggested that in order to better 

understand the heating and ignition processes of fuel particles, a new visualization 

technique must be employed. 

 Infrared thermography has gained wide popularity within fluid mechanics and heat 

transfer research due to its non-contact capabilities for measuring temperature [31]. This 

imagining technique allows infrared radiation emitted by an object to be converted into a 

visual image. This emitted energy is dependent upon the surface characteristics of the 

object as well the temperature of the object [32]. In the case of wildland fires, infrared 

thermography techniques are particularly useful in obtaining thermal/heat transfer 
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processes taking place on and in the condensed fuelbeds during flame spread [33]. This 

practice was successfully applied to measure the transient pyrolysis location for upwardly 

spreading fire over wood and PMMA samples [34], [35] and sub-surface layer defects [36]. 

1.4 Ignition Theory 

 In order to ignite unburned fuel particles and initiate a pyrolysis reaction, enough heat 

must be transferred to the surrounding fuel bed to produce a satisfactory amount of 

pyrolysis gases. When the pyrolysis gases are combined with the surrounding air, a 

combustible mixture is formed that ignites and burns with a heat release rate greater than 

the rate of heat loss to the environment [3], [4]. This cycle is repeated until the fire is 

extinguished either by natural means or by force (e.g. wildland fire fighters).  According 

to Fernandez-Pello and Hirano [37], this repeating pattern is the mechanism which allows 

the flame front to spread, where heat transfer from the front to the unburned fuel particles 

and gas phase kinetics play an important role. 

 Grishin et al. [38] indicated that  ignitability of combustible forest materials is a critical 

component in initiating and sustaining wildland fires. There are two ways in which the 

ignition process can occur: piloted or spontaneous. Spontaneous ignition occurs without 

the aid of an external pilot heating source and requires intense heat fluxes to sustain 

burning. As such, the occurrence of this type of ignition is rare. According to Mindykowski 

et al. [39], piloted ignition represents the most prevalent means of ignition for combustible 

materials in wildland fires due to the presences of radiative and/or convective heating and 

ignition sources (e.g. flame, firebrand). With the flame acting as the pilot source and the 

heating source, this form of ignition can occur at lower temperatures and thus is the 

mechanism responsible for fire growth in wildland fuelbeds. 
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 Within the wildland fire community, a common practice is to assume that ignition 

occurs at some fixed ignition temperature [4]. While this assumption may be satisfactory 

for some conditions, it is more difficult to accurately apply an ignition temperature to most 

wildland fires due to the variety in environmental conditions, spatial configuration, heating 

method and rate, and non-uniformity throughout the fuelbed [40], [41]. Therefore, due to 

the inherent difficulty in making accurate predictions based off ignition temperature, a 

more comprehensive understanding of the physical processes governing ignition must be 

better established. 

1.5 Research Objective 

 The work resulting in this thesis was motivated by the need to better understand the 

role of radiative and convective heat transfer in the ignition and spread of wildland fires. 

Therefore, the focus of this work incorporated the use of infrared thermographic imaging 

techniques to investigate fuel particle response from three different heating sources: 

convective dominated heating from an air torch, radiative dominated heating from a crib 

fire, and an advancing flame front in a laboratory wind tunnel test. 
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CHAPTER 2: EXPERIMENTAL METHODS 

2.1 Fuel Particle Development 

 In order for a wildland fire to be sustained, three elements must be present: heat, 

oxygen, and fuel. Noted by Keane et al. [42], one of the core elements in many wildland 

fire planning and management activities is wildland fuels. Fuels constitute the biological 

matter required for ignition. Additionally, they offer the best opportunity for humans to 

interact with the fire and change the fire behavior [20], [43], [44].  

 The spread, intensity, and severity of a wildland fire can be partially attributed to the 

physical characteristics of fuels, such as loading (weight per unit area), size (particle 

diameter), and bulk density (weight per unit volume) [45], [46]. Unfortunately, it becomes 

quite difficult to encompass the physical characteristics for all fuels in any given area, due 

to the large variations in environmental conditions such as moisture and soil content, 

altitude, topography, etc. Hence, it is critical to utilize fuel particles that compare well to 

actual wildland fuelbeds but maintain homogenous properties and physical attributes. 

Cardboard and paper strips have been used in previous experiments [47] and offer the 

freedom to customize in any configuration desired. Therefore, engineered cardboard fuel 

particles (1.27 mm thick with approximately 60% recycled content) were fabricated at the 

Missoula Fire Sciences Laboratory using a Universal Laser Systems Inc. ILS12.150D 

model CO2 laser engraver equipped with two 60W laser cartridges. The cardboard samples 

were connected along a common spine and cut at regular spacing. The width and height of 

the cardboard elements varied according the desired fuel particle/fuelbed properties. 
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2.2 IR Camera 

  The transient temperature history of the cardboard fuel particles heated under various 

sources was measured using a FLIR SC4000™ infrared camera. The IR camera has a 

spatial resolution of 320 x 256 pixels and a spectral range of 3-5 μm. Additionally, the 

camera was fitted with a broadband flame filter with a spectral range of 3.7 - 4.2 μm to 

eliminate flame interference and obtain thermal images at the condensed phase.  

 To reduce the amount of noise and saturation captured in each video image, a super-

framing algorithm was employed. This algorithm takes a set of four images (subframes) of 

the scene at progressively shorter exposure times, in rapid succession, and then repeats this 

cycle. The subframes from each cycle were then merged into a single superframe to 

combine the best features of the four subframes. This process, called collapsing, provided 

thermal images both high in contrast and wide in temperature range. 

The following sections provide methodology from three sets of experiments: 

convective dominated heating from an air torch, radiative dominated heating from a crib 

fire, and infrared thermographic analysis from a wind tunnel test. 

2.3 Convection Dominated Heating: Air Torch Experiment 

The cardboard fuel elements were heated from ambient temperature by a convective 

heater to achieve ignition (recognized by the establishment of a visible flame). Figure 1 

depicts a schematic of the convection heating experiment. A vertically oriented convection 

heater provided forced convective heat flow parallel to the cardboard elements suspended 

approximately 0.5 cm above the exit of the air torch, where two different temperature 

settings (500 °C and 750 °C) were used. The mass flow rate of air was controlled and held 
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constant, so the airflow velocity at the exit of the torch varied from 1.3 to 1.5 m/s for the 

two temperatures tested. 

Three common tine geometries, shown in Figure 2, were used and each experiment was 

repeated ten times per geometry. Every effort was made to ensure all experimental 

conditions remained the same and that the results were repeatable, since the temperature 

distribution at the circular exit of the torch was not symmetric which could lead to an 

uneven temperature distribution across the hot exiting air stream. 

 The cardboard tine samples were suspended in a downward facing manner, as shown 

in Figure 3, throughout the duration of the experiment to mimic the condition of heated 

vertical plates subjected to forced convection from an imposed parallel flow. 

Figure 1 - Air torch schematic:  Side view. 
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2.4 Radiation Dominated Heating: Crib Fire 

 A wood crib (91.44 cm wide x 76.2 cm tall x 91.44 cm long) constructed of Ponderosa 

pine (Pinus ponderosa) sticks was used to provide radiative heating to the cardboard 

samples under circumstances as close to wildland fires conditions as possible. The crib was 

conditioned at 30 °C and 3% RH for approximately 2 weeks to adjust the moisture content, 

which was identified as roughly 1%. A schematic of the experimental set up is shown in 

Figure 4.  The crib was constructed with 2.54 cm square sticks with six sticks per layer and 

30 layers so that it burned in the loosely-packed regime. The crib was placed on cinder 

blocks providing 19.5 cm of space between the crib and the support platform. The crib was 

housed within a large (12.4 m x 12.4 m x 19.6 m) sealed burn chamber with no imposed 

flow. This allowed minimal incoming and outgoing drafts, thus limiting convective heating 

and cooling effects and maximizing the radiative heating effects. Equation (1) can describe 

the above heat balance   

𝑑𝑑𝑞𝑞"
𝑑𝑑𝑡𝑡

=  𝐸𝐸(𝑇𝑇𝑠𝑠4 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠4 ) + ℎ(𝑇𝑇𝑠𝑠 − 𝑇𝑇∞) (1) 

Figure 3 – Tine orientation.Figure 2 - Tine geometries (a) 0.635 cm wide x 5.08 

cm high (b) 0.635 cm wide x 15.24 cm high (c) 1.27 

cm wide x 15.24  cm high. 
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where 𝐸𝐸 represents the product of the Stefan-Boltzmann constant (5.67 x 10-8 W/m2-K4), 

the integrated emissivity of the cardboard elements, and a geometrical view factor and the 

ℎ(𝑇𝑇𝑠𝑠 − 𝑇𝑇∞) term is used to define the convective cooling effects. 

 Three cardboard tine geometries were used for this experiment: 0.635 cm wide x 5.08 

cm high, 0.635 cm wide x 15.24 cm high, and 1.27 cm wide x 15.24 cm high. The tines 

were originally constructed into two foot sections, but cut into smaller segments and taped 

together using reflective aluminum adhesive tape. To achieve the best viewing angle 

possible between the IR camera and the fuel, the tines were positioned at an angle of 25° 

with respect to the crib with the closest end measuring 91.44 cm away from the edge of the 

crib and the furthest measuring 109.22 cm away.  

 A separate cardboard tine was coated with high carbon content black paint (ε = 0.95) 

to serve as a black body for the IR camera. Additionally, a 1 mm K-type thermocouple was 

taped to the bottom of the cardboard sample to measure the surrounding air temperature 

during the heating experiment.    

Figure 4 - Crib schematic: Plan view.
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2.5 Wind Tunnel Experiment: Composite Fuelbed 

 Composite fuelbeds constructed of 0.635 cm wide x 5.08 cm high and 0.635 cm wide 

x 15.24 cm high cardboard fuel elements were burned in the Missoula Fire Sciences 

Laboratory wind tunnel with a 3.048 m x 3.048 m cross section.  The wind speed was held 

constant at 0.89 m/s. The combs were supported and arranged on a foundation of cement-

board strips (Hardy Board) 0.635 cm wide x 5.08 cm high each separated by a steel spacer 

0.158 cm wide x 2.54 cm high. The steel spacers rested on the floor to preserve a slot at 

the upper surface which pinched the spine of the fuel combs such that only the vertical 

tines were exposed. The cardboard comb spacing was held constant at 7.62 cm. Figure 5 

shows schematics of the experimental setup.  

 The transient temperature history of the cardboard fuel particles when subjected to 

primarily convective and radiative heating from an advancing flame front was measured 

using the IR camera shown in Figure 5. The camera was fixed approximately 93 cm away 

from the fire, looking down at the fuelbed with a view angle of approximately 30 degrees 

from the horizontal. The camera was stored in an air purged aluminum container 33.02 cm 

in diameter. Additionally, ice packs were placed inside the housing to regulate the internal 

temperature of the camera during the burns due to the intense radiative heat of the 

advancing flame front.  

 This particular fuelbed arrangement aided in observing a regular series of peaks-and-

troughs in the span-wise direction from which the convective and radiative heating were 

separately obtained. The collected IR images were also used to determine the gradual 

preheating process taken over the entire length of the 0.635 cm wide x 15.24 cm high fuel 

particle surface since the rows contained within the region of interest were staggered 

12 



(Figure 6). From the results of this dynamic heating process, the heat flux being 

experienced by the preheated areas of the 0.635 cm wide x 15.24 cm high cardboard fuel 

particles was estimated. Finally, the downward spread rate was estimated by examining the 

increase in burning area between IR images of the 0.635 cm wide x 15.24 cm high fuel 

elements. 

Figure 6 - Region of interest: 

Front view.

Figure 5 - Composite fuelbed schematic: Side 

view. 
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CHAPTER 3: RESULTS AND DISCUSSION 

3.1 Convection Dominated Heating: Air Torch 

The recorded infrared video images provided a rich database for all 30 fuel samples, 

but here, only the results for the 0.635 cm wide x 5.08 cm high cardboard elements were 

presented due to their significance. Note that the results presented are not representative of 

a single test but rather depict the average of all ten trials for the 0.635 cm wide x 5.08 cm 

high fuel element. 

The software ExaminIR™ [48] was used to evaluate the IR video image data. Specific 

regions of interests (ROI’s) located at the tip of each tine were used to determine a 

temperature history of the cardboard fuel elements. These ROI’s were labelled from left to 

right as Cursor one through four. In the grayscale image, white is representative of hotter 

temperatures, while dark is indicative of colder temperatures. The results for the air torch 

outlet temperature of 500 °C show a steady progression in temperature up to the point of 

flame visibility at approximately 315 °C where temperature rises sharply (Figure 7). 

Figure 7 - Temperature history for the 0.635 cm wide x 5.08 cm high fuel element 

subjected to an outlet temperature of 500 °C. 
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Once a stable flame was established, the tines were pulled away from the outlet of the torch 

to prevent burning fuel elements from falling into the air torch and possibly damaging the 

equipment. In evaluating each cursor, fluctuations due to flame movements and CO2 

interference, which are visible in the spectral range of the filter, are represented by a larger 

standard deviation. These fluctuations are shown for Cursor one and Cursor four in Figure 

8. 

For the case of an outlet temperature of 750 °C (Figure 9), the results show a decrease 

in flame visibility temperature (307 °C) with an increase in heat flux, as expected [49]. 

Additionally, more fluctuations in the temperature progression are present as a result of 

increased turbulence in the airflow (Figure 10). Note that for an outlet temperature of 

500°C, it took approximately 12 seconds to reach ignition, while for an outlet temperature 

of 750 °C it took roughly 1.5 seconds, indicating that an increase in the heat flux enhances 

the heat transfer rate by convection to the unburned fuel element and consequently 

increasing the rate of flame spread. 

Figure 8 - Temperature history showing standard deviations as a result of flame movement and 

CO2 interference for an outlet temperature of 500 °C for Cursor 1 and Cursor 4. 
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3.2 Radiation Dominated Heating: Crib Fire 

A similar procedure was used to determine the temperature history of the cardboard 

fuel elements when subjected to a predominantly radiative heating source. The average 

radiative heat flux of the crib fire was approximately 10.3 kW/m2. Within ExaminIR™, 

specific areas of interest were placed at the tip, middle, and bottom of the cardboard fuel 

elements closest to the burning crib, as these tines were exposed to the largest amount of 

Figure 9 - Temperature history for the 0.635 cm wide x 5.08 cm high fuel element 

subjected to an outlet temperature of 750 °C. 

Figure 10 - Temperature history showing standard deviations as a result of flame 

movement and CO2 interference for an outlet temperature of 750 °C for Cursor 1 and 

Cursor 4.
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radiative heat. These fuel particles included the 0.635 cm wide x 5.08 cm high tines and 

the 1.27 cm wide x 15.24 cm high cardboard elements shown in Figure 11(c).  

During radiative heating, a natural convection thermal boundary layer will be 

developed over the heated fuel surface bringing two different benefits for ignition: reducing 

the heat loss from its heated surface to the surrounding air and promoting a fuel-air mixture 

layer within the boundary layer, both are favourable for ignition. 

Examining the ratio of exposed heating area to total fuel surface area, the potential for 

receiving radiant heat as opposed to losing energy to the surroundings from natural 

convective cooling was recognized to be greater for the larger fuel particles. This explains 

the results of Figure 12 where the larger tines (1.27 cm wide x 15.24 cm high) were able 

to ignite at the tip.  

(a) (b) (c)

Figure 11 - Tine geometries: (a) 0.635 cm wide x 5.08 cm 

high (b) 0.635 cm wide x 15.24 cm high (c) 1.27 cm wide 

x 15.24 cm high. 
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It should be noted that the ratio of the exposed heating area to the total fuel surface area 

is an important indicator to assess the effect of radiation on ignition not only for cardboard 

fuel samples but possibly for actual dead forest fuels, since the underlining governing 

physics can be also applied.  But a more thorough scaling study,  based on the studies 

Figure 12 - Temperature history of the 1.27 cm wide x 15.24 cm high fuel element 

subjected to predominately radiative heating. 

Figure 13 - Temperature history of the 0.635 cm wide x 5.08 cm high fuel element 

subjected to predominately radiative heating.
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conducted by Adam et al. [30], Emori and Saito [50], and Emori and Iguchi et al. [29], is 

required to justify whether or not this ratio can be an important scaling factor.  As for live 

forest fuels, however, the above finding may not be directly applicable due to its complex 

fuel structure [51] and therefore, a fundamental study to reveal ignition behaviour of live 

fuels is certainly needed.   

In summary, IR thermal image-based temperature history and ignition behaviour of 

engineered cardboard fuel elements subjected to convective and radiative heating support 

the USDA’s original findings  that millimeter diameter pine needles cannot be ignited by 

radiation alone [4] even under a long duration fire generated radiant heat flux of an average 

10.3 kW/m2. 

3.3 Post Processing of Wind Tunnel IR Images: Heat Flux Analysis 

 Once more, the software ExaminIR™ was used to capture several infrared 

thermographic images of the cardboard fuel elements. Thermal bounds (300 °C – 1,000 

°C) were set in ExaminIR™ to enhance image details as well as better understand the 

mechanism affecting the preheating of the unburned fuel particles in relation to the flame 

spread. Figure 14 shows three different IR images, labelled from left to right as Phase one 

to Phase three, captured at three different times (t = 133.1 s, 144.5 s, 150.2 s). In the color 

images of Figure 14, white is representative of the upper temperature bound (1,000 °C) and 

black is indicative of temperatures below the lower bound (300 °C). Furthermore, 

temperature changes from high to low in the order of yellow, orange, red, green, light blue, 

dark blue, and purple.  

 These IR images revealed a higher surface temperature at the corners and edges in 

comparison to the flat face. This behavior is an agreement with a thicker boundary layer 
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on the flat surfaces of the fuel particles signifying an important role of convective heating 

from an advancing flame front.  

 Using the processing software ImageJ [52] in conjunction with Adobe® Photoshop®, 

we extracted high pixel information from the collected IR images without sacrificing too 

much detail. Figure 15 shows an increase in the preheated areas of interest for the 0.635 

cm wide x 15.24 cm high cardboard fuel elements from t = 133.1 s to t = 150.2 s. 

Figure 14 - Infrared thermographic images of the cardboard fuel elements. The 0.635 cm 

wide x 5.08 cm high fuel particles reveal a higher surface temperature at the corners and 

edges in comparison to the flat face. Additionally, preheating of the 0.635 cm wide x 15.24 

cm high fuel particle is visible over the time interval shown. 
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In calculating the preheated areas, it was necessary to compensate for the downward facing 

angle (approximately 30 degrees from horizontal) of the camera using the CAD software 

SolidWorks® to adjust for the geometrical complexities associated with the viewing angle. 

The heat transferred to each area of interest was then roughly estimated using Equation (2) 

𝑄𝑄 = 𝑐𝑐𝜌𝜌𝐴𝐴𝑑𝑑(𝑇𝑇𝑝𝑝𝑠𝑠𝑝𝑝 − 𝑇𝑇0) (2)  

where 𝑐𝑐 represents the specific heat of the fuel particles, 𝜌𝜌 represents the density of the 

cardboard fuel elements, 𝐴𝐴 is the calculated preheated areas of interest, 𝑑𝑑 is the thickness 

of the cardboard samples, and 𝑇𝑇𝑝𝑝𝑠𝑠𝑝𝑝 is the average temperature of the preheated areas which 

was determined from the IR images. Note that due to the limited information available on 

the material properties of the cardboard being used, the specific heat of paper (1.255 kJ/kg-

K) [53] at room temperature was used. The cardboard fuel elements were also assumed

thermally thin allowing for a constant thickness 𝑑𝑑. The heat rate was then determined using 

Equation (3). 

Figure 15 - Preheated areas of interest for the 0.635 cm wide x 15.24 cm 

high cardboard fuel elements. 
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𝑞𝑞 =  
∆𝑄𝑄
∆𝑡𝑡

 (3)

where ∆𝑡𝑡 is the time interval between images. Finally, the total heat flux was calculated 

through the use of Equation (4) 

𝑞𝑞′′ =  
𝑞𝑞
∆𝐴𝐴

 (4)

where ∆𝐴𝐴 represents the increased area of preheating between the IR images. The 

calculated results are shown in Table 1. 

Table 1 - Thermal analysis of IR images. 

Image Preheated  
Area (cm2) Q (kJ) q (W) q'' (kW/m2) 

1 (t = 133.1 s) 18.17 0.61 47.65 34.46 
2 (t = 144.5 s) 32 1.15 66.7 68.51 
3 (t = 150.2 s) 41.74 1.53 

These results show a 98.82% increase in heat flux over the 17 second time interval between 

image one and image three. Additionally, the thermal analysis of the IR images provided 

an interesting insight into the mechanisms driving the heating of the cardboard fuel 

elements since the heat flux values provided in Table 1 encompass all three modes of heat 

transfer affecting this system: radiative heating from the flame front, convective heating 

due to an imposed flow, and conductive heating through the cardboard fuel particles. 

3.4 Post Processing of Wind Tunnel IR Images: Spread Rate Analysis 

A similar process was used to determine the increased area of burning between images. 

Figure 16 shows the change in the burning areas of interest for the 0.635 cm wide x 15.24 

cm high cardboard fuel elements from  133.1 s to 150.2 s. Note that for the downward 

spread rate, the cardboard fuel elements were examined individually rather than as a 
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collective region, the same as with the preheated areas in the Heat Flux Analysis section. 

In addition, the cardboard particles are labelled from right to left as one, two, and three. 

The spread rate of the pyrolysis front was estimated for fuel particles one, two, and three 

using Equation (5)  

𝑣𝑣 =  
∆𝐴𝐴
∆𝑡𝑡 ∙ 𝑤𝑤 (5) 

where ∆𝐴𝐴 represents the increased area of burning between the IR images and 𝑤𝑤 is the 

width of the cardboard fuel particle. The individual heating rates were also determined for 

the preheated areas of fuel particles one, two, and three based upon the image processing 

results discussed in the Heat Flux Analysis section. This step was useful in determining 

whether or not a simple correlation between the increases in preheated areas to downward 

spread rate exists. The calculated results are shown in Table 2. The IR-based thermal 

analysis and application can be found in ref. [33] and the use of infrared imaging to obtain 

spread rate are provided in refs. [36, 54]. 

Figure 16 - Burning areas of interest for the 0.635 cm wide x 15.24 

cm high cardboard fuel elements. 
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Table 2 - Calculated spread rates, increases in preheated area, and heating rates for fuel 

particles one, two, and three between images. 

Particle Image v (cm/s) Δ Preheated  
Area (cm2) q (W)

1 
1 (t = 133.1 s) 

0.352 6.37 9.84 
2 (t = 144.5 s) 

1 
2 (t = 144.5 s) 

0.029 1.41 9.87 
3 (t = 150.2 s) 

2 
1 (t = 133.1 s) 

0.125 3.28 11.61 
2 (t = 144.5 s) 

2 
2 (t = 144.5 s) 

0.119 0.73 5.87 
3 (t = 150.2 s) 

3 
1 (t = 133.1 s) 

0.006 4.39 15.02 
2 (t = 144.5 s) 

3 
2 (t = 144.5 s) 

0.183 2.63 18.18 
3 (t = 150.2 s) 

The preliminary results do not yield a simple relationship between the increases in 

preheating area and downward spreading pyrolysis front, therefore, a more in-depth 

analysis is suggested for future work. Importantly, it was demonstrated that the current 

study using IR image-based thermal analysis was capable of obtaining the detailed heat 

transfer process taking place at the condensed phase of the fuel particles, providing a 

powerful tool for thermal analysis on both full scale and laboratory scale fires.  
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CHAPTER 4: CONCLUSION 

4.1 Summary 

 Wildland fires from unforeseen ignitions are devastating forces of nature that are still 

largely misunderstood. The knowledge of basic combustion and heat transfer principles 

governing the ignition and spread of these destructive events is needed in order to improve 

the predictive capabilities of the currently existing models. 

The following specific contributions were made from the present studies: 

 (1) The present series of experiments demonstrated the uniqueness and valuable 

characteristics of infrared thermography to reveal the hidden nature of heat transfer and 

combustion aspects which are taking place in the condensed phase of wildland fuelbeds.    

(2) IR thermal image-based temperature history and ignition behavior of engineered 

cardboard fuel elements subjected to convective and radiative heating supported the 

USDA’s original findings that millimeter diameter pine needles cannot be ignited by 

radiation alone even under long duration fire generated radiant heating. 

 (3) These findings not only helped summarize some of the past contributions of the 

USDA but they also contributed to the extensive and ever growing database used in 

understanding the complexity of wildland fires spread. 

 (4) Fuel characterization using infrared thermography provided a better understanding 

of the condensed phase fuel pyrolysis and heat transfer mechanisms governing the response 

of wildland fuel particles to an advancing flame front. 

4.2 Future Recommendation 

 Finally, it is recommended that the understanding of wildland fire be pushed to new 

bounds. Questions should continue to be asked and answers continued to be sought after in 

this ongoing struggle. The health, safety, and well-being of thousands, possibly millions of 
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people are at stake with each passing fire season and it is the responsibility of scientists 

and engineers to use this growing database and wealth of knowledge to solve the problem 

of how and why wildland fires spread. 
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