
University of Kentucky
UKnowledge

University of Kentucky Doctoral Dissertations Graduate School

2009

PRODUCTION SEQUENCING AND
STABILITY ANALYSIS OF A JUST-IN-TIME
SYSTEM WITH SEQUENCE DEPENDENT
SETUPS
John Thomas Henninger
University of Kentucky, tom.h@uky.edu

Click here to let us know how access to this document benefits you.

This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of
Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

Recommended Citation
Henninger, John Thomas, "PRODUCTION SEQUENCING AND STABILITY ANALYSIS OF A JUST-IN-TIME SYSTEM WITH
SEQUENCE DEPENDENT SETUPS" (2009). University of Kentucky Doctoral Dissertations. 764.
https://uknowledge.uky.edu/gradschool_diss/764

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu
https://uknowledge.uky.edu/gradschool_diss
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

ABSTRACT OF DISSERTATION

John Thomas Henninger

The Graduate School

University of Kentucky

2009

PRODUCTION SEQUENCING AND STABILITY ANALYSIS OF A JUST-IN-TIME
SYSTEM WITH SEQUENCE DEPENDENT SETUPS

ABSTRACT OF DISSERTATION

A dissertation submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy in the
College of Engineering

at the University of Kentucky

By
John Thomas Henninger

Lexington, Kentucky

 Co-Directors: Dr. Kozo Saito, Professor of Mechanical Engineering
 and Dr. Larry Holloway, Professor of Electrical Engineering

Lexington, Kentucky

2009

Copyright © John Thomas Henninger 2009

ABSTRACT OF DISSERTATION

PRODUCTION SEQUENCING AND STABILITY ANALYSIS OF A JUST-IN-TIME
SYSTEM WITH SEQUENCE DEPENDENT SETUPS

Just-In-Time (JIT) production systems is a popular area for researchers but real-world issues such
as sequence dependent setups are often overlooked. This research investigates an approach for
determining stability and an approach for mixed product sequencing in production systems with
sequence dependent setups and buffer thresholds which signal replenishment of a given buffer.
Production systems in this research operate under JIT pull production principles by producing
only when demand exists and idle when no demand exists.

In the first approach, an iterative method is presented to determine stability for a multi-product
production system that operates with replenishment signals and may have sequence dependent
setups. In this method, a network of nodes representing machine states and arcs representing the
buffer inventory levels is used to find a stable trajectory for the production system via an iterative
procedure. The method determines suitable buffer levels for the production system that ensure
that a trajectory originating from any point within a buffer region will always map to a point
contained on another buffer region for all future mappings.

This iterative method for determining the stability of a production system was implemented using
an algorithm to calculate the buffer inventory regions for all arcs in a given arc-node network.
The algorithm showed favorable results for two and three product systems in which sequence
dependent setups may exist.

In the second approach, a product sequencing algorithm determines a product sequence for a
production system based on system parameters – setup times, buffer levels, usage rates,
production rates, etc. The algorithm selects a product by evaluating the goodness of each product
that has reached the replenishment threshold at the current time. The algorithm also incorporates
a lookahead function that calculates the goodness for some time interval into the future. The
lookahead function considers all branches of the tree of potential sequences to prevent the
sequence from travelling down a dead-end branch in which the system will be unable to avoid a
depleted buffer. The sequencing algorithm allows the user to weight the five terms of the
goodness equations (current and lookahead) to control the behavior of the sequence.

KEYWORDS: Mixed Model Sequencing, Just-In-Time Manufacturing, Stability Control,
 Switched Arrival Systems, Sequence Dependent Setups

 John T. Henninger .
Student’s Signature

 .
Date

PRODUCTION SEQUENCING AND STABILITY ANALYSIS OF A JUST-IN-TIME
SYSTEM WITH SEQUENCE DEPENDENT SETUPS

By

John Thomas Henninger

 Dr. Kozo Saito .
 Co-Director of Dissertation

 Dr. Larry Holloway .
 Co-Director of Dissertation

 Dr. James McDonough .
 Director of Graduate Studies

RULES FOR THE USE OF DISSERTATIONS

Unpublished dissertations submitted for the Doctor's degree and deposited in the University of
Kentucky Library are as a rule open for inspection, but are to be used only with due regard to the
rights of the authors. Bibliographical references may be noted, but quotations or summaries of
parts may be published only with the permission of the author, and with the usual scholarly
acknowledgments.

Extensive copying or publication of the dissertation in whole or in part also requires the consent
of the Dean of the Graduate School of the University of Kentucky.

A library that borrows this dissertation for use by its patrons is expected to secure the signature of
each user.

Name Date

DISSERTATION

John Thomas Henninger

The Graduate School

University of Kentucky

2009

PRODUCTION SEQUENCING AND STABILITY ANALYSIS OF A JUST-IN-TIME
SYSTEM WITH SEQUENCE DEPENDENT SETUPS

DISSERTATION

A dissertation submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy in the
College of Engineering

at the University of Kentucky

By
John Thomas Henninger

Lexington, Kentucky

 Co-Directors: Dr. Kozo Saito, Professor of Mechanical Engineering
 and Dr. Larry Holloway, Professor of Electrical Engineering

Lexington, Kentucky

2009

Copyright © John Thomas Henninger 2009

iii

Acknowledgments

This dissertation would not have been completed without the guidance, weekly meetings, and

encouragement from my Committee Co-Chair Dr. Larry Holloway, who even when his schedule

was full, still made it a priority to meet with his studentss. I also must thank Dr. Kozo Saito for

his encouragement and patience during this long process, as well as his willingness to provide his

time to be my Committee Co-Chair. I would also like to thank the remaining members of my

Committee, Dr. Ibrahim Jawahir and Dr. Keith Rouch, as well as the outside examiner Dr.

Alberto Corso, for their time and assistance to complete this dissertation.

iv

Table of Contents

Acknowledgments .. iii

Table of Contents .. iv

List of Tables .. ix

List of Figures ... xi

1 Introduction .. 1

1.1 Problem and Solution ... 2

1.2 TPS and JIT Principles ... 2

1.3 Common Liquid Packaging Issues ... 4

1.3.1 Definition of Algorithm ... 5

1.3.2 Definition of Stability .. 6

1.4 Overview of Dissertation .. 9

2 Literature Review ... 10

2.1 Production Sequencing ... 10

2.1.1 Mixed-Model Assembly Line .. 11

2.1.1.1 MM Assembly Line Problems with Setups ... 12

2.1.2 Car Sequencing Problem .. 13

2.1.3 Level Sequencing ... 14

2.1.4 Hybrid-Model Sequencing ... 16

2.1.4.1 Sequencing with Setups ... 17

2.1.5 Lookahead Scheduling ... 20

2.1.5.1 Discrete Event Systems ... 21

2.2 Stability of Production Systems ... 22

2.2.1 Switched Arrival Systems .. 22

3 Node Network Analysis ... 25

3.1 Introduction .. 25

3.2 Model Description .. 26

3.2.1 Basic Arc Type ... 27

3.2.2 Basic Node Type .. 27

3.3 Node Transformation Functions ... 27

3.3.1 Definition of Transformation Function and Inverse Function 28

3.3.1.1 Lemma 1 .. 29

3.3.1.2 Lemma 2 .. 30

v

3.3.1.3 Lemma 3 .. 31

3.3.2 Simultaneous vs. Sequential Transformations ... 32

3.3.3 Splitting of Regions .. 34

3.3.4 Repeated Region Transformations ... 37

3.3.5 Transformation of Single Incoming New Region .. 39

3.4 Settled Network .. 42

3.4.1.1 Definition of a Settled Network .. 43

3.5 Stable Network Trajectory ... 43

3.5.1.1 Lemma 4 .. 44

3.5.1.2 Lemma 5 .. 44

3.5.1.3 Definition of a Stable Trajectory ... 44

3.5.1.4 Theorem 1 .. 44

3.5.1.5 Propagation of a Stable Trajectory .. 45

4 Stability Algorithm .. 46

4.1 Introduction .. 46

4.2 Basic System Model ... 47

4.2.1 Product Inventory Data Handling .. 47

4.2.2 Basic Arc Type ... 49

4.2.3 Basic Node Types .. 49

4.2.3.1 Idle Node ... 49

4.2.3.2 Setup Node .. 49

4.2.3.3 Refill Node .. 50

4.3 Node Transformation Functions ... 50

4.3.1 Forward Transformation Functions .. 51

4.3.1.1 Idle Node ... 51

4.3.1.2 Setup Node .. 53

4.3.1.3 Refill Node .. 53

4.3.2 Pseudo-Inverse Transformation Functions ... 54

4.3.2.1 Idle Node ... 54

4.3.2.2 Setup Node .. 55

4.3.2.3 Refill Node .. 55

4.4 Intersection and Merging of Transformed Regions .. 56

4.4.1 Intersection and Union Example .. 57

4.5 Algorithm ... 60

vi

4.5.1 Stability Algorithm Outline .. 60

4.5.2 Stability Algorithm Pseudo Code ... 63

4.6 Implementation of Algorithm ... 67

4.7 Computational Complexity and Other Algorithm Issues ... 67

4.7.1 Oscillating Regions .. 67

5 Stability Algorithm Examples .. 69

5.1 Step-by-Step Example .. 70

5.1.1 Initialization of Algorithm ... 70

5.1.2 Flagged Node List Loop ... 70

5.1.3 Outgoing Arc Analysis Loop ... 71

5.1.4 Intersect Function ... 74

5.1.5 Merge Arc Function ... 75

5.1.6 Incoming Arc Analysis .. 77

5.2 General Statements about Implementation of Algorithm ... 81

5.3 Output from the Algorithm ... 82

5.3.1 Two Product Network .. 82

5.3.1.1 Stable Two-Product Network .. 83

5.3.1.2 Unstable Two-Product Network .. 86

5.3.1.3 Increasing the Product One Threshold .. 87

5.3.1.4 Two-Product System With and Without Idle .. 88

5.3.2 Three Product Network .. 93

5.3.2.1 Three Product Network – Idle Only .. 93

5.3.2.2 Three Product Network – With and Without Idle ... 97

5.3.2.3 Three Product Network – Different Usage Rates .. 108

5.3.2.4 Three Product System with Sequence Dependent Setups 112

5.3.3 Four Product Network .. 121

6 Product Sequencing Algorithm .. 132

6.1 Introduction .. 132

6.2 Production System Model .. 133

6.3 Time Normalized Method .. 135

6.3.1 Lemma #1 .. 138

6.3.2 Lemma #2 .. 139

6.4 Quantifying Goodness of Products ... 140

6.4.1 Key Variables ... 140

vii

6.4.2 Terms of the Goodness Equation ... 141

6.4.3 Weighting Factors of the Goodness Equation .. 144

6.5 Method of Product Selection .. 146

6.5.1 Current State Decision Statement .. 147

6.5.2 Lookahead State Decision Statement ... 147

6.5.2.1 Alternative Lookahead State Decision Method ... 148

6.6 Example of Goodness Equation with Lookahead ... 148

6.7 Sequencing Examples ... 151

6.7.1 Three Product Production System .. 151

6.7.2 Eight Product Production System .. 154

6.7.3 Weighting Parameters .. 156

6.7.3.1 Configuration #1-A – Time to Crash Without Lookahead 157

6.7.3.2 Configuration #1-B – Time to Crash With Lookahead 158

6.7.3.3 Configuration #2-A – Time to Refill Without Lookahead 158

6.7.3.4 Configuration #2-B – Time to Refill With Lookahead 159

6.7.3.5 Configuration #3-A – Time in Queue Without Lookahead 160

6.7.3.6 Configuration #3-B – Time in Queue With Lookahead 160

6.7.3.7 Configuration #4-A – Changeover Cost Without Lookahead 161

6.7.3.8 Configuration #4-B – Changeover Cost With Lookahead 162

6.7.3.9 Configuration #5-A – Usage Rate Variation Without Lookahead 162

6.7.3.10 Configuration #5-B – Usage Rate Variation With Lookahead 163

6.7.3.11 Discussion of Weighting Factors Results .. 163

6.7.4 Additional Test Cases for Weighting Parameters .. 164

6.7.4.1 Alternative Lookahead Selection of Additional Test Cases 171

6.7.5 Pattern Production .. 177

7 Conclusions .. 179

7.1 Research Contributions .. 179

7.2 Summary of Stability Analysis ... 180

7.2.1 Future Work – Stability .. 180

7.3 Summary of Sequencing Algorithm ... 182

7.3.1 Future Work – Sequencing ... 182

Appendix I: Stability Algorithm Implementation .. 184

Appendix II: Sequencing Algorithm Implementation ... 207

Appendix III: A History of Production Control Systems .. 238

viii

Appendix IV: Common Liquid Packaging Issues .. 266

References .. 272

Vita... 278

ix

List of Tables

Table 6.1: Product Demand, UR(i) .. 165

Table 6.2: Changeover Cost Family #1 ... 165

Table 6.3: Changeover Cost Family #2 ... 165

Table 6.4: Weighting Factor Test Cases .. 165

Table 6.5: Results for Demand Test Case #1, C/O Family #1, and Threshold Case #1 166

Table 6.6: Results for Demand Test Case #1, C/O Family #1, and Threshold Case #2 166

Table 6.7: Results for Demand Test Case #1, C/O Family #2, and Threshold Case #1 167

Table 6.8: Results for Demand Test Case #1, C/O Family #2, and Threshold Case #2 167

Table 6.9: Results for Demand Test Case #2, C/O Family #1, and Threshold Case #1 167

Table 6.10: Results for Demand Test Case #2, C/O Family #1, and Threshold Case #2 168

Table 6.11: Results for Demand Test Case #2, C/O Family #2, and Threshold Case #1 168

Table 6.12: Results for Demand Test Case #2, C/O Family #2, and Threshold Case #2 168

Table 6.13: Results for Demand Test Case #3, C/O Family #1, and Threshold Case #1 169

Table 6.14: Results for Demand Test Case #3, C/O Family #1, and Threshold Case #2 169

Table 6.15: Results for Demand Test Case #3, C/O Family #2, and Threshold Case #1 169

Table 6.16: Results for Demand Test Case #3, C/O Family #2, and Threshold Case #2 170

Table 6.17: Results for Demand Test Case #4, C/O Family #1, and Threshold Case #1 170

Table 6.18: Results for Demand Test Case #4, C/O Family #1, and Threshold Case #2 170

Table 6.19: Results for Demand Test Case #4, C/O Family #2, and Threshold Case #1 171

Table 6.20: Results for Demand Test Case #4, C/O Family #2, and Threshold Case #2 171

Table 6.21: Alt Method for Demand Case #1, C/O Family #1, and Threshold Case #1 172

Table 6.22: Alt Method for Demand Case #1, C/O Family #1, and Threshold Case #2 172

Table 6.23: Alt Method for Demand Case #1, C/O Family #2, and Threshold Case #1 173

Table 6.24: Alt Method for Demand Case #1, C/O Family #2, and Threshold Case #2 173

Table 6.25: Alt Method for Demand Case #2, C/O Family #1, and Threshold Case #1 173

Table 6.26: Alt Method for Demand Case #2, C/O Family #1, and Threshold Case #2 174

Table 6.27: Alt Method for Demand Case #2, C/O Family #2, and Threshold Case #1 174

Table 6.28: Alt Method for Demand Case #2, C/O Family #2, and Threshold Case #2 174

Table 6.29: Alt Method for Demand Case #3, C/O Family #1, and Threshold Case #1 175

Table 6.30: Alt Method for Demand Case #3, C/O Family #1, and Threshold Case #2 175

Table 6.31: Alt Method for Demand Case #3, C/O Family #2, and Threshold Case #1 175

Table 6.32: Alt Method for Demand Case #3, C/O Family #2, and Threshold Case #2 176

x

Table 6.33: Alt Method for Demand Case #4, C/O Family #1, and Threshold Case #1 176

Table 6.34: Alt Method for Demand Case #4, C/O Family #1, and Threshold Case #2 176

Table 6.35: Alt Method for Demand Case #4, C/O Family #2, and Threshold Case #1 177

Table 6.36: Alt Method for Demand Case #4, C/O Family #2, and Threshold Case #2 177

xi

List of Figures

Figure 1.1: Toyota Production System House ... 3

Figure 1.2: Periodic Buffer State ... 8

Figure 1.3: Bounded Variation .. 8

Figure 3.1: Arc-Node Network Model ... 26

Figure 3.2: Transformation of Regions .. 28

Figure 3.3: Transformation of Regions .. 32

Figure 3.4: Multiple Incoming Regions ... 34

Figure 3.5: Multiple Incoming Arcs .. 40

Figure 4.1: Basic Model Arc-Node Network ... 47

Figure 4.2: Two-Product Network ... 50

Figure 4.3: Transforming Outgoing Regions ... 50

Figure 4.4: Transforming Incoming Regions ... 50

Figure 4.5: Initial Buffer Region ... 57

Figure 4.6: Transforming Incoming Regions ... 57

Figure 4.7: Initial Buffer Regions .. 58

Figure 4.8: Intersection of Transformed Buffer Regions ... 59

Figure 4.9: New Buffer Regions .. 59

Figure 4.10: Transforming Outgoing Regions ... 60

Figure 4.11: Oscillating Region – Configuration A ... 68

Figure 4.12: Oscillating Region – Configuration B ... 68

Figure 5.1: Network Map of Two-Product System – Idle Only .. 70

Figure 5.2: Network Map of Two-Product System –Idle Only ... 82

Figure 5.3: Plot of Two-Product Network ... 84

Figure 5.4: Plot of Non-Included Trajectory A .. 85

Figure 5.5: Plot of Non-Included Trajectories B and C ... 86

Figure 5.6: Two-Product System – Product 1 Doubled Usage Rate .. 87

Figure 5.7: Two-Product System – Product 1 Threshold of 40 Products 88

Figure 5.8: Network Map of Two-Product System – With and Without Idle 89

Figure 5.9: Two-Product System – With and Without Idle – 30 Unit Threshold 90

Figure 5.10: Two-Product System – With and Without Idle – Product One 50 Unit Threshold ... 91

Figure 5.11: Product One 50 Unit Threshold – Forward and Backward Stability 93

Figure 5.12: Network Map of Three-Product System –Idle Only ... 94

Figure 5.13: Two-Dimensional Plot of Arc [1 2] Regions... 95

xii

Figure 5.14: Three-Dimensional Plot of Rectangular Arc Regions ... 96

Figure 5.15: Three-Dimensional Plot of Triangular Arc Regions ... 97

Figure 5.16: Network Map of Three-Product System – With and Without Idle 98

Figure 5.17: Three Product System – Skipping Idle Allowed ... 103

Figure 5.18: Three Product System – 40 Unit Lower Threshold ... 108

Figure 5.19: Three Product System – Differing Usage Rates .. 111

Figure 5.20: Network Map of System with Sequence Dependent Setups 113

Figure 5.21: Output of Three Product System with Sequence Dependent Setups 117

Figure 5.22: System with Sequence Dependent Setups and Smaller Buffers 120

Figure 5.23: Network Map of Four-Product System – With and Without Idle 121

Figure 6.1: Production System Model ... 135

Figure 6.2: Plot of Refill Time versus Time to Crash .. 137

Figure 6.3: Plot of Example Goodness Equation Terms .. 144

Figure 6.4: Sequencing Tree .. 148

Figure 6.5: Sequencing Choices Over Time .. 149

Figure 6.6: Product Sequence Tree .. 150

Figure 6.7: Network Map of Three-Product System – With and Without Idle 151

Figure 6.8: Plot of Three Product Sequence .. 152

Figure 6.9: Plot of Three Product Sequence – Product 1 Increased Usage Rate 153

Figure 6.10: Plot of Three Product Sequence – Decreased Initial Buffer Levels 153

Figure 6.11: Three Product Sequence – Product 1 Higher Usage Rate and Buffer Threshold 154

Figure 6.12: Plot of Eight Product Sequence without Lookahead ... 155

Figure 6.13: Plot of Eight Product Sequence with Lookahead .. 156

Figure 6.14: Configuration #1A Without Lookahead for Example State 158

Figure 6.15: Configuration #1B With Lookahead for Example State ... 158

Figure 6.16: Configuration #2A Without Lookahead for Example State 159

Figure 6.17: Configuration #2B With Lookahead for Example State ... 159

Figure 6.18: Configuration #3A Without Lookahead for Example State 160

Figure 6.19: Configuration #3B With Lookahead for Example State ... 161

Figure 6.20: Configuration #4A Without Lookahead for Example State 161

Figure 6.21: Configuration #4B With Lookahead for Example State ... 162

Figure 6.22: Configuration #5A Without Lookahead for Example State 163

Figure 6.23: Configuration #5B With Lookahead for Example State ... 163

Figure 6.24: Eight Product System – Pattern Production .. 178

xiii

Figure 6.25: Pattern Production – γ = 1 ... 178

1

1 Introduction

The purpose of this research is to investigate and propose a production system stability algorithm

and a product sequencing algorithm to assist manufacturers with unavoidable sequence dependent

setups. The algorithms are intended to be used to determine an effective and stable product

sequence that is responsive and effective at meeting customer demand in production systems with

significant and sequence dependent changeover costs. The algorithms are based on Just-In-Time

(JIT) (note that lean manufacturing, Toyota Production System, and JIT will be used

interchangeably in this dissertation) principles of production, meaning that production is triggered

based on customer demand, not forecasted, predicted, or scheduled demand. Production is

signaled to replenish the product buffer when a certain buffer threshold is reached, which pulls

products through the manufacturing system as they are consumed by the customer. Conventional

production systems push products through the production system into finished goods inventory

based on forecasted demand and are often unresponsive to changes in customer demand.

This research originated with a plant visit to a liquid solvents packaging facility which had a high

variety of products and variable customer demand. Packaging bulk liquids into smaller

containers can create sequencing issues due to the chemical properties of each product. Dockx et

al. [1] examined the issues involved with scheduling production in the chemical industry due to

the “inevitable chaos, caused by a multitude of possible conflicting choices, and by the fuzziness

and uncertainty of the parameters involved.” The most common issue with bulk liquid packaging

is dealing with sequence dependent changeover or setup costs between products when some

chemicals are incompatible and require special changeover procedures. Although this research

began with the packaging industry, the sequencing issues are not unique to this industry and are

applicable to any manufacturer with a variety of products with variable demand and unique

changeover costs between products.

The current state of the packaging industry varies from company to company but a common

theme throughout the industry and other manufacturers is the need to reduce costs, improve

efficiency, and increase market share. The implementation of lean manufacturing can help a

company to meet these objectives.

2

1.1 Problem and Solution

The first problem addressed in this research examines whether or not a stable product sequence

exists for a given production system. This problem can be solved analytically or with an

algorithm that will examine a JIT production system and determine if a path through the systems

exists in which production can meet demand for all future time and the buffers remain positive.

The analytical results are a significant contribution to this field of research because if a solution is

found for the system, it is guaranteed to be stable for all future cycles through the system. The

stability algorithm is a starting point for implementation of the iterative method and is a

foundation upon which to build future research. The current stability algorithm requires

significant computational time for production systems with more than a few products which led to

addressing the second problem. The stability analysis method is intended to be used as an off-

line tool to determine if a stable product sequence trajectory exists for the production system.

The second problem addressed in this dissertation focuses on the need to determine a feasible

product sequence for a JIT production system with sequence dependent setups. This research

proposes a straightforward heuristic sequencing algorithm that is based upon JIT principles with

lookahead as a solution for determining a product sequence when setups are present. The

inclusion of lookahead time into the sequencing algorithm helps to ensure a feasible solution by

considering future buffer conditions to avoid dead-end paths in which a product buffer crashes.

The proposed sequencing algorithm is a contribution to the field of research in that the

sequencing algorithm provides an effective method for determining a feasible sequence with

sequence dependent setup with JIT principles. The algorithm is intended to be practical enough

to be implemented on the manufacturing floor but it is also intended to be a building block to be

used by other researchers to continue the advancement of product sequencing research. The

sequencing algorithm, when implemented in a production setting, would be used as an on-line

sequencing tool that has an information feedback loop from the production system and finished

goods inventory buffers.

1.2 TPS and JIT Principles

The Toyota Production System (TPS) and JIT are often considered to be the same concept by

researchers as well as practitioners, but this is not true because TPS is more than just JIT. TPS is

often described as a house that is composed of tools which are combined together create a

philosophical approach to manage the entire manufacturing system – people, processes, facilities,

and materials. JIT is considered to be one of the columns used support the roof of the house,

3

which represents continuous improvement (Kaizen), see Figure 1.1. The second column is the

concept of stopping to correct a problem at the source (Jidoka) and not pushing the problem any

further through the system. The house is built upon a foundation of standardization, performance

measures, and mutual respect. Note that without all components working together, the house will

not stand.

Figure 1.1: Toyota Production System House

Chemical packaging companies rely on some form of production scheduling to determine what,

when, and how much to package and the scheduling can often be responsible for increased costs

due to excessive levels of inventory and the inability to meet changing customer demand. Some

authors emphasize the importance of flexibility and low costs to be able to enter into today’s

rapidly fragmenting niche markets where customers’ desires are always changing [2]. Currently

most companies with a high variety products use an MRP system to schedule production. This

leads to the problem of very high safety stocks created by the inaccuracies within MRP systems

(see MRP discussion in Appendix III). This research incorporates JIT principles that will provide

a useable method to sequence products to be packaged and balance the tradeoff between a smooth

mixture of products and lost time and capacity from changeovers between products.

4

The packaging company visited at the beginning of this research suffered from excessive

inventory levels, backordered jobs, processing large batches, and very slow changeovers between

products. Decreasing changeover and setup times can be accomplished by using dedicated

piping, quick release fasteners, and other commonly used lean changeover methods. If quick

changeovers are accomplished, the scheduling problem still remains a roadblock to the lean

transition. In the pre-lean state, approximately $3.5 million of products are in inventory and the

inventory typically stays in the warehouse for up to six months prior to be purchased by a

customer. By contrast, a JIT system will only have enough inventory on hand to cover demand

until the inventory is replenished. For example, if a raw material takes seven days to reach the

facility from the supplier and three days to package, then ten days of inventory plus some amount

of safety stock would be on-hand in a lean system. Current push scheduling systems do not have

the intelligence to manage production scheduling and finished goods inventory (FGI) at the low

levels present in a JIT system.

This research incorporates pull-production principles by triggering production only when a given

product drops below a user defined buffer threshold. Production is based on the buffer level,

which provides an information feedback loop to the algorithm and it pulls products through the

system based on customer consumption. This is the same lean principle that is used in a signal

kanban production system or a pattern production system. A signal kanban system operates with

a signal placed at a given buffer level and the product enters the replenishment queue when the

signal is reached. A pattern production system operates with the buffer threshold set to the

maximum buffer level for all products and after refilling a product, the product immediately

reenters the production queue which creates the production pattern. A signal kanban may

experience idle production but a pattern production system will not experience idle time.

1.3 Common Liquid Packaging Issues

The process of packaging large quantities of a liquid into smaller containers or repacking from a

larger container into multiple smaller containers has certain unavoidable issues that are present

regardless of what type of liquid is being packaged. Often these issues will make the transition

from the typical batch and queue push production system to a JIT production system very

difficult. This section will highlight these issues but a more in depth discussion can be found in

Appendix IV.

5

A changeover between materials in a packing facility can be a very laborious task and if not done

correctly can be very costly in the contamination of products, loss of material, employees

sustaining injuries, or polluting the surrounding environment. The actual cleanout process can

differ between packaging facilities but when viewed in the broader sense of the entire production

system it is equivalent to a changeover in other manufacturing systems. The changeover costs

may vary based on the sequence of products and the cost might be significant if the cleanout

between materials is slow. The cleanout process will vary depending upon what chemical was

packaged, some require a water cleanout and others require air or nitrogen, while other chemicals

must be cleaned out using solvents and then water or air to remove the solvents.

Another issue of changeover between chemicals is the sequence in which some chemicals must

be packaged. The sequencing of chemicals is important because some chemicals will absorb the

odor from the previous product even after the cleanout process. Sequencing of chemicals is also

important when a high purity level is desired because some chemical will not show contamination

from the previous chemical even when the contamination is present. The necessity to sequence

materials in a packaging system adds another layer of complexity to the production sequencing

algorithm but this information can be captured in the changeover costs. An infinite setup cost

will not allow two incompatible products to follow one another to avoid these issues.

1.3.1 Definition of Algorithm

The term algorithm refers to any well-defined computational procedure that takes some input set

of values and produces some output set of values [3]. The term algorithm in this work refers to a

mathematical model that consists of equations and constraints that are used to characterize a

production system. Note that the stability algorithm could be applied to any system that can be

represented with a network, not just production systems. Algorithms can be classified into two

groups – deterministic and stochastic.

A stochastic algorithm is an algorithm that contains variability in the mathematical model or

solution method and therefore a set of initial conditions may not always yield the same solution.

A genetic algorithm is an example of a stochastic algorithm in which the solution begins with a

random population and which are then evaluated based upon “fitness.” The fittest individuals are

combined to create the next generation and this is repeated as the algorithm evolves toward the

best solution. Due to the randomly generated initial population, a genetic algorithm with a given

6

set of initial conditions may not return the same final results when with repeated runs of the

algorithm.

A deterministic algorithm is an algorithm in which the mathematical model contains no

variability and will always yield the same results for a given set of initial conditions and the

mathematical model consistently predicts the state of the system. Deterministic algorithms are

often too complex to be solved for a production system when the variability of the system and

conflicting choices are modeled. A deterministic production system is one in which all states are

known and a given set of initial conditions will always yield the same final results. Note that this

research assumes that the given production system being considered does not contain variability

and is therefore a deterministic system that can be solved with a deterministic algorithm.

A heuristic approach is a method in which the solution, if found, will be a feasible solution but it

is not guaranteed to be the optimum solution for the system. A heuristic is often used to find an

acceptable solution to a stochastic system in which all future states are not known due to

unpredictable factors (machine breakdowns, variability in customer demand, etc.) or for a

deterministic system for which finding an optimal solution is to complex. A heuristic algorithm

will typically include the ability to learn from past experiences and apply the artificial intelligence

to future decisions. The solution proposed by Dockx et al. [1] for the chemical industry was a

heuristic algorithm that incorporated a stochastic search, deductive reasoning, and artificial

intelligence to replicate the human scheduler that has intuition from years of experience and has

learned from past mistakes.

This research considers a deterministic algorithm that employs a heuristic method for sequencing

mixed products for a given production system. The sequencing algorithm uses a weighted

goodness calculation with or without lookahead to determine a feasible production sequence. The

stability algorithm uses an iterative method to yield analytical results for a given production

system. If a solution is found by the stability algorithm, the solution will guarantee a stable

production trajectory for the production system.

1.3.2 Definition of Stability

The issue of buffer stability is an important problem that must be addressed in manufacturing

systems. A buffer can be a very effective means to aid the production system by smoothing

fluctuations caused by variability which can come from processes, breakdowns, workers,

7

transportation, etc. The proper sizing of a buffer is a key component of TPS, in that the properly

sized buffer will motivate workers, reduce inventory costs, and prevent nervousness of the

system. Consider a workstation that has a very large buffer (two shifts worth of production)

upstream and downstream of the station. The worker must work non-stop for two entire shifts

before depleting the upstream buffer or filling the downstream buffer. Over time the worker may

become demoralized and unmotivated and eventually the quality and speed of work will decrease.

A large buffer can also mask system issues such as breakdowns or an improper procedure

because the large buffer is never depleted to expose the issue to allow the root cause to be found

and corrected. A buffer that is too small can also negatively affect a worker; consider a

workstation with a buffer sized to a single product of inventory both upstream and downstream.

If any disturbance occurs such as a breakdown or maintenance, the downstream buffer will be

exhausted and the upstream buffer will quickly fill and block production from upstream stations.

The ideal buffer level is one in which system variation does not crash the system and the worker

is slightly stressed to maintain motivation, efficiency, and quality of work. When a buffer is

properly sized it is a win-win relationship to manage both human and system variation according

to Fujio Cho’s buffer principle [4]. MRP systems typically have large buffers with no concern

for the win-win relationship while JIT systems are more focused on maintaining a win-win

relationship between the humans and production system.

The term stability has many different definitions depending upon the researcher, type of system,

and goals of the research. This dissertation considers a production system operating over some

time interval to be stable if over the time interval one of the following conditions exists:

1. A given buffer state of the production system is revisited with a finite bound between

visits, meaning that the buffer state exhibits periodicity [5].

2. The buffer state of the production system remains within the bounds of ±Δ and positive

for all time [6].

Chase et al. [5] began the research on the concept of periodicity and chaos in a production system

represented by a switched flow system. A graphical representation of the first condition of

stability can be seen in Figure 1.2. This diagram is a simplistic three product system with the sum

of the buffers equaling one, equal production rates, and usage rates sum to the production rate,

which allows the system to be considered closed, and the quantity of products flowing out is

equivalent to the quantity flowing in. Each buffer is characterized by Xi. The Xi edge of the

8

triangle represents an empty buffer for product i. Each apex of the triangle represents the location

where two buffers are simultaneously empty. If the trajectory reaches an apex, the system will

crash and therefore each apex is a location of instability. The buffer state trajectory shown

simply orbits from product to product replenishing each buffer in a periodic pattern – 1-2-1-3.

Therefore the system is stable because the buffer state of the system returns to the initial starting

state when the 1-2-1-3 pattern is started again (after every four cycles, regardless of the starting

product). Assuming that the system is deterministic, the periodic orbit is revisited after a given

finite time interval T, which is simply time to refill each product in the periodic pattern.

Figure 1.2: Periodic Buffer State

The concept of stability with bounded variation has been extensively researched over the years,

first by Perkins and Kumar [6] and later in JIT systems by Seidman and Holloway [7-8]. An

example of the second condition for stability can be seen in Figure 1.3. In this diagram the

product buffer fluctuates over time but never crosses the maximum and minimum bounds

represented by the dashed lines. Therefore the product is stable because it remains within the

bounds over the given time interval. This stability condition requires the lower limit to be greater

than zero products (an empty buffer). In some cases it may be acceptable to allow a product

buffer to reach zero, perhaps just as production of the product starts, but an empty buffer is

avoided in this research.

t

BF

Figure 1.3: Bounded Variation

X1

X2

X3

9

In this dissertation the upper limit of the buffer is bounded by the defined level of a full buffer for

each product, therefore the upper bound is always guaranteed to exist. The lower bound must be

checked to ensure that the system does not experience one or more empty buffers. An empty

buffer is assumed to represent a system crash and therefore any buffer state trajectory that

contains an empty buffer is considered to be unstable.

1.4 Overview of Dissertation

This dissertation begins with a general introduction and overview of key issues and principles that

will be addressed in subsequent chapters. Chapter 2 provides a review of previous work in the

area of product sequencing for JIT systems as well as stability and chaos control in production

systems. Chapter 3 discusses analytical analysis and results for stability in a given arc-node

network. Chapter 4 presents an algorithm to determine the stable regions for a given arc-node

network based on the analytical results. Chapter 5 provides a discussion of results from example

problems using the stability algorithm. Chapter 6 discusses the development of a product

sequencing algorithm with lookahead and product dependent setups. Chapter 7 provides a

discussion of conclusions from the work done in this dissertation and areas of future work.

Copyright © John Thomas Henninger 2009

10

2 Literature Review

This review of previous work in the area is divided into two areas for clarity; production

scheduling is first, followed by stability in a production system.

2.1 Production Sequencing

Research in the area of production scheduling began in the 1950s with researchers such as

Johnson [9], Smith [10], and Jackson [11]. Since that time production scheduling has been a

popular area for researchers focused on push production, but in the last few decades Just-In-Time

(JIT) production systems were introduced into this research field. In 1999 Ying and Liao [12]

conducted a survey of 130 research papers that focused on production systems with setup times.

Only a few of the systems considered in the survey can be classified as JIT production systems.

JIT production systems have become much more popular with researchers in the past decade, but

systems with setups are still seldom considered by researchers. Boysen et al. [13] conducted a

survey in 2009 of over 200 research papers in the area of production sequencing of mixed-model

assembly lines. In this survey, only a small fraction of the papers, around 30 of the 200+ papers

considered setups and changeovers between products, which highlights that sequencing of JIT

systems with setups is an area that needs further research.

Mixed-model production sequencing can be applied to a wide variety of production systems

depending upon what the interests of the researcher. Research of sequence dependent setups has

been applied to single machines, parallel machines, flow lines, and job shops [14]. During the

process of reviewing previous work in the area of production scheduling and sequencing, it has

become apparent that there are distinct divisions in the research of mixed-model sequencing for

assembly lines. The first group refers to the problem as mixed-model sequencing and focuses on

minimizing work overload at an assembly station, minimizing setups, and considers worker

movement, station borders, cycle time, and other system parameters. The second group refers to

the problem as car sequencing, which is a simplified approach to the mixed-model sequencing

problem that focuses on minimizing work content overload at final assembly line stations by

constraining the ratio of work intensive products [13]. The third group characterizes the problem

as level scheduling or level sequencings and the researchers focus on level usage of parts or

materials for the mixed-model sequence, which was originally proposed by Monden [15] as a key

component of the Toyota Production System and other JIT manufacturers in the United States.

The final group defines the problem using a hybrid-model sequencing system that incorporates

aspects of the previous three groups, researchers such as McMullen [16] who simultaneously

11

considered level scheduling while minimizing the number of setups fall into this group. This

dissertation is considered to be part of the work in the hybrid-model sequencing.

Mixed-model assembly line problems have the same three basic characteristics or constraints as

the foundation for the mathematical model to represent the system. Consider a mixed-model

assembly line with a planning horizon of T time periods, where t = 1,…,T and the system has N

different models where the demand for model i is di for all i N∈ . Let k denote the stage of the

sequence, for example consider a given sequence A-B-C, k is stage number 1, 2, or 3. Note that

the time t is interchangeable with the stage of the sequence k if only one model is produced

during each time period.

• The first characteristic is a binary variable to record what model i is produced during a

given cycle t, which is represented by xi,t, which is either 0 (not produced) or 1 (model

produced) for all models i N∈ at each time period t.

• The second constraint of the mathematic model is to ensure that only one model i is

produced during a given time t (or stage k, where k = t), which is accomplished with

,
1

1
N

i t
i

x
=

=∑ for all time t = 1,…,T.

• The third constraint is that demand di for a model i is produced for all models N during

the planning horizon T, where ,
1

T

i t i
t

x d
=

=∑ and
1

N

i T
i

d D
=

=∑ .

2.1.1 Mixed-Model Assembly Line

Mixed-model (MM) sequencing problems are related to the car sequencing (CS) problems but are

typically more complicated than the CS problems because more parameters are considered in the

MM problems. The MM problem considers work content time or space required to complete the

assembly function at a given assembly line station and the station has a defined length. An

assembly station is sized based on the average capacity required for all models to be assembled

which means that some models will create a work overload at a given station while other models

will be completed early at a given station.

The assembly line may consist of closed, open, or a hybrid mix of boundaries for the stations. A

closed boundary means that a worker can start working on the product only when it crosses into

the station and must stop working on the current model if it reaches the end of the station. An

unfinished product is considered work overload and can be completed by utility workers in a

12

closed station model or the line must be stopped. An open station model allows the worker to

start working on the next product after finishing the current product (no idle time). The open

station worker stops working when the product is completed or when the next product enters the

assembly station depending on the definition of the system. The worker may travel beyond the

borders of an open station. The MM sequencing problem characterizes the assembly line by

considering the speed of the conveyor, the processing time of each model, the speed that the

worker returns to the beginning of the station, cycle (takt) time of the assembly line, station

length, number of stations, and model demand as parameters to accurately model the system.

The MM researchers typically develop a model and method to optimize some objective or

combination of objectives. Minimizing work overload at all stations and over all production

cycles is the most common objective, where work overload is the amount of time or space by

which the borders of a station are exceeded. Minimizing the line length or throughput time are

two objectives considered by researchers but the two objectives will yield very similar results for

a system in which the line does not stop and travels at a constant speed. The time to travel

through the assembly line is a function of the velocity and the length of the line. Other potential

objectives are to minimize the distance travelled by workers, total idle time, duration of line

stoppages, and setup costs or some combination of multiple objectives.

2.1.1.1 MM Assembly Line Problems with Setups

Most authors assume that the assembly tasks or the mix of models require insignificant setups

between models and are therefore ignored, but there are a few researchers who complicate the

MM problem further by considering setups between products. Burns and Daganzo [17] evaluated

the trade-offs between setups between jobs and production capacity utilization in determining the

assembly line sequence for mixed-models. Setups were grouped into three potential areas, with

the first consisting of wasted materials such as paint that is purged to changeover to a new color.

The second area consists of lost labor or machine capacity due to changeovers, such as during the

stoppage for a changeover of a stamping machine. The final area of setup cost is subpar product

quality that occurs when changing to a new product, such as the first few injection molded parts

being unacceptable after a mold change due to the mold not being at the correct temperature for

the first few cycles. Other authors, such as Bolat et al. [18] considered sequence dependent

setups for the MM sequencing problem and developed a heuristic procedure to concurrently

minimize utility work and setup costs, but it should be noted that the setups are considered

independent of the time required to complete the model. Kim et al. [19] considered the MM

13

problem with a hybrid mix of stations and sequence dependent setups. A genetic algorithm was

developed to find a near optimum sequence with the objective to minimize the length of the

assembly line. Rahimi-Vahed and Mirzaei [20] proposed a shuffled frog-leaping algorithm to

simultaneously optimize three objectives of total utility work, production rate variation, and setup

costs to sequence the MM system with setups. Rahimi-Vahed et al. [21] again consider the same

three objectives for a MM system but propose a multi-objective scatter search algorithm to

optimize the product sequence. Tavakkoli-Moghaddam and Rahimi-Vahed [22] studied the MM

assembly line problem in a JIT environment using a memetic algorithm (a hybrid genetic

algorithm that includes local refinement and evolution) to simultaneously optimize the sequence

based on minimizing utility work, production rate variance, and setup costs. Rahimi-Vahed et al.

[23] included real options of the cars with associated values to maximize the value of the product

mix for a MM system. After developing the “best” product mix, a genetic algorithm and a

memetic algorithm was then used to determine the optimized sequence based on minimizing the

utility work, sequence dependent setups, and production rate variation. Rabbani and Rahimi-

Vahed [24] consider MM problem with setups and real-world variability in demand and compare

the algorithm against the goal chasing method as well as the method proposed by Miltenburg and

Sinnamon [25]. Kim and Jeong [26] proposed a branch and bound method to determine the

optimum sequence for MM systems that have sequence dependent setups while minimizing the

total unfinished work for the sequence.

2.1.2 Car Sequencing Problem

The car sequencing problem was originally formulated by Parrello et al. [27] in 1986 to solve a

problem for General Motors Research Laboratories. Instead of sequencing models based on

detailed work content calculations as in the MM procedure, the CS problem attempts to minimize

work overload by constraining the number of successive high work content models and yet still

meet the required demand for each model. The capacity constraint (often referred to as a hard

constraint) is a ratio such as Ho : No, which means that only Ho models can contain option o out of

No successive models to avoid work overload [13]. An example of a high work content model is

a car that requires a sunroof or air conditioning. If the sequence of cars cannot satisfy the

capacity constraint, a penalty constraint (often referred to as a soft constraint) will penalize each

step of the sequence that violates the constraint. The penalty may be constant or may vary based

on the number of successive violations. For example, the first violation will incur a penalty of

one but the second violation is penalized a value of five. Parrello et al. optimized the sequence by

minimizing the penalty cost for the sequence. Other authors such as Fliedner and Boysen [28]

14

optimized the sequence by minimizing number of constraint violations, while other authors [29-

30] have proposed more efficient algorithms.

In 2005, Renault hosted a challenge for teams of researchers to compete against one another to

create the best sequencing algorithm to optimize the tradeoffs between the final assembly

sequence constraints and the minimizing setups in the paint shop [31]. The resulting algorithms

created small batches in the paint shop based on similar colors while minimizing the final

assembly constraint violations. Other authors [32-37] have examined the same problem of

simultaneous sequencing of the paint shop and final assembly and reached similar conclusion as

the Renault teams.

Consider the method used to solve the CS problem, which is to sequence the products based on

minimizing work overload by imposing a capacity constraint ratio to limit high work content

models. What does this do to final supply lines and tier-one and tier-two suppliers? Consider a

hypothetical sequencing problem that must determine the optimum sequence for two models

where model A has the standard configuration of seats and model B requires power adjustable

seats. The final assembly work content is equivalent for the two models, therefore the capacity

constraint ratio has no effect on determining the sequence. Without considering any other factors,

the sequence could be large batches alternating between manual and power seats, which would be

fine for final assembly. This sequence would cause massive demand swings for the seat supplier

when the supplier would have to sequentially produce dozens of the power seats, which have

much higher work content as a subassembly than the manual seats. To overcome this problem,

many researchers consider level sequencing which creates the sequence based on level material

usage.

2.1.3 Level Sequencing

The level sequencing problem was first published by Monden [15], who discussed the Goal

Chasing Method that was in use at Toyota to schedule the final production assembly lines.

Monden defined two goals of the optimum final assembly sequence:

1. Minimize the workload variation at each stage on the assembly line.

2. Maintain a constant usage rate of every part consumed on the assembly line.

This first goal acknowledges that each workstation does not have the same cycle time on the

assembly line but smoothed variation between stations will help to eliminate inefficiencies such

as idle time or excessive work content for a given takt time. The second goal attempts to

15

maintain a smooth usage rate of materials per unit time for each model on the assembly line. To

solve these problems at Toyota, the Goal Chasing I and II methods were developed [20].

Miltenburg [38] examined the problem of creating a level and balanced schedule for an assembly

line with mixed-model products. Miltenburg’s work is an extension of the Goal Chasing Method

by Monden [15]. This paper is often cited by other researchers and is considered to be the

starting point for a large portion of research dealing with level sequencing of mixed-model

assembly lines. In this work the author assumed that setup times were negligible between parts,

which allows the emphasis to be placed on finding an ideal sequence that provides a constant rate

of usage for all parts. Keeping a constant rate of usage for every part used by the line means that

if the line produced three products, A, B, and C, and if product demands are equal, an ideal

constant rate of usage would be to repeat A-B-C sequence. The objective is to schedule the

assembly line such that the proportion of a product produced over the total production period is

close to the proportion of the demand for the given product to the total demand for all products.

To accomplish this objective three algorithms and two heuristics were developed to minimize

Equation 1.

()
2

,
1 1

TD n

i k i T
k i

U x kd D
= =

= −∑ ∑ (1)

where

n = the number of products to be assembled in the line,

DT = the total number of units for all products,

di = demand for product i, i = 1,2,…,n,

xi,k = total number of units of product i produced over stages 1 to k, where k = 1,2,…, DT

Miltenburg and Sinnamon [25] further extend the previous Miltenburg research to be applicable

to multi-level JIT systems, examining issues that are present when products require differing

amounts of parts and subassemblies. Algorithms and heuristics are proposed to solve the problem

allowing the user to define different weights to be applied to products, sub-assemblies,

components, and raw materials. This work also includes a lookahead feature that allows the

algorithm to consider the current stage and the next stage as well to calculate the usage rate

variation of the two stages together. The product with the lowest combined variation for the

current stage k and the subsequent stage k + 1 is selected. Miltenburg and Sinnamon [39]

extended this method to a multi-level production system that considered four levels of production

16

– product, subassembly, component, and raw material. The authors proposed three algorithms

and three heuristics to provide the optimum sequence.

Miltenburg and Sinnamon [40] revisit their previous work and provide insight into the use of the

weights in the original research and the implications on a JIT production system. The setting of

the weight values allows the scheduler to vary the schedule to meet certain issues, such as if a

shortage of a component occurs; the subassemblies would be scheduled as late as possible to

allow time to catch up the shortage.

Ding and Cheng [41] continue the advancement of research in the area of scheduling and

sequencing mixed-models on an assembly line for a JIT. The authors simplify the algorithms and

heuristics of Miltenburg [38] to decrease CPU time and provide equivalent results. The proposed

algorithm is a five-step process that can be computed in a single do-loop and requires

significantly less computer memory. The algorithm is benchmarked against Miltenburg’s work

by comparing the mean squared and absolute deviation of the results over nine problems. The

problem sets include 25 problems with a random production quantity between 0 and 9 per model.

The results show that the deviations of the new algorithm are equivalent to the previous work of

Miltenburg, but the advantage is that the computational time is significantly less. As the size of

the problem sets increase the reduction in CPU time increases from a minimum value of 35% for

a problem set with five products up to a 99.1% reduction for a problem set with 50 products.

This dissertation considers level scheduling as the starting point or fundamental concepts upon

which to build a hybrid-model sequencing algorithm. There are many other authors that have

made significant contributions in the area of level sequencing, such as Aigbedo [42-44], Kubiak

[45-48], Steiner [49-50], and Sumichrast [51-53]. These authors continue the work of Monden

and Miltenburg, but their contributions are considered to fall outside the scope of this dissertation.

2.1.4 Hybrid-Model Sequencing

This section focuses on hybrid mixed-model sequencing research. This first sub-section

considers sequencing of production systems with setups or sequence dependent setups followed

by a sub-section that reviews research that considers lookahead sequencing.

17

2.1.4.1 Sequencing with Setups

McMullen [16, 54] examines the level sequencing of a JIT assembly line system with mixed-

models and non-negligible setup times. Although previous discussed work [25, 38, 40-41]

focused solely on the smooth material usage for a given production sequence, McMullen’s work

attempts to provide reasonable levels of material usage rate and the total changeover time. This

research assumes that the setup times, though non-negligible, are limited to 20% of the actual

time required to process the product. This research develops equation (3) as an objective function

with weights for the product usage rate, equation (1), and the cumulative number of setups,

equation (2), to be minimized using a Tabu Search algorithm. Miltenburg’s part usage rate and

Ding and Cheng’s algorithms are used in this research.

The number of setups for a sequence is computed as follows:

∑
=

=
TD

k
ksS

1

 (2)

where sk= 1 if the product in position k is different than the product in position k – 1, or 0

otherwise. The composite objective function used to consider sequence smoothness and number

of changeovers is computed as follows:

min: s uz w S w U= + (3)

where ws is the weight applied to the number of setups and wu is the weight applied to the usage

rate variation.

McMullen and Frazier [55] examine the use of simulated annealing to find a near optimum

solution to the mixed-model sequencing problem. This research develops a simulated annealing

algorithm and compares the results to a Tabu Search heuristic. The simulated annealing

algorithm begins by generating an initial solution and the solution is evaluated using an objective

function, equation (3). The next step is to generate a neighboring solution, this research uses

pairwise swapping, meaning that two unique products are randomly selected and swapped. The

new test solution is compared with the current solution and the better solution is kept. A

calculation is performed to determine the probability of accepting an inferior solution; inferior

18

solutions are accepted to keep the algorithm from being trapped in a local minimum. This

process is repeated for a defined number of iterations and then the temperature is lowered by the

defined cooling rate and the process is repeated until the final temperature is reached. The

proposed algorithm is evaluated using computer simulation and the results show that the

algorithm out performs the Tabu Search heuristic.

McMullen et al. [56] further examined mixed-model job sequencing and examined the use of a

genetic algorithm to find a near optimization of the system. The equations (1), (2), and (3) were

again used in this research to be minimized by the genetic algorithm. The genetic algorithm

functions by generating some number of initial solutions and determining the “fittest” of these

solutions. A crossover is performed on the best solutions to create a new generation of solutions.

The new offspring then undergo a mutation with a defined probability and the “fittest” of this

generation will undergo a crossover and mutation and the process will repeat until the defined

number of generations has been produced. The algorithm proposed in this research is evaluated

using test cases to compare it to a Tabu Search heuristic and Simulated Annealing algorithm. The

results show that the genetic algorithm and simulated annealing algorithm provide nearly

equivalent results, with the only difference being an increase in CPU time for the genetic

algorithm. This is caused by the genetic algorithm manipulating a large portion of the production

sequence during the crossover and mutation steps. McMullen considered other optimization

algorithms and methods in other works [57-59].

Mansouri [60] continue the work of McMullen utilizing a multi-objective genetic algorithm to

minimize the number of setup while minimizing the production rate variation of the sequence.

The author proposes that smoothing the variation of production rates can be considered a

substitute for Miltenburg’s method of smoothing the material usage rates. Note that both authors

are assuming that all products being considered require approximately the same number and mix

of parts.

Mohammadi and Ozbayarak [61] developed a method to sequence mixed-model products in a JIT

environment that included setups between different models. This work built upon Miltenburg’s

level material usage and incorporated a setup cost function that calculated setup cost at each

station of the assembly line. This work is similar to McMullen’ work although the cost function

(equation 4) is more complicated in that it considers sequence dependent costs instead of a

generic changeover cost.

19

, , , ,
1 1 1 1

min
TDN S N

k i l s i l
i k s l

x C
= = = =
∑ ∑ ∑ ∑ (4)

where Cs,i,l is the setup cost to change from model i to model l at station s and xk,i,l is 1 if models i

and l are assigned to position k and k + 1 respectively in the sequence, otherwise xk,i,l is zero. This

method provides optimum or near-optimum results with very little CPU time required to find the

solution. The authors also compare their method to previously publish problem sets with

favorable results.

Ponnambalam et al. [62] consider the multi-level (product, subassembly, component, and raw

material) level rate of usage sequencing problem and method proposed by Miltenburg and

Sinnamon [39]. The authors framed the problem as a MM problem instead of a level sequencing

problem. The authors propose using a genetic algorithm to optimize the sequence based on the

common three objectives of MM problems – minimizing utility work, minimizing variation in

part usage, and minimizing setup costs. Their method was compared against Miltenburg and

Sinnamon’s method and proved to be an effective alternative.

Ahmadi and Matsuo [63] proposed developing families or groups of products and processing

each group on a dedicated mini-line to minimize large setups for the printed circuit board

industry. The method allows pull production on the lines after the groups have been established

and the method also allows small setups within the group to occur. This concept could be

introduced into the liquid packaging industry by the introduction of dedicated plumbing and

quick cleanout packaging lines.

Doganis and Sarimveis [64] investigated the optimal scheduling for a yogurt production line

using mixed integer linear programming. Yogurt production has many common issues

experienced by the chemical industry due to sequence dependent setups based on fat content and

flavors of the various yogurt products. As an example consider that plain or low-fat yogurt

requires a very thorough cleanout prior to packaging if the previous product was high fat or

flavored yogurt, but high fat or flavored yogurt following plain or low-fat products requires

minimum cleanout. The yogurt industry also must consider production that matches demand due

to spoilage issues if the product is not consumed in a short window of time. The proposed

algorithm schedules production based on changeover cost, inventory cost, and labor cost.

20

Dockx et al. [1] developed an interactive scheduling program, referred to as SKYE. The program

integrates deductive techniques, such as constraint propagation, with stochastic techniques, such

as Simulated Annealing or Tabu Search, and temporal reasoning to schedule production for the

chemical process industry. They attempt to overcome the “inevitable chaos, caused by a

multitude of possible conflicting choices, and by the fuzziness and uncertainty of the parameters

involved” by allowing the user to interact with the program to improve the schedule. SKYE is

intended to be the scheduling module within a larger production scheduling software package that

maintains other important inventory and production information.

2.1.5 Lookahead Scheduling

The use of lookahead for determining a production sequence or schedule has been studied by

many researchers. The goal of lookahead scheduling is to forecast future conditions some time or

number of products into the future and then use that information to optimize some objective

function. Lookahead is also very useful to aid in the avoidance of dead-end sequences in which

the sequence eventually lead to an illegal system state [65], such as empty buffers or missed

demand.

The work of Miltenburg and Sinnamon [25] includes a lookahead feature that allows the

algorithm to calculate the usage rate variation of the current stage and subsequent stage to choose

the smoothest sequence. Miltenburg and Goldstein [66] continued the Miltenburg and Sinnamon

work by developing a weighted sum objective function for multi-level smoothing (products,

parts/sub-assemblies, components, materials) and workload smoothing. The problem is solved

using a mixed integer program which considers a two-stage look-ahead heuristic to determine the

sequence. Leu et al. [67] build upon the level sequencing method using the lookahead concept

introduced by Miltenburg and Sinnamon [25] with a beam search algorithm. This work expands

the solution search space to improve the probability of finding the optimum sequence. The

proposed beam search method proved to be clearly superior to the goal chasing method as well as

Miltenburg and Sinnamon’s method.

Briant et al. [68] proposed using lookahead to aid in the batching of cars for the paint shop to

solve the car sequencing problem. The authors’ approach was to initially lookahead in the

sequence of up to six cars to batch common colored cars to decrease setups in the paint shop. As

the sequence progressed, the lookahead distance decreased or was no longer used to encourage

21

the batching early in the sequence. The authors’ results were shown to be comparable to other

researchers.

Gupta and Sivakumar [69] examine lookahead batching for delivery of products to a

semiconductor production system that operates under JIT principles. The authors developed a

method to control delivery performance with the objective of minimizing earliness and tardiness

measures. The approach is a combination of scheduling and discrete event simulation in which

decisions are made based on current information and simulated future conditions. The authors

report favorable results using the method for given test cases.

2.1.5.1 Discrete Event Systems

Discrete event systems (DES) are dynamic systems that evolve due to random occurrences of

discrete qualitative events; manufacturing systems are often framed as a DES. Supervisory

control theory developed by Ramadge and Wonham [70] is often used to solve DES problems.

The approach for supervisory control is to synthesize the supervisor offline of complete models of

the system behavior, but it can be difficult to construct complete models when behaviors are

complex or vary over time. The limited lookahead policy (LLP) was proposed by Chung et al.

[71] as less computationally intense method to overcome the difficulties of the offline approach

of calculating all possibilities. The authors’ LLP approach determines the next control action by

projecting the system behavior into the future N-steps, which is the lookahead window. This is

repeated after the execution of each event. The LLP control action is calculated with either a

conservative attitude or an optimistic attitude. The conservative attitude tends to result in a

restrictive control policy while the optimistic attitude may result in violation of constraints of the

system. Chung et al. [72] continued the previous work using the LLP, but developed a recursive

procedure that makes use of previous calculations of trees for the next tree pair to greatly reduce

computational time.

Kumar et al. [73] extended the LLP work of Chung et al. by developing an extension based

limited lookahead (ELL) supervisor. The ELL determines the next control action by estimating

the future behavior of the system as well as using knowledge of the system, such as an upper

bound on the tree length of uncontrollable events. The ELL is more permissive than the LLP

proposed by Chung et al. and the ELL also has more relaxed assumptions.

22

Many other authors have continued examining lookahead methods to control DES. Takai [74]

examined the Kumar et al. ELL method more in depth and determined that in some conditions it

is equivalent to the conservative attitude LLP method. Cho and Lim [65] were concerned with

optimal behavior of the system and proposed the online tracing supervisory control method. This

method showed favorable results when compared to the offline method.

2.2 Stability of Production Systems

Production sequencing is a key factor for the production system to meet demand, but an equally

important aspect that must be considered is the long term stability of the production system to

ensure that the system can meet demand. Stability in this dissertation is considered as bounded

inventory with no backlog in which the buffer inventory levels remain positive over all time.

Seidman and Holloway [7] examined stability in a pull production system that operates using

signal kanbans, which are equivalent to a low inventory replenishment threshold. The researchers

developed a method to set the reorder point such that there is no backorder queue and the buffers

remain positive. The method is further extended to pattern production to determine the minimum

buffer level to ensure no backorders occur.

Seidman and Holloway [8] further examine stability in pull production systems by considering

control methods when significant setups are present. Signal kanbans with either fixed-fill levels

or fixed-batch size, as well as pattern production were the two methods examined. The fixed-fill

signal kanban method performs better than the fixed batch signal kanban. The authors note that

the fixed-fill variant is equivalent to the switched arrival system which was shown by Chase et al.

[5] to be chaotic in nature. The authors conclude that the fixed-fill variant performs better (lower

average inventory) than the fixed-batch signal kanban due to long-term cyclic behavior than can

occur in the fixed-batch policy. Also the pattern production method performs better than fixed-

fill signal kanban by requiring less inventory for the same level of service.

2.2.1 Switched Arrival Systems

Switched arrival systems (SAS) have been used to model a wide variety of systems since the late

1980s, including manufacturing, data networks, and fluid flow. The SAS is composed of a server

(such a manufacturing station) that is responsible for replenishing multiple buffers (inventory of

products). The server replenishes a buffer until a threshold is reached at one of the other buffers

(threshold of zero is an empty buffer) at which point the server switches instantaneously to the

23

new buffer. This switching of the server occurs each time a threshold is reached at another

buffer. The system evolves over time to create a state trajectory through the system buffers. A

pull production system in which a server replenishes buffers is considered to be a SAS.

Chase et al. [5] examine periodicity and chaos in both SASs and switched server systems for a

case of three products. Note that the authors employed several assumptions to aid in the analysis

of the systems: fixed fill rate of one and cumulative consumption rate of one to create a closed

loop system. The authors note that the SAS has sensitive dependence on initial conditions and is

chaotic in nature and it is highly unlikely to settle into a periodic orbit.

Horn and Ramadge [75] introduced the concept of thresholds for a SAS and studied their affect

on the dynamic behavior of a three product system. The threshold functions as a bound on the

buffer, whether an upper limit or lower limit. The lower limit threshold does not change the

dynamic behavior of the system from the original system because a lower limit is equivalent to

rescaling the system. Upper limits were studied (with lower limits set to zero) and the server

prematurely stops filling the buffer when the upper limit is reached. The server then switches to

the buffer with the least amount of work. The authors determined ranges of values in which the

upper limits will result in periodic stable behavior of the SAS, when using one, two or three

limits. Three limits provide the best results by preventing the state trajectory from reaching the

unstable location where two products are simultaneously empty.

Ushio et al. [76] re-examine the three product SAS in an attempt to control the chaotic behavior,

while applying the same assumptions that were used by Chase et al. The authors built upon the

work of Ueda et al. [77] who showed numerically that chaos and periodic orbits can occur when

the processing time is limited to a prescribed value. The authors propose a control method to

stabilize the unstable periodic orbits by limiting the continuous processing time in the SAS. The

authors show that their method produces stable periodic orbits. Li and Ushio [78] examined

controlling chaos in a three buffer SAS by implementing flow connections between buffers exist.

This method was shown to be effective at producing periodic orbits. Tian [79] proposed using a

time-delayed impulsive feedback method for detection of unstable periodic orbits embedded in a

chaotic system.

Ushio et al. [80] continue the previous chaos control work by Ushio et al. [76] and extend the

method to a SAS with N buffers. The method is the same as the previous work in which chaos is

24

controlled by limiting the processing time for a given buffer, but the system is generalize to

consist of N buffers. The authors show that this method again performs well for the larger SAS.

Copyright © John Thomas Henninger 2009

25

3 Node Network Analysis

3.1 Introduction

In the most general sense the node-arc network used in this research simply consists of

information (a region) stored on each arc that is transformed by a function within the node that

may or may not be unique at each node. The newly transformed information is intersected with

the information stored on another arc attached to the node. The information may be transformed

forward by the function of the node or may be pseudo-inversely transformed backward through

the node.

The node-arc network is used extensively in this research to evaluate the stability of a production

system. The system that is being evaluated by the stability algorithm is a network of nodes that

are connected together by arcs. Each arc contains one or more sets of data (the rectangles in the

diagram below), currently in the form of a matrix, that can be operated upon by the upstream or

downstream node. Each node is host to a transformation function which may differ from node to

node depending upon which type of node is defined for a given node. A node represents a

processing state of the system and the transformation function defines the method in which the

inventory changes while the system is in the given processing state. For example a node may

indicate production of one product, or setup for production of that product, or only consumption

of all products.

The intent of the method is to cycle through the network updating the upstream or downstream

regions adjacent to each node based on the downstream or upstream regions until all regions no

longer change when updated. A solution for the system is found when the updated region is

equivalent to region prior to being updated on all arcs.

26

Figure 3.1: Arc-Node Network Model

3.2 Model Description

Let k be the number of products in the production system. The inventory of all products at the

given time is represented by a vector of dimension k, where the ith row of the vector is the

inventory of the ith product. The following notation is used for this dissertation:

• , , , , ks q x y z∈R represent vectors indicating inventory of the products

• , , , , kS Q X Y Z ⊆ R represent regions of inventory vectors

Thus for example consider some kX ⊆ R , which the elements of X are inventory vectors x

where x X∈ .

The production system model is described as:

• a set N of nodes

• a set of directed arcs A N N⊆ × connecting the nodes, where every node has at least one

incoming arc and at least one outgoing arc.

• a transformation function fn(●) for each node n N∈ , where for some vector ka∈R , the

function fn(a) yields a set (possibly empty) of vectors in Rk.

Consider an arc 1 2(,)a n n= , between two nodes n1 and n2, which has a set of points () kZ a ⊆ R

associated with it. Z(a) may be empty or may represent one or more disconnected regions. Thus

any given network can be described by

(, , (), ())N A f Zη = i i

where N is the set of nodes, A N N⊆ × is the set of arcs, f(●) represents the transformation

functions at each node, and Z (a) represents the region mapped to each arc ∈a A .

Node 2

Node 1

Node 4

Node 3

Node 5

27

For clarity, the remainder of this chapter will use a localized notation, where a set of inventory

vectors entering a node n is Xn, and a set of inventory vectors leaving node n is Yn. Given a node

n, the set of directed arcs leading to node n are denoted as Arcin(n) and the set of directed arcs

originating from n are denoted as Arcout(n) (i.e. { }() (,) for some ′ ′= ∈ ∈inArc n a n n A n N and

{ }() (, ') for some ′= ∈ ∈outArc n a n n A n N). The localized Xn represents the set of all regions

associated with all arcs contained in ain(n), such that

()
()

()
in

n
a Arc n

X Z a
∈

= ∪ .

The localized Yn similarly represents the set of all regions associated with all arcs contained

within aout(n), such that

()
()

()
out

n
a Arc n

Y Z a
∈

= ∪ .

3.2.1 Basic Arc Type

An arc is simply a means of conveying and directing information between the nodes in the

network. The information stored in any arc in the system is one or more regions. The regions are

unchanged by the arc and are only transformed by a node. An arc also allows the direction of

flow to be defined between each node because the arcs used for this node network are

unidirectional. There is always one or more arc(s) into a given node and one or more arcs out of

a given node.

3.2.2 Basic Node Type

The general node consists of a set of one or more functions that transform an incoming region to

an outgoing region and inversely transform an outgoing region to an incoming region.

3.3 Node Transformation Functions

At each node a function f(x) or pseudo-inverse function f -1(x) is applied to transform a region(s)

on one side of the node to create one or more regions on the other side of the node, see diagram

below. The inverse function is referred to as a pseudo-inverse function because the inverse

functions used in this research may or may not be one-to-one functions.

28

Given a node such as in the diagram above, the updated region, Y , is found by transforming the X

region and intersecting the transformed region with the Y region, such that

()Y f X Y′ = ∩ .

The updated region, X , is found by inversely transforming the Y region and intersecting it with

the X region, such that
1' ()X f Y X−= ∩ .

3.3.1 Definition of Transformation Function and Inverse Function

Given a transformation function f(●), which operates over vectors in Rk , the function is

generalized over a set ⊆ kS R , which is composed of elements ∈ ks R , as follows:

() : ()
∈

= ∪
s S

f S f s .

Note that () :f ∅ =∅ . Let the pseudo-inverse function for some q, which is an element of f (s),

be defined such that
1() : { | ()}− = ∈f q s q f s .

The pseudo-inverse transformation function generalized over set kB ⊆ R , which is composed of

elements kb∈R , as follows:
1 1() : ()

b B
f B f b− −

∈
= ∪ .

f -1 X

Y f X

Y

Figure 3.2: Transformation of Regions

29

Using this generalization it can also be shown that given sets ⊆ kS R and kB ⊆ R ,

1 11 () ()() − −− = ∩∩ f S f Bf S B .

Note that 1() :f − ∅ =∅ .

3.3.1.1 Lemma 1

Lemma:

Given the general definition of the transformation functions and their inverse, for any
kq∈R , then))((1 qffq −∈ .

Proof:

Given a vector q, let
1()−=A f q .

Note that this general inverse function is not assumed to be a one-to-one fully invertible function.

From the generalized definition of the transformative function over set A, () : ()
∈

= ∪
s S

f S f s , the

function is composed of one or more subsets. Given two sets S1 and S2 such that 1 2⊆S S , it

follows that 1 2() ()⊆f S f S . Based upon this result, it follows that for any a’ that is an element

of A (i.e. '∈a A)

(') ()f a f A⊆ .

Substituting a’ for s in the definition of the inverse function 1() : { | ()}− = ∈f q s q f s states that

(')∈q f a for some '∈a A . Therefore it is known that

(') ()∈ ⊆q f a f A .

And substituting the definition of the set A, 1()−=A f q , into the previous equation shows the

following

30

1(') () (())−∈ ⊆ =q f a f A f f q .

Therefore
1(())−∈q f f q .

□

3.3.1.2 Lemma 2

Lemma:

Given the set ⊆ kB R , then))((1 BffB −⊆ .

Proof:

To show this by contradiction, the statement is assumed to be not true, such that for some Bq∈

but))((1 Bffq −∉ , which means that it is assumed that q is an element of B but not an element of

1(())f f B− .

From the definition of)(1 Bf − it is clear that for Bq∈ , it can be stated that

)()(11 Bfqf −− ⊆ .

From the definition of the transformation function f(S), given two sets A1 and A2 such

that 21 AA ⊆ , it can be stated that)()(21 AfAf ⊆ . Then the following is true

))(())((11 Bffqff −− ⊆ .

Given this result and the previous result that))((1 qffq −∈ and that Bq∈ this shows a

contradiction to the statement that Bq∈ but))((1 Bffq −∉ , therefore

))((1 BffB −⊆ .

□

31

3.3.1.3 Lemma 3

Lemma:

Given the set kS ⊆ R , then 1(())S f f S−⊆ .

Proof:

To show this by contradiction, the statement is assumed to be not true, such that for some s S∈

but 1(())s f f S−∉ , which means that it is assumed that s is a subset of S but not an element of

1(())f f S− .

Given a set of vectors S, let

()T f S= .

From the definition of the pseudo-inverse function 1() : { | ()}− = ∈f q s q f s , choose some t such

that ()t f s∈ . Then it can be stated that

1()s f t−∈ .

Since s S∈ , then t T∈ . Also, since 1()s f t−∈ and ()t f s∈ , then

1(())s f f s−∈ .

Note that this result is very similar to the result of Lemma 1.

Since t T∈ , then 1 1() ()f t f T− −⊆ and given that ()t f s∈ and ()T f S= , then

1 1(()) (())f f s f f S− −⊆

Therefore
1 1(()) (())s f f s f f S− −∈ ⊆ ,

so
1(())s f f S−∈ ,

32

which contradicts the assumption that s S∈ but 1(())s f f S−∉ . Therefore given the set kS ⊆ R ,

then
1(())S f f S−⊆ . □

3.3.2 Simultaneous vs. Sequential Transformations

In order to further understand the transformation of regions in the node-arc network, consider

how the order of transforming the regions might affect subsequent transformations. Consider a

generic node with an incoming region X and an outgoing region Y. A simultaneous

transformation is defined as conducting a forward transformation of the region X and at the same

time (prior to updating the resulting region) conducting a pseudo-inverse transformation on the

region Y. Since one transformed region is not affected by the other transformed region at a given

time, t, the order of forward or inverse transformation is irrelevant.

A sequential transformation is defined as performing a forward transformation on region X and

then using the newly altered region Y for the inverse transformation to update the X region. Note

that the order of forward or inverse transformations may have an effect on subsequent

transformations in the node-arc network.

Consider the simultaneous (in parallel) transformations of regions for the diagrams shown above,

which results in the following equations for some time, t = 0.

(1) ((0)) (0)PY f X Y= ∩

1(1) ((0)) (0)PX f Y X−= ∩

The regions can also be transformed sequentially (in series) to yield the following results:

f -1 X

Yf X

Y

Figure 3.3: Transformation of Regions

33

(1) ((0)) (0)SY f X Y= ∩

1(1) ((1)) (0)S SX f Y X−= ∩

These sets of equations appear to yield different results dependent upon the order in which the

regions are transformed. Further examination is needed to determine which method is better to

transform the regions or if there is a difference. Examination of the sequential regions yields the

following results by substitution of the YS(1) region:

1

1

1 1

(1) ((1)) (0)

(1) (((0)) (0)) (0)

(1) (((0))) ((0)) (0)

S s

S

S

X f Y X

X f f X Y X

X f f X f Y X

−

−

− −

=

=

=

∩

∩ ∩

∩ ∩

Recall from Lemma 3 that given the set kS ⊆ R , then 1(())S f f S−⊆ . Therefore since

(0) kX ⊆ R , then)0()))0(((1 XXff ⊇− , which allows X(0) be substituted in the X(s) equation for

1(((0)))f f X− , even though X(0) is a subset. This is because the first two terms are intersected

with X(0). The substitution of gives the following equation

1 1(1) (0) ((0)) (0) ((0)) (0)SX X f Y X f Y X− −= =∩ ∩ ∩ .

Recall that 1(1) ((0)) (0)PX f Y X−= ∩ , therefore

(1) (1)S PX X= .

Since XS(1) is equivalent to XP(1) the transformation order is irrelevant. Therefore, a

transformation for iteration i + 1 for some generic node n with an incoming arc region X and

outgoing arc region Y, is defined as

(1) (()) ()nY i f X i Y i+ = ∩

1(1) ((1)) ()nX i f Y i X i−+ = + ∩ .

34

3.3.3 Splitting of Regions

The results of the previous sections apply to incoming sets X and outgoing sets Y, even though X

(or Y) may be associated with incoming (or respectively outgoing) arcs. The effects of the

transformations on the individual incoming or outgoing arcs are now considered when there is

more than one arc into or out of the node.

Consider a portion of a larger node network, in which a single node has two incoming arcs with

regions A and B and a single outgoing arc with a single region C, as shown below.

Figure 3.4: Multiple Incoming Regions

The current state of the regions is assumed to be at a particular instant in time that will be

considered the initial state and is denoted as X(0) for a given region. The forward transformation

of the A and B regions potentially creates two regions from region C. The two new regions may

or may not be a subset or superset of the other, but there is not sufficient information, at this point

in time, to determine the uniqueness of each region so the worst-case is assumed as two unique

regions. The forward transformation yields the following regions from the original region C.

Note that the cycle index number increases as the transformations propagate.

1(1) ((0)) (0)C f A C= ∩

2 (1) ((0)) (0)C f B C= ∩

The two new regions are now inversely transformed and intersected with the A and B regions

using the sequential transformation method to update the incoming regions. Note that the number

of new regions is simply the number of regions being transformed multiplied times the number of

regions being intersected.
1

1 1(1) ((1)) (0)A f C A−= ∩

1
2 2(1) ((1)) (0)A f C A−= ∩

1
1 1(1) ((1)) (0)B f C B−= ∩

1
2 2(1) ((1)) (0)B f C B−= ∩

f
A

B

C

35

Consider the regions Ai. Is it possible to claim that some q exists such that)1(2Aq∈ but)1(1Aq∉ ?

The statement that)1(2Aq∈ implies that

1 1

2((1)) (0) (((0)) (0)) (0)q f C A f f B C A− −∈ =∩ ∩ ∩

 1 1(((0))) ((0)) (0)f f B f C A− −= ∩ ∩

Therefore q must be an element of the following sets

)0(

))0((

))0(((

1

1

Aq

Cfq

Bffq

∈

∈

∈

−

−

Now consider the statement)1(1Aq∉ , where A1(1) is equivalent to

1 1

1 1(1) ((1)) (0) (((0)) (0)) (0)A f C A f f A C A− −= =∩ ∩ ∩

1 1

1

(((0))) ((0)) (0)

((0)) (0)

f f A f C A

f C A

− −

−

=

=

∩ ∩

∩

Therefore one of the following statements must be true if)1(1Aq∉

))0((

)))0((()0(

1

1

Cfq

AffAq

−

−

∉

⊆∉

Clearly this is a contradiction of the statement that)1(2Aq∈ but)1(1Aq∉ , because it was

previously shown that q is an element of A(0) and))0((1 Cf − . Therefore

)1()1(12 AA ⊆ .

36

A similar argument can be used for the)1(1B and)1(2B regions. Is it possible for some q to exist

such that)1(1Bq∈ but)1(2Bq∉ ? The statement of)1(1Bq∈ means that

1

1 1(1) ((1)) (0)q B f C B−∈ = ∩

 1(((0)) (0)) (0)f f A C B−= ∩ ∩

 1 1(((0))) ((0)) (0)f f A f C B− −= ∩ ∩

Therefore q is an element of the following sets

1

1

(0)

((0))

(((0)))

q B

q f C

q f f A

−

−

∈

∈

∈

Now consider the statement that)1(2Bq∉ , where

 1
2 2(1) ((1)) (0)B f C B−= ∩

 1(((0)) (0)) (0)f f B C B−= ∩ ∩

 1 1(((0))) ((0)) (0)f f B f C B− −= ∩ ∩

 1((0)) (0)f C B−= ∩

Therefore one of the following statements must be true if)1(2Bq∉

1

1

(0) (((0)))

((0))

q B f f B

q f C

−

−

∉ ⊆

∉

Clearly this is a contradiction of the statement that)1(1Bq∈ but)1(2Bq∉ , because it was

previously shown that q is an element of f -1(C(0)) and B(0). Also since it was shown that B(0) is

a subset of f -1(B(0)), q is also an element of)))0(((1 Bff − . Therefore

)1()1(21 BB ⊆ .

37

3.3.4 Repeated Region Transformations

Consider the previous example in which the initial regions have been transformed and inversely

transformed such that the regions have been defined as A1(1), B2(1), C1(1), and C2(1). Now

consider if the regions were transformed again before any of the regions are changed by adjacent

nodes. The forward transformation will yield the following equations for region C.

1 1 1

1
1 1

1
1 1

1

1

(2) ((1)) (1)

(((1)) (0)) (1)

(((1))) ((0)) (1)

((0)) (1)

((0)) ((0)) (0)

((0)) (0)

(1)

C f A C

f f C A C

f f C f A C

f A C

f A f A C

f A C

C

−

−

=

=

=

=

=

=

=

∩

∩ ∩

∩ ∩

∩

∩ ∩

∩

2 2 2

1
2 2

1
2 2

2

2

(2) ((1)) (1)

(((1)) (0)) (1)

(((1))) ((0)) (1)

((0)) (1)

((0)) ((0)) (0)

((0)) (0)

(1)

C f B C

f f C B C

f f C f B C

f B C

f B f B C

f B C

C

−

−

=

=

=

=

=

=

=

∩

∩ ∩

∩ ∩

∩

∩ ∩

∩

This shows that the repeated transformation of the given regions has no affect on the regions

because the new region is equivalent to the previous region. Consider the following cross

transformations

38

12 1 2

1
1

1
1

1

1 1

(2) ((1)) (1)

(((1)) (0)) ((0)) (0)

(((1))) ((0)) ((0)) (0)

((((0)) (0))) ((0)) ((0)) (0))

((((0)))) (((0))) ((0)) ((0)) (0)

((0)) ((0)) (

C f A C

f f C A f B C

f f C f A f B C

f f f A C f A f B C

f f f A f f C f A f B C

f A f B C

−

−

−

− −

=

=

=

=

=

=

∩

∩ ∩ ∩

∩ ∩ ∩

∩ ∩ ∩ ∩

∩ ∩ ∩ ∩

∩ ∩ 0)

21 2 1

1
2

1
2

1

1 1

(2) ((1)) (1)

(((1)) (0)) ((0)) (0)

(((1))) ((0)) ((0)) (0)

((((0)) (0))) ((0)) ((0)) (0))

((((0)))) (((0))) ((0)) ((0)) (0)

((0)) ((0)) (

C f B C

f f C B f A C

f f C f B f A C

f f f B C f B f A C

f f f B f f C f B f A C

f A f B C

−

−

−

− −

=

=

=

=

=

=

∩

∩ ∩ ∩

∩ ∩ ∩

∩ ∩ ∩ ∩

∩ ∩ ∩ ∩

∩ ∩ 0)

Note that the cross transformation of the regions result in creating subsets of the original

transformed regions. Both of the sets C12(1) and C21(1) are a subset of C1(1) or C2(1).

Now consider the repeated inverse transformations of the C regions when the C regions have not

been changed by the adjacent nodes. The inverse transformation will yield the following

equations for the A and B regions:

1

1 1 1

1 1
1 1

1

(2) ((1)) (1)

((1)) ((1)) (0)

(1)

A f C A

f C f C A

A

−

− −

=

=

=

∩

∩ ∩

1

2 2 1

1 1
2 1

1

(2) ((1)) (1)

((1)) ((1)) (0)

(1)

A f C A

f C f C A

A

−

− −

=

=

⊆

∩

∩ ∩

39

1
1 1 2

1 1
1 2

2

(2) ((1)) (1)

((1)) ((1)) (0)

(1)

B f C B

f C f C B

B

−

− −

=

=

⊆

∩

∩ ∩

1

2 2 2

1 1
2 2

2

(2) ((1)) (1)

((1)) ((1)) (0)

(1)

B f C B

f C f C B

B

−

− −

=

=

=

∩

∩ ∩

The results for the sets C1(2), C2(2), A1(2), and B2(2), in this example illustrate that repeated

transformations, whether forward or backward, of unaltered regions has no affect on the other

regions at the node. Therefore the following statement can be made:

The incoming and outgoing regions for a given node will not be altered by any
subsequent transformations or inverse transformations unless one or more regions have
been altered by the transformation or inverse transformation at an adjacent node.

Note that the node-arc network is used in this research to determine feasible buffer levels

(represented by a region) at a given node which represents idle time, setup, or production of a

given product. After all the nodes in the system have been cycled through and the regions are no

longer altered by the transformation functions, the analysis of the node-arc network is complete.

3.3.5 Transformation of Single Incoming New Region

Consider the introduction of an altered region A1(2), which is a subset of A1(1), to the previous

example at the given time at which the other regions are defined as B2(1), C1(1), and C2(1).

Given the following incoming regions

)1()2(11 AA ⊆

)1()2(22 BB =

which are shown in the diagram below.

40

The forward transformation of the regions A1(2) and B2(2) will yield the following

1 1 1

1

1

(2) ((2)) (1)

((2)) ((0)) (0)

((2)) (0)

C f A C

f A f A C

f A C

=

=

=

∩

∩ ∩

∩

2 2 2

2 2

1
2 2

1
2 2

2

2

(2) ((2)) (1)

((1)) (1)

(((1)) (0)) (1)

(((1))) ((0)) (1)

((0)) (1)

((0)) ((0)) (0)

((0)) (0)

(1)

C f B C

f B C

f f C B C

f f C f B C

f B C

f B f B C

f B C

C

−

−

=

=

=

=

=

=

=

=

∩

∩

∩ ∩

∩ ∩

∩

∩ ∩

∩

The cross transformation of the region A1(2) is as follows

12 1 2

1

(2) ((2)) (1)

((2)) ((0)) (0)

C f A C

f A f B C

=

=

∩

∩ ∩

which leads to both

12 1 1

12 2

(2) ((2)) (0) (2)

(2) ((0)) (0) (2)

C f A C C

C f B C C

⊆ =

⊆ =

∩

∩

The cross transformation of the region B2(2) is as follows

f
A1(2)

B2(2)

C1(1)

C2(1)

Figure 3.5: Multiple Incoming Arcs

41

21 2 1

2 1

1
2 1

1
2 1

1
1

1

1 1

(2) ((2)) (1)

((1)) (1)

(((1)) (0)) (1)

(((1))) ((0)) (1)

((((0)) (0))) ((0)) (1)

((((0)) (0))) ((0)) ((0)) (0)

((((0)))) (((0))) ((

C f B C

f B C

f f C B C

f f C f B C

f f f B C f B C

f f f B C f B f A C

f f f B f f C f B

−

−

−

−

− −

=

=

=

=

=

=

=

∩

∩

∩ ∩

∩ ∩

∩ ∩ ∩

∩ ∩ ∩ ∩

∩ ∩

2

0)) ((0)) (0)

((0)) ((0)) (0) (2)

f A C

f B f A C C= ⊆

∩ ∩

∩ ∩

Therefore the cross transformation regions can be disregarded because they will be contained

within the C1(2) or C2(2) sets or the cross transformation regions will be empty. The forward

transformations of the regions A1(2) and B2(2) have only altered the region C1(2) since the region

C2(2) is equivalent to C2(1).

Now consider the inverse transformation of the regions C1(2) and C2(2)

1

1 1 1

1
1 1

1 1
1 1

1
1

(3) ((2)) (2)

(((2)) (0)) (2)

(((2))) ((0)) (2)

((0)) (2)

A f C A

f f A C A

f f A f C A

f C A

−

−

− −

−

=

=

=

=

∩

∩ ∩

∩ ∩

∩

1

2 2 1

1
1

1 1
1 1

(3) ((2)) (1)

(((0)) (0)) (1)

(((0))) ((0)) (1) (3)

A f C A

f f B C A

f f B f C A A

−

−

− −

=

=

= ⊆

∩

∩ ∩

∩ ∩

42

1
1 1 2

1 1
1 2

1 1 1
1

1 1 1 1
1

1 1
1

(3) ((2)) (2)

(((2)) (0)) ((1)) (0)

(((2))) ((0)) (((0)) (0)) (0)

(((2))) ((0)) (((0))) ((0)) (0)

(((2))) ((0)) (0)

B f C B

f f A C f C B

f f A f C f f B C B

f f A f C f f B f C B

f f A f C B

−

− −

− − −

− − − −

− −

=

=

=

=

=

∩

∩ ∩ ∩

∩ ∩ ∩ ∩

∩ ∩ ∩ ∩

∩ ∩

Also, 1
1 1 2 2 2(3) ((2)) (2) (2) (1)B f C B B B−= ⊆ =∩

1

2 2 2

1
2 2

1 1
2 2

1
2

1

1 1

1

2

(3) ((2)) (2)

((1)) (2)

((1)) ((1)) (0)

((1)) (0)

(((0)) (0)) (0)

(((0))) ((0)) (0)

((0)) (0)

(1)

B f C B

f C B

f C f C B

f C B

f f B C B

f f B f C B

f C B

B

−

−

− −

−

−

− −

−

=

=

=

=

=

=

=

=

∩

∩

∩ ∩

∩

∩ ∩

∩ ∩

∩

The results from the inverse transformation are similar to the results from the forward

transformation in that only one region has been altered, A1(3). Note that the cross-inverse

transformed regions A2(3) and B1(3) are simply subsets (or empty sets) of the regions A1(3) or

B2(3).

3.4 Settled Network

Consider the regions X and Y at node n, for some arc-node network and given the previous

definition of the transformation function and inverse function for iteration i + 1, as

(1) (()) ()nY i f X i Y i+ = ∩ and 1(1) ((1)) ()nX i f Y i X i−+ = + ∩ . The intersection of the transformed

region and the original region causes the new region to always be equivalent or less than the

original region and the new region can never be larger than the original region. Therefore the

following is always true for any set of regions X and Y

43

(1) ()Y i Y i+ ⊆

(1) ()X i X i+ ⊆ .

Therefore as the iterations increase, a region must settle to some set, where the set is either non-

empty set or an empty set. A network with N nodes and where each node has an incoming region

of Xn and an outgoing region of Yn is settled at iteration i, when for all nodes n, n N∈ , the

following occurs

(1) ()n nX i X i+ =

(1) ()n nY i Y i+ = .

3.4.1.1 Definition of a Settled Network

This leads to the following definition for a settled arc-node network:

A given network characterized by (, , (), ())N A f Zη = i i , is settled when the following

equations are true for every node n, where n N∈ .

1()n n nX f Y X−= ∩

()n n nY f X Y= ∩

3.5 Stable Network Trajectory

The stability of an arc-node network occurs for a settled network with a non-empty region at any

node. Stability means that a trajectory exists that can propagate from non-empty set to non-empty

set through the network an infinite number of times while never entering an empty set. At any

node on the trajectory, the trajectory must start at some element within a non-empty incoming

region and be transformed to some element within a non-empty outgoing region. The trajectory

is not considered to be stable if at some node the trajectory is transformed to an empty set or the

transformed point is not contained within the non-empty outgoing region.

A stable trajectory will exist for a settled arc-node network characterized by

(, , (), ())N A f Zη = i i , if there exists some node n with a settled and non-empty region.

44

3.5.1.1 Lemma 4

Lemma:

For any node n in a settled arc-node network with nX ≠ ∅ , then nY ≠ ∅ .

Proof:

This Lemma can be proved by contradiction, suppose that nY =∅ . A settled network was

defined previously as 1()n n nX f Y X−= ∩ and that 1()f − ∅ =∅ . Therefore n nX X=∅ =∅∩ ,

since nX =∅ , this is a contradiction.

□

3.5.1.2 Lemma 5

Lemma:

For any node n in a settled arc-node network with nY ≠ ∅ , then nX ≠ ∅ .

Proof:

This Lemma can be proved in a similar manner to Lemma 4. A settled network was defined

previously as ()n n nY f X Y= ∩ and that () :f ∅ =∅ . Therefore if nX =∅ , then n nY Y=∅ =∅∩ ,

which is a contradiction.

□

3.5.1.3 Definition of a Stable Trajectory

Lemma 4 and Lemma 5 and the definition of a settled network lead to the following definition:

A stable trajectory of a settled arc-node network, characterized by (, , (), ())N A f Zη = i i ,

is an endless path
1 1 2, ,, ,

i i i in n n na a
+ + +

… through the network (where nodes and arcs can be

revisited an infinite number of times) and the corresponding sequence of values

1 2, , ,i i iz z z+ + … , such that for each i > 1,
11 ,()

i ii n nz Z a
++ ∈ and

11 ()
ii n iz f z
++ ∈ .

3.5.1.4 Theorem 1

Theorem:

Given a settled arc-node network, if there exists some arc
1,i in na A
+
∈ with

1,()
i in nZ a

+
≠ ∅ ,

then there exists a stable trajectory for the network.

45

Proof:

This result follows directly from Lemma 4 and Lemma 5. Consider some arc with
1,()

i in nZ a
+

≠ ∅

for a settled network. Let
1,()

i i in n nX Z a
+

= , since the arc is unidirectional from ni toward the next

node ni + 1 in the trajectory sequence. Given that ()Z a ≠ ∅ , then nX ≠ ∅ , therefore from,

nY ≠ ∅ . Consider that
1 2,()

i i in n nY Z a
+ +

= is equivalent to
1 1 2,()

i i i in n n nY X Z a
+ + +

= = . Therefore the

outgoing region Y for a given node is the incoming region X for the next node in the path stable

trajectory.

□

3.5.1.5 Propagation of a Stable Trajectory

The results of Lemma 4 and Lemma 5 prove that any element of a non-empty incoming set Xn

will map to some element of a non-empty outgoing set Yn for a given node n in a settled network.

Recall that a settled network is one in which the regions on all arcs contained within Arcin(n) and

Arcout(n) are unchanged after being intersected with some region transformed by the node. Thus

for any node n,

()n n nnY f X Y= ∩

 and
1()n n nnX f Y X−= ∩ .

Therefore any settled arc-node network with a node that has a non-empty set on any arc will have

a stable trajectory that will cycle through the network. This will occur because node ni is

connected to the rest of the network with directed arcs contained in Arcin(ni) and Arcout(ni), in

which the outgoing set
inY for node ni is equivalent to the incoming set

1inX
+

 for node ni+1, given

that a(ni,ni+1) is contained within Arcout(ni). This means that any element of
inX will map to some

element in the outgoing set
inY , which is the same as an element in

1inX
+

. The element in
1inX
+

will map to some element in
1inY
+

, which is the same as an element in
2inX

+
, given that a(ni+1,ni+2)

is contained within Arcout(ni+1). This mapping from incoming region to outgoing region will

continue an infinite number of times and each mapping will always map from a non-empty

incoming set to a non-empty outgoing set.

Copyright © John Thomas Henninger 2009

46

4 Stability Algorithm

4.1 Introduction

A multi-product system in which buffers are replenished completely, often referred to as a

switched arrival system, is a difficult system to analyze for stability. This type of system with

more than two or three products quickly becomes difficult to manage by hand and practically

impossible to visualize the interactions between the products. The purpose of this stability

algorithm is to aid in the discussion and understanding of the multi-product system and the role of

different parameters upon the existence of stability. Chase, Serrano, and Ramadge [5] show that

this type of a system is chaotic in nature when they examined a three product system in which the

server could move instantaneously to replenish a buffer that had reached the triggering threshold

level. Horn and Ramadge [75] examined the effects of imposing upper and lower buffer

thresholds upon the previously mentioned switched arrival system. The results show that lower

limits had no affect on the system dynamics while upper limits can switch the system from chaos

to a stable periodic orbit. Ushio [76] has conducted a significant amount of research into methods

of controlling chaos by limiting the refill time to force the server to switch earlier to the next

buffer.

The production system being examined in this research is more complicated than previous work

and is a more accurate representation of manufacturing systems. The system is a multi-product

system that may or may not experience idle time between replenishment of a product and the

setup of the next product. A setup time may or may not exist before the replenishment of each

buffer, depending upon how the system is defined. If present the setup may be sequence

dependent, meaning that setup time may vary based upon the previous product. If a product is

repeated, it is assumed that whether or not idle time exists between the two replenishments, a

setup will occur prior to replenishment. It is also assumed that the product buffer is always

completely replenished and never interrupted by another product. The production system and

parameters are assumed to be constant and contain no variability, such as breakdowns,

maintenance, or other interruptions.

The algorithm cycles through a node network of the system until all nodes have incoming and

outgoing regions that are equivalent when transformed by the node, at which point the network is

settled, see Node Network Analysis Chapter, Section 4.1.1 for a formal definition. When the

regions no longer change, the system is considered to be balanced and stable regions will have

47

been found by the algorithm. Initially all regions are set with a minimum value of zero and a

maximum value of a full buffer level for each product. As the node network is cycled through,

the incoming regions are transformed forward and the outgoing regions are transformed backward

for each flagged node until the transformed regions are equivalent to the regions from the

previous cycle.

4.2 Basic System Model

The system that is being evaluated by the stability algorithm is a network of nodes that are

connected together by arcs, as described in the previous chapter. Each arc contains one or more

product regions (the rectangles in the diagram below), currently in the form of a matrix, that can

be operated upon by the upstream or downstream node. Each node is host to a set of

transformation functions and/or constraints depending upon which node type is defined for the

given node.

Figure 4.1: Basic Model Arc-Node Network

4.2.1 Product Inventory Data Handling

The product buffer information is associated with the arcs in the arc-node network system. The

product inventory is a region represented by the minimum buffer level and maximum buffer level

for each product in the system. As in the previous chapter, the system contains k products and an

arbitrary inventory state is a vector of length k, indicating the inventory levels of the k products.

In this chapter arbitrary sets of inventory states are not considered, rather sets of inventory states

represented by the union of sets defined by the minimum and maximum values of each product

are considered. The inventory state sets can be geometrically represented by a hyperrectangle of

dimensions k – 1, such that a two product system has regions that are represented by lines, a three

product system has regions that are represented by rectangles, a four product system has regions

represented by boxes, etc.

Node 2

Node 1

Node 4

Node 3

Node 5

48

Any arc a in the system may have one or more product buffer regions associated with the arc, or

an empty set region. The product buffer region(s) on arc a is one or more 2k × matrices, where k

is the number of products, stored in Z(a) as a union over all regions ZJ(a). Multiple regions on a

given arc are stored in the algorithm as a matrix for each region, where j is the index of a region

on a given arc and J is the maximum number of regions on a given arc.

min,1 max,1

1

min,1 max,1

(1) (1)
()

() ()

z z
Z a

z k z k

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, where j = 1

min, max,

1
min, max,

(1) (1)

()
() ()

j j
J

j
j j

z z

a
z k z k

=

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

∪Z

The first column is the minimum product value and the second column is the maximum product

value for the given arc, a. Initially, all product regions have a minimum value of zero and a

maximum value of the full buffer, U (k).

For clarity, the remainder of this chapter will use a localized notation centered about a given node

n, where a set of points forming a hyperrectangle on an incoming arc is denoted as X and a

hyperrectangular set of points on an outgoing arc is denoted as Y. The set of directed arcs leading

to node n are denoted as Arcin(n) and the set of directed arcs originating from n are denoted as

Arcout(n) (i.e. () { (,) inArc n a n n A′= ∈ for some }n N′∈ and () { (, ') outArc n a n n A= ∈ for some

}n N′∈). A set of hyperrectangle inventory regions entering a node n is X(ain), and a set of

inventory vectors leaving node n is Y(aout). Note that the script font indicates a set of regions, of

which each set is hyperrectangular.

The localized X represents the set of all regions associated with an arc ain contained in Arcin(n),

such that

()
1

() ()
J

in in
j

a Z a
=

= ∪X .

49

The localized Y similarly represents the set of all regions associated with an arc aout contained

within Arcout(n), such that

()
1

() ()
J

out out
j

a Z a
=

=Y ∪ .

4.2.2 Basic Arc Type

An arc is simply a means of conveying and directing the status of each product buffer between

the nodes in the network. The regions are unchanged by the arc and are only transformed by a

node. An arc also allows the direction of flow to be defined between each node because the arcs

used for this algorithm are unidirectional. There must always be one or more arc(s) into a given

node and one or more arcs out of a given node.

4.2.3 Basic Node Types

In the most general sense, the nodes define an increase or decrease, or combination thereof, for

the products of the system. The nodes may also define exit conditions based on the time spent at

the node or incoming or outgoing product buffer levels. The node network considered in this

chapter is narrowed to only consider three types of nodes to represent a production system: idle

nodes, setup nodes, and refill nodes.

4.2.3.1 Idle Node

An idle node is entered by the system when all the product buffers are between being completely

full and reaching the lower threshold signal level, which signals the system to replenish the buffer

of a given product. All products are consumed based on the usage rate of each product while the

system is idle. The time spent at an idle node is dependent upon the buffer levels entering the

node, lower threshold levels, and usage rates of the products.

4.2.3.2 Setup Node

A setup node is entered by the system prior to refilling a product and a setup always occurs before

the replenishment of each product. This type of node is entered only when a product is at or

below the lower threshold signal level. The time spent at a setup node is defined by the user.

Setup time can vary from product to product as well as possibly varying for a single product

based upon what product was previously refilled, i.e. sequence dependent setups. All products

are consumed based on the usage rate of each product while the system is undergoing a setup.

50

4.2.3.3 Refill Node

A refill node is entered only after a setup node for the same product. The buffer level for the

product that is being refilled can be empty just as the product enters the refill node without

crashing the system and a refill node will always completely refill the buffer. All products that

are not being refilled are consumed based on the usage rate of each product while the system is at

the refill node. The time spent at a refill node is based upon the buffer level when entering the

node, the full buffer level, the usage rate, and production rate for the product being refilled.

4.3 Node Transformation Functions

The production system is represented by a system of nodes connected by arcs, similar to the

diagram below. The nodes represent where the system is transforming the product buffer regions

and the arcs are simply for connectivity. The regions that the algorithm attempts to determine are

for the conditions as an arc is entering a node or exiting a node.

Figure 4.2: Two-Product Network

At each node a function f(x) or pseudo-inverse function f -1(x) is applied to transform the region(s)

on one side of the node to create a new region(s) on the other side of the node, see diagram

below.

Node 2

Setup A

Node 1

Idle

Node 4

Setup B

Node 3

Fill A

Node 5

Fill B

f(x)

X1

X2

Y1

Y2’

f -1(x)

X1’

X2’

Y1

Y2

Figure 4.4: Transforming Incoming
Regions

Figure 4.3: Transforming Outgoing
Regions

51

The transformation function for a node is dependent upon the type of node, whether it is a setup

node, idle node, or fill node. The system parameters such as setup time, usage rates,

replenishment rates, maximum buffer levels, etc. are used in calculating the transformation

function. An idle node consumes each product based upon its usage rate until a lower threshold is

reached. A setup node also consumes each product based on its usage rate for a time period

defined by the setup time from the previous product refilled to the current product preparing to be

filled. A production node is the third and final type of node in which the buffer of one product is

completely refilled while all other products are consumed at each product’s usage rate for a

minimum and maximum time period. The minimum production time is the time required to refill

the product from the maximum incoming buffer level to a full buffer, while the maximum

production time is the time required to refill the buffer completely from the lowest incoming

buffer level for the product.

The lowest a buffer can be is zero, although system parameters can cause the lower limit to be

higher than zero at any node. The system is assumed to crash if a buffer reaches zero for any

product at any node other than the refill node. The product that is being replenished may reach

zero just as it enters the production node and the system will not crash.

4.3.1 Forward Transformation Functions

4.3.1.1 Idle Node

The idle node consumes all products until a product reaches the lower threshold level, l(TP),

which signals the system that a product needs to be replenished. Each arc leaving the idle node

represents a product reaching the triggering threshold to be replenished. The transformation

functions of the idle node are dependent upon which product has reached the lower threshold and

is ready to be replenished. The following discussion is generalized for a given outgoing arc that

has a particular product associated with it that has reached the lower threshold.

For outgoing regions there are two sets of constraints to be applied to the regions. The product k

that is advancing to the setup node and will be the next product to be refilled is referred to as the

triggering product, TP. The triggering product will only exit an idle node when the buffer reaches

the lower threshold level and cannot be lower than the lower threshold limit. Therefore both the

maximum and minimum values for the trigger product region, TP, are set at the lower threshold

52

level, l(TP). There are two possible times for the trigger product to reach the lower threshold

value and will be referred to as minimum idle time, ITmin and maximum idle time, ITmax. The

minimum idle time is the time required to consume the trigger product from the minimum

incoming level to the lower threshold level. The maximum idle time is the time required to

consume the trigger product from the maximum incoming level to the lower threshold level. The

idle time equations are as follows:

ITmax = (TPmax,incoming – l(TP))/ rho(TP)

ITmin = (TPmin,incoming – l(TP))/ rho(TP)

where rho(TP) is the usage rate of the trigger product, TP. The products which are not going to

be the next product refilled are referred to as non-trigger products, NTP(k). It is assumed that no

product can be consumed below the lower threshold level l(k) in an idle node and therefore both

non-trigger products are constrained such that the values cannot cross the lower threshold. If a

product crosses the product’s lower threshold then the non-trigger product becomes the trigger

product. The two constraints for the non-trigger products limits the outgoing region levels from

crossing the lower threshold value for the given product k.

Transformations for Outgoing Regions for Idle Node:

TPmin,outgoing = TPmax,outgoing = l(TP)

NTPmin,outgoing(k) ≥ l(k)

NTPmax,outgoing(k) ≥ l(k)

NTPmin,outgoing(k) = minimum[NTPmin,incoming(k), NTPmax,incoming(k) – (ITmax*rho(k))]

NTPmax,outgoing(k) = NTPmax,incoming(k) – (ITmin*rho(k))

53

4.3.1.2 Setup Node

The setup node transformation equations are very straightforward for all products and

indiscriminant of the trigger or non-trigger products. The equation simply subtracts the products

consumed from the incoming region value, based on the setup time of the trigger product,

node(i).time_delta, and the usage rate of the given product, rho(k).

Transformations for Outgoing Regions for Setup Node:

Productmin,outgoing(k) = Productmin,incoming(k) – (node(i).time_delta * rho(k))

Productmax,outgoing(k) = Productmax,incoming(k) – (node(i).time_delta * rho(k))

4.3.1.3 Refill Node

The refill node replenishes the buffer of the trigger product completely and is never interrupted

by the triggering of another product. The transformation equations for the trigger product are

solely constraints for the outgoing region of the trigger product. The buffer is filled to the

maximum buffer level of the trigger product, U(TP). The refill node transformation equations are

similar to the setup node equations for non-trigger products, although a minimum and maximum

time_ delta is calculated based on the time to replenish the trigger product and is used to

determine the amount of non-trigger products consumed at a refill node. The maximum time to

replenish the trigger product is calculated as the difference between a full buffer and the

minimum incoming trigger product value divided by the production rate minus the usage rate.

The minimum replenishment time is calculated using the maximum incoming trigger product

value. The time equations are as follows:

node(i).time_delta_max = (U(TP) – TPmin,incoming)/(PR(TP) – rho(TP))

node(i).time_delta_min = (U(TP) – TPmax,incoming)/ (PR(TP) – rho(TP))

The minimum outgoing region value for the non-trigger product assumes that the maximum time

delta occurs during the refilling of the trigger product. While the maximum outgoing region

value for the non-trigger product is calculated using the minimum time delta for the refill node.

54

Transformations for Outgoing Regions for Refill Node:

TPmin,outgoing = TPmax,outgoing = U(TP)

NTPmin,outgoing(k) = NTPmin,incoming(k) – (node(i).time_delta_max * rho(k))

NTPmax,outgoing(k) = NTPmax,incoming(k) – (node(i).time_delta_min * rho(k))

4.3.2 Pseudo-Inverse Transformation Functions

4.3.2.1 Idle Node

The inverse transformation equations for an idle node are constraints based on the parameters of

the system. The incoming arc regions will be transformed differently depending on if a product is

the trigger product or not. The trigger product for the idle node is the same trigger product that

would be used for a forward transformation function, meaning the trigger product is not the

product that has just been refilled but is the product that has reached the lower threshold and is

the next to be refilled. The trigger product is constrained to a minimum value of the lower

threshold level, l(TP), and a maximum value is unchanged. The minimum and maximum time

required for the trigger product to reach the lower threshold is calculated with the same equations

as for the forward transformation of the idle node.

A product can never enter an idle node with a region any higher than a full buffer and can never

leave with a region lower that the lower threshold. The minimum value of the non-trigger

product is initially constrained to be equal to the lower threshold level during the initialization of

the algorithm. Subsequently, the minimum incoming value cannot be lower than the minimum

outgoing value, if this occurs, it would require that products are not consumed but rather

replenished at the idle node. The minimum incoming inventory level is calculated by adding the

maximum amount of inventory consumed at the idle node to the minimum outgoing inventory

level of the given non-trigger product.

The maximum incoming value of the non-trigger product cannot be less than the maximum

outgoing value because it would require replenishment of the product to occur at the idle node.

The maximum value is calculated by adding the minimum amount of inventory consumed at the

55

idle node to the maximum outgoing inventory level of the given non-trigger product. An

equivalent incoming and outgoing value (either maximum or minimum) requires the trigger

product to reach the lower threshold just as the idle node is entered.

Inverse Transformations for Incoming Regions for Idle Node:

Productmin,incoming(k) = l(k)

NTPmin, incoming (k) = minimum[NTPmin,outgoing(k), NTPmin,outgoing(k) + (ITmax*rho(k))]

NTPmax, incoming (k) = maximum[NTPmax,outgoing(k),NTPmax,outgoing(k) + (ITmin*rho(k))]

4.3.2.2 Setup Node

The inverse node transformation equations for the Setup node are the same for both the trigger

and non-trigger products. The equation simply adds the products consumed during the setup to

the outgoing region value, based on the setup time of the trigger product, node(i).time_delta, and

the usage rate of the given product, rho(k). The maximum value of the trigger product is

constrained to the lower threshold level, l(k).

Inverse Transformations for Incoming Regions for Setup Node:

Productmin, incoming(k) = Productmin, outgoing(k) + (node(i).time_delta * rho(k))

Productmax, incoming(k) = Productmax, outgoing(k) + (node(i).time_delta * rho(k))

TPmax,incoming = l(TP), if > l(TP)

4.3.2.3 Refill Node

The inverse transformation equations at the refill node have no effect on the incoming values of

the trigger product. This is because the replenishment times are calculated using the incoming

values of the trigger product and the full buffer level. Inversely transforming the outgoing region

56

of the trigger product by subtracting the amount replenished at the refill node will yield the

original values of the trigger product.

The non-trigger products are inversely transformed similarly to the forward transformation

equations for the refill node. The minimum incoming region is calculated by adding the

minimum node time multiplied by the usage rate of the product to the minimum outgoing limit.

The maximum incoming region value is calculated by adding the maximum outgoing region

value to the maximum node time multiplied by the usage rate of the product. The minimum and

maximum replenishment times are calculated using the same equations that were used for the

forward transformation of the refill node.

Inverse Transformations for Incoming Regions for Refill Node:

NTPmin,incoming(k) = NTPmin,outgoing(k) +(node(i).time_delta_min * rho(k))

NTPmax,incoming(k) = NTPmax,outgoing(k) + (node(i).time_delta_max * rho(k))

The time equations are as the same as for the forward transformation of the refill node. The

equations are as follows:

node(i).time_delta_max = (U(TP) – TPmin,incoming)/(PR(TP) – rho(TP))

node(i).time_delta_min = (U(TP) – TPmax,incoming)/ (PR(TP) – rho(TP))

4.4 Intersection and Merging of Transformed Regions

At each node there exists one or more incoming arcs and one or more outgoing arcs and each arc

will have one or more regions of product values. An example of a two-product system is shown

in the diagram below. The node will perform a transformation on incoming regions to create new

outgoing regions or perform an inverse transformation on outgoing regions to create new

incoming regions. The newly transformed region(s) is then intersected with the appropriate

original region and then the newly intersected regions are merged together.

57

After a sufficient number of cycles through the network the regions will be settled which occurs

when a transformed region is equivalent to the existing region at the node. Note that empty sets

can occur in a settled network. A stable trajectory will exist for the system when a non-empty set

exists for any region in the settled network; see Node Network Analysis Chapter, Section 5 for a

thorough discussion and proof of this statement.

Initially the product value regions are as large as possible to include all possible stable regions for

each node. The minimum region value for product k is equivalent to an empty buffer and the

maximum region value is equivalent to a full buffer, U(k). As a node is evaluated the region may

remain unchanged, split into multiple regions, or the region may shrink as it approaches the final

stable region. A region is never allowed to expand due to the intersection with the existing

region.

Figure 4.5: Initial Buffer Region

4.4.1 Intersection and Union Example

Consider a node that has one incoming arc with an initial product value region x1 and two

outgoing arcs with initial product value regions of Y1 and Y2.

Figure 4.6: Transforming Incoming Regions

Product A

Product B

f(x) X1

Y1'

Y2’

58

Figure 4.7: Initial Buffer Regions

The incoming arc region X is transformed by applying the f(x) function for the node to create the

transformed region, Y’. The transformed region Y’ is then intersected with the original outgoing

regions 1 2Y Y= ∪Y or { }1 2,Y Y=Y to create the new outgoing regions Ynew. Note that the script

font indicates a set of regions, of which each set is hyperrectangular.

()Y f X′ =

,1 1'newY Y Y= ∩

,2 2'newY Y Y= ∩

The new regions are intersected with the original regions to shrink the regions as the final

solution is approached. The intersection is shown in the diagram below in which the original

regions are outlined with solid lines and the transformed regions are outlined with dashed lines.

A newly created region will be deleted if there is no intersection with the original regions. A new

region could split into two regions if it were to overlap with two of the existing regions.

Product A

Product B

X1

Y2

Y1

59

Figure 4.8: Intersection of Transformed Buffer Regions

The updated regions are shown in the following diagram.

Figure 4.9: New Buffer Regions

The final step is to remove duplicate and subset regions from the newly created regions for each

arc in an attempt to minimize the number of regions to be evaluated at each node. This operation

is referred to as a merging of the regions because is not a true union in which any overlapping

regions are joined into one region. The merging operation removes subset regions from the set of

regions to create the final set of regions

,1 ,2final new newY Y= ∪Y

or

,1 ,2{ , }final new newY Y=Y

The pseudo-inverse transformation of the outgoing regions follows the same procedure that has

been discussed for the incoming regions. The outgoing regions Y1 and Y2 are inversely

transformed by the node and then intersected with the original X region to create a new X’ region.

The merging of all the intersected regions is then calculated.

Product A

Product B

X1

Y1
Y2

Product A

Product B

X1

Y2

Y1 Y1’
Y2’

60

Figure 4.10: Transforming Outgoing Regions

1()X f Y−′ =

,1 1newX X X′= ∩

,2 2newX X X′= ∩

,1 ,2final new newX X= ∪X

,1 ,2{ , }final new newX X=X

4.5 Algorithm

The stability algorithm uses a series of nested loops to cycle through the node network to

determine stable product value regions for the system. For a given node the algorithm will first

update the outgoing regions by transforming the incoming regions, and then intersecting and

merging the new regions with the original outgoing regions. After all outgoing regions have been

updated, the algorithm updates all the incoming regions by inversely transforming the outgoing

regions and then intersecting and merging the new regions with the incoming regions. The node

on each side of an arc is flagged by the algorithm only if a region has changed. After all regions

are evaluated the algorithm will move to the next flagged node and repeat the evaluation of the

regions. The algorithm evaluates the arc-node network by cycling through the flagged nodes of

the network until there are no longer any flagged nodes, initially all nodes are flagged.

4.5.1 Stability Algorithm Outline

The stability algorithm requires the user to define the system parameters and network within the

initialization function to accurately represent a given production system. The algorithm will then

f -1(x) X’

Y1

Y2

61

initialize the product buffers for all arcs. The evaluation of the arc-node network begins after the

initialization of the algorithm.

For a given node i, each product region Yj(aout) on each outgoing arc aout is examined first, where j

is the region sheet index number (j = 1, when only one region exists on the arc) and aout∈Aout(i).

The algorithm uses a pair of nested loops to cycle through each outgoing region Yj(aout) for all

outgoing arcs. Within the nested loops are another pair of nested loop that cycles through all

incoming arcs ain, and all incoming regions Xj(ain) on each arc, where ain∈Ain(i).

()j in
j J

X a
∈

= ∪X

Each incoming region Xj for a given incoming arc is transformed using the transformation

function defined for the node to create the Y’ region.

Y’← f (X, [tmin, tmax], i)

The Y’ region is stored in the set Y‘ and then newly transformed Y’ region is checked to verify

that the region intersects with the original set of outgoing regions Yorg(aout). The algorithm then

searches for a non-intersecting region, if found the Y’ region is flagged. This loop continues to

cycle until all incoming arc regions have been transformed to create all possible Y’ regions for the

given aout.

Each region of the newly transformed set of regions, Y’(aout), is then intersected with the original

set of outgoing arc regions Yorg, and the regions are stored in the set Ynew.

new orgY Y Y′= ∩

{ }new newY=Y

Note that a non-intersected original region is maintained on the arc because a different incoming

region that has not yet been transformed may intersect with the outgoing region. A non-

intersecting region is deleted after all incoming regions have been transformed, intersected, and

merged together. The new sets of outgoing regions are then cleaned up to remove duplicates,

62

subsets, or empty sets. The merging of the regions is then calculated and cleaned up for the

outgoing arc region. The new set of outgoing arc regions, Ynew are compared with the original

regions Yorg and if different, the node is flagged and will be reevaluated in the future. This

process is repeated in a loop for the next region of the same outgoing arc if one exists, if not, the

next outgoing arc is evaluated.

After exiting the outgoing arc loop, the non-intersecting regions are examined. The algorithm

allows the user to define the backward_stability parameter as zero for forward stability checking

only or set the parameter to one for determining stability in both directions. Solving for stability

solely in the forward transformation direction, means that any point on a region will map forward

to some other region and that point will then map forward to another region, etc. When the

algorithm determines stability in both directions, both the forward transformations and backward

inverse transformations must map to another region for each region. A non-intersecting incoming

region is deleted if it has been flagged as not intersecting with any outgoing regions. If backward

stability is being considered, the non-intersecting outgoing region then evaluated. An outgoing

region is deleted if it has been flagged as not intersecting with any incoming regions

While still at the same node, the algorithm enters a set of nested loops to evaluate each incoming

arc(s) and region(s) in the same fashion as the outgoing regions were evaluated. The algorithm

cycles through the product regions Y for all outgoing arcs aout∈Arcout(i), and the regions are

inversely transformed, intersected with the incoming regions Xi, and merged in the same manner

as the incoming arcs for the same node. The new set of incoming arc regions Xi, are compared

with the original regions and if different, the node is flagged for future evaluation.

()j out
j J

Y a
∈

= ∪Y

Each outgoing region Yj for a given outgoing arc is inversely transformed using the inverse

transformation function defined for the node to create the X’ region.

X’← f -1 (Y, [tmin, tmax], i)

The X’ region is stored in the set X‘ and then newly transformed X’ region is checked to verify

that the region intersects with the original set of incoming regions Xorg(ain). The algorithm then

63

searches for a non-intersecting region, if found the X’ region is flagged. This loop continues to

cycle until all outgoing arc regions have been inversely transformed to create all possible X’

regions for the given ain.

Each region of the newly transformed set of regions, X’(aout), is then intersected with the original

set of incoming arc regions Xorg, and the regions are stored in the set Xnew.

new orgX X X′= ∩

{ }new newX=X

The new sets of incoming regions are then cleaned up to remove duplicates, subsets, or empty

sets. The merging of the regions is then calculated and cleaned up for the incoming set of

regions. The new set of incoming arc regions, Xnew are compared with the original regions Xorg

and if different, the node is flagged and will be reevaluated in the future. This process is repeated

in a loop for the next region of the same incoming arc if one exists, if not, the next incoming arc

is evaluated.

The algorithm is ready to move to the next node that is flagged. This process continues at each

flagged node until the regions no longer change when evaluated by the algorithm and there are no

longer any flagged nodes.

4.5.2 Stability Algorithm Pseudo Code

The stability algorithm operates by calling functions to perform the required tasks. A brief

description of the major variables and functions follows.

Variables:

• flagged_node_list: variable that stores a list of nodes to be evaluated by the algorithm.

Initially all nodes are listed to be evaluated by the algorithm.

• X(arc) and Y(arc): variables for each arc that represent sets of hyperrectangular regions

of the product buffer region. For a given arc, X(arc) and Y(arc) represent the same list

of regions but is referred to as X or Y depending on whether the arc is an incoming arc or

an outgoing arc for the node that is being evaluated.

64

• () and Y ()X arc arc∈ ∈X Y : the italic notation denotes an individual region within the

sets of script variable, i.e. X is a single region contained within X(arc).

• no_intersection_flag(X,Y,arc,i): binary variable in structured matrix used to flag a non-

intersecting transformed (or inversely transformed) region. A value of one implies no n-

intersecting region and value of zero implies an intersecting transformed region.

• backward_stability: this flag allows the user to consider solely forward stability (a region

must map forward to another region but not required to map backward to another region,

when backward_stability = 1) or to consider forward and backward stability (a region

must map forward to another region and map backward to another region, when

backward_stability = 1).

• counter: this variable records the number of cycles that have been completed by the

algorithm to allow the user to define a stopping point for an unstable system.

Functions:

• initialization(): function to define various parameters of a given production system. The

parameters defined by the function include the arc connections between the nodes, setup

times, production rates, usage rates, buffer levels and thresholds, initial buffer limits,

node types, and product-node associations.

• initialize_arc_limits(): function to define initial limits of regions based on node type and

trigger or non-trigger product for the given node. For example the lower limit of each

region on each arc in and out of an idle node is set to the lower threshold of the given

product.

• set_node_time(X,Y,i): function that calculates the time spent at the current node i based

on the current region sheet of the incoming arc x and outgoing arc region sheet y. The

equations used for the time calculation were discussed in Sections 4.3.1 Forward

Transformation Functions and 4.3.2 Pseudo-Inverse Transformation Functions.

• ()min max,[,],f X t t i : the forward transformation function for node i for the incoming

region x with the given time interval [tmin,tmax]. This function depends on the type of

node, see Section 4.3.1 Forward Transformation Functions for a thorough discussion.

• ()1
min max,[,],f Y t t i− : the pseudo-inverse transformation function for node i for the

outgoing region y with the given time interval [tmin,tmax]. This function depends on the

type of node, see Section 4.3.2 Pseudo-Inverse Transformation Functions for a thorough

discussion.

65

• cleanup_merge_sheets(): operates on a given set (Xnew or Ynew) of regions input to the

function. The function removes subsets, duplicate regions, empty sets, regions with

minimum values greater than maximum values for a given product, and single point

regions. The function also searches for two distinct regions in dimension k that are

equivalent in k – 1 dimensions, which can be represented as a single region that is the

union of the two regions.

• update_change_flag(i,change_flag,flagged_node_list): this function adds the incoming or

outgoing node to the list of nodes to be evaluated by the algorithm if current node has

been flagged.

• update_node_number(flagged_node_list): this function updates the flagged node list by

removing the current node from the list and all other nodes on the list are moved up the

list. The first node on the list will be the next node to be evaluated by the algorithm.

The stability algorithm uses the following pseudo code to generate the stable regions:

define number_of_products 1
initialization(number_of_products) 2
initialize_arc_limits() 3
while (flagged_node_list ≠ Ø) and (counter < maximum number of cycles) 4

pick node i from flagged_node_list 5
for each ()out outa Arc i∈ 6
 Ynew← 0 7
 change_flag ← 0 8

Yorg(aout) = Y (aout) 9
for each region ()outY a∈Y 10

for each ()in ina Arc i∈ 11
 for each region ()inX a∈X 12

[tmin,tmax] ← set_node_time(X,Y,i) 13
Y’← f (X, [tmin, tmax], i) 14
put Y’ in list Y’ 15
if (Y’ ∩ Y’’ = Ø) for each Y’’∈ Yorg 16

no_intersection_flag(X,Yorg,arcin,i) = 1 17
else 18

no_intersection_flag(X,Yorg,arcin,i) = 0 19
end 20

end 21
end 22

end 23
for each region ' 'Y ∈Y and each ()org org outY a∈Y 24

new orgY Y Y′= ∩ 25
put Ynew in list Ynew 26

66

end 27
cleanup_merge_sheets(Ynew) 28
for each region Ynew ∈ Ynew and each ()org org outY a∈Y 29
 if ()new org outY Y a≠ then 30

change_flag = 1 31
 end 32

 end 33
update_change_flag(i,change_flag,flagged_node_list) 34

end 35
for all ()in ina Arc i∈ and all X ∈ X(ain) 36

if (no_intersection_ flag(X,Yorg,arcin,i) = 1), 37
remove region X from X(ain) 38

 end 39
 end 40

if (backward_stability = 1) 41
for all ()out outa Arc i∈ and all Yorg ∈ Yorg(aout) 42

if (no_intersection_ flag(X,Yorg,arcin,i) = 1), 43
remove region Yorg from Yorg(aout) 44

 end 45
 end 46
end 47
for each ()in ina Arc i∈ 48
 Xnew← 0 49
 change_flag ← 0 50

Xorg(aout) = X (aout) 51
for each region ()inX a∈X 52

for each ()out outa Arc i∈ 53
 for each region ()outY a∈Y 54

[tmin,tmax] ←set_node_time(X,Y,i) 55
X’← f -1 (Y, [tmin, tmax], i) 56
put X’ in list X’ 57
if (X’ ∩X’’ = Ø) for each X’’∈ Xorg 58

no_intersection_flag(Xorg,Y,arcout,i) = 1 59
else 60

no_intersection_flag(Xorg,Y,arcout,i) = 0 61
end 62

end 63
end 64

end 65
for each region ' 'X ∈X and each ()org org inX a∈X 66

new orgX X X′= ∩ 67
put Xnew in list Xnew 68

end 69
cleanup_merge_sheets(Xnew) 70
for each region Xnew ∈ Xnew and each ()org org inX a∈X 71
 if ()new org inX X a≠ then 72

67

change_flag = 1 73
 end 74

 end 75
update_change_flag(i,change_flag,flagged_node_list) 76

end 77
for all ()in ina Arc i∈ and all Xorg ∈ Xorg(ain) 78

if (no_intersection_ flag(Xorg,Y,arcin,i) = 1), 79
remove region Xorg from Xorg(ain) 80

 end 81
 end 82

if (backward_stability = 1) 83
for all ()out outa Arc i∈ and all Y ∈ Y(aout) 84

if (no_intersection_ flag(Xorg,Y,arcin,i) = 1), 85
remove region Y from Y(aout) 86

 end 87
 end 88
end 89
update_node_number(flagged_node_list) 90
counter = counter +1 91

end92

4.6 Implementation of Algorithm

This algorithm was implemented using MATLAB Release 14, Version 7.0.4. The code of

algorithm is in Appendix I.

4.7 Computational Complexity and Other Algorithm Issues

The computational complexity of the algorithm has not been calculated formally but a quick

review of the pseudo code reveals that the algorithm is not optimized. The algorithm was

developed based on the overall function of the code instead of reducing computational time.

An example of the function of the code taking precedence over the computational efficiency is

the set of nested loops used to remove non-intersecting flagged regions. These loop cycle

through a set of matrices for all the arcs to search for flagged regions to be removed. This

process requires multiple loops to search each matrix individually for the flagged regions and the

results are evaluated and then the regions are removed. A more efficient method could be to store

the flagged regions in a single matrix to remove one or more of the required nested loops.

4.7.1 Oscillating Regions

Overlapping regions can sometimes oscillate back and forth causing the algorithm to continue

until the maximum counter value is reached. These oscillating regions do not change the area

68

covered by the set of regions, but merely change the representation of the region. Consider the

dashed line in the following two plots.

Figure 4.11: Oscillating Region – Configuration A

Figure 4.12: Oscillating Region – Configuration B

The oscillating region maintains a constant minimum value of 73 and a maximum value of 84 for

product A. The maximum value of 133 for product B also does not change during the oscillation.

The minimum value of product B for the oscillating region is either 85 or 97. Notice that this is

the only region that is changing in the set of regions for this arc. The area that is lost in

configuration B is still contained in another region within the set of regions.

69

Copyright © John Thomas Henninger 2009

5 Stability Algorithm Examples

This chapter is intended to provide insight into the stability algorithm by examining the output

from the algorithm for various arc-node networks. A step-by-step example of a two-product

system is the first example to be discussed followed by additional two-product systems. Three

and four product systems are then discussed in this chapter.

70

5.1 Step-by-Step Example

Consider a system for two products with arc-node network shown below and the following

parameters: setup time = 5 time units, production rate = 10 products/time unit, usage rate = 1

product/time unit, lower threshold = 30 products, full buffer level = 100 products and idle time

must exist.

Figure 5.1: Network Map of Two-Product System – Idle Only

5.1.1 Initialization of Algorithm

A user can evaluate this system by first defining the number of products for the system. The

algorithm then calls the initialization function which is responsible for defining setup times,

production rates, usage rates, lower thresholds, full buffer levels, the arc-node network, node

types, and node-product associations.

After initializing the system parameters and network, the algorithm calls the initialize_arc_limits

function. This function defines the initial domain of each arc region based on the types of

connected nodes and product-node associations. For example, the minimum product buffer levels

are set to the lower threshold value, l(k), for all arcs out of the idle node number one, arcs [1 2]

and [1 4].

5.1.2 Flagged Node List Loop

The algorithm steps into the flagged_node_list loop which cycles through all the nodes in the

network based on those that were initially flagged or are flagged by the algorithm during

processing. Initially, all nodes are flagged to be evaluated. As the regions of the system begin to

stabilize and no longer change, the nodes associated with the unchanged arc are removed from the

flagged list. The algorithm will stop when there are no longer any nodes flagged to be evaluated.

The flagged node loop also has a parameter counter for the maximum number of cycles that

Node 2

Setup 1

Node 1

Idle

Node 4

Setup 2

Node 3

Fill 1

Node 5

Fill 2

71

allows the user to set an upper limit on the number of cycles for the algorithm to prevent an

unstable system from running an infinite number of cycles.

The node number to be evaluated is picked from the flagged_node_list variable. The example

network described above would start with node number one and the flagged_node_list variable

would initially be [1 2 3 4 5]. The algorithm then will start to analyze the arcs connected to node

one, which has two incoming arcs [3 1] and [5 1] and two outgoing arcs [1 2] and [1 4].

5.1.3 Outgoing Arc Analysis Loop

The algorithm steps into the outgoing arc loop to cycle through all the possible outgoing arcs

contained in Arcout(1), which for this example Arcout(1) = {[1 2], [1 4]}. Once inside the loop, the

required variables are defined for each cycle through the loop. A nested loop is then entered to

cycle through all regions Y(aout) associated with the current outgoing arc, aout = [1 2]. Recall that

the regions are stored as sheets of 2k × matrices on each arc, where k is the number of products.

Initially when the algorithm is started, each arc only has one product inventory region associated

with it but more may be created as regions split from multiple incoming or outgoing arcs at a

single node.

The algorithm then steps into two additional nested loops which cycle through all incoming arcs

(1)in ina Arc∈ and all regions X(ain) on each incoming arc. For the current example network, the

first outgoing arc [1 2] is evaluated first for the [3 1] incoming arc and then the algorithm loop

advances to the second incoming arc, [5 1]. The ()inX a∈X loop has no effect initially in this

example because there is only one region X for all the incoming arcs.

The incoming arc group of nested loops allows the algorithm to transform all associated regions

for each incoming arc to a new outgoing arc region. This allows the algorithm to calculate all

possible combinations of trajectories of product sequencing for the newly transformed regions.

Often many regions are duplicates, subsets, or supersets, but are still calculated by the algorithm

for thoroughness.

Inside the incoming arc region loop (the ()inX a∈X loop) the set_node_time function is called to

define the amount of time that is consumed at a given node. This function calculates the time

based upon the trigger product number and all the minimum and maximum product region values.

72

The time spent at a setup node is the time to changeover from the previous trigger product to the

current trigger product. A maximum and minimum time is computed for the refill node, where

the maximum time is the time required to fill the trigger product from the lowest incoming region

value to a full buffer level. The minimum refill time is the time required to fill the trigger product

from the highest incoming region value to a full buffer level. See sections 3.1 Forward

Transformation Functions and 3.2 Pseudo-Inverse Transformation Functions in the Stability

Algorithm Chapter for a complete discussion of the time and transformation functions.

The current incoming and outgoing region values are used by the node transformation functions.

100 100
X

30 100
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

30 30
Y

30 100
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

The algorithm then steps into a loop that cycles through each product in the system to determine a

new outgoing region Y’ using the node transformation functions for the given node type. After

applying the node transformation functions to the region values for all products, the loop is

exited.

Given that arc [1 2] is connected to the setup node for product one implies that product one is the

trigger product. The transformation functions create the following Y’ region for arc [1 2], where

the top row is for product one and the bottom row is for product two:

30 30
30 100

Y
⎡ ⎤′ = ⎢ ⎥
⎣ ⎦

The ′Y set is updated with the newly created outgoing region Y’. The arc_star variable is a

temporary variable that is used by the algorithm to store the Y’ or X’ values prior to calculating

the intersection of the new regions. Each newly transformed region is tested to check if the

transformed region Y’ intersects with an original outgoing arc region orgorgY ∈Y . If no

intersection is found, the X region is flagged using the no_intersection_flag variable.

73

The incoming arc region loop is then indexed to the next region if possible or exited and the

incoming arc loop is indexed. The incoming arc loop is indexed until all incoming arcs and

regions have been used to find all possible new outgoing regions for the current outgoing arc and

region.

For this example system, the incoming arc loop advances to the next incoming arc to evaluate arc

ain = [5 1]. The Y matrix is the same as before but the X matrix is as follows:

30 100
100 100

X
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

The transformation of the incoming arc [5 1] adds another sheet to the arc_star temporary

variable, so it will now contain two regions:

{ }_ (1,2,1), _ (1,2,2)arc star arc star′ =Y

() 30 30
_ 1,2,1

30 100
arc star

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

() 30 30
_ 1,2,2

30 100
arc star

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

The outgoing arc region loop is then indexed to the next outgoing region, if possible, and all

incoming arcs and regions are again cycled through by the nested loops. After all possible

outgoing regions have been evaluated for an outgoing arc; the outgoing arc region loop is exited.

At this point all possible new product value regions have been stored in the arc_star variable for

a single outgoing arc, which may or may not have multiple regions. In this example no other arcs

or regions are available so the incoming arc region loop and the incoming arc region loop are

both exited.

74

5.1.4 Intersect Function

The intersect_arc_star function is called to calculate the intersection of the original arc product

value regions, which is the arc_org variable (equivalent to Yorg), with the new product value

regions, arc_star variable (equivalent to Y’). All new regions are intersected with each original

region in an attempt to find all possible intersections. The newly intersected regions are stored in

the arc variable (equivalent to Ynew) and the arc_star variable is erased.

In this example network, the product value regions of aout = [1 2] were originally

30 30
arc(1,2)

30 100orgY
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

The original region of arc(1,2) intersected with the two regions of arc_star(1,2) creates the

following set of regions:

{ }(1,2,1), (1,2,2)new arc arc=Y

() 30 30
1,2,1

30 100
arc

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

() 30 30
1,2,2

30 100
arc

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

The algorithm then calls the cleanup_sheets function for the current outgoing arc to remove

duplicate, empty, or other improper regions, such as a minimum region value being greater than

the maximum region value. For this example the function removes one of the duplicate regions

on the arc(1,2).

{ }(1,2)new arc=Y

() 30 30
1,2

30 100
arc

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

75

5.1.5 Merge Arc Function

The cleaned arc variable is then operated upon by the merge_arc function, although in this

example there is only one region to operate on, so the single region will be unchanged by the

function. The merge_arc function determines the merging, if possible, of the regions for the

current arc by checking for supersets, subsets, and equivalent sets. The function also calculates

the union of two unique regions in k dimensions, if the two regions share boundaries in k – 1

dimensions and overlap in k directions, where k is number of products. The function updates the

arc variable (Ynew) which is then cleaned again using the cleanup_sheets function. Arc [1 2] is

unchanged after calling the merge_arc and cleanup_sheets functions and has the following

product value region:

() ⎥
⎦

⎤
⎢
⎣

⎡
=

10030
3030

2,1arc

The algorithm then calls the set_change_flag function to compare the updated set of arc regions

(Ynew) with the original set of arc regions prior to applying the transformation equations (Yorg). If

the regions are equivalent the change_flag remains equal to zero. If one or more regions are

different from the original regions, the current outgoing arc is flagged as having changed. The

regions for the current arc [1 2] have not changed from the original values so node number one

and node number two are not flagged for future evaluation. The update_change_flag function is

then called. This function adds nodes from each end of the flagged arc to the list to be evaluated

if the nodes are not already listed on the flagged node list to be revisited in the future by the

algorithm.

At this point the outgoing arc loop is indexed to the next outgoing arc if one exists and the

previously described process is repeated or the loop is exited if there are no more outgoing arcs.

For the example node network, the outgoing arc loop is indexed to the outgoing arc [1 4] at node

one. This arc will be evaluated for both incoming arcs [3 1] and [5 1]. Note that the arc_star

variable is a temporary variable that is used by the algorithm to store the Y’ or X’ values prior to

calculating the intersection of the new regions. Upon completion of the outgoing arc region loop,

arc_star(1,4) variable will contain the following matrices:

{ }_ (1,4,1), _ (1,4,2)arc star arc star′ =Y

76

() 30 100
_ 1,4,1

30 30
arc star

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

() 30 100
_ 1,4,2

30 30
arc star

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

After calling the intersect_arc_star, cleanup_sheets, and merge_arc functions, the Ynew([1 4])

regions will have been intersected, cleaned up, and merged with the arc_star regions to create the

following product region values:

{ }(1,4)new arc=Y

() 30 100
1,4

30 30
arc

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

Upon exiting the outgoing arc loop, the algorithm will have updated all the regions for all the

outgoing arcs connected to the current node. The Ynew sets of regions no longer have the new

subscript and are simply Y sets of regions. If the regions changed from the original values, the

nodes from each end of the outgoing arc will be listed on the flagged_node_list to be revisited in

the future by the algorithm.

After exiting the outgoing arc loop, the algorithm evaluates the no_intersection_flag variable for

forward stability by examining all incoming regions contained in X(Arcin). If an incoming region

X is flagged as non-intersecting with an outgoing region Y for all transformations of the X region,

the incoming X region is removed because it does not map forward to any of the outgoing regions

contained in Y(Arcout). In this example system, no incoming regions are flagged or removed

because both incoming regions map to one of the outgoing regions.

If the user is considering backward stability, the algorithm evaluates the no_intersection_flag

variable for all outgoing regions contained in Y(Arcout). If an outgoing region Y is flagged as

non-intersecting with an incoming region X for all transformations of the set of regions X(Arcin),

the outgoing Y region is removed because it does not map backward to any of the incoming

regions contained in X(Arcin). In this example system, no outgoing regions are flagged or

removed because each of the outgoing regions maps backward to one of the incoming regions.

77

At this point, the product values regions for the outgoing arcs are as follows:

() 30 30
(1,2)

30 100
arc

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

Y

() 30 100
(1,4)

30 30
arc

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

Y

 And the incoming arcs have the following values:

() 100 100
(3,1)

30 100
arc

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

Y

() 30 100
(5,1)

100 100
arc

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

Y

5.1.6 Incoming Arc Analysis

The algorithm now begins the same process of nested loops to update the regions for the

incoming arcs in ina Arc∈ connected to the current node one. The incoming arc loop steps

through all the incoming arcs connected to the current node that is being evaluated. Incoming arc

[3 1] will be evaluated first in the example node network, followed by incoming arc [5 1]. The

required parameters and variables associated with the current incoming arc are defined when the

algorithm steps into the incoming arc loop. The algorithm then steps into the nested incoming arc

region loop to cycle through all the regions associated with the current incoming arc,

()inX a∈X . The next nested loop is the outgoing arc loop which is responsible for cycling

through all the outgoing arcs, out outa Arc∈ , connected to the current node.

The set_node_time function is called when the algorithm enters the outgoing arc region loop to

define the amount of time that is consumed for a given node. The outgoing region to be used by

the node inverse-transformation function for arc [1 2] is as follows:

78

30 30
Y

30 100
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

The algorithm then steps into a loop that will cycle through each product in the system to

calculate the inverse node transformation function for the given node type to create a new

incoming region, X’. After applying the node transformation functions to the region values for all

products in the given region, the loop is exited. The arc_star variable (X’) is updated with the

newly created outgoing region values. After updating the arc_star variable,

Each newly inversely transformed region is tested to check if the transformed region X’ intersects

with an original incoming arc region orgorgX ∈X . If no intersection is found, the X region is

flagged using the no_intersection_flag variable.

The outgoing arc region loop is indexed to the next outgoing arc region if possible or the loop is

exited and the outgoing arc loop is indexed. The outgoing arc region loop is indexed until all

outgoing arcs and regions have been used to find all possible new incoming regions X’ for the

current incoming arc and region. The incoming arc region loop is then indexed to the next

incoming region, if possible, and all outgoing arcs and regions are again cycled through by the

nested loops. After all possible incoming regions have been evaluated for an incoming arc, the

incoming arc loop is exited.

The example network will have the following arc_star product value regions after the algorithm

has cycled through the incoming arc region loop and subsequent nested loops to inversely

transform the outgoing arcs:

{ }_ (3,1,1), _ (3,1,2)arc star arc star′ =X

() 100 100
_ 3,1,1

30 100
arc star

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

() 100 100
_ 3,1,2

30 100
arc star

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

79

At this point all possible new product value regions have been stored in the arc_star variable for

a single incoming arc, which may or may not have multiple regions. The intersect_arc_star

function is called to calculate the intersection of the original arc product value regions, Xorg, with

the new regions, X’, as was done previously in the outgoing arc loop. All new regions are

intersected with each current region in an attempt to find all possible intersections, which are

stored as Xnew, in the arc variable and the arc_star variable is erased. The algorithm then calls

the cleanup_sheets function for the current incoming arc to remove duplicate, empty, or other

improper region sets.

The cleaned up arc variable (Xnew) is then operated upon by the merge_arc function. This

function performs the same merging of regions for the current incoming arc as was previously

performed for the regions in the outgoing arc loop. The function updates the arc variable which

is then cleaned up using the cleanup_sheets function. The merging and cleaning up of arc will

produce the following product value region:

(){ }3,1new arc=X

() ⎥
⎦

⎤
⎢
⎣

⎡
=

10030
10030

1,3arc

The algorithm then calls the set_change_flag function to compare the update arc regions, Xnew,

with the arc regions prior to applying the transformation equations, Xorg. If the regions are

equivalent the upstream and downstream nodes are not flagged but if the regions are different

from the original regions, the node is flagged to be revisited if it is not already included in the

flagged node list.

At this point the incoming arc loop is exited or indexed to the next incoming arc if one exists and

the previously described process for the incoming arc is repeated. The current example network

will be indexed to the second incoming arc [5 1], which will be transformed to the following

region after the completion of the incoming arc loop.

{ }(5,1)new arc=X

80

() ⎥
⎦

⎤
⎢
⎣

⎡
=

10030
10030

1,5arc

Upon exiting the incoming arc loop the algorithm will have updated all the regions for all the

incoming arcs connected to the current node.

The algorithm has now updated the product value regions for both the outgoing arcs and

incoming arcs for the current node number one. The node will not be flagged by the

set_change_flag function because both the incoming and outgoing arc regions are unchanged.

The algorithm calls the update_change_flag function to update the list of nodes to be evaluated

by the algorithm, which is stored in the flagged_node_list variable. After calling the

update_change_flag function the flagged_node_list variable is [2 3 4 5].

After updating the flagged_node_list variable, the update_node_number function is called to

change the node number to the next node in the flagged_node_list variable. After calling the

update_node_number function the flagged_node_list variable is unchanged in this example. The

algorithm proceeds to the next node and loops through the flagged_node_list loop, if the

flagged_node_list is not empty; otherwise the algorithm stops the analysis.

The example node network will continue to node number two because it is the next node in the

flagged_node_list variable. The same procedure of cycling through and transforming the

outgoing and incoming arc regions continues as previously described. The flagged_node_list

variable is now [3 4 5 2]. The output from the algorithm for node number two will update the

product value regions as follows:

()() ()()30 30 25 251,2 , 2,330 100 25 95arc arc⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
X Y

The algorithm next evaluates node number three in the example network and updates the product

value regions of the incoming and outgoing arcs to the following:

()() ()()25 25 100 100
2,3 , 3,1

38 95 30 87
arc arc

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

YX

81

The flagged_node_list variable is now [4 5 2 3 1]. Node number four is the next node to be

evaluated by the algorithm. The updated product value regions for the node are the following:

()() ()()30 100 25 951,4 , 4,530 30 25 25arc arc⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
X Y

After evaluation of node number four, the flagged_node_list variable is now [5 2 3 1 4] which

requires node number five to be evaluated by the algorithm. The updated product value regions

for node five are the following:

()() ()()38 95 30 87
4,5 , 5,1

25 25 100 100
arc arc

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

X Y

After evaluation of node number five, the flagged_node_list variable is now [2 3 1 4 5]. The

algorithm will continue to loop through the node network until the flagged_node_list variable is

empty and the regions no longer change when transformed by the algorithm. This example takes

approximately three complete cycles through the network to find the stable product value regions.

The final output for all the arcs are as follows:

() () ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

9538
2525

3,2,
10043
3030

2,1 arcarc

() ()100 100 43 100
3,1 , 1,4

30 87 30 30
arc arc

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

() ()38 95 30 87
4,5 , 5,1

25 25 100 100
arc arc

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

5.2 General Statements about Implementation of Algorithm

The convergence of the algorithm is not guaranteed due to the chaotic nature of a switched arrival

system, as demonstrated by Chase et al. [5]. The user can set a maximum number of iterations

82

for the algorithm to limit the maximum number of times that the node network will be cycled

through to prevent it from running indefinitely.

The regions for an arc are always equivalent or subsets of the original regions when the algorithm

completes the evaluation of a node. The regions will never increase in size, but instead a region

may divide, shrink, or remain unchanged. In a very general sense, the purpose of the algorithm is

to settle the regions on each side of a node until the regions are equivalent when transformed by

the node. Any arc in the node network will contain at least one region set, possibly an empty set.

Typically the number of regions for an outgoing arc will increase as the number of arcs entering

the node increase.

5.3 Output from the Algorithm

The output from the algorithm is a set of one or more regions for each defined arc in the system;

it is possible that a set may be empty. A settled and stable system will always have a trajectory

that can propagate from a point on one region which is transformed to a point on another region

and any transformed point will always be contained within a defined region.

5.3.1 Two Product Network

Consider the previously discussed example system for two products with the node/arc network

shown below and the following parameters: setup time = 5 time units, production rate = 10

products/time unit, usage rate = 1 product/time unit, lower threshold = 30 products, full buffer

level = 100 products and idle time must exist.

Figure 5.2: Network Map of Two-Product System –Idle Only

Consider the region for arc(2,3) below, which is for the region of products that are leaving the

setup for product one at node number two and going to fill product one at node number three.

Product one is represented by the top row and has a minimum of 25 and maximum of 25 products

Node 2

Setup 1

Node 1

Idle

Node 4

Setup 2

Node 3

Fill 1

Node 5

Fill 2

83

for the region. The region in the second row is for product two and has a minimum value of 38

and maximum value of 95.

() 25 25
2,3

38 95
arc

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

The region of [25 25] and [38 95] is representative of the values that the products must fall within

when leaving node number two and entering node number three to be stable. If the products are

within the region, then by the results in Section 5 of the Node Network Analysis Chapter, the

system will remain stable for all time, given that variability, breakdowns, maintenance, etc. never

occur in this system. In this example, the region is a one dimensional line, but a region may be a

point, a line, two-dimensional surface, or multidimensional volume dependent upon the

parameters of the system and number of products. Typically the product value regions are of k –

1 dimensions because one product will always have equivalent minimum and maximum values,

i.e. one-dimensional lines represent two product regions, two-dimensional rectangular planes for

three product systems, etc.

As previously discussed, this two product example network takes approximately three complete

cycles through the network to find the stable product value regions which are as follows:

() ()30 30 25 25
1,2 , 2,3

43 100 38 95
arc arc

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

() ()100 100 43 100
3,1 , 1,4

30 87 30 30
arc arc

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

() ()38 95 30 87
4,5 , 5,1

25 25 100 100
arc arc

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

5.3.1.1 Stable Two-Product Network

Consider the plot below where the solid lines represent the regions and the dashed lines represent

the connections between the extents of the regions for the flow direction of the products from arc

region to arc region. The lines with arrowheads represent a stable orbit and direction that the

system operates for a given starting point. From this plot it is very apparent that the system will

84

never crash by experiencing an empty buffer, because the system parameters cause the regions to

be located far from the origin of the plot [0, 0], where both product buffers are completely empty.

Figure 5.3: Plot of Two-Product Network

The dashed lines in the plot connect the extents of a region to the next region and have a slope of

the cumulative usage rate of the products when travelling from a full buffer to a setup node. The

slope of the line between the filling node and idle node is the refill rate of the product being

replenished divided by the cumulative usage rates of all products. A better illustration of the

dashed line is to imagine that pairs of parallel dashed lines represent a node and the lines show

how the products are transformed by the idle, setup, or a refill node. When the dashed lines

connect the extents of each region to another, the system can never leave the stable regions. The

only possible way for the system to leave the stable orbit is for some type of variability to disrupt

the system, which is not considered in the current work.

The algorithm is a conservative estimate of the stable product regions for a node network system.

Regions that are defined by the stability algorithm will guarantee stability for the defined set of

values for the products. But the stable regions are not guaranteed to be inclusive of all stable

values for the products. Note that the algorithm is searching for long term stability and does not

consider start-up conditions or non-steady state conditions of the system. Due to ignoring

transient conditions, it is quite possible for the system to initially operate well outside of a stable

Full #2 Buffer – Idle – Node #1

Full #1 Buffer –

Idle - Node #1

Entering Setup 2

Node #4
Entering Fill 2

Node #5

Product #1

Product #2

85

region but eventually crossover into a stable region and therefore a stable orbit, which it will

never leave. If at any point in time the orbit lands on any of the defined regions for the system,

the orbit of the production system will always be stable into the future. Any point on any stable

region will always map onto another stable region of the system and the orbit will therefore

always be stable in the future. See Node Network Analysis Chapter, Section 5 for a thorough

discussion and proof of this statement.

Consider the heavy long-dashed lines in the plots below which represent three possible

trajectories (A, B, and C) of the system. The trajectories all start outside of the stable regions, as

defined by the stability algorithm. These trajectories highlight that the system would easily reach

a stable region after one or two cycles of refilling the products. This example also highlights that

for this given system, the stable regions are very conservative, meaning that the regions are not

inclusive of all possible stable product value combinations.

Figure 5.4: Plot of Non-Included Trajectory A

Product #2
Full #2 Buffer – Idle – Node #1

Full #1 Buffer –

Idle - Node #1

Entering Setup 2

Node #4

Entering Fill 2

Node #5

Product #1

Trajectory A

86

Figure 5.5: Plot of Non-Included Trajectories B and C

5.3.1.2 Unstable Two-Product Network

Consider the same node network and parameters previously discussed with the only exception

being that the usage rate of product one is doubled to consuming two products per time unit,

rho(1) = 2 and rho(2) = 1. This slight change in system parameters causes the system to be

unstable with no possible stable regions existing and the algorithm outputs all empty sets. The

following regions are a snapshot of the system during the process of attempting to find stable

regions. A plot of the intermediate regions highlights the instability issue for the regions.

() () ()30 30 30 30 20 201,2,1 , 1,2,2 , 2,3,145 50 78 83 73 78arc arc arc⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()20 20 100 100 100 1002,3,2 , 3,1,1 , 3,1,240 45 30 35 63 68arc arc arc⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()90 100 80 90 63 731,4 , 4,5 , 5,130 30 25 25 100 100arc arc arc⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Product #2
Full #2 Buffer – Idle – Node #1

Full #1 Buffer –

Idle - Node #1

Entering Setup 2

Node #4
Entering Fill 2

Node #5

Product #1

Trajectory B

Trajectory C

87

Figure 5.6: Two-Product System – Product 1 Doubled Usage Rate

The solid black lines are the intermediate regions and the short-dashed lines are the connections

between the extents of the regions based on the refill rates or usage rates. The plotted path of a

potential system orbit highlights that the paths eventually reach a location after the second refill

of product number one. This highlights how the trajectory does not transform from region to

region and is therefore unstable.

5.3.1.3 Increasing the Product One Threshold

Raising the lower threshold for product number one to 40 units is a minor change in the system

and is easily tested as a possible solution for the unstable system. The output from the algorithm

is again empty sets for the production system with a lower threshold limit of 40 units for product

number one and 30 units for product number two. An intermediate set of regions prior to the

algorithm settling the network are below.

() () ()40 40 40 40 30 30
1,2 , 1,2 , 2,3,1

44 56 83 96 78 91
arc arc arc

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Full #2 Buffer – Idle – Node #1

Starting Point of

System Orbit

Product #2

Full #1 Buffer –

Idle - Node #1

Entering Setup 2

Node #4

Entering Fill 2

Node #5

Product #1

88

() () ()30 30 100 100 100 100
2,3,2 , 3,1,1 , 3,1,2

39 51 30 43 70 82
arc arc arc

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()75 100 65 90 48 73
1,4 , 4,5 , 5,1

30 30 25 25 100 100
arc arc arc

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

A plot of these regions is below. The orbit is unstable and again falls outside of the regions after

product number one has been refilled. From the plot of intermediate regions, it is apparent the

system cannot be stable for this network configuration given the current parameters.

Figure 5.7: Two-Product System – Product 1 Threshold of 40 Products

5.3.1.4 Two-Product System With and Without Idle

Consider the following node network diagramed below, which has the same parameters as the

initial two-product example system except that an arc now connects each refill node to the setup

node of the other product. The node network now allows the system to skip the idle node if a

product crosses the lower threshold prior to completely replenishing the buffer of the trigger

product.

Product #1

Starting Point of

System Orbit

Full #1 Buffer –

Idle Node #1

Entering Setup 2

Node #4

Entering Fill 2

Node #5, Arc

4-5

Product #2

Full #2 Buffer –

Idle Node #1

89

Figure 5.8: Network Map of Two-Product System – With and Without Idle

Examining this system with a lower limit of 30 units for both products and a usage rate of two for

product number one and a usage rate of one for product number two will again output empty set

regions. Consider the following intermediate regions which when plotted highlight the cause of

the instability.

() () ()30 30 30 30 10 30
1,2 , 1,2 , 5,2

30 50 78 83 100 100
arc arc arc

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()0 20 20 20 20 20
2,3,1 , 2,3,2 , 2,3,3

95 95 73 78 25 45
arc arc arc

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()100 100 100 100 100 100
3,1,1 , 3,1,2 , 3,1,3

83 85 63 68 30 35
arc arc arc

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()90 100 100 100 90 90
1,4 , 3,4 , 4,5,1

30 30 15 30 10 25
arc arc arc

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() ()80 90 63 73
4,5,2 , 5,1

25 25 100 100
arc arc

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

A plot of these intermediate regions is shown below. The system crashes after product one is

refilled because the idle node transforms the incoming region to a nonexistent outgoing region in

the lower left hand corner of the plot. Without any intersection between the transformed and

existing regions, the resulting region is an empty set. The empty set is propagated through the

system with subsequent transformations at each node, resulting in an empty set for all arcs. This

Node 2

Setup 1

Node 1

Idle

Node 4

Setup 2

Node 3

Fill 1

Node 5

Fill 2

90

indicates that there is no stable trajectory for this arc-node network, given the current set of

parameters.

Figure 5.9: Two-Product System – With and Without Idle – 30 Unit Threshold

Consider increasing the lower threshold for product one to 50 units to increase the buffer depth

when the product triggers replenishment. The system parameters are now a lower limit value of

50 units and usage rate of two for product number one and a lower limit of 30 units and usage rate

of one for product number two. This system will provide the output regions listed below.

() () () ()50 50 50 50 50 50 36 40
1,2,1 , 1,2,2 , 1,2,3 , 5,2

51 52 59 61 97 98 100 100
arc arc arc arc

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()26 30 40 40 40 40 40 40
2,3,1 , 2,3,2 , 2,3,3 , 2,3,4

95 95 83 85 92 93 46 47
arc arc arc arc

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()40 40 100 100 100 100 100 100
2,3,5 , 3,1,1 , 3,1,2 , 3,1,3

54 56 84 86 76 77 47 49
arc arc arc arc

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Full #1 Buffer –

Idle Node #1

Entering Setup 2

Node #4

Entering Fill 2

Node #5

Arc 4-5

Full #2 Buffer – Idle Node #1

Product #1

Product #2

Starting Point of

System Orbit

Entering Setup 1

Node #2

Non-Intersecting

Transformed

Region

91

() () () ()100 100 81 83 63 67 100 100
3,1,3 , 1,4,1 , 1,4,2 , 3,4

38 40 30 30 30 30 18 30
arc arc arc arc

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()90 90 71 73 53 57 71 73
4,5,1 , 4,5,1 , 4,5,2 , 5,1,1

13 25 25 25 25 25 100 100
arc arc arc arc

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() 54 57
5,1,2

100 100
arc

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

A plot of the regions is below. All regions of the system now map forward to another region.

This system will remain stable for all orbits that originate from any location on a defined output

region. Notice that from any starting point on a stable region, the system is able to reach the final

stable orbit within a few cycles of replenishing both products.

Figure 5.10: Two-Product System – With and Without Idle – Product One 50 Unit Threshold

This example system with the give set of parameters provides an interesting insight into the

stability algorithm. Notice in the plot above in Figure 5.10, the region in the lower right corner

has no incoming region connection. This region is on the arc [3 4], which in the arc that connects

the fill node for product number one and the setup node for product number two. This means that

Full #1 Buffer –

Idle Node #1

Entering Setup 2

Node #4

Entering Fill 2

Node #5

Full #2 Buffer – Idle Node #1

Product #1

Product #2

Final System

Orbit

Starting Point of

System Orbit

92

none of the regions on arc [2 3] entering the refill node map forward to the region on arc [3 4].

These results are when only forward stability is being considered by the algorithm. The

algorithm allows the user to solve for stability solely in the forward transformation direction or in

both directions with the forward transformations and backward inverse transformations. The user

may define the backward_stability parameter as zero for forward checking only or set the

parameter to one for stability in both directions. Note that when the stability algorithm checks for

stability in both directions, the algorithm will output a different set of regions for this example

problem, which are listed below.

() ()50 50 36 37
1,2 , 5,2

61 61 100 100
arc arc

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

() ()26 27 40 40
2,3,1 , 2,3,2

95 95 56 56
arc arc

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

() ()100 100 100 100
3,1,1 , 3,1,2

48 48 86 86
arc arc

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

() () []63 64
1,4 , 3,4

30 30
arc arc

⎡ ⎤
= = ∅⎢ ⎥
⎣ ⎦

() () []53 54
4,5 , 5,1

25 25
arc arc

⎡ ⎤
= = ∅⎢ ⎥
⎣ ⎦

93

Figure 5.11: Product One 50 Unit Threshold – Forward and Backward Stability

5.3.2 Three Product Network

The computational complexity will increase with each additional product added to the arc-node

network because each additional product will add at least two nodes (setup and fill) and three arcs

to the existing network. Consider a system with three products with the arc-node network show

below and the following parameters: setup time = 5 time units, production rate = 10 products/time

unit, usage rate = 1 product/time unit, lower threshold = 30 products, full buffer level = 100

products and idle time must exist.

5.3.2.1 Three Product Network – Idle Only

In this example network, all product sequences must pass through the idle node prior to entering

setup as shown in the following diagram.

Full #1 Buffer –

Idle Node #1

Entering Setup 2

Node #4

Entering Fill 2

Node #5

Full #2 Buffer – Idle Node #1

Product #1

Product #2

94

Figure 5.12: Network Map of Three-Product System –Idle Only

Determining the stable product value regions for this node network is very straight forward and

could be conducted by hand because the product parameters are all equal and the system is

balanced. The results for the stable regions from the algorithm are as below.

() () () ()
30 30 30 30 25 25 25 25

1, 2,1 , 1, 2, 2 , 2,3,1 , 2,3, 257 100 43 87 52 95 38 82
43 87 57 100 38 82 52 95

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
100 100 100 100 57 100 43 87

3,1,1 , 3,1, 2 , 1, 4,1 , 1, 4, 243 87 30 73 30 30 30 30
30 73 43 87 43 87 57 100

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
52 95 38 82 43 87 30 73

4,5,1 , 4,5, 2 , 5,1,1 , 5,1, 225 25 25 25 100 100 100 100
38 82 52 95 30 73 43 87

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
57 100 43 87 52 95 38 82

1,6,1 , 1,6, 2 , 6,7,1 , 6,7, 243 87 57 100 38 82 52 95
30 30 30 30 25 25 25 25

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() ()
43 87 30 73

7,1,1 , 7,1, 230 73 43 87
100 100 100 100

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Node 2

Setup 1
Node 1

Idle

Node 4

Setup 2

Node 3

Fill 1

Node 5

Fill 2

Node 6

Setup 3

Node 7

Fill 3

95

Examination of the output regions highlights that each region is a 2-dimensional plane because

the minimum and maximum value of one product is always equal for each region. The output

from the stability produces regions of k – 1 dimensions.

Consider the regions defined for arc(1,2,1) and arc(1,2,2) in which product number one is equal

to 30 units for both regions. The extents of the regions are show below plotted as a rectangle on a

plane through all points where product number one is equal to 30 units. The heavy arrow-headed

lines show the direction of the total product usage rate for the system in two dimensions (the

usage rates for all products is one product per time unit).

Figure 5.13: Two-Dimensional Plot of Arc [1 2] Regions

The area of the regions between the diagonal lines creates instability problems when a sequence

is traced through the production system that originates within this area. A discontinuity exists

when the center region points transition from a full buffer region to a region that is leaving the

idle node because the central region of a full buffer region is transformed by the idle node into an

empty region. This can be seen in the following diagram which is a three dimensional plot with

the regions represented as rectangles.

Product #2

Product #3
100

87

57 43 100 87

57

43

96

Figure 5.14: Three-Dimensional Plot of Rectangular Arc Regions

The system parameters cause the total usage rate for the system to be parallel to a line with a

slope of one in the X, Y, and Z directions. Consider the top surface in the region below which

represents when product number two has a full buffer of 100 units. As the system is idle and

products are consumed the trajectory must hit either the region below it on the left (green) where

product number one is equal to the lower threshold of 30 units or the region on the right (red)

where product number three is equal to the lower threshold of 30 units for the system to remain

stable. The area between the two triangular shaped areas does not map to a region.

The following plot of the regions has been corrected to remove the unstable portion of the regions

defined by the system. For this plot it is easy to see that a product sequence trajectory can start at

any point on any of the defined regions and the trajectory will always transform to another stable

region for all possible node transformations that may occur in the node network of the system.

97

Figure 5.15: Three-Dimensional Plot of Triangular Arc Regions

This example highlights the need for some interpretation or special handling of the regions for

systems with more than two products. In a system in which the parameters are defined in such a

way that the usage rates, buffer sizes, production rates, and lower thresholds of every product are

equal, the stable regions will be triangular in shape bounded by the cumulative usage rate in two-

dimensions. The proposed solution to correct this discontinuity issue for more complex

production system is define the network in such a way that idle time is not required to follow

every refill node, which will remove the discontinuities between setup regions.

5.3.2.2 Three Product Network – With and Without Idle

Consider a system with three products with the node/arc network show below and the same

parameters as the previous example; setup time = 5 time units, production rate = 10 products/time

unit, usage rate = 1 product/time unit, lower threshold = 30 products, full buffer level = 100

products. In this example network, all product sequences may pass through the idle node prior to

being replenished or a product can enter setup directly after replenishment of the previous

product.

98

Figure 5.16: Network Map of Three-Product System – With and Without Idle

The algorithm cycles through the network approximately twelve times to determine the stable

regions for the system. The results from the algorithm for this arc-node network still contain the

same regions as the previous system, but these regions a now segmented into smaller regions.

The output also contains the additional regions for the arcs that skip idle. The regions for a given

arc is symmetric with two other arcs, meaning that all regions on arc [1 2] are the same values as

arcs [1 4] and [1 6], but on a different plane. For example, consider the following region on arc

[1 2]:

()
30 30

1,2,1 59 89
46 83

arc
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

This region on arc [1 2] is symmetric with the following regions on arcs [1 4] and [1 6]:

() ()
59 89 59 89

1,4,1 , 1,6,130 30 46 83
46 83 30 30

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

The output regions for the system are below.

99

Arc [1 2]:

() () () ()
30 30 30 30 30 30 30 30

1,2,1 , 1,2,2 , 1,2,3 , 1,2,4 ,59 89 59 98 60 99 46 84
46 83 59 83 46 84 46 54

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
30 30 30 30 30 30 30 30

1,2,5 , 1,2,6 , 1,2,7 , 1,2,8 ,46 83 46 83 59 83 46 84
46 54 59 89 59 97 60 99

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
30 30 30 30 30 30 30 30

1,2,9 , 1,2,10 , 1,2,11 , 1,2,1246 54 46 54 30 35 59 97
46 84 46 83 59 97 30 35

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Arc [2 3]:

() () () ()
12 17 12 17 25 25 25 25

2,3,1 , 2,3,2 , 2,3,3 , 2,3,4 ,95 95 41 79 54 84 54 92
41 79 95 95 41 78 54 78

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
25 25 25 25 25 25 25 25

2,3,5 , 2,3,6 , 2,3,7 , 2,3,8 ,55 94 41 79 41 78 41 78
41 79 41 49 41 49 54 84

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
25 25 25 25 25 25 25 25

2,3,9 , 2,3,10 , 2,3,11 , 2,3,12 ,54 78 41 79 41 49 41 49
54 92 55 94 41 79 41 78

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() ()
25 25 25 25

2,3,13 , 2,3,1425 30 54 92
54 92 25 30

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Arc [3 1]:

() () ()
100 100 100 100 100 100

3,1,1 , 3,1,2 , 3,1,3 ,46 76 33 69 46 84
33 69 46 76 46 69

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
100 100 100 100 100 100

3,1,4 , 3,1,5 , 3,1,6 ,46 69 33 71 33 40
46 84 33 40 33 71

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
100 100 100 100 100 100

3,1,7 , 3,1,8 , 3,1,9 ,85 86 31 70 33 70
31 70 85 86 33 41

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
100 100 100 100 100 100

3,1,10 , 3,1,11 , 3,1,1233 41 47 85 33 71
33 70 33 71 47 85

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

100

Arcs [3 4] and [3 6]:

() ()
100 100 100 100

3,4 , 3,617 22 46 84
46 84 17 22

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Arc [1 4]:

() () () ()
59 89 59 97 60 99 46 84

1,4,1 , 1,4,2 , 1,4,3 , 1,4,4 ,30 30 30 30 30 30 30 30
46 83 59 83 46 84 46 54

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
46 83 43 83 59 83 46 84

1,4,5 , 1,4,6 , 1,4,7 , 1,4,8 ,30 30 30 30 30 30 30 30
46 54 59 89 59 97 60 99

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
46 54 46 54 30 35 59 97

1,4,9 , 1,4,10 , 1,4,11 , 1,4,12 ,30 30 30 30 30 30 30 30
46 84 46 83 59 97 30 35

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Arc [4 5]:

() () () ()
95 95 41 79 54 84 54 92

4,5,1 , 4,5,2 , 4,5,3 , 4,5,4 ,12 17 12 17 25 25 25 25
41 79 95 95 41 78 54 78

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
55 94 41 79 41 78 41 78

4,5,5 , 4,5,6 , 4,5,7 , 4,5,8 ,25 25 25 25 25 25 25 25
41 79 41 49 41 49 54 84

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
54 78 41 79 41 49 41 49

4,5,9 , 4,5,10 , 4,5,11 , 4,5,12 ,25 25 25 25 25 25 25 25
54 92 55 94 41 79 41 78

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() ()
25 30 54 92

4,5,13 , 4,5,1225 25 25 25
54 92 25 30

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Arc [5 1]:

() () ()
46 76 33 69 46 84

5,1,1 , 5,1,2 , 5,1,3 ,100 100 100 100 100 100
33 69 46 76 46 69

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
46 69 33 71 33 40

5,1,4 , 5,1,5 , 5,1,6 ,100 100 100 100 100 100
46 84 33 40 33 71

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
85 86 31 70 33 70

5,1,7 , 5,1,8 , 5,1,9 ,100 100 100 100 100 100
31 70 85 86 33 41

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

101

() () ()
33 41 47 85 33 71

5,1,10 , 5,1,11 , 5,1,12100 100 100 100 100 100
33 70 33 71 47 85

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Arcs [5 2] and [5 6]:

() ()
17 22 46 84

5,2 , 5,6100 100 100 100
46 84 17 22

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Arc [1 6]:

() () () ()
59 89 59 97 60 99 46 84

1,6,1 , 1,6,2 , 1,6,3 , 1,6,4 ,46 83 59 83 46 84 46 54
30 30 30 30 30 30 30 30

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
46 83 46 83 59 83 46 84

1,6,5 , 1,6,6 , 1,6,7 , 1,6,8 ,46 54 59 89 59 97 60 99
30 30 30 30 30 30 30 30

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
46 54 46 54 30 35 59 97

1,6,9 , 1,6,10 , 1,6,11 , 1,6,1246 84 46 83 59 97 30 35
30 30 30 30 30 30 30 30

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Arc [6 7]:

() () () ()
95 95 41 79 54 84 54 92

6,7,1 , 6,7,2 , 6,7,3 , 6,7,4 ,41 79 95 95 41 78 54 78
12 17 12 17 25 25 25 25

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
55 94 41 79 41 78 41 78

6,7,5 , 6,7,6 , 6,7,7 , 6,7,8 ,41 79 41 49 41 49 54 84
25 25 25 25 25 25 25 25

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
54 78 41 79 41 49 41 49

6,7,9 , 6,7,10 , 6,7,11 , 6,7,12 ,54 92 55 94 41 79 41 78
25 25 25 25 25 25 25 25

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() ()
25 30 54 92

6,7,13 , 6,7,1454 92 25 30
25 25 25 25

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Arc [7 1]:

() () ()
46 76 33 69 46 84

7,1,1 , 7,1,2 , 7,1,3 ,33 69 46 76 46 69
100 100 100 100 100 100

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

102

() () ()
46 69 33 71 33 40

7,1,4 , 7,1,5 , 7,1,6 ,46 84 33 40 33 71
100 100 100 100 100 100

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
85 86 31 70 33 70

7,1,7 , 7,1,8 , 7,1,9 ,31 70 85 86 33 41
100 100 100 100 100 100

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
33 41 47 85 33 71

7,1,10 , 7,1,11 , 7,1,1233 70 33 71 47 85
100 100 100 100 100 100

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Arcs [7 2] and [7 4]:

() ()
17 22 46 84

7,2 , 7,446 84 17 22
100 100 100 100

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

A plot of the regions for this system appears in Figure 5.17. The shape of the regions are similar

to regions of the system with idle only in Figure 5.14, but include the additional regions that skip

idle. The additional idle skipping regions are concentrated around the lower threshold of a given

product because a product is allowed to go from a filling node to the setup node for the next

product.

Note that this system required the initial flagged_node_list to be set to [1 3 5 7] to get a non-

oscillating set of regions for the solution. An oscillating set of regions does not change the area

contained by the region set on a given arc, but is merely a different representation of the area.

For example, consider a set of three regions [A B C], where A and C have no intersection but B

intersects both A and C. The total region represented by the set of hyperrectangles is the union of

all three regions. Note that the union of all three regions is the same as the union of A, C, and D,

where D B A B C B= − −∩ ∪ . This means that the portion of B that intersects A or C can change

but it will have no effect on the representation of the set of regions. The set of regions on each

arc between the setup and refill nodes ([2 3],[4 5], and [6 7]) contained the oscillating regions.

Refer to Section 4.7.1 of the Stability Algorithm Chapter for further information regarding

oscillating regions in the Stability Algorithm.

103

Figure 5.17: Three Product System – Skipping Idle Allowed

The results for the same system parameters but with the lower limit threshold increased to 40

units for all products will now be examined. The parameters for this system produce regions that

are similar to the regions of the previous system but have smaller gaps between regions. This

system provided the same non-oscillating output regardless of the initial flagged_node_list. The

regions and plot of regions are below.

Arc [1 2]:

() () () ()
40 40 40 4040 40 40 40

1,2,1 , 1,2,2 , 1,2,3 52 63 , 1,2,4 52 88 ,52 88 64 100
52 88 64 10052 63 52 88

arc arc arc arc
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
40 40 40 40 40 40 40 40

1,2,5 52 64 , 1,2,6 40 52 , 1,2,7 66 100 , 1,2,8 89 100 ,
40 52 52 64 40 51 40 52

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

104

() () () ()
40 40 40 40 40 40 40 40

1,2,9 66 88 , 1,2,10 40 51 , 1,2,11 40 52 , 1,2,12 40 52
40 52 66 100 89 100 66 88

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Arc [2 3]:

() () () ()
21 35 21 35 23 35 23 35

2,3,1 95 95 , 2,3,2 81 83 , 2,3,3 95 95 , 2,3,4 35 47 ,
81 83 95 95 35 47 95 95

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
23 35 23 34 23 35 23 35

2,3,5 95 95 , 2,3,6 95 95 , 2,3,7 95 95 , 2,3,8 72 83 ,
72 83 72 83 51 71 95 95

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
23 34 23 35 35 35 35 35

2,3,9 51 83 , 2,3,10 51 71 , 2,3,11 47 83 , 2,3,12 59 95 ,
95 95 95 95 47 58 47 83

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
35 35 35 35 35 35 35 35

2,3,13 47 59 , 2,3,14 47 58 , 2,3,15 47 83 , 2,3,16 35 47 ,
35 47 47 83 59 95 47 59

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
35 35 35 35 35 35 35 35

2,3,17 61 95 , 2,3,18 61 95 , 2,3,19 61 83 , 2,3,20 35 46 ,
35 46 35 46 35 47 61 95

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() ()
35 35 35 35

2,3,21 35 47 , 2,3,22 35 47
85 95 61 83

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Arc [3 1]:

() ()
100 100 100 100

3,1,1 , 3,1,2 ,40 76 40 51
40 51 40 76

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

() ()
100 100 100 100

3,1,3 , 3,1,452 88 40 76
52 76 52 88

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Arcs [3 4] and [3 6]:

() () ()
100 100 100 28 100 100

3,4,1 28 39 , 3,4,2 28 40 , 3,4,3 28 40 ,
54 88 77 88 72 83

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
100 100 100 100 100 100

3,4,4 28 40 , 3,4,5 26 40 , 3,6,1 54 88 ,
40 52 86 88 28 29

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

105

() () ()
100 100 100 100 100 100

3,6,2 77 88 , 3,6,3 54 76 , 3,6,4 40 52 ,
28 40 28 40 28 40

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

()
100 100

3,6,5 86 88
26 40

arc
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

Arc [1 4]:

() () () ()
52 88 64 100 52 88 52 63

1,4,1 40 40 , 1,4,2 40 40 , 1,4,3 40 40 , 1,4,4 40 40 ,
52 63 52 88 64 100 52 88

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
66 100 89 100 66 88 40 52

1,4,5 40 40 , 1,4,6 40 40 , 1,4,7 40 40 , 1,4,8 40 40 ,
40 51 40 52 40 52 89 100

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
40 51 40 52 52 64 40 52

1,4,9 40 40 , 1,4,10 40 40 , 1,4,11 40 40 , 1,4,12 40 40
68 100 68 88 40 52 52 64

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Arc [4 5]:

() () () ()
95 95 81 83 95 95 35 47

4,5,1 21 35 , 4,5,2 21 35 , 4,5,3 23 35 , 4,5,4 23 35 ,
81 83 95 95 35 47 95 95

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
95 95 95 95 95 95 72 83

4,5,5 23 34 , 4,5,6 23 35 , 4,5,7 23 35 , 4,5,8 23 35 ,
49 83 72 83 49 71 95 95

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
49 71 49 83 47 83 59 95

4,5,9 35 35 , 4,5,10 23 34 , 4,5,11 35 35 , 4,5,12 35 35 ,
63 95 95 95 47 58 47 83

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
47 59 47 83 47 58 35 47

4,5,13 35 35 , 4,5,14 35 35 , 4,5,15 35 35 , 4,5,16 35 35 ,
35 47 59 95 47 83 47 59

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
61 95 84 95 61 83 35 47

4,5,17 35 35 , 4,5,18 35 35 , 4,5,19 35 35 , 4,5,20 35 35 ,
35 46 35 47 35 47 84 95

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() ()
35 46 35 47

4,5,21 35 35 , 4,5,22 35 35
63 95 63 83

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Arc [5 1]:

() ()
40 76 40 51

5,1,1 100 100 , 5,1,2 100 100 ,
40 51 40 76

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

106

() ()
52 88 40 76

5,1,3 100 100 , 5,1,4 100 100
40 76 52 88

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Arcs [5 2] and [5 6]:

() () ()
28 40 28 39 28 40

5,2,1 100 100 , 5,2,2 100 100 , 5,2,3 100 100 ,
77 88 56 88 56 76

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
28 40 26 40 54 88

5,2,4 100 100 , 5,2,5 100 100 , 5,6,1 100 100 ,
40 52 86 88 28 39

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
77 88 54 76 40 52

5,6,2 100 100 , 5,6,3 100 100 , 5,6,4 100 100 ,
28 40 28 40 28 40

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

()
86 88

5,6,5 100 100
26 40

arc
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

Arc [1 6]:

() () () ()
64 100 52 88 52 88 53 63

1,6,1 , 1,6,2 , 1,6,3 , 1,6,4 ,52 88 52 63 64 100 52 88
40 40 40 40 40 40 40 40

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
89 100 66 100 66 88 40 52

1,6,5 , 1,6,6 , 1,6,7 , 1,6,8 ,40 52 40 51 40 52 89 100
40 40 40 40 40 40 40 40

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
40 51 40 52 52 64 40 52

1,6,9 , 1,6,10 , 1,6,11 , 1,6,1268 100 68 88 40 52 52 64
40 40 40 40 40 40 40 40

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Arc [6 7]:

() () () ()
95 95 81 83 95 95 35 47

6,7,1 , 6,7,2 , 6,7,3 , 6,7,4 ,81 83 95 95 35 47 95 95
21 35 21 35 23 35 23 35

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
95 95 95 95 95 95 72 83

6,7,5 , 6,7,6 , 6,7,7 , 6,7,8 ,49 83 72 83 49 71 95 95
23 34 23 35 23 35 23 35

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
49 71 49 83 59 95 47 83

6,7,9 , 6,7,10 , 6,7,11 , 6,7,12 ,95 95 95 95 47 83 47 58
23 35 23 34 35 35 35 35

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

107

() () () ()
47 59 47 83 47 58 35 47

6,7,13 , 6,7,14 , 6,7,15 , 6,7,16 ,35 47 59 95 47 83 47 59
35 35 35 35 35 35 35 35

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
84 95 61 95 61 83 35 47

6,7,17 , 6,7,18 , 6,7,19 , 6,7,20 ,35 47 35 47 35 47 84 95
35 35 35 35 35 35 35 35

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() ()
35 46 35 47

6,7,21 , 6,7,2263 95 63 83
35 35 35 35

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Arc [7 1]:

() ()
40 76 40 51

7,1,1 , 7,1,2 ,40 51 40 76
100 100 100 100

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

() ()
52 88 40 76

7,1,3 , 7,1,440 76 52 88
100 100 100 100

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Arcs [7 2] and [7 4]:

() () ()
28 40 28 39 28 40

7,2,1 , 7,2,2 , 7,2,3 ,77 88 56 88 56 76
100 100 100 100 100 100

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
28 40 26 40 77 88

7,2,4 , 7,2,5 , 7,4,1 ,40 52 86 88 28 40
100 100 100 100 100 100

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
54 88 54 76 40 52

7,4,2 , 7,4,3 , 7,4,4 ,28 39 28 40 28 40
100 100 100 100 100 100

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

()
86 88

7,4,5 26 40
100 100

arc
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

108

Figure 5.18: Three Product System – 40 Unit Lower Threshold

Other systems were tested that varied the lower and upper buffer thresholds and all provided

similar product value regions.

5.3.2.3 Three Product Network – Different Usage Rates

This section will begin to examine the effect of changing the usage rate of one product. A three

product system that is non-symmetric becomes very difficult, if not impossible to evaluate using

hand calculations. Consider a system with three products with the same node/arc network as the

previous example and the following parameters: usage rate = 2 products/time unit for product

number one, the usage rate = 1 product/time unit for products two and three, all products have the

same parameters of a lower threshold = 40 products, full buffer level = 80 products, and setup

time of 5 units. In this example network, all product sequences may pass through the idle node

prior to being replenished or a product can enter setup directly after replenishment of the previous

109

product. The algorithm cycled through the network approximately seven times which took a few

minutes to complete the analysis. The regions output by the algorithm are listed below and a plot

of the regions follows.

Arc [1 2]:

() () ()
40 40 40 40 40 40

1,2,1 , 1,2,2 , 1,2,3 ,82 100 94 100 40 74
40 74 54 88 82 100

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
40 40 40 40 40 40

1,2,4 , 1,2,5 , 1,2,654 88 40 44 51 56
94 100 51 56 40 44

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Arc [2 3]:

() () () ()
6 30 6 30 6 30 6 30

2,3,1 , 2,3,2 , 2,3,3 , 2,3,4 ,95 95 95 95 53 83 35 49
53 83 35 49 95 95 95 95

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
30 30 30 30 30 30 30 30

2,3,5 , 2,3,6 , 2,3,7 , 2,3,8 ,35 39 46 51 89 95 49 83
46 51 35 39 49 83 89 95

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() ()
30 30 30 30

2,3,9 , 2,3,1077 95 35 69
35 69 77 95

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Arc [3 1]:

() () () ()
100 100 100 100 100 100 100 100

3,1,1 , 3,1,2 , 3,1,3 , 3,1,468 86 81 86 40 60 40 74
40 60 40 60 68 86 81 86

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Arcs [3 4] and [3 6]:

() () () ()
100 100 100 100 100 100 100 100

3,4,1 , 3,4,2 , 3,4,3 , 3,4,423 40 26 30 37 40 26 40
83 86 37 43 26 30 68 86

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
100 100 100 100 100 100 100 100

3,6,1 , 3,6,2 , 3,6,3 , 3,6,483 86 26 30 37 43 68 86
23 40 37 40 26 30 26 40

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Arc [1 4]:

() () () ()
64 100 40 64 64 76 40 64

1,4,1 , 1,4,2 , 1,4,3 , 1,4,440 40 40 40 40 40 40 40
52 86 52 66 66 100 70 100

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

110

Arc [4 5]:

() () () ()
90 90 90 90 90 90 65 66

4,5,1 , 4,5,2 , 4,5,3 , 4,5,4 ,18 35 21 25 32 35 9 13
78 81 32 38 21 25 95 95

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
63 63 90 90 54 90 30 54

4,5,5 , 4,5, 6 , 4,5, 7 4,5,8 ,18 24 21 35 35 35 35 35
95 95 63 81 47 81 47 61

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() ()
54 66 30 54

4,5,9 , 4,5,1035 35 35 35
61 95 65 95

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Arc [5 1]:

() ()
40 76 40 51

5,1,1 , 5,1, 2100 100 100 100
40 74 54 88

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Arcs [5 2] and [5 6]:

() () ()
16 40 16 40 40 40

5,2,1 , 5,2,2 5,2,3100 100 100 100 100 100
58 88 40 54 40 88

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() ()
73 73 75 76

5,6,1 , 5,6,2100 100 100 100
23 29 14 18

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Arc [1 6]:

() () () ()
64 100 40 64 64 76 40 64

1,6,1 , 1,6,2 , 1,6,3 , 1,6,452 86 52 66 66 100 70 100
40 40 40 40 40 40 40 40

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Arc [6 7]:

() () () ()
90 90 90 90 90 90 65 66

6,7,1 , 6,7,2 , 6,7,3 , 6,7,4 ,78 81 32 38 21 25 95 95
18 35 21 25 32 35 9 13

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () ()
63 63 90 90 54 90 30 54

6,7,5 , 6,7,6 , 6,7,7 , 6,7,8 ,95 95 63 81 47 81 47 61
18 24 21 35 35 35 35 35

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() ()
54 66 30 54

6,7,9 , 6,7,1061 95 65 95
35 35 35 35

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

111

Arc [7 1]:

() ()
40 76 40 51

7,1,1 , 7,1,240 74 54 88
100 100 100 100

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Arcs [7 2] and [7 4]:

() () ()
16 40 16 40 40 40

7,2,1 , 7,2,2 , 7,2,358 88 40 54 40 88
100 100 100 100 100 100

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() ()
75 76 73 73

7,4,1 , 7,4,214 18 23 29
100 100 100 100

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Figure 5.19: Three Product System – Differing Usage Rates

The plot of the results highlights that the differing usage rates causes the output regions to differ

in shape from the previous systems as well as lose the symmetry among the products. The plot

also makes it apparent that some of the regions are very small which confine the possible

112

combinations of product inventory levels that will be stable by mapping to an outgoing region at

any given node. A larger outgoing region will allow much more freedom for various

combinations of the incoming product inventory levels at a node, meaning that the incoming

region has a larger target to hit when transformed by the node.

5.3.2.4 Three Product System with Sequence Dependent Setups

The stability algorithm allows a user to define a wide variety of arc-node networks, to highlight

the flexibility of the algorithm this example will consider a system with sequence dependent

setups. Consider a three product system with the following system parameters: production rate =

10 products/time unit, usage rate = 1 product/time unit, lower threshold = 90 products, full buffer

level = 150 products and idle time may or may not exist after a fill node. The setup times vary

depending upon the product sequence and are as follows: product one to product two is 5 time

units, product one to product three is 15 time units, product two to product one is 10 time units,

product two to product three is 5 time units, product three to product one is 15 time units, and

product three to product two is 15 time units. The varying setup times requires a more advance

arc-node network with multiple setup nodes prior to a given filling node to capture the differing

setup times. A diagram of the arc-node network is below in Figure 5.20. This system allows idle

to exist after a filling node or idle can be non-existent by entering a setup node for the next

product directly after refilling the previous product.

113

Figure 5.20: Network Map of System with Sequence Dependent Setups

The network map appears very complex, but the map is the simplest means of evaluating a

sequence dependent system using the stability algorithm. This map would be very difficult to

solve by hand, but the algorithm finds a solution in a few minutes as it cycles through the network

25 times. The output regions and a plot of the regions are below.

Arc [1 2]:

()
90 90

1,2 137 150
108 127

arc
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

Arc [2 5]:

() () ()
80 80 74 80 74 80

2,5,1 , 2,5,2 , 2,5,3127 140 140 140 140 140
98 117 98 98 107 117

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Node 9

Setup 2

Node 6

Idle

Node 14

Setup 3

Node 5

Fill 1

Node 10

Fill 2

Node 7

Setup 2

Node 15

Fill 3

Node 3

Idle

Node 1

Idle

Node 13

Idle

Node 8

Idle

Node 11

Idle

Node 4

Setup 1

Node 2

Setup 1

Node 12

Setup 3

114

Arc [3 4]:

() () ()
90 90 90 90 90 90

3,4,1 , 3,4,2 , 3,4,3 ,90 91 90 91 103 104
113 126 128 132 116 117

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() ()
90 90 90 90

3,4,4 , 3,4,5103 107 103 104
117 119 117 117

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Arc [4 5]:

() () ()
75 75 75 75 75 75

4,5,1 , 4,5,2 , 4,5,375 76 88 92 88 89
98 111 102 104 101 102

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() ()
75 75 75 75

4,5,4 , 4,5,575 76 88 89
113 117 102 102

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Arc [5 6]:

() []5,6arc = ∅

Arc [5 7]:

() () ()
150 150 150 150 150 150

5,7,1 , 5,7,2 , 5,7,367 68 79 84 80 80
90 102 94 96 93 93

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

()
150 150

5,7,4 67 68
105 109

arc
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

Arc [5 13]:

()
150 150

5,13 119 132
90 109

arc
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

Arc [5 14]:

() () ()
150 150 150 150 150 150

5,14,1 , 5,14,2 , 5,14,367 68 132 132 119 132
90 90 89 90 90 90

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Arc [6 7]:

() []6,7arc = ∅

Arc [7 10]:

() () ()
145 145 145 145 145 145

7,10,1 , 7,10,2 , 7,10,374 79 75 75 62 63
89 91 88 88 85 97

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

115

()
145 145

7,10,4 62 63
100 104

arc
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

Arc [8 9]:

() () ()
108 113 108 113 113 127

8,9,1 , 8,9,2 , 8,9,390 90 90 90 90 90
131 131 140 150 131 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Arc [9 10]:

() () ()
112 112 93 98 93 98

9,10,1 , 9,10,2 , 9,10,3 ,28 29 75 75 75 75
135 135 116 116 125 135

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

()
98 112

9,10,4 75 75
116 135

arc
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

Arc [10 1]:

()
90 103

10,1 150 150
108 127

arc
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

Arc [10 2]:

() () ()
84 90 84 90 90 90

10,2,1 , 10,2,2 , 10,2,3150 150 150 150 150 150
108 108 117 127 108 127

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Arc [10 11]:

()
135 135

10,11 150 150
90 94

arc
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

Arc [10 12]:

() () ()
135 135 137 137 137 137

10,12,1 , 10,12,2 , 10,12,3 ,150 150 150 150 150 150
75 88 80 83 79 80

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

()
137 137

10,12,4 150 150
80 80

arc
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

Arc [11 12]:

()
133 135

11,12 146 150
90 90

arc
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

116

Arc [12 15]:

() () ()
130 130 132 132 132 132

12,15,1 , 12,15,2 , 12,15,3 ,145 145 145 145 145 145
70 83 75 78 74 75

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() ()
128 130 132 132

12,15,4 , 12,15,5141 145 145 145
85 85 75 75

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Arc [13 14]:

()
131 150

13,14 113 132
90 90

arc
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

Arc [14 15]:

() () ()
135 135 135 135 116 135

14,15,1 , 14,15,2 , 14,15,3117 117 52 53 98 117
74 75 75 75 75 75

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Arc [15 3]:

() () ()
108 127 121 123 123 124

15,3,1 , 15,3,2 , 15,3,3 ,108 109 134 138 137 137
150 150 150 150 150 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

()
123 123

15,3,4 137 137
150 150

arc
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

Arc [15 4]:

() []15,4arc = ∅

Arc [15 8]:

()
108 127

15,8 90 109
150 150

arc
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

Arc [15 9]:

() ()
127 127 113 127

15,9,1 , 15,9,243 44 90 90
150 150 150 150

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

117

Figure 5.21: Output of Three Product System with Sequence Dependent Setups

The plot illustrates the high number of regions for this system as well as how many of the regions

are very small. A region is equivalent to a target that the trajectory is aiming for, such that a large

region is easier to be stable while a smaller region is potentially more difficult to hit from the

previous product region.

Now consider the same arc-node network and system parameters as the previous example, but the

lower threshold is decreased to 40 products and the full buffer level is decreased to 100 products.

The output regions for these system parameters are below.

Arc [1 2]:

()
40 40

1,2 87 100
58 77

arc
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

118

Arc [2 5]:

() () ()
30 30 24 30 24 30

2,5,1 , 2,5,2 , 2,5,377 90 90 90 90 90
48 67 48 48 51 67

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Arc [3 4]:

() []3,4arc = ∅

Arc [4 5]:

() []4,5arc = ∅

Arc [5 6]:

() []5,6arc = ∅

Arc [5 7]:

() []5,7arc = ∅

Arc [5 13]:

()
100 100

5,13 69 82
40 59

arc
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

Arc [5 14]:

() ()
100 100 100 100

5,14,1 , 5,14,269 82 82 82
40 40 39 40

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Arc [6 7]:

() []6,7arc = ∅

Arc [7 10]:

() []7,10arc = ∅

Arc [8 9]:

() () ()
58 63 58 63 63 77

8,9,1 , 8,9,2 , 8,9,340 40 40 40 40 40
81 81 84 100 81 100

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Arc [9 10]:

() () ()
43 48 43 48 48 62

9,10,1 , 9,10,2 , 9,10,325 25 25 25 25 25
66 66 69 85 66 85

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

119

Arc [10 1]:

()
40 53

10,1 100 100
58 77

arc
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

Arc [10 2]:

() () ()
34 40 34 40 40 40

10,2,1 , 10,2,2 , 10,2,3100 100 100 100 100 100
58 58 61 77 58 77

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Arc [10 11]:

() []10,11arc = ∅

Arc [10 12]:

() []10,12arc = ∅

Arc [11 12]:

() []11,12arc = ∅

Arc [12 15]:

() []12,15arc = ∅

Arc [13 14]:

()
81 100

13,14 63 82
40 40

arc
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

Arc [14 15]:

() ()
85 85 66 85

14,15,1 , 14,15,267 67 48 67
24 25 25 25

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Arc [15 3]:

() []15,3arc = ∅

Arc [15 4]:

() []15,4arc = ∅

Arc [15 8]:

()
58 77

15,8 40 59
100 100

arc
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

120

Arc [15 9]:

()
63 77

15,9 40 40
100 100

arc
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

Figure 5.22: System with Sequence Dependent Setups and Smaller Buffers

The plot of the regions appears very similar to the previous example but without all of the very

small regions. The arcs with the small regions in the previous example contain empty sets for this

example problem. From the output of the algorithm and given the arc-node network, it is

apparent that there is only one stable product sequence for this system 1-3-2. The trajectory of

the sequence can either pass through idle prior to setup or the trajectory can skip idle and enter

setup directly after refilling the previous product.

121

5.3.3 Four Product Network

Consider a system with four products with the node/arc network show below and the following

parameters: setup time = 5 time units, production rate = 10 products/time unit, usage rate = 1

product/time unit, lower threshold = 75 products, full buffer level = 150 products. In this

example network, all product sequences must pass through the idle node prior to being

replenished.

Figure 5.23: Network Map of Four-Product System – With and Without Idle

The stability algorithm required several hours to complete the analysis of this system due to the

large number of arcs in and out of the idle node. Each evaluation of the idle node deals with

multiple regions on the eight arcs connected to the idle node and each region is transformed,

intersected and merged, all of which requires CPU time. Each time one region either into or out

of the idle node is altered, the node will be flagged to be reevaluated in the future, therefore this

system required hours to analyze versus minutes for the previous three product systems. The

results from the algorithm are below.

Arc [1 2]:

() () ()
75 75 75 75 75 75
117 150 131 150 117 1501,2,1 , 1,2,2 , 1,2,3 ,89 136 89 136 103 122
103 108 103 122 89 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Node 2

Setup 1

Node 1

Idle

Node 4

Setup 2
Node 3

Fill 1

Node 5

Fill 2

Node 6

Setup 3

Node 7

Fill 3 Node 8

Setup 4

Node 9

Fill 4

122

() () ()
75 75 75 75 75 75
131 150 89 136 89 1361,2,4 , 1,2,5 , 1,2,6 ,103 122 117 150 131 150
89 136 103 108 103 122

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
75 75 75 75 75 75
103 108 103 122 89 1361,2,7 , 1,2,8 , 1,2,9 ,117 150 131 150 103 108
86 136 89 136 117 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
75 75 75 75 75 75
89 136 103 108 103 1221,2,10 , 1,2,11 , 1,2,12 ,103 122 89 136 89 136
131 150 117 150 131 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
75 75 75 75 75 75
103 150 103 150 117 1361,2,13 , 1,2,14 , 1,2,15 ,117 136 89 108 103 150
89 108 117 136 89 108

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
75 75 75 75 75 75
89 108 117 136 89 1081,2,16 , 1,2,17 , 1,2,18 ,103 150 89 108 117 136
117 136 103 150 103 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
75 75 75 75 75 75
117 150 117 150 103 1361,2,19 , 1,2,20 , 1,2,21 ,103 136 89 122 117 150
89 122 103 136 89 122

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
75 75 75 75 75 75
89 122 103 136 89 1221,2,22 , 1,2,23 , 1,2,24117 150 89 122 103 136
103 136 117 150 117 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Arc [2 3]:

() () ()
70 70 70 70 70 70
112 145 126 145 98 1452,3,1 , 2,3,2 , 2,3,3 ,84 131 84 131 84 103
98 103 98 117 112 131

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
70 70 70 70 70 70
112 145 98 145 112 1452,3,4 , 2,3,5 , 2,3,6 ,84 103 112 131 98 131
112 131 98 117 84 117

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
70 70 70 70 70 70
112 145 126 145 84 1312,3,7 , 2,3,8 , 2,3,9 ,98 103 98 117 112 145
84 131 84 131 98 103

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
70 70 70 70 70 70
84 131 84 103 84 1172,3,10 , 2,3,11 , 2,3,12 ,126 145 98 145 112 145
98 117 112 131 98 131

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

123

() () ()
70 70 70 70 70 70
98 131 112 131 98 1032,3,13 , 2,3,14 , 2,3,15 ,112 145 98 145 112 145
84 117 84 103 84 131

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
70 70 70 70 70 70
98 117 84 131 84 1312,3,16 , 2,3,17 , 2,3,18 ,126 145 98 103 98 117
84 131 112 145 126 145

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
70 70 70 70 70 70
84 117 84 103 98 1312,3,19 , 2,3,20 , 2,3,21 ,98 131 112 131 84 117
112 145 98 145 112 145

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
70 70 70 70 70 70
112 131 98 103 98 1172,3,22 , 2,3,23 , 2,3,2484 103 84 131 84 131
98 145 112 145 126 145

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Arc [3 1]:

() () ()
150 150 150 150 150 150
103 136 117 136 103 1363,1,1 , 3,1,2 , 3,1,3 ,75 122 75 122 89 94
89 94 89 108 75 122

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
150 150 150 150 150 150
117 136 75 122 75 1223,1,4 , 3,1,5 , 3,1,6 ,89 108 103 136 117 136
75 122 89 94 89 108

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
150 150 150 150 150 150
89 94 89 108 75 1223,1,7 , 3,1,8 , 3,1,9 ,103 136 117 136 89 94
75 122 75 122 103 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
150 150 150 150 150 150
75 122 89 94 89 1083,1,10 , 3,1,11 , 3,1,12 ,89 108 75 122 75 122
117 136 103 136 117 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
150 150 150 150 150 150
89 136 103 136 89 1363,1,13 , 3,1,14 , 3,1,15 ,75 94 75 108 103 122
103 122 89 122 75 94

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
150 150 150 150 150 150
103 136 75 94 75 1083,1,16 , 3,1,17 , 3,1,18 ,89 122 89 136 103 136
75 108 103 122 89 122

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
150 150 150 150 150 150
89 122 103 122 75 1083,1,19 , 3,1,20 , 3,1,21 ,103 136 89 136 89 122
75 108 75 94 103 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

124

() () ()
150 150 150 150 150 150
75 94 89 122 103 1223,1,22 , 3,1,23 , 3,1,24103 122 75 108 75 94
89 136 103 136 89 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Arc [1 4]:

() () ()
117 150 131 150 117 150
75 75 75 75 75 751,4,1 , 1,4,2 , 1,4,3 ,89 136 89 136 103 108
103 108 103 122 89 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
131 150 89 136 89 136
75 75 75 75 75 751,4,4 , 1,4,5 , 1,4,6 ,103 122 117 150 131 150
89 136 103 108 103 122

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
89 136 89 136 103 122
75 75 75 75 75 751,4,7 , 1,4,8 , 1,4,9 ,103 108 103 122 131 150
117 150 131 150 89 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
103 122 89 122 103 136
75 75 75 75 75 751,4,10 , 1,4,11 , 1,4,12 ,89 136 117 150 117 150
131 150 103 136 103 122

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
117 136 89 122 103 136
75 75 75 75 75 751,4,13 , 1,4,14 , 1,4,15 ,103 150 103 136 89 122
89 108 117 150 117 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
117 136 103 108 103 108
75 75 75 75 75 751,4,16 , 1,4,17 , 1,4,18 ,89 108 117 150 89 136
103 150 89 136 117 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
103 150 117 150 103 150
75 75 75 75 75 751,4,19 , 1,4,20 , 1,4,21 ,117 136 103 136 89 108
89 108 89 122 117 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
117 150 89 108 89 108
75 75 75 75 75 751,4,22 , 1,4,23 , 1,4,2489 122 103 150 117 136
103 136 117 136 103 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Arc [4 5]:

() () ()
112 145 126 145 98 145
70 70 70 70 70 704,5,1 , 4,5,2 , 4,5,3 ,84 131 84 131 84 103
98 103 98 117 112 131

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

125

() () ()
112 145 98 145 112 145
70 70 70 70 70 704,5,4 , 4,5,5 , 4,5,6 ,84 117 112 131 98 131
98 131 84 103 84 117

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
112 145 126 145 84 131
70 70 70 70 70 704,5,7 , 4,5,8 , 4,5,9 ,98 103 98 117 112 145
84 131 84 131 98 103

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
84 131 84 117 84 103
70 70 70 70 70 704,5,10 , 4,5,11 , 4,5,12 ,126 145 112 145 98 145
98 117 98 131 98 131

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
98 131 98 117 98 103
70 70 70 70 70 704,5,13 , 4,5,14 , 4,5,15 ,112 145 126 145 112 145
84 117 84 131 84 131

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
112 131 84 131 84 131
70 70 70 70 70 704,5,16 , 4,5,17 , 4,5,18 ,98 145 98 103 98 117
84 103 112 145 126 145

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
84 103 84 117 98 131
70 70 70 70 70 704,5,19 , 4,5,20 , 4,5,21 ,112 131 98 131 84 117
98 145 112 145 112 145

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
98 117 98 103 112 131
70 70 70 70 70 704,5,22 , 4,5,23 , 4,5,2484 131 84 131 84 103
126 145 112 145 98 145

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Arc [5 1]:

() () ()
103 136 117 136 103 136
150 150 150 150 150 1505,1,1 , 5,1,3 , 5,1,4 ,75 122 75 122 89 94
89 94 89 108 75 122

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
117 136 89 94 89 94
150 150 150 150 150 1505,1,4 , 5,1,5 , 5,1,6 ,89 108 75 122 103 136
75 122 103 136 75 122

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
75 122 75 122 75 122
150 150 150 150 150 1505,1,7 , 5,1,8 , 5,1,9 ,103 136 117 136 89 94
89 94 89 108 103 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

126

() () ()
75 122 89 108 89 108
150 150 150 150 150 1505,1,10 , 5,1,11 , 5,1,12 ,89 108 75 122 117 136
117 136 117 136 75 122

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
75 108 75 94 75 94
150 150 150 150 150 1505,1,13 , 5,1,14 , 5,1,15 ,103 136 89 136 103 122
89 122 103 122 89 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
75 108 103 136 89 122
150 150 150 150 150 1505,1,16 , 5,1,17 , 5,1,18 ,89 122 75 108 75 108
103 136 89 122 103 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
103 136 89 122 103 122
150 150 150 150 150 1505,1,19 , 5,1,20 , 5,1,21 ,89 122 103 136 75 94
75 108 75 108 89 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
103 122 89 136 89 136
150 150 150 150 150 1505,1,22 , 5,1,23 , 5,1,2489 136 75 94 103 122
75 94 103 122 75 94

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Arc [1 6]:

() () ()
117 150 131 150 117 150
89 136 89 136 103 1081,6,1 , 1,6,2 , 1,6,3 ,75 75 75 75 75 75
103 108 103 122 89 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
131 150 89 136 89 136
103 122 117 150 131 1501,6,4 , 1,6,5 , 1,6,6 ,75 75 75 75 75 75
89 136 103 108 103 122

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
89 136 89 136 103 122
103 108 103 122 131 1501,6,7 , 1,6,8 , 1,6,9 ,75 75 75 75 75 75
117 150 131 150 89 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
103 122 89 122 103 136
89 136 117 150 117 1501,6,10 , 1,6,11 , 1,6,12 ,75 75 75 75 75 75
131 150 103 136 89 122

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
117 136 89 122 103 136
103 150 103 136 89 1221,6,13 , 1,6,14 , 1,6,15 ,75 75 75 75 75 75
89 108 117 150 117 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

127

() () ()
117 136 103 108 103 108
89 108 117 150 89 1361,6,16 , 1,6,17 , 1,6,18 ,75 75 75 75 75 75
103 150 89 136 117 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
103 150 117 150 103 150
117 136 103 136 89 1081,6,19 , 1,6,20 , 1,6,21 ,75 75 75 75 75 75
89 108 89 122 117 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
117 150 89 108 89 108
89 122 103 150 117 1361,6,22 , 1,6,23 , 1,6,2475 75 75 75 75 75
103 136 117 136 103 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Arc [6 7]:

() () ()
112 145 126 145 98 145
84 131 84 131 84 1036,7,1 , 6,7,2 , 6,7,3 ,70 70 70 70 70 70
98 103 98 117 112 131

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
112 145 98 145 112 145
84 117 112 131 98 1316,7,4 , 6,7,5 , 6,7,6 ,70 70 70 70 70 70
98 131 84 103 84 117

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
112 145 126 145 84 131
98 103 98 117 112 1456,7,7 , 6,7,8 , 6,7,9 ,70 70 70 70 70 70
84 131 84 131 98 103

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
84 131 84 117 84 103
126 145 112 145 98 1456,7,10 , 6,7,11 , 6,7,12 ,70 70 70 70 70 70
98 117 98 131 112 131

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
98 131 98 117 98 103
112 145 126 145 112 1456,7,13 , 6,7,14 , 6,7,15 ,70 70 70 70 70 70
84 117 84 131 84 131

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
112 131 84 131 84 131
98 145 98 103 98 1176,7,16 , 6,7,17 , 6,7,18 ,70 70 70 70 70 70
84 103 112 145 126 145

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
84 103 84 117 98 131
112 131 98 131 84 1176,7,19 , 6,7,20 , 6,7,21 ,70 70 70 70 70 70
98 145 112 145 112 145

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

128

() () ()
98 117 98 103 112 131
84 131 84 131 84 1036,7,22 , 6,7,23 , 6,7,2470 70 70 70 70 70
126 145 112 145 98 145

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Arc [7 1]:

() () ()
103 136 117 136 103 136
75 122 75 122 89 947,1,1 , 7,1,2 , 7,1,3 ,150 150 150 150 150 150
89 94 89 108 75 122

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
117 136 89 94 89 94
89 108 75 122 103 1367,1,4 , 7,1,5 , 7,1,6 ,150 150 150 150 150 150
75 122 103 136 75 122

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
75 122 75 122 75 122
103 136 117 136 89 947,1,7 , 7,1,8 , 7,1,9 ,150 150 150 150 150 150
89 94 89 108 103 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
75 122 89 108 89 108
89 108 75 122 117 1367,1,10 , 7,1,11 , 7,1,12 ,150 150 150 150 150 150
117 136 117 136 75 122

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
75 108 75 94 75 94
103 136 89 136 103 1227,1,13 , 7,1,14 , 7,1,15 ,150 150 150 150 150 150
89 122 103 122 89 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
75 108 103 136 89 122
89 122 75 108 75 1087,1,16 , 7,1,17 , 7,1,18 ,150 150 150 150 150 150
103 136 89 122 103 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
103 136 89 122 103 122
89 122 103 136 75 947,1,19 , 7,1,20 , 7,1,21 ,150 150 150 150 150 150
75 108 75 108 89 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
103 122 89 136 89 136
89 136 75 94 103 1227,1,22 , 7,1,23 , 7,1,24150 150 150 150 150 150
75 94 103 122 75 94

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Arc [1 8]:

() () ()
117 150 131 150 117 150
89 136 89 136 103 1081,8,1 , 1,8,2 , 1,8,3 ,103 108 103 122 89 136
75 75 75 75 75 75

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

129

() () ()
131 150 89 136 89 136
103 122 117 150 131 1501,8,4 , 1,8,5 , 1,8,6 ,89 136 103 108 103 122
75 75 75 75 75 75

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
89 136 89 136 103 122
103 108 103 122 131 1501,8,7 , 1,8,8 , 1,8,9 ,117 150 131 150 89 136
75 75 75 75 75 75

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
103 122 89 122 103 136
89 136 117 150 117 1501,8,10 , 1,8,11 , 1,8,12 ,131 150 103 136 89 122
75 75 75 75 75 75

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
117 136 89 122 103 136
103 150 103 136 89 1221,8,13 , 1,8,14 , 1,8,15 ,89 108 117 150 117 150
75 75 75 75 75 75

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
117 136 103 108 103 108
89 108 117 150 89 1361,8,16 , 1,8,17 , 1,8,18 ,103 150 89 136 117 150
75 75 75 75 75 75

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
103 150 117 150 103 150
117 136 103 136 89 1081,8,19 , 1,8,20 , 1,8,21 ,89 108 89 122 117 136
75 75 75 75 75 75

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
117 150 89 108 89 108
89 122 103 150 117 1361,8,22 , 1,8,23 , 1,8,24103 136 117 136 103 150
75 75 75 75 75 75

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Arc [8 9]:

() () ()
112 145 126 145 98 145
84 131 84 131 84 1038,9,1 , 8,9,2 , 8,9,3 ,98 103 98 117 112 131
70 70 70 70 70 70

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
112 145 98 145 112 145
84 117 112 131 98 1318,9,4 , 8,9,5 , 8,9,6 ,98 131 84 103 84 117
70 70 70 70 70 70

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
112 145 126 145 84 131
98 103 98 117 112 1458,9,7 , 8,9,8 , 8,9,9 ,84 131 84 131 98 103
70 70 70 70 70 70

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

130

() () ()
84 131 84 103 84 117
126 145 98 145 112 1458,9,10 , 8,9,11 , 8,9,12 ,98 117 113 131 98 131
70 70 70 70 70 70

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
98 131 98 117 98 103
112 145 126 145 112 1458,9,13 , 8,9,14 , 8,9,15 ,84 117 84 131 84 131
70 70 70 70 70 70

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
112 131 84 131 84 131
98 145 98 103 98 1178,9,16 , 8,9,17 , 8,9,18 ,84 103 112 145 126 145
70 70 70 70 70 70

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
84 117 84 103 98 131
98 131 112 131 84 1178,9,19 , 8,9,20 , 8,9,21 ,112 145 98 145 112 145
70 70 70 70 70 70

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
98 117 98 103 112 131
84 131 84 131 84 1038,9,22 , 8,9,23 , 8,9,24126 145 112 145 98 145
70 70 70 70 70 70

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Arc [9 1]:

() () ()
103 136 117 136 103 136
75 122 75 122 89 949,1,1 , 9,1,3 , 9,1,4 ,89 94 89 108 75 122
150 150 150 150 150 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
117 136 89 94 89 94
89 108 75 122 103 1369,1,4 , 9,1,5 , 9,1,6 ,75 122 103 136 75 122
150 150 150 150 150 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
75 122 75 122 75 122
103 136 117 136 89 949,1,7 , 9,1,8 , 9,1,9 ,89 94 89 108 103 136
150 150 150 150 150 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
75 122 89 108 89 108
89 108 75 122 117 1369,1,10 , 9,1,11 , 9,1,12 ,117 136 117 136 75 12
150 150 150 150 150 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
75 94 75 108 75 108
89 136 103 136 89 1229,1,13 , 9,1,14 , 9,1,15 ,103 122 89 122 103 136
150 150 150 150 150 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

131

() () ()
75 94 103 136 89 122
103 122 75 108 75 1089,1,16 , 9,1,17 , 9,1,18 ,89 136 89 122 103 136
150 150 150 150 150 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
103 136 89 122 103 122
89 122 103 136 75 949,1,19 , 9,1,20 , 9,1,21 ,75 108 75 108 89 136
150 150 150 150 150 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()
103 122 89 136 89 136
89 136 75 94 103 1229,1,22 , 9,1,23 , 9,1,2475 94 103 122 75 94
150 150 150 150 150 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Comparing this example system to the example three product system with idle only in Section

5.3.2.1, makes it apparent that the output from the algorithm can quickly be overwhelmed by the

sheer magnitude of data as the number of products increase. The three product system has two

regions per arc while the four product system has 24 regions per arc. Currently the amount of

CPU time for the algorithm to determine stable regions for the production system increases

significantly with each increase in the number of products.

Copyright © John Thomas Henninger 2009

132

6 Product Sequencing Algorithm

6.1 Introduction

Over the past few decades there has been much research dedicated to understanding and

implementation of Just-In-Time (JIT) manufacturing (also known as Lean Manufacturing, Toyota

Production System, or pull production) principles for various manufacturing systems. When

examining a mixed-model assembly line, it is assumed that there are a variety of product models

being assembled but all products will have similar characteristics to some degree. Such an

assembly line allows the manufacturer to better meet the often diverse customer demand.

Proper product sequencing for a typical JIT system will yield a sequence in which a level load for

each process in the line occurs as well as a constant rate of usage for each part on an assembly

line. Monden [15] was one of the first to begin work in the area of level scheduling with the

development of the Goal Chasing I and II methods. The goal of these methods is to minimize the

variation on each process in the line and the variation on the speed of consuming each product at

each step of the sequence. A level schedule (minimized usage rate variation) will be one in which

each product is scheduled to be produced in a direct proportion to the level of demand for each

product.

Miltenburg [25] continued the work of Monden [15] over many years and incorporated a measure

of the level of product intermixing, called the usage rate variation. The deviation between actual

usage rate and the desired usage rate of products was minimized to determine the best sequence.

Miltenburg [38-40, 66, 81-84] proposed both algorithms and heuristics to solve this scheduling

problem. This initial work assumed that setup times between differing products were negligible.

McMullen [54] continued the work of Miltenburg by adding a second objective of minimizing the

number of setups. A weighting method was used to reach both objectives simultaneously,

initially using a Tabu Search algorithm. In subsequent articles McMullen [55-59] proposed using

Simulated Annealing, Genetic Algorithm, Kohonen Self-Organizing Map, an Ant Colony

approach and an efficient frontier approach to solve the two objectives simultaneously.

Much of the existing research attempts to optimize the tradeoff between the number of setups to

change from product to product and the smoothness of the sequence. The ideal sequence is one in

which the usage rate variation and the number of setups are minimized for the sequence.

133

Pattern production has and continues to be researched and has been shown to be a very efficient

method for production control of manufacturing systems with minimal setups between products.

Signal Kanban production control has also been researched and implemented on the

manufacturing floor as a method of controlling production when significant setups are present,

although Toyota Georgetown no longer uses Signal Kanbans for production control. The

previous work of Seidman and Holloway [7-8] analyzed a Signal Kanban with bounded demand

fluctuation. The system proved to be stable for a given reorder point such that no backordered

products ever occurred. A pattern production system was also examined and shown to be stable

within a given range of system parameters. In [85], Holloway demonstrated that “fixed fill level”

Signal Kanban policies are preferred to “fixed batch size” policies, because of potential

problematic long-term cyclic behaviors in the “fixed batch size” policies. (Note that the systems

in the dissertation are “fixed-fill,” where production always fills a buffer to a specific level,

instead of a “fixed batch size” refill.)

The purpose of this research is to lay the foundation for a sequencing algorithm that will function

along a continuum between the two worlds of Signal Kanban production control and Pattern

Production control. This general sequencing algorithm will replicate production sequences that

would be present in either production control method depending on the parameters of the system.

A signal kanban system can be mimicked by the sequencing algorithm by setting the buffer

threshold levels at a mid-buffer level while a pattern production system can be mimicked by

setting the buffer threshold levels to the maximum levels. This research also incorporates the

common real-world problem of significant setups between products that may vary depending

upon the production sequence. This method is not as computationally complex as the stability

algorithm and can therefore be applied production systems with many products.

The product sequencing method is intended to be implemented for a JIT factory floor as an on-

line production sequencing system. The algorithm is intended to be integrated into the production

control system in order to receive real-time feedback on the production state and buffer state of

each product.

6.2 Production System Model

The production system being considered is one in which there are multiple products with

potentially different production rates and usage rates and significant sequence dependent setups

134

between products. The production system is assumed to be a single stage system that can have

idle time, see Figure 6.1. The system functions such that customer orders come into a “black

box” of the sequencing algorithm as well as product information (current production conditions,

buffer size and fullness levels, production and usage rates, setup costs, etc.). The algorithm

processes the information and outputs a product to be produced next, which is passed to the

production stage. The algorithm is intended to be updated and run after each product refill, where

the sequence is based on real-time feedback of the system parameters. An alternative use is to

run the algorithm to generate a short sequence of products at a given time interval, such as

sequencing a day’s worth of production determined each morning based on the current state of

the production system.

The algorithm models a production system in which production occurs in batches, the batch size

is the quantity of products required to fully replenish the buffer to a full level. When the product

batch is completed, it is stored in Finished Goods Inventory (FGI) until a customer order is

received and the required number of products are removed from FGI to meet the order. Buffer

thresholds (BFthreshold,i) are defined for each product to signal the algorithm that the given product

needs to be replenished. Only products at or below the buffer threshold are considered by the

algorithm and if all products are above the buffer thresholds, the production system is idle, to

replicate a lean system that only produces when customer demand is present.

The production system is assumed to behave in a deterministic manner such that the demand or

usage rate (URi) can be represented as a constant value that does not change over time. The

production rate (PRi) is also assumed to be a constant value that does not change with time. The

setup costs (cost(i,j)) used by the system are assumed to be a constant value, but may be

dependent upon the previous product refilled. This means that the changeover cost to switch

from product i to product j does not have to be equivalent to the cost to switch from product i to

product k.

135

6.3 Time Normalized Method

The method proposed for this research is one in which the system is time normalized in such a

way that buffer levels and changeover costs are converted into units of real world time units. The

first time conversion is to calculate the time to crash, tcrash,i(t), which is the amount of time until

the buffer of a given product is depleted. The time to crash is calculated by dividing the buffer

level (number of products), BFi(t), by the demand or usage rate (number of products consumed

per time unit), URi.

,
()

() i
crash i

i

BF t
t t

UR
= (1)

As the time progresses into the future, the time to crash for all products will decrease an

equivalent amount of time units. When product i is refilled, the time to crash reaches the

maximum value based on a full buffer which is given by the following equation:

i

i
icrash UR

BF
t max,

max,_ = (2)

Machine

Sequencing
Algorithm

A
BFmax,A

BFthres,A
B

BFmax,B

BFthres,B
C

BFmax,C

BFthres,C

Finished Goods
Inventory

Customer
Demand

Production Sequence:
ABACAB…

Figure 6.1: Production System Model

System Status
Feedback

136

From this equation it is obvious that the time to crash increases as the usage rate decreases or with

an increase in the size of the buffer. A product with a low usage rate and small buffer could have

an equivalent time to crash to a product that has a large buffer and high usage rate. Note that this

term is not a function of time, but rather a constant term based on the parameters of product i.

The second time conversion is to determine the time required to refill the buffer of each product,

trefill,i(t). The refill time is calculated by dividing the number of products missing from the buffer

by the difference between the production rate PR and the usage rate of product i.

max,
,

()
() i i

refill i
i i

BF BF t
t t

PR UR
−

=
−

 (3)

The maximum refill time occurs when the buffer is empty, which causes the equation to become

the following:

max,
_ max,

i
refill i

i i

BF
t

PR UR
=

−
 (4)

Similarly to the time to crash, the refill time increases with a decrease in production rate or usage

rate, or an increase in the size of the buffer. Also two products with different production rates

and buffer sizes could have equivalent times to refill. Also similar to the tcrash_max,i, this term is

not a function of time but rather a constant term based on the parameters of product i.

A plot of the time to crash versus time to refill can be constructed, assuming a constant usage rate

and production rate, as shown in Figure 6.2. A straight line can be drawn between the maximum

time to crash value tcrash_max,i, and the maximum time to refill value trefill_max,i, for each product i.

At any point in time the product buffer level will be located somewhere along (the solid dot) this

line that connects a full buffer on the left end with an empty buffer on the right end. As seen in

Figure 6.2, each line represents the characterization of a different product based upon the buffer

size, production rate, and the usage rate. As products are consumed, the product state (the dot)

will shift to the right and when the product is refilled, the state will be at the intercept with the

vertical axis.

137

Figure 6.2: Plot of Refill Time versus Time to Crash

Note: Each line represents a different product.

The slope of the line for a given product can be calculated by using the two endpoints of the line

to determine the “rise” (tcrash_max,i,) divided by the “run” (trefill_max,i,) of the line. From Equations 2

and 4:

max,

_ ,

max,_ ,

0

0

i

crash max i i
i

irefill max i

i i

BF
t UR

m
BFt

PR UR

⎛ ⎞
−⎜ ⎟

⎝ ⎠= =
⎛ ⎞

− ⎜ ⎟−⎝ ⎠

 (5)

Equation 5 will simplify to:

i i
i

i

PR URm
UR
−

= − (6)

From the plot above, it is apparent that the maximum time to crash occurs when the time to refill

is equal to zero, therefore if , 0refill it = , then

() max,
, 0 i

crash i
i

BF
t

UR
= (7)

By combining Equations 6 and 7 into the slope-intercept equation of a line (y = mx + b) where

the time to crash is a function of the time to refill, also where

, ,()crash i refill it t y=

and

tim
e

to
 c

ra
sh

time to refill

138

max,
, (0) 0 ii i

crash i
i i

BFPR URb t
UR UR
−

= = − × + .

The equation for the tcrash,i(trefill,i) of a given product i, as a function of time to refill, becomes the

following equation:

max,
, , ,() i i i

crash i refill i refill i
i i

BF PR URt t t
UR UR

−
= − (8)

6.3.1 Lemma #1

Lemma:

For each product i, if the production system is not producing product i over time period

[t, t + Δt], then

, ,()crash i crash it t t t t+ Δ = − Δ .

Proof:

This can be proven by considering some time Δt. This Δt time is in time units and if 1t t t= +Δ

where t is the initial time and the t1 is the final time. The buffer of any product would be

decreased according to the following equation:

() ()1i i iBF t BF t UR t= − ×Δ (9)

Equation 9 can be reorganized to the following equation for all products:

() ()1i i

i

BF t BF t
t

UR
−

Δ = (10)

This can be further reorganized to the following:

() ()1i i

i i

BF t BF t
t

UR UR
Δ = − (11)

139

Where
()i

i

BF t
UR

 is the tcrash,i at time t, which allows Equation 11 to be simplified to the following

equation:

() (), , 1crash i crash it t t t tΔ = − (12)

Which is equivalent to

, 1 ,() ()crash i crash it t t t t= − Δ , (13)

where 1t t t= +Δ . Therefore the time to crash for all products is decreased an equal amount Δt, as

long as the product is not being refilled. If a product is refilled, the time to crash simply becomes

equal to Equation 2, the maximum value of the time to crash.

□

6.3.2 Lemma #2

Lemma:

For each product i, if the production system is not producing product i over time period

[t, t + Δt], then

, ,() i
refill i refill i

i i

UR
t t t t t

PR UR
+ Δ = + Δ

−
.

Proof:

The proof begins by substituting t + Δt into Equation 3.

()

()

max,
,

max,

max,

()
() i

refill i
i i

i i i

i i

i i i

i i i i

BF BF t t
t t t

PR UR

BF BF t UR t
PR UR

BF BF t UR t
PR UR PR UR

− − Δ
+ Δ =

−

− + ×Δ
=

−

− ×Δ
= +

− −

Given that max,
,

()
() i i

refill i
i i

BF BF t
t t

PR UR
−

=
−

, then

140

, ,() () i
refill i refill i

i i

UR
t t t t t t

PR UR
+ Δ = + Δ

−
 (14)

□

6.4 Quantifying Goodness of Products

The sequencing algorithm evaluates all products that need replenishment and selects the next

product to be replenished based upon a goodness calculation. The goodness calculation is

computed for each product i, with an equation of five terms that are summed together and the

product with the highest value is selected to be the next product in the production sequence. This

section will provide an in depth examination of the goodness equation, first by defining key

variables and then defining the terms of the equation, followed by a discussion of the behavior of

the goodness equation.

6.4.1 Key Variables

• BF_thresholdi: the buffer level at which product i must be at or below to signal the need

for replenishment. This value is a percentage. When product i drops below the

threshold, the algorithm will evaluate the product as possibly one of the next products in

the production sequence.

• BFi(t): buffer level of product i at time t.

• BFmax,i: maximum buffer level of product i.

• URi: the usage rate of product i.

• PRi: the production rate of product i.

• prev_product: the last product that was replenished by the production system at time t.

• COST(prev_product,i): the cost of changing from prev_product to product i, in units of

time.

• la_time: variable that stores the size of the lookahead window in units of time, which is

how much time into the future the lookahead goodness will be calculated for all possible

sequences.

• MUR: usage rate variation as calculated using equation developed by Miltenburg

(Equation 1 in Chapter 2).

• prod_thres: variable that stores set of products that are at or below the BF_thresholdi.

• seq(k): set of all previous products for all previous stages, k, of production sequence.

141

• prod_selection: variable that stores which product is selected as the next product to be

sequenced by the goodness calculations.

• Goodness Equation Weighting Factors: These factors are set by the user to manipulate

the behavior of the goodness equation. The user defines the initial value of the factors in

the range of [0,1] for each factor and sum of all factors is equal to one. The algorithm

will normalize each factor based on the current state of the system. The corresponding

normalized goodness equation term is equal to the initial weighting factor value. The

normalization is implemented by the algorithm to prevent one term from dominating the

goodness equation.

o α: the weighting factor to control the “time to crash” term which is the time to

reach an empty buffer.

o β: the weighting factor to control the “time to refill” term which is the time

required to completely refill the buffer from the current buffer level.

o γ: the weighting factor to control the “time in queue" term which is the time that

the product has been at or below the buffer threshold.

o ε: the weighting factor to control the “changeover cost” term which is the time

required to switch from the previous product to the current product.

o η: the weighting factor to control the “usage rate variation” term as calculated

using the equation developed by Miltenburg.

6.4.2 Terms of the Goodness Equation

The goodness equation contains five terms and each term has a weighting factor associated with

the given term, the terms are: the time to crash, time to refill, time in queue, changeover cost, and

usage rate variation.

The first term of the goodness equation is the “time to crash” term, which is a function of the

usage rate and the buffer level of product i at time t, and has a weighting factor of α. This term is

in units of time and it is a calculation of how much time until the buffer of product i is completely

exhausted. The term is negative because selection of a product with a large time to crash is less

desirable than selecting a product with a small time to crash.

()
" " i

i

BF t
time to crash

UR
α= − (15)

142

The “time to refill” term is the second term of the goodness equation and is a function of the

production rate, the usage rate, maximum buffer size, and the buffer level of product i at time t.

The time to refill term has a weighting factor of β. This term is in units of time and is a

calculation of how much time is required to refill product i given the current buffer level at time t.

max ()" " i

i i

BF BF ttime to refill
PR UR

β
−

=
−

 (16)

The “time in queue” is the third term in the goodness equation and is in units of time with a

weighting factor of γ. This term is a function of the time when product i crosses the buffer

threshold, BFthreshold,i, usage rate, maximum buffer size, current buffer level, and buffer threshold

level .

max, ,

,

0 if ()
" " i i threshold i

threshold i

BF t BF BF
time in queue

tγ

> ×⎧⎪= ⎨ ×⎪⎩
 (17)

The time since a given product crosses the buffer threshold, tthreshold,i, is calculated using the usage

rate, maximum buffer size, current buffer level, and buffer threshold level of the given product.

Note that the tthreshold,i calculation is only valid if the product is at or below the buffer threshold

level, otherwise the tthreshold,i is zero.

, max,
,

()threshold i i i
threshold i

i

BF BF BF t
t

UR
× −

= (18)

The fourth term of the goodness equation is the “changeover cost” which has a weighting factor

of ε. This term is independent of all system parameters except the changeover cost, which is the

cost to change from the previous product prev_product to product i. This term requires the

changeover cost to be defined in units of time. Note that this is a negative term because the

selected product ideally will minimize changeover cost.

" " (_ ,)changeover cost COST prev product iε= − (19)

143

The fifth and final term of the goodness equation is the “usage rate variation” term as calculated

using the equation developed by Miltenburg (Equation 1 in Chapter 2), which uses a weighting

factor of η. This is a dimensionless term and is the only term in the goodness equation that is not

in time units. This term is a function of the sequence stage number, k, usage rate of product i, the

cumulative usage rate for all products, and the previous products in the sequence, seq (if sequence

is longer than one stage). This term is to be minimized in a production sequence, therefore the

term is negative.

1
" " (, , ,)

I

MUR i i
i

usage rate variation f UR UR k seq MURη
=

= = −∑ (20)

The different terms of the goodness equation change over time based on product usage and the

previous product produced, assuming the production system is being examined at a time of

choosing the next product to produce. The following relationships should be noted (see Figure

6.3 below for a graphical representation of these relationships):

1. “time to crash” term increases to a maximum value of zero with a slope of α (as follows

from Lemma #1). The minimum value of the time to crash occurs with a full buffer and

is calculated max,i

i

BF
UR

α− .

2. “time to refill” term increases with time with a slope of i

i URi

UR
PR

β
−

 (as follows from

Lemma #2). The maximum value of the time to refill term occurs when the buffer is

empty and is calculated max,i

i URi

BF
PR

β
−

.

3. “time in queue” term increases with time with a slope of γ if the product is currently in

the queue, meaning that the product is below BFthreshold,i. The maximum value of the time

in queue term occurs with an empty buffer and is calculated , max,threshold i i

i

BF BF
UR

γ
×

.

4. “changeover cost” term does not change with respect to time, the term is dependent only

upon the previously produced product and product i that is being considered by the

goodness equation.

144

5. “usage rate variation” term does not change with respect to time, the term is dependent

upon the cumulative usage rate for all products, the previously produced product

sequence, and product i that is being considered by the goodness equation.

6.4.3 Weighting Factors of the Goodness Equation

Each term of the goodness equation has a weighting factor that allows the user to control the

performance of the algorithm. The goodness equation is a function of five weighting variables

and each term of the equation can be manipulated by a change in these weighting variables. The

ability to weight the importance of each term of the goodness equation allows the algorithm to

synthesize various known and proven lean production control systems. For instance, placing all

the priority on the “time in queue” term of the equation will replicate a Signal Kanban system,

where the sequencing will be completely determined by the order of products falling below their

thresholds.

The weighting factors α, β, γ, ε, and η will change each respective term of the goodness equation.

The slope of each term will be increased or decreased with an increase or decrease in the

respective weighting factor. All weighting factors will maintain the following constraints at all

times.

0 α 1ini≤ ≤

system time
t

tim
e

un
its

BFi(t) = buffer BFi(t) = 0

time to crash
m = α

time to refill
m = β time in queue

m = γ

BFi(t) = BFmax,i

Figure 6.3: Plot of Example Goodness Equation Terms
Note: The terms are plotted over time, starting with a full buffer and ending with an empty buffer.

145

0 β 1ini≤ ≤

0 γ 1ini≤ ≤

0 1iniε≤ ≤

0 1iniη≤ ≤

α β γ 1ini ini ini ini iniε η+ + + + =

Under these conditions, a maximum slope of each term occurs when the weighting factor is equal

to one. This means that the maximum slope of the “time to crash” is one, as well as the “time in

queue” term. The maximum slope of the “time to refill” term is i

i URi

UR
PR −

, when β equals one.

The changeover cost and usage rate variation terms are piecewise horizontal lines with a

maximum value of ε or η, respectively.

The importance of the weighting factors is that it allows the user to determine which system

parameters can potentially choose the next product to be refilled. For example consider two

products with equal usage rates, buffer sizes, and buffer thresholds but the production rate of

product B is half of the rate of product A. If β is very small in comparison to α and/or γ, then the

two products would appear as equivalent products to the algorithm. This is because both the

“time to crash” and “time in queue” terms are not functions of the production rate.

When α is very large (~1) when compared to β and γ, two products will be considered equivalent

if the ratios of buffer size to usage rate is equal for both products, assuming both were refilled at

exactly the same time (trefill,A= trefill,B). When β is very large compared to α or γ, two products will

be considered as equivalent products if the ratios of usage rate to production rate are equal, again

assuming both were refilled at exactly the same time (trefill,A= trefill,B). Similarly γ heavy products

are considered equivalent products if the buffer threshold is crossed at the same time for both

products. This means the products could have different usage and production rates, buffer sizes,

and buffer thresholds.

Note that the initial weighting factor (Xini) is within a range of zero to one, but each factor is

normalized (X) prior to being used in the goodness equation. This allows the algorithm to more

accurately consider each term of the equation because the weighting factors are normalized such

that the maximum value of each term is no larger than one for all products.

146

Consider the time to crash and the changeover cost terms for a product that has a large buffer and

slow usage rate. This implies that the time to crash term is very large, perhaps a value in the

hundreds of hours and assume that the changeover term is less than an hour. Without a

normalized weighting factor, the time to crash term will dominate the changeover term and the

changeover cost will not affect the sequence until the time to crash is less than an hour.

Therefore each term of the goodness equation is normalized to a value of one to increase the

effectiveness of each factor.

The normalized coefficient is determined first by calculating the maximum value of the term that

the coefficient will be applied to (i.e. time to crash, time to refill, time in queue, changeover cost,

or Miltenburg’s usage rate variation). The maximum value of each goodness equation term is

calculated for the products contained in the prod_thres, which is the set of products that are

below the buffer threshold, BFthrewshold,i. The initial value of the weighting factor is then divided

by the corresponding normalizing coefficient variable and the new normalized weighting factor

value is used for the goodness calculations.

_max(_ _)
ini

i prod threstime to crash
α

α
∈

=

_max(_ _)
ini

i prod threstime to refill
β

β
∈

=

_max(_ _)
ini

i prod threstime in queue
γ

γ
∈

=

max(cost)
iniε

ε =

ini

prevMUR
η

η =

6.5 Method of Product Selection

The goodness equation quantifies all products at or below the buffer threshold either for the

current state of the system or for a future product sequence when lookahead time is considered.

The products are ranked from highest to lowest value of goodness equation and the highest

valued product is selected as the next product or the first product of the highest valued future

sequence is selected as the next product. Note that the goodness value is relative based on the

147

current state of the products and system and is not an absolute calculation. The goodness

equation is shown below, note that the time to crash, changeover cost, and usage rate variation

terms are negative. The negative sign is used because products that have high values of these

terms is less desirable to be the next product than a product with lower values of time to crash,

changeover cost, and usage rate variation.

goodnessi(t) =

 max,
,() (_ ,)i ii

threshold i current
i i i

BF BFBF t t COST prev product i MUR
UR PR UR

α β γ ε η
−

− + + − − −
−

 (21)

The following statements characterize the two methods used by the algorithm, first without

lookahead and second with lookahead, to select a product to be sequenced. The state of the

production system is described as a function of time by the following:

max, ,() (, , , , , , ,)i i i threshold i i iS t UR BF BF BF PR UR COST seq= (22)

6.5.1 Current State Decision Statement

Given a decision time t and current state of the production system S(t), select the product i that is

at or below BFthreshold,i that has the maximum goodness equation value when calculated with the

normalized weighting factors.

6.5.2 Lookahead State Decision Statement

Given a decision time to, a lookahead time la_time, and current state of the production system

S(to), a product sequence tree (see Figure 6.4) is generated of all possible production sequences

that do not experience empty buffers, SEQ(S(to),la_time), from the current time to to the first

decision time greater than to + la_time. Where each production sequence contained in

SEQ(S(to),la_time) begins with a product that is below BFthreshold,i at time to. All sequence tree

branches represent a product being selected to be produced at decision time tfuture where the

system is characterized by S(tfuture).

Product i is selected to be the next product to be produced using lookahead goodness criteria if

product i is the first product of seq_star, where seq_star is the sequence in SEQ(S(to),la_time)

with the highest average goodness value over the entire sequence branch. An example in Section

6.6 is provided to clarify the method for selecting a product with lookahead.

148

Note that Figure 6.4 is a conventional sequencing tree for system of four products and it shows all

possible branches that originate from the current state of the system at time to. At time to there are

only branches for choosing product A or B, as those are the only products with inventory levels

below the threshold at time to in this example.

6.5.2.1 Alternative Lookahead State Decision Method

The averaged goodness values over the steps of sequence branch could potentially obscure a low

goodness value in an otherwise high average sequence. An alternative lookahead selection

method is proposed in which the sequence with the maximum of all minimum goodness values

for all sequences over the lookahead time is selected as the”best” sequence. The first product of

the “best”sequence is selected as the next product in the production sequence.

Consider two sequences where each sequence has five stages. Sequence A has goodness values

of 10 for four stages and a goodness value of one for one stage, with an average goodness value

of 8.2 for the sequence. Sequence B has a goodness value of 8 for all five stages and average

value of 8 for the entire sequence. Selecting a sequence based on the average goodness will

select sequence A. Consider selecting a sequence with the maximum of the minimum goodness

value of all the sequences as an alternative selection method. This alternative method would

select sequence B and avoid selecting a sequence with a low value.

6.6 Example of Goodness Equation with Lookahead

The use of lookahead time does not change the goodness equation behavior or use of each

term/weighting factor. The use of lookahead requires all potential sequences into the future to be

prev_product
at time to
and node no

A

n1

B C D

C B D

A C D
B

n2

C
A D

D

Figure 6.4: Sequencing Tree

149

considered and the goodness at each stage is calculated and averaged, although the final average

goodness over the sequence is considered when selecting the next product to be sequenced at time

to. Each potential sequence is generated by updating the state of the system S(tfuture) and

considering all products that are at or below the buffer threshold level to generate all possible

sequence branches until the lookahead time is reached. The goodness is calculated at each stage

of the sequence but the average goodness for the entire branch is used to rank the product

sequences. The “best” product that is selected as the next product is the first product of the

sequence with the highest average goodness value at the lookahead time.

Consider the example system in Figure 6.5, which is a production system that consists of four

products, A, B, C, and D. Note that the horizontal length of each product box represents the time

to refill the respective product as time progresses from left to right. The goodness is calculated

initially at time to for products A and B (at each diamond) because these are the only products at

or below the buffer threshold. The product with the highest goodness will be selected as the next

product to be sequenced, if lookahead is not being considered. Note that the lookahead window

spans some time into the future, denoted by the dotted box. The other products C and D in the

lookahead window cross the buffer threshold at a future time, at which point the products are then

considered in the future goodness calculations (at each dot). When lookahead is considered, the

goodness is calculated at each stage of the sequence but all the goodness values are averaged in

order to rank the product sequences. The sequence with the highest goodness is selected, such as

A-B-C-D, where product A will be selected as the next product to be sequenced.

Lookahead Time Window

Refill B

Refill A Refill C

Refill C
Refill A

Refill D

Refill D

Refill D

Refill A

Refill C

Refill B Refill C

Refill B Refill D

Refill D

time

Figure 6.5: Sequencing Choices Over Time

 time = to

150

Consider another hypothetical example to be evaluated using lookahead in which three products

A, B, and C are below the buffer threshold and product D was just refilled. The goodness

equation returns a goodness value of 9 for product A, 9 for product B, and 9 for product C when

each respective product is the first product to be refilled in the lookahead sequence. The

lookahead time value has not been reached yet, so the lookahead equation is used again to

consider the next product in the lookahead sequence. After refilling product A in the D-A branch

in the product sequence tree shown below, product B or C can be refilled. The goodness values

are calculated for these products and a value of -1 is found for product B and a value of 1 for

product C. In the D-B branch the goodness values are calculated to be 6 for product A and a

value of 4 for product C. In the D-C branch the goodness values are calculated to be -1 for

product A and a value of -1 for product B. Given the system parameters, the lookahead time is

reached after refilling the second product, so the sequences are sorted and ranked to maximize the

final goodness values. The lookahead sequence D-B-A is selected as the best sequence with an

average goodness value of 7.5, therefore product B is the next product to be refilled. Note that

the alternative lookahead selection method of maximizing the minmum value would make the

same selection.

Figure 6.6: Product Sequence Tree

The advantage of lookahead is that the sequencing algorithm can look into the future to avoid

dead-end branches in the product sequence tree. In this example, consider what would happen if

product B has a very high usage rate and small buffer. After the first round of goodness

calculations, all products are equal. The differences between the products is not apparent until

the second round of goodness calculations which returns very low goodness values for the D-A

Refilled

Product D

t = to

Product A

GND = 9

Product B

GND = 9

Product C

GND = 9

Product B

GND = -1

Product C

GND = 1

Product A

GND = 6

Product A

GND = -1

Product C

GND = 4

Product B

GND = -1

151

and D-C branches. This implies that the buffer of product B is depleted and the system will crash

if these branches are chosen.

6.7 Sequencing Examples

This section will provide examples and simulated results of the goodness sequencing method for

various hypothetical production systems and examine the effects of varying different parameters.

An explanation of the implementation and source code is provided in Appendix II.

6.7.1 Three Product Production System

Consider a system with three products with the node/arc network show below and the following

parameters for each product: setup time = 5 time units, production rate = 10 products/time unit,

usage rate = 1 product/time unit, lower threshold = 25 products, full buffer level = 100 products,

initial buffer level = 100 products. In this network, all product sequences may pass through the

idle node prior to being replenished or a product can wait in a queue to enter setup directly after

replenishment of the previous product. All weighting factors are set equal to 0.2.

Figure 6.7: Network Map of Three-Product System – With and Without Idle

This is a very simplistic production system but will highlight the methods of the sequencing

algorithm. Given that all products are equal there are only two possible repeated sequences: 1–2–

3 or 1–3–2. A plot of the first 50 steps of the sequence is below plotted as percentage of buffer

fullness versus time.

152

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100

%
 F

ul
l B

uf
fe

r

Time

Prod 1

Prod 2
Prod 3

Figure 6.8: Plot of Three Product Sequence

From the startup time until 60 units of time, the system is idle because all products are above the

buffer threshold level of 40 products. The first 125 to 150 units of time are required to deplete

the initial buffer supply and refill the buffers to reach a non-transient sequence of products 1– 2–

3. The output of the algorithm for this system is unaffected by the use of the lookahead function

and weighting factors for both goodness equations.

Consider doubling the usage rate of product one to two products consumed per time unit and all

other parameters remain the same. This system crashes within the first 85 units of time after

startup when either product one or three is depleted before both can be refilled. A plot of the

sequence is below in terms of percentage of buffer fullness versus time.

153

35 40 45 50 55 60 65 70 75 80 85

20

40

60

80

100

%
 F

ul
l B

uf
fe

r

Time

Prod 1

Prod 2
Prod 3

Figure 6.9: Plot of Three Product Sequence – Product 1 Increased Usage Rate

This system crash can be fixed by changing the initial buffer levels to disperse the triggering time

of the products or by using the lookahead feature of the algorithm. A plot of the output from the

algorithm is below in which the initial buffers are set to 50 products for all products.

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100

%
 F

ul
l B

uf
fe

r

Time

Prod 1

Prod 2
Prod 3

Figure 6.10: Plot of Three Product Sequence – Decreased Initial Buffer Levels

154

Notice in the plot above that the sequence of products appears to be random and chaotic in nature.

Consider the output from the sequencing algorithm if the buffer threshold for product number one

is increased to 40% from 30% and the initial buffers are all full. The plot of the sequence output

for this set of parameters is below. The plot makes it apparent that the system exhibits a

repeating pattern in the production sequence of 1– 2– 3–1 after the initial transient startup.

0 100 200 300 400 500 600

20

40

60

80

100

%
 F

ul
l B

uf
fe

r

Time

Prod 1

Prod 2
Prod 3

Figure 6.11: Three Product Sequence – Product 1 Higher Usage Rate and Buffer Threshold

6.7.2 Eight Product Production System

As the number of products in a production system increases, evaluation of production sequences

can easily become unmanageable when evaluating with hand calculations. This sequencing

algorithm provides feasible results for large production systems in a more expedient manner than

the method in Chapter 4. Consider an eight product production system with the following

parameters for all products: equal goodness weighting factors, buffer threshold level = 95% of

maximum buffer levels, initial buffer level = 90% of maximum buffer levels. The production

rates, usage rates, and maximum buffer levels vary for each product according to the following

matrices:

[]() 23 90 90 23 45 45 12 23PR i =

[]() 2 2 2 .25 .25 .25 1 1UR i =

[]max () 200 100 200 200 100 200 200 100BF i =

155

3 3 6 3 6 3 6 3
3 3 3 6 3 3 3 3
3 6 3 3 6 3 3 3
3 3 6 3 3 6 6 3

(_ ,)
3 6 3 3 3 6 6 3
3 3 6 3 6 3 3 3
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3

COST prev prod i

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0 100 200 300 400 500 600 700 800 900
20

40

60

80

100

%
 F

ul
l B

uf
fe

r

Time

Prod 1
Prod 2
Prod 3
Prod 4
Prod 5
Prod 6
Prod 7
Prod 8

Figure 6.12: Plot of Eight Product Sequence without Lookahead

A sequence for this system can also be found by the algorithm using the lookahead function with

a lookahead of 25 time units. The output sequence is plotted below for the eight product system

using lookahead.

156

0 100 200 300 400 500 600 700 800 900 1000

20

40

60

80

100

%
 F

ul
l B

uf
fe

r

Time

Prod 1
Prod 2
Prod 3
Prod 4
Prod 5
Prod 6
Prod 7
Prod 8

Figure 6.13: Plot of Eight Product Sequence with Lookahead

6.7.3 Weighting Parameters

The weighting parameters for the goodness equation and lookahead goodness equation allow the

user to influence the output sequence from the algorithm. The weighting parameters increase or

decrease the effect of the time to crash, time to refill, time in queue, changeover cost, or usage

rate variation on the goodness calculation at each step of the sequence.

In order to generate the figures in this section, one weighting factor is considered to be a

dominant factor in the goodness equation as the value varies from 0 to 1. The dominant factor is

considered to be variable a in the following equation.

1a b+ =

The other weighting factors change as the dominate factor changes (1b a= −), where the sum of

all weighting factors is always equal to one. There are 40 equally spaced points as a varies from

0 to 1, and a sequence of 75 stages is simulated at each data point. As an example of how the

weighting factors vary in the simulations in this section, consider α as the dominant factor and all

other factors equally weighted, (i.e. 4
bβ γ ε η= = = =). Initially, when a = 0 and b = 1, the

weighting factors are 0α = and 1
4β γ ε η= = = = . The last data point where a = 1 and b = 0, the

weighting factors are 1α = and 0β γ ε η= = = = .

157

An eight product production system is considered for the test cases in this section, with the only

variant (other than the weighting factors) being whether or not lookahead is present in the

simulation. The production system has the following parameters for all products: buffer threshold

level = 99.5% of maximum buffer levels, initial buffer level = 100% of maximum buffer levels.

The production rates, usage rates, and maximum buffer levels for the products are defined

according to the following matrices:

[]() 23 90 90 23 45 45 12 23PR i =

[]() 2 2 2 .25 .25 .25 1 1UR i =

[]max () 200 100 200 200 100 200 200 100BF i =

3 3 6 3 6 3 6 3
3 3 3 6 3 3 3 3
3 6 3 3 6 3 3 3
3 3 6 3 3 6 6 3

(_ ,)
3 6 3 3 3 6 6 3
3 3 6 3 6 3 3 3
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3

COST prev prod i

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

6.7.3.1 Configuration #1-A – Time to Crash Without Lookahead

This configuration evaluates the output from the algorithm in terms of percentage of full buffer

when α is the dominant weighting factor for the time to crash term. The other factors β, γ, ε, and

η are equal to one another. The first test case for configuration number one is without the

lookahead function. The weighting factors are defined as functions of a and b with aα = and.

The maximum average buffer level is 90.4% and the minimum is 81.8%.

158

0 0.2 0.4 0.6 0.8 1
75

80

85

90

95

%
 F

ul
l B

uf
fe

r

alpha
Figure 6.14: Configuration #1A Without Lookahead for Example State

6.7.3.2 Configuration #1-B – Time to Crash With Lookahead

This configuration maintains the same values of weighting factors for the goodness equation as in

the configuration #1-A test case. Lookahead time of 15 units is considered in this test case. The

maximum average buffer level is 87.8% and the minimum is 84.2%.

0 0.2 0.4 0.6 0.8 1
75

80

85

90

95

%
 F

ul
l B

uf
fe

r

alpha
Figure 6.15: Configuration #1B With Lookahead for Example State

6.7.3.3 Configuration #2-A – Time to Refill Without Lookahead

This configuration evaluates the output from the algorithm in terms of percentage of full buffer

when β is the dominant weighting factor for the time to refill term. The other factors α, γ, ε, and

η are equal to one another. The first test case for configuration number two is without the

159

lookahead function. The weighting factors are defined as functions of a and b with aβ = and

4
bα γ ε η= = = = . The maximum average buffer level is 88.7% and the minimum is 86.0%.

0 0.2 0.4 0.6 0.8 1
75

80

85

90

95

%
 F

ul
l B

uf
fe

r

beta
Figure 6.16: Configuration #2A Without Lookahead for Example State

6.7.3.4 Configuration #2-B – Time to Refill With Lookahead

This configuration maintains the same values of weighting factors for the goodness equation as in

the configuration #2A test case. Lookahead time of 15 units is considered in this test case. The

maximum average buffer level is 88.6% and the minimum is 83.9%.

0 0.2 0.4 0.6 0.8 1
75

80

85

90

95

%
 F

ul
l B

uf
fe

r

beta
Figure 6.17: Configuration #2B With Lookahead for Example State

160

6.7.3.5 Configuration #3-A – Time in Queue Without Lookahead

This configuration evaluates the output from the algorithm in terms of percentage of full buffer

when γ is the dominant weighting factor for the time in queue term. The other factors α, β, ε, and

η are equal to one another. The first test case for configuration number three is without the

lookahead function. The weighting factors are defined as functions of a and b with aγ = and

4
bα β ε η= = = = . The maximum average buffer level is 90.4% and the minimum is 84.8%.

0 0.2 0.4 0.6 0.8 1
75

80

85

90

95

%
 F

ul
l B

uf
fe

r

gamma

,

Figure 6.18: Configuration #3A Without Lookahead for Example State

6.7.3.6 Configuration #3-B – Time in Queue With Lookahead

This configuration maintains the same values of weighting factors for the goodness equation as in

the configuration #3A test case. Lookahead time of 15 units is considered in this test case. The

maximum average buffer level is 87.3% and the minimum is 84.9%.

161

0 0.2 0.4 0.6 0.8 1
75

80

85

90

95

%
 F

ul
l B

uf
fe

r

gamma

,

Figure 6.19: Configuration #3B With Lookahead for Example State

6.7.3.7 Configuration #4-A – Changeover Cost Without Lookahead

This configuration evaluates the output from the algorithm in terms of percentage of full buffer

when ε is the dominant weighting factor for the changeover cost term. The other factors α, β, γ,

and η are equal to one another. The first test case for configuration number four is without the

lookahead function. The weighting factors are defined as functions of a and b with aε = and

4
bα β γ η= = = = . The maximum average buffer level is 88.5% and the minimum is 83.9%.

0 0.2 0.4 0.6 0.8 1
75

80

85

90

95

%
 F

ul
l B

uf
fe

r

epsilon

,

Figure 6.20: Configuration #4A Without Lookahead for Example State

162

6.7.3.8 Configuration #4-B – Changeover Cost With Lookahead

This configuration maintains the same values of weighting factors for the goodness equation as in

the configuration #4A test case. Lookahead time of 15 units is considered in this test case. The

maximum average buffer level is 89.4% and the minimum is 84.2%.

0 0.2 0.4 0.6 0.8 1
75

80

85

90

95

%
 F

ul
l B

uf
fe

r

epsilon

,

Figure 6.21: Configuration #4B With Lookahead for Example State

6.7.3.9 Configuration #5-A – Usage Rate Variation Without Lookahead

This configuration evaluates the output from the algorithm in terms of percentage of full buffer

when η is the dominant weighting factor for the usage rate variation term. The other factors α, β,

γ, and ε are equal to one another. The first test case for configuration number five is without the

lookahead function. The weighting factors are defined as functions of a and b with aη = and

4
bα β γ ε= = = = . The maximum average buffer level is 88.5% and the minimum is 85.3%.

163

0 0.2 0.4 0.6 0.8 1
75

80

85

90

95

%
 F

ul
l B

uf
fe

r

eta
Figure 6.22: Configuration #5A Without Lookahead for Example State

6.7.3.10 Configuration #5-B – Usage Rate Variation With Lookahead

This configuration maintains the same values of weighting factors for the goodness equation as in

the configuration #5A test case. Lookahead time of 15 units is considered in this test case. The

maximum average buffer level is 88.9% and the minimum is 87.4%.

0 0.2 0.4 0.6 0.8 1
75

80

85

90

95

%
 F

ul
l B

uf
fe

r

eta
Figure 6.23: Configuration #5B With Lookahead for Example State

6.7.3.11 Discussion of Weighting Factors Results

All test cases begin with the dominant weighting factor at the minimum value of zero when a

equals zero. The non-dominant factors all have a beginning value of 0.25 so that the non-

164

dominant factors are all equal and sum to one. As the dominant factor increases from zero to one,

the non-dominant factors decrease from a maximum value of 0.25 to zero.

The plots show that the different configurations of weighting factors affect the percentage of

buffer fullness for this example system. The percentage of buffer fullness is cumulative for the

production sequence at a given data point, note that 100% is a full buffer for all products and 90%

is the buffer threshold in the plots. The best case of all configurations results in a buffer fullness

value of 90.4%, when α = 0.125 and 0.218β γ ε η= = = = for test case #1-A and also when γ =

0.45 and 0.138α β ε η= = = = for test case #3-A.

The lowest buffer fullness value without lookahead is 81.8% when α is the dominant weighting

factor with a value of 1.0 and all other factors are zero. When lookahead is used, the lowest

buffer fullness value ranges from 83.9-84.2% for test cases #1-B,#2-B, and #4-B. Perhaps this is

caused because the time to crash and time to refill are very similar components of the goodness

equation.

In all test cases, the lookahead provides approximately the same buffer fullness values than when

not using the lookahead function. Note that the difference between the best case and the worst

case is only 6.5% of the average buffer level. These results show that the output sequences for all

the test cases are feasible sequences, but some sequences are slightly better than others.

In some cases the system parameters will dominate the output of the algorithm and the weighting

factors will have no effect. Consider the three product system discussed in section 6.7.1 Three

Product Production System. All five configurations of weighting factors, both with and without

lookahead, result in the same buffer fullness value of 62.6%.

6.7.4 Additional Test Cases for Weighting Parameters

Many sequencing authors validate their results by using three problem sets with various product

demands for 5, 10, and 15 product production systems that were originally developed by

Sumichrast and Russell [53]. The five product problem set was considered for this example,

which has the product demand shown in the table below. The production system has an initial

buffer level = 100% of maximum buffer levels. Two buffer threshold levels test cases were

considered; threshold test case #1 has a buffer threshold of 95% and threshold test case #2 has a

buffer threshold of 50%. Two changeover cost families, shown below, were considered to gain a

165

better understanding of the behavior of the weighting parameters. Note that A=2 and B=5 in the

changeover cost family tables. The lookahead time was also varied in this example between 0 for

lookahead test case #1 and 20 time units for lookahead test case #2.

Table 6.1: Product Demand, UR(i)

Demand
Case Prod 1 Prod 2 Prod 3 Prod 4 Prod 5

1 15 2 1 1 1
2 10 5 2 2 1
3 6 6 5 2 1
4 4 4 4 4 3

Table 6.2: Changeover Cost Family #1

C/O
Family 1 Prod 1 Prod 2 Prod 3 Prod 4 Prod 5

Prod 1 1 A B B B
Prod 2 A 1 B B B
Prod 3 B B 1 A A
Prod 4 B B A 1 A
Prod 5 B B A A 1

Table 6.3: Changeover Cost Family #2

C/O
Family 2 Prod 1 Prod 2 Prod 3 Prod 4 Prod 5

Prod 1 1 B B B A
Prod 2 B 1 A A B
Prod 3 B A 1 A B
Prod 4 B A A 1 B
Prod 5 A B B B 1

Table 6.4: Weighting Factor Test Cases

Wt Factor
Case α β γ ε η

1 1 0 0 0 0
2 0 1 0 0 0
3 0 0 1 0 0
4 0 0 0 1 0
5 0 0 0 0 1
6 1/3 0 0 1/3 1/3

The production rate and maximum buffer level are functions of the usage rate as follows:

166

[]() 35 () 30 () 25 () 20 () 20 ()PR i UR i UR i UR i UR i UR i= × × × × ×

[]max () 5 () 4 () 3 () 2 () 2 ()BF i PR i PR i PR i PR i PR i= × × × × ×

The results for the various test cases yield interesting results for these test cases. The use of

lookahead prevents the simulated production run from crashing but the use of lookahead causes

an increase in the maximum percent of buffer level swing. Note that the percentage of buffer

level swing is measured by subtracting the lowest percent of buffer fullness from one for the 100

steps of the simulated sequence. Therefore the lookahead function produces a sequence with

more fluctuation in the buffer levels but no product buffers crash during the sequence. Note that

all the results tables are sorted first by buffer threshold test case, secondly by maximum buffer

level swing, and finally by percent of buffer fullness. Note that the highlighted rows are cases

that crashed.

Table 6.5: Results for Demand Test Case #1, C/O Family #1, and Threshold Case #1

Test Case

% Buffer
Level

% Max
Swing

% Setup
Time

Total
time

Lookahead
Case

Wght Factor
Case

2 87.1 52.1 79.8 406.2 1 2
3 83.0 60.5 79.9 533.1 1 3

99 77.6 76.9 79.9 619.7 2 3
1 77.2 79.4 81.6 268.3 1 1

98 76.7 90.2 79.8 567.7 2 2
6 76.8 91.6 79.8 266.9 1 6

100 78.5 95.6 79.6 267.5 2 4
97 73.0 99.7 81.0 270.4 2 1
101 76.1 99.8 80.1 479.5 2 5
102 70.2 99.8 80.8 270.9 2 6
4 39.9 101.4 84.6 121.7 1 4
5 15.4 108.5 82.9 43.4 1 5

Table 6.6: Results for Demand Test Case #1, C/O Family #1, and Threshold Case #2

Test Case

% Buffer
Level

% Max
Swing

% Setup
Time

Total
time

Lookahead
Case

Wght
Factor Case

7 72.0 71.8 36.0 581.3 1 1
12 72.0 71.8 36.0 581.3 1 6
108 72.3 74.2 35.9 551.6 2 6
103 72.1 75.8 35.9 548.4 2 1
9 72.3 76.4 36.6 538.3 1 3

11 72.2 78.3 37.0 564.5 1 5
104 72.3 79.5 38.3 561.2 2 2
105 71.6 82.0 37.3 581.2 2 3
106 72.3 82.1 35.9 551.6 2 4
10 72.3 83.6 34.0 544.8 1 4
107 71.9 96.5 36.4 574.7 2 5
8 71.9 96.5 36.4 574.7 1 2

167

Table 6.7: Results for Demand Test Case #1, C/O Family #2, and Threshold Case #1
Test

Case #

%
Buffer
Level

% Max
Swing

%
Setup
Time

Total
time

Lookahead
Case

Wght
Factor
Case

15 87.0 51.4 79.7 410.3 1 3
14 86.1 51.9 79.7 455.3 1 2
18 81.0 68.4 79.8 387.3 1 6
16 86.3 69.8 79.6 388.0 1 4

112 86.3 69.8 79.6 388.0 2 4
114 84.2 71.9 79.8 342.3 2 6
111 79.5 77.4 79.9 619.8 2 3
13 73.8 86.0 80.5 548.1 1 1

110 76.2 90.5 80.0 570.4 2 2
109 71.2 96.1 80.5 603.4 2 1
113 78.4 99.98 80.0 461.3 2 5
17 8.9 105.8 82.7 42.3 1 5

Table 6.8: Results for Demand Test Case #1, C/O Family #2, and Threshold Case #2

Test
Case

%
Buffer
Level

% Max
Swing

%
Setup
Time

Total
time

Lookahead
Case

Wght
Factor
Case

24 73.0 65.4 45.1 542.8 1 6
19 72.5 65.8 46.3 563.7 1 1
120 72.8 69.1 45.2 537.7 2 6
21 72.5 78.9 46.9 558.9 1 3
23 72.5 78.9 46.9 558.9 1 5
116 72.0 86.0 46.6 568.6 2 2
22 72.0 86.2 45.7 578.2 1 4
118 72.4 86.2 44.9 563.4 2 4
20 72.2 88.0 45.7 562.1 1 2
119 72.2 88.0 45.7 562.1 2 5
115 71.2 89.7 46.4 625.4 2 1
117 71.9 97.2 46.1 585.3 2 3

Table 6.9: Results for Demand Test Case #2, C/O Family #1, and Threshold Case #1

Test
Case

%
Buffer
Level

% Max
Swing

%
Setup
Time

Total
time

Lookahead
Case

Wght
Factor
Case

26 87.1 52.1 79.8 406.2 1 2
27 83.0 60.5 79.9 533.1 1 3
123 77.6 76.9 79.9 619.7 2 3
25 77.2 79.4 81.6 268.3 1 1
122 76.7 90.2 79.8 567.7 2 2
30 76.8 91.6 79.8 266.9 1 6
124 78.5 95.6 79.6 267.5 2 4
121 73.0 99.7 81.0 270.4 2 1
125 74.7 99.8 80.0 487.2 2 5
126 70.2 99.8 80.8 270.9 2 6
28 39.9 101.4 84.6 121.7 1 4
29 15.1 117.2 83.2 46.9 1 5

168

Table 6.10: Results for Demand Test Case #2, C/O Family #1, and Threshold Case #2
Test
Case

%
Buffer
Level

% Max
Swing

%
Setup
Time

Total
time

Lookahead
Case

Wght
Factor
Case

31 72.0 71.8 36.0 581.3 1 1
36 72.0 71.8 36.0 581.3 1 6
132 72.3 74.2 35.9 551.6 2 6
127 72.1 75.8 35.9 548.4 2 1
33 72.3 76.4 36.6 538.3 1 3
128 72.3 79.5 38.3 561.2 2 2
129 71.6 82.0 37.3 581.2 2 3
130 72.3 82.1 35.9 551.6 2 4
34 72.3 83.6 34.0 544.8 1 4
131 71.9 96.5 36.4 574.7 2 5
32 71.9 96.5 36.4 574.7 1 2
35 62.5 100.8 37.5 493.6 1 5

Table 6.11: Results for Demand Test Case #2, C/O Family #2, and Threshold Case #1
Test
Case

%
Buffer
Level

% Max
Swing

%
Setup
Time

Total
time

Lookahead
Case

Wght
Factor
Case

39 87.0 51.4 79.7 410.3 1 3
38 86.1 51.9 79.7 455.3 1 2
42 81.0 68.4 79.8 387.3 1 6
40 86.3 69.8 79.6 388.0 1 4
136 86.3 69.8 79.6 388.0 2 4
138 84.2 71.9 79.8 342.3 2 6
135 79.5 77.4 79.9 619.8 2 3
37 73.8 86.0 80.5 548.1 1 1
134 76.2 90.5 80.0 570.4 2 2
133 71.2 96.1 80.5 603.4 2 1
137 78.5 99.98 79.9 461.8 2 5
41 8.2 100.2 82.3 40.1 1 5

Table 6.12: Results for Demand Test Case #2, C/O Family #2, and Threshold Case #2

Test
Case

%
Buffer
Level

% Max
Swing

%
Setup
Time

Total
time

Lookahead
Case

Wght
Factor
Case

48 73.0 65.4 45.1 542.8 1 6
43 72.5 65.8 46.3 563.7 1 1
144 72.8 69.1 45.2 537.7 2 6
45 72.5 78.9 46.9 558.9 1 3
47 72.5 78.9 46.9 558.9 1 5
140 72.0 86.0 46.6 568.6 2 2
46 72.0 86.2 45.7 578.2 1 4
142 72.4 86.2 44.9 563.4 2 4
44 72.2 88.0 45.7 562.1 1 2
143 72.2 88.0 45.7 562.1 2 5
139 71.2 89.7 46.4 625.4 2 1
141 71.9 97.2 46.1 585.3 2 3

169

Table 6.13: Results for Demand Test Case #3, C/O Family #1, and Threshold Case #1
Test
Case

%
Buffer
Level

% Max
Swing

%
Setup
Time

Total
time

Lookahead
Case

Wght
Factor
Case

50 87.1 52.1 79.8 406.2 1 2
51 83.0 60.5 79.9 533.1 1 3
147 77.6 76.9 79.9 619.7 2 3
49 77.2 79.4 81.6 268.3 1 1
146 76.7 90.2 79.8 567.7 2 2
54 76.8 91.6 79.8 266.9 1 6
149 74.2 94.8 80.0 502.2 2 5
148 78.5 95.6 79.6 267.5 2 4
145 73.0 99.7 81.0 270.4 2 1
150 70.2 99.8 80.8 270.9 2 6
52 39.9 101.4 84.6 121.7 1 4
53 18.9 112.4 83.9 54.8 1 5

Table 6.14: Results for Demand Test Case #3, C/O Family #1, and Threshold Case #2

Test
Case

%
Buffer
Level

% Max
Swing

%
Setup
Time

Total
time

Lookahead
Case

Wght
Factor
Case

55 72.0 71.8 36.0 581.3 1 1
60 72.0 71.8 36.0 581.3 1 6
156 72.3 74.2 35.9 551.6 2 6
151 72.1 75.8 35.9 548.4 2 1
57 72.3 76.4 36.6 538.3 1 3
152 72.3 79.5 38.3 561.2 2 2
153 71.6 82.0 37.3 581.2 2 3
154 72.3 82.1 35.9 551.6 2 4
58 72.3 83.6 34.0 544.8 1 4
155 71.9 96.5 36.4 574.7 2 5
56 71.9 96.5 36.4 574.7 1 2
59 71.9 96.5 36.4 574.7 1 5

Table 6.15: Results for Demand Test Case #3, C/O Family #2, and Threshold Case #1

Test
Case

%
Buffer
Level

% Max
Swing

%
Setup
Time

Total
time

Lookahead
Case

Wght
Factor
Case

63 87.0 51.4 79.7 410.3 1 3
62 86.1 51.9 79.7 455.3 1 2
66 81.0 68.4 79.8 387.3 1 6
64 86.3 69.8 79.6 388.0 1 4
160 86.3 69.8 79.6 388.0 2 4
162 84.2 71.9 79.8 342.3 2 6
159 79.5 77.4 79.9 619.8 2 3
61 73.8 86.0 80.5 548.1 1 1
158 76.2 90.5 80.0 570.4 2 2
157 71.2 96.1 80.5 603.4 2 1
161 79.4 99.96 79.7 444.1 2 5
65 11.5 110.1 82.4 57.0 1 5

170

Table 6.16: Results for Demand Test Case #3, C/O Family #2, and Threshold Case #2

Test
Case

%
Buffer
Level

% Max
Swing

%
Setup
Time

Total
time

Lookahead
Case

Wght
Factor
Case

72 73.0 65.4 45.1 542.8 1 6
67 72.5 65.8 46.3 563.7 1 1
168 72.8 69.1 45.2 537.7 2 6
69 72.5 78.9 46.9 558.9 1 3
71 71.5 83.8 46.4 593.3 1 5
164 72.0 86.0 46.6 568.6 2 2
70 72.0 86.2 45.7 578.2 1 4
166 72.4 86.2 44.9 563.4 2 4
68 72.2 88.0 45.7 562.1 1 2
167 72.2 88.0 45.7 562.1 2 5
163 71.2 89.7 46.4 625.4 2 1
165 71.9 97.2 46.1 585.3 2 3

Table 6.17: Results for Demand Test Case #4, C/O Family #1, and Threshold Case #1

Test
Case

%
Buffer
Level

% Max
Swing

%
Setup
Time

Total
time

Lookahead
Case

Wght
Factor
Case

74 87.1 52.1 79.8 406.2 1 2
75 83.0 60.5 79.9 533.1 1 3
171 77.6 76.9 79.9 619.7 2 3
73 77.2 79.4 81.6 268.3 1 1
173 82.2 81.0 79.7 470.8 2 5
78 76.8 91.6 79.8 266.9 1 6
172 78.5 95.6 79.6 267.5 2 4
170 76.7 99.5 79.8 567.7 2 2
169 73.0 99.7 81.0 270.4 2 1
174 70.2 99.8 80.8 270.9 2 6
76 39.9 101.4 84.6 121.7 1 4
77 13.8 101.7 83.6 40.7 1 5

Table 6.18: Results for Demand Test Case #4, C/O Family #1, and Threshold Case #2

Test
Case

%
Buffer
Level

% Max
Swing

%
Setup
Time

Total
time

Lookahead
Case

Wght
Factor
Case

79 72.0 71.8 36.0 581.3 1 1
84 72.0 71.8 36.0 581.3 1 6
180 72.3 74.2 35.9 551.6 2 6
175 72.1 75.8 35.9 548.4 2 1
81 72.3 76.4 36.6 538.3 1 3
83 72.2 78.3 37.0 564.5 1 5
176 72.3 79.5 38.3 561.2 2 2
177 71.6 82.0 37.3 581.2 2 3
178 72.3 82.1 35.9 551.6 2 4
82 72.3 83.6 34.0 544.8 1 4
179 71.9 96.5 36.4 574.7 2 5
80 71.9 96.5 36.4 574.7 1 2

171

Table 6.19: Results for Demand Test Case #4, C/O Family #2, and Threshold Case #1

Test
Case

%
Buffer
Level

% Max
Swing

%
Setup
Time

Total
time

Lookahead
Case

Wght
Factor
Case

87 87.0 51.4 79.7 410.3 1 3
86 86.1 51.9 79.7 455.3 1 2
90 81.0 68.4 79.8 387.3 1 6
88 86.3 69.8 79.6 388.0 1 4
184 86.3 69.8 79.6 388.0 2 4
186 84.2 71.9 79.8 342.3 2 6
185 83.3 76.1 79.7 436.5 2 5
183 79.5 77.4 79.9 619.8 2 3
85 73.8 86.0 80.5 548.1 1 1
182 76.2 90.5 80.0 570.4 2 2
181 71.2 96.1 80.5 603.4 2 1
89 15.9 102.4 80.6 88.1 1 5

Table 6.20: Results for Demand Test Case #4, C/O Family #2, and Threshold Case #2

Test
Case

%
Buffer
Level

% Max
Swing

%
Setup
Time

Total
time

Lookahead
Case

Wght
Factor
Case

96 73.0 65.4 45.1 542.8 1 6
91 72.5 65.8 46.3 563.7 1 1
192 72.8 69.1 45.2 537.7 2 6
93 72.5 78.9 46.9 558.9 1 3
188 72.0 86.0 46.6 568.6 2 2
94 72.0 86.2 45.7 578.2 1 4
190 72.4 86.2 44.9 563.4 2 4
92 72.2 88.0 45.7 562.1 1 2
191 72.2 88.0 45.7 562.1 2 5
187 71.2 89.7 46.4 625.4 2 1
189 71.9 97.2 46.1 585.3 2 3
95 15.5 100.5 46.3 148.9 1 5

6.7.4.1 Alternative Lookahead Selection of Additional Test Cases

The results in this section are based on the same test cases that were presented in the previous

section, with the only difference being the lookahead selection method. The following results

were found using the alternative lookahead selection method in which the sequence with the

largest minimum goodness value over the lookahead time is the “best” sequence. The first

product of the “best “sequence is selected as the next product in the production sequence.

The alternative selection method yields interesting results for these test cases. The use of the

alternative lookahead selection again prevents the simulated production from crashing. Note that

the alternative lookahead selection method actually causes a decrease in the maximum percent of

172

buffer level swing. Therefore the alternative lookahead method produces a sequence with less

fluctuation in the buffer levels and no product buffers crash during the sequence. Note that all the

results tables are again sorted by buffer threshold test case, then by maximum swing, and then by

percent of buffer fullness. Note that the highlighted rows are cases that crashed.

Table 6.21: Alt Method for Demand Case #1, C/O Family #1, and Threshold Case #1

Test
Case #

% Buffer
Level

% Max
Swing

% Setup
Time

Total
time

Lookahead
Case

Wght Factor
Case

98 86.4 37.2 79.8 436.4 2 2
99 86.4 37.2 79.8 436.4 2 3
2 87.1 52.1 79.8 406.2 1 2
3 83.0 60.5 79.9 533.1 1 3
1 77.2 79.4 81.6 268.3 1 1

97 76.9 79.6 81.4 269.0 2 1
6 76.8 91.6 79.8 266.9 1 6

100 78.5 95.6 79.6 267.5 2 4
102 74.3 99.4 81.6 257.2 2 6
101 76.1 99.8 80.1 479.5 2 5
4 39.9 101.4 84.6 121.7 1 4
5 15.4 108.5 82.9 43.4 1 5

Table 6.22: Alt Method for Demand Case #1, C/O Family #1, and Threshold Case #2

Test
Case #

% Buffer
Level

% Max
Swing

% Setup
Time

Total
time

Lookahead
Case

Wght Factor
Case

108 72.7 68.7 35.4 544.7 2 6
7 72.0 71.8 36.0 581.3 1 1

12 72.0 71.8 36.0 581.3 1 6
103 72.0 71.8 36.0 581.3 2 1
105 72.3 76.4 37.4 548.5 2 3
9 72.3 76.4 36.6 538.3 1 3

11 72.2 78.3 37.0 564.5 1 5
104 72.4 81.4 38.3 556.3 2 2
106 72.3 82.1 35.9 551.6 2 4
10 72.3 83.6 34.0 544.8 1 4
107 71.9 96.5 36.4 574.7 2 5
8 71.9 96.5 36.4 574.7 1 2

173

Table 6.23: Alt Method for Demand Case #1, C/O Family #2, and Threshold Case #1
Test

Case #
% Buffer

Level
% Max
Swing

% Setup
Time

Total
time

Lookahead
Case

Wght Factor
Case

15 87.0 51.4 79.7 410.3 1 3
14 86.1 51.9 79.7 455.3 1 2
111 82.9 53.0 79.8 545.1 2 3
110 83.3 56.9 79.9 540.9 2 2
18 81.0 68.4 79.8 387.3 1 6
16 86.3 69.8 79.6 388.0 1 4
112 86.3 69.8 79.6 388.0 2 4
114 80.8 69.8 80.0 423.5 2 6
109 72.2 84.3 80.7 583.4 2 1
13 73.8 86.0 80.5 548.1 1 1
113 78.4 99.98 80.0 461.3 2 5
17 8.9 105.8 82.7 42.3 1 5

Table 6.24: Alt Method for Demand Case #1, C/O Family #2, and Threshold Case #2

Test
Case #

% Buffer
Level

% Max
Swing

% Setup
Time

Total
time

Lookahead
Case

Wght Factor
Case

24 73.0 65.4 45.1 542.8 1 6
19 72.5 65.8 46.3 563.7 1 1
115 72.5 65.8 46.3 563.7 2 1
120 72.8 69.1 45.2 537.7 2 6
21 72.5 78.9 46.9 558.9 1 3
23 72.5 78.9 46.9 558.9 1 5
117 72.5 78.9 46.9 558.9 2 3
22 72.0 86.2 45.7 578.2 1 4
118 72.4 86.2 44.9 563.4 2 4
116 71.7 88.0 46.5 581.2 2 2
20 72.2 88.0 45.7 562.1 1 2
119 72.2 88.0 45.7 562.1 2 5

Table 6.25: Alt Method for Demand Case #2, C/O Family #1, and Threshold Case #1

Test
Case #

% Buffer
Level

% Max
Swing

% Setup
Time

Total
time

Lookahead
Case

Wght Factor
Case

122 86.4 37.2 79.8 436.4 2 2
123 86.4 37.2 79.8 436.4 2 3
26 87.1 52.1 79.8 406.2 1 2
27 83.0 60.5 79.9 533.1 1 3
25 77.2 79.4 81.6 268.3 1 1
121 76.9 79.6 81.4 269.0 2 1
30 76.8 91.6 79.8 266.9 1 6
124 78.5 95.6 79.6 267.5 2 4
126 74.3 99.4 81.6 257.2 2 6
125 74.7 99.8 80.0 487.2 2 5
28 39.9 101.4 84.6 121.7 1 4
29 15.1 117.2 83.2 46.9 1 5

174

Table 6.26: Alt Method for Demand Case #2, C/O Family #1, and Threshold Case #2

Test
Case #

% Buffer
Level

% Max
Swing

% Setup
Time

Total
time

Lookahead
Case

Wght Factor
Case

132 72.7 68.7 35.4 544.7 2 6
31 72.0 71.8 36.0 581.3 1 1
36 72.0 71.8 36.0 581.3 1 6
127 72.0 71.8 36.0 581.3 2 1
129 72.3 76.4 37.4 548.5 2 3
33 72.3 76.4 36.6 538.3 1 3
128 72.4 81.4 38.3 556.3 2 2
130 72.3 82.1 35.9 551.6 2 4
34 72.3 83.6 34.0 544.8 1 4
131 71.9 96.5 36.4 574.7 2 5
32 71.9 96.5 36.4 574.7 1 2
35 62.5 100.8 37.5 493.6 1 5

Table 6.27: Alt Method for Demand Case #2, C/O Family #2, and Threshold Case #1
Test

Case #
% Buffer

Level
% Max
Swing

% Setup
Time

Total
time

Lookahead
Case

Wght Factor
Case

39 87.0 51.4 79.7 410.3 1 3
38 86.1 51.9 79.7 455.3 1 2
135 82.9 53.0 79.8 545.1 2 3
134 83.3 56.9 79.9 540.9 2 2
42 81.0 68.4 79.8 387.3 1 6
40 86.3 69.8 79.6 388.0 1 4
136 86.3 69.8 79.6 388.0 2 4
138 80.8 69.8 80.0 423.5 2 6
133 72.2 84.3 80.7 583.4 2 1
37 73.8 86.0 80.5 548.1 1 1
137 78.5 99.98 79.9 461.8 2 5
41 8.2 100.2 82.3 40.1 1 5

Table 6.28: Alt Method for Demand Case #2, C/O Family #2, and Threshold Case #2

Test
Case #

% Buffer
Level

% Max
Swing

% Setup
Time

Total
time

Lookahead
Case

Wght Factor
Case

48 73.0 65.4 45.1 542.8 1 6
43 72.5 65.8 46.3 563.7 1 1
139 72.5 65.8 46.3 563.7 2 1
144 72.8 69.1 45.2 537.7 2 6
45 72.5 78.9 46.9 558.9 1 3
47 72.5 78.9 46.9 558.9 1 5
141 72.5 78.9 46.9 558.9 2 3
46 72.0 86.2 45.7 578.2 1 4
142 72.4 86.2 44.9 563.4 2 4
140 71.7 88.0 46.5 581.2 2 2
44 72.2 88.0 45.7 562.1 1 2
143 72.2 88.0 45.7 562.1 2 5

175

Table 6.29: Alt Method for Demand Case #3, C/O Family #1, and Threshold Case #1

Test
Case #

% Buffer
Level

% Max
Swing

% Setup
Time

Total
time

Lookahead
Case

Wght Factor
Case

146 86.4 37.2 79.8 436.4 2 2
147 86.4 37.2 79.8 436.4 2 3
50 87.1 52.1 79.8 406.2 1 2
51 83.0 60.5 79.9 533.1 1 3
49 77.2 79.4 81.6 268.3 1 1
145 76.9 79.6 81.4 269.0 2 1
54 76.8 91.6 79.8 266.9 1 6
149 74.2 94.8 80.0 502.2 2 5
148 78.5 95.6 79.6 267.5 2 4
150 74.3 99.4 81.6 257.2 2 6
52 39.9 101.4 84.6 121.7 1 4
53 18.9 112.4 83.9 54.8 1 5

Table 6.30: Alt Method for Demand Case #3, C/O Family #1, and Threshold Case #2

Test
Case #

% Buffer
Level

% Max
Swing

% Setup
Time

Total
time

Lookahead
Case

Wght Factor
Case

156 72.7 68.7 35.4 544.7 2 6
55 72.0 71.8 36.0 581.3 1 1
60 72.0 71.8 36.0 581.3 1 6
151 72.0 71.8 36.0 581.3 2 1
153 72.3 76.4 37.4 548.5 2 3
57 72.3 76.4 36.6 538.3 1 3
152 72.4 81.4 38.3 556.3 2 2
154 72.3 82.1 35.9 551.6 2 4
58 72.3 83.6 34.0 544.8 1 4
155 71.9 96.5 36.4 574.7 2 5
56 71.9 96.5 36.4 574.7 1 2
59 71.9 96.5 36.4 574.7 1 5

Table 6.31: Alt Method for Demand Case #3, C/O Family #2, and Threshold Case #1

Test
Case #

% Buffer
Level

% Max
Swing

% Setup
Time

Total
time

Lookahead
Case

Wght Factor
Case

63 87.0 51.4 79.7 410.3 1 3
62 86.1 51.9 79.7 455.3 1 2
159 82.9 53.0 79.8 545.1 2 3
158 83.3 56.9 79.9 540.9 2 2
66 81.0 68.4 79.8 387.3 1 6
64 86.3 69.8 79.6 388.0 1 4
160 86.3 69.8 79.6 388.0 2 4
162 80.8 69.8 80.0 423.5 2 6
157 72.2 84.3 80.7 583.4 2 1
61 73.8 86.0 80.5 548.1 1 1
161 79.4 99.96 79.7 444.1 2 5
65 11.5 110.1 82.4 57.0 1 5

176

Table 6.32: Alt Method for Demand Case #3, C/O Family #2, and Threshold Case #2

Test
Case #

% Buffer
Level

% Max
Swing

% Setup
Time

Total
time

Lookahead
Case

Wght Factor
Case

72 73.0 65.4 45.1 542.8 1 6
67 72.5 65.8 46.3 563.7 1 1
163 72.5 65.8 46.3 563.7 2 1
168 72.8 69.1 45.2 537.7 2 6
69 72.5 78.9 46.9 558.9 1 3
165 72.5 78.9 46.9 558.9 2 3
71 71.5 83.8 46.4 593.3 1 5
70 72.0 86.2 45.7 578.2 1 4
166 72.4 86.2 44.9 563.4 2 4
164 71.7 88.0 46.5 581.2 2 2
68 72.2 88.0 45.7 562.1 1 2
167 72.2 88.0 45.7 562.1 2 5

Table 6.33: Alt Method for Demand Case #4, C/O Family #1, and Threshold Case #1

Test
Case #

% Buffer
Level

% Max
Swing

% Setup
Time

Total
time

Lookahead
Case

Wght Factor
Case

170 86.4 37.2 79.8 436.4 2 2
171 86.4 37.2 79.8 436.4 2 3
74 87.1 52.1 79.8 406.2 1 2
75 83.0 60.5 79.9 533.1 1 3
73 77.2 79.4 81.6 268.3 1 1
169 76.9 79.6 81.4 269.0 2 1
173 82.2 81.0 79.7 470.8 2 5
78 76.8 91.6 79.8 266.9 1 6
172 78.5 95.6 79.6 267.5 2 4
174 74.3 99.4 81.6 257.2 2 6
76 39.9 101.4 84.6 121.7 1 4
77 13.8 101.7 83.6 40.7 1 5

Table 6.34: Alt Method for Demand Case #4, C/O Family #1, and Threshold Case #2

Test
Case #

% Buffer
Level

% Max
Swing

% Setup
Time

Total
time

Lookahead
Case

Wght Factor
Case

180 72.7 68.7 35.4 544.7 2 6
79 72.0 71.8 36.0 581.3 1 1
84 72.0 71.8 36.0 581.3 1 6
175 72.0 71.8 36.0 581.3 2 1
177 72.3 76.4 37.4 548.5 2 3
81 72.3 76.4 36.6 538.3 1 3
83 72.2 78.3 37.0 564.5 1 5
176 72.4 81.4 38.3 556.3 2 2
178 72.3 82.1 35.9 551.6 2 4
82 72.3 83.6 34.0 544.8 1 4
179 71.9 96.5 36.4 574.7 2 5
80 71.9 96.5 36.4 574.7 1 2

177

Table 6.35: Alt Method for Demand Case #4, C/O Family #2, and Threshold Case #1

Test
Case #

% Buffer
Level

% Max
Swing

% Setup
Time

Total
time

Lookahead
Case

Wght Factor
Case

86 86.1 51.9 79.7 455.3 1 2
183 82.9 53.0 79.8 545.1 2 3
182 83.3 56.9 79.9 540.9 2 2
90 81.0 68.4 79.8 387.3 1 6
88 86.3 69.8 79.6 388.0 1 4
184 86.3 69.8 79.6 388.0 2 4
186 80.8 69.8 80.0 423.5 2 6
185 83.3 76.1 79.7 436.5 2 5
181 72.2 84.3 80.7 583.4 2 1
85 73.8 86.0 80.5 548.1 1 1
89 15.9 102.4 80.6 88.1 1 5

Table 6.36: Alt Method for Demand Case #4, C/O Family #2, and Threshold Case #2

Test
Case #

% Buffer
Level

% Max
Swing

% Setup
Time

Total
time

Lookahead
Case

Wght Factor
Case

96 73.0 65.4 45.1 542.8 1 6
91 72.5 65.8 46.3 563.7 1 1
187 72.5 65.8 46.3 563.7 2 1
192 72.8 69.1 45.2 537.7 2 6
188 72.5 74.7 45.3 543.5 2 2
93 72.5 78.9 46.9 558.9 1 3
189 72.5 78.9 46.9 558.9 2 3
94 72.0 86.2 45.7 578.2 1 4
190 72.4 86.2 44.9 563.4 2 4
92 72.2 88.0 45.7 562.1 1 2
191 72.2 88.0 45.7 562.1 2 5
95 15.5 100.5 46.3 148.9 1 5

6.7.5 Pattern Production

Consider again the same eight product production system discussed in the examples in section

6.7.3 Weighting Parameters. All production parameters are unchanged except the buffer

threshold is set to 100%. This example will highlight the ability of the algorithm to generate a

production sequence for pattern production. The usage rate variation term of the goodness

equation is equal to one and all other terms are set to zero. This configuration yields the

following production pattern (the sequence repeats apparently indefinitely) when there is no

lookahead time: 1-2-3-5-6-1-2-3-7-8-1-2-3-1-2-3-7-8-1-2-3-1-2-3-7-8-1-2-3-4-1-2-3-7-8.

178

640 660 680 700 720 740 760 780 800
60

80

100

%
 F

ul
l B

uf
fe

r

Time

Prod 1
Prod 2
Prod 3
Prod 4
Prod 5
Prod 6
Prod 7
Prod 8

Figure 6.24: Eight Product System – Pattern Production

Other weighting factor combinations may yield different sequences depending upon what type of

sequence is desired by the user. The algorithm will yield a sequence of 1-2-3-4-5-6-7-8 (the

sequence repeats apparently indefinitely) when only the γ weighting factor for the time in queue

term is used in the goodness equation.

630 640 650 660 670 680 690 700 710
40

60

80

100

%
 F

ul
l B

uf
fe

r

Time

Prod 1
Prod 2
Prod 3
Prod 4
Prod 5
Prod 6
Prod 7
Prod 8

Figure 6.25: Pattern Production – γ = 1

Copyright © John Thomas Henninger 2009

179

7 Conclusions

This Chapter will summarize the work done and discuss the contributions of this dissertation as

well as highlight areas that could benefit from future work.

7.1 Research Contributions

This dissertation has addressed the problem of determining a product sequence for a Just-In-Time

(JIT) production system when the process has significant sequence dependent setups. The issue

of sequence dependent setups in JIT systems has only been published by a few researchers, but

this is an important problem that needs to be resolved in order to help many manufacturers. The

stability analysis conducted in this dissertation examines the difficulty of finding system

parameters that are stable in an inherently unstable [5] production system. The analytical solution

is general enough to be applied to a wide range of arc-node networks, but in this research the

network is assumed to represent a production system with idle, setup, and refill nodes. The

contribution of the analytical solution is that it shows that if a settled network has at least one

node with a non-empty incoming and non-empty outgoing set, the network will have a stable

trajectory that will cycle through the network.

The analytical stability results were further advanced in this dissertation by developing and

implementing iterative method for determining the stability that attempts to find a set of stable

regions for a user defined network. The method was demonstrated for two, three, and four-

product production systems. If the stability analysis requires too much computational time, the

sequencing algorithm can be used to determine a feasible product sequence for the production

system.

This research contributes to JIT product sequencing algorithms by providing an algorithm that

determines a feasible sequence for a system with sequence dependent setups. This sequencing

algorithm also incorporates the ability to use lookahead to avoid the crashing of products in future

steps when evaluating a product sequence. The lookahead feature increases the probability that

the algorithm will find a feasible sequence by incorporating well researched lookahead

philosophies with the emerging area of JIT sequencing with lookahead. This method can be

easily implemented in production systems that have more products than the stability algorithm

can analyze.

180

7.2 Summary of Stability Analysis

The stability analysis method advances current research by considering a production system

based on JIT manufacturing principles and includes sequence dependent setups between products

and buffer threshold signals. The output regions were shown analytically to be stable for a settled

arc-node network if one or more nodes have a non-empty incoming region and non-empty

outgoing region. A product sequence trajectory through the network will remain stable at all

future points in time if a point of the trajectory is contained within one of the output regions

calculated by the algorithm. This is a significant result because it applies to any arc-node

network with non-interrupted production and non-varying system parameters that refills each

buffer completely. The algorithm requires very little computational time to determine output

regions for two and three product production systems. The computational time required by the

algorithm increases significantly with an increase in the number of products and number of arcs,

or with an increase of multiple arcs attached to a given node.

The stability algorithm is intended to be an off-line tool that allows a user to determine whether

or not a stable sequence trajectory exists for the system, based on the production system

parameters. The algorithm could be used in conjunction with the product sequencing algorithm

to verify that the given product sequence is a stable sequence. All future steps of the product

sequence will remain stable if any one step of the sequence is located on an output region from

the stability algorithm.

7.2.1 Future Work – Stability

The algorithm outputs a stable region in terms of a minimum and maximum value for each

product in the production system. A two product system will have regions that are a one

dimensional hyperrectangle which is a line between the two endpoints on the minimum values

and the maximum values of each product in the region. A three product system will have regions

that are a two-dimensional shape. As the number of products increase above three products, the

regions become multi-dimensional hyperrectangles. The regions are always k – 1 dimensions,

where k is the number of products. Future work would be beneficial to evaluate output from the

algorithm for systems with three or more products to gain a better understanding of the

characteristics of the regions. For example, consider that a rectangle may be the proper shape of

a three product region, while other cases could be more accurately represented by one or two

triangles with a split region to remove instability from the middle of a rectangular region. Future

work could develop a systematic approach to post process the output from the stability algorithm

181

to provide the most accurate stable regions for the given production system. This future work

could also include a method to aid in visualization of the output regions because the multi-

dimensional regions become very difficult to visualize.

The stability algorithm could be further refined to be more user friendly and robust by future

work focusing on standard methods to troubleshoot non-converging solutions. Similarly to the

sequencing algorithm, future work on this algorithm could develop recommendations for the user

that could potentially yield a set of stable regions. These recommendations could start with

increasing buffer size, increasing the production rate, decreasing usage rate, increasing buffer

threshold, or reducing changeover costs.

Given that the computational time increases exponentially with an increase in the number of

products and number of arcs, future work to improve the computational efficiency would be very

beneficial. Analysis of the intersection, union, and cleanup functions would be a logical starting

point for this work due to the perceived inefficiency and sheer volume of data that each function

must process.

Incorporating the sequencing algorithm and stability together could improve robustness of the

solutions as well as decrease computational time. The minimum and maximum buffer values

from the sequencing algorithm could be used as the starting buffer regions for the stability

algorithm to decrease the computational time required for the stability algorithm. Improved

computational efficiency would allow production systems with a higher number of products to be

analyzed by the algorithm.

Another potential area for future work is to allow the system parameters to vary over time and no

longer require all parameters to be constant values. Variation in a production system is a real-

world problem that is often unavoidable. Analysis of a system with variability would allow the

stability algorithm to more accurately analyze most production systems.

A final possible area of future work is to join the stability analysis method human factor research

to study the affect of buffer sizing upon worker efficiency and attitude as well as system stability.

Large buffers are more likely to be stable but can cause workers to be less efficient and hide

inherent problems in the production system. Research in this area could help to find the trade-

offs between stability, buffer size, and the human factors.

182

7.3 Summary of Sequencing Algorithm

The production sequencing algorithm developed in this research has proved to be an effective

means of determining a production sequence for a JIT production system with significant

sequence dependent setups. The algorithm provides a product sequence based on the given

system parameters and user defined goodness weighting factors. The production sequence is not

guaranteed to be an optimized product sequence for the production system, but it is a feasible

sequence for the system over the lookahead period. The use of lookahead allows the algorithm to

detect potential empty buffers and take corrective action prior to a product crashing.

The weighting factors used for calculating the goodness equation have some effect on the output

of the algorithm as was show in the examples of output from the sequencing algorithms in

Section 6.7.3 Weighting Parameters. A valid argument could also be made that the production

system parameters play an equivalent or even more significant effect on the output of the

algorithm. The examples showed that varying the different weighting parameters from zero to

one changes the cumulative percentage of buffer fullness a very small amount. This fact

highlights that the sequence is significantly influenced by the system parameters and not just by

the goodness weighting factors. The three product example in Section 6.7.3.11 highlights a

production system that is unaffected by the varying the weighting factors.

The intended use for the sequencing algorithm is as an on-line production sequencing tool on the

manufacturing floor. The algorithm can be used to find a feasible production sequence in a real-

world manufacturing environment or as a research tool to better understand behavior and

implementation of a JIT system.

7.3.1 Future Work – Sequencing

The production sequencing algorithm is viable and beneficial to users in the current state but

could be improved with additional future work. The weighting factors used for the current state

goodness equation and lookahead goodness equation need to be further evaluated to better

understand the affects of each factor. Further understanding of the weighting factor behavior

would allow the user to define the weighting factors such that the sequence can be manipulated to

provide a desired result. Perhaps investigation of a better normalizing calculation for each

weighting factor would also increase the effectiveness of manipulating on the final sequence.

183

The sequencing algorithm currently will exit if any of the products crash during the sequence

calculation. Additional future work to incorporate troubleshooting intelligence into the algorithm

would be very beneficial to most users. This intelligence could provide methods or

recommendations for the user of the algorithm to correct a crashed sequence. An experienced or

knowledgeable user would not require this feature but it would be beneficial for novice users. A

starting point for the troubleshooting could be for the algorithm to first identify the crashed

product and then recommend possible solutions such as to increase lookahead time, increase

buffer size, increase the production rate, decrease usage rate, increase buffer threshold, or reduce

changeover costs. Depending upon the type of production system that is being modeled, it may

not be possible to implement some of the recommended solutions, such as increasing the

production rate or decreasing the usage rate. Often time the production capacity is a limiting

factor and cannot be improved without a significant capital investment such as buying addition

machines. The usage rate or customer demand is also often beyond the control of the

manufacturer and if demand cannot be met then sales are lost [86]. Many manufacturers can

benefit from implementing Lean principles to decrease setup and changeover cost which could

aid the algorithm in being able to determine a non-crashing production sequence.

A final area of future work for the sequencing algorithm is the computational efficiency of the

code used for the algorithm. The algorithm was developed in the midst of learning the

programming language; therefore it is not eloquent or nor efficient. Reviewing the data handling

methods could reveal a significant improvement in computational efficiency.

Copyright © John Thomas Henninger 2009

184

Appendix I: Stability Algorithm Implementation

185

Stability Algorithm:
clear all;
global num_of_prods,global setup,global U,global l,global l,global PR,global rho,global flag, global flag_length,global arc,global
node,global flag_ini,global num_of_arcs,global arcs, global message,global num_of_prods,global i,global flag,global cur_prod,global
node, global change_flag,global arcs_in,global arcs_out,global index_arc_i,global index_arc_j, global sheet_num_index,global
sheet_num_out_index,global limit_out_max,global limit_out_min,global limit_in_max,global limit_in_min,global
limit_out_max_new,global limit_out_min_new,global limit_in_max_new,global limit_in_min_new,global arc_star, global
arc_int,global flag,global flag_length,global star_flag,global cleanup_flag_y, global cleanup_flag_x,global arc_stored, global
arc_stored_index, global arc_intersected, global arc_int,global idle_flag,global sheet_index2,global flag_no_intersection

num_of_prods=3;
int_check_skip=0;
backward_stability=1;%set to 1 for checking sability backward propagation, 0 for forward check only
i=1;
flag_index=1;
initialize_stability(num_of_prods);
flag_ini=flag;
initialize_arc_limits(arcs,node,U,l,num_of_arcs,num_of_prods);
while (flag_index < 550) && (flag_length < 500) && (flag_length > 0)
 set_node_num(node);
 set_node_arcs(i,arcs,num_of_arcs);
 change_flag = 0;
 arc_stored_index=1;
 sheet_index2=1;
 arc_outer_loop_index=0;
 arc_int_outer_loop_index=0;
 for arc_out_index=1:index_arc_j%-1
 arc_outer_loop_index=arc_outer_loop_index+1;
 arc_inner_loop_index=0;
 arc_out=arcs_out(arc_out_index,:);
 arc_a = arc_out(1,1);
 arc_b = arc_out(1,2);
 arc_org(arc_out(1,1),arc_out(1,2)).limits = arc(arc_out(1,1),arc_out(1,2)).limits;
 arc_int(arc_a,arc_b).limits(num_of_prods,2,:)=[0];
 for sheet_num_out_index=1:size(arc(i,arc_out(1,2)).limits,3);
 arc_int_outer_loop_index=arc_int_outer_loop_index+1;
 arc_int_outer_sheet_index=sheet_num_out_index;
 %y/x_star is to be reset each time the following loops repeat
 for arc_in_index=1:index_arc_i%-1
 arc_in=arcs_in(arc_in_index,:);
 for sheet_num_index=1:size(arc(arc_in(1,1),i).limits,3);
 arc_inner_loop_index=arc_inner_loop_index+1;
 arc_inner_no_int=arcs_in(arc_in_index,:);
 arc_inner_no_int_index=sheet_num_index;
 set_current_limits(i,U,arc,arc_in,arc_out,arc_inner_loop_index,sheet_num_index,sheet_num_out_index);
 set_node_time(limit_in_max,limit_in_min,i,setup,cur_prod,U,PR,rho,arc,arc_in,arc_out,flag_index,

arc_inner_loop_index,sheet_num_out_index,sheet_num_index,l);
 for k=1:num_of_prods
 calculate_new_out_limits(k,i,U,rho,l,node,arc,arc_in,arc_out,arc_inner_loop_index,sheet_num_index,

sheet_num_out_index,limit_out_max,limit_out_min,limit_in_max,limit_in_min,idle_flag);
 end
 calculate_x_star(limit_in_max_new,limit_in_min_new,limit_out_max_new,limit_out_min_new,k,i,U,rho,l,node,

arc,arc_in,arc_out,arc_inner_loop_index,sheet_num_index,sheet_num_out_index,limit_out_max,limit_out_min,limit
_in_max,limit_in_min,num_of_prods,num_of_arcs,arcs);

 arc_int_check(arc_a,arc_b).limits=arc_star(arc_a,arc_b).limits(:,:,arc_inner_loop_index);
 if flag_index > int_check_skip
 intersection_arc_int_check(arcs,num_of_arcs,limit_in_max_new,limit_in_min_new,limit_out_max_new,

limit_out_min_new,k,i,U,rho,l,node,arc_in,arc_out,arc_inner_loop_index,sheet_num_index,sheet_num_out_index,li
mit_out_max,limit_out_min,limit_in_max,limit_in_min,num_of_prods,flag_index,arc_a,arc_b,sheet_index2,arc_inne
r_no_int,arc_inner_no_int_index,arc_int_check,arc_outer_loop_index,arc_int_outer_loop_index,arc_int_outer_sheet
_index);

 end
 end
 end
 end
 if size(arc_star(arc_a,arc_b).limits,2) > 0
 intersect_arc_star(arcs,num_of_arcs,limit_in_max_new,limit_in_min_new,limit_out_max_new,limit_out_min_new,

k,i,U,rho,l,node,arc_in,arc_out,arc_inner_loop_index,sheet_num_index,sheet_num_out_index,limit_out_max,limit_out_mi
n,limit_in_max,limit_in_min,num_of_prods,flag_index,arc_a,arc_b);

186

 end
 arc(arc_a,arc_b).limits=arc_int(arc_a,arc_b).limits;
 if size(arc(arc_a,arc_b).limits,3) >1
 cleanup_sheets(num_of_prods,arc_a,arc_b);
 end
 if size(arc(arc_a,arc_b).limits,3)>1
 union_arc(arc_int,arcs,num_of_arcs,limit_in_max_new,limit_in_min_new,limit_out_max_new,limit_out_min_new,

k,i,U,rho,l,node,arc_in,arc_out,arc_inner_loop_index,sheet_num_index,sheet_num_out_index,limit_out_max,limit_out_mi
n,limit_in_max,limit_in_min,num_of_prods,flag_index,arc_a,arc_b);

 end
 cleanup_sheets(num_of_prods,arc_a,arc_b);
 set_change_flag(arc,arc_org,num_of_prods,arc_a,arc_b,flag_index);
 update_change_flag_out(i,arc_in,arc_out,arcs_in,arcs_out);
 change_flag=0;
 end
 if flag_index > int_check_skip
 for arc_in_index=1:index_arc_i
 arc_in=arcs_in(arc_in_index,:);
 y=size(flag_no_intersection(arc_in(1,1),arc_in(1,2)).sheet,1);
 z=size(flag_no_intersection(arc_in(1,1),arc_in(1,2)).sheet,2);
 int_index=1;
 for int_index_row=1:y
 if min(flag_no_intersection(arc_in(1,1),arc_in(1,2)).sheet(int_index_row,:)) == 1
 arc(arc_in(1,1),arc_in(1,2)).limits(:,:,int_index_row)=0;
 change_flag=1;
 update_change_flag(i,arc_in,arc_out,arcs_in,arcs_out);
 end
 end
 end
 int_index_column=0;
 if backward_stability == 1
 for arc_out_index=1:index_arc_j
 arc_out=arcs_out(arc_out_index,:);
 z=size(arc_org(arc_out(1,1),arc_out(1,2)).limits,3);
 int_index=1;
 column_flag=[];
 while int_index <= z
 int_index_column=int_index_column+1;
 for arc_in_index=1:index_arc_i
 arc_in=arcs_in(arc_in_index,:);
 if min(flag_no_intersection(arc_in(1,1),arc_in(1,2)).sheet (:,int_index_column)) == 1
 column_flag(1,arc_in_index)=1;
 else
 column_flag(1,arc_in_index)=0;
 arc_in_index=index_arc_i;
 break
 end
 end
 if min(column_flag) == 1
 equal_flag=0;
 for sht_index=1:size(arc(arc_out(1,1),arc_out(1,2)).limits,3);
 for prod_index=1:num_of_prods
 if arc(arc_out(1,1),arc_out(1,2)).limits(k,:,sht_index)==arc_org(arc_out(1,1),arc_out(1,2)).limits(k,:,int_index);
 equal_flag=equal_flag+1;
 else
 break
 end
 end
 if equal_flag==num_of_prods
 arc(arc_out(1,1),arc_out(1,2)).limits(:,:,sht_index)=0;
 break
 end
 equal_flag=0;
 end
 change_flag=1;
 update_change_flag(i,arc_in,arc_out,arcs_in,arcs_out);
 end
 int_index=int_index+1;
 change_flag=0;
 end

187

 end
 end
 end

 flag_no_intersection(:,:)=[];
 arc_outer_loop_index=0;
 arc_int_outer_loop_index=0;
 for arc_in_index=1:index_arc_i
 arc_outer_loop_index=arc_outer_loop_index+1;
 arc_in=arcs_in(arc_in_index,:);
 arc_inner_loop_index=0;
 arc_a = arc_in(1,1);
 arc_b = arc_in(1,2);
 arc_org(arc_in(1,1),arc_in(1,2)).limits = arc(arc_in(1,1),arc_in(1,2)).limits;
 arc_int(arc_a,arc_b).limits(num_of_prods,2,:)=[0];
 for sheet_num_index=1:size(arc(arc_in(1,1),i).limits,3);
 arc_int_outer_loop_index=arc_int_outer_loop_index+1;
 arc_int_outer_sheet_index=sheet_num_index;
 %x/y_star is cleared each time the following loop is repeated
 for arc_out_index=1:index_arc_j%-1
 arc_out=arcs_out(arc_out_index,:);
 for sheet_num_out_index=1:size(arc(i,arc_out(1,2)).limits,3);
 arc_inner_loop_index=arc_inner_loop_index+1;
 arc_inner_no_int=arcs_out(arc_out_index,:);
 arc_inner_no_int_index=sheet_num_out_index;
 set_current_limits(i,U,arc,arc_in,arc_out,arc_inner_loop_index,sheet_num_index,sheet_num_out_index);
 set_node_time(limit_in_max,limit_in_min,i,setup,cur_prod,U,PR,rho,arc,arc_in,arc_out,flag_index,

arc_inner_loop_index,sheet_num_out_index,sheet_num_index,l);
 for k=1:num_of_prods
 calculate_new_in_limits(k,i,U,rho,l,node,arc,arc_in,arc_out,arc_inner_loop_index,sheet_num_index,

sheet_num_out_index,limit_out_max,limit_out_min,limit_in_max,limit_in_min,idle_flag);
 end
 calculate_y_star(limit_in_max_new,limit_in_min_new,limit_out_max_new,limit_out_min_new,k,i,U,rho,

l,node,arc,arc_in,arc_out,arc_inner_loop_index,sheet_num_index,sheet_num_out_index,limit_out_max,limit_out_mi
n,limit_in_max,limit_in_min,num_of_prods,num_of_arcs,arcs);

 arc_int_check(arc_a,arc_b).limits=arc_star(arc_a,arc_b).limits(:,:,arc_inner_loop_index);
 if flag_index > int_check_skip
 intersection_arc_int_check(arcs,num_of_arcs,limit_in_max_new,limit_in_min_new,limit_out_max_new,

limit_out_min_new,k,i,U,rho,l,node,arc_in,arc_out,arc_inner_loop_index,sheet_num_index,sheet_num_out_index,li
mit_out_max,limit_out_min,limit_in_max,limit_in_min,num_of_prods,flag_index,arc_a,arc_b,sheet_index2,arc_inne
r_no_int,arc_inner_no_int_index,arc_int_check,arc_outer_loop_index,arc_int_outer_loop_index,arc_int_outer_sheet
_index);

 end
 end
 end
 end
 if size(arc_star(arc_a,arc_b).limits,2) > 0
 intersect_arc_star(arcs,num_of_arcs,limit_in_max_new,limit_in_min_new,limit_out_max_new,limit_out_min_new,

k,i,U,rho,l,node,arc_in,arc_out,arc_inner_loop_index,sheet_num_index,sheet_num_out_index,limit_out_max,limit_out_mi
n,limit_in_max,limit_in_min,num_of_prods,flag_index,arc_a,arc_b);

 end
 arc(arc_a,arc_b).limits=arc_int(arc_a,arc_b).limits;
 if size(arc(arc_a,arc_b).limits,3) >1
 cleanup_sheets(num_of_prods,arc_a,arc_b);
 end
 if size(arc(arc_a,arc_b).limits,3)>1
 union_arc(arc_int,arcs,num_of_arcs,limit_in_max_new,limit_in_min_new,limit_out_max_new,limit_out_min_new,

k,i,U,rho,l,node,arc_in,arc_out,arc_inner_loop_index,sheet_num_index,sheet_num_out_index,limit_out_max,limit_out_mi
n,limit_in_max,limit_in_min,num_of_prods,flag_index,arc_a,arc_b);

 end
 cleanup_sheets(num_of_prods,arc_a,arc_b);
 set_change_flag(arc,arc_org,num_of_prods,arc_a,arc_b,flag_index);
 update_change_flag_in(i,arc_in,arc_out,arcs_in,arcs_out);
 change_flag=0;
 end
 if flag_index > int_check_skip
 if backward_stability == 1
 for arc_out_index=1:index_arc_j%-1
 arc_out=arcs_out(arc_out_index,:);
 y=size(flag_no_intersection(arc_out(1,1),arc_out(1,2)).sheet,1);

188

 z=size(flag_no_intersection(arc_out(1,1),arc_out(1,2)).sheet,2);
 int_index=1;
 for int_index_row=1:y
 if min(flag_no_intersection(arc_out(1,1),arc_out(1,2)).sheet(int_index_row,:)) == 1
 arc(arc_out(1,1),arc_out(1,2)).limits(:,:,int_index_row)=0;
 change_flag=1;
 update_change_flag(i,arc_in,arc_out,arcs_in,arcs_out);
 end
 end
 end
 end
 int_index_column=0;
 for arc_in_index=1:index_arc_i%-1
 arc_in=arcs_in(arc_in_index,:);
 z=size(arc_org(arc_in(1,1),arc_in(1,2)).limits,3);
 int_index=1;
 column_flag=0;
 while int_index <= z
 int_index_column=int_index_column+1;
 for arc_out_index=1:index_arc_j
 arc_out=arcs_out(arc_out_index,:);
 if min(flag_no_intersection(arc_out(1,1),arc_out(1,2)).sheet(:,int_index_column)) == 1
 column_flag(1,arc_out_index)=1;
 else
 column_flag(1,arc_out_index)=0;
 arc_out_index=index_arc_j;
 break
 end
 end
 if (min(column_flag) == 1) && max(max(arc_org(arc_in(1,1),arc_in(1,2)).limits(:,:,int_index))) > 0
 equal_flag=0;
 for sht_index=1:size(arc(arc_in(1,1),arc_in(1,2)).limits,3)
 for prod_index=1:num_of_prods

 if arc(arc_in(1,1),arc_in(1,2)).limits(k,:,sht_index)==arc_org(arc_in(1,1),arc_in(1,2)).limits(k,:,int_index);
 equal_flag=equal_flag+1;
 else
 break
 end
 end
 if equal_flag==num_of_prods
 arc(arc_in(1,1),arc_in(1,2)).limits(:,:,sht_index)=0;
 break
 end
 equal_flag=0;
 end
 change_flag=1;
 update_change_flag(i,arc_in,arc_out,arcs_in,arcs_out);
 end
 change_flag=0;
 int_index=int_index+1;
 end
 end
 end
 flag_no_intersection(:,:)=[];
 flag_index=flag_index+1;
 update_node_number(i);
end
for i=1:num_of_arcs
 for j = 1:num_of_arcs
 if arcs(i,j) == 1
 arc_stored(i,j).limits=arc(i,j).limits;
 disp([i,j;])
 disp(round(arc(i,j).limits))
 end
 end
end

189

initialize_stability Function:
function [arcs,arc,node,U,l,setup,PR,rho,flag,flag_length,num_of_arcs,message,i,flag_no_intersection]

=initialize_stability(num_of_prods);
global setup,global U,global l,global l,global PR,global rho,global flag,global flag_length,global arc,global node,global
num_of_arcs,global arcs,global message
% define node type -- 1=idle, 2=setup, 3=fill
node(1).type=1; node(2).type=2;node(3).type=3; node(4).type=2;node(5).type=3; node(6).type=2;node(7).type=3;
% define the prod number for each node
node(2).product_num=1; node(3).product_num=1; node(4).product_num=2; node(5).product_num=2; node(6).product_num=3;
node(7).product_num=3;
setup=[5;5;5;5;5;5;5;5;5;];%setup cost (from,to)
U=[100;100;100;];%upper limit of product(i)
l=[99.9;99.9;99.9;];%lower limit of product(i)
PR=[30;30;30;];%production rate of product(i)
rho=[3;3;3;];%usage rate of product(i)
flag=[1 2 3 4 5 6 7 ;];
% three prods going thur idle or not
arcs=[0 1 0 1 0 1 0;%1 idle
 0 0 1 0 0 0 0;%2 setup1
 1 0 0 1 0 1 0;%3 fill 1
 0 0 0 0 1 0 0;%4 setup 2
 1 1 0 0 0 1 0;%5 fill 2
 0 0 0 0 0 0 1;%6 setup 3
 1 1 0 1 0 0 0;];%7 fill 3 %the connections of the network (from,to) for
flag_length=length(flag);
num_of_arcs=length(arcs);
message=0;
arc_index=1;
for i=1:num_of_arcs
 for j=1:num_of_arcs
 if arcs(i,j)==1
 for k=1:num_of_prods
 arc(i,j).limits(k,:)=[0 U(k);];
 end
 end
 end
end
flag_no_intersection(i,j).sheet(1)=0;
i=0;

initialize_arc_limits Function:
function [arc]=initialize_arc_limits(arcs,node,U,l,num_of_arcs,num_of_prods);
global arc
for i=1:num_of_arcs
 for j=1:num_of_arcs
 if arcs(i,j)==1
 node_type_in=node(j).type;
 node_type_out=node(i).type;
 out_product=node(i).product_num;
 in_product=node(j).product_num;
 for k=1:num_of_prods
 %for setup node and product being setup, set max=l(k)

 if node_type_in == 2 && in_product == k
 arc(i,j).limits(k,2)=l(k);
 end
 %for entering into idle node, min value l(k) for all k

 if node_type_in == 1
 arc(i,j).limits(k,1)=l(k);
 end
 %outgoing arc constraints
 if node_type_out == 1 %for idle node, set minimum out going value at l(k)
 arc(i,j).limits(k,1)=l(k);
 end
 %for fill node and product being filled, set min=max=U(k)

 if node_type_out == 3 && out_product == k
 arc(i,j).limits(k,:)=[U(k) U(k);];

190

 end
 end
 end
 end
end

set_node_num Function:
function [i,cur_prod,flag]=set_node_num(node);
global i, global flag
i=flag(1);
if node(i).type ~= 1
 global cur_prod
 cur_prod=node(i).product_num;
end

set_node_arcs Function:
function [arcs_in,arcs_out,index_arc_i,index_arc_j,sheet_num_index]=set_node_arcs(i,arcs,num_of_arcs)
global arcs_in,global arcs_out,global index_arc_i,global index_arc_j,global sheet_num_index
arcs_out=[];
arcs_in=[];
index_arc_i=1;
index_arc_j=1;
%define all the possile in and out arcs for a given node.
for j = 1:num_of_arcs
 if arcs(i,j) == 1
 arcs_out(index_arc_i,:)= [i,j;];
 index_arc_i=index_arc_i+1;
 end
 if arcs(j,i) == 1
 arcs_in(index_arc_j,:) = [j,i;];
 index_arc_j=index_arc_j+1;
 end
end
sheet_num_index=1;
in_size=size(arcs_in);
out_size=size(arcs_out);
index_arc_i=in_size(1);
index_arc_j=out_size(1);

set_current_limits Function:
function[limit_out_max,limit_out_min,limit_in_max,limit_in_min,limit_out_max_new,limit_out_min_new,limit_in_max_new,

limit_in_min_new]=set_current_limits(i,U,arc,arc_in,arc_out,arc_inner_loop_index,sheet_num_index,sheet_num_out_index)
global limit_out_max,global limit_out_min,global limit_in_max,global limit_in_min, global limit_out_max_new,global
limit_out_min_new,global limit_in_max_new,globallimit_in_min_new
%this defines the current limit values for in and out, min and max
limit_in_max=arc(arc_in(1,1),i).limits(:,2,sheet_num_index); limit_in_min=arc(arc_in(1,1),i).limits(:,1,sheet_num_index);
limit_out_max=arc(i,arc_out(1,2)).limits(:,2,sheet_num_out_index);
limit_out_min=arc(i,arc_out(1,2)).limits(:,1,sheet_num_out_index); limit_out_max_new=limit_out_max(:);
limit_out_min_new=limit_out_min(:);
limit_in_max_new=limit_in_max(:);
limit_in_min_new=limit_in_min(:);

set_node_time Function:
function [node]=set_node_time(limit_in_max,limit_in_min,i,setup,cur_prod,U,PR,rho,arc,arc_in,arc_out,flag_index,

arc_inner_loop_index,sheet_num_out_index,sheet_num_index,l);
global node, global num_of_prods

191

%this group of if statements are to calculate the amount of time required to pass through the node
if node(i).type == 1
 node(i).time_delta_max=(arc(arc_in(1,1),arc_in(1,2)).limits(node(arc_out(1,2)).product_num,2,sheet_num_index)

-l(node(arc_out(1,2)).product_num))/rho(node(arc_out(1,2)).product_num);
 node(i).time_delta_min=(arc(arc_in(1,1),arc_in(1,2)).limits(node(arc_out(1,2)).product_num,1,sheet_num_index)

-l(node(arc_out(1,2)).product_num))/rho(node(arc_out(1,2)).product_num);;
end
if node(i).type == 2
 node(i).time_delta=setup(cur_prod);
end
if node(i).type == 3
 node(i).time_delta_max=(U(cur_prod)-arc(arc_in(1),arc_in(2)).limits(cur_prod,1,sheet_num_index))/(PR(cur_prod)

-rho(cur_prod));
 node(i).time_delta_min=(U(cur_prod)-arc(arc_in(1),arc_in(2)).limits(cur_prod,2,sheet_num_index))/(PR(cur_prod)-rho(cur_prod));
end

calculate_new_out_limits Function:
function[limit_out_max_new,limit_out_min_new]=calculate_new_out_limits(k,i,U,rho,l,node,arc,arc_in,arc_out,arc_inner_loop_

index,sheet_num_index,sheet_num_out_index,limit_out_max,limit_out_min,limit_in_max,limit_in_min,idle_flag)
global limit_out_max_new,global limit_out_min_new
if node(i).type == 1 %for idle node
 if node(arc_out(1,2)).product_num ~= k
 idle_time_min=max(0,node(i).time_delta_min);
 idle_time_max=max(0,node(i).time_delta_max);
 limit_out_max_new(k)=limit_in_max(k)-idle_time_min*rho(k);;
 limit_out_min_new(k)=min(limit_in_min(k)-idle_time_min*rho(k),limit_in_max(k)-idle_time_max*rho(k));
 end
end
if node(i).type == 2 %for setup node
 limit_out_min_new(k)=limit_in_min(k) - node(i).time_delta*rho(k) ;
 limit_out_max_new(k)=limit_in_max(k) - node(i).time_delta*rho(k) ;
end
if node(i).type == 3 %for fill node
 if node(i).product_num ~= k
 limit_out_min_new(k)=limit_in_min(k) - node(i).time_delta_max*rho(k);
 limit_out_max_new(k)=limit_in_max(k) - node(i).time_delta_min*rho(k);
 end
end

calculate_x_star Function:
function[arc_star,change_flag]=calculate_x_star(limit_in_max_new,limit_in_min_new,limit_out_max_new,limit_out_min_new,k,i,

U,rho,l,node,arc,arc_in,arc_out,arc_inner_loop_index,sheet_num_index,sheet_num_out_index,limit_out_max,limit_out_min,lim
it_in_max,limit_in_min,num_of_prods,num_of_arcs,arcs);

global arc_star, global change_flag
for o=1:num_of_prods
 arc_star(arc_out(1),arc_out(2)).limits(o,:,arc_inner_loop_index)=[0 0;];
 end
for k=1:num_of_prods
 arc_star(arc_out(1,1),arc_out(1,2)).limits(k,2,arc_inner_loop_index)=limit_out_max_new(k);
 arc_star(arc_out(1,1),arc_out(1,2)).limits(k,1,arc_inner_loop_index)=limit_out_min_new(k);
end
flag_equal=[];
a=arc_out(1,1);b=arc_out(1,2);
if size(arc_star(a,b).limits,3) >= 1
 z=size(arc_star(a,b).limits,3);
 m=arc_inner_loop_index;
 while m <= z
 for k=1:num_of_prods
 if (arc_star(a,b).limits(k,1,m)) == (arc_star(a,b).limits(k,2,m))
 flag_equal(k,1)=1;
 else
 flag_equal(k,1)=0;
 end

192

 end
 if min(min(flag_equal(:,:))) == 1
 arc_star(a,b).limits(:,:,m)=0;
 end
 flag_equal=[];
 m=m+1;
 end
end
flag_equal=[];
a=arc_out(1,1);b=arc_out(1,2);
if size(arc_star(a,b).limits,3) >= 1
 z=size(arc_star(a,b).limits,3);
 m=arc_inner_loop_index;
 while m <= z
 for k=1:num_of_prods
 if (arc_star(a,b).limits(k,1,m)) > (arc_star(a,b).limits(k,2,m))
 flag_equal(k,1)=1;
 else
 flag_equal(k,1)=0;
 end
 end
 if max(min(flag_equal(:,:))) == 1
 arc_star(a,b).limits(:,:,m)=0;
 end
 flag_equal=[];
 m=m+1;
 end
end

intersection_arc_int_check Function:
function[arc,arc_int_check,cleanup_flag,arc_int,flag_no_intersection,sheet_index2]=intersection_arc_int_check(arcs,num_of_arcs,

limit_in_max_new,limit_in_min_new,limit_out_max_new,limit_out_min_new,k,i,U,rho,l,node,arc_in,arc_out,arc_inner_loop_i
ndex,sheet_num_index,sheet_num_out_index,limit_out_max,limit_out_min,limit_in_max,limit_in_min,num_of_prods,flag_inde
x,arc_a,arc_b,sheet_index2,arc_inner_no_int,arc_inner_no_int_index,arc_int_check,arc_outer_loop_index,arc_int_outer_loop_i
ndex,arc_int_outer_sheet_index);

global flag,global arc,global temp5,global arc_int,global flag_no_intersection,global arcs_in, global arcs_out
flag_no_intersection(arc_inner_no_int(1,1),arc_inner_no_int(1,2)).sheet(arc_inner_no_int_index,arc_int_outer_loop_index)=1;
m=arc_int_outer_sheet_index;
n=1;
flag_overlap=0;
for k=1:num_of_prods
 %check to make sure all ranges of prods are ovelapping and intersection does exist
 if ((arc(arc_a,arc_b).limits(k,1,m)) <= (arc_int_check(arc_a,arc_b).limits(k,2,n)) && (arc(arc_a,arc_b).limits(k,2,m))
 >= (arc_int_check(arc_a,arc_b).limits(k,1,n)))
 flag_overlap=flag_overlap+1;
 else
 if ((arc(arc_a,arc_b).limits(k,1,m)) >= (arc_int_check(arc_a,arc_b).limits(k,2,n)) && (arc(arc_a,arc_b).limits(k,2,m))

 <= (arc_int_check(arc_a,arc_b).limits(k,1,n)))
 flag_overlap=flag_overlap+1;
 end
 end
end
if flag_overlap >= num_of_prods
 flag_no_intersection(arc_inner_no_int(1,1),arc_inner_no_int(1,2)).sheet(arc_inner_no_int_index,arc_int_outer_loop_index)=0;
end
if max(max(arc(arc_inner_no_int(1,1),arc_inner_no_int(1,2)).limits(:,:,arc_inner_no_int_index)))==0
 flag_no_intersection(arc_inner_no_int(1,1),arc_inner_no_int(1,2)).sheet(arc_inner_no_int_index,arc_int_outer_loop_index)=0;
end

intersect_arc_star Function:
function[arc,arc_star,cleanup_flag,arc_int,flag_no_intersection,sheet_index2]=intersect_arc_star(arcs,num_of_arcs,limit_in_max

193

_new,limit_in_min_new,limit_out_max_new,limit_out_min_new,k,i,U,rho,l,node,arc_in,arc_out,arc_inner_loop_index,sheet_nu
m_index,sheet_num_out_index,limit_out_max,limit_out_min,limit_in_max,limit_in_min,num_of_prods,flag_index,arc_a,arc_b,
sheet_index2,flag_no_intersection)

global flag,global arc,global arc_star,global temp5, global arc_int,global flag_no_intersection,global sheet_index2,global arcs_in,
global arcs_out
empty_star=1;
empty_arc=1;
empty_special=0;
%intersection of non-special cases (ie. cases in which the min<>max for any product k
sheet_index=1;
temp5(arc_a,arc_b).limits=[];
temp6(arc_a,arc_b).limits=[];
arc_int(arc_a,arc_b).limits=[];
z_arc=(size(arc(arc_a,arc_b).limits,3));
z_star=(size(arc_star(arc_a,arc_b).limits,3));
sheet_index=1;
m=1;
while m<=z_arc
 n=1;
 flag_unique=0;
 cleanup_flag=[];
 while n<=z_star
 flag_updated=0;
 %this will find the intersection of two regions that share boundaries of num_of_prods-1 product(s)
 if flag_updated==0;
 flag_overlap=0;
 for k=1:num_of_prods
 %check to make sure all ranges of prods are ovelapping and intersection does exist
 if ((arc(arc_a,arc_b).limits(k,1,m)) <= (arc_star(arc_a,arc_b).limits(k,2,n)) && (arc(arc_a,arc_b).limits(k,2,m))

>= (arc_star(arc_a,arc_b).limits(k,1,n)))
 flag_overlap=flag_overlap+1;
 else
 if ((arc(arc_a,arc_b).limits(k,1,m)) >= (arc_star(arc_a,arc_b).limits(k,2,n)) && (arc(arc_a,arc_b).limits(k,2,m))

 <= (arc_star(arc_a,arc_b).limits(k,1,n)))
 flag_overlap=flag_overlap+1;
 end
 end
 end
 if flag_overlap >= num_of_prods%-1
 for k=1:num_of_prods
 temp5(arc_a,arc_b).limits(k,1,sheet_index)=max((arc(arc_a,arc_b).limits(k,1,m)),(arc_star(arc_a,arc_b).limits(k,1,n)));
 temp5(arc_a,arc_b).limits(k,2,sheet_index)=min((arc(arc_a,arc_b).limits(k,2,m)),(arc_star(arc_a,arc_b).limits(k,2,n)));
 flag_unique=1;
 flag_updated=1;
 end
 end
 %if flag_unique is equal to 0 if arc(m) has not been intersected with any other regions of arc_star(n)
 if flag_unique==0 && n==z_star
 temp5(arc_a,arc_b).limits(:,:,sheet_index)=arc(arc_a,arc_b).limits(:,:,m);
 flag_updated=1;
 arc_flag = 0;
 end
 if flag_updated==1
 sheet_index=sheet_index+1;
 end
 end
 n=n+1;
 end
 m=m+1;
end
z_temp=(size(temp5(arc_a,arc_b).limits,3));
j=1;
arc_star(arc_a,arc_b).limits=[];
arc_int(arc_a,arc_b).limits=temp5(arc_a,arc_b).limits;

194

cleanup_sheets Function:
function[arc,arc_star]=cleanup_sheets(num_of_prods,arc_a,arc_b)
global arc,global arc_star,global flag,global U
tolerance = .25;
flag_equal=[];
a=arc_a;b=arc_b;
if size(arc(a,b).limits,2) > 1
 z=size(arc(a,b).limits,3);
 m=1;
 while m <= z
 for k=1:num_of_prods
 if (arc(a,b).limits(k,1,m)) > (arc(a,b).limits(k,2,m))
 flag_equal(k,1,m)=1;
 else
 flag_equal(k,1,m)=0;
 end
 end
 if max(max(flag_equal(:,:,m))) == 1
 arc(a,b).limits(:,:,m)=[];
 z=size(arc(a,b).limits,3);
 if m>=1 && m<=z
 m=m-1;
 end
 end
 m=m+1;
 end
end
flag_equal=[];
if size(arc(a,b).limits,1) > 2 && size(arc(a,b).limits,3) > 1
 z=size(arc(a,b).limits,3);
 for m=1:z
 if m <= z
 for k=1:num_of_prods
 if abs((arc(a,b).limits(k,1,m)) - (arc(a,b).limits(k,2,m)))<tolerance
 flag_equal(k,1,m)=1;
 else
 flag_equal(k,1,m)=0;
 end
 end
 if min(min(flag_equal(:,:,m))) == 1
 arc(a,b).limits(:,:,m)=[];
 z=size(arc(a,b).limits,3);
 if m>=1 && m<=z
 m=m-1;
 end
 end
 end
 end
end
%check if min and max limits are 0, if so delete sheet
if size(arc(a,b).limits,3) > 1
 z=size(arc(a,b).limits,3);
 m=1;
 while m<=z && m>0 && z>1
 j=1;
 while j<=num_of_prods
 if max(max(arc(a,b).limits(j,:,m)))==0
 arc(a,b).limits(:,:,m)=[];
 z=size(arc(a,b).limits,3);
 j=num_of_prods;
 m=0;
 end
 j=j+1;
 end
 m=m+1;
 end
end
%check if sheets are equal, if so delete sheet
if size(arc(a,b).limits,3) > 1

195

 z=size(arc(a,b).limits,3);
 m=1;
 while m<=z-1 && m>0
 flag_equal=[];
 n=m+1;
 while n<=z
 for k=1:num_of_prods
 if (size(arc(a,b).limits,3)>=m)&&(m>0)&&(n<=z)
 if abs((arc(a,b).limits(k,1,m)) - (arc(a,b).limits(k,1,n))) < tolerance
 flag_equal(k,1,n)=1;
 else
 flag_equal(k,1,n)=0;
 end
 if abs((arc(a,b).limits(k,2,m)) - (arc(a,b).limits(k,2,n))) < tolerance
 flag_equal(k,2,n)=1;
 else
 flag_equal(k,1,n)=0;
 end
 end
 end
 if min(min(flag_equal(:,:,n))) == 1
 for k=1:num_of_prods
 arc(a,b).limits(k,1,z+1)=min(arc(a,b).limits(k,1,m),arc(a,b).limits(k,1,n));
 arc(a,b).limits(k,2,z+1)=max(arc(a,b).limits(k,2,m),arc(a,b).limits(k,2,n));
 end
 arc(a,b).limits(:,:,m)=[];
 arc(a,b).limits(:,:,n-1)=[];
 z=size(arc(a,b).limits,3);
 n=z;
 m=m-1;
 end
 n=n+1;
 end
 m=m+1;
 end
end

union_arc Function:
function[arc,cleanup_flag]=union_arc(arc_int,arcs,num_of_arcs,limit_in_max_new,limit_in_min_new,limit_out_max_new,

limit_out_min_new,k,i,U,rho,l,node,arc_in,arc_out,arc_inner_loop_index,sheet_num_index,sheet_num_out_index,limit_out_ma
x,limit_out_min,limit_in_max,limit_in_min,num_of_prods,flag_index,arc_a,arc_b)

global flag global arc
star=1;
empty_arc=1;
empty_special=0;
tolerance = .01;
tolerance_union = .01;
%the next few if statements are to remove subsets,supersets, and equivalent sheets from the arc matrix
z_arc=(size(arc(arc_a,arc_b).limits,3));
m=1;
sheet_index=1;
while m<=z_arc-1 && m>0
 n=1+m;
 flag_unique=0;
 cleanup_flag=[];
 while n<=z_arc
 flag_updated=0;
 if flag_updated==0;
 cleanup_flag(:,:,sheet_index)=[2];
 for k=1:num_of_prods
 if abs((arc(arc_a,arc_b).limits(k,1,m)) - (arc(arc_a,arc_b).limits(k,1,n))) < tolerance
 cleanup_flag(k,1,sheet_index)=0;
 else
 cleanup_flag(k,1,sheet_index)=2;
 break
 end

196

 if abs((arc(arc_a,arc_b).limits(k,2,m)) - (arc(arc_a,arc_b).limits(k,2,n))) < tolerance
 cleanup_flag(k,2,sheet_index)=0;
 else
 cleanup_flag(k,2,sheet_index)=2;
 break
 end
 end
 %if all are 0, then regions are equal
 if min(cleanup_flag(:,:,sheet_index))==0 & max(cleanup_flag(:,:,sheet_index))==0;
 arc(arc_a,arc_b).limits(:,:,n)=[];
 z_arc=(size(arc(arc_a,arc_b).limits,3));
 n=z_arc;
 m=0;
 flag_updated=1;
 flag_unique=1;
 end
 end

 if flag_updated==0
 cleanup_flag(:,:,sheet_index)=[2];
 for k=1:num_of_prods
 if (arc(arc_a,arc_b).limits(k,1,m)-tolerance <= arc(arc_a,arc_b).limits(k,1,n)) && (arc(arc_a,arc_b).limits(k,2,m)

 >= arc(arc_a,arc_b).limits(k,1,n)-tolerance)
 cleanup_flag(k,1,sheet_index)=-1;
 else
 cleanup_flag(k,1,sheet_index)=2;
 break
 end
 if (arc(arc_a,arc_b).limits(k,2,m) >= arc(arc_a,arc_b).limits(k,2,n)-tolerance) && (arc(arc_a,arc_b).limits(k,1,m)-

tolerance <= arc(arc_a,arc_b).limits(k,2,n))
 cleanup_flag(k,2,sheet_index)=-1;
 else
 cleanup_flag(k,2,sheet_index)=2;
 break
 end
 end
 %if all -1 then region arc(n) is complete subset of arc(m)
 if max(cleanup_flag(:,:,sheet_index))==-1 & min(cleanup_flag(:,:,sheet_index))==-1;
 arc(arc_a,arc_b).limits(:,:,n)=[];
 z_arc=(size(arc(arc_a,arc_b).limits,3));
 n=z_arc;
 m=0;%m-1;
 flag_updated=1;
 flag_unique=1;
 end
 end
 if flag_updated==0
 cleanup_flag(:,:,sheet_index)=[2];
 for k=1:num_of_prods
 if (arc(arc_a,arc_b).limits(k,1,m) >= arc(arc_a,arc_b).limits(k,1,n)-tolerance) && (arc(arc_a,arc_b).limits(k,1,m)-

tolerance <= arc(arc_a,arc_b).limits(k,2,n))
 cleanup_flag(k,1,sheet_index)=1;
 else
 cleanup_flag(k,1,sheet_index)=2;
 break
 end
 if (arc(arc_a,arc_b).limits(k,2,m)-tolerance <= arc(arc_a,arc_b).limits(k,2,n)) && (arc(arc_a,arc_b).limits(k,2,m)

>= arc(arc_a,arc_b).limits(k,1,n)-tolerance)
 cleanup_flag(k,2,sheet_index)=1;
 else
 cleanup_flag(k,2,sheet_index)=2;
 break
 end
 end
 if min(cleanup_flag(:,:,sheet_index))==1 & max(cleanup_flag(:,:,sheet_index))==1;
 arc(arc_a,arc_b).limits(:,:,m)=[];
 z_arc=(size(arc(arc_a,arc_b).limits,3));
 n=z_arc;
 m=0;
 flag_updated=1;

197

 flag_unique=1;
 end
 end
 if flag_updated==1
 sheet_index=sheet_index+1;
 end
 n=n+1;
 end
 m=m+1;
end
%this will find the union of multiple regions that share boundaries of num_of_prods-1 product(s)
temp5(arc_a,arc_b).limits=[];
temp6(arc_a,arc_b).limits=[];
z_arc=(size(arc(arc_a,arc_b).limits,3));
m=1;
sheet_index=1;
flag_updated=0;
flag_updated2=0;
while m<=z_arc-1 && m>0
 n=1+m;
 flag_unique=0;
 while n<=z_arc
 equal_flag=0;
 for k=1:num_of_prods
 if abs(arc(arc_a,arc_b).limits(k,1,m) - arc(arc_a,arc_b).limits(k,1,n)) <= tolerance_union &&

 abs(arc(arc_a,arc_b).limits(k,2,m) - arc(arc_a,arc_b).limits(k,2,n)) <= tolerance_union
 equal_flag=equal_flag+1;
 end
 end
 if equal_flag >= num_of_prods-1
 flag_overlap=0;
 for k=1:num_of_prods
 if ((arc(arc_a,arc_b).limits(k,1,m))-tolerance_union <= (arc(arc_a,arc_b).limits(k,2,n)) && (arc(arc_a,arc_b).limits(k,2,m))
 >= (arc(arc_a,arc_b).limits(k,1,n))-tolerance_union)
 flag_overlap=flag_overlap+1;
 else
 if ((arc(arc_a,arc_b).limits(k,1,m)) >= (arc(arc_a,arc_b).limits(k,2,n))-tolerance_union &&
 (arc(arc_a,arc_b).limits(k,2,m))-tolerance_union <= (arc(arc_a,arc_b).limits(k,1,n)))
 flag_overlap=flag_overlap+1;
 end
 end
 end
 if flag_overlap == num_of_prods
 for k=1:num_of_prods
 temp6(arc_a,arc_b).limits(k,1)=min(arc(arc_a,arc_b).limits(k,1,m),arc(arc_a,arc_b).limits(k,1,n));
 temp6(arc_a,arc_b).limits(k,2)=max(arc(arc_a,arc_b).limits(k,2,m),arc(arc_a,arc_b).limits(k,2,n));
 end
 merged_sheet1=m;
 merged_sheet2=n;
 arc(arc_a,arc_b).limits(:,:,merged_sheet1)=[];
 arc(arc_a,arc_b).limits(:,:,merged_sheet2-1)=[];
 z_arc=(size(arc(arc_a,arc_b).limits,3));
 arc(arc_a,arc_b).limits(:,:,z_arc+1)=temp6(arc_a,arc_b).limits;
 n=z_arc;
 m=0;
 temp6(arc_a,arc_b).limits=[];
 end
 end
 n=n+1;
 end
 m=m+1;
end
%the next few if statements are to remove subsets,supersets, and equivalent sheets from the arc matrix
z_arc=(size(arc(arc_a,arc_b).limits,3));
m=1;
sheet_index=1;
while m<=z_arc-1 && m>0
 n=1+m;
 flag_unique=0;
 cleanup_flag=[];

198

 while n<=z_arc
 flag_updated=0;
 if flag_updated==0;
 cleanup_flag(:,:,sheet_index)=[2];
 for k=1:num_of_prods
 if abs((arc(arc_a,arc_b).limits(k,1,m)) - (arc(arc_a,arc_b).limits(k,1,n))) <= tolerance
 cleanup_flag(k,1,sheet_index)=0;
 else
 cleanup_flag(k,1,sheet_index)=2;
 break
 end
 if abs((arc(arc_a,arc_b).limits(k,2,m)) - (arc(arc_a,arc_b).limits(k,2,n))) < tolerance
 cleanup_flag(k,2,sheet_index)=0;
 else
 cleanup_flag(k,2,sheet_index)=2;
 break
 end
 end
 %if all are 0, then regions are equal
 if min(cleanup_flag(:,:,sheet_index))==0 & max(cleanup_flag(:,:,sheet_index))==0;
 arc(arc_a,arc_b).limits(:,:,n)=[];
 z_arc=(size(arc(arc_a,arc_b).limits,3));
 n=z_arc;
 m=0;
 flag_updated=1;
 flag_unique=1;
 end
 end
 if flag_updated==0
 cleanup_flag(:,:,sheet_index)=[2];
 for k=1:num_of_prods
 if (arc(arc_a,arc_b).limits(k,1,m)-tolerance <= arc(arc_a,arc_b).limits(k,1,n)) && (arc(arc_a,arc_b).limits(k,2,m) >=

arc(arc_a,arc_b).limits(k,1,n)-tolerance)
 cleanup_flag(k,1,sheet_index)=-1;
 else
 cleanup_flag(k,1,sheet_index)=2;
 break
 end
 if (arc(arc_a,arc_b).limits(k,2,m) >= arc(arc_a,arc_b).limits(k,2,n)-tolerance) && (arc(arc_a,arc_b).limits(k,1,m)-tolerance

 <= arc(arc_a,arc_b).limits(k,2,n))
 cleanup_flag(k,2,sheet_index)=-1;
 else
 cleanup_flag(k,2,sheet_index)=2;
 break
 end
 end
 %if all -1 then region a1c(n) is complete subset of arc(m)
 if max(cleanup_flag(:,:,sheet_index))==-1 & min(cleanup_flag(:,:,sheet_index))==-1;
 arc(arc_a,arc_b).limits(:,:,n)=[];
 z_arc=(size(arc(arc_a,arc_b).limits,3));
 n=z_arc;
 m=0;
 flag_updated=1;
 flag_unique=1;
 end
 end
 if flag_updated==0
 cleanup_flag(:,:,sheet_index)=[2];
 for k=1:num_of_prods
 if (arc(arc_a,arc_b).limits(k,1,m) >= arc(arc_a,arc_b).limits(k,1,n)-tolerance) && (arc(arc_a,arc_b).limits(k,1,m)-tolerance

 <= arc(arc_a,arc_b).limits(k,2,n))
 cleanup_flag(k,1,sheet_index)=1;
 else
 cleanup_flag(k,1,sheet_index)=2;
 break
 end
 if (arc(arc_a,arc_b).limits(k,2,m)-tolerance <= arc(arc_a,arc_b).limits(k,2,n)) && (arc(arc_a,arc_b).limits(k,2,m) >=
 arc(arc_a,arc_b).limits(k,1,n)-tolerance)
 cleanup_flag(k,2,sheet_index)=1;
 else

199

 cleanup_flag(k,2,sheet_index)=2;
 break
 end
 end
 if min(cleanup_flag(:,:,sheet_index))==1 & max(cleanup_flag(:,:,sheet_index))==1;
 arc(arc_a,arc_b).limits(:,:,m)=[];
 z_arc=(size(arc(arc_a,arc_b).limits,3));
 n=z_arc;
 m=0;
 flag_updated=1;
 flag_unique=1;
 end
 end
 if flag_updated==1
 sheet_index=sheet_index+1;
 end
 n=n+1;
 end
 m=m+1;
end
%this will find the union of multiple regions that share boundaries of num_of_prods-1 product(s)
temp5(arc_a,arc_b).limits=[];
temp6(arc_a,arc_b).limits=[];
z_arc=(size(arc(arc_a,arc_b).limits,3));
m=1;
sheet_index=1;
flag_updated=0;
flag_updated2=0;
while m<=z_arc-1 && m>0
 n=1+m;
 flag_unique=0;
 while n<=z_arc
 equal_flag=0;
 for k=1:num_of_prods
 if abs(arc(arc_a,arc_b).limits(k,1,m) - arc(arc_a,arc_b).limits(k,1,n)) <= tolerance_union &&
 abs(arc(arc_a,arc_b).limits(k,2,m) - arc(arc_a,arc_b).limits(k,2,n)) <= tolerance_union
 equal_flag=equal_flag+1;
 end
 end
 if equal_flag >= num_of_prods-1
 flag_overlap=0;
 for k=1:num_of_prods
 if ((arc(arc_a,arc_b).limits(k,1,m))-tolerance_union <= (arc(arc_a,arc_b).limits(k,2,n)) && (arc(arc_a,arc_b).limits(k,2,m))
 >= (arc(arc_a,arc_b).limits(k,1,n))-tolerance_union)

 %check to make sure all ranges of prods are ovelapping and intersection does exist
 flag_overlap=flag_overlap+1;
 else
 if ((arc(arc_a,arc_b).limits(k,1,m)) >= (arc(arc_a,arc_b).limits(k,2,n))-tolerance_union &&
 (arc(arc_a,arc_b).limits(k,2,m))-tolerance_union <= (arc(arc_a,arc_b).limits(k,1,n)))
 flag_overlap=flag_overlap+1;
 end
 end
 end
 if flag_overlap == num_of_prods
 for k=1:num_of_prods
 temp6(arc_a,arc_b).limits(k,1)=min(arc(arc_a,arc_b).limits(k,1,m),arc(arc_a,arc_b).limits(k,1,n));
 temp6(arc_a,arc_b).limits(k,2)=max(arc(arc_a,arc_b).limits(k,2,m),arc(arc_a,arc_b).limits(k,2,n));
 end
 merged_sheet1=m;
 merged_sheet2=n;
 arc(arc_a,arc_b).limits(:,:,merged_sheet1)=[];
 arc(arc_a,arc_b).limits(:,:,merged_sheet2-1)=[];
 z_arc=(size(arc(arc_a,arc_b).limits,3));
 arc(arc_a,arc_b).limits(:,:,z_arc+1)=temp6(arc_a,arc_b).limits;
 n=z_arc;
 m=0;
 temp6(arc_a,arc_b).limits=[];
 end
 end
 n=n+1;

200

 end
 m=m+1;
end
%the next few if statements are to remove subsets, supersets, and equivalent sheets from the arc matrix
z_arc=(size(arc(arc_a,arc_b).limits,3));
m=1;
sheet_index=1;
while m<=z_arc-1 && m>0
 n=1+m;
 flag_unique=0;
 cleanup_flag=[];
 while n<=z_arc
 flag_updated=0;
 if flag_updated==0;
 cleanup_flag(:,:,sheet_index)=[2];
 for k=1:num_of_prods
 if abs((arc(arc_a,arc_b).limits(k,1,m)) - (arc(arc_a,arc_b).limits(k,1,n))) <= tolerance
 cleanup_flag(k,1,sheet_index)=0;
 else
 cleanup_flag(k,1,sheet_index)=2;
 break
 end
 if abs((arc(arc_a,arc_b).limits(k,2,m)) - (arc(arc_a,arc_b).limits(k,2,n))) < tolerance
 cleanup_flag(k,2,sheet_index)=0;
 else
 cleanup_flag(k,2,sheet_index)=2;
 break
 end
 end
 %if all are 0, then regions are equal
 if min(cleanup_flag(:,:,sheet_index))==0 & max(cleanup_flag(:,:,sheet_index))==0;
 arc(arc_a,arc_b).limits(:,:,n)=[];
 z_arc=(size(arc(arc_a,arc_b).limits,3));
 n=z_arc;
 m=0;
 flag_updated=1;
 flag_unique=1;
 end
 end
 if flag_updated==0
 cleanup_flag(:,:,sheet_index)=[2];
 for k=1:num_of_prods
 if (arc(arc_a,arc_b).limits(k,1,m)-tolerance <= arc(arc_a,arc_b).limits(k,1,n)) && (arc(arc_a,arc_b).limits(k,2,m) >=
 arc(arc_a,arc_b).limits(k,1,n)-tolerance)
 cleanup_flag(k,1,sheet_index)=-1;
 else
 cleanup_flag(k,1,sheet_index)=2;
 break
 end
 if (arc(arc_a,arc_b).limits(k,2,m) >= arc(arc_a,arc_b).limits(k,2,n)-tolerance) && (arc(arc_a,arc_b).limits(k,1,m)-tolerance
 <= arc(arc_a,arc_b).limits(k,2,n))
 cleanup_flag(k,2,sheet_index)=-1;
 else
 cleanup_flag(k,2,sheet_index)=2;
 break
 end
 end
 %if all -1 then region a1c(n) is complete subset of arc(m)
 if max(cleanup_flag(:,:,sheet_index))==-1 & min(cleanup_flag(:,:,sheet_index))==-1;
 arc(arc_a,arc_b).limits(:,:,n)=[];
 z_arc=(size(arc(arc_a,arc_b).limits,3));
 n=z_arc;
 m=0;
 flag_updated=1;
 flag_unique=1;
 end
 end
 if flag_updated==0
 cleanup_flag(:,:,sheet_index)=[2];
 for k=1:num_of_prods

201

 if (arc(arc_a,arc_b).limits(k,1,m) >= arc(arc_a,arc_b).limits(k,1,n)-tolerance) && (arc(arc_a,arc_b).limits(k,1,m)-tolerance
 <= arc(arc_a,arc_b).limits(k,2,n))
 cleanup_flag(k,1,sheet_index)=1;
 else
 cleanup_flag(k,1,sheet_index)=2;
 break
 end
 if (arc(arc_a,arc_b).limits(k,2,m)-tolerance <= arc(arc_a,arc_b).limits(k,2,n)) && (arc(arc_a,arc_b).limits(k,2,m) >=
 arc(arc_a,arc_b).limits(k,1,n)-tolerance)
 cleanup_flag(k,2,sheet_index)=1;
 else
 cleanup_flag(k,2,sheet_index)=2;
 break
 end
 end
 if min(cleanup_flag(:,:,sheet_index))==1 & max(cleanup_flag(:,:,sheet_index))==1;
 arc(arc_a,arc_b).limits(:,:,m)=[];
 z_arc=(size(arc(arc_a,arc_b).limits,3));
 n=z_arc;
 m=0;
 flag_updated=1;
 flag_unique=1;
 end
 end
 if flag_updated==1
 sheet_index=sheet_index+1;
 end
 n=n+1;
 end
 m=m+1;
end
%this will find the union of multiple regions that share boundaries of num_of_prods-1 product(s)
temp5(arc_a,arc_b).limits=[];
temp6(arc_a,arc_b).limits=[];
z_arc=(size(arc(arc_a,arc_b).limits,3));
m=1;
sheet_index=1;
flag_updated=0;
flag_updated2=0;
while m<=z_arc-1 && m>0
 n=1+m;
 flag_unique=0;
 while n<=z_arc
 equal_flag=0;
 for k=1:num_of_prods
 if abs(arc(arc_a,arc_b).limits(k,1,m) - arc(arc_a,arc_b).limits(k,1,n)) <= tolerance_union &&
 abs(arc(arc_a,arc_b).limits(k,2,m) - arc(arc_a,arc_b).limits(k,2,n)) <= tolerance_union
 equal_flag=equal_flag+1;
 end
 end
 if equal_flag >= num_of_prods-1
 flag_overlap=0;
 for k=1:num_of_prods
 if ((arc(arc_a,arc_b).limits(k,1,m))-tolerance_union <= (arc(arc_a,arc_b).limits(k,2,n)) && (arc(arc_a,arc_b).limits(k,2,m))
 >= (arc(arc_a,arc_b).limits(k,1,n))-tolerance_union)

 %check to make sure all ranges of prods are ovelapping and intersection does exist
 flag_overlap=flag_overlap+1;
 else
 if ((arc(arc_a,arc_b).limits(k,1,m)) >= (arc(arc_a,arc_b).limits(k,2,n))-tolerance_union &&
 (arc(arc_a,arc_b).limits(k,2,m))-tolerance_union <= (arc(arc_a,arc_b).limits(k,1,n)))
 flag_overlap=flag_overlap+1;
 end
 end
 end
 if flag_overlap == num_of_prods
 for k=1:num_of_prods
 temp6(arc_a,arc_b).limits(k,1)=min(arc(arc_a,arc_b).limits(k,1,m),arc(arc_a,arc_b).limits(k,1,n));
 temp6(arc_a,arc_b).limits(k,2)=max(arc(arc_a,arc_b).limits(k,2,m),arc(arc_a,arc_b).limits(k,2,n));
 end
 merged_sheet1=m;

202

 merged_sheet2=n;
 arc(arc_a,arc_b).limits(:,:,merged_sheet1)=[];
 arc(arc_a,arc_b).limits(:,:,merged_sheet2-1)=[];
 z_arc=(size(arc(arc_a,arc_b).limits,3));
 arc(arc_a,arc_b).limits(:,:,z_arc+1)=temp6(arc_a,arc_b).limits;
 n=z_arc;
 m=0;
 temp6(arc_a,arc_b).limits=[];
 end
 end
 n=n+1;
 end
 m=m+1;
end

set_change_flag Function:
function[change_flag,arc_stored,arc_stored_index,arc_intersected]=set_change_flag(arc,arc_org,num_of_prods,arc_a,arc_b,

flag_index);
global change_flag global arc_stored global arc_stored_index global arc_intersected, global arc_int
tolerance = .25;
z=size(arc(arc_a,arc_b).limits,3);
z_org=size(arc_org(arc_a,arc_b).limits,3);
temp_flag=0;
m=1;
if size(arc(arc_a,arc_b).limits,2)>0
 while m<=z && m>0
 flag_equal=[0];
 n=1;
 while n<=z_org
 for k=1:num_of_prods
 if abs((arc(arc_a,arc_b).limits(k,1,m)) - (arc_org(arc_a,arc_b).limits(k,1,n))) <= tolerance
 flag_equal(k,1,n)=1;
 else
 flag_equal(k,1,n)=0;
 end
 if abs((arc(arc_a,arc_b).limits(k,2,m)) - (arc_org(arc_a,arc_b).limits(k,2,n))) <= tolerance
 flag_equal(k,2,n)=1;
 else
 flag_equal(k,1,n)=0;
 end
 end
 if min(min(flag_equal(:,:,n))) == 1%the two regions are equal
 temp_flag=1+temp_flag;
 n=z_org;
 break
 end
 n=n+1;
 end
 if n == z_org+1 && min(min(min(flag_equal))) == 0
 arc(arc_a,arc_b).limits(:,:,m);
 end
 m=m+1;
 end
 arc_stored(arc_a,arc_b,flag_index,arc_stored_index).limits=arc(arc_a,arc_b).limits;
 arc_stored_index=1+arc_stored_index;
 if temp_flag < z_org & z > 0;
 change_flag = 1;
 end
end

update_change_flag_out Function:
function[flag_length,flag]=update_change_flag_out(i,arc_in,arc_out,arcs_in,arcs_out)
global flag,global flag_length,global change_flag, global flag_ini

203

flag_length=length(flag);
flag_new=0;
if change_flag == 1 && flag_length > 0
 flag_new = flag;
 present_out=0;
 present_current=0;
 for index_flg_lth=1:flag_length %looks for the outgoing node in the flag
 if flag(index_flg_lth) == arc_out(1,2)
 present_out=1;
 end
 if flag(index_flg_lth) == i
 present_current=1;
 end
 end
 if present_current == 0%adds current node to flag if not present
 flag_new(flag_length+1)=i;
 end
 flag_length_new=length(flag_new);
 if present_out == 0%adds node out to flag if not present
 flag_new(flag_length_new+1)=arc_out(1,2);
 end
 flag=flag_new;
end
flag_length=length(flag);
flag_new=0;
if change_flag == 1 && flag_length == 0
 flag_new(2)=i;
 flag_new(3)=arc_out(1,2);
 flag=flag_new;
end
flag_length=length(flag);
change_flag=0;

update_change_flag Function:
function[flag_length,flag]=update_change_flag(i,arc_in,arc_out,arcs_in,arcs_out)
global flag,global flag_length,global change_flag, global flag_ini
flag_length=length(flag);
flag_new=0;
if change_flag == 1 && flag_length > 0
 for arc_flag_in_index=1:size(arcs_in,1)
 flag_new = flag;
 present_in=0;
 present_current=0;
 for index_flg_lth=1:flag_length %looks for the outgoing node in the flag
 if flag(index_flg_lth) == arcs_in(arc_flag_in_index,1)
 present_in=1;
 end
 if flag(index_flg_lth) == i
 present_current=1;
 end
 end
 if present_current == 0%adds current node to flag if not present
 flag_new(flag_length+1)=i;
 end
 flag_length_new=length(flag_new);
 if present_in == 0%adds node out to flag if not present
 flag_new(flag_length_new+1)=arcs_in(arc_flag_in_index,1);
 end
 flag=flag_new;
 end
end
flag_length=length(flag);
flag_new=0;
if change_flag == 1 && flag_length == 0
 flag_new(2)=i;
 for arc_flag_in_index=1:size(arcs_in,1)

204

 flag_new(2+arc_flag_in_index)=arcs_in(arc_flag_in_index,1);
 end
 flag=flag_new;
end
change_flag=1;
flag_length=length(flag);
flag_new=0;
if change_flag == 1 && flag_length > 0
 for arc_flag_out_index=1:size(arcs_out,1)
 flag_new = flag;
 present_out=0;
 present_current=0;
 for index_flg_lth=1:flag_length %looks for the outgoing node in the flag
 if flag(index_flg_lth) == arcs_out(arc_flag_out_index,2);
 present_out=1;
 end
 if flag(index_flg_lth) == i
 present_current=1;
 end
 end
 if present_current == 0%adds current node to flag if not present
 flag_new(flag_length+1)=i;
 end
 flag_length_new=length(flag_new);
 if present_out == 0%adds node out to flag if not present
 flag_new(flag_length_new+1)=arcs_out(arc_flag_out_index,2);
 end
 flag=flag_new;
 end
 flag_length=length(flag);
 flag_new=0;
 if change_flag == 1 && flag_length == 0
 flag_new(2)=i;
 for arc_flag_out_index=1:size(arcs_out,1)
 flag_new(2+arc_flag_out_index)=arcs_out(arc_flag_out_index,2);
 end
 flag=flag_new;
 end
end
flag_length=length(flag);
change_flag=0;

calculate_new_in_limits Function:
function[limit_in_max_new,limit_in_min_new]=calculate_new_in_limits(k,i,U,rho,l,node,arc,arc_in,arc_out,arc_inner_loop_index,sh
eet_num_index,sheet_num_out_index,limit_out_max,limit_out_min,limit_in_max,limit_in_min,idle_flag)
global limit_in_max_new,global limit_in_min_new
if node(i).type == 1 %for idle node
 if node(arc_out(1,2)).product_num ~= k
 idle_time_min=max(0,node(i).time_delta_min);
 idle_time_max=max(0,node(i).time_delta_max);
 limit_in_min_new(k)=min(limit_out_min(k)+idle_time_min*rho(k),limit_out_max(k)+idle_time_min*rho(k));
 limit_in_max_new(k)=max(limit_out_max(k)+idle_time_max*rho(k),limit_out_min(k)+idle_time_max*rho(k));
 end
end
if node(i).type == 2 %for setup node
 limit_in_min_new(k)=limit_out_min(k) + node(i).time_delta*rho(k) ;
 limit_in_max_new(k)=limit_out_max(k) + node(i).time_delta*rho(k) ;
end
if node(i).type ~= 3 %for fill node
 if node(i).product_num == k
 limit_in_min_new(k)=limit_out_min(k) + node(i).time_delta_max*rho(k);
 limit_in_max_new(k)=limit_out_max(k) + node(i).time_delta_min*rho(k);
 end
end

205

calculate_y_star Function:
function[arc_star,change_flag]=calculate_y_star(limit_in_max_new,limit_in_min_new,limit_out_max_new,limit_out_min_new,k,i,U,

rho,l,node,arc,arc_in,arc_out,arc_inner_loop_index,sheet_num_index,sheet_num_out_index,limit_out_max,limit_out_min,limit_
in_max,limit_in_min,num_of_prods,num_of_arcs,arcs);

global arc_star, global change_flag
for o=1:num_of_prods
 arc_star(arc_in(1),arc_in(2)).limits(o,:,arc_inner_loop_index)=[0 0;];
end
for k=1:num_of_prods
 arc_star(arc_in(1,1),arc_in(1,2)).limits(k,2,arc_inner_loop_index)=limit_in_max_new(k);
 arc_star(arc_in(1,1),arc_in(1,2)).limits(k,1,arc_inner_loop_index)=limit_in_min_new(k);
end
flag_equal=[];
a=arc_in(1,1);b=arc_in(1,2);
if size(arc_star(a,b).limits,3) >= 1
 z=size(arc_star(a,b).limits,3);
 m=arc_inner_loop_index;
 while m <= z
 for k=1:num_of_prods
 if (arc_star(a,b).limits(k,1,m)) == (arc_star(a,b).limits(k,2,m))
 flag_equal(k,1)=1;
 else
 flag_equal(k,1)=0;
 end
 end
 if min(min(flag_equal(:,:))) == 1
 arc_star(a,b).limits(:,:,m)=0;
 z=size(arc_star(a,b).limits,3);
 end
 flag_equal=[];
 m=m+1;
 end
end
flag_equal=[];
a=arc_in(1,1);b=arc_in(1,2);
if size(arc_star(a,b).limits,3) >= 1
 z=size(arc_star(a,b).limits,3);
 m=arc_inner_loop_index;
 while m <= z
 for k=1:num_of_prods
 if (arc_star(a,b).limits(k,1,m)) > (arc_star(a,b).limits(k,2,m))
 flag_equal(k,1)=1;
 else
 flag_equal(k,1)=0;
 end
 end
 if max(min(flag_equal(:,:))) == 1
 arc_star(a,b).limits(:,:,m)=0;
 z=size(arc_star(a,b).limits,3);
 end
 flag_equal=[];
 m=m+1;
 end
end

update_change_flag_in Function:
function[flag_length,flag]=update_change_flag_in(i,arc_in,arc_out,arcs_in,arcs_out)
global flag,global flag_length,global change_flag, global flag_ini
flag_length=length(flag);
flag_new=0;
if change_flag == 1 && flag_length > 0
 flag_new = flag;
 present_in=0;
 present_current=0;
 for index_flg_lth=1:flag_length %looks for the outgoing node in the flag
 if flag(index_flg_lth) == arc_in(1,1)

206

 present_in=1;
 end
 if flag(index_flg_lth) == i
 present_current=1;
 end
 end
 if present_current == 0%adds current node to flag if not present
 flag_new(flag_length+1)=i;
 end
 flag_length_new=length(flag_new);
 if present_in == 0%adds node out to flag if not present
 flag_new(flag_length_new+1)=arc_in(1,1);
 end
 flag=flag_new;
end
flag_length=length(flag);
flag_new=0;
if change_flag == 1 && flag_length == 0
 flag_new(2)=i;
 flag_new(3)=arc_in(1,1);
 flag=flag_new;
end
flag_length=length(flag);
change_flag=0;

update_node_number Function:
function[flag_length,flag]=update_node_number(i)
global flag,global flag_length,global change_flag
flag_length=length(flag);
flag_new=0;
if (flag_length>1) && (flag(2)>0)
 for j=2:flag_length
 flag_new(j-1) = flag(j);
 end
end
if (flag_length>1) && (flag(2)== 0)
 for j=3:flag_length
 flag_new(j-2) = flag(j);
 end
end
if (flag_length == 1 || flag_length == 0) && (change_flag == 0)
 flag_new = '';
end
flag=flag_new;
flag_length=length(flag);

Copyright © John Thomas Henninger 2009

207

Appendix II: Sequencing Algorithm Implementation

208

Algorithm

The sequencing algorithm functions by evaluating a set of products that are at or below the buffer

threshold. The algorithm calculates a goodness value for each product based on a weighted

goodness equation for the system and the product with the highest goodness value is selected as

the next product to be sequenced. The algorithm also allows the user to define a lookahead time

window to calculate future goodness values for each future sequence step within the window.

The first product of the highest valued sequence is selected to be the next product to be

sequenced. The lookahead function allows the algorithm to predict future states in order to avoid

dead-end paths.

Description Implemented Sequencing Algorithm

This section provides a description of how the implemented sequencing algorithm functions.

Note that the definition of key variables can be found in Section 6.4.1 Key Variables.

Functions:

• initialization(): function to define various parameters of a given production system. The

parameters defined by the function include the setup times, production rates, usage rates,

maximum buffer levels and thresholds and initial buffer levels.

• threshold_check(BFi(t)): function that cycles through all products to find products that

have reached or crossed the BF_thresholdi. Flagged products are then stored in the

prod_selection list.

• coefficient_normalization(BFi(t),PRi,URi,cost(i,j)): function that normalizes the

weighting factors α, β, γ, ε, and η such that each term of the goodness equation

corresponds to the initial weighting factor value and the sum of the equation is one.

• current_state_selection(BFi(t),PRi,URi,cost(i,j),α,β,γ,ε,η): this function calculates the

goodness value for all products contained in the prod_selection list. The function returns

the prod_selection list ranked from the best product to worst product.

• lookahead_selection(BFi(t),PRi,URi,cost(i,j),χ,ψ,φ,ω,ζ,la_time): this function calculates

the lookahead goodness value for la_time into the future, the first products considered are

contained in the prod_selection list, but any product that reaches the BF_thresholdi is

considered for subsequent sequence steps. The function returns the best first product

from all the sequences considered within the lookahead window.

209

The initialization function defines the starting buffer levels and maximum buffer levels,

production and usage rates, changeover costs, buffer thresholds, etc. The initialization function

also allows the user to define the weighting factors for the current_state_selection function.

The algorithm will then call the threshold_check function to evaluate if any products are below

the buffer threshold, BF_thresholdi. If no products are below the threshold then the system is idle

until a product crosses the threshold. The amount of idle time is calculated by advancing a user

defined, Δ, number of time units into the future. The buffer levels are recalculated after each time

step for all products, by subtracting the number of products consumed

(() ()consumed i UR i= Δ×) from the previous buffer level. The buffer threshold is checked after

each Δ time units. This continues until one or more products are below the buffer threshold level,

BF_thresholdi.

The product or products are flagged in the prod_selection variable when one or more products

cross the buffer threshold whether or not idle time was experienced by the system. The time at

which the threshold was crossed is recorded for each flagged product. The threshold_check

function is then exited.

The coefficient_normalization function is then called to determine the normalized the weighting

factors for the goodness equations to increase the effectiveness of each factor. The normalizing

coefficient variable is determined first by calculating the maximum value of the term that the

coefficient will be applied to (i.e. time to crash, time to refill, time in queue, changeover cost, or

Miltenburg’s usage rate variation). The initial value of the weighting factor is then divided by the

corresponding normalizing coefficient variable and the new normalized weighting factor value is

used for the goodness calculations.

The current_state_selection function begins by considering the products contained in the

prod_selection list. If only one product is contained in the prod_selection variable, the

current_state_selection function is exited. When multiple products are below the buffer

threshold, the goodness equation is used to evaluate the products.

210

All products in the prod_selection variable are evaluated and the goodness values are stored. The

products are then sorted and ranked and the product with the highest goodness value is selected to

be the next product in the sequence.

If the lookahead time is set to zero, lookahead_selection function is skipped. If the lookahead

time is greater than zero, the lookahead_selection function is entered. The lookahead_selection

function will project all possible production sequences the defined amount of lookahead time into

the future. Each sequence is evaluated based on a lookahead goodness equation.

After evaluating all the sequences for the defined amount of lookahead time, the goodness values

are stored and the lookahead_selection function is exited. The sequences are sorted and ranked

based upon the goodness values and the first product of the highest valued sequence is selected as

the next product to be refilled.

If only one product is to be sequenced, the algorithm stops. If multiple products are to be

sequenced by the algorithm, the refill time is calculated for the selected product, whether selected

by the current_state_selection function or the lookahead_selection function. All other product

buffers are then decreased based upon the usage rate of the given product and the refill time of the

selected product. The selected product is refilled and the product number is recorded. Then the

time is advanced by the refill time and the process is repeated the desired number of times.

Implementation of Algorithm

This algorithm was implemented using MATLAB Release 14, Version 7.0.4.

Complexity of Algorithm

The computational complexity of the algorithm has not been calculated formally but the author

acknowledges that the algorithm is not optimized. The algorithm was developed based on the

overall function of the code instead of optimization of the computational time.

An example of the function of the code taking precedence over the computational efficiency is

that Miltenburg’s usage rate variation is calculated multiple times at different points in the

algorithm. A more efficient approach could be to store each iteration of the calculation so that

only the required portion must be recalculated instead starting at the beginning each time.

211

Note that the combination of high buffer threshold levels, large number of products, and a large

lookahead time will significantly increase computation time. The number of products to be

evaluated at each step potentially increases as the buffer threshold parameter increases. Consider

that a 100% buffer threshold value will cause every product to be evaluated at every step. Also if

a large lookahead time is defined then all products will be propagated the defined large amount of

time into the future to evaluate all possible sequences at each step of the algorithm, which could

potentially be thousands of sequences. Therefore some caution should be used when defining the

lookahead time and buffer threshold values when there are a large number of products in the

system.

Sequencing Algorithm Source Code:
clear all;
global alpha,global beta,global gamma_,global eta,global eta_val,global x_,global y_, global num_of_prod global BF_init,global
BF_maxt,global BF_tcross,global percentage,global BF_ini global idle_time,global time_increment,global marker,global
record,global time_stamp global step,global ans1_size,global prod_thrs,global cost_threshold global lookahead_time,global
BF_threshold,global delta,global epsilon,global chi,global psi,global omega,global time_stamp global marker,global cost,global
PR,global BF_ini,global BF_max,global UR, global step,global BF_store,global selection_num, global prod_thrs,global record,global
alphap, global betap, global gamma_p;global epsilon_p, global etap,global prod_selection,global ans2_size,global IX,global
cur_state,global alpha_record,global beta_record,global gamma_record, global epsilon_record,global eta_record,global seq_goodness,
global goodness_tr,global goodness_tr_time,global pg_num,global milt_UR,global IX,global num_of_prod_sequenced
global zeta_,global omega, global phi,global goodness_flag

previous_prod=1;
num_of_prod=8;
initialize(previous_prod,num_of_prod);
time_to_crash(1,1)=0;
time_to_refill(1,1)=0;
bad=0;
alpha = .2 ;% %bf/ur coefficient - it's the time until buffer is empty
beta = .2 ;% %(BF_max-bf)/pr coefficient - it's the time to refill the buffer
gamma_ = .2 ;%%(t-tr) coefficient - the time since buffer was refilled
epsilon = .2 ;%%c/o cost coefficient - the time to change from previous product to current product
eta_val = .2 ;%milt's weighting factor
alpha_val = alpha;
beta_val = beta;
gamma_val = gamma_;
epsilon_val = epsilon;%
max_steps=200;
for step=1:max_steps; %to repeat program for max_steps, to generate multiple step sequence for debugging
 final_sequence(step,1)=0;
 record(step+1,num_of_prod+1)=0.;%set starting time to zero
 threshold_check(previous_prod,num_of_prod,BF_max,BF_threshold,delta,UR,cost,cost_threshold);
 coef_norm(BF_ini,BF_max,UR,PR,BF_threshold);
 alpha = alphap*alpha_val;
 beta = betap * beta_val; %
 gamma_ = gamma_p * gamma_val;
 epsilon = epsilon_p * epsilon_val;
 if idle_time == 0
 cur_state_selection_fnx(num_of_prod,step,record,time_stamp,BF_max,BF_ini,UR,PR,ans1_size,prod_thrs,selection_num,

 previous_prod,final_sequence);
 first=prod_selection(1);
 done=0;
 if lookahead_time > 0 && sum(prod_thrs) > 1
 test_combined_sequence(previous_prod,num_of_prod,lookahead_time,UR,PR,cost,cost_threshold,BF_threshold,

BF_ini,BF_max,BF_tcross,prod_thrs,prod_selection,ans2_size,chi,psi);
 global seq_goodness,global goodness_tr,global goodness_tr_time,global goodness_BF_level,global seq_goodness_stored
 if pg_num ==2
 seq_goodness(:,:,2)=seq_goodness(:,:,1);
 end

212

 if max(max(seq_goodness(:,:,size(seq_goodness,3)))) > 0
 goodness_sheet=size(seq_goodness,3);
 elseif max(max(seq_goodness(:,:,size(seq_goodness,3)-1))) > 0
 goodness_sheet=size(seq_goodness,3)-1;
 end
 A=[];
 A = sortrows(seq_goodness_stored(:,:,goodness_sheet),[-(goodness_sheet+1) -goodness_sheet]);%this selects max(min of

 sequence goodness)
 %A = sortrows(seq_goodness_stored(:,:,goodness_sheet),[-goodness_sheet]);%this selects highest average goodness value
 A_stored(1:size(A,1),1:size(A,2),step)=A;
 for rank_index=1:size(A,1)
 if A(rank_index,goodness_sheet+3)~= 0
 if seq_goodness(A(rank_index,goodness_sheet+3),4,goodness_sheet) ~= 0
 first=seq_goodness(A(rank_index,goodness_sheet+3),4,goodness_sheet);
 break
 end
 end
 end
 end
 if first == 0
 break
 else
 refill_time=[BF_max(first)-BF_ini(first)+UR(first)*cost(previous_prod,first)]/(PR(first)

 -UR(first))+cost(previous_prod,first);%calc time to refill product chosen by lookahead module
 for i = 1:num_of_prod; %cycle thru products and subtracted used quantities
 if i == first; %updates the BF_ini for the product being replenished, or other products not replenished
 BF_ini(first)=BF_max(first); %update buffer qty
 else
 used = UR(i) * refill_time;
 BF_ini(i)=BF_ini(i) - used; %update buffer level
 end
 end
 record (step+1,num_of_prod+3)= first;
 time_to_crash (step+1,num_of_prod+3)= first;
 time_to_refill(step+1,num_of_prod+3)= first;
 final_sequence(step,1)=first;
 record(step+1,num_of_prod+6)=cost(previous_prod,first);
 previous_prod=first;
 record (step+1,1) = refill_time+record(step,1);
 marker(final_sequence(step,1)) = 0;%to update the marker to record the time when the product is refilled
 time_stamp(final_sequence(step,1)) = 0;%to reset the time at which the threshold is crossed

 for i=1:num_of_prod;
 record (step+1,i+1)=BF_ini(i)/BF_max(i);%percent fullness of buffer
 if record (step+1,i+1) < 0
 bad = 100;
 end
 end
 time_to_crash (step+1,1) = record(step,1);
 time_to_refill (step+1,1) = record(step,1);
 for i=1:num_of_prod;
 time_to_crash (step+1,i+1)=BF_ini(i)/UR(i);%time to crash
 time_to_refill (step+1,i+1)=(BF_max(i)-BF_ini(i))/(PR(i)-UR(i));%time to refill
 end
 prod_selection=[];
 else
 time_to_crash (step+1,1) = record(step,1);
 time_to_refill (step+1,1) = record(step,1);
 for i=1:num_of_prod;
 time_to_crash (step+1,i+1)=BF_ini(i)/UR(i);%time to crash
 time_to_refill (step+1,i+1)=(BF_max(i)-BF_ini(i))/(PR(i)-UR(i));%time to refill
 end
 step;
 prod_selection=[];
 end %this is the end of the loop to skip the lookahead if prod_selection only has one product
 if bad ~= 0
 break
 end
 loop_step=1;
end %this is the end on the loop to step thru the algorithm

213

initialize Function:
function [cost_threshold,lookahead_time,BF_threshold,delta,alpha,beta,gamma_,epsilon,eta,chi,psi,omega,marker,cost,
BF_ini,BF_max,PR,UR,selection_num,prod_threshold,alphap,betap,gamma_p,epsilon_p,etap]=initialize(first_prod,num_of_prod)
global cost_threshold,global lookahead_time,global BF_threshold,global delta,global alpha,global beta,global gamma_,global epsilon;
global chi,global psi,global omega,global time_stamp,global marker,global cost,global PR,global BF_ini,global BF_max;
global UR,global selection_num;

cost_threshold= 8; %max cost that will be considered, all costs great will be considered infinite
cost =5*[1 1 2 1 2 1 2 1 1 1;%1
 1 1 1 2 1 1 1 1 1 1;%2
 1 2 1 1 2 1 1 1 1 1;%3
 1 1 2 1 1 2 2 1 1 1;%4
 1 2 1 1 1 2 2 1 1 1;%5
 1 1 2 1 2 1 1 1 1 1;%6
 1 1 1 1 1 1 1 1 1 1;%7
 1 1 1 1 1 1 1 1 1 1;%8
 1 1 1 1 1 1 1 1 1 1;%9
 1 1 1 1 1 1 1 1 1 1;];%10
PR=3*[5 5 5 5 5 .30 .300 .300 .300 .30;]; %rate of production, replenishment
UR=1*[4 3 2 2 1 .05 .05 .05 .05 .05;]; %usage/consumption rate (parts per time unit)
BF_ini =40*[100 100 100 100 100 275 275 275 275 298;]; %initial buffer, in num of prods
BF_max =40*[100 100 100 100 100 300 300 300 300 300;]; %max buffer levels in num of prods
BF_threshold=.95*[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;];%buffer fullness threshold, percentage of how full
the buffer is. buffers that are lower will be considered
lookahead_time= 10.0; %# of time units to lookahead when finding a "best" sequence
delta=1;%the number of time units to advance when idle time occurs--how far to step ahead
selection_num=num_of_prod;%num of products to be selected by the goodness function to be tested by the lookahead function
time_stamp(num_of_prod) = [0];
marker(num_of_prod) = [0];
prod_thrs(num_of_prod) = [0];
alphap=1;
betap=1; %
gamma_p=1;
epsilon_p=1;
etap=1;

threshold_check Function:
function [BF_ini,BF_max,BF_init,BF_maxt,BF_tcross,step,record,marker,time_stamp,ans1_size,prod_thrs,time_increment]=
 threshold_check(previous_prod,num_of_prod,BF_max,BF_threshold,delta,UR,cost,cost_threshold)
global BF_init,global BF_ini,global BF_maxt,global time_stamp,global marker,global idle_time,global step,global record,
global ans1_size,global prod_thrs,global time_increment
for i=1:num_of_prod;
 BF_init(i)=BF_ini(i)/UR(i); %convert into time units for the time until crash (at zero)
 BF_maxt(i)=BF_max(i)/UR(i); %convert into time units for max possible time until crash
 BF_tcross(i)=(BF_max(i)*BF_threshold(i)-BF_ini(i))/UR(i);%calc time until prod will cross bf threshold
end
% this will calculate the number of products that are below the buffer threshold, i.e. the products that need to be refilled
time_increment=0;
idle_time=0;
for increment=1:1000
 for i=1:num_of_prod;
 if (BF_ini(i)/BF_max(i) <= BF_threshold(i)) && (cost(previous_prod,i) <= cost_threshold)
 prod_thrs(i)=1;
 else
 prod_thrs(i)=0;
 end
 end
 ans1=find(prod_thrs == 1);
 ans1_size=size(ans1);
 if (ans1_size(1,2) < 1);
 idle_time=1;
 time_increment=time_increment+delta;
 for j=1:num_of_prod;

214

 BF_ini(j) = BF_ini(j) - UR(j)*delta;
 BF_init(j)=BF_ini(j)/UR(j); %convert into time units
 BF_tcross(j)=(BF_max(j)*BF_threshold(j)-BF_ini(j))/UR(j);%calc time until prod reaches bf_thres
 end
 else
 break;
 end
end
% this will record any idle time if present and advance the record matrix appropriately
if idle_time==1;
 record(step+1,1)=record(step,1)+time_increment;
 record(step,num_of_prod+2)=idle_time;
 for i=1:num_of_prod
 record(step+1,i+1)=BF_ini(i)/BF_max(i);
 end
end
%this is to record the time when the buffer level drops below the buffer threshold, current time becomes the time_stamp(i)
for i=1:num_of_prod;
 if ((BF_ini(i)/BF_max(i) <= BF_threshold(i)) && marker(i) == 0);
 if step < 2
 time_stamp(i) = -0.1;
 marker(i) = 1;
 else
 time_stamp(i) = record(step,1)-(BF_threshold(i)*BF_max(i)-BF_ini(i))/UR(i);
 marker(i) = 1;
 end
 end
end

coef_norm Function:
function [alphap,betap,gamma_p,epsilon_p]=coef_norm(BF_ini,BF_max,UR,PR,BF_threshold)
global step,global record,global alphap, global betap, global gamma_p, global num_of_prod,global epsilon_p,global cost
for i = 1:num_of_prod
 bf_avg(i) = BF_ini(i)/BF_max(i);
 ttc(i) = (BF_ini(i)/UR(i));
 ttr(i) = (BF_max(i)*(1-record(step,i+1)))/(PR(i)-UR(i));
 chg_over(i) = max(cost(i,:));
 tiq(i) = (BF_threshold(i)-record(step,i+1))*BF_max(i)/UR(i);%
end
alphap = 1/mean(ttc);
betap = 1/max(ttr); %
if max(tiq) > 0
 gamma_p = 1/max(tiq);
else
 gamma_p = 999999;
end
epsilon_p=1/max(chg_over);

cur_state_fnx Function:
function [prod_selection,ans2_size,IX,cur_state,alpha_record,beta_record,gamma_record,epsilon_record,num_of_prod_sequenced,

eta_record]=cur_state_selection_fnx(num_of_prod,step,record,time_stamp,BF_max,BF_ini,UR,PR,ans1_size,prod_thrs,selectio
n_num,previous_prod,final_sequence)

global prod_selection,global ans2_size,global alpha,global beta,global gamma_,global epsilon, global eta,global cost;
global IX,global cur_state,global goodness_flag,global alpha_record,global beta_record,global gamma_record, global epsilon_record
global eta_record,global num_of_prod_sequenced, global milt_UR, global milt_UR_temp,global etap, global eta_val
seq_usage_rate(final_sequence,num_of_prod,UR);%calculate mlitenburg's U
prod_selection(1,1:num_of_prod)=0;
cur_state(step,1:num_of_prod)=0;
goodness_flag=0;
if ans1_size(1,2) == 1
 ans2_size(1,2)=1;
 for i = 1:num_of_prod
 if prod_thrs(i) > 0

215

 prod_selection(i)=1;
 end
 end
 return
else
 for i = 1:num_of_prod
 if prod_thrs(i) > 0
 if time_stamp(i) == 0
 prod_i=i;
 calc_milt_u_temp(final_sequence,prod_i,UR,step,num_of_prod,num_of_prod_sequenced,

 milt_UR,etap,eta_val);
 cur_state(step,i) = -alpha*(BF_ini(i)/UR(i)) + beta*(BF_max(i)-BF_ini(i))/(PR(i)-UR(i))

 - epsilon*cost(previous_prod,i) - eta * milt_UR_temp;
 %these next line are only for debugging, these values are not used for anything else
 alpha_record(step,i)=-alpha*(BF_ini(i)/UR(i));

 beta_record(step,i)=beta*(BF_max(i)-BF_ini(i))/(PR(i)-UR(i));
 gamma_record(step,i)=0;
 epsilon_record(step,i)=- epsilon*cost(previous_prod,i);
 eta_record(step,i)=-eta * milt_UR_temp;
 else
 prod_i=i;
 calc_milt_u_temp(final_sequence,prod_i,UR,step,num_of_prod,num_of_prod_sequenced,milt_UR,etap,eta_val);
 cur_state(step,i) = -alpha*(BF_ini(i)/UR(i)) + beta*((BF_max(i)-BF_ini(i))/(PR(i)-UR(i))) + gamma_*(record(step,1)

 -time_stamp(i)) - epsilon*cost(previous_prod,i) - eta * milt_UR_temp;
 alpha_record(step,i)=-alpha*(BF_ini(i)/UR(i));
 beta_record(step,i)=beta*(BF_max(i)-BF_ini(i))/(PR(i)-UR(i));
 gamma_record(step,i)=gamma_*(record(step,1)-time_stamp(i));
 epsilon_record(step,i)=- epsilon*cost(previous_prod,i);
 eta_record(step,i)=-eta * milt_UR_temp;
 end
 else
 cur_state(step,i) = -inf;
 alpha_record(step,i)=0;
 beta_record(step,i)=0;
 gamma_record(step,i)=0;
 epsilon_record(step,i)=0;
 end
 end
end
[ranking,IX] = sort ((cur_state(step,:)),'descend');
goodness_flag=1;
index=0;
for i=1:num_of_prod
 if ranking(i) == 0
 index=1+index;
 else
 break
 end
end
prod_selection=IX;
ans2=find(prod_thrs == 1);
ans2_size=size(ans2);

test_combined_sequence Function:
function [test_combined_sequence,seq_goodness]=test_combined_sequence(previous_prod,num_of_prod,lookahead_time,

UR,PR,cost,cost_threshold,BF_threshold,BF_ini,BF_max,BF_tcross,prod_thrs,prod_selection,ans2_size,chi,psi);
global seq_goodness;global goodness_tr;global goodness_tr_time;global pg_num;global alpha, global beta,global gamma_, global
epsilon,global milt_UR,global eta_val, global num_of_prod_sequenced,global milt_UR_temp,global zeta_,global omega, global phi
goodness_tr=[];
goodness_tr_time=[];
chi=alpha;%lookahead time to crash weighting factor
psi=beta;%lookahead time to refill weighting factor
phi=gamma_;%lookahead time in queue weighting factor
omega=epsilon;%lookahead changeover cost weighting factor
la_step=size(num_of_prod_sequenced,1);
if la_step > 1

216

 num_of_prod_sequenced_LA=num_of_prod_sequenced(la_step-1,:);
else
 num_of_prod_sequenced_LA=num_of_prod_sequenced;
end
seq_goodness=[];
seq_goodness_stored=[];
goodness_BF_level=[];
seq_page_prev=1;
milt_UR_LA_max=1;
seq_flag=1;
goodness_percentage=2;%factor that the goodness can be below the previous goodness
decrs_gdns_flag=-1.1;
delta_t=1;
while seq_flag ~= 0
 goodness_tr_time(1,num_of_prod,2)=0;
 goodness_tr(1,num_of_prod,2)=0;
 seq_goodness(1,4+num_of_prod,2)=0;
 row =1;
 for a=1:num_of_prod;%this will list all the possible products that are to be considered for the lookahead function
 if (prod_thrs(a) == 1);
 seq_goodness(row,1)=0;%previous goodness value
 seq_goodness(row,2)=0;%current goodness calculated value
 seq_goodness(row,4)=a;%the 1st product of the sequence
 goodness_tr(row,1)=seq_goodness(row,3)+(BF_max(a)-BF_ini(a)+(UR(a)*cost(previous_prod,a)))/(PR(a)-

UR(a))+cost(previous_prod,a);%calc the refill time for prod a
 goodness_tr_time(row,a)=goodness_tr(row,1);%record time of product refill
 seq_goodness(row,3)=goodness_tr(row,1);%the time of the sequence
 row=row+1;
 end;
 end;
 increment=row;
 for i=1:(increment - 1)%this is to calc the goodness for the sequence
 seq_loc=4;%the column number of the last product in the sequence
 last_prod=seq_goodness(i,seq_loc);
 seq_good=0;
 for j=1:num_of_prod
 if j==last_prod
 BF=BF_ini(j);
 seq_good= - chi*BF/UR(j) + psi*(BF_max(j)-BF)/(PR(j)-UR(j)) + phi*max(0,(BF_max(j)*BF_threshold(j) - BF)/UR(j));
 BF = BF_max(j); %calculate buffer fullness for the last product that was refilled
 end
 if goodness_tr_time(i,j)==0
 BF = BF_ini(j)- UR(j) * goodness_tr_time(i,last_prod); %calculate buffer fullness for products that haven't been refilled
 else
 BF = BF_max(j) - UR(j) * (goodness_tr_time(i,last_prod) - goodness_tr_time(i,j)); %calculate buffer fullness for products

 that have been refilled
 end
 goodness_BF_level(i,j)=BF;
 if BF <= 0; %
 seq_goodness(i,1)= -1; %label as bad b/c refill inventory is depleted
 j=num_of_prod;
 end
 end
 x=last_prod;
 calc_milt_u_temp_LA(x,UR,la_step,num_of_prod,num_of_prod_sequenced_LA,milt_UR,eta_val,milt_UR_LA_max);
 seq_goodness(i,2)= seq_good - omega*cost(previous_prod,last_prod) - zeta_ * milt_UR_temp;%this is the first goodness calc
 seq_goodness_stored(i,1)= seq_goodness(i,2);
 milt_UR_LA(i,1)=milt_UR_temp;%stores milt ur to be used for future LA steps
 num_of_prod_seqd_LA(i,:)=num_of_prod_sequenced_LA(1,:);%copies the initial numer of seqd products
 num_of_prod_seqd_LA(i,x)=num_of_prod_seqd_LA(i,x)+1;%adds the LA seqd product to the number of seqd products
 end
 seq_page=1;
 %
 %Step #2
 %
 seq_flag=0;
 row=1;i=1;
 seq_page_prev=seq_page;%the previous sheet number of the seq_good variable
 seq_page=1+seq_page;%the sheet number of the seq_good variable
 la_step=la_step+1;%record step number for calculating milt_UR

217

 while i<=(increment-1)
 seq_loc=5;%the column number of the last product in the sequence
 a=seq_goodness(i,4,seq_page_prev);
 if a > 0 && seq_goodness(i,3)>=0
 seq_goodness(row+num_of_prod*1,num_of_prod*1,seq_page)=0;
 seq_goodness_stored(row+num_of_prod*1,seq_page+1,seq_page)=0;
 goodness_tr(row+num_of_prod*1,num_of_prod*1,seq_page)=0;
 goodness_tr_time(row+num_of_prod*1,num_of_prod*1,seq_page)=0;
 thres_flag=0;
 for y=1:num_of_prod;
 threshold_percentage=goodness_BF_level(i,y,seq_page_prev)/BF_max(y);
 if (cost(a,y) <= cost_threshold && BF_threshold(y) >= threshold_percentage);
 seq_goodness(row,4,seq_page)=a;%the 1st product of the sequence
 seq_goodness(row,5,seq_page)=y;%the 2nd product of the sequence
 seq_goodness(row,2,seq_page)=seq_goodness(i,2,seq_page_prev);%previous goodness value
 seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev);
 seq_goodness_stored(row,seq_page+1,seq_page) = seq_goodness_stored(row,seq_page,seq_page);
 goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev);
 goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev);
 goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously
 milt_UR_LA(row,1,seq_page)=milt_UR_LA(i,1,seq_page_prev);
 num_of_prod_seqd_LA(row,:,seq_page)=num_of_prod_seqd_LA(i,:,seq_page_prev);%copies the initial num of seqd prd
 goodness_tr(row,seq_loc-3,seq_page)=seq_goodness(i,3,seq_page_prev)+(BF_max(y)-goodness_BF_level(row,
 y,seq_page)+UR(y)*cost(x,y))/(PR(y)-UR(y))+cost(x,y);
 goodness_tr_time(row,y,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%flag product as being refilled previously
 seq_goodness(row,3,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%the total time of the sequence
 row = row+1;
 if goodness_tr(row,seq_loc-3,seq_page) < lookahead_time
 seq_flag=1;%used to flag system to know that at least one sequence hasn't reach lookahead time yet
 end
 thres_flag=1;
 end
 end
 if thres_flag==0
 seq_goodness(i,3,seq_page_prev)=seq_goodness(i,3,seq_page_prev)+delta_t;
 for j=1:num_of_prod
 goodness_BF_level(i,j,seq_page_prev)=goodness_BF_level(i,j,seq_page_prev)-UR(j)*delta_t;
 end
 i=i-1;
 end
 i=i+1;
 else
 if seq_goodness(i,1,seq_page_prev)== -2
 seq_goodness(row,:,seq_page)=seq_goodness(i,:,seq_page_prev);%
 goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev);
 goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev);
 goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously
 seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev);
 seq_goodness_stored(row,seq_page+1,seq_page) = seq_goodness_stored(row,seq_page,seq_page);
 row = row+1;
 end
 i=i+1;
 end
 end
 if seq_flag == 0
 pg_num=seq_page-1;
 if min(seq_goodness(:,1,pg_num))>-2 && max(seq_goodness(:,1,pg_num))<=0
 seq_page=pg_num;
 end
 if size(seq_goodness_stored,2)>1
 for i=1:(size(seq_goodness_stored,1))
 seq_goodness_stored(i,seq_page+1,seq_page)=min(seq_goodness_stored(i,1:seq_page,seq_page));%store min goodness
 seq_goodness_stored(i,seq_page+2,seq_page)=max(seq_goodness_stored(i,1:seq_page,seq_page));%store max goodness
 seq_goodness_stored(i,seq_page+3,seq_page)=i;
 end
 else
 seq_goodness_stored(num_of_prod,num_of_prod)=zeros;
 end
 break
 end

218

 milt_UR_LA_max=max(1,max(milt_UR_LA(seq_page_prev)));
 increment=row;
 for i=1:(increment - 1)%this is to calc the goodness for the sequence
 last_prod=seq_goodness(i,seq_loc-1,seq_page);%previous product
 seq_good=0;
 x=seq_goodness(i,seq_loc,seq_page);%most recent product
 a=seq_goodness(i,4,seq_page_prev);%previously refilled product
 if x > 0 && seq_goodness(i,1,seq_page) >= 0
 for j=1:num_of_prod
 if j==x
 BF=goodness_BF_level(i,j,seq_page);
 seq_good= - chi*BF/UR(j) + psi*(BF_max(j)-BF)/(PR(j)-UR(j)) + phi*max(0,(BF_max(j)*BF_threshold(j) - BF)/UR(j));
 BF = BF_max(j);
 end
 if goodness_tr_time(i,j,seq_page)==0
 BF = BF_ini(j)- UR(j) * seq_goodness(i,3,seq_page); %calculate buffer fullness for products that haven't been refilled
 else
 if goodness_tr_time(i,j,seq_page)>=lookahead_time
 BF = BF_max(j) - PR(j)*[lookahead_time - goodness_tr(i,seq_loc-4,seq_page)]; %calculate buffer fullness for product
 that has been refilled, but time is greater than the lookahead time,
 else
 BF = BF_max(j) - UR(j) * (seq_goodness(i,3,seq_page) - goodness_tr_time(i,j,seq_page)); %calculate buffer fullness

 for products that have been refilled
 end
 end
 goodness_BF_level(i,j,seq_page)=BF;
 if BF <= 0
 seq_goodness(i,1,seq_page)= -1; %label as bad b/c refill inventory is depleted
 j=num_of_prod;
 end
 end
 milt_UR=milt_UR_LA(i,1,seq_page);
 num_of_prod_sequenced_LA=num_of_prod_seqd_LA(i,:,seq_page);%copies number of seqd products into
 num_of_prod_sequenced_LA to be used by function
 calc_milt_u_temp_LA(x,UR,la_step,num_of_prod,num_of_prod_sequenced_LA,milt_UR,eta_val,milt_UR_LA_max);
 seq_good = seq_good - omega*cost(last_prod,x) - zeta_ * milt_UR_temp;%this is the first goodness calc
 milt_UR_LA(i,1,seq_page)=milt_UR_temp;%stores milt_ur of current seqn to be used for future LA steps of the seqn
 num_of_prod_seqd_LA(i,x,seq_page)=num_of_prod_seqd_LA(i,x,seq_page)+1;%adds the LA seqd product to the number of
 seqd products
 if seq_goodness(i,3,seq_page) >= lookahead_time
 seq_goodness(i,1,seq_page)=-2;
 end
 if (seq_goodness(i,2,seq_page)-seq_good)/abs(seq_good) >= (goodness_percentage)%if the goodness for the last prod is not
 better or equal to the previous goodness, the seq is flagged as bad
 seq_goodness(i,1,seq_page)=decrs_gdns_flag;
 seq_goodness(i,2,seq_page)=seq_good;
 else
 seq_goodness_stored(i,seq_page,seq_page) = seq_good;
 seq_goodness_stored(i,seq_page+1,seq_page) = mean(seq_goodness_stored(i,1:seq_page,seq_page));
 seq_goodness(i,2,seq_page)=seq_goodness_stored(i,seq_page+1,seq_page);
 end
 end
 end
 %
 % Step #3
 %
 seq_flag=0;
 seq_page_prev=seq_page;%the previous sheet number of the seq_good variable
 seq_page=1+seq_page;%the sheet number of the seq_good variable
 la_step=la_step+1;%record step number for calculating milt_UR
 row=1;i=1;
 for i=1:(increment-1)
 seq_loc=6;%the column number of the last product in the sequence
 a=seq_goodness(i,4,seq_page_prev);
 x=seq_goodness(i,seq_loc-1,seq_page_prev);
 if x > 0 && seq_goodness(i,1,seq_page_prev) >= 0
 seq_goodness(row+num_of_prod*1,num_of_prod*1,seq_page)=0;
 seq_goodness_stored(row+num_of_prod*1,seq_page+1,seq_page)=0;
 goodness_tr(row+num_of_prod*1,num_of_prod*1,seq_page)=0;
 goodness_tr_time(row+num_of_prod*1,num_of_prod*1,seq_page)=0;

219

 thres_flag=0;
 for y=1:num_of_prod;
 threshold_percentage=goodness_BF_level(i,y,seq_page_prev)/BF_max(y);
 if (cost(x,y) <= cost_threshold && BF_threshold(y) >= threshold_percentage);
 seq_goodness(row,4,seq_page)=a;%the 1st product of the sequence
 seq_goodness(row,seq_loc-1,seq_page)=x;%the 2nd product of the sequence
 seq_goodness(row,seq_loc,seq_page)=y;%the 2nd product of the sequence
 seq_goodness(row,2,seq_page)=seq_goodness(i,2,seq_page_prev);%previous goodness value being placed on current

 sheet in column 1
 seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev);
 goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev);
 goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev);
 goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously
 milt_UR_LA(row,1,seq_page)=milt_UR_LA(i,1,seq_page_prev);
 num_of_prod_seqd_LA(row,:,seq_page)=num_of_prod_seqd_LA(i,:,seq_page_prev);%copies the initial number of seqd
 products
 goodness_tr(row,seq_loc-3,seq_page)=seq_goodness(i,3,seq_page_prev)+(BF_max(y)-goodness_BF_level(row,y,

seq_page)+UR(y)*cost(x,y))/(PR(y)-UR(y))+cost(x,y);
 goodness_tr_time(row,y,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%flag product as being refilled previously
 seq_goodness(row,3,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%the total time of the sequence
 row = row+1;
 if goodness_tr(row,seq_loc-3,seq_page) < lookahead_time
 seq_flag=1;%used to flag system to know that at least one sequence hasn't reach lookahead time yet
 end
 thres_flag=1;
 end
 end
 if thres_flag==0
 seq_goodness(i,3,seq_page_prev)=seq_goodness(i,3,seq_page_prev)+delta_t;
 for j=1:num_of_prod
 goodness_BF_level(i,j,seq_page_prev)=goodness_BF_level(i,j,seq_page_prev)-UR(j)*delta_t;
 end
 i=i-1;
 end
 else
 if seq_goodness(i,1,seq_page_prev)== -2
 seq_goodness(row,:,seq_page)=seq_goodness(i,:,seq_page_prev);%
 goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev);
 goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev);
 goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev);
 goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously
 seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev);
 seq_goodness_stored(row,seq_page+1,seq_page) = seq_goodness_stored(row,seq_page,seq_page);
 row = row+1;
 end
 end
 i=i+1;
 end
 if seq_flag == 0
 pg_num=seq_page-1;
 if min(seq_goodness(:,1,pg_num))>-2 && max(seq_goodness(:,1,pg_num))<=0
 seq_page=pg_num;
 end
 for i=1:size(seq_goodness_stored,1)
 seq_goodness_stored(i,seq_page+1,seq_page)=min(seq_goodness_stored(i,1:seq_page,seq_page));%store min goodness val
 seq_goodness_stored(i,seq_page+2,seq_page)=max(seq_goodness_stored(i,1:seq_page,seq_page));%store max goodness val
 seq_goodness_stored(i,seq_page+3,seq_page)=i;
 end
 break
 end
 milt_UR_LA_max=max(1,max(milt_UR_LA(seq_page_prev)));
 increment=row;
 for i=1:(increment - 1)%this is to calc the goodness for the sequence
 last_prod=seq_goodness(i,seq_loc-1,seq_page);%previous product
 seq_good=0;
 x=seq_goodness(i,seq_loc,seq_page);%most recent product
 if x > 0 && seq_goodness(i,1,seq_page)>= 0
 for j=1:num_of_prod
 if j==x
 BF=goodness_BF_level(i,j,seq_page);

220

 seq_good= - chi*BF/UR(j) + psi*(BF_max(j)-BF)/(PR(j)-UR(j)) + phi*max(0,(BF_max(j)*BF_threshold(j) - BF)/UR(j));
 BF = BF_max(j);
 end
 if goodness_tr_time(i,j,seq_page)==0
 BF = BF_ini(j)- UR(j) * seq_goodness(i,3,seq_page); %calculate buffer fullness for products that haven't been refilled
 else
 if goodness_tr_time(i,j,seq_page)>=lookahead_time
 BF = BF_max(j) - PR(j)*[lookahead_time - goodness_tr(i,seq_loc-4,seq_page)]; %calculate buffer fullness for product

 that has been refilled, but time is greater than the lookahead time
 else
 BF = BF_max(j) - UR(j) * (seq_goodness(i,3,seq_page) - goodness_tr_time(i,j,seq_page)); %calculate buffer fullness
 for products that have been refilled
 end
 end
 goodness_BF_level(i,j,seq_page)=BF;
 if BF <= 0
 seq_goodness(i,1,seq_page)= -1; %label as bad b/c refill inventory is depleted
 j=num_of_prod;
 end
 end
 milt_UR=milt_UR_LA(i,1,seq_page);
 num_of_prod_sequenced_LA=num_of_prod_seqd_LA(i,:,seq_page);%copies number of seqd products into
 num_of_prod_sequenced_LA to be used by function
 calc_milt_u_temp_LA(x,UR,la_step,num_of_prod,num_of_prod_sequenced_LA,milt_UR,eta_val,milt_UR_LA_max);
 seq_good = seq_good - omega*cost(last_prod,x) - zeta_ * milt_UR_temp;%this is the first goodness calc
 milt_UR_LA(i,1,seq_page)=milt_UR_temp;%stores milt_ur of current seqn to be used for future LA steps of the seqn
 num_of_prod_seqd_LA(i,x,seq_page)=num_of_prod_seqd_LA(i,x,seq_page)+1;%adds the LA seqd product to the number of
 seqd products
 if seq_goodness(i,3,seq_page) >= lookahead_time
 seq_goodness(i,1,seq_page)=-2;
 end
 if (seq_goodness(i,2,seq_page)-seq_good)/abs(seq_good) >= (goodness_percentage) %if the goodness for the last prod is not

 better or equl to the previous goodness, the seq is flagged as bad
 seq_goodness(i,1,seq_page)=decrs_gdns_flag;
 seq_goodness(i,2,seq_page)=seq_good;
 else
 seq_goodness_stored(i,seq_page,seq_page) = seq_good;
 seq_goodness_stored(i,seq_page+1,seq_page) = mean(seq_goodness_stored(i,1:seq_page,seq_page));
 seq_goodness(i,2,seq_page)=seq_goodness_stored(i,seq_page+1,seq_page);
 end
 end
 end
 %
 % Step #4
 %
 seq_flag=0;
 seq_page_prev=seq_page;%the previous sheet number of the seq_good variable
 seq_page=1+seq_page; %the sheet number of the seq_good variable
 la_step=la_step+1; %record step number for calculating milt_UR
 row=1;i=1;
 while i<=(increment-1)
 seq_loc=7;%the column number of the last product in the sequence
 a=seq_goodness(i,4,seq_page_prev);
 b=seq_goodness(i,5,seq_page_prev);
 x=seq_goodness(i,seq_loc-1,seq_page_prev);
 if x > 0 && seq_goodness(i,1,seq_page_prev) >= 0
 seq_goodness(row+num_of_prod*1,num_of_prod*1,seq_page)=0;
 seq_goodness_stored(row+num_of_prod*1,seq_page+1,seq_page)=0;
 goodness_tr(row+num_of_prod*1,num_of_prod*1,seq_page)=0;
 goodness_tr_time(row+num_of_prod*1,num_of_prod*1,seq_page)=0;
 thres_flag=0;
 for y=1:num_of_prod;
 threshold_percentage=goodness_BF_level(i,y,seq_page_prev)/BF_max(y);
 if (cost(x,y) <= cost_threshold && BF_threshold(y) >= threshold_percentage);
 seq_goodness(row,4,seq_page)=a;%the 1st product of the sequence
 seq_goodness(row,seq_loc-2,seq_page)=b;%the 2nd product of the sequence
 seq_goodness(row,seq_loc-1,seq_page)=x;%the 3rd product of the sequence
 seq_goodness(row,seq_loc,seq_page)=y;%the 4th product of the sequence
 seq_goodness(row,2,seq_page)=seq_goodness(i,2,seq_page_prev);%previous goodness value
 seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev);

221

 goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev);
 goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev);
 goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously
 milt_UR_LA(row,1,seq_page)=milt_UR_LA(i,1,seq_page_prev);
 num_of_prod_seqd_LA(row,:,seq_page)=num_of_prod_seqd_LA(i,:,seq_page_prev);%copies the initial numer of seqd

 products
 goodness_tr(row,seq_loc-3,seq_page)=seq_goodness(i,3,seq_page_prev)+(BF_max(y)-goodness_BF_level(row,y,

seq_page)+UR(y)*cost(x,y))/(PR(y)-UR(y))+cost(x,y);
 goodness_tr_time(row,y,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%flag product as being refilled previously
 seq_goodness(row,3,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%the total time of the sequence
 row = row+1;
 if goodness_tr(row,seq_loc-3,seq_page) < lookahead_time
 seq_flag=1;%used to flag system to know that at least one sequence hasn't reach lookahead time yet
 end
 thres_flag=1;
 end
 end
 if thres_flag==0
 seq_goodness(i,3,seq_page_prev)=seq_goodness(i,3,seq_page_prev)+delta_t;
 for j=1:num_of_prod
 goodness_BF_level(i,j,seq_page_prev)=goodness_BF_level(i,j,seq_page_prev)-UR(j)*delta_t;
 end
 i=i-1;
 end
 else
 if seq_goodness(i,1,seq_page_prev)== -2
 seq_goodness(row,:,seq_page)=seq_goodness(i,:,seq_page_prev);%
 goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev);
 goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev);
 goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously
 seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev);
 seq_goodness_stored(row,seq_page+1,seq_page) = seq_goodness_stored(row,seq_page,seq_page);
 row = row+1;
 end
 end
 i=i+1;
 end
 if seq_flag == 0
 pg_num=seq_page-1;
 if min(seq_goodness(:,1,pg_num))>-2 && max(seq_goodness(:,1,pg_num))<=0
 seq_page=pg_num;
 end
 for i=1:size(seq_goodness_stored,1)
 seq_goodness_stored(i,seq_page+1,seq_page)=min(seq_goodness_stored(i,1:seq_page,seq_page));%store min goodness val
 seq_goodness_stored(i,seq_page+2,seq_page)=max(seq_goodness_stored(i,1:seq_page,seq_page));%store max goodness val
 seq_goodness_stored(i,seq_page+3,seq_page)=i;
 end
 break
 end
 milt_UR_LA_max=max(1,max(milt_UR_LA(seq_page_prev)));
 increment=row;
 for i=1:(increment - 1)%this is to calc the goodness for the sequence
 last_prod=seq_goodness(i,seq_loc-1,seq_page);%previous product
 seq_good=0;
 x=seq_goodness(i,seq_loc,seq_page);%most recent product
 if x > 0 && seq_goodness(i,1,seq_page)>= 0
 for j=1:num_of_prod
 if j==x
 BF=goodness_BF_level(i,j,seq_page);
 seq_good= - chi*BF/UR(j) + psi*(BF_max(j)-BF)/(PR(j)-UR(j)) + phi*max(0,(BF_max(j)*BF_threshold(j) - BF)/UR(j));
 BF = BF_max(j);
 end
 if goodness_tr_time(i,j,seq_page)==0
 BF = BF_ini(j)- UR(j) * seq_goodness(i,3,seq_page); %calculate buffer fullness for products that haven't been refilled
 else
 if goodness_tr_time(i,j,seq_page)>=lookahead_time
 BF = BF_max(j) - PR(j)*[lookahead_time - goodness_tr(i,seq_loc-4,seq_page)]; %calculate buffer fullness for product
 that has been refilled, but time is greater than the lookahead time
 else
 BF = BF_max(j) - UR(j) * (seq_goodness(i,3,seq_page) - goodness_tr_time(i,j,seq_page)); %calculate buffer fullness

222

 for products that have been refilled
 end
 end
 goodness_BF_level(i,j,seq_page)=BF;
 if BF <= 0
 seq_goodness(i,1,seq_page)= -1; %label as bad b/c refill inventory is depleted
 j=num_of_prod;
 end
 end
 milt_UR=milt_UR_LA(i,1,seq_page);
 num_of_prod_sequenced_LA=num_of_prod_seqd_LA(i,:,seq_page);%copies number of seqd products into
 num_of_prod_sequenced_LA to be used by function
 calc_milt_u_temp_LA(x,UR,la_step,num_of_prod,num_of_prod_sequenced_LA,milt_UR,eta_val,milt_UR_LA_max);
 seq_good = seq_good - omega*cost(last_prod,x) - zeta_ * milt_UR_temp;%this is the first goodness calc
 milt_UR_LA(i,1,seq_page)=milt_UR_temp;%stores milt_ur of current seqn to be used for future LA steps of the seqn
 num_of_prod_seqd_LA(i,x,seq_page)=num_of_prod_seqd_LA(i,x,seq_page)+1;%adds the LA seqd product to the number of
 seqd products
 if seq_goodness(i,3,seq_page) >= lookahead_time
 seq_goodness(i,1,seq_page)=-2;
 end
 if (seq_goodness(i,2,seq_page)-seq_good)/abs(seq_good) >= (goodness_percentage) %if the goodness for the last prod is not
 better or equl to the previous goodness, the seq is flagged as bad
 seq_goodness(i,1,seq_page)=decrs_gdns_flag;
 seq_goodness(i,2,seq_page)=seq_good;
 else
 seq_goodness_stored(i,seq_page,seq_page) = seq_good;
 seq_goodness_stored(i,seq_page+1,seq_page) = mean(seq_goodness_stored(i,1:seq_page,seq_page));
 seq_goodness(i,2,seq_page)=seq_goodness_stored(i,seq_page+1,seq_page);
 end
 end
 end
 %
 % Step #5
 %
 seq_flag=0;
 seq_page_prev=seq_page;%the previous sheet number of the seq_good variable
 seq_page=1+seq_page; %the sheet number of the seq_good variable
 la_step=la_step+1; %record step number for calculating milt_UR
 row=1;i=1;
 while i<=(increment-1)
 seq_loc=8;%the column number of the last product in the sequence
 a=seq_goodness(i,4,seq_page_prev);
 b=seq_goodness(i,5,seq_page_prev);
 c=seq_goodness(i,6,seq_page_prev);
 x=seq_goodness(i,seq_loc-1,seq_page_prev);
 if x > 0 && seq_goodness(i,1,seq_page_prev) >= 0
 seq_goodness(row+num_of_prod*1,num_of_prod*1,seq_page)=0;
 seq_goodness_stored(row+num_of_prod*1,seq_page+1,seq_page)=0;
 goodness_tr(row+num_of_prod*1,num_of_prod*1,seq_page)=0;
 goodness_tr_time(row+num_of_prod*1,num_of_prod*1,seq_page)=0;
 thres_flag=0;
 for y=1:num_of_prod;
 threshold_percentage=goodness_BF_level(i,y,seq_page_prev)/BF_max(y);
 if (cost(x,y) <= cost_threshold && BF_threshold(y) >= threshold_percentage);
 seq_goodness(row,4,seq_page)=a;%the 1st product of the sequence
 seq_goodness(row,seq_loc-3,seq_page)=b;%the 2nd product of the sequence
 seq_goodness(row,seq_loc-2,seq_page)=c;%the 3rd product of the sequence
 seq_goodness(row,seq_loc-1,seq_page)=x;%the 4th product of the sequence
 seq_goodness(row,seq_loc,seq_page)=y;%the 5th product of the sequence
 seq_goodness(row,2,seq_page)=seq_goodness(i,2,seq_page_prev);%previous goodness value
 seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev);
 goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev);
 goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev);
 goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously
 milt_UR_LA(row,1,seq_page)=milt_UR_LA(i,1,seq_page_prev);
 num_of_prod_seqd_LA(row,:,seq_page)=num_of_prod_seqd_LA(i,:,seq_page_prev);%copies the initial numer of seqd

products
 goodness_tr(row,seq_loc-3,seq_page)=seq_goodness(i,3,seq_page_prev)+(BF_max(y)-goodness_BF_level(row,y,

seq_page)+UR(y)*cost(x,y))/(PR(y)-UR(y))+cost(x,y);
 goodness_tr_time(row,y,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%flag product as being refilled previously

223

 seq_goodness(row,3,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%the total time of the sequence
 row = row+1;
 if goodness_tr(row,seq_loc-3,seq_page) < lookahead_time
 seq_flag=1;%used to flag system to know that at least one sequence hasn't reach lookahead time yet
 end
 thres_flag=1;
 end
 end
 if thres_flag==0
 seq_goodness(i,3,seq_page_prev)=seq_goodness(i,3,seq_page_prev)+delta_t;
 for j=1:num_of_prod
 goodness_BF_level(i,j,seq_page_prev)=goodness_BF_level(i,j,seq_page_prev)-UR(j)*delta_t;
 end
 i=i-1;
 end
 else
 if seq_goodness(i,1,seq_page_prev)== -2
 seq_goodness(row,:,seq_page)=seq_goodness(i,:,seq_page_prev);%
 goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev);
 goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev);
 goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously
 seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev);
 seq_goodness_stored(row,seq_page+1,seq_page) = seq_goodness_stored(row,seq_page,seq_page);
 row = row+1;
 end
 end
 i=i+1;
 end

 if seq_flag == 0
 pg_num=seq_page-1;
 if min(seq_goodness(:,1,pg_num))>-2 && max(seq_goodness(:,1,pg_num))<=0
 seq_page=pg_num;
 end
 for i=1:size(seq_goodness_stored,1)
 seq_goodness_stored(i,seq_page+1,seq_page)=min(seq_goodness_stored(i,1:seq_page,seq_page));%store min goodness val
 seq_goodness_stored(i,seq_page+2,seq_page)=max(seq_goodness_stored(i,1:seq_page,seq_page));%store max goodness val
 seq_goodness_stored(i,seq_page+3,seq_page)=i;
 end
 break
 end
 milt_UR_LA_max=max(1,max(milt_UR_LA(seq_page_prev)));
 increment=row;
 for i=1:(increment - 1)%this is to calc the goodness for the sequence
 last_prod=seq_goodness(i,seq_loc-1,seq_page);%previous product
 seq_good=0;
 x=seq_goodness(i,seq_loc,seq_page);%most recent product
 if x > 0 && seq_goodness(i,1,seq_page)>= 0
 for j=1:num_of_prod
 if j==x
 BF=goodness_BF_level(i,j,seq_page);
 seq_good= - chi*BF/UR(j) + psi*(BF_max(j)-BF)/(PR(j)-UR(j)) + phi*max(0,(BF_max(j)*BF_threshold(j) - BF)/UR(j));
 BF = BF_max(j);
 end
 if goodness_tr_time(i,j,seq_page)==0
 BF = BF_ini(j)- UR(j) * seq_goodness(i,3,seq_page); %calculate buffer fullness for products that haven't been refilled
 else
 if goodness_tr_time(i,j,seq_page)>=lookahead_time
 BF = BF_max(j) - PR(j)*[lookahead_time - goodness_tr(i,seq_loc-4,seq_page)]; %calculate buffer fullness for product

 that has been refilled, but time is greater than the lookahead time
 else
 BF = BF_max(j) - UR(j) * (seq_goodness(i,3,seq_page) - goodness_tr_time(i,j,seq_page)); %calculate buffer fullness
 for products that have been refilled
 end
 end
 goodness_BF_level(i,j,seq_page)=BF;
 if BF <= 0
 seq_goodness(i,1,seq_page)= -1; %label as bad b/c refill inventory is depleted
 j=num_of_prod;
 end

224

 end
 milt_UR=milt_UR_LA(i,1,seq_page);
 num_of_prod_sequenced_LA=num_of_prod_seqd_LA(i,:,seq_page);%copies number of seqd products into

 num_of_prod_sequenced_LA to be used by function
 calc_milt_u_temp_LA(x,UR,la_step,num_of_prod,num_of_prod_sequenced_LA,milt_UR,eta_val,milt_UR_LA_max);
 seq_good = seq_good - omega*cost(last_prod,x) - zeta_ * milt_UR_temp;%this is the first goodness calc
 milt_UR_LA(i,1,seq_page)=milt_UR_temp;%stores milt_ur of current seqn to be used for future LA steps of the seqn
 num_of_prod_seqd_LA(i,x,seq_page)=num_of_prod_seqd_LA(i,x,seq_page)+1;%adds the LA seqd product to the number of
 seqd products
 if seq_goodness(i,3,seq_page) >= lookahead_time
 seq_goodness(i,1,seq_page)=-2;
 end
 if (seq_goodness(i,2,seq_page)-seq_good)/abs(seq_good) >= (goodness_percentage) %if the goodness for the last prod is not
 better or equl to the previous goodness, the seq is flagged as bad
 seq_goodness(i,1,seq_page)=decrs_gdns_flag;
 seq_goodness(i,2,seq_page)=seq_good;
 else
 seq_goodness_stored(i,seq_page,seq_page) = seq_good;
 seq_goodness_stored(i,seq_page+1,seq_page) = mean(seq_goodness_stored(i,1:seq_page,seq_page));
 seq_goodness(i,2,seq_page)=seq_goodness_stored(i,seq_page+1,seq_page);
 end
 end
 end
 %
 % Step #6
 %
 seq_flag=0;
 seq_page_prev=seq_page;%the previous sheet number of the seq_good variable
 seq_page=1+seq_page; %the sheet number of the seq_good variable
 la_step=la_step+1; %record step number for calculating milt_UR
 row=1;i=1;
 while i<=(increment-1)
 seq_loc=9;%the column number of the last product in the sequence
 a=seq_goodness(i,4,seq_page_prev);
 b=seq_goodness(i,5,seq_page_prev);
 c=seq_goodness(i,6,seq_page_prev);
 d=seq_goodness(i,7,seq_page_prev);
 x=seq_goodness(i,seq_loc-1,seq_page_prev);
 if x > 0 && seq_goodness(i,1,seq_page_prev) >= 0
 seq_goodness(row+num_of_prod*1,num_of_prod*1,seq_page)=0;
 seq_goodness_stored(row+num_of_prod*1,seq_page+1,seq_page)=0;
 goodness_tr(row+num_of_prod*1,num_of_prod*1,seq_page)=0;
 goodness_tr_time(row+num_of_prod*1,num_of_prod*1,seq_page)=0;
 thres_flag=0;
 for y=1:num_of_prod;
 threshold_percentage=goodness_BF_level(i,y,seq_page_prev)/BF_max(y);
 if (cost(x,y) <= cost_threshold && BF_threshold(y) >= threshold_percentage);
 seq_goodness(row,4,seq_page)=a;%the 1st product of the sequence
 seq_goodness(row,seq_loc-4,seq_page)=b;%the 2nd product of the sequence
 seq_goodness(row,seq_loc-3,seq_page)=c;%the 3rd product of the sequence
 seq_goodness(row,seq_loc-2,seq_page)=d;%the 4th product of the sequence
 seq_goodness(row,seq_loc-1,seq_page)=x;%the 5th product of the sequence
 seq_goodness(row,seq_loc,seq_page)=y;%the 6th product of the sequence
 seq_goodness(row,2,seq_page)=seq_goodness(i,2,seq_page_prev);%previous goodness value
 seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev);
 goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev);
 goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev);
 goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously
 milt_UR_LA(row,1,seq_page)=milt_UR_LA(i,1,seq_page_prev);
 num_of_prod_seqd_LA(row,:,seq_page)=num_of_prod_seqd_LA(i,:,seq_page_prev);%copies the initial numer of seqd
 products
 goodness_tr(row,seq_loc-3,seq_page)=seq_goodness(i,3,seq_page_prev)+(BF_max(y)-goodness_BF_level(row,y,

seq_page)+UR(y)*cost(x,y))/(PR(y)-UR(y))+cost(x,y);
 goodness_tr_time(row,y,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%flag product as being refilled previously
 seq_goodness(row,3,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%the total time of the sequence
 row = row+1;
 if goodness_tr(row,seq_loc-3,seq_page) < lookahead_time
 seq_flag=1;%used to flag system to know that at least one sequence hasn't reach lookahead time yet
 end
 thres_flag=1;

225

 end
 end
 if thres_flag==0
 seq_goodness(i,3,seq_page_prev)=seq_goodness(i,3,seq_page_prev)+delta_t;
 for j=1:num_of_prod
 goodness_BF_level(i,j,seq_page_prev)=goodness_BF_level(i,j,seq_page_prev)-UR(j)*delta_t;
 end
 i=i-1;
 end
 else
 if seq_goodness(i,1,seq_page_prev)== -2
 seq_goodness(row,:,seq_page)=seq_goodness(i,:,seq_page_prev);%
 goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev);
 goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev);
 goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously
 seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev);
 seq_goodness_stored(row,seq_page+1,seq_page) = seq_goodness_stored(row,seq_page,seq_page);
 row = row+1;
 end
 end
 i=i+1;
 end
 if seq_flag == 0
 pg_num=seq_page-1;
 if min(seq_goodness(:,1,pg_num))>-2 && max(seq_goodness(:,1,pg_num))<=0
 seq_page=pg_num;
 end
 for i=1:size(seq_goodness_stored,1)
 seq_goodness_stored(i,seq_page+1,seq_page)=min(seq_goodness_stored(i,1:seq_page,seq_page));%store min goodness val
 seq_goodness_stored(i,seq_page+2,seq_page)=max(seq_goodness_stored(i,1:seq_page,seq_page));%store max goodness val
 seq_goodness_stored(i,seq_page+3,seq_page)=i;
 end
 break
 end
 milt_UR_LA_max=max(1,max(milt_UR_LA(seq_page_prev)));
 increment=row;
 for i=1:(increment - 1)%this is to calc the goodness for the sequence
 last_prod=seq_goodness(i,seq_loc-1,seq_page);%previous product
 seq_good=0;
 x=seq_goodness(i,seq_loc,seq_page);%most recent product
 if x > 0 && seq_goodness(i,1,seq_page)>= 0
 for j=1:num_of_prod
 if j==x
 BF=goodness_BF_level(i,j,seq_page);
 seq_good= - chi*BF/UR(j) + psi*(BF_max(j)-BF)/(PR(j)-UR(j)) + phi*max(0,(BF_max(j)*BF_threshold(j) - BF)/UR(j));
 BF = BF_max(j);
 end
 if goodness_tr_time(i,j,seq_page)==0
 BF = BF_ini(j)- UR(j) * seq_goodness(i,3,seq_page); %calculate buffer fullness for products that haven't been refilled
 else
 if goodness_tr_time(i,j,seq_page)>=lookahead_time
 BF = BF_max(j) - PR(j)*[lookahead_time - goodness_tr(i,seq_loc-4,seq_page)]; %calculate buffer fullness for product
 that has been refilled, but time is greater than the lookahead time
 else
 BF = BF_max(j) - UR(j) * (seq_goodness(i,3,seq_page) - goodness_tr_time(i,j,seq_page)); %calculate buffer fullness
 for products that have been refilled
 end
 end
 goodness_BF_level(i,j,seq_page)=BF;
 if BF <= 0
 seq_goodness(i,1,seq_page)= -1; %label as bad b/c refill inventory is depleted
 j=num_of_prod;
 end
 end
 milt_UR=milt_UR_LA(i,1,seq_page);
 num_of_prod_sequenced_LA=num_of_prod_seqd_LA(i,:,seq_page);%copies number of seqd products into

num_of_prod_sequenced_LA to be used by function
 calc_milt_u_temp_LA(x,UR,la_step,num_of_prod,num_of_prod_sequenced_LA,milt_UR,eta_val,milt_UR_LA_max);
 seq_good = seq_good - omega*cost(last_prod,x) - zeta_ * milt_UR_temp;%this is the first goodness calc
 milt_UR_LA(i,1,seq_page)=milt_UR_temp;%stores milt_ur of current seqn to be used for future LA steps of the seqn

226

 num_of_prod_seqd_LA(i,x,seq_page)=num_of_prod_seqd_LA(i,x,seq_page)+1;%adds the LA seqd product to the number of
 seqd products
 if seq_goodness(i,3,seq_page) >= lookahead_time
 seq_goodness(i,1,seq_page)=-2;
 end
 if (seq_goodness(i,2,seq_page)-seq_good)/abs(seq_good) >= (goodness_percentage) %if the goodness for the last prod is not
 better or equl to the previous goodness, the seq is flagged as bad
 seq_goodness(i,1,seq_page)=decrs_gdns_flag;
 seq_goodness(i,2,seq_page)=seq_good;
 else
 seq_goodness_stored(i,seq_page,seq_page) = seq_good;
 seq_goodness_stored(i,seq_page+1,seq_page) = mean(seq_goodness_stored(i,1:seq_page,seq_page));
 seq_goodness(i,2,seq_page)=seq_goodness_stored(i,seq_page+1,seq_page);
 end
 end
 end
 %
 % Step #7
 %
 seq_flag=0;
 seq_page_prev=seq_page;%the previous sheet number of the seq_good variable
 seq_page=1+seq_page; %the sheet number of the seq_good variable
 la_step=la_step+1; %record step number for calculating milt_UR
 row=1;i=1;
 while i<=(increment-1)
 seq_loc=10;%the column number of the last product in the sequence
 a=seq_goodness(i,4,seq_page_prev);
 b=seq_goodness(i,5,seq_page_prev);
 c=seq_goodness(i,6,seq_page_prev);
 d=seq_goodness(i,7,seq_page_prev);
 e=seq_goodness(i,8,seq_page_prev);
 x=seq_goodness(i,seq_loc-1,seq_page_prev);
 if x > 0 && seq_goodness(i,1,seq_page_prev) >= 0
 seq_goodness(row+num_of_prod*1,num_of_prod*1,seq_page)=0;
 seq_goodness_stored(row+num_of_prod*1,seq_page+1,seq_page)=0;
 goodness_tr(row+num_of_prod*1,num_of_prod*1,seq_page)=0;
 goodness_tr_time(row+num_of_prod*1,num_of_prod*1,seq_page)=0;
 thres_flag=0;
 for y=1:num_of_prod;
 threshold_percentage=goodness_BF_level(i,y,seq_page_prev)/BF_max(y);
 if (cost(x,y) <= cost_threshold && BF_threshold(y) >= threshold_percentage);
 seq_goodness(row,4,seq_page)=a;%the 1st product of the sequence
 seq_goodness(row,seq_loc-5,seq_page)=b;%the 2nd product of the sequence
 seq_goodness(row,seq_loc-4,seq_page)=c;%the 2nd product of the sequence
 seq_goodness(row,seq_loc-3,seq_page)=d;%the 3rd product of the sequence
 seq_goodness(row,seq_loc-2,seq_page)=e;%the 4th product of the sequence
 seq_goodness(row,seq_loc-1,seq_page)=x;%the 5th product of the sequence
 seq_goodness(row,seq_loc,seq_page)=y;%the 6th product of the sequence
 seq_goodness(row,2,seq_page)=seq_goodness(i,2,seq_page_prev);%previous goodness value
 seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev);
 goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev);
 goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev);
 goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously
 milt_UR_LA(row,1,seq_page)=milt_UR_LA(i,1,seq_page_prev);
 num_of_prod_seqd_LA(row,:,seq_page)=num_of_prod_seqd_LA(i,:,seq_page_prev);%copies the initial numer of seqd

products
 goodness_tr(row,seq_loc-3,seq_page)=seq_goodness(i,3,seq_page_prev)+(BF_max(y)-goodness_BF_level(row,y,

 seq_page)+UR(y)*cost(x,y))/(PR(y)-UR(y))+cost(x,y);
 goodness_tr_time(row,y,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%flag product as being refilled previously
 seq_goodness(row,3,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%the total time of the sequence
 row = row+1;
 if goodness_tr(row,seq_loc-3,seq_page) < lookahead_time
 seq_flag=1;%used to flag system to know that at least one sequence hasn't reach lookahead time yet
 end
 thres_flag=1;
 end
 end
 if thres_flag==0
 seq_goodness(i,3,seq_page_prev)=seq_goodness(i,3,seq_page_prev)+delta_t;
 for j=1:num_of_prod

227

 goodness_BF_level(i,j,seq_page_prev)=goodness_BF_level(i,j,seq_page_prev)-UR(j)*delta_t;
 end
 i=i-1;
 end
 else
 if seq_goodness(i,1,seq_page_prev)== -2
 seq_goodness(row,:,seq_page)=seq_goodness(i,:,seq_page_prev);%
 goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev);
 goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev);
 goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously
 seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev);
 seq_goodness_stored(row,seq_page+1,seq_page) = seq_goodness_stored(row,seq_page,seq_page);
 row = row+1;
 end
 end
 i=i+1;
 end
 if seq_flag == 0
 pg_num=seq_page-1;
 if min(seq_goodness(:,1,pg_num))>-2 && max(seq_goodness(:,1,pg_num))<=0
 seq_page=pg_num;
 end
 for i=1:size(seq_goodness_stored,1)
 seq_goodness_stored(i,seq_page+1,seq_page)=min(seq_goodness_stored(i,1:seq_page,seq_page));%store min goodness val
 seq_goodness_stored(i,seq_page+2,seq_page)=max(seq_goodness_stored(i,1:seq_page,seq_page));%store max goodness val
 seq_goodness_stored(i,seq_page+3,seq_page)=i;
 end
 break
 end
 milt_UR_LA_max=max(1,max(milt_UR_LA(seq_page_prev)));
 increment=row;
 for i=1:(increment - 1)%this is to calc the goodness for the sequence
 last_prod=seq_goodness(i,seq_loc-1,seq_page);%previous product
 seq_good=0;
 x=seq_goodness(i,seq_loc,seq_page);%most recent product
 if x > 0 && seq_goodness(i,1,seq_page)>= 0
 for j=1:num_of_prod
 if j==x
 BF=goodness_BF_level(i,j,seq_page);
 seq_good= - chi*BF/UR(j) + psi*(BF_max(j)-BF)/(PR(j)-UR(j)) + phi*max(0,(BF_max(j)*BF_threshold(j) - BF)/UR(j));
 BF = BF_max(j);
 end
 if goodness_tr_time(i,j,seq_page)==0
 BF = BF_ini(j)- UR(j) * seq_goodness(i,3,seq_page); %calculate buffer fullness for products that haven't been refilled
 else
 if goodness_tr_time(i,j,seq_page)>=lookahead_time
 BF = BF_max(j) - PR(j)*[lookahead_time - goodness_tr(i,seq_loc-4,seq_page)]; %calculate buffer fullness for product
 that has been refilled, but time is greater than the lookahead time
 else
 BF = BF_max(j) - UR(j) * (seq_goodness(i,3,seq_page) - goodness_tr_time(i,j,seq_page)); %calculate buffer fullness

 for products that have been refilled
 end
 end
 goodness_BF_level(i,j,seq_page)=BF;
 if BF <= 0
 seq_goodness(i,1,seq_page)= -1; %label as bad b/c refill inventory is depleted
 j=num_of_prod;
 end
 end
 milt_UR=milt_UR_LA(i,1,seq_page);
 num_of_prod_sequenced_LA=num_of_prod_seqd_LA(i,:,seq_page);%copies number of seqd products into
 num_of_prod_sequenced_LA to be used by function
 calc_milt_u_temp_LA(x,UR,la_step,num_of_prod,num_of_prod_sequenced_LA,milt_UR,eta_val,milt_UR_LA_max);
 seq_good = seq_good - omega*cost(last_prod,x) - zeta_ * milt_UR_temp;%this is the first goodness calc
 milt_UR_LA(i,1,seq_page)=milt_UR_temp;%stores milt_ur of current seqn to be used for future LA steps of the seqn
 num_of_prod_seqd_LA(i,x,seq_page)=num_of_prod_seqd_LA(i,x,seq_page)+1;%adds the LA seqd product to the number of
 seqd products
 if seq_goodness(i,3,seq_page) >= lookahead_time
 seq_goodness(i,1,seq_page)=-2;
 end

228

 if (seq_goodness(i,2,seq_page)-seq_good)/abs(seq_good) >= (goodness_percentage) %if the goodness for the last prod is not
 better or equl to the previous goodness, the seq is flagged as bad
 seq_goodness(i,1,seq_page)=decrs_gdns_flag;
 seq_goodness(i,2,seq_page)=seq_good;
 else
 seq_goodness_stored(i,seq_page,seq_page) = seq_good;
 seq_goodness_stored(i,seq_page+1,seq_page) = mean(seq_goodness_stored(i,1:seq_page,seq_page));
 seq_goodness(i,2,seq_page)=seq_goodness_stored(i,seq_page+1,seq_page);
 end
 end
 end
 %
 % Step #8
 %
 seq_flag=0;
 seq_page_prev=seq_page;%the previous sheet number of the seq_good variable
 seq_page=1+seq_page; %the sheet number of the seq_good variable
 la_step=la_step+1; %record step number for calculating milt_UR
 row=1;i=1;
 while i<=(increment-1)
 seq_loc=11;%the column number of the last product in the sequence
 a=seq_goodness(i,4,seq_page_prev);
 b=seq_goodness(i,5,seq_page_prev);
 c=seq_goodness(i,6,seq_page_prev);
 d=seq_goodness(i,7,seq_page_prev);
 e=seq_goodness(i,8,seq_page_prev);
 f=seq_goodness(i,9,seq_page_prev);
 x=seq_goodness(i,seq_loc-1,seq_page_prev);
 if x > 0 && seq_goodness(i,1,seq_page_prev) >= 0
 seq_goodness(row+num_of_prod*1,num_of_prod*1,seq_page)=0;
 seq_goodness_stored(row+num_of_prod*1,seq_page+1,seq_page)=0;
 goodness_tr(row+num_of_prod*1,num_of_prod*1,seq_page)=0;
 goodness_tr_time(row+num_of_prod*1,num_of_prod*1,seq_page)=0;
 thres_flag=0;
 for y=1:num_of_prod;
 threshold_percentage=goodness_BF_level(i,y,seq_page_prev)/BF_max(y);
 if (cost(x,y) <= cost_threshold && BF_threshold(y) >= threshold_percentage);
 seq_goodness(row,4,seq_page)=a;%the 1st product of the sequence
 seq_goodness(row,seq_loc-6,seq_page)=b;%the 2nd product of the sequence
 seq_goodness(row,seq_loc-5,seq_page)=c;%the 2nd product of the sequence
 seq_goodness(row,seq_loc-4,seq_page)=d;%the 2nd product of the sequence
 seq_goodness(row,seq_loc-3,seq_page)=e;%the 3rd product of the sequence
 seq_goodness(row,seq_loc-2,seq_page)=f;%the 4th product of the sequence
 seq_goodness(row,seq_loc-1,seq_page)=x;%the 5th product of the sequence
 seq_goodness(row,seq_loc,seq_page)=y;%the 6th product of the sequence
 seq_goodness(row,2,seq_page)=seq_goodness(i,2,seq_page_prev);%previous goodness value
 seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev);
 goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev);
 goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev);
 goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously
 milt_UR_LA(row,1,seq_page)=milt_UR_LA(i,1,seq_page_prev);
 num_of_prod_seqd_LA(row,:,seq_page)=num_of_prod_seqd_LA(i,:,seq_page_prev);%copies the initial numer of seqd

products
 goodness_tr(row,seq_loc-3,seq_page)=seq_goodness(i,3,seq_page_prev)+(BF_max(y)-goodness_BF_level(row,y,

seq_page)+UR(y)*cost(x,y))/(PR(y)-UR(y))+cost(x,y);
 goodness_tr_time(row,y,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%flag product as being refilled previously
 seq_goodness(row,3,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%the total time of the sequence
 row = row+1;
 if goodness_tr(row,seq_loc-3,seq_page) < lookahead_time
 seq_flag=1;%used to flag system to know that at least one sequence hasn't reach lookahead time yet
 end
 thres_flag=1;
 end
 end
 if thres_flag==0
 seq_goodness(i,3,seq_page_prev)=seq_goodness(i,3,seq_page_prev)+delta_t;
 for j=1:num_of_prod
 goodness_BF_level(i,j,seq_page_prev)=goodness_BF_level(i,j,seq_page_prev)-UR(j)*delta_t;
 end
 i=i-1;

229

 end
 else
 if seq_goodness(i,1,seq_page_prev)== -2
 seq_goodness(row,:,seq_page)=seq_goodness(i,:,seq_page_prev);%
 goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev);
 goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev);
 goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously
 seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev);
 seq_goodness_stored(row,seq_page+1,seq_page) = seq_goodness_stored(row,seq_page,seq_page);
 row = row+1;
 end
 end
 i=i+1;
 end
 if seq_flag == 0
 pg_num=seq_page-1;
 if min(seq_goodness(:,1,pg_num))>-2 && max(seq_goodness(:,1,pg_num))<=0
 seq_page=pg_num;
 end
 for i=1:size(seq_goodness_stored,1)
 seq_goodness_stored(i,seq_page+1,seq_page)=min(seq_goodness_stored(i,1:seq_page,seq_page));%store min goodness val
 seq_goodness_stored(i,seq_page+2,seq_page)=max(seq_goodness_stored(i,1:seq_page,seq_page));%store max goodness val
 seq_goodness_stored(i,seq_page+3,seq_page)=i;
 end
 break
 end
 milt_UR_LA_max=max(1,max(milt_UR_LA(seq_page_prev)));
 increment=row;
 for i=1:(increment - 1)%this is to calc the goodness for the sequence
 last_prod=seq_goodness(i,seq_loc-1,seq_page);%previous product
 seq_good=0;
 x=seq_goodness(i,seq_loc,seq_page);%most recent product
 if x > 0 && seq_goodness(i,1,seq_page)>= 0
 for j=1:num_of_prod
 if j==x
 BF=goodness_BF_level(i,j,seq_page);
 seq_good= - chi*BF/UR(j) + psi*(BF_max(j)-BF)/(PR(j)-UR(j)) + phi*max(0,(BF_max(j)*BF_threshold(j) - BF)/UR(j));
 BF = BF_max(j);
 end
 if goodness_tr_time(i,j,seq_page)==0
 BF = BF_ini(j)- UR(j) * seq_goodness(i,3,seq_page); %calculate buffer fullness for products that haven't been refilled
 else
 if goodness_tr_time(i,j,seq_page)>=lookahead_time
 BF = BF_max(j) - PR(j)*[lookahead_time - goodness_tr(i,seq_loc-4,seq_page)]; %calculate buffer fullness for product
 that has been refilled, but time is greater than the lookahead time
 else
 BF = BF_max(j) - UR(j) * (seq_goodness(i,3,seq_page) - goodness_tr_time(i,j,seq_page)); %calculate buffer fullness
 for products that have been refilled
 end
 end
 goodness_BF_level(i,j,seq_page)=BF;
 if BF <= 0
 seq_goodness(i,1,seq_page)= -1; %label as bad b/c refill inventory is depleted
 j=num_of_prod;
 end
 end
 milt_UR=milt_UR_LA(i,1,seq_page);
 num_of_prod_sequenced_LA=num_of_prod_seqd_LA(i,:,seq_page);%copies number of seqd products into

num_of_prod_sequenced_LA to be used by function
 calc_milt_u_temp_LA(x,UR,la_step,num_of_prod,num_of_prod_sequenced_LA,milt_UR,eta_val,milt_UR_LA_max);
 seq_good = seq_good - omega*cost(last_prod,x) - zeta_ * milt_UR_temp;%this is the first goodness calc
 milt_UR_LA(i,1,seq_page)=milt_UR_temp;%stores milt_ur of current seqn to be used for future LA steps of the seqn
 num_of_prod_seqd_LA(i,x,seq_page)=num_of_prod_seqd_LA(i,x,seq_page)+1;%adds the LA seqd product to the number of
 seqd products
 if seq_goodness(i,3,seq_page) >= lookahead_time
 seq_goodness(i,1,seq_page)=-2;
 end
 if (seq_goodness(i,2,seq_page)-seq_good)/abs(seq_good) >= (goodness_percentage) %if the goodness for the last prod is not
 better or equl to the previous goodness, the seq is flagged as bad
 seq_goodness(i,1,seq_page)=decrs_gdns_flag;

230

 seq_goodness(i,2,seq_page)=seq_good;
 else
 seq_goodness_stored(i,seq_page,seq_page) = seq_good;
 seq_goodness_stored(i,seq_page+1,seq_page) = mean(seq_goodness_stored(i,1:seq_page,seq_page));
 seq_goodness(i,2,seq_page)=seq_goodness_stored(i,seq_page+1,seq_page);
 end
 end
 end
 %
 % Step #9
 %
 seq_flag=0;
 seq_page_prev=seq_page;%the previous sheet number of the seq_good variable
 seq_page=1+seq_page %the sheet number of the seq_good variable
 la_step=la_step+1; %record step number for calculating milt_UR
 row=1;i=1;
 while i<=(increment-1)
 seq_loc=12;%the column number of the last product in the sequence
 a=seq_goodness(i,4,seq_page_prev);
 b=seq_goodness(i,5,seq_page_prev);
 c=seq_goodness(i,6,seq_page_prev);
 d=seq_goodness(i,7,seq_page_prev);
 e=seq_goodness(i,8,seq_page_prev);
 f=seq_goodness(i,9,seq_page_prev);
 g=seq_goodness(i,10,seq_page_prev);
 x=seq_goodness(i,seq_loc-1,seq_page_prev);
 if x > 0 && seq_goodness(i,1,seq_page_prev) >= 0
 seq_goodness(row+num_of_prod*1,num_of_prod*1,seq_page)=0;
 seq_goodness_stored(row+num_of_prod*1,seq_page+1,seq_page)=0;
 goodness_tr(row+num_of_prod*1,num_of_prod*1,seq_page)=0;
 goodness_tr_time(row+num_of_prod*1,num_of_prod*1,seq_page)=0;
 thres_flag=0;
 for y=1:num_of_prod;
 threshold_percentage=goodness_BF_level(i,y,seq_page_prev)/BF_max(y);
 if (cost(x,y) <= cost_threshold && BF_threshold(y) >= threshold_percentage);
 seq_goodness(row,4,seq_page)=a;%the 1st product of the sequence
 seq_goodness(row,seq_loc-7,seq_page)=b;%the 2nd product of the sequence
 seq_goodness(row,seq_loc-6,seq_page)=c;%the 2nd product of the sequence
 seq_goodness(row,seq_loc-5,seq_page)=d;%the 2nd product of the sequence
 seq_goodness(row,seq_loc-4,seq_page)=e;%the 2nd product of the sequence
 seq_goodness(row,seq_loc-3,seq_page)=f;%the 3rd product of the sequence
 seq_goodness(row,seq_loc-2,seq_page)=g;%the 4th product of the sequence
 seq_goodness(row,seq_loc-1,seq_page)=x;%the 5th product of the sequence
 seq_goodness(row,seq_loc,seq_page)=y;%the 6th product of the sequence
 seq_goodness(row,2,seq_page)=seq_goodness(i,2,seq_page_prev);%previous goodness value
 seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev);
 goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev);
 goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev);
 goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously
 milt_UR_LA(row,1,seq_page)=milt_UR_LA(i,1,seq_page_prev);
 num_of_prod_seqd_LA(row,:,seq_page)=num_of_prod_seqd_LA(i,:,seq_page_prev);%copies the initial numer of seqd

products
 goodness_tr(row,seq_loc-3,seq_page)=seq_goodness(i,3,seq_page_prev)+(BF_max(y)-goodness_BF_level(row,y,

seq_page)+UR(y)*cost(x,y))/(PR(y)-UR(y))+cost(x,y);
 goodness_tr_time(row,y,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%flag product as being refilled previously
 seq_goodness(row,3,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%the total time of the sequence
 row = row+1;
 if goodness_tr(row,seq_loc-3,seq_page) < lookahead_time
 seq_flag=1;%used to flag system to know that at least one sequence hasn't reach lookahead time yet
 end
 thres_flag=1;
 end
 end
 if thres_flag==0
 seq_goodness(i,3,seq_page_prev)=seq_goodness(i,3,seq_page_prev)+delta_t;
 for j=1:num_of_prod
 goodness_BF_level(i,j,seq_page_prev)=goodness_BF_level(i,j,seq_page_prev)-UR(j)*delta_t;
 end
 i=i-1;
 end

231

 else
 if seq_goodness(i,1,seq_page_prev)== -2
 seq_goodness(row,:,seq_page)=seq_goodness(i,:,seq_page_prev);%
 goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev);
 goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev);
 goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously
 seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev);
 seq_goodness_stored(row,seq_page+1,seq_page) = seq_goodness_stored(row,seq_page,seq_page);
 row = row+1;
 end
 end
 i=i+1;
 end
 if seq_flag == 0
 pg_num=seq_page-1;
 if min(seq_goodness(:,1,pg_num))>-2 && max(seq_goodness(:,1,pg_num))<=0
 seq_page=pg_num;
 end
 for i=1:size(seq_goodness_stored,1)
 seq_goodness_stored(i,seq_page+1,seq_page)=min(seq_goodness_stored(i,1:seq_page,seq_page));%store min goodness val
 seq_goodness_stored(i,seq_page+2,seq_page)=max(seq_goodness_stored(i,1:seq_page,seq_page));%store max goodness val
 seq_goodness_stored(i,seq_page+3,seq_page)=i;
 end
 break
 end
 milt_UR_LA_max=max(1,max(milt_UR_LA(seq_page_prev)));
 increment=row;
 for i=1:(increment - 1)%this is to calc the goodness for the sequence
 last_prod=seq_goodness(i,seq_loc-1,seq_page);%previous product
 seq_good=0;
 x=seq_goodness(i,seq_loc,seq_page);%most recent product
 if x > 0 && seq_goodness(i,1,seq_page)>= 0
 for j=1:num_of_prod
 if j==x
 BF=goodness_BF_level(i,j,seq_page);
 seq_good= - chi*BF/UR(j) + psi*(BF_max(j)-BF)/(PR(j)-UR(j)) + phi*max(0,(BF_max(j)*BF_threshold(j) - BF)/UR(j));
 BF = BF_max(j);
 end
 if goodness_tr_time(i,j,seq_page)==0
 BF = BF_ini(j)- UR(j) * seq_goodness(i,3,seq_page); %calculate buffer fullness for products that haven't been refilled
 else
 if goodness_tr_time(i,j,seq_page)>=lookahead_time
 BF = BF_max(j) - PR(j)*[lookahead_time - goodness_tr(i,seq_loc-4,seq_page)]; %calculate buffer fullness for product

 that has been refilled, but time is greater than the lookahead time
 else
 BF = BF_max(j) - UR(j) * (seq_goodness(i,3,seq_page) - goodness_tr_time(i,j,seq_page)); %calculate buffer fullness

 for products that have been refilled
 end
 end
 goodness_BF_level(i,j,seq_page)=BF;
 if BF <= 0
 seq_goodness(i,1,seq_page)= -1; %label as bad b/c refill inventory is depleted
 j=num_of_prod;
 end
 end
 milt_UR=milt_UR_LA(i,1,seq_page);
 num_of_prod_sequenced_LA=num_of_prod_seqd_LA(i,:,seq_page);%copies number of seqd products into
 num_of_prod_sequenced_LA to be used by function
 calc_milt_u_temp_LA(x,UR,la_step,num_of_prod,num_of_prod_sequenced_LA,milt_UR,eta_val,milt_UR_LA_max);
 seq_good = seq_good - omega*cost(last_prod,x) - zeta_ * milt_UR_temp;%this is the first goodness calc
 milt_UR_LA(i,1,seq_page)=milt_UR_temp;%stores milt_ur of current seqn to be used for future LA steps of the seqn
 num_of_prod_seqd_LA(i,x,seq_page)=num_of_prod_seqd_LA(i,x,seq_page)+1;%adds the LA seqd product to the number of
 seqd products
 if seq_goodness(i,3,seq_page) >= lookahead_time
 seq_goodness(i,1,seq_page)=-2;
 end
 if (seq_goodness(i,2,seq_page)-seq_good)/abs(seq_good) >= (goodness_percentage) %if the goodness for the last prod is not
 better or equl to the previous goodness, the seq is flagged as bad
 seq_goodness(i,1,seq_page)=decrs_gdns_flag;
 seq_goodness(i,2,seq_page)=seq_good;

232

 else
 seq_goodness_stored(i,seq_page,seq_page) = seq_good;
 seq_goodness_stored(i,seq_page+1,seq_page) = mean(seq_goodness_stored(i,1:seq_page,seq_page));
 seq_goodness(i,2,seq_page)=seq_goodness_stored(i,seq_page+1,seq_page);
 end
 end
 end
 %
 % Step #10
 %
 seq_flag=0;
 seq_page_prev=seq_page;%the previous sheet number of the seq_good variable
 seq_page=1+seq_page; %the sheet number of the seq_good variable
 la_step=la_step+1; %record step number for calculating milt_UR
 row=1;i=1;
 while i<=(increment-1)
 seq_loc=13;%the column number of the last product in the sequence
 a=seq_goodness(i,4,seq_page_prev);
 b=seq_goodness(i,5,seq_page_prev);
 c=seq_goodness(i,6,seq_page_prev);
 d=seq_goodness(i,7,seq_page_prev);
 e=seq_goodness(i,8,seq_page_prev);
 f=seq_goodness(i,9,seq_page_prev);
 g=seq_goodness(i,10,seq_page_prev);
 h=seq_goodness(i,11,seq_page_prev);
 x=seq_goodness(i,seq_loc-1,seq_page_prev);
 if x > 0 && seq_goodness(i,1,seq_page_prev) >= 0
 seq_goodness(row+num_of_prod*1,num_of_prod*1,seq_page)=0;
 seq_goodness_stored(row+num_of_prod*1,seq_page+1,seq_page)=0;
 goodness_tr(row+num_of_prod*1,num_of_prod*1,seq_page)=0;
 goodness_tr_time(row+num_of_prod*1,num_of_prod*1,seq_page)=0;
 thres_flag=0;
 for y=1:num_of_prod;
 threshold_percentage=goodness_BF_level(i,y,seq_page_prev)/BF_max(y);
 if (cost(x,y) <= cost_threshold && BF_threshold(y) >= threshold_percentage);
 seq_goodness(row,4,seq_page)=a;%the 1st product of the sequence
 seq_goodness(row,seq_loc-8,seq_page)=b;%the 2nd product of the sequence
 seq_goodness(row,seq_loc-7,seq_page)=c;%the 2nd product of the sequence
 seq_goodness(row,seq_loc-6,seq_page)=d;%the 2nd product of the sequence
 seq_goodness(row,seq_loc-5,seq_page)=e;%the 2nd product of the sequence
 seq_goodness(row,seq_loc-4,seq_page)=f;%the 2nd product of the sequence
 seq_goodness(row,seq_loc-3,seq_page)=g;%the 3rd product of the sequence
 seq_goodness(row,seq_loc-2,seq_page)=h;%the 4th product of the sequence
 seq_goodness(row,seq_loc-1,seq_page)=x;%the 5th product of the sequence
 seq_goodness(row,seq_loc,seq_page)=y;%the 6th product of the sequence
 seq_goodness(row,2,seq_page)=seq_goodness(i,2,seq_page_prev);%previous goodness value
 seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev);
 goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev);
 goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev);
 goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously
 milt_UR_LA(row,1,seq_page)=milt_UR_LA(i,1,seq_page_prev);
 num_of_prod_seqd_LA(row,:,seq_page)=num_of_prod_seqd_LA(i,:,seq_page_prev);%copies the initial numer of seqd

products
 goodness_tr(row,seq_loc-3,seq_page)=seq_goodness(i,3,seq_page_prev)+(BF_max(y)-goodness_BF_level(row,y,

seq_page)+UR(y)*cost(x,y))/(PR(y)-UR(y))+cost(x,y);
 goodness_tr_time(row,y,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%flag product as being refilled previously
 seq_goodness(row,3,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%the total time of the sequence
 row = row+1;
 if goodness_tr(row,seq_loc-3,seq_page) < lookahead_time
 seq_flag=1;%used to flag system to know that at least one sequence hasn't reach lookahead time yet
 end
 thres_flag=1;
 end
 end
 if thres_flag==0
 seq_goodness(i,3,seq_page_prev)=seq_goodness(i,3,seq_page_prev)+delta_t;
 for j=1:num_of_prod
 goodness_BF_level(i,j,seq_page_prev)=goodness_BF_level(i,j,seq_page_prev)-UR(j)*delta_t;
 end
 i=i-1;

233

 end
 else
 if seq_goodness(i,1,seq_page_prev)== -2
 seq_goodness(row,:,seq_page)=seq_goodness(i,:,seq_page_prev);%
 goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev);
 goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev);
 goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously
 seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev);
 seq_goodness_stored(row,seq_page+1,seq_page) = seq_goodness_stored(row,seq_page,seq_page);
 row = row+1;
 end
 end
 i=i+1;
 end
 if seq_flag == 0
 pg_num=seq_page-1;
 if min(seq_goodness(:,1,pg_num))>-2 && max(seq_goodness(:,1,pg_num))<=0
 seq_page=pg_num;
 end
 for i=1:size(seq_goodness_stored,1)
 seq_goodness_stored(i,seq_page+1,seq_page)=min(seq_goodness_stored(i,1:seq_page,seq_page));%store min goodness val
 seq_goodness_stored(i,seq_page+2,seq_page)=max(seq_goodness_stored(i,1:seq_page,seq_page));%store max goodness val
 seq_goodness_stored(i,seq_page+3,seq_page)=i;
 end
 break
 end
 milt_UR_LA_max=max(1,max(milt_UR_LA(seq_page_prev)));
 increment=row;
 for i=1:(increment - 1)%this is to calc the goodness for the sequence
 last_prod=seq_goodness(i,seq_loc-1,seq_page);%previous product
 seq_good=0;
 x=seq_goodness(i,seq_loc,seq_page);%most recent product
 if x > 0 && seq_goodness(i,1,seq_page)>= 0
 for j=1:num_of_prod
 if j==x
 BF=goodness_BF_level(i,j,seq_page);
 seq_good= - chi*BF/UR(j) + psi*(BF_max(j)-BF)/(PR(j)-UR(j)) + phi*max(0,(BF_max(j)*BF_threshold(j) - BF)/UR(j));
 BF = BF_max(j);
 end
 if goodness_tr_time(i,j,seq_page)==0
 BF = BF_ini(j)- UR(j) * seq_goodness(i,3,seq_page); %calculate buffer fullness for products that haven't been refilled
 else
 if goodness_tr_time(i,j,seq_page)>=lookahead_time
 BF = BF_max(j) - PR(j)*[lookahead_time - goodness_tr(i,seq_loc-4,seq_page)]; %calculate buffer fullness for product
 that has been refilled, but time is greater than the lookahead time
 else
 BF = BF_max(j) - UR(j) * (seq_goodness(i,3,seq_page) - goodness_tr_time(i,j,seq_page)); %calculate buffer fullness
 for products that have been refilled
 end
 end
 goodness_BF_level(i,j,seq_page)=BF;
 if BF <= 0
 seq_goodness(i,1,seq_page)= -1; %label as bad b/c refill inventory is depleted
 j=num_of_prod;
 end
 end
 milt_UR=milt_UR_LA(i,1,seq_page);
 num_of_prod_sequenced_LA=num_of_prod_seqd_LA(i,:,seq_page);%copies number of seqd products into
 num_of_prod_sequenced_LA to be used by function
 calc_milt_u_temp_LA(x,UR,la_step,num_of_prod,num_of_prod_sequenced_LA,milt_UR,eta_val,milt_UR_LA_max);
 seq_good = seq_good - omega*cost(last_prod,x) - zeta_ * milt_UR_temp;%this is the first goodness calc
 milt_UR_LA(i,1,seq_page)=milt_UR_temp;%stores milt_ur of current seqn to be used for future LA steps of the seqn
 num_of_prod_seqd_LA(i,x,seq_page)=num_of_prod_seqd_LA(i,x,seq_page)+1;%adds the LA seqd product to the number of
 seqd products
 if seq_goodness(i,3,seq_page) >= lookahead_time
 seq_goodness(i,1,seq_page)=-2;
 end
 if (seq_goodness(i,2,seq_page)-seq_good)/abs(seq_good) >= (goodness_percentage) %if the goodness for the last prod is not
 better or equl to the previous goodness, the seq is flagged as bad
 seq_goodness(i,1,seq_page)=decrs_gdns_flag;

234

 seq_goodness(i,2,seq_page)=seq_good;
 else
 seq_goodness_stored(i,seq_page,seq_page) = seq_good;
 seq_goodness_stored(i,seq_page+1,seq_page) = mean(seq_goodness_stored(i,1:seq_page,seq_page));
 seq_goodness(i,2,seq_page)=seq_goodness_stored(i,seq_page+1,seq_page);
 end
 end
 end
 %
 % Step #11
 %
 seq_flag=0;
 seq_page_prev=seq_page;%the previous sheet number of the seq_good variable
 seq_page=1+seq_page %the sheet number of the seq_good variable
 la_step=la_step+1; %record step number for calculating milt_UR
 row=1;i=1;
 while i<=(increment-1)
 seq_loc=14;%the column number of the last product in the sequence
 a=seq_goodness(i,4,seq_page_prev);
 b=seq_goodness(i,5,seq_page_prev);
 c=seq_goodness(i,6,seq_page_prev);
 d=seq_goodness(i,7,seq_page_prev);
 e=seq_goodness(i,8,seq_page_prev);
 f=seq_goodness(i,9,seq_page_prev);
 g=seq_goodness(i,10,seq_page_prev);
 h=seq_goodness(i,11,seq_page_prev);
 m=seq_goodness(i,12,seq_page_prev);
 x=seq_goodness(i,seq_loc-1,seq_page_prev);
 if x > 0 && seq_goodness(i,1,seq_page_prev) >= 0
 seq_goodness(row+num_of_prod*1,num_of_prod*1,seq_page)=0;
 seq_goodness_stored(row+num_of_prod*1,seq_page+1,seq_page)=0;
 goodness_tr(row+num_of_prod*1,num_of_prod*1,seq_page)=0;
 goodness_tr_time(row+num_of_prod*1,num_of_prod*1,seq_page)=0;
 thres_flag=0;
 for y=1:num_of_prod;
 threshold_percentage=goodness_BF_level(i,y,seq_page_prev)/BF_max(y);
 if (cost(x,y) <= cost_threshold && BF_threshold(y) >= threshold_percentage);
 seq_goodness(row,4,seq_page)=a;%the 1st product of the sequence
 seq_goodness(row,seq_loc-9,seq_page)=b;%the 2nd product of the sequence
 seq_goodness(row,seq_loc-8,seq_page)=c;%the 2nd product of the sequence
 seq_goodness(row,seq_loc-7,seq_page)=d;%the 2nd product of the sequence
 seq_goodness(row,seq_loc-6,seq_page)=e;%the 2nd product of the sequence
 seq_goodness(row,seq_loc-5,seq_page)=f;%the 2nd product of the sequence
 seq_goodness(row,seq_loc-4,seq_page)=g;%the 2nd product of the sequence
 seq_goodness(row,seq_loc-3,seq_page)=h;%the 3rd product of the sequence
 seq_goodness(row,seq_loc-2,seq_page)=m;%the 4th product of the sequence
 seq_goodness(row,seq_loc-1,seq_page)=x;%the 5th product of the sequence
 seq_goodness(row,seq_loc,seq_page)=y;%the 6th product of the sequence
 seq_goodness(row,2,seq_page)=seq_goodness(i,2,seq_page_prev);%previous goodness value
 seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev);
 goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev);
 goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev);
 goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously
 milt_UR_LA(row,1,seq_page)=milt_UR_LA(i,1,seq_page_prev);
 num_of_prod_seqd_LA(row,:,seq_page)=num_of_prod_seqd_LA(i,:,seq_page_prev);%copies the initial numer of seqd

products
 goodness_tr(row,seq_loc-3,seq_page)=seq_goodness(i,3,seq_page_prev)+(BF_max(y)-goodness_BF_level(row,y,

seq_page)+UR(y)*cost(x,y))/(PR(y)-UR(y))+cost(x,y);
 goodness_tr_time(row,y,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%flag product as being refilled previously
 seq_goodness(row,3,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%the total time of the sequence
 row = row+1;
 if goodness_tr(row,seq_loc-3,seq_page) < lookahead_time
 seq_flag=1;%used to flag system to know that at least one sequence hasn't reach lookahead time yet
 end
 thres_flag=1;
 end
 end
 if thres_flag==0
 seq_goodness(i,3,seq_page_prev)=seq_goodness(i,3,seq_page_prev)+delta_t;
 for j=1:num_of_prod

235

 goodness_BF_level(i,j,seq_page_prev)=goodness_BF_level(i,j,seq_page_prev)-UR(j)*delta_t;
 end
 i=i-1;
 end
 else
 if seq_goodness(i,1,seq_page_prev)== -2
 seq_goodness(row,:,seq_page)=seq_goodness(i,:,seq_page_prev);%
 goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev);
 goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev);
 goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously
 seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev);
 seq_goodness_stored(row,seq_page+1,seq_page) = seq_goodness_stored(row,seq_page,seq_page);
 row = row+1;
 end
 end
 i=i+1;
 end
 if seq_flag == 0
 pg_num=seq_page-1;
 if min(seq_goodness(:,1,pg_num))>-2 && max(seq_goodness(:,1,pg_num))<=0
 seq_page=pg_num;
 end
 for i=1:size(seq_goodness_stored,1)
 seq_goodness_stored(i,seq_page+1,seq_page)=min(seq_goodness_stored(i,1:seq_page,seq_page));%store min goodness val
 seq_goodness_stored(i,seq_page+2,seq_page)=max(seq_goodness_stored(i,1:seq_page,seq_page));%store max goodness val
 seq_goodness_stored(i,seq_page+3,seq_page)=i;
 end
 break
 end
 milt_UR_LA_max=max(1,max(milt_UR_LA(seq_page_prev)));
 increment=row;
 for i=1:(increment - 1)%this is to calc the goodness for the sequence
 last_prod=seq_goodness(i,seq_loc-1,seq_page);%previous product
 seq_good=0;
 x=seq_goodness(i,seq_loc,seq_page);%most recent product
 if x > 0 && seq_goodness(i,1,seq_page)>= 0
 for j=1:num_of_prod
 if j==x
 BF=goodness_BF_level(i,j,seq_page);
 seq_good= - chi*BF/UR(j) + psi*(BF_max(j)-BF)/(PR(j)-UR(j)) + phi*max(0,(BF_max(j)*BF_threshold(j) - BF)/UR(j));
 BF = BF_max(j);
 end
 if goodness_tr_time(i,j,seq_page)==0
 BF = BF_ini(j)- UR(j) * seq_goodness(i,3,seq_page); %calculate buffer fullness for products that haven't been refilled
 else
 if goodness_tr_time(i,j,seq_page)>=lookahead_time
 BF = BF_max(j) - PR(j)*[lookahead_time - goodness_tr(i,seq_loc-4,seq_page)]; %calculate buffer fullness for product
 that has been refilled, but time is greater than the lookahead time
 else
 BF = BF_max(j) - UR(j) * (seq_goodness(i,3,seq_page) - goodness_tr_time(i,j,seq_page)); %calculate buffer fullness

for products that have been refilled
 end
 end
 goodness_BF_level(i,j,seq_page)=BF;
 if BF <= 0
 seq_goodness(i,1,seq_page)= -1; %label as bad b/c refill inventory is depleted
 j=num_of_prod;
 end
 end
 milt_UR=milt_UR_LA(i,1,seq_page);
 num_of_prod_sequenced_LA=num_of_prod_seqd_LA(i,:,seq_page);%copies number of seqd products into

num_of_prod_sequenced_LA to be used by function
 calc_milt_u_temp_LA(x,UR,la_step,num_of_prod,num_of_prod_sequenced_LA,milt_UR,eta_val,milt_UR_LA_max);
 seq_good = seq_good - omega*cost(last_prod,x) - zeta_ * milt_UR_temp;%this is the first goodness calc
 milt_UR_LA(i,1,seq_page)=milt_UR_temp;%stores milt_ur of current seqn to be used for future LA steps of the seqn
 num_of_prod_seqd_LA(i,x,seq_page)=num_of_prod_seqd_LA(i,x,seq_page)+1;%adds the LA seqd product to the number of

seqd products
 if seq_goodness(i,3,seq_page) >= lookahead_time
 seq_goodness(i,1,seq_page)=-2;
 end

236

 if (seq_goodness(i,2,seq_page)-seq_good)/abs(seq_good) >= (goodness_percentage) %if the goodness for the last prod is not
better or equl to the previous goodness, the seq is flagged as bad

 seq_goodness(i,1,seq_page)=decrs_gdns_flag;
 seq_goodness(i,2,seq_page)=seq_good;
 else
 seq_goodness_stored(i,seq_page,seq_page) = seq_good;
 seq_goodness_stored(i,seq_page+1,seq_page) = mean(seq_goodness_stored(i,1:seq_page,seq_page));
 seq_goodness(i,2,seq_page)=seq_goodness_stored(i,seq_page+1,seq_page);
 end
 end
 end
 seq_flag=0;
end

seq_usage_rate Function:
function [milt_UR,num_of_prod_sequenced]=seq_usage_rate(final_sequence,num_of_prod,UR)
global milt_UR, global total_demand,global record, global num_of_prod_sequenced
num_of_prod_sequenced=[];
num_of_prod_sequenced(length(final_sequence)+1,num_of_prod)=0;
%calc of the total number of products produced for each stage of the
%sequence, used for Miltenberg's euation
if length(final_sequence) >= 1
 for k = 1:length(final_sequence)
 for i = 1:num_of_prod
 if final_sequence(k,1) == i
 num_of_prod_sequenced(k+1,i)=num_of_prod_sequenced(k,i)+1;
 else
 num_of_prod_sequenced(k+1,i)=num_of_prod_sequenced(k,i);
 end
 end
 end
else
 final_sequence=0;
end
if size(num_of_prod_sequenced,1) > 2
 num_of_prod_sequenced(1:2,:)=[];
end
milt_UR = 0;
for k = 1:length(final_sequence)-1
 for i = 1:num_of_prod
 milt_UR=(num_of_prod_sequenced(k,i) - k * (UR(i)/sum(UR(1:num_of_prod))))^2+milt_UR;
 end
end

calc_milt_u_temp Function:
function [milt_UR_temp,
eta]=calc_milt_u_temp(final_sequence,prod_i,UR,step,num_of_prod,num_of_prod_sequenced,milt_UR,etap,eta_val)
global milt_UR_temp, global eta%, global eta_val
if step > 1
 stage=step-1;
else
 stage=1;
end
milt_UR_temp=0;
for i = 1:num_of_prod
 if i == prod_i
 milt_UR_temp=(num_of_prod_sequenced(stage,i)+1 - stage * (UR(i)/sum(UR(1:num_of_prod))))^2+milt_UR_temp;
 else
 milt_UR_temp=(num_of_prod_sequenced(stage,i) - stage * (UR(i)/sum(UR(1:num_of_prod))))^2+milt_UR_temp;
 end
end
if stage > 1
 milt_UR_temp=milt_UR_temp+milt_UR;
end

237

if milt_UR ~= 0
 etap=1/milt_UR;
else
 etap=0;
end
eta = etap*eta_val;

calc_milt_u_temp_LA Function:
function [milt_UR_temp,zeta_]=calc_milt_u_temp_LA(x,UR,la_step,num_of_prod,num_of_prod_sequenced_LA,milt_UR,
 eta_val,milt_UR_LA_max)
global milt_UR_temp, global zeta_%, global eta_val
prod_i=x;
stage=la_step;
milt_UR_temp=0;
for z = 1:num_of_prod
 if z == prod_i %if current product is being refilled, then number of prods is increased by 1
 milt_UR_temp=(num_of_prod_sequenced_LA(z)+1 - stage * (UR(z)/sum(UR(1:num_of_prod))))^2+milt_UR_temp;
 else
 milt_UR_temp=(num_of_prod_sequenced_LA(z) - stage * (UR(z)/sum(UR(1:num_of_prod))))^2+milt_UR_temp;
 end
end
milt_UR_temp=milt_UR_temp+milt_UR;
zetap=1/milt_UR_LA_max;
zeta_ = zetap*eta_val;

Copyright © John Thomas Henninger 2009

238

Appendix III: A History of Production Control Systems

239

A History of Production Control Systems

This appendix will provide general information and the history of the many different methods of

scheduling production, such as Classical Scheduling, Bottleneck Scheduling, MRP, Pull

Production Control, and Diagnostic Scheduling.

Classical Scheduling

Scheduling of jobs for manufacturing is as old as manufacturing itself but research in the area

dates back to the early 1900s with the emergence of the scientific management movement. The

use of computers in the 1950s and 1960s allowed researchers to begin to perform serious analysis

of scheduling problems and led to the eventual development of MRP. Classical scheduling

problems were examined before computers or MRP and many assumptions were required in order

to be able to solve these problems by hand. Some of the more common assumptions include: all

jobs are available at the start of the problem, process times are deterministic, process times are

independent from the schedule (no setup times), machines do not break down, and there is no

preemption or cancellation of jobs. These assumptions allow many of the scheduling problems to

be reduced down to a manageable task. In some cases these assumptions allow a sequence to be

found instead of an actual schedule, but in other cases a full-blown schedule is needed which is

much more difficult to determine.

Classical scheduling problems are often highly simplified and generic but they can offer useful

insights into scheduling issues even though most problems only address one, two, or possibly

three machines. An example of insight gained from classical scheduling is when a single

machine is examined using the previously mentioned assumptions and the average cycle time is

minimized; where cycle time is defined as the average time from the release of a job until it

reaches an inventory point and the end of the routing. It is interesting to note that although the

total time to complete multiple jobs is independent of the sequence, the average cycle time is

minimized by processing jobs in order of their processing times, starting with the shortest one

first. This is called the shortest process time (SPT) sequencing rule. This problem shows that

congestion in a factory can be reduced by processing shorter jobs first because they will move

through the factory quicker and not block the longer processing time jobs. Askin [87] provided a

visual representation of this in the following chart, where the horizontal axis is the part number

and the vertical axis is the manufacturing time required to process the job. This shows how each

subsequent job is delayed by the preceding job and the height of the column is the total time

required to process job n.

240

nttt +++ 21

nn tttt ++++ −121

4321 tttt +++

321 ttt ++

21 tt +

1t

 1 2 3 4 ··· n-1 n

Figure 1: Flow Time Delays

The earliest due date (EDD) sequencing is another insight that was gained from classical

scheduling. The maximum lateness of any job was shown to be minimized by ordering the jobs

according to their due dates, with the earliest due date first and the latest due date last. The idea

behind this sequencing technique is that all the jobs will be completed on time if it is possible.

The minimization of the makespan, which is the total time to finish all jobs on two machines, is

another area studied by classical scheduling. The makespan time is dependent upon the order of

the jobs because certain sequences could cause idle time at the second machine while it waits for

the job on the first machine to be completed, while other sequences could cause the first machine

to wait while the second machine completes a job. Johnson [9] developed an algorithm to find a

sequence that minimizes makespan for this problem. The algorithm is as follows:

Separate the job into two sets, A and B. Jobs in set A are those whose process time on
the first machine is less than or equal to the process time on the second machine. Set B
contains the remaining jobs. The processing sequence begins with set A in the order of
shortest processing time first. Set B is processed after the completion of set A and the
order of the jobs in set B begin with the longest processing time first.

The insight from this algorithm is that by processing the shortest processing times in the

beginning of the sequence allows the wait time for the second machine to be minimized because

the second machine is idle until the first job is completed on the first machine. The ending

241

sequence also helps to minimize the total processing time because the first machine will be idle as

the second machine finishes the last job.

Many of the assumptions used in classical scheduling are not true for most real-world

manufacturing systems. There are almost always more than three machines to schedule parts on

in the real-world which makes classical scheduling infeasible. Also, real-world processing times

may appear to be deterministic but there will always be some randomness and variability which

can cause a great deal of congestion in manufacturing systems. The assumption that all jobs are

ready at the beginning is far from accurate because jobs continue to arrive during the life of a

manufacturing system and the system is not completely emptied prior to starting a new job.

Another incorrect assumption is that process time is independent of the schedule because the

sequence in which parts are scheduled can have a significant impact on the time to get through

the plant because of setup times. Time can often be saved if similar parts that share the same

setup or a similar setup are scheduled together.

Another problem with classical scheduling is the time required to determine an optimal schedule

as the number of jobs is in the hundreds and the number of machines is in the tens. The classical

algorithms can be divided into two categories: (1) Class P problems that can be solved by

algorithms whose computational time grows as a polynomial function of the size of the problem.

(2) NP-hard problems are those for which no polynomial algorithm exists and computational

time increases exponentially with the size of the problem. Hopp and Spearman [88] provided the

following comparison between the two types of problems. Suppose we want to determine the

optimum sequence for twenty jobs on a single machine (NP-hard problem, 20! possibilities) and

we use a computer that can examine 1,000,000 sequences per second. This problem would take

77,147 years to complete the sequencing problem, while ten jobs would take only 3.63 seconds.

An example of a Class P problem would be to sort jobs for a processing center according to

processing time. Consider sorting twenty jobs and using a computer that can sort ten jobs in the

same amount of time as sequencing ten jobs. The sorting of twenty jobs would take only 9.4

seconds. The sorting of jobs can be accomplished by many well known algorithms for sorting a

list of elements whose computation time is proportional to n log n, where n is the number of

elements sorted. This algorithm is bounded by n2, a polynomial.

Most real world scheduling problems fall into the NP-hard category of problems and tend to be

large and difficult to solve. Often it is impossible to solve actual problems due to the required

242

computational time. Fortunately a good solution can be found even though it is perhaps not the

optimal solution. The nonpolynomial nature of the problems implies that there are many

solutions which can actually help to find a good solution. Consider that if only one in a trillion of

the possible solutions is good in the previous twenty job scheduling problem, there would still be

almost 2.5 million good solutions.

Problem size and lack of an efficient solution scheme often lead to the use of a heuristic to find a

good, nearly optimal, solution to the problem. The solution that is found may or may not be the

optimum and even if it is optimal, there will be no way to confirm the solution. Bartholdi and

Platzman [89] gave the following heuristic summary:

A heuristic may be viewed as an information processor that deliberately but judiciously
ignores certain information. By ignoring information, a heuristic is freed from whatever
effort might have been required to read the data and compute with it. Moreover, the solution
produced by such a heuristic is independent of the ignored information, and thus unaffected
by changes in that information. Of course the art of heuristic design lies in knowing exactly
what information to ignore. Ideally, one seeks to ignore information that is expensive to
gather and maintain, that is computationally expensive to exploit, and that contributes little
additional accuracy to the solution.

Heuristics must be used to find a solution to the very difficult real world problems because of the

limited time in a real manufacturing setting and the need for a good solution that does not

necessarily have to be the optimum. A good heuristic will accurately represent the manufacturing

system and omit superfluous information that would only slow down the solution.

Bottleneck Scheduling

The scheduling of multiple machines and multiple products can be a very difficult if not

impossible task but it is often simplified by focusing on the bottleneck and using insight gained

from classical scheduling techniques for a single process. A bottleneck is defined as the process

that takes the largest amount of time when compared to all the other processes required to make a

product. The bottleneck is the critical process that will determine the rate at which material will

flow through all the other processes. Once the bottleneck is sequenced, then the remaining

machines are scheduled to prevent starvation by preceding processes and to prevent blocking of

the bottleneck by subsequent processes.

The Theory of Constraints (TOC) is a management philosophy that was developed by Eliyahu

Goldratt and it focuses on both financial and operational measures to determine the performance

243

of a manufacturing operation. TOC helps the company achieve its goal of making money by

identifying the limitations due to the constraints in three areas: internal resources, market

demand, and the company’s policies. There are nine rules that are used to direct the management

of the factory floor (the internal resources):

1. Balance flow in the factory, not capacity. -- The flow of the product is more important

than maintaining a high utilization of the capacity at each process, as long as there is

sufficient capacity.

2. Constraints determine the utilization of the non-bottleneck processes. -- Maximizing

utilization of non-bottleneck processes only increases costs, idle time, and resources.

3. Activity is not equivalent to utilization. -- Producing output that cannot fit into the

schedule of the bottleneck only increases the inventory. A busy machine is not

equivalent to a productive machine that is meeting the required workload.

4. An hour lost at the bottleneck is an hour lost for the entire system. -- This causes the

bottleneck to be scheduled at or near full utilization in order to maximize the total

production of the system. This rule also encourages reduction in setups, setup times, and

the use of large lots at the bottleneck.

5. An hour saved at a non-bottleneck is a mirage. -- If the time is saved prior to the

bottleneck the product will still be required to wait the hour that was saved in order to fit

into the original schedule of the bottleneck. However it is possible that if time can be

saved at subsequent processes, the throughput time will be decreased because the product

will leave the system quicker.

6. The bottleneck governs both throughput and inventory of the system. -- The production

rate of the bottleneck determines the throughput time and inventory (Little’s Law).

7. The transfer batch to the next process should not always be equal to the process batch. --

It may be advantageous to transfer smaller batches between non-bottleneck processes in

order to decrease idle time.

8. The process batch size should be variable and not fixed. -- The process batch size

depends on the current state of the system and most often should be large at the

bottleneck and smaller elsewhere.

9. The schedule should be determined by examining all the constraints simultaneously. --

Lead times are a function of the schedule and cannot be predetermined and will often be

variable dependent upon the state of the system.

244

The TOC is somewhat intuitive but the implementation on the shop floor is perhaps slightly more

difficult to grasp. The Drum-Buffer-Rope (DBR) is a production control technique that is used

for non-bottleneck processes to produce only enough to keep the bottleneck at the capacity

required to meet demand. The DBR technique can be thought of as a group of people traveling,

each at different rates. To keep everyone together a rope is connected between each person

which will cause everyone to travel at the rate of the slowest person.

The drum represents two possibilities, the bottleneck or the market demand, and will be

responsible for “striking the beat” to set the pace for the entire system similar to the cadence set

by the percussion section for a marching band. The buffers are used to ensure that the cadence is

maintained at critical points in the manufacturing system. The buffers should be placed before

and after the bottleneck and at shipping to ensure that due dates are met. The real world demand

and the bottleneck are tied together with the first rope and the bottleneck and the raw material

release point are tied together with the second rope. The rope also serves to constrain the WIP

levels such as if the bottleneck machine breaks down, the upstream processes will not keep

sending products downstream. The DBR configuration will regulate the overall production rate

so that the customer demand will be met and that the bottleneck will not be starved or overloaded

with products from upstream processes.

MRP

Material Requirement Planning (MRP) has become widely used in industry to determine

schedules for manufacturing systems and it was one of the first attempts to assist production

planning with the use of computers. MRP coordinates the release of orders to push the items

through the production processes in an attempt to minimize any unnecessary inventory. The

decision making process for MRP relies on the use of inventory records, bill of material

structures, the master production schedule, and lead time estimates.

MRP operates on a continuous horizon of time periods, or time buckets, that most often represent

up to one week of production. For each period inventory status is updated and the bill of material

(BOM) for each finished product is exploded down the product hierarchy one level at a time.

Current inventory and open orders are matched against gross requirements at each level over the

planning horizon and then order releases are planned to meet the remaining net requirements.

The planned order releases for parent items become the gross requirements at the next lower level

of the hierarchy. This is accomplished by using the following steps:

245

1. Netting: The net requirements are determined by subtracting on-hand inventory and

scheduled receipts from the gross requirements.

2. Lot sizing: The netted demand is divided into appropriate lot sizes.

3. Time phasing: The due date of each job is offset by the lead time to determine the start

time.

4. BOM explosion: The BOM is used to determine the gross requirements for required

components at the next level.

5. Iterate: Repeat steps until all levels have been scheduled.

To illustrate these steps, suppose a bicycle was being scheduled for production and it had the

following BOM and 50 finished bikes are required for week number four and week number six.

Currently 25 bikes are on-hand and the lead time for all components is one week.

WheelAssy
(2 req)

Frame Assy Seat

Bike Assy

Tire Tube Rim

Level I

Level II

Level III
Figure 2: Bike BOM

Table 1.1: MRP Input Data
Bike Assembly Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

Gross Requirements 50 50

Scheduled Receipts

Projected On-hand 25

Net Requirements

Planned Order Releases

Netting:

The first step is to begin the netting process which computes the net demand. Most MRP systems

assume that the coverage of demand will come first from on-hand inventory, second from

scheduled receipts, and finally from planned order releases. The amount of coverage of the

demand, tD , by the on-hand inventory, tI , and the scheduled receipt, tS , is calculated using the

following equation where 0I is equal to the initial on-hand inventory.

246

tttt DSII −+= −1

This equation is used for every time period until the demand becomes greater than the on-hand

inventory and scheduled receipts are able to cover.

The net requirements for period t, tN , will be zero for an period in which the on-hand inventory

is greater than zero (0=tN if 0≥tI). The net requirements for a period in which the on-hand

inventory is less than zero is equal to the absolute value of the on-hand inventory (tt IN = if

0<tI). This can be seen in the following table.

Table 1.2: Updated Net Requirements

Bike Assembly Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

Gross Requirements 50 50

Scheduled Receipts

Projected On-hand 25 25 25 25 -25 0 -50

Net Requirements 25 50

Planned Order Releases

Lot Sizing:

This step involves determining how to dispatch jobs to meet the net requirements of the

production schedule. The simplest lot-sizing rule is known as lot for lot, and it states that the

amount to be produced in a period is equal to the net requirements for the period. This technique

requires no thought or calculations and is similar to the just-in-time philosophy of making only

what is needed. For this example, 50 products would be released to meet the Week 6 demand and

25 products to meet the Week 4 demand.

Another simple lot-sizing rule is known as fixed order period (FOP) or period order quantity.

This rule is an attempt to reduce the number of setups by combining the requirements of P

periods and releasing the multiple requirements at the same time. FOP becomes lot for lot when

P is equal to one. In this example, suppose P = 3, the net requirements for weeks 4, 5, and 6

would all be released together as an order for 75 products.

247

Fixed order quantity and economic order quantity (EOQ) are along the same line of thinking as

FOP except that a predetermined quantity is released when an order is required. This is practical

because often fixtures, carts, and other similar devices in a factory can hold only a set quantity of

the product. For instance, many more seats can be transported than bike frames. EOQ is an

attempt to find the optimum order quantity when minimizing setup costs (A) and inventory

holding costs. EOQ can provide an order quantity although it is based on flawed assumptions

such as constant demand (D) and no relationship between inventory cost (h) and batch size. EOQ

is given by the following equation:

h
ADQ 2

=

Time Phasing:

This step is used to offset the release date of jobs by the lead time from when the net

requirements are actually required. The standard assumption used by MRP is that the lead time

of a job is a constant value that is independent of the size of the job or the status of the shop floor.

These assumptions potentially lead to problems that will be discussed later. The equation used to

offset the planned order releases for time t, tPOR , is shown below, where the lead time is

represented by τ .

τ+= tt NPOR

The lead times for this example are assumed to be one week for the bike assembly and assuming

the use of lot for lot replenishment rule, the net requirements for Week 4 would be offset by one

week to Week 3. The same would be done for the net requirements in Week 6, which would be

offset to Week 5; the updated results are shown below. Notice that the lot size for Week 5 is

double that of Week 3, but both lots are assumed to be completed in one time period.

248

Table 1.3: Updated Lot Sizing and Time Phasing
Bike Assembly Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

Gross Requirements 50 50

Scheduled Receipts

Projected On-hand 25 25 25 25 -25 0 -50

Net Requirements 25 50

Planned Order Releases 25 50

BOM Explosion:

The purpose of this step is to transfer the release dates and lot sizes from the current level to the

next lower level. In this example the release dates and lot sizes for the top level (Level I)

assembly will be transferred to the Level II components that are required to make the finished

assembly. From the BOM, two wheel assemblies, one frame assembly, and one seat are required

for every bike. The updated BOM explosion is shown in the tables below for each of the three

components. These gross requirements would be added to any other accumulated demand for the

components, such as if the wheel assembly in this example was required for a tandem bike

assembly or some other finished assembly.

Table 1.4: Wheel Assembly BOM Explosion
Wheel Assembly Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

Gross Requirements 50 100

Scheduled Receipts 25

Projected On-hand 15

Net Requirements

Planned Order Releases

Table 1.5: Frame Assembly BOM Explosion
Frame Assembly Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

Gross Requirements 25 50

Scheduled Receipts

Projected On-hand 5

Net Requirements

Planned Order Releases

249

Table 1.6: Seat BOM Explosion
Seat Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

Gross Requirements 25 50

Scheduled Receipts

Projected On-hand 35

Net Requirements

Planned Order Releases

Iterate:

The iteration step is the final step in the MRP process and is used to repeat the previous steps for

all the subsequent levels of required components of the final assembly. For this example the

wheel assembly will be iterated to the lowest level (Level III), at which point all the components

required will be scheduled. The updated MRP table for the wheel assembly is shown below after

the netting, lot sizing, and time phasing steps have been completed.

Table 1.7: Updated Wheel Assembly
Wheel Assembly Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

Gross Requirements 50 100

Scheduled Receipts 25

Projected On-hand 15 15 40 -10 0 -100

Net Requirements 10 100

Planned Order Releases 10 100

Table 1.8: Updated Frame Assembly
Frame Assembly Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

Gross Requirements 25 50

Scheduled Receipts

Projected On-hand 5 5 5 -20 0 -50

Net Requirements 20 50

Planned Order Releases 20 50

250

Table 1.9: Updated Seat
Seat Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

Gross Requirements 25 50

Scheduled Receipts

Projected On-hand 35 35 35 10 10 -40

Net Requirements 40

Planned Order Releases 40

At this point the BOM explosion step is required for each of the Level II components. The gross

requirements for the components of the wheel assembly will have the following MRP tables after

the BOM explosion step.

Table 1.10: Input Tire Data

Tire Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

Gross Requirements 10 100

Scheduled Receipts 15

Projected On-hand 40

Net Requirements

Planned Order Releases

Table 1.11: Input Tube Data
Tube Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

Gross Requirements 10 100

Scheduled Receipts 30

Projected On-hand 30

Net Requirements

Planned Order Releases

251

Table 1.12: Input Rim Data
Rim Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

Gross Requirements 10 100

Scheduled Receipts 20

Projected On-hand 20

Net Requirements

Planned Order Releases

Once again the iteration of the previous steps is required to complete the production schedule for

all the components required by the wheel assembly. The final updated tables for each of the

components are shown below. At this point the MRP process is complete, but the process will

need to be repeated for the current and subsequent levels if any of the values change for the gross

requirements or scheduled receipts at any level in the BOM.

Table 1.13: Input Tire Data

Tire Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

Gross Requirements 10 100

Scheduled Receipts 15

Projected On-hand 40 55 45 45 -55 - -

Net Requirements 55

Planned Order Releases 55

Table 1.14: Input Tube Data

Tube Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

Gross Requirements 10 100

Scheduled Receipts 30

Projected On-hand 30 30 20 50 -50

Net Requirements 50

Planned Order Releases 50

252

Table 1.15: Input Rim Data
Rim Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

Gross Requirements 10 100

Scheduled Receipts 20

Projected On-hand 20 20 30 30 -70

Net Requirements 70

Planned Order Releases 70

Lead times:

A problem with MRP is the use of the assumption that constant lead times accurately represent

manufacturing lead times which actually vary continually due to randomness. Lead time for a

product is composed of the actual processing time on the machine, queuing delays, waiting time

during machine breakdowns, etc. To compensate for the variation in lead times, the user will

often choose long pessimistic estimates for lead times because excess inventory is viewed as less

critical than having a late job and missing the customer’s due date. For example, suppose the

average manufacturing lead time is three weeks with a standard deviation of one week. The

customer due date will be met if the planned lead time is chosen to be five weeks, but the

majority of the jobs will be held in inventory for two weeks. As planned lead times are increased,

the waiting time for the next operation also increases which in turn causes the system to have

more inventory. In the previous example, the majority of the jobs will be held in inventory for

three weeks on average. Lead times must be increased for busy or near capacity production in

order to compensate for the increased queuing delays in order to ensure that the product will still

meet the due date of the customer. The increase in lead times causes the inventory levels to

increase which then causes the cycle times to further increase.

The use of the assumption of constant lead times no matter the size of the job implies the

assumption that the processing center has infinite capacity. To illustrate how these two

assumptions are intertwined with one another, imagine that the process is for a person to cross

from one side of a highway, without any traffic, to the other. If one person or fifty people try to

cross the road, there will be enough room (infinite capacity) for everyone to cross at the same

time so that the lead time is truly constant no matter the number of people which represent the

batch or lot size. However, a queue would be formed if everyone had to cross the road at the

crosswalk and there would be some delay as people would wait for their turn to cross the road.

The crosswalk represents a finite capacity process, where perhaps only four people can cross at

253

the same time, which is what occurs in real world manufacturing systems.

Capacity infeasibility:

The basic methodology and the assumption of MRP is that of a production line with a fixed lead

time that is independent of the workload in the plant. This means that MRP assumes that there

will always be sufficient capacity on the line no matter how great the demand. This assumption is

much too simplistic to be effective and accurate at production scheduling. As the plant

approaches operation at or near capacity this assumption becomes inaccurate and will cause

customer due dates to be missed and inventory levels to increase.

Rough-cut capacity planning (RCCP) and capacity requirements planning (CRP) were two

techniques developed to address capacity problems and to detect scheduling infeasibilities in

MRP. RCCP is used prior to MRP to detect capacity violations resulting from the master

production schedule (MPS). RCCP uses the bill of resources or bill of capacity, which gives the

number of hours required at each critical resource to build a particular finished product as well as

all exploded requirements, to check for infeasibilities of each finished product. RCCP ignores

lead times, lot sizes, and inventory status and merely translates the demand over time into a

profile of capacity requirements by multiplying the number of hours required by the product at a

resource times the demand for the product. As an example to help understand RCCP, suppose

part A and part B are made on the same machine and part A is composed of part A1 and part A2.

Part A requires one hour of processing time on the machine, while part A1 requires half an hour

of processing time and part A2 requires one hour and part B requires 2 hours of processing time.

The bill of resources for these two parts is as follows:

Table 1.16: Bill of Resources

Part A Part B

2.5 2

Table 1.17: Demand

Week 1 2 3 4 5 6 7 8

Part A 10 10 10 20 20 20 20 10

Part B 5 25 5 15 10 25 15 5

Based on the demand above for part A and part B the RCCP calculations will be as follows:

254

Table 1.18: RCCP Calculations

Week 1 2 3 4 5 6 7 8

Total

(hours)

Part A (hours) 25 25 25 50 50 50 50 25 300

Part B (hours) 10 50 10 30 20 50 30 10 210

Total 35 75 35 80 70 100 80 35 510

Available 65 65 65 65 65 65 65 65 520

Over(+)/Under(-) 30 -10 30 -15 -5 -35 -15 30 -

From these calculations, it is obvious that there are times in which there is insufficient capacity.

Although if one only considers the eight time periods in aggregate there appears to be an excess

of ten hours of production capacity. The planner must decide how to correct the time periods

with capacity infeasibilities because RCCP only notifies the planner of a problem and does

nothing to correct the situation. It is also important to note that RCCP assumes that the part and

all subassemblies are processed on the same machine during the same time period and the

processing time is independent of job sequence.

CRP provides a more detailed capacity check on an MRP produced schedule than RCCP. CRP

requires the knowledge of planned order releases, existing WIP positions, routing data, capacity,

and lead times for all resources in order to calculate the capacity required for the remaining orders

(after WIP and inventories have been subtracted). CRP assumes that the time to go through a

machine does not change even when the load exceeds capacity. CRP is only a good predictor of

loading conditions in the very near term and it does not generate finite capacity analysis. CRP

performs infinite forward loading, which means that it uses fixed lead times to predict job

completion times for each process center and then computes a predicted loading over time. The

predicted loadings are then compared against the available capacity, but no corrections are made

for overload situations; therefore, all estimates of CRP beyond an overloaded condition are

erroneous.

To better illustrate how CRP works, consider a processing center with a capacity of 400 parts per

day, a three day lead time, and with no work in the processing center at the start. Also assume

that the schedule uses a lot-sizing rule to reduce setups and the planned order releases are for

1,200 units on Day 1 and Day 4. CRP would produce a load profile for the processing center that

has an overload condition on Day 3 and Day 6 and no production for the other days. A very

255

different result would be found if a finite capacity loading analysis were performed. The results

would show that there is no output for the first two days as the product works through the

processing center, but on Day 3 there would be an output of 400 units and this would continue for

the next six days. The second release of 1,200 units would arrive at the processing center just as

the last 400 units of the previous order are pulled into the processing center.

Nervousness:

Nervousness in an MRP system occurs when a small change in the master production schedule

(MPS) causes a significant change in the planned order releases. Vollmann et al. [90]

demonstrate an example in which a small decrease in demand in the MPS can cause a formerly

feasible MRP plan to become infeasible. For this example, consider two parts. Part A has a two

week lead time and uses FOP lot-sizing rule with an order period of five weeks and requires one

unit of Part B. Part B has a lead time of four weeks and uses the FOP lot-sizing rule with a period

of five weeks. The initial MRP calculations are shown before, prior to a change in demand.

Table 1.19: MRP Calculations for Part A

Part A

Week

1

Week

2

Week

3

Week

4

Week

5

Week

6

Week

7

Week

8

Gross Requirements 2 24 3 5 1 3 4 50

Scheduled Receipts

Projected On-hand 28 26 2 -1 -5 -1 -3 -4 -50

Net Requirements 1 5 1 3 4 50

Planned Order Releases 14 50

Table 1.20: MRP Calculations for Part B

Part B

Week

1

Week

2

Week

3

Week

4

Week

5

Week

6

Week

7

Week

8

Gross Requirements 14 50

Scheduled Receipts 14

Projected On-hand 2 2 2 2 2 2 -48

Net Requirements 48

Planned Order Releases 48

The nervousness of the system becomes apparent when the demand for Part A is decreased in

256

Week 2 from 24 units to 23 units. One would think that a schedule that is feasible for 24 units

should also be feasible for a decreased demand of 23 units in the same period, but notice what

happens in the MRP calculations shown below.

Table 1.21: Updated MRP Calculations for Part A

Part A

Week

1

Week

2

Week

3

Week

4

Week

5

Week

6

Week

7

Week

8

Gross Requirements 2 23 3 5 1 3 4 50

Scheduled Receipts

Projected On-hand 28 26 3 0 -5 -1 -3 -4 -50

Net Requirements 5 1 3 4 50

Planned Order Releases 63

The original planned order releases were scheduled for 14 units during Week 1 and 50 units

during Week 6, but because of the decrease in demand by one unit 63 units are scheduled to be

released during Week 2. This would be a major change in the production schedule for a

manufacturer who is attempting to meet the due dates of many customers at the same time in a

dynamic environment where customer demand might fluctuate from week to week.

Vollmann suggests the use of different lot-sizing rules for each level in the BOM, with fixed

order quantities for finished products, lot-for-lot or fixed order quantity for intermediate levels,

and fixed order period for the lower levels. Another technique to decrease the nervousness of the

system is to freeze the beginning of the MPS. This is very effective because changes in the near

production order releases are the most disruptive and this method creates a frozen zone in which

the first X time periods cannot be modified.

MRP Production Control:

MRP has been used by many companies over the past few decades as a production control system

to schedule production and determine when to order materials to supply the production. MRP is

useful to determine material requirements from outside the manufacturing system such as for

subcomponents from vendors or orders for raw materials. MRP fails when it is used to schedule

release periods for production on the shop floor because it operates independent of the status of

jobs on the floor. MRP uses the push philosophy of moving products through the different stages

of production and if there is any problem during production the system will fill up with WIP.

257

MRP is much like running water into a bathtub because there is no connection between the faucet

and the drain. Once the faucet is turned on, water will continue to run whether the drain is open

or if it is plugged; the user must be aware of the system and determine the amount of water flow

to keep the tub from overflowing.

MRP provides no information to the scheduler regarding bottleneck processes, whether it is being

starved, overloaded, or if it is dynamic and moves from one station to another. Classical

scheduling techniques have been seen as providing valuable information for the scheduling of

bottlenecks.

Pull Production Systems:

The just-in-time (JIT) or pull production method was very successfully implemented by the

Japanese over the past several decades. This method is somewhat similar to the DBR in the sense

that the customer demand and the rope is what control the production upstream from the finished

products and the WIP is capped. JIT differs from other production methods in that it is a

philosophy for the entire production system as much as it is a production scheduling technique.

JIT is referred to as a pull production method because the material is pulled downstream as the

customer removes a finished product from the company. Pull production systems will process a

component to replace stock, meaning the component that was taken by the customer who could

be the downstream process or an external customer removing finished goods. A push system

processes a component to meet an order whether it is forecasted demand or a “hard” order from a

customer.

The JIT or pull production method has been very successfully implemented by the Japanese over

the past several decades. JIT differs from other production methods in that it is a philosophy for

the entire production system as much as it is a production scheduling technique. JIT is referred to

as a pull production method because information flows upstream as the material is pulled

downstream when the customer removes a finished product from the company.

The pull production method used as a production scheduler has many advantages over

conventional push methods. The first and largest advantage is that production under pull

conditions actually is dependent upon the condition of the shopfloor. MRP uses estimated lead

times and timed releases of jobs and it assumes that the product will flow through the factory

smoothly and lead times must be inflated to account for disruptions. Conversely, with pull

258

production jobs are released only when there is customer demand and the downstream station

authorizes the preceding station to begin work. If there is a machine that has a breakdown then

the upstream machines that feed the broken machine will sit idle until the breakdown is fixed.

This implies that the WIP in a pull system is capped and it will never exceed the initial line

loading. The controlled status of WIP between adjacent processes also allows for strategic

planning to help smooth product flow, such as ensuring that a static bottleneck is never starved or

blocked. Often pull production will not be able to function well if the bottleneck is dynamic and

moves around the factory floor. The controlled lower WIP status of a pull system allows for

faster throughput times, lower holding costs, and improved quality controls. The high level of

WIP in push production can cover many problems that become evident in a pull system, similar

to exposing rocks hidden at the bottom of a stream by lowering the water level. The lower WIP

levels of pull decrease the variability in lead times and lessen the need for inflated safety lead

times that are often used with MRP. An MRP system will likely experience problems with

starvation of processes when operated at low levels of WIP and will experience a WIP explosion

when operating near full capacity; neither of these problems occur with pull production.

A pull system when implemented on the shopfloor can take on many different forms, including

the following: a storefront system, kanban system, two-card kanban system, route-specific kanban

system, CONWIP line, tandem CONWIP line, or a hybrid push/pull or pull/pull system. None of

these pull systems can be deemed superior to the rest because each system will work well when

matched correctly with the appropriate manufacturing process.

Storefront or Supermarket Pull System:

Pull systems have been functioning for decades in the form of grocery stores where the customer

removes the goods from the shelves. This system can have many different looks, but typically in

manufacturing environments a space is designated for one or more finished products on the

outbound side of the process, production is signaled to begin when a space becomes open. This

type of a pull system is referred to as a storefront or supermarket pull system and it works very

well in manufacturing environments with low product variety because the storefront for a process

will require one or more products in the storefront for every variant that is required for the

downstream process. A storefront system will require very high levels of WIP in each storefront

for a manufacturer that produces hundreds of different products.

259

Kanban Pull System:

The kanban pull system gets its name from the work authorization signal, which is issued by a

kanban, which is a Japanese word and loosely translates as card and is used to govern the flow of

materials through the plant. Production is triggered by the demand of a part being removed from

the final inventory point. The kanban is removed from the finished product that the customer is

taking and given to the preceding workstation at which point the work station is given

authorization to replace the part that has been removed. This workstation then removes a part

from the input buffer and sends the kanban upstream to the previous workstation to replace the

part that was just used by the downstream station. This is propagated up the production line

authorizing each workstation to replenish the void that was created by the demand. The

authorizations flow in the opposite direction of the flow of material and pull the job through the

stages of production.

Signal Kanban Pull System:

The signal kanban is a pull system that is often used when production involves significant time or

costs associated with setups [8]. The signal kanban system uses a single signal or authorization

for production, called a signal kanban. Each product has a specific level of inventory and the

signal is released to replenish the inventory when the inventory falls below that level. The signal

enters into the queue at the process, which creates a sequenced production at the process. Often

this system is used when the process has significant setups or minimum batch sizes. This system

was in use at the metal stamping line at the Toyota manufacturing plant in Georgetown,

Kentucky. A more detail discussion of this system can be found in Monden [91].

Two-Card Kanban Pull System:

The two-card kanban pull system differs with the previously discussed kanban system in that

there are two kanban cards used to authorize production and the workstations are not collocated.

Examination of the following diagram will clarify how this system is used on the shopfloor.

Workstation B has two containers of parts that have been removed by the customer, shown by the

dashed outline of each container. The kanban card for each container is then placed in production

kanban container, where one production card is still located (Steps 1 and 2). The operator of

Workstation B will then remove the production kanban from the production kanban container and

verify that the parts required to replenish the kanban are present at the station (Step 3). If the

required parts are not present then the operator will move to the next kanban card in FIFO order

until the production kanban and required parts are both available at the workstation. The operator

260

then removes the transport kanban and places it in the transportation kanban container (Step 4)

where it will wait until it is picked up by the transporter who will carry the transportation kanban

to Workstation A (Step 6). The operator of Workstation B moves the inbound container of parts

needed to replenish the outbound production kanban, which is represented in the diagram by the

dashed outline of the inbound container (Step 5). Upon arrival at Workstation A the transporter

will remove the container of parts specified on the transportation kanban and place the attached

production kanban in the production kanban container at Workstation A (Steps 7 and 8). The

transporter will attach the transportation kanban on the parts container (Step 9) and transport the

container back to Workstation B where it will be placed in the inbound stock buffer (Step 10).

The production kanban at Workstation A will authorize the replenishment of the removed

container and this will start the same process of production and transportation from the preceding

workstation.

Figure 3: Two-Card Kanban Pull System

Route Specific Kanbans:

The issue of stock aggregation and the type of kanban that is used to manage the product variety

is often solved by using route specific kanbans. A segregated inventory accommodates variation

for each variant individually while an aggregated inventory will accommodate variation for all

variants combined into the whole system. A kanban can be issued for a specific part or a specific

route, as shown in the diagram below. The difference in the inventory levels at each workstation

is very apparent. The part-specific kanban (top diagram) will have a much higher WIP level than

the route-specific kanban system. A build list is used to control the variation in the route-specific

kanban system and the type of part being built can be one of two parts for the top route and one of

three parts for the bottom route. The route specific method can handle a large number of product

variations, as well as more demand variability with a given WIP level. A supplemental source of

information is required to define what product to build for a route-specific kanban system.

261

Figure 4: Part-Specific versus Route-Specific Kanban Systems

The route-specific kanban system works very similar to the previously discussed kanban systems

in that a card authorizes work and the product is pulled through the various stages. There are

different ways in which the product variation can be controlled, such as using a build list at each

stage to control which variant to build. This option can become very difficult to manage due to

the requirement of parts arriving and leaving each stage at a predicted time. Another option for

controlling the product variation is to use a build list at an early stage to define the build order for

all subsequent stages and kanban will pull the products through production in FIFO order. This

control method is similar to the CONWIP pull system.

CONWIP Pull System:

CONWIP, constant work in progress, is a technique comparable to kanban systems but it uses

loops on one or more machines to limit the amount of WIP. Each job will have a card associated

with it and when a job exits the loop the card will be freed and sent to the beginning of the loop.

The freed card at the beginning of the loop authorizes the release of another job into the loop.

262

The released job may be different than the job that just exited the system and depends upon the

build list or sequence to control the variants. The released job is simply pushed through the

CONWIP loop using the first-in-system, first-out (FISFO) processing rule. This causes some to

not classify this production system as a pull production system, but for this research a pull system

is defined as a system with capped WIP and information flow in the opposite direction of material

flow.

A CONWIP system will perform very similar to a route-specific kanban system although a card

could authorize work for several workstations instead of a single workstation. If a disruption

occurs in a CONWIP system the products downstream will continue to flow out of the loop and

new jobs will be released into the system and all the jobs will eventually accumulate at the

disruption if it lasts long enough. All the jobs will also eventually accumulate behind the

bottleneck if it is stationary and the system runs for an extended amount of time.

Hybrid Pull Systems:

There are differing opinions of how to design an appropriate hybrid pull system according to

research that has been conducted over the past decade. Some researchers define a hybrid system

as a mixture of CONWIP loops and kanban loops, referred to as a hybrid pull/pull system, which

one could argue is actually a Tandem CONWIP system with some single machine loops included

with larger CONWIP loops. Other researchers believe that an effective hybrid system, referred to

as a hybrid push/pull system, is one in which the material is pushed into the system and the

product is pulled through processing and assembly stages. Other researchers (and the final

assembly line at the Toyota plant in Georgetown, Kentucky) believe that an effective hybrid

system is one that pulls products through the initial stages and push products through the final

stages. The point at which the push/pull interface occurs is often referred to as a junction point or

a pacemaker and it is the point where product variety significantly increases.

Diagnostic Scheduling

Diagnostic scheduling is a technique that evolved from MRP over the past few decades as

researchers began to realize that effective scheduling is far more advanced than merely finding a

solution to mathematical problems. The key advantage of diagnostic scheduling is that it allows

the user to determine the best solution when taking into account factors that cannot be evaluated

by a computer such as: increasing capacity by adding overtime, the use of temporary workers,

pushing back due dates for certain jobs or splitting jobs for customers that can tolerate missed due

263

dates. Ideally diagnostic scheduling will provide a feasible solution but if one is not available,

possible changes to make the schedule feasible will be suggested to the user.

The two types of schedule infeasibility that diagnostic scheduling will predict are WIP

infeasibility and capacity infeasibility. WIP infeasibility is caused by WIP that is inappropriately

positioned, the only solution for finished products that are near the due date is to push or postpone

the demand. Infinite capacity would be of no help to solve WIP infeasibility because the WIP is

not where it needs to be in order to produce the finished product. Capacity infeasibility is caused

by lacking sufficient capacity for a given job and it can be corrected by pushing out the demand

or by increasing the capacity by means such as adding overtime.

To illustrate this, suppose for example, that Part A is built from two units of Part B at the rate of

150 parts per day. The demand for Part A is 100 units on day one, 100 units on day two, and 200

units on day three with 100 units of Part B available on day one, 500 on day two, and 200 units of

Part B available on day three. One can quickly see that only 50 units of Part A can be produced

on day one because of the lack of units of Part B. To fix this WIP infeasibility, the only solution

is to postpone 50 units of Part A to day two where there is sufficient capacity to produce 150

units of Part A and a sufficient number of available units of Part B. Day two has sufficient

capacity and 200 extra units of Part B that can be carried over to Day 3 in the form of available

WIP in order to meet the requirement of 400 units of Part B. The demand for Day 3 is greater

than the capacity, therefore it is capacity infeasible, but this can be corrected by postponing the

production of 50 units of Part A until Day 4 or increase capacity for Day 3 by 50 units.

A further extension of diagnostic scheduling is capacitated material requirements planning (MRP-

C), which was developed for a Doctoral dissertation by Tardif [92]. This is a procedure to

determine a manufacturing schedule and during the scheduling process it will detect and remedy

infeasibilities and allow user intervention. MRP-C begins by determining a low-level schedule

that meets all due dates without exceeding capacity and builds the minimum possible amount of

inventory before it is needed, i.e. build-ahead inventory. The objective of MRP-C is to find a

feasible schedule with minimum build-ahead inventory. But if a feasible schedule is not possible,

the causes of the infeasibility will be highlighted so the user can adjust capacity and/or due dates

to correct the infeasibility.

The algorithm used in MRP-C is based on a conveyor model that characterizes the behavior at

264

each process in the system and it requires estimating two parameters, lp and kpj. The minimum

practical lead time is denoted by lp and it represents the processing time for a job with no queuing

delays, but common (non-queuing) “dead” time should be included, such as the time that a job

typically sits before being moved between machines. The unit capacity requirement, kpj, which is

actually the inverse of the practical production rate, represents the processing time for an item p

on process j. These two parameters allow MRP-C to evaluate a simplified relationship between

WIP and cycle time for an entire process.

The parameter lp will be equal to kpj for the case of processing a single part on a single machine.

In the case of where the processing center is composed of several machines in series, then kpj will

be the time required to process one item p on the slowest machine, i.e. the bottleneck production

rate, and lp will be the sum of the time that is spent on each machine by item p. The last case is

for batch production such as for a heat treating process where the processing time is independent

of the batch size. For this case lp will be the batch processing time, the amount of time in the

oven, the parameter kpj will be equivalent to the batch processing time lp divided by the total

number of parts treated at once, the batch size.

MRP-C develops a production schedule in basically two phases. The first phase evaluates

demand, WIP in the system, and the available capacity to determine if there is any infeasibility.

After the infeasibilities have been addressed, the second phase starts at the furthest planning

period and works backward in time to the current planning period to determine the minimum

releases required to meet demand.

Tardif [93] further extended the MRP-C process to prioritize the production schedule based on

the location of WIP within the manufacturing system. This process is composed of four steps.

First, the algorithm determines the status of WIP at the preceding processing centers that are only

one step upstream and feed the current stage. The algorithm then determines which requirements

are covered and uncovered by the available WIP and schedules the covered requirements as early

as possible. The missing capacity is then allocated to the uncovered requirements and the

available capacity is then allocated to the uncovered requirements and scheduled as late as

possible.

Tardif also included the ability to prioritize the scheduling with respect to the different capacity

requirements when disaggregating into individual run quantities. The disaggregation scheme

265

orders items based on their capacity requirement and it is a generalization of the results from

Gabbay [94] who developed an optimal solution algorithm for a production environment with

serial product structure, no WIP, no yield losses, and where products have equal capacity

requirements at each resource. The algorithm showed that the optimum solution occurs when the

ordering of the products are in decreasing order of capacity requirements.

MRP-C has some advantages over MRP such as: the model it uses is more accurate and it

explicitly considers capacity, and the planner is provided useful diagnostics. MRP-C also has

some disadvantages. MRP-C relies on a heuristic, and thus it cannot be guaranteed that a feasible

schedule will be found if one exists, but if a feasible schedule is found then it is truly a feasible

schedule. Any errors produced by MRP-C will make the schedule more conservative, meaning

that schedules will be more feasible than they need to be and should have a better chance of being

successfully executed. The second problem is that it implies a push philosophy which makes it

subject to all the possible drawbacks of push production although MRP-C is easily incorporated

into a pull production method. In pull production a sequence is all that is required, but by

incorporating MRP-C the actual “when” to produce a product is known. This can allow for the

implementation of a pull system into a dynamic job shop environment to take advantage of the

pull system’s inherent knowledge of the operating conditions.

A pull system incorporated with MRP-C would be similar to a CONWIP system with MRP-C

providing a production schedule for the system. The MRP-C generated release times will be

close to the timing of the pull signals if all the parameters are correct for the MRP-C algorithms.

Variability in the system will keep the times from matching exactly but on average the times

should be consistent. If production falls behind, it can be made up by scheduling overtime or by

adjusting the schedule at the next regeneration.

Copyright © John Thomas Henninger 2009

266

Appendix IV: Common Liquid Packaging Issues

267

Common Liquid Packaging Issues

The process of packaging large quantities of a liquid into smaller containers or repacking from

one container into multiple smaller containers has certain unavoidable issues that are present

independent of what type of liquid is being packaged. Often these issues will make the transition

from the typical batch and queue mass production system to a Just-In-Time production system

very difficult. This section will discuss these issues and the implications on a transformation to a

lean system.

Cleanout Between Materials

A changeover between materials in a traditional packing facility can be a very laborious task and

if not done correctly can be very costly in the contamination of products, loss of material,

employees sustaining injuries, or polluting the surrounding environment. The actual cleanout

process can differ between packaging facilities but when viewed in the broader sense of the entire

production system it is equivalent to a changeover in other manufacturing systems.

The cleanout process can cause problems when transitioning to lean if it is a time consuming

process. The large downtime between materials will make production managers hesitant from

moving from large batches to small batches with many rapid changeovers per shift, which is a

goal of lean manufacturing. A rapid cleanout process is necessary prior to transitioning a

packaging facility to a lean packaging system.

The typical packing station will have some length of piping that is shared by all material that is

packaged at the station. The length of piping will differ in length from facility to facility. Some

facilities with stationary tanks will use independent piping up to a manifold and only share the

last few feet of piping and nozzles. Other facilities will use a shared pump and piping that runs

tens or hundreds of feet from an outside loading dock for truck or rail tankers. Often facilities

with significant lengths of piping also have the problem of many elevation changes in the piping

and locations where material pools within the line making a thorough cleanout a very difficult

and slow process. The poor layout of piping is often due to the need to rapidly increase

packaging capacity without time to reengineer the facility or from the need to retrofit a facility to

incorporate packaging processes into a facility that previously focused on other manufacturing

processes. Unfortunately the solution to piping problems is often very costly and involves a

complete redesign of the piping and a re-piping of the entire facility.

268

The actual method used to cleanout the piping will vary depending on the material being

packaged and the facility packaging the material. Some chemicals such as glycerin,

formaldehyde, or ammonium require cleaning using water while other chemicals such as ether or

isopropyl alcohol only require a nitrogen and compressed air to cleanout the piping, but other

materials such as petroleum products might require a solvent to clean the piping. The use of

compressed air and nitrogen for cleanout can cause other issues to arise in addition to the

downtime. This type of a cleanout can release the chemicals into the atmosphere which can be

dangerous to the employees. During this research of packaging facilities, it was found that one

facility performed pressurized nitrogen and air cleanouts of piping at the end of the day because

workers could not be in the packaging room for a minimum of an hour from the start of the

cleanout without protective clothing and a breathing apparatus. A cleanout at the end of the day

implies that a station or line has a downtime from when the last container is filled until the next

morning when a new material will begin to be packaged.

Packaging Sequence and Material Grades

Another issue of changeover between chemicals is the sequence in which some chemicals must

be packaged. The sequencing of chemicals is important because certain chemicals have strong

odors such as acetates or xylenes and other chemicals such as glycerin absorb odors, therefore

glycerin should not be packaged after acetate has been packaged. Another issue of chemical

sequencing deals with the type of cleanout used for the previous chemical and the susceptibility

of the following chemical to absorb water. The following chemicals are an example of a few that

should not follow a water cleanout: chloroform, dichloromethane, hexanes, xylenes, and toluene.

Sequencing of chemicals is also important when a high purity level is desired because a chemical

analysis of it will not show the contamination from the previous chemical. An example of this is

that hexane and PET ether will appear pure even when a trace of one chemical is present in the

lab work of the other chemical. The necessity to sequence materials in a packaging system adds

another layer of complexity when trying to develop a pull production control system. The pull

system must have an inherent intelligence that allows it to sequence the materials in the proper

order to avoid the previously mentioned issues.

Packaging of various grades of the same chemical is sometimes a cause for changeovers to occur.

One facility studied for this research is responsible for packaging three grades of products: the

Lab grade of materials, Bio-Pharmaceutical grade of materials, and Micro-Electronic grade of

materials, where each grade is composed of various sub-grades of materials. Numerous grades of

269

materials can be a difficult hurdle to overcome in transitioning to a lean system due to the

introduction of a high variety of products. This hurdle becomes even greater when the production

volume is low for materials but the materials are only available in high volumes.

Transportation and Containment of Raw Materials

The minimum order size of a truck tanker (typically 6,000 gallons) that some suppliers require is

an issue to overcome in order to transition to a lean system. Ideally a packaging facility would be

able to procure only enough material to meet the customer’s need and perhaps a little extra for a

small safety buffer of inventory. The difference between a customer order of 500 gallons and an

incoming shipment of 6,000 gallons is significant because the large shipment will require much

more time to package, create an over abundance of finished goods inventory (FGI), and tie up

capital that could be used for other ventures. A lean system will function better if smaller more

frequent shipments can be arranged.

A compartmentalized truck tanker, a normal tanker that is divided into three sealed

compartments, can help to reduce the incoming shipment size, if the supplier is willing to supply

a smaller order size. One drawback to the use of compartmental tankers is that there are federal

regulations that restrict which chemicals can be transported on the same tanker, in order to protect

the public if a mishap occurs. There is typically an increase in the cost of the chemical when the

shipment size is reduced, which can be a drawback but can be offset by the packaging flexibility

offered by a smaller shipment plus the financial savings due to a reduction in FGI. The last

possible drawback to the use of compartment tankers is the supplier location and mix of

chemicals to be purchased. A great distance between three chemicals that comprise one shipment

can be a drawback to using a compartment tanker, such as if one supplier is in Virginia, another

in Alabama, and the last is located in Texas. The supplier location can actually be beneficial if

one supplier can be visited to purchase three compatible chemicals or if the three chemical

suppliers are collocated. Collocated suppliers can be visited efficiently by the development of a

“milk-run” strategy.

Compartment tankers are one possible solution to reduce shipment size, but the use of reusable

container, perhaps 500 or 1,000 gallons in volume, is another solution if the supplier is willing to

cooperate. Reusable containers can not only help to provide smaller more frequent deliveries of

chemicals but also reduce changeover time due to the piping cleanout issues previously discussed.

270

These containers could be used directly at the packaging station with some reengineering of the

layout of a packaging facility.

Chemical Instability

The type of container used to transport or hold some reactive chemicals must be chosen wisely

because the container can rapidly deteriorate the quality of the chemical. The deterioration

occurs as the chemical leaches some of the container material, which obviously worsens as the

holding time increases. A liner can be used in a container to decrease the rate of leaching, but it

can still contaminate the chemical if it is stored for a lengthy period of time.

Another form of chemical instability that leads to contamination or deterioration is the oxidation

of some chemicals when exposed to the atmosphere. A tanker is typically vented to the

atmosphere as it is being packaged or unloaded, which means that more air enters the tanker

causing the last material to be removed to have been exposed to a great deal of air. The last of the

material removed will be significantly lower in quality than the first material to be removed if the

material deteriorates when exposed to atmosphere. Backfilling the tanker with nitrogen is often

done to maintain the quality throughout the unloading process.

Evaporation of materials such as ether is another problem that often occurs during the warmer

summer months at some packaging facilities. Hundreds of gallons can evaporate from a tanker

during a period of a few days with high temperatures and when the tanker is in direct sunlight.

The best way to solve this problem is to be able to unload the material quickly from the tanker to

be placed in a sealed container.

Various Packaging Containers

Customer requirements increase the complexity for packaging facilities by requiring proprietary

labels and distinct container sizes and shapes. An example of this occurred at one of the

packaging facilities studied for this research, the company was purchased years ago by a

conglomerate, but a single material that is packaged at the facility can leave the facility with two

or three different labels, each labeled with a different company’s name and format. The

complexity of the labeling could easily be solved in a lean system by using postponement, but

federal regulations exist requiring certain chemicals to be labeled immediately after packaging. A

solution could be to use a generic label during the packaging process with the important

information; chemical, lot number, packaging date and station, etc. A customer specific label

271

could be applied as the containers are being pulled from FGI and prepared for shipment. This

would greatly decrease the amount of FGI required for each chemical, by a factor of two or three

depending on the number of possible labels for each chemical.

The various sizes and shapes of containers is a more difficult problem to solve. Losing a

customer by not offering the desired container is not an option, but perhaps through a good

customer-supplier relationship certain concessions could be reached that would be mutually

beneficial, such as a container that will meet the needs of many customers and reduce the possible

variations for the packaging facility. In The Machine That Changed the World, Womack [95]

discusses the different approach that Japanese manufacturers take toward their customers and

suppliers. Suppliers and manufacturers come to mutually beneficial agreements on prices and

delivery schedules where both parties can make a profit and both share information to help reduce

costs which are split equally between the supplier and manufacturer. The manufacturer

approaches the customer on his or her terms in order to “maximize the stream of income from a

customer over the long term.” The customers are made to feel as though they are part of an

extended family and the manufacturer is the parent. This type of an approach develops trust and

loyalty and more importantly a long-term relationship.

Copyright © John Thomas Henninger 2009

272

References

1. Dockx, K., Y. De Boeck, and K. Meert, Interactive scheduling in the chemical process
industry. Computers & Chemical Engineering, 1997. 21(9): p. 925-945.

2. Guisinger, A. and B. Ghorashi, Agile manufacturing practices in the specialty chemical
industry - An overview of the trends and results of a specific case study. International
Journal of Operations & Production Management, 2004. 24(5-6): p. 625-635.

3. Cormen, T.H., Introduction to algorithms. 2nd ed. 2001, Cambridge, Mass.: MIT Press.
xxi, 1180.

4. Cho, F., L. Todd, K. Keafle, E. Grulke, M. Pittman and K. Saito. Technical Discussion
on Toyota Production System: Its Application and Human Elements. in Toyota
Headquarter Office. 2005. Nagoya, Japan.

5. Chase, C., J. Serrano, and P.J. Ramadge, Periodicity and chaos from switched flow
systems. Contrasting examples of discretely controlled continuous systems. IEEE
Transactions on Automatic Control, 1993. 38(1): p. 70-83.

6. Perkins, J.R. and P.R. Kumar, Stable, distributed, real-time scheduling of flexible
manufacturing/assembly/disassembly systems. IEEE Transactions on Automatic Control,
1989. 34(2): p. 139-148.

7. Seidman, T.I. and L.E. Holloway. Stability of a `signal kanban' manufacturing system.
1997. Albuquerque, NM, USA: IEEE.

8. Seidman, T.I. and L.E. Holloway, Stability of pull production control methods for
systems with significant setups. IEEE Transactions on Automatic Control, 2002. 47(10):
p. 1637-1647.

9. Johnson, S.M., Optimal two- and three-stage production schedules with setup times
included. Naval Research Logistics Quarterly, 1954. 1(1): p. 61-68.

10. Smith, W.E., Various optimizers for single-stage production. Naval Research Logistics
Quarterly, 1956. 3: p. 59-66.

11. Jackson, J.R., Scheduling a production line to minimize maximum tardiness, in
Management Science Research Projects. 1955, University of California, Los Angeles,
CA.

12. Yang, W.H. and C.J. Liao, Survey of scheduling research involving setup times.
International Journal of Systems Science, 1999. 30(2): p. 143-155.

13. Boysen, N., M. Fliedner, and A. Scholl, Sequencing mixed-model assembly lines: Survey,
classification and model critique. European Journal of Operational Research, 2009.
192(2): p. 349-373.

14. Allahverdi, A., J.N.D. Gupta, and T. Aldowaisan, A review of scheduling research
involving setup considerations. Omega, 1999. 27(2): p. 219-239.

15. Monden, Y., Toyota production system : an integrated approach to just-in-time. 1st ed.
1983, Norcross, Ga.: Industrial Engineering and Management Press. 423 p.

16. McMullen, P.R. Multiple objective, mixed-model JIT assembly line sequencing with
setups. 1998. San Diego, CA, USA: Decis Sci Inst.

17. Burns, L.D. and C.F. Daganzo, Assembly line job sequencing principles. International
Journal of Production Research, 1987. 25(1): p. 71.

18. Bolat, A., M. Savsar, and M.A. Al-Fawzan, Algorithms for real-time scheduling of jobs
on mixed model assembly lines. Computers & Operations Research, 1994. 21(5): p. 487-
498.

19. Kim, Y.K., C.J. Hyun, and Y. Kim, Sequencing in mixed model assembly lines: A genetic
algorithm approach. Computers & Operations Research, 1996. 23(12): p. 1131-1145.

273

20. Rahimi-Vahed, A. and A.H. Mirzaei, A hybrid multi-objective shuffled frog-leaping
algorithm for a mixed-model assembly line sequencing problem. Computers & Industrial
Engineering, 2007. 53(4): p. 642-666.

21. Rahimi-Vahed, A.R., et al., A multi-objective scatter search for a mixed-model assembly
line sequencing problem. Advanced Engineering Informatics, 2007. 21(1): p. 85-99.

22. Tavakkoli-Moghaddam, R. and A.R. Rahimi-Vahed, Multi-criteria sequencing problem
for a mixed-model assembly line in a JIT production system. Applied Mathematics and
Computation, 2006. 181(2): p. 1471-1481.

23. Rahimi-Vahed, A., et al., Mixed-Model Assembly Line Sequencing Using Real Options,
in Operations Research Proceedings 2006. 2007. p. 161-167.

24. Rabbani, M., A. Rahimi-Vahed, and S. Torabi, Real options approach for a mixed-model
assembly line sequencing problem. The International Journal of Advanced Manufacturing
Technology, 2008. 37(11): p. 1209-1219.

25. Miltenburg, J. and G. Sinnamon, Scheduling Mixed-Model Multi-Level Just-in-Time
Production Systems. International Journal of Production Research, 1989. 27(9): p. 1487-
1509.

26. Kim, S. and B. Jeong, Product sequencing problem in Mixed-Model Assembly Line to
minimize unfinished works. Computers & Industrial Engineering, 2007. 53(2): p. 206-
214.

27. Parrello, B.D., W.C. Kabat, and L. Wos, Job-shop scheduling using automated
reasoning: A case study of the car-sequencing problem. Journal of Automated
Reasoning, 1986. 2(1): p. 1-42.

28. Fliedner, M. and N. Boysen, Solving the car sequencing problem via Branch & Bound.
European Journal of Operational Research, 2008. 191(3): p. 1023-1042.

29. Kis, T., On the complexity of the car sequencing problem. Operations Research Letters,
2004. 32(4): p. 331-335.

30. Morin, S., C. Gagné, and M. Gravel, Ant colony optimization with a specialized
pheromone trail for the car-sequencing problem. European Journal of Operational
Research, 2009. 197(3): p. 1185-1191.

31. Solnon, C., et al., The car sequencing problem: Overview of state-of-the-art methods and
industrial case-study of the ROADEF'2005 challenge problem. European Journal of
Operational Research, 2008. 191(3): p. 912-927.

32. Bolat, A., Sequencing jobs on an automobile assembly line: objectives and procedures.
International Journal of Production Research, 1994. 32(5): p. 1219.

33. Gagné, C., M. Gravel, and W.L. Price, Solving real car sequencing problems with ant
colony optimization. European Journal of Operational Research, 2006. 174(3): p. 1427-
1448.

34. Inman, R.R. and D.M. Schmeling, Algorithm for agile assembling-to-order in the
automotive industry. International Journal of Production Research, 2003. 41(16): p. 3831
- 3848.

35. Lustig, I.J., and J.-F. Puget, Program does not equal program: Constraint programming
and its relationship to mathematical programming. Interfaces, 2001. 31(6): p. 29-55.

36. Ribeiro, C.C., et al., A hybrid heuristic for a multi-objective real-life car sequencing
problem with painting and assembly line constraints. European Journal of Operational
Research, 2008. 191(3): p. 981-992.

37. Spieckermann, S., K. Gutenschwager, and S. Voβ, A sequential ordering problem in
automotive paint shops. International Journal of Production Research, 2004. 42(9): p.
1865 - 1878.

38. Miltenburg, J., Level Schedules for Mixed-Model Assembly Lines in Just-in-Time
Production Systems. Management Science, 1989. 35(2): p. 192-207.

274

39. Miltenburg, J. and G. Sinnamon, Algorithms for Scheduling Multilevel Just-in-Time
Production Systems. Iie Transactions, 1992. 24(2): p. 121-130.

40. Miltenburg, J. and G. Sinnamon, Revisiting the Mixed-Model Multilevel Just-in-Time
Scheduling Problem. International Journal of Production Research, 1995. 33(7): p. 2049-
2052.

41. Ding, F.-Y. and L. Cheng, An effective mixed-model assembly line sequencing heuristic
for just-in-time production systems. Journal of Operations Management, 1993. 11(1): p.
45-50.

42. Aigbedo, H., An assessment of the effect of mass customization on suppliers' inventory
levels in a JIT supply chain. European Journal of Operational Research, 2007. 181(2): p.
704-715.

43. Aigbedo, H. and Y. Monden, Simulation analysis for two-level sequence-scheduling for
just-in-time (JIT) mixed-model assembly lines. International Journal of Production
Research, 1996. 34(11): p. 3107-3124.

44. Aigbedo, H. and Y. Monden, Parametric procedure for multicriterion sequence
scheduling for Just-In-Time mixed-model assembly lines. International Journal of
Production Research, 1997. 35(9): p. 2543-2564.

45. Kubiak, W., Minimizing variation of production rates in just-in-time systems: A survey.
European Journal of Operational Research, 1993. 66(3): p. 259-271.

46. Kubiak, W., Balancing Mixed-Model Supply Chains, in Graph Theory and
Combinatorial Optimization. 2005. p. 159-189.

47. Kubiak, W., D. Rebaine, and C. Potts, Optimality of HLF for scheduling divide-and-
conquer UET task graphs on identical parallel processors. Discrete Optimization, 2009.
6(1): p. 79-91.

48. Kubiak, W., G. Steiner, and J.S. Yeomans, Optimal level schedules for mixed-model,
multi-level just-in-time assembly systems. Annals of Operations Research, 1997(69): p.
241-241.

49. Steiner, G. and J.S. Yeomans, Optimal level schedules in mixed-model, multi-level JIT
assembly systems with pegging. European Journal of Operational Research, 1996. 95(1):
p. 38-52.

50. Steiner, G. and S. Yeomans, Level schedules for mixed-model, just-in-time processes.
Management Science, 1993. 39(6): p. 728-735.

51. Sumichrast, R.T. and E.R. Clayton, Evaluating sequences for fast paced, mixed-model
assembly lines with JIT component fabrication. International Journal of Production
Research, 1996. 34(11): p. 3125.

52. Sumichrast, R.T., K.A. Oxenrider, and E.R. Clayton, An evolutionary algorithm for
sequencing production on a paced assembly line. Decision Sciences, 2000. 31(1): p. 149-
172.

53. Sumichrast, R.T. and R.S. Russell, Evaluating mixed-model assembly line sequencing
heuristics for just-in-time production systems. Journal of Operations Management, 1990.
9(3): p. 371-390.

54. McMullen, P.R., JIT sequencing for mixed-model assembly lines with setups using Tabu
Search. Production Planning and Control, 1998. 9(5): p. 504-510.

55. McMullen, P.R. and G.V. Frazier, A simulated annealing approach to mixed-model
sequencing with multiple objectives on a just-in-time line. Iie Transactions, 2000. 32(8):
p. 679-686.

56. McMullen, P.R., P. Tarasewich, and G.V. Frazier, Using genetic algorithms to solve the
multi-product JIT sequencing problem with set-ups. International Journal of Production
Research, 2000. 38(12): p. 2653-2670.

275

57. McMullen, P.R., An ant colony optimization approach to addressing a JIT sequencing
problem with multiple objectives. Artificial Intelligence in Engineering, 2001. 15(3): p.
309-317.

58. McMullen, P.R., A Kohonen self-organizing map approach to addressing a multiple
objective, mixed-model JIT sequencing problem. International Journal of Production
Economics, 2001. 72(1): p. 59-71.

59. McMullen, P.R., An efficient frontier approach to addressing JIT sequencing problems
with setups via search heuristics. Computers and Industrial Engineering, 2001. 41(3): p.
335-353.

60. Mansouri, S.A., A Multi-Objective Genetic Algorithm for mixed-model sequencing on JIT
assembly lines. European Journal of Operational Research, 2005. 167(3): p. 696-716.

61. Mohammadi, G. and M. Ozbayrak, Scheduling mixed-model final assembly lines in JIT
manufacturing. International Journal of Computer Integrated Manufacturing, 2006. 19(4):
p. 377 - 382.

62. Ponnambalam, S.G., P. Aravindan, and M. Subba Rao, Genetic algorithms for
sequencing problems in mixed model assembly lines. Computers & Industrial
Engineering, 2003. 45(4): p. 669-690.

63. Ahmadi, R.H. and H. Matsuo, A mini-line approach for pull production. European
Journal of Operational Research, 2000. 125(2): p. 340-358.

64. Doganis, P. and H. Sarimveis, Optimal scheduling in a yogurt production line based on
mixed integer linear programming. Journal of Food Engineering, 2007. 80(2): p. 445-
453.

65. Cho, K.-H. and J.-T. Lim, On-line tracing supervisory control of discrete-event dynamic
systems based on outlooking. Automatica, 1999. 35(10): p. 1725-1729.

66. Miltenburg, G.J. and T. Goldstein, Developing Production Schedules Which Balance
Part Usage and Smooth Production Loads for Just-in-Time Production Systems. Naval
Research Logistics, 1991. 38(6): p. 893-910.

67. Leu, Y., P.Y. Huang, and R.S. Russell, Using beam search techniques for sequencing
mixed-model assembly lines. Annals of Operations Research, 1997(70): p. 379-379.

68. Briant, O., D. Naddef, and G. Mounié, Greedy approach and multi-criteria simulated
annealing for the car sequencing problem. European Journal of Operational Research,
2008. 191(3): p. 993-1003.

69. Gupta, A.K. and A.I. Sivakumar, Controlling delivery performance in semiconductor
manufacturing using Look Ahead Batching. International Journal of Production Research,
2007. 45(3): p. 591-613.

70. Ramadge, P.J. and W.M. Wonham, Supervisory Control of a Class of Discrete Event
Processes. SIAM Journal on Control and Optimization, 1987. 25(1): p. 206-230.

71. Chung, S.L., S. Lafortune, and F. Lin, Limited lookahead policies in supervisory control
of discrete event systems. Automatic Control, IEEE Transactions on, 1992. 37(12): p.
1921-1935.

72. Chung, S.-L., S. Lafortune, and F. Lin, Recursive computation of limited lookahead
supervisory controls for discrete event systems. Discrete Event Dynamic Systems, 1993.
3(1): p. 71-100.

73. Kumar, R., H.M. Cheung, and S.I. Marcus, Extension based Limited Lookahead
Supervision of Discrete Event Systems. Automatica, 1998. 34(11): p. 1327-1344.

74. Takai, S., Estimate based limited lookahead supervisory control for closed language
specifications. Automatica, 1997. 33(9): p. 1739-1743.

75. Horn, C. and P.J. Ramadge. Dynamics of switched arrival systems with thresholds. 1993.
San Antonio, TX, USA: IEEE.

276

76. Ushio, T., H. Ueda, and K. Hirai, Controlling chaos in a switched arrival system.
Systems and Control Letters, 1995. 26(5): p. 335-339.

77. Ueda, H., T. Ushio, and K. Hirai. Oscillations in a single machine systems with limited
continuous processing time policy. in International Conference on Nonlinear Theory and
its Applications. 1993. Hawaii, USA.

78. Li, W. and T. Ushio, Control of a chaotic switched arrival system with controlled
internal connections. International Journal of Bifurcation and Chaos, 2006. 16(3): p. 701-
707.

79. Tian, Y.-P. Detecting unstable periodic orbits in switched arrival systems. 2003. Maui,
HI, United states: Institute of Electrical and Electronics Engineers Inc.

80. Ushio, T., H. Ueda, and K. Hirai, Control of Chaos in Switched Arrival Systems with N
Buffers. Electronics and Communications in Japan, Part III: Fundamental Electronic
Science (English translation of Denshi Tsushin Gakkai Ronbunshi), 2000. 83(8): p. 81-
86.

81. Miltenburg, J., Comparing JIT, MRP and TOC, and embedding TOC into MRP.
International Journal of Production Research, 1997. 35(4): p. 1147 - 1169.

82. Miltenburg, J., Balancing and scheduling mixed-model U-shaped production lines.
International Journal of Flexible Manufacturing Systems, 2002. 14(2): p. 123-155.

83. Miltenburg, J., Level schedules for mixed-model JIT production lines: characteristics of
the largest instances that can be solved optimally. International Journal of Production
Research, 2007. 45(16): p. 3555-3577.

84. Miltenburg, J., G. Steiner, and S. Yeomans, A Dynamic-Programming Algorithm for
Scheduling Mixed-Model, Just-in-Time Production Systems. Mathematical and Computer
Modelling, 1990. 13(3): p. 57-66.

85. Holloway, L.E., Modeling and Simulation of Manufacturing Systems Under Signal
Kanban Policies, in 2nd International Symposium on Scale Modeling. 1997: Lexington,
Kentucky.

86. Krieg, G.N. and H. Kuhn, A decomposition method for multi-product kanban systems
with setup times and lost sales. IIE Transactions (Institute of Industrial Engineers), 2002.
34(7): p. 613-625.

87. Askin, R.G. and J.B. Goldberg, Design and analysis of lean production systems. 2002,
New York: Wiley. xiv, 533 p.

88. Hopp, W.J. and M.L. Spearman, Factory physics : foundations of manufacturing
management. 2nd ed. 2001, Boston: Irwin/McGraw-Hill. xxii, 698 p.

89. Bartholdi, J.J. and L.K. Platzman, Heuristics Based on Spacefilling Curves for
Combinatorial Problems in Euclidean-Space. Management Science, 1988. 34(3): p. 291-
305.

90. Vollmann, T.E., W.L. Berry, and D.C. Whybark, Manufacturing planning and control
systems. 3rd ed. 1992, Homewood, IL: Irwin. xx, 844 p.

91. Monden, Y., The Toyota management system : linking the seven key functional areas.
1993, Cambridge, Mass.: Productivity Press. xxiii, 222 p.

92. Tardif, V., Detecting Scheduling Infeasibilities in Multi-Stage, Finite Capacity,
Production Environments, in Department of Industrial Engineering and Management
Sciences. 1995, Northwest University: Evanston.

93. Tardif, V. and M.L. Spearman, Diagnostic scheduling in finite-capacity production
environments. Computers and Industrial Engineering, 1997. 32(4): p. 867-878.

94. Gabbay, H., MULTI-STAGE PRODUCTION PLANNING. Management Science, 1979.
25(11): p. 1138-1148.

277

95. Womack, J.P., D.T. Jones, and D. Roos, The machine that changed the world : how
Japan's secret weapon in the global auto wars will revolutionize western industry. 1st
HarperPerennial ed. 1991, New York, NY: HarperPerennial. viii, 323 p.

278

Vita

John Thomas Henninger was born on September the 10th, 1976 in Murray, Kentucky.

Education:

• Murray State University

o Attended from June 1994 until May of 1995.

• University of Kentucky

o Bachelor of Science in Mechanical Engineering, May of 1998

o Masters of Science in Mechanical Engineering, May of 1999

Honors:

• Outstanding Junior in Mechanical Engineering Department, 1997

• Outstanding Senior in Mechanical Engineering Department, 1998

• National Science Foundation Fellow, 1998-1999

• College of Engineering Staff Excellence Award, 2007

Professional Positions:

• Industrial Extension Engineer, Center for Manufacturing, University of Kentucky

o August 1999 – present

• Part-time Lecturer, Mechanical Engineering Department, University of Kentucky

o June 1999 – May 2000

• Design Engineer, ProTek Engineering, Lexington, KY

o March 1998 – August 1999

Publications:

• J.T. Henninger and L. Holloway, “Stability Determination in a Class of Manufacturing

Systems with Replenishment Signals,” Proceedings from 2010 American Control

Conference, Baltimore, MD, June 210. Submitted September 21, 2009.

• J.P. Medendorp, J.A. Fackler, T. Henninger, B. Dieter, and R.A. Lodder, “NIR

spectrometry for the characterization of fuel components in a novel tamper-resistant pill

bottle,” Journal of Pharmaceutical Innovation, vol. 1, 54-61, 2006.

	University of Kentucky
	UKnowledge
	2009

	PRODUCTION SEQUENCING AND STABILITY ANALYSIS OF A JUST-IN-TIME SYSTEM WITH SEQUENCE DEPENDENT SETUPS
	John Thomas Henninger
	Recommended Citation

	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Problem and Solution
	1.2 TPS and JIT Principles
	1.3 Common Liquid Packaging Issues
	1.3.1 Definition of Algorithm
	1.3.2 Definition of Stability

	1.4 Overview of Dissertation

	2 Literature Review
	2.1 Production Sequencing
	2.1.1 Mixed-Model Assembly Line
	2.1.1.1 MM Assembly Line Problems with Setups

	2.1.2 Car Sequencing Problem
	2.1.3 Level Sequencing
	2.1.4 Hybrid-Model Sequencing
	2.1.4.1 Sequencing with Setups

	2.1.5 Lookahead Scheduling
	2.1.5.1 Discrete Event Systems

	2.2 Stability of Production Systems
	2.2.1 Switched Arrival Systems

	3 Node Network Analysis
	3.1 Introduction
	3.2 Model Description
	3.2.1 Basic Arc Type
	3.2.2 Basic Node Type

	3.3 Node Transformation Functions
	3.3.1 Definition of Transformation Function and Inverse Function
	3.3.1.1 Lemma 1
	3.3.1.2 Lemma 2
	3.3.1.3 Lemma 3

	3.3.2 Simultaneous vs. Sequential Transformations
	3.3.3 Splitting of Regions
	3.3.4 Repeated Region Transformations
	3.3.5 Transformation of Single Incoming New Region

	3.4 Settled Network
	3.4.1.1 Definition of a Settled Network

	3.5 Stable Network Trajectory
	3.5.1.1 Lemma 4
	3.5.1.2 Lemma 5
	3.5.1.3 Definition of a Stable Trajectory
	3.5.1.4 Theorem 1
	3.5.1.5 Propagation of a Stable Trajectory

	4 Stability Algorithm
	4.1 Introduction
	4.2 Basic System Model
	4.2.1 Product Inventory Data Handling
	4.2.2 Basic Arc Type
	4.2.3 Basic Node Types
	4.2.3.1 Idle Node
	4.2.3.2 Setup Node
	4.2.3.3 Refill Node

	4.3 Node Transformation Functions
	4.3.1 Forward Transformation Functions
	4.3.1.1 Idle Node
	4.3.1.2 Setup Node
	4.3.1.3 Refill Node

	4.3.2 Pseudo-Inverse Transformation Functions
	4.3.2.1 Idle Node
	4.3.2.2 Setup Node
	4.3.2.3 Refill Node

	4.4 Intersection and Merging of Transformed Regions
	4.4.1 Intersection and Union Example

	4.5 Algorithm
	4.5.1 Stability Algorithm Outline
	4.5.2 Stability Algorithm Pseudo Code

	4.6 Implementation of Algorithm
	4.7 Computational Complexity and Other Algorithm Issues
	4.7.1 Oscillating Regions

	5 Stability Algorithm Examples
	5.1 Step-by-Step Example
	5.1.1 Initialization of Algorithm
	5.1.2 Flagged Node List Loop
	5.1.3 Outgoing Arc Analysis Loop
	5.1.4 Intersect Function
	5.1.5 Merge Arc Function
	5.1.6 Incoming Arc Analysis

	5.2 General Statements about Implementation of Algorithm
	5.3 Output from the Algorithm
	5.3.1 Two Product Network
	5.3.1.1 Stable Two-Product Network
	5.3.1.2 Unstable Two-Product Network
	5.3.1.3 Increasing the Product One Threshold
	5.3.1.4 Two-Product System With and Without Idle

	5.3.2 Three Product Network
	5.3.2.1 Three Product Network – Idle Only
	5.3.2.2 Three Product Network – With and Without Idle
	5.3.2.3 Three Product Network – Different Usage Rates
	5.3.2.4 Three Product System with Sequence Dependent Setups

	5.3.3 Four Product Network

	6 Product Sequencing Algorithm
	6.1 Introduction
	6.2 Production System Model
	6.3 Time Normalized Method
	6.3.1 Lemma #1
	6.3.2 Lemma #2

	6.4 Quantifying Goodness of Products
	6.4.1 Key Variables
	6.4.2 Terms of the Goodness Equation
	6.4.3 Weighting Factors of the Goodness Equation

	6.5 Method of Product Selection
	6.5.1 Current State Decision Statement
	6.5.2 Lookahead State Decision Statement
	6.5.2.1 Alternative Lookahead State Decision Method

	6.6 Example of Goodness Equation with Lookahead
	6.7 Sequencing Examples
	6.7.1 Three Product Production System
	6.7.2 Eight Product Production System
	6.7.3 Weighting Parameters
	6.7.3.1 Configuration #1-A – Time to Crash Without Lookahead
	6.7.3.2 Configuration #1-B – Time to Crash With Lookahead
	6.7.3.3 Configuration #2-A – Time to Refill Without Lookahead
	6.7.3.4 Configuration #2-B – Time to Refill With Lookahead
	6.7.3.5 Configuration #3-A – Time in Queue Without Lookahead
	6.7.3.6 Configuration #3-B – Time in Queue With Lookahead
	6.7.3.7 Configuration #4-A – Changeover Cost Without Lookahead
	6.7.3.8 Configuration #4-B – Changeover Cost With Lookahead
	6.7.3.9 Configuration #5-A – Usage Rate Variation Without Lookahead
	6.7.3.10 Configuration #5-B – Usage Rate Variation With Lookahead
	6.7.3.11 Discussion of Weighting Factors Results

	6.7.4 Additional Test Cases for Weighting Parameters
	6.7.4.1 Alternative Lookahead Selection of Additional Test Cases

	6.7.5 Pattern Production

	7 Conclusions
	7.1 Research Contributions
	7.2 Summary of Stability Analysis
	7.2.1 Future Work – Stability

	7.3 Summary of Sequencing Algorithm
	7.3.1 Future Work – Sequencing

	Appendix I: Stability Algorithm Implementation
	Appendix II: Sequencing Algorithm Implementation
	Appendix III: A History of Production Control Systems
	Appendix IV: Common Liquid Packaging Issues
	References
	Vita

