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ABSTRACT OF DISSERTATION

CHARACTERIZATION AND FLOW PHYSICS OF

PLASMA SYNTHETIC JET ACTUATORS

Plasma synthetic jet actuators are investigated experimentally, in which the geometrical

design of single dielectric barrier discharge (SDBD) plasma actuators is modified to produce

zero-mass flux jets similar to those created by mechanical devices. The SDBD plasma

actuator consists of two rectangular electrodes oriented asymmetrically and separated by a

layer of dielectric material. Under an input of high voltage, high frequency AC or pulsed DC,

a region of plasma is created in the interfacial air gap on account of electrical breakdown

of the ambient air. A coupling between the electric field in the plasma and the neutral

air near the actuator is introduced, such that the latter experiences a net force which

results in a horizontal wall jet. This effect of the actuator has been demonstrated to

be useful in mitigating boundary layer separation in aerodynamic flows. To increase the

impact that a plasma actuator may have on the flow field, this research investigates the

development and characterization of a novel flow control device, the plasma synthetic jet

actuator, which tailors the residual air in the form of a vertical jet resembling conventional

continuous and synthetic jets. This jet can be either three dimensional using annular

electrode arrays, or nearly two dimensional using two rectangular strip exposed electrodes

and one embedded electrode. Detailed measurements on the isolated plasma synthetic jet

reveal that pulsed operation of the actuator results in the formation of multiple counter-

rotating vortical structures in the flow field. The output jet velocity and momentum are

found to be higher for unsteady pulsing as compared to steady operation. In the case of

flow over a flat plate, the actuator is observed to create a localized interaction region within

which the baseline flow direction and boundary layer characteristics are modified. The

efficiency of the actuator in coupling momentum to the neutral air is found to be related



to the plasma morphology, pulsing frequency, actuator dimension, and input power. An

analytical scaling model is proposed to describe the effects of varying the above variables

on the output jet characteristics and actuator efficiency, and the experimental data is used

for model validation.

KEYWORDS: Active Flow Control, Plasma Actuators, Synthetic Jets, Particle Image Ve-

locimetry, Jet Flows.
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Chapter 1

INTRODUCTION

Flow control, or the ability to actively or passively manipulate a flow field, has emerged

as one of the preeminent topics of research in fluid dynamics. The performance of vehicles

(such as Unmanned Aerial Vehicles—UAVs and Micro Aerial Vehicles—MAVs) or devices

(such as low pressure turbine blades and fuel injectors) that operate in low Reynolds number

conditions is limited chiefly by the reduced ability of the low kinetic energy flow to smoothly

negotiate an adverse pressure gradient scenario. The adverse pressure gradient is typically

imposed due to a combination of both the curvature of the surface (uphill regions) and

operation of the device or vehicle, such as in the high angle of attack pitch-up maneuvering

of an aircraft. As a result of this tendency of low Reynolds number flow to separate from the

surface when subjected to an adverse pressure gradient, the pressure drag component of the

parasitic drag increases, reducing the overall efficiency. As an example of the consequences of

separation, previous studies dating to 1990 have shown that a skin friction drag reduction

in the order of 20% would result in an annual fuel savings of roughly $1 billion in the

commercial aircraft industry, and a 6.8% increase in speed of underwater vehicles in the

military sector (Gad-El-Hak et al. [1]). In the case of aircraft, laminar boundary layer

separation may lead to problems such as separation bubble bursting and associated stall

(see Lissaman [2]). The vast range of applications arising from the ability to manipulate

fluid flows, beyond the obvious advantages in micro and meso aerial vehicles, in other areas

such as the excitation of jet boundary layer instabilities (Peacock et al. [3]), combustion

(De Zilwa et al. [4]), internal aerodynamics (low pressure turbine blades—see Bons et al.

[5] and Rivir et al. [6], stator vanes—see Culley et al. [7], and diffusers—see Chiekh et al.

[8]), and suppression of wind-induced vibrations in tall structures (Kubo et al. [9]), just to

name a few, provides a strong motivation for research in the subject of flow control. This

science is currently of major importance in fluid dynamics research, and several techniques

to alter and manipulate a flow field have been explored (see Gad-El-Hak [10]). The work

presented herein, in particular, investigates a method for flow control using weakly ionized

discharge plasmas.

This first section of this introductory chapter discusses the physics of the problem of

boundary layer separation, and a brief review of the science of flow control will be presented.

This is followed by an introduction to plasma based flow control and the flow control device
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of interest herein, the plasma synthetic jet actuator (PSJA), and the objectives of this

research and organization of the dissertation are presented in the concluding portions of

this chapter.

1.1 Boundary Layer Separation

The concepts of boundary layer theory and flow control were first introduced by the

German mathematician and fluid physicist, Ludwig Prandtl, in his seminal address to the

Third International Mathematical Congress in 1904 [11]. Prior to this work, fluid dynamics

was pursued heavily by mathematicians within the confines of the inviscid, irrotational,

potential flow approximation. Notwithstanding their appreciable success in various flow

formulations, the theoretical results did not entirely agree with experimental observations

at the time (d’Alembert’s paradox, for example, is used to refer to the zero drag around

a rigid body predicted from a simple potential flow model, in contrast to experimental

observations that confirm a finite drag force.) Departing from the previous notion that the

layer of fluid nearest to a solid wall tends to “slip” through the surface without suffering

any motion retardation, Prandtl’s work identified the property of viscosity (fluid friction) to

actually be responsible for the discrepancies between the idealized potential flow predictions

and actual behavior of a fluid flow over a surface. On account of this property, the velocity

of the layer of fluid in contact with the solid flow boundary was observed to be equal to

that of the surface itself. Thus, in the case of a solid wall at rest, the value of fluid velocity

at the wall would have to be zero (the no slip condition in fluids parlance), while it would

be equal to the free stream value well outside of it. In order to ensure that the change

in velocity from the wall to the mean flow was continuous, the flow field was divided into

an thin inner boundary layer region near the wall where viscous effects were important,

and an outer region where the potential flow approximation was still valid. Within the

boundary layer, both the free stream pressure gradient imposed on the solid surface as well

as frictional force (otherwise known as wall shear) tend to lower the momentum of fluid

particles such that the layer of fluid located closer to the wall suffers more deceleration

than the layer further away from the wall. A sample boundary layer velocity profile on

the flow over an airfoil is shown in Fig. 1.1, at the first station closest to the leading edge.

Typically, the flow over a streamlined body such as an aircraft wing is dictated by the fluid

pressure acting on it. The gradient of pressure across the various locations on the surface

provides the necessary impetus required for fluid motion, in the form of potential energy.

Thus, in a scenario wherein the pressure gradient is such that it promotes acceleration
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of the flow, the available potential energy is converted into kinetic energy which sustains

the flow momentum. Within the boundary layer region, this kinetic energy is depleted

by the viscous resistance at the bounding surface. Flow separation occurs when the fluid

has insufficient momentum to overcome both the wall shear and pressure gradient imposed

by the surface. Physical observations indicate that the surface streamline nearest to the

wall leaves the body at the spatial location of the separation point, as seen in Fig. 1.2.

The following definition of boundary layer separation, as quoted from the review article by

Brown & Stewartson [12], is useful to note at this juncture:

The phenomenon of separation is one of the most interesting features of the
motion of an incompressible fluid past a bluff body at high Reynolds number.
Here the main stream, which has hitherto been in close contact with the body,
suddenly, and for no obvious reason, breaks away, and downstream a region of
eddying flow, which is usually turbulent even if the flow elsewhere is laminar, is
set up.

Regardless of the nature of the free stream prior to separation, the boundary layer

beyond the separation point is three-dimensional (see Panton [13] for related discussion).

Consequently, the rotational flow region next to the surface thickens, normal velocity in-

creases and the usual boundary layer approximations are no longer valid. This phenomenon

is usually highly unsteady, and so some of the fluid still remains attached at the top of the

boundary layer, where the velocity equals the velocity of entrainment. The separated flow

forms a free shear layer that is typically highly unstable, with an increasing tendency for

transition to turbulent flow. Depending on the length and velocity scales of the flow, as

well as the streamwise pressure gradient, transition may occur. Following transition, the

mutual interaction between the boundary layer and outer potential flow may result in the

formation of a reversed flow region downstream of the separation point, an observation not

fully captured in Prandtl’s theory.

To understand the criteria required for boundary layer separation, consider the two

dimensional (x-y), steady (∂(·)
∂t =0), incompressible Navier–Stokes equations in differential

form:

∂u

∂x
+

∂v

∂y
= 0 (1.1)

ρu
∂u

∂x
+ ρv

∂u

∂y
= −∂p

∂x
+ µ

(
∂2u

∂x2
+

∂2u

∂y2

)
+ 2

∂µ

∂x

(
∂u

∂x

)
+

∂µ

∂y

(
∂u

∂y
+

∂v

∂x

)
(1.2)

ρu
∂v

∂x
+ ρv

∂v

∂y
= −∂p

∂y
+ µ

(
∂2v

∂x2
+

∂2v

∂y2

)
+ 2

∂µ

∂y

(
∂v

∂y

)
+

∂µ

∂x

(
∂u

∂y
+

∂v

∂x

)
(1.3)
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Since the discussion herein pertains to boundary layers, consider the above equations at the

wall y=0, such that we have the following conditions:

u = 0

v = vw

The first of which represents the no-slip condition, and vw indicates velocity of the wall

(through mechanisms such as suction, blowing, or surface motion). The boundary layer

approximation is also considered, through which the streamwise velocity gradients (∂u
∂x , ∂v

∂x)

can be treated to be small in comparison to the cross-stream velocity gradients (∂u
∂y , ∂v

∂y ).

Applying the above boundary conditions, we obtain the Navier–Stokes equations near the

wall:
∂v

∂y y=0

= 0 (1.4)

ρvw
∂u

∂y y=0

= −∂p

∂x y=0
+ µ

∂2u

∂y2
y=0

+
∂µ

∂y y=0

∂u

∂y y=0

(1.5)

0 = −∂p

∂y y=0

+
∂µ

∂x y=0

∂u

∂y y=0

(1.6)

It is important to note that due to the Dirichlet boundary (no slip) conditions on the solid

wall, with the exception of very smooth solutions, the differential equations 1.4–1.6 are not

expected to be valid in general. This is especially problematic if the solid surface is not

smooth, as a result of which the above equations are satisfied only in a piecewise sense.

In the simplest case of no wall velocity and constant viscosity, the momentum equations

reduce to the following
∂p

∂x y=0
= µ

∂2u

∂y2
y=0

(1.7)

∂p

∂y y=0

= 0 (1.8)

The parabolic nature of the boundary layer equation 1.7 dictates that information travels

in the downstream, and not in the upstream direction. Equation 1.8 suggests that the

surface pressure varies only along the streamwise x direction, i.e., p = p(x). The pressure

distribution imposed by the free stream flow of a fluid over the surface of a body is invariant

along the wall-normal direction and hence unaffected by the boundary layer. Thus, the

pressure distribution can be determined through integration of the velocity distribution in

the primarily inviscid, irrotational region of the flow field,

U
dU

dx
= −1

ρ

dp

dx
⇒ p = −ρ

∫
U dU
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Figure 1.1 illustrates boundary layer separation on a flow over an airfoil in terms of stream-

lines and velocity profiles. An accelerating flow occurs when the streamwise pressure gra-

dient at the wall is negative (or favorable), and this is present at portions near the leading

edge of the airfoil. The flow streamlines start to converge before the most uphill point, and

velocity increases. Downstream of this location, the pressure gradient is positive (or ad-

verse), and flow velocity decreases. Two dimensional boundary layer separation is defined as

the location where the shear stress τ at the wall, given in terms of the cross-stream gradient

of horizontal velocity µ∂u
∂y , is equal to zero (see Schlichting & Gersten [14]). The definition

of three dimensional boundary layer separation is much more complicated, defined as the

location where both the velocity at the wall and shear stress simultaneously go to zero [1].

As seen in Fig. 1.1, the velocity profile gradient is positive before separation, zero at the

point of separation and negative in the reverse flow region. An examination of equation 1.7

shows that a positive (or adverse) pressure gradient, necessary for separation, means that

the velocity gradient ∂u
∂y increases in the wall-normal direction. The second derivative of the

velocity is thus required to be positive as a necessary condition for separation to occur. The

velocity gradient profiles before and at separation are illustrated in Fig. 1.3. In the case of

an adverse pressure gradient, the increasing wall-normal gradient ∂u
∂y means that that there

has to exist a point in the flow where the shear stress value would reach its maximum, as

by definition τ = 0 at y = ∞. Thus the requirement of a point of inflection in the boundary

layer velocity gradient profile is a sufficient condition for separation. Extensive research has

been conducted on steady/unsteady, two-/three-dimensional laminar and turbulent sepa-

ration, and reviews on these topics can be found elsewhere (see Brown & Stewartson [12],

Williams [15], Smith [16], and Simpson [17]).

The parameter that describes the viscous character of a fluid flow is the Reynolds

number, a non dimensional quantity defined as the ratio of inertial to viscous forces acting

on the system

Re =
Finertial

Fviscous
=

ρU2L2

µUL
=

ρUL

µ
=

UL

ν

where ρ is the density, µ is the dynamic viscosity, and ν is the kinematic viscosity of the

fluid, respectively. U and L are the characteristic velocity and length scales of the flow,

respectively. The Reynolds number of a flow is often perceived to be a measure of its non

dimensional speed, and serves as a control parameter to produce the bifurcations in the

solutions of the Navier–Stokes equations which govern laminar and turbulent fluid flows.

The latter observation may be noted by examining the non dimensional form of the Navier–
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Stokes equations (see Kundu & Cohen [18] or many others for a detailed derivation)

∂Ui

∂t
+ u

∂Ui

∂x
+ v

∂Ui

∂y
= − ∂p

∂xi
+

1
Re

[
∂2Ui

∂x2
+

∂2Ui

∂y2

]
+ Fb,i

where subscript i refers to components of the vector quantity, p indicates the fluid pressure,

and Fb is the body force, and all quantities have been scaled with appropriate factors. In

the absence of the body force term, it can be seen that the Reynolds number is the only

independent quantity that controls the flow behavior (see McDonough [19]). The inverse

relation between Re and viscosity suggests that in low speed flows, viscous forces tend to

predominate. Laminar boundary layers have lower levels of energy compared to turbulent

flows on account of low flow velocities. As a result, laminar boundary layers quickly sepa-

rate when subject to an adverse pressure gradient. Turbulent boundary layers have better

separation resistance as compared to their laminar counterparts, and correspondingly can

withstand moderate adverse pressure gradients.

The mean spanwise vorticity is zero at the wall or solid surface but is very large close

to it, reaching a maximum at the edge of the viscous sublayer (see Gad-El-Hak [20]). In

addition, turbulence continually promotes mixing of high and low momentum fluid within

the boundary layer. This prevents the deceleration of fluid within the layer by the pressure

gradient, thereby postponing the occurrence of separation. In the case of laminar separation,

depending on the velocity and length scales of the flow as well as the imposed pressure

gradient, the increased entrainment of fluid (as turbulence develops) leads to reattachment

of flow in some cases and reorganizing back to form a normal turbulent flow profile. A

region of recirculating fluid is thus created when the above processes are recorded on a time-

averaged basis. This forms the laminar separation bubble, otherwise known as a transitional

separation bubble. Note that the flow does not reattach if the Reynolds number of the flow

is very low, and hence no bubble formation occurs. The reattachment occurs only when the

boundary layer can recover enough energy to traverse the adverse pressure gradient. Figure

1.4, adopted from Horton [21] illustrates the features of a laminar separation bubble, at their

respective regions in an airfoil. Note that the horizontal surface is scaled to 10 times the

vertical surface as the boundary layer effects are pronounced along the streamwise direction.

The resultant turbulent boundary layer can handle adverse pressure gradients better without

separating from the surface. For example, in a review on the flow over a circular cylinder for

ReD < 2 · 105 by Roshko & Fizdon [22], transition to turbulence was observed to occur in

the free shear layer downstream of the laminar separation point, followed by reattachment

and turbulent separation on the back of the cylinder. The laminar separation bubble was, in

particular, observed to enable the boundary layer to handle greater than the normal pressure
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rise and displaced the separation point further downstream. Thus in a low speed flow over

a sharp contoured surface, one way to delay or even eliminate separation, for example, is

to artificially inject turbulence by means of devices such as trips, or roughness in the flow

prior to the laminar separation point. In addition to this method, there exists various other

possible strategies to keep the flow attached, as will be touched upon in the next section

of this chapter. These kinds of schemes that attempt to control boundary layer separation

are referred to as flow control methods. To highlight the importance of flow control, the

detrimental effects of boundary layer separation on the aerodynamic effectiveness of low Re

aircraft are presented in the following discussion as an example.

1.1.1 Effects on Aerodynamic Effectiveness

The action of an aircraft wing is merely to push the air flowing on its surface downwards,

so as to generate a net aerodynamic reaction force. This force can be resolved into two

components, the vertical component being the lift L and the horizontal component being

the drag D, as shown in Fig. 1.5. The lifting capacity of the wing is measured in terms of

its lift coefficient given by

CL =
L

1
2ρU2S

(1.9)

where S is the surface area of the wing, which in this case, is given by S = bc, where b is

the span and c is the chord length. From the above equation, it can be observed that the

lift force is directly related to the incoming flow velocity U

L ∝ ρU2b c

Defining two Reynolds numbers using c and b as the two different length scales and U as

the common velocity scale, we get

L ∝ Rec ·Reb (1.10)

The drag coefficient is defined in terms of drag force is given by

CD =
D

1
2ρU2S

(1.11)

where D represents the total effect of individual contributions from the pressure (form drag),

friction (skin friction drag), and lift (induced drag) forces. Similar to the lift in equation

1.10, the drag force can also be shown to be directly related to the Reynolds number of the

incoming flow. Thus the wing performance efficiency η, defined in terms of its lift to drag

ratio, is therefore a function of Re

η =
L

D
= f(Re) (1.12)
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The maximum lift produced by the wing is usually a linear function of the angle of attack

α

CL = f(α)

Each wing design has a particular value of stall angle of attack at which the maximum

possible lift force is achieved, and any further increase in the aircraft attitude results in a

massive deterioration in performance, such that the vehicle lift decreases and drag increases

by substantial levels. Stable flight cannot be maintained beyond the stall angle of the wing,

and the aircraft is limited to operation only for angles of attack lesser than the stall value,

CL,max = f(αmax), αmax ≤ αstall

An expression that can be used to estimate the maximum angle of attack in the case of

unseparated flow is given by Tuck [23],

αmax = 0.818
√

(r/c)

where r is the nose radius of curvature of the wing.

The performance of low Re airfoils is entirely dictated by the relatively poor separation

resistance of the laminar boundary layer. It is foremost important to design airfoils so as to

keep the flow attached to the wing surface during the entire operating time of the aircraft.

Laminar separation bubbles produced at low Re values affect the performance of the aircraft

to a great extent, which can be explained as follows. As the Reynolds number of the flow

increases due to higher speed or turbulence, the length of the bubble gets shortened. At

high lifts and/or high angles of attack, this short bubble bursts to form a long bubble

to cause stall. This process is most often irreversible, and reducing the angle of attack

beyond this point would not immediately negate the stall effects. The long bubble formed

on the surface of low Re airfoils usually stalls for low angles of attack and lift coefficients

before the trailing edge. This leads to a massive deterioration in the airfoil efficiency. Stall

causes the flow to separate and results in a sharp increase in drag forces while decreasing

the lift. Short separation bubbles are formed at high Reynolds number flows, and tend to

have negligible effect on the pressure distribution around the lifting surface. However, long

bubbles, characteristic of very low speed flows, significantly affect the pressure distribution

by effectively changing the shape over which the potential flow is developed [20]. This

greatly reduces the slope of the lift curve and an increase in the pressure or form drag. The

lift-to-drag ratio is higher for the airfoil with shorter bubble, and improves with increase in

the Reynolds number of the flow. At large incidence angles, the short bubble breaks down

to form a long bubble. Further increase of angle of attack causes the point of reattachment
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to move downstream until it reaches the trailing edge—where the bubble thickness would

have reached around 3% chord. Thin-airfoil stall is caused at high incidences where the

flow is completely detached (see Crabtree [24]). Delaying the separation has benefits of

reducing the pressure drag, enhancing circulation and hence, the lift produced. Boundary

layer separation control is critical for successful aircraft design, and amounts to being a

direct indicator of its performance.

1.1.2 Flow Control Methods

The importance of separation control requires research into strategies to artificially

keep the flow attached over the surface during the entire time of operation. Flow control

methods are used to bring about an advantageous change in the flow development with

the purposes of (a) delaying or advancing transition, (b) suppressing or enhancing turbu-

lence, and (c) preventing excessive boundary layer growth and separation (as recognized by

Stanewsky [25]). For example, the useful results obtained on aircraft on successful imple-

mentation of flow control may include drag reduction and lift enhancement (e.g. Nagib et

al. [26]). Flow control devices principally affect the energy state of the boundary layer close

to the surface, and alter its behavior to be beneficial. In laminar flows the near-wall fluid

layer is slowed down and has insufficient energy to overcome both the wall shear and viscous

dissipation. Flow control is accomplished by active or passive control methods, a broad clas-

sification based on the requirement of external energy input for the process/device. Active

flow control devices require external sources of energy and have an inherent advantage of

being controllable, viz., they can be switched on and off when required, compared to passive

devices that do not require additional energy for their action. Active devices can be driven

either by open loop (not regulated by the output) or closed loop control with feedback.

Some examples of passive flow control methods that have been used in existing literature

are boundary layer trips (Lyon et al. [27]), roughness elements (Kerho & Bragg [28]), ejector

nozzles (McQuilling & Jacob [29]), and surface perturbations (Miklosovic et al. [30], and

Santhanakrishnan & Jacob [31, 32]). Some examples of active flow control methods include

acoustic excitation as in Zaman et al. [33], continuous or pulsed suction and blowing (Seifert

et al. [34, 35], and Amitay et al. [36]), and surface motion (Modi [37], Lee & Gerontakos [38],

Santhanakrishnan et al. [39], and Pern et al. [40]). Detailed reviews of active and passive

flow methods can be found elsewhere (see Gad-El-Hak [41] for example).

For the interested reader, a detailed discussion of the flow control problem with analysis

of the governing equations can be found in the article by Gad-El-Hak [20]. Some impor-

tant observations from this article will be merely paraphrased herein. The starting point
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is the x-direction momentum conservation equation 1.5 above. To introduce the effects

of heat transfer into the above equation, viscosity can be assumed to be affected by tem-

perature (µ = µ(T )), and temperature can be made to vary in the wall-normal direction

(T = T (y)) where the gradients are much higher than those in the streamwise direction

(following boundary layer analysis). After introducing the above modifications, we obtain

the momentum equation in streamwise direction with wall velocity and pressure gradient,

which will be the starting point of analysis for flow control. The independent variables

identified in the flow control problem are the normal wall velocity, temperature gradient

and pressure gradient. The only dependent variable involved is the second derivative of

velocity, which needs to be negative for the flow to remain attached. This condition can be

achieved by using one or a combination of (a) negative wall velocity; wall suction (vw < 0),

(b) positive wall velocity; wall blowing (vw > 0), (c) negative or favorable pressure gradi-

ent; streamlining the surface ( dp
dx < 0), and (d) wall heating in the case of liquids ( dµ

dT < 0,
dT
dy < 0) or wall cooling in the case of gases ( dµ

dT > 0 , dT
dy > 0).

ρvw
∂u

∂y y=0

= −∂p

∂x y=0
+ µ

∂2u

∂y2
y=0

+
∂µ

∂T

∂T

∂y y=0

∂u

∂y y=0

(1.13)

An alternate classification of flow control techniques can be made on the basis of the

desired objective—direct boundary layer control for drag reduction; control for lift enhance-

ment and separation suppression (following [20]), and will be explained in more detail below.

A. Direct Boundary Layer Control

This flow control method is used for skin friction drag reduction, which is responsible

for a major loss in performance of the aircraft. Transition delaying mechanisms maintain-

ing the laminar flow that occurs over low Re airfoils. Transition control is also used for

lift enhancement. Shaping the surface to provide favorable pressure gradient, providing

sustained natural laminar flow by active or passive means, or a combination of both are ex-

amples of these mechanisms. Leading edge suction is employed to control the amplification

of disturbances in the boundary layer. Wall cooling may be employed in tandem to increase

the efficiency of the flow control process, and hence of the aircraft. Another important

reason for transition is due to low free stream turbulence of the incoming flow. The flow

can be accelerated and its turbulence intensity increased by having roughness elements in

spanwise direction of the wing. It is most beneficial to have a real time adaptive system to

provide surface changes most suited for the incoming flow; such a mechanism with pneu-

matic elements has been discussed in White et al. [42]. Transition may be promoted in
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certain cases, particularly when laminar separation is inevitable. Turbulence manipulation

devices are used to reduce the skin friction drag in turbulent boundary layer flow. Passive

devices used for turbulence manipulation include riblets and other surface modifiers. Ri-

blets have sharp teethed notches that act as boundary layer trips to create turbulence. The

profile and spacing between the ribs may be adjusted real time to achieve adaptive con-

trol. Large Eddy Breakup Devices (LEBUs) are passive devices to break large structures in

the boundary layer to reduce the turbulent skin friction. An active method for turbulence

manipulation may include gas injection, polymers, surfactants and particulates in case of

hydrodynamic flows; while mass injection or blowing can be used to impart low momentum

air into the boundary layer in case of gaseous flows. Micro Electro Mechanical Systems

(MEMS) based shear stress sensors and actuators have potential application in interactive

turbulence control, and they are considered in detail in Löfdahl et al. [43].

B. Control for Lift Enhancement and Separation Suppression

Flow control for lift enhancement is accomplished by the use of trailing edge devices.

Gurney flaps and vortex generators are examples of such devices. Flaps, in general, change

the effective camber of the airfoil. The change in camber can be manipulated to control

separation and thereby increase the lift. Additional increase in lift can be obtained by

having tabs—small devices located close to the aft end of the flaps. They have the effect of

closing the flap gap created at the joint between the wing and the flap. Consequently, the

viscous drag due to separation on the flap is reduced by the flow control exerted by the lift

enhancing tabs. Vortex generators (VGs) are geometric flow control devices that produce

counter-rotating vortices to cancel out the separation bubbles produced during separation.

However, VGs cause an increase in skin friction drag at lower lift coefficients, and are most

effective when used for high lift conditions. Pneumatic devices can be used for separation

suppression at higher lift coefficients. Zero-mass pulsing jets delay separation by means

of excitation of the flow through periodic suction and blowing over the upper surface. In

principle, these massless air jets enhance mixing between the near wall shear layer and outer

flow to delay separation [25]. Reverse flow flaps are being considered as an alternate means

to control separation. They are modeled on the principle of bird feathers during landing.

These devices are pivoted to the trailing edge and are self-adjusting to the flow conditions.

They deflect upward gradually as the flow starts to separate and control separation, as a

result of which they increase maximum lift and limit drag. Although similar in construction

to spoilers used in aircraft, they are considerably different in operation. Reversed flow flaps

do not extend into the outer flow as in spoilers—which are actually used for the opposite
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task of increasing drag and reducing lift associated with landing the aircraft. Divergent

trailing edges have similar functionality as Gurney flaps, but are found to produce lesser

drag at equal lift coefficients and correspondingly higher L/D values. It is preferable to use

Gurney flaps when maximum lift is desired—while divergent trailing edges can be used when

efficiency is the main concern. Streamlining the surface of the body reduces the pressure

gradient and helps to control separation. Oscillatory excitation of camber has beneficial

effects on separation control. Pitch oscillation at various frequencies produces an increase

in maximum lift, the effect of which may be related to a delay in vortex bursting (Soltani et

al. [44]). The oscillation trips the boundary layer and increases the freestream turbulence

to delay the separation. Piezo electric material based oscillation of the upper surface has

shown positive effects in separation control (e.g. Munday et al. [45] and Pern et al. [40]).

Some of the boundary layer and flow control devices reviewed in this section are illustrated

in Fig. 1.6.

1.2 Flow Control with Plasma

Plasma actuators refer to a broad class of devices based on using electrical discharges.

The class of discharges may include corona discharges, dielectric barrier discharges (DBDs),

glow discharges (such as the OAUGDPTM, one atmosphere uniform glow discharge plasma,

see Roth et al. [46], and Roth & Dai [47]) and arc discharges. Figure 1.7(a) shows a com-

monly used construction of an aerodynamic plasma actuator consisting of an asymmetric

arrangement of two rectangular-strip electrodes, one exposed to the atmosphere and the

other embedded on the surface where it is applied, separated by dielectric material. Un-

der input of a high voltage, high frequency AC or pulsed DC, a region of plasma (in this

design, a DBD) is created in the interfacial air gap starting from the region of highest

electric field (usually around the electrode edges), due to the electron avalanche breakdown

process. This plasma region introduces a coupling between the applied electric field and

the ambient air, and for the asymmetric design shown in Fig. 1.7(a), the residual fluid is

found to be tailored in the form of a horizontal wall jet synthesized from the working fluid

(Fig. 1.7(a)). The input voltage and current controls the nature, type, and intensity of the

discharge, hence the induced flow velocity. For instance, the filamentary discharge typically

produced in DBD actuators (Fig. 1.7(b)) results in lower induced velocities as compared

to the OAUGDPTM which produces a uniform discharge [47]. Plasma actuators can be

readily employed as active flow control devices, and have been shown to control boundary

layer separation through their impact on (but not necessarily addition of) near-wall flow
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momentum (as suggested by List et al. [48], and Jacob et al. [49]).

1.3 The Plasma Synthetic Jet Actuator (PSJA)

Conventional plasma actuators, hereon referred to as linear actuators (Fig. 1.7), while

useful, are limiting in flow control applications. Essentially, these actuators, whether single

or multiple phased arrays, affect primarily the boundary layer flow on a scale of O(1 cm)

as shown by the results presented below. Figure 1.8 shows vorticity contours overlaid with

streamlines obtained from time-averaged PIV measurements for steady operation of the

linear actuator in quiescent flow. The upstream influence of the linear actuator is moderate,

and the flow at x=1.2 cm (location of the actuator interface at x=1.4 cm) resembles a

potential sink. The thickness or width of the wall jet induced downstream of the plasma is

about 0.4 cm. Figure 1.9 shows the horizontal and vertical mean velocity profiles developed

by a linear DBD plasma actuator in quiescent flow. The profiles are plotted for 2 stations

upstream of the actuator, at the actuator interface (near the region of densest plasma),

and 4 stations downstream of the actuator. For this case, the plasma region was generated

using a square wave with a frequency of 1.8 kHz and an amplitude of approximately 5

kV. An examination of the vertical velocity profiles reveal that the flow is being drawn

into the plasma region, with the highest fluid entrainment occurring at the location of the

actuator interface (x = 0). The horizontal velocity at the interface is relatively small, and

the magnitude at this point is largely due to the vertical downward component. As we

proceed further downstream, the velocity increases on account of the wall jet induced by

the plasma actuator, and reaches a maximum of roughly 100 cm/s located 1.6 cm away

from the interface within the FOV of the experimental observation. The width (or in this

case, height) of the jet is confined to less than 1 cm away from the wall. The momentum

within this jet is non-negligible, however. Essentially, these actuators, whether single or

multiple phased arrays, affect primarily the boundary layer flow on a scale of O(1 cm) as

shown by the results above.

To increase the impact that the plasma actuators can have on the flow field, this re-

search proposes to investigate geometric variants of the DBD plasma actuator, so as to

leverage the plasma induced jet to create flow fields with a much greater impact. The ac-

tuators can be readily arranged such that complex flow structures are created. To enhance

the flow control effects obtained on using the conventional linear actuator, a novel design

consisting of annular electrode arrays (Fig. 1.10(a)) was investigated, hereafter referred to

as the plasma synthetic jet actuator (PSJA). This particular actuator construction tailors
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the plasma induced flow in the form of a zero-net-mass-flux (ZNMF) jet, and unlike syn-

thetic jets, these can be easily reversed to act as suction devices by merely inverting the

electrode arrangement. Figure 1.10(b) shows the creation of a plasma induced synthetic jet

by using such an annular plasma actuator. These can be pulsed to create vortex rings or

run continuously to create a steady “synthetic jet.” Like synthetic jets, these may be pulsed

at any frequency, but unlike synthetic jets, they can easily be reversed to act as suction

devices. By modifying the actuator geometry, the plasma induced jets can be arranged such

that they create an upward synthetic jet structure or an inverted jet with a downward—

then—outward flow. Pulsing the actuator, as shown in phase-locked PIV measurements of

a plasma synthetic jet actuator pulsed at 1 Hz in Fig. 1.11, creates two counter-rotating

vortex rings that develop into a jet in the steady state, which can be used for either flow con-

trol or thrust generation. Pulsing the actuator at a critical frequency allows the continuous

development of high strength vortex rings, similar to a pulsed jet.

Likewise, due to their nature, it is theoretically straightforward to modify the actuator

geometry to produce three-dimensional structures. Linear actuators acting at angles to one

another should produce vortical structures through entrainment of the surrounding flow

by the plasma induced jets. Such an example is shown in Fig. 1.12(a), where a chevron

actuator is used to generate cross-stream vortices. By varying the angle with respect to

the cross-stream flow, the actuator will generate either a co-rotating or counter-rotating

vortex pair at the chevron apex. By utilizing the combined effects of synthetic jet like

flows of the annular array and vortex generator jet like flows of the chevron pattern, hybrid

arrangements can be constructed where the detailed flow field can be controlled as desired.

This offers the potential to create complex structures that synthetic jets cannot.

1.3.1 Research Objectives

The purpose of the present work is to develop novel plasma actuator geometries and

investigate the detailed structure of the induced flow generated by these novel plasma syn-

thetic jet actuators (PSJA), particularly turbulent characteristics, and demonstrate how

this can be leveraged to alter the flow field either directly or indirectly through flow con-

trol. Tasks of specific interest to this research are: a thorough examination of the PSJA

induced flow physics, and comparison of PSJA laminar/turbulent jet characteristics with

conventional mass flux and synthetic (zero-net-mass-flux) jets. For this purpose, detailed

measurements of the flow field structure are conducted, both locally and globally, around

actuators with varying geometric and input parameters. Input parameters include actuator

geometry, input power, and pulsing frequency of jet. The end goals will include verification
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of the numerical models and optimization of the actuator output. Some questions that will

be addressed in this dissertation include:

• What are the various flow field characteristics of the plasma synthetic jet, such as the

maximum jet velocity and momentum?

• How do the PSJA induced flow field characteristics compare to those of conventional

linear plasma actuators?

• How do the different observed flow field structures form and evolve?

• How does the plasma interact with the near actuator fluid?

• How does the plasma induced jet interact with a cross flow?

• How do the actuator outputs scale with respect to the various system inputs?

1.3.2 Impact and Importance of Research

The main deliverable from this study is an overall application methodology for plasma

flow control applications. The individual items are: (i) an experimental database for plasma

actuators, (ii) novel geometries for enhanced plasma actuator flow control, (iii) a set of

well documented experiments specifically designed for testing actuator configurations and

numerical simulation techniques, and (iv) an improved understanding of plasma actuator

behavior. This research will have a broad impact in fundamental understanding, design,

development, and application of plasma actuators and associated control systems for various

fluid flow applications. Although the use of plasma actuators to control boundary layer

and flow separation has received limited attention in recent years, the subject on how to

design an effective system for the plasma actuator control devices has received only limited

consideration. Once a better understanding of actuator behavior is obtained, this approach

can be implemented in numerical simulations (CFD) to optimize the designs and this allows

new control strategies to be tested before the devices are fabricated.

1.4 Organization of Dissertation

This dissertation is divided into nine chapters. Detailed reviews of the state-of-the-art

of two specific flow control methods related to this research, plasma actuators and syn-

thetic jet actuators, are provided in Chapter 2. Some preliminary results from experiments

conducted on the plasma synthetic jet actuator are presented in Chapter 3 to serve as a
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background for the reader. The description of the experimental setup, wind tunnel used for

the study, actuator construction and diagnostic methods used for this research are presented

in Chapter 4. The characteristics of plasma synthetic jets induced in an initially quiescent

medium are discussed in Chapter 5, while Chapter 6 examines the interaction of the jet

with an external flow. The effects of plasma morphology on the flow field are presented in

Chapter 7. Scaling arguments for plasma synthetic jet actuators are discussed in Chapter

8. Finally, the various conclusions of this study, along with suggestions for future work are

presented in Chapter 9.
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1.5 Tables and Figures
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Figure 1.1: Cartoon showing the occurrence of boundary layer separation and reattachment

of flow over an airfoil. Streamlines of the flow are shown on the top half, while the x-

direction velocity profiles are shown in the bottom half; α is the angle of attack, P is the

surface pressure, and S indicates point of separation.
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Separation streamline

S
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Shear layer

Figure 1.2: Experimental visualization of flow separation on the suction (upper) surface

of an Eppler 398 airfoil. Chord length c = 0.128 m, Rec = 36 ·103, α = 10◦, S indicates

separation point, flow direction is from left to right, and field of view corresponds to 0.22c–

0.48c (from Santhanakrishnan & Jacob [31]).
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Figure 1.3: Velocity profile gradients of unseparated flow (left half), and at laminar sepa-

ration (right half).
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Figure 1.4: Time-averaged features of a low Re transition bubble (from Horton [21]).
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Figure 1.5: Rectangular wing geometry showing aerodynamic loads. α is the angle of attack,

U is the free stream velocity, c is the chord, and b is the span.
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Figure 1.6: Examples of boundary layer and flow control devices on an aircraft wing: (a)

Geometric devices, and (b) Pneumatic devices (from Stanewsky [25]).

20



(a)

(b)

Figure 1.7: The linear plasma actuator: (a) cross section (direction of induced flow is

shown), and (b) plasma structure in the spanwise direction, image has been inverted for

clarity.

Figure 1.8: Averaged PIV results showing vorticity contours overlaid with streamlines for

steady operation of actuator in quiescent flow. Actuator interface is located at x=1.4 cm

in the figure.
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Figure 1.9: Velocity profiles near a linear actuator in quiescent flow. ◦, x=0.8 cm upstream;

�, x=0.4 cm upstream; 2, x=0 (at interface); ∇, x=0.4 cm downstream; ., x=0.8 cm

downstream; 4, x=1.2 cm downstream; /, x=1.6 cm downstream.

Figure 1.10: (a) Plasma ring created by annular actuator. (b) Cross-stream of vortex

created by pulsing an annular plasma actuator.
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(a) t = 28 ms. (b) t = 63 ms.

(c) t = 153 ms. (d) t = 300 ms.

Figure 1.11: Streamlines of flow induced by annular plasma synthetic jet actuator pulsed

at 1 Hz in quiescent flow obtained from phase-locked PIV measurements, t indicates time

of the actuator pulsing duty cycle.
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Figure 1.12: (a) Vortices induced by chevron actuator. (b) Cross-stream vortex structures.

Copyright c© Arvind Santhanakrishnan 2007.
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Chapter 2

BACKGROUND

2.1 The Physics of Plasmas—Basics

Plasmas are the most common form of matter in the universe. The sun and most other

stars, as well as substantial portions of the interstellar medium are in the plasma state.

Simply stated, a plasma is an ionized gas containing free charges created as a result of the

disassociation of its constituent atoms into an approximately equal number of positive ions

and negative electrons (Fig. 2.1(a)). Plasmas are often referred to as the “fourth state of

matter” in order to distinguish their behavior compared to the other common states. In the

case of an ordinary fluid, intra-molecular collisions dominate and determine the resultant

motion of the flow. The interactions between individual particles occur within extremely

small distances in both fluids and solids. In the case of a plasma, the charged particles

are relatively free to move, and collisions are not as important a predictor of motion. The

motion of the free charges result in setting up electric and magnetic fields on account

of spatially localized charge concentrations and induced currents, and the effects of these

fields are percieved in a rather “global” sense across a large spatial domain in the plasma.

Thus, long-range forces between large numbers of particles are important in a plasma (often

referenced to as “collective” behavior, see Chen [50], Gurnett & Bhattacharjee [51]), in direct

contrast to the short-range forces between individual particles in both solids and fluids.

2.1.1 Formation Criteria

The simplest method to produce a plasma is to elevate the temperature of a gas to a

level where the electrons in a nominally bound state are excited sufficiently to disassociate

from the nuclei of the respective atoms. The energy required for this process can be supplied

externally through direct heating or by means of an applied electric field. Plasmas generated

in this manner are also known as discharge plasmas and are of specific interest to the

research presented in this dissertation (see Fig. 2.1(b)). Depending on its composition, the

temperature required to create such a “breakdown” of a gas may vary widely. For instance,

the temperature required for ionization of pure cesium is around 4000 K (see Lieberman &

Lichtenberg [52]), while that for air at atmospheric pressure is approximately 2000 K (see

Kruger et al. [53]). The density of a discharge plasma is usually a small fraction of the
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neutral gas density. Depending on the fractional ionization coefficient given by,

xiz =
ni

ng + ni

plasmas can be categorized into fully ionized (xiz ≈ 1) and weakly ionized (xiz << 1)

plasmas, where ni and ng are the number densities of ions and neutral gas, respectively. [52]

However, any ionized gas cannot be considered a plasma, and a set of criteria required for

plasma formation can be identified. In this regard, a slightly rigorous definition of a plasma

by F. F. Chen from Introduction to Plasma Physics and Controlled Fusion [50] is worth

noting:

A plasma is a quasineutral gas of charged and neutral particles which exhibits
collective behavior

The collective behavior of plasmas was discussed earlier in this section, and the other

important requirements suggested by the above definition are now examined. As the name

suggests, quasineutrality is used to refer to the fact that the number density of positively

charged ions is approximately equal to the number density of negatively charged electrons.

However, in order to respond to applied electric fields, such as in the case of electrical

discharge plasmas, a net charge imbalance is required. Unlike electrically conductive gases,

plasmas respond to an applied external field through the displacement of its free charges in

an independent manner, rendering it a complex problem for analysis. With the exception of

a cold plasma (such as in the interstellar medium), thermal losses and motions are primarily

responsible for creating charge imbalances within most other plasmas (such as the weakly-

ionized discharges of interest here). The electrons have higher mobility than ions on account

of their lower masses (me/mi << 1). The mobility difference directly translates to increased

thermal velocities of electrons as compared to ions. At the beginning stages of formation

of an electrical discharge plasma (Fig. 2.1(b)), the applied potential heats all the particles

within the plasma evenly, resulting in a net charge density given by

ρ = e (ni − ne) = 0

which represents a perfectly neutral plasma with zero electric potential and field strength.

After a small fraction of time has elapsed, thermal motions of charged species are initiated

near the edges of the plasma, where the electric potential is weaker than the bulk region.

This is mostly on account of the absence of any confining field in the neutral plasma, which

allows the lighter and fast-moving electrons to impinge on and be absorbed by the grounded

electrode surface, resulting in a decrease in their number density such that ne << ni. A thin
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cloud or sheath with a net positive charge is thus formed near the edges of the plasma. It is

important to note that the length of the plasma sheath is much less than the characteristic

length scale of the system, say the electrode dimensions. Due to the charge imbalance set

up within the edges of the plasma, the applied external potential drops to zero along the

plasma edges, which can be explained as follows, starting from the Maxwell’s equations in

vacuum

ε0∇ · E = ρ (2.1)

∇× E = −∂B

∂t
(2.2)

∇ ·B = 0 (2.3)

∇×B = µ0

(
J + ε0

∂E

∂t

)
(2.4)

B = µ0H

where E is the electric field, B is the magnetic induction, H is the magnetic field, J is the

total current density, ρ is the total charge density (ions and electrons), µ0 is the magnetic

permeability and ε0 is the electrical permittivity of free space. For a time invariant electric

and magnetic field, the curl of electric field strength E is zero from equation 2.2, as a result

of which E can be defined as the negative gradient of a scalar potential φ

E = −∇φ,

Substituting this expression in the relation between applied field and charge density ρ given

by equation 2.1, we obtain

ε0∇ · (−∇φ) = ρ (2.5)

−ε0∇2φ = e (ni − ne) ⇒ ∇2φ =
e

ε0
(ne − ni)

As ne << ni within the sheath region, the right hand side of ∇2φ is rendered negative,

resulting in a decrease in the electric potential along the edges of plasma. The electric field

within the plasma is directed outwards from the bulk central region toward the sheath. The

force acting on the electrons, given by −eE, is directed inwards to the plasma, due to which

electrons near the wall are deflected back into the bulk portion. Similarly, the ions are

directed away from the plasma into the sheath region. Large charge imbalances leading to

local changes in electric potential are hence shielded out within the sheath region, leaving

the rest of the plasma quasineutral, viz., ni ≈ ne, wherein time-averaged and instantaneous

potentials (and electric fields) are sufficiently low [52]. The characteristic dimension of this

sheath region is termed Debye length λD, and this represents the length scale over which

charge density imbalances can exist. For lengths greater than λD, the plasma shields out
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external electric potentials applied to it. To obtain an expression for λD, it is useful to start

with the Boltzmann relation relating number density of charges with the corresponding

temperature (see [50] for details)

ns = n0 exp

(
± eφ

KTs

)
where s indicates the type of species, K is Boltzmann’s constant, n0 is the background

density in the unperturbed state (when φ → 0), and the exponential function is positive for

electrons and negative for ions (Enloe et al. [54]). The net charge density therefore becomes

ρ = e (ni − ne) ≈ −e2n0φ

[
1

KTi
+

1
KTe

]
.

The left hand side of the above equation can be written in terms of potential as

−εo∇2φ = −e2n0φ

[
1

KTi
+

1
KTe

]
.

A minor rearrangement of terms results in a second order differential equation containing

a quantity having the units of length, and can be solved to obtain electric potential in the

plasma

∇2φ =

(
e2n0

ε0

[
1

KTi
+

1
KTe

])
︸ ︷︷ ︸

∝ length−2

φ. (2.6)

The Debye length can be defined as the inverse square root of the quantity noted above

λD =

√[
e2n0

ε0

(
1

KTi
+

1
KTe

)]−1

. (2.7)

For an electron densities of 1012 cm−3, typical values of λD are O(10 µm) [52]. For length

scales of the fluidic system L much greater than λD, the plasma remains quasineutral. Thus,

a condition for a weakly ionized gas to behave as a plasma is

λD << L

The concept of electrostatic shielding will be valid only if there are sufficient number of

particles within the sheath region to arrive at reasonable averages. If the plasma sheath

region is approximately spherical (for illustration), then the number of particles N is given

by

N = n0

(
4
3
πλD

3
)

To behave in a collective manner defined in the earlier part of this chapter, we have the

next criterion required for plasma formation

N >> 1
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The final requirement is related to the rate of collisions within the plasma. Particles in

ionized gases (that do not qualify as a plasma), in general, exhibit a tendency to collide

frequently with neutral atoms such that they exchange momentum through hydrodynamic

forces. The motion of particles within a plasma, however, is controlled primarily by elec-

tromagnetic forces. If ω is the frequency of plasma oscillations and τ is the mean time

between collisions, then ωτ > 1 is required to be satisfied by a weakly ionized gas to be a

plasma [50].

2.1.2 Modeling

Due to the high density of particles in a fluid, the motions of individual molecules can

be safely neglected within the confines of the continuum hypothesis. The density of particles

in a plasma is O(1012) ion-electron pairs per cm3, which is in between that for typical fluids

and extremely low-density devices. In addition, the effects of collisions in a plasma are

not as important as in a fluid, but are still non-negligible. Consequently, plasmas tend

to sometimes behave like fluids and like a set of individual particles during other times,

rendering their behavior inherently difficult to analyze. Depending on the kind of behavior

that the plasma exhibits, two different modeling approaches are commonly employed to

describe the plasma state.

Kinetic theory based models are employed for detailed plasma characterization, in

which the location, velocity and electric potential distribution of each individual particle in

the plasma are calculated as a function of both space and time. An example of this approach

may be seen in the particle-in-cell (PIC) method (see Li and Dhali [55] for example), where

the effect of many thousands or millions of individual particles are grouped together into

a single computational particle. The spatial trajectory, velocity distribution, electric and

magnetic fields of thousands or millions of these computational particles are computed

in a time-varying manner. The charge distribution in the plasma is computed from the

positions of the particles, and is used for the calculation of electric potential by solving the

Poisson’s equation. The local electric fields are then calculated as the gradient of the electric

potential. The local magnetic fields are computed similarly based on the particle positions.

The electromagnetic force experienced by each particle is determined from the above electric

and magnetic fields. This force is used to update the velocity and particle positions for the

next step in time, where the above set of steps are again repeated. Essentially, the motion of

the charges are influenced by the applied electric and magnetic fields, as well as contribute

to them. As expected, this method of describing a plasma is computationally intensive, but

is necessary in the case of low-density, “collisionless” plasmas.
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Fluid theory based models are employed in the case of high-density or weakly ionized

plasmas, in which the plasma behavior is approximated to be similar to a fluid containing

electrical charges. The effects of collisions between the individual particles are therefore

neglected, and the plasma is described in terms of global continuous variations in density,

velocity, etc., similar to the Eulerian description of a fluid flow field. The approach herein is

to first compute the electric and magnetic fields for a given state of plasma using Maxwell’s

equations in vacuum, presented above in equations 2.1–2.4. The charge and current densities

can be related to the number density n, particle charge q and average drift velocity u of

the respective charge species (i for ions and e for electrons) as

ρ = niqi + neqe (2.8)

J = niqiui + neqeue (2.9)

The complexity of the kinetic model is reduced herein by assuming a distribution function

for the particle positions and velocities. The macroscopic characteristics of the plasma are

then described by averaged quantities such as charge density, drift velocity and energy.

In the fluid model, the plasma is considered to consist of two or more interpenetrating

fluids [50], which reduce to ions and electrons in the simplest case. The fluid equations

of motion (mass and momentum) are then solved for each species separately. Since this

model is usually applied for weakly ionized plasmas, another equation for the neutral or

background gas is also required. The conservation of mass requires that total number of

charged particles of any particular species s (e.g. s=i for ion) in a given volume of plasma

remains constant, and is given by

∂ns

∂t
+∇ · (nsus) = ns,C − ns,D (2.10)

where ns,C is the number of particles created and ns,D is the number of particles destroyed

(per unit volume) due to chemical reactions such as ionization or recombination that occur

during collisions. The average drift velocity u is obtained by solving the fluid dynamic

equations for each species of particles contained in the plasma. The effects of electric and

magnetic fields determined from the Maxwell’s equations are included in the fluid dynamic

equations through the Lorentz force term given below

fs = Fsns = qsns [E + us ×B] (2.11)

where fs is the Lorentz force Fs per unit volume of charge species s. The conservation of

fluid momentum per unit volume can then be written as

mn
du

dt
= fs
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Employing the definition of the advective derivative from standard fluid mechanics litera-

ture, we can reduce the above equation to

msns

[
∂us

∂t
+ (us · ∇) us

]
= fs

Note that in the above momentum equation, the effects of collisions and thermal motions,

if any, have been neglected. The effect of random temperature driven motions is typically

described by a pressure gradient term ∇P . It must be noted herein that collisions become

important when considering weakly ionized plasmas. The ions and electrons interact with

each other through the electric and magnetic fields they generate. Each of these species

interacts with the neutral gas (without any charges) only through collisions. If the collision

frequency is denoted by νs and the velocity of the neutral fluid is U , then the collisional

force per unit volume is given by

fs,c = msνs (U − us)

The overall conservation of momentum for each “fluid” within the plasma, which includes

charged species plus neutral gas, is therefore given by

msns

[
∂us

∂t
+ (us · ∇) us

]
= qsns [E + (us ×B)]−∇P + msνs (U − us) (2.12)

The pressure field in the above equation is unknown, and is determined from a thermody-

namic equation of state. One such commonly employed treatment considers an isothermal

relation for an assumed Maxwellian velocity distribution

Ps = nsKTs (2.13)

where K is the Boltzmann constant, and Ts is the average temperature of the particular

charged species. Equations 2.1–2.13 represent the total set of equations that must be solved

as a self-consistent problem in order to fully describe a plasma using the fluid model.

2.2 Plasma Actuators

A brief review of the existent research on plasma actuators, with some recent develop-

ments in the state-of-the-art is presented in this section. The articles by Rivir et al. [56],

Suchomel et al. [57], Corke & Post [58], and Moreau [59] present detailed reviews of the

developments in plasma flow control, and can be referred to for further information. The

early efforts that examined modulation of a fluid flow in the presence of electrostatic fields

employed corona discharges. These discharges are created typically with DC excitation
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and the voltage inputs required are lower than those of DBDs. Harney [60] first examined

the effect of a corona discharge introduced on the inner walls of a cylindrical tube under

both quiescent conditions and with (internal) cross flow velocities as high as 60 m/s. A

one dimensional theoretical model of the interaction of the electric field of the discharge

with the surrounding atmospheric pressure air was proposed, where only a single charged

species was considered. The effect of the electric field of the discharge was conjectured to

introduce a pressure gradient in the flow, which was in turn expressed as a function of the

applied current density and a constant ion mobility. Peak induced velocities of approxi-

mately 4 m/s was reported for voltage inputs in the order of 12 kV and 9 µA current input.

The model predictions compared within 1% of experimental measurements of the pressure

difference across the discharge. Malik et al. [61] used DC corona discharge (which occurs

at lower voltage and current inputs than DBDs) to manipulate flat plate boundary layers

with a drag reduction in the order of 20% for freestream velocities up to 30 m/s and 15

kV applied voltage. They concluded that drag reduction was largely voltage-dependent

and that it would be necessary to use multiple discharges to obtain higher efficiencies. Nu-

merical investigations of corona discharge induced drag reduction in flat plates at low Re

(see for example Rosendale et al. [62], and El-Khabiry & Colver [63]) show that the “ion

wind” strongly affected the skin friction distribution, and the drag reduction diminished

with increasing freestream velocity and decreasing potential difference between the wire

electrodes. Other experiments (such as Artana et al. [64] and Moreau et al. [65]) have

also used corona discharge to modify the flow over a flat plate at flow velocities up to 25

m/s, and they observed non-negligible near wall flow accelaration that was uniform in the

spanwise direction. Roth et al. [66] used glow discharge surface plasma to control boundary

layer flow on flat plates and observed that asymmetric spanwise electrode strip configura-

tions produced thrust, while symmetric spanwise electrode strip configurations increased

drag. They attributed these effects to be the result of a combination of mass transport and

vortical structures induced by electrohydrodynamic body forces. The literature reviewed

hereon pertains primarily to the asymmetric DBD plasma actuator configuration presented

in chapter 1.

The application of plasma actuators to flow control in low pressure turbine (LPT)

blades has been investigated by several groups. Rivir et al. [56] investigated the use of

high frequency AC and pulsed DC sources of excitation. Uniform AC atmospheric glow

discharges were obtained for a number of parameters while uniform pulsed DC glow dis-

charges were obtained for pulse widths from 22 ns to 2 s with input voltages up to 11 kV.

List et al. [48] examined the use of a plasma actuator in a LPT cascade for separation
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control over a range of Re from 30,000 to approximately 200,000. They used a triangular

waveform as the excitation signal and measurements were made using thermal tufts and

wake surveys. The measurements indicated that the plasma actuator added momentum to

the flow, eliminating the separation bubble. Hultgren & Ashpis [67] investigated the use

of plasma flow control (PFC) on a flat plate under an adverse pressure gradient simulating

the conditions of LPT loading over the Re range from 30,000 to 300,000 and low (0.2%)

and high (2.5%) FSTI conditions. The plasma actuator was a spanwise-oriented—phased-

plasma-array device. Hot-wire and pressure measurements indicated the ability to control

separation, particularly in the low turbulence, low Re regime. Extensive experimental inves-

tigations using hot-wire anemometry (see Huang et al. [68]) and particle image velocimetry

(see Ramakumar [69]) suggest that the actuators would have to be placed slightly upstream

of the separation location, for control to be most effective. Huang et al. [70] observed that

an optimum forcing frequency was found to exist for unsteady operation of plasma actua-

tors, such that the Strouhal number based on separated flow length and local freestream

velocity was unity.

In the area of flow control applications, Corke et al. [71] used weakly-ionized plasma

actuators for lift enhancement on a NACA 0009 airfoil. While lift was increased during

actuation, drag was also increased, providing only minor improvement. The drag increase

was eliminated by using actuators in series. PIV measurements of Post [72] showed that a

jet was formed immediately downstream of the actuator. Discussions do not form a firm

conclusion as to the physical mechanism of the lift enhancement, though the drag increase is

explained using PIV and DNS information. Asghar & Jumper [73] examined the use of PFC

for phase synchronization of the KVS from multiple cylinders. They were effectively able

to modify the natural out-of-phase vortex shedding and force an in-phase vortex shedding

behavior for a pair of cylinders. McLaughlin et al. [74] used plasma actuators to control

the structure of the Karman vortex street by using feedback results from measurements of

the shedding frequency to drive the actuator frequency. Likewise, Siegenthaler et al. [75]

investigated the use of a single PFC actuator to control the coherent structures in a planar,

weakly compressible, free shear layer.

Corke et al. [76] demonstrated the use of plasma actuators as virtual flaps and slats

for airfoil flow control. Actuators located at the leading edge can control separation while

actuators placed at the trailing edge can control lift. Post & Corke [77] showed that plasma

actuators can be used to control airfoil stall in a dynamic pitching motion. While drag was

not measured, there was measurable improvement in the lift over the oscillation cycle using

different steady and unsteady modes of plasma actuation. Thomas et al. [78] investigated
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the application of plasma actuators for landing gear noise reduction. Multiple actuator

elements were mounted along the circumference of both upstream and downstream parts

of a generic landing gear strut with cylindrical cross-section. Reduction of both drag and

vortex shedding was obtained with steady actuation, and drag reduction was found to

be be inversely related to Re. Alternate strategies for noise control using base blowing

(to control vortex shedding) and vectoring the upstream wake were discussed. Recent

results include Corke et al. [79] where plasma actuators were used for lift enhancement on

a natural laminar flow airfoil (HSNLF(1)–0213). The actuator was located just upstream

of the laminar separation point, and both experimental lift measurements and numerical

simulations were used to optimize the unsteady operation for chord based Re of 215,000.

The most number of plasma actuator based application studies are found in separation

control at low Re (see Goksel et al. [80], and Sosa & Artana [81]). While most of the above

applications are restricted to incompressible flows, some high speed applications such as

in axisymmetric jet forcing using arc plasma based configurations have been reported (see

Samimy et al. [82, 83]).

Enloe et al. [84, 54] presented numerous findings on the behavior of plasma actuators.

Based on large scale integral measurements of thrust output, voltage and plasma emission

measurements, and simulations, the authors make several interesting conclusions, including

that the power input, P , to the plasma is nonlinear with the voltage drop, ∆V , across

the dielectric, and that both the maximum induced velocity, umax, and thrust, T , are

proportional to input power, such that

T ∝ umax ∝ P ∝ ∆V 7/2 (2.14)

In addition, their measurements found that the plasma has complex spatial and temporal

structure, the creation of plasma occurs on both the positive and negative slopes of ∆V and

is dependent upon d∆V/dt. Also, thrust is greater for a “positive” waveform as opposed to a

“negative” waveform, even though the bulk plasma structure is the same. This observation

implies that bulk heating is not the mechanism for thrust generation, as some researchers

(such as Leonov et al. [85]) have previously speculated, as the “positive” waveform produced

a more uniform discharge. Their final conclusion is that the plasma induces an electrostatic

body force per unit volume f on the surrounding fluid that is proportional to the net charge

density and the strength of the electric field. The basis of their argument stems from the

Lorentz force equation 2.11, already defined above. The magnetic field effects are ignored,

most ostensibly due to the low velocities of the charged particles, resulting in the expression
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below
~f = qsnsE = ρE. (2.15)

The net charge density can be expressed as a function of the electric potential, starting with

equation 2.5 above

ρ = −εo∇2φ.

The Laplacian of electric potential is given by equation 2.6, which in turn is in terms of

Debye length defined in equation 2.7. Combining all the above, we obtain

ρ = −(εo/λ2
D)φ.

The body force per unit volume of plasma is thus given by substituting the above relation

for charge density in equation 2.15:

~f = −(εo/λ2
D)φE. (2.16)

Presently, this model serves as the basis for much of the current plasma actuator devel-

opment. They observed that the direction of the plasma induced flow can be tailored by

the electrode arrangement, which is important to the current study. Experimental mea-

surements of the induced velocity by Forte et al. [86] at the start and stop of the discharge

reveal that the ionic wind in a DBD actuator is actually generated in a periodic manner,

showing that the actuator does not behave the same in positive and negative portions of

the input AC cycle.

Several factors including input power, input voltage, input frequency, electrode geom-

etry, actuator orientation, dielectric material, dielectric thickness, free stream Re, pressure

gradient, plasma chemistry and air humidity have been shown to affect the behavior of a

plasma actuator. Baughn et al. [87] measured velocity profiles at several locations upstream

and downstream of a plasma actuator, and calculated the body force using a control vol-

ume momentum balance approach. They observed that the force was not affected in the

presence of an imposed cross flow (for free stream velocities in the order few meters per

second), and the extent of the force was limited to well within the boundary layer. Also,

the body force production decreased with input AC frequency (between 5 kHz and 20 kHz)

for nearly constant input power. Porter et al. [88] measured the body force produced on

steady operation of a plasma actuator, and examined the effects of individually varying

input AC voltage and frequency. They conclude that the time-averaged body force is: (a)

linearly proportional to input AC frequency between 5 kHz and 20 kHz (for constant input

voltage), and (b) non-linear with the input voltage (for constant frequency). Further, they
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observed that the actuator “pushes” (with higher magnitude) and “pulls” (with lower mag-

nitude) the fluid in opposing directions during each cycle. Balcer et al. [89] used plasma

actuators on a flat surface with adverse pressure gradient resembling the suction surface of

a low pressure turbine blade, and the exposed electrode was oriented sixty degrees to free

stream direction. While an increase in near-wall velocities was observed on actuation, the

skewed electrode orientation did not introduce any substantial longitudinal vorticity in the

boundary layer.

Roth & Dai [47] present detailed investigations on the effects of changing dielectric

material, electrode geometry, input frequency and input voltage on the flow velocity induced

by the OAUGDPTM actuator. It was observed that the choice of dielectric material affects

plasma volume, distribution of electric field lines (dictated by the dielectric constant value),

and dielectric heating power loss (which in turn, is proportional to input AC frequency and

electrode area). In general, a material combining all these properties was recommended,

higher dielectric constant value (e.g., alumina), higher dielectric strength (e.g., Kapton) and

lower heating loss factor (e.g., quartz and Teflon). Compared to quartz, Teflon was found

to generate a higher value of induced flow velocity for lower power input and was used as

the dielectric material for their remaining parametric studies. The width of the embedded

electrode was found to have negligible effect on both the maximum induced velocity and

input power per unit length of the actuator. The separation distance between the edge

of the exposed and embedded electrodes was adjusted to have variable gap, zero gap, and

overlap between electrodes, with all other parameters being the same. This variation had

a significant effect on the induced velocity, and a 1–2 mm gap width was found to be

optimum for their actuator. The maximum induced velocity was found to increase with

input voltage (at constant frequency) and input frequency (at constant voltage) to a certain

level, after which it reached a constant value and later started to drop with any increase.

VanDyken et al. [90] observed that a thicker dielectric would be able to handle higher input

voltage, and an optimum input AC frequency (to obtain maximum body force) existed

for a specific dielectric. Enloe et al. [91] speculated that the lifetime of the plasma was

related to the presence of negative oxygen ions in the air. Anderson & Roy [92] showed

that the skin friction coefficient produced by a plasma actuator mounted on a flat plate

varied with the relative humidity of air. Forte et al. [93] conducted a detailed parametric

study on the DBD plasma actuator with the objective of maximizing the plasma induced

jet velocity. They examined the effects of variation in electrode gap, embedded electrode

width, dielectric material thickness, input AC frequency, input voltage, substrate material

and multiple actuator arrays on the maximum plasma induced jet velocity. A non zero
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value of electrode gap was found to exist for maximum velocity, while the maximum velocity

varied asymptotically with the embedded electrode width, input voltage and frequency. The

dielectric material thickness was found to affect the breakdown voltage and consequently,

the nature of the discharge. A filamentary discharge arising from a thinner dielectric, while

increasing the maximum induced velocity, was found to damage the material. To have a

more uniform discharge, increasing dielectric thickness was recommended.

While a vast majority of plasma flow control literature is primarily experimental in

nature, several methodologies for numerical modeling of plasma actuators have been in-

vestigated. Most of the current models typically use an electrohydrodynamic (EHD) body

force term to simulate the effect of a plasma actuator on the external flow. Shyy et al.

[94] considered a linear approximation for the electric field distribution within a plasma

region consisting of a triangular area located above the embedded electrode. The time-

averaged electrostatic body force acting on the fluid was computed and then added to the

2-D steady, incompressible, Navier–Stokes equations to solve for the entire flow field. A

similar approach of specifying the charge distribution and spatial distribution of electric

field has been used recently by Visbal & Gaitonde [95] to investigate effects of both steady

and unsteady plasma actuation on a 3-D flow. Hall et al. [96] adopted a potential flow

approach to model the behavior of a plasma actuator, where a doublet element was used

to mimic the actuator-induced velocity field. Orlov & Corke [97, 98] used the body force

expression developed by Enloe et al. [54], and a lumped electric circuit model was used to

compute the electric potential and volume of plasma. Boeuf & Pitchford [99] conducted a

numerical study of the electrohydrodynamic force exerted by a dielectric barrier discharge in

a neutral fluid. They observed that the force acting on the flow was significant only within

distances very close to the plasma region. Suzen et al. [100, 101] computed the body force

as the product of net charge density and electric field as observed earlier by Roth [102],

and this was introduced as a source term in the Navier–Stokes equations. The electric

field was obtained from Maxwell’s equations as the gradient of scalar electric potential, and

another equation for charge density was solved. In contrast to the simplified treatment

used in the above models, some researchers have used a more elaborate particle physics and

plasma chemistry based approach. Font et al. [103, 104, 105] used a particle-in-cell direct-

simulation-Monte-Carlo (PIC—DSMC) method to model the interaction between various

ionic species, and numerically solve for electric potential. The model developed by Roy et

al. [106] solves for drift-diffusion form of equations governing dynamics of ions, electrons

and fluid. Shang [107] solved the time-dependent Maxwell’s equations along with particle

concentration equations to compute the electromagnetic field distribution of a dielectric
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barrier discharge.

Besides the beneficial attributes of ease of construction, high operational bandwidth,

large control authority and excellent dynamic response, the actuator geometry can in itself

be varied to create complex flow structures. This has important implications on the use of

plasma actuators in flow control.

2.2.1 Plasma-Neutral Gas Interaction Mechanisms

While there is an extensive database on flow control applicability studies of these

devices, specific details on the plasma-bulk fluid interaction still remain largely unclear.

Amidst the volumes of research works, very few investigations have actually shed some

light on the physical mechanisms with which these devices affect the near wall fluid flow.

Roth et al. [66, 108] conjectured that the OAUGDPTM actuator creates a charge buildup

in the inter-electrode gap due to “ion-trapping” at time scales larger than the period of

applied voltage. This effectively produced Lorentzian collisions between the ions and the

neutral gas atoms. A paraelectric electrohydrodynamic (EHD) body force, proportional to

the gradient of electric field strength, was attributed to being the reason for the observed

flow field effects. No explanations were provided as to how the discharge produced by the

actuator was self-sustaining. Enloe et al. [84] refuted the above theory on the grounds

that dielectric barrier discharges occur in much smaller time scales (O(10−6s)) than that

of the applied duty cycle, and this would therefore prevent the accumulation of ions at

any particular spatial location. While they also related the flow field effect of the plasma

through an EHD body force, the explanation of its origin was substantially different than

the OAUGDPTM model, as follows. The dielectric material in between the exposed and

embedded electrodes acts as a virtual electrode where electrical charge deposition occurs.

The nature of the input waveform alternates the electrodes from behaving as an anode or

as a cathode in the plasma actuator. The inter-electrode air gap is ionized by the electrical

discharge, and the highly mobile electrons created on the cathode are directed toward the

anode electrode. In contrast, the ions are heavier, and therefore primarily exchange their

momentum to the background air through collisions, resulting in the induced flow pattern

that is commonly observed. The movement of the electrons is interrupted by the dielectric,

and negative charge buildup occurs across timescales of the discharge. This action saturates

the opposing potential on the electrode which acted as the electron source, thereby shutting

off the discharge. When the input potential reverses in sign, a reversal of the above events

occur (see Fig. 2.2 for a schematic). Thus, as long as the input potential is asymmetric and

is of sufficient magnitude to create electrons near the cathode, the discharge sustains on its
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own without collapsing into an arc. Forte et al. [93] conducted detailed steady and unsteady

measurements of plasma actuators in quiescent flow, and identified some interesting features

of the discharge. They observed that the plasma induced flow in a pulsating manner at

nearly the same time scales as the applied voltage. Both the negative and positive half

cycles of actuation were found to induce a positive ion wind, suggesting that the actuator

“pushes” the fluid during both halves of the AC cycle. This “push-push” mechanism is in

contrast to earlier “push-pull” observations made by Porter et al. [88] on the DBD actuator.

Recent experimental studies by Enloe et al. [109] have shown that the action of the

plasma is to increase density of neutral particles near the edge of the exposed electrode,

which in turn causes a pressure gradient-directed force that pulls air upstream (toward the

plasma region) against the density slope, and releasing it downstream when the plasma

quenches. Acoustic emission measurements by Baird et al. [110] on the plasma actuator

suggest that compressibility effects of the air might play an important role on its momentum

imparting mechanism. Enloe et al. [111, 112] conducted detailed temporal measurements of

density perturbations in the plasma region. Their investigations showed that the effect of

the actuator was entirely downstream of the exposed electrode edge, and the density increase

(relatively steady with time) was not as prominent as density decrease in the region. The

density depletion was observed to be balanced by neutral air filling up the region, and this

action eventually reached a constant level with time (in the order of milliseconds) that

was coincident with the start of large scale downstream motion of the bulk fluid. The

initial phase of density depletion and air balance was dominated by diffusion, after which

convection was also observed to play a substantial role, suggesting that heating affected the

spatial structure of air near the actuator.

The effect of the collisions that impart momentum to the neutral fluid, which as of the

moment appears to be the consensus among plasma actuator researchers, are relevant on

spatial scales that are on the order of the mean free path of the gas molecules [50]. However,

the observed interaction of the plasma with the neutral air extends beyond several mean free

paths (for air, MFP≈0.1µm). Previous studies have shown that the presence of oxygen ions

in the atmosphere is important to the efficiency of the fluidic momentum coupling by the

actuator (such as Gregory et al. [113], Abe et al. [114], and Enloe et al. [111]). To understand

the contribution of collisions and its concomitant effects on the flow field, the measurements

on the discharges under different atmospheric compositions is required. At the present state

of research in DBDs, no experimental information is available at the nanosecond level to

clearly arrive at a well-founded mechanism of plasma actuators, rendering the development

of accurate predictive numerical methodologies needed toward real-time implementation of
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these devices a perplexing problem.

2.3 Synthetic Jet Actuators

Synthetic jet actuators introduce a jet with non zero momentum into the fluidic system

in which they are employed, similar to plasma actuators. They have been shown to be

useful active flow control devices for several applications over the recent years (see Amitay

et al. [115], Rediniotis et al. [116], Mittal & Rampunggoon [117], and Chiekh et al. [8] for

example). Figure 2.3(a) shows a common method employed to create a synthetic jet through

the motion of a vibrating membrane (or diaphragm) that is mounted on the bottom wall

of a cavity (shown in blue). The diaphragm is usually a metal disk that is set to oscillate

by means of a piezoelectric actuator embedded on its surface. The fluid surrounding the

cavity fills in the volume available at static (unactuated) conditions. When the actuator

is operated such that it effects a finite upward displacement of the membrane through

stroke B (shown in red), a small volume of fluid is pushed out of the cavity through the

orifice. When the membrane returns back to its static position through stroke S (shown in

blue), fluid is entrained via the orifice into the cavity (volume of fluid entrained is nearly

equal to that expelled, ignoring viscous effects). An oscillatory motion of the membrane

thus results in alternating entrainment and ejection of the residual fluid surrounding the

cavity through the orifice. During the ejection stage (B) of the actuator cycle, the fluid

emanating from the cavity encounters a pressure drop at the sharp edges of the orifice exit,

resulting in flow separation at this region. The separated shear layer rolls up into a vortex

ring (or counter-rotating vortex pairs in the case of a rectangular orifice) that advects in

the vertical direction under its own self-induced velocity during blowing stroke B. Multiple

vortical structures of this nature can be created via operating this actuator across many

cycles, and the interaction between these vortices coupled with their self-advection result

in creating a vertical jet with non-negligible flow momentum. For flow control applications,

this cavity unit is typically flush mounted onto the pertinent surface of interest such that the

synthetic jet is injected into the mean flow field. The resulting interaction resembles that of

conventional jets placed in a cross flow. However, it must be noted that synthetic jets are

produced (or “synthesized”) from the fluid available within the system in which they are

employed, thereby eliminating the requirement of a complicated external plumbing system

to supply the additional mass of fluid required to produce conventional jets. The mass flux

at the orifice exit averaged over the suction and blowing cycle of a synthetic jet actuator

cycle is zero, and hence these jets are otherwise deemed zero-net-mass-flux (ZNMF) jets.
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It must be emphasized herein that it is not the components of the actuator in itself that

define a synthetic jet. The fundamental mechanism of synthetic jet formation is through the

generation and interaction of trains of vortex structures occurring at the exit of an orifice.

The hydrodynamic force and mass of fluid necessary for this process to occur is provided

by the actuator. In addition to diaphragm actuation discussed above, other sources such as

imposing an acoustic field and vibration of a solid wall in contact with a quiescent medium

can also be used to introduce streaming fluid motion. With regard to the former method,

Ingard & Labate [118] employed standing acoustic waves in a circular tube to synthesize a

ZNMF jet near its orifice. Several regimes of induced flow were found to occur on adjusting

the sound intensity. Variations in the frequency of the applied sound wave and orifice

geometry were investigated. A pulsatile jet was found to be formed at sufficiently high

sound intensities in addition to multiple sets of vortex rings. Jet velocities as much as 700

cm/s were recorded, and the sound intensity levels were varied up to a maximum value of

140 dB in the tube. This type of motion induced by transmission of sound through a fluid

is also referred to as acoustic streaming. Fluid motion associated with moving boundaries

have been investigated in several works (such as Riley [119], and Riley & Wybrow [120]),

especially in the context of transverse periodic oscillations of circular and elliptic cylinders.

Davidson and Riley [121] employed time harmonic vibrations normal to the cylinder axis

with an amplitude of 0.1 cm and frequency 45 Hz, and reported maximum steady jet

velocities O(1 cm/s). No closed streamlines were observed in their flow visualization results,

indicating the absence of vortical structures, a noticeable difference from cavity driven

synthetic jets. In his 1978 review lecture, Lighthill [122] attributed the mechanism of fluid

motion induced by transmission of sound or the oscillation of a viscous boundary to the

action of Reynolds stresses. He observed that the dissipation of the input acoustic energy

as a result of sound wave attentuation created the gradients in the momentum flux (the

mean value of which is the Reynolds stress) necessary for fluid motion. In the case of a

moving boundary, frictional dissipation was deemed responsible for generation of Reynolds

stresses. In addition to standing waves, another method to induce acoustic streaming using

high intensity ultrasonic sound beams (also known as “quartz wind”) can be used, and a

recent review article by Riley [123] may be referred to for further information.

Based on the above comments on the mechanism of synthetic jet formation, a general

set of conditions required to produce such a jet can be recognized:

a. The jet driver (diaphragm oscillation, sound waves, etc.) has to provide the necessary

pressure difference for sustained generation, roll up, and advection of starting vortices.
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b. The amplitude of the pressure oscillation imparted by the driver has to be large enough

so as to prevent the starting vortex from being entrained along with the residual fluid

during the suction portion of the actuator cycle.

c. The frequency of the jet driver has to be sufficient to promote the dynamics of vortex

interactions necessary to sustain the jet.

Annular and rectangular synthetic jets generated near an orifice of a flow boundary

through alternating suction and ejection of the working fluid have received considerable

amount of attention in the recent years, both from a classical fluid dynamics of jets per-

spective (see Smith & Swift [124]) as well as practical aerodynamic flow control applica-

tions [26]. Besides their zero-net-mass-flux characteristic which eliminates the need for an

elaborate fluid supply system, the ability to manufacture synthetic jet actuators at micron

scales (see Edis et al. [125]) using Micro Electro Mechanical Systems (MEMS) based tech-

nologies (see Gad-El-Hak [126] for explanation) has motivated researchers to explore several

application studies of these devices. The modification of the direction of a conventional air

jet (“vectoring”) by means of a synthetic jet has been investigated experimentally by Smith

& Glezer [127, 128] and numerically by Guo et al. [129]. Compared to conventional meth-

ods of jet vectoring using mass-laden air jets (such as in Strykowski et al. [130]), synthetic

jets do not require extended surfaces to provide the necessary deflection force. In addition,

these investigations showed that synthetic jet based primary jet vectoring resulted in an in-

crease in the small-scale motions in the flow, suggesting enhanced mixing on account of the

oscillatory flow. This latter observation has been used in a study of augmentation of heat

transfer using impinging synthetic jets by Travnicek & Tesar [131], and mixing enhancement

using micro-scale synthetic jets such as Davis & Glezer [132], and Wang & Menon [133].

The control of flow separation using synthetic jets in both external (see [117], Parekh et al.

[134], Vadillo et al. [135], and Dandois et al. [136] for example) and internal (see Amitay et

al. [137], Amitay et al. [138], and [8] for example) aerodynamic flows has been investigated

by several researchers. Recent studies have examined the active control of axisymmetric

free jets (Tamburello & Amitay [139]) and sprays (Pavlova et al. [140]) using synthetic jets.

Currently, there appears to be an increasing trend of research efforts directed to transition

the aerodynamic flow control applications of these devices from the laboratory level to real

time flight. Nagib et al. [26] applied voice coil driven rectangular synthetic jets in the wing

flaps of the XV-15 tiltrotor aircraft (manufactured by Bell Helicopter Inc.) with the objec-

tive of affecting the drag induced by the downwash of the rotor over the wing during hover.

From full scale flight testing results, they first demonstrated a 9 to 14% reduction in down-
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wash drag through succesful application of active flow control using synthetic jet actuator

technology. Other similar studies have shown the usefulness of these devices implemented

on full scale UAV platforms such as the “Stingray” developed by Boeing Phantom Works

Inc., in problematic areas such as flight control during takeoff and landing, and gust load

alleviation (see Farnsworth et al. [141], Liu et al. [142], Amitay et al. [143], Washburn &

Amitay [144], Parekh et al. [145] for example). At even smaller scales, synthetic jet based

micro air vehicle (MAV) propulsion has been investigated experimentally by Whitehead &

Gursul [146].

This section will present a brief review of the existing state of research in synthetic

jets. The article by Glezer & Amitay [147] presents a comprehensive survey of synthetic

jets, and can be referred to for further information. The first part of this section focuses

on the characteristics of synthetic jets in a quiescent fluid medium. This is followed by a

discussion of the interaction of synthetic jets with a cross flow. Owing to the vast amount

of literature available on synthetic jets, an exhaustive review of this topic is not presented

herein for the sake of brevity.

2.3.1 Isolated Synthetic Jets

James et al. [148] experimentally investigated an annular synthetic jet formed in qui-

escent water through the oscillation of a submerged brass diaphragm flush mounted on a

flat plexiglass plate. A piezoelectric actuator was used to drive the diaphragm at its res-

onance frequency of 7 kHz to produce a displacement of 10µm. Radial and axial velocity

measurements were conducted using Laser Doppler Anemometry (LDA) across varying ac-

tuator excitation levels. Jet formation was observed to occur only when the actuator input

voltage exceeded a critical threshold value, and the centerline velocity increased linearly

with applied voltage beyond this limit. The existence of cavitation bubbles was found to be

necessary for formation of the jet. Although not verified from the experiments, two mecha-

nisms of jet formation via the advection and interaction of vortex rings were proposed: one

in which flow separation about the cavitation bubble during the negative (inward) flow of

water toward the diaphragm was conjectured to create vortex rings, and an other explana-

tion based on the possible formation of strong localized jets due to collapse of the cavitating

bubbles on the plate surface resulting in the generation of primary and secondary vortex

rings. The synthetic jet was found to achieve self preservation at distances sufficiently near

the actuator, and the far field behavior was found to be similar to conventional turbulent

jets. Similarity characteristics including jet half width, inverse of the centerline velocity,

and volume flow rate were found to be linearly related to the streamwise distance. Interest-

43



ingly, the entrainment rate of the synthetic jet was observed to be lower than conventional

turbulent jets, indicating that most of the fluid entrainment occurred within a localized

region near the actuator. Furthermore, the entrainment rate was constant in the case of the

synthetic jet unlike a classical round turbulent jet, and this lead the authors to conclude

that the former did not have a “potential core” region.

The evolution of a cavity-membrane driven rectangular synthetic jet in quiescent air

was investigated by Smith & Glezer [149]. Following the earlier work of Glezer [150], they

introduced a “slug” flow model to characterize the vortex pairs (or vortex rings in a 3-D

case)

τ =
T

2
(2.17)

L =
∫
0

τ

u0(t) dt (2.18)

ReI0 =
I0

µh
=

ρh
∫
0
τu0

2(t)dt

µh
(2.19)

where τ , L and ReI0 denote, respectively, the time scale, length scale and Reynolds number.

In the above equations, u0(t) indicates the centerline velocity at the orifice (x-coordinate

value, vertical direction in Fig. 2.3(b)), I0 indicates the momentum imparted by the jet per

unit width of the orifice, h is the characteristic orifice dimension (width in 2-D, diameter

in 3-D), T is the time period of the diaphragm motion, µ is the dynamic viscosity and ρ

is the working fluid density. A velocity scale based on the length and time scales defined

above was thus arrived

U0 = Lf =
1
T

∫
0

T/2

u0(t) dt (2.20)

This velocity U0 thus represents the velocity of the synthetic jet directed downstream

only during the blowing portion of the actuator cycle, but averaged over the entire cycle

(Note that this is strictly not any time-average of the centerline velocity u0(t).) The authors

argued that the observed flow phenomena is controlled by the average of the downstream

directed volume flux of the synthetic jet, by comparison with the traditional velocity scale

Uave calculated by averaging mean exit velocity at the orifice used in continuous jets. From

phase-locked schlieren flow visualization images in the region near the actuator (streamwise

distance x < 9.5h), laminar vortex pairs were observed to be formed and advected upward

through small scale motions. This stage was followed by the appearance of an instability

in the azimuthal (or spanwise) direction, evidenced by the formation of secondary vortical
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structures trapped within the primary vortex pairs, with the result that these vortices ulti-

mately breakdown the primary vortex core and transition to turbulence. It was conjectured

that the transition process, which was observed to begin somewhere near the suction cycle,

may have been initiated by the reversed entrainment flow during this actuation stage. Fol-

lowing transition, the turbulent vortex pair was found to have a lower propagation velocity

and eventually lost coherence, and many such vortex pairs merged at this stage to form

the mean synthetic jet. Several scaling relations for vortex pair centerline and propagation

(celerity) velocities, as well as the spatial and temporal evolution of vortex pair trajectories

were documented from the results of hot wire anemometry (HWA) measurements. Far-field

cross-stream distributions of both mean and fluctuating velocity components of the syn-

thetic jet were observed to be self-similar, resembling conventional turbulent jets. However,

several differences in their self-similarity characteristics were identified:

a. The decay of the mean centerline velocity in the streamwise direction was found to be

marginally higher for synthetic jets (Uc ∝ x−0.58), as compared to conventional 2-D

turbulent jets (Uc ∝ x−0.5).

b. The streamwise variation of the synthetic jet spreading rate, indicated by its width b,

was found to be slightly deviant (b ∝ x0.88) from the linear variation (b ∝ x) common

in conventional 2-D turbulent jets.

c. The volumetric flow rate Q, defined by the integral below (where y is the cross-stream

coordinate and U is the mean jet axial velocity),∫
−∞

∞
U dy,

was found to vary streamwise as Q ∝ x0.33, once again lower than that seen in non-

synthetic 2-D turbulent jets where Q ∝ x0.5.

d. Compared to conventional 2-D turbulent jets, the synthetic jet showed nearly twice

an increase in the rate of streamwise increase of jet width (db/dx at x=30h) and

substantially larger net volume flow rate (from 0 < x < 80h)

The above differences were attributed to the streamwise decay of momentum flux observed

in synthetic jets, compared to other self-similar 2-D jets where this quantity is invariant.

This variation of momentum flux was associated with the prevalence of lower than ambient

value of mean static pressure in the synthetic jet flow field, which was due to the adverse

pressure gradient created near the orifice during the suction stage of the actuator cycle.
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Crook & Wood [151] investigated the formation and interaction dynamics of vortex rings

produced at the orifice of a cavity by an electromagnetically driven piston at 50 Hz. The

effect of orifice length and input Reynolds number (based on orifice diameter and peak

velocity at the orifice exit) were examined via flow visualizations (Fig. 2.4). Note that in

addition to the stroke length L0 and Reynolds number based on hydrodynamic impulse in

equation 2.19, a non-dimensional formation frequency F ∗ of vortex rings may be defined as

below (see Glezer & Amitay [147]),

F ∗ =
fI0

ρν2

This characteristic, which is the non-dimensional measure of the impulse per unit time, can

be used to compare different synthetic jets based on their vortex strengths.

Béra et al. [152] conducted a particle image velocimetry (PIV) based investigation of

a rectangular synthetic jet and compared its characteristics with two non-ZNMF jets: a

steady blowing jet and a mixed pulsed jet which consisted of the above synthetic jet with

an additional steady blowing component. A loudspeaker enclosed in a cavity was used as

the driver for the synthetic jet. The peak velocities of the above different jets used were

unequal, however. The mixed pulsed jet was driven with a peak velocity equal to the sum

of the corresponding values for the synthetic and steady blowing jets. Details on the spatial

flow field evolution, vortex pair trajectories, maps of fluctuating quantities and similarity

characteristics were derived from these measurements. The synthetic jet flow field showed

a clear inflection point where the mean streamwise velocity was zero, where the suction and

blowing cycles were compensated for each other. The entrainment in the streamwise direc-

tion was found to be greater for the mixed pulsed jet. The synthetic jet showed cross-stream

expansion of turbulence kinetic energy and high levels of fluctuations for a small distance

from the orifice, after which the expansion was reduced. The mixed pulsed jet showed the

most fluctuations, on account of its additional downstream blowing component. The half

width of the synthetic jet based on local maximum mean streamwise velocity (the same

quantity was calculated based on centerline velocity scale in [149]) was found to be greater

than the steady or mixed pulsed jets. The streamwise variation of maximum synthetic jet

velocity was found to increase from the orifice and reach a maximum near the actuator, after

which it decayed nearly at the same rate as the steady jet. From an examination of simi-

larity profiles, negative streamwise velocities were observed at large cross-stream distances

from the orifice, suggesting the presence of secondary vortices effecting fluid entrainment

into the mean jet. The trajectories of vortex centers were observed to be nonlinear for both

the synthetic and mixed pulsed jets, with greater cross-stream dispersion in the former case.

Guy et al. [153] conducted hot film based velocity measurements on a 2-D synthetic jet
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emanating from a slot of a cavity embedded with a flexible diaphragm, and the effects of

variation in actuator input frequency and waveform signal on the jet velocity were examined.

The maximum peak velocity of the jet of roughly 9 m/s was obtained when the actuator

was operated at its resonance frequency (derived from theoretical mechanics based relations

for a disk clamped at its edges) with a square wave input signal. For streamwise distances

up to 12 slot widths from the actuator surface, large turbulent fluctuations were found to be

present on account of the membrane motion, indicating non-fully developed flow. Beyond

this point, the jet evolved into a fully developed state, and the decay of the mean centerline

velocity was found to be similar to conventional 2-D turbulent jets.

Cater & Soria [154] conducted detailed investigations on the evolution of circular syn-

thetic jets and compared it to equivalent continuous jets using PIV measurements. The

synthetic jet was created at the exit of a circular orifice on a cylindrical cavity, and fluid

motion within the cavity was triggered by alternating motion of a piston. Similar to the

findings reported above, their flow visualization observations also confirmed that the width

of the synthetic jet was greater than that for the equivalent continuous jet (Fig. 2.5). In

contrast to the velocity scale in [149] presented in equation 2.20, the authors propose an

alternate velocity scale for description of ZNMF jet flow phenomena based on the observa-

tion that while the integrated mean exit velocity of fluid through the orifice over a full cycle

is zero, the hydrodynamic impulse imparted by the ZNMF jet is non-negligible. They start

with the mean flow momentum flux (per unit density) integral for axisymmetric jet flow

I =
∫
0

r

u2(r, t) 2π r dr

To obtain units of velocity, the above quantity was time-averaged over one entire oscillation

period T and divided by the orifice area, and the square root of the resulting expression

was taken to obtain the momentum flow velocity scale below

U0 =

√√√√ 1(
πD2

4

)
T

∫
0

T

I dt (2.21)

The effects of variation in source Reynolds number (based on D and U0) and Strouhal

number based on the frequency of oscillation f (equal to 1/T ), and the above length and

velocity scales were investigated, the definitions given below

Re =
U0 D

ν
, St =

f D

U0
(2.22)

While the Reynolds number was varied by changing f (so as to change U0), the Strouhal

number was altered by varying the actuator amplitude. The latter input parameter was
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found to be inversely related to the Strouhal number and directly related to the Reynolds

number. Departing from many earlier studies on synthetic jets, the authors examined values

of operational Strouhal numbers much less than one. The flow pattern obtained was found to

be highly dependent on the input Reynolds and Strouhal numbers (Fig. 2.6). Interestingly,

they observed the formation of a vortex ring centered 5 diameters downstream of the orifice

and roughly 4 diameters in length for a flow Reynolds number of 1000, stationary in its

spatial location across all phases of the actuator cycle. This “trapped” vortex ring was

unique to the synthetic jet and generated on account of the radial flow near the actuator

wall, and the effect of this structure was to accelerate the entrainment of fluid toward its

core (thereby contracting the jet) and thereafter decelerate the flow so as to effect rapid jet

spreading via transverse diffusion. This was proposed to be the reason for the substantial

increase in the jet width and radial entrainment observed in the case of synthetic jets as

compared to continuous jets. Such a standing vortex had not been observed by other

researchers, and the authors conjectured that operating the actuator at higher Strouhal

numbers would result in its spatial advection. They attributed the near-field structures to be

the reason for increased jet spreading observed in ZNMF jets, as compared to conventional

continuous jets.

Smith & Swift [155, 124] compared the characteristics of rectangular synthetic and

continuous jets, matched in terms of their Reynolds numbers defined using the slot width

as the length scale and an appropriate velocity scale (U0 in eqn. 2.20 for synthetic jets and

Uave defined in the discussion following eqn. 2.20 for continuous jets.) A wide variety of

Reynolds numbers (O(103)) and input stroke lengths (indicative of the “length’ of fluid

injected into the system during the blowing cycle, calculated as L/h, see eqn. 2.18) were

investigated in the case of synthetic jets. For the same stroke length of a synthetic jet,

the effect of increasing Re in the near field was to promote the generation of small-scale

structures in both the starting vortex pair and the mean jet. On the other hand, for the

same Re, the effect of increasing the stroke length in the near field was in altering the rollup

of the starting vortex pair. No relation between Re or L0/h was observed on the vortex

pair trajectories. The far-field characteristics were found to be affected by both Re and

L0/h. Equivalent continuous and synthetic jets were compared for Re ≈ 2200. In general,

synthetic jets were observed to be wider, slower and contain more momentum than similar

continuous jets. Cross-stream spreading of the synthetic jet was observed to begin much

earlier upstream than the continuous jet. At the same Re, unlike the laminar continuous jet,

the synthetic jet was observed to be turbulent, with transition in the latter most ostensibly

being initiated on account of its oscillatory nature. In the near field, the mean centerline
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velocity for synthetic jets was found to be lower than that of continuous jets, and this was

suggested to be the reason for the increased width, slower velocities, and increased volume

flux observed in synthetic jets.

The criteria required for synthetic jet formation has been investigated by a few re-

searchers. As stated earlier, the advection rate of the starting vortex pair has to be sufficient

enough to avoid its ingestion during the reversed motion created by the suction stroke of

the actuator cycle. Smith et al. [156] showed through experimental measurements that the

formation of an axisymmetric synthetic jet of diameter D will occur only when the input

stroke length L0/D was greater than 1. In their study of rectangular synthetic jets, Smith &

Swift [155] used a potential flow approximation to derive a threshold minimum stroke length

(L0/h = 4/
√

π, where h is the slot width) condition required for jet formation. Experi-

mental results indicated that their formation threshold was not a constant, and exhibited

deviations for smaller slot widths. Holman et al. [157] related the strength of the starting

vortex pair (and hence its self induced velocity) to be proportional to the vorticity flux at

the orifice exit, and used an order of magnitude analysis to propose a different formation

condition based on Reynolds (Re), Strouhal (St) and Stokes (S) numbers as

1
St

=
Re

S2
> K

where K was assumed to be dependent on a variety of geometric parameters of the actuator.

Experiments were used to arrive at the values of K for both 2-D (K=1) and 3-D (K=0.16)

synthetic jets. The same formation criterion was also arrived in a separate investigation of

the axisymmetric synthetic jet by Zaman & Milanovic [158]. Interestingly, they reported a

minimum stroke length of 0.5 required for formation of the synthetic jet, in disagreement

with the value of 1 proposed by Smith et al. [156]. In addition, these authors first recog-

nized the existence of an upper threshold limit input stroke length (L0/D=10), after which

the mean centerline velocity remained invariant, on account of the saturation of vortices

produced in the flow field.

While most of the work described above is purely experimental in nature, numerical

modeling of synthetic jet flows has been investigated by several researchers. Rizetta et al.

[159] used direct numerical simulations (DNS) of the unsteady compressible Navier–Stokes

equations to investigate both the characteristics of an isolated rectangular synthetic jet flow

field, as well as the flow within the cavity. A sinusoidal velocity profile was provided as

the boundary condition to simulate the motion of the diaphragm. The effects of Reynolds

number and cavity height were investigated on two dimensional flow fields. The laminar

solutions rendered a train of vortex rings that did not coalesce to form a jet. Near the jet
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centerline, the time-averaged velocity distributions obtained from 2-D and 3-D simulations

reasonably compared with other experimental results. Lee & Goldstein [160] conducted 2-D

DNS studies on rectangular synthetic jets produced at an orifice on a cavity by motion of a

piston inside it. To model the moving boundary, a localized body force term was added to

the Navier–Stokes equations along specific regions in the computational domain. Both the

effects of input flow conditions (Re and St) as well as geometric parameters (lip thickness,

lip geometry and cavity depth) were investigated. While the flow structures inside the cavity

were found to be highly sensitive to Re, the interactions of ejected vortices were found to

be more influenced by St. Interestingly, the celerity (or propagation velocity) of the vortex

pairs was found to be increased when the cavity was made shallower, similar to earlier

observations of Rizzetta et al. [159]. Kotapati & Mittal [161] conducted DNS simulations

of quiescent rectangular synthetic jet actuator flow fields using the 3-D, incompressible

Navier–Stokes equations. A time varying sinusoidal velocity condition was provided at the

bottom wall of the cavity to mimic the motion generated by the jet driver. Both the spatial

evolution and temporal characteristics were presented and compared with experimental

measurements. The secondary instability in the azimuthal direction identified by Smith

& Glezer [149] as the reason for the vortex pair transition process was also identified in

these simulations. Regardless of conditions elsewhere in the computational domain, the

flow accelerating into the slot during suction and blowing strokes of the actuator cycle was

observed to be laminar.

In contrast to the above DNS efforts, several researchers have employed Reynolds Aver-

aged Navier–Stokes (RANS) equations for description of synthetic jet flow fields, ostensibly

with a motivation to minimize computational time involved. Kral et al. [162] first con-

ducted 2-D simulations of laminar and turbulent synthetic jets by introducing a simple

harmonic velocity profile boundary condition to describe the flow at the orifice exit. A

turbulence model was incorporated to mimic the dynamics of vortex interactions observed

in experiments. The mean flow characteristics in the far-field compared well with experi-

ments. The flow within the cavity was not modeled and RMS velocity components were not

compared. Cui & Agarwal [163] performed three dimensional studies on isolated synthetic

jets by modeling the actuator flow field using the unsteady RANS (URANS) equations.

The results of URANS simulations employing several turbulence models, including the one-

equation Spalart–Allmaras (ST), the two-equation shear stress transport (SST), a hybrid

SA–Large Eddy Simulation (similar to a detached eddy simulation (DES) in the context

of modern day turbulence modeling terminology, see Wilcox [164]), and a hybrid SST–LES

model, were compared with PIV measurements available in the literature. However, no

50



single model showed any improvement in terms of the flow field predictions, and the au-

thors concluded that the overall agreement of the simulations with experiments to not be

satisfactory. Park et al. [165] investigated the importance of numerical considerations such

as spatial discretization and time integration schemes on 2-D RANS based simulations of

isolated rectangular synthetic jets. Of the turbulence models (SA, k–ω SST, linear k–ε)

used for modeling the RANS eddy viscosity, the SST model compared most favorably with

experiments. Bulk flow features such as the width and velocity magnitudes predicted by

these simulations were is good agreement with measurement values.

The interaction of linear or annular arrays of multiple synthetic jets has been investi-

gated by Smith et al. [156], and Smith & Glezer [166] in related PIV investigations. These

studies examined the formation and evolution of the flow field of a pair of rectangular syn-

thetic jets oriented adjacent to each other in quiescent medium, parallel about the long

dimensions of their orifices. By varying the phase difference between the operation of the

two actuators, the direction of the resultant synthetic jet was shown to be altered, as shown

in Fig. 2.7. When both actuators were driven in phase, each induced the formation a

counter-rotating vortex pair at the exit of their respective orifice. The resulting flow field

was observed to be heavily influenced by the ensuing vortex pair interaction dynamics. The

adjacently-located vortices generated by each actuator (viz., unlike signed vortices spaced

closest) canceled each other, resulting in a single vortex pair with more circulation strength

than the vortex pair of a single synthetic jet. Also, the vortex pair of the combined jet

propagated with lower velocities than the single jet. The suction stroke entrainment was

identified to be responsible for initiating the vortex pair interactions. Compared to the single

synthetic jet case, an increase in the entrainment, volume flow rate and jet spreading were

observed simultaneous with the vortex pair interaction process in the combined jet. Several

flow field modifications such as a change in the directionality of the combined synthetic jet

and formation of closed separation bubbles were introduced through an adjustment of the

phase delay angle between the actuator cycles.

2.3.2 Synthetic Jets in a Cross Flow

This section of the literature review examines the interaction of synthetic jets with a

cross flow, and the observations herein are presented in terms of two common test flows

used by researchers to describe the jet-external flow interaction physics.
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Flat Plate Boundary Layer Flows

Gordon & Soria [167] experimentally investigated the flow field characteristics of a

round synthetic jet in cross flow using PIV and compared them to equivalent continuous

and pulsed jets. The synthetic jet was produced at the exit of a circular orifice plate on one

surface of an otherwise sealed cavity, and set to interact with the incoming flow at an angle

of 90◦. The oscillating pressure drop required for synthetic jet formation was introduced by

the motion of a diaphragm inside the cavity through an electromagnetically driven piston.

The effects of variation of three input parameters were examined: a jet Reynolds number Re

defined based on the orifice diameter d and an average momentum flow velocity Uj (equal

to the root mean square value of the measured diaphragm velocity), Strouhal number St

based on the input actuator frequency f (in addition to d and Uj), and the ratio R of jet

velocity (Uj) to free stream velocity (U∞). The St values investigated were lower than

other synthetic jet studies, with frequency of oscillation f varied to either a value of 5 Hz

or 10 Hz. The free stream velocities in this study were lower than the jet velocity, and the

resulting values of R investigated were 4.6 and 7. Details on the evolution of the streamwise

vortices and volume flow rates were examined in the near-field of the jet (<5d measured

from the orifice plate in the direction normal to free stream). From multiple phase-locked

measurements, the vortex structures introduced at the exit of the orifice were found to move

in the cross-stream direction very near the actuator and eventually advect along the free

stream direction with increasing distance from the wall. This resulted in the “tilting” of the

vortex ring produced by the synthetic jet along the free stream direction (see Fig. 2.8). The

volume flow rate in the wall-normal direction was calculated along different cross-stream

distances and in general compared well with isolated synthetic jet characteristics (e.g. Smith

& Glezer [149]). In spite of the availability of a higher volume of fluid in the system on

account of an external flow (compared to an isolated synthetic jet), most of the entrainment

of residual fluid by the actuator was still found to occur within a few diameters of the orifice.

Even at a distance as close as 0.2d from the orifice plate, 25 to 40% of the total volume flow

rate was found to be derived from the suction stroke of the actuator cycle. Downstream of

the orifice, the flow streamlines were displaced by nearly three diameters in the cross-stream

direction. The interaction region of the synthetic jet with the external flow was observed

to extend to distances of up to 20 diameters in the cross-stream direction. Both the jet

trajectory, as well as velocity decay along the trajectory of the synthetic jet were similar to

those for equivalent conventional jets in cross flow.

Smith [168] investigated the interaction of a rectangular synthetic jet actuator array
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with an incoming turbulent boundary layer at a free stream velocity of approximately 9.1

m/s (Reθ=1.79×103). The velocity scale proposed by Smith & Glezer [149] was used to

define the jet-to-free stream velocity ratio of 1.2. Two different array orientations, each

consisting of three synthetic jet actuators of identical dimensions were examined: a “span-

wise” configuration where the major axes of all actuator orifices were perpendicular to the

free stream direction and a “streamwise” configuration with major axes parallel to the free

stream direction (major axis refers to the axis in the direction of the longer dimension of

the exit orifice). HWA measurements were used to infer the velocity profiles and boundary

layer characteristics. In general, the orifice orientation was found to affect the development

of the flow field substantially. In the spanwise configuration, the synthetic jet was observed

to interact with the incoming cross flow so as to result in the formation of a localized closed

reversed flow region. Similar to previous observations, the synthetic jet was bent in the

direction of the incoming flow. Due to the blockage imposed by the jet, a wake region was

developed downstream of the actuator array and the formation of a wall jet like flow was

observed. The velocity profiles in the streamwise configuration showed a decrease in flow

reversal with increasing downstream distance, in contrast to the spanwise oriented array.

A wall jet like behavior was also observed in the streamwise configuration at near wall

distances. The interaction scale of the synthetic jet in both configurations were compara-

ble. However, the interaction of the streamwise configuration extended to the edge of the

boundary layer, compared to the lower penetration height of the spanwise configuration.

The increased area of the synthetic jet in the latter case was conjectured as the reason

to why the jet in spanwise array was quickly tilted by the free stream. The synthetic jet

trajectory in the spanwise configuration was found to follow the power law scaling of a con-

ventional continuous jet in cross flow. The momentum thickness increased monotonically

in both actuator array orientations, and a return to static (unactuated) values downstream

of the actuator occurred only for the spanwise configuration. The displacement thickness

remained nearly a constant and returned to static values downstream for the spanwise ar-

ray, while it increased monotonically for the streamwise array and no return to static values

were observed. Zaman & Milanovic [169] conducted HWA measurements on the flow field of

a round synthetic jet introduced normal to a flat plate boundary layer flow with a velocity

of 20 ft/s. The input “stroke length” (defined in the earlier parts of this section) and jet-to-

free stream velocity ratio were varied. In general, the mean velocity, streamwise component

of vorticity, and turbulence intensities resulting from the synthetic jet-flow field interaction

resembled those of a continuous conventional jet in cross flow. The jet trajectories were

found to be independent of the input stroke length and purely affected by the input velocity
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ratio. The penetration depth of the synthetic jet compared well with analytically predicted

values of equivalent continuous jets.

The effect of spanwise orifice orientation (yaw) angle of a rectangular synthetic jet in

cross flow was investigated experimentally Bridges & Smith [170]. The velocity of the free

stream was roughly 17 m/s, and the boundary layer was turbulent throughout the entire

length of the plate. The synthetic jet-to-free stream velocity ratio was 0.82, and three yaw

angles of 0◦, 10◦ and 20◦ were studied. HWA measurements were used to examine velocity

contours near the actuator and identify flow structures in the spanwise plane. For zero yaw

angle, a weak stationary vortex pair was observed very close to the wall. With increase in

yaw angle to 10◦, the flow field resembled a skewed synthetic jet in cross flow, and a single

streamwise directed vortex was formed downstream of the interaction region. At a yaw angle

of 20◦, the influence of the synthetic jet on the cross flow became weaker, and a horse-shoe

vortex pair also directed in the streamwise direction was observed. The vortex structures

(for any yaw angle) were observed to introduce a higher level of turbulent fluctuations in

the boundary layer, and their positions were found to be affected by the driving actuator

frequency. Milanovic & Zaman [158] investigated the effects of changing orifice geometry on

the flow field of a synthetic jet discharged normal to the direction of an incoming flat plate

boundary layer flow with a velocity of 20 ft/s. In addition to a circular geometry, an orifice

pitched 20◦ relative to the wall, and a cluster of nine orifices were investigated. While the

clustered and pitched orifice arrangements improved the mixing, their jet penetration was

lower when compared to that of the single circular orifice. The flow field observed in the

single and clustered orifices resembled a conventional jet in cross flow. The pitched orifice

directed the synthetic jet at an angle, resulting in a flow field that resembled a horizontal

wall jet. Interestingly, the jet trajectory from all the orifices were found to follow analytical

correlations for a continuous jet in cross flow.

In addition to the above experimental investigations, Dandois et al. [171] recently

conducted numerical simulations of synthetic jets in cross flow. The performance of using

the URANS equations and LES equations to model the unsteady flow field structures were

compared, and the sensitivity of the results to the computational grid, time stepping, and

boundary conditions were considered. The global far-field characteristics were found to not

be affected by the above parameters. However, the evolution and interaction of the counter-

rotating vortices showed a strong dependency on the computational setup, particularly the

grid resolution and turbulence model. It was concluded that while a URANS simulation

could predict the bulk flow features and velocity profiles reasonably well, LES was the

best alternative to achieve better predictions of the near field structures as well as flow
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characteristics.

Flow Over a Circular Cylinder

The circular cylinder has been a simple, albeit powerful geometry revisited time and

again to help in the understanding of the physics of fluid flows. Both the baseline flow and

the evolution of boundary layer separation with inflow conditions have been documented

extensively. Amitay et al. [172] conducted smoke-flow visualization of the modification of

the low speed flow over a circular cylinder (ReD=4000, where D=diameter of the cylinder).

Sample results from these experiments are shown in Fig. 2.9. As can be inferred from the

flow streamlines, operation of the actuator reduced the extent of separation and moved the

separation point downstream. By adjusting the position of the actuators relative to the free

stream flow, various flow field modifications including alterations in the wake symmetry

and wake vectoring were exerted. In a related investigation, Amitay et al. [115] conducted

HWA and pressure measurements on cylinder flow separation control using synthetic jets

at higher flow speeds (ReD,max = 131 ×103). An array of two rectangular synthetic jet

actuators located adjacent to each other in the spanwise dimension were mounted on the

top surface of the cylinder, and the effect of variation of the angle between the synthetic

jet and the free stream was examined. The actuators were typically operated at near the

resonance frequency to obtain maximum jet output. Excitation of the flow by the actuators

rendered the velocity and vorticity profiles asymmetric about the centerline, and the veloc-

ity deficit in the near wake region was reduced. In addition, a downward displacement of the

wake was observed on actuation compared to the nominally symmetric baseline case. The

Reynolds stresses were actually lowered in the near-field post excitation, suggesting that

the actuators did not act in a way similar to turbulators that trip a laminar or transitional

boundary layer. While the actuator frequency was much higher than the vortex shedding

frequency in the wake, it was also lower than the small-scale motions occurring in the wake.

As a result, the actuator induced excitation was coupled to the wake, thereby enhancing

dissipation and hence lowering the Reynolds stresses. Positioning the actuators upstream

of the baseline separation point was not observed to affect the pressure distribution around

the cylinder. The interaction of the synthetic jet with the mean flow resulted in the forma-

tion of a closed region of separation, and displaced the immediate streamlines outside to

the potential flow region. Within the range of transitional Reynolds numbers investigated

in this study, this recirculation bubble renders the boundary layer to better withstand ad-

verse pressure gradients and consequently delay the occurrence of separation. The effect of

actuation on the aerodynamic loading was to increase the lift by decreasing the pressure
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coefficient throughout the cylinder (both upstream and downstream), and also decrease the

drag through increasing the base pressure. Increasing the angle of the jet with respect to

the free stream direction increased the lift coefficient and decreased the drag coefficient

on the upper surface (where actuators were located), and a reversal of trends in the lower

surface. In a related investigation, Honohan et al. [173] observed that when the actuators

are operated at frequencies much larger than the wake shedding frequency of the baseline

flow, the interaction of the synthetic jet with the cross flow produces a beneficial alteration

of the streamwise pressure gradient so as to effect a virtual shape modification. This re-

sulted in thinning of the boundary layer downstream of the actuator, and the ensuant delay

(or complete elimination) of separation. The most interesting aspect of the synthetic jet

interaction was that although the synthetic jets were operated at time scales well below the

characteristic time scale of the flow, the actuation affected length scales that were several

orders of magnitude of the characteristic dimension (slot width or orifice diameter) of the

synthetic jets.

Rediniotis et al. [116] investigated the application of rectangular synthetic jets for the

control of flow separation over a circular cylinder using PIV. The actuator effect in delaying

separation was explained by the combined outcome of two independent mechanisms: one

based on the removal of decelerated boundary layer level fluid during the suction stroke

and injection of the same volume of fluid with increased energy during the ejection stroke

to result in a Coanda effect based flow reattachment, and the other based on increase

in flow mixing through the introduction of longitudinal vortical structures created as the

result of the oscillatory blowing and associated increased shear layer receptivity. Recent

results include the control of the flow over a circular cylinder using pulsed modulation of

the actuation waveform by Glezer et al. [174]. The authors found that this form of modu-

lation introduces coupled high and low frequency actuation so as to affect the aerodynamic

loading, most ostensibly through its effect on the global instabilities prevalent in the mean

flow. The circulation strength about the cylinder was examined from phase-locked HWA

measurements. The wake width was found to be considerably narrower in case of the high

frequency actuation, and no coherent vortices were present in the wake, in sharp contrast

to low frequency actuation. From these results, lower actuation frequencies were observed

to create strong oscillations in the lift and drag forces, as opposed to high frequencies which

“quietened” the wake and rendered the aerodynamic loading to nearly quasi-steady values.
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2.4 Summary

This chapter presented a brief background of the physics of plasmas and a literature

review of research on the flow control methods of specific interest to this dissertation, includ-

ing plasma actuators and synthetic jet actuators. Both these devices have to be activated

through an input of energy, and their flow field effects are comparable to traditional methods

employed for control of boundary layer separation through tangential blowing and mixing

enhancement. Plasma actuators modify the flow momentum near the surface where the

actuator is applied, mostly by means of fluid entrainment introduced as a result of an elec-

trostatic coupling between the electric field of a single dielectric barrier discharge with the

surrounding flow field. While a clear description of the reason as to why this coupling arises

yet remains to be unraveled, an external body force introduced on the flow field due to the

collisional transfer of momentum contained within mostly immobile ions in the discharge

plasma with the neutral ambient gas molecules appears to be the current state of consen-

sus, as far as the actuator mechanism is concerned. Numerous studies on the applications

of plasma actuators toward air flow control have been investigated, and the majority of

these efforts have been limited to low Re flows on laboratory scale models, however. In

an initially quiescent medium, current studies have shown that the velocity induced by a

single dielectric barrier discharge actuator (a function of the input power) is typically lesser

than 10 m/s. The inherent advantages of these devices are the absence of moving parts,

high bandwidth, low input power (∼ O(10 W) for most laboratory scale applications), and

ease of implementation on any arbitrary surface without major modifications to its internal

structure.

Synthetic jet actuators introduce a rectangular or annular jet to the free stream (usually

in the wall-normal direction), formed by alternating suction and ejection of the residual fluid

at the orifice of a cavity embedded flush on the surface of the flow boundary. While the

average mass flux integrated over an entire cycle comprising suction and ejection phases

is zero, the hydrodynamic impulse of the jet is non-zero. The jet driver provides the

action responsible for initiating and sustaining the oscillatory motion of near wall fluid

toward and away from the cavity, and commonly used drivers include a flexible diaphragm

embedded on the surface of the cavity, a piston connected to the lowermost moving surface

of the cavity, and acoustic excitation. The jet is formed by the self-induced motion and

interactions of trains of vortex structures generated periodically on account of separation

of ejected flow at the sharp corners of the orifice and consequent roll up of the shear layer.

Peak velocities as high as 100 m/s have been realized with conventional synthetic jets in
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quiescent conditions, and extensive studies of the applications of these devices have been

conducted across a variety of system scales ranging from a few microns to those of an actual

aircraft. As impressive as the success of this device as a viable active flow control technology

can be, there exists a few limitations, the most important being the requirement of a rather

elaborate arrangement required to modify the flow surface so as to house a cavity. Also,

the input required for formation of a synthetic jet is required to be necessarily pulsatile,

whereas plasma actuators can be driven either in steady or unsteady pulsed operation. The

scalability aspect of the synthetic jet actuator is outweighed by the ease of construction and

implementation of plasma actuators. However, the peak velocity metric definitely restricts

the applications of plasma actuators to a smaller domain than synthetic jets, and whether

this barrier can be broken still remains to be determined.

With regard to the effort put forward within this dissertation, a concept for including

the features of both plasma actuators and synthetic jet actuators is examined. While the

intent herein is not necessarily to introduce a replacement for one or the other device, it

is expected that this work would remove the limitation of plasma actuators from being

merely modifiers of boundary layer level flow via tangential blowing, and therefore have an

impact on their applicability. Essentially, the positive aspects of plasma actuators in terms

of construction and implementation will be retained, but the flow field effect of the plasma

will be tailored so as to resemble synthetic jets.
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2.5 Tables and Figures

(a)

(b)

Figure 2.1: Plasmas: (a) basic description, and (b) generation via electrical discharge.

59



~

cathode

anode

Figure 2.2: Mechanism of self sustaining nature of the DBD plasma actuator proposed by

Enloe et al. [84]. Top and bottom halves correspond to the negative and positive portions

of the input potential waveform, respectively, and arrows indicate the direction of motion

of electrons (− signed).
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(a) Schematic.

(b) Jet flow field.

Figure 2.3: Synthetic jet actuator: (a) shows a cavity-membrane motion driven concept,

where A indicates the cavity, B (in red) indicates the blowing stroke and S (in blue) indi-

cates the suction stroke of the flexible diaphragm, C indicates the jet induced by advection

of vortex rings, and D: axial velocity profile. (The direction of motion induced during

each portion of the cycle are shown in the respective colors) (b) shows a Schlieren flow

visualization of the induced flow field (from Glezer & Amitay [147]).
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Figure 2.4: Effect of Re (based on orifice diameter D=5 mm) and orifice length on the flow

field of a round synthetic jet operated at f=50 Hz (from Crook & Wood [151]).
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Figure 2.5: Flow visualization of a round synthetic jet (a) and equivalent continuous jet

(b) (from Cater & Soria [154]). The white conical lines are drawn to indicate the relative

spreading of each jet. D = 2 mm, Re = 104, and St = 0.0015 (see eqn. 2.22 for definitions).
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Figure 2.6: Effect of Re and St variation on the flow field of a round synthetic jet. (a) Re

= 3336, St = 0.03, (b) Re = 7784, St = 0.012, (c) Re = 11,121, St = 0.009, and (d) Re =

66,961, St = 0.009 (from Cater & Soria [154]).
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Figure 2.7: Schlieren flow visualization of the induced flow field of adjacent rectangular

synthetic jets located parallel to each other. L and R indicate left-side and right-side

actuators respectively, and the phase difference between the driving signals of the actuators

are shown (from Smith et al. [156]).
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Figure 2.8: Streamwise velocity contours from averaged PIV results showing the interaction

of a round synthetic jet with a flat plate boundary layer flow. A and B indicate regions

of lowered velocity downstream and upstream of the jet respectively, cross flow direction is

from left to right (from Gordon & Soria [167]).
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Figure 2.9: Visualization of the interaction of a synthetic jet with the flow over a circular

cylinder: (a) actuator off, and (b) actuator on. Flow direction is from left to right (from

Glezer & Amitay [147]).

Copyright c© Arvind Santhanakrishnan 2007.
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Chapter 3

PRELIMINARY OBSERVATIONS

Toward the final section of the introductory chapter, the motivation for exploring the

plasma synthetic jet actuator for active flow control applications was discussed. As a way of

introduction, this chapter will examine some background work that was performed on this

design. These are presented in this chapter with the intention of providing the reader with a

basic idea of some of the characteristics of plasma synthetic jet actuators, before indulging

in further exploratory studies provided throughout the rest of the dissertation. Figure

3.1(a) shows a schematic of the annular plasma synthetic jet actuator construction. It is

observed that operation of the annular actuator results in the formation of a plasma region

that is toroidal in nature, starting from the inner edge (closer to the actuator center) of the

exposed electrode ring and expanding toward the center of the enclosed circular area on the

dielectric surface. This arrangement is essentially a geometric variant of the linear plasma

actuator design, in that annular electrodes are used instead of rectangular strips. From the

earlier discussion in the first chapter, it can be noted that the single line of plasma formed

on operation of the conventional plasma actuator introduces near actuator entrainment and

subsequent expulsion of this volume of air in the form of a wall level jet. Obviously, the

plasma is responsible for this flow field feature, and hence the jet characteristics would

have to be related to plasma strength. Intuitively, the proposed annular design should also

promote entrainment near the plasma region in a similar manner. In contrast to the linear

plasma region, however, if the strength of the plasma was approximately equal along the

circumference of the toroidal region, the flow field effects are expected to be symmetric

about the vertical axis referenced from the actuator center. The action of pulling in air

by the plasma towards the actuator center would thus have to result in a vertical jet on

account of mass conservation. The maximum spatial extent of the plasma on the exposed

surface of the annular actuator is limited by the region within which the applied electrical

potential exists, and this is given by the sum of the embedded electrode dimension and

the net gap (if any) between the placement of the inner edge of the exposed electrode

and outer edge of the embedded electrode. Figure 3.1(b) shows a sample Schlieren flow

visualization image of a vortex ring advecting downstream of the plasma induced jet, and

the creation of a plasma induced synthetic jet by on/off pulsed operation of the annular

plasma actuator. A motion sequence (provided separately as a movie file) obtained by
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using the above visualization technique shows that pulsed operation of an annular actuator

induces a jet with a “braided” structure similar to those seen in conventional synthetic jets,

suggesting an interaction between the vortices generated during different portions of the

actuator duty cycle. As expected, the pulsing frequency and the actuator dimension affect

the formation of the flow field structures and the resultant jet, as shown from PIV based

visualizations shown in Fig. 3.2(a) and (b).

To characterize the actuator, the experiments were first conducted in nearly quiescent

environment, and the PSJA was mounted on a flat plate with no external flow. The flow

induced by the PSJA was examined from PIV measurements phase-locked to the actua-

tor pulsing frequency. Figure 3.3 shows vorticity contours for an annular PSJA operated

at a pulsing frequency of 1 Hz, where four different times of evolution of jet are shown.

These were obtained for input sine waveform signal with AC amplitude of about 5 kV and

frequency of 4.2 kHz. The diameters of the exposed (do) and embedded (di) electrodes (con-

ductive copper strips) were 5.8 cm and 3.8 cm respectively, with a gap width of 1–2 mm,

and 50 micron thick Kapton was used as the dielectric material. It can be seen that pulsing

the actuator creates three counter-rotating vortex rings in addition to the synthetic jet.

The plasma ring created on actuation of the PSJA (see Fig. 1.10(a)) pulls in residual fluid

adjacent to the surface and ejects it in the form of a jet. The primary vortex ring (Fig. 3.4)

is created due to suction and turning of the fluid by the plasma, while the counter-signed

secondary vortex ring would have to be created to balance the net flow field circulation in

accordance with Kelvin’s theorem. When the fluid is ejected out as a jet, it separates from

the actuator surface. This produces a weak strength tertiary vortex ring of the same sign

as the secondary. The primary vortex ring, while clearly seen near the actuator surface

at t=28 ms, advects downstream ahead of the jet at t=63 ms. The primary vortex ring

forms near the actuator surface (as seen in Fig. 3.3(a)) and advects downstream ahead of

the jet at t=63 ms. The secondary and tertiary vortex rings remain stationary in their

spatial location after t=63 ms, however. The secondary vortex ring was observed to be

advected outward along the wall when the actuator was turned off. The vortex rings were

characterized by defining a circulation based Reynolds number: ReΓ = Γ/ν. The starting

vortex circulation based Re (at t=28 ms) and secondary vortex circulation based Re (at

t=300 ms) were determined to be 135 and 160, respectively.

Figure 3.5 shows the cross-stream distribution of mean axial velocity at t=153 ms. The

mean axial velocity and cross-stream distance was non-dimensionalized with local maximum

mean axial velocity Umax and diameter of embedded electrode di. The jet starts to become

self-similar at distances close to the actuator. At distances very near the actuator, the
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entrainment of fluid by the plasma can be seen, which is is in contrast to the similarity

profiles of conventional pulsed jets. A simple control volume analysis shows that there is

no net mass flux injected to the flow field, as the fluid that is entrained by the plasma is

ejected out as the jet. Figure 3.6 shows a velocity vector plot of the jet flow field, where the

vertical lines have been additionally included to indicate the radial stations corresponding

to the RMS component streamwise velocity profiles shown in Fig. 3.7 were extracted. Note

that u refers to the axial velocity while v refers to the radial velocity. Each of these

velocity fluctuations were normalized with the maximum value of the maximum vertical

RMS velocity. The RMS velocity component in any particular direction (radial/axial) was

calculated by computing the norm of the mean velocity in that direction, and dividing this

quantity by the square root of the number of tensor sets (equal to the number of data points)

used. For phase-locked measurements, 61 tensors were used for calculation of mean and

RMS quantities, all taken at the same phase point (indicated by t) on the actuator pulsing

cycle. It can be observed that both radial as well as axial fluctuations for the jet are greater

than those of the secondary vortices. The distance from the wall where the peak value of

both horizontal and vertical direction fluctuations appears to be very close to the actuator

and nearly the same across any radial location. Within the jet field of view, the radial

component of the RMS velocity reaches its baseline value very near the wall (at distances

< 0.2di), while the decrease of the corresponding axial counterpart does not occur even at

a cross-stream distance of 0.4di. This is expected physically, as a conventional synthetic jet

transports higher levels of RMS quantities in the longitudinal direction as opposed to the

transverse direction. The Reynolds stress term normalized by its maximum value is also

shown. A short-lived peak in this value occurs very close to the wall, and the flow field

barring the jet appears to be relatively void of any comparable level of RMS components.

This suggests that the jet contains higher levels of turbulent fluctuations than the rest of

the flow structures, an observation that is also supported by the turbulent kinetic energy

contours shown in Fig. 3.8(a), where this quantity was defined per unit mass of fluid using

the expression
√

u′2 + v′2. The jet is unstable, while the secondary vortical structures in

the flow field are laminar. The kinetic energy peak occurs at the center plane of the jet,

and in general, decreases downstream. Interestingly, a comparison of this behavior to the

turbulent kinetic energy of a conventional rectangular synthetic jet obtained from the PIV

investigation by Béra et al. [152] shows a complete disparity between the jets, ostensibly

due to the difference in mechanism of jet formation (Fig. 3.8(b)). It must be noted that

no effort has been made to match the dimensionality, length, and velocity scales of the two

jets compared, and the observations stated herein are merely qualitative. The energy of the
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conventional synthetic jet is dominated by substantial transverse expansion, in complete

opposition to the decreasing transverse expansion in the streamwise direction of the plasma

synthetic jet. The fluid entrainment initiated by the jet driver in each case (acoustic field

and plasma) creates increased fluctuations in the near field of both cases. The longevity of

these fluctuations and its cross-stream distribution, however, are very short for the plasma

synthetic jet as compared to its conventional counterpart.

Interestingly, while the net mass flux of the jet in the near-field of the actuator is zero

on account of a balance between the entrained and ejected fluid, the hydrodynamic force

imparted by the jet is non-zero. The streamwise distribution of the force produced by the

fluid discharge is shown in Fig. 3.9, and this was determined by using the inviscid second-

order momentum integral equation as given in Hussein et al. [175], modified slightly for the

present case as given below

I = 2πρri

∫ ∞

0
(U2 + u′2 − 1

2
(v′2 + u′

2

θ ))dr (3.1)

where U indicates the mean component of the axial velocity, u′ and v′ are the axial and

radial RMS components of the velocity, respectively, u′θ is the azimuthal RMS velocity, ρ

is the density of air at STP conditions, and ri is the radius of the embedded electrode.

Following the observation in Hussein et al. [175], the azimuthal velocity (not obtainable in

the 2-D PIV measurements reported in this chapter) was related to the radial RMS velocity

as u′
2

θ ≈ 0.5v′2 . In general, for all the four different times within the 1 Hz (period = 1000 ms)

pulsing cycle shown, the variation of the imparted momentum peaks very near the actuator

at distances less than 0.5di, after which it decreases sharply for distances downstream. No

single scaling can be synthesized for the streamwise decay of momentum across all the times

shown. Highly unsteady behavior of the jet can be noted, given that the overall maximum

impulse increases starting from 12 dynes at 28 ms to 14 dynes at 63 ms, after which the

peak value decreases for 153 ms and 300 ms. The far-field (referring to x > di) decay is

sharper for 28 ms and 63 ms, such that the momentum falls to values lower than those for

the latter two times shown. This is conjectured to be related to the presence of multiple

starting vortices (from previous portions of the actuator cycle) for the 153 ms and 300 ms

cases at these far-field streamwise locations (see Fig. 1.11 for flow streamlines).

To assess the amount of energy spent on generating the secondary vortex ring structures

that are formed in addition to the synthetic jet, the momentum curves shown in Fig. 3.9

were integrated in the streamwise direction, and the time variation of this fluidic work (or

energy imparted by the jet) is shown in Fig. 3.10. The upper bound indicates the integration

process performed across the entire cross-stream of the PIV window of observation, while
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the lower bound is obtained on integration of momentum across the jet field of view. The

average of the work performed by the jet and the associated secondary vortices on the

quiescent medium is shown, and the variation of this quantity across different times of

observation is highly unsteady, peaking at 63 ms. This is expected in line with observations

on the hydrodynamic force discussed earlier. The work done toward generation of secondary

vortices is approximately 2 dynes. It is interesting to note that this value is nearly unchanged

with time, independent of the variation of momentum imparted by the jet. Figure 3.11 shows

the variation of the circulation strength of the secondary vortex (located at the right hand

side of flow field) with increasing radial distance across different times of the actuator pulsing

cycle. With increasing time, the peak value of circulation increases noticeably between 28

ms to 63 ms, after which it increases only slightly, confirming the relatively steady behavior

of work expended for generation of these structures. The time evolution of the maximum

axial velocity (Fig. 3.12) shows that the peak value of 65 cm/s occurs at t=63 ms and then

plateaus to nearly constant value. This suggests that unsteady operation of the annular

PSJA would be optimal in obtaining maximum jet momentum for flow control purposes.

Further details of this actuator performance can be found in Santhanakrishnan et al. [176].

It must be noted that the annular PSJA, akin to a circular synthetic jet, would in-

troduce three-dimensional structures in the flow. In order to make this actuator easier to

analyze in two-dimensional flow situations (such as laminar flow over a flat plate), the linear

actuator can be modified to have two exposed electrodes and one embedded electrode (see

Fig. 3.13(a)). Such an arrangement can be visualized as that obtained by placement of two

linear plasma actuators oriented parallel along their long dimension, so that the entrained

flow from each actuator opposes that of the other, and also such that both actuators have

a common embedded electrode. Two regions of plasma are thus created along the edges

of each exposed electrode, as shown in Fig. 3.13(b). This design induces a vertical jet in

the same way as the PSJA described above, but resembles a synthetic jet emanating from

a rectangular orifice, which can be considered to be nominally two-dimensional (such as in

Smith & Glezer [149]). This particular design, the linear plasma synthetic jet actuator (also

referred to as linear PSJA or L-PSJA in the rest of the dissertation), is in effect the limiting

case of an elliptical actuator when the major axis goes to infinity. Note that throughout

the rest of the dissertation, a reference to a 2-D jet (such as the one induced by the L-

PSJA, for example) is used to denote a plane rectangular synthetic jet, and strictly not an

axisymmetric jet.
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3.1 Summary

This chapter presented some of the characteristics of plasma synthetic jet actuators

operated in initially quiescent air, presented for the purpose of introduction to the reader.

A toroidal region of plasma is formed on operation of the proposed annular design, which is

observed to drive the residual air in the form of a vertical synthetic jet. The jet qualitatively

resembles conventional continuous and synthetic jets in terms of its self similarity behavior,

when normalized using local maximum axial velocity and actuator embedded electrode di-

mension. However, the structure of the plasma synthetic jet shows considerable complexity

in terms of multiple counter rotating vortices that are created upon actuation, compared

to conventional synthetic jets. The starting vortex is advected upstream ahead of the jet

similar to conventional synthetic jets, and is conjectured at this stage to affect the stream-

wise behavior of the plasma synthetic jet. The momentum imparted by the jet is observed

to be unsteady across different times of observation along the actuator pulsing cycle, and a

nearly steady value of the input energy is expended toward generation of secondary vortical

structures present in the flow field. The peak axial velocity of the jet was found to reach

a maximum very close to the start of the actuator pulsing cycle, after which it settles to

a roughly constant value, once again suggesting the existence of unsteady times within the

pulsing cycle for optimal actuator operation.
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3.2 Tables and Figures

(a)

(b)

Figure 3.1: (a): Annular PSJA construction (direction of induced flow is shown), and (b):

actuator operation in quiescent flow, instantaneous Schlieren image of starting vortex ring.

Lines have been manually added at discernible edges to denote structure.
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(a) di = 1.27 cm. (b) di = 2.54 cm.

Figure 3.2: Sample flow field images obtained from PIV measurements on 10 Hz pulsed

operation of an annular actuator showing trains of starting vortex structures synthesized

from the residual air.
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(a) t = 28 ms. (b) t = 63 ms.

(c) t = 153 ms. (d) t = 300 ms.

Figure 3.3: Averaged PIV results showing vorticity contours of PSJA in quiescent flow.

Measurements phase-locked to actuator pulsing frequency fp=1 Hz; dashed lines indicate

negative vorticity.
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Figure 3.4: Cartoon showing different flow structures observed on pulsed operation of the

PSJA. (A) primary/starting vortex ring, (B) plasma induced jet, (C) secondary vortex ring,

and (D) tertiary vortex ring.

Figure 3.5: Cross-stream distribution of mean axial velocity, t=153 ms, 1 Hz pulsing.
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Figure 3.6: Radial locations of velocity profiles on PIV vector plot, 1 Hz pulsing.
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Figure 3.7: Streamwise velocity profiles, 1 Hz pulsing.
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(a)

(b)

Figure 3.8: Turbulence kinetic energy distribution for: (a) an annular plasma synthetic jet,

actuator pulsed at 1 Hz, and (b) a conventional 2-D synthetic jet, obtained from Béra et al.

[152]. The dimensionality, length scale, and velocity scale of the jets are not comparable.
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Figure 3.9: Streamwise distribution of fluid impulse, 1 Hz pulsing.

Figure 3.10: Time evolution of fluidic work performed by the jet, 1 Hz pulsing (left). Right

hand side shows cartoon of plasma synthetic jet demarcating regions used for integration;

dashed lines indicate the jet field of view, and solid lines are used to represent entire area

of the PIV window.
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Figure 3.11: Cross-stream variation of circulation strength of the right hand side secondary

vortex structure. (Determined using Γ =
∮

udl.)
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Figure 3.12: Time evolution of peak axial velocity of jet, 1 Hz pulsing.

81



(a)

(b)

Figure 3.13: (a) Schematic of Linear PSJA (direction of induced flow is shown), and (b)

Plasma structure created on actuation.

Copyright c© Arvind Santhanakrishnan 2007.
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Chapter 4

EXPERIMENTAL ARRANGEMENTS

4.1 Overview

A large number of experiments were conducted on annular and linear plasma synthetic

jet actuators, and less extensively on the conventional linear plasma actuator. The first

phase of experimentation was geared exclusively toward fluid dynamic characterization of

plasma induced synthetic jets. The PSJA configurations were implemented in three differ-

ent flow situations, which included a quiescent medium, actuator mounted on a flat plate

parallel to an incoming cross flow, and separation control of the flow over a circular cylinder.

These experiments were designed with an intent to provide controlled observations on the

effects of imposing an external cross flow, pressure gradient and curvature on the plasma

induced jet. Several input parameters, including pulsing frequency, input power, and actu-

ator dimension and orientation were varied to examine their effects on the isolated plasma

synthetic jet characteristics. For describing the actuator interaction with a cross flow, the

baseline flow velocity and input power were varied. The second phase of experimentation

involved simultaneous measurements of the isolated jet flow field, plasma structure, and in-

put power. These experiments were designed so as to correlate the flow field to the plasma

morphology, as well as to synthesize scaling relations of plasma synthetic jet actuators.

For the entire set of measurements considered, quantitative flow field measurements were

obtained using time-averaged and phase-locked particle image velocimetry, time exposed

CCD images of the plasma were used to deduce information on its structure, and the ac-

tuator power was monitored during each experimental run. The diagnostic hardware and

software used were the same throughout. Minor changes were implemented in the actuator

power supply, arrangement of equipment, and the procedure employed for the collection of

data was similar for most of the measurements. The following sections describe the wind

tunnel facility used for cross flow studies, actuator construction and power supply, and the

description and arrangement of diagnostics.
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4.2 Facility and Apparatus Description

4.2.1 Wind Tunnel

The measurements for characterization of plasma synthetic jet actuators implemented

in flat plate boundary layer and circular cylinder flows were conducted in the low speed wind

tunnel at the University of Kentucky. The test section of this blow-down, low turbulence,

open-circuit tunnel is constructed with acrylic and measures approximately 1.5 m long and

0.4 m across with a depth of 0.2 m. A 7.5 hp DC motor is used to drive a radial fan at

the inlet, and this is connected to a nozzle followed by the test section. The flow at the

inlet of the nozzle is conditioned upstream by passing through a vibration damper, flow

straightener, and turbulence dampening screens. The contraction ratio (ratio of the cross-

sectional area of the inlet to that at the throat) of the nozzle was 6.7:1. The cross-sectional

areas of the inlet and the outlet were 0.080 m2 and 0.064 m2, respectively, producing inlet

to outlet area ratio of 1.25:1. With an open exhaust, the maximum exit velocity achievable

in the test section was 35 m/s. The nominal value of the free stream turbulence intensity

(FSTI) within the test section, given by the ratio of root mean squared of fluctuating

velocity normalized with the mean velocity, was measured with a hot-wire anemometer to

be approximately 0.6%.

To remove the effects of both curvature and pressure gradient, a flat plate at zero

inclination to the free stream was used to study the actuator characteristics. The flat plate

was constructed of plexiglass measuring 0.3 m long and 0.4 m wide, with a thickness of

0.005 m. The actuator was mounted inside a square recess 0.114 m in length and 6·10−4 m

deep cut at its center. A 1.27 mm (0.05 inch) diameter wire was used to trip the incoming

boundary layer, and was located at the leading edge of the flat plate. This plate was

mounted such that its bottom surface was located at a distance of 0.025 m from the bottom

wall of the test section, such that the leading edge was located 1.2 m downstream from the

nozzle exit (or entrance of the section). Another flat plate with the same dimensions, but

without any recess, was placed such that its uppermost surface was located 0.025 m from

the top wall of the test section. The schematic side and top views of the test section with

the flat plate and annular PSJA arrangement is shown in Fig. 4.1. The arrangement was

identical for linear PSJA measurements, the only difference being the actuator construction.

The entire test section was optically accessible, thus PIV measurements could be conducted

along different downstream distances if required (for the cylinder flow control experiments).

84



4.2.2 Actuator Design and Construction

Annular and linear plasma synthetic jet actuators with varying electrode dimensions

were examined. Copper foil tape of thickness 8.89·10−5 m (0.0035 inches) was used as

the electrode material for all the actuators constructed and tested. The tape consisted of

0.0021 inch thick foil and 0.0014 inch thick non-conductive acrylic adhesive. The latter

factor prevents undesirable electric discharge, and solder can hence be passed over the

surface of the tape without adhering to it, making it ideal for plasma actuator construction.

The temperature range of the copper tape was -20 ◦F to +310 ◦F. This material was easy to

be shaped into any desired geometry. For the annular PSJA, the electrode shape required

was manually punched and cut out from a sheet of this tape. For the linear actuator and

linear PSJA, the rectangular strip shaped electrodes were manually cut from this tape.

While constructing the annular plasma actuator, extreme care had to be taken to visually

ensure that the curvature was uniform throughout the circumference and align the centers

of the exposed and embedded electrodes. Figure 4.2 shows general schematic views of the

PSJA construction for both annular and linear variants. The plasma region is formed at

the region of highest electric field. The actuator was operated in air at ambient conditions

of pressure, temperature, and humidity, and none of these parameters were modulated

artificially throughout this research. Reiterating relevant comments stated in chapter 2, it

can be noted that for length scales greater than the Debye length, thermal effects at the

edges become important. There is a slightly increased electric field distribution at these

regions that initiates a charge species imbalance within the plasma, after which plasma

expansion occurs. Considering the upper surface of the actuator, it can be seen that the

inner (closer to center) edge of the exposed electrode is the region with highest electric

field based on the above reasoning. The plasma spreading stops when there is no more

available external potential. This occurs when the edge of the embedded electrode has been

reached, after which no conductive surface is available for distribution of applied voltage

on the actuator. Thus, the most important determinant of the extent of plasma region is

the embedded electrode dimension, di. The area available for the plasma to expand over

the upper surface of the dielectric is given by π (di + 2w)2 /4. If the lower electrode is not

grounded, but instead driven with a potential difference compared to the upper electrode,

similar arguments can be used to suggest that plasma formation begins at the outer (farther

from center) edge of the embedded electrode and depending on the applied field strength,

may spread to the outer edge of the exposed electrode. Typically, the gap width w, defined

as the distance between the inner (closer to center) edge of the exposed electrode placement
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of the exposed and outer edge of the embedded electrodes on either sides of the dielectric

material, was zero in most experiments, and in some cases there was an overlap in electrode

placement of approximately 1–2 mm. In order to match the dimensions of the annular PSJA

with an equivalent linear PSJA, the embedded electrode dimension has to be maintained

the same in both designs, and it is easy to note that

we = (do − di − 2w) /2

where the quantities have been defined in Fig. 4.2. It is important to note that the above

figure refers to the arrangement of PSJA (2-D or 3-D) required to engender a jet in the

blowing configuration. Although not presented herein, an inverse configuration effecting

suction of the residual air may be constructed by merely reversing the electrode arrange-

ments. The flexibility in tailoring a baseline flow field through the use of combinations

of alternating blowing/suction PSJA arrays based arrangements can be realized with these

devices, and this powerful aspect obviously has important implications in flow control. This

dissertation work is focused to characterization of the blowing configuration exclusively, and

the design of suction configuration will not be illustrated herein for sake of clarity. For the

interested reader, a brief presentation of the PSJA based suction device may be found in

Santhanakrishnan & Jacob [177].

Non-porous alumina ceramic slabs were used as the dielectric material for all quiescent

and flat plate boundary layer experiments presented hereon in the rest of this dissertation,

unless specified otherwise. The slab was 0.635 mm thick, and 114.3 mm in length and

width. This dielectric was capable of handling temperatures up to 2900 ◦F. This material

has a dielectric constant (εr) of 9.4, mass density of 3700 kg/m3, and dielectric strength

of 15 kV/mm (indicative of the maximum electric field strength prior to breakdown) [108].

The slab was not easily machinable on account of its hardness, as a result of which it

was not flexible enough to be adapted to fit on non-flat, curved surfaces. On account of

this limitation, 50 micron thick Kapton polyamide film was used as the dielectric material

for constructing plasma actuators for the circular cylinder flow separation control study.

Kapton is highly flexible, with a dielectric strength of 291 kV/mm, dielectric constant of

2.7, mass density of 1420 kg/m3, and is capable of handling temperatures up to 464 ◦F.

The thickness of the Kapton layer, albeit not varied during the course of this research, can

be increased to enable the actuator to handle increased potentials applied across it, due to

the obvious increase in dielectric strength.

For all the experiments with the plasma synthetic jet induced under quiescent condi-

tions, the actuator was placed over a layer of non-conductive material such as acrylic or
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plexiglass, and held in a fixed position using electrical tape. This was then covered with

a transparent enclosure to provide a quiescent environment. The enclosure had a square

cross section measuring 29.6 cm x 29.6 cm and a height of 15.1 cm. Typical windows of

observation used for PIV were less than 4.5 cm in wall-normal direction, which roughly

amounts to 30% of the entire domain (maximum jet blockage ratio). This is important in

identifying any false recirculation introduced in the PIV window on account of the plasma

synthetic jet rebounding from the upper wall of the enclosure. Unless mentioned otherwise,

the dimensions of the embedded electrode diameter (di) of the annular PSJAs used in this

work was 1.27 cm and exposed electrode diameter (do) was 2.54 cm.

4.2.3 Power Supply

The preferred conditions for the formation of a DBD plasma is pressures in the range

of 10 kPa to 500 kPa, and alternating frequencies in the range of 1 kHz to 10 MHz (see

Kogelschatz [178]). Several kilovolts of potential are required in order to ionize the air at the

interface of the electrodes. The value of breakdown voltage that is necessary for discharge

creation depends on other factors in addition to the above, such as electrode dimension,

curvature, and most importantly, the dielectric material used. Typical requirements of

current can range from 10 mA to several 1000 mA. Based on the equation describing the

plasma actuator-flow field effect presented earlier in chapter 2 (see equation 2.16), it can

be observed that the input current does not directly affect the gross DBD characteristics as

compared to the voltage difference between the electrodes [84]. However, the current input

indirectly affects the momentum coupling of the actuator due to its contribution to the net

electrical power input to the actuator.

The schematic of the power supply used for driving the plasma actuator is shown in

Fig. 4.3, with the annular PSJA included as a general example. For the linear PSJA,

the schematic remains the same, except that the exposed electrodes are powered by two

separate lines connected in parallel, so that the applied potential is distributed equally.

The input alternating waveform required for the actuator is provided via the output of a

Hewlett Packard 33120A function generator/arbitrary waveform generator. The voltage

output of this device, measured peak-to-peak, was in the range 50 mV to 10 V. Typically,

the amplitudes employed for operating the actuators herein were in the range of 1 V to 10 V.

This function generator was capable of providing sine, square (range: 10 µHz to 15 MHz),

triangle and ramp (range: 100 µHz to 100 kHz). For all the plasma actuator experiments

reported hereon, a square waveform was used in general, and typical input frequencies were 1

kHz to 5 kHz. This waveform was provided to the actuator driving circuit at 50% duty cycle
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for all experiments, which essentially means that the voltage input is supplied only during

half the period of the plasma input AC cycle. Thus, the power input to the actuator would

only be half of its actual measured value. The output of the function generator is supplied

to a bipolar operational Kepco BPM–01 0–200 V power supply. In some experiments, a

0–100 V Kepco power supply was used, which was capable of providing higher levels of

current as compared to the 0–200 V unit. The output of the power supply drives a step-up

transformer which provides the necessary amplification of the electrical potential required

for operation of the DBD plasma actuator. Two transformers were used in this research

across the experiments conducted, and impedance matching of the outputs to minimize

losses was not carried out in both these devices. The results presented in chapters 3, 5

and 6 (with the exception of increased power results in the latter two) were obtained using

an inductively matched step-up transformer manufactured by Industrial Test Equipment

Company, Inc. This unit required an input of 1–250 V RMS at 1–7 kHz, and was capable

of 6 kV peak output. The positive output terminal of the transformer is connected to the

exposed electrode, while the ground terminal is connected to the embedded electrode. For

the measurements presented in chapters 7 and 8, increased power results in chapters 5 and

6, and cylinder flow control experiments, a step-up transformer manufactured by Corona

Magnetics, Inc., was used to drive the actuator. This was capable of providing a 5.5 kV

output with an input of 40 V RMS at 6 kHz, with a secondary to primary step-up ratio of

137.5:1. A previous study by Jacob [179] in linear plasma actuator based flow control showed

that beneficial flow field effects could be obtained by driving the exposed and embedded

electrodes out of phase, instead of merely rendering the embedded electrode as a ground

connection. This finding supports the observations made by Enloe et al. [54] in accordance

to the elevated importance of the gradient in the applied voltage between the electrodes of

the actuator, as compared to its peak value, in affecting the plasma-neutral air momentum

coupling characteristics. Following these suggestions, two Corona Magnetics transformers

with the specifications mentioned above were employed (wherever this unit was used), so

as to drive the embedded electrode 180◦ out of phase with repsect to the exposed electrode.

Hence, the embedded electrode in Fig. 4.3 corresponding to Corona Magnetics transformer

based studies was no longer a ground connection.
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4.3 Diagnostics

4.3.1 Particle Image Velocimetry (PIV)

Particle Image Velocimetry is a non-intrusive, two or three dimensional technique that

can be used to obtain instantaneous information on a flow field by recording and processing

the single or multiple exposed images of tracer particles suspended in the fluid. Before the

advent of computerized image capturing software and digital cameras, images of particle

motion in a fluid were recorded in photographic plates and the flow field was evaluated

by particle tracking using analog optical methods. This was limited to very low speed

flows, as the particle motions were individually tracked. The earliest development that

is often suggested to be the origin of PIV was in the use of double exposed photographs

that result in laser sheet based speckles, also known as laser speckle velocimetry (LSV, see

Dudderar & Simpkins [180]). By decreasing the number of particles in the LSV system to

a sufficiently homogeneous level, particle images required in PIV can be obtained, which

are then processed using correlation based techniques. In the present day, the use of digital

image recording and processing methods has rendered Digital Particle Image Velocimetry

(DPIV) an extremely powerful technique suitable for velocity measurement across a wide

variety of flow scales ranging from a few nanometers (Li et al. [181]) to several meters

(Fujita et al. [182]). DPIV is commonly referred to in the current times as PIV. Adrian [183]

presents a recent review that documents the technical advancements in PIV from a historical

perspective, and can be referred to for further information. Other detailed reviews of PIV

can be found in articles by Adrian [184], Willert & Gharib [185], and Raffel et al. [186].

Principle

Figure 4.4 shows a general arrangement employed for PIV measurements of flow through

an enclosed area, such as within the test section of a wind tunnel. The requirements

for conducting measurements using this technique include a monochromatic coherent light

source that is pulsed (either by using two beams, or electronic/mechanical pulsing of a

single beam) to illuminate the flow, a camera with a charge coupled device (CCD) sensor,

and a homogeneous distribution of small seeding particles. Typically, a laser beam is used

as the source of light, and this is passed through a set of optics to convert it to a two

dimensional thin sheet that is cast on the plane region in the flow where the measurement

is to be conducted. The interval between the two pulses of laser firing ∆t is predetermined

and controllable. The light scattered by the seeding particles is recorded by the camera as

sequential images either in the form of single exposed pairs or as multiple exposures (see
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below), and information is stored in the pixels available in the CCD. The displacement

(∆x,∆y) of a single particle (or groups of particles) is deduced from correlation based post

processing of these images discussed below. A map of the velocity of motion of the tracers

in the flow field can thus be obtained using (∆x/∆t,∆y/∆t). Other derived statistics such

as vorticity, shear stress, etc., are obtained as spatial derivatives of the velocity field. This,

in essence, is the working principle of PIV.

Modes of Implementation

Depending on the type of image capture employed for data collection, several modes of PIV

can be realized. Two such common implementations are illustrated in Fig. 4.5, and several

other examples can be found discussed elsewhere (as in chapter 4 of Raffel et al. [186]) The

difference between these modes is in the number of exposures of the photographic medium

and the number of frames used. In the first mode, the flow field is illuminated twice and

the CCD (or film) is exposed once each time the laser is fired. The resulting double exposed

image is stored on to a single image file, resulting in the second image of the seeding particles

in the flow field being superimposed over the first (doubly exposed, single frame image).

More than two exposures of the flow field can also be used, provided the illumination is

available, and the timing between successive exposures is known. The advantage of multiple

exposed PIV is that it is not restricted by the image capture rate of the camera. It is possible

to capture successive images with very small time interval between them (O(µs)), by using

two lasers that are activated independent of each other. The disadvantage of single frame,

multiple exposed PIV arises from the clustering of images on one frame, as a result of which

there is no clear sense of the direction traversed by a group of particles between one image

to the next. Although this is not a problem in uniform flows where the direction is known a

priori, this renders the analysis of flows with substantial rotation (such as separated flows)

a problematic task. Many schemes have been proposed to tackle the directional ambiguity

problem in multiply exposed PIV. Cho [187] suggested that double exposed images may

be obtained by adding single exposed digitized video images. A common scheme known

as image shifting is used which involves introducing a fixed displacement on the particle

images of the second exposure, such that its value is always greater than the maximum

reverse flow component of the flow. As a result, both exposures will in effect not have any

directional change. A recent method to rectify this 180◦ directional ambiguity uses a two

color CCD, and this eliminates the need for complicated post processing algorithms of the

former approach (see Gogineni et al. [188]).

The more common mode of PIV employed in the present day relies on recording a
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single exposed image of the particle laden flow field corresponding to each illumination

pulse of the laser (Fig. 4.5(b)). This image is stored on a single frame, before the next

single exposed image (for the second laser pulse) is captured and stored on a separate

frame. Thus, the initial positions of the particles are stored on a different image than the

final positions. The temporal order of the images is inherently preserved in this approach,

thereby eliminating any directional ambiguity. As no elaborate image shifting algorithms

are needed for post processing, more robust velocity results can be obtained using single

exposed PIV (Jacob [189]). This mode of image capture has only been possible in the recent

years, due to the non-availability of cameras capable of capturing images with very short

time periods. It is also the earlier factor that is a limitation of the single exposed PIV

method, in that the temporal resolution (minimum time step between successive images)

is limited by the camera frame rate unlike the multiple exposed mode. Notwithstanding

capture rates O(1000 Hz) in many modern day CCD cameras that are used to conduct time

resolved PIV measurements, this limit will have to be continually pushed further to enable

this technique to successfully measure small-scale turbulence.

Post Processing

Figure 4.6 shows a cartoon of the general schematic used for processing raw PIV data. The

image captured by the CCD consisting of tracer particles is shown, with the flow over a

flat plate used as an example for the purpose of illustration. Each image captured as a

part of a time sequence either in single or multiply exposed formats are divided into many

interrogation windows or subregions. The size of these windows is usually a fraction of the

entire FOV (e.g: 32 x 32 pixel window used for FOV of 1008 x 1018 pixels). The window

used for two successive images are indicated in Fig. 4.6 using different colors, and magnified

views of the particle groups within each window is also shown. The window at a particular

spatial location (x,y) in the second image of an image pair is moved over the window of its

first image located at (x,y), so as to examine the correlation between the particle distribution

in these successive images. The implicit requirement for non-zero correlation herein is that

the particle displacement has to be extremely small compared to the dimension of the

subregion, meaning that the particle (group) identity within a window between successive

images must not be lost. Assuming the simplest case where the particles are only linearly

translated (as shown in the figure), it is easy to see that the spatial correlation gives an idea

of the displacement of the particle cluster in between the two images separated by ∆t, from

which the velocity of the subregion can be obtained. Many such small interrogation regions

are employed throughout the PIV FOV, and a velocity vector field can be obtained using
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the same approach described above. In most cases, for performing the spatial correlation,

each subregion is transformed into Fourier space via a Fast Fourier Transformation (FFT).

The type of correlation (auto or cross-correlation) depends on the mode used for image

capture. Multiply exposed PIV images are analyzed using auto correlation, while single

exposed images are analyzed using cross-correlation. If the intensities of successive single

exposed images are given by I and I ′, then the cross-correlation function in physical space

is given by the sum of their products as (after [186])

R(x, y) =
K∑

i=−K

L∑
i=−L

I(i, j) I ′(i + x, j + y).

Thus, when the particle distributions between identical windows in an image pair are iden-

tical, R will reach its peak value, and the shift of the second window (with respect to the

first) corresponds to the displacement of particles. Considering that several thousand dis-

placement vectors can be obtained for each image pair, the correlation analysis is commonly

carried out in Fourier space to lower the number of computations required. The convolution

theorem, which states that the cross-correlation of two functions is equal to the complex

conjugate product of their Fourier Transforms, is used as given below (see [186])

R = Î Î ′
∗

where Î and Î ′ are the Fourier transforms corresponding to intensities I and I ′, respectively.

After determining the cross-correlation, an inverse Fourier transform is used to convert

the intensities back into physical space. This FFT implementation of cross-correlation is

common to many DPIV routines, and the subregion hence is specified in terms of base 2

dimensions (16 x 16 pixels, 32 x 32 pixels, etc.).

PSJA Setup

The entire set of PIV measurements conducted for the purpose of this dissertation

work employed the single exposed, double frame recording technique. A 10-bit dual channel

Kodak MegaPlus ES1.0 monochrome CCD camera was used for all the PIV measurements.

The high resolution camera was equipped with an electronic shutter, allowing exposure

times as short as 127 µs in single exposure mode. The CCD consisted of a 1008x1018 pixel

array resulting in a spatial resolution of roughly 1 million pixels. The active area of the

CCD measured 9.072 mm horizontal x 9.162 mm vertical, while that of a pixel was 9 µm x

9 µm. The CCD was capable of full-frame interline transfer, with a readout time of about

1 µs in progressive scan mode (see [186] for definition). The readout time of the CCD

corresponds to the portion of the camera frame rate (in Fig. 4.5(b)) following the exposure
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of an image, and it directly affects how fast the camera can record images. The pixel depth

used herein for images captured for PIV was 8 bits, and the frame rate of the camera was 30

Hz (15 image pairs per second). Depending on the level of flow field magnification required,

either a 50 mm focal length lens with 0.22X magnification and adjustable focus, or a close

focus manual zoom video lens with 18–108 mm focal length was used.

A dual-head 50 mJ Nd:YAG laser from New Wave Research (Solo PIV III) was used as

the light source to construct a two dimensional thin sheet of 532 nm wavelength required

to illuminate the flow field. The laser had a maximum repetition rate of 15 Hz per laser

head, a pulse period around 5 ns, and the beam intensity variation was approximately

Gaussian. The light sheet is constructed using an arrangement of 3 lenses, as shown in

Fig. 4.7. The laser beam is first focused using a converging lens. A second lens placed at

near the focal length of the first lens is then used to diverge the beam and helps to create

a thinner, concentrated beam. This is passed through a cylindrical lens which expands the

beam into a plane 2-D sheet of approximately 2 mm thickness and variable width across.

The thickness of the beam can be controlled by adjusting the separation between these two

lenses, or by using a cylindrical lens of different focal length. Ideally, a thinner laser sheet is

recommended over a thicker one so that two-dimensionality of measurement can be better

ensured, and more intensity is available per unit area of visualization. All quiescent and cross

flow measurements were carried out by aligning the laser sheet along the central plane of the

actuator, unless otherwise mentioned. For flow over a circular cylinder, several windows of

observation along different downstream distances in the wake with roughly 5% overlap were

used. The camera was positioned parallel to the plane of the laser sheet. The arrangement

used in Fig. 4.7 was used to construct the laser sheet for both quiescent and cross flow

measurements. For wind tunnel experiments, the laser and optics were located parallel to

the exit of the test section, such the sheet spreading increased in the upstream direction of

flow. For circular cylinder flow control experiments, the cylindrical lens located at the end

of the sheet forming optics sequence had a larger radius than that used for quiescent and

flat plate boundary layer flows. The cylinder was located closer to the entrance of the test

section, as opposed to the flat plate which was located at near the test section exit. In order

to preserve the laser intensity and diverge it through a longer distance, the larger radius

cylindrical lens was used. The timing between two pulses of the laser ∆t (as in Fig. 4.5(b))

was controlled by a unit from Taitech Inc., and this allows separation intervals from 1 µs

to 250 ms. In order to minimize the delay between laser pulses, the first laser firing occurs

toward the end of the frame grabbing of the first exposure, while the second laser firing is

placed near the beginning of the successive exposure, also illustrated in Fig. 4.5(b). The
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timing must also be adjusted such that each pulse of the laser corresponds to a separate

exposed frame of the camera, so that the second frame constituting an image pair will not

have captured any residual light from the first laser pulse. If this condition is not satisfied,

the second image will appear distorted in the form of streaks of particles.

In general, the choice of ∆t is governed by a combination of the magnification, speed

of the flow, and interrogation window size. For a given amount of time, particles in higher

speed flows will travel a greater distance as compared to a lower speed flow. Also, when

the magnification of imaging in PIV is increased, more pixels of information are available

for every cm of the flow. Thus, the particle displacements for a given flow are greater in

an image with greater magnification as opposed to a lesser magnified image. In both cases,

there is more possibility of the particle displacement being larger than the interrogation

window dimension, thereby leading to tracking of windows with completely different identity

of particles. In addition, while conducting 2-D PIV studies on flows with regions of three

dimensionality (e.g. transition/rotation locations), it is possible for particles illuminated

by the light sheet to travel out of the plane, which once again results in the PIV algorithm

tracking non-similar groups of particles, resulting in spurious velocity vectors. To lessen

these errors, a thumb rule that is commonly followed is to ensure that the displacement of

particles within a subregion to be equal or lesser than one-third of the dimension of the

subregion. This amounts to displacements of roughly 5 pixels in a window of size 16 x

16 pixels, 10 pixels in a window of size 32 x 32 pixels, and so on. Lowering the timing

between pulses in the above flow situations is one way of avoiding aliasing in sampling

displacements, where the condition is that the particle displacement must be greater than

half the interrogation window size. Another solution lies in increasing the window size, which

inevitably filters out the data, and is often not desirable due to loss of valuable information.

Out of plane motions of particles can also be tackled by increasing the thickness of the laser

sheet, but not without a compromise in the available intensity for illumination. For the

PIV measurements conducted herein, separation intervals between laser pulses were varied

in the range 40 µs–300 µs. A photodiode manufactured by Thorlabs Inc. (model DET

200) was placed along the path of the laser pulsed beam at low intensity (to avoid burn out

of the detector), and the timing between the pulses was read out through an oscilloscope.

Since the velocity field is inversely proportional to ∆t, it is easily seen that the accuracy

of PIV technique in measuring velocity can be increased by increasing ∆t within certain

limits. However, it must also be noted that such an increase would warrant an increase in

the measurement noise, as discussed above.

A SAFEX 2010 Fog Generator manufactured by Dantec Dynamics Inc., was used for
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generating the smoke particles required for seeding the flow. The material used for seed-

ing was oil droplets with a nominal 1 micron diameter, available under commercial name

“Fog Fluid Blitz” from Dantec Dynamics Inc. Typical longevity of the fog material in

confined regions was roughly 5–10 minutes. In the quiescent flow experiments, the seeding

is inserted in the enclosure manually, while for cross flow experiments the fog generator is

placed near the inlet of the radial fan that drives the wind tunnel flow, so that the seeding is

uniformly mixed with the air that enters the test section. The seeding density is visually op-

timized to achieve a compromise between particle scattering and particle homogeneity. The

requirement for homogeneous distribution of particles is necessary to obtain an unbiased

estimate of the displacement field, and this distinguishes PIV from conventional qualitative

flow visualization techniques such as the smoke-wire and other dye based methods (see Frey-

muth [190], Gharib et al. [191], and Van Dyke [192] for example). The particle density must

be adjusted in relation to the other factors that control image brightness, the laser intensity

and aperture of the lens field of view. A higher density of smoke particles will naturally

scatter more amount of light. Essentially, if this scattered light exceeds a certain limit, it

will register on a greater range of surrounding pixels. This may result in a distortion of the

actual sizes of the particles to such an extent that tracing individual particle movements

becomes extremely difficult. Thus, it is important to tune the level of seeding with respect

to how dark or bright the flow field is, based on the lens aperture and laser intensity. It is

important to adjust all of these three factors until a satisfactory image of homogeneous, well

demarcated particle distribution is obtained in the flow field. An inherent error involved

with the PIV process is the assumption that the tracer particles closely follow the motion

of fluid particles, without altering the properties of both the fluid or the flow. Theoretical

treatment of the error involved in particle motion based fluid velocity measurement can be

found in the works of Agui & Jiménez [193], and Jacob [194]. Also, the particles are required

to have a density as close to that of the fluid, so that the effect of gravitational forces on

both these species are not different. A discussion of this problem along with experimental

observations can be found in [186]. In general, larger sized seeding particles require lesser

intensity than smaller sized particles, but follow turbulent fluctuations at a substantially

lower rate.

Image Capture and Storage

The images were acquired using frame grabbing software XCAP and hardware provided

by EPIX Inc., and saved in a 8-bit binary format (256 gray scale image) on a local hard

disk drive. The raw images for each PIV run required roughly 300 megabytes of memory,
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while the processed data (in the form of tensors, see below) required 16 megabytes of space

per run. An RS-232 cable was used to transfer images from the CCD to the local hard

drive of the computer with the frame grabber. The raw images, after visual inspection,

were stored on an external hard drive that was connected to the main computer with the

XCAP software via a USB 2.0 cable or an IEEE 1394 interface (firewire) cable. For each

PIV run, 122 images were recorded for processing resulting in a minimum of 61 vector

and vorticity fields from which to generate mean flow field and statistics. The maximum

number of images captured (122 herein) was limited by the available memory of the data

acquisition computer. Typically, the spatial resolution of the visualized flow field was 200–

300 pixels/cm. The flow field statistics were obtained from calculations based on the post

processed flow field, ensemble averaged over 61 image pairs for a particular PIV run. No

optical correction techniques such as distortion correction, data smoothing, or noise filtering

were applied to the acquired raw images or the processed results. For this dissertation,

measurements were obtained using both time-averaged and phase-locked PIV. The former

method essentially describes data acquisition along unknown points along the duty cycle

of the AC input to the plasma actuator (and also along the larger period of the actuator

pulsing duty cycle for unsteady operation) and produces a bulk picture of the flow field,

averaging out the temporal events that may play an important role in the observed flow

physics. In the latter method, images are acquired at a particular rate coincident with

some characteristic time scale of the system along predetermined temporal locations, and

is discussed later in slightly more detail in this section.

Data Reduction and Analysis

The raw images acquired by the CCD are analyzed by a DPIV algorithm. In general,

the essence of a single exposed PIV based post processing technique is in dividing the

image into several interrogation windows and performing cross-correlation analysis between

successive image pairs, so as to effectively calculate a displacement vector corresponding

to every subregion and hence produce an overall velocity vector map of the visualized flow

field. For this study, the Wall Adaptive Lagrangian Parcel Tracking (WaLPT) algorithm

developed by Sholl & Savaş [195] was employed for post processing of image pair realizations.

In this algorithm, individual subregions are treated as Lagrangian parcels, and these are

tracked to determine both their translations and deformations. Traditional PIV algorithms

suffer from a serious limitation of being able to track only the translations of particle clusters.

In flow fields with substantial rotation, deformation, or shear, the displacement gradients

are often poorly predicted resulting in spurious velocity vectors. To somewhat resolve this
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problem, most DPIV algorithms use adjustable windows as part of their processing routine

in order to increase the resolution of measurement, where a new interrogation window

is introduced at a certain distance (defined as the overlap ratio) between two adjacent

windows. Thus, a new displacement vector is calculated in between two windows. Typical

overlap ratios used are 50%, which implies that the third window lies roughly centered at

the interface of the two adjacent windows. In the flow field of a vortex, adjustable windows

can be used to determine the gradients. However, values on the edge of a window are

calculated from only overlapping half of the data of both adjacent windows, and hence the

correlation of this window is lesser than the peak value of the adjacent windows. This

leads to the under prediction of velocity gradients (and any related information such as

vorticity, shear stress, etc.) and is referred to as bias error. The WaLPT algorithm tackles

this biasing problem by first passing the raw data through a standard DPIV routine [185]

to obtain a rough estimate of the velocity field. The Lagrangian parcels (interrogation

windows) are then advected backwards in the flow using this crude velocity field. The fluid

particles registered by individual pixels are advected with individually estimated velocities

and the resultant windows are cross-correlated. Using the initial velocity gradient tensor as

a reference, spurious velocity vectors are identified and corrected. A rigorous peak-detection

scheme is employed for determining velocity vectors. The WaLPT routine works well in flow

fields characterized by sharp gradients and high deformation rates, such as vortex dominated

flows.

In order to improve the number of valid velocity vectors, the WaLPT routine employs an

iterative predictor-corrector scheme (following Fabris [196]). Once matching interrogation

windows are determined by cross-correlation, the regions surrounding the tip and tail of

the predicted displacement vector are subdivided into smaller windows (Fig. 4.8). This

smaller window is then shifted inside the subregion and cross-correlated to result in a more

accurate velocity vector. A unique feature of the WaLPT algorithm is in the integration

of the Image Parity Exchange (IPX) routine for accurate determination of velocities and

velocity gradients near a surface (see Tseui & Savaş [197] for details). Essentially, the

velocity profile near a wall is artificially extended and mirrored about the flow interface

and reversed in direction. Traditional PIV algorithms suffer from near wall resolution as

illustrated in Fig. 4.9(a), where the subregion closest to the wall results in a displacement

vector (taken to be near its center and indicated by dashed lines) that is located far away

from it. When IPX routine is included in the PIV algorithm, interrogation windows can be

extended across the surface so that velocities very close to the wall can be calculated, as

shown in Fig. 4.9(b). The WaLPT algorithm with IPX was used for the post processing of
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cross flow measurements on the PSJA.

The velocity fields are calculated by the WaLPT algorithm and scaled in terms of

pixels. Vorticity is calculated spectrally and therefore does not suffer from typical numerical

differentiation problems [195]. The interrogation window size used in the analysis of all

experimental data presented in this dissertation was 32 x 32 pixels, with 50% overlap.

The resultant flow field consisted of an array 83 vectors (vertical) x 82 vectors (horizontal

direction), where each vector was separated by a step of 12 x 12 pixels. The algorithm was

in the form of a Fortran executable file, and the above parameters were user specified in

a separate input file that was read in by the progrm. Conventional PIV algorithms output

the two dimensional velocity vector fields alone. The WaLPT algorithm, however, includes

gradients as well, in the form of a 3 x 2 tensor of rank 2 given by

Cij =


u v

∂u/∂x ∂u/∂y

∂v/∂x ∂v/∂y


The calculation of vorticity fields as well as a check for continuity can readily be accom-

plished from the above information. The deviation of the latter from zero is indicative of

the error in measurement on account of the resolution. The information provided from the

above tensor after processing using the WaLPT routine is scaled into physical units by using

the image resolution (in pixels/cm) as the length scale and the interval between firing of

the laser pulses as the time scale. The tensor information was used to examine various flow

field characteristics, including jet profiles, vortex trajectories, momentum distribution, and

self similarity, and the post processing was performed using Matlab.

Error estimates were determined by constructing fake image pairs with similar par-

ticle characteristics including shape, distribution and number density. The particles were

advected between the pairs with a known velocity distribution similar to those measured

herein, including jets with high shear and vortex pairs. The processed velocity and vorticity

fields were then compared with the actual fields. Typical errors are on the order of less than

1%, though errors in the cores of tightly wound vortices (as compared to the interrogation

region size) may be as high as 5%, particularly in the vortex center where vorticity tends

to be underestimated on account of biasing discussed earlier.

Phase-Locked PIV

To observe the evolution of the jet induced by the plasma actuator in unsteady pulsed

operation, measurements were conducted by acquiring PIV data phase-locked to the pulsing

frequency. Figure 4.10(a) shows the schematic of the duty cycle of the plasma actuator AC
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input with frequencies O(103 Hz) superimposed on a pulsing square wave that is roughly

two reduced orders of magnitude in frequency. The pulsing mode can be merely thought of

as switching the actuator on and off at a period 1/fp. It is important to note that the phase

locking herein is performed with respect to the duty cycle of the pulsing frequency waveform,

and not the plasma AC input waveform. As the fluid flow time scales are in the order of

the actuator pulsing frequency, the effects of the high frequency AC input to the actuator

can be assumed to be decoupled to the flow field features. This observation has been

noted previously in the context of experimental investigations on conventional synthetic

jet actuators pulsed at frequencies O(100 Hz), and is discussed in Glezer et al. [174]. The

pulsing frequency fp is hence more important in influencing the flow field characteristics.

Hence, phase-locked measurements were conducted by capturing images at a rate of 1/fp

at along different times t in the pulsing wave form duty cycle (as shown in Fig. 4.10(b)).

Figure 4.11 shows the flow of information across the different components of the phase-

locked PIV system employed herein. A function generator provides the pulsing waveform

with frequency fp in the form of a TTL signal (±5 V) to a timing control box and simulta-

neously to the actuator power supply circuit. As a result, the power input to the actuator

is synchronized to the pulsing waveform, such that an effective duty cycle resemblant of

that shown in Fig. 4.10(a) is effected. The timing control unit 1 serves to provide the delay

t shown in Fig. 4.10(b), between the start of the pulsing duty cycle (frequency fp) and the

image captured by the CCD. In this manner, several PIV runs taken along different times

in the 1/fp pulsing can be acquired. When the CCD begins its first exposure, it sends a

signal to the laser to fire its first pulse. The first single exposed image in an image pair is

thereby obtained. Another timing control unit (independent of the TTL input) is used to

set the delay ∆t for firing the second pulse, only after the first pulse has been completed.

This way, the second exposure of the CCD is recorded onto another frame to form the image

pair that is analyzed using the WaLPT algorithm. The CCD is triggered to capture images

by user command relayed via the frame grabber.

Averaging Comments

The flow field observations presented in this dissertation were obtained from both

phase-locked and time-averaged PIV. Regardless of the mode of image capture, 61 image

pairs were used (essentially translating to 61 data points) throughout. In the time-averaged

PIV image capture mode, the frame grabber software (XCAP) was set to acquire image

pairs (where the images within a pair are spaced by ∆t between successive laser pulses)

at a rate of 10 Hz. Note that the software skipped images regularly, and hence the 10 Hz
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image capture rate is only a rough estimate. The total time taken to acquire 61 image pairs

for a time-averaged PIV run was thus 6.1 seconds. For the time-averaged measurements

on steady PSJA operation (where the actuator was switched on the entire time of data

acquisition), the images were captured along random points along the plasma AC input

frequency waveform (with frequency fAC), and the ensemble average of 61 image pairs

were used to obtain the results presented in this dissertation. For the time-averaged PIV

measurements acquired on pulsed PSJA operation (where the actuator was switched on and

off at frequency fp values of 1 Hz, 10 Hz, and 100 Hz), the ensemble average of the tensor

information extracted from 61 image pairs was used. Thus, any such time-averaged results

of pulsed PSJA operation are representative of averaging data acquired across roughly 6

cycles along a 1 Hz pulsing frequency fp waveform, roughly 61 cycles along a fp=10 Hz

pulsing waveform, and roughly 610 cycles along a fp=100 Hz pulsing waveform. Note,

however, that the time-averaged PIV image capture rate of 10 Hz translates to 10 points

per cycle of a fp=1 Hz waveform, 1 point per cycle of a fp=1 Hz waveform, and 0.1 points

per cycle of a fp=100 Hz waveform. The above observation must be used as a caveat to

carefully interpret the time-averaged PIV results on pulsed PSJA operation in the following

chapters.

For all phase-locked PIV measurements acquired on pulsed PSJA operation, the camera

was set to acquire images at the rate of the actuator pulsing frequency fp. This means that

the camera acquired image pairs at a rate of 1 Hz for actuator pulsed at 1 Hz and 10 Hz

for actuator pulsed at 10 Hz (phase-locked PIV on the 100 Hz pulsed actuator was not

conducted, owing to the obvious limitation of the 15 Hz camera frame rate). A single phase

point along the pulsing waveform of frequency fp was chosen for measurement, and the

camera acquired 61 image pairs at a rate of fp along the same phase point of the pulsing

waveform (with frequency fp). The location of the phase point along the pulsing waveform

chosen for observation is indicated through the symbol t (in O(ms)) wherever phase-locked

PIV results are presented in this dissertation. Thus, phase-locked results of an actuator

pulsed at frequency fp (which is treated to be safely decoupled to the plasma AC input

frequency fAC in O(kHz)) were obtained by ensemble averaging 61 image pairs acquired at

a rate of fp at a single phase point t (in milliseconds) chosen along the pulsing waveform.

Finally, due to the decoupling between the plasma AC input frequency fAC (O(kHz))

with the PIV image capture frequency of 10 Hz as well as actuator pulsing frequency

(fpmax=100 Hz), no information of the phase point location along the plasma AC input

waveform (with frequency fAC) corresponding to a PIV image pair capture could be de-

duced, irrespective of whether time-averaged PIV or phase-locked PIV was used.
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4.3.2 Power Measurements

In order to determine the efficiency of the plasma actuator in coupling momentum with

the neutral air, the input electrical power was calculated as the product of input voltage and

current.The voltage measurements were conducted by using a high voltage probe designed

for high frequency applications manufactured by NorthStar High Voltage Inc.(model PVM-

11). The probe was capable of measuring maximum AC voltages of around 12 kV with

frequencies in the order of 50 MHz. No calibration of this device was necessary. The probe

was either located in the terminal electrical connection powering the exposed electrode.

Depending on the transformer used, it was placed either on an interim connection in between

the transformer output and the actuator (Industrial Test Equipment transformer driven

cases), or in the output of the step-up transformer unit (Corona Magnetics Inc.) connected

to the actuator. The output of the probe was read out using a TDS 3012 oscilloscope

manufactured by Tektronics Inc., and the reading from the probe had to be re-scaled using

a 1000:1 factor. Typical voltage inputs to the plasma actuators were in the range of 1–16

kW per 100% duty cycle. To calculate the electrical power, simultaneous measurement of

current input was also performed in addition to the voltage. For this purpose, a fixed core

AC current transducer manufactured by NK Technologies Inc. (model number AT2–010–

000–FT) was used. The electrical connection that powered the exposed electrode of the

actuator was passed through the aperture of the transducer that monitored the variation

in its current input. The output of this unit was in terms of voltage and was read using the

above TDS 3012 oscilloscope, and was re-scaled by a factor of 10 A/V. The placement of

the high voltage probe and the AC current transducer is indicated as a part of the actuator

power supply schematic shown in Fig. 4.3.

Figure 4.12 shows a sample voltage and current reading for a representative PSJA

input of 2.8 kHz, square wave form AC. The power is calculated by averaging the product

of instantaneous voltage and current inputs shown in the figure, measured by the voltage

probe and current transducer. Note that this measurement corresponds for a full cycle of

the AC input. The AC input is, however, maintained at 50% duty cycle for all experiments

presented in this dissertation and as a result, only 50% of the above average power value

is supplied to the actuator. The voltage supplied to the actuator, as measured with the

arrangement herein, must be distinguished from the electric field potential of the plasma.

The latter is not quantified in any manner in these measurements, and is rather independent

of the quantity that is actually measured herein, namely the applied external potential to

the actuator. This was experimentally evidenced during some of these measurements, where

101



the plasma region was observed to distort the oscilloscope reading (and in some cases even

turning off the driving unit!), ostensibly due to some sort of feedback of its own electric

field to the driving circuit. This effectively resulted in a misrepresentation of the input

signal, and the measurements had to be repeated. The waveform of the discharge is clearly

affected by electrical response from the different components of the power supply (Fig. 4.3),

as observed from the non-square waveform like behavior of the voltage output. In addition,

it is seen that the positive and negative going portions of the AC cycle are not symmetric.

The current reading shows an irregular, “spiky” appearance with sudden peaking that is not

coincident with the peak in the voltage. Asymmetry of the current behavior during both

positive and negative portions of the AC cycle is observed. Each of the peaks in the current

signal correspond to the occurence of numerous discharge events [84], and it is seen that

the discharges are shorter during the times close to the start of the negative going cycle.

The irregularity in the current pulses occurs at a much smaller time scale than that of the

voltage input. These measurements were acquired at a nominal sampling rate of 1 million

samples per second. To examine the current pulses in more detail, the sampling rate of the

TDS 3012 oscilloscope was unequally adjusted to 1 gigasamples per second for current and

2.5 million samples per second for voltage (maximum possible rate was 5 Gs/s). With an

increased sampling rate of the oscilliscope, the number of points displayed along the length

of the cycle was also increased, resulting in a highly irregular voltage signal, as shown

in Fig. 4.13(a). The individual identity of the cycles is not very clear at this point. The

averaging process used for calculation of the input power, however, now included more cycles

of the input waveform (as opposed to 3̃ cycles shown in Fig. 4.12). The current signal at the

microsecond time scale, shown in Fig. 4.13(b), clearly shows distinctive spikes indicative of

the microdischarge events as before, except that these are not as closely clustered as with

the larger time scale discussed before. Uniformity in the surges can also be observed across

different portions of the cycle. Due to the highly irregular nature of the voltage waveform at

slightly increased time scales compared to the current, a measurement of the voltage input

at time scales same as the current was not attempted. As a result, no observations on any

correlation of the current peaks (discharge events) with the nature of the waveform cannot

be deduced. These measurements are supported by the experimental results of Enloe et al.

[84], where for a sinusoidal input, the authors observed that the discharge events are not

uniform across the positive and negative going portions of the cycle.
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4.3.3 Photographic Arrangement

The second phase of experimentation involved simultaneous measurements of plasma

morphology and flow field of plasma synthetic jet actuators in a quiescent medium. Figure

4.14 shows a schematic of the arrangement of cameras used for obtaining these measure-

ments. The PIV camera (CCD1) was placed so as to acquire 2-D images of the PSJA

flow field. The optics arrangement used for light sheet construction remained the same as

discussed earlier with reference to Fig. 4.7. Another CCD was placed such that it was 90◦

to CCD1, and also so that it examined the entire region of plasma morphology, located in

a plane perpendicular to the laser sheet and parallel to the actuator surface outside of the

seeding enclosure. Time exposed images of the plasma structure were taken by using an

Olympus Camedia E-20 camera with a 2560x1920 pixel array, with fixed field of view and

exposure settings. The non-dimensional intensities (indicative of the brightness value of

the pixels) of these images were used to make a relative comparison between the different

test cases. The underlying assumption herein was that the brightness of the plasma must

be related directly to its intensity, which in turn would have to affect the flow field char-

acteristics. The goal of these measurements was to examine the relation between plasma

intensity to the jet characteristics such as peak velocity and momentum, across various oper-

ating conditions. The spatial resolution of these measurements was in the range of 325–340

pixels/cm, and an exposure time of 8 seconds was used. The procedure of acquiring these

measurements was to switch off all external light sources available in the laboratory (includ-

ing the PIV laser), so as to eliminate as much background noise as possible. The CCD then

captured a high resolution image (of 2–5 megabytes size) of the plasma, prior to the start

of the PIV run. This image served as a metric of the relative plasma intensity (presented

in chapter 7) for that particular PIV run. The reference brightness levels (arbitrary units,

relative to each image) was in the order of 2–3. Due to trapping of residual air within the

enclosure, gradual deposition of seeding material on the surface of the actuator and the flat

plate was observed to occur. The plasma region, as a consequence of this, was noticed to

weaken over successive PIV runs. To include the effects of seeding contamination, images

were acquired before and after every PIV run. This is discussed in more detail in chapter

7.
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4.4 Tables and Figures
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Figure 4.1: Side and top view schematic of wind tunnel test section with flat plate and

actuator arrangement. Flow direction is from left to right. The definition of coordinate

system is also shown. Note that the trip wire (not shown) is located at the leading edge of

flat plate, x=0.
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(a) Annular PSJA.

(b) Linear PSJA.

Figure 4.2: Top and side view schematic of PSJA: (a) annular (3-D), and (b) linear (2-

D) configurations. EE refers to exposed electrode and ee refers to embedded electrode; do

and di are diameters of exposed and embedded electrodes, respectively, and w is the gap

between the asymmetric placement of electrodes; we refers to width of exposed electrode of

the linear PSJA. Both the region of plasma and coordinate axes definition are shown.
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Figure 4.3: Actuator power supply schematic. Also shown in gray lines are the locations

of placement of high voltage (HV) probe and current transducer used for measurement of

input power.

Figure 4.4: Experimental arrangement used for conducting particle image velocimetry in a

wind tunnel.
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(a)

(b)

Figure 4.5: Laser and camera timing diagram for two commonly employed PIV image

recording techniques. (a) Single frame, multiply exposed mode, and (b) double frame,

single exposed mode. ∆t refers to the timing between two individual laser pulses.

Figure 4.6: PIV post processing via spatial correlation of successively captured flow field

images with predetermined time interval. FOV refers to field of view of the raw image.
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Figure 4.7: Optical arrangement employed for construction of light sheet used for PIV

measurements of PSJA flow field characteristics. For flat plate boundary layer experiments,

the same arrangement was used, and the equipment was located at the exit of the test

section such that the spreading of the sheet increased in the direction opposite to the free

stream.

Figure 4.8: Predictor-corrector algorithm.
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(a) IPX off.

(b) IPX on.

Figure 4.9: Boundary layer velocity profiles of flow over an arbitrary surface showing the use

of Image Parity Exchange (IPX) routine as included in the WaLPT PIV algorithm. Shaded

region indicates the interrogation window closest to the surface. The dashed vector in the

profile (a) represents the resultant velocity vector of the interrogation window, obtained via

spatial correlation analysis.
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(a)

(b)

Figure 4.10: Phase-locked PIV measurements of pulsed operation of the PSJA. (a) Plasma

input AC frequency fAC is imposed on a low frequency on/off pulsing waveform with fre-

quency fp, and (b) pulsing duty cycle (with period 1/fp) is shown by the solid square wave,

and the dashed square wave indicates PIV image capture with time delay t. Note that the

plasma actuator duty cycle shown in (a) is merely illustrative, actual input AC frequencies

to the actuator are O(1000) Hz, and correspondingly contain more than 4 complete periods.
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Figure 4.11: Flow of information for acquiring CCD images phase-locked to actuator pulsing

frequency.
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Figure 4.12: Input voltage and current characteristics of a plasma synthetic jet actuator.

fAC = 2.8 kHz, square wave form AC, 50% duty cycle, P = 3.52 W/m for 100% duty cycle.
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(b) Current.

Figure 4.13: Input characteristics of a plasma synthetic jet actuator with higher sampling

rate. fAC = 2.5 kHz, square wave form AC, 50% duty cycle, P = 17 W/m for 100% duty

cycle. The plasma morphology for this particular observation was stronger than that of

Fig. 4.12.
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Figure 4.14: 3-D view of experimental setup used for simultaneous flow field (PIV, CCD1)

and plasma morphology (CCD2) measurements of isolated plasma synthetic jets.

Copyright c© Arvind Santhanakrishnan 2007.
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Chapter 5

OBSERVATIONS IN AN INITIALLY QUIESCENT MEDIUM

5.1 Introduction

This chapter examines the behavior of the plasma synthetic jet in the absence of an

external cross flow. The results presented here were obtained from phase-locked and time-

averaged PIV measurements conducted as described in the previous chapter. A total of 84

runs were recorded on the isolated plasma synthetic jet across varying input parameters

that included pulsing frequency, input power, and actuator orientation. The actuator size

was held constant throughout the course of these measurements, with the diameters of

the exposed (do) and embedded (di) electrodes being 25.4 mm and 12.7 mm respectively,

with either no air gap or 1–2 mm overlap. All the results reported herein were obtained

using 0.635 mm thick alumina ceramic as the dielectric material. The effect of varying

the actuator dimension was investigated from comparison of the above results to a set of

9 PIV runs conducted on an actuator with di=19.05 mm and do=25.4 mm. Three pulsing

frequencies were examined, each differing by an O(1) magnitude: 1 Hz, 10 Hz and 100 Hz,

in addition to a baseline case with steady actuator operation. These frequencies were chosen

to determine an optimum operating range of the actuator to maximize the jet momentum

and peak velocity. For 100 Hz pulsing, the induced flow resembled closely to that seen

on steady operation of the actuator. The effects of varying the pulsing frequency on the

plasma induced flow field will be examined in the first part of this chapter, which will be

followed by a discussion of the jet characteristics for all the different cases studied. It is

important to note that the power input (per cycle) for pulsed operation of the actuator was

nearly a constant, irrespective of pulsing frequency, and was 50% less than that for steady

actuator operation. In addition to pulsing frequency, the effects of varying input power,

actuator dimension and orientation on the formation and resultant flow field characteristics

of plasma synthetic jets will be presented in the final portion of this chapter.

5.2 Basic Flow Field

Figures 5.1 and 5.2 show vorticity contours obtained from phase-locked PIV measure-

ments for pulsed operation at 1 Hz and 10 Hz respectively, and several times of evolution

of the jet are shown. The data is ensemble averaged from 122 realizations. The power
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input for steady operation at 50% duty cycle was 11.5 W. For pulsed operation at 1 Hz,

the starting vortex is seen within the FOV for all times except at t=183 ms (Fig. 5.1(l)),

where a steady jet is observed. The location of the starting vortex is fairly steady at 1 Hz,

centered around x=6 mm for times from 20 ms to 28 ms (Figs. 5.1(a)–(c)), after which it

advects downstream to around x=12 mm for times from 48 ms to 63 ms (Figs. 5.1(d)–(f)).

The location of the starting vortex starts to become unsteady beyond 63 ms (Figs. 5.1(g)–

(k)), and a general tendency for its downstream motion with increase in jet evolution time

is observed. The width of the jet near the plasma region (from the actuator base to 10

mm downstream of the jet) remains constant for times from 20 ms to 28 ms, after which

it increases marginally and remains constant for the rest of the cycle. The starting vortex

also moves outward from the centerline, as seen on comparing the 94 ms (Fig. 5.1(h)) and

153 ms (Fig. 5.1(k)) cases, the latter being the time with maximum jet width. The size of

the vortex ring is observed to be largest for the 100 ms and 130 ms times. At t=183 ms

(toward the end of the actuation cycle, Fig. 5.1(l)), the jet becomes fully-developed (reaches

steady state condition). The starting vortex has advected downstream of the window of

observation in this case, although it still influences the flow field as evidenced by the regular

entrainment of fluid at distances greater than 2.5di downstream.

For a pulsing frequency of 10 Hz (Fig. 5.2), the starting vortex is seen at all times and,

in general, appears to be more unsteady compared to the 1 Hz case. With an increase in

time, there is a definite downstream motion of the starting vortex. The jet reaches steady

state condition at t=48 ms (not shown). The last two times (57 ms and 83 ms) examine the

portion of the actuation cycle when the plasma is turned off. It is interesting to observe the

advection of the starting vortex, even in the absence of actuation. This can be explained as

follows: the flow has less time to respond to the 10 Hz pulsing as compared to 1 Hz pulsing.

As a result, the starting vortex ring that forms at a particular time encounters another

starting vortex that was created in an earlier portion of the actuation cycle (which was not

dissipated due to the short time available). This interactive entrainment effect is seen in

the case of t=24 ms, as the streamlines far downstream (see Fig. 5.3(a), x=30 mm and

beyond) are pulled in by the advection of the starting vortex that was created at an earlier

time. This compression of streamlines in the far-field is in sharp contrast to those seen at

the same downstream locations for the 1 Hz case, where there was only a single starting

vortex ring within the entire flow field (see for example, Fig. 10(b)). In order to maximize

the peak velocity (and hence the fluidic impulse) of the jet for minimum input power, it

is desirable to have the vortex ring interacting through advection with the previous vortex

ring incarnation, which will be made clearer later in this section.

116



The basic action of the plasma, as seen from these figures, is to draw in fluid adjacent

to the surface. Due to the current actuator design (which constrains the electric field lines

in a particular manner), the residual fluid is ejected normal to the wall as a jet. During

the course of these experiments, it was observed that the strength and uniformity of the

plasma were important determinants of the peak velocity that can be obtained on actuation.

The longevity of the jet, however, seems to be more strongly dependent on presence of the

starting vortex ring. In general, the streamwise extent of the jet was found to be controlled

by a combination of two factors: (a) the advection and interactions of the starting vortex

rings across different times of evolution, and (b) strength and uniformity of the plasma.

Although some images show presence of some vortical activity near the actuator surface

(such as in Fig. 5.1(f) and Fig. 5.2(f)), in all these experiments, the secondary vortex rings

were not visible within the FOV. This is largely due to limited near-wall spatial resolution,

mostly due to reflection from the plasma itself. Some tests with more zoomed-in observation

windows confirmed the presence of secondary and tertiary vortex rings in the flow structure

(Fig. 5.4), albeit in much reduced scales as compared to the starting vortex ring. On

comparison with the measurements made with a larger size actuator presented in Chapter

3, it is suspected that there is some scaling relation between the actuator dimension and

the secondary vortex strength, and this will be discussed in future chapters.

The starting vortex center trajectories for pulsed operation of the actuator is shown in

Fig. 5.5(a), while Fig 5.5(b) shows the time variation of the streamwise trajectories. The

maximum vorticity location was identified from the PIV data to define the center of the

starting vortex. It must be noted that the times at which the centers were determined

(in Fig. 5.5(a))—are not identical for the 1 Hz and 10 Hz cases. It is seen that for 10

Hz pulsing, the trajectory is largely uniform, with the starting vortex moving downstream

with increasing time and lesser cross-stream motion—as compared to the highly wandering

motion observed for 1 Hz. The jet is more symmetric at 10 Hz, as the location of the left

and right side vortex centers lie nearly at the same streamwise coordinate for most times.

The strength of the plasma was observed to be an important factor affecting vortex center

motion. Figure 5.6 shows the cross-stream distribution of mean axial velocity along the

starting vortex ring centerline (line connecting the centers of the left and right side vortex)

at different times for pulsed operation. In contrast to 1 Hz pulsing (Fig.5.6(a)), the profiles

are symmetric about the centerline for 10 Hz (Fig.5.6(b))—with a peak velocity of 103 cm/s

at t=24 ms. The suction effect of the plasma region is seen up to t=48 ms for both 1 Hz

and 10 Hz cases. For both frequencies, the jet wandering increases with time, and this may

be a possible reason for the highly symmetric behavior of 10 Hz case (shorter times) than
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1 Hz.

5.3 Jet Characteristics

Figure 5.7 presents the cross-stream distribution of mean axial velocity non dimension-

alized by the local maximum axial velocity and streamwise distribution of local maximum

mean axial velocity for steady operation and several times of pulsed operation of the PSJA

with frequencies 1 Hz, 10 Hz and 100 Hz. The cross-stream and streamwise distances are

non-dimensionalized with embedded electrode diameter di. The profiles collapse reasonably

well for all cases, despite the fact that the farthest axial station chosen was as close as 5ri

downstream. For steady operation of the actuator (Fig. 5.7(a)), entrainment of residual

fluid by the plasma is seen at a distance 0.5ri downstream (where ri is the radius of the

embedded electrode). The same effect is seen for distances lesser than ri downstream in

the case of 1 Hz pulsing at t=20 ms (Fig. 5.7(c)), 10 Hz pulsing at t=24 ms (Fig. 5.7(e)),

and 100 Hz pulsing. This is in contrast to the similarity profiles seen in conventional (non-

ZNMF) pulsed jets. Except for actuator operation in Figs. 5.7(a) and 5.7(c), all the other

profiles show asymmetry in their collapse (see, for instance Fig. 5.7(f), where the left hand

side of the profiles do not collapse in the same manner as the right hand side). This is

because of jet wandering in the direction of asymmetry, which may be either due to convec-

tion driven currents in the glass enclosure where the tests were conducted, or the variation

in the plasma induced flow itself, and the exact reason is not clear at this stage. For the

actuator pulsed at 100 Hz (Fig. 5.7(b)), the velocity profiles collapse well, resembling steady

actuator operation (Fig. 5.7(a)), unlike the 1 Hz and 10 Hz pulsed cases.

The peak velocity obtained on steady operation of the actuator (Fig. 5.8(a)) is 64

cm/s, after which the velocity remains nearly constant up to 1.8di downstream, similar in

behavior to continuous jets. Pulsing the actuator at 1 Hz increases the peak velocity to 90

cm/s at 20 ms time (Fig. 5.8(b)), after which it drops slightly for t=94 ms, and to about

53 cm/s for t=183 ms, where the actuator reaches steady state condition. For the 1 Hz,

t =20 ms case, the peak occurs at 0.5di downstream (which is the center of the starting

vortex ring in Fig. 5.1(a), after which it drops to zero value at about 1.5di. The spreading

of the jet increases with time (and advection of the starting vortex), as seen in the 94

ms, 1 Hz case, where the peak value starts to linearly decrease with downstream distance.

Also, the peak value of the velocity (t=94 ms, 1 Hz operation) occurs at 0.5di as in the

t=20 ms case, even though the starting vortex has now advected to a farther downstream

distance (Fig. 5.1(h)). The spreading of the jet for t=183 ms at 1 Hz closely resembles
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steady actuation (Fig. 5.8(a)), and the peak value occurs at around 0.75di downstream.

An increase in the pulsing frequency by an order of magnitude increases the peak

velocity (from 90 cm/s in the 1 Hz case) to 103 cm/s, as seen in the t=24 ms, 10 Hz

operation of the actuator (Fig. 5.8(c)). At this frequency, the value of the peak velocity is

about 98 cm/s for t=12 ms, while it drops for t=57 ms to about 58 cm/s, suggesting the

optimum time of operation is less than 24 ms. The peak occurs at around 0.5di downstream

for all these times, with the jet spreading increasing with time. An interesting observation

is the non-return to zero velocity for all the 10 Hz times throughout the entire streamwise

extent of observation, which is clearly not the case for the t =20 ms in the 1 Hz case

(Fig. 5.8(b)), yet again suggesting an optimum operational frequency closer to 10 Hz. The

decrease from the peak axial velocity for 10 Hz, t=57 ms is almost linear up to 2.5di

downstream, while it is rather steep for t=12 ms and t=24 ms. The slight increase in

axial velocity far downstream for the 10 Hz case is thought to be triggered by the vortex

ring interaction effect discussed earlier. A further increase in pulsing frequency to 100 Hz

renders the jet nearly steady, as the plasma does not have enough time for response. The

peak value of axial velocity obtained for 100 Hz pulsing is 76 cm/s (Fig. 5.8(d)), which is

considerably higher than the peak value obtained on steady operation (Fig. 5.8(a)). The

decrease from the peak value is linear for the 100 Hz case, which is in contrast to the nearly

flat slope seen in steady operation. This suggests that pulsed operation of the PSJA at high

frequencies where the jet is nearly steady is still more efficient (in terms of obtaining higher

jet momentum for lower input power) than steady operation.

Figures 5.9 and 5.10 show the streamwise distribution of fluid impulse of the actua-

tor pulsed at 1 Hz and 10 Hz, respectively, at four different times of evolution. These were

determined by using the inviscid second-order momentum integral equation as given in Hus-

sein et al. [175] shown below that takes into account the mean and RMS axial components

of velocity, along with RMS components in the radial (v′2) and θ (u′2θ ) directions.

I = 2πρ

∫ ∞

0
(U2 + u′2 − 1

2
(v′2 + u′2θ ))rdr (5.1)

The peak value of impulse for 1 Hz case is about 10 dynes and occurs at 94 ms (Fig. 5.9),

and later decreases in nearly linear manner to zero value at 3.5di downstream. For the other

three times (20, 48, 183 ms), the peak value decreases to zero value by 2.5di downstream,

and thus it can be seen that the 94 ms case spreads the most. The peak value of impulse

for the 10 Hz case (Fig. 5.10) is about 9 dynes (occurs at 12 ms), which is slightly less

than the value obtained from 1 Hz pulsing. However, the peak velocity of the jet is highest

(103 cm/s) when operated with 10 Hz pulsing. The most interesting behavior of the 10
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Hz case is the non-return to zero impulse, which is in sharp contrast to the 1 Hz case.

Specifically, for t=12 ms (Fig. 5.10), the impulse peaks to about 6 dynes at 3.5di, and the

additional entrainment effected by an earlier starting vortex in the flow field is thought to

be the reason, supporting the earlier observations made in Figs. 5.2(c) and 5.8(c). Thus,

to have a longer downstream extent of the jet, pulsing the actuator at 10 Hz would be a

more “optimum” choice as compared to 1 Hz. Figure 5.11 shows a comparison between

the steady operation and nearly steady 100 Hz pulsed operation in terms of the streamwise

distribution of fluid impulse. The pulsed actuation cases clearly produce a higher fluidic

impulse as compared to the cases in Fig. 5.11. It is seen that the peak value of impulse

is higher for the 100 Hz case as compared to steady actuation, in accordance with the

observations made in Fig. 5.8(d) earlier.

Figure 5.12 shows the variation of the peak axial velocity as a logarithmic function of

the pulsing frequency fp. The different points for a particular frequency indicate various

jet evolution times the data was recorded. The peak value obtained for any particular

frequency is higher than the maximum velocity obtained for steady operation (64 cm/s).

At 1 Hz, the peak velocity obtained increases with decreasing size of the actuator, as seen on

comparing the values obtained from larger (do=58 mm, di=38 mm) and smaller (do=25.4

mm, di=12.7 mm) actuators. The 10 Hz pulsing case shows the highest peak value of 103

cm/s (at 24 ms) and values greater than 95 cm/s for three different jet evolution times (12,

18, 36 ms). This is followed by 1 Hz case with a highest peak value of 90 cm/s, and 100

Hz with 76 cm/s. It is important to note that the power input for all the pulsed cases was

constant, and was 50% less than that for steady actuator operation. Thus, for the limited

range of frequencies investigated here, it can be concluded that to obtain maximum jet

velocity and streamwise spreading of jet momentum, it is optimal to operate this actuator

at 10 Hz pulsing.

5.4 Other Factors Affecting the Formation of Plasma Synthetic Jets

The following subsections examine the characteristics of the plasma synthetic jet as

affected by the input power, embedded electrode diameter and plasma temperature.

5.4.1 Input Power Effects

The effects of varying input power on the quiescent flow field characteristics of the

PSJA (di=12.7 mm, do=25.4 mm) is shown in Fig. 5.13. Both steady and 10 Hz (t=24 ms)

pulsed operation are compared for two values of input power. It is seen that the values of
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both peak velocity and impulse for pulsed operation are higher than their respective steady

counterparts regardless of input power, once again confirming that unsteady actuation is

optimal for increased performance. The values of peak velocities obtained for both steady

and pulsed operation in the high power mode are almost twice the corresponding values

obtained in the low power mode (Fig. 5.13(a)). The peak axial velocity obtained for steady

operation in the high power mode coincides with that obtained for pulsed operation (≈
100 cm/s) in the low power mode. Increasing the power input affects the fluid impulse

substantially, increasing it by nearly three times as compared to the low power input case

(Fig. 5.13(b)). The most remarkable effect is observed for pulsed operation, where the peak

values of fluid impulse and mean axial velocity are almost identical. Besides increasing the

velocity, the width of the plasma synthetic jet is observed to be larger for higher input

power, as a result of which the momentum of the jet is increased. The spreading and

streamwise extent of the jet are also increased for the higher power input case. Whether

there is a plateau on the jet performance with increasing input power is still not clear.

5.4.2 Embedded Electrode Diameter Effects

Enloe et al. [54] observed that the width of the exposed electrode does not affect

the discharge and thinner electrodes produce a greater body force. Since the electric field

driving the plasma is limited to the region between the electrodes, the plasma will not spread

downstream of the outer edge of the embedded electrode. Thus, the width (or diameter

in the PSJA) of the embedded electrode directly affects the extent or expansion of plasma

on the actuator as also observed previously by Enloe et al. [54]. As the thickness of the

electrodes (copper tape) used in these experiments is very small, the most important PSJA

length scale is thus the embedded electrode diameter di.

Fig. 5.14 shows the vorticity contours obtained from PIV measurements phase-locked

to the PSJA pulsing frequency of 10 Hz at 24 ms in the actuator duty cycle. The results

from two actuators with different embedded electrode diameters (1.27 cm and 1.9 cm) are

shown. It is clearly seen that increasing the diameter of the embedded electrode results in

increased width and streamwise extent of the jet. Also, the vorticity contours for the di=1.9

cm actuator show more lobes (especially near the wall) than the smaller actuator, indicating

increased strength of the starting vortex. The jet structure in itself appears to be similar

for both actuators, indicating that the jet scales with di. Fig. 5.15 shows a comparison

of the streamwise distribution of local maximum mean axial velocity and fluid impulse for

the above two actuators. Increasing di increases both the peak velocity and fluid impulse

to at least two times the corresponding smaller actuator values. The streamwise distance
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at which the peak velocity (or impulse) occurs (around 0.5di) appears to scale well with

embedded electrode diameter. For pulsed actuation, the well demarcated “dual-lobes” seen

at around x=1.4di for the di=1.9 cm actuator are thought to be indicative of slightly slower

travel times of the starting vortices, as compared to lobes seen at around x=1.5di for the

di=1.27 cm actuator. At the limit of the window of observation, the jet decelerates faster

for pulsed operation. Fig. 5.16 shows the time variation of the peak axial velocity of the

PSJA pulsed at 10 Hz, where both the above actuators are compared. While the velocity

plateaus after 30 ms for di=1.27 cm actuator, the larger actuator shows a lobed variation

due to the slower advection of vortex rings mentioned above. Although increasing di herein

produces better jet performance, it is expected that there would have to be an optimum

value of di after which increasing the diameter no longer increases the peak velocity, on

account of increased jet width.

5.4.3 Buoyancy Effects

The effect of heating by the plasma on the bulk fluid has been addressed by few

researchers. Leonov et al. [85] speculated that bulk heating was the main factor responsible

for thrust generation by the actuator on account of the reduced viscosity of the air. However,

Enloe et al. [84] found experimentally that the thrust was dependent on the nature of the

waveform, even though the bulk plasma structure was the same, thereby suggesting that

bulk heating was not the mechanism for thrust generation. Recently, Enloe et al. [112]

conducted detailed temporal measurements of density perturbations in the plasma region

and observed that heating actually affected the spatial structure of air near the actuator. In

this regard, it was desired to understand the contribution of plasma heating to the formation

of the synthetic jet produced on operation of the PSJA. Thermocouple based measurements

show that at a distance of 0.25di downstream of the actuator, the temperature of the plasma

synthetic jet was: Ts=112±5◦F. To characterize buoyancy effects, the calculation of the

non-dimensional Grashof number for the flow induced by the annular PSJA is given below

Gr =
g β (Ts − T∞) di

3

ν2
(5.2)

where g is the acceleration due to gravity, β is the volumetric thermal expansion coefficient

and ν is the kinematic viscosity of air. The ambient temperature during these experiments

was measured to be: T∞=70◦F, which is roughly equal to 20◦C. Properties of air at this

temperature are: β = 3.43 ×10−3 K−1 and ν = 15.11 ×10−6 m2/s. Hence the Grashoff
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number can be calculated as follows

Gr =
9.81× 3.43× 10−3 × (112− 70)× (1.27)3 × 10−6

(15.11)2 × 10−12
= 12679.28

As this value of Gr is greater than 1000, the contribution of natural convective (buoyant)

motion cannot be disregarded (see Bejan [198]), and hence it becomes essential to assess

the effect of heating on the formation of plasma synthetic jet. It was suspected that the

formation of the plasma synthetic jet could be triggered by the buoyant motion of air in

the upward direction on account of the high temperature of the plasma. To investigate the

effects of buoyancy, three actuator orientations (di=12.7 mm, do=25.4 mm) were tested in

quiescent conditions as shown in Fig. 5.17, such that the actuator was directed upwards

(position A), downwards (position B), and sidewards (position C). Any buoyancy driven

drift of fluid would appear as differences in the velocity profiles of the three actuator po-

sitions, and therefore they would not be comparable. The streamwise extent of the jet in

position B would be less than that in position A, while the cross-stream velocity profiles in

position C would exhibit visible left-right asymmetry.

Figure 5.18 shows contours of spanwise vorticity obtained from time-averaged PIV

measurements for steady operation of the actuator in each different orientation. The contour

plots have been presented so that the jet matches the particular orientation of the actuator.

It is seen that the streamwise extent of the jet in all orientations is nearly the same. It is

interesting to note the symmetry of the flow field about the actuator centerline for all the

cases. As buoyancy driven drift or change in the jet spreading are not observed, these results

indicate that changing the orientation of the actuator does not affect the basic quiescent

flow field. At a streamwise distance of 2di downstream, the cross-stream mean axial velocity

profiles for all orientations collapse well (Fig. 5.19(a)), showing that in the actuator near

field, both the local jet velocity and spreading are not affected by the actuator orientation.

Fig. 5.19(b) shows a comparison of the streamwise distribution of local maximum mean

axial velocity between the different positions, where each profile was non dimensionalized

by the peak velocity value for the respective position. The streamwise variation for all

positions collapse reasonably well with minor scatter. These results suggest that within

the actuator near field, buoyancy effects are not significant to the formation of the plasma

synthetic jet.

5.5 Summary

This chapter presented detailed observations on the flow field characteristics of plasma

synthetic jet actuators in quiescent air. The plasma region effects fluid entrainment near
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the actuator surface, which is tailored in the form of a vertical synthetic jet for the PSJA

design. The primary or starting vortex ring advects downstream ahead of the jet, and

was found to be important in determining both the maximum velocity of the jet and its

streamwise extent. To obtain a higher peak jet velocity, pulsed operation of the PSJA at

specific jet evolution times in the actuation cycle (where advection and interaction of the

plasma induced vortical structures occurred) was found to be optimal over steady operation,

thereby resembling conventional synthetic jet behavior. Of the three pulsing frequencies

examined here (1 Hz, 10 Hz and 100 Hz) plus steady actuation, an optimum based on

peak jet velocity for constant input parameters was found to lie in the 10 Hz range, and

the maximum velocity obtained in quiescent flow for 10 Hz pulsing at 24 ms time of jet

evolution was over 100 cm/s. The input power and embedded electrode dimension were

found to have a direct effect on the jet characteristics. Increasing the former results in an

increased jet velocity and momentum, as expected. Increasing the latter parameter was also

observed to positively enhance the jet characteristics, as more surface area was available for

the plasma to expand. The effect of plasma related heating was found to not affect the near

actuator behavior, as the measurements between different actuator orientations yielded a

fairly good collapse in streamwise and cross-stream profiles.
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5.6 Tables and Figures
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(a) t=20 ms. (b) t=25 ms. (c) t=28 ms.

(d) t=48 ms. (e) t=56 ms. (f) t=63 ms.

(g) t=84 ms. (h) t=94 ms. (i) t=100 ms.

(j) t=130 ms. (k) t=153 ms. (l) t=183 ms.

Figure 5.1: Averaged PIV results showing vorticity contours for actuator in quiescent flow

with measurements phase-locked to actuator pulsing frequency fp=1 Hz. Dashed line indi-

cates contours of negative vorticity.
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(a) t=12 ms. (b) t=18 ms. (c) t=24 ms.

(d) t=36 ms. (e) t=57 ms. (f) t=83 ms.

Figure 5.2: Averaged PIV results showing vorticity contours for actuator in quiescent flow

with measurements phase-locked to actuator pulsing frequency fp=10 Hz. Dashed line

indicates contours of negative vorticity.

(a) t=24 ms, 10 Hz pulsing. (b) t=25 ms, 1 Hz pulsing.

Figure 5.3: Flow field streamlines for pulsed operation of actuator.
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(a) t=26 ms, 1 Hz pulsing. (b) t=26 ms, 10 Hz pulsing.

Figure 5.4: Phase-locked vorticity contours for pulsed operation of the actuator, showing

presence of secondary and tertiary vortical structures in the flow field.

(a) Vortex center trajectories. (b) Vortex center (streamwise coordinate): time

variation.

Figure 5.5: Starting vortex characteristics for pulsed actuator operation.
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(a) 1 Hz.

(b) 10 Hz.

Figure 5.6: Cross-stream distribution of mean axial velocity along starting vortex centerline

for pulsed actuator operation.
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(a) Steady actuator operation. (b) 100 Hz pulsing.

(c) 1 Hz pulsing, t=20 ms. (d) 1 Hz pulsing, t=94 ms.

(e) 10 Hz pulsing, t=24 ms. (f) 10 Hz pulsing, t=57 ms.

Figure 5.7: Cross-stream distribution of mean axial velocity.
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(a) Steady actuator operation. (b) 1 Hz pulsing.

(c) 10 Hz pulsing. (d) 100 Hz pulsing.

Figure 5.8: Streamwise distribution of local maximum mean axial velocity.

Figure 5.9: Streamwise distribution of fluid impulse at 1 Hz.
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Figure 5.10: Streamwise distribution of fluid impulse at 10 Hz.

Figure 5.11: Streamwise distribution of fluid impulse: steady operation and 100 Hz com-

parison.
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Figure 5.12: Peak axial velocity variation with pulsing frequency.
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(a) Local maximum mean axial velocity.

(b) Fluid impulse.

Figure 5.13: Effects of varying input power on streamwise distribution of flow field charac-

teristics. di=1.27 cm; dashed line curves indicate high power input, plain symbols (without

connecting lines) indicate low power input.
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(a) di=1.27 cm.

(b) di=1.9 cm.

Figure 5.14: Phase-locked vorticity contours showing the effect of varying embedded elec-

trode diameter on the flow field. 10 Hz pulsed operation of the PSJA at t=24 ms in the

actuator duty cycle.
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(a) Local maximum mean axial velocity.

(b) Fluid impulse.

Figure 5.15: Effects of varying PSJA embedded electrode diameter on streamwise distribu-

tion of flow field characteristics. Dashed line curves correspond to di=1.9 cm, plain symbols

(without connecting lines) correspond to di=1.27 mm.
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Figure 5.16: Peak axial velocity versus actuation cycle time. PSJA pulsed at 10 Hz.

(a) Position A. (b) Position B. (c) Position

C.

Figure 5.17: Buoyancy effects: cartoons illustrating the various positions tested.

(a) Position A. (b) Position B. (c) Position C.

Figure 5.18: Averaged PIV results showing vorticity contours for various actuator orienta-

tions. PSJA in steady operation.
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(a) Cross-stream distribution of mean axial velocity, x=2di

downstream.

(b) Streamwise distribution of non-dimensional local maximum

mean axial velocity.

Figure 5.19: Effects of changing the actuator orientation in quiescent flow, PSJA in steady

operation. Note that the quantity Upeak in (b) corresponds to the peak axial velocity of the

jet for the respective actuator orientation. The dimensional values of Upeak are: 147.86 cm/s

(position A), 200.42 cm/s (position B), and 125.68 cm/s (position C). Standard deviations of

local maximum mean axial velocities are: 38.2417 cm/s (position A), 59.4656 cm/s (position

B), and 32.5387 cm/s (position C).

Copyright c© Arvind Santhanakrishnan 2007.
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Chapter 6

JET INTERACTION WITH A CROSS FLOW

6.1 Introduction

The previous chapter discussed the characteristics of the plasma synthetic jet in a

quiescent environment. This chapter examines the interaction of the plasma synthetic jet

with non-zero cross flows. Based on the quiescent flow measurements, the actuator was

operated at a pulsing frequency fp=10 Hz (where the maximum PSJA jet velocity Ujp=104

cm/s) in addition to a baseline steady operation case (Ujs=62 cm/s). The measurements

were conducted for three different cross-stream velocities: 0.85 m/s (case A), 1.25 m/s (case

B) and 1.75 m/s (case C), as denoted in Table 6.1. These values were chosen to investigate

the interaction of the jet with cross flows that were lower, nearly the same and higher in

strength as the peak jet velocity at 10 Hz pulsing. The actuator center was located at

a distance of 14.8 cm from the leading edge of the flat plate, the test Reynolds numbers

based on this length ReL were approximately 9 · 103, 13 · 103 and 18 · 103. Two sets of

values of jet blowing ratios were calculated based on the free stream velocity and the peak

PSJA velocity obtained for each mode of operation, and these are shown in Table 6.1. A

total of 104 PIV runs were recorded for the annular PSJA, while 25 runs were recorded for

the linear PSJA, both across varying times in the actuator pulsing cycle as well as input

power. The diameters of exposed (do) and embedded (di) electrodes of the annular PSJA

tested herein were 25.4 mm (1 inch) and 12.7 mm (0.5 inch) respectively, with either no

air gap (w=0) or a 1–2 mm overlap. The dimensions of the linear PSJA (also referred

to as L-PSJA) used were chosen so as to match the PSJA, and the width of the exposed

electrodes and embedded electrode of the L-PSJA were 6.35 mm (0.25 inch) and 12.7 mm

(0.5 inch) respectively, with no air gap (w=0) and a spanwise length of 90 mm. A 0.025

inch thick alumina ceramic slab was used as the dielectric material. Figure 6.1 shows the

flat plate and actuator arrangement used for this study, and the locations where velocity

profiles were extracted (and presented later in this chapter) are also shown. The basic flow

field will be examined first, followed by a discussion of derived flow characteristics for both

the annular and linear plasma synthetic jet actuators. This will be followed by a discussion

of the cross-stream flow field of the annular actuator.
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6.2 Annular PSJA

6.2.1 Basic Flow Field

Figure 6.2 shows vorticity contours obtained from time-averaged PIV measurements

for steady operation of the PSJA in cross flow. It can be seen that the behavior of the

plasma synthetic (ZNMF) jet in a cross flow is similar to a conventional (non-ZNMF) jet.

The suction of fluid by the plasma region immediately upstream of the actuator center is

not predominant as it is opposed by the incoming flow. A clear separation streamline (not

shown) was observed to start from near the actuator center for all the three velocities, which

divides the flow field into a global region with the mean flow, and an inner region where

the effects of the plasma synthetic jet are observed. The amount of penetration, viz., the

cross-stream distance to which the inner region prevails is affected by the incoming flow.

On comparing figures 6.2(a)–(c), it can be seen that the penetration of the jet decreases

with increasing cross flow velocity, as expected. While a clear two-region flow is observed

for case A (figure 6.2(b)) and case B (figure 6.2(b)), the inner region is almost non-existent

for case C (figure 6.2(c)). The starting vortex ring has advected out of the FOV for steady

operation of the actuator for all the three cases.

Figures 6.3–6.5 show vorticity contours obtained from phase-locked PIV measurements

for 10 Hz pulsed operation of the PSJA in cross flow, and several times of evolution of the

jet are shown. For case A (figure 6.3), the starting vortex is clearly seen within the FOV

for all times except t=83 ms. It should be noted that the last two times (57 ms and 83 ms)

examine the portion of the actuation cycle when the plasma is turned off. The separation

streamline (not shown) originates at 14.6 cm from the leading edge of the flat plate for times

from 18 ms to 24 ms, after which the location shifts downstream to 14.7 cm for times from

36 ms to 57 ms. The penetration of the jet is around 0.5 cm for t=18 ms, then increases

and stays constant at 0.6 cm up to t=36 ms, after which it peaks to around 0.8 cm for t=48

ms toward the end of the actuation cycle. At t=57 ms, where the plasma is turned off, the

penetration of the jet reduces to 0.5 cm, and the flow returns to baseline free stream flow

at t=83 ms. The starting vortex advects with the flow 18 ms to 36 ms, after which it loses

structure due to dissipation in the global flow region. A new starting vortex incarnation

starts to form near the actuator base at 24 ms, and the resulting interactive entrainment

with the earlier vortex can be attributed to the increase in penetration depth from 24 ms

to 57 ms. It is interesting to note that at t=18 ms, the left hand side of the starting vortex

ring (that is nearest facing to the incoming flow) is almost completely weakened by the free

stream, while the right hand side of the ring causes the fluid rotation in the inner fluid
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region. In this regard, a visual comparison of the inner region flow for times 18 ms and

48 ms shows that while the inner region streamlines are parallel to the free stream for 18

ms (due to negative vorticity added by the right hand side of the ring), the inner region

streamlines for 48 ms are inclined to the free stream. This suggests that the strength of the

right hand side of the vortex ring decreases with increasing time. Furthermore, the area of

the inner region (with separated flow) increases with time from 18 ms to 48 ms. Since the

side of the vortex ring with rotational sense opposing the free stream causes the fluid to

separate, the strength of the left hand side vortex would have to increase with increasing

time. This asymmetry in the vortex ring strength is believed to be important to effecting

jet penetration with the mean flow.

For case B (figure 6.4), the starting vortex ring is seen at all times when the actuator

is on (18 ms to 48 ms). At t=18 ms, the jet penetration is around 0.4 cm, after which it

increases to a maximum value of around 0.5 cm at t=24 ms, and then decreases and stays

nearly constant at 0.4 cm up to t=48 ms. The separation streamline at 1 m/s starts just

downstream of the actuator center location (x=15 cm), compared to x=14.8 cm for case

A. In general, the reverse flow region is lesser in extent for the 1 m/s case. For case C

(figure 6.5), the jet penetration is around 0.2 cm, and it stays constant for all times when

the actuator is on. Also, the separation streamline (not shown) has moved downstream to

15 cm from the 1 m/s location, as expected. The reverse flow region is non-existent at this

particular velocity. The effectiveness of the actuator in affecting a cross flow is limited by

the value of the penetration depth of the jet, and it was found to be less than 1 cm for all

the cases tested herein. It is suspected that increasing the input power could increase this

value to some extent, and this will be discussed in the sections below.

6.2.2 Streamwise Flow Characteristics

Figures 6.6 and 6.7 show the velocity profiles of the mean component of streamwise

velocity obtained for baseline (actuator off) flow and steady operation of the PSJA respec-

tively, where the individual profile curves are separated by a distance of ∆=3.3 mm. For

PSJA case A, the flow separates at the actuator center due to the jet interaction, and

starts to recover at 2∆ downstream (figure 6.7(a)). The influence of the jet on the cross

flow for case A extends to a distance of y=0.5 cm, and the increase in mean velocity is

very near the wall (at y=0.1 cm for x=4∆ downstream, figure 6.7(a)). With increase in

free stream velocity to case B (PSJA), the flow separates immediately downstream of the

actuator center, and the reverse flow region is smaller compared to case A (figure 6.7(b)).

The flow does not recover to the baseline profile, however, even at 4∆ downstream. The
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effect of the jet is weakened for case C of the PSJA (figure 6.7(c)), and there is no reverse

flow. It is interesting to note that for all these cases, the profiles with steady actuation

are shifted upward in the cross-stream direction, at distances downstream of the actuator

center indicating the jet penetration. However, the peak in velocity stays at nearly constant

cross-stream location even as we move downstream, in contrast to what was observed in

the linear actuator in [199]. Also, at distances upstream of the actuator center, the profiles

only deviate slightly, which is also observed in the case of the linear actuator [199]. Fig-

ure 6.8 shows the displacement (δ∗) and momentum (θ) thicknesses calculated using their

standard integral definitions [14]. Both steady operation and 10 Hz pulsing of the PSJA

are presented. Note that the values of δ∗ and θ have been normalized to the initial values

determined from the first profile station (subscript 1). For steady operation of the PSJA in

case A, the displacement thickness (figure 6.8(a)) for all three velocities increases from the

start of the plasma region (around x=-1∆, due to the adverse pressure gradient introduced

by the plasma synthetic jet) and peaks at the center of the actuator. The displacement

thickness values decrease after the center and reach a constant level. The increase in dis-

placement thickness is about 40% (case A), 30% (case B) and 20% (case C) higher than their

respective initial values. The PSJA adds additional energy to the flow field, and hence the

momentum thickness values are lowered in the vicinity of the plasma for all three speeds. At

the center of the actuator, an impressive 40% reduction in momentum thickness is observed

for case A (figure 6.8(a)), while it is lowered to about 10% for case B. The actuator seems to

have negligible effect on the momentum thickness for case C. Downstream of the actuator

center, the momentum thickness values increase, similar to what is observed in a linear

actuator [199]. For cases B and C, the momentum thickness returns to its initial value at

downstream station x=3∆. For case A, a 10% reduction in momentum thickness is still

seen at the farthest downstream station. Pulsing the PSJA at 10 Hz (figure 6.8(b)) results

in about 60% momentum thickness reduction for case A, 20% higher than steady operation

of the PSJA for the same freestream velocity (figure 6.8(a)). The action of the PSJA is thus

similar to an active boundary layer trip, and when compared to a linear actuator [199], the

PSJA produces a larger reduction of the momentum thickness, albeit with a larger increase

in displacement thickness.

6.2.3 Cross-Stream Flow Field

To visualize the flow field of the annular PSJA in the the spanwise direction, PIV

measurements were conducted at two cross-stream (y-z) planes, one located at the center of

the actuator and the other at 2di downstream of the actuator center as shown in Fig. 6.9.
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Fig. 6.10 shows the vorticity contours obtained from these measurements. At the center

plane of the actuator, the structures resemble those seen in two-dimensional quiescent flow

measurements (presented in Chapter 4), revealing the three-dimensionality of the actuated

flow field. The vortical structures diminish with increasing free stream velocity, as expected.

For the lowest mean velocity, at distance 2di downstream of the actuator center, the effect

of stretching and twisting the vortex ring by the free stream is seen in Fig. 6.10(d), and the

flow field now shows single signed vorticity. At free stream values greater than 85 cm/s,

there are no discernible vortical structures at distances downstream of the actuator center.

6.3 Linear PSJA

6.3.1 Basic Flow Field

Figure 6.11 shows vorticity contours overlaid with streamlines obtained from time-

averaged PIV measurements for steady operation of a L-PSJA in cross flow, and the three

different free stream cases are compared. A stationary cross-stream vortex centered at

around x=15.7 cm is seen at all three velocities. The penetration of the plasma synthetic

jet is effected through this standing vortex, and it is about 0.3 cm for case A, and about 0.2

cm for cases B and C. Note that any such cross-stream vortical structures were absent in the

case of steady operation of the PSJA (Fig. 6.2). The suction effect of the upstream facing

plasma region in the L-PSJA is seen to start at around x=14.5 cm for all three velocities.

The center of the vortex is located at the outer edge of exposed electrode (edge farthest to

the free stream and away from the plasma region), and it is created as a result of near-wall

fluid entrainment by the plasma region.

Figures 6.12–6.14 show vorticity contours obtained from phase-locked PIV measure-

ments for 10 Hz pulsed operation of the L-PSJA, and three times of jet evolution cor-

responding approximately to starting, middle and “plasma-off” phases of the actuation

cycle (respectively, in the order of increasing time) are shown. For case A, at t=18 ms

(Fig. 6.12(a)), fluid is sucked in upstream of the actuator center at x=14.6 cm, and a cross-

stream vortex centered at x=15.7 cm is seen. With increase in time to 36 ms, the size of the

vortex is increased, indicating additional entrainment by the plasma. The location of the

vortex remains nearly stationary, however. At t=57 ms (in the portion of cycle where the

plasma is turned off, Fig. 6.12(c)), the size of the vortex increases to effect a jet penetration

of around y=0.8 cm, and the vortex location has shifted downstream and upward. This

is higher than the equivalent case of the PSJA (Fig. 6.3(e)), suggesting the mechanism of

the L-PSJA in affecting a flow field, on account of its two-dimensionality, is not similar to

143



the PSJA. For L-PSJA, case B (Fig. 6.13), the sequence of events are the same as in case

A, albeit with a reduction in the cross-stream vortex size (and therefore, reduced jet pen-

etration), as expected. It is interesting to note that for all velocities, the L-PSJA induced

cross-stream vortex is “trapped” for both jet evolution times (18 ms and 36 ms, when the

plasma is on) observed herein. A similar near-wall “trapped” vortex ring was observed in

the case of pulsed operation of the PSJA [177]. This was a secondary vortical structure,

however, as opposed to only the primary vortex seen in the L-PSJA. For L-PSJA, case

C (Fig. 6.14), the effect of the plasma is diminished, but the standing vortex is still seen

during both times when the plasma is on. In general, at the end of the actuation cycle, the

standing vortex is released into the free stream, and advects downstream of the actuator

and in the positive cross-stream direction. A similar cross-stream vortex structure has been

observed on the pulsed operation of a linear actuator [200]. It is clear that the near-wall

fluid entrainment by the plasma is singularly responsible for both creating and sustaining

the standing vortex. In the case of a linear actuator, there is a single plasma region spanwise

that creates this downstream facing cross-stream vortex. The L-PSJA produces two such

spanwise plasma regions on actuation. Based on symmetry arguments, it was expected that

the plasma region of the L-PSJA that is located closest to the incoming flow would have to

create another cross-stream vortex, opposite in sign to the observed “trapped” vortex. Such

a structure was not observed in the experiments, however, and it appears that the incoming

flow completely eradicates any such upstream facing rotation. Hence, it is conjectured that

the effect of the upstream facing plasma region would be in adding a finite circulation to

the vortex. A comparison of the circulation strengths of the cross-stream vortex created by

the linear and L-PSJA actuators would have to be examined to see if the upstream facing

plasma region has any effect on the flow field at all. Similar behavior has been studied for

linear plasma actuators [69].

6.3.2 Flow Characteristics

The cross-stream variation of normalized Reynolds stress for baseline and steady ac-

tuator operation is shown in Figure 6.15, where three locations corresponding to upstream,

downstream and center of actuator are considered for each free stream velocity. For the

PSJA (Figs. 6.15(a), (c) and (e)), the peak in the Reynolds stress values appear to be shifted

more into the flow (i.e. at a higher value of y) on operation of the actuator, as compared

to the baseline case for all the three velocities, especially at center of the actuator and

downstream. This indicates that the plasma synthetic jet actually introduces significant

turbulent diffusion in the mean flow field, and thus can be used for control of laminar and
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turbulent shear flows. For the L-PSJA (Figs. 6.15(b), (d) and (f)), the peak normalized

Reynolds stress values are increased from their respective baseline values. In contrast to the

PSJA, however, for all three velocities, the locations of the peak Reynolds stress values are

nearly at the same cross-stream distances as in the respective baseline flows. This indicates

that the L-PSJA promotes turbulent diffusion mainly in the streamwise direction, unlike

the PSJA, which affects the turbulence characteristics in the cross-stream direction.

6.4 Effects of Increasing Input Power

Figure 6.16 shows vorticity contours obtained from time-averaged PIV results for steady

operation of an annular PSJA in a flat plate boundary layer, with increased power input

as compared to Fig. 6.2. In addition to the increased depth of penetration of the plasma

induced jet into the free stream, it can be seen clearly that an increase in actuator power

input results in a considerably different flow field in terms of the formation of a new cross-

stream vortex upstream of the actuator center. The strength of the vortex (proportional to

its size) is found to decrease with increasing free stream velocity, as expected. However, even

with increasing cross flow magnitude, the location of this structure is relatively unchanged.

This stationary vortex is also observed for unsteady 10 Hz pulsed operation of the actuator,

as seen from the vorticity contours presented in Figs. 6.17–6.19. Note that similar to results

presented in earlier sections in this chapter, the times 57 ms and 83 ms correspond to

that portion of the pulsing cycle (fp = 10 Hz, period = 100 ms) where the plasma is off.

For a particular cross flow, within all the times in the pulsing cycle where the plasma

is on (t ≤ 48 ms), the location and size of the cross-stream vortex appear to be nearly

unaffected. The plasma region extends from 14.17 cm to 15.44 cm (14.8 cm ± 0.5ri) in

the measurement window. A careful examination of the flow field reveals that the cross-

stream vortex is centered within the region of plasma at ∼14.4 cm, which is upstream of

the vorticity concentration observed in the lower power case (see Fig. 6.2(a)).With increase

in input power to the actuator (roughly translating into increased plasma strength), the

plasma synthetic jet is not completely eradicated by the incoming cross flow. Also, the flow

structures are created in the upstream direction. With increase in cross flow velocity to 125

cm/s (case B, Fig. 6.18), the penetration of the jet is lowered as expected. Interestingly,

the cross-stream vortex upstream of the actuator center, as well as other flow structures in

the plasma synthetic jet are stretched in the direction of the free stream. This stretching is

evident on comparing the signs of the flow field vorticity in Figs. 6.17 to that in Fig. 6.18,

where dashed lines indicate contours of negative (clockwise oriented) vorticity. The regions

145



of vorticity corresponding to the plasma induced jet in the higher free stream velocity case

(Fig. 6.18) resembles quiescent plasma synthetic jet contours presented in chapters 3 and

5, with counterclockwise sense in the left hand side (opposing the cross flow direction)

and clockwise sense on the right hand side. In contrast, the concentrations of vorticity

corresponding to the jet in case A have the opposite sign (Fig. 6.17), where the upstream

region follows the direction of the incoming flow. Changing the input power thus alters the

flow field quite differently for a particular free stream value. The upstream standing cross-

stream vortex seen in case A is also observed in case B, centered roughly around 14.2 cm in

the latter. With further increase in cross flow magnitude to 175 cm/s (case C, Fig. 6.19),

the flow field shows less penetration compared to case B, with further stretching of the

stationary cross-stream vortex. The signs of vorticity are similar to those observed in case

B. In both case A and B, a right hand side cross-stream vortex centered around 15.9 cm is

observed, ostensibly on account of advection of structures in case A flow field by the now

faster free stream. For any cross flow magnitude, the depth of penetration of the plasma

synthetic jet and the size of the stationary cross-stream vortices are found to not change

substantially across the different times in pulsing duty cycle.

Increasing the input power to the linear PSJA also increases the penetration of the

plasma induced jet further into the free stream, as seen in the time-averaged (steady op-

eration) and phase-locked (fp=10 Hz) vorticity contours for the actuator in cross flow case

A shown in Fig. 6.20. Compared to the equivalent low power case in Figs. 6.11(a) and

6.12, the synthetic jet does not bend along the free stream direction with increased input

power. This is exactly similar to what was observed in the annular PSJA, where increas-

ing input power increased the resistance of the jet to being eradicated by the free stream.

The downstream standing vortex centered roughly around 15.5 cm is increased in size (and

hence circulation strength) for the increased input power case. Also, similar to the annular

actuator, the flow structures appear to be fairly steady for this cross flow velocity.

6.5 Flow Over a Circular Cylinder

To study the applicability of the plasma and plasma synthetic jet actuators for sepa-

ration control, the laminar flow over a circular cylinder was chosen as a test problem. The

effects of both pressure gradient and curvature are included in this case, and it is well known

from theory that laminar separation occurs at around 82◦ to the free stream for diameter

based Reynolds numbers less than 30 · 103 [14]. The diameter (D) and length (L) of the

cylinder used for experiments was 38.1 mm (1.5 inches) and 203 mm (8 inches) respectively,
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and it was transparent for clean optical access. Two different free stream velocities were

investigated, and the diameter based Reynolds numbers (ReD) were 5·103 (U∞=2 m/s) and

10 · 103 (U∞=4 m/s). The experiments were conducted in the low-turbulence open-circuit

blow-down wind tunnel described in chapter 4. The results presented hereon were obtained

from time-averaged PIV measurements, and four windows of observation were used to ob-

tain the flow field information from the center of the cylinder x=0 to x=11D downstream in

the wake. The linear actuator and L-PSJA configurations were tested, with Kapton used as

the dielectric material. As the flow was treated to be nominally two-dimensional, the PSJA

configuration was not tested. The cylinder was covered with a layer of Kapton, on which

the actuators were constructed. Two actuators were mounted downstream of the laminar

separation point, at 90◦ and 270◦ to the freestream for symmetric forcing of the cylinder

wake. A schematic of the cylinder, actuator arrangement and power supply is shown in

Fig. 6.21. The Corona Magnetics Inc. transformer was used to power the actuators for this

series of experiments, and the input voltage supplied to the exposed and embedded elec-

trodes of the actuators were driven with 180◦ phase difference. The exposed and embedded

electrodes for both L-PSJA and linear actuator were 5 mm in width (spanwise length of 510

mm).A nominal 2 kV amplitude, 1.1 kHz frequency square wave AC input operated with a

50% duty cycle was used. In addition to steady actuator operation, pulsing the actuator at

non-dimensional pulsing frequency f+ equal to Strouhal number St (non-dimensional wake

shedding frequency) value of 0.2 was considered, where f+ is given by

f+ = fpD/U∞ (6.1)

where fp is the pulsing frequency of the actuator. Figures 6.22–6.23 show vorticity contours

overlaid with streamlines from time-averaged PIV measurements for both the linear actuator

and L-PSJA. In each of these figures, the baseline flow with actuator off is shown for

comparison. For ReD=5 · 103, the reverse flow region in the wake extends to around 2D

downstream (Fig. 6.22(a)), and a set of counter-rotating vortices are seen. The reverse flow

region is reduced to about 1D downstream on steady operation of the linear actuator at this

ReD (Fig. 6.22(b)). The wall jet induced by the plasma region of the two linear actuators

force the separation streamlines to move closer to the surface, resulting in tightening of the

wake. Note that the counter-rotating wake vortices actually reverse their sense of rotation

on actuation compared to the baseline case. The reverse flow region is reduced on steady

operation of the L-PSJA (Fig. 6.23(b)), but the actuation does not have as much impact

as the linear actuator. The wake width is not changed on steady operation of L-PSJA at

ReD=5 ·103, and the wake vortices do not change their rotational sense. At this Re, pulsing
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at f+=St does not seem to promote any major improvement from steady actuation in the

flow for both the actuators (Figs. 6.22(c) and 6.23(c)), other than changing the rotational

sense of the wake vortices in the case of the linear actuator.

For ReD of 10,000 (Figs. 6.24–6.25), the wake region in the baseline flow was lower

than the equivalent case at ReD=5,000, as expected. Note that the smaller additional wake

vortex seen on the negative half of cross-stream coordinate in Fig. 6.24(a) is an artifact of

patching multiple PIV windows. The reverse flow region for the baseline case at ReD=10·103

extends to about 10 cm downstream (Figs. 6.24(a),6.25(a)). Steady operation of the linear

actuator at this Re results in marginal reduction of the reverse flow region and changing

the rotation sense of the wake vortices, and pulsing at f+=0.2 does not produce any major

changes (compared to steady operation) in the flow field (Figs. 6.24(b) and (c)). At this

higher speed, both steady and pulsed operation of the L-PSJA reduces the reverse flow

region, if only slightly (Figs. 6.25(b) and (c)).

Figures 6.26 and 6.27 show the cross-stream variation of velocity deficits in the cylinder

wake for ReD 5 · 103 and 10 · 103 respectively, and the baseline defect is compared to that

of steady (f+=0) and pulsed (f+=0.2) actuator operation. For each ReD, the deficits of

the linear actuator and L-PSJA are compared for two streamwise stations at 1 diameter

and 10 diameters downstream. For ReD of 5 · 103, operation of the linear actuator (in

both steady and pulsed modes) actually tightens the near wake, as seen from the narrow

velocity defects (reduced cross-stream width) in Fig. 6.26(a), although the actual defect

value is itself increased slightly from baseline value. Operation of the L-PSJA (both steady

and pulsed modes) does not alter the velocity defect from the baseline curve (Fig. 6.26(b)).

At downstream distance of x=10D, the pulsed operation of the linear actuator reduces the

velocity defect marginally from the baseline case (Fig. 6.26(c)), while steady operation of the

L-PSJA reduces the velocity defect from the baseline case (Fig. 6.26(d)). For ReD of 10·103,

the linear actuator still promotes tightening of the near wake at x=1D (Fig. 6.27(a)), while

the L-PSJA does not produce any major changes in the near wake (Fig. 6.27(b)). At this Re,

both steady and pulsed operation of the linear actuator reduce the deficit at 10 diameters

downstream (Fig. 6.27(c)), with pulsed operation producing the lowest velocity deficit. The

effectiveness of the L-PSJA at ReD=10 · 103 is lowered so that the actuator operation

does not produce any significant changes in the velocity deficits at x=10D downstream

(Fig. 6.27(d)).

In general, the effectiveness of both these actuators for separation control decrease with

increase in Re. Overall, the linear actuator seems to be more promising in cylinder flow

separation control than the L-PSJA. The difference in the observed flow is because of the
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fundamental difference in the induced flow field of the linear actuator and L-PSJA. While a

linear actuator in this arrangement actually accelerates the flow by adding momentum in the

downstream direction in the near wall region, the L-PSJA adds momentum by penetrating

the mean flow.

6.6 Summary

The characteristics of a plasma synthetic jet actuator in flat plate boundary layer flows

were presented in this chapter. In the presence of a free stream, the plasma synthetic

jet acts in a manner similar to conventional (mass flux) jets, as seen from the flow field

streamwise vorticity contours. Cross-stream measurements reveal that the structure of the

round plasma synthetic jet is three dimensional. Both the streamwise and cross-stream

jet vorticity concentrations were found to diminish with increasing free stream velocity.

The annular construction thus introduces a round jet into the flow field. For applications

in plane fluid flows, the linear plasma synthetic jet actuator can be used. The enhanced

jet penetration and addition of longitudinal vorticity obtained on using the PSJA expands

the range of applicability of linear plasma actuators for flow control. Within the annular

and linear plasma synthetic actuator designs, each actuator was observed to affect the flow

field in a different manner. The interaction of the linear plasma synthetic jet actuator

with a cross flow resulted in the formation of a cross-stream vortex downstream of the

plasma region similar to the linear actuator. The annular PSJA was observed to affect

the mean flow field, as opposed to the linear PSJA and linear actuators that affect the

near-wall flow. The effectiveness of the plasma synthetic jet in penetrating the mean flow

was found to decrease with increase in Re. Variations in momentum thicknesses obtained

upon actuation suggests that the actuator actively modifies the bulk fluid momentum. In

the case of flow over a circular cylinder, the linear actuator geometry was more effective in

reducing the wake deficits than the L-PSJA.

The overall physical mechanism of the interaction of a plasma synthetic jet actuator

with an external flow is shown by the cartoon in Fig. 6.28. The plasma region presents a

strong favorable (suction) pressure gradient to the incoming boundary layer, just upstream

of the actuator. This results in fluid being entrained close to the actuator surface, and

depending on the level of entrainment, standing cross-stream vortices with rotational sense

not opposing the free stream direction can be created. The entrainment level was found to

be increased with input power, and therefore, the amount of plasma available. It appears

that the side of the starting vortex in the isolated plasma synthetic jet that is nearest
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to the free stream is diminished by the incoming flow, as expected. This leads to the

generation of positive signed vortices (viz., rotation in the same direction as the incoming

flow) downstream of the actuator. Increasing the input power produces major changes in

the flow field, such that the quiescent jet structure can actually be preserved even in the

presence of a cross flow. The velocity profiles downstream of the actuator show considerable

modification from the incoming profiles, such that they peak near the actuator on account

of separated “inner region” flow and do not recover back to the incoming values within the

extent of the flow field penetrated by the plasma synthetic jet.
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6.7 Tables and Figures

Table 6.1: Flat plate experiments; peak velocity of steady jet Ujs=65 cm/s, peak velocity

of 10 Hz pulsed jet Ujp=104 cm/s.

Case U∞ [cm/s] ReL Ujs/U∞ Ujp/U∞
A 85 9 · 103 0.76 1.22
B 125 13 · 103 0.52 0.83
C 175 18 · 103 0.37 0.59

Figure 6.1: Schematic of the flat plate and actuator arrangement. Note that the lines in

the lower figure (equally spaced by 0.33 cm, not to scale) indicate the locations of velocity

profiles presented in later figures, and ∆=0 corresponds to the actuator center.
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(a) Case A. (b) Case B. (c) Case C.

Figure 6.2: Averaged PIV results showing vorticity contours for steady operation of PSJA

in cross flow. Flow direction is from left to right.

(a) t=18 ms. (b) t=24 ms. (c) t=36 ms.

(d) t=48 ms. (e) t=57 ms. (f) t=83 ms.

Figure 6.3: Averaged PIV results showing vorticity contours for PSJA in cross flow case

A. Measurements phase-locked to actuator pulsing frequency fp=10 Hz. Flow direction is

from left to right.
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(a) t=18 ms. (b) t=24 ms. (c) t=36 ms.

(d) t=48 ms. (e) t=57 ms. (f) t=83 ms.

Figure 6.4: Averaged PIV results showing vorticity contours for PSJA in cross flow case

B. Measurements phase-locked to actuator pulsing frequency fp=10 Hz. Flow direction is

from left to right.

(a) t=18 ms. (b) t=24 ms. (c) t=36 ms.

(d) t=48 ms. (e) t=57 ms. (f) t=83 ms.

Figure 6.5: Averaged PIV results showing vorticity contours for PSJA in cross flow case

C. Measurements phase-locked to actuator pulsing frequency fp=10 Hz. Flow direction is

from left to right.
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(a) Case A, u/U∞. (b) Case B, u/U∞.

(c) Case C, u/U∞.

Figure 6.6: Baseline flow (actuator off), mean velocity profiles at different streamwise lo-

cations. 2, r = 2∆ upstream; �, r = 1∆ upstream; ◦, r = 0; 4, r = 1∆ downstream;

5, r = 2∆ downstream; ., r = 3∆ downstream; /, r = 4∆ downstream; ∆=3.3 mm; r=0

corresponds to actuator center location x=14.8 cm.
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(a) Case A, u/U∞. (b) Case B, u/U∞.

(c) Case C, u/U∞.

Figure 6.7: Mean velocity profiles for steady operation of the PSJA at different streamwise

locations. 2, r = 2∆ upstream; �, r = 1∆ upstream; ◦, r = 0; 4, r = 1∆ downstream;

5, r = 2∆ downstream; ., r = 3∆ downstream; /, r = 4∆ downstream; ∆=3.3 mm; r=0

corresponds to actuator center location x=14.8 cm.
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(a) Steady operation. (b) 10 Hz pulsing.

Figure 6.8: Displacement, δ∗ (solid black lines) and momentum, θ (dashed red lines) thick-

nesses for cases A, B, and C. ∆=3.3 mm, ∆=0 corresponds to PSJA center location at

x=14.8 cm. δ1
∗ and θ1 indicates displacement and momentum thickness values respec-

tively, for the first upstream station at -2∆. Steady operation δ1
∗ values are: 0.3226 cm

(case A), 0.2190 cm (case B), and 0.1856 cm (case C). Steady operation θ1 values are:

0.1601 cm (case A), 0.1457 cm (case B), and 0.1326 cm (case C). 10 Hz pulsing δ1
∗ values

are: 0.2911 cm (case A), 0.2138 cm (case B), and 0.1404 cm (case C). 10 Hz pulsing θ1

values are: 0.1544 cm (case A), 0.1431 cm (case B), and 0.1079 cm (case C).

Figure 6.9: Laser sheet locations (in green) showing y-z planes used for conducting cross-

stream PIV measurements on the annular PSJA in cross flow.
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(a) U∞ = 85 cm/s, x = L. (b) U∞ = 125 cm/s, x = L.

(c) U∞ = 175 cm/s, x = L. (d) U∞ = 85 cm/s, x = L + 2di.

(e) U∞ = 125 cm/s, x = L + 2di. (f) U∞ = 175 cm/s, x = L + 2di.

Figure 6.10: Averaged PIV results showing vorticity contours for steady operation of the

PSJA in cross flow. Cross-stream measurements with actuator mounted on a flat plate;

L=14.8 cm, indicates distance of the actuator center from leading edge of the flat plate.
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(a) Case A. (b) Case B. (c) Case C.

Figure 6.11: Averaged PIV results showing vorticity contours for steady operation of the

linear PSJA in cross flow. Flow direction is from left to right.

(a) t=18 ms. (b) t=36 ms. (c) t=57 ms.

Figure 6.12: Averaged PIV results showing vorticity contours for linear PSJA in cross flow

case A. Measurements phase-locked to actuator pulsing frequency fp=10 Hz.

(a) t=18 ms. (b) t=36 ms. (c) t=57 ms.

Figure 6.13: Averaged PIV results showing vorticity contours for linear PSJA in cross flow

case B. Measurements phase-locked to actuator pulsing frequency fp=10 Hz.

(a) t=18 ms. (b) t=36 ms. (c) t=57 ms.

Figure 6.14: Averaged PIV results showing vorticity contours for linear PSJA in cross flow

case C. Measurements phase-locked to actuator pulsing frequency fp=10 Hz.
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(a) Case A, Annular PSJA. (b) Case A, Linear PSJA.

(c) Case B, Annular PSJA. (d) Case B, Linear PSJA.

(e) Case C, Annular PSJA. (f) Case C, Linear PSJA.

Figure 6.15: Normalized Reynolds stress cross-stream distribution for baseline case (actu-

ator off) and steady operation. �, actuator off (x=14.2 cm); 2, steady operation (x=14.2

cm); ◦, actuator off (x=14.8 cm, r=0); 4, steady operation (x=14.8 cm, r=0); /, actuator

off (x=15.4 cm); ., steady operation (x=15.4 cm); color of the data indicates actuation

state.
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(a) Case A. (b) Case B. (c) Case C.

Figure 6.16: Averaged PIV results showing vorticity contours for steady operation of PSJA

in cross flow with increased input power. Flow direction is from left to right.

(a) t=18 ms. (b) t=30 ms. (c) t=42 ms.

(d) t=48 ms. (e) t=57 ms. (f) t=83 ms.

Figure 6.17: Averaged PIV results showing vorticity contours for PSJA in cross flow case A

with increased input power. Measurements are phase-locked to actuator pulsing frequency

fp=10 Hz.
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(a) t=18 ms. (b) t=30 ms. (c) t=42 ms.

(d) t=48 ms. (e) t=57 ms. (f) t=83 ms.

Figure 6.18: Averaged PIV results showing vorticity contours for PSJA in cross flow case B

with increased input power. Measurements are phase-locked to actuator pulsing frequency

fp=10 Hz.
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(a) t=18 ms. (b) t=30 ms. (c) t=42 ms.

(d) t=48 ms. (e) t=57 ms. (f) t=83 ms.

Figure 6.19: Averaged PIV results showing vorticity contours for PSJA in cross flow case C

with increased input power. Measurements are phase-locked to actuator pulsing frequency

fp=10 Hz.
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(a) Steady actuator operation. (b) fp=10 Hz, t=18 ms. (c) fp=10 Hz, t=24 ms.

(d) fp=10 Hz, t=30 ms. (e) fp=10 Hz, t=36 ms. (f) fp=10 Hz, t=42 ms.

(g) fp=10 Hz, t=48 ms. (h) fp=10 Hz, t=57 ms.

Figure 6.20: Averaged PIV results showing vorticity contours for the linear PSJA in cross

flow case A with increased input power. Flow direction is from left to right.
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Figure 6.21: Schematic of two L-PSJAs mounted on the circular cylinder at 90◦ and 270◦

to the incoming free stream (the arrangement is the same for two linear actuators, with

the absence of exposed electrodes EE2). Thicker red lines indicate connections from the

exposed electrode, thinner black lines indicate connections from the embedded electrode.
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(a) Baseline, actuator off.

(b) Steady operation.

(c) 10 Hz pulsing (f+=0.2).

Figure 6.22: Averaged PIV results showing vorticity contours overlaid with streamlines for

linear actuator mounted on circular cylinder for ReD=5 · 103.
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(a) Baseline, actuator off.

(b) Steady operation.

(c) 10 Hz pulsing (f+=0.2).

Figure 6.23: Averaged PIV results showing vorticity contours overlaid with streamlines for

L-PSJA mounted on circular cylinder for ReD=5 · 103.
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(a) Baseline, actuator off.

(b) Steady operation.

(c) 20 Hz pulsing (f+=0.2).

Figure 6.24: Averaged PIV results showing vorticity contours overlaid with streamlines for

linear actuator mounted on circular cylinder for ReD=10 · 103.
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(a) Baseline, actuator off.

(b) Steady operation.

(c) 20 Hz pulsing (f+=0.2).

Figure 6.25: Averaged PIV results showing vorticity contours overlaid with streamlines for

L-PSJA mounted on circular cylinder for ReD=10 · 103.
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(a) Linear actuator, x=1D downstream. (b) L-PSJA, x=1D downstream.

(c) Linear actuator, x=10D downstream. (d) L-PSJA, x=10D downstream.

Figure 6.26: Cross-stream variation of velocity deficits for ReD=5 · 103.
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(a) Linear actuator, x=1D downstream. (b) L-PSJA, x=1D downstream.

(c) Linear actuator, x=10D downstream. (d) L-PSJA, x=10D downstream.

Figure 6.27: Cross-stream variation of velocity deficits for ReD=10 · 103.

Figure 6.28: Cartoon showing mechanism of PSJA in cross flow.

Copyright c© Arvind Santhanakrishnan 2007.
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Chapter 7

EFFECTS OF PLASMA MORPHOLOGY

7.1 Introduction

The question of how the plasma structure affects the resultant flow field characteris-

tics has rarely been addressed in the literature. Enloe et al. [84] first observed that the

structure of the DBD affects the efficiency of momentum coupling by the actuator, and

conducted detailed measurements on the plasma structure [91, 84] and its effects on neu-

tral air density [112], but these efforts do not relate the plasma structure and the bulk

flow characteristics in conjunction. In this context, the maximum velocity and stream-

wise extent of the isolated plasma synthetic jet was observed to be strongly related to the

plasma strength [177]. Since the jet is exclusively produced by the plasma, it is desirable to

have a stronger plasma for obtaining better performance. To understand how the actuator

design is optimized, it would be necessary to simultaneously measure the flow field char-

acteristics as well as the plasma structure. Measurements on the plasma structure can be

accomplished using a variety of optical techniques, including photodiodes and CCD sensors.

Photodiodes, with their high temporal response, provide a direct link between the power

input and plasma. CCD sensors, which were used herein, allow a field measurement of the

plasma structure, particularly important for PSJA studies where the actuator geometry

may directly affect the plasma structure. Time exposures for a PSJA are shown in Fig. 7.1.

Note that as power input is increased, the plasma structure varies significantly. The annu-

lar region of plasma starts in the form of a ring with non-uniform streamers at low power

inputs. With increasing power, the ring transitions into a thicker disk-like region with more

uniform structure. If the power is increased further, the plasma region occupies the entire

available surface area of the embedded electrode. The above morphological states were

identified to form in an abrupt manner, viz., the plasma structure did not change continu-

ously with input power. Furthermore, the relation between the input power per cycle and

plasma morphology appears to be linear, as seen from Fig. 7.2. It must be noted that since

the PSJA was operated at 50% duty cycle, only half of the input values in Fig. 7.2 were

actually used for actuation. Of particular interest is the limiting case where the plasma ring

closes to form a disk of self sustaining plasma. This arrangement can be created by either

decreasing the size of the actuator or increasing the power input such that the field lines
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converge. It is interesting to note that the extent of the plasma region does not directly

translate into increased actuator performance. Preliminary measurements indicate that an

optimum PSJA exists somewhere between the initial formation stages and the limiting disk

case (Fig. 7.3). Further, the relationship between the different variables in the problem:

input power, actuator dimension, pulsing frequency and plasma morphology appears to be

highly interdependent. Thus, increased power input alone does not appear to translate into

increased momentum addition. Obviously, this has important implications in developing

efficient actuators.

The objective of this chapter is to examine the effect of plasma intensity (for fixed

actuator dimensions) on: the peak axial velocity and momentum of the jet and the actuator

efficiency. For this purpose, PIV based flow field measurements on the isolated jet were

coupled with measurements of both power input and plasma structure (obtained in a relative

sense from the CCD sensors). The sections below describe the experimental arrangements

used for this study, followed by a discussion of the results. The experiments were conducted

in quiescent flow for both steady and pulsed operation of the PSJA. The plasma actuator

tested consisted of conductive copper annular arrays separated by a 0.025 inch thick alumina

ceramic dielectric. The diameters of the exposed (do) and embedded (di) electrodes were

25.4 mm (1 inch) and 12.7 mm (0.5 inch) respectively, with either no air gap (w=0) or a 1–2

mm overlap. Three pulsing frequencies were examined, differing by O(1) magnitude: 1 Hz,

10 Hz, and 100 Hz. In quiescent flow conditions, it was observed that the plasma weakened

due to seeding material (oil droplets) deposition on the electrodes and the dielectric plate.

To include the effects of seeding contamination, two images of the plasma structure were

taken before and after every PIV run (Fig. 7.4). Note that buildup of the seeing oil on the

actuator results in substantial plasma degradation and hence loss in actuator effectiveness.

Filamentary structures are impacted first, which serve as a indicator of contamination. The

bulk plasma structure remains relatively constant except in cases of extreme contamination

from long or multiple PIV runs. The results presented herein were obtained from the images

taken at the end of each PIV run. The following section will describe the plasma intensity

curves for three different morphological states (ring, quasi disk, and full disk, Fig. 7.1), and

their associated effects on the basic flow field and jet characteristics for the above modes of

actuator operation.
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7.2 Plasma Structure

To examine the plasma structure and intensity in the PSJA, time exposed images

captured by the CCD camera described in the previous section were used. Fig. 7.5 shows

one such sample image of the full disk morphology, along with the circular coordinate

system and region used for analysis. From any raw CCD image, it is possible to extract

a non-dimensional brightness value of each pixel in the entire array. To obtain an idea

of the plasma structure, we then employ the observation that this pixel brightness value is

directly indicative of the plasma intensity in that particular spatial location in the actuator.

Albeit not a dimensional measure, this brightness value can still be used to examine the

distribution of plasma intensity in the region of interest in the actuator. If the field of view

and exposure settings used to obtain different morphological images are held constant, it is

then possible to use this measure to quantitatively compare their non-dimensional plasma

intensities relative to each other. To remove any external light contribution, the images

analyzed herein were captured in a dark environment, where the plasma was the exclusive

light emitting source.

Fig. 7.6 shows the radial and circumferential variation of the plasma intensity for the

three morphological states obtained for steady operation of the PSJA. The radial coor-

dinate was marched from the actuator center to just outside the plasma region (rmax ≈
7 mm). The circumferential (azimuthal) coordinate was swept from 0◦ to 360◦ starting

from the first quadrant (Fig. 7.5). The radial variation of plasma intensity is similar for all

morphologies, with the actuator center registering the lowest value of intensity. After, it in-

creases nonlinearly with radius, reaching a maximum at the actuator circumference (r=6.35

mm), after which it drops back to reference values for distances beyond. As expected, the

ring and quasi disk states show very low intensities (due to absence of plasma) near the

actuator center. The plasma region starts around r=3 mm for the ring state (Fig. 7.6(a))

and around r=2 mm for the quasi disk (Fig. 7.6(b)), while it starts at the actuator center

for the full disk. At any radial location, the circumferential variation of plasma intensity is

highly non-uniform for the ring and quasi disk morphologies, while it is nearly uniform for

the full disk. The irregularities in the circumferential variation of intensity are highest at

the actuator circumference for the ring and quasi disk.

Fig. 7.7 shows the radial variation of median relative plasma intensity, with the er-

ror bars indicating circumferential deviation. The intensities for different morphologies are

compared for each mode of actuator operation. The trend of radial intensity variation is

similar for all morphologies, with the full disk having the highest intensity, followed by the
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quasi disk and the ring states. Also, the peak values occur very near the actuator circumfer-

ence, and this location is the same for all states and modes of actuator operation. The full

disk peak intensities are nearly the same across steady and pulsed operation of the actua-

tor. The quasi disk state shows the highest intensity for 100 Hz pulsed operation, followed

by 1 Hz and 10 Hz pulsing, and is lowest for steady operation. It is interesting to note

that, compared to steady operation, unsteady actuation (especially at fp=100 Hz) shows

increased area of the quasi disk plasma region. The ring state shows increased intensity

for both steady and 100 Hz pulsed operation. It is expected that the jet characteristics

would be directly related to the plasma intensity. By using the maximum variation over

the circumference, it is seen that the maximum value of intensity occurs near the actuator

circumference for all three cases. For unsteady operation, near the actuator circumference,

the maximum intensities of the quasi disk coincide with the full disk values. The peak

intensities of the ring state for 100 Hz pulsing are very close to the full disk. The median

values of intensity show the same trend as the average and maximum values presented in

earlier figures. The cases with unsteady actuator operation show greater circumferential

deviation than the steady actuation case. This is possibly due to the variability in plasma

formation and quenching for pulsed operation of the actuator.

On the issue of seeding material weakening the plasma structure, Fig. 7.8 shows the

radial variation of median relative plasma intensity before and after a representative PIV

run, with the error bars indicating circumferential deviation. The maximum intensity value

is decreased as a result of seeding deposition on the actuator. However, the trend of radial

variation is unaffected, such that the profiles before and after a PIV run are merely offset

from each other. It is important to note that this weakening occurs only after long term

actuator use within the confines of the enclosure seeded with oil droplets, and no observ-

able degradation in the plasma structure was observed if the actuator surface was cleaned

between consecutive PIV runs.

7.3 Basic Flow Field

Figs. 7.9–7.10 show contours of spanwise vorticity obtained from time-averaged PIV

results for both steady and pulsed operation of the PSJA. The vorticity values were normal-

ized with the respective maximum values such that: ωz
∗=ω/ωmax. Dashed lines indicate

contours of negative vorticity. Within each figure, the effect of variation in plasma morphol-

ogy is compared. For steady operation of the actuator (Fig. 7.9), the starting vortex has

clearly advected out of the window of observation, and a steady jet is observed for all mor-
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phologies. The full disk shows higher vorticity levels within the near field of the actuator,

indicating stronger entrainment of the near wall fluid by the plasma. The starting width of

the jet (at x ≤ 10 mm) is highest for the ring state compared to the other morphologies.

It is interesting to note the increase in spreading of the jet at distances greater x=20 mm

as we progress from the ring to full disk states. Both secondary and tertiary vortical struc-

tures are seen for all three states, and are relatively unchanged in their spatial location.

Pulsing the actuator at a frequency of 10 Hz results in increasing the jet width (Fig. 7.10)

as compared to steady operation. The width of the jet near the actuator decreases as we

progress from ring to full disk states, similar to that seen for steady operation. Farther

downstream, the jet width is increased for the the quasi and full disk morphologies. Also,

the remnants of the vortex rings generated in the previous cycle are seen in the flow field

for these two morphologies. For the ring morphology, pulsing results in increased vorticity

levels far downstream of the actuator (at x=40 mm, Fig. 7.10(a)) than the equivalent case

in the steady jet (Fig. 7.9(a)).

As the vorticity contours presented in Fig. 7.10 were time-averaged over the actuation

cycle, specific details on the starting vortex are not clear. In order to understand the

effect of morphology on starting vortex formation and evolution, PIV measurements were

conducted phase-locked to the actuator pulsing frequency, and the contours of normalized

spanwise vorticity are shown in Figs. 7.11–7.14. The results for two pulsing frequencies (1

Hz and 10 Hz) and two morphological states (quasi and full disk) are presented. In each

figure, the evolution of the jet along three times in the actuator duty cycle (24 ms, 36 ms

and 48 ms) are shown. Note that for 10 Hz pulsing, t=48 ms corresponds to the end of the

actuation cycle. For both pulsing frequencies, the starting vortex ring is highly unsteady

for the quasi disk morphology, and in general show downstream motion with increasing

time. At t=24 ms, the 10 Hz pulsing case shows more downstream motion and larger size

of starting vortices (Fig. 7.12(a)) as compared to that seen for 1 Hz pulsing (Fig. 7.11(a)).

With increase in time from 24 ms to 36 ms for 1 Hz pulsed PSJA operation, the starting

vortex from the previous cycle is seen along with the new incarnation emanating from the

plasma region, as evidenced from the dual lobed vorticity contours (Fig. 7.11(b)). The

position of the starting vortex for the 10 Hz, quasi disk operation of the actuator at 36

ms (Fig. 7.12(b)) is upstream of the vortex location in the equivalent 1 Hz case, and the

previous cycle vortex incarnation is also not seen in the field of view, on account of shorter

times of advection at 10 Hz. For quasi disk operation at t=48 ms, the flow field for 1 Hz

and 10 Hz pulsed operation appear very similar.

For both pulsing frequencies, a change in the plasma morphology from the quasi disk
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to full disk structure affects the flow field considerably, and results in an increase in the

streamwise extent of the jet, even for times very near the start of the actuation cycle

(Figs. 7.13(a) and 7.14(a)). Also, for both frequencies, two well demarcated lobes in the

contours are seen, indicating that the rate of vortex generation by the plasma has changed

from that seen in the quasi disk operation. This suggests that the plasma morphology

affects the time scale of PSJA vortex ring formation. The 1 Hz and 10 Hz flow fields appear

similar in the full disk state. For 1 Hz pulsing, the starting vortex pinch off from the jet

body is clearly seen with increasing time (Fig. 7.13). The pinch off process is faster for

pulsed operation at a higher frequency of 10 Hz, as expected (Fig. 7.14). The extent of

streamwise vorticity increases with increase in time for 1 Hz case (Fig. 7.13), while it stays

nearly a constant for the 10 Hz pulsing (Fig. 7.14).

Overall, the plasma ring morphology is seen to produce lower vorticity concentrations

compared to the quasi and full disk states. For the ring morphology, the starting width of

the synthetic jet is larger because fluid entrainment occurs only around the circumference

of the embedded electrode circle. In case of the quasi and full disk plasma morphologies,

however, fluid is entrained over a larger surface area, and consequently the initial jet width is

smaller. The downstream jet width would have to increase for the quasi and full disk states

in order to compensate for the larger mass of fluid pulled in by the plasma, as compared

to the ring morphology. These suggest that for a constant embedded electrode diameter

(which is the maximum available region for plasma expansion [201]), the fluid entrainment

by the actuator is primarily affected by the amount of plasma that is present during its

operation. Increasing the amount of plasma by increasing the input power not only results

in increasing the streamwise extent of the jet, but also affects the generation and interaction

of vortex rings, which in turn has been shown to influence the resultant jet characteristics

substantially [177]. Therefore, it is expected that the full disk configuration would result in

increased jet performance characteristics.

7.4 Jet Characteristics

Fig. 7.15 shows the cross-stream distribution of mean axial velocity normalized with

local maximum mean axial velocity for steady operation of the PSJA. The jet reaches self

similarity very close to the actuator (x ≥ 1ri, where ri is the radius of the embedded

electrode) for the ring morphology, as seen in Fig. 7.15(a). The entrainment of fluid by the

plasma occurs at distances lesser than 0.5ri from the actuator. As this morphology has the

weakest plasma strength, it is expected that the quasi and full disk plasma synthetic jet
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will also reach self similarity, albeit at different downstream distances. An examination of

the velocity profiles very near the actuator surface (at x=0.25di, Fig. 7.15(b)) shows that

changing plasma morphology affects the fluid entrainment and jet width. The full disk

plasma, while with the most entrainment, has the lowest jet width compared to the quasi

disk and ring morphologies, supporting the observations made on the vorticity contours

presented in the previous section.

Fig. 7.16 shows the effect of plasma morphology on the cross-stream distribution of

dimensional mean axial velocity at a distance of 0.5di downstream of the actuator, for both

steady and pulsed operation at frequencies 1 Hz, 10 Hz and 100 Hz. It must be noted

that these velocity profiles and the results presented hereon were derived entirely from

time-averaged PIV measurements. In all the different cases of actuator operation, the full

disk morphology produces the highest jet velocity, followed by the quasi disk and the ring

morphologies. The maximum jet velocity is therefore directly related to the extent of plasma

in the actuator. Steady operation of the PSJA with the full disk plasma results in a peak

jet axial velocity of around 225 cm/s (Fig. 7.16(a)), which is a substantial increase from

the respective peak values of quasi disk and ring morphologies. The peak axial velocity

obtained for pulsed actuator operation at any frequency is lesser than that obtained for

steady operation. As the results are averaged over the actuator cycle, the peak values seen

in Fig. 7.16 actually correspond to maximum time-averaged velocity umax, and not the

time-average of maximum velocity umax. The latter values are higher for pulsed actuator

operation over steady operation, and have reported in other articles [177, 202]. For the full

disk morphology, steady actuator operation results in a wider jet as compared to unsteady

pulsing. The jet width for the quasi disk and ring morphologies are nearly the same across

all modes of actuator operation. For 100 Hz pulsing, it is interesting to note that the

ring morphology reaches a peak value nearly the same as quasi disk (Fig. 7.16(d)), greater

than the peaks obtained for this morphology for any other case. Despite the weak plasma

strength of the ring morphology itself, it is thought that this increase in performance is tied

to the faster forcing of the synthetic jet at 100 Hz, which introduces the most unsteadiness

into the fluid. Also, an examination of the relative plasma intensity curves for the ring

morphology (Fig. 7.7) show that for this set of experiments, the 100 Hz pulsed operation had

the highest plasma intensity as compared to the other modes of actuator operation. These

differences are only marginal, suggesting that the jet characteristics are highly sensitive to

the plasma strength maintained during the actuator operation. Comparing the profiles for

steady operation at different distances downstream (Fig. 7.15(b) and 7.16(a)), it is seen that

fluid entrainment decreases with increasing distance from the actuator, as expected. The
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axial component of the suction velocity of fluid entrained by the plasma at 0.5di downstream

(Fig. 7.16) is in the 15 cm/s range for all modes of actuator operation. The profiles for

the quasi disk show some asymmetry about the jet centerline, and since this is observed

for both both steady and pulsed operation, it is suspected that this plasma morphology

contributes to jet wandering.

Figs. 7.17–7.19 show the streamwise distribution of local maximum mean axial velocity

and fluid impulse for the different plasma morphological states. The fluid impulseis essen-

tially the rate of change of momentum of the jet, viz., the hydrodynamic force imparted by

the plasma synthetic jet on the quiescent fluid. The different modes of actuator operation

(steady and pulsed) are compared within each figure. In general, it is seen that the output

velocity and impulse are the highest for full disk plasma, followed by the quasi disk and

ring morphologies. The maximum axial velocity obtained occurs at 0.5di downstream of

the actuator, regardless of the plasma morphology and the operational mode. The stream-

wise location of the maximum impulse is, however, affected by both the pulsing frequency

and plasma morphology. For the ring plasma state, pulsing the actuator at 100 Hz in-

creases the jet outputs by several times of those obtained from other modes of operation

(Fig. 7.17), for reasons of increased plasma intensity for this case (discussed above in the

observations made on Fig. 7.16(d)). On account of jet spreading, the jet impulse and axial

velocity for 100 Hz pulsing show opposite behavior with increasing downstream distance,

with the former increasing and the latter decreasing respectively, both in an almost linear

manner. The multiple small scale peaks in the impulse curves indicate the locations of the

primary vortices shed in the flow field. The peak impulse value for the ring morphology

(at 100 Hz pulsing) is almost comparable to the corresponding value for the quasi disk case

(Fig. 7.18(b)). Comparing the different plasma states, it is interesting to observe that there

exists no unique choice of actuator pulsing frequency to maximize jet outputs. However,

for a particular plasma morphology, there is a unique operational mode (such as fp=100

Hz for the plasma ring) that produces maximum jet outputs. This suggests that in order

to optimize the actuator design for maximum resultant jet velocity and momentum, the

plasma intensity is the more critical factor. It is important to note that this observation

does not in itself consider variation in actuator dimensions, and this has been discussed

elsewhere [201].

An examination of the streamwise profiles of the jet impulse for the quasi and full disk

morphologies (Figs. 7.18(b) and 7.19(b)) show that these plasma structures induce more

unsteadiness in the pulsed jet compared to the ring morphology (Fig. 7.17(b)). This is in-

dicated by the bumpy nature of the impulse curves for these cases, and it is suspected that
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the plasma structure for these states also affects the rate of vortex ring generation, in addi-

tion to the pulsing frequency. With the exception of 100 Hz pulsing, the ring morphology

impulse curves show very low values of impulse at x=3.5di, implying reduced streamwise

extent of the jet for this case, as compared to the quasi and full plasma disk states. Note

that for the morphology with the weakest plasma strength, the 100 Hz pulsing had the

highest plasma intensity (see Fig. 7.7) compared to the other modes of operation. Thus it

is not the actuator operation mode, but actually the plasma strength, that directly affects

the streamwise extent of the jet. For steady operation of the actuator, the peak jet velocity

and momentum, as well as its streamwise extent, seem to be directly proportional to the

intensity and extent of the plasma region. For unsteady operation, the relation between

pulsing frequency and plasma morphology is not clear.

7.5 Actuator Performance

While it is clearly seen from the above discussion that the full disk plasma adds the most

momentum to the fluid, it is desirable to see whether it is the most efficient morphology in

terms of actuator output. The efficiency η of the actuator in injecting momentum into the

quiescent fluid through the plasma synthetic jet can be calculated as the ratio of mechanical

energy output of the jet to the electrical energy input to the actuator:

η =
Eout

Ein
.

The input electrical energy to the actuator can be calculated as the product of electrical

power input (see Fig. 7.2) and the period of the actuator cycle Tact:

Ein = Pin × Tact,

where Tact can be calculated as the inverse of the input AC frequency fAC . The output

energy imparted by the jet to the residual fluid can be given by the product of the average

hydrodynamic force F and the characteristic length scale of the actuator (that affects the

actuator output). Since the plasma is solely responsible for creating the jet, the embedded

electrode diameter di (which limits the maximum extent of plasma) is the appropriate length

scale for the PSJA. Therefore, we have the following expression for actuator efficiency,

η =
F · di · fAC

Pin
(7.1)

Fig. 7.20 shows the effect of variation of plasma morphology (shown in terms of input

electrical power, values the same as Fig. 7.2) on normalized actuator performance charac-

teristics. Both steady and pulsed actuator operation are presented in each figure, and the
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maximum values of the characteristics for any particular operating mode was used to nor-

malize the respective curves. While the values of hydrodynamic force F used in Fig. 7.20(a)

were calculated by averaging the corresponding impulse values in the streamwise curves

presented in Figs. 7.17–7.19, the efficiency was calculated using equation 7.1. The error

bars indicate deviation of the streamwise impulse used in calculation of F and η. The

maximum value of hydrodynamic force imparted by the synthetic jet is obtained for the full

disk morphology, irrespective of the mode of actuator operation. This is followed by the

quasi disk, while the ring morphology shows little variation of force (except 100 Hz pulsing,

for reasons of increased plasma intensity discussed above) for steady or pulsed operation.

Also, pulsed operation of the actuator at any frequency produces greater force than steady

operation. For the quasi disk morphology, an increase in the pulsing frequency from 1 Hz

to 10 Hz nearly doubles the force value, after which the force for 100 Hz pulsing drops lower

than the 1 Hz case.

The highest actuator efficiency is obtained for full disk plasma (Fig. 7.20(b)), with

the exception of 100 Hz pulsed operation, where the ring morphology produces the highest

efficiency. The increase in performance at 100 Hz pulsing is related to the increased plasma

intensity for this case compared to other modes of operation. Similar to the hydrodynamic

force, pulsed operation of the actuator at any frequency renders better actuator perfor-

mance than steady operation. For steady operation, there is almost an order of magnitude

performance improvement when we progress from the quasi disk to full disk plasma states.

The difference in efficiencies between the quasi and full disk states drops with increase in

pulsing frequency. It is interesting to note that the efficiency curves show an increase in

performance starting from steady actuator operation to 1 Hz pulsing and thereafter to 10

Hz pulsing, and this change appears to be oscillatory about the full disk maximum value.

Thus, it is seen that for the particular actuator design investigated herein, the performance

efficiency is affected by both the plasma morphology and pulsing frequency. The full disk

plasma morphology with the largest intensity and extent of plasma produces the highest

performance efficiencies for steady and pulsed operation at frequencies 1 Hz and 10 Hz.

7.6 Summary

This chapter presented an investigation on the effects of plasma morphology on the qui-

escent characteristics of the vertical jet created by an annular plasma synthetic jet actuator

(PSJA) for both steady and pulsed modes of operation. Time-averaged PIV measurements

on the actuator flow field were related in conjunction with details on the plasma structure
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and intensity obtained from CCD sensors. Increasing the region of plasma, in addition to

increasing the near wall fluid entrainment, also appeared to affect the rate of vortex ring

generation by the actuator. The output velocity, momentum and streamwise extent of the

jet were found to increase with plasma intensity and extent. For any plasma morphology,

the actuator efficiency was observed to be higher for pulsed operation as compared to steady

operation. The actuator efficiency was found to be affected by a combination of the plasma

morphology and pulsing frequency, with the former being the more critical factor.
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7.7 Tables and Figures

(a) Ring. (b) Quasi disk. (c) Full disk.

Figure 7.1: Photographs showing the formation of the annular plasma region. Plasma

streamers (left) at initial stages progresses to a mature annular ring (center), which later

progresses to a full disk if the power input is great enough (right). Corresponding cartoons

are shown below indicating the body force on the fluid.

Figure 7.2: Input electrical power Pin for the different morphological states of the PSJA.
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Figure 7.3: Strength of plasma region as actuator is varied from a linear to annular array

with increasingly smaller radii.

(a) (b)

Figure 7.4: Photographs showing the effect of seeding contamination on the plasma before

(a) and after (b) a quiescent flow PIV run.

Figure 7.5: Sample CCD image showing the circular region (bounded by the band in blue)

with coordinate system used for analysis of plasma structure. Arrow is used to indicate the

direction of circumferential θ sweep from 0◦ to 360◦ (counter clockwise from origin, starting

from the first quadrant).

183



(a) Ring.

(b) Quasi disk.

(c) Full disk.

Figure 7.6: Radial (r) and circumferential (θ) variation of plasma intensity in the annular

region above the embedded electrode. PSJA in steady operation; note that the intensities

are measures of the pixel brightness values and are relative to one another.
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(a) Steady operation. (b) fp=1 Hz.

(c) fp=10 Hz. (d) fp=100 Hz.

Figure 7.7: Radial variation of median relative plasma intensity. Error bars indicate cir-

cumferential deviation.
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Figure 7.8: Profiles of relative radial median plasma intensity variation before and after a

PIV run.

(a) Ring. (b) Quasi disk. (c) Full disk.

Figure 7.9: Time-averaged contours of normalized spanwise vorticity ωz
∗. Contour levels

begin at ωz
∗=-0.893 and end at ωz

∗=0.874, with increments of ± 0.126; steady operation

of the PSJA.

(a) Ring. (b) Quasi disk. (c) Full disk.

Figure 7.10: Time-averaged contours of normalized spanwise vorticity ωz
∗. Contour incre-

ments are same as Figure 7.9; 10 Hz pulsed operation of the PSJA.
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(a) t=24 ms. (b) t=36 ms. (c) t=48 ms.

Figure 7.11: Phase-locked contours of normalized spanwise vorticity ωz
∗. Contour incre-

ments are same as Figure 7.9; 1 Hz pulsed operation of the PSJA in quasi disk morphology.

(a) t=24 ms. (b) t=36 ms. (c) t=48 ms.

Figure 7.12: Phase-locked contours of normalized spanwise vorticity ωz
∗. Contour incre-

ments are same as Figure 7.9; 10 Hz pulsed operation of the PSJA in quasi disk morphology.

(a) t=24 ms. (b) t=36 ms. (c) t=48 ms.

Figure 7.13: Phase-locked contours of normalized spanwise vorticity ωz
∗. Contour incre-

ments are same as Figure 7.9; 1 Hz pulsed operation of the PSJA in full disk morphology.

187



(a) t=24 ms. (b) t=36 ms. (c) t=48 ms.

Figure 7.14: Phase-locked contours of normalized spanwise vorticity ωz
∗. Contour incre-

ments are same as Figure 7.9; 10 Hz pulsed operation of the PSJA in full disk morphology.

(a) Ring morphology only at various downstream lo-

cations.

(b) All morphologies at x=0.25di downstream.

Figure 7.15: Cross-stream distribution of normalized mean axial velocity; steady operation

of the PSJA.
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(a) Steady operation. (b) fp=1 Hz.

(c) fp=10 Hz. (d) fp=100 Hz.

Figure 7.16: Cross-stream distribution of mean axial velocity at x=0.5di downstream of the

PSJA.

(a) Local maximum mean axial velocity. (b) Impulse.

Figure 7.17: Ring morphology: streamwise distribution of jet characteristics.
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(a) Local maximum mean axial velocity. (b) Impulse.

Figure 7.18: Quasi disk morphology: streamwise distribution of jet characteristics.

(a) Local maximum mean axial velocity. (b) Impulse.

Figure 7.19: Full disk morphology: streamwise distribution of jet characteristics.
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(a) Hydrodynamic force.
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(b) Efficiency.

Figure 7.20: Normalized actuator performance characteristics. �, steady operation; 2, 1

Hz; ∇, 10 Hz; ., 100 Hz; error bars indicate deviation of streamwise impulse; color of the

data indicates mode of actuator operation.

Copyright c© by Arvind Santhanakrishnan 2007.
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Chapter 8

SCALING RELATIONS

The observations on the factors affecting the formation of quiescent plasma synthetic

jets were discussed in Chapter 4, and these merely illustrated the effects of varying different

parameters affecting the PSJA performance. However, the exact relationships between the

actuator dimension, input power, plasma morphology, pulsing frequency on the output peak

jet velocity and momentum need to be investigated. This would aid in optimizing the design

of the actuator so as to maximize jet velocity and momentum, and a detailed quantitative

understanding of the above relations would be necessary to tailor the actuator construction

for a particular application. The objectives of this chapter are to relate, under quiescent

conditions, the effects of varying actuator dimension, input power, plasma morphology and

pulsing frequency on the resultant jet velocity, momentum and actuator efficiency. The

sections presented below describe efforts to model the scaling relationships of the plasma

synthetic jet actuator.

8.1 Analytical Model

Since the power input Pi of a plasma actuator is directly proportional to the actuator

length, for an annular geometry such as in the PSJA, scaling suggests that

Pi ∝ d ∝ c

where c is the actuator circumference. Note that the above observation neglects any effect

of actuator curvature. The electrical power input per unit length of the actuator is thus a

constant. In case of the PSJA, we have:

Pi

d
=

iV

d
= C

where C is a constant. Likewise, Pi is also a function of the duty cycle, τ/T (where τ is the

pulse width and T is the period), such that maximum power is required for a 100% duty

cycle and no power is used for a 0% (actuator always off) duty cycle.

Pi ∝ τ/T

Also, the electrohydrodynamic (EHD) body force induced by the plasma on the bulk fluid is

a function of several parameters such as the AC potential between the electrodes φ (which
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is in turn dependent on the voltage drop ∆V ), electric field density E, electrode thickness

t, embedded electrode size l, electrode gap width w, dielectric material thickness td, and is

given by Enloe et al. [54] as

F = ρE = − ε0

λD
2 (φE)

where

F = f(∆V, t, l, w, td, ...)

From the above relations, it can be seen that for a fixed actuator and power input, the

actuator output given by the EHD body force (hence the induced velocity) will be invari-

ant. The jet velocity scaling can be constructed by maintaining the power input per unit

length constant and varying the characteristic actuator dimension, which in this case is the

embedded electrode diameter di (see discussion in previous section). To derive the jet ve-

locity scaling, a simple mass conservation analysis of the plasma synthetic jet is performed,

assuming that the plasma characteristics are sufficiently modeled using a round wall jet

(neglecting the EHD force). Fig. 8.1 shows the control volume used for analysis of the

PSJA, where ui is the plasma induced jet velocity, uj is the velocity of the plasma synthetic

jet and h is the incoming jet width. The plasma induced velocity ui has been shown [54] to

be nonlinearly related to the voltage drop across the electrodes ∆V

ui ∝ ∆V 7/2

While the above power law relation was not observed in these experiments, the proportion-

ality (without the 7/2 exponent) will be employed in formulating scaling relations. The

incoming jet velocity magnitude and extant are therefore functions of the actuator config-

uration and input power. We would like to know how the output synthetic jet velocity uj

scales. Applying steady, incompressible flow mass conservation to the control volume yields

ρ

∫ h

0
ui c dx = ρ

∫ 2π

0

∫ ri

0
uj ri dr dθ

where the LHS of the above relation is the incoming mass flux and the RHS is the outgoing

(synthetic jet) mass flux. Treating ui and uj as uniform properties along the cross-section

of the actuator, we can consider average values of these velocities and simplify the above

integrals to

uidih = uj
di

2

4
where ui is the average plasma induced velocity crossing the actuator interface, and uj is

the average PSJA velocity. Thus, we have

uj =
4uih

di
(8.1)
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Assuming that the incoming jet velocity magnitude and extent are only functions of the

actuator configuration and input power, this becomes

uj ∝
1
d

such that the PSJA velocity increases with decreasing actuator size.

To derive a scaling for the hydrodynamic force imparted into quiescent fluid by the jet,

start with conservation of linear momentum applied to the steady flow within the control

volume considered herein, ∮
ACV

ρux (~u · n̂) dA = Σ~F

where F contains contributions from the jet, plasma induced electrostatic force and gravi-

tational force. Neglecting the latter two, and assuming incompressible uniform flow,

Fj = ρuj
2πri

2.

The average of the mean axial velocity squared is to be determined from PIV measurements.

However, considering the limited spatial resolution available (number of data points near

the plasma region ≈ 10), squaring the velocity and averaging it would, in result square the

error in measurement. Hence, the square of the average jet axial velocity uj is used, and

the error can be accounted for through the introduction of a correction term,

uj
2 = αuj

2

where the value of α is governed by the velocity distribution. Calculations show that for

a parabolic velocity distribution resemblant of a pipe flow, the value of α is approximately

2 for laminar flows, and 1–1.1 for turbulent flows. Thus, the hydrodynamic force imparted

by the jet is given by

Fj = παρuj
2ri

2

To find Fj in terms of ui, substitute equation 8.1 above,

Fj = 4παρui
2h2 (8.2)

The actuator efficiency η is determined as the ratio of output to input power. The output

power can be written as the product of the hydrodynamic force of the synthetic jet times

the PSJA velocity:

Po = Fj uj =
16πραh3ui

3

di

Assuming the input power is constant for a given actuator, it can be related to the circum-

ference of the actuator as

Pi ∝ πdi ⇒ Pi = C1πdi
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where C1 is a constant of proportionality with units of g cm−3. Thus, the efficiency can be

determined as follows:

η =
Po

Pi
=

16απρh3ui
3

C1πdi
2

η =
C2ρh3ui

3

di
2 (8.3)

where C2 is 16 times the inverse of C1, and the contribution of α (albeit non-trivial) has

been neglected. Treating all terms except the diameter as constant, we see that

η ∝ 1
di

2

The above scaling relation suggests that more efficient actuators can be built by decreasing

their size, and the dependence is the inverse square of the actuator diameter. This is in

agreement with conventional jet theory, where higher jet velocities (and hence more fluidic

forcing) can be obtained by decreasing the exit orifice. However, the mechanism of formation

of the plasma synthetic jet is not the same as those in continuous or conventional (cavity

driven) synthetic jets. There is no fluid entering an orifice in the PSJA, but rather, the

jet is produced due to strong suction and boundary layer level fluid entrainment by the

plasma (hence the secondary vortices seen in PIV visualizations). Due to this fundamental

difference in the reason behind jet formation, the plasma synthetic jet is expected to deviate

from the hydrodynamically driven round jet scaling behavior derived above. It is important

to observe that while a smaller embedded electrode (which serves as the virtual “orifice” for

the PSJA) would mean greater resultant jet velocities in accordance with mass conservation,

it would also mean that there would be less plasma formed. Since the plasma is responsible

for generating the body force, the latter line of reasoning for jet velocity scaling appears

to be more physically intuitive. Hence, it is expected that below a critical size, a smaller

actuator would actually result in lower jet velocities as a result of its limitation in surface

area for the plasma to form and expand.

To include the effects of plasma input on the above model, we use the observation [54]

that the maximum plasma induced jet velocity is a function of the embedded electrode

dimension

ui = f(di) ∝ di
n

where n ≈ 0.95. If we assume a linear relation between ui and di, for an embedded electrode

dimension of 1 cm and for a maximum induced velocity on the order of 1 m/s, the value of

the proportionality constant C would be on the order of 100 s−1. For the PSJA, we then

have:

ui = C3 di (8.4)
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where C3 is a constant, and represents a function of the plasma input. Rewriting the mass

balance with the above relation for ui gives the output jet velocity in terms of the plasma

input and incoming jet width as

uj = C3 h (8.5)

The incoming jet width h is reflective of the extent of the plasma induced EHD force on

the fluid, and hence is directly proportional to the output velocity of the plasma synthetic

jet. The constant C3 can thus be treated as a correction factor to account for discrepancies

between the values of uj calculated using: (a) experimental data (that includes effect of

plasma input), and (b) equation 8.1 above (that excludes plasma effects), and thereby refine

the above scaling model to suit the non-traditional plasma driven synthetic jet.

8.2 Experimental Results

The following experiments were conducted in quiescent flow on three different annular

plasma synthetic jet actuators with dimensions shown in Table 8.1. For each actuator,

two morphological states (ring and quasi disk), power inputs (3 W and 4 W), and pulsing

frequencies (1 Hz and 10 Hz) in addition to steady operation were investigated. This section

describes the basic flow field and jet characteristics for the above actuators. A comparison

of the average jet velocities (uj) obtained from PIV measurements and the analytical model

equations will be presented.

Fig. 8.2 shows sample contours of spanwise vorticity obtained from PIV measurements

phase-locked to the PSJA pulsing frequency of 10 Hz at t=24 ms in the actuator duty

cycle. The vorticity values were normalized with the respective maximum values such that

ωz
∗=ω/ωmax. Dashed lines indicate contours of negative vorticity. The effect of variation

in actuator embedded electrode diameter di is compared. The streamwise extent of the jet

is seen to increase with increase in di. This was expected on account of increasing region of

plasma with di, as discussed in the previous section. The secondary vortices (located outside

the region of plasma) can be seen for all actuators, and their sizes are comparable. Note that

this structure is created purely due to the favorable pressure gradient type flow experienced

by the near wall fluid entrained by the plasma. The similarity of vortex size observed

herein suggests that with increasing di (for the ranges examined herein), the strength of

the secondary vortex (directly proportional to the radius) remains nearly constant. This

would mean that with increasing extent of plasma (viz., increasing di), more input energy is

available to turn the entrained fluid into the synthetic jet, in excess of the amount of energy

expended in sustaining the secondary vortex generation process. For the di=25.4 mm
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actuator, primary, secondary and tertiary vortical structures are observed. The primary

vortex is seen within the window of observation for all cases, and both its strength and

streamwise location is seen to increase with increasing di. Note that these observations are

specific to the quasi disk morphology, and a more detailed discussion of morphology effects

on the flow field is presented elsewhere. [203] As expected, the width of the jet is seen to

scale closely with di.

Fig. 8.3–8.5 show the variation of peak axial velocity of the jet with actuator diameter

for steady and pulsed cases of PSJA operation. For each mode of actuator operation, the

effects of change in morphology and input power are compared. The error bars indicate the

standard deviation of the measured velocity from PIV. The peak velocity shows a nearly

linear relation with actuator diameter for the quasi disk morphology at all modes of actuator

operation. For the steady and 1 Hz pulsed operation of the PSJA in ring morphology

state, the actuator with di=1.27 cm is seen to be the optimum value for obtaining the

highest value of jet velocity. For this actuator size at this morphology (with low plasma

strength), there is a greater available area of plasma compared to the di=0.635 cm actuator.

Also, the 1.27 cm diameter actuator would not increase the jet width as much as the

2.54 cm diameter actuator. Increasing the region and intensity of plasma to the quasi

disk morphology increases the velocity of the jet substantially. For this morphology (with

increased plasma strength), it is the extent of plasma that appears to control the output jet

velocity. Consequently, the peak jet velocity of the PSJA operated in quasi disk morphology

increases with increasing di.

The variation of peak jet velocity with input power for the different actuators shows

non-uniform trends for steady and pulsed operation of the PSJA. For steady operation

(Fig. 8.3(b)), the di=0.635 cm and di=1.27 cm actuators exhibit marginal variation in the

peak velocity values with increasing input power. The peak velocity of the di=2.54 cm

actuator, however, increases by three times with the increase in input power. For steady

operation with Pin=3 W, the di=1.27 cm actuator appears to be the optimum actuator

size. Increasing the input power by 1 W changes the above variation such that the peak

velocity is directly proportional to actuator diameter. For 1 Hz pulsed operation of the

PSJA (Fig. 8.4(b)), it is interesting to observe that the jet is not sensitive to a 1 W change

in input power, as the peak velocities are unchanged for both input conditions. With

increase in pulsing frequency to 10 Hz (Fig. 8.5), the di=0.635 cm actuator performs the

best for 3 W input power, while there is not any substantial variation of peak velocity

between the actuators at Pin=4 W. For any morphology or input power, pulsed operation

of the actuator results in lower velocities than those for steady operation. The results in
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Figs. 8.3–8.5 were obtained from time-averaged PIV results, and hence the values used in

these figures are indicative of the maximum time-averaged velocity (umax), and not the

average of the maximum velocity (umax). The latter values are greater for pulsed operation

as compared to steady operation, and have been reported elsewhere. [177]

Figs. 8.6–8.8 show the variation of the hydrodynamic force of the jet with actuator di-

ameter for steady and pulsed cases of PSJA operation. For each mode of actuator operation,

the effects of change in morphology and input power are compared. The hydrodynamic force

was calculated by averaging the fluid impulse (obtained from the inviscid second-order mo-

mentum integral equation given in Hussein et al. [175]) along the streamwise direction, and

the values of force (for any particular input condition) were normalized with the maximum

value of force for the particular case. Except in the case of 1 Hz pulsing, for all remaining

modes of operation, the di=2.54 cm actuator produces the highest force compared to the

other actuators at any morphology or power input. This was expected since larger the sur-

face area of the actuator (based on di), the larger the jet width is (compare Fig. 8.2(a)–(c))

and hence the jet momentum. For pulsed operation of the PSJA at 1 Hz in ring morphol-

ogy (Fig. 8.7(a)), the di=1.27 cm actuator produces the highest force. Between the two

morphological states examined, it is interesting to note that the ring morphology produces

a greater force for steady and 10 Hz pulsed operation (Fig. 8.6(a) and Fig. 8.8(a)). This

was thought to be on account of the increased starting jet width for the ring morphology

cases as compared to that for the quasi disk. The hydrodynamic force for the actuators at

constant input power conditions (3 W and 4 W) varies with actuator dimension in a rela-

tively uniform trend for all modes of operation. The difference in force between di=0.635

cm and di=1.27 cm actuators remains well within 20%. The force increases at least by 70%

with increase in di from 1.27 cm to the 2.54 cm. This follows the same trend as seen for

morphology variations (Figs. 8.6(a) and Fig. 8.8(c)), for reasons discussed above. For both

steady and pulsed operation, the values of force for 4 W power input were lesser than those

obtained with 3 W input, which is opposite to the trend seen for peak jet velocity with

power input.

In general, it is seen from the above discussion that optimizing the size of the actuator

for maximum jet velocity and momentum is strongly dependent on the input conditions of

power, plasma morphology, and pulsing frequency. For steady operation of the actuator,

some trends in the variation of the velocity and momentum with actuator dimension can

be identified. For the highest value of input power (4 W) examined herein, both the peak

jet velocity and momentum were observed to be proportional to the embedded electrode

diameter di. When operating in the ring morphology, the jet velocity appears to reach an
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optimum value with increasing di, after which the value drops. For the same morphology,

the jet momentum reaches its highest value for the largest size actuator. When operating in

the quasi disk morphology, the jet velocity linearly increases with di, while the momentum

increase with di is nonlinear. It is important to note that any optima identified in this

discussion were selected from the limited range of parameters and actuator diameters ex-

amined herein. Much of the parameter space beyond those investigated in this work would

still need to be explored for identifying true global optimum values.

8.3 Model Validation

In general, three metrics of the actuator characteristics, the average jet velocity, hy-

drodynamic force, and actuator efficiency were considered for comparison of experimental

results with the theoretical relation presented above. Figure 8.9 shows the variation of av-

erage plasma synthetic jet velocity uj with diameter di for steady operation of the PSJA.

In each figure, the values of average jet velocity obtained from PIV data are compared

with those obtained from the scaling model equation 8.1. It is important to note that the

values of ui used in the calculation of average jet velocities by equation 8.1 were actually

obtained from PIV data at a streamwise distance h=0.2169 cm from the actuator. The

error bars indicate the standard deviation of the PIV measurement velocity at h=0.2169

cm. Fig. 8.9(a) shows average jet velocity variation with di for the two morphological states

investigated herein. For the ring morphology, the values of the experiment and the model

match within 2 cm/s for the 0.635 cm and 2.54 cm actuators, while the difference in values

are larger (≈ 5 cm/s) for the 1.27 cm actuator. The difference in values between experi-

ment and model are larger for the quasi disk morphology, especially for the actuator with

di=1.27 cm. Fig. 8.9(b) shows the model and experiment comparison of uj for the two input

power conditions considered herein. For an input of 3 W, the model velocity variation with

di follows what was expected from conventional round jets, viz., increasing velocity with

decreasing actuator size. The deviation of the plasma synthetic jet from classical jet theory

is clearly seen for this case (Fig. 8.9(a)), with the velocity increasing with di for the 0.635

cm and 1.27 cm actuators, after which it drops for the 2.54 cm actuator. The model and

experiment values are well within 10 cm/s difference for a power input of 4 W. Overall, in

matching the average PSJA velocity uj , the analytical model presented herein compared

reasonably well (with average difference ≈ O(5 cm/s)) to the experimental results for most

of the cases. The differences between the model and experiment values of uj are primarily

due to the effects of plasma, actuator curvature and jet entrainment that are not considered
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in the simplified model. The values of the constant C3 that relates the plasma effects via

the actuator dimension di were determined from equation 8.5 using PIV data based values

of uj , and are presented in table 8.2 below. No single value of the constant was arrived

at, across the entire parameter space of plasma morphology and input power. With the

exception of the 4 W power input case, the value of C3 across different actuators for any

given operating condition appears to reach a maximum for the di=1.27 cm actuator. The

value of h used for calculation of C3 was the same as above (0.2169 cm).

Figure 8.10 shows the variation of normalized hydrodynamic force of the plasma-

induced jet with actuator size for the two different plasma morphology states and power

inputs to the actuator. The data obtained from PIV measurements, already presented in

Fig. 8.6, is also shown for comparison. The force imparted by the jet onto quiescent air

was calculated using equation 8.2, where ui is obtained from the PIV data. In general, the

model over-predicts the force value for most of the cases, on account of the lack of inclusion

of curvature effects in the derivation. For both the quasi disk morphology and specified

power input of 4 W, the trend of force variation predicted by the scaling model is same

as that observed in PIV data, where the force increases nonlinearly with increasing di. As

expected, the force was highest for the 2.54 cm diameter actuator for the above two states,

on account of increased jet width as discussed previously. This feature is also captured by

the scaling model, and the values of forces predicted by the model relation match within

±15%. At sufficiently low power and plasma strength examined here, the actuator behavior

becomes nonuniform, and hence a unique scaling for the force imparted by the jet could

not be identified within the bounds of this study. Note that the term α in the force calcu-

lations was assumed to be 1 for all cases, essentially because this value was not derivable

from measurements. Considering the argument that α equals 1.3 when the velocity varies

in a parabolic manner (which is ideal for the entrainment driven plasma jet), it is highly

probable that the mismatching of predictions with experiment was in part a result of this

simplification.

The calculation of the actuator efficiency based on the derivation presented earlier for

equation 8.3 was performed using the induced flow velocities obtained from experiment (with

the same control volume as before), and Fig. 8.11 shows a summary of the dependence of this

quantity on the actuator size. It is clearly seen that there exists no unique optimum actuator

size exists across all the controlled operational parameters considered in these experiments.

However, some definite trends in actuator behavior can be observed. For the plasma ring, the

1.27 cm actuator produces the maximum efficiency similar to the force variation discussed

earlier. Whether this is a result of non-uniformity of the plasma structure or if this is
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indeed an optimum is not clear. Note that the definition of efficiency is based on the

input power applied to the actuator, and it is important to distinguish this from the power

available across the plasma. Exact measurements of the electric field across the plasma

are necessary to develop a more definite understanding of actuator behavior. Interestingly,

the actuator efficiency increases with actuator size for the quasi disk, which is in direct

opposition to conventional jet theory. This indicates that the plasma strength is certainly

an important factor in controlling the momentum coupling of the actuator, to the extent

that both wider jet spreading and increased performance efficiency can be simultaneously

obtained without any compromise in a larger sized actuator. Identical actuator efficiencies

are obtained for all the actuators at both the 3 W and 4 W power input levels as shown

in Fig. 8.11(b). Across this change in the power inputs, actuator efficiency is inversely

proportional to its characteristic dimension controlling plasma expansion, as expected from

the analytical explanation provided earlier. While this variation clearly does not follow

an inverse square relation, the trend of increasing efficiency with decreasing actuator size

shows that the power input across small incremental values does not substantially affect

the efficiency of any particular plasma synthetic jet actuator. At constant power input

conditions, these results suggest that while decreasing the size of the actuator produces

lower peak jet velocities, it results in increased actuator efficiency.

8.4 Comparison with Conventional Jets

In this section, the flow field characteristics of plasma induced jets are compared to

similar jets produced by mechanical devices. Of the latter category are two types of jets,

including those with added mass flux input (referred to as conventional jets hereon) and

without (referred to as synthetic jets). The jet induced by the PSJA arrangement is syn-

thesized from the fluid volume available within the working system, and hence very broadly

resemble a “zero-net-mass-flux” or synthetic jet. However, the mechanisms of both these

devices (and conventional jets) are fundamentally different. A synthetic jet actuator con-

sists of a cavity with an orifice through which equal amount of fluid is alternatively sucked

into and ejected out of in a time-periodic manner, generating trains of vortices which create

a jet upon advection with their self induced velocities. Plasma based synthetic jets are

engendered due to the entrainment of fluid effected near a DBD plasma region symmetric

about the actuator centerline, thereby creating a vertical (wall-normal) jet which exhibits

unsteady flow structures if operated in an unsteady manner. The local maximum mean

axial velocity and inner electrode dimension are selected as the normalization factors for
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cross-stream distribution profiles of a PSJA, which in turn collapse reasonably well across

various streamwise locations as near to the actuator as one length of the actuator dimension

and exhibits self similarity. This characteristic for synthetic and conventional jets, on the

other hand, are normalized using the centerline velocity and half-width as the appropriate

scales. The attainment of self similarity in conventional and synthetic jets occur in the far

field of the flow, roughly around 10 lengths downstream. Also, in both plasma driven and

conventional synthetic jets, negative (downward) directional flow is seen in the similarity

profiles measured very close downstream of the actuator, on account of the entrained flow

occurring due to the action of the jet driver and any associated rotational effects. Essen-

tially, the peak value of velocity occurs close to the actuator in a PSJA, at distances less

than a length of the characteristic dimension. This is followed by a decay in jet velocity and

momentum, and the rates at which these occur will be discussed below. Unsteady pulsing of

the actuator at frequencies close to the time scales of the fluid flow reveal that a generation

of multiple trains of vortices is initiated and sustained by the plasma region, and these start-

ing vortices introduce additional entrainment in their wake, thereby resembling synthetic

jets. Within the field of observation, the effect of these vortices are prevalent in the entire

flow field such that they promote two effects: to draw fluid away from the wall during their

advection, and to entrain additional fluid on either side of the jet column. This is similar to

synthetic and conventional pulsed jets, in that the interactive entrainment between groups

of vortices plays an important role in sustaining the jet. Of course, since the source of these

vortices is a combination of the plasma and pulsing frequency (former being more impor-

tant), modeling PSJA effects across widely varying scales and formulating an analytical flow

model (as attempted herein) becomes inherently a complicated problem. A fluid dynamic

approximation may be considered by ignoring the plasma discharge events and concomitant

entrainment, as well as its effect on the compressibility of the fluid medium, with constant

factors that can be used to match to experiments. Depending on the actuator dimension,

input power, and plasma morphology, multiple counter rotating vortical structures are gen-

erated in addition the jet. These flow features are typically not observed in conventional

pulsed and synthetic jets, and are associated with the strong “virtual” favorable pressure

gradient like effect of the plasma region that entrains a large volume of residual fluid and

fluxes this momentum out in the form of a jet. System complications such as cavity design

and implementation on a smooth surface are not of any concern in the no-moving parts

design of the PSJA as compared to conventional and synthetic jets. Thus, the PSJA obvi-

ously has a powerful application potential in the control of shear flows within the low Re

range.
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To quantify the comparison between the different types of jets discussed above, scaling

relations are determined based on experimental results. Specifically, the characteristics that

are examined include the local maximum mean axial velocity Umax, centerline axial velocity

Uc, and half-width b of the jet in each case. These provide an estimate of the extent of the

plasma induced jet as compared to other drivers, as well as the relative differences between

each flow field. Figure 8.12 shows the streamwise distribution of the above quantities for an

annular PSJA with embedded electrode diameter di = 1.27 cm. The symbols represent the

actual experimental data, and each of the lines are indicative of the scaling of jets. Note

that the solid line represents the empirical curve fit to the behavior of the PSJA, while the

dashed and dotted lines indicate the trends for conventional and synthetic jets, respectively.

The relations for the latter two jets were obtained from the from the data obtained using

hot wire anemometry by Smith & Glezer [149], PIV measurements of Béra et al. [152], and

analytical formulations of conventional jets presented in Schlichting & Gersten [14]. No

effort was undertaken to extract any relations from the increasing (upward sloped)portion

of the velocity plots. In general, for a conventional turbulent rectangular (2-D) jet, the

relations follow
Umax

Up
∼ x−0.5,

Uc

Uc,p
∼ x−0.5,

b

di
∼ x

where each velocity has been normalized with its respective peak value, and the half-width

of the jet was normalized using di. The half-width of the jet was defined as the cross-stream

location of the jet measured from the jet centerline where the mean axial velocity equals half

the maximum value at the same streamwise location (U = 0.5Umax, after Béra et al. [152]).

In the context of PIV, the calculation of this quantity was problematic due to the limited

spatial resolution available (few points across the entire jet). To resolve this, the ensemble

averaged axial velocity data obtained after post processing the raw data was interpolated

using Matlab to provide a sampling resolution in the radial (cross-stream) direction that

was 4 times that of the original velocity vector flow field. This increased the number of

points available and allowed for a new definition of half-width based on the r location (r =

0 along jet center) where U = 0.49Umax to 0.51Umax, thereby introducing a maximum error

of 2% in the values reported herein. For a rectangular synthetic jet, the following relations

hold
Umax

Up
∼ x−0.4,

Uc

Uc,p
∼ x−0.58,

b

di
∼ x0.88.

Note that both the above scaling relation sets have been written in terms of the normalizing

factors defined above. For all different characteristics, the PSJA decay rates in the velocities

are not identical to any of the other two actuators. Some similarities can be noted in

203



the trends, however. The PSJA local maximum velocity reaches a peak at a downstream

distance close to the actuator, after which it decays as ∼x−0.9. Conventional 2-D synthetic

jets also exhibit the exact same trend in Umax behavior, but the downstream distances

where the peak occurs is located much farther away, around x = 10d–12d. This type of

variation is in sharp contrast to conventional (mass flux) jets, where the peak is located at

the orifice exit of the air supply system required to form the jet and decreases nonlinearly

with streamwise distance. Obviously, the difference in behavior between conventional mass

flux jets and plasma/mechanical synthetic jets is due to the entrainment occurring in the

near field of the actuator, as a result of which there exists an apparent local minimum at

the actuator location. It is interesting to note that although the PSJA shown is in steady

operation, the curve fits for the PSJA and synthetic jet actuator (always pulsed) are not

widely separated. The variation of the centerline axial velocity (Fig. 8.12(b)) shows the

same trend as conventional synthetic jets in that there is a rather rapid increase in its

value up to a certain level, after which it decays with streamwise distance. In case of the

synthetic jet, this process occurs over much larger streamwise distances. The peak value

of Uc is typically realized around x = 10d, and this sort of variation in centerline velocity

has been attributed in the literature to generation of laminar vortex structures, advection,

and formation of a mean turbulent jet observed during the formation of a conventional

synthetic jet. In case of the plasma synthetic jet, the peaking in centerline value can also

be explained through the formation and advection of starting vortices. The decay in a

PSJA occurs much faster, as ∼x−1.23, similar to its Umax behavior. Also, the location of

the peaks in local maximum and centerline velocities are identical, suggesting that is indeed

the starting vortex that is responsible for the localized sharp increase in velocity. While it

is clear that the plasma synthetic jet decays faster in the streamwise direction as compared

to conventional continuous and synthetic jets, the half-width variation (Fig. 8.12(c)) also

shows an interesting behavior. The spreading of the plasma synthetic jet varies as ∼x0.5

and is less than the other two jets, as compared to the ∼ x0.88 relation seen for conventional

synthetic jets and linear growth of width in conventional jets. This suggests that the plasma

induced jet spreads slower in the cross-stream direction than both conventional mass-flux

driven jets and synthetic jets. In summation, compared to conventional continuous and

synthetic jets, the annular plasma induced synthetic jet has lower lateral expansion, faster

decay of velocity profiles in the streamwise direction. Note that all the scaling relations

presented here for the conventional jets and synthetic jets are two dimensional, and so this

warrants examining the linear PSJA for a more accurate comparison, and also to identify

any dimensionality related effects.
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Figure 8.13 compares the characteristics of linear (2-D) plasma synthetic jets with

conventional rectangular continuous and synthetic jets. The dimensions of the actuator

tested herein was equivalent to the annular PSJA results reported above with reference to

Fig. 8.12 (see chapter 4 for matching dimensions). The spanwise length of the actuator

was 90 mm, with no air gap between the top and bottom electrodes. In general, it is seen

that the trend of variation in velocities and half-width is unaffected due to the change in

dimensionality of the plasma synthetic jet. Compared to the annular PSJA, the exponents

in the empirical curve fits for the linear PSJA change for the local maximum axial velocity

and centerline velocity, whereas they remain the same for the half-width. The local maxi-

mum axial velocity decays as ∼x−0.82 for the linear PSJA, which is slower when compared

to the annular PSJA ∼x−0.9. The discrepancy between 2-D and 3-D becomes worse for

centerline velocity, where the linear PSJA decays as ∼x−0.93 compared to ∼x−1.23 for the

annular PSJA. The streamwise peak locations of both the local maximum and centerline

velocities have moved to around 0.6di for the linear PSJA, which is slightly downstream of

the corresponding value for annular PSJA as expected due to the increased surface area.

Interestingly, the larger area of plasma available for the linear PSJA (11.43 cm2) would

imply that the resultant jet would have lower velocity as compared to the annular PSJA

with a smaller area (1.27 cm2), from simple incompressible mass conservation. However,

the rate of decay of velocity (both Umax and Uc) show that the linear PSJA actually has

a higher induced flow velocity (normalized) at any particular streamwise location than its

equivalent annular configuration. It is suspected that the difference in plasma intensity

might have initiated this difference. Although the jet half-width scaling for the annular and

linear PSJA are identical, the linear PSJA records generally higher values of b compared

to the annular PSJA, indicating increased spreading in accordance with increased surface

area available.

To investigate the dependence of the scaling relations on the actuator dimension and

input power, the data obtained on the three different annular actuators used in the scaling

model validation experiments was used. Figures 8.14–8.16 show the streamwise distribution

of local maximum mean axial velocity for 2 conditions of input power and di. As expected,

the larger sized 2.54 cm actuator induces a wider jet, and the decay of the PSJA curve for

this actuator at 4 W power input ∼x−0.5 matched exactly that of conventional 2-D jets,

while it was marginally different ∼x−0.5 at 3 W power input. It must be noted that the

FOV of PIV measurements on the 2.54 cm actuator was limited to x∼1.5di, as a result

of which there is an erroneous sudden drop in Umax at this streamwise location. Also,

as a caveat, the data sets shown for the 1.27 cm actuator across Figs. 8.12, 8.14(a)–(b)
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were all sampled at a different plasma morphology condition relative to each other, thereby

modifying the flow field and consequently modifying the scaling behavior. A variation in

the input power would immediately change the electric potential available to the plasma,

and hence its morphology. It is virtually impossible to control both power and morphology

at the same instance in PSJA spatial scaling experiments. Typically, a controlled input

power across different actuator sizes would result in different plasma morphologies and

vice versa. This effect is heavily perceived in Fig. 8.14, where the 4 W power input case

spreading shows a steep streamwise decrease as ∼ x−2.1 reaching almost zero values at

around x ≈ di. The centerline axial velocity (Fig. 8.15) shows a similar trend as the local

maximum velocity discussed previously. The decay of centerline velocity for the 2.54 cm

actuator is identical to the theoretical ∼ x−0.5 rate of conventional mass-flux input jets. An

increase in the PSJA diameter by two times affects the flow field characteristics considerably,

to the extent that the larger actuator now shows a rate of spreading and decay exactly

identical to conventional jets. Yet again, the limited FOV in the 2.54 cm measurements

must be cautiously considered against this previous statement, as it is probable that the

streamwise decay might be affected differently if data at more streamwise locations were

available. In general, however, the variation in scaling relations between the 1.27 cm and

2.54 cm actuators was expected, considering the increased area available for the plasma to

expand. It is interesting to note that the streamwise location of peak velocity across the two

power inputs is unchanged for a particular actuator. This observation is directly related to

the plasma entrainment, the plane of which is located at very small distances away from

the wall. This plane acts as a “virtual origin” for the ejected fluid flow, and is where the

peak in axial velocity value occurs. The 3 W input to the 1.27 cm actuator shows a slightly

increased spreading rate compared to the equivalent variation in Fig. 8.12, while the 4 W

input shows a sharp deceleration in streamwise direction.

Figure 8.16 shows the streamwise distribution of the jet half-width for variation in

actuator size and diameter. The 1.27 cm actuator with 4 W power input is not shown, as

there was a large amount of scatter in the calculated values. For a power input of 3 W, the

1.27 cm actuator showed a slower increase in spreading with streamwise distance compared

to the∼ x0.5 relation observed in the above discussion. Interestingly, increasing the diameter

to 2.54 cm affects the flow field such that the half-width scaling is the same as that for the

1.27 cm actuator discussed earlier (Fig. 8.12(c)). Thus increasing the actuator diameter

increases the spreading of the jet and decreases the rate of streamwise decay of centerline

and local maximum axial velocities. The plasma induced jet, in general, shows resemblance

to synthetic jets in terms of flow features and entrainment driven characteristics. Both jets
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show a departure from conventional jet similarity scaling, mostly due to the non-invariance

of the time-averaged momentum in the streamwise direction of the flow field. Also, the

scaling relations for conventional synthetic jets and plasma synthetic jets do not match for

the range of parameters examined herein. The plasma induced synthetic jet reaches self

similarity at shorter cross-stream distances from the actuator, peak value within less than

a diameter, and decays faster than both conventional continuous and synthetic jets.

As a final comment, since the streamwise decay of centerline velocity of plasma syn-

thetic jets was observed to be faster than mechanically driven jets, it was expected that

the rate of increase of the plasma synthetic jet half-width must also be faster on account

of mass conservation. However, the above experimental results confirm an abnormal trend

of steep centerline velocity decay along with slower spreading of the plasma synthetic jet.

It was conjectured that the reverse flow from the impingement of the plasma synthetic jet

on the upper wall of the quiescent enclosure (see Fig. 4.14) was playing an important part

in establishing this behavior. The plasma synthetic jet spreading and decay characteris-

tics obtained from the results of numerical simulations of an L-PSJA in quiescent flow by

Reasor [204], with a computational setup identical to the experiments presented in this dis-

sertation (including the upper bounding wall), do not match with the above experimental

behavior of the actuator. This suggests that the upper wall to not be the primary reason

for slow jet spreading and steep centerline velocity decay of the plasma synthetic jet. The

reason for this trend is not clear at this stage, and it is suspected that 3-D effects of the

primary vortex interactions and jet turbulence, as well as horizontal outflux from the jet

body could be possible factors contributing to this behavior.

8.5 Summary

The scaling properties of the annular plasma synthetic jet actuator were presented in

this chapter. The effects of varying pulsing frequency, plasma morphology and input power

on the jet characteristics of three different actuators was investigated experimentally. The

actuator size required to obtain maximum jet velocity and momentum was found to be

affected by a combination of the above factors, such that no unique optimum values across

all parametric variations were identified. A simple analytical model of jet scaling was

derived from fundamental fluid dynamics principles, and the results from PIV experiments

were used for model validation. Factors in actuator construction such as its curvature

and outer electrode dimension, pulsing frequency for unsteady actuator operation, plasma

induced electrostatic force, compressibility of the induced flow, gravitational effects, and
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the entrainment action of the plasma were not included within this model. A reasonable

level of matching was achieved comparing this model with experimental data. In general,

the model was observed to follow the trend of variation closely to the experiment, but over

predicted the jet output characteristics mostly on account of its simplifications. Streamwise

characteristics of the plasma induced jet were used to identify scaling relations governing

the decay of centerline and local maximum axial velocities, and these were compared to

those for conventional rectangular (mass flux added) jets and synthetic (ZNMF) jets.
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8.6 Tables and Figures

Table 8.1: Actuator dimensions tested.

di [mm] do [mm]
6.35 25.4
12.7 25.4
25.4 50.8

Table 8.2: Scaling model constant C3 values (units of s−1.)

Parameter State di = 0.635 cm di = 1.27 cm di = 2.54 cm
Morphology Ring 5.5059 9.0506 4.1817

Quasi disk 15.0784 66.0163 24.0748
Power 3 W 8.2377 12.8437 11.0795

4 W 0.4409 11.5734 37.6995

Table 8.3: Scaling model constant C1 values (units of 105 g.cm−3.)

Parameter State di = 0.635 cm di = 1.27 cm di = 2.54 cm
Morphology Ring 2.5064 4.0102 0.3760

Quasi disk 5.0128 0.7519 1.0026
Power 3 W 1.5038 0.7519 1.0026

4 W 2.0051 1.0026 0.5013
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Figure 8.1: PSJA scaling schematic.

(a) di = 6.35 mm. (b) di = 12.7 mm.

(c) di = 25.4 mm.

Figure 8.2: Phase-locked contours of normalized spanwise vorticity ωz
∗. Contour levels

begin at ωz
∗=-0.843 and end at ωz

∗=0.877, with increments of ± 0.123; 10 Hz pulsed

operation of the PSJA in quasi disk morphology at t=24 ms in the actuator duty cycle.
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(a) Morphology variation.

(b) Power variation.

Figure 8.3: PSJA in steady operation, peak axial velocity of the jet. �, ring; 2, quasi disk;

∇, Pin=3 W; ., Pin=4 W; error bars indicate variation in the measurement of velocity.
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(a) Morphology variation.

(b) Power variation.

Figure 8.4: 1 Hz pulsed operation of the PSJA, peak axial velocity of the jet. �, ring; 2,

quasi disk; ∇, Pin=3 W; ., Pin=4 W; error bars indicate variation in the measurement of

velocity.
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(a) Morphology variation.

(b) Power variation.

Figure 8.5: 10 Hz pulsed operation of the PSJA, peak axial velocity of the jet. �, ring;

2, quasi disk; ∇, Pin=3 W; ., Pin=4 W; error bars indicate variation in measurement of

velocity.
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(a) Morphology variation.

(b) Power variation.

Figure 8.6: PSJA in steady operation, normalized hydrodynamic force. �, ring; 2, quasi

disk; ∇, Pin=3 W; ., Pin=4 W.
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(a) Morphology variation.

(b) Power variation.

Figure 8.7: 1 Hz pulsed operation of the PSJA, normalized hydrodynamic force. �, ring; 2,

quasi disk; ∇, Pin=3 W; ., Pin=4 W.
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(a) Morphology variation.

(b) Power variation.

Figure 8.8: 10 Hz pulsed operation of the PSJA, normalized hydrodynamic force. �, ring;

2, quasi disk; ∇, Pin=3 W; ., Pin=4 W.
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(a) Morphology variation. (b) Power variation.

Figure 8.9: PSJA in steady operation, comparison of average jet axial velocity (uj) values

at h=0.2169 cm. Solid lines indicate ring morphology and Pin = 3 W; dashed lines indicate

quasi disk morphology and Pin = 4 W; ∆, PIV; 2, scaling model; error bars indicate the

variation in measurement of velocity.

(a) Morphology variation. (b) Power variation.

Figure 8.10: PSJA in steady operation, comparison of hydrodynamic force of the jet F

values at h=0.2169 cm. Solid lines indicate ring morphology and Pin = 3 W; dashed lines

indicate quasi disk morphology and Pin = 4 W; ∆, PIV; 2, scaling model.
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Figure 8.11: PSJA in steady operation, normalized actuator efficiencies calculated from

eqution 8.3. The dashed (black) and solid (red) lines indicate variation in input power and

plasma morphology, respectively, and the data has been presented in logarithmic scale for

clarity.
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(a) Local maximum mean axial velocity. (b) Centerline axial velocity.

(c) Half-width.

Figure 8.12: Streamwise distribution of jet characteristics for an annular PSJA in steady

operation (solid circles). Solid line (in black), dashed line (in blue), and dotted line (in

red) represent empirical curve fits of the plasma induced jet, conventional rectangular syn-

thetic (zero-net-mass-flux), and conventional rectangular (with added mass flux input) jets,

respectively.
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(a) Local maximum mean axial velocity.
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(b) Centerline axial velocity.
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(c) Half-width.

Figure 8.13: Streamwise distribution of jet characteristics for a linear PSJA in steady op-

eration (solid circles). Solid line (in black), dashed line (in blue), and dotted line (in red)

represent empirical curve fits of the plasma induced jet, conventional rectangular synthetic

(zero-net-mass-flux), and conventional rectangular (with added mass flux input) jets, re-

spectively. The embedded electrode width was equal to the value of di of the actuator in

Fig. 8.12.
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(a) di = 1.27 cm, Pin = 3 W. (b) di = 1.27 cm, Pin = 4 W.

(c) di = 2.54 cm, Pin = 3 W. (d) di = 2.54 cm, Pin = 4 W.

Figure 8.14: Streamwise distribution of local maximum mean axial velocity for steady

operation of annular PSJA (solid circles): effect of input power and di variation. Solid

line (in black), dashed line (in blue), and dotted line (in red) represent empirical curve

fits of the plasma induced jet, conventional rectangular synthetic (zero-net-mass-flux), and

conventional rectangular (with added mass flux input) jets, respectively.
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(a) di = 1.27 cm, Pin = 3 W. (b) di = 1.27 cm, Pin = 4 W.

(c) di = 2.54 cm, Pin = 3 W. (d) di = 2.54 cm, Pin = 4 W.

Figure 8.15: Streamwise distribution of centerline axial velocity for steady operation of

annular PSJA (solid circles): effect of input power and di variation. Solid line (in black),

dashed line (in blue), and dotted line (in red) represent empirical curve fits of the plasma

induced jet, conventional rectangular synthetic (zero-net-mass-flux), and conventional rec-

tangular (with added mass flux input) jets, respectively.
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(a) di = 1.27 cm, Pin = 3 W.
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(b) di = 2.54 cm, Pin = 3 W.
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(c) di = 2.54 cm, Pin = 4 W.

Figure 8.16: Streamwise distribution of jet half-width for steady operation of annular PSJA

(solid circles): effect of input power and di variation. Solid line (in black), dashed line

(in blue), and dotted line (in red) represent empirical curve fits of the plasma induced jet,

conventional rectangular synthetic (zero-net-mass-flux), and conventional rectangular (with

added mass flux input) jets, respectively.

Copyright c© Arvind Santhanakrishnan 2007.
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Chapter 9

CONCLUDING REMARKS

9.1 Overview

A concept for synthesizing air jets directed normal to a wall without the requirement of

any external mass input employing surface based, weakly ionized, non thermal, atmospheric

pressure dielectric barrier discharges was introduced. Detailed fluid dynamic characteriza-

tion of the isolated jet was performed via experimentation for identifying working principles

and optimum ranges of operation. Parametric dependence of the jet outputs on actuator

dimensions and several operating conditions were examined. The flow field mechanisms

of the plasma synthetic jet actuator in quiescent and flat plate boundary layer have been

detailed. Plasma morphology based observations have been simultaneously conducted with

flow field measurements to relate the plasma strength to jet characteristics. The applica-

tion of these actuators for controlling the separation on a circular cylinder was examined.

This concluding chapter has been organized according to the different phases of research:

quiescent jet, cross flow-jet interaction, and flow control application. Directions for future

work are pointed out in the last section of this chapter.

Some recent efforts in plasma flow control have employed the PSJA developed herein,

such as in activating multiple arrays of these devices in synchronous/asynchronous arrange-

ments to improve the jet performance levels (see Bolitho & Jacob [205]), and characterizing

high temperature ambient conditions on PSJA characteristics with a motivation for appli-

cation in microturbines (see Segawa et al. [206]).

9.2 Quiescent Behavior

By modifying the geometry of the electrode arrangement used for the construction of a

conventional DBD plasma actuator, a novel means of tailoring the residual air surrounding

the actuator in the form of a synthetic jet is introduced in this study. Similar to synthetic

jets, these plasma induced jets do not require an external supply of mass input for creating

the jet. The momentum imparted by the jet is non-zero, and the end application envisioned

for this plasma synthetic jet actuator (PSJA) is in flow separation control through mixing

enhancement. The peak velocities induced by these jets are in the order of several m/s,

which limits the current domain of application of this device to low Re flows, unlike con-
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ventional synthetic jets which induce higher velocities and have also been tested in a wide

variety of flow scales. However, the PSJA consists of no moving parts, sufficiently low power

(tens of watts), and have a definite ease of implementation over synthetic jet actuators that

have a fundamental requirement of a cavity and surface modifications. In addition, plasma

synthetic jets can be operated under steady conditions, thereby expanding the application

envelope to areas such as micro aerial vehicle thrust generation. In a quiescent medium,

the symmetric plasma region created by the PSJA (toroidal in 3-D, linear in 2-D) is found

to induce near actuator entrainment of fluid on either side of the symmetry plane, and the

same volume of fluid is ejected in the form of a jet normal to the actuator plane. Reversing

the electrode arrangement used for the construction of the actuator results in a flow field

resemblant of a suction device. However, this configuration is not pursued for the purpose

of this dissertation, and only the blowing jet is examined throughout this research. Both

steady and unsteady modes of operation are explored. While the global flow field features

resemble those of conventional continuous and synthetic jets, many dissimilarities are also

found to exist.

9.2.1 Parametric Studies

Several inputs to the system were varied to examine their relation to the jet charac-

teristics. These included the input power, pulsing frequency, embedded electrode diameter,

and plasma morphology. Increasing the input power increased the jet outputs, and no limits

where the effect becomes invariant or counter-productive were identified. For the partic-

ular actuator size investigated, an optimum range of pulsing O(10 Hz) was arrived from

experimental measurements, so as to obtain maximum jet velocity for a given input power.

The embedded electrode diameter controlled the available area for the plasma to expand,

and hence increasing the quantity within certain bounds increased jet outputs, as expected.

Time exposures of the plasma region formed in a PSJA using a CCD camera showed the

existence of three different morphological regimes: a ring of plasma with a filamentary ap-

pearance at low power input, a quasi disk of plasma at moderate power input, and a full

disk of plasma that formed with increasing power with plasma expansion on the dielectric

surface over an area equal to that of the embedded electrode. These stages occurred in

a rather discrete manner one after the other, with changing input power. For a constant

size actuator, the efficiency of the actuator in imparting force onto a quiescent medium was

found to be affected by both the plasma morphology and pulsing frequency, such that it

was possible to operate an actuator with one of these factors outside their recommended

optimum by leveraging on the other. Interestingly, the effect of plasma heating the neutral
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air was found to not significantly affect the cross-stream and streamwise distribution of flow

characteristics, which contributed toward clarifying an issue of major concern in the plasma

flow control research community.

9.2.2 Scaling

The governing parameters to the determination of the induced flow velocity and mo-

mentum for any arbitrary plasma actuator configuration include a large set of variables that

may be grouped into: system inputs of power applied across electrodes, actuator dimen-

sions, plasma strength, pulsing frequency, and materials used for construction; operating

conditions of AC voltage, frequency, waveform shape, and duty cycle; atmospheric condi-

tions of pressure, temperature, humidity, and composition. No close-form relations between

any of these factors have been proposed during the time of writing this dissertation. The

effect of the first four parameters in the above set were investigated across three different

values of actuator embedded electrode diameter, the characteristic dimension that dictates

the amount of area available for the plasma to form and expand, in order to derive the

spatial scaling behavior of isolated annular plasma synthetic jets. Two different plasma

morphologies (ring and quasi disk) and input power levels (3 W and 4 W) were controlled

across three different actuators. A parallel effort of analytically modeling the actuator was

carried out in tandem. The model was based on a control volume that did not include the

plasma induced entrainment, effects of actuator curvature, and unsteady operation. Scaling

laws were arrived at, based on fundamental fluid dynamics principles. Three quantities were

used to evaluate the predictive performance of this model, including the average jet axial

velocity, hydrodynamic force imparted by the jet, and efficiency of the actuator in injecting

non-zero momentum to the surrounding fluid. While the first two metrics were compared

with experimental values and reasonable matching was observed, the efficiency of the ac-

tuator provided useful insight on the effects of these parametric variations. A summary of

items of interest follow

• ring morphology—jet outputs indicate existence of an optimum actuator size

• quasi disk morphology—jet outputs increase with di

• increased power input—jet outputs increase with di

• No unique optimum pulsing frequency observed to exist across all the input conditions

• Actuator efficiency increases with decreasing di , and do not follow an inverse square

relation with di
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On the comparison of the plasma induced jet characteristics with conventional rectan-

gular continuous and synthetic jets, the following are worth noting:

• Entrainment of fluid near the actuator surface is seen in both plasma induced and

conventional synthetic jets, with the result that the momentum flux variation in the

streamwise direction is no longer invariant

• As a result of the above reason, profiles of both plasma and conventional synthetic

jets show deviation from self similarity of continuous jets

• Self similarity of PSJA occurs at very close distances to the actuator, in direct contrast

to other conventional jets

• Turbulent kinetic energy contours show opposite trends in plasma induced jets as com-

pared to conventional jets, in that the diffusion of energy decreases in the streamwise

and cross-stream directions in the latter, which is the opposite to what is observed in

the former

• Plasma synthetic jets, in general, exhibit a low peak velocity magnitude located very

close to the actuator, an increased rate of decay of local maximum and centerline

velocities, and lesser spreading than conventional continuous and synthetic jets

• Increasing actuator diameter increases the spreading of the jet and lowers the decay

rate to where it is not close to a sharp decrease from the peak value

9.3 Cross Flow Interaction

The interaction of the PSJA with an external flow was documented by implementing

the actuator on a flat plate placed at zero inclination to the free stream direction. Three

values of blowing ratio were examined on sufficiently low speed flows. It was observed

that the actuator essentially created a separated flow region that was well demarcated from

the main flow. This interaction domain formed by the PSJA modified the direction of

the flow, as well as the integral boundary layer characteristics. The penetration of the

jet into the free stream was found to be directly affected by input power. Not only did

increasing power increase the depth of jet interaction with cross flow, but it also generated

standing longitudinal vorticity with a sense of rotation opposing the main flow. Within

the vicinity of the plasma, the displacement thickness increased beyond its upstream value,

and no return to this value was observed downstream of the actuator, within the field of

view of the experiment. Depending on the construction of the actuator, different flow field
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mechanisms of plasma synthetic jet-cross flow interaction were identified. For an annular

PSJA, the mechanism resembled closely to a conventional jet in cross flow, where the jet

penetrates the flow such that it does not completely lose its identity (unless if subject to free

stream values much greater than jet velocity). For a linear PSJA, however, the mechanism

resembled closely to that of a conventional linear plasma actuator in cross flow. In the

latter case, the starting vortex of the plasma synthetic jet that was facing upstream of the

cross flow was eradicated completely by the incoming free stream, and the formation of a

spatially fixed cross-stream vortex whose strength weakens with increasing flow velocity was

observed. The effectiveness of the actuator in modifying the boundary layer characteristics

by penetrating the main flow was found to decrease with baseline flow Re, as expected.

9.3.1 Separation Control

The flow over a circular cylinder was considered as the problem of interest to examine

the applicability of plasma synthetic jet actuators toward flow control applications. Two

sufficiently low speed flow velocities were considered, and the performance of conventional

linear plasma and linear plasma synthetic jet actuators were compared. The values of

actuator pulsing frequency where chosen so as to effect an O(1) actuation relative to the

wake shedding frequency. The wake deficits were marginally tightened by both actuators at

the lowest Re, which effectively would increase the aerodynamic performance benefits. The

input power levels employed were of such low magnitude herein that substantial performance

improvement was not registered during any particular actuator/flow condition. However,

these effects are expected to be scalable within certain limits, so implementation of PSJA

based flow control appears very promising, especially considering the flexibility of the design

that is possible with this actuator, as outlined below.

9.4 Suggestions for Future Work

9.4.1 Temporal Characterization

The measurements presented within this dissertation are obtained using digital parti-

cle image velocimetry (PIV). This technique provides excellent resolution of the whole flow

field and instantaneous information necessary to describe the jet formation and evolution.

However, this diagnostic method suffers from limited temporal resolution, which is impor-

tant to characterize the jet. The maximum sampling rate achievable using the experimental

setup herein was 15 Hz, typical capture rates used in time-averaged PIV was 10 Hz. It is

clearly seen that such a time scale filters out most of the turbulent information from the
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data. Hence, high time resolution measurements of PSJA characteristics in quiescent and

cross flows are required. This will enable access to previously undetermined information on

statistics such as the advection rates of the starting vortices, power spectrum, and response

of the actuator along various phase times of periodicity in the AC input. Essentially, this

will complement PIV observations and help to construct a spatio-temporal picture of ac-

tuator performance variation across several associated parameters. In addition, hot wire

data can be used to obtain information on the far field of the jet (10–100 diameters down-

stream) to see if the scaling relations determined in this dissertation are valid throughout

the jet flow field or if there is change in the behavior. The latter is a concern in PIV due

to the tedious nature of setting up an experiment, and mostly having to compromise the

field of observation (very small windows), for the sake of maintaining a reasonable spatial

resolution.

9.4.2 Cavity-Actuator Concept

Conventional cavity based synthetic jet actuators are usually driven at the Helmholtz

(resonance) frequency of the system, such that maximum amplitude of the jet driver (di-

aphragm, piston, etc.) can be obtained for lower power inputs. A similar idea can be used

to drive a PSJA placed in a cavity such that the plasma region forms on its bottom surface.

In this manner, the actuator can be operated at the resonance frequency of the cavity,

thereby resulting in increased entrainment of fluid and consequent improvement in jet out-

puts. Arrays of such cavity driven actuators can be then arranged in a suction/blowing

arrangement to create potentially limitless design space for flow control applications.

9.4.3 Application Studies

The field of plasma actuators currently abounds with numerous possibilities for its use

in flow control. The prospects of operational implementation of these devices in practical

applications beyond the laboratory level still largely remains to be examined. In this regard,

a few potential applicability studies of these actuators are identified herein.

Forebody Vortex Control

Most conventional missiles and other slender bodies of revolution are limited in their ma-

neuverability, particularly during high angle of attack flight. This is due to two major

issues: boundary layer separation on the forebody due to incoming flow and body surface

conditions, and unwanted side forces arising from the asymmetric vortex shedding occuring

post separation. The inability to control missile trajectories arises primarily because of the
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forces generated by the forebody vortices. In this context, some researchers have attempted

to restore symmetry in the vortex shedding either passively by placing strakes (Ng [207]),

or actively by means of momentum injection at specific points in the forebody and the

cylinder (Williams and Papazian [208]). While stabilized flight is achieved with symmetric

vortex shedding from the forebody, methods to exert control of the vortex shedding process

itself has its inherent benefits in enhancing maneuverability through the introduction of

desired side forces. Classic flow control approaches such as blowing [207] have been shown

to be effective in vortex control, and recent results include laboratory level demonstrations

of closed loop flow control at high angle of attack using active microvortex generators (see

Patel et al. [209]). Annular plasma synthetic jet actuators can be employed to examine their

applicability in forebody vortex control. An array of actuators can be located on the body

such that the arrangement can be either collectively or independently actuated to stabilize

the flight by restoring vortex symmetry or introducing side forces along different directions

in the flow for trajectory control (Fig. 9.1).

Combustion Enhancement

The current emission standards required by federal and international aviation agencies

have posed an important challenge to the gas turbine engine industry. Incomplete mixing

of the fuel and oxidizer results in the emission of pollutants such as nitric oxide, carbon

monoxide and unburned hydrocarbons during the combustion process (see Fric [210]). This

is precipitated mostly due to the requirement for the mixing to occur within very short

length and time scales in the combustor. Enhancing the fuel-oxidizer mixing process prior

to combustion not only boosts the efficiency of the process, but also reduces the emission of

undesirable compounds, and in addition, exerts substantial influence on the jet noise control.

Traditional passive (mechanical tabs, e.g. Samimy et al. [211]) and active (vortex generators,

e.g. Zaman et al. [212]) flow control device studies have been performed for axisymmetric

jets. Most recently, Wang & Menon [133] conducted a numerical investigation of enhancing

fuel air mixing using MEMS based synthetic jet actuators. They observed that introducing

periodicity in the flow (by means of the actuators) affected mixing markedly mostly on

account of additional entrainment effected by the control method. Plasma actuators offer

a easily implementable, low power method of mixing enhancement. A promising direction

of applicability research of plasma discharges is in the area of gas turbine combustion flow

control. Figure 9.2 shows plasma actuator concepts for mixing and combustion enhancement

in the flow experienced in a typical fuel injector. Steady and unsteady pulsed operation of

the actuator may be used to produce varying effects on the baseline flow, with the plasma
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jet forcing either in directions that are axial or normal to the main flow.

Thrust Vectoring

Modifying the characteristics of conventional jet flows by either changing the main flow

direction or the spreading and mixing rates have important implications in thrust vector-

ing and noise control applications. Altering the direction of a primary jet flow by means

of introducing a secondary flow have been previously investigated (e.g. Strykowski et al.

[130]). Recent works have incorporated zero mass flux jets for thrust vectoring using either

conventional cavity driven synthetic jet actuators (such as Smith & Glezer [128]) or a com-

bination of steady suction and blowing (Bettridge et al. [213]). Similarly, plasma synthetic

jet actuators can be employed for the purpose of vectoring a primary jet. Plasma synthetic

jet actuators do not require to be operated in a pulsed manner like conventional synthetic

jet actuators. Figure 9.3 shows a concept for using plasma actuators in jet vectoring ap-

plications. Note that the creation of “trapped” secondary vortices seen in the operation

of the PSJA introduces nominally low pressure regions of interaction between the primary

and plasma synthetic jet (similar to conventional synthetic jets [128]), and this eliminates

the need for having extended mechanical surfaces such as diffusers or collars [130].

9.5 Summary

A new actuator employing DBD plasma, the plasma synthetic jet actuator (PSJA),

has been developed in this research effort to synthesize a vertical jet from a residual air

flow, with characteristics similar to conventional jets driven by mechanical elements. Such

jet flows are highly interesting from an engineering standpoint due to their use in the

control of fluid flows (such as to delay boundary layer separation, for example), and this

serves as the underlying motivation for exploration of the actuator concept presented herein.

In the PSJA, a region of DBD plasma was created by the application of high voltage,

high frequency AC to the electrodes of the actuator, and a jet was induced due to the

entrainment of near actuator air available in the fluidic system (thereby eliminating the

need for an elaborate external air supply) and subsequent expulsion of this volume of air in

the form of a jet. Depending on whether the actuator was operated in a steady or pulsed

manner, vortical structures were observed to be generated in addition to the zero-net-mass-

flux jet. Compared to its mechanically driven counterparts (such as a membrane motion

driven synthetic jet actuator), the beneficial features of no-moving parts design, ease of

construction and implementation of the PSJA on any arbitrary surface renders this actuator

a highly flexible configuration for application to a wide range of aerodynamic flow control
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problems. Furthermore, merely reversing the actuator design results in a suction device,

and arrays of these blowing/suction actuators could thus be used in steady/unsteady modes

of operation to create potentially limitless design space for the active control of fluid flows.

The present study was focused on the fluid dynamic characteristics of a single PSJA in the

blowing configuration with and without an external baseline cross flow. Several optimum

operational parametric ranges of system inputs to the actuator were found and scaling of

jet characteristics were presented in relation to conventional jets. The separation control

applicability aspect of the PSJA was investigated using the low speed flow over a circular

cylinder as a test problem, and the results showed promising benefits in the reduction of

wake velocity deficits, albeit only over a low free stream velocity range. Some avenues for

future research on design variation and application studies of plasma synthetic jet actuators

were noted in this concluding chapter.

At present, whether this low speed limitation of plasma actuators can be surpassed or

not appears to be the big question facing the research community. The PSJA concept pre-

sented in this dissertation provides a new method to enhance the flow control applicability of

a conventional plasma actuator by leveraging on its flow field behavior. The increased flow

field penetration, generation of standing vortical structures, and the capability of tailoring

blowing/suction arrays essentially renders the PSJA a highly attractive device for unsteady

flow control as compared to conventional plasma actuators. Techniques to push the low

Reynolds number barrier further would continually have to be explored in the future, in

order to transition plasma based flow control technology from the existent laboratory level

to real time application in large scale fluid engineering problems. In this context, numerical

modeling of plasma actuators currently appears to be an advisable direction toward achiev-

ing dual objectives of actuator design optimization as well as in elucidating the mechanisms

of the plasma-neutral gas interaction. On the experimental front, a fairly large database

of flow control effects of conventional plasma actuators is available. However, a lack of

consensus on the metrics needed to record and report experiments in plasma flow control

exists somewhat, as a result of which a fair amount of the data is not entirely useful to

the modeling community. Well-controlled, focused experimental efforts seem to be the need

of the hour, and a balance between investigation of underlying physical mechanisms and

applicability studies is required. A detailed spatio-temporal characterization of the plasma

and neutral gas characteristics (such as density, temperature, pressure, etc.) near the ac-

tuator, for example, is clearly lacking, and would be extremely useful for advancing the

state-of-the-art. Experimental plasma flow control studies such as the one presented in this

dissertation are necessary in order to develop newer methods to improve the actuator influ-
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ence on the flow field, and also to identify areas where the existing state of this technology

can be applied to result in beneficial outcomes. Given the potential engineering applica-

bility and the wealth of scientific knowledge that yet remains to be unraveled, plasma flow

control will continue to interest researchers for the years to come.
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9.6 Tables and Figures

Figure 9.1: Forebody vortex control concepts using plasma actuators.

(a) Plasma jet axial to flow. (b) Plasma jet normal to flow.

Figure 9.2: Combustion enhancement concepts using plasma actuators.

Figure 9.3: Thrust vectoring with plasma actuation.

Copyright c© Arvind Santhanakrishnan 2007.
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Appendix A

TEMPORAL SCALING

The objective herein is to identify a non-dimensional time scale for the actuator induced

vortex rings observed in the flow field. The inputs to the PSJA are: Pin, di, fp, and plasma

morphology. The last factor can be assumed to be somewhat coupled to the input power

Pin, and therefore need not be treated as an independent term. The length scale of the

PSJA flow field is the embedded electrode dimension di. The characteristic time scale is

the period of the actuator pulsing fp, as the plasma actuator AC frequency can be treated

to be decoupled to the flow field effects, fAC >> fflow(∼ fp). Since the speed of the jet

flow is O(1 m/s), the kinematic viscosity of air νair (same units as circulation) also plays

an important role in the development of near wall vorticity. It must be noted that most

of these arguments are derived based on a dimensional analysis sense, and the analytical

results will be compared to those of experiments for the purpose of validation. The power

input per unit length of the actuator is a constant, which results in the proportionality,

Pin ∝ di

The input electrical power Pin is directly related to the observed flow field effect of vortex

structure and synthetic jet formation. This can be thought of as being similar to the stroke

of a mechanical element (such as a piston, diaphragm, etc.) embedded in a cavity that

serves to drive and sustain a conventional continuous or synthetic jet flow engendered in

the surrounding fluid, typically formed by the advection and interaction of multiple vortex

structures created at the exit of the cavity orifice. The power input directly affects the flow

field momentum. Combining the above observations enables a relation for the power input

in terms of other actuator system inputs as

εPin = ρair νair udriver
2 di (A.1)

where ε is a function of the efficiency of power transmission from the driving circuit to

that across the plasma actuator, and udriver is the characteristic velocity scale for the

plasma synthetic jet driver. As no impedance matching of the transformer output was

performed herein, the electrical loss is expected to be quite significant. In the above relation,

the effect of buoyancy is excluded, following the results presented earlier on the quiescent

plasma synthetic jet. The discharge characteristics have been shown to be affected by
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the ambient conditions, which in this case is included indirectly using the density of air

during actuator operation. Also, the power input is directly proportional to the driving flow

momentum (ρudriver
2), which from a physical standpoint, is in agreement with experimental

observations. A relation for udriver of the PSJA may hence be synthesized in terms of Pin

as follows,

udriver =

√
εPin

ρairνairdi
(A.2)

such that a increased jet velocities can be obtained by increasing Pin. Thus, similar to the

stroke length of a conventional mechanically driven jet representative of a non-dimensional

time scale of vortex ring formation, a PSJA formation parameter may be expressed in terms

of the driving velocity, length, and time scales as

F ∗ =
udriver

di fp
. (A.3)

To check the validity of these considerations, an estimate of the starting vortex ring circu-

lation can be formulated in terms of the above velocity and length scales as,

Γmodel = udriver di (A.4)

Note that there is no direct dependency of the pulsing frequency fp on the predicted cir-

culation value. As a result, for a fixed power input, Γmodel will effectively be constant,

regardless of fp. This model can thus be used to infer the vortex formation independent of

pulsing. A comparison between model and experiment (time averaged PIV) based circula-

tion strengths of the starting vortex can thus be used to construct the error involved in the

above analytical model as

εΓ =
Γmodel

ΓPIV
(A.5)

The main source of error in this model arises from the lack of a definition for ε across

different actuators as well as input states. Such information is unavailable on account of

the limitation in conducting measurement of power available across the plasma actuator

electrodes. Herein, ε will be treated as a fixed term related through a power law to the

actuator efficiency. Previous results showed that the operating efficiency of the plasma

actuator based on input electrical power and output hydrodynamic force (and jet velocity)

is extremely low O(10−4). For the results presented below, the use of ε = η2 is attempted.

Figures A.1-A.2 show the variation of starting vortex circulation across different phases

of the PSJA pulsing cycle. Both model prediction from equation A.4 and experimental

measurements, and the associated error εΓ (equation A.5) are shown for 1 Hz and 10 Hz

pulsing of PSJA with di=1.27 cm. The input power for these runs was 10.5 W per cycle,
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and the efficiency η value used was 1·10−4. In both cases, the experimental circulation

(calculated using
∮

udl) does not match the model values with any reasonable accuracy. In

general, equation A.4 over predicts the value of circulation, most ostensibly due to the lack of

sufficient details near the actuator, and possibly due to the assumption of incompressibility.

Phase-averaged estimates of starting vortex strength is shown via dashed lines, and it is

interesting to note that this value corresponds to approximately 60±5 m2/s for both values

of pulsing. This suggests that it is the power input that controls the average circulation of

the starting vortex (an implicit assumption in the model above) as compared to the pulsing

frequency. The latter factor, however, affects the rate of advection of the plasma induced

vortices in the flow field. The formation parameter for 1 Hz pulsing was 106.1674, while

that for the 10 Hz pulsing was 10.6167.

The effect of varying input power and actuator dimension on the starting vortex cir-

culation is shown in Fig. A.3. These were obtained from phase-locked PIV measurements

at t = 24 ms in the 10 Hz pulsing cycle. The value of ε = η2 was the same as that used

in the previous results. It is seen that with the exception of 3 W power input, a direct

relation between actuator size and vortex strength (assumed in the model) is observed in

PIV. However, the actual relation between Γ and di departs from the linear form in equation

A.4. Also, with increasing power input, the strength of the starting vortex increases, as

expected from the model. The 1.27 cm actuator appears to have the most discrepancy (as

much as an order of magnitude) between the model and experiment, while εΓ appears to

be less than 5 for the other two larger actuators.
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(a)

(b)

Figure A.1: (a) Starting vortex circulation of annular PSJA (di=1.27 cm) pulsed at 1

Hz; solid and dashed lines indicate model and experiment (phase-averaged), respectively,

where the circles correspond to measurement values, and (b) error between prediction and

experiment.
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(a)

(b)

Figure A.2: (a) Starting vortex circulation of annular PSJA (di=1.27 cm) pulsed at 10

Hz; solid and dashed lines indicate model and experiment (phase-averaged), respectively,

where the circles correspond to measurement values, and (b) error between prediction and

experiment.
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(a)

(b)

Figure A.3: Effect of actuator size and power input on the starting vortex circulation of an-

nular PSJA pulsed at 10 Hz: (a) comparison, and (b) error between model and experiment.

Copyright c© Arvind Santhanakrishnan 2007.
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[193] J. C. Agui and J. Jiménez. On the Performance of Particle Tracking. J. Fluid Mech.,

185:447–468, 1987.

[194] J. D. Jacob. Experimental Investigation of the Trailing Vortex Wake of Rectangular

Airfoils. PhD thesis, University of California at Berkeley, Berkeley, California, 1995.

257
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