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ABSTRACT OF THESIS 

 
 

APPLICATION OF GENETIC ALGORITHMS AND CFD FOR FLOW CONTROL 
OPTIMIZATION 

 
 
Active flow control is an area of heightened interest in the aerospace community. Previous 

research on flow control design processes heavily depended on trial and error and the designers’ 
knowledge and intuition. Such an approach cannot always meet the growing demands of higher 
design quality in less time. Successful application of computational fluid dynamics (CFD) to this 
kind of control problem critically depends on an efficient searching algorithm for design 
optimization. CFD in conjunction with Genetic Algorithms (GA) potentially offers an efficient 
and robust optimization method and is a promising solution for current flow control designs. 
Current research has combined different existing GA techniques and motivation from the two-jet 
GA-CFD system previously developed at the University of Kentucky propose the applications of 
a real coded Continuous Genetic Algorithm (CGA) to optimize a four-jet and a synthetic jet 
control system on a NACA0012 airfoil. The control system is an array of jets on a NACA0012 
airfoil and the critical parameters considered for optimization are the angle, the amplitude, the 
location, and the frequency of the jets. The design parameters of a steady four-jet and an 
unsteady synthetic jet system are proposed and optimized. The proposed algorithm is built on top 
of CFD code (GHOST), guiding the movement of jets along the airfoil’s upper surface. The near 
optimum control values are determined within the control parameter range. The current study of 
different Genetic Algorithms on airfoil flow control has been demonstrated to be a successful 
optimization application. 
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CHAPTER – 1 

1. INTRODUCTION 

1.1 OVERVIEW 
The ability to move with freedom seems basic to man's nature. Man's desire to travel and 

explore has driven innovation in the field of transportation. The desire to travel around the world 

and to get there faster has made air travel a very important means of transportation. Regional, 

national, and cross-continental flights have therefore become hallmarks of air transportation 

throughout the world, personifying a free society and the pursuit of happiness to most human 

wishes. 

However, the demands concerning the performance of aircraft are increasing. Increases in 

fuel prices together with the high fuel consumption of large airplanes have heightened the 

research interest of the aerospace community in the area of flow control. Active flow control has 

been increasingly used by the aerospace community to enhance flow control efficiency through 

alteration of flow field. Examples of active flow control techniques are projectile maneuvering 

with pulsating jets, changing/oscillating the shape of the wing (morphing wing), steady suction 

and blowing jets, and plasma actuators. With the advancements in technology and availability of 

relatively inexpensive and fast computers, Computational Fluid Dynamics (CFD) has been used 

to simulate such active flow control setups [1], [2]. Most active flow control techniques have a 

complicated parameter space and therefore require an efficient search system to predict a near 

optimum configuration of the control parameters. Previously this process heavily relied on 

designers’ knowledge and intuition or trial and error methods. Such an approach is necessarily 

limited and cannot always meet the demands of high design standards. One possible solution to 

this problem is a combination of CFD and evolutionary search algorithms, such as a Genetic 
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Algorithm (GA) [3]. Genetic Algorithms have been successfully used as an optimization tool in 

diverse fields such as operational research [4], multi disciplinary design optimization [5] [6], 

management [7], logistics [8], and aerospace applications [9]. Work done as part of this thesis 

aims to study flow control by means of separation control using suction, blowing, and synthetic 

jets, and optimizing the design parameters of these jets using a Continuous Genetic Algorithm. A 

steady four jet control system and an unsteady two jet control system are setup on a NACA0012 

airfoil and the control effects of location, amplitude, frequency and angle of jets are optimized. 

Optimum parameters are searched using two different GAs and results are compared to decide 

the best GA for a particular problem. Optimized results from both the GAs have achieved the 

design goal of high lift and low drag coefficients within the available limits of the parameter 

space. Finally, an attempt is made to substitute the time consuming, complex CFD calculations 

with rapidly converging non-linear interpolation methods, viz. Neural Networks [10] and an 

estimation of the potential overall reduction in the computation time is discussed. 

1.2 BACKGROUND 
Flow control, which is the ability to manipulate a flow field to effect a preferred change, 

is of immense interest in the aerospace community. Ever since the first flight of the Wright 

Brothers, flow control has been a much pursued area of research by engineers and scientists 

around the world. The numerous potential benefits range from saving billions of dollars by 

reducing fuel consumption of commercial aircraft to improving the ease of maneuverability of 

military aircraft. Conventionally this was achieved by altering the shape (passive flow control) of 

the aircraft, mainly aircraft wings. This method has come to a near saturation and further 

progress calls for a more sophisticated and complex means of flow control, in other words active 

flow control. These complex flow control systems require an efficient search algorithm to predict 

the configuration of the control parameters. This research focuses on two such approaches where 
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suction/blowing jets and synthetic jets are used to control separation and a Genetic Algorithm is 

employed as the optimization algorithm. The basis of this research is the previous [3] steady two 

jet (one suction and one blowing) control system which was extensively studied and optimized. 

In present work, a steady four jet control system and an unsteady two jet control system are 

optimized using an advanced Genetic Algorithm. 

1.3 FLOW CONTROL 
Flow control can be defined as a process used to alter a natural flow state or development 

path (transient between states) into a more desired state (or development path; e.g. laminar, 

smoother, faster transients) [11]. In the context of present research, it could be more precisely 

defined as modifying the flow field around the airfoil to increase lift and decrease drag. This 

could be achieved by using different flow control techniques such as blowing and suction, 

morphing wing, plasma actuators, and changing the shape of the airfoil [12]. Still all the 

techniques mentioned here essentially do the same job, i.e. reduce flow separation so that the 

flow is attached to the airfoil and thus reduce drag and increase lift. Flow control techniques can 

be broadly classified (Figure 1.1) as active and passive flow control which can further be 

classified into more specific techniques [13]. However, with reference to the research at hand, 

only active and passive flow control techniques are discussed. The terms “active” or “passive” 

do not have any clearly accepted definitions, but nonetheless are frequently used. Typically, the 

classification is based either on energy addition, on whether there are parameters (such as 

oscillating frequency) that can be modified after the system is built, or on whether the control 

system is steady or unsteady. In present context it will be distinguished based on energy addition, 

i.e. active flow control can be either steady or unsteady, but requires external energy, while 

passive flow control does not require external energy. 



   4

 

Figure 1.1 Classification of flow control techniques, Gad-el-Hak [13] 

1.3.1 PASSIVE FLOW CONTROL 
Passive flow control is a flow control technique which does not require auxiliary power 

or energy to be added to the flow. Most common forms of passive flow control are modifying the 

wing geometry, flaps on aircraft wings, and similar shape modifications, all to reduce drag and 

increase lift. The fundamental principle of this technique is boundary layer control, which most 

commonly involves suppression or delay of separation. Apart from the common forms and 

techniques, many other passive techniques have been successful in reducing skin friction in a 

turbulent flow, such as polymers, particles, and vortex generators or riblets, which appear to act 

indirectly through local interaction with discrete turbulent structures; particularly small-scale 
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eddies within the flow. Common characteristics of all of these passive methods are increased 

losses in the near-wall region, thickening of the buffer layer, and lowered production of 

Reynolds shear stress [14]. 

1.3.2 ACTIVE FLOW CONTROL 
Active flow control is a scheme which involves energy expenditure and a control loop. 

As shown in Figure-1.1, it can be further classified into predetermined and reactive flow control. 

Predetermined control includes the application of steady or unsteady energy input without regard 

to the particular state of the flow. The control loop in this case is open, and no sensors are 

required (Figure 1.2). Because no sensed information is being fed forward, this open control loop 

is not a feedforward type. Often, this is misunderstood and treated as reactive, feedforward 

control. Active technique is a special form of flow control technique which uses dynamic data 

during the control process and regulates the input parameters. The control loop here could be 

open or closed and depending on that the techniques could be further classified.  

 

Figure 1.2 Predetermined, open-loop control, Gad-el-Hak [15] 

1.3.3 FLOW CONTROL AND CFD 
The potential benefits of realizing efficient flow-control systems range from saving 

billions of dollars in annual fuel costs for land, air, and sea vehicles to achieving economically 

and environmentally more competitive industrial processes involving fluid flows. Unfortunately, 
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current experimental setups (wind tunnels) do not have the capability of testing numerous new 

and efficient flow control setups. It may be possible to build such an experimental setup, but 

optimization would involve testing numerous configurations of the flow control setup being 

investigated.  

In early 20th century fluid dynamics, we were operating in the “two-approach world” of 

theory and experiments [16]. However, the advent of high speed digital computers combined 

with development of accurate numerical algorithms has introduced a “third approach” (Figure-

1.3) in fluid dynamics, viz. Computational Fluid Dynamics (CFD). 

 

 

Figure 1.3: The “three dimensions of fluid dynamics” 

Considering the sensitivity and large parameter space of the proposed flow control problems, it 

would take years of time and require advanced experiments and equipment to simulate all the 

configurations generated by the GA. Thus, CFD plays a vital role in successful implementation 

of current research. It is systematic, relatively inexpensive,  and practical; in addition, the results 

are reliable and reasonably resemble the experimental data in many cases. CFD still cannot 
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completely replace experiments, but once validated with some simple setups of the problem, 

could be used to test the large number of configurations generated by the Genetic Algorithm.  

1.4 OPTIMIZATION TECHNIQUES 
Optimization is the process of making something better. Engineers and scientists present 

a new idea and optimization improves that idea. It involves trying variations on an initial concept 

and using the information gained to improve the idea. Over years optimization techniques have 

been applied in diverse fields ranging from operations and economics to engineering and 

medicine. Optimization techniques have undergone a great deal of change in recent times which 

allows us to apply these techniques to the most complex problems of today’s world.  

‘Would you tell me, please, which way I ought to go from here?’ 
‘That depends a good deal on where you want to get to’, said the Cat. 

‘I don’t much care where...’, said Alice. 
‘Then it doesn’t matter which way you go’, said the Cat. 

‘So long as I get somewhere’, Alice added as an explanation. 
‘Oh, you’re sure to do that’, said the Cat, ‘if you only walk long enough.’ 

        (Lewis Carroll: Alice in Wonderland, p.33) 

This conversation between Alice and the Cat gives a perfect depiction of the tortuous 

path, full of dead locks, sharp curves, and hurdles that one has to face while dealing with a 

highly complex and non-linear optimization problem [17]. Optimization of the flow control 

technique used in this research is one of the examples of this kind of problem. Conventional 

optimization tools such as gradient based, enumerative, and random search tools fail to do a good 

job with such problems, mainly because of lack of robustness and/or because they tend to get 

stuck in local minima/maxima. 

Evolutionary algorithms (EA’s), which are fundamentally different from traditional 

approaches, are perhaps the most suitable alternative. Evolutionary algorithms use ideas and get 

inspiration from natural evolution and adaptation. Genetic Algorithms are a class of EA’s which 

are most widely used for optimizing highly non-linear and complex problems.  
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1.4.1 GENETIC ALGORITHMS 
The Genetic Algorithm is an optimization technique based on the principles of genetics 

and natural selection. GAs were originally developed by John Holland [18] at the University of 

Michigan in 1975. GAs are considered the most powerful evolutionary technique and are the 

most broadly applicable stochastic search technique for optimization problems than any other 

similar technique. In general, a GA has five basic [19] components, 

• A genetic representation of solutions to the problem 

• A way to create an initial population of solutions 

• An evaluation function rating solutions in terms of their fitness 

• genetic operators that alter the genetic composition of offspring during 

reproduction 

• Values of the parameters of the GA 

Genetic Algorithms are better than other techniques to solve intricate engineering problems 

because of the large population of individuals; it gives the GA a diverse search space which 

reduces the likelihood of converging to a non-global solution. Additionally, as a GA could be 

easily parallelized, it can be simply integrated into existing evaluation software (such as CFD 

and FEA solvers) and each set of individuals can be solved simultaneously on different 

processors. Thus, a GA is optimally suited for the optimization problem that is considered in this 

research. 

1.5 OBJECTIVES 
Active flow control using suction and blowing jets, although studied by various 

researchers in depth, still leaves much to be explained, especially the optimization part of the 

mechanism. This research is a continuation of work done by Liang Huang [20] at the University 

of Kentucky in 2004. Liang Huang studied the effects of suction and blowing jets on a 
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NACA0012 airfoil and used an EARND GA to optimize the various jet parameters of a two-jet 

control system. In the current research, a four jet control system is developed and optimized 

using a Continuous GA (CGA) [21] and the results are compared with the EARND GA results. 

Secondly, a more challenging unsteady (synthetic jets) two jet control system is setup and 

optimized using the Continuous GA. 

Various grid changes have been performed during the course of the research to ease the 

positioning of jets and also to accommodate the finer synthetic jets. A total of about 9000 

simulations have been performed and studied.  

In summary, this research involved the following, 

• Developing a better airfoil grid to ease the process of jet positioning for a four jet 

control system, which could be easily extended to an array of jets. 

• Developing a real coded GA called the Continuous GA. 

• Optimizing the four jet control system using CGA and comparing the results with 

the EARND GA results. 

• Setting up an unsteady (synthetic jet) two jet control system. 

• Modifying the grid generation codes and GHOST to accommodate synthetic jets. 

• Optimizing the unsteady synthetic jet control system using the CGA 

1.6 ORGANIZATION OF THESIS 
Chapter 1 introduces the research and provides an overview along with background 

information. A brief introduction of the problem being investigated and the proposed solution 

methods are also presented in this chapter. Chapter 2 deals with the literature review, where the 

recent developments in the field of active flow control and Genetic Algorithms as an 

optimization tool are discussed. In Chapter 3 we talk about the GA as an optimization tool and 

discuss in detail the GAs developed for current research. Chapter 4 deals with the computational 
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tools and the grid generation process along with a discussion of the basic case setup. Chapter 5 

and 6 presents the results of steady and unsteady jet control system respectively followed by a 

discussion of the GA-Neural Network- CFD system in chapter 7. Conclusions and future work 

are put forth in chapter 8. 
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  CHAPTER – 2 

2. LITERATURE REVIEW 

The objective of this chapter is to present a review of the various flow control and 

optimization techniques relevant to the current research; therefore, importance will be given to 

flow control techniques involving steady (suction and blowing) and synthetic jets, and 

optimization methods involving evolutionary algorithms.     

2.1 FLOW CONTROL 
The art of flow control has roots in prehistoric times when streamlined spears, sickle 

shaped boomerangs, and fin-stabilized arrows were designed empirically by early Homo sapiens. 

Modern man has likewise applied flow control methods to achieve many technological goals 

[15]. 

The science of effective flow control however, originated with Prandtl (1904), who 

introduced boundary layer theory, explained the physics of separation phenomena, and described 

several experiments in which the boundary layer was controlled. Prandtl also pioneered the 

modern use of flow control [22] - he introduced the idea of self-similarity, explained the 

mechanics of steady two-dimensional separation, and opened the way for understanding the 

motion of real fluids. Subsequently in the late 1950’s, Thwaites [23], Stratford [24] and Curle et 

al. [25] defined the various methods for predicting laminar and turbulent boundary layers, which 

broadened the ‘way’ that was opened by Prandtl. 

2.1.1 FLOW CONTROL - CONVENTIONAL 
Today, among the various types of flow control methods, separation control or boundary 

layer control (BLC) is the most common and economical method used in the aerospace and 

automobile industry. The primary goal of this approach is to increase lift and decrease drag. 
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Figure 2.1: Interrelation between flow control goals [15] 

 

The general goals of a flow control technique are summarized in Figure 2.1. Separation 

of flow is governed by two factors, adverse pressure gradient and viscosity. In order to remain 

attached to the surface, the stream must have sufficient energy to overcome the adverse pressure 

gradient, the viscous dissipation along the flow path, and the energy loss due to the change in 

momentum. This loss has a more pronounced effect in the neighborhood of the wall where 

momentum and energy are much less than in the outer part of the shear layer. If the loss is such 

that further advancement of the fluid is no longer possible, then the flow leaves the surface, i.e., 

the flow separates. In two dimensional flows, the criterion of separation is formulated by zero 

velocity gradients at the wall, 
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or zero wall friction. Therefore, conceivable techniques for separation control are  

1) to design the body surface configuration in such a way that a sufficient high energy 

level is maintained along the flow path in the neighborhood of the wall or  

2) to augment the energy level by an auxiliary device placed at a suitable position along 

the flow path. 

The first method is called passive flow control and the second one active flow control. 

2.1.1.1 PASSIVE CONTROL 
Early work on separation control mainly concentrated on passive flow control methods, 

i.e. using methods which do not require auxiliary power to operate. These include but are not 

limited to modifying the geometric shape, using riblets, changing the surface condition, and 

vortex generators.  

Boundary layer control is divided into laminar separation control and turbulent separation 

control. With the advent of new technologies emphasis has been on reducing separation, thereby 

considerably increasing the L/D (lift to drag) ratio. Numerous researchers have done extensive 

research in the field of turbulent separation control as the airfoils in this region are used in the 

general aviation industry. 

The main goal of laminar flow control is to increase lift and reduce drag by controlling 

separation or controlling the point of reattachment, or delaying the transition [15]. There are 

many interdependencies in these control objectives as depicted by Gad-el-Hak [15] in Figure 2.1. 

The present research mainly emphasizes on increasing the lift to drag ratio by reducing the 

separation.  
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The criterion for transition to turbulence was studied by several researchers such as 

Crabtree [26]. Since turbulence was not fully understood, many approximate methods, based on 

semi-empirical theories for the criteria of turbulence separation, had been devised, such as the 

methods by Thwaites [23] and Maskell [27]. The effects of compressibility on separation were 

also studied and tested by Reshotko et al. [28], Allen et al. [29] and Stack [30]. But all analytical 

studies were limited to simple conditions and assumptions; hence the predictions did not agree 

with the experiments in most cases. The flow control setups proposed in this research primarily 

focus on the flow over an airfoil, therefore a few experimental examples of airfoil related flow 

control methods are presented here. 

Streamlining considerably reduces the separation by reducing the pressure rise.  

McCullough et al [31] conducted their experiments on three different airfoil sections NACA 633-

018, NACA 63-009, and NACA 64A006 which have different thickness values and different 

leading edge radii. NACA 633-018 showed maximum lift when plotted with angle of incidence at 

Re = 5.8 x 106 when compared to other airfoil sections. The maximum thickness and leading 

edge radius of NACA 633-018 were large when compared to the other two airfoils and this made 

the transition to take place at minimum pressure point thereby increasing the lift. Laminar 

separation bubbles were seen in the other two airfoil sections thereby decreasing the lift values 

when plotted with respect to angle of incidence.  

Experiments of Mueller et al [32] also showed increase in the lift values for Eppler-61 

airfoil which has almost the same thickness as NACA 64A006 but is highly cambered. Sunada et 

al. [33] performed research on the different airfoil section characteristics by changing the 

parameters such as camber, thickness and roughness at a Reynolds number of 4 x 103. They 

deduced that low Reynolds number airfoils have less thickness when compared to airfoils with 

sharp leading edge at high Reynolds numbers. Optimal airfoils at this low Reynolds numbers 



   15

have a camber of about 5% and maximum camber occurs at mid-chord. They also found that 

leading edge vortices play a major role in deciding the characteristics of these airfoils. 

The above theory states that streamlining greatly increases lift by reducing the steepness 

of the pressure rise and thickness is also one of the major factors effecting the separation.  

While the above techniques seem like a sound idea, the end results are not always 

adequate as these methods are limited by the geometrical constraint of the airfoil. Therefore, 

other passive approaches were tried, such as passive suction and passive vortex generators. The 

idea of passive suction is to use a passive porous surface [34] [35] to mitigate the local pressure 

gradients and obviate separation to reduce drag. The vortex generators [36] use passive 

momentum adding to the near wall boundary to conquer the adverse pressure gradient, and this 

approach was widely used for airfoil flow control [37] [38] [39].  

Passive methods have thus far reached a near saturation and further research does not 

seem to yield much improvement in the performance. Also, because passive methods are usually 

limited to certain working conditions, they can not be adjusted to work under wider conditions. 

Therefore active methods that can meet wider requirements have started to receive greater 

interest.  

2.1.1.2 ACTIVE CONTROL 
While passive methods have played an important role in the early years of flow control 

and will continue to do so, these methods are usually limited to certain working conditions and 

are not always the best way of controlling the flow field. This calls for more advanced methods 

of flow control, i.e. active flow control, where the control parameters change dynamically with 

the change in flow field to augment favorable flow control.  

Suction, blowing, and synthetic jets are among the most common methods of active flow 

control techniques for high Re and for commercial and military aircraft. Morphing wings on the 
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other hand are more common for low Re regimes. As the current research deals with suction, 

blowing, and synthetic jets, some background information about these are presented here. 

2.1.1.2.1 SUCTION AND BLOWING 
Gu et al (1993) used leading edge suction on a delta wing to control the vortices. 

Experimental investigation of flow past a half delta wing at high angle of attack was performed 

using steady suction, steady blowing and alternate suction and blowing in the tangential direction 

along the leading edge of the wing. It was shown that this substantially retards the onset of 

vortex breakdown and stall. As a result of this type of control, the vortex structure in the 

crossflow plane is modified from a fully stalled condition to a highly coherent leading-edge 

vortex [40]. 

Saeed and Seliq (1996) presented a generalized multipoint method for the inverse design 

of airfoils with slot suction in incompressible potential flow. The design tool was validated 

against experimental data and was used interactively to perform rapid trade studies to examine 

the potential payoff for boundary-layer control as applied to the advanced-concept wings. Design 

changes in the airfoil were proposed as a result of slot injection [41]. 

Wright and Nelson (2001) conducted wind tunnel experiments to optimize distributed 

suction for laminar flow control. The experiments involved reducing the energy consumption to 

perform suction, without compromising on drag reduction. A large (2 m chord length and 1.6 m 

span) airfoil model was tested at various angles of attack.  The effect of pressure gradient on the 

efficiency of suction was observed, and a relationship between transition and drag was also 

presented [42]. 

Wong and Konstantinos (2006) performed experimental investigation of spanwise 

blowing at different positions (0%, 25% and 100% of chord length) on a NACA 0012 airfoil. 

Lift, drag and pitching moment was measured for a range of angles of attack (from -20 degrees 
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to +20 degrees) and at Re 1.25x105. It was experimentally proved that lift was considerably 

improved as a result of blowing at 0.25c as compared to the baseline (no blowing) case [43].  

Greenblatt and Wygnanski [44] provide an excellent review of the various periodic 

excitation methods, mainly steady suction and blowing. This review gives a detailed discussion 

of the mechanism and also the recent developments in the field. Previous reviews that provide a 

detailed discussion of the subject include Bushnell and McGinley [45], Fiedler and Fernholz 

[46], Gad-el-Hak and Bushnell [47], Moin and Bewley [48], and Gad-el-Hak [49].  

2.1.1.2.2 SYNTHETIC JETS 
Synthetic jets [50] have recently received a great deal of attention as a potential method 

for active flow control. Synthetic jets, in general, consist of an enclosed cavity with one side of 

the cavity having an opening or openings to the freestream flow. A synthetic, or zero-mass, jet 

derives its name from the total mass flow into and out of the cavity. During the first phase of the 

jet’s operation, entrained fluid is drawn into the enclosed cavity. This same fluid is then expelled 

through the opening back into the freestream flow. Therefore, the net mass through the cavity 

opening is zero. However the net momentum transferred into the fluid is non-zero which enables 

flow control. Candidate designs of synthetic jets include piezoelectric ceramics [51], fluidics 

[52], and linear and rotary electromechanical motors [53]. Experimental studies [54], [55] and 

designs are actively carried by the Georgia Institute of Technology and Texas A&M University. 

Synthetic jets have been actively applied to separation control to generate virtual shapes 

on solid walls. They can efficiently provide periodic forcing for dynamic separation control and 

completely suppress the separation by sufficient momentum injection when oscillating at higher 

levels. The applications of synthetic jets are numerous, such as shear flow control using fluidic 

actuator technology and aerodynamic flow control of bluff bodies using synthetic jet actuators. 
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The abilities of synthetic jets are so versatile that they also apply to other areas such as the 

mixing enhancement in combustion [20]. 

Perhaps the most influential work in synthetic jets has been performed at Georgia Tech 

by Glezer and colleagues. Their work was the first to characterize the basic performance of the 

synthetic jets and their ability to affect the flow over aerodynamic surfaces. Several papers [56], 

[57], [58] written by this group experimentally characterize the small-scale effects of synthetic 

jets. During their efforts, this group has employed several methods of experimentally measuring 

the flow field including phase-locked Schlieren imaging, hot-wire anemometry, and smoke 

visualization [59]. 

In addition to characterizing the performance of a single synthetic jet, Smith and Glezer 

investigate the performance of two adjacent synthetic jets [57]. Interestingly, they note that by 

phasing the timing of the jet actuation the direction of the resulting jet can be modified. 

In spite of the work by Glezer and other researchers, synthetic jets still have not been 

exploited to their full potential. Similarly, although flow control using suction and blowing has 

been in use for quite some time now and there has been considerable research in the field, most 

of the suction research was concentrated on leading edge suction and the control parameters of 

the setup were decided based on design engineers intuition and experience. Likewise, with 

blowing jets, the majority of the research was concentrated on tangential trailing edge blowing 

and attempts to systematically select (optimize) the control parameters have not been extensively 

undertaken. 

2.1.1.2.3 MORPHING WING 
Morphing wing studies have been performed by various researchers in the past few years. 

This technique is most commonly used in regimes of low Reynolds number flights, such as the 
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Micro Aerial Vehicles (MAV’s) and UAV’s. A few recent examples of the application of 

morphing wing technique are discussed below. 

Munday and Jacob (2002) experimentally investigated a wing with a conformal camber. 

The wing used an adaptive actuator mounted internally to alter the shape of the suction surface 

which resulted in a change in the effective camber by increasing the maximum thickness and 

moving the location of maximum thickness aft. They tested various oscillation frequencies at 

Reynolds numbers of 25,000 and 50,000 and several angles of attack. These oscillating modes 

showed a pronounced reduction in separation, hence the drag [60]. 

Kota et al. (2003) applied the morphing wing technology in designing morphing aircraft 

structures. Here, simple inputs are provided using actuators and the structures are deformed 

according to the input. In addition, these synthesis methods seek to optimize the stiffness of the 

structure to minimize actuator effort and maximize the stiffness with respect to the environment 

(external loading) [61]. 

Martin et al. (2005) performed experimental investigation of the technique. Using 

Combined Proper Orthogonal Decomposition (POD) and Linear Stochastic Estimation (LSE) 

technique, they developed flow induced vibrations on the wing of the micro aerial vehicle [62]. 

2.1.2 FLOW CONTROL AND CFD  
The tremendous increase in CFD capability that have occurred as a direct result of 

increase in computer storage capacity and speed are transforming flow separation control from 

an empirical art to predictive science. Control techniques such as blowing/suction, morphing 

wings, and plasma actuators are all readily parameterized via viscous CFD. Current inaccuracies 

in turbulence modeling can severely degrade CFD predictions once separation has occurred; 

however, the essence of separation control is the calculation of attached flows, estimation of 

separation location, and indeed whether or not separation will occur. These tasks can in fact be 
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performed reasonably well via CFD within the uncertainties of the transition location estimation 

[14]. This latter uncertainty has been significantly reduced for low-disturbance freestreams and 

smooth surfaces using CFD [45].  

In 1991, NASA in collaboration with various industries carried out substantial work in 

the field of supersonic laminar flow control (SLFC). The program utilized a balanced mix of 

computational efforts, ground facility experiments, and flight testing. Advanced Computational 

Fluid Dynamics methods and boundary-layer stability codes were used, which offered the 

opportunity to analyze flow phenomena to a greater level of accuracy than in the past. Swept-

wing model experiments were carried out in a low-disturbance supersonic tunnel to provide data 

on leading-edge transition physics and flow mechanisms. Also, F-16XL-1 flight tests were 

performed using CFD to obtain laminar-flow data that will reduce the risk for the NASA 

experiments on the F-16XL-2. Flight tests on the F-16XL-2 provided attachment-line design 

criteria, code calibration data, and an improved understanding of the flow field over the wing 

that improved the design process for the suction panel [63]. 

A numerical study of blowing/suction type control (counting synthetic jets) mainly aims 

at qualitatively capturing the flow physics and the underlying control mechanisms. There are 

several different approaches from different perspectives. From the numerical methods 

perspective, some use RANS, and others use DNS or LES; from the computation geometry 

perspective, one could use 2-D grids or 3-D grids; and with respect to the simulation of 

membrane motion condition perspective, it could be either moving grid boundary, or directly 

applying velocity profiles at the boundary [20]. 

Kral et al. (1997) applied a 2-D RANS approach to solve a boundary value problem for 

the incompressible, unsteady 2-D Reynolds Averaged Navier-Stokes equations with the Spalart-

Allmaras (SA) turbulence model. Their computational domain encompassed only the region 
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external to the jet, excluding the cavity or actuating membrane. The jet presence was simulated 

by forcing an analytical velocity profile on the boundary region corresponding to the jet orifice 

[64].  

Rizzetta et al. (1999) numerically investigated the flowfields surrounding a synthetic-jet 

actuating device. A 3-D Direct Numerical Simulation (DNS) approach was used to solve the 

unsteady, compressible Navier-Stokes equations for both the interior of the actuator cavity and 

for the external jet flowfield. The external region, the cavity itself and the throat were calculated 

on separate grids and linked through a chimera methodology. The membrane motion was 

represented by varying the position of appropriate boundary points. These 3-D simulations 

showed that the internal cavity flow becomes periodic after several cycles. Therefore, it is 

appropriate for Kral et al. [64] to use the velocity profile as a boundary condition to simplify the 

computation [65]. 

Rumsey et al (2003) carried out CFD simulations and experimental validation of flow 

over a three-element McDonnell Douglas 30P-30N airfoil configuration at high lift. The 

experiment explores several different side-wall boundary layer control venting patterns, 

documents venting mass flow rates, and looks at corner surface flow patterns. The experimental 

angle of attack at maximum lift is found to be sensitive to the side-wall venting pattern: A 

particular pattern increases the angle of attack at maximum lift by at 2°. A significant amount of 

spanwise pressure variation is present at angles of attack near maximum lift. A CFD study using 

three-dimensional (3-D) structured-grid computations, including the modeling of side-wall 

venting, is employed to investigate 3-D effects on the flow. Side-wall suction strength is found to 

affect the angle at which maximum lift is predicted. Maximum lift in the CFD is shown to be 

limited by the growth of an off-body corner flow vortex and consequent increase in spanwise 

pressure variation and decrease in circulation. The 3-D computations with and without wall 
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venting predict similar trends to experiment at low angles of attack, but either stall too early or 

else overpredict lift levels near maximum lift by as much as 5%. Unstructured-grid computations 

demonstrated that mounting brackets lower the lift levels near maximum lift conditions [66]. 

At the University of Kentucky, Katam et al. (2005) used a modified NACA4415 with an 

adaptive actuator mounted internally. The camber of the airfoil could be changed in a static or 

oscillatory fashion. A series of simulations were performed in static mode for Reynolds numbers 

of 25,000 to 100,000 and over a range of angles of attack (AoA) and the characteristics of the 

flow separation and the coefficients of lift, drag, and moment were predicted. Preliminary 

simulations were performed for dynamic mode and it demonstrated a definitive ability to control 

separation across the range of Re and AoA. Numerical simulation results were compared with 

the previous experimental results which were performed on the airfoil in like flow conditions and 

these comparisons allowed determining the accuracy of both systems [12]. 

Since the proposed flow control setup explores the control parameters of steady and 

unsteady jets, some examples of CFD application to study control parameters is presented next, 

with focus on studies relating to different jet locations and angles of attack. 

Wu et al (1998) studied control effects on a NACA 0012 airfoil using a Reynolds-

averaged two-dimensional computation of a turbulent flow over an airfoil at post-stall angles of 

attack; they show that the massively separated and disordered unsteady flow can be effectively 

controlled by periodic blowing/suction near the leading edge with low-level power input. With a 

local unsteady forcing located at 5% from the leading edge, the angle of attack from 018  to 035  

were tested using SA turbulence model approach [67]. 

Hassan et al (1998, 2005) studied the effect of an array of zero-mass `synthetic' jets on 

the aerodynamic characteristics of the NACA-0012 airfoil. Flowfield predictions were made 

using a modified version of the NASA Ames `ARC2D' (a 2-D RANS Baldwin-Lomax 
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turbulence model) unsteady, two-dimensional, compressible Navier-Stokes flow solver. Effects 

of the jet peak suction and blowing velocities, oscillation frequency, and jet surface placement on 

the time histories of the sectional lift, drag and moment were investigated for two angles of 

attack ( 00  and 05 ) and a free stream Mach number of 0.60 [69], [70].  

Duvigneau (2006) proposed application of gradient based optimization algorithm to 

optimize the location of a synthetic jet on a NACA 0012 airfoil. Unsteady Reynolds-Averaged 

Navier-Stokes Equations (URANSE) were solved to simulate the flow over the airfoil (including 

the synthetic jet) at an angle of attack of 180 and at a Reynolds number of 2 x 106. It was 

numerically shown that maximum lift is generation when the jet is placed at 23% of the chord 

length [71]. 

All the above studies find that the synthetic jets and forcing/non-forcing (oscillatory/ 

steady) suction/blowing jets, when positioned on the airfoil leading edge can increase lift and 

decrease drag at certain angles of attack, but systematic studies of all the control parameters, 

such as jet angle, amplitude and frequency (in case of synthetic jets), are rarely performed. As 

mentioned at the end of previous section, CFD plays an extremely important role in successfully 

implementing such an approach.  

2.2 OPTIMIZATION ALGORITHMS 
Optimization occupies a fundamental position in engineering design and applications 

since the typical function of an engineer is to design better, more efficient and less expensive 

systems. The application of optimization methods to engineering problems requires the selection 

of the problem decision variables that are adequate to characterize the possible individuals’ 

designs or operating conditions of the system, the definition of the objective function (fitness 

function) on the basis of which individuals will be ranked to determine the best solution and the 

definition of the model that describes the manner in which the problem variables are related and 
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the way in which the performance criterion is influenced by the by the variables. The problem’s 

model normally includes a set of equality constraints, a set of inequality constraints, and some 

bounds for the variables. In its most general case, the optimization problem involves the 

determination of the optimal set of decision variables of a given objective function in the 

presence of some constraints. In the context of optimization, the “best” will always mean the 

individual set with either the maximum or minimum value of the fitness function. 

Optimization problems could be categorized into many classes, depending on the 

linearity of the fitness function, the modality of the fitness function, the number of fitness 

functions, the availability of constraints, the number of decision variables, and the linearity of the 

constraints (discrete or continuous) [72]. A general optimization problem is usually described as 

a combination of these classifications. Optimization problems may also be classified into various 

categories according to the following: 

• The use of some random components that test the solution space while the 

algorithm converges – deterministic or stochastic methodologies [73]. 

• The guarantee of the optimal solution obtained – exact or heuristic methods [74]. 

• The locality of the solution obtained. According to this classification, methods 

are classified as global or local techniques [75]. 

Local optimization techniques such as conjugate gradient methods, quasi-Newton 

methods, and simplex methods show great dependence on the initial guess and tend to be tightly 

coupled to the solution domain [75]. This tight coupling enables the local methods to take 

advantage of the solution space characteristics, resulting in relatively fast convergence to a local 

maxima or minima. However, the tight solution space coupling also places constraints on the 

solution domain, such as differentiability and/or continuity constraints. As a result, these 

methods are generally restricted to smooth and unimodal objective functions. It comes as no 
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surprise that these methods are unsuitable for a limited problem domain since real world research 

has to be fraught with discontinuities, multimodal, and noisy search spaces [76]. 

Exact techniques guarantee the optimal solution to a given optimization problem, while 

heuristic techniques seek optimal solutions without assuring either feasibility or optimality, or 

even in many cases to state how close to optimality a particular feasible solution is [74]. The 

distinguishing feature of a heuristic approach is the way they attempt to simulate some naturally 

occurring process. This idea of simulating natural processes has considerable value in solving 

complex engineering problems. Genetic Algorithms are formulated as an analogy to genetic 

structures and simulated annealing was in fact originally introduced as an analogy to 

thermodynamic processes, while tabu search finds some of its motivation in attempts to imitate 

intelligent processes by providing heuristic search with a facility that implements a kind of 

memory. Heuristics are rather more flexible and are capable of coping with more complicated 

and realistic objective functions and/or constrains than exact algorithms. They try to find an 

approximate solution of an exact model rather than an exact solution of an approximate model, 

as in the case of exact methods. Therefore, it may be possible to model real-world problem rather 

more accurately using heuristics than is possible if an exact algorithm is used. 

Global optimization techniques such as Genetic Algorithms, simulated annealing and 

Monte Carlo are largely independent of and place few constraints on the solution domain [76]. 

This absence of constraints means that global methods are much more robust when faced with 

ill-behaved solution space. In particular, global techniques are much better at dealing with 

solution spaces having discontinuities, constrained variables, non-linear relations, or large 

number of dimensions with many potential local optimums. Global techniques yield either an 

optimum or near-optimum solution instead of a local optimum and often find useful solutions 

where local techniques fail. The downside though is that they either cannot or, at least usually, 
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do not take advantage of local solution space characteristics, such as gradients during the search 

process, resulting in generally slower convergence than local techniques. 

Parallel and distributed computing plays an increasingly important role in computer 

science, engineering, and many other disciplines due to their ability in real time implementations 

of physical systems. Simulated annealing is a naturally serial algorithm, while Genetic 

Algorithms and Monte Carlo methods are of parallel nature [77]. This fact has caused a great 

deal of interest in these methods, especially Genetic Algorithms. Genetic Algorithms are 

considered more efficient as compared to Monte-Carlo and random walk methods as they 

provide faster convergence [78]. Also, Genetic Algorithms are particularly suitable for 

implementation under a parallel environment due to their inherent parallelism. Parallel Genetic 

Algorithms result in great improvements in terms of two commonly used performance measures: 

efficiency and speed [79]. This attribute of Genetic Algorithms can potentially provide 

remarkable speedups while retaining better solutions. 

2.2.1 REVIEW OF GENETIC ALGORITHMS 
Genetic Algorithms (GAs) were developed by John Holland and are modeled on the 

Darwinian concepts of natural selection and evolution [18]. In Genetic Algorithms, a population 

of potential solutions is caused to evolve towards a global optimal solution which occurs as a 

result of pressure exerted by the selection process and exploration of the solution space 

accomplished by crossover and mutation operators. 

Genetic Algorithms are a relatively new class of optimization techniques, which are 

generating a growing interest in the engineering community. They are well suited for a broad 

range of problems encountered in science and engineering. As mentioned previously, GAs have 

performed efficiently in a number of diverse applications. The principal motives for researchers 

and practitioners in Genetic Algorithms are as follows: 
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• Limitations of traditional methods: The practitioners’ motives in Genetic 

Algorithms are rooted in the limitations of traditional optimization and operations 

research methods. A certain optimization method is well tuned to a particular 

class of optimization problem, but when a problem comes along that violates the 

assumptions of such method, the solution results can be particularly 

disappointing. 

• Method Investment: The wide spectrum of traditional narrow band algorithms 

implies that the practitioner should master a collection of techniques rather than a 

single broadly competent method. For example, for a linear problem with linear 

constraints, one can use linear programming. For a stage-decomposable problem, 

dynamic programming can be employed while for a non-linear problem with non-

linear constraints, nonlinear programming can be utilized. The Genetic Algorithm, 

on the other hand, is an optimization procedure that works well over a broader 

class of optimization problems because the evolution of such a natural system 

takes place via mechanisms that are in many ways invariant across species. 

• Model Investment. Method investment costs can be significant, but for many 

users the lion share of investment is tied up in modeling or simulation. Most 

complex optimization involves a fairly sophisticated objective function that may 

itself rely on models. Prior to using such models for optimization or design, users 

expend considerable time and effort inputting data and then using the models for 

analysis. After such a large investment in modeling, no user likes to be told that in 

order to perform an optimization, the model must be shoehorned into a form 

preferred by a particular optimization method; but many optimization methods 

require exactly this kind of model transformation. Genetic Algorithms, on the 



   28

other hand, take their function evaluations as they come, thereby respecting the 

significant investment that users may have in analyzing a model, using that model 

without substantial modification or transformation such as linearization. However, 

because GAs make relatively few assumptions about the solution space, and 

because the interface between GAs and evaluation involves only passing function 

evaluation values, a GA solution may require hundreds or thousands of function 

evaluations [72]. 

The construction of a Genetic Algorithm for the solution of any optimization problem can 

be separated into five distinct yet related tasks [76]:  

1. The genetic representation of potential problem solutions.  

2. A method for creating initial population of solutions. 

3. The design of the genetic operators.  

4. The definition of the fitness functions. 

5. The setting of system parameters. 

Each of the above components greatly affects the solution obtained as well as the 

performance of the Genetic Algorithm and the factors mentioned above have resulted in the 

availability of numerous variants of GAs reported in literature. 

2.2.2 GENETIC ALGORITHMS AND CFD 
For many years, flow computations have been taken into account by engineers to improve 

the designs, for example in aerodynamics or hydrodynamics. Modifications were performed 

manually first, and then using automated tools to lead the search towards optimality. Thanks to 

the progress in computational fluid dynamics (CFD) and computer hardware during the last few 

years, automated design optimization procedures are now expected to solve problems including 

complicated flows and realistic configurations. Consequently, the physical and geometrical 
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configurations encountered in industrial applications make necessary the recourse to viscous 

flow solvers based on sophisticated turbulence modeling, dealing with realistic geometries.  

In this framework, the naive use of a standardized toolbox optimization software 

connected to a flow solver and an automated grid generator cannot be a sensible strategy, since 

the peculiarities of the flow solver should be taken into account. Otherwise, some limitations 

may be quickly encountered. For instance, the constraints on the grid linked to the use of near-

wall turbulence models will have serious consequences on the mesh update procedure. If a 

particular strategy taking into account the high stretching of the volumes near the wall is not 

included, the mesh update will fail. This observation illustrates why the recourse to automatic 

grid generation software may not be wise in such a context.  

Another reason is related to the mandatory use of parallelization strategies, such as 

domain decomposition, as soon as three-dimensional problems are considered. The mesh update, 

as well as the parameterization of the shape, should be adapted to this multi-block partition to 

work within each block independently and to send information for updating the overall domain. 

Otherwise, the parallelization becomes useless [81]. 

Concerning the optimization methods, the high computational costs implied by three-

dimensional calculations, as well as the possible occurrence of numerical noise of various origins 

during the evaluations, should be taken into account for the choice of an optimization strategy. 

Finally, if differently connected software are employed in the design loop, some practical 

difficulties may arise, when distant computers are involved in the optimization process. All these 

remarks justify the development of an optimization procedure in which all numerical tools are 

adapted to the flow solver and integrated into a single code. 
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In the past, considerable research efforts were focused on the development of techniques 

for evaluating the sensitivity of the cost function with respect to the shape by using gradient-

based optimization methods.  

Jameson et al (1998) described the formulation of optimization techniques based on 

control theory for aerodynamic shape design in viscous compressible flow, modeled by the 

Navier-Stokes equations. Here, the Fréchet derivative of the cost function is determined via the 

solution of an adjoint partial differential equation, and the boundary shape is then modified in a 

direction of descent. The method was successfully used to design wings and wing-body 

combinations for long range transport aircrafts [82]. 

Anderson and Venkatakrishnan (1999) developed and analyzed a continuous adjoint 

approach for obtaining sensitivity derivatives on unstructured grids. A novel finite-difference 

gradients method was proposed for modifying inviscid and viscous meshes during the design 

cycle to accommodate changes in the surface shape [83]. The coupling between the optimizer 

and the flow solver is strong and a low number of evaluations are required to reach an optimal 

design. This approach was successful and cheap when rather simple flows were considered, but 

many limitations were noted when this approach was applied to more complex and realistic 

problems. First, the evaluation of the derivatives of the cost function with respect to the design 

variables is cumbersome when sophisticated flow solvers and highly non-linear turbulence 

models are considered [84]. Then, the presence of a numerical noise related to the complexity of 

the flow was reported [85], [86], which generates spurious local minima and inhibits the 

capabilities of gradient-based strategies. Moreover, using such methods, a local optimization is 

performed, involving only one criterion, which is not satisfactory in an industrial framework. 

Lastly, one may think that the difficulty in evaluating the derivatives when different physical 
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fields of applications are coupled makes quite unlikely the development of gradient-based multi-

disciplinary optimization strategies.  

To overcome these limitations, some authors proposed the employment of more powerful 

optimization strategies, such as Genetic Algorithms (GAs). These stochastic methods are known 

for their robustness, even when the cost function is noisy or discontinuous, and their ability to 

perform global optimization [76]. Moreover, they have the capability to solve multi-criteria 

problems. 

One of the first attempts to systematically select the control parameters of suction and 

blowing setup were carried out by Huang [20]. Here, a Genetic Algorithm (EARND) was 

developed to optimize the various design parameters of a two-jet suction/blowing type flow 

control system on a NACA 0012 airfoil. It would be an extremely expensive and time consuming 

job to test all the configurations generated by the GA an using experimental setup. Also, it would 

be a tedious job to setup each case being investigated in the research experimentally. One 

solution to this problem is use of CFD to narrow down the solution space. In the next section we 

will discuss some previous applications of CFD to complex flow control setups which justify the 

use of CFD for current research. 

 Peigin and Epstein (2004) proposed an approach to the robust handling of non-linear 

constraints for GAs (Genetic Algorithms) optimization. A Real-coded GA was applied to 

aerodynamic shape design and care was taken (by reducing number of CFD computations) to 

reduce the overall computation time to optimize the parameter space [87]. 

Sengupta et al (2007) used GA in combination with CFD to optimally control 

incompressible viscous flow past a circular cylinder for drag minimization by rotary oscillation. 

At Re = 15000, using a flow solver with full 2D Navier-Stokes solver and fourth order Runge-
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Kutta for time integration and a real coded GA, drag (a function of the maximum rotation rate 

and the forcing frequency of the rotary oscillation) was minimized [88].  

However, a Genetic Algorithm in general does not use derivative information to lead the 

search. Therefore, a weak coupling between the optimizer and the flow solver is observed, 

yielding an expensive strategy which requires a high number of evaluations. Moreover, active 

flow control such as jet control, each individual requires large amount of computation time. 

Therefore, it is very important to design an efficient Genetic Algorithm, which has the capability 

of converging to the optimum or near optimum solution in minimum number of generations. 

2.3 SUMMARY 
In this chapter we discussed the previous work related to flow control, techniques of flow 

control, application of CFD and Genetic Algorithms to flow control and the need of current 

research. In chapter 3 we will discusses the conventional GA, briefly discuss the EARND GA 

and the detailed components of the approach used to develop another Genetic Algorithm, viz. a 

Continuous Genetic Algorithm (CGA). 
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CHAPTER – 3 

3. GENETIC ALGORITHMS  

3.1 OVERVIEW 
Genetic Algorithms are based on principles inspired from the genetic and evolution 

mechanisms observed in natural systems. Their basic principle is the maintenance of a 

population of solutions to the problem that evolve towards the global optimum. They are based 

on the triangle of genetic reproduction, evaluation, and selection [76]. Genetic reproduction is 

performed by means of two basic genetic operators: crossover and mutation. Evaluation is 

performed by means of a fitness function that depends on the specific optimization problem. 

Selection is the mechanism that chooses parent individuals with probability proportional to their 

relative fitness. The selected individuals go through the mating process and mutation is 

performed on the resulting individuals. 

GAs can be distinguished from calculus based and enumerative methods for optimization 

by the following characteristics [76]: 

• GAs search for an optimal solution using a population of individuals, not a single 

individual. This important characteristic gives GAs much of their search power 

and also points to their parallel nature. 

• GAs use only objective function information and no other auxiliary information is 

required. Much of the interest in Genetic Algorithms is due to the fact that they 

belong to the class of efficient domain-independent search strategies that are 

usually superior to traditional methods without the need to incorporate highly 

domain specific knowledge. 

• GAs use probabilistic transition rules and not deterministic rules, in contrast with 

the calculus based and enumerative methods. 
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The population-based nature of Genetic Algorithms gives them two major advantages 

over other optimization techniques. First, it identifies the parallel behavior of Genetic Algorithms 

that is realized by a population of simultaneously moving search individuals or candidate 

solutions [76]. Implementation of GAs on parallel computers, which significantly reduces the 

CPU time required, is a major benefit of their implicit parallel nature. Second, information 

concerning different regions of solution space is passed actively between the individuals by the 

crossover procedure. This information exchange makes a Genetic Algorithm an efficient and 

robust method for optimization, particularly for the optimization of functions of many variables 

and nonlinear functions.  

On the other hand, the population-based nature of Genetic Algorithms also results in two 

drawbacks. First, more memory space is occupied; i.e. instead of using one search vector for the 

solution, Np search vectors are used which represent the population size. Second GAs normally 

suffer from a high computational burden when applied on sequential machines. 

The fact that GAs use only objective function information without the need to incorporate 

highly domain-specific knowledge points to both the simplicity of the approach from one side 

and its versatility from the other. This means that once a GA is developed to handle a certain 

problem, it can easily be modified to handle any type of problems by changing the objective 

function in the existing algorithm. This is why Genetic Algorithms are classified as general-

purpose search strategies. 

In relation to the genetic representation of potential problem solutions, GAs are mainly 

classified into two categories: the binary-coded GA and the real-coded GA [80]. In a 

conventional binary-coded Genetic Algorithm, binary sub-strings corresponding to each design 

variable are stacked head to tail to yield a binary string that represents a particular design. In 

contrast, the real-coded Genetic Algorithm does not make use of the binary representation, 
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allowing for gene transformation operations to be conducted on the original real-valued 

representations of the design variable. A real-coded Genetic Algorithm is usually used to solve 

continuous design variables. While handling such optimization problems, real variants of the 

algorithm offer a number of advantages over binary-coded schemes, a few of which are listed 

below: 

• It increases the efficiency of the GA. 

• Less memory is required as efficient floating-point internal computer 

representations can be used directly.  

• There is no loss in precision by discretization to binary or other values. 

• There is greater freedom to use different genetic operators. 

Existing crossover schemes are mainly divided into two categories: genotype crossover 

and phenotype crossover. In natural systems one or more chromosomes combining to form a 

total genetic prescription for the construction and operation of an organism are called the 

genotype; on the other hand, organisms formed by the interaction of the total genetic package 

with the environment are called the phenotypes. Genotype crossover is performed by swapping 

partial strings between the two parents. It is divided into three classes depending on the number 

of crossing points, single-point crossover, multi-point crossover, and uniform crossover schemes. 

The phenotype crossover is the well-known arithmetic crossover and is performed by 

interpolating the phenotype values of the two parents. Similarly, the mutation process has two 

main variants that include the genotype and phenotype mutations. For binary-coded GAs, the 

genotype mutation is the bitwise complement mutation operator. The phenotype mutation, on the 

other hand, has two variants that include static and dynamic mutation. The dynamic mutation is 

applied by performing random displacements for the selected variable from its original values, 

while the static mutation is carried out by assigning a completely new random value to the 
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selected variable. Dynamic mutation is particularly useful in fine-tuning the population in later 

stages of GA evolution when static mutation might cause too great perturbation and may lead to 

structures with very low fitness. 

Real-coded GAs whose operators are applied at the variable level are useful when dealing 

with continuous optimization problems that do not have any requirement on the continuity and/or 

smoothness of the resulting solution curves, which is generally the case with most optimization 

problems. However, when dealing with continuous optimization problems that require the 

continuity and/or smoothness of the solution curves, the performance of such GAs will be poor. 

To solve this problem, Gutowski [89] introduced a special type of real coded GA, smooth 

Genetic Algorithms, which are well suited for continuous optimization problems with continuous 

and/or smooth solution curves. The main area of application of this algorithm is the 

reconstruction of unknown, continuous, and perhaps smooth distributions of various physical 

quantities derived from the experimental data. Smooth Genetic Algorithms as proposed by 

Gutowski depend on the evolution of curves in one-dimensional space. 

The use of smooth Genetic Algorithms in continuous optimization problems with 

continuous and/or smooth solution curves needs some justification. First, the initialization phase 

in binary-coded GAs and other real-coded GAs result in neighboring variables that have opposite 

extreme values within the given solution range. This problem is overcome by the use of 

continuous curves that eliminate the possibility of highly oscillating values among the 

neighboring variables.  

Second, the crossover operator in binary-coded GA results in a jump in the value of the 

variable in which the crossover point lies while keeping other variables the same or exchanged 

between the two parents. Other real-coded GAs whose crossover operator is applied at the 

variable level also result in an oscillatory behavior among neighboring variables. Smooth 
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Genetic Algorithms, on the other hand, result in smooth transition in the variable values during 

the crossover process.  

Third, the mutation process in binary-coded GAs and other real-coded GAs change only 

the value of the variable in which mutation occurs while global mutations are required in such 

problems, which affect a group of neighboring variables. As a result, the operators of binary-

coded GAs and the other real-coded GAs result in a step-function-like jump in the variable 

values, on the other hand, smooth Genetic Algorithms result in smooth transitions. 

3.2 CONVENTIONAL GENETIC ALGORITHM  
A conventional Genetic Algorithm as described by Salem [72] consists of the following 

steps (Figure 3.1): 

1. Initialization: An initial population comprising of Np individuals are generated in 

this phase at the genotype level by filling the bit strings randomly by 1 or 0 

values. The coding process is then used to find phenotype values of the 

population. 

2. Evaluation: The fitness, a nonnegative measure of quality used as a measure to 

reflect the degree of accuracy of the individual is calculated for each individual in 

the population according to its phenotype structure. 

3. Selection: In the selection process, individuals are chosen from the current 

population to enter a mating pool devoted to the creation of new individuals for 

the next generation such that the chance of given individual to be selected to mate 

is proportional to its relative fitness. This means that the best individuals receive 

more copies in subsequent generations so that their desirable traits may be passed 

on to the offspring. This step ensures that the overall quality of the population 

increases from one generation to the next. 
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4. Crossover: Crossover provides the means by which valuable information is 

shared among the population. It combines the feature of two parent individuals to 

form two children individuals that may have new and possibly better phenotype 

structures compared to those of their parents and play a central role in the GA 

optimization process. 

5. Mutation: Mutation is often introduced to guard against premature convergence. 

Generally, over a period of several generations, the gene pool tends to become 

more and more homogeneous. The purpose of mutation is to introduce occasional 

perturbations to the variables to maintain the diversity in the population. In 

conventional mutation operator, the bitwise complement mutation is applied at the 

gene level with some low probability of mutation, Pm. It is realized by performing 

bit inversion (flipping) on some randomly selected bit positions of offspring bit 

strings. 

6. Replacement: After generating the offspring population through the application 

of the Genetic Algorithm operators to the parent population, the parent population 

is totally or partially replaced by the offspring population depending on the 

replacement scheme used. This completes the “life cycle” of the population. 

7. Termination: Termination is defined by the user, it could be either the difference 

in fitness value of few subsequent generations or a fixed number of generations 

which the user thinks, would provide a reasonably acceptable solution. 
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Figure 3.1: Process flow of Conventional flow chart. 

3.3 EARND GENETIC ALGORITHM 
The EARND GA was developed as part of the PhD dissertation [20] by Liang Huang. It 

is worth while to mention few important characteristics of the EARND GA here, as we use the 

EARND GA to compare our results obtained using the Continuous GA. 

Figure 3.2 shows the flow process chart of the EARND GA. Some of the characteristics 

of this GA which make it an advanced GA are listed below: 

• The traditional binary strings for the variables are replaced by real coded variable 

representation. 

• Roulette wheel selection is employed for selection process. 
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• Crossover and mutation operators are employed and an advanced random number 

generation scheme is used for this process. 

• The main advancement or change that was made to this GA was the use of normal 

distribution and explicit update of boundary along with a diversity control criteria 

which help in convergence and to maintain diversity of the solution space 

respectively. 

A detailed description of this genetic algorithm approach is present in the dissertation 

[20], so the discussion here will focus on the key modifications [90] to the standard GA 

approach. Some key variables used in this description are: 

 

• Number of total generations, NGeneration 

• Number of individuals (population size) per generation, NPopSize 

• Number of function variables (design parameters), NVariable 

 

The first modification is that at selected generations (every NUpdate generations, where 

NUpate is set at 5-10% of NGeneration), the next generation will be born according to a normal 

distribution rule based on the statistics of a set of the previously-generated best individuals. The 

set size is equal to the number of individuals in each generation times the number of generations 

between the normal distribution generations plus one (NUpdate X NPopSize). As an example, 

consider the creation of an individual consisting of NVariable variables using the normal 

distribution approach. For the jth variable of this new ith individual, first randomly generate a 

value rji 

 
1

[0,1],
1

i
j

i NPopSize
r

j NVariable
≤ ≤
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 (3.1) 
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Find the corresponding value pji as  

 (0,1)( )
i

jpi
jr N z dz

−∞
= ∫  (3.2) 

where N(z) is the normal distribution. If μj and σj are the mean and deviation of the jth variable 

calculated from the previous best (NUpdate X NPopSize) individuals, then the value of the jth 

variable of the new ith individual, xji, can be calculated as 

 i i
j j j jx pμ σ= + ⋅  (3.3) 

The explicit adaptive range or boundary updates occur each NUpdate generation over the 

second 50% of the evolution. The boundaries for each variable design space are explicitly 

updated according to the statistics of the best (NUpdate X NPopSize) individuals up to that 

generation. The new ranges are chosen as 
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j j j j
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μ κσ
μ κσ

= +
= −

 (3.4) 

with the previous range boundaries designated by the old superscript. These new bounds are used 

until the next NUpdate generation is reached, at which point this process is repeated. Typically 

we use κ=5.0, which yields a conservative but robust searching process. The scale up factor, sj, 

defines the precision of each variable and is likewise updated to maintain a consistent resolution 

with the new variable range 

 100.5 log
oldUpper oldLower

j jold
j j Upper Lower

j j

x x
s s

x x
⎛ ⎞−

= − ⋅ ⎜ ⎟⎜ ⎟−⎝ ⎠
 (3.5) 

  

The diversity control is added to the selection function typically during the initial 20% of 

the evolution by adding a denominator d to the calculation of the scale fitness. The value of d is 

proportional to the number of similar individuals in that generation as determined by subdividing 
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the parameter space into cells and counting the number of solutions that fall into each cell. This 

penalizes a given individual's scale fitness if multiple individuals fall in the same section of the 

parameter space. If the search is to get the maximum (as opposed to minimum) fitness, then the 

fitness scale with diversity control for the birthing of the next generation is given by 

 min

max min

1
scale

fit fitfit
d fit fit

γ
γ

− +
=

− +
 (3.6) 

 

Successful application of EARND GA with diversity control has been demonstrated 

previously in two-jet simulations [20].  

 

 

Figure 3.2: Process flow chart of the EARND GA [20] 
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3.4 CONTINUOUS GENETIC ALGORITHM 
The continuous GA [21] is very similar to the conventional GA presented in the previous 

section. The primary difference of both CGA and EARND GA from the conventional GA is the 

fact that variables are no longer represented by bits of zeros and ones, but instead by floating-

point numbers over the allowed range of the problem at hand. However, this simple fact adds 

some nuances to the application technique that must be carefully considered. In particular the 

GA operators i.e. crossover and mutation are different from the conventional GA. 

The next obvious question is, why CGA instead of EARND GA? While the EARND GA 

is an advanced GA, it has some drawbacks; the most important one being early convergence. The 

EARND GA is forced to converge after a certain number of generations and it is possible that the 

GA has not found or is not in a region of optimum solution space by that generation, forcing it to 

converge to a local minima/maxima. Second, the CGA evolves in a manner where the most-fit 

individuals are carried unmodified to the next generation. This potentially reduces the number of 

simulations required since individuals that are carried unmodified from generation to generation 

do not have to be recalculated. 

3.4.1 COMPONENTS OF CONTINUOUS GA 
As previously stated, the goal of the GA is to solve the optimization problem at hand, 

where we search for an optimal solution in terms of the input variables. We begin the process by 

defining a chromosome as an array of variable values to be optimized. If the chromosome has 

varN variables (an N dimensional optimization problem given by 
var1 2, ,..., Np p p then the 

chromosome is written as an array with var1 N× elements so that,  

 
var1 2, ,..., Nchromosome p p p⎡ ⎤= ⎣ ⎦  (3.1) 
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In this case, the variable values are represented as floating-point numbers. Each chromosome has 

a cost function attached to it, found by evaluation the cost function f at the 

variables
var1 2, ,..., Np p p . 

 ( )
var1 2cos ( , ,..., )Nt f chromosome f p p p= =  (3.2) 

Equations (3.1) and (3.2) along with applicable constraints constitute the problem to be solved.  

We will now consider a simple two variable continuous function minimization problem, 

to explain in detail the Continuous GA components [21]. 

Consider the cost function, 

 
( , ) sin(4 ) 1.1 sin(2 )

Subject to theconstraints:0 10and 0 10
function f x y x x y y

x y
= = +

≤ ≤ ≤ ≤
 (3.3) 

Since f  is a function of x  and y  only, the clear choice for the variable chromosome is  

 [ ],chromosome x y=  (3.4) 

with varN = 2. A contour map of the cost function is shown in Figure 3.3. This cost function, as 

evident from the figure, is a complex one, with peaks and valleys (color coded) of the cost 

function clearly evident in the contour plot. The plethora of local minima overwhelms traditional 

optimizing methods and our goal here is to find the minimum value of function ( , )f x y . 

3.4.1.1 VARIABLE ENCODING, PRECISION, AND BOUNDS 
At this point of the GA process, we clearly see the differences and advantages of a 

continuous GA over a traditional GA. We no longer need to consider how many bits are 

necessary to accurately represent a value in binary. Instead, x  and y  have continuous values 

that fall between the bounds listed in equation (3.3). Although the values are continuous, a digital 

computer represents numbers by a finite number of bits. Therefore, when we refer to the 

continuous GA, we mean the computer uses its internal precision and roundoff to define the 
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precision of the value. Consequently, the algorithm is limited in precision to the roundoff error of 

the computer. 

Since the GA is a search technique, it must be limited to exploring a reasonable region of 

variable space. Sometimes this is done by exploring a constraint on the problem such as equation 

(3.3). If one does not know the initial search region, there must be enough diversity in the initial 

population to explore a reasonably sized variable space before focusing on the most promising 

regions. 

3.4.1.2 INITIAL POPULATION 
To begin the GA, we define an initial population of popN  chromosomes. A matrix 

represents the population with each row in the matrix being a var1 N× array (chromosome) of 

continuous values. Given an initial population of popN  chromosomes, the full matrix of 

varpopN N×  random values is generated by using a random number generator. Most random 

number generators generate values which are normalized to fall between 0 and 1. But the 

variable values of ‘unnormalized’, and thus the random numbers need to be altered according to 

the bounds or range. In general, the values could be unnormalized using the following relation, 

 ( )hi l o nor m l op p p p p= − +  (3.5) 

where hip  = highest value of the variable range 

 l op  = lowest values of the variable range 

 nor mp  = normalized value of variable 
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(a) 

 

(b) 

Figure 3.3: Contour plot of the example problem 
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For the current example, the unnormalized values are just 10 nor mp . Chromosomes are now 

passed to the fitness function to evaluate the cost of each chromosome. Table 3.1 lists in the 

order of fitness, the initial population ( 8popN = ) and fitness associated with each of the 

chromosomes and in Figure 3.4 the fitness values are marked by ‘+’. 

Table 3.1: Initial population arranged according to fitness 

x  y  Fitness 
7.636937 8.786544 -15.077730 
9.125283 5.202538 -13.252140 
8.735126 8.786544 -12.513817 
7.732671 8.232512 -9.826081 
5.789647 5.000474 -8.321793 
0.840779 8.981157 -7.844455 
0.671330 8.981157 -7.363932 
8.371161 5.340574 1.768091 

 

3.4.1.3 NATURAL SELECTION 
After evaluating the fitness of all the chromosomes, we have to decide which 

chromosomes are fit enough to survive and possibly reproduce offspring in the next generation. 

To do this, the popN  costs and associated chromosomes are ranked from lowest cost to highest 

cost (Table 3.1) and the bottom 50% of the chromosomes is discarded. From the remaining 

chromosomes ( 4keepN = ), top 50% are selected for reproduction, which go through the crossover 

process to generate the offspring’s, i.e. a crossover percentage ( cP ) of 50%. Therefore, in the 
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Figure 3.4: Contour plot showing the initial population 

current example, the chromosomes which survive the selection process are listed in Table 3.2. 

Table 3.2: Chromosomes which survived the selection process 

x  y  Fitness 
7.636937 8.786544 -15.077730 
9.125283 5.202538 -13.252140 
8.735126 8.786544 -12.513817 
7.732671 8.232512 -9.826081 

3.4.1.4 PAIRING 
The chromosomes in Table 3.2, i.e. the most-fit chromosomes form the mating pool, 

make up for two mothers and two fathers pair in some random fashion. Each pair produces two 

offspring that contain traits from each parent. In addition the parents survive to be part of the 

next generation. There are several approaches for pairing the chromosomes, such as top-down 

pairing, random pairing, tournament selection, rank weighting, and cost weighting. The one used 

in the current research is ‘cost weighting’.  

The cost weighting is a form of weighted random paring in which the probability 

assigned to the chromosomes in the mating pool depends on their cost. As the example problem 
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is a minimization problem, the probability is inversely proportional to the cost, i.e. the lowest 

cost has the greatest probability of mating, while the chromosome with the highest cost has the 

lowest probability of mating. A random number determines which chromosome is selected. A 

normalized cost is calculated for each chromosome by subtracting the lowest cost of the 

discarded chromosomes 1CNk ee p
⎛ ⎞
⎜ ⎟+⎝ ⎠

 from the cost of all the chromosomes in the mating pool: 

 1C Cn Nk ee pCn = − +  (3.6) 

Doing this ensures that all the costs are negative and the probability nP  is calculated using 

 
keep

n
n N

m
m

CP
C

=

∑
 (3.7) 

This approach tends to weight the top chromosome more when there is a large spread in 

the cost between the top and bottom chromosomes. On the other had, it tends to weight the 

chromosomes evenly when all the chromosomes have approximately the same cost. 

3.4.1.5 MATING/CROSSOVER 
The mating process begins by randomly selecting a variable in the first pair of the parents 

to be the crossover point 

 var{ _ }roundup random number Nα = ×  (3.8) 

Let, 
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1 1 2

2 1 2

... ...

... ...

m mNm m

d d d dN

parent p p p p

parent p p p p

α

α

⎡ ⎤
⎣ ⎦
⎡ ⎤
⎣ ⎦

=

=
 (3.9) 

where, the m and d subscripts discriminate between the mom and the dad parent. Then the 

selected variables are combined to form new variables that will appear in the children: 
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p p p p
α α α

αα α

β

β
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⎡ ⎤⎣ ⎦

= − −

= + −
 (3.10) 

where,  β  is also a random value between 0 and 1. The final step is to complete the crossover 

with the rest of the chromosome: 

 

... ...1 1 2 1 var

... ...2 1 2 2 var

offspring p p p pm m new dN

offspring p p p pd d new mN

=

=

⎡ ⎤
⎢ ⎥
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⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.11) 

If the first variable of the chromosomes is selected, then all the variables to the right of the 

selected variable are swapped. If the last variable of the chromosomes is selected, then all the 

variables to the left of the selected variable are swapped. This method does not allow the 

offspring variables outside the bounds set by the parent unless 1β > . 

 For the example problem, in this generation, chromosome 2 and 4 are selected for 

pairing, i.e. 

 
[ ]
[ ]

2

4

9.125283,5.202538

7.732671,8.232512

chromosome

chromosome

=

=
 

A random number generator selects 1p  as the location of the crossover. The random number 

selected for β  is 0.027241β = . The new offspring are given by 

 
( )
( )

1

2

9.125283-0.027241 9.125283-7.732671 , 8.232512

7.732671+0.027241 9.125283-7.732671 ,5.202538

offspring

offspring

⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎣ ⎦

 

3.4.1.6 MUTATION 
Mutation is an important GA operator which makes sure that the search does not get 

stuck in local minima. If care is not taken, the GA can converge too quickly into some specific 

region of fitness surface. If this area is a region of global minima, it is good; but this does not 
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happen often. For example, in some functions, such as the one we have considered in this 

section, have many local minima and the GA will most likely to get stuck in one of those. To 

avoid this problem of overly fast convergence, we force the routine to explore other areas of the 

cost surface by randomly introducing changes, or mutations, in some of the variables. 

To introduce mutation, we first decide how many variables we want to mutate. This 

depends on the mutation rate. In the current example, we use a mutation rate ( mP ) of 20%, i.e. 3 

variables are mutated each generation. This could be calculated as below:  

 var

(0.2 8 2) 3
m popNumber of mutations P N N

roundoff mutations

= × ×

= × × =
 

 Next random numbers are generated to select the row and column of the variables to be 

mutated. The random numbers are then scaled accordingly, as we did while generating the initial 

population. Once mutated and scaled, the fitness function is recalculated using the new variable 

values.  

For the example problem, at the end of all the genetic operations, the set of chromosomes 

that become the input to the next generation are shown in Table 3.3. 

Table 3.3: Variables and fitness at the end of 1st generation 

x y Fitness 
0.283255 8.782450 -9.011352 
5.789647 5.000474 -8.321793 
9.125283 5.202538 -13.252140 
8.735126 8.786544 -12.513817 
1.493311 8.386663 -8.527298 
9.183612 6.413751 -5.726168 
0.840779 8.981157 -7.844455 
8.877505 8.975071 -14.963850 

3.4.1.7 THE NEXT GENERATION 
The process described is iterated until an acceptable solution is found. For our example, 

the GA is run until the change in the mean and standard deviation of all the fitness values 
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between two consecutive generations is less than 66 10−× , which is the convergence criteria.  

Table 3.4 lists the variables and the fitness values after convergence and Figure 3.5 shows the 

contour plot with the fitness values of the final population (circled). 

Table 3.4: Variable and fitness values after convergence 

x y Fitness 
9.039025 8.673142 -18.554251 
9.028314 8.614508 -18.491527 
9.009554 8.677984 -18.490353 
9.009554 8.614508 -18.437245 
9.051708 8.786544 -18.273391 
9.013859 8.951057 -16.984275 
8.808161 8.786544 -14.754626 
9.075129 3.124597 -9.057720 

 

 

Figure 3.5: Contour plot showing region of high fitness (minimum cost) in blue 

It is evident from the plots and the table of converged solutions that the GA was 

successful in locating the region of optimum solution and also the near optimum values of the 

variables. 
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3.5 SUMMARY 
In this section we explained various GA techniques concentrating on the Continuous GA. 

Various components of the CGA were discussed and the ability of CGA to find the region of 

optimum solution of a complex optimization problem is successfully demonstrated. We will now 

apply this GA and CFD to the flow control problem; results of this application are discussed in 

chapters 5 and 6. 
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CHAPTER – 4 

4. COMPUTATIONAL TOOLS 

Computational tools are the basis of this research therefore, it is important to understand 

what is behind each of these codes. In this chapter we will discuss about the grid generation 

process using two in-house computer codes (Flexgrid.f90 and g.f90) followed by a discussion of 

the CFD code (GHOST) and the GA-CFD system. Lastly the computational platforms 

(commodity clusters) used to run the simulations are discussed. The process is primarily divided 

into four steps. First the experimental setup is modeled using a two dimensional grid using the 

grid generation code (Flexgrid.f90). Second the grid data is converted into the format required by 

the CFD code to solve the flow field equations by using a second code called g.f90. Here we also 

introduce the boundary conditions that govern the flow field. Third the flow field is solved used 

the CFD code GHOST and the lift and drag data is generated. Lastly, using the lift and drag data, 

the Genetic Algorithm computes the fitness and based on the fitness values generates the next set 

of configurations. In the current research a combined total of more than 9000 simulations of the 

steady and unsteady cases have been performed to achieve the optimum solution.   

4.1 GRID GENERATION 
The grid generation method is a two step process. First, we generate a full two 

dimensional grid (background and airfoil) using FlexGrid.f90 and then we use g.f90 to convert 

the grid data files into generalized coordinate system and also add the boundary conditions. The 

next two sections discuss the process in detail. 

4.1.1 FLEXGRID.F90 
Flexgrid.f90 is an in-house grid generation tool which was originally developed by Dr. 

Liang Huang and Dr. P.G. Huang at the University of Kentucky and is capable of generating 

two-dimensional structured grids.  
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The grid constructed for the four jet case consisted of 16 two dimensional, multi-zonal 

blocks (Figure 4.1 and Table 4.1) of which 11 are background blocks and 5 airfoil blocks. The 

NACA0012 airfoil block (block # 12 to 16) overlaps on three background blocks (block # 2 to 4) 

at the center of the grid. These blocks are surrounded by 8 peripheral blocks (block # 1, 5 and 6 

to 11).  

The dimensionless outer boundary is chosen as, 

 12 8 12 8H WA A c c× = × = × , 

large enough to prevent the outer boundary from affecting the near flow field in the vicinity of 

the airfoil. Previously [20], extensive grid dependence studies of the basic grid setup has been 

performed and validated. 

 

Figure 4.1: Multi-zone grid setup 

The airfoil block in the current research is different form the one used in the case of two-

jet optimization system. In the case of two-jet setup, the jet blocks were generated exclusively in 

each simulation. This approach is not only time consuming (considering the long GA runs), but 
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also is very cumbersome to use with an array of jets. For example, even with four jets the coding 

process of implementing the jets without the jet blocks being overlapped is an extremely 

complicated process, not to mention the additional effort that is required to generate the 

intermediate blocks. Considering this difficulty is particularly difficult to adapt this type of grid 

in a setup where we intend to extend to an array of jets. Hence, the airfoil block was modified 

such that the grid resolution on the top portion of the airfoil, where the jets are typically placed 

(5% to 80% of chord length) is made equal to the grid resolution required by the jets (Figure 

4.2). With this kind of a grid setup we can easily place the suction and blowing jets along the 

available length by simply varying the boundary conditions at that location. Also, we can 

increase or decrease the number of jets or have an array of jets, as this no longer requires any 

change in grid generation. 

The grid used in the case of unsteady synthetic jet setup is again modified. This is 

because the jet width of the oscillatory jets are much smaller than the steady jets and a fine grid 

spacing (as in steady four jet case) on the whole upper block would be computationally very 

expensive. More details of this grid setup are discussed in Chapter 6. 

Flexgrid is also hardwired with the boundary information. A file called ‘input’ is 

generated using this information and is used by G.f90 to generate the boundary condition in each 

of the grid block data files. A brief description of this ‘input’ file is presented in a later part of 

this chapter. 

 



   57

 

(A) 

 

(B) 

Figure 4.2: A: old two-jet grid (multi jet blocks), B: new grid (single jet block) 
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Table 4.1: i and j points of the 16 grid blocks 

 

4.1.2 G.F90 
GHOST, the CFD code used in this research requires that the input data be in generalized 

coordinate system. This process of converting the grid data files generated by Flexgrid.f90 to 

generalized coordinate system and adding other physical (boundary) information is performed by 

the code, g.f90 which was originally developed by Dr. P. G. Huang. The contents of the grid file 

for a non moving grid are as follows [91]: 

• Number of grid points in the x and y direction. 

• Number of ghost points. 

• Grid point weight in the x and y direction 

• x & y co-ordinates of the grid points. 

• Volume of the cell surrounding each grid point. 

• Distance between the wall and the grid point. 

Block Number i points j points
Background 1 61 84
Background 2 78 84
Background 3 63 84
Background 4 110 84
Background 5 110 84
Backupper 6 110 100
Backupper 7 140 100
Backupper 8 110 100
Backlower 9 110 100
Backlower 10 140 100
Backlower 11 110 100

Lower 12 474 50
LeaUpper 13 35 50
MidUpper 14 799 50
TraUpper 15 42 50

Tra 16 40 50
Total Grid Points = 176948
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• Values for the various transformation functions such as , ,x y x yandη η ξ ξ . 

• A variable called “inx” which specifies if a particular grid point is a ghost point. If the value 

of inx for a grid point is 1, then that grid point is treated as a ghost point, whereas when its 

zero, it is treated as a normal point. 

• Boundary conditions 

4.1.3 INPUT FILE – “input” 
As mentioned in the previous section, g.f90 is used to generate the grid data required by 

GHOST. In order for g.f90 to generate a grid it requires certain data regarding the size of the 

computational grid, boundary conditions and number of grid points. This data is provided using 

the file called “input”, which is generated by Flexgrid.f90. An input file used to generate the 

multi-zonal grid is presented in Appendix A2. 

4.2 GHOST 
The computations were carried out using the CFD code, GHOST. GHOST is an in-house 

CFD code originally developed at the University of Kentucky by Dr. P. G. Huang. This code has 

been tested extensively and is routinely used for turbulence model validation [92] [93] [94]. The 

code has also been used to generate published flow control results such as the suction/blowing on 

NACA0012 [3], morphing wing [12], and plasma actuator [95] flow control setups. It is a two-

dimensional incompressible finite-volume structured formulation, computational fluid dynamics 

code with chimera overset grids for parallel computing. The QUICK and TVD schemes are 

applied to discretize the convective terms in the momentum and turbulence equations, 

respectively. A central difference scheme is used for the diffusive terms and the second order 

upwind time discretization is employed for the temporal terms. The code employs a variety of 

Reynolds-Averaged Navier Stokes Turbulence models. The turbulence model used in the present 

computation is Menter's SST two-equation model [94], which provides excellent predictive 

capability for flows with separation [97].  The multi-block and chimera features allow the use of 
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fine gird patches near the jet entrance and in regions of highly active flow. GHOST also employs 

MPI parallelization to allow different computational zones to be solved on multiple processors 

[98]. Simulations have been performed on a variety of computer architectures which will be 

discussed in the next section.  

The governing equations for unsteady incompressible viscous flow under the assumption 

of no body force and heat transfer that are used to calculate the various flowfield parameters in 

GHOST are as below: 

Conservation of Mass 

 i iS
V

dV u n dS
t

ρ ρ∂
= −

∂ ∫ ∫  (4.2)  

Conservation of Momentum 

 j i i j j ij iS S S
V

u dV u n u dS pn dS n dS
t

ρ ρ τ∂
= − − +

∂ ∫ ∫ ∫ ∫  (4.3) 

Conservation of Energy 

 i i j j j ij iS S S
V

EdV u n EdS pu n dS u n dS
t

ρ ρ τ∂
= − − +

∂ ∫ ∫ ∫ ∫  (4.4) 

where ρ  is density, p  is pressure, iu  are the components of the velocity vector, in  is unit 

normal vector of the interface, i jτ  is tensor of shear force, and specific internal energy is 

)( 222
2
1 wvueE +++= [89]. 

Flow and geometry data in GHOST for a given grid or subgrid are stored in individual 

arrays, as in 1 2( , ), ( , ),..., ( , ).ni j i j i jφ φ φ  On a given grid, GHOST performs the majority of its 

calculations as a series of i,j bi-directional sweeps in nested double loops. In brief, the 

momentum equations are solved implicitly in a delta form, shown here for the time discretization 

in one dimension:  
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1 1 13( ) ( ) ( ) 3(( ) ) (( ) )

2 2 2

m m n n n m n n mf f
t x t t x

φ φ φ φ φ φ φ− + +Δ ∂ Δ − − ∂
+ = − −

Δ ∂ Δ Δ ∂
 (4.1) 

where φ represents any variable, m is the subiteration level, and n is the time iteration level. The 

right-hand side of Eq. (4-1) is explicit and can be implemented in a straightforward manner to 

discretize the spatial derivative term. The left-hand side terms are evaluated based on the first 

order upwind differencing scheme. The deferred iterative algorithm is strongly stable, and the 

solution 1nφ +  is obtained by using inner iterations to reach the convergent solution of the right-

hand side of Eq. (4-1), corresponding to φΔ  approaching zero. At least one subiteration is 

performed at every time step so that this method is fully implicit.  

The resulting matrices generated at each subiteration based on the QUICK and TVD 

schemes as well as evaluation of source/sink terms are solved with ADI-type decomposition into 

a pair of sweeps alternately in the i and j-directions which are solved sequentially in tri-diagonal 

matrices. This sequence may be repeated for improved accuracy. The Rhie and Chow technique 

[99] is then used to extract the pressure field from the continuity equation.  

4.3 GA-CFD SYSTEM 
The implementation of the genetic algorithm is designed for commodity clusters or 

similar architectures, although with modification it may be used on any system. The code is run 

from a server node on which a specified number of genomes from the current generation are 

selected, the grids generated, and then the required data is transferred into a series of directories, 

one corresponding to each genome. These directories are then distributed among the designated 

set of nodes for the CFD evaluation of a given genome. The CFD computation may be 

accomplished on a single or multiple processors, depending on the choice of the user. Once the 

computation is completed, the resultant fitness data is collected by the server node while 

simulation details not needed for the genetic search process are stored for future reference. Sets 
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of genomes are similarly simulated until the full generation is completed; then, the server node 

applies the genetic search algorithm to generate a new generation and the process is repeated 

until the desired full evolution is complete. The basic architecture of the system was developed 

as part of the previous two jet simulation [20]. In the current research, it was modified to 

accommodate the Continuous GA and after each full generation the Continuous GA is executed 

to generate the next set of individuals. The original system incorporated various genetic codes 

and files which was a reasonably complicated system. It was not robust enough to easily 

accommodate the changes in the design parameters. On the other hand with the implementation 

of the CGA, any changes in the design parameters (e.g. increasing number of jets) could be 

easily implemented by updating the CGA, thus making the system more robust than before.  

4.4 COMPUTATIONAL PLATFORMS – KENTUCKY FLUID CLUSTERS 
The computer platforms used for the simulations in this research are Kentucky Fluid 

Clusters (KFC). Various versions of KFC’s have been constructed at the University of Kentucky, 

and those used in the current research are KFC5, KFC6A and KFC6I., 

KFC5 was built in the summer of 2005 by the UK-CFD group at the University of 

Kentucky. It consists of 47 nodes on a single Gigabit switch with AMD64 3200+, 2.01GHz 

processors. Each node is mounted with 512MB of physical memory and the processors have a L2 

cache of 512KB each. The computation time of the current four-jet simulations was ~9.0 hrs per 

simulation with one simulation on one node.  

KFC6A and KFC6I were built in the fall of 2006. KFC6I is built with Intel processors. It 

consists of 24 nodes networked using a single Gigabit switch. The processors on these nodes are 

Intel E6400 family, which is a 64bit dual core 2.13 GHz processor; the nodes are mounted with a 

physical memory of 1GB each. The main advantage of this cluster over the dual core AMD 

cluster is the L2 cache; the Intel’s have a L2 cache of 1MB per core, which boosts the 
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performance relative to AMD when memory intensive CFD codes are run. Also, the dual core 

capability of this cluster is operational; this increased the power by two fold. The simulation time 

on the dual core Intel processors for the four-jet case is 9.0 hrs per two simulations, with one 

simulation on each core of a node. This is achieved by exploiting the dual core capability of the 

processor. 

KFC6A has 23 nodes; again on a single Gigabit switch with AMD x64 4600+, 2.40GHz 

processors (dual core). It is equipped with a main memory of 1GB on each node and a L2 cache 

of 512KB on each core.  Computation time of the four-jet case on this is little less than KFC5, 

~8.5 hrs per simulation with one simulation on one node. It should be noted that the dual core 

capability of these processors is still not tested. 

 

  KFC6I      KFC5 

Figure 4.3: KFC6-I and KFC5 
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4.5 SUMMARY 
In this chapter we discussed about the various codes that were used to perform the 

simulations of current research. A brief description of the Kentucky Fluid Clusters was also 

presented and a comparison of the simulation time for the four-jet case was shown. Chapter 5 

presents the basic case setup procedure and results of the steady four-jet simulation obtained 

using both the CGA and the EARND GA. This also includes a comparison of the CGA and the 

EARND GA results. As the focus of current research is the Continuous GA, detailed analysis of 

this GA approach is presented. We will also discuss the possibility of improving the aggregate 

fitness by combining both the GA approaches. 

In chapter 6, results of the unsteady two synthetic-jet results are presented. It begins with 

a discussion of the modifications made to the airfoil grid to accommodate the relatively narrow 

synthetic jets, followed by a detailed discussion of the case setup and the jet configurations 

obtained using the Continuous GA. 
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CHAPTER – 5 

5. STEADY FOUR JET RESULTS 

The flow under consideration is over a NACA0012 airfoil at an 18o angle-of-attack and a 

Reynolds number (Re) of 500,000. Given the relatively large Re a fully turbulent flow with no 

transition is assumed for the computation. Because the focus of the current investigation is the 

control of the flow separation through blowing and suction jets, an incompressible Navier-Stokes 

solver (GHOST) is used to eliminate possible additional uncertainties caused by compressibility 

effects. The NACA0012 airfoil is placed at 18o  relative to the freestream, resulting in a strongly 

separated flow when there is no flow control.  

 5.1 GRID AND BOUNDARY CONDITIONS 
As previously stated, the basic two-dimensional grid consists of 11 background blocks in 

a three-by-three pattern, the central region consisting of three subgrids over which the airfoil grid 

is placed (Figure 5.1-a). The airfoil grid consists of 5 blocks; these blocks are the most refined 

blocks, where fine grid spacing is employed relative to the background blocks. An even finer 

grid spacing (equal to that required for a jet) is employed on the upper block of the airfoil, (5% 

chord to 80% chord), where the jets are typically placed.  

On the outer boundary, the left (inlet) boundary is fixed with a uniform dimensionless 

inlet velocity of unity, the upper and lower boundary condition are “freestream” boundaries 

which satisfy the Neumann condition, and the right (outflow) boundary condition is set to a zero 

velocity gradient condition. For the airfoil blocks, the inner boundary condition is a no-slip wall 

boundary condition, and the outside boundary is set to “overlap” which allows the background 

grid points being overlapped by the airfoil block grid points to interpolate values from the 

foreground airfoil grid points. The jet inlet velocity for the jets in general is given by eqn 5.1. 
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Figure 5.1 (a): Grid and boundary conditions for four jet case 
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( )
( )

( )

Jet Velocity:
( , ) cos

( , ) sin

where 

u i j A U

v i j A U

Baseangle

β

β

β θ

∞

∞

= × ×

= × ×

= +

 (5.1) 

Computation information between adjacent blocks is exchanged by two ghost points. All 

the parameters chosen in the computation are dimensionless. An important criterion that has to 

be satisfied to make sure that we clearly capture the velocity profile near the wall (in the 

boundary layer) is the non-dimensional wall distance ( y+ ). This is defined as  

 0, ,u yy u τ
υ ρ

+ ∗
∗= =  (5.2) 

 0

where
friction velocity at the wall
shear stress at the wall

distance to the wall
= kinematic viscosity

u

y

τ

υ

∗ =
=

=

 

Therefore, care was taken to maintain near wall y+  values of the airfoil blocks within 0.5, well 

within the region of laminar viscosity (viscous sublayer region). Details on general grid 

independence and numerical accuracy for this case without flow control jet have been presented 

in the previous work [20] and are generally satisfactory for the given grid.  

5.2 PARAMETER SELECTION 
The jet parameters for this case are selected based on our previous [3] [20] single-jet and 

two-jet cases. Three parameters (Figure. 5.1-b) for each jet are selected for the search 

investigation, viz. jet location Lj (measured in percent chord), suction/blowing amplitude A 

(measured in term of orifice velocity relative to the inflow freestream velocity), and 

suction/blowing angle θ . The jet width of all the four jets was fixed at 2.5% chord length, based 
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on the study by Dannenberg [100], who showed that increasing the orifice area beyond 2.5% 

chord will not increase the lift significantly. With an x spacing of 0.001 (used for the current 

setup) on the MidUpper block of the airfoil, there are 25 grid points along the span of the jets. 

 

 

Figure 5.1 (b): Jet parameters for steady case [20] 

For the numerical investigation, the jet entrance velocity is set as,  

 
( )
( )

.cos

.sin

u A

v A

θ β

θ β

= +

= +
 

where θ  is the angle between jet surface and the jet entrance velocity direction, and β  is the 

angle between the free-stream velocity direction and the local jet surface. Note that a negative θ  

corresponds to suction while positive indicates blowing. Thus, perpendicular suction is -90o and 

perpendicular blowing is 90o.  

It was noticed in the previous two-jet case that the potential flow control due to suction 

tends to be much more significant than that of blowing in a ‘suction and blowing’ configuration. 

In order to prevent suction control from dominating the genetic search (and thereby significantly 

reducing the complexity of the parameter space), the total suction amplitude of each jet is limited 
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to be no more than 0.02121, or 2.12% of the inlet velocity, while the net blowing velocity of the 

jets can reach 0.1414, or 14.14% of inlet velocity. These amplitude values are chosen based on 

the previous two jet simulations, i.e. in this simulation the potential maximum combined 

momentum flux supplied by the two suction or blowing jets is the same as the single suction or 

blowing jet in the two jet case. This corresponds to a momentum coefficient, Cμ  (which is 

defined as shown below), of 0.0 to 0.004231, the maximum value corresponds to sum of all the 

four jets at full amplitude. 
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This satisfies the criterion of a momentum coefficient to be around 0.002 or more to have some 

effect on the flow field [54]. Further, the amplitude of one of the suction jets is fixed at the full 

allowed amplitude, again based on the previous simulations. The location of the jets jL  is varied 

from 5% chord to 80% of chord. So, considering all the four jets, we have a total of 11 

parameters to be optimized which are listed in Table 5.1. 

5.3 GENETIC PARAMETERS 
As compared to the two jet setup, the four-jet evolution more than doubles the number of 

parameters considered. Angle and location for each jet is allowed to vary in the same ranges as 

the two jet case and the amplitude of one suction jet is fixed as before. The genetic coefficients 

for the Continuous GA are set as, 
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50
56
11

. 0.15
. 0.50

NGeneration
NPopSize
NVariable
MutationConst
Crossover Const

=
=
=

=
=

 

and the aggregate fitness is defined as, 

 ( )max
. / . /A l lB dB dFit a C C b C C= +  (5.2) 

a and b were set to 1, providing equal weight to both lift and drag and making the baseline fit 

equal to 2.0. This definition of fitness also provides flexibility of adjusting a and b such that 

different importance of lift and drag could be explored for a given search. 

The fitness function used for the EARND GA is same as the one used for the Continuous 

GA (Equation 5.2). The genetic coefficients used for the EARND GA are listed below. 

 

50
56
11

. 0.10
. 0.20

NGeneration
NPopSize
NVariable
MutationConst
Crossover Const

=
=
=

=
=

 

The mutation and crossover percentages for this GA were selected based on its performance in 

the two-jet system. Apart from the above coefficients the EARND GA also has the following 

parameter. 

 
8

20%
NUpdate
Diversity Control

=
=

 

Boundary updates occur each NUpdate generation over the second 50% of the evolution. The 

boundaries for each variable design space are explicitly updated according to the statistics of the 

best individuals up to that generation. The diversity control is the percentage of the total 

generations in which additional care is taken to maintain diversity.  
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Table 5.1: Parameter range for the four jet case 

Variable Name Range 
Suction location –1 (LjS1): 0.05 ≤ LjS1 ≤ 0.80 

Suction angle – 1 (θS1): -90o ≤ θS1 ≤ 0o 
Suction Amplitude – 1 (AS1): AS1 = 0.02121 
Suction location – 2 (LjS2): 0.05 ≤ LjS2 ≤ 0.80 

Suction angle – 2 (θS2): -90o ≤ θS2 ≤ 0o 
Suction Amplitude – 2 (AS2): 0.0≤ AS2 ≤ 0.02121 
Blowing location – 1 (LjB1): 0.05 ≤ LjB1 ≤ 0.80 

Blowing angle – 1 (θB1): 0o ≤ θB1 ≤ 90o 
Blowing amplitude – 1 (AB1): 0.0 ≤ AB1 ≤ 0.1414 
Blowing location – 2 (LjB2): 0.05 ≤ LjB2 ≤ 0.80 

Blowing angle – 2 (θB2): 0o ≤ θB2 ≤ 90o 
Blowing amplitude – 2 (AB2): 0.0 ≤ AB2 ≤ 0.1414 

5.4 OPTIMIZED CONFIGURATION - CGA 
The simulation consisted of 50 generations with 56 individuals per generation, leading to 

a total of 2800 simulations. The values of the baseline lift and drag ( lBC and dBC ) were 

determined from simulations of the base airfoil (without jets) and were fixed at 0.8918 and 

0.1610 respectively. The initial population was selected such that, the individuals cover the full 

allowed parameter range. The maximum fitness obtained from the evolution was 2.1910. This 

fitness value corresponds to the jet parameters listed in Table 5.2.  

Table 5.3 lists the best 10 individuals of the evolution. The fitness values of these top ten 

individuals are nearly equal, but the configurations are somewhat different. It is interesting to 

note that the suction jets configuration does not vary much (particularly the leading suction jet), 

but the blowing jet configuration does not behave in a similar manner. The location of blowing 

jets varies over a much bigger range as compared to the suction jets while still yielding a similar 

fitness value. The same analysis applies to other parameters of the blowing jets, suggesting that 
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the blowing parameters are less important as compared to the suction jets. More discussion about 

the sensitivity of these parameters is presented in the latter part of this section. 

Table 5.2: Best configuration obtained from CGA simulation 

 

 

Figure 5.2 presents the configurations from all the 50 generations of the CGA simulation, 

sorted by fitness, the most-fit configuration being the one on the y-axis, and Figure 5.3 presents 

the best 500 configurations. The configurations that yield the best fitness are those where both 

suction jets take a leading position on the airfoil, with an orientation approaching normal suction, 

and both jets operating at near-maximum amplitude. In effect, the two jets act much like a single 

suction jet, similar to the earlier two jet simulation [20], but in the two jet case the preferred 

location of the suction jet was a bit further back (at about 13% chord). The trailing suction jet 

generally seems to favor a slightly less normal orientation compared to the leading suction jet. 

 

 

 

 

 

0.0500 0.0942 Location
-84.3770 -82.2890 Angle
0.0212 0.0207 Amplitude
0.5219 0.7150 Location
0.5970 26.1910 Angle
0.0423 0.0928 Amplitude

Cl 0.9962 Cd 0.1499
Fitness 2.1910

Leading 
Suction

Trailing 
Suction

Leading 
Blowing

Trailing 
Blowing
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Table 5.3: Best 10 individuals from CGA simulation 
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Figure 5.2 (a): Fitness of all configuration from CGA 

 

Figure 5.2 (b): Location sorted by fitness - CGA 

Key for scatter plots:

■  Leading Suction Jet 

 ■  Leading Blowing Jet 

■  Trailing Suction Jet 

 ■  Trailing Blowing Jet 

 ■  Fitness 
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Figure 5.2 (c): Amplitude sorted by fitness – CGA 

 

Figure 5.2 (d): Angle sorted by fitness – CGA 
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The characteristics of the suction jets are relatively consistent across the top 500 

configurations (Figure 5.3). The blowing jets, on the other hand, exhibit a far greater spread of 

values in the high fitness range. The first 460 configurations have a fitness of 2.18 or higher, 

which suggests that the overall influence of the blowing jets on the computed lift and drag is 

smaller even though these jets can have much higher amplitude. The best solutions have the 

leading blowing jet generally located near the middle of the surface (50% chord), with a near-

tangential angle and at lower amplitude (1%-7% freestream) relative to the more rearward 

(trailing) jet. 

 The trailing blowing jet is located more towards the trailing edge (greater than 65% 

chord) at a moderate angle (200 to 400) and at amplitude higher than the leading blowing jet, but 

less than the maximum possible amplitude (about 10% of freestream velocity). However, there 

are a considerable number of solutions that violate these general conditions, again suggesting 

that the blowing jets play a less important role in this flow control scheme, with high fitness 

results possible even when one of the blowing jets approach zero amplitude. So, like in the 

previous two jet studies, the suction jets play the dominant role. 

A closer look at the top 500 parameters individually (Figure 5.4), suggests that the 

dominant parameters converge more aggressively than the other (not so dominant) parameters. 

Leading suction jet location (Figure 5.4 (a)) is almost a straight line, with the jet located at the 

most leading position possible, 5% chord, with a near normal angle. 
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Figure 5.3 (a): Fitness of best 500 individuals – CGA 

 

Figure 5.3 (b): Location of best 500 individuals - CGA 

Key for scatter plots:

■  Leading Suction Jet 

 ■  Leading Blowing Jet 

■  Trailing Suction Jet 

 ■  Trailing Blowing Jet 

 ■  Fitness 
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Figure 5.3 (c): Amplitude of best 500 individuals - CGA 

 

Figure 5.3 (d): Angle of best 500 individuals – CGA 
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Figure 5.4 (a): Best 500 leading suction jet configurations (fixed amplitude)  

  

 

Figure 5.4 (b) Best 500 trailing suction jet configurations along with fitness 
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Figure 5.4 (c): Best 500 leading blowing jet configurations along with fitness 

As shown in Figure 5.4(b), the trailing suction jet is not very far from the leading suction 

jet; located at about 10% chord, it almost coincides with the leading suction jet. As mentioned 

earlier, this is consistent with the earlier two jet study, where it was suggested that if two suction 

jets were used, then the system will favor towards placing the jets in such a way that they behave 

as a single suction jet. The amplitude of this jet is also pushed towards the full allowed amplitude 

and the angle is generally a bit less normal relative to the leading suction jet (-750 to -900). 
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Figure 5.4 (d) Best 500 trailing blowing jet configurations along with fitness 

For the leading blowing jet (Figure 5.4 (c)), the location is fairly consistent for the top 

500 individuals, i.e. between 45% chord to 70% chord, with a more tangential angle (00 to 400). 

The blowing amplitude on the other hand is not very consistent and spreads almost along the 

whole parameter range, even for just the best 500 individuals. The location of the trailing 

blowing jet (Figure 5.4 (d)) is relatively consistent among the best 500 individuals. The 

amplitude on the other hand is again spread out in the allowed parameter range. The angle seems 

to be more converged than the amplitude hovering between 150 and 450 for the best fit 
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individuals. Interestingly the trailing blowing jet angle is generally a bit higher than the leading 

blowing jet. 

5.5 FLOW CONTROL PHYSICS 
To better understand the effect of suction and blowing on the flow field of the system we 

compare the vorticity and streamline plots of the baseline (no jets) case with the optimum 

configuration. We also consider suction and blowing separately for this analysis. 

 

Figure 5.5: Streamline and vorticity plot using the CGA configuration  

The lift and drag improvements are possibly a result of the weakening of the separation 

bubble (Figure 5.5).  Comparing the baseline case with the case where the jets are in optimized 

configuration, we can see a clear reduction in the size of the separation bubble, thus augmenting 
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lift and suppressing drag. To see the effects of blowing and suction, plots of suction only and 

blowing only are also shown. Adding the suction jets reduces the size of the separation and shifts  

 

      (a) 

 

      (b)             (c) 

Figure 5.6: Cp (coefficient of pressure) using the CGA configuration 

    ■ Baseline 

     ■  Only Blowing 

     ■  Only Suction 

     ■  Optimum CGA 
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the separation point downstream. The suction-only jet configuration is visually indistinguishable 

from the full four jets configuration. The blowing jets are not particularly effective by 

themselves and in this case the size of the separation bubble is not very different from the 

baseline case. But when combined with the two suction jets, the location of the leading blowing 

jet is close to the point of separation with the near-tangential blowing, accelerating the flow 

downstream, potentially keeping the flow attached a bit longer.  

 

Figure 5.7: Pressure plots using the CGA configuration 

The more trailing blowing jet is in the separation bubble and is also relatively tangential, 

presumably to counter the adverse flow of the re-circulation. This effect of the blowing jet could 

be seen in the Cp and the pressure plots (Figure 5.6 and 5.7). The plot curves of blowing only and 

the base line case overlap at most places and so are the suction only and optimum case, again 
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illustrating the minimum change in these two set of cases. Also it is interesting to note that the 

mitigating effects of the two blowing jets appear to be fairly limited and seem to be weaker than 

the effect generated by the single blowing jet in the two jet simulation [20]. The skin friction (Cf) 

plot (Figure 5.8) and the lift-drag plots (Figure 5.9) are also consistent with the above analysis. 

Table 5.4: Separation point for various configurations 

 

Figure 5.8: Cf (skin friction) using the CGA configuration 

Configuration % of Chord
Baseline 22.686

Only blowing 22.899
Only suction 30.391

Optimum (CGA) 30.412
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Using the Cf plots the location of the separation point was obtained for each of the 

configurations above (Table. 5.4). It is clear from the table that the point of separation moves 

downstream in the optimum configuration relative to the baseline case, but again the effect of 

only blowing or only suction is not very different from the baseline and the optimum cases 

respectively. Also, a closer look at the blowing only and optimum cases shows the effect of the 

blowing jet. Relative to the suction-only and baseline case, the curve is pushed upwards, i.e. Cf is 

moved towards zero or higher. This presumably is an affect of the second blowing jet which is 

located around the same region (65% to 70% chord) that may be augmenting the circulation 

around the region and thus keeping the flow attached a bit longer than the former cases. Figure 

5.9 show the evolution of the lift and drag of various configurations. Each CFD evaluation is 

iterated 35000 times for the steady case and the plot clearly shows the converged steady state 

solution at the end of 35000 iterations.   

 

Figure 5.9: Cl and Cd using the CGA configuration 
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(a) 

  

(b) 

 

Key for scatter plots:

■  Leading Suction Jet 

 ■  Leading Blowing Jet 

■  Trailing Suction Jet 

 ■  Trailing Blowing Jet 

 ■  Fitness 
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(c) 

 

      (d) 

Figure 5.10 (a) to (d): Jet parameters for configurations having fitness within 1.5% of the 
maximum fitness 
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An alternate way to look at the data is to consider all the configurations that fall within a 

certain error limit of the maximum fitness value and see how wide a range these parameters 

cover. Figure 5.10 show solutions from the CGA evolution with fitness values within 1.5% of the 

maximum fitness value. The error allows for the fact that the computation may not precisely 

mirror reality, or that reality can not always be accounted for with this degree of numerical rigor 

in reasonably complex flows.  

From these results it is apparent that the suction location is fairly tightly bound for even 

moderate improvement in the fitness value and that the suction angle and blowing location are 

reasonably constrained. Conversely, the blowing amplitude is more weakly constrained, with 

about half the parameter space being able to achieve the 1.5% error in fitness. Similarly the 

blowing angle is hardly restricted, with reasonably close solutions being generated for nearly all 

angles with in the allowed range. 

5.6 EARND GA 
A second simulation consisting of the same parameters was done using the EARND GA. 

The EARND GA was originally developed to optimize the two-jet control system and was 

successful in doing so [3] [20]. It is clear from the fitness plots (Figure 5.11) that the EARND 

GA did not perform as well relative to the Continuous GA. The maximum fitness value obtained 

is only 2.1228 (Table 5.5) which is about 6% higher than the baseline fitness. Although this is a 

reasonable improvement considering the complexity of the system, the EARND GA seems to 

have got stuck in a not so optimum solution space. This is based on the results obtained using the 

Continuous GA which obtained a fitness of 2.1910, an increase of 9.5% from the baseline value.  

To better understand what may have gone wrong with the EARND GA, we look at the 

convergence of the various parameters and compare the convergence pattern with the Continuous 

GA convergence pattern (Figure 5.12). Table 5.6 presents the 10 best configurations generated 
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by the EARND GA, with clear differences in the placement of the jets, the angles of both suction 

jets and one blowing jet, and the magnitude of blowing in both cases relative to the Continuous 

GA configurations. The most prominent parameters that the EARND GA has failed to optimize 

are the trailing suction jet location and angle. It seems to have converged these parameters into 

local optima, thus yielding a lesser fitness than the CGA fitness. The reduced effect of this 

configuration on the separation bubble can be seen in Figure 5.13(a), thus having a weaker effect 

on lift and drag, when compared with the Continuous GA configuration Figure (5.13-b). This 

result was something of a surprise given the performance of this search approach on the previous 

two jet configuration. 

A possible cause of the failure is that with only 56 individuals per generation and 11 

parameters, the degree of diversity in each generation may not be sufficient to overcome 

unfortunate random mutations and crossovers. The selection scheme of the Continuous GA, in 

which the best half of the previous generation is explicitly retained, can mitigate against dramatic 

fitness declines. On the other hand, the techniques designed to drive convergence in the EARND 

GA can keep the evolution heading towards a less optimal configuration region once it gets 

started down the wrong path. As with any stochastic approach, it is quite possible that a repeat of 

the EARND GA evolution would randomly stumble onto a better path and yield a better result, 

but the outcomes of the two completed evolutions and the algorithm details suggest that the 

Continuous GA may be the more robust approach for this type of flow control problem.  

Table 5.5 Best configuration from the EARND GA 

 

0.0500 0.2200 Location
-90.0000 0.0000 Angle
0.0212 0.0212 Amplitude
0.6188 0.800000 Location
45.0000 90.000000 Angle
0.1000 0.141400 Amplitude

Cl 0.9253 Cd 0.1484
Fitness 2.1228

Leading 
Suction

Trailing 
Suction

Leading 
Blowing

Trailing 
Blowing
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Table 5.6 Best 10 configurations obtained using EARND GA 
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(a) EARND GA 

 

(b) CGA 

Figure 5.11: Fitness curves from EARND GA (a) and CGA (b) 

Key for scatter plots:

■  Leading Suction Jet 

 ■  Leading Blowing Jet 

■  Trailing Suction Jet 

 ■  Trailing Blowing Jet 

 ■  Fitness 
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Figure 5.12 (a): Location of jets from EARND GA (top) and CGA (bottom) 
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Figure 5.12 (b): Amplitude of jets from EARND GA (top) and CGA (bottom) 
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Figure 5.12 (c): Angle of jets from EARND GA (top) and CGA (bottom) 
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Figure 5.13 (a): Vorticity and streamline plot with EARND GA optimum jet configuration 

 

Figure 5.13 (b): Vorticity and streamline plot with CGA optimum jet configurations 
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5.7 COMBINATION OF CGA AND EARND GA CONFIGURATION 
From the previous EARND GA and CGA comparison, it is clear that the EARND GA 

optimum configuration does not quite push towards having the trailing suction jets at full 

amplitude, or the angles to near normal, and this reduces the effect of the suction jets on the 

setup, i.e. the suction jets are not so dominant as they would be if they were at full amplitude and 

normal angle. However, the failure of the EARND GA to best situate the suction jets appears 

indirectly to have caused the blowing jets to achieve a greater degree of convergence than in the 

CGA evolution. As an experiment the suction jet parameters from the CGA best fitness 

configuration have been combined with the EARND GA best configuration for blowing jets. The 

resultant fitness, although not much different from the CGA best fitness, is the highest of all. 

This suggests that the optimum blowing configuration may be better attained from a simulation 

with further reduced amplitude on the suction jets. The various jet parameters and the fitness 

obtained by this setup are listed in Table 5.7.  

Table 5.7 Jet configuration and fitness using both GA configurations 

 

Comparing the vorticity and stream plot of the combined GA configuration with the 

Continuous GA best configurations (Figure 5.14), it is seen that the blowing jets do a slightly 

better job in controlling the separation bubble downstream, potentially keeping the flow attached 

a bit longer relative to the Continuous GA configuration. 

0.0500 0.0941 Location
0.0212 0.0206 Amplitude

-84.3700 -82.2890 Angle
0.6187 0.8000 Location
0.1000 0.1414 Amplitude
45.0000 90.0000 Angle

Cl 0.9675 Cd 0.1448
Fitness 2.1970

Leading 
Suction

Trailing 
Suction

Leading 
Blowing

Trailing 
Blowing
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   (a)           (b) 

 

   (c)           (d) 

Figure 5.14: Vorticity and streamline comparisons 

5.8 SUMMARY 
In this chapter we presented the optimized configuration for the steady four jet 

simulation. The jet parameters were optimized to yield high lift and low drag. Initially the 

Continuous GA results were discussed, followed by a comparison of the CGA results with the 

EARND GA results and finally a setup using the results from both the Genetic Algorithms was 

discussed. The optimum configuration showed a great improvement in the fitness by increasing 

lift and decreasing drag, which was achieved by the weakening of the separation bubble. It was 

Baseline Optimum - CGA 

Optimum – EARND GA Combined GA 
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also shown that, for the steady four jet case optimization, the Continuous Genetic Algorithm 

performed better than the previously developed EARND Genetic Algorithm. The configuration 

setup by combining both Continuous and EARND Genetic Algorithms results achieved the best 

fitness value as a result of the better optimization of the blowing jet parameters. 
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CHAPTER – 6 

6. UNSTEADY SYNTHETIC JET RESULTS 

In the previous chapter we presented the optimized results of the steady four jet control 

system using both GA approaches. However most active flow control techniques are not steady, 

but rather rely on unsteady means to control separation. Therefore an unsteady synthetic jet flow 

control system is developed and the Continuous Genetic Algorithm is applied to optimize the 

various jet parameters. Initially a pure oscillating two-jet setup was tested and was found not to 

strongly affect the flow field for the current flow conditions. Thus a hybrid unsteady setup was 

developed and the various jet parameters were optimized.  

6.1 SYNTHETIC JETS 
Synthetic jets have emerged as a versatile micro-actuators with potential applications 

ranging from separation [101] [102] and turbulence [103] control to thrust vectoring [104] and 

augmentation of heat transfer and mixing [104]. Among all these applications, the use of these 

devices for active control of separation has been studied quite extensively, and in a number of 

experimental studies [101] [102],  it has been demonstrated that synthetic jets can reduce the 

extent of separation over bluff as well as streamlined bodies. 

Separation over an airfoil is typically an unsteady process that is accompanied by the 

formation of large-scale vortex structures in the separated shear layer. The characteristic 

frequency of formation of these vortex structures is ( / )sU L∞Ο  where sL is the length of the 

separation zone and U∞  the freestream velocity. There is broad consensus [101] [106] that 

synthetic jets operating in this frequency range tend to promote and amplify the formation of the 

vortex structures in the separation region. These vortex structures entrain high momentum, 

freestream fluid into the separated flow region and this promotes the early reattachment of the 

separated boundary layer [107]. In the case where the boundary layer is laminar at separation, 
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synthetic jets operating at much higher frequencies could also lead to earlier transition in the 

boundary layer. Since a turbulent boundary layer is more resistant to separation, earlier transition 

to turbulence can delay the separation.  

Figure 6.1 shows a 2D synthetic jet simulation. The slot along with the oscillating 

frequency forms a resonator. As the oscillations are applied, fluid is periodically entrained into 

and expelled from the orifice, essentially creating a zero-net mass flux jet. During the expulsion 

portion of the cycle, a vortex ring can form near the orifice and, under certain operating 

conditions, convect away from the orifice to form a time-averaged jet. 

 

Figure 6.1: A 2D synthetic jet interacting with a laminar boundary layer [108] 

One of the important criterion that in considered while studying synthetic jets is the 

dimensionless Strouhal Number (St), which for a fixed oscillation frequency jet varies as a 

function of, 3

f L VSt
U d

α α , where V is the orifice volume and d is the slot width.  

6.2 CASE SETUP 
The flow under consideration is same as in the case of the four jet case. The unsteadiness 

is introduced by using an oscillatory frequency with which the synthetic jets oscillate. As 
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previously stated, the basic two-dimensional grid (Figure 5.1-a) consists of 11 background 

blocks in a three-by-three pattern, the central region consisting of three subgrids over which the 

airfoil grid is placed (Figure 5.1).  

The airfoil grid used for this case also consisted of 5 blocks and fine grid spacing was 

employed on them relative to the background blocks, but it was different from the one used in 

the steady case. This is because the jet width required for a typical synthetic jet is much smaller 

than the steady jets as the synthetic jets that are typically used have much more design 

constraints and auxiliary power requirements than the steady jets. Therefore, the upper airfoil 

block where the jets are placed uses a stretching grid type mechanism, i.e. the grid narrows into 

finer grid spacing around the jet locations as shown in Figure 6.3. The part of the code in 

FlexGrdi.f90 that generates this stretch grid is listed in Appendix A.3. This ensures that we have 

an adequate number of grid points to capture the relatively small, high activity region with 

reasonable accuracy. It also considerably reduces the total number of grid points as we no longer 

use the resolution equal to the jet resolution on the whole upper block of the airfoil gird, thereby 

making the setup computationally less intensive. The jet width used for these jets is 0.4% of the 

chord length, sufficiently small to represent the selected frequency range. The x spacing used for 

the jet region is 0.0004, thus we have 10 grid points to represent the jet width. The boundary 

conditions used are same as the steady four jet case and are detailed in section 5.1. With the 

introduction of the frequency as a function of time, the u and v velocity equations at each of the 

jet boundary are given by,  

 
( ) ( )
( ) ( )

( )

1 1

1 1

( , ) cos sin 2

( , ) sin sin 2

where, 

u i j A U f t

v i j A U f t

Baseangle

β π φ

β π φ

β θ

∞

∞

= × × × × × × +

= × × × × × × +

= +

 (6.1) 

The CFD parameters used to run this unsteady simulation are listed below. 



   103

 

CFD Parameters:
timestep: 0.005
sub-iterations: 10
total non-dimensional timesteps: 20
total iterations: 40000

 

The timestep is selected such that the chosen frequency range could be reasonably represented by 

the simulation. Figure 6.2 presents the lift and drag plots of the CFD simulation. The oscillating 

effect of the synthetic jets could be clearly seen in these plots and also we have a reasonably 

good convergence at the end of 20 non-dimensional timesteps. For the fitness calculations, the 

lift and the drag values are averaged from the last 1500 outputs of the simulation. 

 

Figure 6.2: Lift and drag convergence for the unsteady synthetic jet case 
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(a) 

               
 (b) 

 Figure 6.3: Comparison of unsteady (a) and steady (b) grid setup 
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6.3 PARAMETER SELECTION 
The parameters considered for optimization for the pure oscillating case are the jet 

location Lj, the jet amplitude A, the jet angleθ , the jet frequency f* and the phase shift φ  for one 

the jets . The range of these parameters is listed in Table 6.1. The location essentially takes the 

same range, but as we are using a stretched grid, the limits change as we account for the tapering 

before we actually reach the jet location. The angles on the other hand have a bigger range. 

Previously [20], pure suction and pure blowing were represented by negative and positive angles 

respectively, and varied from 00 to 900.  As the synthetic jets perform both suction and blowing, 

we are now exploring a wider range of angles for both the jets, i.e. from 00 to 1800 (Table 6.1), 

which covers all the angles for the current 2D flow case. A 00 angle implies actuation in the same 

direction as the flow field and tangential to the surface of the airfoil. 900 implies perpendicular 

actuation into the flow field and 1800 means actuation tangential to the surface of the airfoil but 

in the direction opposite to the flow direction. The non-dimensional frequency listed in Table 6.1 

is evaluated based on the flow. At Re = 500,000 (current flow condition) and assuming an 

altitude of about 20 km, the freestream velocity is around 100 m/s. The non-dimensional 

frequency is defined as, 

 * f Lf
U

=  (6.2) 

 

* Non-dimensional frequency
 Actual frequency in 
 Chord length equal to 1.0
 Freestream velocity

f
f Hz
L
U

=
=
=
=

 

So an f* of 1 to 10 would yield an actual frequency range of 100 to 1000 Hz. This frequency 

range has been experimentally tested for many synthetic jet setups and is known to affect the 

flow field. The frequency range used for this setup is 0.1 to 10.0 (non-dimensional). The 

amplitude of the jets is selected in such a way as to maintain the minimum momentum flux to 
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affect the flow field [54]. As we are using a relatively small jet width this range is considerably 

larger than the one used for the steady case (Table 6.2). The phase shift φ  is varied from 0 to 

3.14 radians, allowing one of the jet oscillations to vary from in-phase to completely out of phase 

relative to the other jet. 

Table 6.1: Parameter range for the pure oscillating case 

Variable Name Range 
Jet location –1 (Lj1): 0.08 ≤ Lj1 ≤ 0.77 

Jet angle – 1 (θ1): 0o ≤ θ1 ≤ 180o 
Jet amplitude – 1 (A1): 0.0≤ A1 ≤ 0.30 
Jet frequency – 1 (f*1): 0.1 ≤ f*1 ≤ 10 
Jet Location – 2 (Lj2): 0.08 ≤ Lj2 ≤ 0.77 

Jet angle – 2 (θ2) 0o ≤ θ2 ≤ 180o 
Jet amplitude – 2 (A2): 0.0≤ A2 ≤ 0.30 
Jet frequency – 2 (f*2): 0.1 ≤ f*2 ≤ 10 

Phase Shift – (φ ) 0.0 ≤ φ  ≤ 3.14 
 

The effect of these pure oscillating jets on the flow field are shown in Figure 6.4 and the CGA 

results for this case are shown in Figure 6.4. The flowfield plots (Figure 6.4) of baseline and the 

final configurations (after 24 generations with 30 individuals per generation) are visually 

indistinguishable, suggesting that the jets are not affecting the separation bubble. The scatter 

plots (Figure 6.5) presents the CGA results from 24 generations of this case. It is clear that the 

GA has sufficiently covered the parameter range and still the configurations do not seem to 

affect the flow field. The best configuration obtained using this setup has a fitness of 2.0099, 

barely higher than the baseline fitness of 2.0. This suggests that the pure oscillating jets may not 

be an ideal means of flow control for this particular case. Therefore a hybrid unsteady case was 

setup. To achieve this we introduce two more parameters into the setup, viz. the amplitude shift 

(a) for both the jets. 



   107

            

      Baseline        Final 

Figure 6.4: Vorticity and streamline plot for pure unsteady two-jet case 

 

   (a)              (b)  

 

    (c)             (d) 

Figure 6.5: Results of the pure oscillating unsteady two-jet case (24 generations) 
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The amplitude shift varies in the range listed in Table 6.2. This shift in the amplitude 

intermittently turns the jets into pure suction or pure blowing (depending on the sign of the shift) 

along the unsteady oscillations. With the introduction of the amplitude and phase shift the 

velocity equations at the jet inlet are given by 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 1

1 1 1

2 2 2

2

Jet-1, only amplitude shift:
( , ) cos sin 2 cos

( , ) sin sin 2 sin
Jet-2, both amplitude and phase shift:

( , ) cos sin 2 cos

( , )

u i j A U f t a U

v i j A U f t a U

u i j A U f t a U

v i j A U

β π β

β π β

β π φ β

∞ ∞

∞ ∞

∞ ∞

∞

= × × × × × × + × ×

= × × × × × × + × ×

= × × × × × × + + × ×

= × ( ) ( ) ( )2 2sin sin 2 sinf t a Uβ π φ β∞× × × × × + + × ×

 (6.3) 

Table 6.2: Modification of variables for hybrid unsteady case  

Variable Name Range 
Jet amplitude shift – 1 (a1): -0.20 ≤ a1 ≤ 0.30 
Jet amplitude shift – 2 (a2): -0.20 ≤ a2 ≤ 0.30 

Jet frequency – 1 (f*1): 2 ≤ f*1 ≤ 10 
Jet frequency – 2 (f*2): 2 ≤ f*2 ≤ 10 

  

The range of the amplitude shifts is again selected in such a way that, when we there is pure 

suction or blowing the momentum flux is at least the minimum flux required to effect the 

flowfield [54].  The frequency for this case is varied from 2.0 to 10.0 (non-dimensional). With 

the introduction of the amplitude shift for both the jets, we now have 11 parameters (Table 6.1 

and 6.2) which are to be optimized for the hybrid unsteady system. The Continuous GA is used 

to optimize these parameters and the results obtained are discussed in the next section. 

6.4 GENETIC PARAMETERS 
As previously mentioned we have 11 parameters that need to be optimized. The 

Continuous GA is applied to optimize these parameters and the genetic coefficients are set as 
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50
30
11

. 0.15
. 0.50

NGeneration
NPopsize
NVariable
MutationConst
Crossover Const

=
=
=

=
=

 

The equation of the aggregate fitness is given by, 

 ( )max
. / . /A l lB dB dFit a C C b C C= +  (6.4) 

a and b are set to 1, providing equal weight to both lift and drag, and making the baseline fit 

equal to 2.0. 

6.5 HYBRID UNSTEADY TWO JET RESULTS 
Two simulations of the hybrid unsteady two-jet case have been performed using the 

Continuous GA. Run-1 consisted of 40 generations with 30 individuals per generation and run-2 

for which the initial population was the output of generation-5 of run-1, evolved for 35 

generations with 20 individuals per generation. The values of the baseline lift and drag 

( lBC and dBC ) were determined from simulations of the base airfoil (without jets) and were fixed 

at 0.8881 and 0.1601 respectively. The initial population for run-1 was selected such that, the 

individuals cover the full allowed parameter range. Figure 6.5 (i) presents the fitness plots of the 

hybrid unsteady two-jet simulations. The overall maximum fitness obtained from both the 

evolutions was 2.2176, much higher than the fitness of 2.009 that was obtained by the pure 

unsteady case. 
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Table 6.3: Best 5 individuals of the unsteady 2-jet case – CGA 
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(i) 

 

   (ii)      (iii) 

Figure 6.6: Fitness plots of unsteady simulations 

Key for scatter plots:

  ■  Synthetic Jet - 1 

  ■  Synthetic Jet - 2 

     ■  Fitness 
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(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

 

(f) 

Figure 6.7: Scatter plots for parameters of the unsteady case – CGA (both simulations) 
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It is important to make sure that the jets are not turning into a pure suction or pure 

blowing case. Table 6.3 lists the best 10 configurations obtained using the simulations. It is clear 

from this table that we have sufficient magnitude of unsteady jet amplitude and also a reasonably 

high frequency in the best fit individuals, which shows that we should have significant 

unsteadiness in the flow. Figure 6.6 (i) is the overall fitness plot of both the simulations and 

clearly we have a better fitness than the steady four-jet case. To compare the trends and the 

search path of the GA in both the runs we compare the best fitness and average fitness (Figure 

6.6 (ii)-(iii)) of both the runs. In run-1 after the 20th generation the GA seems to have moved into 

a not so fit region relative to the run-2, thus yielding a lesser fitness than run-2. 

Figure 6.7 presents the scatter plots of all the parameters for both GA simulations.  

Clearly the first jet location is close to the leading edge at about 10% chord (Figure 6.7(a)), 

potentially acting as a suction jet of the two jet case but still having sufficient unsteady jet 

amplitude and frequency. The angle (Figure 6.7(b)) on the other hand seems to be moving 

towards near normal, although not as converged as the location, it appears to be between 900 and 

1000. The frequency and amplitude (Figure 6.7(e) and (c)) of this jet vary over the parameter 

range with small concentrations in few places, but these do not seem to have a large effect on the 

overall fitness, thus suggesting that these parameters are less critical compared to the location 

and angle of the jet. The amplitude shift (Figure 6.7(d)) is clearly biased towards negative 

maximum (-0.20), suggesting a pure suction type shift. 

The second jet location is not as converged as the first jet location but is clearly being 

pushed towards the leading edge and is behind the first jet at about 15% chord. The angle of this 

jet is again evidently moving towards near normal, i.e. around 900 to 1100 a bit higher than the 

first synthetic jet. The amplitude and frequency are behaving in a similar manner as with 

synthetic jet-1.  Amplitude shift of this jet also seem to favor negative maximum and is ranging 
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between -0.1 and -0.2.  The phase shift (Figure 6.7(f)) which is applied only on this jet is also 

hovering all over the parameter range with small concentrations in some region. Interestingly 

most of the high fit cases seem to float between 1.0 and 2.5 suggesting significant phase shift for 

the second jet.  

6.6 SUMMARY 
The best configuration for the hybrid synthetic-jet case with two jets is clearly inclined 

towards placing both the jets close to the leading edge of the airfoil. The angles of both the jets 

are moving towards near normal and the shifts in amplitude seem to be favoring towards 

negative maximum suggesting a pure suction type mechanism. The frequency, amplitude, and 

phase shift are not so critical as compared to the location, angle, and amplitude shift. Also, from 

the scatter plots is clear that the Continuous GA has successfully found the high fitness region 

for the hybrid synthetic jet and that it performed a reasonably good job in optimizing an unsteady 

flow control system. 
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CHAPTER – 7 

7. GA-NEURAL NETWORKS-CFD 

The results from the current steady four-jet and the unsteady two-jet system along with 

the previous steady two-jet results show that a GA-CFD system is a means to reasonably narrow 

down the parameter search space and predict a near optimum configuration of a complex flow 

control system. However as we move into the regime of more challenging flow control systems 

the CFD evaluations of the numerous configurations generated by a Genetic Algorithm would be 

excessively computationally expensive and time consuming. 

A possible means for accelerating the evaluation process within a search algorithm is to 

replace some of the CFD computations with a neural network (NN). The neural network is non-

linear means of interpolation that can take the same configuration input parameters as the CFD 

model and yield the same aggregate outputs, such as lift and drag. The neural network initially 

requires training and testing for the given problem, the data for which will be provided by 

current GA-CFD systems. Since neural networks do not actually solve the Navier-Stokes 

equations, the proposed optimum performance regions determined by the GA-NN system need to 

be confirmed through CFD simulation and, ideally, ultimately through experiment. However, as 

proposed, the NN approach will replace most of the CFD computations for a majority of the 

generations of the GA, which would dramatically reduce the computational cost without 

sacrificing final accuracy. The NN can also be used to test GA design with a realistic, but far less 

costly fitness evaluation, leading to improved GA design for both NN and CFD evaluations. 

7.1 NEURAL NETWORKS 
Fitness evaluation remains the primary cost of both the GA optimization approaches used 

in current research, as each evaluation of an individual requires a costly CFD simulation. While 

the computations considered in this research are on the order of CPU hours, not days, this is still 
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quite expensive when thousands of simulations are required. An alternative to the CFD 

computation of every fitness are to use interpolation schemes; however, these must be applied 

with care as a GA approach fundamentally assumes a multi-dimensional solution space with 

multiple local maximum and minimum which need to be maintained, not blurred out by poor 

interpolation. A potentially better option is to use a non-linear approach such as a neural 

network. 

The field of Neural Networks (NN) has arisen from diverse sources. Applications range 

from machine learning to modeling and the prediction of complex relations. Generally, a NN 

consists of layers of interconnected nodes (Figure 7.1), each node producing a non-linear 

function of its input.   

 

Figure 7.1: A typical neural network 
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The input to a node may come from other nodes or directly from the input data. Also, 

some nodes are identified with the output of the network. The complete network therefore 

represents a very complex set of interdependencies which may incorporate any degree of 

nonlinearity, allowing very general functions to be modeled. 

7.2 GA-NN-CFD SYSTEM AND INITIAL RESULTS 
As part of the current research in collaboration with researchers from Utah State 

University, a GA-NN-CFD is being developed [10]. This system has been tested for the steady 

two jet system and initial results of this test would be presented in this section. 

The neural network approach setup for this research is based on the Pyro [109] library 

implemented in Python. Currently, we are using one input layer with the optimization variables 

like suction strength and suction angle. Then a hidden layer connects this input layer to the 

output layer consisting of two nodes representing lift and drag. There exist no general rules on 

the structure of the network and we train several different networks with an error of 3 percent. 

Then we select the best network with the fewest nodes in the hidden layer for the NN-GA 

approach. A reasonable neural network will allow both for accelerated testing of GA techniques 

and for rapid fitness evaluation. However, in the final analysis, any interpolation approach 

cannot be used to set the final values, so final determination requires full CFD simulation. 

An initial test of this GA-NN-CFD system has been completed and with a reasonably 

trained neural network, the following results are obtained for the two-jet steady flow control 

setup [10]. This system is still in the testing stage and the configurations obtained by the neural 

network have not been validated by actual CFD calculations. 

Figure 7.2 presents a comparison of the fitness computed by the CFD calculation with the 

fitness obtained through the application of the neural network. This figure shows that currently 

the NN overpredict the maximum fitness. 
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Figure 7.2: Fitness comparison GA-CFD and GA-NN system 

In Figure 7.3 the drag and lift computed by the CFD simulations are compared by the 

predictions of the neural network for the best individuals of the GA optimizations. Here, as seen 

in Figure 7.3 (a) most of the error in the fitness comes from the lift prediction of the neural 

network. The drag prediction in Figure 7.3 (b) is also different, as expected, from the CFD 

prediction, but the best individuals in the CFD and NN approach have better agreement. 
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(a) 

 

(b) 

Figure 7.3: Lift and drag comparisons of GA-CFD and GA-NN system 
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The neural network does a reasonably good job in matching the output, i.e. the lift, amd 

drag, and the fitness (Figure 7.2 and 7.3). However, the configurations that generated these 

outputs are not similar to the configurations generated by the GA-CFD evaluation. The NN 

configurations were fundamentally different from the GA-CFD configuration, but were still 

yielding a similar fitness and lift/drag values. This suggests that the NN is only quantitatively 

matching the output data and thus requires more training and may be a better architecture which 

can better match the trend of the input parameters with the output data. 

7.3 SUMMARY 
The GA-NN system accelerates the optimization process from weeks to minutes but 

additional computational effort goes into generating the training data sets through CFD and 

training the NN.  Since neural networks do not actually solve the Navier-Stokes equations and 

generate less accurate results, the proposed optimum performance regions determined by the 

GA-NN system need to be confirmed. The NN can also be used to test GA design with a 

realistic, but far less costly fitness evaluation, leading to improved GA design for both NN and 

CFD evaluations. Further work is necessary to develop guidelines for robust NN architectures, 

generation of training data sets and developing an integrated, automated GA-NN-CFD system.
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CHAPTER – 8 

8. CONCLUSIONS AND FUTURE WORK 

8.1 CONCLUSIONS 
A steady four-jet and a hybrid unsteady two-jet flow control system was successfully 

optimized using the Continuous Genetic Algorithm. The optimum configuration showed a great 

improvement in the fitness by increasing lift and decreasing drag, which was achieved by the 

weakening of the separation bubble. The improvements obtained are listed in Table 8.1 and 8.2. 

It was also shown that, for the steady four jet case optimization, the Continuous Genetic 

Algorithm performed better than the previously developed EARND Genetic Algorithm. The best 

configurations obtained for four-jet case using both the Genetic Algorithms and the best 

configuration for the unsteady case using the Continuous GA are presented in Table 8.3 and 

Table 8.4 respectively. 

Table 8.1: Improvements in parameters for steady case 

 

Table 8.2: Improvements in parameters for hybrid unsteady case 

 

Improved grids were developed for both the steady four-jet and the unsteady two-jet case. 

With the previous grid type, as the number of jets increased the complexity of arranging the grid 

GA Type C l C d Fitness
Continuous GA 11.70% 7.05% 9.55%
EARND GA 3.75% 7.86% 6.14%

Combined Configuration 8.49% 11.18% 9.85%

Steady Four-Jet Case

GA Type C l C d Fitness

Continuous GA 15.24% 6.52% 10.88%

Hybrid Unsteady Two-Jet Case
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without overlapping also increased. The improved grid for this setup was more robust and was 

easy to handle. Also it is simple to increase or decrease the number of jets as it only requires 

changing the boundary conditions on the upper airfoil block. The stretch-grid developed for the 

unsteady case reduced the total grid points considerably as compared to the four-jet grid, hence 

making the grid setup computationally less expensive. 

Table 8.3: Best configuration for the steady four-jet case 

 

Table 8.4: Best configuration for the hybrid unsteady two-jet case 

 

A new Genetic Algorithm viz. Continuous Genetic Algorithm was developed and 

integrated with the current GA-CFD setup. Necessary improvements were made to the previous 

Jet Parameters Continuous GA
Location 0.0943

Amplitude 0.1041
Angle 82.6509

Frequency 2.4014
Amplitude Shift -0.1899

Location 0.1341
Amplitude 0.0350

Angle 96.0863
Frequency 8.8501

Amplitude Shift -0.1981
Phase Shift 2.4623

Synthetic Jet-2

Synthetic Jet-1

Jet Parameters Continuous GA EARND GA
Location 0.0500 0.0500

Angle -84.3700 -90.0000
Amplitude 0.0212 0.0212
Location 0.0941 0.2200

Angle -82.2890 0.0000
Amplitude 0.0206 0.0212
Location 0.5218 0.6187

Angle 0.5970 45.0000
Amplitude 0.0423 0.1000
Location 0.7149 0.8000

Angle 26.1900 90.0000
Amplitude 0.0928 0.1414

Leading Suction

Trailing Suction

Leading Blowing

Trailing Blowing
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architecture to accommodate the Continuous GA. The Continuous GA was successfully applied 

to optimize the steady four-jet and the unsteady two-jet system. 

An attempt was made towards setting up a GA-NN-CFD. The Neural Network performed 

a good job matching the output quantitatively, but the configurations generated by the NN were 

not very similar to the CFD configurations, suggesting the need for a better NN architecture and 

more training. 

8.2 FUTURE WORK 
As stated previously, the next step is to develop a more robust GA-NN-CFD system 

which would reduce the computations time from several days few hours. Using the data obtained 

by the current four-jet and unsteady cases along with the previous two-jet data, a well trained 

Neural Network could be developed. This setup can be then used to test various GA approaches 

as the evaluation of the fitness function would be much faster and computationally not 

expensive. 

Another potential method that can replace most of the CFD computations is called 

kriging. The word "kriging" is synonymous with "optimal prediction"[112]. It is a method of 

interpolation which predicts unknown values from data observed at known locations. Kriging is 

also the method that is associated with the acronym B.L.U.E. (Best Linear Unbiased Estimator.)  

• It is "linear" since the estimated values are weighted linear combinations of the 

available data.  

• It is "unbiased" because the mean of error is 0.  

• It is "best" since it aims at minimizing the variance of the errors.  

The difference of kriging and other linear estimation method is its aim of minimizing the 

error variance. The kriging method estimates the output based on the linear combination of the 

input data while a neural network does a non-linear interpolation of the input data to generate the 
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output, therefore for the current flow control problem, kriging may better relate the trend of the 

input parameters with the output values rather than only matching it quantitatively. 

A robust GA-CFD system in combination with an effective GA-NN-CFD or GA-

Kriging-CFD system could be applied to optimize other, even more time consuming and 

complex CFD simulations such as the morphing wing problem or the moving wall problems. The 

GA-CFD system also needs to be validated with flow control setups which have experimental 

results. Apart from flow control, there are other numerous other fields where such an efficient 

system could be applied. Some of these are, 

• In-land vehicle body design (Mechanical Engineering)  

• Artificial organ (heart, lung, kidney) design (Biomedical Engineering) 

• Spray painting (Mechanical and Chemical Engineering). 

All these promising research areas require multi-disciplinary knowledge which 

interweaves the technology and advancement in computational fluid dynamics, genetic 

optimization algorithms, and nonlinear/linear interpolation schemes. 
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APPENDIX 

A1. FLEXGRID.F90 MODIFICATION FOR STEADY CASE 
 
! Single Airfoil Upper Block 
       MidUpper1Start=0.05_high 
        MidUpper1End  =0.85_high 
 
        man=0 
        do man=1, 4 
           jete(man)    =  Jet_Pos(man) + 0.025_high 
           Jetstart(man)= (Jet_Pos(man) - Midupper1start)/Jetstep+1 
           Jetend(man)  = (Jete(man) - Midupper1start)/Jetstep+1 
           PRINT *, Jetstart(man), Jetend(man) 
        End do 
         
 print*,"niMidUpper1",niMidUpper1 
 ALLOCATE(MidUpper1sss(niMidUpper1),MidUpper1xa(niMidUpper1),MidUpper1ya
(niMidUpper1)) 
ALLOCATE(MidUpper1xxx(niMidUpper1,njmax),MidUpper1yyy(niMidUpper1,njmax)) 
 
 ra1=0.0 
 ra2=0.0 
        call 
space(MidUpper1Start,MidUpper1End,JetStep,JetStep,niMidUpper1,MidUpper1sss,RA
1,RA2) 
 
 do j=1,njmax 
           do i=1,niMidUpper1 
              call splint(s,x,x2,n,MidUpper1sss(i),MidUpper1xa(i),dxdn) 
              call splint(s,y,y2,n,MidUpper1sss(i),MidUpper1ya(i),dydn) 
              theta=atan(dydn/dxdn) 
              IF(dxdn>0) then 
                 MidUpper1xxx(i,j)=MidUpper1xa(i)-ra(j)*SIN(theta) 
                 MidUpper1yyy(i,j)=MidUpper1ya(i)+ra(j)*COS(theta) 
              else IF(dxdn<0)then 
                 MidUpper1xxx(i,j)=MidUpper1xa(i)+ra(j)*SIN(theta) 
                 MidUpper1yyy(i,j)=MidUpper1ya(i)-ra(j)*COS(theta) 
              endif 
           end do 
        end do 
 
  LeaUpperxxx(niLeaUpper,1:njmax)=Midupper1xxx(1,1:njmax) 
  LeaUpperyyy(niLeaUpper,1:njmax)=Midupper1yyy(1,1:njmax) 
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A2. A TYPICAL ‘INPUT’ FILE 
/* number_of_zone 
  16      ! Number of zones 
 /* zone_number 1 
  grid          110          84  4 2 !x and y points, number of BC’s 
  0.0 0.0 
  Back4.dat  ! Below each zone name are the Boundary conditions 
  m inlet                left    1       1       1       99999   0  
  * patch                right   99999   99999   1       99999   2  
  * patch                bottom  -99999  100000  1       1       9  
  * patch                top     -99999   100000 99999   99999   6  
 /* zone_number 2  
 grid           61          84  8 2 
  0.0 0.0 
  Back1.dat 
  * block                0       0       0       0       0       0      1 
  * immerse              0       0       0       0       0       0      12  
  * immerse              0       0       0       0       0       0      13  
  * immerse              0       0       0       0       0       0      14  
  * patch                left    1       1       1       99999   1  
  * patch                right   99999   99999   1       99999   3  
  * overlap                bottom  -99999  100000  1       1       10 
  * overlap                top     -99999   100000 99999   99999   7 
 /* zone_number 3  
 grid           78          84  8 2 
  0.0 0.0 
  Back2.dat 
  * block                0       0       0       0       0       0      1 
  * immerse              0       0       0       0       0       0      12 
  * immerse              0       0       0       0       0       0      14 
  * immerse              0       0       0       0       0       0      15 
  * patch                left    1       1       1       99999   2  
  * patch                right   99999   99999   1       99999   4  
  * overlap                bottom  -99999  100000  1       1       10 
  * overlap                top     -99999   100000 99999   99999   7 
 /* zone_number 4  
 grid           63          84  8 2 
  0.0 0.0 
  Back3.dat 
  * block                0       0       0       0       0       0      1 
  * immerse              0       0       0       0       0       0      15  
  * immerse              0       0       0       0       0       0      16  
  * immerse              0       0       0       0       0       0      12  
  * patch                left    1       1       1       99999   3  
  * patch                right   99999   99999   1       99999   5  
  * overlap                bottom  -99999  100000  1       1       10 
  * overlap                top     -99999   100000 99999   99999   7 
 /* zone_number 5  
 grid          110          84  4 2 
  0.0 0.0 
  Back5.dat 
  * patch                left    1       1       1       99999   4  
  * outflow              right   99999   99999   1       99999   0  
  * patch                bottom  -99999  100000  1       1       11  
  * patch                top     -99999   100000 99999   99999   8  
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/* zone_number 6  
 grid          110         100  4 2 
  0.0 0.0 
  BackUpper1.dat 
  m inlet         left         1       1      -99999    100000   0 
  * patch          right         99999   99999      -99999      
100000   7 
  * patch          bottom           1   100000      1          1        
1 
  * freestream  top        -99999   100000      99999    99999  0 
 /* zone_number 7  
 grid          140         100  6 2 
  0.0 0.0 
  BackUpper2.dat 
  * overlap            bottom      -99999  100000 1 1   2 
  * overlap            bottom      -99999  100000 1 1     3 
  * overlap            bottom      -99999  100000 1 1     4 
  * patch           left        1 1 -99999     100000       6 
  * patch            right       99999 99999 -99999 100000  8 
  * freestream       top         -99999 100000  99999 99999  
 0 
 /* zone_number 8  
 grid          110         100  4 2 
  0.0 0.0 
  BackUpper3.dat 
  * patch           left    1       1      -99999  100000   7 
  * outflow         right   99999 99999 1       99999  0 
  * patch           bottom -99999   100000  1       1       5 
  * freestream      top    -99999 100000  99999 99999   0 
 /* zone_number 9 
 grid          110         100  4 2 
  0.0 0.0 
  BackLower1.dat 
  m inlet           left    1       1      -99999  100000   0 
  * patch           right   99999   99999   1      100000   10 
  * freestream     bottom  -99999  100000   1      1        0 
  * patch            top    1      100000   99999  99999    1  
 /* zone_number 10 
 grid          140         100  6 2 
  0.0 0.0 
  BackLower2.dat 
  * overlap          top   -99999  100000  99999    99999   2 
  * overlap          top   -99999  100000  99999    99999   3 
  * overlap          top   -99999  100000  99999    99999   4 
  * patch       left        1       1      1       100000   9 
  * patch       right       99999   99999  1       100000  11 
  * freestream  bottom     -99999  100000  1        1       0 
  
/* zone_number 11 
 grid          110         100  4 2 
  0.0 0.0 
  BackLower3.dat 
  * patch           left    1       1      1      100000  10 
  * outflow        right    99999   99999  1       99999   0 
  * freestream     bottom  -99999  100000  1       1       0 
  * patch           top     1      100000  99999   99999  5 
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/* zone_number 12 
 grid          454          50  6 2 
  0.0 0.0 
  rot_Lower.dat 
  * patch                left    1       1       1       99999   16  
  * patch                right   99999   99999   1       99999   13  
  * wall                 bottom  -99999  100000  1       1       0  
  * overlap              top     -99999   100000 99999   99999   2 
  * overlap              top     -99999   100000 99999   99999   3 
  * overlap              top     -99999   100000 99999   99999   4 
 /* zone_number 13 
 grid           35          50  4 2 
  0.0 0.0 
  rot_LeaUpper.dat 
  * patch                left    1       1       1       99999   12 
  * patch                right   99999   99999   1       99999   14 
  * wall                 bottom  1       99999   1       1       0 
  * overlap              top     -99999   100000 99999   99999   2 
 /* zone_number 14  
 grid          799          50  10 2 
  0.0 0.0 
  rot_MidUpper1.dat 
  * patch                left    1       1       1       99999   13  
  * patch                right   99999   99999   1       99999   15  
  * wall                 bottom  1  99999  1       1       0  
  * overlap              top     -99999   100000 99999   99999   3 
  * overlap              top     -99999   100000 99999   99999   2 
  * overlap              top     -99999   100000 99999   99999   4 
  p inlet                bottom           1          26 1       1     0 
  q inlet                bottom         639         664 1       1     0 
  r inlet                bottom          57          82 1       1     0 
  s inlet                bottom         672         697 1       1     0 
 /* zone_number 15 
 grid           42          50  5 2 
  0.0 0.0 
  rot_TraUpper.dat 
  * patch                left    1       1       1       99999   14  
  * patch                right   99999   99999   1       99999   16  
  * wall                 bottom  -99999  100000  1       1       0  
  * overlap              top     -99999   100000 99999   99999   3 
  * overlap              top     -99999   100000 99999   99999   4 
 /* zone_number 16 
 grid           40          50  4 2 
  0.0 0.0 
  rot_Tra.dat 
  * patch                left    1       1       1       99999   15  
  * patch                right   99999   99999   1       99999   12  
  * wall                 bottom  -99999  100000  1       1       0  
  * overlap              top     -99999   100000 99999   99999   4 
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A3. FLEXGRID.F90 MODIFICATION FOR UNSTEADY CASE 
  MidUpper1Start=0.05_high 
  MidUpper1End  =0.85_high 
 
      if(Jet_Pos(1)>Jet_Pos(2))then 
         tempjet=Jet_Pos(1) 
         Jet_Pos(1)=Jet_Pos(2) 
         Jet_Pos(2)=tempjet 
      end if 
 
      print*, "Jet Locations", Jet_Pos(1), Jet_Pos(2) 
 
      if(Jet_Pos(1)<=0.065_high)then 
         Jet_Pos(1)=0.065_high 
      end if 
 
      if(jet_Pos(2)>=0.785_high)then 
         Jet_Pos(2)=.0785_high 
      end if 
      !Jet 1 Locations 
 
      Jet1_gridS=Jet_Pos(1)-0.002_high-0.013_high 
      Jet1_gridActS=Jet_Pos(1)-0.002_high 
      Jet1_gridActE=Jet_Pos(1)+0.002_high 
      Jet1_gridE=Jet1_gridActE+0.013_high 
 
      !Jet 2 Locations 
 
      Jet2_gridS=Jet_Pos(2)-0.002_high-0.013_high 
      Jet2_gridActS=Jet_Pos(2)-0.002_high 
      Jet2_gridActE=Jet_Pos(2)+0.002_high 
      Jet2_gridE=Jet2_gridActE+0.013_high 
 
 
      niMidUpperStoJ1=(Jet_Pos(1)-(0.002_high)- 0.013_high -0.05_high 
)/UpperStep 
 
      niMidUpperJ1=(Jet1_gridActS-Jet1_gridS)/Upperstep+10 
 
      JetStart(1)=niMidUpperStoJ1+niMidUpperJ1 
 
      niMidUpperJ1Act=(Jet1_gridActE-Jet1_gridActS)/JetStep 
       
      Jetend(1)=Jetstart(1)+niMidUpperJ1Act 
 
      niMidUpperJ1Last=(Jet1_gridE-Jet1_gridActE)/UpperStep+10 
 
      niMidUpperBet=(Jet2_gridS-Jet1_gridE)/UpperStep 
 
      niMidUpperJ2=(Jet2_gridActS-Jet2_gridS)/Upperstep+10 
 
      Jetstart(2)=niMidUpperStoJ1+niMidUpperJ1+niMidUpperJ1Act+ 
niMidUpperJ1Last+niMidUpperBet+niMidUpperJ2 
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niMidUpperJ2Act=(Jet2_gridActE-Jet2_gridActS)/JetStep 
       
      Jetend(2)=Jetstart(2)+ niMidUpperJ2Act 
 
      niMidUpperJ2Last=(Jet2_gridE-Jet2_gridActE)/UpperStep+10 
 
      niMidUpperJ2toE=(0.85_high-Jet2_gridE)/UpperStep 
 
      
niMidUpper1=niMidUpperStoJ1+niMidUpperJ1+niMidUpperJ+niMidUpperBet+niMidUpper
J2toE+niMidUpperJ1Act+ & 
 & niMidUpperJ1Last+niMidUpperJ2Act+niMidUpperJ2Last-8 
 
      
ALLOCATE(MidBsss(niMidUpperStoJ1),MidBxa(niMidUpperStoJ1),MidBya(niMidUpperSt
oJ1)) 
      ALLOCATE(MidBxxx(niMidUpperStoJ1,njmax),MidByyy(niMidUpperStoJ1,njmax)) 
 
      ra1=0.0_high 
      ra2=0.0_high 
       
      passp=0 
 
      call 
space(MidUpper1Start,Jet1_gridS,JetStep,UpperStep,niMidUpperStoJ1,MidBsss,RA1
,RA2) 
       
      do j=1,njmax 
         do i=1, niMidUpperStoJ1 
            call splint(s,x,x2,n,MidBsss(i),MidBxa(i),dxdn) 
            call splint(s,y,y2,n,MidBsss(i),MidBya(i),dydn) 
            theta=atan(dydn/dxdn) 
            IF(dxdn>0) then 
               MidBxxx(i,j)=MidBxa(i)-ra(j)*SIN(theta) 
               MidByyy(i,j)=MidBya(i)+ra(j)*COS(theta) 
            else IF(dxdn<0)then 
               MidBxxx(i,j)=MidBxa(i)+ra(j)*SIN(theta) 
               MidByyy(i,j)=MidBya(i)-ra(j)*COS(theta) 
         end do 
      end do 
 
      
ALLOCATE(MidCsss(niMidUpperJ1),MidCxa(niMidUpperJ1),MidCya(niMidUpperJ1)) 
      ALLOCATE(MidCxxx(niMidUpperJ1,njmax),MidCyyy(niMidUpperJ1,njmax)) 
       
 
call space 
(Jet1_gridS,Jet1_gridActS,UpperStep,JetStep,niMidUpperJ1,MidCsss,RA1,RA2) 
       
      do j=1,njmax 
         do i=1, niMidUpperJ1 
            call splint(s,x,x2,n,MidCsss(i),MidCxa(i),dxdn) 
            call splint(s,y,y2,n,MidCsss(i),MidCya(i),dydn) 
            theta=atan(dydn/dxdn) 
            IF(dxdn>0) then 
               MidCxxx(i,j)=MidCxa(i)-ra(j)*SIN(theta) 
               MidCyyy(i,j)=MidCya(i)+ra(j)*COS(theta) 
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            else IF(dxdn<0)then 
               MidCxxx(i,j)=MidCxa(i)+ra(j)*SIN(theta) 
               MidCyyy(i,j)=MidCya(i)-ra(j)*COS(theta) 
            endif 
         end do 
      end do 
 
      
ALLOCATE(MidDsss(niMidUpperJ1Act),MidDxa(niMidUpperJ1Act),MidDya(niMidUpperJ1
Act)) 
      ALLOCATE(MidDxxx(niMidUpperJ1Act,njmax),MidDyyy(niMidUpperJ1Act,njmax)) 
       
call space 
(Jet1_gridActS,Jet1_gridActE,JetStep,JetStep,niMidUpperJ1Act,MidDsss,RA1,RA2) 
       
      do j=1,njmax 
         do i=1, niMidUpperJ1Act 
            call splint(s,x,x2,n,MidDsss(i),MidDxa(i),dxdn) 
            call splint(s,y,y2,n,MidDsss(i),MidDya(i),dydn) 
            theta=atan(dydn/dxdn) 
            IF(dxdn>0) then 
               MidDxxx(i,j)=MidDxa(i)-ra(j)*SIN(theta) 
               MidDyyy(i,j)=MidDya(i)+ra(j)*COS(theta) 
            else IF(dxdn<0)then 
               MidDxxx(i,j)=MidDxa(i)+ra(j)*SIN(theta) 
               MidDyyy(i,j)=MidDya(i)-ra(j)*COS(theta) 
            endif 
         end do 
      end do 
 
      
ALLOCATE(MidEsss(niMidUpperJ1Last),MidExa(niMidUpperJ1Last),MidEya(niMidUpper
J1Last)) 
      
ALLOCATE(MidExxx(niMidUpperJ1Last,njmax),MidEyyy(niMidUpperJ1Last,njmax)) 
       
 
call space 
(Jet1_gridActE,Jet1_gridE,JetStep,UpperStep,niMidUpperJ1Last,MidEsss,RA1,RA2) 
       
      do j=1,njmax 
         do i=1, niMidUpperJ1Last 
            call splint(s,x,x2,n,MidEsss(i),MidExa(i),dxdn) 
            call splint(s,y,y2,n,MidEsss(i),MidEya(i),dydn) 
            theta=atan(dydn/dxdn) 
            IF(dxdn>0) then 
               MidExxx(i,j)=MidExa(i)-ra(j)*SIN(theta) 
               MidEyyy(i,j)=MidEya(i)+ra(j)*COS(theta) 
            else IF(dxdn<0)then 
               MidExxx(i,j)=MidExa(i)+ra(j)*SIN(theta) 
               MidEyyy(i,j)=MidEya(i)-ra(j)*COS(theta) 
            endif 
         end do 
      end do 
 
      
ALLOCATE(MidFsss(niMidUpperBet),MidFxa(niMidUpperBet),MidFya(niMidUpperBet)) 
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      ALLOCATE(MidFxxx(niMidUpperBet,njmax),MidFyyy(niMidUpperBet,njmax)) 
       
 
call space 
(Jet1_gridE,Jet2_gridS,UpperStep,UpperStep,niMidUpperBet,MidFsss,RA1,RA2) 
       
      do j=1,njmax 
         do i=1, niMidUpperBet 
            call splint(s,x,x2,n,MidFsss(i),MidFxa(i),dxdn) 
            call splint(s,y,y2,n,MidFsss(i),MidFya(i),dydn) 
            theta=atan(dydn/dxdn) 
            IF(dxdn>0) then 
               MidFxxx(i,j)=MidFxa(i)-ra(j)*SIN(theta) 
               MidFyyy(i,j)=MidFya(i)+ra(j)*COS(theta) 
            else IF(dxdn<0)then 
               MidFxxx(i,j)=MidFxa(i)+ra(j)*SIN(theta) 
               MidFyyy(i,j)=MidFya(i)-ra(j)*COS(theta) 
            endif 
         end do 
      end do 
 
      
ALLOCATE(MidGsss(niMidUpperJ2),MidGxa(niMidUpperJ2),MidGya(niMidUpperJ2)) 
      ALLOCATE(MidGxxx(niMidUpperJ2,njmax),MidGyyy(niMidUpperJ2,njmax)) 
       
 
call space 
(Jet2_gridS,Jet2_gridActS,UpperStep,JetStep,niMidUpperJ2,MidGsss,RA1,RA2) 
       
      do j=1,njmax 
         do i=1, niMidUpperJ2 
            call splint(s,x,x2,n,MidGsss(i),MidGxa(i),dxdn) 
            call splint(s,y,y2,n,MidGsss(i),MidGya(i),dydn) 
            theta=atan(dydn/dxdn) 
            IF(dxdn>0) then 
               MidGxxx(i,j)=MidGxa(i)-ra(j)*SIN(theta) 
               MidGyyy(i,j)=MidGya(i)+ra(j)*COS(theta) 
            else IF(dxdn<0)then 
               MidGxxx(i,j)=MidGxa(i)+ra(j)*SIN(theta) 
               MidGyyy(i,j)=MidGya(i)-ra(j)*COS(theta) 
            endif 
         end do 
      end do 
       
      
ALLOCATE(MidHsss(niMidUpperJ2Act),MidHxa(niMidUpperJ2Act),MidHya(niMidUpperJ2
Act)) 
 
ALLOCATE(MidHxxx(niMidUpperJ2Act,njmax),MidHyyy(niMidUpperJ2Act,njmax)) 
 
 
call space 
(Jet2_gridActS,Jet2_gridActE,JetStep,JetStep,niMidUpperJ2Act,MidHsss,RA1, 
RA2) 
       
      do j=1,njmax 
         do i=1, niMidUpperJ2Act 
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            call splint(s,x,x2,n,MidHsss(i),MidHxa(i),dxdn) 
            call splint(s,y,y2,n,MidHsss(i),MidHya(i),dydn) 
            theta=atan(dydn/dxdn) 
            IF(dxdn>0) then 
               MidHxxx(i,j)=MidHxa(i)-ra(j)*SIN(theta) 
               MidHyyy(i,j)=MidHya(i)+ra(j)*COS(theta) 
            else IF(dxdn<0)then 
               MidHxxx(i,j)=MidHxa(i)+ra(j)*SIN(theta) 
               MidHyyy(i,j)=MidHya(i)-ra(j)*COS(theta) 
            endif 
            if (j==1) then 
            end if 
         end do 
      end do 
 
      
ALLOCATE(MidIsss(niMidUpperJ2Last),MidIxa(niMidUpperJ2Last),MidIya(niMidUpper
J2Last)) 
      
ALLOCATE(MidIxxx(niMidUpperJ2Last,njmax),MidIyyy(niMidUpperJ2Last,njmax)) 
       
       
call space  
(Jet2_gridActE,Jet2_gridE,etStep,UpperStep,niMidUpperJ2Last,MidIsss,RA1,RA2) 
       
      do j=1,njmax 
         do i=1, niMidUpperJ2Last 
            call splint(s,x,x2,n,MidIsss(i),MidIxa(i),dxdn) 
            call splint(s,y,y2,n,MidIsss(i),MidIya(i),dydn) 
            theta=atan(dydn/dxdn) 
            IF(dxdn>0) then 
               MidIxxx(i,j)=MidIxa(i)-ra(j)*SIN(theta) 
               MidIyyy(i,j)=MidIya(i)+ra(j)*COS(theta) 
            else IF(dxdn<0)then 
               MidIxxx(i,j)=MidIxa(i)+ra(j)*SIN(theta) 
               MidIyyy(i,j)=MidIya(i)-ra(j)*COS(theta) 
            endif 
            if (j==1) then 
            end if 
         end do 
      end do 
 
      
ALLOCATE(MidJsss(niMidUpperJ2toE),MidJxa(niMidUpperJ2toE),MidJya(niMidUpperJ2
toE)) 
      ALLOCATE(MidJxxx(niMidUpperJ2toE,njmax),MidJyyy(niMidUpperJ2toE,njmax)) 
       
       
call space 
(Jet2_gridE,MidUpper1End,UpperStep,JetStep,niMidUpperJ2toE,MidJsss,RA1,RA2) 
       
      do j=1,njmax 
         do i=1, niMidUpperJ2toE 
            call splint(s,x,x2,n,MidJsss(i),MidJxa(i),dxdn) 
            call splint(s,y,y2,n,MidJsss(i),MidJya(i),dydn) 
            theta=atan(dydn/dxdn) 
            IF(dxdn>0) then 
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               MidJxxx(i,j)=MidJxa(i)-ra(j)*SIN(theta) 
               MidJyyy(i,j)=MidJya(i)+ra(j)*COS(theta) 
            else IF(dxdn<0)then 
               MidJxxx(i,j)=MidJxa(i)+ra(j)*SIN(theta) 
               MidJyyy(i,j)=MidJya(i)-ra(j)*COS(theta) 
            endif 
            if (j==1) then 
            end if 
         end do 
      end do 
 
      write(6,*)"MidUpper1",niMidUpper1 
       
      
Allocate(MidUpper1xxx(niMidUpper1,njmax),MidUpper1yyy(niMidUpper1,njmax)) 
      midcount=1 
      do i=1,niMidUpperStoJ1-1 
         do j=1,njmax 
            MidUpper1xxx(midcount,j)=MidBxxx(i,j) 
            MidUpper1yyy(midcount,j)=MidByyy(i,j) 
         end do 
         midcount=midcount+1 
      end do 
       
      temp_int1=niMidUpperStoJ1+1 
      temp_int2=niMidUpperStoJ1+niMidUpperJ1-1 
 
      write(6,*) midcount, temp_int1, temp_int2 
       
      do i=temp_int1, temp_int2 
         do j=1,njmax 
            MidUpper1xxx(midcount,j)=MidCxxx(i+1-temp_int1,j) 
            MidUpper1yyy(midcount,j)=MidCyyy(i+1-temp_int1,j) 
         end do 
         midcount=midcount+1 
      end do 
       
      temp_int1=niMidUpperStoJ1+niMidUpperJ1+1 
      temp_int2=niMidUpperStoJ1+niMidUpperJ1+niMidUpperJ1Act-1 
       
      do i=temp_int1, temp_int2 
         do j=1,njmax 
            MidUpper1xxx(midcount,j)=MidDxxx(i+1-temp_int1,j) 
            MidUpper1yyy(midcount,j)=MidDyyy(i+1-temp_int1,j) 
         end do 
         midcount=midcount+1 
      end do 
       
 
      temp_int1=niMidUpperStoJ1+niMidUpperJ1+niMidUpperJ1Act+1 
      
temp_int2=niMidUpperStoJ1+niMidUpperJ1+niMidUpperJ1Act+niMidUpperJ1Last-1 
 
      do i=temp_int1, temp_int2 
         do j=1,njmax 
            MidUpper1xxx(midcount,j)=MidExxx(i+1-temp_int1,j) 
            MidUpper1yyy(midcount,j)=MidEyyy(i+1-temp_int1,j) 
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         end do 
         midcount=midcount+1 
      end do 
 
      
temp_int1=niMidUpperStoJ1+niMidUpperJ1+niMidUpperJ1Act+niMidUpperJ1Last+1 
      
temp_int2=niMidUpperStoJ1+niMidUpperJ1+niMidUpperJ1Act+niMidUpperJ1Last+niMid
UpperBet-1 
 
      do i=temp_int1, temp_int2 
         do j=1,njmax 
            MidUpper1xxx(midcount,j)=MidFxxx(i+1-temp_int1,j) 
            MidUpper1yyy(midcount,j)=MidFyyy(i+1-temp_int1,j) 
         end do 
         midcount=midcount+1 
      end do 
       
      
temp_int1=niMidUpperStoJ1+niMidUpperJ1+niMidUpperJ1Act+niMidUpperJ1Last+niMid
UpperBet+1 
      
temp_int2=niMidUpperStoJ1+niMidUpperJ1+niMidUpperJ1Act+niMidUpperJ1Last+niMid
UpperBet+niMidUpperJ2-1 
 
      do i=temp_int1, temp_int2 
         do j=1,njmax 
            MidUpper1xxx(midcount,j)=MidGxxx(i+1-temp_int1,j) 
            MidUpper1yyy(midcount,j)=MidGyyy(i+1-temp_int1,j) 
         end do 
         midcount=midcount+1 
      end do 
 
      
temp_int1=niMidUpperStoJ1+niMidUpperJ1+niMidUpperJ1Act+niMidUpperJ1Last+niMid
UpperBet+niMidUpperJ2+1 
      
temp_int2=niMidUpperStoJ1+niMidUpperJ1+niMidUpperJ1Act+niMidUpperJ1Last+niMid
UpperBet+niMidUpperJ2+niMidUpperJ2Act-1 
 
      do i=temp_int1, temp_int2 
         do j=1,njmax 
            MidUpper1xxx(midcount,j)=MidHxxx(i+1-temp_int1,j) 
            MidUpper1yyy(midcount,j)=MidHyyy(i+1-temp_int1,j) 
         end do 
         midcount=midcount+1 
      end do 
 
      
temp_int1=niMidUpperStoJ1+niMidUpperJ1+niMidUpperJ1Act+niMidUpperJ1Last+niMid
UpperBet+niMidUpperJ2+niMidUpperJ2Act+1 
      
temp_int2=niMidUpperStoJ1+niMidUpperJ1+niMidUpperJ1Act+niMidUpperJ1Last+niMid
UpperBet+niMidUpperJ2+niMidUpperJ2Act+niMidUpperJ2Last-1 
 
      do i=temp_int1, temp_int2 
         do j=1,njmax 
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            MidUpper1xxx(midcount,j)=MidIxxx(i+1-temp_int1,j) 
            MidUpper1yyy(midcount,j)=MidIyyy(i+1-temp_int1,j) 
         end do 
         midcount=midcount+1 
      end do 
 
      
temp_int1=niMidUpperStoJ1+niMidUpperJ1+niMidUpperJ1Act+niMidUpperJ1Last+niMid
UpperBet+niMidUpperJ2+niMidUpperJ2Act+niMidUpperJ2Last+1 
      
temp_int2=niMidUpperStoJ1+niMidUpperJ1+niMidUpperJ1Act+niMidUpperJ1Last+niMid
UpperBet+niMidUpperJ2+niMidUpperJ2Act+niMidUpperJ2Last+niMidUpperJ2toE 
 
       do i=temp_int1, temp_int2 
         do j=1,njmax 
            MidUpper1xxx(midcount,j)=MidJxxx(i+1-temp_int1,j) 
            MidUpper1yyy(midcount,j)=MidJyyy(i+1-temp_int1,j) 
         end do 
         midcount=midcount+1 
end do 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   139

REFERENCES 

1. Lewis, Jeffrey C., Agarwal, and Ramesh K., "Airfoil design via control theory using full-
potential and Euler equations", ASME Fluids Eng Div Publ FED, v 232, 1995, p 53-60. 

2. Singh, K.P., Murali Krishna, K., Saha, S., and Mukharjea, S.K., "Application of an Euler 
Code on a modern combat aircraft configuration", ADA, Bangalore, India, Lecture Notes in 
Physics, n 453, 1995, p 535-539. 

3. Huang, L., Huang, P.G, LeBeau, R.P., and Hauser, Th., “Optimization of Blowing and 
Suction Control on NACA 0012 Airfoil Using a Genetic Algorithm”, AIAA-2004-0423, 
2004. 

4. Chaudhry, S.S., "Application of Genetic Algorithms in production and operations 
management: a review", International Journal of Production Research, v 43, n 19, 1 Oct. 
2005, p 4083-101. 

5. Gonzalez, L.F., E.J. Whitney, K. Srinivas, and J. Periaux, “Optimum Multidisciplinary and 
Multi-Objective Wing Design in CFD Using Evolutionary Techniques”, International 
Conference on Computational Fluid Dynamics 3, Toronto, Canada, July 2004. 

6. Kalyanmoy, D., and Tiwari S., "Multi-objective optimization of a leg mechanism using 
Genetic Algorithms', Engineering optimization, Vol. 37, No. 4, June 2005, p 325-350. 

7. Chang, C.K., "Genetic Algorithms for project management", Annals of Software 
Engineering, v 11, 2001, p 107-39. 

8. Hauser, Karina, "Simulation and Optimization of a crossdocking operation in a just-in-time 
environment", PhD Dissertation, University of Kentucky, 2002. 

9. Douglas I. G., A Review of Unsteady Aerodynamic Modeling for Flight Dynamics of 
Maneuverable Aircraft, AIAA Atmospheric Flight Mechanics Conference and Exhibit, p16 - 
19 August 2004, Providence, Rhode Island. 

10. LeBeau, R.P., Beliganur, N, and Th. Hauser, “Flow Control Optimization Using Neural 
Networks and Genetic Algorithms”, International Conference of Computational Fluid 
Dynamics 4, Ghent, Belgium, July 10-14, 2006. 

11. Collis, S., Joslin, R.D, Seifert, A, and Theofilis, V, “Issues in active flow control: theory, 
control, simulation and experiment”, Prog. In Aero. Sci., Vol. 40, No 4-5, pp 237-289, 
2004.(earlier version as AIAA paper 2002-3277). 

12. Katam, V., "Simulation of low-Re flow over a modified NACA 4415 airfoil with oscillating 
camber", Master's  thesis, University of Kentucky, 2005. 

13. Gad-el-Hak, Pollard, and Bonnet (Eds.), "Flow Control: Fundamentals and Practices", 
Springer-Verlag Berlin Heidelberg, 1998. 



   140

14. Gad-el-Hak, M., "Flow Control: The Future", Journal of Aircrafts, Vol. 38, No. 3, May–June 
2001. 

15. Gad-el-Hak, M., “Flow Control: Passive, Active and Reactive Flow Management”, 
Cambridge University Press, 2000 

16. Anderson, D. John, “Computational Fluid Dynamics: The basics with applications”, 
McGraw-Hill International Editions, 1995. 

17. Thomas Back, “Evolutionary Algorithms in Theory and Practice”, Oxford University Press, 
Inc., New York, 1996. 

18. J. H. Holland, “Adaptation in Natural and Artificial Systems”, University of Michigan Press, 
Ann Arbor, 1975 

19. Gen, M., and Cheng, R., “Genetic Algorithms & Engineering Optimization”, John Wiley & 
Sons, Inc., New York, 2000. 

20. Huang, Liang, “Optimization of Blowing and Suction Control on NACA0012 Airfoil using 
Genetic Algorithm with Diversity Control”, PhD Thesis, University of Kentucky, 2004. 

21. Haupt R. L and Haupt S. E., “Practical Genetic Algorithms”, Second Edition, John Wiley & 
Sons, Inc., New York, 2004. 

22. L. Prandtl, in Verhandlungen des dritten internationalen Mathematiker-Kongresses in 
Heidelberg 1904, A. Krazer, ed., Teubner, Leipzig, Germany (1905), p. 484. English trans. 
in Early Developments of Modern Aerodynamics, J. A. K. Ackroyd, B. P. Axcell, A.I. 
Ruben, eds., Butterworth-Heinemann, Oxford, UK (2001), p.77. 

23. B. Thwaites, “Approximate Calculation of the Laminar Boundary Layer”, Aeronautical 
Quarterly, Vol. 1, 1949, p 245-280. 

24. B. S. Stratford, “The Prediction of Separation of the Turbulent Boundary Layer”, Journal of 
Fluid Mechanics, Vol. 5, 1959, p 1-16. 

25. Curle, N., and Skan. S., “Approximate Methods for Predicting Properties of Laminar 
Boundary Layers”, Aeronautical Quarterly, Vol. 8, 1957, p 257-268. 

26. L. Crabtree, “Prediction of Transition in the Boundary Layer of An Aerofoil”, Journal of 
Royal Aeronautical Society, Vol. 62, 1958, p. 525-537. 

27. E. C. Maskell, “Approximate Calculation of the Turbulent Boundary Layer In Two 
Dimensional Incompressible Flow”, M. O. S. Report, 1958. 

28. Eli Reshotko and Maurice Tucker, “Approximate calculation of the compressible turbulent 
boundary layer with heat transfer and arbitrary pressure gradient”, NACA TN-4154, Lewis 
Flight Propulsion Laboratory, December 1957. 

29. Julian Nitzberg Allen, and E. Gerald, “The effect of compressibility on the growth of the 
laminar boundary layer on low-drag wings and bodies”, NACA TN-1255, July 1947. 



   141

30. John Stack, “Tests of airfoils designed to delay the compressibility burble”, NACA TN-976, 
Langley Memorial Aeronautical Laboratory, Langley Field, VA, December 1944. 

31. McCullough, G. B., and Gault, D.E., “ Examples of Three Representative Types of Airfoil-
Section Stall at Low Speed,” NACA TN-2502, Washington, DC, 1951. 

32. Meuller, T. J., and Burns, T.F., “Experimental Studies of the Eppler 61 Airfoil at Low 
Reynolds Numbers,” 1982, AIAA Paper 82-0345. 

33. Sunada, S., Sakaguchi, A., Kawachi, K., “Airfoil section characteristics at a low Reynolds 
number.”, Journal of fluids engineering, Transactions of the ASME, Vol. 119,1997, p 129-
135. 

34. L. Bahi, J.M. Ross and H.T. Nagamatsu, “Passive Shock Wave/Boundary Layer Control for 
Transonic Airfoil Drag Reduction”, 1983, AIAA Paper 1983-0137. 

35. G. Savu and O. Trifu, “Porous Airfoils in Transonic Flow”, AIAA Journal, Vol. 22, 1984, p. 
989-991. 

36. H. D. Taylor, “Application of Vortex Generator Mixing Principles to Diffusers”, Research 
Department Concluding Report No. R-15064-5, United Aircraft Corporation, East Hartford, 
1948. 

37. H. H. Pearcey, “Shock Induced Separation and Its Prevention by Design and Boundary 
Layer Control”, Boundary layer and Flow Control, Vol. 2, Pergamon Press, Oxford, 
England, 1961, p 1166-1344. 

38. J. D. Nickerson, “A Study of Vortex Generators at Low Reynolds Numbers”, 1986, AIAA 
Paper 1986-0155. 

39. M.B. Bragg and G.M. Gregorek, “Experimental Study of Airfoil Performance with Vortex 
Generators”, Journal of Aircraft, Vol. 24, 1987, p 305-309. 

40. Gu, W., Robinson, O., and Rockwell, D., "Control of vortices on a delta wing by leading-
edge injection", AIAA Journal, v 31, 1993, p 1177-1186. 

41. Saeed, F., and Selig, M. S., "Multipoint inverse airfoil design method for slot-suction 
airfoils", Journal of Aircraft, v 33, 1996, p 708-715. 

42. Wright, M.C.M. and Nelson, P.A., "Wind tunnel experiments on the optimization of 
distributed suction for laminar flow control", Proceedings of the Institution of Mechanical 
Engineers, Part G: Journal of Aerospace Engineering, v 215, n 6, p 343-354, 2001. 

43. C. Wong and K. Konstantinos, "Flow control by spanwise blowing on a NACA 0012",  24th 
AIAA Applied Aerodynamics Conference, San Francisco, CA, p 2215-2228, 2006. 

44. Greenblatt, D., and Wygnanski, I. J., "Control of flow separation by periodic excitation", 
Progress in Aerospace Sciences, v 36, 2000, p 487-545. 



   142

45. Bushnell, D.M., and McGinley, C.B. (1989) "Turbulence Control in Wall Flows," Ann. Rev. 
Fluid Mech. 21, p 1-20. 

46. Fiedler, H.E., and Fernholz, H.-H. (1990) "On Management and Control of Turbulent Shear 
Flows," Prog. Aerospace Sci. 27, p 305-387. 

47. Gad-el-Hak, M., and Bushnell, D.M. (1991) "Separation Control: Review," J. Fluids Eng. 
113, p 5-30. 

48. Moin, P. and Bewley, T. (1994) "Feedback Control of Turbulence," Appl. Mech. Rev. 47, p 
S3-S13. 

49. Gad-el-Hak, M. (1994) "Interactive Control of Turbulent Boundary Layers: A Futuristic 
Overview," AIAA J. 32, p 1753-1765. 

50. Glezer, A., Allen, M. G., Coe, D. J., Barton, S. L., Trautman, M. A., and Wiltse, J. W., 
“Synthetic Jet Actuator and Applications Thereof”, U.S. Patent 5,758,823, June 2, 1998. 

51. Barton L. Smith and A. Glezer, “The Formation and Evolution of Synthetic Jets”, Physics of 
Fluids, Vol. 10, No. 9, Sep 1998, pp. 2281- 2297. 

52. A. Glezer, “Shear Flow Control Using Fluidic Actuator Technology”, Proceedings of the 1st 
Symposium on Smart Control of Turbulence, Tokyo, Japan, 1999. 

53. D. C. McCormick, S. Lozyniak, D. G. MacMartin, and P. F. Lorber, “Compact High Power 
Boundary Layer Separation Control Actuation Development”, ASME Fluids Engineering 
Division Summer Meeting, New Orleans, ASME FEDSM2001-18279, May 2001. 

54. J. L Gilarranz and O.K. Rediniotis, “Compact, High-Power Synthetic Jet Actuators for Flow 
Separation Control”, 39th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 
2001-0737, 2001. 

55. J. L. Gilarranz, X. Yue, and O. K. Rediniotis, "PIV Measurements and Modeling of 
Synthetic Jet Actuators for Flow Control," Proceedings of FEDSM'98, ASME Fluids 
Engineering Meeting, 1998. 

56. Coe, D.L., Allen, M.G., Smith, B.L., and Glezer, A., "Addressable Micro-machined Jet 
Arrays," Transducers ’95, Stockholm, Sweden, June 25-29, 1995. 

57. Smith, B.L. and Glezer, A., ‘Vectoring and Small-Scale Motions Effected in Free Shear 
Flows Using Synthetic Jet Actuators,’ AIAA-97-0213, 35th Aerospace Sciences Meeting 
and Exhibit, Jan. 6-10, 1997, Reno, NV. 

58. Amitay, M., Honohan, A, Trautman, M., and Glezer, A., ‘Modification of the Aerodynamic 
Characteristics of Bluff Bodies Using Fluidic Actuators,’ AIAA-97-2004, 28th AIAA Fluid 
Dynamics Conference, June 29 – Jul. 2, 1997, Snowmass Village, CO. 

59. Jason Kiddy, Peter Chen, John Niemczuk, Don DeVoe, and Ken Kiger, "Active Flow 
Control using Micro-electromechanical Systems", Systems Planning and Analysis Inc., 
AIAA SDM Conference, 2000. 



   143

60. Munday, D. and Jacob, J.D., “Active Control of Separation on a Wing with Oscillating 
Camber.” AIAA Journal of Aircraft, 39, No. 1, 2002. 

61. Kota, S., Hetrick, J., Osborn, R., Paul, D., Pendleton, Ed, Flick, P., and Tilmann, C., "Design 
and application of compliant mechanisms for morphing aircraft structures", Proceedings of 
SPIE - The International Society for Optical Engineering, v 5054, 2003, p 24-33 . 

62. Martin, T., Guitton, A., Schmit, R, and Glauser, M. N., "Development of a morphing micro 
air vehicle wing using the combined POD and LSE technique", InfoTech at Aerospace: 
Advancing Contemporary Aerospace Technologies and Their Integration, AIAA 2005-7158, 
2005. 

63. Fischer, Michael C. and Vemuru, Chandra S., "Application of laminar flow control to the 
high speed civil transport. The NASA Supersonic Laminar Flow Control program", SAE 
Technical Paper Series, 1991, p 1-12. 

64. L. D. Kral, J. F. Donovan, A. B. Cain, and A. W. Cary, "Numerical Simulation of Synthetic 
Jet Actuators," AIAA 28th Fluid Dynamics Conference, AIAA Paper 1997-1824, 1997 

65. D. P. Rizzetta, M. R. Visbal, and M. J. Stanek, "Numerical Investigation of Synthetic Jet 
Flowfields," AIAA Journal, Vol. 37, No. 8, August 1999 

66. Rumsey, C. L., Lee-Rausch, E. M., and Watson, R. D, "Three-dimensional effects in multi-
element high lift computations", Computers and Fluids, v 32, 2003, p 631-657. 

67. Jie-Zhi Wu, Xi-Yun Lu, Andrew G. Denny, Meng Fan and Jain-Ming Wu, “Post stall Flow 
Control On An Airfoil By Local Unsteady Forcing”, Journal of Fluid Mechanics, Vol. 371, 
1998, p 21-58. 

68. Catalin Nae, “Synthetic Jets Influence on NACA 0012 Airfoil at High, Angles of Attack”, 
AIAA Atmospheric Flight Mechanics Conference and Exhibit, Boston, Massachusetts, 
August 10-12, 1998. 

69. A. Hassan, and R. D. Janakiram, "Effects of Zero-Mass Synthetic Jets on the Aerodynamics 
of the NACA 0012 Airfoil", Journal of the American Helicopter Society, Vol. 43, No. 4, 
Oct, 1998 

70. Hassan, A.A., Martin, P.B., Tung, C., Cerchie, D., and Roth, J., "Active flow control 
measurements and CFD on a transport helicopter fuselage",  AHS International, v 1, 61st 
Annual Forum Proceedings - AHS International, p 349-369, 2005. 

71. R. Duvigneau, A. Hay, and M. Visonneau, "Study on the Optimal Location of a Synthetic 
Jet for Stall Control", AIAA-2006-3679 3rd AIAA Flow Control Conference, San Francisco, 
California, June 5-8, 2006. 

72. Za’er Salem Abo-Hammour, “Advanced Continuous Genetic Algorithms and their 
Applications in the Motion Planning of Robot Manipulators and in the Numerical Solution 
of Boundary Value Problems”, PhD Thesis, Pakistan Institute of Engineering and Applied 
Sciences, Quaid-i-Azam University, 2002. 



   144

73. Rao S. S., “Engineering Optimization – Theory and Practice”, Revised Third Edition, New 
Age International (P) Ltd., Publishers, 2005. 

74. Reeves, C. R., "Modern Heuristic Techniques for Combinatorial Problems", Orient 
Longman, 1993. 

75. Samii, Y. R. and Michielssen E., "Electromagnetic Optimization by Genetic Algorithms", 
Wiley-Interscience, 1999. 

76. Goldberg D. E., "Genetic Algorithms in search, optimization, and machine learning", 
Addision-Wisley Company Inc: Reading, MA, 1989. 

77. Wang L., and Zheng D. Z., "An effective hybrid optimization strategy for job-shop 
scheduling problems", Computers and Operations Research, 28 (6), p 585-596, 2001. 

78. Kobayashi, R., and Nakanishi, I., "Application of Genetic Algorithms to focal mechanism 
determination", Geophysical Research Letter, Vol. 21 (8), 1994, p 729-732. 

79. Wong, S. C., Wong, C. K, and Tong, C.O., "A parallelized Genetic Algorithm for the 
calibration of Lowry Model", Parallel Computing, Vol. 27 (12), 2001, p 1523-1536. 

80. Hajela. P, Lin C. Y, "Real versus binary coding in Genetic Algorithms: A comparative 
study, in computational engineering using metaphors from nature, by Topping B. H. V, 
2000, p. 77-83. 

81. Duvigneau, R., and Visonneau, M., "Hybrid Genetic Algorithms and artificial neural 
networks for complex design optimization in CFD", Int. J. Numerical Methods in Fluids 
2004, Vol. 44, p 1257–1278. 

82. Jameson, A., Martinelli, L., and Pierce, N.A., "Optimum aerodynamic design using the 
Navier-Stokes equations", Theoretical and Computational Fluid Dynamics, Vol. 10, p 213-
37, 1998. 

83. Anderson, W. K., and Venkatakrishnan, V., "Aerodynamic design optimization on 
unstructured grids with a continuous adjoint formulation", Computers and Fluids, Vol. 28, 
1999, p 443-480. 

84. Anderson WK, and Nielsen E., "Aerodynamic design optimization on unstructured meshes 
using the Navier–Stokes", equations. AIAA Journal, Vol. 37, 1999, p 1411–1419. 

85. Giunta A, Dudley J, Narducci R, Grossman B, Haftka R, Mason W, and Watson L., "Noisy 
aerodynamic response and smooth approximations in HSCT design", AIAA Paper 94-4316, 
1994. 

86. Hosder S, Grossman B, Haftka R, Mason W, and Watson L., "Observations on CFD 
simulation uncertainties", AIAA Paper 2002-5531, 2002. 

87. Peigin, S., and Epstein, B., "Robust handling of non-linear constraints for GA optimization 
of aerodynamic shapes", International Journal for Numerical Methods in Fluids, Vol. 45, 
2004, p 1339-1362. 



   145

88. Sengupta, T. K., Deb, K., and Talla, S. B., "Control of flow using Genetic Algorithm for a 
circular cylinder executing rotary oscillation", Computers and Fluids, Vol. 36, p 578-600. 

89. Gutowski, M. W., “Smooth Genetic Algorithms”, Journal of Physics A-Mathematical and 
General, 27, 7893-7904, 1994. 

90. Raymond P. LeBeau, Jr., Liang Huang, and Thomas Hauser, "Application of Evolutionary 
Algorithms to Small Jet Arrays for Flow Control", 17th AIAA Computational Fluid 
Dynamics Conference, 6 - 9 June 2005, AIAA 2005-4859, Toronto, Ontario Canada.   

91. Palki, A., “Cache optimization and performance evaluation of a structured cfd code – 
GHOST”, MS Thesis, University of Kentucky, 2006. 

92. Y. B. Suzen, P. G. Huang, "Numerical Simulation of Wake Passing on Turbine Cascades", 
41st Aerospace Sciences Meeting and Exhibit, AIAA Paper 2003-1256, 2003. 

93. Y. B. Suzen, P.G. Huang, R. J. Volino, T. C. Corke, F. O. Thomas, J. Huang, J. P. Lake and 
P. I. King, “A Comprehensive CFD Study of Transitional Flows In Low-Pressure Turbines 
Under a Wide Range of Operation Conditions”, 33rd AIAA Fluid Dynamic Conference, 
AIAA Paper 2003-3591, 2003. 

94. Y. B. Suzen and P. G. Huang, “Predictions of Separated and Transitional Boundary Layers 
Under Low-Pressure Turbine Airfoil Conditions Using an Intermittency Transport 
Equation”, Journal of Turbomachinery, Vol. 125, No.3, 2003, pp. 455-464 

95. Suzen, Y., Huang, G., Jacob, J. D., and Ashpis, D. “Numerical Simulations of Plasma Based 
Flow Control Applications.” AIAA 2005-4633, AIAA 35th Fluid Dynamics Conference and 
Exhibit, Toronto, CA, June 6-9, 2005. 

96. Menter F. R., “Two-Equation Eddy-Viscosity Turbulence Models For Engineering 
Applications”, AIAA Journal, Vol. 32, No. 8, 1994, p 1598-1605. 

97. Bardina, J. E., P. G. Huang and T. J. Coakley, “Turbulence Modeling Validation, Testing 
and Development”, NASA TM-110446, 1997. 

98. Beliganur, N., R.P. LeBeau, and Th. Hauser, “Application of Genetic Algorithms and Neural 
Networks to Unsteady Flow Control Optimization”, 18th AIAA Computational Fluid 
Dynamics Conference, 25 - 28 Jun 2007, Miami, FL. 

99. C. M. Rhie and W. L. Chow, “Numerical study of the turbulent flow past an airfoil with 
tailing edge separation”, AIAA Journal, Vol. 21, 1983, pp. 1523-1532. 

100. Robert E. Dannenberg and James A. Weiberg, “Section Characteristics Of A 10.5-
Percent Thick Airfoil With Area Suction As Affected By Chordwise Distribution Of 
Permeability”, NASA Technical Note 2847, Ames Aeronautical Laboratory, Moffett Field, 
CA, 1952. 

101. M. Amitay, V. Kibens, D. Parekh, and A. Glezer, ‘‘The dynamics of flow reattachment 
over a thick airfoil controlled by a synthetic jet actuator, ’’ AIAA Paper. 99-1001, 1999. 



   146

102. A. Crook, A. M. Sadri, and N. J. Wood, ‘‘The development and implementation of 
synthetic jets for the control of separated flow,’’ AIAA Paper 99-3173, 1999. 

103. C. Y. Lee and D. B. Goldstein, ‘‘DNS of microjets for turbulent boundary layer control,’’ 
AIAA Paper 2001-1013, 2001 

104. B. L. Smith and A. Glezer, ‘‘Vectoring and small-scale motions affected in free shear 
flows using synthetic jet actuators,’’ AIAA Paper 97-0213, 1997. 

105. Y. Chen, S. Liang, K. Aung, A. Glezer, and J. Jagoda, ‘‘Enhanced mixing in a simulated 
combustor using synthetic jet actuators,’’ AIAA Paper 99-0449, 1999. 

106. A. Seifert, T. Bachar, D. Koss, M. Shepshelovich, and I. Wygnanski, ‘‘Oscillatory 
blowing: A tool to delay boundary layer-separation,’’ AIAA J. vol. 31, 2052, 1993. 

107. R. Mittal and P. Rampunggoon, "On the virtual aeroshaping effect of synthetic jets", 
American Institute of Physics, Physics of Fluids, Vol. 14, Number 4, 2002. 

108. HTTP://HOME.GWU.EDU/~RENI/RESEARCH.HTM  

109. D.S. Blank, D. Kumar, L. Meeden, and H. Yanco. Pyro: A python-based versatile 
programming environment for teaching robotics. Journal of Educational Resources in 
Computing, 2004. 

110. Smith BL, Glezer A., "Vectoring of a high aspect ratio air jet using zero-net-mass-flux 
control jet", Bull. Am. Phys. Soc. 39-1894, 1994. 

111. Smith BL, Trautman MA, Glezer A., "Controlled interactions of adjacent synthetic jets. 
AIAA 37th Aerospace Science Meeting 99-0669, 1999. 

112. A. G. Journel and CH. J. Huijbregts " Mining Geostatistics", Academic Press 1981 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://home.gwu.edu/~reni/research.htm


   147

VITA 

Narendra K Beliganur was born on May 10, 1981 in Donimalai, Karnataka, India. He 

received his bachelors’ degree from Visweshwariah Technological University, Karnataka, India 

in July of 2002. Post bachelors’ He worked as a Software Engineer at GE and IBM from 2002 to 

2005. He joined the University of Kentucky in the Fall of 2005 to pursue his MS in Mechanical 

Engineering and successfully completed in the May of 2007. As a graduate student he served as 

a Teaching Assistant for ME321 (Engineering Thermodynamics II) and ME325 (Elements of 

Heat Transfer), and also as a Research Assistant at the UK CFD lab. Upon graduation he began 

work at Corvid Technologies Inc., as a Computational Analyst. 

Scholastic Honors 
 

Kentucky Graduate Scholarship, Fall 2005 - Spring 2007 

University of Kentucky, Lexington, KY. 

 

Papers and Conferences 
 

Beliganur, N., R.P. LeBeau, and Th. Hauser, “Application of Genetic Algorithms and 

Neural Networks to Unsteady Flow Control Optimization”, Accepted, 18th AIAA Computational 

Fluid Dynamics Conference, 25 - 28 Jun 2007, Miami, FL 

 

Beliganur, N., and R.P. LeBeau, “Application of Evolutionary Algorithms to Flow 

Control Optimization”, Accepted, AIAA Region III Student Conference, 30 – 31 Mar 2007, 

University of Notre Dame, Notre Dame, IN – Awarded Third-Place in the Master’s best paper 

and presentation category 

 



   148

Beliganur, N, R.P. LeBeau, and Th. Hauser, “Unsteady Flow Control Optimization using 

Evolutionary Algorithms”, Accepted, 32nd Annual Dayton-Cincinnati Aerospace Science 

Symposium, Mar 6th 2007, Dayton, OH 

 

LeBeau, R.P., D.A. Reasor, X. Deng, S. Panguluri, Beliganur, N., and T. Hauser, 

"Performance Assessment of Fluid Dynamics codes on Different Computer Architectures" , 32nd 

Annual Dayton-Cincinnati Aerospace Science Symposium, Dayton, OH, March 6, 2007 

 

Beliganur, N, LeBeau, R.P., D.G. Schauerhamer, and Th. Hauser, “Application of 

Genetic Algorithms to Complex Computational Fluid Dynamics Simulations”, 45th AIAA 

Aerospace Sciences Meeting and Exhibit, 8 - 11 Jan 2007, Reno, NV 

 

LeBeau, R.P., Beliganur, N, Th. Hauser, “Flow Control Optimization Using Neural 

Networks and Genetic Algorithms”, International Conference of Computational Fluid Dynamics 

4, July 10 - 14 Jul 2006, 2006, Ghent, Belgium 

 

Beliganur, N., LeBeau, R.P., and Th. Hauser, “Combining Neural Networks and Genetic 

Algorithms for Flow Control Optimization”, 31st Annual Dayton-Cincinnati Aerospace Science 

Symposium, Mar 7th 2006, Dayton, OH 

 


	University of Kentucky
	UKnowledge
	2007

	APPLICATION OF GENETIC ALGORITHMS AND CFD FOR FLOW CONTROL OPTIMIZATION
	Narendra Beliganur Kotragouda
	Recommended Citation


	CHAPTER – 1
	1. INTRODUCTION
	1.1 Overview
	1.2 Background
	1.3 Flow Control
	Figure 1.1 Classification of flow control techniques, Gad-el-Hak [13]
	1.3.1 Passive Flow Control
	1.3.2 Active Flow Control
	Figure 1.2 Predetermined, open-loop control, Gad-el-Hak [15]

	1.3.3 Flow Control and CFD
	Figure 1.3: The “three dimensions of fluid dynamics”


	1.4 Optimization Techniques
	1.4.1 Genetic Algorithms

	1.5 Objectives
	1.6 Organization of Thesis


	  CHAPTER – 2
	2. LITERATURE REVIEW
	2.1 Flow Control
	2.1.1 Flow Control - Conventional
	Figure 2.1: Interrelation between flow control goals [15]
	2.1.1.1 Passive Control
	2.1.1.2 Active Control
	2.1.1.2.1 Suction and Blowing
	2.1.1.2.2 Synthetic Jets
	2.1.1.2.3 Morphing Wing


	2.1.2 Flow Control and CFD 

	2.2 Optimization Algorithms
	2.2.1 Review of Genetic Algorithms
	2.2.2 Genetic Algorithms and CFD

	2.3 Summary


	CHAPTER – 3
	3. GENETIC ALGORITHMS 
	3.1 Overview
	3.2 Conventional Genetic Algorithm 
	Figure 3.1: Process flow of Conventional flow chart.

	3.3 EARND Genetic Algorithm
	Figure 3.2: Process flow chart of the EARND GA [20]

	3.4 Continuous Genetic Algorithm
	3.4.1 Components of Continuous GA
	3.4.1.1 Variable encoding, Precision, and Bounds
	3.4.1.2 Initial Population
	Figure 3.3: Contour plot of the example problem
	Table 3.1: Initial population arranged according to fitness


	3.4.1.3 Natural Selection
	Figure 3.4: Contour plot showing the initial population
	Table 3.2: Chromosomes which survived the selection process


	3.4.1.4 Pairing
	3.4.1.5 Mating/Crossover
	3.4.1.6 Mutation
	Table 3.3: Variables and fitness at the end of 1st generation

	3.4.1.7 The Next Generation
	Table 3.4: Variable and fitness values after convergence
	Figure 3.5: Contour plot showing region of high fitness (minimum cost) in blue




	3.5 Summary


	CHAPTER – 4
	4. COMPUTATIONAL TOOLS
	4.1 Grid generation
	4.1.1 FlexGrid.f90
	Figure 4.1: Multi-zone grid setup
	Figure 4.2: A: old two-jet grid (multi jet blocks), B: new grid (single jet block)
	Table 4.1: i and j points of the 16 grid blocks


	4.1.2 G.f90
	4.1.3 Input File – “input”

	4.2 GHOST
	4.3 GA-CFD System
	4.4 Computational platforms – Kentucky Fluid Clusters
	Figure 4.3: KFC6-I and KFC5

	4.5 Summary


	CHAPTER – 5
	5. STEADY FOUR JET RESULTS
	 5.1 Grid and Boundary Conditions
	Figure 5.1 (a): Grid and boundary conditions for four jet case

	5.2 Parameter Selection
	Figure 5.1 (b): Jet parameters for steady case [20]

	5.3 Genetic Parameters
	Table 5.1: Parameter range for the four jet case

	5.4 Optimized Configuration - CGA
	Table 5.2: Best configuration obtained from CGA simulation
	Table 5.3: Best 10 individuals from CGA simulation
	Figure 5.2 (a): Fitness of all configuration from CGA
	Figure 5.2 (b): Location sorted by fitness - CGA
	Figure 5.2 (c): Amplitude sorted by fitness – CGA
	Figure 5.2 (d): Angle sorted by fitness – CGA
	Figure 5.3 (a): Fitness of best 500 individuals – CGA
	Figure 5.3 (b): Location of best 500 individuals - CGA
	Figure 5.3 (c): Amplitude of best 500 individuals - CGA
	Figure 5.3 (d): Angle of best 500 individuals – CGA
	Figure 5.4 (a): Best 500 leading suction jet configurations (fixed amplitude) 
	Figure 5.4 (b) Best 500 trailing suction jet configurations along with fitness
	Figure 5.4 (c): Best 500 leading blowing jet configurations along with fitness
	Figure 5.4 (d) Best 500 trailing blowing jet configurations along with fitness


	5.5 Flow Control Physics
	Figure 5.5: Streamline and vorticity plot using the CGA configuration 
	Figure 5.6: Cp (coefficient of pressure) using the CGA configuration
	Figure 5.7: Pressure plots using the CGA configuration
	Table 5.4: Separation point for various configurations
	Figure 5.8: Cf (skin friction) using the CGA configuration
	Figure 5.9: Cl and Cd using the CGA configuration
	Figure 5.10 (a) to (d): Jet parameters for configurations having fitness within 1.5% of the maximum fitness




	5.6 EARND GA
	Table 5.5 Best configuration from the EARND GA
	Table 5.6 Best 10 configurations obtained using EARND GA
	Figure 5.12 (a): Location of jets from EARND GA (top) and CGA (bottom)
	Figure 5.12 (b): Amplitude of jets from EARND GA (top) and CGA (bottom)
	Figure 5.12 (c): Angle of jets from EARND GA (top) and CGA (bottom)
	Figure 5.13 (a): Vorticity and streamline plot with EARND GA optimum jet configuration
	Figure 5.13 (b): Vorticity and streamline plot with CGA optimum jet configurations


	5.7 Combination of CGA and EARND GA Configuration
	Table 5.7 Jet configuration and fitness using both GA configurations
	Figure 5.14: Vorticity and streamline comparisons


	5.8 Summary


	CHAPTER – 6
	6. UNSTEADY SYNTHETIC JET RESULTS
	6.1 Synthetic Jets
	Figure 6.1: A 2D synthetic jet interacting with a laminar boundary layer [108]

	6.2 Case Setup
	Figure 6.2: Lift and drag convergence for the unsteady synthetic jet case
	 Figure 6.3: Comparison of unsteady (a) and steady (b) grid setup

	6.3 Parameter Selection
	Table 6.1: Parameter range for the pure oscillating case
	Figure 6.4: Vorticity and streamline plot for pure unsteady two-jet case
	Figure 6.5: Results of the pure oscillating unsteady two-jet case (24 generations)
	Table 6.2: Modification of variables for hybrid unsteady case 



	6.4 Genetic Parameters
	6.5 Hybrid Unsteady Two Jet Results
	Table 6.3: Best 5 individuals of the unsteady 2-jet case – CGA
	Figure 6.6: Fitness plots of unsteady simulations
	Figure 6.7: Scatter plots for parameters of the unsteady case – CGA (both simulations)


	6.6 Summary


	CHAPTER – 7
	7. GA-NEURAL NETWORKS-CFD
	7.1 Neural Networks
	Figure 7.1: A typical neural network

	7.2 GA-NN-CFD System and Initial Results
	Figure 7.2: Fitness comparison GA-CFD and GA-NN system
	Figure 7.3: Lift and drag comparisons of GA-CFD and GA-NN system

	7.3 Summary


	CHAPTER – 8
	8. CONCLUSIONS AND FUTURE WORK
	8.1 Conclusions
	Table 8.1: Improvements in parameters for steady case
	Table 8.2: Improvements in parameters for hybrid unsteady case
	Table 8.3: Best configuration for the steady four-jet case
	Table 8.4: Best configuration for the hybrid unsteady two-jet case

	8.2 Future Work


	APPENDIX
	A1. FlexGrid.f90 Modification for Steady Case
	A2. A typical ‘input’ file
	A3. FlexGrid.f90 Modification For Unsteady Case

	REFERENCES
	VITA

