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ABSTRACT OF DISSERTATION 
 

 
 
 

PRODUCTION SEQUENCING AND STABILITY ANALYSIS OF A JUST-IN-TIME 
SYSTEM WITH SEQUENCE DEPENDENT SETUPS 

 
Just-In-Time (JIT) production systems is a popular area for researchers but real-world issues such 
as sequence dependent setups are often overlooked.  This research investigates an approach for 
determining stability and an approach for mixed product sequencing in production systems with 
sequence dependent setups and buffer thresholds which signal replenishment of a given buffer.  
Production systems in this research operate under JIT pull production principles by producing 
only when demand exists and idle when no demand exists. 
 
In the first approach, an iterative method is presented to determine stability for a multi-product 
production system that operates with replenishment signals and may have sequence dependent 
setups.  In this method, a network of nodes representing machine states and arcs representing the 
buffer inventory levels is used to find a stable trajectory for the production system via an iterative 
procedure.  The method determines suitable buffer levels for the production system that ensure 
that a trajectory originating from any point within a buffer region will always map to a point 
contained on another buffer region for all future mappings.   
 
This iterative method for determining the stability of a production system was implemented using 
an algorithm to calculate the buffer inventory regions for all arcs in a given arc-node network.  
The algorithm showed favorable results for two and three product systems in which sequence 
dependent setups may exist. 
 
In the second approach, a product sequencing algorithm determines a product sequence for a 
production system based on system parameters – setup times, buffer levels, usage rates, 
production rates, etc.  The algorithm selects a product by evaluating the goodness of each product 
that has reached the replenishment threshold at the current time.  The algorithm also incorporates 
a lookahead function that calculates the goodness for some time interval into the future.  The 
lookahead function considers all branches of the tree of potential sequences to prevent the 
sequence from travelling down a dead-end branch in which the system will be unable to avoid a 
depleted buffer.  The sequencing algorithm allows the user to weight the five terms of the 
goodness equations (current and lookahead) to control the behavior of the sequence.    
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1 

 

1 Introduction 

The purpose of this research is to investigate and propose a production system stability algorithm 

and a product sequencing algorithm to assist manufacturers with unavoidable sequence dependent 

setups.  The algorithms are intended to be used to determine an effective and stable product 

sequence that is responsive and effective at meeting customer demand in production systems with 

significant and sequence dependent changeover costs.  The algorithms are based on Just-In-Time 

(JIT) (note that lean manufacturing, Toyota Production System, and JIT will be used 

interchangeably in this dissertation) principles of production, meaning that production is triggered 

based on customer demand, not forecasted, predicted, or scheduled demand.  Production is 

signaled to replenish the product buffer when a certain buffer threshold is reached, which pulls 

products through the manufacturing system as they are consumed by the customer.  Conventional 

production systems push products through the production system into finished goods inventory 

based on forecasted demand and are often unresponsive to changes in customer demand. 

 

This research originated with a plant visit to a liquid solvents packaging facility which had a high 

variety of products and variable customer demand.  Packaging bulk liquids into smaller 

containers can create sequencing issues due to the chemical properties of each product.   Dockx et 

al. [1] examined the issues involved with scheduling production in the chemical industry due to 

the “inevitable chaos, caused by a multitude of possible conflicting choices, and by the fuzziness 

and uncertainty of the parameters involved.”  The most common issue with bulk liquid packaging 

is dealing with sequence dependent changeover or setup costs between products when some 

chemicals are incompatible and require special changeover procedures.  Although this research 

began with the packaging industry, the sequencing issues are not unique to this industry and are 

applicable to any manufacturer with a variety of products with variable demand and unique 

changeover costs between products. 

 

The current state of the packaging industry varies from company to company but a common 

theme throughout the industry and other manufacturers is the need to reduce costs, improve 

efficiency, and increase market share.  The implementation of lean manufacturing can help a 

company to meet these objectives.  



 

 

2 

 

1.1 Problem and Solution 

The first problem addressed in this research examines whether or not a stable product sequence 

exists for a given production system.  This problem can be solved analytically or with an 

algorithm that will examine a JIT production system and determine if a path through the systems 

exists in which production can meet demand for all future time and the buffers remain positive.  

The analytical results are a significant contribution to this field of research because if a solution is 

found for the system, it is guaranteed to be stable for all future cycles through the system.  The 

stability algorithm is a starting point for implementation of the iterative method and is a 

foundation upon which to build future research.  The current stability algorithm requires 

significant computational time for production systems with more than a few products which led to 

addressing the second problem.  The stability analysis method is intended to be used as an off-

line tool to determine if a stable product sequence trajectory exists for the production system. 

 

The second problem addressed in this dissertation focuses on the need to determine a feasible 

product sequence for a JIT production system with sequence dependent setups.  This research 

proposes a straightforward heuristic sequencing algorithm that is based upon JIT principles with 

lookahead as a solution for determining a product sequence when setups are present.  The 

inclusion of lookahead time into the sequencing algorithm helps to ensure a feasible solution by 

considering future buffer conditions to avoid dead-end paths in which a product buffer crashes.  

The proposed sequencing algorithm is a contribution to the field of research in that the 

sequencing algorithm provides an effective method for determining a feasible sequence with 

sequence dependent setup with JIT principles.  The algorithm is intended to be practical enough 

to be implemented on the manufacturing floor but it is also intended to be a building block to be 

used by other researchers to continue the advancement of product sequencing research.  The 

sequencing algorithm, when implemented in a production setting, would be used as an on-line 

sequencing tool that has an information feedback loop from the production system and finished 

goods inventory buffers. 

1.2 TPS and JIT Principles 

The Toyota Production System (TPS) and JIT are often considered to be the same concept by 

researchers as well as practitioners, but this is not true because TPS is more than just JIT.  TPS is 

often described as a house that is composed of tools which are combined together create a 

philosophical approach to manage the entire manufacturing system – people, processes, facilities, 

and materials.  JIT is considered to be one of the columns used support the roof of the house, 
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which represents continuous improvement (Kaizen), see Figure 1.1.  The second column is the 

concept of stopping to correct a problem at the source (Jidoka) and not pushing the problem any 

further through the system.  The house is built upon a foundation of standardization, performance 

measures, and mutual respect.  Note that without all components working together, the house will 

not stand. 

 

 
Figure 1.1: Toyota Production System House 

 

Chemical packaging companies rely on some form of production scheduling to determine what, 

when, and how much to package and the scheduling can often be responsible for increased costs 

due to excessive levels of inventory and the inability to meet changing customer demand.  Some 

authors emphasize the importance of flexibility and low costs to be able to enter into today’s 

rapidly fragmenting niche markets where customers’ desires are always changing [2].  Currently 

most companies with a high variety products use an MRP system to schedule production.  This 

leads to the problem of very high safety stocks created by the inaccuracies within MRP systems 

(see MRP discussion in Appendix III).  This research incorporates JIT principles that will provide 

a useable method to sequence products to be packaged and balance the tradeoff between a smooth 

mixture of products and lost time and capacity from changeovers between products.   
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The packaging company visited at the beginning of this research suffered from excessive 

inventory levels, backordered jobs, processing large batches, and very slow changeovers between 

products.  Decreasing changeover and setup times can be accomplished by using dedicated 

piping, quick release fasteners, and other commonly used lean changeover methods.  If quick 

changeovers are accomplished, the scheduling problem still remains a roadblock to the lean 

transition. In the pre-lean state, approximately $3.5 million of products are in inventory and the 

inventory typically stays in the warehouse for up to six months prior to be purchased by a 

customer.  By contrast, a JIT system will only have enough inventory on hand to cover demand 

until the inventory is replenished.  For example, if a raw material takes seven days to reach the 

facility from the supplier and three days to package, then ten days of inventory plus some amount 

of safety stock would be on-hand in a lean system.  Current push scheduling systems do not have 

the intelligence to manage production scheduling and finished goods inventory (FGI) at the low 

levels present in a JIT system. 

 

This research incorporates pull-production principles by triggering production only when a given 

product drops below a user defined buffer threshold.  Production is based on the buffer level, 

which provides an information feedback loop to the algorithm and it pulls products through the 

system based on customer consumption.  This is the same lean principle that is used in a signal 

kanban production system or a pattern production system.  A signal kanban system operates with 

a signal placed at a given buffer level and the product enters the replenishment queue when the 

signal is reached.  A pattern production system operates with the buffer threshold set to the 

maximum buffer level for all products and after refilling a product, the product immediately 

reenters the production queue which creates the production pattern.  A signal kanban may 

experience idle production but a pattern production system will not experience idle time. 

1.3 Common Liquid Packaging Issues 

The process of packaging large quantities of a liquid into smaller containers or repacking from a 

larger container into multiple smaller containers has certain unavoidable issues that are present 

regardless of what type of liquid is being packaged.  Often these issues will make the transition 

from the typical batch and queue push production system to a JIT production system very 

difficult.  This section will highlight these issues but a more in depth discussion can be found in 

Appendix IV. 
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A changeover between materials in a packing facility can be a very laborious task and if not done 

correctly can be very costly in the contamination of products, loss of material, employees 

sustaining injuries, or polluting the surrounding environment.  The actual cleanout process can 

differ between packaging facilities but when viewed in the broader sense of the entire production 

system it is equivalent to a changeover in other manufacturing systems.  The changeover costs 

may vary based on the sequence of products and the cost might be significant if the cleanout 

between materials is slow.  The cleanout process will vary depending upon what chemical was 

packaged, some require a water cleanout and others require air or nitrogen, while other chemicals 

must be cleaned out using solvents and then water or air to remove the solvents. 

 

Another issue of changeover between chemicals is the sequence in which some chemicals must 

be packaged.  The sequencing of chemicals is important because some chemicals will absorb the 

odor from the previous product even after the cleanout process.  Sequencing of chemicals is also 

important when a high purity level is desired because some chemical will not show contamination 

from the previous chemical even when the contamination is present.  The necessity to sequence 

materials in a packaging system adds another layer of complexity to the production sequencing 

algorithm but this information can be captured in the changeover costs.  An infinite setup cost 

will not allow two incompatible products to follow one another to avoid these issues. 

1.3.1 Definition of Algorithm 

The term algorithm refers to any well-defined computational procedure that takes some input set 

of values and produces some output set of values [3].  The term algorithm in this work refers to a 

mathematical model that consists of equations and constraints that are used to characterize a 

production system.  Note that the stability algorithm could be applied to any system that can be 

represented with a network, not just production systems.  Algorithms can be classified into two 

groups – deterministic and stochastic.   

 

A stochastic algorithm is an algorithm that contains variability in the mathematical model or 

solution method and therefore a set of initial conditions may not always yield the same solution.  

A genetic algorithm is an example of a stochastic algorithm in which the solution begins with a 

random population and which are then evaluated based upon “fitness.”  The fittest individuals are 

combined to create the next generation and this is repeated as the algorithm evolves toward the 

best solution.  Due to the randomly generated initial population, a genetic algorithm with a given 
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set of initial conditions may not return the same final results when with repeated runs of the 

algorithm. 

 

A deterministic algorithm is an algorithm in which the mathematical model contains no 

variability and will always yield the same results for a given set of initial conditions and the 

mathematical model consistently predicts the state of the system.  Deterministic algorithms are 

often too complex to be solved for a production system when the variability of the system and 

conflicting choices are modeled.  A deterministic production system is one in which all states are 

known and a given set of initial conditions will always yield the same final results.  Note that this 

research assumes that the given production system being considered does not contain variability 

and is therefore a deterministic system that can be solved with a deterministic algorithm.   

 

A heuristic approach is a method in which the solution, if found, will be a feasible solution but it 

is not guaranteed to be the optimum solution for the system.  A heuristic is often used to find an 

acceptable solution to a stochastic system in which all future states are not known due to 

unpredictable factors (machine breakdowns, variability in customer demand, etc.) or for a 

deterministic system for which finding an optimal solution is to complex.  A heuristic algorithm 

will typically include the ability to learn from past experiences and apply the artificial intelligence 

to future decisions.  The solution proposed by Dockx et al. [1] for the chemical industry was a 

heuristic algorithm that incorporated a stochastic search, deductive reasoning, and artificial 

intelligence to replicate the human scheduler that has intuition from years of experience and has 

learned from past mistakes.   

 

This research considers a deterministic algorithm that employs a heuristic method for sequencing 

mixed products for a given production system.  The sequencing algorithm uses a weighted 

goodness calculation with or without lookahead to determine a feasible production sequence.  The 

stability algorithm uses an iterative method to yield analytical results for a given production 

system.  If a solution is found by the stability algorithm, the solution will guarantee a stable 

production trajectory for the production system. 

1.3.2 Definition of Stability 

The issue of buffer stability is an important problem that must be addressed in manufacturing 

systems.  A buffer can be a very effective means to aid the production system by smoothing 

fluctuations caused by variability which can come from processes, breakdowns, workers, 
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transportation, etc.  The proper sizing of a buffer is a key component of TPS, in that the properly 

sized buffer will motivate workers, reduce inventory costs, and prevent nervousness of the 

system.  Consider a workstation that has a very large buffer (two shifts worth of production) 

upstream and downstream of the station.  The worker must work non-stop for two entire shifts 

before depleting the upstream buffer or filling the downstream buffer.  Over time the worker may 

become demoralized and unmotivated and eventually the quality and speed of work will decrease.   

A large buffer can also mask system issues such as breakdowns or an improper procedure 

because the large buffer is never depleted to expose the issue to allow the root cause to be found 

and corrected.  A buffer that is too small can also negatively affect a worker; consider a 

workstation with a buffer sized to a single product of inventory both upstream and downstream.  

If any disturbance occurs such as a breakdown or maintenance, the downstream buffer will be 

exhausted and the upstream buffer will quickly fill and block production from upstream stations. 

The ideal buffer level is one in which system variation does not crash the system and the worker 

is slightly stressed to maintain motivation, efficiency, and quality of work.  When a buffer is 

properly sized it is a win-win relationship to manage both human and system variation according 

to Fujio Cho’s buffer principle [4].  MRP systems typically have large buffers with no concern 

for the win-win relationship while JIT systems are more focused on maintaining a win-win 

relationship between the humans and production system. 

 

The term stability has many different definitions depending upon the researcher, type of system, 

and goals of the research.  This dissertation considers a production system operating over some 

time interval to be stable if over the time interval one of the following conditions exists: 

 

1. A given buffer state of the production system is revisited with a finite bound between 

visits, meaning that the buffer state exhibits periodicity [5]. 

2. The buffer state of the production system remains within the bounds of ±Δ and positive 

for all time [6]. 

  

Chase et al. [5] began the research on the concept of periodicity and chaos in a production system 

represented by a switched flow system.  A graphical representation of the first condition of 

stability can be seen in Figure 1.2.  This diagram is a simplistic three product system with the sum 

of the buffers equaling one, equal production rates, and usage rates sum to the production rate, 

which allows the system to be considered closed, and the quantity of products flowing out is 

equivalent to the quantity flowing in.  Each buffer is characterized by Xi.  The Xi edge of the 
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triangle represents an empty buffer for product i.  Each apex of the triangle represents the location 

where two buffers are simultaneously empty.  If the trajectory reaches an apex, the system will 

crash and therefore each apex is a location of instability.  The buffer state trajectory shown 

simply orbits from product to product replenishing each buffer in a periodic pattern – 1-2-1-3.  

Therefore the system is stable because the buffer state of the system returns to the initial starting 

state when the 1-2-1-3 pattern is started again (after every four cycles, regardless of the starting 

product).  Assuming that the system is deterministic, the periodic orbit is revisited after a given 

finite time interval T, which is simply time to refill each product in the periodic pattern. 

 
Figure 1.2: Periodic Buffer State 

 

The concept of stability with bounded variation has been extensively researched over the years, 

first by Perkins and Kumar [6] and later in JIT systems by Seidman and Holloway [7-8].  An 

example of the second condition for stability can be seen in Figure 1.3.  In this diagram the 

product buffer fluctuates over time but never crosses the maximum and minimum bounds 

represented by the dashed lines.  Therefore the product is stable because it remains within the 

bounds over the given time interval.  This stability condition requires the lower limit to be greater 

than zero products (an empty buffer).  In some cases it may be acceptable to allow a product 

buffer to reach zero, perhaps just as production of the product starts, but an empty buffer is 

avoided in this research. 

t

BF

 
Figure 1.3: Bounded Variation 
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In this dissertation the upper limit of the buffer is bounded by the defined level of a full buffer for 

each product, therefore the upper bound is always guaranteed to exist.  The lower bound must be 

checked to ensure that the system does not experience one or more empty buffers.  An empty 

buffer is assumed to represent a system crash and therefore any buffer state trajectory that 

contains an empty buffer is considered to be unstable. 

1.4 Overview of Dissertation 

This dissertation begins with a general introduction and overview of key issues and principles that 

will be addressed in subsequent chapters.  Chapter 2 provides a review of previous work in the 

area of product sequencing for JIT systems as well as stability and chaos control in production 

systems.  Chapter 3 discusses analytical analysis and results for stability in a given arc-node 

network.  Chapter 4 presents an algorithm to determine the stable regions for a given arc-node 

network based on the analytical results.  Chapter 5 provides a discussion of results from example 

problems using the stability algorithm.  Chapter 6 discusses the development of a product 

sequencing algorithm with lookahead and product dependent setups.  Chapter 7 provides a 

discussion of conclusions from the work done in this dissertation and areas of future work. 
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2 Literature Review 

This review of previous work in the area is divided into two areas for clarity; production 

scheduling is first, followed by stability in a production system. 

2.1 Production Sequencing 

Research in the area of production scheduling began in the 1950s with researchers such as 

Johnson [9], Smith [10], and Jackson [11].  Since that time production scheduling has been a 

popular area for researchers focused on push production, but in the last few decades Just-In-Time 

(JIT) production systems were introduced into this research field.  In 1999 Ying and Liao [12] 

conducted a survey of 130 research papers that focused on production systems with setup times.  

Only a few of the systems considered in the survey can be classified as JIT production systems.  

JIT production systems have become much more popular with researchers in the past decade, but 

systems with setups are still seldom considered by researchers.  Boysen et al. [13] conducted a 

survey in 2009 of over 200 research papers in the area of production sequencing of mixed-model 

assembly lines.  In this survey, only a small fraction of the papers, around 30 of the 200+ papers 

considered setups and changeovers between products, which highlights that sequencing of JIT 

systems with setups is an area that needs further research. 

 

Mixed-model production sequencing can be applied to a wide variety of production systems 

depending upon what the interests of the researcher.  Research of sequence dependent setups has 

been applied to single machines, parallel machines, flow lines, and job shops [14].  During the 

process of reviewing previous work in the area of production scheduling and sequencing, it has 

become apparent that there are distinct divisions in the research of mixed-model sequencing for 

assembly lines.  The first group refers to the problem as mixed-model sequencing and focuses on 

minimizing work overload at an assembly station, minimizing setups, and considers worker 

movement, station borders, cycle time, and other system parameters.  The second group refers to 

the problem as car sequencing, which is a simplified approach to the mixed-model sequencing 

problem that focuses on minimizing work content overload at final assembly line stations by 

constraining the ratio of work intensive products [13].  The third group characterizes the problem 

as level scheduling or level sequencings and the researchers focus on level usage of parts or 

materials for the mixed-model sequence, which was originally proposed by Monden [15] as a key 

component of the Toyota Production System and other JIT manufacturers in the United States.  

The final group defines the problem using a hybrid-model sequencing system that incorporates 

aspects of the previous three groups, researchers such as McMullen [16] who simultaneously 



 

 

11 

 

considered level scheduling while minimizing the number of setups fall into this group.  This 

dissertation is considered to be part of the work in the hybrid-model sequencing. 

 

Mixed-model assembly line problems have the same three basic characteristics or constraints as 

the foundation for the mathematical model to represent the system.  Consider a mixed-model 

assembly line with a planning horizon of T time periods, where t = 1,…,T and the system has N 

different models where the demand for model i is di for all i N∈ .  Let k denote the stage of the 

sequence, for example consider a given sequence A-B-C, k is stage number 1, 2, or 3.  Note that 

the time t is interchangeable with the stage of the sequence k if only one model is produced 

during each time period. 

• The first characteristic is a binary variable to record what model i is produced during a 

given cycle t, which is represented by xi,t, which is either 0 (not produced) or 1 (model 

produced) for all models i N∈  at each time period t.     

• The second constraint of the mathematic model is to ensure that only one model i is 

produced during a given time t (or stage k, where k = t), which is accomplished with 

,
1

1
N

i t
i

x
=

=∑  for all time t = 1,…,T.   

• The third constraint is that demand di for a model i is produced for all models N during 

the planning horizon T, where ,
1

T
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2.1.1 Mixed-Model Assembly Line 

Mixed-model (MM) sequencing problems are related to the car sequencing (CS) problems but are 

typically more complicated than the CS problems because more parameters are considered in the 

MM problems.  The MM problem considers work content time or space required to complete the 

assembly function at a given assembly line station and the station has a defined length.  An 

assembly station is sized based on the average capacity required for all models to be assembled 

which means that some models will create a work overload at a given station while other models 

will be completed early at a given station.   

 

The assembly line may consist of closed, open, or a hybrid mix of boundaries for the stations.  A 

closed boundary means that a worker can start working on the product only when it crosses into 

the station and must stop working on the current model if it reaches the end of the station.  An 

unfinished product is considered work overload and can be completed by utility workers in a 
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closed station model or the line must be stopped.  An open station model allows the worker to 

start working on the next product after finishing the current product (no idle time).  The open 

station worker stops working when the product is completed or when the next product enters the 

assembly station depending on the definition of the system.  The worker may travel beyond the 

borders of an open station.  The MM sequencing problem characterizes the assembly line by 

considering the speed of the conveyor, the processing time of each model, the speed that the 

worker returns to the beginning of the station, cycle (takt) time of the assembly line, station 

length, number of stations, and model demand as parameters to accurately model the system.   

 

The MM researchers typically develop a model and method to optimize some objective or 

combination of objectives.  Minimizing work overload at all stations and over all production 

cycles is the most common objective, where work overload is the amount of time or space by 

which the borders of a station are exceeded.  Minimizing the line length or throughput time are 

two objectives considered by researchers but the two objectives will yield very similar results for 

a system in which the line does not stop and travels at a constant speed.  The time to travel 

through the assembly line is a function of the velocity and the length of the line.  Other potential 

objectives are to minimize the distance travelled by workers, total idle time, duration of line 

stoppages, and setup costs or some combination of multiple objectives. 

2.1.1.1 MM Assembly Line Problems with Setups 

Most authors assume that the assembly tasks or the mix of models require insignificant setups 

between models and are therefore ignored, but there are a few researchers who complicate the 

MM problem further by considering setups between products.  Burns and Daganzo [17] evaluated 

the trade-offs between setups between jobs and production capacity utilization in determining the 

assembly line sequence for mixed-models.  Setups were grouped into three potential areas, with 

the first consisting of wasted materials such as paint that is purged to changeover to a new color.  

The second area consists of lost labor or machine capacity due to changeovers, such as during the 

stoppage for a changeover of a stamping machine.  The final area of setup cost is subpar product 

quality that occurs when changing to a new product, such as the first few injection molded parts 

being unacceptable after a mold change due to the mold not being at the correct temperature for 

the first few cycles.  Other authors, such as Bolat et al. [18] considered sequence dependent 

setups for the MM sequencing problem and developed a heuristic procedure to concurrently 

minimize utility work and setup costs, but it should be noted that the setups are considered 

independent of the time required to complete the model.  Kim et al. [19] considered the MM 
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problem with a hybrid mix of stations and sequence dependent setups.  A genetic algorithm was 

developed to find a near optimum sequence with the objective to minimize the length of the 

assembly line.  Rahimi-Vahed and Mirzaei [20] proposed a shuffled frog-leaping algorithm to 

simultaneously optimize three objectives of total utility work, production rate variation, and setup 

costs to sequence the MM system with setups.  Rahimi-Vahed et al. [21] again consider the same 

three objectives for a MM system but propose a multi-objective scatter search algorithm to 

optimize the product sequence.  Tavakkoli-Moghaddam and Rahimi-Vahed [22] studied the MM 

assembly line problem in a JIT environment using a memetic algorithm (a hybrid genetic 

algorithm that includes local refinement and evolution) to simultaneously optimize the sequence 

based on minimizing utility work, production rate variance, and setup costs.  Rahimi-Vahed et al. 

[23] included real options of the cars with associated values to maximize the value of the product 

mix for a MM system.  After developing the “best” product mix, a genetic algorithm and a 

memetic algorithm was then used to determine the optimized sequence based on minimizing the 

utility work, sequence dependent setups, and production rate variation.  Rabbani and Rahimi-

Vahed [24] consider MM problem with setups and real-world variability in demand and compare 

the algorithm against the goal chasing method as well as the method proposed by Miltenburg and 

Sinnamon [25].  Kim and Jeong [26] proposed a branch and bound method to determine the 

optimum sequence for MM systems that have sequence dependent setups while minimizing the 

total unfinished work for the sequence. 

2.1.2 Car Sequencing Problem 

The car sequencing problem was originally formulated by Parrello et al. [27] in 1986 to solve a 

problem for General Motors Research Laboratories.  Instead of sequencing models based on 

detailed work content calculations as in the MM procedure, the CS problem attempts to minimize 

work overload by constraining the number of successive high work content models and yet still 

meet the required demand for each model.  The capacity constraint (often referred to as a hard 

constraint) is a ratio such as Ho : No, which means that only Ho models can contain option o out of 

No successive models to avoid work overload [13].  An example of a high work content model is 

a car that requires a sunroof or air conditioning.  If the sequence of cars cannot satisfy the 

capacity constraint, a penalty constraint (often referred to as a soft constraint) will penalize each 

step of the sequence that violates the constraint.  The penalty may be constant or may vary based 

on the number of successive violations.  For example, the first violation will incur a penalty of 

one but the second violation is penalized a value of five.  Parrello et al. optimized the sequence by 

minimizing the penalty cost for the sequence.  Other authors such as Fliedner and Boysen [28] 
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optimized the sequence by minimizing number of constraint violations, while other authors [29-

30] have proposed more efficient algorithms. 

 

In 2005, Renault hosted a challenge for teams of researchers to compete against one another to 

create the best sequencing algorithm to optimize the tradeoffs between the final assembly 

sequence constraints and the minimizing setups in the paint shop [31].  The resulting algorithms 

created small batches in the paint shop based on similar colors while minimizing the final 

assembly constraint violations.  Other authors [32-37] have examined the same problem of 

simultaneous sequencing of the paint shop and final assembly and reached similar conclusion as 

the Renault teams.  

 

Consider the method used to solve the CS problem, which is to sequence the products based on 

minimizing work overload by imposing a capacity constraint ratio to limit high work content 

models.  What does this do to final supply lines and tier-one and tier-two suppliers?  Consider a 

hypothetical sequencing problem that must determine the optimum sequence for two models 

where model A has the standard configuration of seats and model B requires power adjustable 

seats.  The final assembly work content is equivalent for the two models, therefore the capacity 

constraint ratio has no effect on determining the sequence.  Without considering any other factors, 

the sequence could be large batches alternating between manual and power seats, which would be 

fine for final assembly.  This sequence would cause massive demand swings for the seat supplier 

when the supplier would have to sequentially produce dozens of the power seats, which have 

much higher work content as a subassembly than the manual seats.  To overcome this problem, 

many researchers consider level sequencing which creates the sequence based on level material 

usage. 

2.1.3 Level Sequencing 

The level sequencing problem was first published by Monden [15], who discussed the Goal 

Chasing Method that was in use at Toyota to schedule the final production assembly lines.  

Monden defined two goals of the optimum final assembly sequence:  

1. Minimize the workload variation at each stage on the assembly line. 

2. Maintain a constant usage rate of every part consumed on the assembly line.  

This first goal acknowledges that each workstation does not have the same cycle time on the 

assembly line but smoothed variation between stations will help to eliminate inefficiencies such 

as idle time or excessive work content for a given takt time.  The second goal attempts to 
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maintain a smooth usage rate of materials per unit time for each model on the assembly line.  To 

solve these problems at Toyota, the Goal Chasing I and II methods were developed [20]. 

 

Miltenburg [38] examined the problem of creating a level and balanced schedule for an assembly 

line with mixed-model products.  Miltenburg’s work is an extension of the Goal Chasing Method 

by Monden [15].  This paper is often cited by other researchers and is considered to be the 

starting point for a large portion of research dealing with level sequencing of mixed-model 

assembly lines.  In this work the author assumed that setup times were negligible between parts, 

which allows the emphasis to be placed on finding an ideal sequence that provides a constant rate 

of usage for all parts.  Keeping a constant rate of usage for every part used by the line means that 

if the line produced three products, A, B, and C, and if product demands are equal, an ideal 

constant rate of usage would be to repeat A-B-C sequence.  The objective is to schedule the 

assembly line such that the proportion of a product produced over the total production period is 

close to the proportion of the demand for the given product to the total demand for all products.  

To accomplish this objective three algorithms and two heuristics were developed to minimize 

Equation 1.   
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where 

n = the number of products to be assembled in the line,  

DT = the total number of units for all products, 

di = demand for product i, i = 1,2,…,n, 

xi,k = total number of units of product i produced over stages 1 to k, where k = 1,2,…, DT 

 

Miltenburg and Sinnamon [25] further extend the previous Miltenburg research to be applicable 

to multi-level JIT systems, examining issues that are present when products require differing 

amounts of parts and subassemblies.  Algorithms and heuristics are proposed to solve the problem 

allowing the user to define different weights to be applied to products, sub-assemblies, 

components, and raw materials.  This work also includes a lookahead feature that allows the 

algorithm to consider the current stage and the next stage as well to calculate the usage rate 

variation of the two stages together.  The product with the lowest combined variation for the 

current stage k and the subsequent stage k + 1 is selected.  Miltenburg and Sinnamon [39] 

extended this method to a multi-level production system that considered four levels of production 
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– product, subassembly, component, and raw material.  The authors proposed three algorithms 

and three heuristics to provide the optimum sequence. 

 

Miltenburg and Sinnamon [40] revisit their previous work and provide insight into the use of the 

weights in the original research and the implications on a JIT production system.  The setting of 

the weight values allows the scheduler to vary the schedule to meet certain issues, such as if a 

shortage of a component occurs; the subassemblies would be scheduled as late as possible to 

allow time to catch up the shortage. 

 

Ding and Cheng [41] continue the advancement of research in the area of scheduling and 

sequencing mixed-models on an assembly line for a JIT.  The authors simplify the algorithms and 

heuristics of Miltenburg [38] to decrease CPU time and provide equivalent results.  The proposed 

algorithm is a five-step process that can be computed in a single do-loop and requires 

significantly less computer memory.  The algorithm is benchmarked against Miltenburg’s work 

by comparing the mean squared and absolute deviation of the results over nine problems.  The 

problem sets include 25 problems with a random production quantity between 0 and 9 per model.  

The results show that the deviations of the new algorithm are equivalent to the previous work of 

Miltenburg, but the advantage is that the computational time is significantly less.  As the size of 

the problem sets increase the reduction in CPU time increases from a minimum value of 35% for 

a problem set with five products up to a 99.1% reduction for a problem set with 50 products. 

 

This dissertation considers level scheduling as the starting point or fundamental concepts upon 

which to build a hybrid-model sequencing algorithm.  There are many other authors that have 

made significant contributions in the area of level sequencing, such as Aigbedo [42-44], Kubiak 

[45-48], Steiner [49-50], and Sumichrast [51-53].  These authors continue the work of Monden 

and Miltenburg, but their contributions are considered to fall outside the scope of this dissertation. 

2.1.4 Hybrid-Model Sequencing 

This section focuses on hybrid mixed-model sequencing research.  This first sub-section 

considers sequencing of production systems with setups or sequence dependent setups followed 

by a sub-section that reviews research that considers lookahead sequencing. 
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2.1.4.1 Sequencing with Setups 

McMullen [16, 54] examines the level sequencing of a JIT assembly line system with mixed-

models and non-negligible setup times.  Although previous discussed work [25, 38, 40-41] 

focused solely on the smooth material usage for a given production sequence, McMullen’s work 

attempts to provide reasonable levels of material usage rate and the total changeover time.  This 

research assumes that the setup times, though non-negligible, are limited to 20% of the actual 

time required to process the product.  This research develops equation (3) as an objective function 

with weights for the product usage rate, equation (1), and the cumulative number of setups, 

equation (2), to be minimized using a Tabu Search algorithm.  Miltenburg’s part usage rate and 

Ding and Cheng’s algorithms are used in this research. 

 

The number of setups for a sequence is computed as follows: 

 

∑
=

=
TD

k
ksS

1

                                                                (2) 

 

where sk= 1 if the product in position k is different than the product in position k – 1, or 0 

otherwise.  The composite objective function used to consider sequence smoothness and number 

of changeovers is computed as follows: 

 

min: s uz w S w U= +                                                          (3) 

 

where ws is the weight applied to the number of setups and wu is the weight applied to the usage 

rate variation. 

 

McMullen and Frazier [55] examine the use of simulated annealing to find a near optimum 

solution to the mixed-model sequencing problem.  This research develops a simulated annealing 

algorithm and compares the results to a Tabu Search heuristic.  The simulated annealing 

algorithm begins by generating an initial solution and the solution is evaluated using an objective 

function, equation (3).  The next step is to generate a neighboring solution, this research uses 

pairwise swapping, meaning that two unique products are randomly selected and swapped.  The 

new test solution is compared with the current solution and the better solution is kept.  A 

calculation is performed to determine the probability of accepting an inferior solution; inferior 
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solutions are accepted to keep the algorithm from being trapped in a local minimum.  This 

process is repeated for a defined number of iterations and then the temperature is lowered by the 

defined cooling rate and the process is repeated until the final temperature is reached.  The 

proposed algorithm is evaluated using computer simulation and the results show that the 

algorithm out performs the Tabu Search heuristic. 

 

McMullen et al. [56] further examined mixed-model job sequencing and examined the use of a 

genetic algorithm to find a near optimization of the system.  The equations (1), (2), and (3) were 

again used in this research to be minimized by the genetic algorithm.  The genetic algorithm 

functions by generating some number of initial solutions and determining the “fittest” of these 

solutions.  A crossover is performed on the best solutions to create a new generation of solutions.  

The new offspring then undergo a mutation with a defined probability and the “fittest” of this 

generation will undergo a crossover and mutation and the process will repeat until the defined 

number of generations has been produced.  The algorithm proposed in this research is evaluated 

using test cases to compare it to a Tabu Search heuristic and Simulated Annealing algorithm.  The 

results show that the genetic algorithm and simulated annealing algorithm provide nearly 

equivalent results, with the only difference being an increase in CPU time for the genetic 

algorithm.  This is caused by the genetic algorithm manipulating a large portion of the production 

sequence during the crossover and mutation steps.  McMullen considered other optimization 

algorithms and methods in other works [57-59]. 

 

Mansouri [60] continue the work of McMullen utilizing a multi-objective genetic algorithm to 

minimize the number of setup while minimizing the production rate variation of the sequence.  

The author proposes that smoothing the variation of production rates can be considered a 

substitute for Miltenburg’s method of smoothing the material usage rates.  Note that both authors 

are assuming that all products being considered require approximately the same number and mix 

of parts. 

 

Mohammadi and Ozbayarak [61] developed a method to sequence mixed-model products in a JIT 

environment that included setups between different models.  This work built upon Miltenburg’s 

level material usage and incorporated a setup cost function that calculated setup cost at each 

station of the assembly line.  This work is similar to McMullen’ work although the cost function 

(equation 4) is more complicated in that it considers sequence dependent costs instead of a 

generic changeover cost. 
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where Cs,i,l is the setup cost to change from model i to model l at station s and xk,i,l is 1 if models i 

and l are assigned to position k and k + 1 respectively in the sequence, otherwise xk,i,l is zero.  This 

method provides optimum or near-optimum results with very little CPU time required to find the 

solution.  The authors also compare their method to previously publish problem sets with 

favorable results. 

 

Ponnambalam et al. [62] consider the multi-level (product, subassembly, component, and raw 

material) level rate of usage sequencing problem and method proposed by Miltenburg and 

Sinnamon [39].  The authors framed the problem as a MM problem instead of a level sequencing 

problem.  The authors propose using a genetic algorithm to optimize the sequence based on the 

common three objectives of MM problems – minimizing utility work, minimizing variation in 

part usage, and minimizing setup costs.  Their method was compared against Miltenburg and 

Sinnamon’s method and proved to be an effective alternative. 

 

Ahmadi and Matsuo [63] proposed developing families or groups of products and processing 

each group on a dedicated mini-line to minimize large setups for the printed circuit board 

industry.  The method allows pull production on the lines after the groups have been established 

and the method also allows small setups within the group to occur.  This concept could be 

introduced into the liquid packaging industry by the introduction of dedicated plumbing and 

quick cleanout packaging lines. 

 

Doganis and Sarimveis [64] investigated the optimal scheduling for a yogurt production line 

using mixed integer linear programming.  Yogurt production has many common issues 

experienced by the chemical industry due to sequence dependent setups based on fat content and 

flavors of the various yogurt products.  As an example consider that plain or low-fat yogurt 

requires a very thorough cleanout prior to packaging if the previous product was high fat or 

flavored yogurt, but high fat or flavored yogurt following plain or low-fat products requires 

minimum cleanout.  The yogurt industry also must consider production that matches demand due 

to spoilage issues if the product is not consumed in a short window of time.  The proposed 

algorithm schedules production based on changeover cost, inventory cost, and labor cost. 
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Dockx et al. [1] developed an interactive scheduling program, referred to as SKYE.  The program 

integrates deductive techniques, such as constraint propagation, with stochastic techniques, such 

as Simulated Annealing or Tabu Search, and temporal reasoning to schedule production for the 

chemical process industry.  They attempt to overcome the “inevitable chaos, caused by a 

multitude of possible conflicting choices, and by the fuzziness and uncertainty of the parameters 

involved” by allowing the user to interact with the program to improve the schedule.  SKYE is 

intended to be the scheduling module within a larger production scheduling software package that 

maintains other important inventory and production information. 

2.1.5 Lookahead Scheduling 

The use of lookahead for determining a production sequence or schedule has been studied by 

many researchers.  The goal of lookahead scheduling is to forecast future conditions some time or 

number of products into the future and then use that information to optimize some objective 

function.  Lookahead is also very useful to aid in the avoidance of dead-end sequences in which 

the sequence eventually lead to an illegal system state [65], such as empty buffers or missed 

demand. 

 

The work of Miltenburg and Sinnamon [25] includes a lookahead feature that allows the 

algorithm to calculate the usage rate variation of the current stage and subsequent stage to choose 

the smoothest sequence.  Miltenburg and Goldstein [66] continued the Miltenburg and Sinnamon 

work by developing a weighted sum objective function for multi-level smoothing (products, 

parts/sub-assemblies, components, materials) and workload smoothing.  The problem is solved 

using a mixed integer program which considers a two-stage look-ahead heuristic to determine the 

sequence.  Leu et al. [67] build upon the level sequencing method using the lookahead concept 

introduced by Miltenburg and Sinnamon [25] with a beam search algorithm.  This work expands 

the solution search space to improve the probability of finding the optimum sequence.  The 

proposed beam search method proved to be clearly superior to the goal chasing method as well as 

Miltenburg and Sinnamon’s method. 

 

Briant et al. [68] proposed using lookahead to aid in the batching of cars for the paint shop to 

solve the car sequencing problem.  The authors’ approach was to initially lookahead in the 

sequence of up to six cars to batch common colored cars to decrease setups in the paint shop.  As 

the sequence progressed, the lookahead distance decreased or was no longer used to encourage 
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the batching early in the sequence.  The authors’ results were shown to be comparable to other 

researchers. 

 

Gupta and Sivakumar [69] examine lookahead batching for delivery of products to a 

semiconductor production system that operates under JIT principles.  The authors developed a 

method to control delivery performance with the objective of minimizing earliness and tardiness 

measures.  The approach is a combination of scheduling and discrete event simulation in which 

decisions are made based on current information and simulated future conditions.  The authors 

report favorable results using the method for given test cases. 

2.1.5.1 Discrete Event Systems 

Discrete event systems (DES) are dynamic systems that evolve due to random occurrences of 

discrete qualitative events; manufacturing systems are often framed as a DES.  Supervisory 

control theory developed by Ramadge and Wonham [70] is often used to solve DES problems. 

The approach for supervisory control is to synthesize the supervisor offline of complete models of 

the system behavior, but it can be difficult to construct complete models when behaviors are 

complex or vary over time.  The limited lookahead policy (LLP) was proposed by Chung et al. 

[71] as less computationally intense method to overcome the difficulties of the offline approach 

of calculating all possibilities.  The authors’ LLP approach determines the next control action by 

projecting the system behavior into the future N-steps, which is the lookahead window.  This is 

repeated after the execution of each event.  The LLP control action is calculated with either a 

conservative attitude or an optimistic attitude.  The conservative attitude tends to result in a 

restrictive control policy while the optimistic attitude may result in violation of constraints of the 

system.  Chung et al. [72] continued the previous work using the LLP, but developed a recursive 

procedure that makes use of previous calculations of trees for the next tree pair to greatly reduce 

computational time. 

 

Kumar et al. [73] extended the LLP work of Chung et al. by developing an extension based 

limited lookahead (ELL) supervisor.  The ELL determines the next control action by estimating 

the future behavior of the system as well as using knowledge of the system, such as an upper 

bound on the tree length of uncontrollable events.  The ELL is more permissive than the LLP 

proposed by Chung et al. and the ELL also has more relaxed assumptions. 
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Many other authors have continued examining lookahead methods to control DES.  Takai [74] 

examined the Kumar et al. ELL method more in depth and determined that in some conditions it 

is equivalent to the conservative attitude LLP method.  Cho and Lim [65] were concerned with 

optimal behavior of the system and proposed the online tracing supervisory control method.  This 

method showed favorable results when compared to the offline method. 

2.2 Stability of Production Systems 

Production sequencing is a key factor for the production system to meet demand, but an equally 

important aspect that must be considered is the long term stability of the production system to 

ensure that the system can meet demand.  Stability in this dissertation is considered as bounded 

inventory with no backlog in which the buffer inventory levels remain positive over all time. 

 

Seidman and Holloway [7] examined stability in a pull production system that operates using 

signal kanbans, which are equivalent to a low inventory replenishment threshold.  The researchers 

developed a method to set the reorder point such that there is no backorder queue and the buffers 

remain positive.  The method is further extended to pattern production to determine the minimum 

buffer level to ensure no backorders occur. 

 

Seidman and Holloway [8] further examine stability in pull production systems by considering 

control methods when significant setups are present.  Signal kanbans with either fixed-fill levels 

or fixed-batch size, as well as pattern production were the two methods examined.  The fixed-fill 

signal kanban method performs better than the fixed batch signal kanban.  The authors note that 

the fixed-fill variant is equivalent to the switched arrival system which was shown by Chase et al. 

[5] to be chaotic in nature.  The authors conclude that the fixed-fill variant performs better (lower 

average inventory) than the fixed-batch signal kanban due to long-term cyclic behavior than can 

occur in the fixed-batch policy.  Also the pattern production method performs better than fixed-

fill signal kanban by requiring less inventory for the same level of service. 

2.2.1 Switched Arrival Systems 

Switched arrival systems (SAS) have been used to model a wide variety of systems since the late 

1980s, including manufacturing, data networks, and fluid flow.  The SAS is composed of a server 

(such a manufacturing station) that is responsible for replenishing multiple buffers (inventory of 

products).  The server replenishes a buffer until a threshold is reached at one of the other buffers 

(threshold of zero is an empty buffer) at which point the server switches instantaneously to the 
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new buffer.  This switching of the server occurs each time a threshold is reached at another 

buffer.  The system evolves over time to create a state trajectory through the system buffers.  A 

pull production system in which a server replenishes buffers is considered to be a SAS. 

 

Chase et al. [5] examine periodicity and chaos in both SASs and switched server systems for a 

case of three products.  Note that the authors employed several assumptions to aid in the analysis 

of the systems: fixed fill rate of one and cumulative consumption rate of one to create a closed 

loop system.  The authors note that the SAS has sensitive dependence on initial conditions and is 

chaotic in nature and it is highly unlikely to settle into a periodic orbit. 

 

Horn and Ramadge [75] introduced the concept of thresholds for a SAS and studied their affect 

on the dynamic behavior of a three product system.  The threshold functions as a bound on the 

buffer, whether an upper limit or lower limit.  The lower limit threshold does not change the 

dynamic behavior of the system from the original system because a lower limit is equivalent to 

rescaling the system.  Upper limits were studied (with lower limits set to zero) and the server 

prematurely stops filling the buffer when the upper limit is reached.  The server then switches to 

the buffer with the least amount of work.  The authors determined ranges of values in which the 

upper limits will result in periodic stable behavior of the SAS, when using one, two or three 

limits.  Three limits provide the best results by preventing the state trajectory from reaching the 

unstable location where two products are simultaneously empty. 

 

Ushio et al. [76] re-examine the three product SAS in an attempt to control the chaotic behavior, 

while applying the same assumptions that were used by Chase et al.  The authors built upon the 

work of Ueda et al. [77] who showed numerically that chaos and periodic orbits can occur when 

the processing time is limited to a prescribed value.  The authors propose a control method to 

stabilize the unstable periodic orbits by limiting the continuous processing time in the SAS.  The 

authors show that their method produces stable periodic orbits.  Li and Ushio [78] examined 

controlling chaos in a three buffer SAS by implementing flow connections between buffers exist.  

This method was shown to be effective at producing periodic orbits.  Tian [79] proposed using a 

time-delayed impulsive feedback method for detection of unstable periodic orbits embedded in a 

chaotic system. 

 

Ushio et al. [80] continue the previous chaos control work by Ushio et al. [76] and extend the 

method to a SAS with N buffers.  The method is the same as the previous work in which chaos is 
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controlled by limiting the processing time for a given buffer, but the system is generalize to 

consist of N buffers.  The authors show that this method again performs well for the larger SAS.  
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3 Node Network Analysis 

3.1 Introduction 

In the most general sense the node-arc network used in this research simply consists of 

information (a region) stored on each arc that is transformed by a function within the node that 

may or may not be unique at each node.  The newly transformed information is intersected with 

the information stored on another arc attached to the node.  The information may be transformed 

forward by the function of the node or may be pseudo-inversely transformed backward through 

the node.   

 

The node-arc network is used extensively in this research to evaluate the stability of a production 

system.  The system that is being evaluated by the stability algorithm is a network of nodes that 

are connected together by arcs.  Each arc contains one or more sets of data (the rectangles in the 

diagram below), currently in the form of a matrix, that can be operated upon by the upstream or 

downstream node.  Each node is host to a transformation function which may differ from node to 

node depending upon which type of node is defined for a given node.   A node represents a 

processing state of the system and the transformation function defines the method in which the 

inventory changes while the system is in the given processing state.  For example a node may 

indicate production of one product, or setup for production of that product, or only consumption 

of all products. 

 

The intent of the method is to cycle through the network updating the upstream or downstream 

regions adjacent to each node based on the downstream or upstream regions until all regions no 

longer change when updated.  A solution for the system is found when the updated region is 

equivalent to region prior to being updated on all arcs. 
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Figure 3.1: Arc-Node Network Model 

3.2 Model Description 

Let k be the number of products in the production system.  The inventory of all products at the 

given time is represented by a vector of dimension k, where the ith row of the vector is the 

inventory of the ith product.  The following notation is used for this dissertation: 

• , , , , ks q x y z∈R  represent vectors indicating inventory of the products 

• , , , , kS Q X Y Z ⊆ R  represent regions of inventory vectors 

Thus for example consider some kX ⊆ R , which the elements of X are inventory vectors x 

where x X∈ . 

 

The production system model is described as: 

• a set N of nodes 

• a set of directed arcs A N N⊆ ×  connecting the nodes, where every node has at least one 

incoming arc and at least one outgoing arc. 

• a transformation function  fn(●) for each node n N∈ , where for some vector ka∈R , the 

function fn(a) yields a set (possibly empty) of vectors in Rk. 

Consider an arc 1 2( , )a n n= , between two nodes n1 and n2, which has a set of points ( ) kZ a ⊆ R  

associated with it.  Z(a)  may be empty or may represent one or more disconnected regions.  Thus 

any given network can be described by 

  

( , , ( ), ( ))N A f Zη = i i  

 

where N is the set of nodes, A N N⊆ × is the set of arcs, f(●) represents the transformation 

functions at each node, and Z (a) represents the region mapped to each arc ∈a A .   

 

Node 2 

 

Node 1 
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Node 3 

 

Node 5 
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For clarity, the remainder of this chapter will use a localized notation, where a set of inventory 

vectors entering a node n is Xn, and a set of inventory vectors leaving node n is Yn.  Given a node 

n, the set of directed arcs leading to node n are denoted as Arcin(n) and the set of directed arcs 

originating from n are denoted as Arcout(n) (i.e. { }( ) ( , )  for some ′ ′= ∈ ∈inArc n a n n A n N  and 

{ }( ) ( , ')  for some ′= ∈ ∈outArc n a n n A n N ).  The localized Xn represents the set of all regions 

associated with all arcs contained in ain(n), such that 

 

( )
( )

( )
in

n
a Arc n

X Z a
∈

= ∪ . 

 

The localized Yn similarly represents the set of all regions associated with all arcs contained 

within aout(n), such that 

( )
( )

( )
out

n
a Arc n

Y Z a
∈

= ∪ . 

 

3.2.1 Basic Arc Type 

An arc is simply a means of conveying and directing information between the nodes in the 

network.  The information stored in any arc in the system is one or more regions.  The regions are 

unchanged by the arc and are only transformed by a node.  An arc also allows the direction of 

flow to be defined between each node because the arcs used for this node network are 

unidirectional.  There is always one or more arc(s) into a given node and one or more arcs out of 

a given node. 

3.2.2 Basic Node Type 

The general node consists of a set of one or more functions that transform an incoming region to 

an outgoing region and inversely transform an outgoing region to an incoming region.  

3.3 Node Transformation Functions 

At each node a function f(x) or pseudo-inverse function f -1(x) is applied to transform a region(s) 

on one side of the node to create one or more regions on the other side of the node, see diagram 

below.  The inverse function is referred to as a pseudo-inverse function because the inverse 

functions used in this research may or may not be one-to-one functions. 
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Given a node such as in the diagram above, the updated region, Y ,  is found by transforming the X 

region and intersecting the transformed region with the Y region, such that 

 

( )Y f X Y′ = ∩ . 

 

The updated region, X , is found by inversely transforming the Y region and intersecting it with 

the X region, such that 
1' ( )X f Y X−= ∩ . 

 

3.3.1 Definition of Transformation Function and Inverse Function 

Given a transformation function f(●), which operates over vectors in Rk , the function is 

generalized over a set ⊆ kS R , which is composed of elements ∈ ks R , as follows: 

 

( ) : ( )
∈

= ∪
s S

f S f s . 

 

Note that ( ) :f ∅ =∅ .  Let the pseudo-inverse function for some q, which is an element of f (s), 

be defined such that 
1( ) : { | ( )}− = ∈f q s q f s . 

 

The pseudo-inverse transformation function generalized over set kB ⊆ R , which is composed of 

elements kb∈R , as follows:  
1 1( ) : ( )

b B
f B f b− −

∈
= ∪ . 

 

f -1 X 

 

Y f X 

 

Y 

Figure 3.2: Transformation of Regions 
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Using this generalization it can also be shown that given sets ⊆ kS R  and kB ⊆ R , 

 
1 11 ( ) ( )( ) − −− = ∩∩ f S f Bf S B . 

Note that 1( ) :f − ∅ =∅ . 

 

3.3.1.1 Lemma 1 

Lemma: 

Given the general definition of the transformation functions and their inverse, for any 
kq∈R , then ))(( 1 qffq −∈ . 

 

Proof: 

Given a vector q, let 
1( )−=A f q . 

 

Note that this general inverse function is not assumed to be a one-to-one fully invertible function.   

From the generalized definition of the transformative function over set A, ( ) : ( )
∈

= ∪
s S

f S f s , the 

function is composed of one or more subsets.  Given two sets S1 and S2 such that 1 2⊆S S , it 

follows that 1 2( ) ( )⊆f S f S .  Based upon this result, it follows that for any a’ that is an element 

of A (i.e. '∈a A ) 

 

( ') ( )f a f A⊆ . 

 

Substituting a’ for s in the definition of the inverse function 1( ) : { | ( )}− = ∈f q s q f s  states that 

( ')∈q f a  for some '∈a A .  Therefore it is known that 

 

( ') ( )∈ ⊆q f a f A . 

 

And substituting the definition of the set A, 1( )−=A f q , into the previous equation shows the 

following 
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1( ') ( ) ( ( ))−∈ ⊆ =q f a f A f f q . 

 

Therefore 
1( ( ))−∈q f f q . 

□ 

3.3.1.2 Lemma 2 

Lemma: 

Given the set ⊆ kB R , then ))(( 1 BffB −⊆ . 

 

Proof: 

To show this by contradiction, the statement is assumed to be not true, such that for some Bq∈  

but ))(( 1 Bffq −∉ , which means that it is assumed that q is an element of B but not an element of 

1( ( ))f f B− . 

 

From the definition of )(1 Bf −  it is clear that for Bq∈ , it can be stated that 

 

)()( 11 Bfqf −− ⊆ . 

 

From the definition of the transformation function f(S), given two sets A1 and A2 such 

that 21 AA ⊆ , it can be stated that )()( 21 AfAf ⊆ .  Then the following is true 

 

))(())(( 11 Bffqff −− ⊆ . 

 

Given this result and the previous result that ))(( 1 qffq −∈  and that Bq∈  this shows a 

contradiction to the statement that Bq∈  but ))(( 1 Bffq −∉ , therefore 

 

))(( 1 BffB −⊆ . 

□ 
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3.3.1.3 Lemma 3 

Lemma: 

Given the set kS ⊆ R , then 1( ( ))S f f S−⊆ . 

 

Proof: 

To show this by contradiction, the statement is assumed to be not true, such that for some s S∈   

but 1( ( ))s f f S−∉ , which means that it is assumed that s is a subset of S but not an element of 

1( ( ))f f S− . 

 

Given a set of vectors S, let 

( )T f S= . 

 

From the definition of the pseudo-inverse function 1( ) : { | ( )}− = ∈f q s q f s , choose some t such 

that ( )t f s∈ .  Then it can be stated that  

 
1( )s f t−∈ . 

 

Since s S∈ , then t T∈ .  Also, since 1( )s f t−∈  and ( )t f s∈ , then  

 
1( ( ))s f f s−∈ . 

 

Note that this result is very similar to the result of Lemma 1. 

 

Since t T∈ , then 1 1( ) ( )f t f T− −⊆  and given that ( )t f s∈  and ( )T f S= , then  

 
1 1( ( )) ( ( ))f f s f f S− −⊆  

 

Therefore  
1 1( ( )) ( ( ))s f f s f f S− −∈ ⊆ , 

so 
1( ( ))s f f S−∈ , 
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which contradicts the assumption that s S∈  but 1( ( ))s f f S−∉ .  Therefore given the set kS ⊆ R , 

then  
1( ( ))S f f S−⊆ .              □ 

3.3.2 Simultaneous vs. Sequential Transformations 

In order to further understand the transformation of regions in the node-arc network, consider 

how the order of transforming the regions might affect subsequent transformations.  Consider a 

generic node with an incoming region X and an outgoing region Y.  A simultaneous 

transformation is defined as conducting a forward transformation of the region X and at the same 

time (prior to updating the resulting region) conducting a pseudo-inverse transformation on the 

region Y.  Since one transformed region is not affected by the other transformed region at a given 

time, t, the order of forward or inverse transformation is irrelevant.   

 

A sequential transformation is defined as performing a forward transformation on region X and 

then using the newly altered region Y for the inverse transformation to update the X region.  Note 

that the order of forward or inverse transformations may have an effect on subsequent 

transformations in the node-arc network. 

 

 

 

 

 

 

 

Consider the simultaneous (in parallel) transformations of regions for the diagrams shown above, 

which results in the following equations for some time, t = 0. 

 

(1) ( (0)) (0)PY f X Y= ∩  

1(1) ( (0)) (0)PX f Y X−= ∩  

 

The regions can also be transformed sequentially (in series) to yield the following results: 

 

f -1 X 

 

Yf X 

 

Y

Figure 3.3: Transformation of Regions 
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(1) ( (0)) (0)SY f X Y= ∩  

1(1) ( (1)) (0)S SX f Y X−= ∩  

 

These sets of equations appear to yield different results dependent upon the order in which the 

regions are transformed.  Further examination is needed to determine which method is better to 

transform the regions or if there is a difference.  Examination of the sequential regions yields the 

following results by substitution of the YS(1) region:  

 
1

1

1 1

(1) ( (1)) (0)

(1) ( ( (0)) (0)) (0)

(1) ( ( (0))) ( (0)) (0)

S s

S

S

X f Y X

X f f X Y X

X f f X f Y X

−

−

− −

=

=

=

∩

∩ ∩

∩ ∩

 

 

Recall from Lemma 3 that given the set kS ⊆ R , then 1( ( ))S f f S−⊆ .  Therefore since 

(0) kX ⊆ R , then )0()))0(((1 XXff ⊇− , which allows X(0) be substituted in the X(s) equation for 

1( ( (0)))f f X− , even though X(0) is a subset.  This is because the first two terms are intersected 

with X(0). The substitution of gives the following equation 

 
1 1(1) (0) ( (0)) (0) ( (0)) (0)SX X f Y X f Y X− −= =∩ ∩ ∩ . 

 

Recall that 1(1) ( (0)) (0)PX f Y X−= ∩ , therefore 

 

(1) (1)S PX X= . 

 

Since XS(1) is equivalent to XP(1) the transformation order is irrelevant.  Therefore, a 

transformation for iteration i + 1 for some generic node n with an incoming arc region X and 

outgoing arc region Y, is defined as 

 

( 1) ( ( )) ( )nY i f X i Y i+ = ∩  

1( 1) ( ( 1)) ( )nX i f Y i X i−+ = + ∩ . 
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3.3.3 Splitting of Regions 

The results of the previous sections apply to incoming sets X and outgoing sets Y, even though X 

(or Y) may be associated with incoming (or respectively outgoing) arcs.  The effects of the 

transformations on the individual incoming or outgoing arcs are now considered when there is 

more than one arc into or out of the node. 

 

Consider a portion of a larger node network, in which a single node has two incoming arcs with 

regions A and B and a single outgoing arc with a single region C, as shown below.   

 

 

 

 

Figure 3.4: Multiple Incoming Regions 
 

The current state of the regions is assumed to be at a particular instant in time that will be 

considered the initial state and is denoted as X(0) for a given region.  The forward transformation 

of the A and B regions potentially creates two regions from region C.  The two new regions may 

or may not be a subset or superset of the other, but there is not sufficient information, at this point 

in time, to determine the uniqueness of each region so the worst-case is assumed as two unique 

regions.  The forward transformation yields the following regions from the original region C.  

Note that the cycle index number increases as the transformations propagate. 

 

1(1) ( (0)) (0)C f A C= ∩  

2 (1) ( (0)) (0)C f B C= ∩  

 

The two new regions are now inversely transformed and intersected with the A and B regions 

using the sequential transformation method to update the incoming regions.  Note that the number 

of new regions is simply the number of regions being transformed multiplied times the number of 

regions being intersected. 
1

1 1(1) ( (1)) (0)A f C A−= ∩  

1
2 2(1) ( (1)) (0)A f C A−= ∩  

1
1 1(1) ( (1)) (0)B f C B−= ∩  

1
2 2(1) ( (1)) (0)B f C B−= ∩  

f 
A 

B 

C



 

 

35 

 

 

Consider the regions Ai.  Is it possible to claim that some q exists such that )1(2Aq∈  but )1(1Aq∉ ?  

The statement that )1(2Aq∈  implies that 

 
1 1

2( (1)) (0) ( ( (0)) (0)) (0)q f C A f f B C A− −∈ =∩ ∩ ∩  

             1 1( ( (0))) ( (0)) (0)f f B f C A− −= ∩ ∩  

 

Therefore q must be an element of the following sets 

 

)0(

))0((

))0(((

1

1

Aq

Cfq

Bffq

∈

∈

∈

−

−

 

 

Now consider the statement )1(1Aq∉ , where A1(1) is equivalent to 

 
1 1

1 1(1) ( (1)) (0) ( ( (0)) (0)) (0)A f C A f f A C A− −= =∩ ∩ ∩  

      
1 1

1

( ( (0))) ( (0)) (0)

( (0)) (0)

f f A f C A

f C A

− −

−

=

=

∩ ∩

∩
 

 

Therefore one of the following statements must be true if )1(1Aq∉  

 

))0((

)))0((()0(

1

1

Cfq

AffAq

−

−

∉

⊆∉
 

 

Clearly this is a contradiction of the statement that )1(2Aq∈  but )1(1Aq∉ , because it was 

previously shown that q is an element of A(0) and ))0((1 Cf − .  Therefore 

 

)1()1( 12 AA ⊆ . 

 



 

 

36 

 

A similar argument can be used for the )1(1B  and )1(2B  regions.  Is it possible for some q to exist 

such that )1(1Bq∈  but )1(2Bq∉ ?  The statement of )1(1Bq∈  means that  

 
1

1 1(1) ( (1)) (0)q B f C B−∈ = ∩  

     1( ( (0)) (0)) (0)f f A C B−= ∩ ∩  

     1 1( ( (0))) ( (0)) (0)f f A f C B− −= ∩ ∩  

 

Therefore q is an element of the following sets 

 

1

1

(0)

( (0))

( ( (0)))

q B

q f C

q f f A

−

−

∈

∈

∈

 

 

Now consider the statement that )1(2Bq∉ , where 

 

 1
2 2(1) ( (1)) (0)B f C B−= ∩  

   1( ( (0)) (0)) (0)f f B C B−= ∩ ∩  

   1 1( ( (0))) ( (0)) (0)f f B f C B− −= ∩ ∩  

   1( (0)) (0)f C B−= ∩  

 

Therefore one of the following statements must be true if )1(2Bq∉  

 
1

1

(0) ( ( (0)))

( (0))

q B f f B

q f C

−

−

∉ ⊆

∉
 

 

Clearly this is a contradiction of the statement that )1(1Bq∈  but )1(2Bq∉ , because it was 

previously shown that q is an element of f -1(C(0)) and B(0).  Also since it was shown that B(0) is 

a subset of f -1(B(0)), q is also an element of )))0(((1 Bff − .  Therefore 

 

)1()1( 21 BB ⊆ . 
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3.3.4 Repeated Region Transformations 

Consider the previous example in which the initial regions have been transformed and inversely 

transformed such that the regions have been defined as A1(1), B2(1), C1(1), and C2(1).  Now 

consider if the regions were transformed again before any of the regions are changed by adjacent 

nodes.  The forward transformation will yield the following equations for region C. 

 

1 1 1

1
1 1

1
1 1

1

1

(2) ( (1)) (1)

( ( (1)) (0)) (1)

( ( (1))) ( (0)) (1)

( (0)) (1)

( (0)) ( (0)) (0)

( (0)) (0)

(1)

C f A C

f f C A C

f f C f A C

f A C

f A f A C

f A C

C

−

−

=

=

=

=

=

=

=

∩

∩ ∩

∩ ∩

∩

∩ ∩

∩

 

 

2 2 2

1
2 2

1
2 2

2

2

(2) ( (1)) (1)

( ( (1)) (0)) (1)

( ( (1))) ( (0)) (1)

( (0)) (1)

( (0)) ( (0)) (0)

( (0)) (0)

(1)

C f B C

f f C B C

f f C f B C

f B C

f B f B C

f B C

C

−

−

=

=

=

=

=

=

=

∩

∩ ∩

∩ ∩

∩

∩ ∩

∩

 

 

This shows that the repeated transformation of the given regions has no affect on the regions 

because the new region is equivalent to the previous region.  Consider the following cross 

transformations 
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12 1 2

1
1

1
1

1

1 1

(2) ( (1)) (1)

( ( (1)) (0)) ( (0)) (0)

( ( (1))) ( (0)) ( (0)) (0)

( ( ( (0)) (0))) ( (0)) ( (0)) (0))

( ( ( (0)))) ( ( (0))) ( (0)) ( (0)) (0)

( (0)) ( (0)) (

C f A C

f f C A f B C

f f C f A f B C

f f f A C f A f B C

f f f A f f C f A f B C

f A f B C

−

−

−

− −

=

=

=

=

=

=

∩

∩ ∩ ∩

∩ ∩ ∩

∩ ∩ ∩ ∩

∩ ∩ ∩ ∩

∩ ∩ 0)

 

 

21 2 1

1
2

1
2

1

1 1

(2) ( (1)) (1)

( ( (1)) (0)) ( (0)) (0)

( ( (1))) ( (0)) ( (0)) (0)

( ( ( (0)) (0))) ( (0)) ( (0)) (0))

( ( ( (0)))) ( ( (0))) ( (0)) ( (0)) (0)

( (0)) ( (0)) (

C f B C

f f C B f A C

f f C f B f A C

f f f B C f B f A C

f f f B f f C f B f A C

f A f B C

−

−

−

− −

=

=

=

=

=

=

∩

∩ ∩ ∩

∩ ∩ ∩

∩ ∩ ∩ ∩

∩ ∩ ∩ ∩

∩ ∩ 0)

 

 

Note that the cross transformation of the regions result in creating subsets of the original 

transformed regions.  Both of the sets C12(1) and C21(1) are a subset of C1(1) or C2(1). 

 

Now consider the repeated inverse transformations of the C regions when the C regions have not 

been changed by the adjacent nodes.  The inverse transformation will yield the following 

equations for the A and B regions:  

 
1

1 1 1

1 1
1 1

1

(2) ( (1)) (1)

( (1)) ( (1)) (0)

(1)

A f C A

f C f C A

A

−

− −

=

=

=

∩

∩ ∩  

 
1

2 2 1

1 1
2 1

1

(2) ( (1)) (1)

( (1)) ( (1)) (0)

(1)

A f C A

f C f C A

A

−

− −

=

=

⊆

∩

∩ ∩  
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1
1 1 2

1 1
1 2

2

(2) ( (1)) (1)

( (1)) ( (1)) (0)

(1)

B f C B

f C f C B

B

−

− −

=

=

⊆

∩

∩ ∩  

 
1

2 2 2

1 1
2 2

2

(2) ( (1)) (1)

( (1)) ( (1)) (0)

(1)

B f C B

f C f C B

B

−

− −

=

=

=

∩

∩ ∩  

 

The results for the sets C1(2), C2(2), A1(2), and B2(2), in this example illustrate that repeated 

transformations, whether forward or backward, of unaltered regions has no affect on the other 

regions at the node.  Therefore the following statement can be made: 

 
The incoming and outgoing regions for a given node will not be altered by any 
subsequent transformations or inverse transformations unless one or more regions have 
been altered by the transformation or inverse transformation at an adjacent node. 

 

Note that the node-arc network is used in this research to determine feasible buffer levels 

(represented by a region) at a given node which represents idle time, setup, or production of a 

given product.  After all the nodes in the system have been cycled through and the regions are no 

longer altered by the transformation functions, the analysis of the node-arc network is complete. 

3.3.5 Transformation of Single Incoming New Region 

Consider the introduction of an altered region A1(2), which is a subset of A1(1), to the previous 

example at the given time at which the other regions are defined as B2(1), C1(1), and C2(1).  

Given the following incoming regions 

 

)1()2( 11 AA ⊆  

)1()2( 22 BB =  

 

which are shown in the diagram below. 
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The forward transformation of the regions A1(2) and B2(2) will yield the following 

 

1 1 1

1

1

(2) ( (2)) (1)

( (2)) ( (0)) (0)

( (2)) (0)

C f A C

f A f A C

f A C

=

=

=

∩

∩ ∩

∩

 

 

2 2 2

2 2

1
2 2

1
2 2

2

2

(2) ( (2)) (1)

( (1)) (1)

( ( (1)) (0)) (1)

( ( (1))) ( (0)) (1)

( (0)) (1)

( (0)) ( (0)) (0)

( (0)) (0)

(1)

C f B C

f B C

f f C B C

f f C f B C

f B C

f B f B C

f B C

C

−

−

=

=

=

=

=

=

=

=

∩

∩

∩ ∩

∩ ∩

∩

∩ ∩

∩

 

 

The cross transformation of the region A1(2) is as follows 

 

12 1 2

1

(2) ( (2)) (1)

( (2)) ( (0)) (0)

C f A C

f A f B C

=

=

∩

∩ ∩
 

 

which leads to both 

12 1 1

12 2

(2) ( (2)) (0) (2)

(2) ( (0)) (0) (2)

C f A C C

C f B C C

⊆ =

⊆ =

∩

∩
 

 

The cross transformation of the region B2(2) is as follows 

 

f 
A1(2) 

B2(2) 

C1(1) 

C2(1) 

Figure 3.5: Multiple Incoming Arcs 
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21 2 1

2 1

1
2 1

1
2 1

1
1

1

1 1

(2) ( (2)) (1)

( (1)) (1)

( ( (1)) (0)) (1)

( ( (1))) ( (0)) (1)

( ( ( (0)) (0))) ( (0)) (1)

( ( ( (0)) (0))) ( (0)) ( (0)) (0)

( ( ( (0)))) ( ( (0))) ( (

C f B C

f B C

f f C B C

f f C f B C

f f f B C f B C

f f f B C f B f A C

f f f B f f C f B

−

−

−

−

− −

=

=

=

=

=

=

=

∩

∩

∩ ∩

∩ ∩

∩ ∩ ∩

∩ ∩ ∩ ∩

∩ ∩

2

0)) ( (0)) (0)

( (0)) ( (0)) (0) (2)

f A C

f B f A C C= ⊆

∩ ∩

∩ ∩

 

 

Therefore the cross transformation regions can be disregarded because they will be contained 

within the C1(2) or C2(2) sets or the cross transformation regions will be empty.  The forward 

transformations of the regions A1(2) and B2(2) have only altered the region C1(2) since the region 

C2(2) is equivalent to C2(1). 

 

Now consider the inverse transformation of the regions C1(2) and C2(2) 

 
1

1 1 1

1
1 1

1 1
1 1

1
1

(3) ( (2)) (2)

( ( (2)) (0)) (2)

( ( (2))) ( (0)) (2)

( (0)) (2)

A f C A

f f A C A

f f A f C A

f C A

−

−

− −

−

=

=

=

=

∩

∩ ∩

∩ ∩

∩

 

 
1

2 2 1

1
1

1 1
1 1

(3) ( (2)) (1)

( ( (0)) (0)) (1)

( ( (0))) ( (0)) (1) (3)

A f C A

f f B C A

f f B f C A A

−

−

− −

=

=

= ⊆

∩

∩ ∩

∩ ∩
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1
1 1 2

1 1
1 2

1 1 1
1

1 1 1 1
1

1 1
1

(3) ( (2)) (2)

( ( (2)) (0)) ( (1)) (0)

( ( (2))) ( (0)) ( ( (0)) (0)) (0)

( ( (2))) ( (0)) ( ( (0))) ( (0)) (0)

( ( (2))) ( (0)) (0)

B f C B

f f A C f C B

f f A f C f f B C B

f f A f C f f B f C B

f f A f C B

−

− −

− − −

− − − −

− −

=

=

=

=

=

∩

∩ ∩ ∩

∩ ∩ ∩ ∩

∩ ∩ ∩ ∩

∩ ∩

 

 

Also, 1
1 1 2 2 2(3) ( (2)) (2) (2) (1)B f C B B B−= ⊆ =∩  

 
1

2 2 2

1
2 2

1 1
2 2

1
2

1

1 1

1

2

(3) ( (2)) (2)

( (1)) (2)

( (1)) ( (1)) (0)

( (1)) (0)

( ( (0)) (0)) (0)

( ( (0))) ( (0)) (0)

( (0)) (0)

(1)

B f C B

f C B

f C f C B

f C B

f f B C B

f f B f C B

f C B

B

−

−

− −

−

−

− −

−

=

=

=

=

=

=

=

=

∩

∩

∩ ∩

∩

∩ ∩

∩ ∩

∩

 

 

The results from the inverse transformation are similar to the results from the forward 

transformation in that only one region has been altered, A1(3).  Note that the cross-inverse 

transformed regions A2(3) and B1(3) are simply subsets (or empty sets) of the regions A1(3) or 

B2(3). 

3.4 Settled Network 

Consider the regions X and Y at node n, for some arc-node network and given the previous 

definition of the transformation function and inverse function for iteration i + 1, as 

( 1) ( ( )) ( )nY i f X i Y i+ = ∩  and 1( 1) ( ( 1)) ( )nX i f Y i X i−+ = + ∩ .  The intersection of the transformed 

region and the original region causes the new region to always be equivalent or less than the 

original region and the new region can never be larger than the original region.  Therefore the 

following is always true for any set of regions X and Y 
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( 1) ( )Y i Y i+ ⊆  

( 1) ( )X i X i+ ⊆ . 

 

Therefore as the iterations increase, a region must settle to some set, where the set is either non-

empty set or an empty set.  A network with N nodes and where each node has an incoming region 

of Xn and an outgoing region of Yn is settled at iteration i, when for all nodes n, n N∈ , the 

following occurs 

 

( 1) ( )n nX i X i+ =  

( 1) ( )n nY i Y i+ = . 

 

3.4.1.1 Definition of a Settled Network 

This leads to the following definition for a settled arc-node network: 

A given network characterized by ( , , ( ), ( ))N A f Zη = i i , is settled when the following 

equations are true for every node n, where n N∈ . 

 
1( )n n nX f Y X−= ∩  

( )n n nY f X Y= ∩  

 

3.5 Stable Network Trajectory 

The stability of an arc-node network occurs for a settled network with a non-empty region at any 

node.  Stability means that a trajectory exists that can propagate from non-empty set to non-empty 

set through the network an infinite number of times while never entering an empty set.  At any 

node on the trajectory, the trajectory must start at some element within a non-empty incoming 

region and be transformed to some element within a non-empty outgoing region.  The trajectory 

is not considered to be stable if at some node the trajectory is transformed to an empty set or the 

transformed point is not contained within the non-empty outgoing region. 

 

A stable trajectory will exist for a settled arc-node network characterized by 

( , , ( ), ( ))N A f Zη = i i , if there exists some node n with a settled and non-empty region.    
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3.5.1.1 Lemma 4 

Lemma:  

For any node n in a settled arc-node network with nX ≠ ∅ , then nY ≠ ∅ . 

 

Proof: 

This Lemma can be proved by contradiction, suppose that nY =∅ .  A settled network was 

defined previously as 1( )n n nX f Y X−= ∩  and that 1( )f − ∅ =∅ .  Therefore n nX X=∅ =∅∩ , 

since nX =∅ , this is a contradiction.  

□ 

3.5.1.2 Lemma 5 

Lemma:  

For any node n in a settled arc-node network with nY ≠ ∅ , then nX ≠ ∅ . 

 

Proof: 

This Lemma can be proved in a similar manner to Lemma 4.  A settled network was defined 

previously as ( )n n nY f X Y= ∩  and that ( ) :f ∅ =∅ .  Therefore if nX =∅ , then n nY Y=∅ =∅∩ , 

which is a contradiction.  

□ 

3.5.1.3 Definition of a Stable Trajectory 

Lemma 4 and Lemma 5 and the definition of a settled network lead to the following definition: 

A stable trajectory of a settled arc-node network, characterized by ( , , ( ), ( ))N A f Zη = i i , 

is an endless path 
1 1 2, ,, ,

i i i in n n na a
+ + +

…  through the network (where nodes and arcs can be 

revisited an infinite number of times) and the corresponding sequence of values 

1 2, , ,i i iz z z+ + … , such that for each i > 1, 
11 ,( )

i ii n nz Z a
++ ∈  and 

11 ( )
ii n iz f z
++ ∈ . 

3.5.1.4 Theorem 1 

Theorem: 

Given a settled arc-node network, if there exists some arc 
1,i in na A
+
∈  with 

1,( )
i in nZ a

+
≠ ∅ , 

then there exists a stable trajectory for the network. 
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Proof: 

This result follows directly from Lemma 4 and Lemma 5.  Consider some arc with 
1,( )

i in nZ a
+

≠ ∅  

for a settled network.  Let 
1,( )

i i in n nX Z a
+

= , since the arc is unidirectional from ni toward the next 

node ni + 1 in the trajectory sequence.  Given that ( )Z a ≠ ∅ , then nX ≠ ∅ , therefore from, 

nY ≠ ∅ .  Consider that 
1 2,( )

i i in n nY Z a
+ +

=  is equivalent to 
1 1 2,( )

i i i in n n nY X Z a
+ + +

= = .  Therefore the 

outgoing region Y for a given node is the incoming region X for the next node in the path stable 

trajectory.  

□ 

3.5.1.5 Propagation of a Stable Trajectory 

The results of Lemma 4 and Lemma 5 prove that any element of a non-empty incoming set Xn 

will map to some element of a non-empty outgoing set Yn for a given node n in a settled network.  

Recall that a settled network is one in which the regions on all arcs contained within Arcin(n) and 

Arcout(n) are unchanged after being intersected with some region transformed by the node.  Thus 

for any node n, 

( )n n nnY f X Y= ∩  

 and  
1( )n n nnX f Y X−= ∩ . 

 

Therefore any settled arc-node network with a node that has a non-empty set on any arc will have 

a stable trajectory that will cycle through the network.  This will occur because node ni is 

connected to the rest of the network with directed arcs contained in Arcin(ni) and Arcout(ni), in 

which the outgoing set 
inY  for node ni is equivalent to the incoming set 

1inX
+

 for node ni+1, given 

that a(ni,ni+1) is contained within Arcout(ni).  This means that any element of 
inX will map to some 

element in the outgoing set 
inY , which is the same as an element in 

1inX
+

.  The element in 
1inX
+

 

will map to some element in 
1inY
+

, which is the same as an element in 
2inX

+
, given that a(ni+1,ni+2) 

is contained within Arcout(ni+1).  This mapping from incoming region to outgoing region will 

continue an infinite number of times and each mapping will always map from a non-empty 

incoming set to a non-empty outgoing set. 

 

Copyright © John Thomas Henninger 2009 
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4 Stability Algorithm 

4.1 Introduction 

A multi-product system in which buffers are replenished completely, often referred to as a 

switched arrival system, is a difficult system to analyze for stability.  This type of system with 

more than two or three products quickly becomes difficult to manage by hand and practically 

impossible to visualize the interactions between the products.  The purpose of this stability 

algorithm is to aid in the discussion and understanding of the multi-product system and the role of 

different parameters upon the existence of stability.  Chase, Serrano, and Ramadge [5] show that 

this type of a system is chaotic in nature when they examined a three product system in which the 

server could move instantaneously to replenish a buffer that had reached the triggering threshold 

level.  Horn and Ramadge [75] examined the effects of imposing upper and lower buffer 

thresholds upon the previously mentioned switched arrival system.  The results show that lower 

limits had no affect on the system dynamics while upper limits can switch the system from chaos 

to a stable periodic orbit.  Ushio [76] has conducted a significant amount of research into methods 

of controlling chaos by limiting the refill time to force the server to switch earlier to the next 

buffer. 

 

The production system being examined in this research is more complicated than previous work 

and is a more accurate representation of manufacturing systems.  The system is a multi-product 

system that may or may not experience idle time between replenishment of a product and the 

setup of the next product.  A setup time may or may not exist before the replenishment of each 

buffer, depending upon how the system is defined.  If present the setup may be sequence 

dependent, meaning that setup time may vary based upon the previous product.  If a product is 

repeated, it is assumed that whether or not idle time exists between the two replenishments, a 

setup will occur prior to replenishment.  It is also assumed that the product buffer is always 

completely replenished and never interrupted by another product.  The production system and 

parameters are assumed to be constant and contain no variability, such as breakdowns, 

maintenance, or other interruptions.  

 

The algorithm cycles through a node network of the system until all nodes have incoming and 

outgoing regions that are equivalent when transformed by the node, at which point the network is 

settled, see Node Network Analysis Chapter, Section 4.1.1 for a formal definition.  When the 

regions no longer change, the system is considered to be balanced and stable regions will have 
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been found by the algorithm.  Initially all regions are set with a minimum value of zero and a 

maximum value of a full buffer level for each product.  As the node network is cycled through, 

the incoming regions are transformed forward and the outgoing regions are transformed backward 

for each flagged node until the transformed regions are equivalent to the regions from the 

previous cycle.      

4.2 Basic System Model 

The system that is being evaluated by the stability algorithm is a network of nodes that are 

connected together by arcs, as described in the previous chapter.  Each arc contains one or more 

product regions (the rectangles in the diagram below), currently in the form of a matrix, that can 

be operated upon by the upstream or downstream node.  Each node is host to a set of 

transformation functions and/or constraints depending upon which node type is defined for the 

given node.  

 

 

 

 

 

 

 

Figure 4.1: Basic Model Arc-Node Network 
 

4.2.1 Product Inventory Data Handling 

The product buffer information is associated with the arcs in the arc-node network system.  The 

product inventory is a region represented by the minimum buffer level and maximum buffer level 

for each product in the system.   As in the previous chapter, the system contains k products and an 

arbitrary inventory state is a vector of length k, indicating the inventory levels of the k products.  

In this chapter arbitrary sets of inventory states are not considered, rather sets of inventory states 

represented by the union of sets defined by the minimum and maximum values of each product 

are considered.  The inventory state sets can be geometrically represented by a hyperrectangle of 

dimensions k – 1, such that a two product system has regions that are represented by lines, a three 

product system has regions that are represented by rectangles, a four product system has regions 

represented by boxes, etc. 
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Any arc a in the system may have one or more product buffer regions associated with the arc, or 

an empty set region.  The product buffer region(s) on arc a is one or more 2k ×  matrices, where k 

is the number of products, stored in Z(a) as a union over all regions ZJ(a).  Multiple regions on a 

given arc are stored in the algorithm as a matrix for each region, where j is the index of a region 

on a given arc and J is the maximum number of regions on a given arc.  
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The first column is the minimum product value and the second column is the maximum product 

value for the given arc, a.  Initially, all product regions have a minimum value of zero and a 

maximum value of the full buffer, U (k).    

 

For clarity, the remainder of this chapter will use a localized notation centered about a given node 

n, where a set of points forming a hyperrectangle on an incoming arc is denoted as X and a 

hyperrectangular set of points on an outgoing arc is denoted as Y.  The set of directed arcs leading 

to node n are denoted as Arcin(n) and the set of directed arcs originating from n are denoted as 

Arcout(n) (i.e. ( ) { ( , )  inArc n a n n A′= ∈ for some }n N′∈  and ( ) { ( , ')  outArc n a n n A= ∈ for some 

}n N′∈ ).  A set of hyperrectangle inventory regions entering a node n is X(ain), and a set of 

inventory vectors leaving node n is Y(aout).  Note that the script font indicates a set of regions, of 

which each set is hyperrectangular. 

 

The localized X represents the set of all regions associated with an arc ain contained in Arcin(n), 

such that 

( )
1

( ) ( )
J

in in
j

a Z a
=

= ∪X . 
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The localized Y similarly represents the set of all regions associated with an arc aout contained 

within Arcout(n), such that 

 

( )
1

( ) ( )
J

out out
j

a Z a
=

=Y ∪ . 

 

4.2.2 Basic Arc Type 

An arc is simply a means of conveying and directing the status of each product buffer between 

the nodes in the network.  The regions are unchanged by the arc and are only transformed by a 

node.  An arc also allows the direction of flow to be defined between each node because the arcs 

used for this algorithm are unidirectional.  There must always be one or more arc(s) into a given 

node and one or more arcs out of a given node. 

4.2.3 Basic Node Types 

In the most general sense, the nodes define an increase or decrease, or combination thereof, for 

the products of the system.  The nodes may also define exit conditions based on the time spent at 

the node or incoming or outgoing product buffer levels.  The node network considered in this 

chapter is narrowed to only consider three types of nodes to represent a production system: idle 

nodes, setup nodes, and refill nodes.   

4.2.3.1 Idle Node 

An idle node is entered by the system when all the product buffers are between being completely 

full and reaching the lower threshold signal level, which signals the system to replenish the buffer 

of a given product.  All products are consumed based on the usage rate of each product while the 

system is idle.  The time spent at an idle node is dependent upon the buffer levels entering the 

node, lower threshold levels, and usage rates of the products. 

4.2.3.2 Setup Node 

A setup node is entered by the system prior to refilling a product and a setup always occurs before 

the replenishment of each product.  This type of node is entered only when a product is at or 

below the lower threshold signal level.  The time spent at a setup node is defined by the user.  

Setup time can vary from product to product as well as possibly varying for a single product 

based upon what product was previously refilled, i.e. sequence dependent setups.  All products 

are consumed based on the usage rate of each product while the system is undergoing a setup. 
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4.2.3.3 Refill Node 

A refill node is entered only after a setup node for the same product.  The buffer level for the 

product that is being refilled can be empty just as the product enters the refill node without 

crashing the system and a refill node will always completely refill the buffer.  All products that 

are not being refilled are consumed based on the usage rate of each product while the system is at 

the refill node.  The time spent at a refill node is based upon the buffer level when entering the 

node, the full buffer level, the usage rate, and production rate for the product being refilled. 

4.3 Node Transformation Functions 

The production system is represented by a system of nodes connected by arcs, similar to the 

diagram below.  The nodes represent where the system is transforming the product buffer regions 

and the arcs are simply for connectivity.  The regions that the algorithm attempts to determine are 

for the conditions as an arc is entering a node or exiting a node. 

 

 
Figure 4.2: Two-Product Network 

 

At each node a function f(x) or pseudo-inverse function f -1(x) is applied to transform the region(s) 

on one side of the node to create a new region(s) on the other side of the node, see diagram 

below.  
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The transformation function for a node is dependent upon the type of node, whether it is a setup 

node, idle node, or fill node.  The system parameters such as setup time, usage rates, 

replenishment rates, maximum buffer levels, etc. are used in calculating the transformation 

function.  An idle node consumes each product based upon its usage rate until a lower threshold is 

reached.  A setup node also consumes each product based on its usage rate for a time period 

defined by the setup time from the previous product refilled to the current product preparing to be 

filled.  A production node is the third and final type of node in which the buffer of one product is 

completely refilled while all other products are consumed at each product’s usage rate for a 

minimum and maximum time period.  The minimum production time is the time required to refill 

the product from the maximum incoming buffer level to a full buffer, while the maximum 

production time is the time required to refill the buffer completely from the lowest incoming 

buffer level for the product.   

 

The lowest a buffer can be is zero, although system parameters can cause the lower limit to be 

higher than zero at any node.  The system is assumed to crash if a buffer reaches zero for any 

product at any node other than the refill node.  The product that is being replenished may reach 

zero just as it enters the production node and the system will not crash. 

4.3.1 Forward Transformation Functions 

4.3.1.1 Idle Node 

The idle node consumes all products until a product reaches the lower threshold level, l(TP), 

which signals the system that a product needs to be replenished.  Each arc leaving the idle node 

represents a product reaching the triggering threshold to be replenished.  The transformation 

functions of the idle node are dependent upon which product has reached the lower threshold and 

is ready to be replenished.  The following discussion is generalized for a given outgoing arc that 

has a particular product associated with it that has reached the lower threshold. 

 

For outgoing regions there are two sets of constraints to be applied to the regions.  The product k 

that is advancing to the setup node and will be the next product to be refilled is referred to as the 

triggering product, TP.  The triggering product will only exit an idle node when the buffer reaches 

the lower threshold level and cannot be lower than the lower threshold limit.  Therefore both the 

maximum and minimum values for the trigger product region, TP, are set at the lower threshold 
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level, l(TP).  There are two possible times for the trigger product to reach the lower threshold 

value and will be referred to as minimum idle time, ITmin and maximum idle time, ITmax.  The 

minimum idle time is the time required to consume the trigger product from the minimum 

incoming level to the lower threshold level.  The maximum idle time is the time required to 

consume the trigger product from the maximum incoming level to the lower threshold level.  The 

idle time equations are as follows: 

 

ITmax = (TPmax,incoming – l(TP) )/ rho(TP) 

 

ITmin = (TPmin,incoming – l(TP) )/ rho(TP) 

 

where rho(TP) is the usage rate of the trigger product, TP.  The products which are not going to 

be the next product refilled are referred to as non-trigger products, NTP(k).  It is assumed that no 

product can be consumed below the lower threshold level l(k) in an idle node and therefore both 

non-trigger products are constrained such that the values cannot cross the lower threshold.  If a 

product crosses the product’s lower threshold then the non-trigger product becomes the trigger 

product.  The two constraints for the non-trigger products limits the outgoing region levels from 

crossing the lower threshold value for the given product k.   

 

Transformations for Outgoing Regions for Idle Node: 

 

TPmin,outgoing = TPmax,outgoing =  l(TP) 

 

NTPmin,outgoing(k) ≥  l(k) 

 

NTPmax,outgoing(k) ≥  l(k) 

 

NTPmin,outgoing(k) = minimum[ NTPmin,incoming(k), NTPmax,incoming(k) – (ITmax*rho(k))] 

 

NTPmax,outgoing(k) = NTPmax,incoming(k) – (ITmin*rho(k)) 
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4.3.1.2 Setup Node 

The setup node transformation equations are very straightforward for all products and 

indiscriminant of the trigger or non-trigger products.  The equation simply subtracts the products 

consumed from the incoming region value, based on the setup time of the trigger product, 

node(i).time_delta, and the usage rate of the given product, rho(k). 

 

Transformations for Outgoing Regions for Setup Node: 

 

Productmin,outgoing(k) = Productmin,incoming(k) – (node(i).time_delta * rho(k)) 

 

Productmax,outgoing(k) = Productmax,incoming(k) – (node(i).time_delta * rho(k)) 

 

4.3.1.3 Refill Node 

The refill node replenishes the buffer of the trigger product completely and is never interrupted 

by the triggering of another product.  The transformation equations for the trigger product are 

solely constraints for the outgoing region of the trigger product.  The buffer is filled to the 

maximum buffer level of the trigger product, U(TP).  The refill node transformation equations are 

similar to the setup node equations for non-trigger products, although a minimum and maximum 

time_ delta is calculated based on the time to replenish the trigger product and is used to 

determine the amount of non-trigger products consumed at a refill node.  The maximum time to 

replenish the trigger product is calculated as the difference between a full buffer and the 

minimum incoming trigger product value divided by the production rate minus the usage rate.  

The minimum replenishment time is calculated using the maximum incoming trigger product 

value.  The time equations are as follows: 

 

node(i).time_delta_max = (U(TP) – TPmin,incoming )/(PR(TP) –  rho(TP)) 

 

node(i).time_delta_min = (U(TP) – TPmax,incoming )/ (PR(TP) –  rho(TP)) 

 

The minimum outgoing region value for the non-trigger product assumes that the maximum time 

delta occurs during the refilling of the trigger product.  While the maximum outgoing region 

value for the non-trigger product is calculated using the minimum time delta for the refill node. 
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Transformations for Outgoing Regions for Refill Node: 

 

TPmin,outgoing = TPmax,outgoing =  U(TP) 

 

NTPmin,outgoing(k) = NTPmin,incoming(k) – (node(i).time_delta_max * rho(k)) 

 

NTPmax,outgoing(k) = NTPmax,incoming(k) – (node(i).time_delta_min * rho(k)) 

 

4.3.2 Pseudo-Inverse Transformation Functions 

4.3.2.1 Idle Node 

The inverse transformation equations for an idle node are constraints based on the parameters of 

the system.  The incoming arc regions will be transformed differently depending on if a product is 

the trigger product or not.  The trigger product for the idle node is the same trigger product that 

would be used for a forward transformation function, meaning the trigger product is not the 

product that has just been refilled but is the product that has reached the lower threshold and is 

the next to be refilled.  The trigger product is constrained to a minimum value of the lower 

threshold level, l(TP), and a maximum value is unchanged.  The minimum and maximum time 

required for the trigger product to reach the lower threshold is calculated with the same equations 

as for the forward transformation of the idle node. 

 

A product can never enter an idle node with a region any higher than a full buffer and can never 

leave with a region lower that the lower threshold.  The minimum value of the non-trigger 

product is initially constrained to be equal to the lower threshold level during the initialization of 

the algorithm.  Subsequently, the minimum incoming value cannot be lower than the minimum 

outgoing value, if this occurs, it would require that products are not consumed but rather 

replenished at the idle node.    The minimum incoming inventory level is calculated by adding the 

maximum amount of inventory consumed at the idle node to the minimum outgoing inventory 

level of the given non-trigger product. 

 

The maximum incoming value of the non-trigger product cannot be less than the maximum 

outgoing value because it would require replenishment of the product to occur at the idle node.  

The maximum value is calculated by adding the minimum amount of inventory consumed at the 
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idle node to the maximum outgoing inventory level of the given non-trigger product.  An 

equivalent incoming and outgoing value (either maximum or minimum) requires the trigger 

product to reach the lower threshold just as the idle node is entered. 

 

Inverse Transformations for Incoming Regions for Idle Node: 

 

Productmin,incoming(k) =  l(k) 

 

NTPmin, incoming (k) = minimum[ NTPmin,outgoing(k), NTPmin,outgoing(k) + (ITmax*rho(k))] 

 

NTPmax, incoming (k) = maximum[ NTPmax,outgoing(k),NTPmax,outgoing(k) + (ITmin*rho(k))] 

 

4.3.2.2 Setup Node  

The inverse node transformation equations for the Setup node are the same for both the trigger 

and non-trigger products.  The equation simply adds the products consumed during the setup to 

the outgoing region value, based on the setup time of the trigger product, node(i).time_delta, and 

the usage rate of the given product, rho(k).  The maximum value of the trigger product is 

constrained to the lower threshold level, l(k). 

 

Inverse Transformations for Incoming Regions for Setup Node: 

 

Productmin, incoming(k) = Productmin, outgoing(k) + (node(i).time_delta * rho(k)) 

 

Productmax, incoming(k) = Productmax, outgoing(k) + (node(i).time_delta * rho(k)) 

 

TPmax,incoming =  l(TP), if >  l(TP) 

 

4.3.2.3 Refill Node 

The inverse transformation equations at the refill node have no effect on the incoming values of 

the trigger product.  This is because the replenishment times are calculated using the incoming 

values of the trigger product and the full buffer level.  Inversely transforming the outgoing region 
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of the trigger product by subtracting the amount replenished at the refill node will yield the 

original values of the trigger product. 

 

The non-trigger products are inversely transformed similarly to the forward transformation 

equations for the refill node.  The minimum incoming region is calculated by adding the 

minimum node time multiplied by the usage rate of the product to the minimum outgoing limit.  

The maximum incoming region value is calculated by adding the maximum outgoing region 

value to the maximum node time multiplied by the usage rate of the product.  The minimum and 

maximum replenishment times are calculated using the same equations that were used for the 

forward transformation of the refill node. 

  

Inverse Transformations for Incoming Regions for Refill Node: 

 

NTPmin,incoming(k) = NTPmin,outgoing(k)  +( node(i).time_delta_min * rho(k)) 

 

NTPmax,incoming(k) = NTPmax,outgoing(k) + (node(i).time_delta_max * rho(k)) 

 

The time equations are as the same as for the forward transformation of the refill node.  The 

equations are as follows: 

 

node(i).time_delta_max = (U(TP) – TPmin,incoming )/(PR(TP) –  rho(TP)) 

 

node(i).time_delta_min = (U(TP) – TPmax,incoming )/ (PR(TP) –  rho(TP)) 

 

4.4 Intersection and Merging of Transformed Regions 

At each node there exists one or more incoming arcs and one or more outgoing arcs and each arc 

will have one or more regions of product values.  An example of a two-product system is shown 

in the diagram below.  The node will perform a transformation on incoming regions to create new 

outgoing regions or perform an inverse transformation on outgoing regions to create new 

incoming regions.  The newly transformed region(s) is then intersected with the appropriate 

original region and then the newly intersected regions are merged together.   
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After a sufficient number of cycles through the network the regions will be settled which occurs 

when a transformed region is equivalent to the existing region at the node.  Note that empty sets 

can occur in a settled network.  A stable trajectory will exist for the system when a non-empty set 

exists for any region in the settled network; see Node Network Analysis Chapter, Section 5 for a 

thorough discussion and proof of this statement. 

 

Initially the product value regions are as large as possible to include all possible stable regions for 

each node.  The minimum region value for product k is equivalent to an empty buffer and the 

maximum region value is equivalent to a full buffer, U(k).  As a node is evaluated the region may 

remain unchanged, split into multiple regions, or the region may shrink as it approaches the final 

stable region.  A region is never allowed to expand due to the intersection with the existing 

region. 

 

 
Figure 4.5: Initial Buffer Region 

4.4.1 Intersection and Union Example 

Consider a node that has one incoming arc with an initial product value region x1 and two 

outgoing arcs with initial product value regions of Y1 and Y2.   

 

 

 

 

Figure 4.6: Transforming Incoming Regions 
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Figure 4.7: Initial Buffer Regions 

 

The incoming arc region X is transformed by applying the f(x) function for the node to create the 

transformed region, Y’. The transformed region Y’ is then intersected with the original outgoing 

regions 1 2Y Y= ∪Y or { }1 2,Y Y=Y  to create the new outgoing regions Ynew.  Note that the script 

font indicates a set of regions, of which each set is hyperrectangular. 

 

( )Y f X′ =  

 

,1 1'newY Y Y= ∩  

 

,2 2'newY Y Y= ∩  

 

The new regions are intersected with the original regions to shrink the regions as the final 

solution is approached.  The intersection is shown in the diagram below in which the original 

regions are outlined with solid lines and the transformed regions are outlined with dashed lines.  

A newly created region will be deleted if there is no intersection with the original regions.  A new 

region could split into two regions if it were to overlap with two of the existing regions.   
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Figure 4.8: Intersection of Transformed Buffer Regions 

 

The updated regions are shown in the following diagram.   

 

  
Figure 4.9: New Buffer Regions 

 

The final step is to remove duplicate and subset regions from the newly created regions for each 

arc in an attempt to minimize the number of regions to be evaluated at each node.  This operation 

is referred to as a merging of the regions because is not a true union in which any overlapping 

regions are joined into one region.  The merging operation removes subset regions from the set of 

regions to create the final set of regions 

 

,1 ,2final new newY Y= ∪Y  

or 

,1 ,2{ , }final new newY Y=Y  

 

The pseudo-inverse transformation of the outgoing regions follows the same procedure that has 

been discussed for the incoming regions.  The outgoing regions Y1 and Y2 are inversely 

transformed by the node and then intersected with the original X region to create a new X’ region.  

The merging of all the intersected regions is then calculated. 
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Figure 4.10: Transforming Outgoing Regions 
 

1( )X f Y−′ =  

 

,1 1newX X X′= ∩  

 

,2 2newX X X′= ∩  

 

,1 ,2final new newX X= ∪X  

 

,1 ,2{ , }final new newX X=X  

 

4.5 Algorithm 

The stability algorithm uses a series of nested loops to cycle through the node network to 

determine stable product value regions for the system.  For a given node the algorithm will first 

update the outgoing regions by transforming the incoming regions, and then intersecting and 

merging the new regions with the original outgoing regions.  After all outgoing regions have been 

updated, the algorithm updates all the incoming regions by inversely transforming the outgoing 

regions and then intersecting and merging the new regions with the incoming regions.  The node 

on each side of an arc is flagged by the algorithm only if a region has changed.  After all regions 

are evaluated the algorithm will move to the next flagged node and repeat the evaluation of the 

regions.  The algorithm evaluates the arc-node network by cycling through the flagged nodes of 

the network until there are no longer any flagged nodes, initially all nodes are flagged.   

4.5.1 Stability Algorithm Outline 

The stability algorithm requires the user to define the system parameters and network within the 

initialization function to accurately represent a given production system.  The algorithm will then 

f -1(x) X’

Y1

Y2 
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initialize the product buffers for all arcs.  The evaluation of the arc-node network begins after the 

initialization of the algorithm. 

 

For a given node i, each product region Yj(aout) on each outgoing arc aout is examined first, where j 

is the region sheet index number (j = 1, when only one region exists on the arc) and aout∈Aout(i).  

The algorithm uses a pair of nested loops to cycle through each outgoing region Yj(aout) for all 

outgoing arcs.  Within the nested loops are another pair of nested loop that cycles through all 

incoming arcs ain, and all incoming regions Xj(ain) on each arc, where ain∈Ain(i).   

 

( )j in
j J

X a
∈

= ∪X  

 

Each incoming region Xj for a given incoming arc is transformed using the transformation 

function defined for the node to create the Y’ region.     

 

Y’← f (X, [tmin, tmax], i) 
 

The Y’ region is stored in the set Y‘ and then newly transformed Y’ region is checked to verify  

that the region intersects with the original set of outgoing regions Yorg(aout).  The algorithm then 

searches for a non-intersecting region, if found the Y’ region is flagged.  This loop continues to 

cycle until all incoming arc regions have been transformed to create all possible Y’ regions for the 

given aout.   

 

Each region of the newly transformed set of regions, Y’(aout), is then intersected with the original 

set of outgoing arc regions Yorg, and the regions are stored in the set Ynew. 

 

new orgY Y Y′= ∩  

 

{ }new newY=Y  

 

Note that a non-intersected original region is maintained on the arc because a different incoming 

region that has not yet been transformed may intersect with the outgoing region.  A non-

intersecting region is deleted after all incoming regions have been transformed, intersected, and 

merged together.  The new sets of outgoing regions are then cleaned up to remove duplicates, 
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subsets, or empty sets.  The merging of the regions is then calculated and cleaned up for the 

outgoing arc region.  The new set of outgoing arc regions, Ynew are compared with the original 

regions Yorg and if different, the node is flagged and will be reevaluated in the future.  This 

process is repeated in a loop for the next region of the same outgoing arc if one exists, if not, the 

next outgoing arc is evaluated.   

 

After exiting the outgoing arc loop, the non-intersecting regions are examined.  The algorithm 

allows the user to define the backward_stability parameter as zero for forward stability checking 

only or set the parameter to one for determining stability in both directions.  Solving for stability 

solely in the forward transformation direction, means that any point on a region will map forward 

to some other region and that point will then map forward to another region, etc.  When the 

algorithm determines stability in both directions, both the forward transformations and backward 

inverse transformations must map to another region for each region.  A non-intersecting incoming 

region is deleted if it has been flagged as not intersecting with any outgoing regions.  If backward 

stability is being considered, the non-intersecting outgoing region then evaluated.  An outgoing 

region is deleted if it has been flagged as not intersecting with any incoming regions  

 

While still at the same node, the algorithm enters a set of nested loops to evaluate each incoming 

arc(s) and region(s) in the same fashion as the outgoing regions were evaluated.  The algorithm 

cycles through the product regions Y for all outgoing arcs aout∈Arcout(i), and the regions are 

inversely transformed, intersected with the incoming regions Xi, and merged in the same manner 

as the incoming arcs for the same node.  The new set of incoming arc regions Xi, are compared 

with the original regions and if different, the node is flagged for future evaluation. 

 

( )j out
j J

Y a
∈

= ∪Y  

 

Each outgoing region Yj for a given outgoing arc is inversely transformed using the inverse 

transformation function defined for the node to create the X’ region.     

 

X’← f -1 (Y, [tmin, tmax], i) 
 

The X’ region is stored in the set X‘ and then newly transformed X’ region is checked to verify  

that the region intersects with the original set of incoming regions Xorg(ain).  The algorithm then 
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searches for a non-intersecting region, if found the X’ region is flagged.  This loop continues to 

cycle until all outgoing arc regions have been inversely transformed to create all possible X’ 

regions for the given ain.   

 

Each region of the newly transformed set of regions, X’(aout), is then intersected with the original 

set of incoming arc regions Xorg, and the regions are stored in the set Xnew. 

 

new orgX X X′= ∩  

 

{ }new newX=X  

 

The new sets of incoming regions are then cleaned up to remove duplicates, subsets, or empty 

sets.  The merging of the regions is then calculated and cleaned up for the incoming set of 

regions.  The new set of incoming arc regions, Xnew are compared with the original regions Xorg 

and if different, the node is flagged and will be reevaluated in the future.  This process is repeated 

in a loop for the next region of the same incoming arc if one exists, if not, the next incoming arc 

is evaluated.   

 

The algorithm is ready to move to the next node that is flagged.  This process continues at each 

flagged node until the regions no longer change when evaluated by the algorithm and there are no 

longer any flagged nodes.  

4.5.2 Stability Algorithm Pseudo Code 

The stability algorithm operates by calling functions to perform the required tasks.  A brief 

description of the major variables and functions follows. 

 

Variables: 

• flagged_node_list: variable that stores a list of nodes to be evaluated by the algorithm.  

Initially all nodes are listed to be evaluated by the algorithm. 

• X(arc) and Y(arc): variables for each arc that represent sets of hyperrectangular regions 

of the product buffer region.  For a given arc, X(arc) and Y(arc) represent the same list 

of regions but is referred to as X or Y depending on whether the arc is an incoming arc or 

an outgoing arc for the node that is being evaluated. 
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• ( ) and Y ( )X arc arc∈ ∈X Y : the italic notation denotes an individual region within the 

sets of script variable, i.e. X is a single region contained within X(arc). 

• no_intersection_flag(X,Y,arc,i): binary variable in structured matrix used to flag a non-

intersecting transformed (or inversely transformed) region.  A value of one implies no n-

intersecting region and value of zero implies an intersecting transformed region. 

• backward_stability: this flag allows the user to consider solely forward stability (a region 

must map forward to another region but not required to map backward to another region, 

when backward_stability = 1) or to consider forward and backward stability (a region 

must map forward to another region and map backward to another region, when 

backward_stability = 1). 

• counter: this variable records the number of cycles that have been completed by the 

algorithm to allow the user to define a stopping point for an unstable system. 

 

Functions: 

• initialization(): function to define various parameters of a given production system.  The 

parameters defined by the function include the arc connections between the nodes, setup 

times, production rates, usage rates, buffer levels and thresholds, initial buffer limits, 

node types, and product-node associations. 

• initialize_arc_limits(): function to define initial limits of regions based on node type and 

trigger or non-trigger product for the given node.  For example the lower limit of each 

region on each arc in and out of an idle node is set to the lower threshold of the given 

product. 

• set_node_time(X,Y,i): function that calculates the time spent at the current node i based 

on the current region sheet of the incoming arc x and outgoing arc region sheet y.  The 

equations used for the time calculation were discussed in Sections 4.3.1 Forward 

Transformation Functions and 4.3.2 Pseudo-Inverse Transformation Functions. 

• ( )min max,[ , ],f X t t i : the forward transformation function for node i for the incoming 

region x with the given time interval [tmin,tmax].  This function depends on the type of 

node, see Section 4.3.1 Forward Transformation Functions for a thorough discussion. 

• ( )1
min max,[ , ],f Y t t i− : the pseudo-inverse transformation function for node i for the 

outgoing region y with the given time interval [tmin,tmax].  This function depends on the 

type of node, see Section 4.3.2 Pseudo-Inverse Transformation Functions for a thorough 

discussion. 
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• cleanup_merge_sheets(): operates on a given set (Xnew or Ynew) of regions input to the 

function. The function removes subsets, duplicate regions, empty sets, regions with 

minimum values greater than maximum values for a given product, and single point 

regions.  The function also searches for two distinct regions in dimension k that are 

equivalent in k – 1 dimensions, which can be represented as a single region that is the 

union of the two regions. 

• update_change_flag(i,change_flag,flagged_node_list): this function adds the incoming or 

outgoing node to the list of nodes to be evaluated by the algorithm if current node has 

been flagged. 

• update_node_number(flagged_node_list): this function updates the flagged node list by 

removing the current node from the list and all other nodes on the list are moved up the 

list.  The first node on the list will be the next node to be evaluated by the algorithm. 

 

The stability algorithm uses the following pseudo code to generate the stable regions:  
 

define number_of_products 1 
initialization(number_of_products) 2 
initialize_arc_limits() 3 
while (flagged_node_list ≠ Ø) and (counter < maximum number of cycles) 4 

pick node i from flagged_node_list 5 
for each ( )out outa Arc i∈  6 
 Ynew← 0 7 
 change_flag ← 0 8 

Yorg(aout) = Y (aout) 9 
for each region ( )outY a∈Y   10 

for each ( )in ina Arc i∈  11 
 for each region ( )inX a∈X   12 

[tmin,tmax] ← set_node_time(X,Y,i) 13 
Y’← f (X, [tmin, tmax], i) 14 
put Y’ in list Y’  15 
if (Y’ ∩ Y’’ = Ø ) for each Y’’∈ Yorg 16 

no_intersection_flag(X,Yorg,arcin,i) = 1 17 
else  18 

no_intersection_flag(X,Yorg,arcin,i) = 0 19 
end 20 

end 21 
end 22 

end  23 
for each region ' 'Y ∈Y and each ( )org org outY a∈Y  24 

new orgY Y Y′= ∩  25 
put Ynew in list Ynew 26 
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end 27 
cleanup_merge_sheets(Ynew) 28 
for each region Ynew ∈ Ynew and each ( )org org outY a∈Y  29 
 if ( )new org outY Y a≠  then 30 

change_flag = 1 31 
   end 32 

 end 33 
update_change_flag(i,change_flag,flagged_node_list) 34 

end 35 
for all ( )in ina Arc i∈  and all X ∈ X(ain) 36 

if (no_intersection_ flag(X,Yorg,arcin,i) = 1),  37 
remove region X from X(ain) 38 

  end 39 
 end  40 

if (backward_stability = 1) 41 
for all ( )out outa Arc i∈  and all Yorg ∈ Yorg(aout) 42 

if (no_intersection_ flag(X,Yorg,arcin,i) = 1),  43 
remove region Yorg from Yorg(aout) 44 

  end 45 
 end  46 
end 47 
for each ( )in ina Arc i∈  48 
 Xnew← 0 49 
 change_flag ← 0 50 

Xorg(aout) = X (aout) 51 
for each region ( )inX a∈X   52 

for each ( )out outa Arc i∈  53 
 for each region ( )outY a∈Y   54 

[tmin,tmax] ←set_node_time(X,Y,i) 55 
X’← f -1 (Y, [tmin, tmax], i) 56 
put X’ in list X’  57 
if (X’ ∩X’’ = Ø ) for each X’’∈ Xorg 58 

no_intersection_flag(Xorg,Y,arcout,i) = 1 59 
else  60 

no_intersection_flag(Xorg,Y,arcout,i) = 0 61 
end 62 

end 63 
end 64 

end  65 
for each region ' 'X ∈X and each ( )org org inX a∈X  66 

new orgX X X′= ∩  67 
put Xnew in list Xnew 68 

end 69 
cleanup_merge_sheets(Xnew) 70 
for each region Xnew ∈ Xnew and each ( )org org inX a∈X  71 
 if ( )new org inX X a≠  then 72 
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change_flag = 1 73 
   end 74 

 end 75 
update_change_flag(i,change_flag,flagged_node_list) 76 

end 77 
for all ( )in ina Arc i∈  and all Xorg ∈ Xorg(ain) 78 

if (no_intersection_ flag(Xorg,Y,arcin,i) = 1),  79 
remove region Xorg from Xorg(ain) 80 

  end 81 
 end  82 

if (backward_stability = 1) 83 
for all ( )out outa Arc i∈  and all Y ∈ Y(aout) 84 

if (no_intersection_ flag(Xorg,Y,arcin,i) = 1),  85 
remove region Y from Y(aout) 86 

  end 87 
 end  88 
end 89 
update_node_number(flagged_node_list) 90 
counter = counter +1 91 

end92 
 

4.6 Implementation of Algorithm 

This algorithm was implemented using MATLAB Release 14, Version 7.0.4.  The code of 

algorithm is in Appendix I. 

4.7 Computational Complexity and Other Algorithm Issues  

The computational complexity of the algorithm has not been calculated formally but a quick 

review of the pseudo code reveals that the algorithm is not optimized.  The algorithm was 

developed based on the overall function of the code instead of reducing computational time. 

 

An example of the function of the code taking precedence over the computational efficiency is 

the set of nested loops used to remove non-intersecting flagged regions.  These loop cycle 

through a set of matrices for all the arcs to search for flagged regions to be removed.  This 

process requires multiple loops to search each matrix individually for the flagged regions and the 

results are evaluated and then the regions are removed.  A more efficient method could be to store 

the flagged regions in a single matrix to remove one or more of the required nested loops. 

4.7.1 Oscillating Regions 

Overlapping regions can sometimes oscillate back and forth causing the algorithm to continue 

until the maximum counter value is reached.  These oscillating regions do not change the area 
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covered by the set of regions, but merely change the representation of the region.  Consider the 

dashed line in the following two plots. 

 
Figure 4.11: Oscillating Region – Configuration A 

 

 
Figure 4.12: Oscillating Region – Configuration B 

 
The oscillating region maintains a constant minimum value of 73 and a maximum value of 84 for 

product A.  The maximum value of 133 for product B also does not change during the oscillation.  

The minimum value of product B for the oscillating region is either 85 or 97.  Notice that this is 

the only region that is changing in the set of regions for this arc.  The area that is lost in 

configuration B is still contained in another region within the set of regions. 

 
 



 

 

69 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © John Thomas Henninger 2009 

5 Stability Algorithm Examples 

This chapter is intended to provide insight into the stability algorithm by examining the output 

from the algorithm for various arc-node networks.  A step-by-step example of a two-product 

system is the first example to be discussed followed by additional two-product systems.  Three 

and four product systems are then discussed in this chapter. 
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5.1 Step-by-Step Example  

Consider a system for two products with arc-node network shown below and the following 

parameters: setup time = 5 time units, production rate = 10 products/time unit, usage rate = 1 

product/time unit, lower threshold = 30 products, full buffer level = 100 products and idle time 

must exist. 

 
Figure 5.1: Network Map of Two-Product System – Idle Only 

 

5.1.1 Initialization of Algorithm 

A user can evaluate this system by first defining the number of products for the system.  The 

algorithm then calls the initialization function which is responsible for defining setup times, 

production rates, usage rates, lower thresholds, full buffer levels, the arc-node network, node 

types, and node-product associations.   

 

After initializing the system parameters and network, the algorithm calls the initialize_arc_limits 

function.  This function defines the initial domain of each arc region based on the types of 

connected nodes and product-node associations.  For example, the minimum product buffer levels 

are set to the lower threshold value, l(k), for all arcs out of the idle node number one, arcs [1 2] 

and [1 4]. 

5.1.2 Flagged Node List Loop 

The algorithm steps into the flagged_node_list loop which cycles through all the nodes in the 

network based on those that were initially flagged or are flagged by the algorithm during 

processing.  Initially, all nodes are flagged to be evaluated.  As the regions of the system begin to 

stabilize and no longer change, the nodes associated with the unchanged arc are removed from the 

flagged list.  The algorithm will stop when there are no longer any nodes flagged to be evaluated.  

The flagged node loop also has a parameter counter for the maximum number of cycles that 

Node 2 

Setup 1 

Node 1 

Idle 

Node 4 

Setup 2 

Node 3 

Fill 1 

Node 5 

Fill 2 
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allows the user to set an upper limit on the number of cycles for the algorithm to prevent an 

unstable system from running an infinite number of cycles. 

 

The node number to be evaluated is picked from the flagged_node_list variable.  The example 

network described above would start with node number one and the flagged_node_list variable 

would initially be [1 2 3 4 5].  The algorithm then will start to analyze the arcs connected to node 

one, which has two incoming arcs [3 1] and [5 1] and two outgoing arcs [1 2] and [1 4]. 

5.1.3 Outgoing Arc Analysis Loop 

The algorithm steps into the outgoing arc loop to cycle through all the possible outgoing arcs 

contained in Arcout(1), which for this example Arcout(1) = {[1 2], [1 4]}.  Once inside the loop, the 

required variables are defined for each cycle through the loop.  A nested loop is then entered to 

cycle through all regions Y(aout) associated with the current outgoing arc, aout = [1 2].  Recall that 

the regions are stored as sheets of 2k ×  matrices on each arc, where k is the number of products.  

Initially when the algorithm is started, each arc only has one product inventory region associated 

with it but more may be created as regions split from multiple incoming or outgoing arcs at a 

single node.   

 

The algorithm then steps into two additional nested loops which cycle through all incoming arcs 

(1)in ina Arc∈  and all regions X(ain) on each incoming arc.  For the current example network, the 

first outgoing arc [1 2] is evaluated first for the [3 1] incoming arc and then the algorithm loop 

advances to the second incoming arc, [5 1].  The ( )inX a∈X  loop has no effect initially in this 

example because there is only one region X for all the incoming arcs. 

 

The incoming arc group of nested loops allows the algorithm to transform all associated regions 

for each incoming arc to a new outgoing arc region.  This allows the algorithm to calculate all 

possible combinations of trajectories of product sequencing for the newly transformed regions.  

Often many regions are duplicates, subsets, or supersets, but are still calculated by the algorithm 

for thoroughness. 

 

Inside the incoming arc region loop (the ( )inX a∈X  loop) the set_node_time function is called to 

define the amount of time that is consumed at a given node.  This function calculates the time 

based upon the trigger product number and all the minimum and maximum product region values.  
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The time spent at a setup node is the time to changeover from the previous trigger product to the 

current trigger product.  A maximum and minimum time is computed for the refill node, where 

the maximum time is the time required to fill the trigger product from the lowest incoming region 

value to a full buffer level.  The minimum refill time is the time required to fill the trigger product 

from the highest incoming region value to a full buffer level.  See sections 3.1 Forward 

Transformation Functions and 3.2 Pseudo-Inverse Transformation Functions in the Stability 

Algorithm Chapter for a complete discussion of the time and transformation functions. 

 

The current incoming and outgoing region values are used by the node transformation functions.   
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X

30 100
⎡ ⎤

= ⎢ ⎥
⎣ ⎦
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Y

30 100
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

 

The algorithm then steps into a loop that cycles through each product in the system to determine a 

new outgoing region Y’ using the node transformation functions for the given node type.  After 

applying the node transformation functions to the region values for all products, the loop is 

exited.   

 

Given that arc [1 2] is connected to the setup node for product one implies that product one is the 

trigger product.  The transformation functions create the following Y’ region for arc [1 2], where 

the top row is for product one and the bottom row is for product two: 
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30 100

Y
⎡ ⎤′ = ⎢ ⎥
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The ′Y set is updated with the newly created outgoing region Y’.  The arc_star variable is a 

temporary variable that is used by the algorithm to store the Y’ or X’ values prior to calculating 

the intersection of the new regions.  Each newly transformed region is tested to check if the 

transformed region Y’ intersects with an original outgoing arc region orgorgY ∈Y .  If no 

intersection is found, the X region is flagged using the no_intersection_flag variable. 
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The incoming arc region loop is then indexed to the next region if possible or exited and the 

incoming arc loop is indexed.  The incoming arc loop is indexed until all incoming arcs and 

regions have been used to find all possible new outgoing regions for the current outgoing arc and 

region.   

 

For this example system, the incoming arc loop advances to the next incoming arc to evaluate arc 

ain = [5 1].  The Y matrix is the same as before but the X matrix is as follows: 
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The transformation of the incoming arc [5 1] adds another sheet to the arc_star temporary 

variable, so it will now contain two regions: 

 

{ }_ (1,2,1), _ (1,2,2)arc star arc star′ =Y  
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The outgoing arc region loop is then indexed to the next outgoing region, if possible, and all 

incoming arcs and regions are again cycled through by the nested loops.  After all possible 

outgoing regions have been evaluated for an outgoing arc; the outgoing arc region loop is exited.  

At this point all possible new product value regions have been stored in the arc_star variable for 

a single outgoing arc, which may or may not have multiple regions.  In this example no other arcs 

or regions are available so the incoming arc region loop and the incoming arc region loop are 

both exited. 
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5.1.4 Intersect Function 

The intersect_arc_star function is called to calculate the intersection of the original arc product 

value regions, which is the arc_org variable (equivalent to Yorg), with the new product value 

regions, arc_star variable (equivalent to Y’).  All new regions are intersected with each original 

region in an attempt to find all possible intersections.  The newly intersected regions are stored in 

the arc variable (equivalent to Ynew) and the arc_star variable is erased.   

 

In this example network, the product value regions of aout = [1 2] were originally 
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The original region of arc(1,2) intersected with the two regions of arc_star(1,2) creates the 

following set of regions: 

{ }(1,2,1), (1,2,2)new arc arc=Y  
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The algorithm then calls the cleanup_sheets function for the current outgoing arc to remove 

duplicate, empty, or other improper regions, such as a minimum region value being greater than 

the maximum region value.  For this example the function removes one of the duplicate regions 

on the arc(1,2).  

{ }(1,2)new arc=Y  
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5.1.5 Merge Arc Function 

The cleaned arc variable is then operated upon by the merge_arc function, although in this 

example there is only one region to operate on, so the single region will be unchanged by the 

function.  The merge_arc function determines the merging, if possible, of the regions for the 

current arc by checking for supersets, subsets, and equivalent sets.  The function also calculates 

the union of two unique regions in k dimensions, if the two regions share boundaries in k – 1 

dimensions and overlap in k directions, where k is number of products.  The function updates the 

arc variable (Ynew) which is then cleaned again using the cleanup_sheets function.  Arc [1 2] is 

unchanged after calling the merge_arc and cleanup_sheets functions and has the following 

product value region: 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
=

10030
3030

2,1arc  

 

The algorithm then calls the set_change_flag function to compare the updated set of arc regions 

(Ynew) with the original set of arc regions prior to applying the transformation equations (Yorg).  If 

the regions are equivalent the change_flag remains equal to zero.  If one or more regions are 

different from the original regions, the current outgoing arc is flagged as having changed.  The 

regions for the current arc [1 2] have not changed from the original values so node number one 

and node number two are not flagged for future evaluation.  The update_change_flag function is 

then called.  This function adds nodes from each end of the flagged arc to the list to be evaluated 

if the nodes are not already listed on the flagged node list to be revisited in the future by the 

algorithm. 

 

At this point the outgoing arc loop is indexed to the next outgoing arc if one exists and the 

previously described process is repeated or the loop is exited if there are no more outgoing arcs.  

For the example node network, the outgoing arc loop is indexed to the outgoing arc [1 4] at node 

one.  This arc will be evaluated for both incoming arcs [3 1] and [5 1].  Note that the arc_star 

variable is a temporary variable that is used by the algorithm to store the Y’ or X’ values prior to 

calculating the intersection of the new regions.  Upon completion of the outgoing arc region loop, 

arc_star(1,4) variable will contain the following matrices: 

  

{ }_ (1,4,1), _ (1,4,2)arc star arc star′ =Y  
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After calling the intersect_arc_star, cleanup_sheets, and merge_arc functions, the Ynew([1 4]) 

regions will have been intersected, cleaned up, and merged with the arc_star regions to create the 

following product region values: 

{ }(1,4)new arc=Y  
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Upon exiting the outgoing arc loop, the algorithm will have updated all the regions for all the 

outgoing arcs connected to the current node.  The Ynew sets of regions no longer have the new 

subscript and are simply Y sets of regions.  If the regions changed from the original values, the 

nodes from each end of the outgoing arc will be listed on the flagged_node_list to be revisited in 

the future by the algorithm. 

 

After exiting the outgoing arc loop, the algorithm evaluates the no_intersection_flag variable for 

forward stability by examining all incoming regions contained in X(Arcin).  If an incoming region 

X is flagged as non-intersecting with an outgoing region Y for all transformations of the X region, 

the incoming X region is removed because it does not map forward to any of the outgoing regions 

contained in Y(Arcout).  In this example system, no incoming regions are flagged or removed 

because both incoming regions map to one of the outgoing regions. 

 

If the user is considering backward stability, the algorithm evaluates the no_intersection_flag 

variable for all outgoing regions contained in Y(Arcout).  If an outgoing region Y is flagged as 

non-intersecting with an incoming region X for all transformations of the set of regions X(Arcin), 

the outgoing Y region is removed because it does not map backward to any of the incoming 

regions contained in X(Arcin).  In this example system, no outgoing regions are flagged or 

removed because each of the outgoing regions maps backward to one of the incoming regions. 
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At this point, the product values regions for the outgoing arcs are as follows: 
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 And the incoming arcs have the following values: 
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5.1.6 Incoming Arc Analysis 

The algorithm now begins the same process of nested loops to update the regions for the 

incoming arcs in ina Arc∈  connected to the current node one.  The incoming arc loop steps 

through all the incoming arcs connected to the current node that is being evaluated.  Incoming arc 

[3 1] will be evaluated first in the example node network, followed by incoming arc [5 1].  The 

required parameters and variables associated with the current incoming arc are defined when the 

algorithm steps into the incoming arc loop.  The algorithm then steps into the nested incoming arc 

region loop to cycle through all the regions associated with the current incoming arc, 

( )inX a∈X .  The next nested loop is the outgoing arc loop which is responsible for cycling 

through all the outgoing arcs, out outa Arc∈ , connected to the current node. 

 

The set_node_time function is called when the algorithm enters the outgoing arc region loop to 

define the amount of time that is consumed for a given node.  The outgoing region to be used by 

the node inverse-transformation function for arc [1 2] is as follows: 
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The algorithm then steps into a loop that will cycle through each product in the system to 

calculate the inverse node transformation function for the given node type to create a new 

incoming region, X’.  After applying the node transformation functions to the region values for all 

products in the given region, the loop is exited.  The arc_star variable (X’) is updated with the 

newly created outgoing region values.  After updating the arc_star variable, 

 

Each newly inversely transformed region is tested to check if the transformed region X’ intersects 

with an original incoming arc region orgorgX ∈X .  If no intersection is found, the X region is 

flagged using the no_intersection_flag variable. 

 

The outgoing arc region loop is indexed to the next outgoing arc region if possible or the loop is 

exited and the outgoing arc loop is indexed.  The outgoing arc region loop is indexed until all 

outgoing arcs and regions have been used to find all possible new incoming regions X’ for the 

current incoming arc and region.  The incoming arc region loop is then indexed to the next 

incoming region, if possible, and all outgoing arcs and regions are again cycled through by the 

nested loops.  After all possible incoming regions have been evaluated for an incoming arc, the 

incoming arc loop is exited. 

 

The example network will have the following arc_star product value regions after the algorithm 

has cycled through the incoming arc region loop and subsequent nested loops to inversely 

transform the outgoing arcs: 
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At this point all possible new product value regions have been stored in the arc_star variable for 

a single incoming arc, which may or may not have multiple regions.  The intersect_arc_star 

function is called to calculate the intersection of the original arc product value regions, Xorg, with 

the new regions, X’, as was done previously in the outgoing arc loop.  All new regions are 

intersected with each current region in an attempt to find all possible intersections, which are 

stored as Xnew, in the arc variable and the arc_star variable is erased.  The algorithm then calls 

the cleanup_sheets function for the current incoming arc to remove duplicate, empty, or other 

improper region sets.   

 

The cleaned up arc variable (Xnew) is then operated upon by the merge_arc function.  This 

function performs the same merging of regions for the current incoming arc as was previously 

performed for the regions in the outgoing arc loop.   The function updates the arc variable which 

is then cleaned up using the cleanup_sheets function.  The merging and cleaning up of arc will 

produce the following product value region: 
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The algorithm then calls the set_change_flag function to compare the update arc regions, Xnew, 

with the arc regions prior to applying the transformation equations, Xorg.  If the regions are 

equivalent the upstream and downstream nodes are not flagged but if the regions are different 

from the original regions, the node is flagged to be revisited if it is not already included in the 

flagged node list. 

 

At this point the incoming arc loop is exited or indexed to the next incoming arc if one exists and 

the previously described process for the incoming arc is repeated.  The current example network 

will be indexed to the second incoming arc [5 1], which will be transformed to the following 

region after the completion of the incoming arc loop. 
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Upon exiting the incoming arc loop the algorithm will have updated all the regions for all the 

incoming arcs connected to the current node.  

 

The algorithm has now updated the product value regions for both the outgoing arcs and 

incoming arcs for the current node number one.  The node will not be flagged by the 

set_change_flag function because both the incoming and outgoing arc regions are unchanged.   

 

The algorithm calls the update_change_flag function to update the list of nodes to be evaluated 

by the algorithm, which is stored in the flagged_node_list variable.  After calling the 

update_change_flag function the flagged_node_list variable is [2 3 4 5].  

 

After updating the flagged_node_list variable, the update_node_number function is called to 

change the node number to the next node in the flagged_node_list variable.  After calling the 

update_node_number function the flagged_node_list variable is unchanged in this example.  The 

algorithm proceeds to the next node and loops through the flagged_node_list loop, if the 

flagged_node_list is not empty; otherwise the algorithm stops the analysis. 

  

The example node network will continue to node number two because it is the next node in the 

flagged_node_list variable.  The same procedure of cycling through and transforming the 

outgoing and incoming arc regions continues as previously described.  The flagged_node_list 

variable is now [3 4 5 2].  The output from the algorithm for node number two will update the 

product value regions as follows: 

 

( )( ) ( )( )30 30 25 251,2 , 2,330 100 25 95arc arc⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
X Y  

 

The algorithm next evaluates node number three in the example network and updates the product 

value regions of the incoming and outgoing arcs to the following: 

 

( )( ) ( )( )25 25 100 100
2,3 , 3,1

38 95 30 87
arc arc

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

YX  
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The flagged_node_list variable is now [4 5 2 3 1].  Node number four is the next node to be 

evaluated by the algorithm.  The updated product value regions for the node are the following: 

 

( )( ) ( )( )30 100 25 951,4 , 4,530 30 25 25arc arc⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
X Y  

 

After evaluation of node number four, the flagged_node_list variable is now [5 2 3 1 4] which 

requires node number five to be evaluated by the algorithm.  The updated product value regions 

for node five are the following: 

 

( )( ) ( )( )38 95 30 87
4,5 , 5,1

25 25 100 100
arc arc

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

X Y  

 

After evaluation of node number five, the flagged_node_list variable is now [2 3 1 4 5].  The 

algorithm will continue to loop through the node network until the flagged_node_list variable is 

empty and the regions no longer change when transformed by the algorithm.  This example takes 

approximately three complete cycles through the network to find the stable product value regions.  

The final output for all the arcs are as follows: 

 

( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

9538
2525

3,2,
10043
3030

2,1 arcarc  

 

( ) ( )100 100 43 100
3,1 , 1,4

30 87 30 30
arc arc

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

 

( ) ( )38 95 30 87
4,5 , 5,1

25 25 100 100
arc arc

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

 

5.2 General Statements about Implementation of Algorithm 

The convergence of the algorithm is not guaranteed due to the chaotic nature of a switched arrival 

system, as demonstrated by Chase et al. [5].  The user can set a maximum number of iterations 
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for the algorithm to limit the maximum number of times that the node network will be cycled 

through to prevent it from running indefinitely. 

 

The regions for an arc are always equivalent or subsets of the original regions when the algorithm 

completes the evaluation of a node.  The regions will never increase in size, but instead a region 

may divide, shrink, or remain unchanged.  In a very general sense, the purpose of the algorithm is 

to settle the regions on each side of a node until the regions are equivalent when transformed by 

the node.  Any arc in the node network will contain at least one region set, possibly an empty set.  

Typically the number of regions for an outgoing arc will increase as the number of arcs entering 

the node increase.   

5.3 Output from the Algorithm 

The output from the algorithm is a set of one or more regions for each defined arc in the system; 

it is possible that a set may be empty.  A settled and stable system will always have a trajectory 

that can propagate from a point on one region which is transformed to a point on another region 

and any transformed point will always be contained within a defined region. 

5.3.1 Two Product Network 

Consider the previously discussed example system for two products with the node/arc network 

shown below and the following parameters: setup time = 5 time units, production rate = 10 

products/time unit, usage rate = 1 product/time unit, lower threshold = 30 products, full buffer 

level = 100 products and idle time must exist. 

 

 
Figure 5.2: Network Map of Two-Product System –Idle Only 

 

Consider the region for arc(2,3) below, which is for the region of products that are leaving the 

setup for product one at node number two and going to fill product one at node number three.  

Product one is represented by the top row and has a minimum of 25 and maximum of 25 products 
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for the region.  The region in the second row is for product two and has a minimum value of 38 

and maximum value of 95. 

( ) 25 25
2,3

38 95
arc

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

 

The region of [25 25] and [38 95] is representative of the values that the products must fall within 

when leaving node number two and entering node number three to be stable.  If the products are 

within the region, then by the results in Section 5 of the Node Network Analysis Chapter, the 

system will remain stable for all time, given that variability, breakdowns, maintenance, etc. never 

occur in this system.  In this example, the region is a one dimensional line, but a region may be a 

point, a line, two-dimensional surface, or multidimensional volume dependent upon the 

parameters of the system and number of products.  Typically the product value regions are of k – 

1 dimensions because one product will always have equivalent minimum and maximum values, 

i.e. one-dimensional lines represent two product regions, two-dimensional rectangular planes for 

three product systems, etc. 

 

As previously discussed, this two product example network takes approximately three complete 

cycles through the network to find the stable product value regions which are as follows: 

 

( ) ( )30 30 25 25
1,2 , 2,3

43 100 38 95
arc arc

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

 

( ) ( )100 100 43 100
3,1 , 1,4

30 87 30 30
arc arc

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

 

( ) ( )38 95 30 87
4,5 , 5,1

25 25 100 100
arc arc

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

 

5.3.1.1 Stable Two-Product Network 

Consider the plot below where the solid lines represent the regions and the dashed lines represent 

the connections between the extents of the regions for the flow direction of the products from arc 

region to arc region.  The lines with arrowheads represent a stable orbit and direction that the 

system operates for a given starting point.  From this plot it is very apparent that the system will 
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never crash by experiencing an empty buffer, because the system parameters cause the regions to 

be located far from the origin of the plot [0, 0], where both product buffers are completely empty.   

 

 
Figure 5.3: Plot of Two-Product Network 

 

The dashed lines in the plot connect the extents of a region to the next region and have a slope of 

the cumulative usage rate of the products when travelling from a full buffer to a setup node.  The 

slope of the line between the filling node and idle node is the refill rate of the product being 

replenished divided by the cumulative usage rates of all products.  A better illustration of the 

dashed line is to imagine that pairs of parallel dashed lines represent a node and the lines show 

how the products are transformed by the idle, setup, or a refill node.  When the dashed lines 

connect the extents of each region to another, the system can never leave the stable regions.  The 

only possible way for the system to leave the stable orbit is for some type of variability to disrupt 

the system, which is not considered in the current work. 

  

The algorithm is a conservative estimate of the stable product regions for a node network system.  

Regions that are defined by the stability algorithm will guarantee stability for the defined set of 

values for the products.  But the stable regions are not guaranteed to be inclusive of all stable 

values for the products.  Note that the algorithm is searching for long term stability and does not 

consider start-up conditions or non-steady state conditions of the system.  Due to ignoring 

transient conditions, it is quite possible for the system to initially operate well outside of a stable 
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region but eventually crossover into a stable region and therefore a stable orbit, which it will 

never leave.  If at any point in time the orbit lands on any of the defined regions for the system, 

the orbit of the production system will always be stable into the future.  Any point on any stable 

region will always map onto another stable region of the system and the orbit will therefore 

always be stable in the future.  See Node Network Analysis Chapter, Section 5 for a thorough 

discussion and proof of this statement. 

 

Consider the heavy long-dashed lines in the plots below which represent three possible 

trajectories (A, B, and C) of the system.  The trajectories all start outside of the stable regions, as 

defined by the stability algorithm.  These trajectories highlight that the system would easily reach 

a stable region after one or two cycles of refilling the products.  This example also highlights that 

for this given system, the stable regions are very conservative, meaning that the regions are not 

inclusive of all possible stable product value combinations. 

 

Figure 5.4: Plot of Non-Included Trajectory A 
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Figure 5.5: Plot of Non-Included Trajectories B and C 
 

5.3.1.2 Unstable Two-Product Network 

Consider the same node network and parameters previously discussed with the only exception 

being that the usage rate of product one is doubled to consuming two products per time unit, 

rho(1) = 2 and rho(2) = 1.  This slight change in system parameters causes the system to be 

unstable with no possible stable regions existing and the algorithm outputs all empty sets.  The 

following regions are a snapshot of the system during the process of attempting to find stable 

regions.  A plot of the intermediate regions highlights the instability issue for the regions. 

 

( ) ( ) ( )30 30 30 30 20 201,2,1 , 1,2,2 , 2,3,145 50 78 83 73 78arc arc arc⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

 

( ) ( ) ( )20 20 100 100 100 1002,3,2 , 3,1,1 , 3,1,240 45 30 35 63 68arc arc arc⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

 

( ) ( ) ( )90 100 80 90 63 731,4 , 4,5 , 5,130 30 25 25 100 100arc arc arc⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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Figure 5.6: Two-Product System – Product 1 Doubled Usage Rate 
 

The solid black lines are the intermediate regions and the short-dashed lines are the connections 

between the extents of the regions based on the refill rates or usage rates.  The plotted path of a 

potential system orbit highlights that the paths eventually reach a location after the second refill 

of product number one.  This highlights how the trajectory does not transform from region to 

region and is therefore unstable.   

5.3.1.3 Increasing the Product One Threshold 

Raising the lower threshold for product number one to 40 units is a minor change in the system 

and is easily tested as a possible solution for the unstable system.  The output from the algorithm 

is again empty sets for the production system with a lower threshold limit of 40 units for product 

number one and 30 units for product number two.  An intermediate set of regions prior to the 

algorithm settling the network are below. 

 

( ) ( ) ( )40 40 40 40 30 30
1,2 , 1,2 , 2,3,1

44 56 83 96 78 91
arc arc arc

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
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( ) ( ) ( )30 30 100 100 100 100
2,3,2 , 3,1,1 , 3,1,2

39 51 30 43 70 82
arc arc arc

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

( ) ( ) ( )75 100 65 90 48 73
1,4 , 4,5 , 5,1

30 30 25 25 100 100
arc arc arc

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

A plot of these regions is below. The orbit is unstable and again falls outside of the regions after 

product number one has been refilled.  From the plot of intermediate regions, it is apparent the 

system cannot be stable for this network configuration given the current parameters. 

 

Figure 5.7: Two-Product System – Product 1 Threshold of 40 Products 
 

5.3.1.4 Two-Product System With and Without Idle 

Consider the following node network diagramed below, which has the same parameters as the 

initial two-product example system except that an arc now connects each refill node to the setup 

node of the other product.  The node network now allows the system to skip the idle node if a 

product crosses the lower threshold prior to completely replenishing the buffer of the trigger 

product. 
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Figure 5.8: Network Map of Two-Product System – With and Without Idle 

 

Examining this system with a lower limit of 30 units for both products and a usage rate of two for 

product number one and a usage rate of one for product number two will again output empty set 

regions.  Consider the following intermediate regions which when plotted highlight the cause of 

the instability. 

  

( ) ( ) ( )30 30 30 30 10 30
1,2 , 1,2 , 5,2

30 50 78 83 100 100
arc arc arc

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
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arc arc arc

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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83 85 63 68 30 35
arc arc arc

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

( ) ( ) ( )90 100 100 100 90 90
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⎡ ⎤ ⎡ ⎤
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⎣ ⎦ ⎣ ⎦

 

 

A plot of these intermediate regions is shown below.  The system crashes after product one is 

refilled because the idle node transforms the incoming region to a nonexistent outgoing region in 

the lower left hand corner of the plot.  Without any intersection between the transformed and 

existing regions, the resulting region is an empty set.  The empty set is propagated through the 

system with subsequent transformations at each node, resulting in an empty set for all arcs.  This 
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indicates that there is no stable trajectory for this arc-node network, given the current set of 

parameters. 

   

 
Figure 5.9: Two-Product System – With and Without Idle – 30 Unit Threshold 

 

Consider increasing the lower threshold for product one to 50 units to increase the buffer depth 

when the product triggers replenishment.  The system parameters are now a lower limit value of 

50 units and usage rate of two for product number one and a lower limit of 30 units and usage rate 

of one for product number two.  This system will provide the output regions listed below.  
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( ) ( ) ( ) ( )100 100 81 83 63 67 100 100
3,1,3 , 1,4,1 , 1,4,2 , 3,4

38 40 30 30 30 30 18 30
arc arc arc arc
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100 100
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⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

 

A plot of the regions is below.  All regions of the system now map forward to another region.  

This system will remain stable for all orbits that originate from any location on a defined output 

region.  Notice that from any starting point on a stable region, the system is able to reach the final 

stable orbit within a few cycles of replenishing both products. 

 

 
Figure 5.10: Two-Product System – With and Without Idle – Product One 50 Unit Threshold 

 

This example system with the give set of parameters provides an interesting insight into the 

stability algorithm.  Notice in the plot above in Figure 5.10, the region in the lower right corner 

has no incoming region connection.  This region is on the arc [3 4], which in the arc that connects 

the fill node for product number one and the setup node for product number two.  This means that 
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none of the regions on arc [2 3] entering the refill node map forward to the region on arc [3 4].  

These results are when only forward stability is being considered by the algorithm.  The 

algorithm allows the user to solve for stability solely in the forward transformation direction or in 

both directions with the forward transformations and backward inverse transformations.  The user 

may define the backward_stability parameter as zero for forward checking only or set the 

parameter to one for stability in both directions.  Note that when the stability algorithm checks for 

stability in both directions, the algorithm will output a different set of regions for this example 

problem, which are listed below. 
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Figure 5.11: Product One 50 Unit Threshold – Forward and Backward Stability 

 

5.3.2 Three Product Network 

The computational complexity will increase with each additional product added to the arc-node 

network because each additional product will add at least two nodes (setup and fill) and three arcs 

to the existing network.  Consider a system with three products with the arc-node network show 

below and the following parameters: setup time = 5 time units, production rate = 10 products/time 

unit, usage rate = 1 product/time unit, lower threshold = 30 products, full buffer level = 100 

products and idle time must exist.   

5.3.2.1 Three Product Network – Idle Only 

In this example network, all product sequences must pass through the idle node prior to entering 

setup as shown in the following diagram. 
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Figure 5.12: Network Map of Three-Product System –Idle Only 
 

Determining the stable product value regions for this node network is very straight forward and 

could be conducted by hand because the product parameters are all equal and the system is 

balanced.  The results for the stable regions from the algorithm are as below.   
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Examination of the output regions highlights that each region is a 2-dimensional plane because 

the minimum and maximum value of one product is always equal for each region.  The output 

from the stability produces regions of k – 1 dimensions. 

 

Consider the regions defined for arc(1,2,1) and arc(1,2,2) in which product number one is equal 

to 30 units for both regions.  The extents of the regions are show below plotted as a rectangle on a 

plane through all points where product number one is equal to 30 units.  The heavy arrow-headed 

lines show the direction of the total product usage rate for the system in two dimensions (the 

usage rates for all products is one product per time unit). 

 

 
Figure 5.13: Two-Dimensional Plot of Arc [1 2] Regions 

 

The area of the regions between the diagonal lines creates instability problems when a sequence 

is traced through the production system that originates within this area.  A discontinuity exists 

when the center region points transition from a full buffer region to a region that is leaving the 

idle node because the central region of a full buffer region is transformed by the idle node into an 

empty region.  This can be seen in the following diagram which is a three dimensional plot with 

the regions represented as rectangles.   

 

Product #2 

Product #3 
100 

87 

57 43 100 87 

57 

43 
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Figure 5.14: Three-Dimensional Plot of Rectangular Arc Regions 

 

The system parameters cause the total usage rate for the system to be parallel to a line with a 

slope of one in the X, Y, and Z directions.  Consider the top surface in the region below which 

represents when product number two has a full buffer of 100 units.  As the system is idle and 

products are consumed the trajectory must hit either the region below it on the left (green) where 

product number one is equal to the lower threshold of 30 units or the region on the right (red) 

where product number three is equal to the lower threshold of 30 units for the system to remain 

stable.  The area between the two triangular shaped areas does not map to a region. 

 

The following plot of the regions has been corrected to remove the unstable portion of the regions 

defined by the system.  For this plot it is easy to see that a product sequence trajectory can start at 

any point on any of the defined regions and the trajectory will always transform to another stable 

region for all possible node transformations that may occur in the node network of the system.   
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Figure 5.15: Three-Dimensional Plot of Triangular Arc Regions 

 

This example highlights the need for some interpretation or special handling of the regions for 

systems with more than two products.  In a system in which the parameters are defined in such a 

way that the usage rates, buffer sizes, production rates, and lower thresholds of every product are 

equal, the stable regions will be triangular in shape bounded by the cumulative usage rate in two-

dimensions.  The proposed solution to correct this discontinuity issue for more complex 

production system is define the network in such a way that idle time is not required to follow 

every refill node, which will remove the discontinuities between setup regions. 

5.3.2.2 Three Product Network – With and Without Idle 

Consider a system with three products with the node/arc network show below and the same 

parameters as the previous example; setup time = 5 time units, production rate = 10 products/time 

unit, usage rate = 1 product/time unit, lower threshold = 30 products, full buffer level = 100 

products.  In this example network, all product sequences may pass through the idle node prior to 

being replenished or a product can enter setup directly after replenishment of the previous 

product.   
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Figure 5.16: Network Map of Three-Product System – With and Without Idle 

 

The algorithm cycles through the network approximately twelve times to determine the stable 

regions for the system.  The results from the algorithm for this arc-node network still contain the 

same regions as the previous system, but these regions a now segmented into smaller regions.  

The output also contains the additional regions for the arcs that skip idle.  The regions for a given 

arc is symmetric with two other arcs, meaning that all regions on arc [1 2] are the same values as 

arcs [1 4] and [1 6], but on a different plane.  For example, consider the following region on arc 

[1 2]: 

( )
30 30

1,2,1 59 89
46 83

arc
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

This region on arc [1 2] is symmetric with the following regions on arcs [1 4] and [1 6]: 

 

( ) ( )
59 89 59 89

1,4,1 , 1,6,130 30 46 83
46 83 30 30

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 

The output regions for the system are below. 
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Arc [1 2]: 

( ) ( ) ( ) ( )
30 30 30 30 30 30 30 30

1,2,1 , 1,2,2 , 1,2,3 , 1,2,4 ,59 89 59 98 60 99 46 84
46 83 59 83 46 84 46 54

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( ) ( )
30 30 30 30 30 30 30 30

1,2,5 , 1,2,6 , 1,2,7 , 1,2,8 ,46 83 46 83 59 83 46 84
46 54 59 89 59 97 60 99

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( ) ( )
30 30 30 30 30 30 30 30

1,2,9 , 1,2,10 , 1,2,11 , 1,2,1246 54 46 54 30 35 59 97
46 84 46 83 59 97 30 35

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

Arc [2 3]: 

( ) ( ) ( ) ( )
12 17 12 17 25 25 25 25

2,3,1 , 2,3,2 , 2,3,3 , 2,3,4 ,95 95 41 79 54 84 54 92
41 79 95 95 41 78 54 78

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( ) ( )
25 25 25 25 25 25 25 25

2,3,5 , 2,3,6 , 2,3,7 , 2,3,8 ,55 94 41 79 41 78 41 78
41 79 41 49 41 49 54 84

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( ) ( )
25 25 25 25 25 25 25 25

2,3,9 , 2,3,10 , 2,3,11 , 2,3,12 ,54 78 41 79 41 49 41 49
54 92 55 94 41 79 41 78

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

( ) ( )
25 25 25 25

2,3,13 , 2,3,1425 30 54 92
54 92 25 30

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 

Arc [3 1]: 

( ) ( ) ( )
100 100 100 100 100 100

3,1,1 , 3,1,2 , 3,1,3 ,46 76 33 69 46 84
33 69 46 76 46 69

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
100 100 100 100 100 100

3,1,4 , 3,1,5 , 3,1,6 ,46 69 33 71 33 40
46 84 33 40 33 71

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
100 100 100 100 100 100

3,1,7 , 3,1,8 , 3,1,9 ,85 86 31 70 33 70
31 70 85 86 33 41

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
100 100 100 100 100 100

3,1,10 , 3,1,11 , 3,1,1233 41 47 85 33 71
33 70 33 71 47 85

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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Arcs [3 4] and [3 6]: 

( ) ( )
100 100 100 100

3,4 , 3,617 22 46 84
46 84 17 22

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 

Arc [1 4]: 

( ) ( ) ( ) ( )
59 89 59 97 60 99 46 84

1,4,1 , 1,4,2 , 1,4,3 , 1,4,4 ,30 30 30 30 30 30 30 30
46 83 59 83 46 84 46 54

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( ) ( )
46 83 43 83 59 83 46 84

1,4,5 , 1,4,6 , 1,4,7 , 1,4,8 ,30 30 30 30 30 30 30 30
46 54 59 89 59 97 60 99

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( ) ( )
46 54 46 54 30 35 59 97

1,4,9 , 1,4,10 , 1,4,11 , 1,4,12 ,30 30 30 30 30 30 30 30
46 84 46 83 59 97 30 35

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

Arc [4 5]: 

( ) ( ) ( ) ( )
95 95 41 79 54 84 54 92

4,5,1 , 4,5,2 , 4,5,3 , 4,5,4 ,12 17 12 17 25 25 25 25
41 79 95 95 41 78 54 78

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( ) ( )
55 94 41 79 41 78 41 78

4,5,5 , 4,5,6 , 4,5,7 , 4,5,8 ,25 25 25 25 25 25 25 25
41 79 41 49 41 49 54 84

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( ) ( )
54 78 41 79 41 49 41 49

4,5,9 , 4,5,10 , 4,5,11 , 4,5,12 ,25 25 25 25 25 25 25 25
54 92 55 94 41 79 41 78

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

( ) ( )
25 30 54 92

4,5,13 , 4,5,1225 25 25 25
54 92 25 30

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 

Arc [5 1]: 

( ) ( ) ( )
46 76 33 69 46 84

5,1,1 , 5,1,2 , 5,1,3 ,100 100 100 100 100 100
33 69 46 76 46 69

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
46 69 33 71 33 40

5,1,4 , 5,1,5 , 5,1,6 ,100 100 100 100 100 100
46 84 33 40 33 71

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
85 86 31 70 33 70

5,1,7 , 5,1,8 , 5,1,9 ,100 100 100 100 100 100
31 70 85 86 33 41

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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( ) ( ) ( )
33 41 47 85 33 71

5,1,10 , 5,1,11 , 5,1,12100 100 100 100 100 100
33 70 33 71 47 85

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

Arcs [5 2] and [5 6]: 

( ) ( )
17 22 46 84

5,2 , 5,6100 100 100 100
46 84 17 22

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 

Arc [1 6]: 

( ) ( ) ( ) ( )
59 89 59 97 60 99 46 84

1,6,1 , 1,6,2 , 1,6,3 , 1,6,4 ,46 83 59 83 46 84 46 54
30 30 30 30 30 30 30 30

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( ) ( )
46 83 46 83 59 83 46 84

1,6,5 , 1,6,6 , 1,6,7 , 1,6,8 ,46 54 59 89 59 97 60 99
30 30 30 30 30 30 30 30

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( ) ( )
46 54 46 54 30 35 59 97

1,6,9 , 1,6,10 , 1,6,11 , 1,6,1246 84 46 83 59 97 30 35
30 30 30 30 30 30 30 30

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

Arc [6 7]: 

( ) ( ) ( ) ( )
95 95 41 79 54 84 54 92

6,7,1 , 6,7,2 , 6,7,3 , 6,7,4 ,41 79 95 95 41 78 54 78
12 17 12 17 25 25 25 25

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( ) ( )
55 94 41 79 41 78 41 78

6,7,5 , 6,7,6 , 6,7,7 , 6,7,8 ,41 79 41 49 41 49 54 84
25 25 25 25 25 25 25 25

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( ) ( )
54 78 41 79 41 49 41 49

6,7,9 , 6,7,10 , 6,7,11 , 6,7,12 ,54 92 55 94 41 79 41 78
25 25 25 25 25 25 25 25

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( )
25 30 54 92

6,7,13 , 6,7,1454 92 25 30
25 25 25 25

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 

Arc [7 1]: 

( ) ( ) ( )
46 76 33 69 46 84

7,1,1 , 7,1,2 , 7,1,3 ,33 69 46 76 46 69
100 100 100 100 100 100

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 



 

 

102 

 

( ) ( ) ( )
46 69 33 71 33 40

7,1,4 , 7,1,5 , 7,1,6 ,46 84 33 40 33 71
100 100 100 100 100 100

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
85 86 31 70 33 70

7,1,7 , 7,1,8 , 7,1,9 ,31 70 85 86 33 41
100 100 100 100 100 100

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
33 41 47 85 33 71

7,1,10 , 7,1,11 , 7,1,1233 70 33 71 47 85
100 100 100 100 100 100

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

Arcs [7 2] and [7 4]: 

( ) ( )
17 22 46 84

7,2 , 7,446 84 17 22
100 100 100 100

arc arc
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 

A plot of the regions for this system appears in Figure 5.17.  The shape of the regions are similar 

to regions of the system with idle only in Figure 5.14, but include the additional regions that skip 

idle.  The additional idle skipping regions are concentrated around the lower threshold of a given 

product because a product is allowed to go from a filling node to the setup node for the next 

product.   

 

Note that this system required the initial flagged_node_list to be set to [1 3 5 7] to get a non-

oscillating set of regions for the solution.  An oscillating set of regions does not change the area 

contained by the region set on a given arc, but is merely a different representation of the area.  

For example, consider a set of three regions [A B C], where A and C have no intersection but B 

intersects both A and C.  The total region represented by the set of hyperrectangles is the union of 

all three regions.  Note that the union of all three regions is the same as the union of A, C, and D, 

where D B A B C B= − −∩ ∪ .  This means that the portion of B that intersects A or C can change 

but it will have no effect on the representation of the set of regions.  The set of regions on each 

arc between the setup and refill nodes ([2 3],[4 5], and [6 7]) contained the oscillating regions.  

Refer to Section 4.7.1 of the Stability Algorithm Chapter for further information regarding 

oscillating regions in the Stability Algorithm.   
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Figure 5.17: Three Product System – Skipping Idle Allowed 

 

The results for the same system parameters but with the lower limit threshold increased to 40 

units for all products will now be examined.  The parameters for this system produce regions that 

are similar to the regions of the previous system but have smaller gaps between regions.  This 

system provided the same non-oscillating output regardless of the initial flagged_node_list.  The 

regions and plot of regions are below. 

 

Arc [1 2]: 

( ) ( ) ( ) ( )
40 40 40 4040 40 40 40

1,2,1 , 1,2,2 , 1,2,3 52 63 , 1,2,4 52 88 ,52 88 64 100
52 88 64 10052 63 52 88

arc arc arc arc
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( ) ( )
40 40 40 40 40 40 40 40

1,2,5 52 64 , 1,2,6 40 52 , 1,2,7 66 100 , 1,2,8 89 100 ,
40 52 52 64 40 51 40 52

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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( ) ( ) ( ) ( )
40 40 40 40 40 40 40 40

1,2,9 66 88 , 1,2,10 40 51 , 1,2,11 40 52 , 1,2,12 40 52
40 52 66 100 89 100 66 88

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Arc [2 3]: 

( ) ( ) ( ) ( )
21 35 21 35 23 35 23 35

2,3,1 95 95 , 2,3,2 81 83 , 2,3,3 95 95 , 2,3,4 35 47 ,
81 83 95 95 35 47 95 95

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( ) ( )
23 35 23 34 23 35 23 35

2,3,5 95 95 , 2,3,6 95 95 , 2,3,7 95 95 , 2,3,8 72 83 ,
72 83 72 83 51 71 95 95

arc arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( ) ( )
23 34 23 35 35 35 35 35
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Figure 5.18: Three Product System – 40 Unit Lower Threshold 

 

Other systems were tested that varied the lower and upper buffer thresholds and all provided 

similar product value regions. 

5.3.2.3 Three Product Network – Different Usage Rates 

This section will begin to examine the effect of changing the usage rate of one product.  A three 

product system that is non-symmetric becomes very difficult, if not impossible to evaluate using 

hand calculations.  Consider a system with three products with the same node/arc network as the 

previous example and the following parameters: usage rate = 2 products/time unit for product 

number one, the usage rate = 1 product/time unit for products two and three, all products have the 

same parameters of a lower threshold = 40 products, full buffer level = 80 products, and setup 

time of 5 units.  In this example network, all product sequences may pass through the idle node 

prior to being replenished or a product can enter setup directly after replenishment of the previous 
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product.  The algorithm cycled through the network approximately seven times which took a few 

minutes to complete the analysis. The regions output by the algorithm are listed below and a plot 

of the regions follows. 
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Arc [4 5]: 
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Figure 5.19: Three Product System – Differing Usage Rates 

 

The plot of the results highlights that the differing usage rates causes the output regions to differ 

in shape from the previous systems as well as lose the symmetry among the products.  The plot 

also makes it apparent that some of the regions are very small which confine the possible 
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combinations of product inventory levels that will be stable by mapping to an outgoing region at 

any given node.  A larger outgoing region will allow much more freedom for various 

combinations of the incoming product inventory levels at a node, meaning that the incoming 

region has a larger target to hit when transformed by the node. 

5.3.2.4 Three Product System with Sequence Dependent Setups 

The stability algorithm allows a user to define a wide variety of arc-node networks, to highlight 

the flexibility of the algorithm this example will consider a system with sequence dependent 

setups.  Consider a three product system with the following system parameters: production rate = 

10 products/time unit, usage rate = 1 product/time unit, lower threshold = 90 products, full buffer 

level = 150 products and idle time may or may not exist after a fill node.  The setup times vary 

depending upon the product sequence and are as follows: product one to product two is 5 time 

units, product one to product three is 15 time units, product two to product one is 10 time units, 

product two to product three is 5 time units, product three to product one is 15 time units, and 

product three to product two is 15 time units.  The varying setup times requires a more advance 

arc-node network with multiple setup nodes prior to a given filling node to capture the differing 

setup times.  A diagram of the arc-node network is below in Figure 5.20.  This system allows idle 

to exist after a filling node or idle can be non-existent by entering a setup node for the next 

product directly after refilling the previous product. 
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Figure 5.20: Network Map of System with Sequence Dependent Setups 

 

The network map appears very complex, but the map is the simplest means of evaluating a 

sequence dependent system using the stability algorithm.  This map would be very difficult to 

solve by hand, but the algorithm finds a solution in a few minutes as it cycles through the network 

25 times.  The output regions and a plot of the regions are below. 
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Figure 5.21: Output of Three Product System with Sequence Dependent Setups 

 

The plot illustrates the high number of regions for this system as well as how many of the regions 

are very small.  A region is equivalent to a target that the trajectory is aiming for, such that a large 

region is easier to be stable while a smaller region is potentially more difficult to hit from the 

previous product region. 

 

Now consider the same arc-node network and system parameters as the previous example, but the 

lower threshold is decreased to 40 products and the full buffer level is decreased to 100 products.  

The output regions for these system parameters are below. 
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Figure 5.22: System with Sequence Dependent Setups and Smaller Buffers 

 

The plot of the regions appears very similar to the previous example but without all of the very 

small regions.  The arcs with the small regions in the previous example contain empty sets for this 

example problem.  From the output of the algorithm and given the arc-node network, it is 

apparent that there is only one stable product sequence for this system 1-3-2.  The trajectory of 

the sequence can either pass through idle prior to setup or the trajectory can skip idle and enter 

setup directly after refilling the previous product. 
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5.3.3 Four Product Network  

Consider a system with four products with the node/arc network show below and the following 

parameters: setup time = 5 time units, production rate = 10 products/time unit, usage rate = 1 

product/time unit, lower threshold = 75 products, full buffer level = 150 products.  In this 

example network, all product sequences must pass through the idle node prior to being 

replenished.   

 
Figure 5.23: Network Map of Four-Product System – With and Without Idle 

 

The stability algorithm required several hours to complete the analysis of this system due to the 

large number of arcs in and out of the idle node.  Each evaluation of the idle node deals with 

multiple regions on the eight arcs connected to the idle node and each region is transformed, 

intersected and merged, all of which requires CPU time.  Each time one region either into or out 

of the idle node is altered, the node will be flagged to be reevaluated in the future, therefore this 

system required hours to analyze versus minutes for the previous three product systems.  The 

results from the algorithm are below. 

 

Arc [1 2]: 

( ) ( ) ( )
75 75 75 75 75 75
117 150 131 150 117 1501,2,1 , 1,2,2 , 1,2,3 ,89 136 89 136 103 122
103 108 103 122 89 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Node 2 

Setup 1 

Node 1 

Idle 

Node 4 

Setup 2 
Node 3 

Fill 1 

Node 5 

Fill 2 

Node 6 

Setup 3

Node 7 

Fill 3 Node 8 

Setup 4

Node 9 

Fill 4 



 

 

122 

 

( ) ( ) ( )
75 75 75 75 75 75
131 150 89 136 89 1361,2,4 , 1,2,5 , 1,2,6 ,103 122 117 150 131 150
89 136 103 108 103 122

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

( ) ( ) ( )
75 75 75 75 75 75
103 108 103 122 89 1361,2,7 , 1,2,8 , 1,2,9 ,117 150 131 150 103 108
86 136 89 136 117 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

( ) ( ) ( )
75 75 75 75 75 75
89 136 103 108 103 1221,2,10 , 1,2,11 , 1,2,12 ,103 122 89 136 89 136
131 150 117 150 131 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

( ) ( ) ( )
75 75 75 75 75 75
103 150 103 150 117 1361,2,13 , 1,2,14 , 1,2,15 ,117 136 89 108 103 150
89 108 117 136 89 108

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

( ) ( ) ( )
75 75 75 75 75 75
89 108 117 136 89 1081,2,16 , 1,2,17 , 1,2,18 ,103 150 89 108 117 136
117 136 103 150 103 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

( ) ( ) ( )
75 75 75 75 75 75
117 150 117 150 103 1361,2,19 , 1,2,20 , 1,2,21 ,103 136 89 122 117 150
89 122 103 136 89 122

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

( ) ( ) ( )
75 75 75 75 75 75
89 122 103 136 89 1221,2,22 , 1,2,23 , 1,2,24117 150 89 122 103 136
103 136 117 150 117 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

Arc [2 3]: 

( ) ( ) ( )
70 70 70 70 70 70
112 145 126 145 98 1452,3,1 , 2,3,2 , 2,3,3 ,84 131 84 131 84 103
98 103 98 117 112 131

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

( ) ( ) ( )
70 70 70 70 70 70
112 145 98 145 112 1452,3,4 , 2,3,5 , 2,3,6 ,84 103 112 131 98 131
112 131 98 117 84 117

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

( ) ( ) ( )
70 70 70 70 70 70
112 145 126 145 84 1312,3,7 , 2,3,8 , 2,3,9 ,98 103 98 117 112 145
84 131 84 131 98 103

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

( ) ( ) ( )
70 70 70 70 70 70
84 131 84 103 84 1172,3,10 , 2,3,11 , 2,3,12 ,126 145 98 145 112 145
98 117 112 131 98 131

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦



 

 

123 

 

( ) ( ) ( )
70 70 70 70 70 70
98 131 112 131 98 1032,3,13 , 2,3,14 , 2,3,15 ,112 145 98 145 112 145
84 117 84 103 84 131

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

( ) ( ) ( )
70 70 70 70 70 70
98 117 84 131 84 1312,3,16 , 2,3,17 , 2,3,18 ,126 145 98 103 98 117
84 131 112 145 126 145

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

( ) ( ) ( )
70 70 70 70 70 70
84 117 84 103 98 1312,3,19 , 2,3,20 , 2,3,21 ,98 131 112 131 84 117
112 145 98 145 112 145

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

( ) ( ) ( )
70 70 70 70 70 70
112 131 98 103 98 1172,3,22 , 2,3,23 , 2,3,2484 103 84 131 84 131
98 145 112 145 126 145

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

Arc [3 1]: 

( ) ( ) ( )
150 150 150 150 150 150
103 136 117 136 103 1363,1,1 , 3,1,2 , 3,1,3 ,75 122 75 122 89 94
89 94 89 108 75 122

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
150 150 150 150 150 150
117 136 75 122 75 1223,1,4 , 3,1,5 , 3,1,6 ,89 108 103 136 117 136
75 122 89 94 89 108

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
150 150 150 150 150 150
89 94 89 108 75 1223,1,7 , 3,1,8 , 3,1,9 ,103 136 117 136 89 94
75 122 75 122 103 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
150 150 150 150 150 150
75 122 89 94 89 1083,1,10 , 3,1,11 , 3,1,12 ,89 108 75 122 75 122
117 136 103 136 117 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
150 150 150 150 150 150
89 136 103 136 89 1363,1,13 , 3,1,14 , 3,1,15 ,75 94 75 108 103 122
103 122 89 122 75 94

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
150 150 150 150 150 150
103 136 75 94 75 1083,1,16 , 3,1,17 , 3,1,18 ,89 122 89 136 103 136
75 108 103 122 89 122

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
150 150 150 150 150 150
89 122 103 122 75 1083,1,19 , 3,1,20 , 3,1,21 ,103 136 89 136 89 122
75 108 75 94 103 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 



 

 

124 

 

( ) ( ) ( )
150 150 150 150 150 150
75 94 89 122 103 1223,1,22 , 3,1,23 , 3,1,24103 122 75 108 75 94
89 136 103 136 89 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

Arc [1 4]: 

( ) ( ) ( )
117 150 131 150 117 150
75 75 75 75 75 751,4,1 , 1,4,2 , 1,4,3 ,89 136 89 136 103 108
103 108 103 122 89 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
131 150 89 136 89 136
75 75 75 75 75 751,4,4 , 1,4,5 , 1,4,6 ,103 122 117 150 131 150
89 136 103 108 103 122

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
89 136 89 136 103 122
75 75 75 75 75 751,4,7 , 1,4,8 , 1,4,9 ,103 108 103 122 131 150
117 150 131 150 89 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
103 122 89 122 103 136
75 75 75 75 75 751,4,10 , 1,4,11 , 1,4,12 ,89 136 117 150 117 150
131 150 103 136 103 122

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
117 136 89 122 103 136
75 75 75 75 75 751,4,13 , 1,4,14 , 1,4,15 ,103 150 103 136 89 122
89 108 117 150 117 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
117 136 103 108 103 108
75 75 75 75 75 751,4,16 , 1,4,17 , 1,4,18 ,89 108 117 150 89 136
103 150 89 136 117 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
103 150 117 150 103 150
75 75 75 75 75 751,4,19 , 1,4,20 , 1,4,21 ,117 136 103 136 89 108
89 108 89 122 117 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
117 150 89 108 89 108
75 75 75 75 75 751,4,22 , 1,4,23 , 1,4,2489 122 103 150 117 136
103 136 117 136 103 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

Arc [4 5]: 

( ) ( ) ( )
112 145 126 145 98 145
70 70 70 70 70 704,5,1 , 4,5,2 , 4,5,3 ,84 131 84 131 84 103
98 103 98 117 112 131

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 



 

 

125 

 

( ) ( ) ( )
112 145 98 145 112 145
70 70 70 70 70 704,5,4 , 4,5,5 , 4,5,6 ,84 117 112 131 98 131
98 131 84 103 84 117

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
112 145 126 145 84 131
70 70 70 70 70 704,5,7 , 4,5,8 , 4,5,9 ,98 103 98 117 112 145
84 131 84 131 98 103

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
84 131 84 117 84 103
70 70 70 70 70 704,5,10 , 4,5,11 , 4,5,12 ,126 145 112 145 98 145
98 117 98 131 98 131

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
98 131 98 117 98 103
70 70 70 70 70 704,5,13 , 4,5,14 , 4,5,15 ,112 145 126 145 112 145
84 117 84 131 84 131

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
112 131 84 131 84 131
70 70 70 70 70 704,5,16 , 4,5,17 , 4,5,18 ,98 145 98 103 98 117
84 103 112 145 126 145

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
84 103 84 117 98 131
70 70 70 70 70 704,5,19 , 4,5,20 , 4,5,21 ,112 131 98 131 84 117
98 145 112 145 112 145

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
98 117 98 103 112 131
70 70 70 70 70 704,5,22 , 4,5,23 , 4,5,2484 131 84 131 84 103
126 145 112 145 98 145

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

Arc [5 1]: 

( ) ( ) ( )
103 136 117 136 103 136
150 150 150 150 150 1505,1,1 , 5,1,3 , 5,1,4 ,75 122 75 122 89 94
89 94 89 108 75 122

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
117 136 89 94 89 94
150 150 150 150 150 1505,1,4 , 5,1,5 , 5,1,6 ,89 108 75 122 103 136
75 122 103 136 75 122

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
75 122 75 122 75 122
150 150 150 150 150 1505,1,7 , 5,1,8 , 5,1,9 ,103 136 117 136 89 94
89 94 89 108 103 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 



 

 

126 

 

( ) ( ) ( )
75 122 89 108 89 108
150 150 150 150 150 1505,1,10 , 5,1,11 , 5,1,12 ,89 108 75 122 117 136
117 136 117 136 75 122

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
75 108 75 94 75 94
150 150 150 150 150 1505,1,13 , 5,1,14 , 5,1,15 ,103 136 89 136 103 122
89 122 103 122 89 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
75 108 103 136 89 122
150 150 150 150 150 1505,1,16 , 5,1,17 , 5,1,18 ,89 122 75 108 75 108
103 136 89 122 103 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
103 136 89 122 103 122
150 150 150 150 150 1505,1,19 , 5,1,20 , 5,1,21 ,89 122 103 136 75 94
75 108 75 108 89 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
103 122 89 136 89 136
150 150 150 150 150 1505,1,22 , 5,1,23 , 5,1,2489 136 75 94 103 122
75 94 103 122 75 94

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

Arc [1 6]: 

( ) ( ) ( )
117 150 131 150 117 150
89 136 89 136 103 1081,6,1 , 1,6,2 , 1,6,3 ,75 75 75 75 75 75
103 108 103 122 89 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
131 150 89 136 89 136
103 122 117 150 131 1501,6,4 , 1,6,5 , 1,6,6 ,75 75 75 75 75 75
89 136 103 108 103 122

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
89 136 89 136 103 122
103 108 103 122 131 1501,6,7 , 1,6,8 , 1,6,9 ,75 75 75 75 75 75
117 150 131 150 89 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
103 122 89 122 103 136
89 136 117 150 117 1501,6,10 , 1,6,11 , 1,6,12 ,75 75 75 75 75 75
131 150 103 136 89 122

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
117 136 89 122 103 136
103 150 103 136 89 1221,6,13 , 1,6,14 , 1,6,15 ,75 75 75 75 75 75
89 108 117 150 117 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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( ) ( ) ( )
117 136 103 108 103 108
89 108 117 150 89 1361,6,16 , 1,6,17 , 1,6,18 ,75 75 75 75 75 75
103 150 89 136 117 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
103 150 117 150 103 150
117 136 103 136 89 1081,6,19 , 1,6,20 , 1,6,21 ,75 75 75 75 75 75
89 108 89 122 117 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
117 150 89 108 89 108
89 122 103 150 117 1361,6,22 , 1,6,23 , 1,6,2475 75 75 75 75 75
103 136 117 136 103 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

Arc [6 7]: 

( ) ( ) ( )
112 145 126 145 98 145
84 131 84 131 84 1036,7,1 , 6,7,2 , 6,7,3 ,70 70 70 70 70 70
98 103 98 117 112 131

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
112 145 98 145 112 145
84 117 112 131 98 1316,7,4 , 6,7,5 , 6,7,6 ,70 70 70 70 70 70
98 131 84 103 84 117

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
112 145 126 145 84 131
98 103 98 117 112 1456,7,7 , 6,7,8 , 6,7,9 ,70 70 70 70 70 70
84 131 84 131 98 103

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
84 131 84 117 84 103
126 145 112 145 98 1456,7,10 , 6,7,11 , 6,7,12 ,70 70 70 70 70 70
98 117 98 131 112 131

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
98 131 98 117 98 103
112 145 126 145 112 1456,7,13 , 6,7,14 , 6,7,15 ,70 70 70 70 70 70
84 117 84 131 84 131

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
112 131 84 131 84 131
98 145 98 103 98 1176,7,16 , 6,7,17 , 6,7,18 ,70 70 70 70 70 70
84 103 112 145 126 145

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
84 103 84 117 98 131
112 131 98 131 84 1176,7,19 , 6,7,20 , 6,7,21 ,70 70 70 70 70 70
98 145 112 145 112 145

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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( ) ( ) ( )
98 117 98 103 112 131
84 131 84 131 84 1036,7,22 , 6,7,23 , 6,7,2470 70 70 70 70 70
126 145 112 145 98 145

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

Arc [7 1]: 

( ) ( ) ( )
103 136 117 136 103 136
75 122 75 122 89 947,1,1 , 7,1,2 , 7,1,3 ,150 150 150 150 150 150
89 94 89 108 75 122

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
117 136 89 94 89 94
89 108 75 122 103 1367,1,4 , 7,1,5 , 7,1,6 ,150 150 150 150 150 150
75 122 103 136 75 122

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
75 122 75 122 75 122
103 136 117 136 89 947,1,7 , 7,1,8 , 7,1,9 ,150 150 150 150 150 150
89 94 89 108 103 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
75 122 89 108 89 108
89 108 75 122 117 1367,1,10 , 7,1,11 , 7,1,12 ,150 150 150 150 150 150
117 136 117 136 75 122

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
75 108 75 94 75 94
103 136 89 136 103 1227,1,13 , 7,1,14 , 7,1,15 ,150 150 150 150 150 150
89 122 103 122 89 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
75 108 103 136 89 122
89 122 75 108 75 1087,1,16 , 7,1,17 , 7,1,18 ,150 150 150 150 150 150
103 136 89 122 103 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
103 136 89 122 103 122
89 122 103 136 75 947,1,19 , 7,1,20 , 7,1,21 ,150 150 150 150 150 150
75 108 75 108 89 136

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
103 122 89 136 89 136
89 136 75 94 103 1227,1,22 , 7,1,23 , 7,1,24150 150 150 150 150 150
75 94 103 122 75 94

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

Arc [1 8]: 

( ) ( ) ( )
117 150 131 150 117 150
89 136 89 136 103 1081,8,1 , 1,8,2 , 1,8,3 ,103 108 103 122 89 136
75 75 75 75 75 75

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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( ) ( ) ( )
131 150 89 136 89 136
103 122 117 150 131 1501,8,4 , 1,8,5 , 1,8,6 ,89 136 103 108 103 122
75 75 75 75 75 75

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
89 136 89 136 103 122
103 108 103 122 131 1501,8,7 , 1,8,8 , 1,8,9 ,117 150 131 150 89 136
75 75 75 75 75 75

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
103 122 89 122 103 136
89 136 117 150 117 1501,8,10 , 1,8,11 , 1,8,12 ,131 150 103 136 89 122
75 75 75 75 75 75

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
117 136 89 122 103 136
103 150 103 136 89 1221,8,13 , 1,8,14 , 1,8,15 ,89 108 117 150 117 150
75 75 75 75 75 75

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
117 136 103 108 103 108
89 108 117 150 89 1361,8,16 , 1,8,17 , 1,8,18 ,103 150 89 136 117 150
75 75 75 75 75 75

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
103 150 117 150 103 150
117 136 103 136 89 1081,8,19 , 1,8,20 , 1,8,21 ,89 108 89 122 117 136
75 75 75 75 75 75

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
117 150 89 108 89 108
89 122 103 150 117 1361,8,22 , 1,8,23 , 1,8,24103 136 117 136 103 150
75 75 75 75 75 75

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

Arc [8 9]: 

( ) ( ) ( )
112 145 126 145 98 145
84 131 84 131 84 1038,9,1 , 8,9,2 , 8,9,3 ,98 103 98 117 112 131
70 70 70 70 70 70

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
112 145 98 145 112 145
84 117 112 131 98 1318,9,4 , 8,9,5 , 8,9,6 ,98 131 84 103 84 117
70 70 70 70 70 70

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
112 145 126 145 84 131
98 103 98 117 112 1458,9,7 , 8,9,8 , 8,9,9 ,84 131 84 131 98 103
70 70 70 70 70 70

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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( ) ( ) ( )
84 131 84 103 84 117
126 145 98 145 112 1458,9,10 , 8,9,11 , 8,9,12 ,98 117 113 131 98 131
70 70 70 70 70 70

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
98 131 98 117 98 103
112 145 126 145 112 1458,9,13 , 8,9,14 , 8,9,15 ,84 117 84 131 84 131
70 70 70 70 70 70

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
112 131 84 131 84 131
98 145 98 103 98 1178,9,16 , 8,9,17 , 8,9,18 ,84 103 112 145 126 145
70 70 70 70 70 70

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
84 117 84 103 98 131
98 131 112 131 84 1178,9,19 , 8,9,20 , 8,9,21 ,112 145 98 145 112 145
70 70 70 70 70 70

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
98 117 98 103 112 131
84 131 84 131 84 1038,9,22 , 8,9,23 , 8,9,24126 145 112 145 98 145
70 70 70 70 70 70

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

Arc [9 1]: 

( ) ( ) ( )
103 136 117 136 103 136
75 122 75 122 89 949,1,1 , 9,1,3 , 9,1,4 ,89 94 89 108 75 122
150 150 150 150 150 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
117 136 89 94 89 94
89 108 75 122 103 1369,1,4 , 9,1,5 , 9,1,6 ,75 122 103 136 75 122
150 150 150 150 150 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
75 122 75 122 75 122
103 136 117 136 89 949,1,7 , 9,1,8 , 9,1,9 ,89 94 89 108 103 136
150 150 150 150 150 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
75 122 89 108 89 108
89 108 75 122 117 1369,1,10 , 9,1,11 , 9,1,12 ,117 136 117 136 75 12
150 150 150 150 150 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
75 94 75 108 75 108
89 136 103 136 89 1229,1,13 , 9,1,14 , 9,1,15 ,103 122 89 122 103 136
150 150 150 150 150 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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( ) ( ) ( )
75 94 103 136 89 122
103 122 75 108 75 1089,1,16 , 9,1,17 , 9,1,18 ,89 136 89 122 103 136
150 150 150 150 150 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
103 136 89 122 103 122
89 122 103 136 75 949,1,19 , 9,1,20 , 9,1,21 ,75 108 75 108 89 136
150 150 150 150 150 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( ) ( ) ( )
103 122 89 136 89 136
89 136 75 94 103 1229,1,22 , 9,1,23 , 9,1,2475 94 103 122 75 94
150 150 150 150 150 150

arc arc arc
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

Comparing this example system to the example three product system with idle only in Section 

5.3.2.1, makes it apparent that the output from the algorithm can quickly be overwhelmed by the 

sheer magnitude of data as the number of products increase.  The three product system has two 

regions per arc while the four product system has 24 regions per arc.  Currently the amount of 

CPU time for the algorithm to determine stable regions for the production system increases 

significantly with each increase in the number of products.   
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6 Product Sequencing Algorithm 

6.1 Introduction 

Over the past few decades there has been much research dedicated to understanding and 

implementation of Just-In-Time (JIT) manufacturing (also known as Lean Manufacturing, Toyota 

Production System, or pull production) principles for various manufacturing systems.  When 

examining a mixed-model assembly line, it is assumed that there are a variety of product models 

being assembled but all products will have similar characteristics to some degree.  Such an 

assembly line allows the manufacturer to better meet the often diverse customer demand.   

 

Proper product sequencing for a typical JIT system will yield a sequence in which a level load for 

each process in the line occurs as well as a constant rate of usage for each part on an assembly 

line.  Monden [15] was one of the first to begin work in the area of level scheduling with the 

development of the Goal Chasing I and II methods.  The goal of these methods is to minimize the 

variation on each process in the line and the variation on the speed of consuming each product at 

each step of the sequence.  A level schedule (minimized usage rate variation) will be one in which 

each product is scheduled to be produced in a direct proportion to the level of demand for each 

product.   

 

Miltenburg [25] continued the work of Monden [15] over many years and incorporated a measure 

of the level of product intermixing, called the usage rate variation.  The deviation between actual 

usage rate and the desired usage rate of products was minimized to determine the best sequence.  

Miltenburg [38-40, 66, 81-84] proposed both algorithms and heuristics to solve this scheduling 

problem.  This initial work assumed that setup times between differing products were negligible. 

 

McMullen [54] continued the work of Miltenburg by adding a second objective of minimizing the 

number of setups.  A weighting method was used to reach both objectives simultaneously, 

initially using a Tabu Search algorithm.  In subsequent articles McMullen [55-59] proposed using 

Simulated Annealing, Genetic Algorithm, Kohonen Self-Organizing Map, an Ant Colony 

approach and an efficient frontier approach to solve the two objectives simultaneously. 

 

Much of the existing research attempts to optimize the tradeoff between the number of setups to 

change from product to product and the smoothness of the sequence.  The ideal sequence is one in 

which the usage rate variation and the number of setups are minimized for the sequence.    
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Pattern production has and continues to be researched and has been shown to be a very efficient 

method for production control of manufacturing systems with minimal setups between products.  

Signal Kanban production control has also been researched and implemented on the 

manufacturing floor as a method of controlling production when significant setups are present, 

although Toyota Georgetown no longer uses Signal Kanbans for production control.  The 

previous work of Seidman and Holloway [7-8] analyzed a Signal Kanban with bounded demand 

fluctuation.  The system proved to be stable for a given reorder point such that no backordered 

products ever occurred.  A pattern production system was also examined and shown to be stable 

within a given range of system parameters.  In [85], Holloway demonstrated that “fixed fill level” 

Signal Kanban policies are preferred to “fixed batch size” policies, because of potential 

problematic long-term cyclic behaviors in the “fixed batch size” policies.  (Note that the systems 

in the dissertation are “fixed-fill,” where production always fills a buffer to a specific level, 

instead of a “fixed batch size” refill.) 

 

The purpose of this research is to lay the foundation for a sequencing algorithm that will function 

along a continuum between the two worlds of Signal Kanban production control and Pattern 

Production control.  This general sequencing algorithm will replicate production sequences that 

would be present in either production control method depending on the parameters of the system.  

A signal kanban system can be mimicked by the sequencing algorithm by setting the buffer 

threshold levels at a mid-buffer level while a pattern production system can be mimicked by 

setting the buffer threshold levels to the maximum levels.  This research also incorporates the 

common real-world problem of significant setups between products that may vary depending 

upon the production sequence.  This method is not as computationally complex as the stability 

algorithm and can therefore be applied production systems with many products. 

 

The product sequencing method is intended to be implemented for a JIT factory floor as an on-

line production sequencing system.  The algorithm is intended to be integrated into the production 

control system in order to receive real-time feedback on the production state and buffer state of 

each product. 

6.2 Production System Model 

The production system being considered is one in which there are multiple products with 

potentially different production rates and usage rates and significant sequence dependent setups 
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between products.  The production system is assumed to be a single stage system that can have 

idle time, see Figure 6.1.  The system functions such that customer orders come into a “black 

box” of the sequencing algorithm as well as product information (current production conditions, 

buffer size and fullness levels, production and usage rates, setup costs, etc.).  The algorithm 

processes the information and outputs a product to be produced next, which is passed to the 

production stage.  The algorithm is intended to be updated and run after each product refill, where 

the sequence is based on real-time feedback of the system parameters.  An alternative use is to 

run the algorithm to generate a short sequence of products at a given time interval, such as 

sequencing a day’s worth of production determined each morning based on the current state of 

the production system.  

 

The algorithm models a production system in which production occurs in batches, the batch size 

is the quantity of products required to fully replenish the buffer to a full level.  When the product 

batch is completed, it is stored in Finished Goods Inventory (FGI) until a customer order is 

received and the required number of products are removed from FGI to meet the order.  Buffer 

thresholds  (BFthreshold,i) are defined for each product to signal the algorithm that the given product 

needs to be replenished.  Only products at or below the buffer threshold are considered by the 

algorithm and if all products are above the buffer thresholds, the production system is idle, to 

replicate a lean system that only produces when customer demand is present. 

 

The production system is assumed to behave in a deterministic manner such that the demand or 

usage rate (URi) can be represented as a constant value that does not change over time.  The 

production rate (PRi) is also assumed to be a constant value that does not change with time.  The 

setup costs (cost(i,j)) used by the system are assumed to be a constant value, but may be 

dependent upon the previous product refilled.  This means that the changeover cost to switch 

from product i to product j does not have to be equivalent to the cost to switch from product i to 

product k.      
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6.3 Time Normalized Method 

The method proposed for this research is one in which the system is time normalized in such a 

way that buffer levels and changeover costs are converted into units of real world time units.  The 

first time conversion is to calculate the time to crash, tcrash,i(t), which is the amount of time until 

the buffer of a given product is depleted.  The time to crash is calculated by dividing the buffer 

level (number of products), BFi(t), by the demand or usage rate (number of products consumed 

per time unit), URi. 

,
( )

( ) i
crash i

i

BF t
t t

UR
=                   (1) 

 

As the time progresses into the future, the time to crash for all products will decrease an 

equivalent amount of time units.  When product i is refilled, the time to crash reaches the 

maximum value based on a full buffer which is given by the following equation: 

 

i

i
icrash UR

BF
t max,

max,_ =                 (2) 

 

Machine
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Algorithm 

A
BFmax,A 

BFthres,A 
B
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Production Sequence: 
ABACAB… 

Figure 6.1: Production System Model 
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From this equation it is obvious that the time to crash increases as the usage rate decreases or with 

an increase in the size of the buffer.  A product with a low usage rate and small buffer could have 

an equivalent time to crash to a product that has a large buffer and high usage rate.  Note that this 

term is not a function of time, but rather a constant term based on the parameters of product i. 

 

The second time conversion is to determine the time required to refill the buffer of each product, 

trefill,i(t).  The refill time is calculated by dividing the number of products missing from the buffer 

by the difference between the production rate PR and the usage rate of product i. 

 

max,
,

( )
( ) i i

refill i
i i

BF BF t
t t

PR UR
−

=
−

       (3) 

 

The maximum refill time occurs when the buffer is empty, which causes the equation to become 

the following: 

max,
_ max,

i
refill i

i i

BF
t

PR UR
=

−
     (4) 

 

Similarly to the time to crash, the refill time increases with a decrease in production rate or usage 

rate, or an increase in the size of the buffer.  Also two products with different production rates 

and buffer sizes could have equivalent times to refill.  Also similar to the tcrash_max,i, this term is 

not a function of time but rather a constant term based on the parameters of product i. 

 

A plot of the time to crash versus time to refill can be constructed, assuming a constant usage rate 

and production rate, as shown in Figure 6.2.  A straight line can be drawn between the maximum 

time to crash value tcrash_max,i, and the maximum time to refill value trefill_max,i, for each product i.  

At any point in time the product buffer level will be located somewhere along (the solid dot) this 

line that connects a full buffer on the left end with an empty buffer on the right end.  As seen in 

Figure 6.2, each line represents the characterization of a different product based upon the buffer 

size, production rate, and the usage rate.  As products are consumed, the product state (the dot) 

will shift to the right and when the product is refilled, the state will be at the intercept with the 

vertical axis. 
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Figure 6.2: Plot of Refill Time versus Time to Crash 

Note: Each line represents a different product. 

 

The slope of the line for a given product can be calculated by using the two endpoints of the line 

to determine the “rise” (tcrash_max,i,) divided by the “run” (trefill_max,i,) of the line.  From Equations 2 

and 4: 

max,

_ ,

max,_ ,

0

0

i

crash max i i
i

irefill max i

i i

BF
t UR

m
BFt

PR UR

⎛ ⎞
−⎜ ⎟

⎝ ⎠= =
⎛ ⎞

− ⎜ ⎟−⎝ ⎠

             (5) 

 

Equation 5 will simplify to: 

i i
i

i

PR URm
UR
−

= −               (6) 

 

From the plot above, it is apparent that the maximum time to crash occurs when the time to refill 

is equal to zero, therefore if , 0refill it = , then 

( ) max,
, 0 i

crash i
i

BF
t

UR
=               (7) 

 

By combining Equations 6 and 7 into the slope-intercept equation of a line (y = mx + b) where 

the time to crash is a function of the time to refill, also where 

 

, ,( )crash i refill it t y=  

and 

tim
e 

to
 c

ra
sh

 

time to refill
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max,
, (0) 0 ii i

crash i
i i

BFPR URb t
UR UR
−

= = − × + . 

 

The equation for the tcrash,i(trefill,i) of a given product i, as a function of time to refill, becomes the 

following equation: 

max,
, , ,( ) i i i

crash i refill i refill i
i i

BF PR URt t t
UR UR

−
= −      (8) 

 

6.3.1 Lemma #1 

Lemma: 

For each product i, if the production system is not producing product i over time period 

[t, t + Δt], then 

, ,( )crash i crash it t t t t+ Δ = − Δ . 

 

Proof: 

This can be proven by considering some time Δt.  This Δt time is in time units and if 1t t t= +Δ  

where t is the initial time and the t1 is the final time.  The buffer of any product would be 

decreased according to the following equation: 

 

( ) ( )1i i iBF t BF t UR t= − ×Δ         (9) 

 

Equation 9 can be reorganized to the following equation for all products: 

 

( ) ( )1i i

i

BF t BF t
t

UR
−

Δ =                (10) 

 

This can be further reorganized to the following: 

 

( ) ( )1i i

i i

BF t BF t
t

UR UR
Δ = −      (11) 
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Where 
( )i

i

BF t
UR

 is the tcrash,i at time t, which allows Equation 11 to be simplified to the following 

equation: 

( ) ( ), , 1crash i crash it t t t tΔ = −     (12) 

 

Which is equivalent to 

 

, 1 ,( ) ( )crash i crash it t t t t= − Δ ,     (13) 

 

where 1t t t= +Δ .  Therefore the time to crash for all products is decreased an equal amount Δt, as 

long as the product is not being refilled.  If a product is refilled, the time to crash simply becomes 

equal to Equation 2, the maximum value of the time to crash. 

□ 

6.3.2 Lemma #2 

Lemma: 

For each product i, if the production system is not producing product i over time period 

[t, t + Δt], then 

, ,( ) i
refill i refill i

i i

UR
t t t t t

PR UR
+ Δ = + Δ

−
. 

Proof: 

The proof begins by substituting t + Δt into Equation 3. 

 

( )

( )

max,
,

max,

max,

( )
( ) i

refill i
i i

i i i

i i

i i i

i i i i

BF BF t t
t t t

PR UR

BF BF t UR t
PR UR

BF BF t UR t
PR UR PR UR

− − Δ
+ Δ =

−

− + ×Δ
=

−

− ×Δ
= +

− −

 

 

Given that max,
,

( )
( ) i i

refill i
i i

BF BF t
t t

PR UR
−

=
−

, then 
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, ,( ) ( ) i
refill i refill i

i i

UR
t t t t t t

PR UR
+ Δ = + Δ

−
            (14) 

□ 

6.4 Quantifying Goodness of Products 

The sequencing algorithm evaluates all products that need replenishment and selects the next 

product to be replenished based upon a goodness calculation.  The goodness calculation is 

computed for each product i, with an equation of five terms that are summed together and the 

product with the highest value is selected to be the next product in the production sequence.  This 

section will provide an in depth examination of the goodness equation, first by defining key 

variables and then defining the terms of the equation, followed by a discussion of the behavior of 

the goodness equation. 

6.4.1 Key Variables 

• BF_thresholdi: the buffer level at which product i must be at or below to signal the need 

for replenishment.  This value is a percentage.  When product i drops below the 

threshold, the algorithm will evaluate the product as possibly one of the next products in 

the production sequence.  

• BFi(t): buffer level of product i at time t. 

• BFmax,i: maximum buffer level of product i. 

• URi: the usage rate of product i. 

• PRi: the production rate of product i. 

• prev_product: the last product that was replenished by the production system at time t. 

• COST(prev_product,i): the cost of changing from prev_product to product i, in units of 

time. 

• la_time: variable that stores the size of the lookahead window in units of time, which is 

how much time into the future the lookahead goodness will be calculated for all possible 

sequences.  

• MUR: usage rate variation as calculated using equation developed by Miltenburg 

(Equation 1 in Chapter 2). 

• prod_thres: variable that stores set of products that are at or below the BF_thresholdi. 

• seq(k): set of all previous products for all previous stages, k, of production sequence. 
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• prod_selection: variable that stores which product is selected as the next product to be 

sequenced by the goodness calculations. 

• Goodness Equation Weighting Factors: These factors are set by the user to manipulate 

the behavior of the goodness equation.  The user defines the initial value of the factors in 

the range of [0,1] for each factor and sum of all factors is equal to one.  The algorithm 

will normalize each factor based on the current state of the system.  The corresponding 

normalized goodness equation term is equal to the initial weighting factor value.  The 

normalization is implemented by the algorithm to prevent one term from dominating the 

goodness equation. 

o α: the weighting factor to control the “time to crash” term which is the time to 

reach an empty buffer. 

o β: the weighting factor to control the “time to refill” term which is the time 

required to completely refill the buffer from the current buffer level. 

o γ: the weighting factor to control the “time in queue" term which is the time that 

the product has been at or below the buffer threshold. 

o ε: the weighting factor to control the “changeover cost” term which is the time 

required to switch from the previous product to the current product. 

o η: the weighting factor to control the “usage rate variation” term as calculated 

using the equation developed by Miltenburg. 

6.4.2 Terms of the Goodness Equation 

The goodness equation contains five terms and each term has a weighting factor associated with 

the given term, the terms are: the time to crash, time to refill, time in queue, changeover cost, and 

usage rate variation.   

 

The first term of the goodness equation is the “time to crash” term, which is a function of the 

usage rate and the buffer level of product i at time t, and has a weighting factor of α.  This term is 

in units of time and it is a calculation of how much time until the buffer of product i is completely 

exhausted.  The term is negative because selection of a product with a large time to crash is less 

desirable than selecting a product with a small time to crash. 

 

( )
"   " i

i

BF t
time to crash

UR
α= −                   (15) 
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The “time to refill” term is the second term of the goodness equation and is a function of the 

production rate, the usage rate, maximum buffer size, and the buffer level of product i at time t.  

The time to refill term has a weighting factor of β.  This term is in units of time and is a 

calculation of how much time is required to refill product i given the current buffer level at time t. 

 

max ( )"   " i

i i

BF BF ttime to refill
PR UR

β
−

=
−

                       (16) 

 

The “time in queue” is the third term in the goodness equation and is in units of time with a 

weighting factor of γ.  This term is a function of the time when product i crosses the buffer 

threshold, BFthreshold,i, usage rate, maximum buffer size, current buffer level, and buffer threshold 

level . 

 

max, ,

,

0 if ( )
"   " i i threshold i

threshold i

BF t BF BF
time in queue

tγ

> ×⎧⎪= ⎨ ×⎪⎩
            (17) 

 

The time since a given product crosses the buffer threshold, tthreshold,i, is calculated using the usage 

rate, maximum buffer size, current buffer level, and buffer threshold level of the given product.  

Note that the tthreshold,i calculation is only valid if the product is at or below the buffer threshold 

level, otherwise the tthreshold,i is zero. 

 

, max,
,

( )threshold i i i
threshold i

i

BF BF BF t
t

UR
× −

=               (18) 

 

The fourth term of the goodness equation is the “changeover cost” which has a weighting factor 

of ε.  This term is independent of all system parameters except the changeover cost, which is the 

cost to change from the previous product prev_product to product i.  This term requires the 

changeover cost to be defined in units of time.  Note that this is a negative term because the 

selected product ideally will minimize changeover cost. 

 

" " ( _ , )changeover cost COST prev product iε= −          (19) 
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The fifth and final term of the goodness equation is the “usage rate variation” term as calculated 

using the equation developed by Miltenburg (Equation 1 in Chapter 2), which uses a weighting 

factor of η.  This is a dimensionless term and is the only term in the goodness equation that is not 

in time units.  This term is a function of the sequence stage number, k, usage rate of product i, the 

cumulative usage rate for all products, and the previous products in the sequence, seq (if sequence 

is longer than one stage).  This term is to be minimized in a production sequence, therefore the 

term is negative. 

 

1
" " ( , , , )

I

MUR i i
i

usage rate variation f UR UR k seq MURη
=

= = −∑                (20) 

 

The different terms of the goodness equation change over time based on product usage and the 

previous product produced, assuming the production system is being examined at a time of 

choosing the next product to produce.  The following relationships should be noted (see Figure 

6.3 below for a graphical representation of these relationships): 

 

1. “time to crash” term increases to a maximum value of zero with a slope of α (as follows 

from Lemma #1).  The minimum value of the time to crash occurs with a full buffer and 

is calculated max,i

i

BF
UR

α− . 

2. “time to refill” term increases with time with a slope of i

i URi

UR
PR

β
−

 (as follows from 

Lemma #2).  The maximum value of the time to refill term occurs when the buffer is 

empty and is calculated max,i

i URi

BF
PR

β
−

. 

3. “time in queue” term increases with time with a slope of γ if the product is currently in 

the queue, meaning that the product is below BFthreshold,i.  The maximum value of the time 

in queue term occurs with an empty buffer and is calculated , max,threshold i i

i

BF BF
UR

γ
×

. 

4. “changeover cost” term does not change with respect to time, the term is dependent only 

upon the previously produced product and product i that is being considered by the 

goodness equation. 
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5. “usage rate variation” term does not change with respect to time, the term is dependent 

upon the cumulative usage rate for all products, the previously produced product 

sequence, and product i that is being considered by the goodness equation. 

 

6.4.3 Weighting Factors of the Goodness Equation 

Each term of the goodness equation has a weighting factor that allows the user to control the 

performance of the algorithm.  The goodness equation is a function of five weighting variables 

and each term of the equation can be manipulated by a change in these weighting variables.  The 

ability to weight the importance of each term of the goodness equation allows the algorithm to 

synthesize various known and proven lean production control systems.  For instance, placing all 

the priority on the “time in queue” term of the equation will replicate a Signal Kanban system, 

where the sequencing will be completely determined by the order of products falling below their 

thresholds. 

 

The weighting factors α, β, γ, ε, and η will change each respective term of the goodness equation.  

The slope of each term will be increased or decreased with an increase or decrease in the 

respective weighting factor.  All weighting factors will maintain the following constraints at all 

times. 

0 α 1ini≤ ≤  

system time
t 

tim
e 

un
its

 
BFi(t) =  buffer BFi(t) = 0 

time to crash
m = α 

time to refill
m = β time in queue

m = γ 

BFi(t) = BFmax,i 

Figure 6.3: Plot of Example Goodness Equation Terms 
Note: The terms are plotted over time, starting with a full buffer and ending with an empty buffer.
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0 β 1ini≤ ≤  

0 γ 1ini≤ ≤  

0 1iniε≤ ≤  

0 1iniη≤ ≤  

α β γ 1ini ini ini ini iniε η+ + + + =  

 

Under these conditions, a maximum slope of each term occurs when the weighting factor is equal 

to one.  This means that the maximum slope of the “time to crash” is one, as well as the “time in 

queue” term.  The maximum slope of the “time to refill” term is i

i URi

UR
PR −

, when β equals one.  

The changeover cost and usage rate variation terms are piecewise horizontal lines with a 

maximum value of ε or η, respectively. 

 

The importance of the weighting factors is that it allows the user to determine which system 

parameters can potentially choose the next product to be refilled.  For example consider two 

products with equal usage rates, buffer sizes, and buffer thresholds but the production rate of 

product B is half of the rate of product A.  If β is very small in comparison to α and/or γ, then the 

two products would appear as equivalent products to the algorithm.  This is because both the 

“time to crash” and “time in queue” terms are not functions of the production rate. 

 

When α is very large (~1) when compared to β and γ, two products will be considered equivalent 

if the ratios of buffer size to usage rate is equal for both products, assuming both were refilled at 

exactly the same time (trefill,A= trefill,B).  When β is very large compared to α or γ, two products will 

be considered as equivalent products if the ratios of usage rate to production rate are equal, again 

assuming both were refilled at exactly the same time (trefill,A= trefill,B).  Similarly γ heavy products 

are considered equivalent products if the buffer threshold is crossed at the same time for both 

products.  This means the products could have different usage and production rates, buffer sizes, 

and buffer thresholds. 

 

Note that the initial weighting factor (Xini) is within a range of zero to one, but each factor is 

normalized (X) prior to being used in the goodness equation.  This allows the algorithm to more 

accurately consider each term of the equation because the weighting factors are normalized such 

that the maximum value of each term is no larger than one for all products.   
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Consider the time to crash and the changeover cost terms for a product that has a large buffer and 

slow usage rate.  This implies that the time to crash term is very large, perhaps a value in the 

hundreds of hours and assume that the changeover term is less than an hour.  Without a 

normalized weighting factor, the time to crash term will dominate the changeover term and the 

changeover cost will not affect the sequence until the time to crash is less than an hour.  

Therefore each term of the goodness equation is normalized to a value of one to increase the 

effectiveness of each factor. 

 

The normalized coefficient is determined first by calculating the maximum value of the term that 

the coefficient will be applied to (i.e. time to crash, time to refill, time in queue, changeover cost, 

or Miltenburg’s usage rate variation).  The maximum value of each goodness equation term is 

calculated for the products contained in the prod_thres, which is the set of products that are 

below the buffer threshold, BFthrewshold,i.  The initial value of the weighting factor is then divided 

by the corresponding normalizing coefficient variable and the new normalized weighting factor 

value is used for the goodness calculations. 

 

_max( _ _ )
ini

i prod threstime to crash
α

α
∈

=  
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i prod threstime to refill
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β
∈

=  
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i prod threstime in queue
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γ
∈

=  
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iniε

ε =  

ini

prevMUR
η

η =  

6.5 Method of Product Selection 

The goodness equation quantifies all products at or below the buffer threshold either for the 

current state of the system or for a future product sequence when lookahead time is considered.  

The products are ranked from highest to lowest value of goodness equation and the highest 

valued product is selected as the next product or the first product of the highest valued future 

sequence is selected as the next product.  Note that the goodness value is relative based on the 
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current state of the products and system and is not an absolute calculation.  The goodness 

equation is shown below, note that the time to crash, changeover cost, and usage rate variation 

terms are negative.  The negative sign is used because products that have high values of these 

terms is less desirable to be the next product than a product with lower values of time to crash, 

changeover cost, and usage rate variation. 

 

goodnessi(t) = 

 max,
,( ) ( _ , )i ii

threshold i current
i i i

BF BFBF t t COST prev product i MUR
UR PR UR

α β γ ε η
−

− + + − − −
−

     (21) 

 

The following statements characterize the two methods used by the algorithm, first without 

lookahead and second with lookahead, to select a product to be sequenced.  The state of the 

production system is described as a function of time by the following: 

 

max, ,( ) ( , , , , , , , )i i i threshold i i iS t UR BF BF BF PR UR COST seq=              (22) 

6.5.1 Current State Decision Statement 

Given a decision time t and current state of the production system S(t), select the product i that is 

at or below BFthreshold,i that has the maximum goodness equation value when calculated with the 

normalized weighting factors. 

6.5.2 Lookahead State Decision Statement 

Given a decision time to, a lookahead time la_time, and current state of the production system 

S(to), a product sequence tree (see Figure 6.4) is generated of all possible production sequences 

that do not experience empty buffers, SEQ(S(to),la_time), from the current time to to the first 

decision time greater than to + la_time.  Where each production sequence contained in 

SEQ(S(to),la_time) begins with a product that is below BFthreshold,i at time to.  All sequence tree 

branches represent a product being selected to be produced at decision time tfuture where the 

system is characterized by S(tfuture). 

 

Product i is selected to be the next product to be produced using lookahead goodness criteria if 

product i is the first product of seq_star, where seq_star is the sequence in SEQ(S(to),la_time) 

with the highest average goodness value over the entire sequence branch.   An example in Section 

6.6 is provided to clarify the method for selecting a product with lookahead. 
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Note that Figure 6.4 is a conventional sequencing tree for system of four products and it shows all 

possible branches that originate from the current state of the system at time to.  At time to there are 

only branches for choosing product A or B, as those are the only products with inventory levels 

below the threshold at time to in this example. 

6.5.2.1 Alternative Lookahead State Decision Method 

The averaged goodness values over the steps of sequence branch could potentially obscure a low 

goodness value in an otherwise high average sequence.  An alternative lookahead selection 

method is proposed in which the sequence with the maximum of all minimum goodness values 

for all sequences over the lookahead time is selected as the”best” sequence.  The first product of 

the “best”sequence is selected as the next product in the production sequence. 

 

Consider two sequences where each sequence has five stages.  Sequence A has goodness values 

of 10 for four stages and a goodness value of one for one stage, with an average goodness value 

of 8.2 for the sequence.  Sequence B has a goodness value of 8 for all five stages and average 

value of 8 for the entire sequence.  Selecting a sequence based on the average goodness will 

select sequence A.  Consider selecting a sequence with the maximum of the minimum goodness 

value of all the sequences as an alternative selection method.  This alternative method would 

select sequence B and avoid selecting a sequence with a low value. 

6.6 Example of Goodness Equation with Lookahead 

The use of lookahead time does not change the goodness equation behavior or use of each 

term/weighting factor.  The use of lookahead requires all potential sequences into the future to be 

prev_product
at time to 
and node no

A
 
n1

B C D

C B D

A C D
B 
 
n2

C
A D

D

Figure 6.4: Sequencing Tree 
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considered and the goodness at each stage is calculated and averaged, although the final average 

goodness over the sequence is considered when selecting the next product to be sequenced at time 

to.  Each potential sequence is generated by updating the state of the system S(tfuture) and 

considering all products that are at or below the buffer threshold level to generate all possible 

sequence branches until the lookahead time is reached.  The goodness is calculated at each stage 

of the sequence but the average goodness for the entire branch is used to rank the product 

sequences.   The “best” product that is selected as the next product is the first product of the 

sequence with the highest average goodness value at the lookahead time.   

 

Consider the example system in Figure 6.5, which is a production system that consists of four 

products, A, B, C, and D.  Note that the horizontal length of each product box represents the time 

to refill the respective product as time progresses from left to right.  The goodness is calculated 

initially at time to for products A and B (at each diamond) because these are the only products at 

or below the buffer threshold.  The product with the highest goodness will be selected as the next 

product to be sequenced, if lookahead is not being considered.  Note that the lookahead window 

spans some time into the future, denoted by the dotted box.  The other products C and D in the 

lookahead window cross the buffer threshold at a future time, at which point the products are then 

considered in the future goodness calculations (at each dot).  When lookahead is considered, the 

goodness is calculated at each stage of the sequence but all the goodness values are averaged in 

order to rank the product sequences.  The sequence with the highest goodness is selected, such as 

A-B-C-D, where product A will be selected as the next product to be sequenced.   
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Figure 6.5: Sequencing Choices Over Time 

 time = to 



 

 

150 

 

Consider another hypothetical example to be evaluated using lookahead in which three products 

A, B, and C are below the buffer threshold and product D was just refilled.  The goodness 

equation returns a goodness value of 9 for product A, 9 for product B, and 9 for product C when 

each respective product is the first product to be refilled in the lookahead sequence.  The 

lookahead time value has not been reached yet, so the lookahead equation is used again to 

consider the next product in the lookahead sequence.  After refilling product A in the D-A branch 

in the product sequence tree shown below, product B or C can be refilled.  The goodness values 

are calculated for these products and a value of -1 is found for product B and a value of 1 for 

product C.  In the D-B branch the goodness values are calculated to be 6 for product A and a 

value of 4 for product C.   In the D-C branch the goodness values are calculated to be -1 for 

product A and a value of -1 for product B.  Given the system parameters, the lookahead time is 

reached after refilling the second product, so the sequences are sorted and ranked to maximize the 

final goodness values.  The lookahead sequence D-B-A is selected as the best sequence with an 

average goodness value of 7.5, therefore product B is the next product to be refilled.  Note that 

the alternative lookahead selection method of maximizing the minmum value would make the 

same selection. 

 

 
Figure 6.6: Product Sequence Tree 

 

The advantage of lookahead is that the sequencing algorithm can look into the future to avoid 

dead-end branches in the product sequence tree.  In this example, consider what would happen if 

product B has a very high usage rate and small buffer.  After the first round of goodness 

calculations, all products are equal.  The differences between the products is not apparent until 

the second round of goodness calculations which returns very low goodness values for the D-A 
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and D-C branches.  This implies that the buffer of product B is depleted and the system will crash 

if these branches are chosen. 

6.7 Sequencing Examples 

This section will provide examples and simulated results of the goodness sequencing method for 

various hypothetical production systems and examine the effects of varying different parameters.  

An explanation of the implementation and source code is provided in Appendix II. 

6.7.1 Three Product Production System 

Consider a system with three products with the node/arc network show below and the following 

parameters for each product: setup time = 5 time units, production rate = 10 products/time unit, 

usage rate = 1 product/time unit, lower threshold = 25 products, full buffer level = 100 products, 

initial buffer level = 100 products.  In this network, all product sequences may pass through the 

idle node prior to being replenished or a product can wait in a queue to enter setup directly after 

replenishment of the previous product.  All weighting factors are set equal to 0.2. 

 

 
Figure 6.7: Network Map of Three-Product System – With and Without Idle 

 

This is a very simplistic production system but will highlight the methods of the sequencing 

algorithm.  Given that all products are equal there are only two possible repeated sequences: 1–2–

3 or 1–3–2.  A plot of the first 50 steps of the sequence is below plotted as percentage of buffer 

fullness versus time. 
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Figure 6.8: Plot of Three Product Sequence 

 

From the startup time until 60 units of time, the system is idle because all products are above the 

buffer threshold level of 40 products.  The first 125 to 150 units of time are required to deplete 

the initial buffer supply and refill the buffers to reach a non-transient sequence of products 1– 2– 

3.  The output of the algorithm for this system is unaffected by the use of the lookahead function 

and weighting factors for both goodness equations. 

 

Consider doubling the usage rate of product one to two products consumed per time unit and all 

other parameters remain the same.  This system crashes within the first 85 units of time after 

startup when either product one or three is depleted before both can be refilled.  A plot of the 

sequence is below in terms of percentage of buffer fullness versus time. 
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Figure 6.9: Plot of Three Product Sequence – Product 1 Increased Usage Rate 

 

This system crash can be fixed by changing the initial buffer levels to disperse the triggering time 

of the products or by using the lookahead feature of the algorithm.  A plot of the output from the 

algorithm is below in which the initial buffers are set to 50 products for all products. 
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Figure 6.10: Plot of Three Product Sequence – Decreased Initial Buffer Levels 
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Notice in the plot above that the sequence of products appears to be random and chaotic in nature.  

Consider the output from the sequencing algorithm if the buffer threshold for product number one 

is increased to 40% from 30% and the initial buffers are all full.  The plot of the sequence output 

for this set of parameters is below.  The plot makes it apparent that the system exhibits a 

repeating pattern in the production sequence of 1– 2– 3–1 after the initial transient startup.   
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Figure 6.11: Three Product Sequence – Product 1 Higher Usage Rate and Buffer Threshold 

6.7.2 Eight Product Production System 

As the number of products in a production system increases, evaluation of production sequences 

can easily become unmanageable when evaluating with hand calculations.  This sequencing 

algorithm provides feasible results for large production systems in a more expedient manner than 

the method in Chapter 4.  Consider an eight product production system with the following 

parameters for all products: equal goodness weighting factors, buffer threshold level = 95% of 

maximum buffer levels, initial buffer level = 90% of maximum buffer levels.  The production 

rates, usage rates, and maximum buffer levels vary for each product according to the following 

matrices: 

[ ]( ) 23 90 90 23 45 45 12 23PR i =  

[ ]( ) 2 2 2 .25 .25 .25 1 1UR i =  

[ ]max ( ) 200 100 200 200 100 200 200 100BF i =  
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Figure 6.12: Plot of Eight Product Sequence without Lookahead 

 

A sequence for this system can also be found by the algorithm using the lookahead function with 

a lookahead of 25 time units.  The output sequence is plotted below for the eight product system 

using lookahead. 
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Figure 6.13: Plot of Eight Product Sequence with Lookahead 

6.7.3 Weighting Parameters 

The weighting parameters for the goodness equation and lookahead goodness equation allow the 

user to influence the output sequence from the algorithm.  The weighting parameters increase or 

decrease the effect of the time to crash, time to refill, time in queue, changeover cost, or usage 

rate variation on the goodness calculation at each step of the sequence.   

 

In order to generate the figures in this section, one weighting factor is considered to be a 

dominant factor in the goodness equation as the value varies from 0 to 1.  The dominant factor is 

considered to be variable a in the following equation.   

 

1a b+ =  

 

The other weighting factors change as the dominate factor changes ( 1b a= − ), where the sum of 

all weighting factors is always equal to one.  There are 40 equally spaced points as a varies from 

0 to 1, and a sequence of 75 stages is simulated at each data point.  As an example of how the 

weighting factors vary in the simulations in this section, consider α as the dominant factor and all 

other factors equally weighted, (i.e. 4
bβ γ ε η= = = = ).  Initially, when a = 0 and b = 1, the 

weighting factors are 0α =  and 1
4β γ ε η= = = = .  The last data point where a = 1 and b = 0, the 

weighting factors are 1α =  and 0β γ ε η= = = = . 
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An eight product production system is considered for the test cases in this section, with the only 

variant (other than the weighting factors) being whether or not lookahead is present in the 

simulation.  The production system has the following parameters for all products: buffer threshold 

level = 99.5% of maximum buffer levels, initial buffer level = 100% of maximum buffer levels.  

The production rates, usage rates, and maximum buffer levels for the products are defined 

according to the following matrices: 

 

[ ]( ) 23 90 90 23 45 45 12 23PR i =  

[ ]( ) 2 2 2 .25 .25 .25 1 1UR i =  

[ ]max ( ) 200 100 200 200 100 200 200 100BF i =  

3 3 6 3 6 3 6 3
3 3 3 6 3 3 3 3
3 6 3 3 6 3 3 3
3 3 6 3 3 6 6 3

( _ , )
3 6 3 3 3 6 6 3
3 3 6 3 6 3 3 3
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3

COST prev prod i

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

6.7.3.1 Configuration #1-A – Time to Crash Without Lookahead 

This configuration evaluates the output from the algorithm in terms of percentage of full buffer 

when α is the dominant weighting factor for the time to crash term.  The other factors β, γ, ε, and 

η are equal to one another.  The first test case for configuration number one is without the 

lookahead function.  The weighting factors are defined as functions of a and b with aα =  and.  

The maximum average buffer level is 90.4% and the minimum is 81.8%. 
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Figure 6.14: Configuration #1A Without Lookahead for Example State 

6.7.3.2 Configuration #1-B – Time to Crash With Lookahead 

This configuration maintains the same values of weighting factors for the goodness equation as in 

the configuration #1-A test case.  Lookahead time of 15 units is considered in this test case.  The 

maximum average buffer level is 87.8% and the minimum is 84.2%. 
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Figure 6.15: Configuration #1B With Lookahead for Example State 

6.7.3.3 Configuration #2-A – Time to Refill Without Lookahead 

This configuration evaluates the output from the algorithm in terms of percentage of full buffer 

when β is the dominant weighting factor for the time to refill term.  The other factors α, γ, ε, and 

η are equal to one another.  The first test case for configuration number two is without the 
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lookahead function.  The weighting factors are defined as functions of a and b with aβ =  and 

4
bα γ ε η= = = = .  The maximum average buffer level is 88.7% and the minimum is 86.0%. 
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Figure 6.16: Configuration #2A Without Lookahead for Example State 

6.7.3.4 Configuration #2-B – Time to Refill With Lookahead 

This configuration maintains the same values of weighting factors for the goodness equation as in 

the configuration #2A test case.  Lookahead time of 15 units is considered in this test case.  The 

maximum average buffer level is 88.6% and the minimum is 83.9%. 
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Figure 6.17: Configuration #2B With Lookahead for Example State 
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6.7.3.5 Configuration #3-A – Time in Queue Without Lookahead 

This configuration evaluates the output from the algorithm in terms of percentage of full buffer 

when γ is the dominant weighting factor for the time in queue term.  The other factors α, β, ε, and 

η are equal to one another.  The first test case for configuration number three is without the 

lookahead function.  The weighting factors are defined as functions of a and b with aγ =  and 

4
bα β ε η= = = = .  The maximum average buffer level is 90.4% and the minimum is 84.8%. 
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Figure 6.18: Configuration #3A Without Lookahead for Example State 

6.7.3.6 Configuration #3-B – Time in Queue With Lookahead 

This configuration maintains the same values of weighting factors for the goodness equation as in 

the configuration #3A test case.  Lookahead time of 15 units is considered in this test case.  The 

maximum average buffer level is 87.3% and the minimum is 84.9%. 
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Figure 6.19: Configuration #3B With Lookahead for Example State 

6.7.3.7 Configuration #4-A – Changeover Cost Without Lookahead 

This configuration evaluates the output from the algorithm in terms of percentage of full buffer 

when ε is the dominant weighting factor for the changeover cost term.  The other factors α, β, γ, 

and η are equal to one another.  The first test case for configuration number four is without the 

lookahead function.  The weighting factors are defined as functions of a and b with aε =  and 

4
bα β γ η= = = = .  The maximum average buffer level is 88.5% and the minimum is 83.9%. 
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Figure 6.20: Configuration #4A Without Lookahead for Example State 
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6.7.3.8 Configuration #4-B – Changeover Cost With Lookahead 

This configuration maintains the same values of weighting factors for the goodness equation as in 

the configuration #4A test case.  Lookahead time of 15 units is considered in this test case.  The 

maximum average buffer level is 89.4% and the minimum is 84.2%. 
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Figure 6.21: Configuration #4B With Lookahead for Example State 

6.7.3.9 Configuration #5-A – Usage Rate Variation Without Lookahead 

This configuration evaluates the output from the algorithm in terms of percentage of full buffer 

when η is the dominant weighting factor for the usage rate variation term.  The other factors α, β, 

γ, and ε are equal to one another.  The first test case for configuration number five is without the 

lookahead function.  The weighting factors are defined as functions of a and b with aη =  and 

4
bα β γ ε= = = = .  The maximum average buffer level is 88.5% and the minimum is 85.3%. 
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Figure 6.22: Configuration #5A Without Lookahead for Example State 

6.7.3.10 Configuration #5-B – Usage Rate Variation With Lookahead 

This configuration maintains the same values of weighting factors for the goodness equation as in 

the configuration #5A test case.  Lookahead time of 15 units is considered in this test case.  The 

maximum average buffer level is 88.9% and the minimum is 87.4%. 
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Figure 6.23: Configuration #5B With Lookahead for Example State 

6.7.3.11 Discussion of Weighting Factors Results 

All test cases begin with the dominant weighting factor at the minimum value of zero when a 

equals zero.  The non-dominant factors all have a beginning value of 0.25 so that the non-
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dominant factors are all equal and sum to one.  As the dominant factor increases from zero to one, 

the non-dominant factors decrease from a maximum value of 0.25 to zero. 

 

The plots show that the different configurations of weighting factors affect the percentage of 

buffer fullness for this example system.  The percentage of buffer fullness is cumulative for the 

production sequence at a given data point, note that 100% is a full buffer for all products and 90% 

is the buffer threshold in the plots.  The best case of all configurations results in a buffer fullness 

value of 90.4%, when α = 0.125 and 0.218β γ ε η= = = =  for test case #1-A and also when γ = 

0.45 and 0.138α β ε η= = = = for test case #3-A.   

 

The lowest buffer fullness value without lookahead is 81.8% when α is the dominant weighting 

factor with a value of 1.0 and all other factors are zero.  When lookahead is used, the lowest 

buffer fullness value ranges from 83.9-84.2% for test cases #1-B,#2-B, and #4-B.  Perhaps this is 

caused because the time to crash and time to refill are very similar components of the goodness 

equation. 

 

In all test cases, the lookahead provides approximately the same buffer fullness values than when 

not using the lookahead function.  Note that the difference between the best case and the worst 

case is only 6.5% of the average buffer level.  These results show that the output sequences for all 

the test cases are feasible sequences, but some sequences are slightly better than others. 

 

In some cases the system parameters will dominate the output of the algorithm and the weighting 

factors will have no effect.  Consider the three product system discussed in section 6.7.1 Three 

Product Production System.  All five configurations of weighting factors, both with and without 

lookahead, result in the same buffer fullness value of 62.6%. 

6.7.4 Additional Test Cases for Weighting Parameters 

Many sequencing authors validate their results by using three problem sets with various product 

demands for 5, 10, and 15 product production systems that were originally developed by 

Sumichrast and Russell [53].  The five product problem set was considered for this example, 

which has the product demand shown in the table below.  The production system has an initial 

buffer level = 100% of maximum buffer levels.  Two buffer threshold levels test cases were 

considered; threshold test case #1 has a buffer threshold of 95% and threshold test case #2 has a 

buffer threshold of 50%.  Two changeover cost families, shown below, were considered to gain a 
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better understanding of the behavior of the weighting parameters.  Note that A=2 and B=5 in the 

changeover cost family tables.  The lookahead time was also varied in this example between 0 for 

lookahead test case #1 and 20 time units for lookahead test case #2. 

 
Table 6.1: Product Demand, UR(i) 

Demand 
Case Prod 1 Prod 2 Prod 3 Prod 4 Prod 5

1 15 2 1 1 1 
2 10 5 2 2 1 
3 6 6 5 2 1 
4 4 4 4 4 3 

 
Table 6.2: Changeover Cost Family #1 

C/O 
Family 1 Prod 1 Prod 2 Prod 3 Prod 4 Prod 5

Prod 1 1 A B B B 
Prod 2 A 1 B B B 
Prod 3 B B 1 A A 
Prod 4 B B A 1 A 
Prod 5 B B A A 1 

 
Table 6.3: Changeover Cost Family #2 

C/O 
Family 2 Prod 1 Prod 2 Prod 3 Prod 4 Prod 5

Prod 1 1 B B B A 
Prod 2 B 1 A A B 
Prod 3 B A 1 A B 
Prod 4 B A A 1 B 
Prod 5 A B B B 1 

 
Table 6.4: Weighting Factor Test Cases 

Wt Factor 
Case α β γ ε η 

1 1 0 0 0 0 
2 0 1 0 0 0 
3 0 0 1 0 0 
4 0 0 0 1 0 
5 0 0 0 0 1 
6 1/3 0 0 1/3 1/3 

 
The production rate and maximum buffer level are functions of the usage rate as follows: 
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[ ]( ) 35 ( ) 30 ( ) 25 ( ) 20 ( ) 20 ( )PR i UR i UR i UR i UR i UR i= × × × × ×  

[ ]max ( ) 5 ( ) 4 ( ) 3 ( ) 2 ( ) 2 ( )BF i PR i PR i PR i PR i PR i= × × × × ×  

 
The results for the various test cases yield interesting results for these test cases.  The use of 

lookahead prevents the simulated production run from crashing but the use of lookahead causes 

an increase in the maximum percent of buffer level swing.  Note that the percentage of buffer 

level swing is measured by subtracting the lowest percent of buffer fullness from one for the 100 

steps of the simulated sequence.  Therefore the lookahead function produces a sequence with 

more fluctuation in the buffer levels but no product buffers crash during the sequence.  Note that 

all the results tables are sorted first by buffer threshold test case, secondly by maximum buffer 

level swing, and finally by percent of buffer fullness.  Note that the highlighted rows are cases 

that crashed. 

 
Table 6.5: Results for Demand Test Case #1, C/O Family #1, and Threshold Case #1 

Test Case 
# 

% Buffer 
Level 

% Max 
Swing

% Setup 
Time  

Total 
time 

Lookahead 
Case 

Wght Factor 
Case 

2 87.1 52.1 79.8 406.2 1 2 
3 83.0 60.5 79.9 533.1 1 3 

99 77.6 76.9 79.9 619.7 2 3 
1 77.2 79.4 81.6 268.3 1 1 

98 76.7 90.2 79.8 567.7 2 2 
6 76.8 91.6 79.8 266.9 1 6 

100 78.5 95.6 79.6 267.5 2 4 
97 73.0 99.7 81.0 270.4 2 1 
101 76.1 99.8 80.1 479.5 2 5 
102 70.2 99.8 80.8 270.9 2 6 
4 39.9 101.4 84.6 121.7 1 4 
5 15.4 108.5 82.9 43.4 1 5 

 
Table 6.6: Results for Demand Test Case #1, C/O Family #1, and Threshold Case #2 

Test Case 
# 

% Buffer 
Level 

% Max 
Swing

% Setup 
Time  

Total 
time 

Lookahead 
Case 

Wght 
Factor Case 

7 72.0 71.8 36.0 581.3 1 1 
12 72.0 71.8 36.0 581.3 1 6 
108 72.3 74.2 35.9 551.6 2 6 
103 72.1 75.8 35.9 548.4 2 1 
9 72.3 76.4 36.6 538.3 1 3 

11 72.2 78.3 37.0 564.5 1 5 
104 72.3 79.5 38.3 561.2 2 2 
105 71.6 82.0 37.3 581.2 2 3 
106 72.3 82.1 35.9 551.6 2 4 
10 72.3 83.6 34.0 544.8 1 4 
107 71.9 96.5 36.4 574.7 2 5 
8 71.9 96.5 36.4 574.7 1 2 
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Table 6.7: Results for Demand Test Case #1, C/O Family #2, and Threshold Case #1 
Test 

Case # 

% 
Buffer 
Level 

% Max 
Swing

% 
Setup 
Time 

Total 
time 

Lookahead 
Case 

Wght 
Factor 
Case 

15 87.0 51.4 79.7 410.3 1 3 
14 86.1 51.9 79.7 455.3 1 2 
18 81.0 68.4 79.8 387.3 1 6 
16 86.3 69.8 79.6 388.0 1 4 

112 86.3 69.8 79.6 388.0 2 4 
114 84.2 71.9 79.8 342.3 2 6 
111 79.5 77.4 79.9 619.8 2 3 
13 73.8 86.0 80.5 548.1 1 1 

110 76.2 90.5 80.0 570.4 2 2 
109 71.2 96.1 80.5 603.4 2 1 
113 78.4 99.98 80.0 461.3 2 5 
17 8.9 105.8 82.7 42.3 1 5 

 
Table 6.8: Results for Demand Test Case #1, C/O Family #2, and Threshold Case #2 

Test 
Case 

# 

% 
Buffer 
Level 

% Max 
Swing

% 
Setup 
Time 

Total 
time 

Lookahead 
Case 

Wght 
Factor 
Case 

24 73.0 65.4 45.1 542.8 1 6 
19 72.5 65.8 46.3 563.7 1 1 
120 72.8 69.1 45.2 537.7 2 6 
21 72.5 78.9 46.9 558.9 1 3 
23 72.5 78.9 46.9 558.9 1 5 
116 72.0 86.0 46.6 568.6 2 2 
22 72.0 86.2 45.7 578.2 1 4 
118 72.4 86.2 44.9 563.4 2 4 
20 72.2 88.0 45.7 562.1 1 2 
119 72.2 88.0 45.7 562.1 2 5 
115 71.2 89.7 46.4 625.4 2 1 
117 71.9 97.2 46.1 585.3 2 3 

 
Table 6.9: Results for Demand Test Case #2, C/O Family #1, and Threshold Case #1 

Test 
Case 

# 

% 
Buffer 
Level 

% Max 
Swing

% 
Setup 
Time 

Total 
time 

Lookahead 
Case 

Wght 
Factor 
Case 

26 87.1 52.1 79.8 406.2 1 2 
27 83.0 60.5 79.9 533.1 1 3 
123 77.6 76.9 79.9 619.7 2 3 
25 77.2 79.4 81.6 268.3 1 1 
122 76.7 90.2 79.8 567.7 2 2 
30 76.8 91.6 79.8 266.9 1 6 
124 78.5 95.6 79.6 267.5 2 4 
121 73.0 99.7 81.0 270.4 2 1 
125 74.7 99.8 80.0 487.2 2 5 
126 70.2 99.8 80.8 270.9 2 6 
28 39.9 101.4 84.6 121.7 1 4 
29 15.1 117.2 83.2 46.9 1 5 
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Table 6.10: Results for Demand Test Case #2, C/O Family #1, and Threshold Case #2 
Test 
Case 

# 

% 
Buffer 
Level 

% Max
Swing

% 
Setup 
Time 

Total 
time 

Lookahead 
Case 

Wght 
Factor 
Case 

31 72.0 71.8 36.0 581.3 1 1 
36 72.0 71.8 36.0 581.3 1 6 
132 72.3 74.2 35.9 551.6 2 6 
127 72.1 75.8 35.9 548.4 2 1 
33 72.3 76.4 36.6 538.3 1 3 
128 72.3 79.5 38.3 561.2 2 2 
129 71.6 82.0 37.3 581.2 2 3 
130 72.3 82.1 35.9 551.6 2 4 
34 72.3 83.6 34.0 544.8 1 4 
131 71.9 96.5 36.4 574.7 2 5 
32 71.9 96.5 36.4 574.7 1 2 
35 62.5 100.8 37.5 493.6 1 5 

 

Table 6.11: Results for Demand Test Case #2, C/O Family #2, and Threshold Case #1 
Test 
Case 

# 

% 
Buffer 
Level 

% Max 
Swing

% 
Setup 
Time 

Total 
time 

Lookahead 
Case 

Wght 
Factor 
Case 

39 87.0 51.4 79.7 410.3 1 3 
38 86.1 51.9 79.7 455.3 1 2 
42 81.0 68.4 79.8 387.3 1 6 
40 86.3 69.8 79.6 388.0 1 4 
136 86.3 69.8 79.6 388.0 2 4 
138 84.2 71.9 79.8 342.3 2 6 
135 79.5 77.4 79.9 619.8 2 3 
37 73.8 86.0 80.5 548.1 1 1 
134 76.2 90.5 80.0 570.4 2 2 
133 71.2 96.1 80.5 603.4 2 1 
137 78.5 99.98 79.9 461.8 2 5 
41 8.2 100.2 82.3 40.1 1 5 

 
Table 6.12: Results for Demand Test Case #2, C/O Family #2, and Threshold Case #2 

Test 
Case 

# 

% 
Buffer 
Level 

% Max 
Swing

% 
Setup 
Time 

Total 
time 

Lookahead 
Case 

Wght 
Factor 
Case 

48 73.0 65.4 45.1 542.8 1 6 
43 72.5 65.8 46.3 563.7 1 1 
144 72.8 69.1 45.2 537.7 2 6 
45 72.5 78.9 46.9 558.9 1 3 
47 72.5 78.9 46.9 558.9 1 5 
140 72.0 86.0 46.6 568.6 2 2 
46 72.0 86.2 45.7 578.2 1 4 
142 72.4 86.2 44.9 563.4 2 4 
44 72.2 88.0 45.7 562.1 1 2 
143 72.2 88.0 45.7 562.1 2 5 
139 71.2 89.7 46.4 625.4 2 1 
141 71.9 97.2 46.1 585.3 2 3 
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Table 6.13: Results for Demand Test Case #3, C/O Family #1, and Threshold Case #1 
Test 
Case 

# 

% 
Buffer 
Level 

% Max 
Swing

% 
Setup 
Time 

Total 
time 

Lookahead 
Case 

Wght 
Factor 
Case 

50 87.1 52.1 79.8 406.2 1 2 
51 83.0 60.5 79.9 533.1 1 3 
147 77.6 76.9 79.9 619.7 2 3 
49 77.2 79.4 81.6 268.3 1 1 
146 76.7 90.2 79.8 567.7 2 2 
54 76.8 91.6 79.8 266.9 1 6 
149 74.2 94.8 80.0 502.2 2 5 
148 78.5 95.6 79.6 267.5 2 4 
145 73.0 99.7 81.0 270.4 2 1 
150 70.2 99.8 80.8 270.9 2 6 
52 39.9 101.4 84.6 121.7 1 4 
53 18.9 112.4 83.9 54.8 1 5 

 
Table 6.14: Results for Demand Test Case #3, C/O Family #1, and Threshold Case #2 

Test 
Case 

# 

% 
Buffer 
Level 

% Max 
Swing

% 
Setup 
Time 

Total 
time 

Lookahead 
Case 

Wght 
Factor 
Case 

55 72.0 71.8 36.0 581.3 1 1 
60 72.0 71.8 36.0 581.3 1 6 
156 72.3 74.2 35.9 551.6 2 6 
151 72.1 75.8 35.9 548.4 2 1 
57 72.3 76.4 36.6 538.3 1 3 
152 72.3 79.5 38.3 561.2 2 2 
153 71.6 82.0 37.3 581.2 2 3 
154 72.3 82.1 35.9 551.6 2 4 
58 72.3 83.6 34.0 544.8 1 4 
155 71.9 96.5 36.4 574.7 2 5 
56 71.9 96.5 36.4 574.7 1 2 
59 71.9 96.5 36.4 574.7 1 5 

 
Table 6.15: Results for Demand Test Case #3, C/O Family #2, and Threshold Case #1 

Test 
Case 

# 

% 
Buffer 
Level 

% Max 
Swing

% 
Setup 
Time 

Total 
time 

Lookahead 
Case 

Wght 
Factor 
Case 

63 87.0 51.4 79.7 410.3 1 3 
62 86.1 51.9 79.7 455.3 1 2 
66 81.0 68.4 79.8 387.3 1 6 
64 86.3 69.8 79.6 388.0 1 4 
160 86.3 69.8 79.6 388.0 2 4 
162 84.2 71.9 79.8 342.3 2 6 
159 79.5 77.4 79.9 619.8 2 3 
61 73.8 86.0 80.5 548.1 1 1 
158 76.2 90.5 80.0 570.4 2 2 
157 71.2 96.1 80.5 603.4 2 1 
161 79.4 99.96 79.7 444.1 2 5 
65 11.5 110.1 82.4 57.0 1 5 
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Table 6.16: Results for Demand Test Case #3, C/O Family #2, and Threshold Case #2 

Test 
Case 

# 

% 
Buffer 
Level 

% Max 
Swing

% 
Setup 
Time 

Total 
time 

Lookahead 
Case 

Wght 
Factor 
Case 

72 73.0 65.4 45.1 542.8 1 6 
67 72.5 65.8 46.3 563.7 1 1 
168 72.8 69.1 45.2 537.7 2 6 
69 72.5 78.9 46.9 558.9 1 3 
71 71.5 83.8 46.4 593.3 1 5 
164 72.0 86.0 46.6 568.6 2 2 
70 72.0 86.2 45.7 578.2 1 4 
166 72.4 86.2 44.9 563.4 2 4 
68 72.2 88.0 45.7 562.1 1 2 
167 72.2 88.0 45.7 562.1 2 5 
163 71.2 89.7 46.4 625.4 2 1 
165 71.9 97.2 46.1 585.3 2 3 

 
Table 6.17: Results for Demand Test Case #4, C/O Family #1, and Threshold Case #1 

Test 
Case 

# 

% 
Buffer 
Level 

% Max 
Swing

% 
Setup 
Time 

Total 
time 

Lookahead 
Case 

Wght 
Factor 
Case 

74 87.1 52.1 79.8 406.2 1 2 
75 83.0 60.5 79.9 533.1 1 3 
171 77.6 76.9 79.9 619.7 2 3 
73 77.2 79.4 81.6 268.3 1 1 
173 82.2 81.0 79.7 470.8 2 5 
78 76.8 91.6 79.8 266.9 1 6 
172 78.5 95.6 79.6 267.5 2 4 
170 76.7 99.5 79.8 567.7 2 2 
169 73.0 99.7 81.0 270.4 2 1 
174 70.2 99.8 80.8 270.9 2 6 
76 39.9 101.4 84.6 121.7 1 4 
77 13.8 101.7 83.6 40.7 1 5 

 
Table 6.18: Results for Demand Test Case #4, C/O Family #1, and Threshold Case #2 

Test 
Case 

# 

% 
Buffer 
Level 

% Max 
Swing

% 
Setup 
Time 

Total 
time 

Lookahead 
Case 

Wght 
Factor 
Case 

79 72.0 71.8 36.0 581.3 1 1 
84 72.0 71.8 36.0 581.3 1 6 
180 72.3 74.2 35.9 551.6 2 6 
175 72.1 75.8 35.9 548.4 2 1 
81 72.3 76.4 36.6 538.3 1 3 
83 72.2 78.3 37.0 564.5 1 5 
176 72.3 79.5 38.3 561.2 2 2 
177 71.6 82.0 37.3 581.2 2 3 
178 72.3 82.1 35.9 551.6 2 4 
82 72.3 83.6 34.0 544.8 1 4 
179 71.9 96.5 36.4 574.7 2 5 
80 71.9 96.5 36.4 574.7 1 2 



 

 

171 

 

 
Table 6.19: Results for Demand Test Case #4, C/O Family #2, and Threshold Case #1 

Test 
Case 

# 

% 
Buffer 
Level 

% Max 
Swing

% 
Setup 
Time 

Total 
time 

Lookahead 
Case 

Wght 
Factor 
Case 

87 87.0 51.4 79.7 410.3 1 3 
86 86.1 51.9 79.7 455.3 1 2 
90 81.0 68.4 79.8 387.3 1 6 
88 86.3 69.8 79.6 388.0 1 4 
184 86.3 69.8 79.6 388.0 2 4 
186 84.2 71.9 79.8 342.3 2 6 
185 83.3 76.1 79.7 436.5 2 5 
183 79.5 77.4 79.9 619.8 2 3 
85 73.8 86.0 80.5 548.1 1 1 
182 76.2 90.5 80.0 570.4 2 2 
181 71.2 96.1 80.5 603.4 2 1 
89 15.9 102.4 80.6 88.1 1 5 

 
Table 6.20: Results for Demand Test Case #4, C/O Family #2, and Threshold Case #2 

Test 
Case 

# 

% 
Buffer 
Level 

% Max 
Swing

% 
Setup 
Time 

Total 
time 

Lookahead 
Case 

Wght 
Factor 
Case 

96 73.0 65.4 45.1 542.8 1 6 
91 72.5 65.8 46.3 563.7 1 1 
192 72.8 69.1 45.2 537.7 2 6 
93 72.5 78.9 46.9 558.9 1 3 
188 72.0 86.0 46.6 568.6 2 2 
94 72.0 86.2 45.7 578.2 1 4 
190 72.4 86.2 44.9 563.4 2 4 
92 72.2 88.0 45.7 562.1 1 2 
191 72.2 88.0 45.7 562.1 2 5 
187 71.2 89.7 46.4 625.4 2 1 
189 71.9 97.2 46.1 585.3 2 3 
95 15.5 100.5 46.3 148.9 1 5 

 

6.7.4.1 Alternative Lookahead Selection of Additional Test Cases 

The results in this section are based on the same test cases that were presented in the previous 

section, with the only difference being the lookahead selection method.  The following results 

were found using the alternative lookahead selection method in which the sequence with the 

largest minimum goodness value over the lookahead time is the “best” sequence.  The first 

product of the “best “sequence is selected as the next product in the production sequence. 

 

The alternative selection method yields interesting results for these test cases.  The use of the 

alternative lookahead selection again prevents the simulated production from crashing.  Note that 

the alternative lookahead selection method actually causes a decrease in the maximum percent of 



 

 

172 

 

buffer level swing.  Therefore the alternative lookahead method produces a sequence with less 

fluctuation in the buffer levels and no product buffers crash during the sequence.  Note that all the 

results tables are again sorted by buffer threshold test case, then by maximum swing, and then by 

percent of buffer fullness.  Note that the highlighted rows are cases that crashed. 

 
Table 6.21: Alt Method for Demand Case #1, C/O Family #1, and Threshold Case #1 

Test 
Case # 

% Buffer 
Level 

% Max 
Swing 

% Setup 
Time  

Total 
time 

Lookahead 
Case 

Wght Factor 
Case 

98 86.4 37.2 79.8 436.4 2 2 
99 86.4 37.2 79.8 436.4 2 3 
2 87.1 52.1 79.8 406.2 1 2 
3 83.0 60.5 79.9 533.1 1 3 
1 77.2 79.4 81.6 268.3 1 1 

97 76.9 79.6 81.4 269.0 2 1 
6 76.8 91.6 79.8 266.9 1 6 

100 78.5 95.6 79.6 267.5 2 4 
102 74.3 99.4 81.6 257.2 2 6 
101 76.1 99.8 80.1 479.5 2 5 
4 39.9 101.4 84.6 121.7 1 4 
5 15.4 108.5 82.9 43.4 1 5 

 
Table 6.22: Alt Method for Demand Case #1, C/O Family #1, and Threshold Case #2 

Test 
Case # 

% Buffer 
Level 

% Max 
Swing 

% Setup 
Time  

Total 
time 

Lookahead 
Case 

Wght Factor 
Case 

108 72.7 68.7 35.4 544.7 2 6 
7 72.0 71.8 36.0 581.3 1 1 

12 72.0 71.8 36.0 581.3 1 6 
103 72.0 71.8 36.0 581.3 2 1 
105 72.3 76.4 37.4 548.5 2 3 
9 72.3 76.4 36.6 538.3 1 3 

11 72.2 78.3 37.0 564.5 1 5 
104 72.4 81.4 38.3 556.3 2 2 
106 72.3 82.1 35.9 551.6 2 4 
10 72.3 83.6 34.0 544.8 1 4 
107 71.9 96.5 36.4 574.7 2 5 
8 71.9 96.5 36.4 574.7 1 2 

 
 

 

 

 

 

 



 

 

173 

 

Table 6.23: Alt Method for Demand Case #1, C/O Family #2, and Threshold Case #1 
Test 

Case # 
% Buffer 

Level 
% Max 
Swing 

% Setup 
Time  

Total 
time 

Lookahead 
Case 

Wght Factor 
Case 

15 87.0 51.4 79.7 410.3 1 3 
14 86.1 51.9 79.7 455.3 1 2 
111 82.9 53.0 79.8 545.1 2 3 
110 83.3 56.9 79.9 540.9 2 2 
18 81.0 68.4 79.8 387.3 1 6 
16 86.3 69.8 79.6 388.0 1 4 
112 86.3 69.8 79.6 388.0 2 4 
114 80.8 69.8 80.0 423.5 2 6 
109 72.2 84.3 80.7 583.4 2 1 
13 73.8 86.0 80.5 548.1 1 1 
113 78.4 99.98 80.0 461.3 2 5 
17 8.9 105.8 82.7 42.3 1 5 

 
Table 6.24: Alt Method for Demand Case #1, C/O Family #2, and Threshold Case #2 

Test 
Case # 

% Buffer 
Level 

% Max 
Swing 

% Setup 
Time  

Total 
time 

Lookahead 
Case 

Wght Factor 
Case 

24 73.0 65.4 45.1 542.8 1 6 
19 72.5 65.8 46.3 563.7 1 1 
115 72.5 65.8 46.3 563.7 2 1 
120 72.8 69.1 45.2 537.7 2 6 
21 72.5 78.9 46.9 558.9 1 3 
23 72.5 78.9 46.9 558.9 1 5 
117 72.5 78.9 46.9 558.9 2 3 
22 72.0 86.2 45.7 578.2 1 4 
118 72.4 86.2 44.9 563.4 2 4 
116 71.7 88.0 46.5 581.2 2 2 
20 72.2 88.0 45.7 562.1 1 2 
119 72.2 88.0 45.7 562.1 2 5 

 
Table 6.25: Alt Method for Demand Case #2, C/O Family #1, and Threshold Case #1 

Test 
Case # 

% Buffer 
Level 

% Max 
Swing 

% Setup 
Time  

Total 
time 

Lookahead 
Case 

Wght Factor 
Case 

122 86.4 37.2 79.8 436.4 2 2 
123 86.4 37.2 79.8 436.4 2 3 
26 87.1 52.1 79.8 406.2 1 2 
27 83.0 60.5 79.9 533.1 1 3 
25 77.2 79.4 81.6 268.3 1 1 
121 76.9 79.6 81.4 269.0 2 1 
30 76.8 91.6 79.8 266.9 1 6 
124 78.5 95.6 79.6 267.5 2 4 
126 74.3 99.4 81.6 257.2 2 6 
125 74.7 99.8 80.0 487.2 2 5 
28 39.9 101.4 84.6 121.7 1 4 
29 15.1 117.2 83.2 46.9 1 5 
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Table 6.26: Alt Method for Demand Case #2, C/O Family #1, and Threshold Case #2 

Test 
Case # 

% Buffer 
Level 

% Max 
Swing 

% Setup 
Time  

Total 
time 

Lookahead 
Case 

Wght Factor 
Case 

132 72.7 68.7 35.4 544.7 2 6 
31 72.0 71.8 36.0 581.3 1 1 
36 72.0 71.8 36.0 581.3 1 6 
127 72.0 71.8 36.0 581.3 2 1 
129 72.3 76.4 37.4 548.5 2 3 
33 72.3 76.4 36.6 538.3 1 3 
128 72.4 81.4 38.3 556.3 2 2 
130 72.3 82.1 35.9 551.6 2 4 
34 72.3 83.6 34.0 544.8 1 4 
131 71.9 96.5 36.4 574.7 2 5 
32 71.9 96.5 36.4 574.7 1 2 
35 62.5 100.8 37.5 493.6 1 5 

 

Table 6.27: Alt Method for Demand Case #2, C/O Family #2, and Threshold Case #1 
Test 

Case # 
% Buffer 

Level 
% Max 
Swing 

% Setup 
Time  

Total 
time 

Lookahead 
Case 

Wght Factor 
Case 

39 87.0 51.4 79.7 410.3 1 3 
38 86.1 51.9 79.7 455.3 1 2 
135 82.9 53.0 79.8 545.1 2 3 
134 83.3 56.9 79.9 540.9 2 2 
42 81.0 68.4 79.8 387.3 1 6 
40 86.3 69.8 79.6 388.0 1 4 
136 86.3 69.8 79.6 388.0 2 4 
138 80.8 69.8 80.0 423.5 2 6 
133 72.2 84.3 80.7 583.4 2 1 
37 73.8 86.0 80.5 548.1 1 1 
137 78.5 99.98 79.9 461.8 2 5 
41 8.2 100.2 82.3 40.1 1 5 

 
Table 6.28: Alt Method for Demand Case #2, C/O Family #2, and Threshold Case #2 

Test 
Case # 

% Buffer 
Level 

% Max 
Swing 

% Setup 
Time  

Total 
time 

Lookahead 
Case 

Wght Factor 
Case 

48 73.0 65.4 45.1 542.8 1 6 
43 72.5 65.8 46.3 563.7 1 1 
139 72.5 65.8 46.3 563.7 2 1 
144 72.8 69.1 45.2 537.7 2 6 
45 72.5 78.9 46.9 558.9 1 3 
47 72.5 78.9 46.9 558.9 1 5 
141 72.5 78.9 46.9 558.9 2 3 
46 72.0 86.2 45.7 578.2 1 4 
142 72.4 86.2 44.9 563.4 2 4 
140 71.7 88.0 46.5 581.2 2 2 
44 72.2 88.0 45.7 562.1 1 2 
143 72.2 88.0 45.7 562.1 2 5 
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Table 6.29: Alt Method for Demand Case #3, C/O Family #1, and Threshold Case #1 

Test 
Case # 

% Buffer 
Level 

% Max 
Swing 

% Setup 
Time  

Total 
time 

Lookahead 
Case 

Wght Factor 
Case 

146 86.4 37.2 79.8 436.4 2 2 
147 86.4 37.2 79.8 436.4 2 3 
50 87.1 52.1 79.8 406.2 1 2 
51 83.0 60.5 79.9 533.1 1 3 
49 77.2 79.4 81.6 268.3 1 1 
145 76.9 79.6 81.4 269.0 2 1 
54 76.8 91.6 79.8 266.9 1 6 
149 74.2 94.8 80.0 502.2 2 5 
148 78.5 95.6 79.6 267.5 2 4 
150 74.3 99.4 81.6 257.2 2 6 
52 39.9 101.4 84.6 121.7 1 4 
53 18.9 112.4 83.9 54.8 1 5 

 
Table 6.30: Alt Method for Demand Case #3, C/O Family #1, and Threshold Case #2 

Test 
Case # 

% Buffer 
Level 

% Max 
Swing 

% Setup 
Time  

Total 
time 

Lookahead 
Case 

Wght Factor 
Case 

156 72.7 68.7 35.4 544.7 2 6 
55 72.0 71.8 36.0 581.3 1 1 
60 72.0 71.8 36.0 581.3 1 6 
151 72.0 71.8 36.0 581.3 2 1 
153 72.3 76.4 37.4 548.5 2 3 
57 72.3 76.4 36.6 538.3 1 3 
152 72.4 81.4 38.3 556.3 2 2 
154 72.3 82.1 35.9 551.6 2 4 
58 72.3 83.6 34.0 544.8 1 4 
155 71.9 96.5 36.4 574.7 2 5 
56 71.9 96.5 36.4 574.7 1 2 
59 71.9 96.5 36.4 574.7 1 5 

 
Table 6.31: Alt Method for Demand Case #3, C/O Family #2, and Threshold Case #1 

Test 
Case # 

% Buffer 
Level 

% Max 
Swing 

% Setup 
Time  

Total 
time 

Lookahead 
Case 

Wght Factor 
Case 

63 87.0 51.4 79.7 410.3 1 3 
62 86.1 51.9 79.7 455.3 1 2 
159 82.9 53.0 79.8 545.1 2 3 
158 83.3 56.9 79.9 540.9 2 2 
66 81.0 68.4 79.8 387.3 1 6 
64 86.3 69.8 79.6 388.0 1 4 
160 86.3 69.8 79.6 388.0 2 4 
162 80.8 69.8 80.0 423.5 2 6 
157 72.2 84.3 80.7 583.4 2 1 
61 73.8 86.0 80.5 548.1 1 1 
161 79.4 99.96 79.7 444.1 2 5 
65 11.5 110.1 82.4 57.0 1 5 
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Table 6.32: Alt Method for Demand Case #3, C/O Family #2, and Threshold Case #2 

Test 
Case # 

% Buffer 
Level 

% Max 
Swing 

% Setup 
Time  

Total 
time 

Lookahead 
Case 

Wght Factor 
Case 

72 73.0 65.4 45.1 542.8 1 6 
67 72.5 65.8 46.3 563.7 1 1 
163 72.5 65.8 46.3 563.7 2 1 
168 72.8 69.1 45.2 537.7 2 6 
69 72.5 78.9 46.9 558.9 1 3 
165 72.5 78.9 46.9 558.9 2 3 
71 71.5 83.8 46.4 593.3 1 5 
70 72.0 86.2 45.7 578.2 1 4 
166 72.4 86.2 44.9 563.4 2 4 
164 71.7 88.0 46.5 581.2 2 2 
68 72.2 88.0 45.7 562.1 1 2 
167 72.2 88.0 45.7 562.1 2 5 

 
Table 6.33: Alt Method for Demand Case #4, C/O Family #1, and Threshold Case #1 

Test 
Case # 

% Buffer 
Level 

% Max 
Swing 

% Setup 
Time  

Total 
time 

Lookahead 
Case 

Wght Factor 
Case 

170 86.4 37.2 79.8 436.4 2 2 
171 86.4 37.2 79.8 436.4 2 3 
74 87.1 52.1 79.8 406.2 1 2 
75 83.0 60.5 79.9 533.1 1 3 
73 77.2 79.4 81.6 268.3 1 1 
169 76.9 79.6 81.4 269.0 2 1 
173 82.2 81.0 79.7 470.8 2 5 
78 76.8 91.6 79.8 266.9 1 6 
172 78.5 95.6 79.6 267.5 2 4 
174 74.3 99.4 81.6 257.2 2 6 
76 39.9 101.4 84.6 121.7 1 4 
77 13.8 101.7 83.6 40.7 1 5 

  
Table 6.34: Alt Method for Demand Case #4, C/O Family #1, and Threshold Case #2 

Test 
Case # 

% Buffer 
Level 

% Max 
Swing 

% Setup 
Time  

Total 
time 

Lookahead 
Case 

Wght Factor 
Case 

180 72.7 68.7 35.4 544.7 2 6 
79 72.0 71.8 36.0 581.3 1 1 
84 72.0 71.8 36.0 581.3 1 6 
175 72.0 71.8 36.0 581.3 2 1 
177 72.3 76.4 37.4 548.5 2 3 
81 72.3 76.4 36.6 538.3 1 3 
83 72.2 78.3 37.0 564.5 1 5 
176 72.4 81.4 38.3 556.3 2 2 
178 72.3 82.1 35.9 551.6 2 4 
82 72.3 83.6 34.0 544.8 1 4 
179 71.9 96.5 36.4 574.7 2 5 
80 71.9 96.5 36.4 574.7 1 2 
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Table 6.35: Alt Method for Demand Case #4, C/O Family #2, and Threshold Case #1 

Test 
Case # 

% Buffer 
Level 

% Max 
Swing 

% Setup 
Time  

Total 
time 

Lookahead 
Case 

Wght Factor 
Case 

86 86.1 51.9 79.7 455.3 1 2 
183 82.9 53.0 79.8 545.1 2 3 
182 83.3 56.9 79.9 540.9 2 2 
90 81.0 68.4 79.8 387.3 1 6 
88 86.3 69.8 79.6 388.0 1 4 
184 86.3 69.8 79.6 388.0 2 4 
186 80.8 69.8 80.0 423.5 2 6 
185 83.3 76.1 79.7 436.5 2 5 
181 72.2 84.3 80.7 583.4 2 1 
85 73.8 86.0 80.5 548.1 1 1 
89 15.9 102.4 80.6 88.1 1 5 

 
Table 6.36: Alt Method for Demand Case #4, C/O Family #2, and Threshold Case #2 

Test 
Case # 

% Buffer 
Level 

% Max 
Swing 

% Setup 
Time  

Total 
time 

Lookahead 
Case 

Wght Factor 
Case 

96 73.0 65.4 45.1 542.8 1 6 
91 72.5 65.8 46.3 563.7 1 1 
187 72.5 65.8 46.3 563.7 2 1 
192 72.8 69.1 45.2 537.7 2 6 
188 72.5 74.7 45.3 543.5 2 2 
93 72.5 78.9 46.9 558.9 1 3 
189 72.5 78.9 46.9 558.9 2 3 
94 72.0 86.2 45.7 578.2 1 4 
190 72.4 86.2 44.9 563.4 2 4 
92 72.2 88.0 45.7 562.1 1 2 
191 72.2 88.0 45.7 562.1 2 5 
95 15.5 100.5 46.3 148.9 1 5 

 

6.7.5 Pattern Production 

Consider again the same eight product production system discussed in the examples in section 

6.7.3 Weighting Parameters.  All production parameters are unchanged except the buffer 

threshold is set to 100%.  This example will highlight the ability of the algorithm to generate a 

production sequence for pattern production.  The usage rate variation term of the goodness 

equation is equal to one and all other terms are set to zero.  This configuration yields the 

following production pattern (the sequence repeats apparently indefinitely) when there is no 

lookahead time: 1-2-3-5-6-1-2-3-7-8-1-2-3-1-2-3-7-8-1-2-3-1-2-3-7-8-1-2-3-4-1-2-3-7-8. 
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Figure 6.24: Eight Product System – Pattern Production 

 

Other weighting factor combinations may yield different sequences depending upon what type of 

sequence is desired by the user.  The algorithm will yield a sequence of 1-2-3-4-5-6-7-8 (the 

sequence repeats apparently indefinitely) when only the γ weighting factor for the time in queue 

term is used in the goodness equation. 
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Figure 6.25: Pattern Production – γ = 1 
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7 Conclusions 

This Chapter will summarize the work done and discuss the contributions of this dissertation as 

well as highlight areas that could benefit from future work. 

7.1 Research Contributions  

This dissertation has addressed the problem of determining a product sequence for a Just-In-Time 

(JIT) production system when the process has significant sequence dependent setups.  The issue 

of sequence dependent setups in JIT systems has only been published by a few researchers, but 

this is an important problem that needs to be resolved in order to help many manufacturers.  The 

stability analysis conducted in this dissertation examines the difficulty of finding system 

parameters that are stable in an inherently unstable [5] production system.  The analytical solution 

is general enough to be applied to a wide range of arc-node networks, but in this research the 

network is assumed to represent a production system with idle, setup, and refill nodes.  The 

contribution of the analytical solution is that it shows that if a settled network has at least one 

node with a non-empty incoming and non-empty outgoing set, the network will have a stable 

trajectory that will cycle through the network. 

 

The analytical stability results were further advanced in this dissertation by developing and 

implementing iterative method for determining the stability that attempts to find a set of stable 

regions for a user defined network.  The method was demonstrated for two, three, and four-

product production systems.  If the stability analysis requires too much computational time, the 

sequencing algorithm can be used to determine a feasible product sequence for the production 

system. 

 

This research contributes to JIT product sequencing algorithms by providing an algorithm that 

determines a feasible sequence for a system with sequence dependent setups.  This sequencing 

algorithm also incorporates the ability to use lookahead to avoid the crashing of products in future 

steps when evaluating a product sequence.  The lookahead feature increases the probability that 

the algorithm will find a feasible sequence by incorporating well researched lookahead 

philosophies with the emerging area of JIT sequencing with lookahead.  This method can be 

easily implemented in production systems that have more products than the stability algorithm 

can analyze. 
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7.2 Summary of Stability Analysis 

The stability analysis method advances current research by considering a production system 

based on JIT manufacturing principles and includes sequence dependent setups between products 

and buffer threshold signals.  The output regions were shown analytically to be stable for a settled 

arc-node network if one or more nodes have a non-empty incoming region and non-empty 

outgoing region.  A product sequence trajectory through the network will remain stable at all 

future points in time if a point of the trajectory is contained within one of the output regions 

calculated by the algorithm.  This is a significant result because it applies to any arc-node 

network with non-interrupted production and non-varying system parameters that refills each 

buffer completely.  The algorithm requires very little computational time to determine output 

regions for two and three product production systems.  The computational time required by the 

algorithm increases significantly with an increase in the number of products and number of arcs, 

or with an increase of multiple arcs attached to a given node. 

 

The stability algorithm is intended to be an off-line tool that allows a user to determine whether 

or not a stable sequence trajectory exists for the system, based on the production system 

parameters.  The algorithm could be used in conjunction with the product sequencing algorithm 

to verify that the given product sequence is a stable sequence.  All future steps of the product 

sequence will remain stable if any one step of the sequence is located on an output region from 

the stability algorithm. 

7.2.1 Future Work – Stability 

The algorithm outputs a stable region in terms of a minimum and maximum value for each 

product in the production system.  A two product system will have regions that are a one 

dimensional hyperrectangle which is a line between the two endpoints on the minimum values 

and the maximum values of each product in the region.  A three product system will have regions 

that are a two-dimensional shape.  As the number of products increase above three products, the 

regions become multi-dimensional hyperrectangles.  The regions are always k – 1 dimensions, 

where k is the number of products.  Future work would be beneficial to evaluate output from the 

algorithm for systems with three or more products to gain a better understanding of the 

characteristics of the regions.  For example, consider that a rectangle may be the proper shape of 

a three product region, while other cases could be more accurately represented by one or two 

triangles with a split region to remove instability from the middle of a rectangular region.  Future 

work could develop a systematic approach to post process the output from the stability algorithm 
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to provide the most accurate stable regions for the given production system.  This future work 

could also include a method to aid in visualization of the output regions because the multi-

dimensional regions become very difficult to visualize. 

 

The stability algorithm could be further refined to be more user friendly and robust by future 

work focusing on standard methods to troubleshoot non-converging solutions.  Similarly to the 

sequencing algorithm, future work on this algorithm could develop recommendations for the user 

that could potentially yield a set of stable regions.  These recommendations could start with 

increasing buffer size, increasing the production rate, decreasing usage rate, increasing buffer 

threshold, or reducing changeover costs. 

 

Given that the computational time increases exponentially with an increase in the number of 

products and number of arcs, future work to improve the computational efficiency would be very 

beneficial.  Analysis of the intersection, union, and cleanup functions would be a logical starting 

point for this work due to the perceived inefficiency and sheer volume of data that each function 

must process.   

 

Incorporating the sequencing algorithm and stability together could improve robustness of the 

solutions as well as decrease computational time.  The minimum and maximum buffer values 

from the sequencing algorithm could be used as the starting buffer regions for the stability 

algorithm to decrease the computational time required for the stability algorithm.  Improved 

computational efficiency would allow production systems with a higher number of products to be 

analyzed by the algorithm.   

 

Another potential area for future work is to allow the system parameters to vary over time and no 

longer require all parameters to be constant values.  Variation in a production system is a real-

world problem that is often unavoidable.  Analysis of a system with variability would allow the 

stability algorithm to more accurately analyze most production systems. 

 

A final possible area of future work is to join the stability analysis method human factor research 

to study the affect of buffer sizing upon worker efficiency and attitude as well as system stability.  

Large buffers are more likely to be stable but can cause workers to be less efficient and hide 

inherent problems in the production system.  Research in this area could help to find the trade-

offs between stability, buffer size, and the human factors. 
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7.3 Summary of Sequencing Algorithm 

The production sequencing algorithm developed in this research has proved to be an effective 

means of determining a production sequence for a JIT production system with significant 

sequence dependent setups.  The algorithm provides a product sequence based on the given 

system parameters and user defined goodness weighting factors.  The production sequence is not 

guaranteed to be an optimized product sequence for the production system, but it is a feasible 

sequence for the system over the lookahead period.  The use of lookahead allows the algorithm to 

detect potential empty buffers and take corrective action prior to a product crashing. 

 

The weighting factors used for calculating the goodness equation have some effect on the output 

of the algorithm as was show in the examples of output from the sequencing algorithms in 

Section 6.7.3 Weighting Parameters.  A valid argument could also be made that the production 

system parameters play an equivalent or even more significant effect on the output of the 

algorithm.  The examples showed that varying the different weighting parameters from zero to 

one changes the cumulative percentage of buffer fullness a very small amount.  This fact 

highlights that the sequence is significantly influenced by the system parameters and not just by 

the goodness weighting factors.  The three product example in Section 6.7.3.11 highlights a 

production system that is unaffected by the varying the weighting factors. 

 

The intended use for the sequencing algorithm is as an on-line production sequencing tool on the 

manufacturing floor.  The algorithm can be used to find a feasible production sequence in a real-

world manufacturing environment or as a research tool to better understand behavior and 

implementation of a JIT system. 

7.3.1 Future Work – Sequencing 

The production sequencing algorithm is viable and beneficial to users in the current state but 

could be improved with additional future work.  The weighting factors used for the current state 

goodness equation and lookahead goodness equation need to be further evaluated to better 

understand the affects of each factor.  Further understanding of the weighting factor behavior 

would allow the user to define the weighting factors such that the sequence can be manipulated to 

provide a desired result.  Perhaps investigation of a better normalizing calculation for each 

weighting factor would also increase the effectiveness of manipulating on the final sequence. 
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The sequencing algorithm currently will exit if any of the products crash during the sequence 

calculation.  Additional future work to incorporate troubleshooting intelligence into the algorithm 

would be very beneficial to most users.  This intelligence could provide methods or 

recommendations for the user of the algorithm to correct a crashed sequence.  An experienced or 

knowledgeable user would not require this feature but it would be beneficial for novice users.  A 

starting point for the troubleshooting could be for the algorithm to first identify the crashed 

product and then recommend possible solutions such as to increase lookahead time, increase 

buffer size, increase the production rate, decrease usage rate, increase buffer threshold, or reduce 

changeover costs.  Depending upon the type of production system that is being modeled, it may 

not be possible to implement some of the recommended solutions, such as increasing the 

production rate or decreasing the usage rate.  Often time the production capacity is a limiting 

factor and cannot be improved without a significant capital investment such as buying addition 

machines.  The usage rate or customer demand is also often beyond the control of the 

manufacturer and if demand cannot be met then sales are lost [86].  Many manufacturers can 

benefit from implementing Lean principles to decrease setup and changeover cost which could 

aid the algorithm in being able to determine a non-crashing production sequence. 

 

A final area of future work for the sequencing algorithm is the computational efficiency of the 

code used for the algorithm.  The algorithm was developed in the midst of learning the 

programming language; therefore it is not eloquent or nor efficient.  Reviewing the data handling 

methods could reveal a significant improvement in computational efficiency. 
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Appendix I: Stability Algorithm Implementation 
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Stability Algorithm: 
clear all; 
global num_of_prods,global setup,global U,global l,global l,global PR,global rho,global flag, global flag_length,global arc,global 
node,global flag_ini,global num_of_arcs,global arcs, global message,global num_of_prods,global i,global flag,global cur_prod,global 
node, global change_flag,global arcs_in,global arcs_out,global index_arc_i,global index_arc_j, global sheet_num_index,global 
sheet_num_out_index,global limit_out_max,global limit_out_min,global limit_in_max,global limit_in_min,global 
limit_out_max_new,global limit_out_min_new,global limit_in_max_new,global limit_in_min_new,global arc_star, global 
arc_int,global flag,global flag_length,global star_flag,global cleanup_flag_y, global cleanup_flag_x,global arc_stored, global 
arc_stored_index, global arc_intersected, global arc_int,global idle_flag,global sheet_index2,global flag_no_intersection 
  
num_of_prods=3; 
int_check_skip=0; 
backward_stability=1;%set to 1 for checking sability backward propagation, 0 for forward check only 
i=1; 
flag_index=1; 
initialize_stability(num_of_prods); 
flag_ini=flag; 
initialize_arc_limits(arcs,node,U,l,num_of_arcs,num_of_prods); 
while (flag_index < 550) && (flag_length < 500) && (flag_length > 0) 
    set_node_num(node); 
    set_node_arcs(i,arcs,num_of_arcs); 
    change_flag = 0; 
    arc_stored_index=1; 
    sheet_index2=1; 
    arc_outer_loop_index=0; 
    arc_int_outer_loop_index=0; 
    for arc_out_index=1:index_arc_j%-1 
        arc_outer_loop_index=arc_outer_loop_index+1; 
        arc_inner_loop_index=0; 
        arc_out=arcs_out(arc_out_index,:); 
        arc_a = arc_out(1,1); 
        arc_b = arc_out(1,2); 
        arc_org(arc_out(1,1),arc_out(1,2)).limits = arc(arc_out(1,1),arc_out(1,2)).limits; 
        arc_int(arc_a,arc_b).limits(num_of_prods,2,:)=[0]; 
        for sheet_num_out_index=1:size(arc(i,arc_out(1,2)).limits,3); 
            arc_int_outer_loop_index=arc_int_outer_loop_index+1; 
            arc_int_outer_sheet_index=sheet_num_out_index; 
            %y/x_star is to be reset each time the following loops repeat 
            for arc_in_index=1:index_arc_i%-1 
                arc_in=arcs_in(arc_in_index,:); 
                for sheet_num_index=1:size(arc(arc_in(1,1),i).limits,3); 
                    arc_inner_loop_index=arc_inner_loop_index+1; 
                    arc_inner_no_int=arcs_in(arc_in_index,:); 
                    arc_inner_no_int_index=sheet_num_index; 
                    set_current_limits(i,U,arc,arc_in,arc_out,arc_inner_loop_index,sheet_num_index,sheet_num_out_index); 
                    set_node_time(limit_in_max,limit_in_min,i,setup,cur_prod,U,PR,rho,arc,arc_in,arc_out,flag_index, 

arc_inner_loop_index,sheet_num_out_index,sheet_num_index,l); 
                    for k=1:num_of_prods 
                        calculate_new_out_limits(k,i,U,rho,l,node,arc,arc_in,arc_out,arc_inner_loop_index,sheet_num_index, 

sheet_num_out_index,limit_out_max,limit_out_min,limit_in_max,limit_in_min,idle_flag); 
                    end 
                    calculate_x_star(limit_in_max_new,limit_in_min_new,limit_out_max_new,limit_out_min_new,k,i,U,rho,l,node, 

arc,arc_in,arc_out,arc_inner_loop_index,sheet_num_index,sheet_num_out_index,limit_out_max,limit_out_min,limit
_in_max,limit_in_min,num_of_prods,num_of_arcs,arcs); 

                    arc_int_check(arc_a,arc_b).limits=arc_star(arc_a,arc_b).limits(:,:,arc_inner_loop_index); 
                    if flag_index > int_check_skip 
                        intersection_arc_int_check(arcs,num_of_arcs,limit_in_max_new,limit_in_min_new,limit_out_max_new, 

limit_out_min_new,k,i,U,rho,l,node,arc_in,arc_out,arc_inner_loop_index,sheet_num_index,sheet_num_out_index,li
mit_out_max,limit_out_min,limit_in_max,limit_in_min,num_of_prods,flag_index,arc_a,arc_b,sheet_index2,arc_inne
r_no_int,arc_inner_no_int_index,arc_int_check,arc_outer_loop_index,arc_int_outer_loop_index,arc_int_outer_sheet
_index); 

                    end 
                end 
            end 
        end 
        if size(arc_star(arc_a,arc_b).limits,2) > 0 
            intersect_arc_star(arcs,num_of_arcs,limit_in_max_new,limit_in_min_new,limit_out_max_new,limit_out_min_new, 

k,i,U,rho,l,node,arc_in,arc_out,arc_inner_loop_index,sheet_num_index,sheet_num_out_index,limit_out_max,limit_out_mi
n,limit_in_max,limit_in_min,num_of_prods,flag_index,arc_a,arc_b); 
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        end 
        arc(arc_a,arc_b).limits=arc_int(arc_a,arc_b).limits; 
        if size(arc(arc_a,arc_b).limits,3) >1 
            cleanup_sheets(num_of_prods,arc_a,arc_b); 
        end 
        if size(arc(arc_a,arc_b).limits,3)>1 
            union_arc(arc_int,arcs,num_of_arcs,limit_in_max_new,limit_in_min_new,limit_out_max_new,limit_out_min_new, 

k,i,U,rho,l,node,arc_in,arc_out,arc_inner_loop_index,sheet_num_index,sheet_num_out_index,limit_out_max,limit_out_mi
n,limit_in_max,limit_in_min,num_of_prods,flag_index,arc_a,arc_b); 

        end 
        cleanup_sheets(num_of_prods,arc_a,arc_b); 
        set_change_flag(arc,arc_org,num_of_prods,arc_a,arc_b,flag_index); 
        update_change_flag_out(i,arc_in,arc_out,arcs_in,arcs_out); 
        change_flag=0; 
    end 
    if flag_index > int_check_skip 
        for arc_in_index=1:index_arc_i 
            arc_in=arcs_in(arc_in_index,:); 
            y=size(flag_no_intersection(arc_in(1,1),arc_in(1,2)).sheet,1); 
            z=size(flag_no_intersection(arc_in(1,1),arc_in(1,2)).sheet,2); 
            int_index=1; 
            for int_index_row=1:y 
                if min(flag_no_intersection(arc_in(1,1),arc_in(1,2)).sheet(int_index_row,:)) == 1 
                    arc(arc_in(1,1),arc_in(1,2)).limits(:,:,int_index_row)=0; 
                    change_flag=1; 
                    update_change_flag(i,arc_in,arc_out,arcs_in,arcs_out); 
                end 
            end 
        end  
        int_index_column=0; 
        if backward_stability == 1 
            for arc_out_index=1:index_arc_j 
                arc_out=arcs_out(arc_out_index,:); 
                z=size(arc_org(arc_out(1,1),arc_out(1,2)).limits,3); 
                int_index=1; 
                column_flag=[]; 
                while int_index <= z 
                    int_index_column=int_index_column+1; 
                    for arc_in_index=1:index_arc_i 
                        arc_in=arcs_in(arc_in_index,:); 
                        if min(flag_no_intersection(arc_in(1,1),arc_in(1,2)).sheet (:,int_index_column)) == 1 
                            column_flag(1,arc_in_index)=1; 
                        else 
                            column_flag(1,arc_in_index)=0; 
                            arc_in_index=index_arc_i; 
                            break 
                        end 
                    end 
                    if min(column_flag) == 1 
                        equal_flag=0; 
                        for sht_index=1:size(arc(arc_out(1,1),arc_out(1,2)).limits,3); 
                            for prod_index=1:num_of_prods 
                                if arc(arc_out(1,1),arc_out(1,2)).limits(k,:,sht_index)==arc_org(arc_out(1,1),arc_out(1,2)).limits(k,:,int_index); 
                                    equal_flag=equal_flag+1; 
                                else 
                                    break 
                                end 
                            end 
                            if equal_flag==num_of_prods 
                                arc(arc_out(1,1),arc_out(1,2)).limits(:,:,sht_index)=0; 
                                break 
                            end 
                            equal_flag=0; 
                        end 
                        change_flag=1; 
                        update_change_flag(i,arc_in,arc_out,arcs_in,arcs_out); 
                    end 
                    int_index=int_index+1; 
                    change_flag=0; 
                end 
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            end 
        end 
    end 
  
    flag_no_intersection(:,:)=[]; 
    arc_outer_loop_index=0; 
    arc_int_outer_loop_index=0; 
    for arc_in_index=1:index_arc_i 
        arc_outer_loop_index=arc_outer_loop_index+1; 
        arc_in=arcs_in(arc_in_index,:); 
        arc_inner_loop_index=0; 
        arc_a = arc_in(1,1); 
        arc_b = arc_in(1,2); 
        arc_org(arc_in(1,1),arc_in(1,2)).limits = arc(arc_in(1,1),arc_in(1,2)).limits; 
        arc_int(arc_a,arc_b).limits(num_of_prods,2,:)=[0]; 
        for sheet_num_index=1:size(arc(arc_in(1,1),i).limits,3); 
            arc_int_outer_loop_index=arc_int_outer_loop_index+1; 
            arc_int_outer_sheet_index=sheet_num_index; 
            %x/y_star is cleared each time the following loop is repeated 
            for arc_out_index=1:index_arc_j%-1 
                arc_out=arcs_out(arc_out_index,:); 
                for sheet_num_out_index=1:size(arc(i,arc_out(1,2)).limits,3); 
                    arc_inner_loop_index=arc_inner_loop_index+1; 
                    arc_inner_no_int=arcs_out(arc_out_index,:); 
                    arc_inner_no_int_index=sheet_num_out_index; 
                    set_current_limits(i,U,arc,arc_in,arc_out,arc_inner_loop_index,sheet_num_index,sheet_num_out_index); 
                    set_node_time(limit_in_max,limit_in_min,i,setup,cur_prod,U,PR,rho,arc,arc_in,arc_out,flag_index, 

arc_inner_loop_index,sheet_num_out_index,sheet_num_index,l); 
                    for k=1:num_of_prods 
                        calculate_new_in_limits(k,i,U,rho,l,node,arc,arc_in,arc_out,arc_inner_loop_index,sheet_num_index, 

sheet_num_out_index,limit_out_max,limit_out_min,limit_in_max,limit_in_min,idle_flag); 
                    end 
                    calculate_y_star(limit_in_max_new,limit_in_min_new,limit_out_max_new,limit_out_min_new,k,i,U,rho, 

l,node,arc,arc_in,arc_out,arc_inner_loop_index,sheet_num_index,sheet_num_out_index,limit_out_max,limit_out_mi
n,limit_in_max,limit_in_min,num_of_prods,num_of_arcs,arcs); 

                    arc_int_check(arc_a,arc_b).limits=arc_star(arc_a,arc_b).limits(:,:,arc_inner_loop_index); 
                    if flag_index > int_check_skip 
                        intersection_arc_int_check(arcs,num_of_arcs,limit_in_max_new,limit_in_min_new,limit_out_max_new, 

limit_out_min_new,k,i,U,rho,l,node,arc_in,arc_out,arc_inner_loop_index,sheet_num_index,sheet_num_out_index,li
mit_out_max,limit_out_min,limit_in_max,limit_in_min,num_of_prods,flag_index,arc_a,arc_b,sheet_index2,arc_inne
r_no_int,arc_inner_no_int_index,arc_int_check,arc_outer_loop_index,arc_int_outer_loop_index,arc_int_outer_sheet
_index); 

                    end 
                end 
            end 
        end 
        if size(arc_star(arc_a,arc_b).limits,2) > 0 
            intersect_arc_star(arcs,num_of_arcs,limit_in_max_new,limit_in_min_new,limit_out_max_new,limit_out_min_new, 

k,i,U,rho,l,node,arc_in,arc_out,arc_inner_loop_index,sheet_num_index,sheet_num_out_index,limit_out_max,limit_out_mi
n,limit_in_max,limit_in_min,num_of_prods,flag_index,arc_a,arc_b); 

        end 
        arc(arc_a,arc_b).limits=arc_int(arc_a,arc_b).limits; 
        if size(arc(arc_a,arc_b).limits,3) >1 
            cleanup_sheets(num_of_prods,arc_a,arc_b); 
        end 
        if size(arc(arc_a,arc_b).limits,3)>1 
            union_arc(arc_int,arcs,num_of_arcs,limit_in_max_new,limit_in_min_new,limit_out_max_new,limit_out_min_new, 

k,i,U,rho,l,node,arc_in,arc_out,arc_inner_loop_index,sheet_num_index,sheet_num_out_index,limit_out_max,limit_out_mi
n,limit_in_max,limit_in_min,num_of_prods,flag_index,arc_a,arc_b); 

        end 
        cleanup_sheets(num_of_prods,arc_a,arc_b); 
        set_change_flag(arc,arc_org,num_of_prods,arc_a,arc_b,flag_index); 
        update_change_flag_in(i,arc_in,arc_out,arcs_in,arcs_out); 
        change_flag=0; 
    end 
    if flag_index > int_check_skip 
        if backward_stability == 1 
            for arc_out_index=1:index_arc_j%-1 
                arc_out=arcs_out(arc_out_index,:); 
                y=size(flag_no_intersection(arc_out(1,1),arc_out(1,2)).sheet,1); 
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                z=size(flag_no_intersection(arc_out(1,1),arc_out(1,2)).sheet,2); 
                int_index=1; 
                for int_index_row=1:y 
                    if min(flag_no_intersection(arc_out(1,1),arc_out(1,2)).sheet(int_index_row,:)) == 1 
                        arc(arc_out(1,1),arc_out(1,2)).limits(:,:,int_index_row)=0; 
                        change_flag=1; 
                        update_change_flag(i,arc_in,arc_out,arcs_in,arcs_out); 
                    end 
                end 
            end 
        end 
        int_index_column=0; 
        for arc_in_index=1:index_arc_i%-1 
            arc_in=arcs_in(arc_in_index,:); 
            z=size(arc_org(arc_in(1,1),arc_in(1,2)).limits,3); 
            int_index=1; 
            column_flag=0; 
            while int_index <= z 
                int_index_column=int_index_column+1; 
                for arc_out_index=1:index_arc_j 
                    arc_out=arcs_out(arc_out_index,:); 
                    if min(flag_no_intersection(arc_out(1,1),arc_out(1,2)).sheet(:,int_index_column)) == 1 
                        column_flag(1,arc_out_index)=1; 
                    else 
                        column_flag(1,arc_out_index)=0; 
                        arc_out_index=index_arc_j; 
                        break 
                    end 
                end 
                if (min(column_flag) == 1) && max(max(arc_org(arc_in(1,1),arc_in(1,2)).limits(:,:,int_index))) > 0 
                    equal_flag=0; 
                    for sht_index=1:size(arc(arc_in(1,1),arc_in(1,2)).limits,3) 
                        for prod_index=1:num_of_prods 

                   if arc(arc_in(1,1),arc_in(1,2)).limits(k,:,sht_index)==arc_org(arc_in(1,1),arc_in(1,2)).limits(k,:,int_index); 
                                equal_flag=equal_flag+1; 
                            else 
                                break 
                            end 
                        end 
                        if equal_flag==num_of_prods 
                            arc(arc_in(1,1),arc_in(1,2)).limits(:,:,sht_index)=0; 
                            break 
                        end 
                        equal_flag=0; 
                    end 
                    change_flag=1; 
                    update_change_flag(i,arc_in,arc_out,arcs_in,arcs_out); 
                end 
                change_flag=0; 
                int_index=int_index+1; 
            end 
        end 
    end 
    flag_no_intersection(:,:)=[]; 
    flag_index=flag_index+1; 
    update_node_number(i); 
end 
for i=1:num_of_arcs 
    for j = 1:num_of_arcs 
        if arcs(i,j) == 1 
            arc_stored(i,j).limits=arc(i,j).limits; 
            disp([i,j;]) 
            disp(round(arc(i,j).limits)) 
        end 
    end 
end 
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initialize_stability Function: 
function [arcs,arc,node,U,l,setup,PR,rho,flag,flag_length,num_of_arcs,message,i,flag_no_intersection] 

=initialize_stability(num_of_prods); 
global setup,global U,global l,global l,global PR,global rho,global flag,global flag_length,global arc,global node,global 
num_of_arcs,global arcs,global message 
% define node type -- 1=idle, 2=setup, 3=fill 
node(1).type=1; node(2).type=2;node(3).type=3; node(4).type=2;node(5).type=3; node(6).type=2;node(7).type=3; 
% define the prod number for each node 
node(2).product_num=1; node(3).product_num=1; node(4).product_num=2; node(5).product_num=2; node(6).product_num=3; 
node(7).product_num=3; 
setup=[5;5;5;5;5;5;5;5;5;];%setup cost (from,to) 
U=[100;100;100;];%upper limit of product(i) 
l=[99.9;99.9;99.9;];%lower limit of product(i) 
PR=[30;30;30;];%production rate of product(i) 
rho=[3;3;3;];%usage rate of product(i) 
flag=[1 2 3 4 5 6 7 ;]; 
% three prods going thur idle or not 
arcs=[0 1 0 1 0 1 0;%1 idle 
      0 0 1 0 0 0 0;%2 setup1 
      1 0 0 1 0 1 0;%3 fill 1 
      0 0 0 0 1 0 0;%4 setup 2 
      1 1 0 0 0 1 0;%5 fill 2 
      0 0 0 0 0 0 1;%6 setup 3 
      1 1 0 1 0 0 0;];%7 fill 3 %the connections of the network (from,to) for 
flag_length=length(flag); 
num_of_arcs=length(arcs); 
message=0; 
arc_index=1; 
for i=1:num_of_arcs 
    for j=1:num_of_arcs 
        if arcs(i,j)==1 
            for k=1:num_of_prods 
            arc(i,j).limits(k,:)=[0 U(k);]; 
            end 
        end 
    end 
end 
flag_no_intersection(i,j).sheet(1)=0; 
i=0; 
 
 
 
 
initialize_arc_limits Function: 
function [arc]=initialize_arc_limits(arcs,node,U,l,num_of_arcs,num_of_prods); 
global arc 
for i=1:num_of_arcs 
    for j=1:num_of_arcs 
        if arcs(i,j)==1 
            node_type_in=node(j).type; 
            node_type_out=node(i).type; 
            out_product=node(i).product_num; 
            in_product=node(j).product_num; 
            for k=1:num_of_prods 
                %for setup node and product being setup, set max=l(k) 

 if node_type_in == 2 && in_product == k 
                    arc(i,j).limits(k,2)=l(k); 
                end 
                %for entering into idle node, min value l(k) for all k 

 if node_type_in == 1  
                    arc(i,j).limits(k,1)=l(k); 
                end 
                %outgoing arc constraints 
                if node_type_out == 1 %for idle node, set minimum out going value at l(k) 
                    arc(i,j).limits(k,1)=l(k); 
                end 
                %for fill node and product being filled, set min=max=U(k) 

 if node_type_out == 3 && out_product == k 
                    arc(i,j).limits(k,:)=[U(k) U(k);]; 
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                end 
            end 
        end 
    end 
end 
 
 
 
 
set_node_num Function: 
function [i,cur_prod,flag]=set_node_num(node); 
global i, global flag 
i=flag(1); 
if node(i).type ~= 1 
    global cur_prod 
    cur_prod=node(i).product_num; 
end 
 
 
 
 
set_node_arcs Function: 
function [arcs_in,arcs_out,index_arc_i,index_arc_j,sheet_num_index]=set_node_arcs(i,arcs,num_of_arcs) 
global arcs_in,global arcs_out,global index_arc_i,global index_arc_j,global sheet_num_index 
arcs_out=[];     
arcs_in=[]; 
index_arc_i=1; 
index_arc_j=1; 
%define all the possile in and out arcs for a given node.  
for j = 1:num_of_arcs 
    if arcs(i,j) == 1 
        arcs_out(index_arc_i,:)= [i,j;]; 
        index_arc_i=index_arc_i+1; 
    end 
    if arcs(j,i) == 1 
        arcs_in(index_arc_j,:) = [j,i;]; 
        index_arc_j=index_arc_j+1; 
    end 
end 
sheet_num_index=1; 
in_size=size(arcs_in); 
out_size=size(arcs_out); 
index_arc_i=in_size(1); 
index_arc_j=out_size(1); 
 
 
 
 
set_current_limits Function: 
function[limit_out_max,limit_out_min,limit_in_max,limit_in_min,limit_out_max_new,limit_out_min_new,limit_in_max_new, 

limit_in_min_new]=set_current_limits(i,U,arc,arc_in,arc_out,arc_inner_loop_index,sheet_num_index,sheet_num_out_index) 
global limit_out_max,global limit_out_min,global limit_in_max,global limit_in_min, global limit_out_max_new,global 
limit_out_min_new,global limit_in_max_new,globallimit_in_min_new 
%this defines the current limit values for in and out, min and max 
limit_in_max=arc(arc_in(1,1),i).limits(:,2,sheet_num_index); limit_in_min=arc(arc_in(1,1),i).limits(:,1,sheet_num_index); 
limit_out_max=arc(i,arc_out(1,2)).limits(:,2,sheet_num_out_index); 
limit_out_min=arc(i,arc_out(1,2)).limits(:,1,sheet_num_out_index); limit_out_max_new=limit_out_max(:); 
limit_out_min_new=limit_out_min(:); 
limit_in_max_new=limit_in_max(:); 
limit_in_min_new=limit_in_min(:); 
 
 
 
 
set_node_time Function: 
function [node]=set_node_time(limit_in_max,limit_in_min,i,setup,cur_prod,U,PR,rho,arc,arc_in,arc_out,flag_index, 

arc_inner_loop_index,sheet_num_out_index,sheet_num_index,l); 
global node, global num_of_prods 
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%this group of if statements are to calculate the amount of time required to pass through the node 
if node(i).type == 1 
    node(i).time_delta_max=(arc(arc_in(1,1),arc_in(1,2)).limits(node(arc_out(1,2)).product_num,2,sheet_num_index) 

-l(node(arc_out(1,2)).product_num))/rho(node(arc_out(1,2)).product_num); 
    node(i).time_delta_min=(arc(arc_in(1,1),arc_in(1,2)).limits(node(arc_out(1,2)).product_num,1,sheet_num_index) 

-l(node(arc_out(1,2)).product_num))/rho(node(arc_out(1,2)).product_num);; 
end 
if node(i).type == 2 
    node(i).time_delta=setup(cur_prod); 
end 
if node(i).type == 3 
    node(i).time_delta_max=(U(cur_prod)-arc(arc_in(1),arc_in(2)).limits(cur_prod,1,sheet_num_index))/(PR(cur_prod) 

-rho(cur_prod)); 
    node(i).time_delta_min=(U(cur_prod)-arc(arc_in(1),arc_in(2)).limits(cur_prod,2,sheet_num_index))/(PR(cur_prod)-rho(cur_prod)); 
end 
 
 
 
 
calculate_new_out_limits Function: 
function[limit_out_max_new,limit_out_min_new]=calculate_new_out_limits(k,i,U,rho,l,node,arc,arc_in,arc_out,arc_inner_loop_ 

index,sheet_num_index,sheet_num_out_index,limit_out_max,limit_out_min,limit_in_max,limit_in_min,idle_flag) 
global limit_out_max_new,global limit_out_min_new 
if node(i).type == 1 %for idle node 
    if node(arc_out(1,2)).product_num ~= k 
        idle_time_min=max(0,node(i).time_delta_min); 
        idle_time_max=max(0,node(i).time_delta_max); 
        limit_out_max_new(k)=limit_in_max(k)-idle_time_min*rho(k);; 
        limit_out_min_new(k)=min(limit_in_min(k)-idle_time_min*rho(k),limit_in_max(k)-idle_time_max*rho(k)); 
    end 
end 
if node(i).type == 2 %for setup node 
    limit_out_min_new(k)=limit_in_min(k) - node(i).time_delta*rho(k) ; 
    limit_out_max_new(k)=limit_in_max(k) - node(i).time_delta*rho(k) ; 
end 
if node(i).type == 3 %for fill node 
    if node(i).product_num ~= k 
        limit_out_min_new(k)=limit_in_min(k) - node(i).time_delta_max*rho(k); 
        limit_out_max_new(k)=limit_in_max(k) - node(i).time_delta_min*rho(k); 
    end 
end 
 
 
 
 
calculate_x_star Function: 
function[arc_star,change_flag]=calculate_x_star(limit_in_max_new,limit_in_min_new,limit_out_max_new,limit_out_min_new,k,i, 

U,rho,l,node,arc,arc_in,arc_out,arc_inner_loop_index,sheet_num_index,sheet_num_out_index,limit_out_max,limit_out_min,lim
it_in_max,limit_in_min,num_of_prods,num_of_arcs,arcs); 

global arc_star, global change_flag 
for o=1:num_of_prods 
    arc_star(arc_out(1),arc_out(2)).limits(o,:,arc_inner_loop_index)=[0 0;]; 
 end 
for k=1:num_of_prods 
    arc_star(arc_out(1,1),arc_out(1,2)).limits(k,2,arc_inner_loop_index)=limit_out_max_new(k); 
    arc_star(arc_out(1,1),arc_out(1,2)).limits(k,1,arc_inner_loop_index)=limit_out_min_new(k); 
end 
flag_equal=[]; 
a=arc_out(1,1);b=arc_out(1,2); 
if size(arc_star(a,b).limits,3) >= 1 
    z=size(arc_star(a,b).limits,3); 
    m=arc_inner_loop_index; 
    while m <= z 
        for k=1:num_of_prods 
            if (arc_star(a,b).limits(k,1,m)) == (arc_star(a,b).limits(k,2,m)) 
                flag_equal(k,1)=1; 
            else 
                flag_equal(k,1)=0; 
            end 
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        end 
        if min(min(flag_equal(:,:))) == 1 
            arc_star(a,b).limits(:,:,m)=0; 
        end 
        flag_equal=[]; 
        m=m+1; 
    end 
end 
flag_equal=[]; 
a=arc_out(1,1);b=arc_out(1,2); 
if size(arc_star(a,b).limits,3) >= 1 
    z=size(arc_star(a,b).limits,3); 
    m=arc_inner_loop_index; 
    while m <= z 
        for k=1:num_of_prods 
            if (arc_star(a,b).limits(k,1,m)) > (arc_star(a,b).limits(k,2,m)) 
                flag_equal(k,1)=1; 
            else 
                flag_equal(k,1)=0; 
            end 
        end 
        if max(min(flag_equal(:,:))) == 1 
            arc_star(a,b).limits(:,:,m)=0; 
        end 
        flag_equal=[]; 
        m=m+1; 
    end 
end 
 
 
 
 
intersection_arc_int_check Function: 
function[arc,arc_int_check,cleanup_flag,arc_int,flag_no_intersection,sheet_index2]=intersection_arc_int_check(arcs,num_of_arcs, 

limit_in_max_new,limit_in_min_new,limit_out_max_new,limit_out_min_new,k,i,U,rho,l,node,arc_in,arc_out,arc_inner_loop_i
ndex,sheet_num_index,sheet_num_out_index,limit_out_max,limit_out_min,limit_in_max,limit_in_min,num_of_prods,flag_inde
x,arc_a,arc_b,sheet_index2,arc_inner_no_int,arc_inner_no_int_index,arc_int_check,arc_outer_loop_index,arc_int_outer_loop_i
ndex,arc_int_outer_sheet_index); 

global flag,global arc,global temp5,global arc_int,global flag_no_intersection,global arcs_in, global arcs_out 
flag_no_intersection(arc_inner_no_int(1,1),arc_inner_no_int(1,2)).sheet(arc_inner_no_int_index,arc_int_outer_loop_index)=1; 
m=arc_int_outer_sheet_index; 
n=1; 
flag_overlap=0; 
for k=1:num_of_prods 
     %check to make sure all ranges of prods are ovelapping and intersection does exist 
     if ((arc(arc_a,arc_b).limits(k,1,m)) <= (arc_int_check(arc_a,arc_b).limits(k,2,n)) && (arc(arc_a,arc_b).limits(k,2,m)) 
       >= (arc_int_check(arc_a,arc_b).limits(k,1,n))) 
        flag_overlap=flag_overlap+1; 
    else 
        if ((arc(arc_a,arc_b).limits(k,1,m)) >= (arc_int_check(arc_a,arc_b).limits(k,2,n)) && (arc(arc_a,arc_b).limits(k,2,m))  

  <= (arc_int_check(arc_a,arc_b).limits(k,1,n))) 
            flag_overlap=flag_overlap+1; 
        end 
    end 
end 
if flag_overlap >= num_of_prods 
    flag_no_intersection(arc_inner_no_int(1,1),arc_inner_no_int(1,2)).sheet(arc_inner_no_int_index,arc_int_outer_loop_index)=0; 
end 
if max(max(arc(arc_inner_no_int(1,1),arc_inner_no_int(1,2)).limits(:,:,arc_inner_no_int_index)))==0 
    flag_no_intersection(arc_inner_no_int(1,1),arc_inner_no_int(1,2)).sheet(arc_inner_no_int_index,arc_int_outer_loop_index)=0; 
end 
 
 
 
 
intersect_arc_star Function: 
function[arc,arc_star,cleanup_flag,arc_int,flag_no_intersection,sheet_index2]=intersect_arc_star(arcs,num_of_arcs,limit_in_max 
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_new,limit_in_min_new,limit_out_max_new,limit_out_min_new,k,i,U,rho,l,node,arc_in,arc_out,arc_inner_loop_index,sheet_nu
m_index,sheet_num_out_index,limit_out_max,limit_out_min,limit_in_max,limit_in_min,num_of_prods,flag_index,arc_a,arc_b,
sheet_index2,flag_no_intersection) 

global flag,global arc,global arc_star,global temp5, global arc_int,global flag_no_intersection,global sheet_index2,global arcs_in, 
global arcs_out 
empty_star=1; 
empty_arc=1; 
empty_special=0; 
%intersection of non-special cases (ie. cases in which the min<>max for any product k 
sheet_index=1; 
temp5(arc_a,arc_b).limits=[]; 
temp6(arc_a,arc_b).limits=[]; 
arc_int(arc_a,arc_b).limits=[]; 
z_arc=(size(arc(arc_a,arc_b).limits,3)); 
z_star=(size(arc_star(arc_a,arc_b).limits,3)); 
sheet_index=1; 
m=1; 
while m<=z_arc 
    n=1; 
    flag_unique=0; 
    cleanup_flag=[]; 
    while n<=z_star 
        flag_updated=0; 
        %this will find the intersection of two regions that share boundaries of num_of_prods-1 product(s) 
        if flag_updated==0; 
            flag_overlap=0; 
            for k=1:num_of_prods 
        %check to make sure all ranges of prods are ovelapping and intersection does exist 
                if ((arc(arc_a,arc_b).limits(k,1,m)) <= (arc_star(arc_a,arc_b).limits(k,2,n)) && (arc(arc_a,arc_b).limits(k,2,m)) 

>= (arc_star(arc_a,arc_b).limits(k,1,n))) 
                    flag_overlap=flag_overlap+1; 
                else 
                    if ((arc(arc_a,arc_b).limits(k,1,m)) >= (arc_star(arc_a,arc_b).limits(k,2,n)) && (arc(arc_a,arc_b).limits(k,2,m))  

    <= (arc_star(arc_a,arc_b).limits(k,1,n))) 
                        flag_overlap=flag_overlap+1; 
                    end 
                end 
            end 
            if flag_overlap >= num_of_prods%-1 
                for k=1:num_of_prods 
                    temp5(arc_a,arc_b).limits(k,1,sheet_index)=max((arc(arc_a,arc_b).limits(k,1,m)),(arc_star(arc_a,arc_b).limits(k,1,n))); 
                    temp5(arc_a,arc_b).limits(k,2,sheet_index)=min((arc(arc_a,arc_b).limits(k,2,m)),(arc_star(arc_a,arc_b).limits(k,2,n))); 
                    flag_unique=1; 
                    flag_updated=1; 
                end 
            end 
            %if flag_unique is equal to 0 if arc(m) has not been intersected with any other regions of arc_star(n) 
            if flag_unique==0 &&  n==z_star 
                temp5(arc_a,arc_b).limits(:,:,sheet_index)=arc(arc_a,arc_b).limits(:,:,m); 
                flag_updated=1; 
                arc_flag = 0; 
            end 
            if flag_updated==1 
                sheet_index=sheet_index+1; 
            end 
        end 
        n=n+1; 
    end 
    m=m+1; 
end 
z_temp=(size(temp5(arc_a,arc_b).limits,3)); 
j=1; 
arc_star(arc_a,arc_b).limits=[]; 
arc_int(arc_a,arc_b).limits=temp5(arc_a,arc_b).limits; 
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cleanup_sheets Function: 
function[arc,arc_star]=cleanup_sheets(num_of_prods,arc_a,arc_b) 
global arc,global arc_star,global flag,global U 
tolerance = .25; 
flag_equal=[]; 
a=arc_a;b=arc_b; 
if size(arc(a,b).limits,2) > 1 
    z=size(arc(a,b).limits,3); 
    m=1; 
    while m <= z 
        for k=1:num_of_prods 
            if (arc(a,b).limits(k,1,m)) > (arc(a,b).limits(k,2,m)) 
                flag_equal(k,1,m)=1; 
            else 
                flag_equal(k,1,m)=0; 
            end 
        end 
        if max(max(flag_equal(:,:,m))) == 1 
            arc(a,b).limits(:,:,m)=[]; 
            z=size(arc(a,b).limits,3); 
            if m>=1 && m<=z 
                m=m-1; 
            end 
        end 
        m=m+1; 
    end 
end 
flag_equal=[]; 
if size(arc(a,b).limits,1) > 2 && size(arc(a,b).limits,3) > 1 
    z=size(arc(a,b).limits,3); 
    for m=1:z 
        if m <= z 
            for k=1:num_of_prods 
                if abs((arc(a,b).limits(k,1,m)) - (arc(a,b).limits(k,2,m)))<tolerance 
                    flag_equal(k,1,m)=1; 
                else 
                    flag_equal(k,1,m)=0; 
                end 
            end 
            if min(min(flag_equal(:,:,m))) == 1 
                arc(a,b).limits(:,:,m)=[]; 
                z=size(arc(a,b).limits,3); 
                if m>=1 && m<=z 
                    m=m-1; 
                end 
            end 
        end 
    end 
end 
%check if min and max limits are 0, if so delete sheet 
if size(arc(a,b).limits,3) > 1 
    z=size(arc(a,b).limits,3); 
    m=1; 
    while m<=z && m>0 && z>1 
        j=1; 
        while j<=num_of_prods 
            if max(max(arc(a,b).limits(j,:,m)))==0 
                arc(a,b).limits(:,:,m)=[]; 
                z=size(arc(a,b).limits,3); 
                j=num_of_prods; 
                m=0; 
            end 
            j=j+1; 
        end 
        m=m+1; 
    end 
end 
%check if sheets are equal, if so delete sheet 
if size(arc(a,b).limits,3) > 1 
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    z=size(arc(a,b).limits,3); 
    m=1; 
    while m<=z-1 && m>0 
        flag_equal=[]; 
        n=m+1; 
        while n<=z 
            for k=1:num_of_prods 
                if (size(arc(a,b).limits,3)>=m)&&(m>0)&&(n<=z) 
                    if abs( (arc(a,b).limits(k,1,m)) - (arc(a,b).limits(k,1,n))) < tolerance 
                        flag_equal(k,1,n)=1; 
                    else 
                        flag_equal(k,1,n)=0; 
                    end 
                    if abs( (arc(a,b).limits(k,2,m)) - (arc(a,b).limits(k,2,n))) < tolerance 
                        flag_equal(k,2,n)=1; 
                    else 
                        flag_equal(k,1,n)=0; 
                    end 
                end 
            end 
            if min(min(flag_equal(:,:,n))) == 1 
                for k=1:num_of_prods 
                    arc(a,b).limits(k,1,z+1)=min(arc(a,b).limits(k,1,m),arc(a,b).limits(k,1,n)); 
                    arc(a,b).limits(k,2,z+1)=max(arc(a,b).limits(k,2,m),arc(a,b).limits(k,2,n)); 
                end 
                arc(a,b).limits(:,:,m)=[]; 
                arc(a,b).limits(:,:,n-1)=[]; 
                z=size(arc(a,b).limits,3); 
                n=z; 
                m=m-1; 
            end 
            n=n+1; 
        end 
        m=m+1; 
    end 
end 
 
 
 
 
union_arc Function: 
function[arc,cleanup_flag]=union_arc(arc_int,arcs,num_of_arcs,limit_in_max_new,limit_in_min_new,limit_out_max_new, 

limit_out_min_new,k,i,U,rho,l,node,arc_in,arc_out,arc_inner_loop_index,sheet_num_index,sheet_num_out_index,limit_out_ma
x,limit_out_min,limit_in_max,limit_in_min,num_of_prods,flag_index,arc_a,arc_b) 

global flag global arc 
star=1; 
empty_arc=1; 
empty_special=0; 
tolerance = .01; 
tolerance_union = .01; 
%the next few if statements are to remove subsets,supersets, and equivalent sheets from the arc matrix 
z_arc=(size(arc(arc_a,arc_b).limits,3)); 
m=1; 
sheet_index=1; 
while m<=z_arc-1 && m>0 
    n=1+m; 
    flag_unique=0; 
    cleanup_flag=[]; 
    while n<=z_arc 
        flag_updated=0; 
        if flag_updated==0; 
            cleanup_flag(:,:,sheet_index)=[2]; 
            for k=1:num_of_prods 
                if abs((arc(arc_a,arc_b).limits(k,1,m)) - (arc(arc_a,arc_b).limits(k,1,n))) < tolerance 
                    cleanup_flag(k,1,sheet_index)=0; 
                else 
                    cleanup_flag(k,1,sheet_index)=2; 
                    break 
                end 
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                if abs((arc(arc_a,arc_b).limits(k,2,m)) - (arc(arc_a,arc_b).limits(k,2,n))) < tolerance 
                    cleanup_flag(k,2,sheet_index)=0; 
                else 
                    cleanup_flag(k,2,sheet_index)=2; 
                    break 
                end 
            end 
            %if all are 0, then regions are equal 
            if min(cleanup_flag(:,:,sheet_index))==0 & max(cleanup_flag(:,:,sheet_index))==0; 
                arc(arc_a,arc_b).limits(:,:,n)=[]; 
                z_arc=(size(arc(arc_a,arc_b).limits,3)); 
                n=z_arc; 
                m=0; 
                flag_updated=1; 
                flag_unique=1; 
            end 
        end 
  
        if flag_updated==0 
            cleanup_flag(:,:,sheet_index)=[2]; 
            for k=1:num_of_prods 
                if (arc(arc_a,arc_b).limits(k,1,m)-tolerance <= arc(arc_a,arc_b).limits(k,1,n)) && (arc(arc_a,arc_b).limits(k,2,m) 

 >= arc(arc_a,arc_b).limits(k,1,n)-tolerance) 
                    cleanup_flag(k,1,sheet_index)=-1; 
                else 
                    cleanup_flag(k,1,sheet_index)=2; 
                    break 
                end 
                if  (arc(arc_a,arc_b).limits(k,2,m) >= arc(arc_a,arc_b).limits(k,2,n)-tolerance) && (arc(arc_a,arc_b).limits(k,1,m)- 

tolerance <= arc(arc_a,arc_b).limits(k,2,n)) 
                    cleanup_flag(k,2,sheet_index)=-1; 
                else 
                    cleanup_flag(k,2,sheet_index)=2; 
                    break 
                end 
            end 
            %if all -1 then region arc(n) is complete subset of arc(m) 
            if max(cleanup_flag(:,:,sheet_index))==-1 & min(cleanup_flag(:,:,sheet_index))==-1; 
                arc(arc_a,arc_b).limits(:,:,n)=[]; 
                z_arc=(size(arc(arc_a,arc_b).limits,3)); 
                n=z_arc; 
                m=0;%m-1; 
                flag_updated=1; 
                flag_unique=1; 
            end 
        end 
        if flag_updated==0 
            cleanup_flag(:,:,sheet_index)=[2]; 
            for k=1:num_of_prods 
                if (arc(arc_a,arc_b).limits(k,1,m) >= arc(arc_a,arc_b).limits(k,1,n)-tolerance) && (arc(arc_a,arc_b).limits(k,1,m)- 

tolerance <= arc(arc_a,arc_b).limits(k,2,n)) 
                    cleanup_flag(k,1,sheet_index)=1; 
                else 
                    cleanup_flag(k,1,sheet_index)=2; 
                    break 
                end 
                if (arc(arc_a,arc_b).limits(k,2,m)-tolerance <= arc(arc_a,arc_b).limits(k,2,n)) && (arc(arc_a,arc_b).limits(k,2,m)  

>= arc(arc_a,arc_b).limits(k,1,n)-tolerance) 
                    cleanup_flag(k,2,sheet_index)=1; 
                else 
                    cleanup_flag(k,2,sheet_index)=2; 
                    break 
                end 
            end 
            if min(cleanup_flag(:,:,sheet_index))==1 & max(cleanup_flag(:,:,sheet_index))==1; 
                arc(arc_a,arc_b).limits(:,:,m)=[]; 
                z_arc=(size(arc(arc_a,arc_b).limits,3)); 
                n=z_arc; 
                m=0; 
                flag_updated=1; 
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                flag_unique=1; 
            end 
        end 
        if flag_updated==1 
            sheet_index=sheet_index+1; 
        end 
        n=n+1; 
    end 
    m=m+1; 
end 
%this will find the union of multiple regions that share boundaries of num_of_prods-1 product(s) 
temp5(arc_a,arc_b).limits=[]; 
temp6(arc_a,arc_b).limits=[]; 
z_arc=(size(arc(arc_a,arc_b).limits,3)); 
m=1; 
sheet_index=1; 
flag_updated=0; 
flag_updated2=0; 
while m<=z_arc-1 && m>0 
    n=1+m; 
    flag_unique=0; 
    while n<=z_arc 
        equal_flag=0; 
        for k=1:num_of_prods 
            if abs(arc(arc_a,arc_b).limits(k,1,m) - arc(arc_a,arc_b).limits(k,1,n)) <= tolerance_union && 

     abs(arc(arc_a,arc_b).limits(k,2,m) - arc(arc_a,arc_b).limits(k,2,n)) <= tolerance_union 
                equal_flag=equal_flag+1; 
            end 
        end 
        if equal_flag >= num_of_prods-1 
            flag_overlap=0; 
            for k=1:num_of_prods 
                if ((arc(arc_a,arc_b).limits(k,1,m))-tolerance_union <= (arc(arc_a,arc_b).limits(k,2,n)) && (arc(arc_a,arc_b).limits(k,2,m))  
  >= (arc(arc_a,arc_b).limits(k,1,n))-tolerance_union) 
                    flag_overlap=flag_overlap+1; 
                else 
                    if ((arc(arc_a,arc_b).limits(k,1,m)) >= (arc(arc_a,arc_b).limits(k,2,n))-tolerance_union &&  
     (arc(arc_a,arc_b).limits(k,2,m))-tolerance_union <= (arc(arc_a,arc_b).limits(k,1,n))) 
                        flag_overlap=flag_overlap+1; 
                    end 
                end 
            end 
            if flag_overlap == num_of_prods 
                for k=1:num_of_prods 
                    temp6(arc_a,arc_b).limits(k,1)=min(arc(arc_a,arc_b).limits(k,1,m),arc(arc_a,arc_b).limits(k,1,n)); 
                    temp6(arc_a,arc_b).limits(k,2)=max(arc(arc_a,arc_b).limits(k,2,m),arc(arc_a,arc_b).limits(k,2,n)); 
                end 
                merged_sheet1=m; 
                merged_sheet2=n; 
                arc(arc_a,arc_b).limits(:,:,merged_sheet1)=[]; 
                arc(arc_a,arc_b).limits(:,:,merged_sheet2-1)=[]; 
                z_arc=(size(arc(arc_a,arc_b).limits,3)); 
                arc(arc_a,arc_b).limits(:,:,z_arc+1)=temp6(arc_a,arc_b).limits; 
                n=z_arc; 
                m=0; 
                temp6(arc_a,arc_b).limits=[]; 
            end 
        end 
        n=n+1; 
    end 
    m=m+1; 
end 
%the next few if statements are to remove subsets,supersets, and equivalent sheets from the arc matrix 
z_arc=(size(arc(arc_a,arc_b).limits,3)); 
m=1; 
sheet_index=1; 
while m<=z_arc-1 && m>0 
    n=1+m; 
    flag_unique=0; 
    cleanup_flag=[]; 
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    while n<=z_arc 
        flag_updated=0; 
        if flag_updated==0; 
            cleanup_flag(:,:,sheet_index)=[2]; 
            for k=1:num_of_prods 
                if abs((arc(arc_a,arc_b).limits(k,1,m)) - (arc(arc_a,arc_b).limits(k,1,n))) <= tolerance 
                    cleanup_flag(k,1,sheet_index)=0; 
                else 
                    cleanup_flag(k,1,sheet_index)=2; 
                    break 
                end 
                if abs((arc(arc_a,arc_b).limits(k,2,m)) - (arc(arc_a,arc_b).limits(k,2,n))) < tolerance 
                    cleanup_flag(k,2,sheet_index)=0; 
                else 
                    cleanup_flag(k,2,sheet_index)=2; 
                    break 
                end 
            end 
            %if all are 0, then regions are equal 
            if min(cleanup_flag(:,:,sheet_index))==0 & max(cleanup_flag(:,:,sheet_index))==0; 
                arc(arc_a,arc_b).limits(:,:,n)=[]; 
                z_arc=(size(arc(arc_a,arc_b).limits,3)); 
                n=z_arc; 
                m=0; 
                flag_updated=1; 
                flag_unique=1; 
            end 
        end 
        if flag_updated==0 
            cleanup_flag(:,:,sheet_index)=[2]; 
            for k=1:num_of_prods 
                if (arc(arc_a,arc_b).limits(k,1,m)-tolerance <= arc(arc_a,arc_b).limits(k,1,n)) && (arc(arc_a,arc_b).limits(k,2,m) >= 

arc(arc_a,arc_b).limits(k,1,n)-tolerance) 
                    cleanup_flag(k,1,sheet_index)=-1; 
                else 
                    cleanup_flag(k,1,sheet_index)=2; 
                    break 
                end 
                if  (arc(arc_a,arc_b).limits(k,2,m) >= arc(arc_a,arc_b).limits(k,2,n)-tolerance) && (arc(arc_a,arc_b).limits(k,1,m)-tolerance 

 <= arc(arc_a,arc_b).limits(k,2,n)) 
                    cleanup_flag(k,2,sheet_index)=-1; 
                else 
                    cleanup_flag(k,2,sheet_index)=2; 
                    break 
                end 
            end 
            %if all -1 then region a1c(n) is complete subset of arc(m) 
            if max(cleanup_flag(:,:,sheet_index))==-1 & min(cleanup_flag(:,:,sheet_index))==-1; 
                arc(arc_a,arc_b).limits(:,:,n)=[]; 
                z_arc=(size(arc(arc_a,arc_b).limits,3)); 
                n=z_arc; 
                m=0; 
                flag_updated=1; 
                flag_unique=1; 
            end 
        end 
        if flag_updated==0 
            cleanup_flag(:,:,sheet_index)=[2]; 
            for k=1:num_of_prods 
                if (arc(arc_a,arc_b).limits(k,1,m) >= arc(arc_a,arc_b).limits(k,1,n)-tolerance) && (arc(arc_a,arc_b).limits(k,1,m)-tolerance 

 <= arc(arc_a,arc_b).limits(k,2,n)) 
                    cleanup_flag(k,1,sheet_index)=1; 
                else 
                    cleanup_flag(k,1,sheet_index)=2; 
                    break 
                end 
                if (arc(arc_a,arc_b).limits(k,2,m)-tolerance <= arc(arc_a,arc_b).limits(k,2,n)) && (arc(arc_a,arc_b).limits(k,2,m) >=  
  arc(arc_a,arc_b).limits(k,1,n)-tolerance) 
                    cleanup_flag(k,2,sheet_index)=1; 
                else 
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                    cleanup_flag(k,2,sheet_index)=2; 
                    break 
                end 
            end 
            if min(cleanup_flag(:,:,sheet_index))==1 & max(cleanup_flag(:,:,sheet_index))==1; 
                arc(arc_a,arc_b).limits(:,:,m)=[]; 
                z_arc=(size(arc(arc_a,arc_b).limits,3)); 
                n=z_arc; 
                m=0; 
                flag_updated=1; 
                flag_unique=1; 
            end 
        end 
        if flag_updated==1 
            sheet_index=sheet_index+1; 
        end 
        n=n+1; 
    end 
    m=m+1; 
end 
%this will find the union of multiple regions that share boundaries of num_of_prods-1 product(s) 
temp5(arc_a,arc_b).limits=[]; 
temp6(arc_a,arc_b).limits=[]; 
z_arc=(size(arc(arc_a,arc_b).limits,3)); 
m=1; 
sheet_index=1; 
flag_updated=0; 
flag_updated2=0; 
while m<=z_arc-1 && m>0 
    n=1+m; 
    flag_unique=0; 
    while n<=z_arc 
        equal_flag=0; 
        for k=1:num_of_prods 
            if abs(arc(arc_a,arc_b).limits(k,1,m) - arc(arc_a,arc_b).limits(k,1,n)) <= tolerance_union &&  
      abs(arc(arc_a,arc_b).limits(k,2,m) - arc(arc_a,arc_b).limits(k,2,n)) <= tolerance_union 
                equal_flag=equal_flag+1; 
            end 
        end 
        if equal_flag >= num_of_prods-1 
            flag_overlap=0; 
            for k=1:num_of_prods 
                if ((arc(arc_a,arc_b).limits(k,1,m))-tolerance_union <= (arc(arc_a,arc_b).limits(k,2,n)) && (arc(arc_a,arc_b).limits(k,2,m))  
  >= (arc(arc_a,arc_b).limits(k,1,n))-tolerance_union) 

  %check to make sure all ranges of prods are ovelapping and intersection does exist 
                    flag_overlap=flag_overlap+1; 
                else 
                    if ((arc(arc_a,arc_b).limits(k,1,m)) >= (arc(arc_a,arc_b).limits(k,2,n))-tolerance_union &&  
      (arc(arc_a,arc_b).limits(k,2,m))-tolerance_union <= (arc(arc_a,arc_b).limits(k,1,n))) 
                        flag_overlap=flag_overlap+1; 
                    end 
                end 
            end 
            if flag_overlap == num_of_prods 
                for k=1:num_of_prods 
                    temp6(arc_a,arc_b).limits(k,1)=min(arc(arc_a,arc_b).limits(k,1,m),arc(arc_a,arc_b).limits(k,1,n)); 
                    temp6(arc_a,arc_b).limits(k,2)=max(arc(arc_a,arc_b).limits(k,2,m),arc(arc_a,arc_b).limits(k,2,n)); 
                end 
                merged_sheet1=m; 
                merged_sheet2=n; 
                arc(arc_a,arc_b).limits(:,:,merged_sheet1)=[]; 
                arc(arc_a,arc_b).limits(:,:,merged_sheet2-1)=[]; 
                z_arc=(size(arc(arc_a,arc_b).limits,3)); 
                arc(arc_a,arc_b).limits(:,:,z_arc+1)=temp6(arc_a,arc_b).limits; 
                n=z_arc; 
                m=0; 
                temp6(arc_a,arc_b).limits=[]; 
            end 
        end 
        n=n+1; 
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    end 
    m=m+1; 
end 
%the next few if statements are to remove subsets, supersets, and equivalent sheets from the arc matrix 
z_arc=(size(arc(arc_a,arc_b).limits,3)); 
m=1; 
sheet_index=1; 
while m<=z_arc-1 && m>0 
    n=1+m; 
    flag_unique=0; 
    cleanup_flag=[]; 
    while n<=z_arc 
        flag_updated=0; 
        if flag_updated==0; 
            cleanup_flag(:,:,sheet_index)=[2]; 
            for k=1:num_of_prods 
                if abs((arc(arc_a,arc_b).limits(k,1,m)) - (arc(arc_a,arc_b).limits(k,1,n))) <= tolerance 
                    cleanup_flag(k,1,sheet_index)=0; 
                else 
                    cleanup_flag(k,1,sheet_index)=2; 
                    break 
                end 
                if abs((arc(arc_a,arc_b).limits(k,2,m)) - (arc(arc_a,arc_b).limits(k,2,n))) < tolerance 
                    cleanup_flag(k,2,sheet_index)=0; 
                else 
                    cleanup_flag(k,2,sheet_index)=2; 
                    break 
                end 
            end 
            %if all are 0, then regions are equal 
            if min(cleanup_flag(:,:,sheet_index))==0 & max(cleanup_flag(:,:,sheet_index))==0; 
                arc(arc_a,arc_b).limits(:,:,n)=[]; 
                z_arc=(size(arc(arc_a,arc_b).limits,3)); 
                n=z_arc; 
                m=0; 
                flag_updated=1; 
                flag_unique=1; 
            end 
        end 
        if flag_updated==0 
            cleanup_flag(:,:,sheet_index)=[2]; 
            for k=1:num_of_prods 
                if (arc(arc_a,arc_b).limits(k,1,m)-tolerance <= arc(arc_a,arc_b).limits(k,1,n)) && (arc(arc_a,arc_b).limits(k,2,m) >=  
  arc(arc_a,arc_b).limits(k,1,n)-tolerance) 
                    cleanup_flag(k,1,sheet_index)=-1; 
                else 
                    cleanup_flag(k,1,sheet_index)=2; 
                    break 
                end 
                if  (arc(arc_a,arc_b).limits(k,2,m) >= arc(arc_a,arc_b).limits(k,2,n)-tolerance) && (arc(arc_a,arc_b).limits(k,1,m)-tolerance  
  <= arc(arc_a,arc_b).limits(k,2,n)) 
                    cleanup_flag(k,2,sheet_index)=-1; 
                else 
                    cleanup_flag(k,2,sheet_index)=2; 
                    break 
                end 
            end 
            %if all -1 then region a1c(n) is complete subset of arc(m) 
            if max(cleanup_flag(:,:,sheet_index))==-1 & min(cleanup_flag(:,:,sheet_index))==-1; 
                arc(arc_a,arc_b).limits(:,:,n)=[]; 
                z_arc=(size(arc(arc_a,arc_b).limits,3)); 
                n=z_arc; 
                m=0; 
                flag_updated=1; 
                flag_unique=1; 
            end 
        end 
        if flag_updated==0 
            cleanup_flag(:,:,sheet_index)=[2]; 
            for k=1:num_of_prods 
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                if (arc(arc_a,arc_b).limits(k,1,m) >= arc(arc_a,arc_b).limits(k,1,n)-tolerance) && (arc(arc_a,arc_b).limits(k,1,m)-tolerance  
  <= arc(arc_a,arc_b).limits(k,2,n)) 
                    cleanup_flag(k,1,sheet_index)=1; 
                else 
                    cleanup_flag(k,1,sheet_index)=2; 
                    break 
                end 
                if (arc(arc_a,arc_b).limits(k,2,m)-tolerance <= arc(arc_a,arc_b).limits(k,2,n)) && (arc(arc_a,arc_b).limits(k,2,m) >=  
  arc(arc_a,arc_b).limits(k,1,n)-tolerance) 
                    cleanup_flag(k,2,sheet_index)=1; 
                else 
                    cleanup_flag(k,2,sheet_index)=2; 
                    break 
                end 
            end 
            if min(cleanup_flag(:,:,sheet_index))==1 & max(cleanup_flag(:,:,sheet_index))==1; 
                arc(arc_a,arc_b).limits(:,:,m)=[]; 
                z_arc=(size(arc(arc_a,arc_b).limits,3)); 
                n=z_arc; 
                m=0; 
                flag_updated=1; 
                flag_unique=1; 
            end 
        end 
        if flag_updated==1 
            sheet_index=sheet_index+1; 
        end 
        n=n+1; 
    end 
    m=m+1; 
end 
%this will find the union of multiple regions that share boundaries of num_of_prods-1 product(s) 
temp5(arc_a,arc_b).limits=[]; 
temp6(arc_a,arc_b).limits=[]; 
z_arc=(size(arc(arc_a,arc_b).limits,3)); 
m=1; 
sheet_index=1; 
flag_updated=0; 
flag_updated2=0; 
while m<=z_arc-1 && m>0 
    n=1+m; 
    flag_unique=0; 
    while n<=z_arc 
        equal_flag=0; 
        for k=1:num_of_prods 
            if abs(arc(arc_a,arc_b).limits(k,1,m) - arc(arc_a,arc_b).limits(k,1,n)) <= tolerance_union &&  
      abs(arc(arc_a,arc_b).limits(k,2,m) - arc(arc_a,arc_b).limits(k,2,n)) <= tolerance_union 
                equal_flag=equal_flag+1; 
            end 
        end 
        if equal_flag >= num_of_prods-1 
            flag_overlap=0; 
            for k=1:num_of_prods 
                if ((arc(arc_a,arc_b).limits(k,1,m))-tolerance_union <= (arc(arc_a,arc_b).limits(k,2,n)) && (arc(arc_a,arc_b).limits(k,2,m))  
  >= (arc(arc_a,arc_b).limits(k,1,n))-tolerance_union) 

   %check to make sure all ranges of prods are ovelapping and intersection does exist 
                    flag_overlap=flag_overlap+1; 
                else 
                    if ((arc(arc_a,arc_b).limits(k,1,m)) >= (arc(arc_a,arc_b).limits(k,2,n))-tolerance_union &&  
     (arc(arc_a,arc_b).limits(k,2,m))-tolerance_union <= (arc(arc_a,arc_b).limits(k,1,n))) 
                        flag_overlap=flag_overlap+1; 
                    end 
                end 
            end 
            if flag_overlap == num_of_prods 
                for k=1:num_of_prods 
                    temp6(arc_a,arc_b).limits(k,1)=min(arc(arc_a,arc_b).limits(k,1,m),arc(arc_a,arc_b).limits(k,1,n)); 
                    temp6(arc_a,arc_b).limits(k,2)=max(arc(arc_a,arc_b).limits(k,2,m),arc(arc_a,arc_b).limits(k,2,n)); 
                end 
                merged_sheet1=m; 
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                merged_sheet2=n; 
                arc(arc_a,arc_b).limits(:,:,merged_sheet1)=[]; 
                arc(arc_a,arc_b).limits(:,:,merged_sheet2-1)=[]; 
                z_arc=(size(arc(arc_a,arc_b).limits,3)); 
                arc(arc_a,arc_b).limits(:,:,z_arc+1)=temp6(arc_a,arc_b).limits; 
                n=z_arc; 
                m=0; 
                temp6(arc_a,arc_b).limits=[]; 
            end 
        end 
        n=n+1; 
    end 
    m=m+1; 
end 
 
 
 
 
set_change_flag Function: 
function[change_flag,arc_stored,arc_stored_index,arc_intersected]=set_change_flag(arc,arc_org,num_of_prods,arc_a,arc_b, 

flag_index); 
global change_flag global arc_stored global arc_stored_index global arc_intersected, global arc_int 
tolerance = .25; 
z=size(arc(arc_a,arc_b).limits,3); 
z_org=size(arc_org(arc_a,arc_b).limits,3); 
temp_flag=0; 
m=1; 
if size(arc(arc_a,arc_b).limits,2)>0 
    while m<=z && m>0 
        flag_equal=[0]; 
        n=1; 
        while n<=z_org 
            for k=1:num_of_prods 
                if abs((arc(arc_a,arc_b).limits(k,1,m)) - (arc_org(arc_a,arc_b).limits(k,1,n))) <= tolerance 
                    flag_equal(k,1,n)=1; 
                else 
                    flag_equal(k,1,n)=0; 
                end 
                if abs((arc(arc_a,arc_b).limits(k,2,m)) - (arc_org(arc_a,arc_b).limits(k,2,n))) <= tolerance 
                    flag_equal(k,2,n)=1; 
                else 
                    flag_equal(k,1,n)=0; 
                end 
            end 
            if min(min(flag_equal(:,:,n))) == 1%the two regions are equal 
                temp_flag=1+temp_flag; 
                n=z_org; 
                break 
            end 
            n=n+1; 
        end 
        if n == z_org+1 && min(min(min(flag_equal))) == 0 
            arc(arc_a,arc_b).limits(:,:,m); 
        end 
        m=m+1; 
    end 
    arc_stored(arc_a,arc_b,flag_index,arc_stored_index).limits=arc(arc_a,arc_b).limits; 
    arc_stored_index=1+arc_stored_index; 
    if temp_flag < z_org & z > 0; 
        change_flag = 1; 
    end 
end 
 
 
 
 
update_change_flag_out Function: 
function[flag_length,flag]=update_change_flag_out(i,arc_in,arc_out,arcs_in,arcs_out) 
global flag,global flag_length,global change_flag, global flag_ini 
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flag_length=length(flag); 
flag_new=0; 
if change_flag == 1 && flag_length > 0 
    flag_new = flag; 
    present_out=0; 
    present_current=0; 
    for index_flg_lth=1:flag_length %looks for the outgoing node in the flag 
        if flag(index_flg_lth) == arc_out(1,2) 
            present_out=1; 
        end 
        if flag(index_flg_lth) == i 
            present_current=1; 
        end 
    end 
    if present_current == 0%adds current node to flag if not present 
        flag_new(flag_length+1)=i; 
    end 
    flag_length_new=length(flag_new); 
    if present_out == 0%adds node out to flag if not present 
        flag_new(flag_length_new+1)=arc_out(1,2); 
    end 
    flag=flag_new; 
end 
flag_length=length(flag); 
flag_new=0; 
if change_flag == 1 && flag_length == 0 
    flag_new(2)=i; 
    flag_new(3)=arc_out(1,2); 
    flag=flag_new; 
end 
flag_length=length(flag); 
change_flag=0; 
 
 
 
 
update_change_flag Function: 
function[flag_length,flag]=update_change_flag(i,arc_in,arc_out,arcs_in,arcs_out) 
global flag,global flag_length,global change_flag, global flag_ini 
flag_length=length(flag); 
flag_new=0; 
if change_flag == 1 && flag_length > 0 
    for arc_flag_in_index=1:size(arcs_in,1) 
        flag_new = flag; 
        present_in=0; 
        present_current=0; 
        for index_flg_lth=1:flag_length %looks for the outgoing node in the flag 
            if flag(index_flg_lth) == arcs_in(arc_flag_in_index,1) 
                present_in=1; 
            end 
            if flag(index_flg_lth) == i 
                present_current=1; 
            end 
        end 
        if present_current == 0%adds current node to flag if not present 
            flag_new(flag_length+1)=i; 
        end 
        flag_length_new=length(flag_new); 
        if present_in == 0%adds node out to flag if not present 
            flag_new(flag_length_new+1)=arcs_in(arc_flag_in_index,1); 
        end 
        flag=flag_new; 
    end 
end 
flag_length=length(flag); 
flag_new=0; 
if change_flag == 1 && flag_length == 0 
    flag_new(2)=i; 
    for arc_flag_in_index=1:size(arcs_in,1) 
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        flag_new(2+arc_flag_in_index)=arcs_in(arc_flag_in_index,1); 
    end 
    flag=flag_new; 
end 
change_flag=1; 
flag_length=length(flag); 
flag_new=0; 
if change_flag == 1 && flag_length > 0 
    for arc_flag_out_index=1:size(arcs_out,1) 
        flag_new = flag; 
        present_out=0; 
        present_current=0; 
        for index_flg_lth=1:flag_length %looks for the outgoing node in the flag 
            if flag(index_flg_lth) == arcs_out(arc_flag_out_index,2); 
                present_out=1; 
            end 
            if flag(index_flg_lth) == i 
                present_current=1; 
            end 
        end 
        if present_current == 0%adds current node to flag if not present 
            flag_new(flag_length+1)=i; 
        end 
        flag_length_new=length(flag_new); 
        if present_out == 0%adds node out to flag if not present 
            flag_new(flag_length_new+1)=arcs_out(arc_flag_out_index,2); 
        end 
        flag=flag_new; 
    end 
    flag_length=length(flag); 
    flag_new=0; 
    if change_flag == 1 && flag_length == 0 
        flag_new(2)=i; 
        for arc_flag_out_index=1:size(arcs_out,1) 
            flag_new(2+arc_flag_out_index)=arcs_out(arc_flag_out_index,2); 
        end 
        flag=flag_new; 
    end 
end 
flag_length=length(flag); 
change_flag=0; 
 
 
 
 
calculate_new_in_limits Function: 
function[limit_in_max_new,limit_in_min_new]=calculate_new_in_limits(k,i,U,rho,l,node,arc,arc_in,arc_out,arc_inner_loop_index,sh
eet_num_index,sheet_num_out_index,limit_out_max,limit_out_min,limit_in_max,limit_in_min,idle_flag) 
global limit_in_max_new,global limit_in_min_new 
if node(i).type == 1 %for idle node 
    if node(arc_out(1,2)).product_num ~= k 
        idle_time_min=max(0,node(i).time_delta_min); 
        idle_time_max=max(0,node(i).time_delta_max); 
        limit_in_min_new(k)=min(limit_out_min(k)+idle_time_min*rho(k),limit_out_max(k)+idle_time_min*rho(k));  
        limit_in_max_new(k)=max(limit_out_max(k)+idle_time_max*rho(k),limit_out_min(k)+idle_time_max*rho(k)); 
    end 
end 
if node(i).type == 2 %for setup node 
    limit_in_min_new(k)=limit_out_min(k) + node(i).time_delta*rho(k) ; 
    limit_in_max_new(k)=limit_out_max(k) + node(i).time_delta*rho(k) ; 
end 
if node(i).type ~= 3 %for fill node 
    if node(i).product_num == k 
        limit_in_min_new(k)=limit_out_min(k) + node(i).time_delta_max*rho(k); 
        limit_in_max_new(k)=limit_out_max(k) + node(i).time_delta_min*rho(k); 
    end 
end 
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calculate_y_star Function: 
function[arc_star,change_flag]=calculate_y_star(limit_in_max_new,limit_in_min_new,limit_out_max_new,limit_out_min_new,k,i,U, 

rho,l,node,arc,arc_in,arc_out,arc_inner_loop_index,sheet_num_index,sheet_num_out_index,limit_out_max,limit_out_min,limit_
in_max,limit_in_min,num_of_prods,num_of_arcs,arcs); 

global arc_star, global change_flag 
for o=1:num_of_prods 
    arc_star(arc_in(1),arc_in(2)).limits(o,:,arc_inner_loop_index)=[0 0;]; 
end 
for k=1:num_of_prods 
    arc_star(arc_in(1,1),arc_in(1,2)).limits(k,2,arc_inner_loop_index)=limit_in_max_new(k); 
    arc_star(arc_in(1,1),arc_in(1,2)).limits(k,1,arc_inner_loop_index)=limit_in_min_new(k); 
end 
flag_equal=[]; 
a=arc_in(1,1);b=arc_in(1,2); 
if size(arc_star(a,b).limits,3) >= 1 
    z=size(arc_star(a,b).limits,3); 
    m=arc_inner_loop_index; 
    while m <= z 
        for k=1:num_of_prods 
            if (arc_star(a,b).limits(k,1,m)) == (arc_star(a,b).limits(k,2,m)) 
                flag_equal(k,1)=1; 
            else 
                flag_equal(k,1)=0; 
            end 
        end 
        if min(min(flag_equal(:,:))) == 1 
            arc_star(a,b).limits(:,:,m)=0; 
            z=size(arc_star(a,b).limits,3); 
        end 
        flag_equal=[]; 
        m=m+1; 
    end 
end 
flag_equal=[]; 
a=arc_in(1,1);b=arc_in(1,2); 
if size(arc_star(a,b).limits,3) >= 1 
    z=size(arc_star(a,b).limits,3); 
    m=arc_inner_loop_index; 
    while m <= z 
        for k=1:num_of_prods 
            if (arc_star(a,b).limits(k,1,m)) > (arc_star(a,b).limits(k,2,m)) 
                flag_equal(k,1)=1; 
            else 
                flag_equal(k,1)=0; 
            end 
        end 
        if max(min(flag_equal(:,:))) == 1 
            arc_star(a,b).limits(:,:,m)=0; 
            z=size(arc_star(a,b).limits,3); 
        end 
        flag_equal=[]; 
        m=m+1; 
    end 
end 
 
 
 
 
update_change_flag_in Function: 
function[flag_length,flag]=update_change_flag_in(i,arc_in,arc_out,arcs_in,arcs_out) 
global flag,global flag_length,global change_flag, global flag_ini 
flag_length=length(flag); 
flag_new=0; 
if change_flag == 1 && flag_length > 0 
    flag_new = flag; 
    present_in=0; 
    present_current=0; 
    for index_flg_lth=1:flag_length %looks for the outgoing node in the flag 
        if flag(index_flg_lth) == arc_in(1,1) 



 

 

206 

 

            present_in=1; 
        end 
        if flag(index_flg_lth) == i 
            present_current=1; 
        end 
    end 
    if present_current == 0%adds current node to flag if not present 
        flag_new(flag_length+1)=i; 
    end 
    flag_length_new=length(flag_new); 
    if present_in == 0%adds node out to flag if not present 
        flag_new(flag_length_new+1)=arc_in(1,1); 
    end 
    flag=flag_new; 
end 
flag_length=length(flag); 
flag_new=0; 
if change_flag == 1 && flag_length == 0 
    flag_new(2)=i; 
    flag_new(3)=arc_in(1,1); 
    flag=flag_new; 
end 
flag_length=length(flag); 
change_flag=0; 
 
 
 
 
update_node_number Function: 
function[flag_length,flag]=update_node_number(i) 
global flag,global flag_length,global change_flag 
flag_length=length(flag); 
flag_new=0; 
if (flag_length>1) && (flag(2)>0) 
    for j=2:flag_length 
        flag_new(j-1) = flag(j); 
    end 
end 
if (flag_length>1) && (flag(2)== 0) 
    for j=3:flag_length 
        flag_new(j-2) = flag(j); 
    end 
end 
if (flag_length == 1 || flag_length == 0) && (change_flag == 0) 
    flag_new = ''; 
end 
flag=flag_new; 
flag_length=length(flag); 
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Appendix II: Sequencing Algorithm Implementation 
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Algorithm 

The sequencing algorithm functions by evaluating a set of products that are at or below the buffer 

threshold.  The algorithm calculates a goodness value for each product based on a weighted 

goodness equation for the system and the product with the highest goodness value is selected as 

the next product to be sequenced.  The algorithm also allows the user to define a lookahead time 

window to calculate future goodness values for each future sequence step within the window.  

The first product of the highest valued sequence is selected to be the next product to be 

sequenced.  The lookahead function allows the algorithm to predict future states in order to avoid 

dead-end paths. 

 

Description Implemented Sequencing Algorithm 

This section provides a description of how the implemented sequencing algorithm functions.  

Note that the definition of key variables can be found in Section 6.4.1 Key Variables. 

 

Functions: 

• initialization(): function to define various parameters of a given production system.  The 

parameters defined by the function include the setup times, production rates, usage rates, 

maximum buffer levels and thresholds and initial buffer levels. 

• threshold_check(BFi(t)): function that cycles through all products to find products that 

have reached or crossed the BF_thresholdi.  Flagged products are then stored in the 

prod_selection list. 

• coefficient_normalization(BFi(t),PRi,URi,cost(i,j)): function that normalizes the 

weighting factors α, β, γ, ε, and η such that each term of the goodness equation 

corresponds to the initial weighting factor value and the sum of the equation is one. 

• current_state_selection(BFi(t),PRi,URi,cost(i,j),α,β,γ,ε,η): this function calculates the 

goodness value for all products contained in the prod_selection list.  The function returns 

the prod_selection list ranked from the best product to worst product. 

• lookahead_selection(BFi(t),PRi,URi,cost(i,j),χ,ψ,φ,ω,ζ,la_time): this function calculates 

the lookahead goodness value for la_time into the future, the first products considered are 

contained in the prod_selection list, but any product that reaches the BF_thresholdi is 

considered for subsequent sequence steps.  The function returns the best first product 

from all the sequences considered within the lookahead window. 
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The initialization function defines the starting buffer levels and maximum buffer levels, 

production and usage rates, changeover costs, buffer thresholds, etc.  The initialization function 

also allows the user to define the weighting factors for the current_state_selection function.   

 

The algorithm will then call the threshold_check function to evaluate if any products are below 

the buffer threshold, BF_thresholdi.  If no products are below the threshold then the system is idle 

until a product crosses the threshold.  The amount of idle time is calculated by advancing a user 

defined, Δ, number of time units into the future.  The buffer levels are recalculated after each time 

step for all products, by subtracting the number of products consumed 

( ( ) ( )consumed i UR i= Δ× ) from the previous buffer level.  The buffer threshold is checked after 

each Δ time units.  This continues until one or more products are below the buffer threshold level, 

BF_thresholdi. 

 

The product or products are flagged in the prod_selection variable when one or more products 

cross the buffer threshold whether or not idle time was experienced by the system.  The time at 

which the threshold was crossed is recorded for each flagged product.  The threshold_check 

function is then exited. 

 

The coefficient_normalization function is then called to determine the normalized the weighting 

factors for the goodness equations to increase the effectiveness of each factor.  The normalizing 

coefficient variable is determined first by calculating the maximum value of the term that the 

coefficient will be applied to (i.e. time to crash, time to refill, time in queue, changeover cost, or 

Miltenburg’s usage rate variation).  The initial value of the weighting factor is then divided by the 

corresponding normalizing coefficient variable and the new normalized weighting factor value is 

used for the goodness calculations.  

 

The current_state_selection function begins by considering the products contained in the 

prod_selection list.  If only one product is contained in the prod_selection variable, the 

current_state_selection function is exited.  When multiple products are below the buffer 

threshold, the goodness equation is used to evaluate the products. 
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All products in the prod_selection variable are evaluated and the goodness values are stored.  The 

products are then sorted and ranked and the product with the highest goodness value is selected to 

be the next product in the sequence. 

 

If the lookahead time is set to zero, lookahead_selection function is skipped.  If the lookahead 

time is greater than zero, the lookahead_selection function is entered.  The lookahead_selection 

function will project all possible production sequences the defined amount of lookahead time into 

the future.  Each sequence is evaluated based on a lookahead goodness equation. 

 

After evaluating all the sequences for the defined amount of lookahead time, the goodness values 

are stored and the lookahead_selection function is exited.  The sequences are sorted and ranked 

based upon the goodness values and the first product of the highest valued sequence is selected as 

the next product to be refilled.    

 

If only one product is to be sequenced, the algorithm stops.  If multiple products are to be 

sequenced by the algorithm, the refill time is calculated for the selected product, whether selected 

by the current_state_selection function or the lookahead_selection function.  All other product 

buffers are then decreased based upon the usage rate of the given product and the refill time of the 

selected product.  The selected product is refilled and the product number is recorded.  Then the 

time is advanced by the refill time and the process is repeated the desired number of times.   

 

Implementation of Algorithm 

This algorithm was implemented using MATLAB Release 14, Version 7.0.4. 

 

Complexity of Algorithm 

The computational complexity of the algorithm has not been calculated formally but the author 

acknowledges that the algorithm is not optimized.  The algorithm was developed based on the 

overall function of the code instead of optimization of the computational time. 

 

An example of the function of the code taking precedence over the computational efficiency is 

that Miltenburg’s usage rate variation is calculated multiple times at different points in the 

algorithm.  A more efficient approach could be to store each iteration of the calculation so that 

only the required portion must be recalculated instead starting at the beginning each time. 
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Note that the combination of high buffer threshold levels, large number of products, and a large 

lookahead time will significantly increase computation time.  The number of products to be 

evaluated at each step potentially increases as the buffer threshold parameter increases.  Consider 

that a 100% buffer threshold value will cause every product to be evaluated at every step.  Also if 

a large lookahead time is defined then all products will be propagated the defined large amount of 

time into the future to evaluate all possible sequences at each step of the algorithm, which could 

potentially be thousands of sequences.  Therefore some caution should be used when defining the 

lookahead time and buffer threshold values when there are a large number of products in the 

system. 

 
Sequencing Algorithm Source Code: 
clear all; 
global alpha,global beta,global gamma_,global eta,global eta_val,global x_,global y_, global num_of_prod global BF_init,global 
BF_maxt,global BF_tcross,global percentage,global BF_ini global idle_time,global time_increment,global marker,global 
record,global time_stamp global step,global ans1_size,global prod_thrs,global cost_threshold global lookahead_time,global 
BF_threshold,global delta,global epsilon,global chi,global psi,global omega,global time_stamp global marker,global cost,global 
PR,global BF_ini,global BF_max,global UR, global step,global BF_store,global selection_num, global prod_thrs,global record,global 
alphap, global betap, global gamma_p;global epsilon_p, global etap,global prod_selection,global ans2_size,global IX,global 
cur_state,global alpha_record,global beta_record,global gamma_record, global epsilon_record,global eta_record,global seq_goodness, 
global goodness_tr,global goodness_tr_time,global pg_num,global milt_UR,global IX,global num_of_prod_sequenced 
global zeta_,global omega, global phi,global goodness_flag 
 
previous_prod=1; 
num_of_prod=8; 
initialize(previous_prod,num_of_prod); 
time_to_crash(1,1)=0; 
time_to_refill(1,1)=0; 
bad=0; 
alpha =     .2 ;% %bf/ur coefficient - it's the time until buffer is empty 
beta =      .2 ;% %(BF_max-bf)/pr coefficient - it's the time to refill the buffer 
gamma_ =    .2 ;%%(t-tr) coefficient - the time since buffer was refilled 
epsilon =   .2 ;%%c/o cost coefficient - the time to change from previous product to current product 
eta_val =   .2 ;%milt's weighting factor 
alpha_val = alpha; 
beta_val = beta; 
gamma_val = gamma_; 
epsilon_val = epsilon;% 
max_steps=200; 
for step=1:max_steps; %to repeat program for max_steps, to generate multiple step sequence for debugging 
    final_sequence(step,1)=0; 
    record(step+1,num_of_prod+1)=0.;%set starting time to zero 
    threshold_check(previous_prod,num_of_prod,BF_max,BF_threshold,delta,UR,cost,cost_threshold); 
    coef_norm(BF_ini,BF_max,UR,PR,BF_threshold); 
    alpha = alphap*alpha_val; 
    beta = betap * beta_val; % 
    gamma_ = gamma_p * gamma_val; 
    epsilon = epsilon_p * epsilon_val; 
    if idle_time == 0 
        cur_state_selection_fnx(num_of_prod,step,record,time_stamp,BF_max,BF_ini,UR,PR,ans1_size,prod_thrs,selection_num, 

  previous_prod,final_sequence); 
        first=prod_selection(1); 
        done=0; 
        if lookahead_time > 0 && sum(prod_thrs) > 1 
            test_combined_sequence(previous_prod,num_of_prod,lookahead_time,UR,PR,cost,cost_threshold,BF_threshold, 

BF_ini,BF_max,BF_tcross,prod_thrs,prod_selection,ans2_size,chi,psi); 
            global seq_goodness,global goodness_tr,global goodness_tr_time,global goodness_BF_level,global seq_goodness_stored 
            if pg_num ==2 
                seq_goodness(:,:,2)=seq_goodness(:,:,1); 
            end 
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            if max(max(seq_goodness(:,:,size(seq_goodness,3)))) > 0 
                goodness_sheet=size(seq_goodness,3); 
            elseif max(max(seq_goodness(:,:,size(seq_goodness,3)-1))) > 0 
                goodness_sheet=size(seq_goodness,3)-1; 
            end 
            A=[]; 
            A = sortrows(seq_goodness_stored(:,:,goodness_sheet),[-(goodness_sheet+1) -goodness_sheet]);%this selects max(min of 

        sequence goodness) 
            %A = sortrows(seq_goodness_stored(:,:,goodness_sheet),[-goodness_sheet]);%this selects highest average goodness value 
             A_stored(1:size(A,1),1:size(A,2),step)=A; 
             for rank_index=1:size(A,1) 
                  if A(rank_index,goodness_sheet+3)~= 0 
                       if seq_goodness(A(rank_index,goodness_sheet+3),4,goodness_sheet) ~= 0 
                            first=seq_goodness(A(rank_index,goodness_sheet+3),4,goodness_sheet); 
                            break 
                       end 
                  end 
             end 
        end 
        if first == 0 
             break 
        else 
        refill_time=[BF_max(first)-BF_ini(first)+UR(first)*cost(previous_prod,first)]/(PR(first) 

  -UR(first))+cost(previous_prod,first);%calc time to refill product chosen by lookahead module 
        for i = 1:num_of_prod; %cycle thru products and subtracted used quantities 
            if i == first; %updates the BF_ini for the product being replenished, or other products not replenished 
                BF_ini(first)=BF_max(first); %update buffer qty 
            else 
                used = UR(i) * refill_time; 
                BF_ini(i)=BF_ini(i) - used; %update buffer level 
            end 
        end 
        record (step+1,num_of_prod+3)= first; 
        time_to_crash (step+1,num_of_prod+3)= first; 
        time_to_refill(step+1,num_of_prod+3)= first; 
        final_sequence(step,1)=first; 
        record(step+1,num_of_prod+6)=cost(previous_prod,first); 
        previous_prod=first; 
        record (step+1,1) = refill_time+record(step,1); 
        marker(final_sequence(step,1)) = 0;%to update the marker to record the time when the product is refilled 
        time_stamp(final_sequence(step,1)) = 0;%to reset the time at which the threshold is crossed 
  
        for i=1:num_of_prod; 
            record (step+1,i+1)=BF_ini(i)/BF_max(i);%percent fullness of buffer 
            if record (step+1,i+1) < 0 
                bad = 100; 
            end 
        end 
        time_to_crash (step+1,1) = record(step,1); 
        time_to_refill (step+1,1) = record(step,1); 
        for i=1:num_of_prod; 
            time_to_crash (step+1,i+1)=BF_ini(i)/UR(i);%time to crash 
            time_to_refill (step+1,i+1)=(BF_max(i)-BF_ini(i))/(PR(i)-UR(i));%time to refill 
        end 
        prod_selection=[]; 
    else 
        time_to_crash (step+1,1) = record(step,1); 
        time_to_refill (step+1,1) = record(step,1); 
        for i=1:num_of_prod; 
            time_to_crash (step+1,i+1)=BF_ini(i)/UR(i);%time to crash 
            time_to_refill (step+1,i+1)=(BF_max(i)-BF_ini(i))/(PR(i)-UR(i));%time to refill 
        end 
        step; 
        prod_selection=[]; 
    end %this is the end of the loop to skip the lookahead if prod_selection only has one product 
    if bad ~= 0 
        break 
    end 
    loop_step=1; 
end %this is the end on the loop to step thru the algorithm 
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initialize Function: 
function [cost_threshold,lookahead_time,BF_threshold,delta,alpha,beta,gamma_,epsilon,eta,chi,psi,omega,marker,cost, 
BF_ini,BF_max,PR,UR,selection_num,prod_threshold,alphap,betap,gamma_p,epsilon_p,etap]=initialize(first_prod,num_of_prod) 
global cost_threshold,global lookahead_time,global BF_threshold,global delta,global alpha,global beta,global gamma_,global epsilon; 
global chi,global psi,global omega,global time_stamp,global marker,global cost,global PR,global BF_ini,global BF_max; 
global UR,global selection_num; 
  
cost_threshold= 8; %max cost that will be considered, all costs great will be considered infinite 
cost =5*[1 1 2 1 2 1 2 1 1 1;%1 
         1 1 1 2 1 1 1 1 1 1;%2 
         1 2 1 1 2 1 1 1 1 1;%3 
         1 1 2 1 1 2 2 1 1 1;%4 
         1 2 1 1 1 2 2 1 1 1;%5 
         1 1 2 1 2 1 1 1 1 1;%6 
         1 1 1 1 1 1 1 1 1 1;%7 
         1 1 1 1 1 1 1 1 1 1;%8 
         1 1 1 1 1 1 1 1 1 1;%9 
         1 1 1 1 1 1 1 1 1 1;];%10 
PR=3*[5 5 5 5 5 .30 .300 .300 .300 .30;]; %rate of production, replenishment 
UR=1*[4 3 2 2 1 .05 .05 .05 .05 .05;]; %usage/consumption rate (parts per time unit) 
BF_ini =40*[100 100 100 100 100 275 275 275 275 298;]; %initial buffer, in num of prods 
BF_max =40*[100 100 100 100 100 300 300 300 300 300;]; %max buffer levels in num of prods 
BF_threshold=.95*[1 1 1 1 1   1 1 1 1 1   1 1 1 1 1   1 1 1 1 1   1 1 1 1 1   1 1 1 1 1;];%buffer fullness threshold, percentage of how full 
the buffer is.  buffers that are lower will be considered 
lookahead_time= 10.0; %# of time units to lookahead when finding a "best" sequence 
delta=1;%the number of time units to advance when idle time occurs--how far to step ahead 
selection_num=num_of_prod;%num of products to be selected by the goodness function to be tested by the lookahead function 
time_stamp(num_of_prod) = [0]; 
marker(num_of_prod) = [0]; 
prod_thrs(num_of_prod) = [0]; 
alphap=1; 
betap=1; % 
gamma_p=1; 
epsilon_p=1; 
etap=1; 
 
 
 
 
threshold_check Function: 
function [BF_ini,BF_max,BF_init,BF_maxt,BF_tcross,step,record,marker,time_stamp,ans1_size,prod_thrs,time_increment]= 
    threshold_check(previous_prod,num_of_prod,BF_max,BF_threshold,delta,UR,cost,cost_threshold) 
global BF_init,global BF_ini,global BF_maxt,global time_stamp,global marker,global idle_time,global step,global record, 
global ans1_size,global prod_thrs,global time_increment 
for i=1:num_of_prod; 
    BF_init(i)=BF_ini(i)/UR(i); %convert into time units for the time until crash (at zero) 
    BF_maxt(i)=BF_max(i)/UR(i); %convert into time units for max possible time until crash 
    BF_tcross(i)=(BF_max(i)*BF_threshold(i)-BF_ini(i))/UR(i);%calc time until prod will cross bf threshold 
end 
% this will calculate the number of products that are below the buffer threshold, i.e. the products that need to be refilled 
time_increment=0; 
idle_time=0; 
for increment=1:1000 
    for i=1:num_of_prod; 
        if (BF_ini(i)/BF_max(i) <= BF_threshold(i)) && (cost(previous_prod,i) <= cost_threshold) 
            prod_thrs(i)=1; 
        else 
            prod_thrs(i)=0; 
        end 
    end 
    ans1=find(prod_thrs == 1); 
    ans1_size=size(ans1); 
    if  (ans1_size(1,2) < 1); 
        idle_time=1; 
        time_increment=time_increment+delta; 
        for j=1:num_of_prod; 
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            BF_ini(j) = BF_ini(j) - UR(j)*delta; 
            BF_init(j)=BF_ini(j)/UR(j); %convert into time units             
    BF_tcross(j)=(BF_max(j)*BF_threshold(j)-BF_ini(j))/UR(j);%calc time until prod reaches bf_thres 
        end 
    else 
        break; 
    end 
end 
% this will record any idle time if present and advance the record matrix appropriately 
if idle_time==1; 
    record(step+1,1)=record(step,1)+time_increment; 
    record(step,num_of_prod+2)=idle_time; 
    for i=1:num_of_prod 
        record(step+1,i+1)=BF_ini(i)/BF_max(i); 
    end 
end 
%this is to record the time when the buffer level drops below the buffer threshold, current time becomes the time_stamp(i) 
for i=1:num_of_prod; 
    if  ((BF_ini(i)/BF_max(i) <= BF_threshold(i)) && marker(i) == 0); 
        if step < 2 
            time_stamp(i) = -0.1; 
            marker(i) = 1; 
        else 
            time_stamp(i) = record(step,1)-(BF_threshold(i)*BF_max(i)-BF_ini(i))/UR(i); 
            marker(i) = 1; 
        end 
    end 
end 
 
 
 
 
coef_norm Function:  
function [alphap,betap,gamma_p,epsilon_p]=coef_norm(BF_ini,BF_max,UR,PR,BF_threshold) 
global step,global record,global alphap, global betap, global gamma_p, global num_of_prod,global epsilon_p,global cost 
for i = 1:num_of_prod 
    bf_avg(i) = BF_ini(i)/BF_max(i); 
    ttc(i) = (BF_ini(i)/UR(i)); 
    ttr(i) = (BF_max(i)*(1-record(step,i+1)))/(PR(i)-UR(i)); 
    chg_over(i) =  max(cost(i,:)); 
    tiq(i) = (BF_threshold(i)-record(step,i+1))*BF_max(i)/UR(i);% 
end 
alphap = 1/mean(ttc); 
betap = 1/max(ttr); % 
if max(tiq) > 0 
    gamma_p = 1/max(tiq); 
else 
    gamma_p = 999999; 
end 
epsilon_p=1/max(chg_over); 
 
 
 
 
cur_state_fnx Function:  
function [prod_selection,ans2_size,IX,cur_state,alpha_record,beta_record,gamma_record,epsilon_record,num_of_prod_sequenced, 

eta_record]=cur_state_selection_fnx(num_of_prod,step,record,time_stamp,BF_max,BF_ini,UR,PR,ans1_size,prod_thrs,selectio
n_num,previous_prod,final_sequence) 

global prod_selection,global ans2_size,global alpha,global beta,global gamma_,global epsilon, global eta,global cost; 
global IX,global cur_state,global goodness_flag,global alpha_record,global beta_record,global gamma_record, global epsilon_record 
global eta_record,global num_of_prod_sequenced, global milt_UR, global milt_UR_temp,global etap, global eta_val 
seq_usage_rate(final_sequence,num_of_prod,UR);%calculate mlitenburg's U 
prod_selection(1,1:num_of_prod)=0; 
cur_state(step,1:num_of_prod)=0; 
goodness_flag=0; 
if ans1_size(1,2) == 1 
    ans2_size(1,2)=1; 
    for i = 1:num_of_prod 
        if prod_thrs(i) > 0 
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            prod_selection(i)=1; 
        end 
    end 
    return 
else 
    for i = 1:num_of_prod 
        if prod_thrs(i) > 0 
            if time_stamp(i) == 0 
                prod_i=i; 
                calc_milt_u_temp(final_sequence,prod_i,UR,step,num_of_prod,num_of_prod_sequenced, 

 milt_UR,etap,eta_val); 
                cur_state(step,i) = -alpha*(BF_ini(i)/UR(i)) + beta*(BF_max(i)-BF_ini(i))/(PR(i)-UR(i)) 

 - epsilon*cost(previous_prod,i) - eta * milt_UR_temp; 
       %these next line are only for debugging, these values are not used for anything else  
       alpha_record(step,i)=-alpha*(BF_ini(i)/UR(i));  

                beta_record(step,i)=beta*(BF_max(i)-BF_ini(i))/(PR(i)-UR(i)); 
                gamma_record(step,i)=0; 
                epsilon_record(step,i)=- epsilon*cost(previous_prod,i); 
                eta_record(step,i)=-eta * milt_UR_temp; 
            else 
                prod_i=i; 
                calc_milt_u_temp(final_sequence,prod_i,UR,step,num_of_prod,num_of_prod_sequenced,milt_UR,etap,eta_val); 
                cur_state(step,i) = -alpha*(BF_ini(i)/UR(i)) + beta*((BF_max(i)-BF_ini(i))/(PR(i)-UR(i))) + gamma_*(record(step,1) 

 -time_stamp(i)) - epsilon*cost(previous_prod,i) - eta * milt_UR_temp; 
                alpha_record(step,i)=-alpha*(BF_ini(i)/UR(i)); 
                beta_record(step,i)=beta*(BF_max(i)-BF_ini(i))/(PR(i)-UR(i)); 
                gamma_record(step,i)=gamma_*(record(step,1)-time_stamp(i)); 
                epsilon_record(step,i)=- epsilon*cost(previous_prod,i); 
                eta_record(step,i)=-eta * milt_UR_temp; 
            end 
        else 
            cur_state(step,i) = -inf; 
            alpha_record(step,i)=0; 
            beta_record(step,i)=0; 
            gamma_record(step,i)=0; 
            epsilon_record(step,i)=0; 
        end 
    end 
end 
[ranking,IX] = sort ((cur_state(step,:)),'descend'); 
goodness_flag=1; 
index=0; 
for i=1:num_of_prod 
    if ranking(i) == 0 
        index=1+index; 
    else 
        break 
    end 
end 
prod_selection=IX; 
ans2=find(prod_thrs == 1); 
ans2_size=size(ans2); 
 
 
 
 
test_combined_sequence Function: 
function [test_combined_sequence,seq_goodness]=test_combined_sequence(previous_prod,num_of_prod,lookahead_time, 

UR,PR,cost,cost_threshold,BF_threshold,BF_ini,BF_max,BF_tcross,prod_thrs,prod_selection,ans2_size,chi,psi); 
global seq_goodness;global goodness_tr;global goodness_tr_time;global pg_num;global alpha, global beta,global gamma_, global 
epsilon,global milt_UR,global eta_val, global num_of_prod_sequenced,global milt_UR_temp,global zeta_,global omega, global phi 
goodness_tr=[]; 
goodness_tr_time=[]; 
chi=alpha;%lookahead time to crash weighting factor 
psi=beta;%lookahead time to refill weighting factor 
phi=gamma_;%lookahead time in queue weighting factor 
omega=epsilon;%lookahead changeover cost weighting factor 
la_step=size(num_of_prod_sequenced,1); 
if la_step > 1 
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    num_of_prod_sequenced_LA=num_of_prod_sequenced(la_step-1,:); 
else 
    num_of_prod_sequenced_LA=num_of_prod_sequenced; 
end 
seq_goodness=[]; 
seq_goodness_stored=[]; 
goodness_BF_level=[]; 
seq_page_prev=1; 
milt_UR_LA_max=1; 
seq_flag=1; 
goodness_percentage=2;%factor that the goodness can be below the previous goodness 
decrs_gdns_flag=-1.1; 
delta_t=1;  
while seq_flag ~= 0 
    goodness_tr_time(1,num_of_prod,2)=0; 
    goodness_tr(1,num_of_prod,2)=0; 
    seq_goodness(1,4+num_of_prod,2)=0; 
    row =1; 
    for a=1:num_of_prod;%this will list all the possible products that are to be considered for the lookahead function 
        if (prod_thrs(a) == 1); 
            seq_goodness(row,1)=0;%previous goodness value 
            seq_goodness(row,2)=0;%current goodness calculated value 
            seq_goodness(row,4)=a;%the 1st product of  the sequence 
            goodness_tr(row,1)=seq_goodness(row,3)+(BF_max(a)-BF_ini(a)+(UR(a)*cost(previous_prod,a)))/(PR(a)- 

UR(a))+cost(previous_prod,a);%calc the refill time for prod a 
            goodness_tr_time(row,a)=goodness_tr(row,1);%record time of product refill 
            seq_goodness(row,3)=goodness_tr(row,1);%the time of  the sequence 
            row=row+1; 
        end; 
    end; 
    increment=row; 
    for i=1:(increment - 1)%this is to calc the goodness for the sequence 
        seq_loc=4;%the column number of the last product in the sequence 
        last_prod=seq_goodness(i,seq_loc); 
        seq_good=0; 
        for j=1:num_of_prod 
            if j==last_prod 
                BF=BF_ini(j); 
                seq_good= - chi*BF/UR(j) + psi*(BF_max(j)-BF)/(PR(j)-UR(j)) + phi*max(0,(BF_max(j)*BF_threshold(j) - BF)/UR(j)); 
                BF = BF_max(j); %calculate buffer fullness for the last product that was refilled 
            end 
            if goodness_tr_time(i,j)==0 
                BF = BF_ini(j)- UR(j) * goodness_tr_time(i,last_prod); %calculate buffer fullness for products that haven't been refilled 
            else 
                BF = BF_max(j) - UR(j) * (goodness_tr_time(i,last_prod) - goodness_tr_time(i,j)); %calculate buffer fullness for products 

          that have been refilled 
            end 
            goodness_BF_level(i,j)=BF; 
            if BF <= 0; % 
                seq_goodness(i,1)= -1; %label as bad b/c refill inventory is depleted 
                j=num_of_prod; 
            end 
        end 
        x=last_prod; 
        calc_milt_u_temp_LA(x,UR,la_step,num_of_prod,num_of_prod_sequenced_LA,milt_UR,eta_val,milt_UR_LA_max); 
        seq_goodness(i,2)= seq_good - omega*cost(previous_prod,last_prod) -  zeta_ * milt_UR_temp;%this is the first goodness calc 
        seq_goodness_stored(i,1)= seq_goodness(i,2); 
        milt_UR_LA(i,1)=milt_UR_temp;%stores milt ur to be used for future LA steps 
        num_of_prod_seqd_LA(i,:)=num_of_prod_sequenced_LA(1,:);%copies the initial numer of seqd products 
        num_of_prod_seqd_LA(i,x)=num_of_prod_seqd_LA(i,x)+1;%adds the LA seqd product to the number of seqd products 
    end 
    seq_page=1; 
    % 
    %Step #2 
    % 
    seq_flag=0; 
    row=1;i=1; 
    seq_page_prev=seq_page;%the previous sheet number of the seq_good variable 
    seq_page=1+seq_page;%the sheet number of the seq_good variable 
    la_step=la_step+1;%record step number for calculating milt_UR 
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    while i<=(increment-1) 
        seq_loc=5;%the column number of the last product in the sequence 
        a=seq_goodness(i,4,seq_page_prev); 
        if a > 0 && seq_goodness(i,3)>=0 
            seq_goodness(row+num_of_prod*1,num_of_prod*1,seq_page)=0; 
            seq_goodness_stored(row+num_of_prod*1,seq_page+1,seq_page)=0; 
            goodness_tr(row+num_of_prod*1,num_of_prod*1,seq_page)=0; 
            goodness_tr_time(row+num_of_prod*1,num_of_prod*1,seq_page)=0; 
            thres_flag=0; 
            for y=1:num_of_prod; 
                 threshold_percentage=goodness_BF_level(i,y,seq_page_prev)/BF_max(y); 
                 if (cost(a,y) <= cost_threshold && BF_threshold(y) >= threshold_percentage ); 
                    seq_goodness(row,4,seq_page)=a;%the 1st product of  the sequence 
                    seq_goodness(row,5,seq_page)=y;%the 2nd product of  the sequence 
                    seq_goodness(row,2,seq_page)=seq_goodness(i,2,seq_page_prev);%previous goodness value 
                    seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev); 
                    seq_goodness_stored(row,seq_page+1,seq_page) = seq_goodness_stored(row,seq_page,seq_page); 
                    goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev); 
                    goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev); 
                    goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously 
                    milt_UR_LA(row,1,seq_page)=milt_UR_LA(i,1,seq_page_prev); 
                    num_of_prod_seqd_LA(row,:,seq_page)=num_of_prod_seqd_LA(i,:,seq_page_prev);%copies the initial num of seqd prd 
                    goodness_tr(row,seq_loc-3,seq_page)=seq_goodness(i,3,seq_page_prev)+(BF_max(y)-goodness_BF_level(row, 
   y,seq_page)+UR(y)*cost(x,y))/(PR(y)-UR(y))+cost(x,y); 
                    goodness_tr_time(row,y,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%flag product as being refilled previously 
                    seq_goodness(row,3,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%the total time of  the sequence 
                    row = row+1;  
                    if goodness_tr(row,seq_loc-3,seq_page) < lookahead_time 
                        seq_flag=1;%used to flag system to know that at least one sequence hasn't reach lookahead time yet 
                    end 
                    thres_flag=1; 
                end 
            end 
            if thres_flag==0 
                seq_goodness(i,3,seq_page_prev)=seq_goodness(i,3,seq_page_prev)+delta_t; 
                for j=1:num_of_prod 
                    goodness_BF_level(i,j,seq_page_prev)=goodness_BF_level(i,j,seq_page_prev)-UR(j)*delta_t; 
                end 
                i=i-1; 
            end 
            i=i+1; 
        else 
            if seq_goodness(i,1,seq_page_prev)== -2 
                seq_goodness(row,:,seq_page)=seq_goodness(i,:,seq_page_prev);% 
                goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev); 
                goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev); 
                goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously 
                seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev); 
                seq_goodness_stored(row,seq_page+1,seq_page) = seq_goodness_stored(row,seq_page,seq_page); 
                row = row+1; 
            end 
            i=i+1; 
        end 
    end 
    if seq_flag == 0 
        pg_num=seq_page-1; 
        if min(seq_goodness(:,1,pg_num))>-2 && max(seq_goodness(:,1,pg_num))<=0 
            seq_page=pg_num; 
        end 
        if size(seq_goodness_stored,2)>1 
            for i=1:(size(seq_goodness_stored,1)) 
                seq_goodness_stored(i,seq_page+1,seq_page)=min(seq_goodness_stored(i,1:seq_page,seq_page));%store min goodness  
                seq_goodness_stored(i,seq_page+2,seq_page)=max(seq_goodness_stored(i,1:seq_page,seq_page));%store max goodness 
                seq_goodness_stored(i,seq_page+3,seq_page)=i; 
            end 
        else  
            seq_goodness_stored(num_of_prod,num_of_prod)=zeros; 
        end 
        break 
    end 
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    milt_UR_LA_max=max(1,max(milt_UR_LA(seq_page_prev))); 
    increment=row; 
    for i=1:(increment - 1)%this is to calc the goodness for the sequence 
        last_prod=seq_goodness(i,seq_loc-1,seq_page);%previous product 
        seq_good=0; 
        x=seq_goodness(i,seq_loc,seq_page);%most recent product 
        a=seq_goodness(i,4,seq_page_prev);%previously refilled product 
        if x > 0 && seq_goodness(i,1,seq_page) >= 0 
            for j=1:num_of_prod 
                if j==x 
                    BF=goodness_BF_level(i,j,seq_page); 
                    seq_good= - chi*BF/UR(j) + psi*(BF_max(j)-BF)/(PR(j)-UR(j)) + phi*max(0,(BF_max(j)*BF_threshold(j) - BF)/UR(j)); 
                    BF = BF_max(j); 
                end 
                if goodness_tr_time(i,j,seq_page)==0 
                    BF = BF_ini(j)- UR(j) * seq_goodness(i,3,seq_page); %calculate buffer fullness for products that haven't been refilled 
                else 
                    if goodness_tr_time(i,j,seq_page)>=lookahead_time 
                        BF = BF_max(j) - PR(j)*[lookahead_time - goodness_tr(i,seq_loc-4,seq_page)]; %calculate buffer fullness for product  
      that has been refilled, but time is greater than the lookahead time,  
                    else 
                        BF = BF_max(j) - UR(j) * (seq_goodness(i,3,seq_page) - goodness_tr_time(i,j,seq_page)); %calculate buffer fullness 

 for products that have been refilled 
                    end 
                end 
                goodness_BF_level(i,j,seq_page)=BF; 
                if BF <= 0 
                    seq_goodness(i,1,seq_page)= -1; %label as bad b/c refill inventory is depleted 
                    j=num_of_prod; 
                end 
            end 
            milt_UR=milt_UR_LA(i,1,seq_page); 
            num_of_prod_sequenced_LA=num_of_prod_seqd_LA(i,:,seq_page);%copies number of seqd products into  
      num_of_prod_sequenced_LA to be used by function 
            calc_milt_u_temp_LA(x,UR,la_step,num_of_prod,num_of_prod_sequenced_LA,milt_UR,eta_val,milt_UR_LA_max); 
            seq_good = seq_good - omega*cost(last_prod,x) -  zeta_ * milt_UR_temp;%this is the first goodness calc 
            milt_UR_LA(i,1,seq_page)=milt_UR_temp;%stores milt_ur of current seqn to be used for future LA steps of the seqn 
            num_of_prod_seqd_LA(i,x,seq_page)=num_of_prod_seqd_LA(i,x,seq_page)+1;%adds the LA seqd product to the number of  
      seqd products 
            if seq_goodness(i,3,seq_page) >= lookahead_time 
                seq_goodness(i,1,seq_page)=-2; 
            end 
            if (seq_goodness(i,2,seq_page)-seq_good)/abs(seq_good) >= (goodness_percentage)%if the goodness for the last prod is not  
      better or equal to the previous goodness, the seq is flagged as bad 
                seq_goodness(i,1,seq_page)=decrs_gdns_flag; 
                seq_goodness(i,2,seq_page)=seq_good; 
            else 
                seq_goodness_stored(i,seq_page,seq_page) = seq_good; 
                seq_goodness_stored(i,seq_page+1,seq_page) = mean(seq_goodness_stored(i,1:seq_page,seq_page)); 
                seq_goodness(i,2,seq_page)=seq_goodness_stored(i,seq_page+1,seq_page); 
            end 
        end 
    end     
    % 
    % Step #3 
    % 
    seq_flag=0; 
    seq_page_prev=seq_page;%the previous sheet number of the seq_good variable 
    seq_page=1+seq_page;%the sheet number of the seq_good variable 
    la_step=la_step+1;%record step number for calculating milt_UR 
    row=1;i=1; 
    for i=1:(increment-1) 
        seq_loc=6;%the column number of the last product in the sequence 
        a=seq_goodness(i,4,seq_page_prev); 
        x=seq_goodness(i,seq_loc-1,seq_page_prev); 
        if x > 0 && seq_goodness(i,1,seq_page_prev) >= 0 
            seq_goodness(row+num_of_prod*1,num_of_prod*1,seq_page)=0; 
            seq_goodness_stored(row+num_of_prod*1,seq_page+1,seq_page)=0; 
            goodness_tr(row+num_of_prod*1,num_of_prod*1,seq_page)=0; 
            goodness_tr_time(row+num_of_prod*1,num_of_prod*1,seq_page)=0; 
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            thres_flag=0; 
            for y=1:num_of_prod; 
                threshold_percentage=goodness_BF_level(i,y,seq_page_prev)/BF_max(y); 
                if (cost(x,y) <= cost_threshold && BF_threshold(y) >= threshold_percentage ); 
                    seq_goodness(row,4,seq_page)=a;%the 1st product of  the sequence 
                    seq_goodness(row,seq_loc-1,seq_page)=x;%the 2nd product of  the sequence 
                    seq_goodness(row,seq_loc,seq_page)=y;%the 2nd product of  the sequence 
                    seq_goodness(row,2,seq_page)=seq_goodness(i,2,seq_page_prev);%previous goodness value being placed on current 

 sheet in column 1 
                    seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev); 
                    goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev); 
                    goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev); 
                    goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously 
                    milt_UR_LA(row,1,seq_page)=milt_UR_LA(i,1,seq_page_prev); 
                    num_of_prod_seqd_LA(row,:,seq_page)=num_of_prod_seqd_LA(i,:,seq_page_prev);%copies the initial number of seqd  
      products  
                    goodness_tr(row,seq_loc-3,seq_page)=seq_goodness(i,3,seq_page_prev)+(BF_max(y)-goodness_BF_level(row,y,  

seq_page)+UR(y)*cost(x,y))/(PR(y)-UR(y))+cost(x,y); 
                    goodness_tr_time(row,y,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%flag product as being refilled previously 
                    seq_goodness(row,3,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%the total time of  the sequence 
                    row = row+1; 
                    if goodness_tr(row,seq_loc-3,seq_page) < lookahead_time 
                        seq_flag=1;%used to flag system to know that at least one sequence hasn't reach lookahead time yet 
                    end 
                    thres_flag=1; 
                end 
            end 
            if thres_flag==0 
                seq_goodness(i,3,seq_page_prev)=seq_goodness(i,3,seq_page_prev)+delta_t; 
                for j=1:num_of_prod 
                    goodness_BF_level(i,j,seq_page_prev)=goodness_BF_level(i,j,seq_page_prev)-UR(j)*delta_t; 
                end 
                i=i-1; 
            end 
        else 
            if seq_goodness(i,1,seq_page_prev)== -2 
                seq_goodness(row,:,seq_page)=seq_goodness(i,:,seq_page_prev);% 
                goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev); 
                goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev); 
                goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev); 
                goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously 
                seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev); 
                seq_goodness_stored(row,seq_page+1,seq_page) = seq_goodness_stored(row,seq_page,seq_page);  
                row = row+1; 
            end 
        end 
        i=i+1; 
    end 
    if seq_flag == 0 
        pg_num=seq_page-1; 
        if min(seq_goodness(:,1,pg_num))>-2 && max(seq_goodness(:,1,pg_num))<=0 
            seq_page=pg_num; 
        end 
        for i=1:size(seq_goodness_stored,1) 
            seq_goodness_stored(i,seq_page+1,seq_page)=min(seq_goodness_stored(i,1:seq_page,seq_page));%store min goodness val 
            seq_goodness_stored(i,seq_page+2,seq_page)=max(seq_goodness_stored(i,1:seq_page,seq_page));%store max goodness val 
            seq_goodness_stored(i,seq_page+3,seq_page)=i; 
        end 
        break 
    end 
    milt_UR_LA_max=max(1,max(milt_UR_LA(seq_page_prev))); 
    increment=row; 
    for i=1:(increment - 1)%this is to calc the goodness for the sequence 
        last_prod=seq_goodness(i,seq_loc-1,seq_page);%previous product 
        seq_good=0; 
        x=seq_goodness(i,seq_loc,seq_page);%most recent product 
        if x > 0 && seq_goodness(i,1,seq_page)>= 0 
            for j=1:num_of_prod 
                if j==x 
                    BF=goodness_BF_level(i,j,seq_page); 
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                    seq_good= - chi*BF/UR(j) + psi*(BF_max(j)-BF)/(PR(j)-UR(j)) + phi*max(0,(BF_max(j)*BF_threshold(j) - BF)/UR(j)); 
                    BF = BF_max(j); 
                end 
                if goodness_tr_time(i,j,seq_page)==0 
                    BF = BF_ini(j)- UR(j) * seq_goodness(i,3,seq_page); %calculate buffer fullness for products that haven't been refilled 
                else 
                    if goodness_tr_time(i,j,seq_page)>=lookahead_time 
                        BF = BF_max(j) - PR(j)*[lookahead_time - goodness_tr(i,seq_loc-4,seq_page)]; %calculate buffer fullness for product 

 that has been refilled, but time is greater than the lookahead time 
                    else 
                        BF = BF_max(j) - UR(j) * (seq_goodness(i,3,seq_page) - goodness_tr_time(i,j,seq_page)); %calculate buffer fullness  
     for products that have been refilled 
                    end 
                end 
                goodness_BF_level(i,j,seq_page)=BF; 
                if BF <= 0 
                    seq_goodness(i,1,seq_page)= -1; %label as bad b/c refill inventory is depleted 
                    j=num_of_prod; 
                end 
            end 
            milt_UR=milt_UR_LA(i,1,seq_page); 
            num_of_prod_sequenced_LA=num_of_prod_seqd_LA(i,:,seq_page);%copies number of seqd products into  
     num_of_prod_sequenced_LA to be used by function 
            calc_milt_u_temp_LA(x,UR,la_step,num_of_prod,num_of_prod_sequenced_LA,milt_UR,eta_val,milt_UR_LA_max); 
            seq_good = seq_good - omega*cost(last_prod,x) -  zeta_ * milt_UR_temp;%this is the first goodness calc 
            milt_UR_LA(i,1,seq_page)=milt_UR_temp;%stores milt_ur of current seqn to be used for future LA steps of the seqn 
            num_of_prod_seqd_LA(i,x,seq_page)=num_of_prod_seqd_LA(i,x,seq_page)+1;%adds the LA seqd product to the number of  
     seqd products 
            if seq_goodness(i,3,seq_page) >= lookahead_time 
                seq_goodness(i,1,seq_page)=-2; 
            end 
            if (seq_goodness(i,2,seq_page)-seq_good)/abs(seq_good) >= (goodness_percentage)  %if the goodness for the last prod is not 

 better or equl to the previous goodness, the seq is flagged as bad 
                seq_goodness(i,1,seq_page)=decrs_gdns_flag; 
                seq_goodness(i,2,seq_page)=seq_good; 
            else 
                seq_goodness_stored(i,seq_page,seq_page) = seq_good; 
                seq_goodness_stored(i,seq_page+1,seq_page) = mean(seq_goodness_stored(i,1:seq_page,seq_page)); 
                seq_goodness(i,2,seq_page)=seq_goodness_stored(i,seq_page+1,seq_page); 
            end 
        end 
    end 
    % 
    % Step #4 
    % 
    seq_flag=0; 
    seq_page_prev=seq_page;%the previous sheet number of the seq_good variable 
    seq_page=1+seq_page;  %the sheet number of the seq_good variable 
    la_step=la_step+1; %record step number for calculating milt_UR 
    row=1;i=1; 
    while i<=(increment-1) 
        seq_loc=7;%the column number of the last product in the sequence 
        a=seq_goodness(i,4,seq_page_prev); 
        b=seq_goodness(i,5,seq_page_prev); 
        x=seq_goodness(i,seq_loc-1,seq_page_prev); 
        if x > 0 && seq_goodness(i,1,seq_page_prev) >= 0 
            seq_goodness(row+num_of_prod*1,num_of_prod*1,seq_page)=0; 
            seq_goodness_stored(row+num_of_prod*1,seq_page+1,seq_page)=0; 
            goodness_tr(row+num_of_prod*1,num_of_prod*1,seq_page)=0; 
            goodness_tr_time(row+num_of_prod*1,num_of_prod*1,seq_page)=0; 
            thres_flag=0; 
            for y=1:num_of_prod; 
                threshold_percentage=goodness_BF_level(i,y,seq_page_prev)/BF_max(y); 
                if (cost(x,y) <= cost_threshold && BF_threshold(y) >= threshold_percentage ); 
                    seq_goodness(row,4,seq_page)=a;%the 1st product of  the sequence 
                    seq_goodness(row,seq_loc-2,seq_page)=b;%the 2nd product of  the sequence 
                    seq_goodness(row,seq_loc-1,seq_page)=x;%the 3rd product of  the sequence 
                    seq_goodness(row,seq_loc,seq_page)=y;%the 4th product of  the sequence 
                    seq_goodness(row,2,seq_page)=seq_goodness(i,2,seq_page_prev);%previous goodness value 
                    seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev); 
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                    goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev); 
                    goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev); 
                    goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously 
                    milt_UR_LA(row,1,seq_page)=milt_UR_LA(i,1,seq_page_prev); 
                    num_of_prod_seqd_LA(row,:,seq_page)=num_of_prod_seqd_LA(i,:,seq_page_prev);%copies the initial numer of seqd 

 products 
                    goodness_tr(row,seq_loc-3,seq_page)=seq_goodness(i,3,seq_page_prev)+(BF_max(y)-goodness_BF_level(row,y,  

seq_page)+UR(y)*cost(x,y))/(PR(y)-UR(y))+cost(x,y); 
                    goodness_tr_time(row,y,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%flag product as being refilled previously 
                    seq_goodness(row,3,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%the total time of  the sequence 
                    row = row+1; 
                    if goodness_tr(row,seq_loc-3,seq_page) < lookahead_time 
                        seq_flag=1;%used to flag system to know that at least one sequence hasn't reach lookahead time yet 
                    end 
                    thres_flag=1; 
                end 
            end 
            if thres_flag==0 
                seq_goodness(i,3,seq_page_prev)=seq_goodness(i,3,seq_page_prev)+delta_t; 
                for j=1:num_of_prod 
                    goodness_BF_level(i,j,seq_page_prev)=goodness_BF_level(i,j,seq_page_prev)-UR(j)*delta_t; 
                end 
                i=i-1; 
            end 
        else 
            if seq_goodness(i,1,seq_page_prev)== -2 
                seq_goodness(row,:,seq_page)=seq_goodness(i,:,seq_page_prev);% 
                goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev); 
                goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev); 
                goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously 
                seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev); 
                seq_goodness_stored(row,seq_page+1,seq_page) = seq_goodness_stored(row,seq_page,seq_page);  
                row = row+1; 
            end 
        end 
        i=i+1; 
    end 
    if seq_flag == 0 
        pg_num=seq_page-1; 
        if min(seq_goodness(:,1,pg_num))>-2 && max(seq_goodness(:,1,pg_num))<=0 
            seq_page=pg_num; 
        end 
        for i=1:size(seq_goodness_stored,1) 
            seq_goodness_stored(i,seq_page+1,seq_page)=min(seq_goodness_stored(i,1:seq_page,seq_page));%store min goodness val 
            seq_goodness_stored(i,seq_page+2,seq_page)=max(seq_goodness_stored(i,1:seq_page,seq_page));%store max goodness val 
            seq_goodness_stored(i,seq_page+3,seq_page)=i; 
        end 
        break 
    end 
    milt_UR_LA_max=max(1,max(milt_UR_LA(seq_page_prev))); 
    increment=row; 
    for i=1:(increment - 1)%this is to calc the goodness for the sequence 
        last_prod=seq_goodness(i,seq_loc-1,seq_page);%previous product 
        seq_good=0; 
        x=seq_goodness(i,seq_loc,seq_page);%most recent product 
        if x > 0 && seq_goodness(i,1,seq_page)>= 0 
            for j=1:num_of_prod 
                if j==x 
                    BF=goodness_BF_level(i,j,seq_page); 
                    seq_good= - chi*BF/UR(j) + psi*(BF_max(j)-BF)/(PR(j)-UR(j)) + phi*max(0,(BF_max(j)*BF_threshold(j) - BF)/UR(j)); 
                    BF = BF_max(j); 
                end                 
                if goodness_tr_time(i,j,seq_page)==0 
                    BF = BF_ini(j)- UR(j) * seq_goodness(i,3,seq_page); %calculate buffer fullness for products that haven't been refilled 
                else 
                    if goodness_tr_time(i,j,seq_page)>=lookahead_time 
                        BF = BF_max(j) - PR(j)*[lookahead_time - goodness_tr(i,seq_loc-4,seq_page)]; %calculate buffer fullness for product  
     that has been refilled, but time is greater than the lookahead time 
                    else 
                        BF = BF_max(j) - UR(j) * (seq_goodness(i,3,seq_page) - goodness_tr_time(i,j,seq_page)); %calculate buffer fullness  



 

 

222 

 

     for products that have been refilled 
                    end 
                end 
                goodness_BF_level(i,j,seq_page)=BF; 
                if BF <= 0 
                    seq_goodness(i,1,seq_page)= -1; %label as bad b/c refill inventory is depleted 
                    j=num_of_prod; 
                end 
            end 
            milt_UR=milt_UR_LA(i,1,seq_page); 
            num_of_prod_sequenced_LA=num_of_prod_seqd_LA(i,:,seq_page);%copies number of seqd products into  
     num_of_prod_sequenced_LA to be used by function 
            calc_milt_u_temp_LA(x,UR,la_step,num_of_prod,num_of_prod_sequenced_LA,milt_UR,eta_val,milt_UR_LA_max); 
            seq_good = seq_good - omega*cost(last_prod,x) -  zeta_ * milt_UR_temp;%this is the first goodness calc 
            milt_UR_LA(i,1,seq_page)=milt_UR_temp;%stores milt_ur of current seqn to be used for future LA steps of the seqn 
            num_of_prod_seqd_LA(i,x,seq_page)=num_of_prod_seqd_LA(i,x,seq_page)+1;%adds the LA seqd product to the number of  
     seqd products 
            if seq_goodness(i,3,seq_page) >= lookahead_time 
                seq_goodness(i,1,seq_page)=-2; 
            end 
            if (seq_goodness(i,2,seq_page)-seq_good)/abs(seq_good) >= (goodness_percentage)  %if the goodness for the last prod is not  
     better or equl to the previous goodness, the seq is flagged as bad 
                seq_goodness(i,1,seq_page)=decrs_gdns_flag; 
                seq_goodness(i,2,seq_page)=seq_good; 
            else 
                seq_goodness_stored(i,seq_page,seq_page) = seq_good; 
                seq_goodness_stored(i,seq_page+1,seq_page) = mean(seq_goodness_stored(i,1:seq_page,seq_page)); 
                seq_goodness(i,2,seq_page)=seq_goodness_stored(i,seq_page+1,seq_page); 
            end 
        end 
    end 
    % 
    % Step #5 
    % 
    seq_flag=0; 
    seq_page_prev=seq_page;%the previous sheet number of the seq_good variable 
    seq_page=1+seq_page;  %the sheet number of the seq_good variable 
    la_step=la_step+1; %record step number for calculating milt_UR 
    row=1;i=1; 
    while i<=(increment-1) 
        seq_loc=8;%the column number of the last product in the sequence 
        a=seq_goodness(i,4,seq_page_prev); 
        b=seq_goodness(i,5,seq_page_prev); 
        c=seq_goodness(i,6,seq_page_prev); 
        x=seq_goodness(i,seq_loc-1,seq_page_prev); 
        if x > 0 && seq_goodness(i,1,seq_page_prev) >= 0 
            seq_goodness(row+num_of_prod*1,num_of_prod*1,seq_page)=0; 
            seq_goodness_stored(row+num_of_prod*1,seq_page+1,seq_page)=0; 
            goodness_tr(row+num_of_prod*1,num_of_prod*1,seq_page)=0; 
            goodness_tr_time(row+num_of_prod*1,num_of_prod*1,seq_page)=0; 
            thres_flag=0; 
            for y=1:num_of_prod; 
                threshold_percentage=goodness_BF_level(i,y,seq_page_prev)/BF_max(y); 
                if (cost(x,y) <= cost_threshold && BF_threshold(y) >= threshold_percentage ); 
                    seq_goodness(row,4,seq_page)=a;%the 1st product of  the sequence 
                    seq_goodness(row,seq_loc-3,seq_page)=b;%the 2nd product of  the sequence 
                    seq_goodness(row,seq_loc-2,seq_page)=c;%the 3rd product of  the sequence 
                    seq_goodness(row,seq_loc-1,seq_page)=x;%the 4th product of  the sequence 
                    seq_goodness(row,seq_loc,seq_page)=y;%the 5th product of  the sequence 
                    seq_goodness(row,2,seq_page)=seq_goodness(i,2,seq_page_prev);%previous goodness value 
                    seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev); 
                    goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev); 
                    goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev); 
                    goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously 
                    milt_UR_LA(row,1,seq_page)=milt_UR_LA(i,1,seq_page_prev); 
                    num_of_prod_seqd_LA(row,:,seq_page)=num_of_prod_seqd_LA(i,:,seq_page_prev);%copies the initial numer of seqd  

products  
                    goodness_tr(row,seq_loc-3,seq_page)=seq_goodness(i,3,seq_page_prev)+(BF_max(y)-goodness_BF_level(row,y,  

seq_page)+UR(y)*cost(x,y))/(PR(y)-UR(y))+cost(x,y); 
                    goodness_tr_time(row,y,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%flag product as being refilled previously 
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                    seq_goodness(row,3,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%the total time of  the sequence 
                    row = row+1; 
                    if goodness_tr(row,seq_loc-3,seq_page) < lookahead_time 
                        seq_flag=1;%used to flag system to know that at least one sequence hasn't reach lookahead time yet 
                    end 
                    thres_flag=1; 
                end 
            end 
            if thres_flag==0 
                seq_goodness(i,3,seq_page_prev)=seq_goodness(i,3,seq_page_prev)+delta_t; 
                for j=1:num_of_prod 
                    goodness_BF_level(i,j,seq_page_prev)=goodness_BF_level(i,j,seq_page_prev)-UR(j)*delta_t; 
                end 
                i=i-1; 
            end 
        else 
            if seq_goodness(i,1,seq_page_prev)== -2 
                seq_goodness(row,:,seq_page)=seq_goodness(i,:,seq_page_prev);% 
                goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev); 
                goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev); 
                goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously 
                seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev); 
                seq_goodness_stored(row,seq_page+1,seq_page) = seq_goodness_stored(row,seq_page,seq_page);  
                row = row+1; 
            end 
        end 
        i=i+1; 
    end 
     
    if seq_flag == 0 
        pg_num=seq_page-1; 
        if min(seq_goodness(:,1,pg_num))>-2 && max(seq_goodness(:,1,pg_num))<=0 
            seq_page=pg_num; 
        end 
        for i=1:size(seq_goodness_stored,1) 
            seq_goodness_stored(i,seq_page+1,seq_page)=min(seq_goodness_stored(i,1:seq_page,seq_page));%store min goodness val 
            seq_goodness_stored(i,seq_page+2,seq_page)=max(seq_goodness_stored(i,1:seq_page,seq_page));%store max goodness val 
            seq_goodness_stored(i,seq_page+3,seq_page)=i; 
        end 
        break 
    end 
    milt_UR_LA_max=max(1,max(milt_UR_LA(seq_page_prev))); 
    increment=row; 
    for i=1:(increment - 1)%this is to calc the goodness for the sequence 
        last_prod=seq_goodness(i,seq_loc-1,seq_page);%previous product 
        seq_good=0; 
        x=seq_goodness(i,seq_loc,seq_page);%most recent product 
        if x > 0 && seq_goodness(i,1,seq_page)>= 0 
            for j=1:num_of_prod 
                if j==x 
                    BF=goodness_BF_level(i,j,seq_page); 
                    seq_good= - chi*BF/UR(j) + psi*(BF_max(j)-BF)/(PR(j)-UR(j)) + phi*max(0,(BF_max(j)*BF_threshold(j) - BF)/UR(j)); 
                    BF = BF_max(j); 
                end 
                if goodness_tr_time(i,j,seq_page)==0 
                    BF = BF_ini(j)- UR(j) * seq_goodness(i,3,seq_page); %calculate buffer fullness for products that haven't been refilled 
                else 
                    if goodness_tr_time(i,j,seq_page)>=lookahead_time 
                        BF = BF_max(j) - PR(j)*[lookahead_time - goodness_tr(i,seq_loc-4,seq_page)]; %calculate buffer fullness for product 

 that has been refilled, but time is greater than the lookahead time 
                    else 
                        BF = BF_max(j) - UR(j) * (seq_goodness(i,3,seq_page) - goodness_tr_time(i,j,seq_page)); %calculate buffer fullness  
     for products that have been refilled 
                    end 
                end 
                goodness_BF_level(i,j,seq_page)=BF; 
                if BF <= 0 
                    seq_goodness(i,1,seq_page)= -1; %label as bad b/c refill inventory is depleted 
                    j=num_of_prod; 
                end 
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            end 
            milt_UR=milt_UR_LA(i,1,seq_page); 
            num_of_prod_sequenced_LA=num_of_prod_seqd_LA(i,:,seq_page);%copies number of seqd products into 

 num_of_prod_sequenced_LA to be used by function 
            calc_milt_u_temp_LA(x,UR,la_step,num_of_prod,num_of_prod_sequenced_LA,milt_UR,eta_val,milt_UR_LA_max); 
            seq_good = seq_good - omega*cost(last_prod,x) -  zeta_ * milt_UR_temp;%this is the first goodness calc 
            milt_UR_LA(i,1,seq_page)=milt_UR_temp;%stores milt_ur of current seqn to be used for future LA steps of the seqn 
            num_of_prod_seqd_LA(i,x,seq_page)=num_of_prod_seqd_LA(i,x,seq_page)+1;%adds the LA seqd product to the number of  
     seqd products 
            if seq_goodness(i,3,seq_page) >= lookahead_time 
                seq_goodness(i,1,seq_page)=-2; 
            end 
            if (seq_goodness(i,2,seq_page)-seq_good)/abs(seq_good) >= (goodness_percentage)  %if the goodness for the last prod is not  
     better or equl to the previous goodness, the seq is flagged as bad 
                seq_goodness(i,1,seq_page)=decrs_gdns_flag; 
                seq_goodness(i,2,seq_page)=seq_good; 
            else 
                seq_goodness_stored(i,seq_page,seq_page) = seq_good; 
                seq_goodness_stored(i,seq_page+1,seq_page) = mean(seq_goodness_stored(i,1:seq_page,seq_page)); 
                seq_goodness(i,2,seq_page)=seq_goodness_stored(i,seq_page+1,seq_page); 
            end 
        end 
    end 
    % 
    % Step #6 
    % 
    seq_flag=0; 
    seq_page_prev=seq_page;%the previous sheet number of the seq_good variable 
    seq_page=1+seq_page;  %the sheet number of the seq_good variable 
    la_step=la_step+1; %record step number for calculating milt_UR 
    row=1;i=1; 
    while i<=(increment-1) 
        seq_loc=9;%the column number of the last product in the sequence 
        a=seq_goodness(i,4,seq_page_prev); 
        b=seq_goodness(i,5,seq_page_prev); 
        c=seq_goodness(i,6,seq_page_prev); 
        d=seq_goodness(i,7,seq_page_prev); 
        x=seq_goodness(i,seq_loc-1,seq_page_prev); 
        if x > 0 && seq_goodness(i,1,seq_page_prev) >= 0 
            seq_goodness(row+num_of_prod*1,num_of_prod*1,seq_page)=0; 
            seq_goodness_stored(row+num_of_prod*1,seq_page+1,seq_page)=0; 
            goodness_tr(row+num_of_prod*1,num_of_prod*1,seq_page)=0; 
            goodness_tr_time(row+num_of_prod*1,num_of_prod*1,seq_page)=0; 
            thres_flag=0; 
            for y=1:num_of_prod; 
                threshold_percentage=goodness_BF_level(i,y,seq_page_prev)/BF_max(y); 
                if (cost(x,y) <= cost_threshold && BF_threshold(y) >= threshold_percentage ); 
                    seq_goodness(row,4,seq_page)=a;%the 1st product of  the sequence 
                    seq_goodness(row,seq_loc-4,seq_page)=b;%the 2nd product of  the sequence 
                    seq_goodness(row,seq_loc-3,seq_page)=c;%the 3rd product of  the sequence 
                    seq_goodness(row,seq_loc-2,seq_page)=d;%the 4th product of  the sequence 
                    seq_goodness(row,seq_loc-1,seq_page)=x;%the 5th product of  the sequence 
                    seq_goodness(row,seq_loc,seq_page)=y;%the 6th product of  the sequence 
                    seq_goodness(row,2,seq_page)=seq_goodness(i,2,seq_page_prev);%previous goodness value 
                    seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev); 
                    goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev); 
                    goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev); 
                    goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously 
                    milt_UR_LA(row,1,seq_page)=milt_UR_LA(i,1,seq_page_prev); 
                    num_of_prod_seqd_LA(row,:,seq_page)=num_of_prod_seqd_LA(i,:,seq_page_prev);%copies the initial numer of seqd  
     products  
                    goodness_tr(row,seq_loc-3,seq_page)=seq_goodness(i,3,seq_page_prev)+(BF_max(y)-goodness_BF_level(row,y,  

seq_page)+UR(y)*cost(x,y))/(PR(y)-UR(y))+cost(x,y); 
                    goodness_tr_time(row,y,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%flag product as being refilled previously 
                    seq_goodness(row,3,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%the total time of  the sequence 
                    row = row+1; 
                    if goodness_tr(row,seq_loc-3,seq_page) < lookahead_time 
                        seq_flag=1;%used to flag system to know that at least one sequence hasn't reach lookahead time yet 
                    end 
                    thres_flag=1; 
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                end 
            end 
            if thres_flag==0 
                seq_goodness(i,3,seq_page_prev)=seq_goodness(i,3,seq_page_prev)+delta_t; 
                for j=1:num_of_prod 
                    goodness_BF_level(i,j,seq_page_prev)=goodness_BF_level(i,j,seq_page_prev)-UR(j)*delta_t; 
                end 
                i=i-1; 
            end 
        else 
            if seq_goodness(i,1,seq_page_prev)== -2 
                seq_goodness(row,:,seq_page)=seq_goodness(i,:,seq_page_prev);% 
                goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev); 
                goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev); 
                goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously 
                seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev); 
                seq_goodness_stored(row,seq_page+1,seq_page) = seq_goodness_stored(row,seq_page,seq_page);  
                row = row+1; 
            end 
        end 
        i=i+1; 
    end 
    if seq_flag == 0 
        pg_num=seq_page-1; 
        if min(seq_goodness(:,1,pg_num))>-2 && max(seq_goodness(:,1,pg_num))<=0 
            seq_page=pg_num; 
        end 
        for i=1:size(seq_goodness_stored,1) 
            seq_goodness_stored(i,seq_page+1,seq_page)=min(seq_goodness_stored(i,1:seq_page,seq_page));%store min goodness val 
            seq_goodness_stored(i,seq_page+2,seq_page)=max(seq_goodness_stored(i,1:seq_page,seq_page));%store max goodness val 
            seq_goodness_stored(i,seq_page+3,seq_page)=i; 
        end 
        break 
    end 
    milt_UR_LA_max=max(1,max(milt_UR_LA(seq_page_prev))); 
    increment=row; 
    for i=1:(increment - 1)%this is to calc the goodness for the sequence 
        last_prod=seq_goodness(i,seq_loc-1,seq_page);%previous product 
        seq_good=0; 
        x=seq_goodness(i,seq_loc,seq_page);%most recent product 
        if x > 0 && seq_goodness(i,1,seq_page)>= 0 
            for j=1:num_of_prod 
                if j==x 
                    BF=goodness_BF_level(i,j,seq_page); 
                    seq_good= - chi*BF/UR(j) + psi*(BF_max(j)-BF)/(PR(j)-UR(j)) + phi*max(0,(BF_max(j)*BF_threshold(j) - BF)/UR(j)); 
                    BF = BF_max(j); 
                end                 
                if goodness_tr_time(i,j,seq_page)==0 
                    BF = BF_ini(j)- UR(j) * seq_goodness(i,3,seq_page); %calculate buffer fullness for products that haven't been refilled 
                else 
                    if goodness_tr_time(i,j,seq_page)>=lookahead_time 
                        BF = BF_max(j) - PR(j)*[lookahead_time - goodness_tr(i,seq_loc-4,seq_page)]; %calculate buffer fullness for product  
     that has been refilled, but time is greater than the lookahead time 
                    else 
                        BF = BF_max(j) - UR(j) * (seq_goodness(i,3,seq_page) - goodness_tr_time(i,j,seq_page)); %calculate buffer fullness  
     for products that have been refilled 
                    end 
                end 
                goodness_BF_level(i,j,seq_page)=BF; 
                if BF <= 0 
                    seq_goodness(i,1,seq_page)= -1; %label as bad b/c refill inventory is depleted 
                    j=num_of_prod; 
                end 
            end 
            milt_UR=milt_UR_LA(i,1,seq_page); 
            num_of_prod_sequenced_LA=num_of_prod_seqd_LA(i,:,seq_page);%copies number of seqd products into  

num_of_prod_sequenced_LA to be used by function 
            calc_milt_u_temp_LA(x,UR,la_step,num_of_prod,num_of_prod_sequenced_LA,milt_UR,eta_val,milt_UR_LA_max); 
            seq_good = seq_good - omega*cost(last_prod,x) -  zeta_ * milt_UR_temp;%this is the first goodness calc 
            milt_UR_LA(i,1,seq_page)=milt_UR_temp;%stores milt_ur of current seqn to be used for future LA steps of the seqn 
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            num_of_prod_seqd_LA(i,x,seq_page)=num_of_prod_seqd_LA(i,x,seq_page)+1;%adds the LA seqd product to the number of  
     seqd products 
            if seq_goodness(i,3,seq_page) >= lookahead_time 
                seq_goodness(i,1,seq_page)=-2; 
            end 
            if (seq_goodness(i,2,seq_page)-seq_good)/abs(seq_good) >= (goodness_percentage)  %if the goodness for the last prod is not  
     better or equl to the previous goodness, the seq is flagged as bad 
                seq_goodness(i,1,seq_page)=decrs_gdns_flag; 
                seq_goodness(i,2,seq_page)=seq_good; 
            else 
                seq_goodness_stored(i,seq_page,seq_page) = seq_good; 
                seq_goodness_stored(i,seq_page+1,seq_page) = mean(seq_goodness_stored(i,1:seq_page,seq_page)); 
                seq_goodness(i,2,seq_page)=seq_goodness_stored(i,seq_page+1,seq_page); 
            end 
        end 
    end 
    % 
    % Step #7 
    % 
    seq_flag=0; 
    seq_page_prev=seq_page;%the previous sheet number of the seq_good variable 
    seq_page=1+seq_page;  %the sheet number of the seq_good variable 
    la_step=la_step+1; %record step number for calculating milt_UR 
    row=1;i=1; 
    while i<=(increment-1) 
        seq_loc=10;%the column number of the last product in the sequence 
        a=seq_goodness(i,4,seq_page_prev); 
        b=seq_goodness(i,5,seq_page_prev); 
        c=seq_goodness(i,6,seq_page_prev); 
        d=seq_goodness(i,7,seq_page_prev); 
        e=seq_goodness(i,8,seq_page_prev); 
        x=seq_goodness(i,seq_loc-1,seq_page_prev); 
        if x > 0 && seq_goodness(i,1,seq_page_prev) >= 0 
            seq_goodness(row+num_of_prod*1,num_of_prod*1,seq_page)=0; 
            seq_goodness_stored(row+num_of_prod*1,seq_page+1,seq_page)=0; 
            goodness_tr(row+num_of_prod*1,num_of_prod*1,seq_page)=0; 
            goodness_tr_time(row+num_of_prod*1,num_of_prod*1,seq_page)=0; 
            thres_flag=0; 
            for y=1:num_of_prod; 
                threshold_percentage=goodness_BF_level(i,y,seq_page_prev)/BF_max(y); 
                if (cost(x,y) <= cost_threshold && BF_threshold(y) >= threshold_percentage ); 
                    seq_goodness(row,4,seq_page)=a;%the 1st product of  the sequence 
                    seq_goodness(row,seq_loc-5,seq_page)=b;%the 2nd product of  the sequence 
                    seq_goodness(row,seq_loc-4,seq_page)=c;%the 2nd product of  the sequence 
                    seq_goodness(row,seq_loc-3,seq_page)=d;%the 3rd product of  the sequence 
                    seq_goodness(row,seq_loc-2,seq_page)=e;%the 4th product of  the sequence 
                    seq_goodness(row,seq_loc-1,seq_page)=x;%the 5th product of  the sequence 
                    seq_goodness(row,seq_loc,seq_page)=y;%the 6th product of  the sequence 
                    seq_goodness(row,2,seq_page)=seq_goodness(i,2,seq_page_prev);%previous goodness value 
                    seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev); 
                    goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev); 
                    goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev); 
                    goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously 
                    milt_UR_LA(row,1,seq_page)=milt_UR_LA(i,1,seq_page_prev); 
                    num_of_prod_seqd_LA(row,:,seq_page)=num_of_prod_seqd_LA(i,:,seq_page_prev);%copies the initial numer of seqd  

products  
                    goodness_tr(row,seq_loc-3,seq_page)=seq_goodness(i,3,seq_page_prev)+(BF_max(y)-goodness_BF_level(row,y, 

 seq_page)+UR(y)*cost(x,y))/(PR(y)-UR(y))+cost(x,y); 
                    goodness_tr_time(row,y,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%flag product as being refilled previously 
                    seq_goodness(row,3,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%the total time of  the sequence 
                    row = row+1; 
                    if goodness_tr(row,seq_loc-3,seq_page) < lookahead_time 
                        seq_flag=1;%used to flag system to know that at least one sequence hasn't reach lookahead time yet 
                    end 
                    thres_flag=1; 
                end 
            end 
            if thres_flag==0 
                seq_goodness(i,3,seq_page_prev)=seq_goodness(i,3,seq_page_prev)+delta_t; 
                for j=1:num_of_prod 
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                    goodness_BF_level(i,j,seq_page_prev)=goodness_BF_level(i,j,seq_page_prev)-UR(j)*delta_t; 
                end 
                i=i-1; 
            end 
        else 
            if seq_goodness(i,1,seq_page_prev)== -2 
                seq_goodness(row,:,seq_page)=seq_goodness(i,:,seq_page_prev);% 
                goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev); 
                goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev); 
                goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously 
                seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev); 
                seq_goodness_stored(row,seq_page+1,seq_page) = seq_goodness_stored(row,seq_page,seq_page);  
                row = row+1; 
            end 
        end 
        i=i+1; 
    end 
    if seq_flag == 0 
        pg_num=seq_page-1; 
        if min(seq_goodness(:,1,pg_num))>-2 && max(seq_goodness(:,1,pg_num))<=0 
            seq_page=pg_num; 
        end 
        for i=1:size(seq_goodness_stored,1) 
            seq_goodness_stored(i,seq_page+1,seq_page)=min(seq_goodness_stored(i,1:seq_page,seq_page));%store min goodness val 
            seq_goodness_stored(i,seq_page+2,seq_page)=max(seq_goodness_stored(i,1:seq_page,seq_page));%store max goodness val 
            seq_goodness_stored(i,seq_page+3,seq_page)=i; 
        end 
        break 
    end 
    milt_UR_LA_max=max(1,max(milt_UR_LA(seq_page_prev))); 
    increment=row; 
    for i=1:(increment - 1)%this is to calc the goodness for the sequence 
        last_prod=seq_goodness(i,seq_loc-1,seq_page);%previous product 
        seq_good=0; 
        x=seq_goodness(i,seq_loc,seq_page);%most recent product 
        if x > 0 && seq_goodness(i,1,seq_page)>= 0 
            for j=1:num_of_prod 
                if j==x 
                    BF=goodness_BF_level(i,j,seq_page); 
                    seq_good= - chi*BF/UR(j) + psi*(BF_max(j)-BF)/(PR(j)-UR(j)) + phi*max(0,(BF_max(j)*BF_threshold(j) - BF)/UR(j)); 
                    BF = BF_max(j); 
                end                 
                if goodness_tr_time(i,j,seq_page)==0 
                    BF = BF_ini(j)- UR(j) * seq_goodness(i,3,seq_page); %calculate buffer fullness for products that haven't been refilled 
                else 
                    if goodness_tr_time(i,j,seq_page)>=lookahead_time 
                        BF = BF_max(j) - PR(j)*[lookahead_time - goodness_tr(i,seq_loc-4,seq_page)]; %calculate buffer fullness for product  
     that has been refilled, but time is greater than the lookahead time 
                    else 
                        BF = BF_max(j) - UR(j) * (seq_goodness(i,3,seq_page) - goodness_tr_time(i,j,seq_page)); %calculate buffer fullness 

 for products that have been refilled 
                    end 
                end 
                goodness_BF_level(i,j,seq_page)=BF; 
                if BF <= 0 
                    seq_goodness(i,1,seq_page)= -1; %label as bad b/c refill inventory is depleted 
                    j=num_of_prod; 
                end 
            end 
            milt_UR=milt_UR_LA(i,1,seq_page); 
            num_of_prod_sequenced_LA=num_of_prod_seqd_LA(i,:,seq_page);%copies number of seqd products into  
     num_of_prod_sequenced_LA to be used by function 
            calc_milt_u_temp_LA(x,UR,la_step,num_of_prod,num_of_prod_sequenced_LA,milt_UR,eta_val,milt_UR_LA_max); 
            seq_good = seq_good - omega*cost(last_prod,x) -  zeta_ * milt_UR_temp;%this is the first goodness calc 
            milt_UR_LA(i,1,seq_page)=milt_UR_temp;%stores milt_ur of current seqn to be used for future LA steps of the seqn 
            num_of_prod_seqd_LA(i,x,seq_page)=num_of_prod_seqd_LA(i,x,seq_page)+1;%adds the LA seqd product to the number of  
     seqd products 
            if seq_goodness(i,3,seq_page) >= lookahead_time 
                seq_goodness(i,1,seq_page)=-2; 
            end 
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            if (seq_goodness(i,2,seq_page)-seq_good)/abs(seq_good) >= (goodness_percentage)  %if the goodness for the last prod is not  
     better or equl to the previous goodness, the seq is flagged as bad 
                seq_goodness(i,1,seq_page)=decrs_gdns_flag; 
                seq_goodness(i,2,seq_page)=seq_good; 
            else 
                seq_goodness_stored(i,seq_page,seq_page) = seq_good; 
                seq_goodness_stored(i,seq_page+1,seq_page) = mean(seq_goodness_stored(i,1:seq_page,seq_page)); 
                seq_goodness(i,2,seq_page)=seq_goodness_stored(i,seq_page+1,seq_page); 
            end 
        end 
    end 
    % 
    % Step #8 
    % 
    seq_flag=0; 
    seq_page_prev=seq_page;%the previous sheet number of the seq_good variable 
    seq_page=1+seq_page;  %the sheet number of the seq_good variable 
    la_step=la_step+1; %record step number for calculating milt_UR 
    row=1;i=1; 
    while i<=(increment-1) 
        seq_loc=11;%the column number of the last product in the sequence 
        a=seq_goodness(i,4,seq_page_prev); 
        b=seq_goodness(i,5,seq_page_prev); 
        c=seq_goodness(i,6,seq_page_prev); 
        d=seq_goodness(i,7,seq_page_prev); 
        e=seq_goodness(i,8,seq_page_prev); 
        f=seq_goodness(i,9,seq_page_prev); 
        x=seq_goodness(i,seq_loc-1,seq_page_prev); 
        if x > 0 && seq_goodness(i,1,seq_page_prev) >= 0 
            seq_goodness(row+num_of_prod*1,num_of_prod*1,seq_page)=0; 
            seq_goodness_stored(row+num_of_prod*1,seq_page+1,seq_page)=0; 
            goodness_tr(row+num_of_prod*1,num_of_prod*1,seq_page)=0; 
            goodness_tr_time(row+num_of_prod*1,num_of_prod*1,seq_page)=0; 
            thres_flag=0; 
            for y=1:num_of_prod;                 
                threshold_percentage=goodness_BF_level(i,y,seq_page_prev)/BF_max(y); 
                if (cost(x,y) <= cost_threshold && BF_threshold(y) >= threshold_percentage ); 
                    seq_goodness(row,4,seq_page)=a;%the 1st product of  the sequence 
                    seq_goodness(row,seq_loc-6,seq_page)=b;%the 2nd product of  the sequence 
                    seq_goodness(row,seq_loc-5,seq_page)=c;%the 2nd product of  the sequence 
                    seq_goodness(row,seq_loc-4,seq_page)=d;%the 2nd product of  the sequence 
                    seq_goodness(row,seq_loc-3,seq_page)=e;%the 3rd product of  the sequence 
                    seq_goodness(row,seq_loc-2,seq_page)=f;%the 4th product of  the sequence 
                    seq_goodness(row,seq_loc-1,seq_page)=x;%the 5th product of  the sequence 
                    seq_goodness(row,seq_loc,seq_page)=y;%the 6th product of  the sequence 
                    seq_goodness(row,2,seq_page)=seq_goodness(i,2,seq_page_prev);%previous goodness value 
                    seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev); 
                    goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev); 
                    goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev); 
                    goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously 
                    milt_UR_LA(row,1,seq_page)=milt_UR_LA(i,1,seq_page_prev); 
                    num_of_prod_seqd_LA(row,:,seq_page)=num_of_prod_seqd_LA(i,:,seq_page_prev);%copies the initial numer of seqd  

products  
                    goodness_tr(row,seq_loc-3,seq_page)=seq_goodness(i,3,seq_page_prev)+(BF_max(y)-goodness_BF_level(row,y, 

seq_page)+UR(y)*cost(x,y))/(PR(y)-UR(y))+cost(x,y); 
                    goodness_tr_time(row,y,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%flag product as being refilled previously 
                    seq_goodness(row,3,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%the total time of  the sequence 
                    row = row+1; 
                    if goodness_tr(row,seq_loc-3,seq_page) < lookahead_time 
                        seq_flag=1;%used to flag system to know that at least one sequence hasn't reach lookahead time yet 
                    end 
                    thres_flag=1; 
                end 
            end 
            if thres_flag==0 
                seq_goodness(i,3,seq_page_prev)=seq_goodness(i,3,seq_page_prev)+delta_t; 
                for j=1:num_of_prod 
                    goodness_BF_level(i,j,seq_page_prev)=goodness_BF_level(i,j,seq_page_prev)-UR(j)*delta_t; 
                end 
                i=i-1; 
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            end 
        else 
            if seq_goodness(i,1,seq_page_prev)== -2 
                seq_goodness(row,:,seq_page)=seq_goodness(i,:,seq_page_prev);% 
                goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev); 
                goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev); 
                goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously 
                seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev); 
                seq_goodness_stored(row,seq_page+1,seq_page) = seq_goodness_stored(row,seq_page,seq_page);  
                row = row+1; 
            end 
        end 
        i=i+1; 
    end 
    if seq_flag == 0 
        pg_num=seq_page-1; 
        if min(seq_goodness(:,1,pg_num))>-2 && max(seq_goodness(:,1,pg_num))<=0 
            seq_page=pg_num; 
        end 
        for i=1:size(seq_goodness_stored,1) 
            seq_goodness_stored(i,seq_page+1,seq_page)=min(seq_goodness_stored(i,1:seq_page,seq_page));%store min goodness val 
            seq_goodness_stored(i,seq_page+2,seq_page)=max(seq_goodness_stored(i,1:seq_page,seq_page));%store max goodness val 
            seq_goodness_stored(i,seq_page+3,seq_page)=i; 
        end 
        break 
    end 
    milt_UR_LA_max=max(1,max(milt_UR_LA(seq_page_prev))); 
    increment=row; 
    for i=1:(increment - 1)%this is to calc the goodness for the sequence 
        last_prod=seq_goodness(i,seq_loc-1,seq_page);%previous product 
        seq_good=0; 
        x=seq_goodness(i,seq_loc,seq_page);%most recent product 
        if x > 0 && seq_goodness(i,1,seq_page)>= 0 
            for j=1:num_of_prod 
                if j==x 
                    BF=goodness_BF_level(i,j,seq_page); 
                    seq_good= - chi*BF/UR(j) + psi*(BF_max(j)-BF)/(PR(j)-UR(j)) + phi*max(0,(BF_max(j)*BF_threshold(j) - BF)/UR(j)); 
                    BF = BF_max(j); 
                end                 
                if goodness_tr_time(i,j,seq_page)==0 
                    BF = BF_ini(j)- UR(j) * seq_goodness(i,3,seq_page); %calculate buffer fullness for products that haven't been refilled 
                else 
                    if goodness_tr_time(i,j,seq_page)>=lookahead_time 
                        BF = BF_max(j) - PR(j)*[lookahead_time - goodness_tr(i,seq_loc-4,seq_page)]; %calculate buffer fullness for product  
     that has been refilled, but time is greater than the lookahead time 
                    else 
                        BF = BF_max(j) - UR(j) * (seq_goodness(i,3,seq_page) - goodness_tr_time(i,j,seq_page)); %calculate buffer fullness  
     for products that have been refilled 
                    end 
                end 
                goodness_BF_level(i,j,seq_page)=BF; 
                if BF <= 0 
                    seq_goodness(i,1,seq_page)= -1; %label as bad b/c refill inventory is depleted 
                    j=num_of_prod; 
                end 
            end 
            milt_UR=milt_UR_LA(i,1,seq_page); 
            num_of_prod_sequenced_LA=num_of_prod_seqd_LA(i,:,seq_page);%copies number of seqd products into  

num_of_prod_sequenced_LA to be used by function 
            calc_milt_u_temp_LA(x,UR,la_step,num_of_prod,num_of_prod_sequenced_LA,milt_UR,eta_val,milt_UR_LA_max); 
            seq_good = seq_good - omega*cost(last_prod,x) -  zeta_ * milt_UR_temp;%this is the first goodness calc 
            milt_UR_LA(i,1,seq_page)=milt_UR_temp;%stores milt_ur of current seqn to be used for future LA steps of the seqn 
            num_of_prod_seqd_LA(i,x,seq_page)=num_of_prod_seqd_LA(i,x,seq_page)+1;%adds the LA seqd product to the number of  
     seqd products 
            if seq_goodness(i,3,seq_page) >= lookahead_time 
                seq_goodness(i,1,seq_page)=-2; 
            end 
            if (seq_goodness(i,2,seq_page)-seq_good)/abs(seq_good) >= (goodness_percentage)  %if the goodness for the last prod is not  
     better or equl to the previous goodness, the seq is flagged as bad 
                seq_goodness(i,1,seq_page)=decrs_gdns_flag; 
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                seq_goodness(i,2,seq_page)=seq_good; 
            else 
                seq_goodness_stored(i,seq_page,seq_page) = seq_good; 
                seq_goodness_stored(i,seq_page+1,seq_page) = mean(seq_goodness_stored(i,1:seq_page,seq_page)); 
                seq_goodness(i,2,seq_page)=seq_goodness_stored(i,seq_page+1,seq_page); 
            end 
        end 
    end 
    % 
    % Step #9 
    % 
    seq_flag=0; 
    seq_page_prev=seq_page;%the previous sheet number of the seq_good variable 
    seq_page=1+seq_page  %the sheet number of the seq_good variable 
    la_step=la_step+1; %record step number for calculating milt_UR 
    row=1;i=1; 
    while i<=(increment-1) 
        seq_loc=12;%the column number of the last product in the sequence 
        a=seq_goodness(i,4,seq_page_prev); 
        b=seq_goodness(i,5,seq_page_prev); 
        c=seq_goodness(i,6,seq_page_prev); 
        d=seq_goodness(i,7,seq_page_prev); 
        e=seq_goodness(i,8,seq_page_prev); 
        f=seq_goodness(i,9,seq_page_prev); 
        g=seq_goodness(i,10,seq_page_prev); 
        x=seq_goodness(i,seq_loc-1,seq_page_prev); 
        if x > 0 && seq_goodness(i,1,seq_page_prev) >= 0 
            seq_goodness(row+num_of_prod*1,num_of_prod*1,seq_page)=0; 
            seq_goodness_stored(row+num_of_prod*1,seq_page+1,seq_page)=0; 
            goodness_tr(row+num_of_prod*1,num_of_prod*1,seq_page)=0; 
            goodness_tr_time(row+num_of_prod*1,num_of_prod*1,seq_page)=0; 
            thres_flag=0; 
            for y=1:num_of_prod;                 
                threshold_percentage=goodness_BF_level(i,y,seq_page_prev)/BF_max(y); 
                if (cost(x,y) <= cost_threshold && BF_threshold(y) >= threshold_percentage ); 
                    seq_goodness(row,4,seq_page)=a;%the 1st product of  the sequence 
                    seq_goodness(row,seq_loc-7,seq_page)=b;%the 2nd product of  the sequence 
                    seq_goodness(row,seq_loc-6,seq_page)=c;%the 2nd product of  the sequence 
                    seq_goodness(row,seq_loc-5,seq_page)=d;%the 2nd product of  the sequence 
                    seq_goodness(row,seq_loc-4,seq_page)=e;%the 2nd product of  the sequence 
                    seq_goodness(row,seq_loc-3,seq_page)=f;%the 3rd product of  the sequence 
                    seq_goodness(row,seq_loc-2,seq_page)=g;%the 4th product of  the sequence 
                    seq_goodness(row,seq_loc-1,seq_page)=x;%the 5th product of  the sequence 
                    seq_goodness(row,seq_loc,seq_page)=y;%the 6th product of  the sequence 
                    seq_goodness(row,2,seq_page)=seq_goodness(i,2,seq_page_prev);%previous goodness value 
                    seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev); 
                    goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev); 
                    goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev); 
                    goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously 
                    milt_UR_LA(row,1,seq_page)=milt_UR_LA(i,1,seq_page_prev); 
                    num_of_prod_seqd_LA(row,:,seq_page)=num_of_prod_seqd_LA(i,:,seq_page_prev);%copies the initial numer of seqd  

products 
                    goodness_tr(row,seq_loc-3,seq_page)=seq_goodness(i,3,seq_page_prev)+(BF_max(y)-goodness_BF_level(row,y, 

seq_page)+UR(y)*cost(x,y))/(PR(y)-UR(y))+cost(x,y); 
                    goodness_tr_time(row,y,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%flag product as being refilled previously 
                    seq_goodness(row,3,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%the total time of  the sequence 
                    row = row+1; 
                    if goodness_tr(row,seq_loc-3,seq_page) < lookahead_time 
                        seq_flag=1;%used to flag system to know that at least one sequence hasn't reach lookahead time yet 
                    end 
                    thres_flag=1; 
                end 
            end 
            if thres_flag==0 
                seq_goodness(i,3,seq_page_prev)=seq_goodness(i,3,seq_page_prev)+delta_t; 
                for j=1:num_of_prod 
                    goodness_BF_level(i,j,seq_page_prev)=goodness_BF_level(i,j,seq_page_prev)-UR(j)*delta_t; 
                end 
                i=i-1; 
            end 
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        else 
            if seq_goodness(i,1,seq_page_prev)== -2 
                seq_goodness(row,:,seq_page)=seq_goodness(i,:,seq_page_prev);% 
                goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev); 
                goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev); 
                goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously 
                seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev); 
                seq_goodness_stored(row,seq_page+1,seq_page) = seq_goodness_stored(row,seq_page,seq_page);  
                row = row+1; 
            end 
        end 
        i=i+1; 
    end 
    if seq_flag == 0 
        pg_num=seq_page-1; 
        if min(seq_goodness(:,1,pg_num))>-2 && max(seq_goodness(:,1,pg_num))<=0 
            seq_page=pg_num; 
        end 
        for i=1:size(seq_goodness_stored,1) 
            seq_goodness_stored(i,seq_page+1,seq_page)=min(seq_goodness_stored(i,1:seq_page,seq_page));%store min goodness val 
            seq_goodness_stored(i,seq_page+2,seq_page)=max(seq_goodness_stored(i,1:seq_page,seq_page));%store max goodness val 
            seq_goodness_stored(i,seq_page+3,seq_page)=i; 
        end 
        break 
    end 
    milt_UR_LA_max=max(1,max(milt_UR_LA(seq_page_prev))); 
    increment=row; 
    for i=1:(increment - 1)%this is to calc the goodness for the sequence 
        last_prod=seq_goodness(i,seq_loc-1,seq_page);%previous product 
        seq_good=0; 
        x=seq_goodness(i,seq_loc,seq_page);%most recent product 
        if x > 0 && seq_goodness(i,1,seq_page)>= 0 
            for j=1:num_of_prod 
                if j==x 
                    BF=goodness_BF_level(i,j,seq_page); 
                    seq_good= - chi*BF/UR(j) + psi*(BF_max(j)-BF)/(PR(j)-UR(j)) + phi*max(0,(BF_max(j)*BF_threshold(j) - BF)/UR(j)); 
                    BF = BF_max(j); 
                end                 
                if goodness_tr_time(i,j,seq_page)==0 
                    BF = BF_ini(j)- UR(j) * seq_goodness(i,3,seq_page); %calculate buffer fullness for products that haven't been refilled 
                else 
                    if goodness_tr_time(i,j,seq_page)>=lookahead_time 
                        BF = BF_max(j) - PR(j)*[lookahead_time - goodness_tr(i,seq_loc-4,seq_page)]; %calculate buffer fullness for product 

 that has been refilled, but time is greater than the lookahead time 
                    else 
                        BF = BF_max(j) - UR(j) * (seq_goodness(i,3,seq_page) - goodness_tr_time(i,j,seq_page)); %calculate buffer fullness 

 for products that have been refilled 
                    end 
                end 
                goodness_BF_level(i,j,seq_page)=BF; 
                if BF <= 0 
                    seq_goodness(i,1,seq_page)= -1; %label as bad b/c refill inventory is depleted 
                    j=num_of_prod; 
                end 
            end 
            milt_UR=milt_UR_LA(i,1,seq_page); 
            num_of_prod_sequenced_LA=num_of_prod_seqd_LA(i,:,seq_page);%copies number of seqd products into  
     num_of_prod_sequenced_LA to be used by function 
            calc_milt_u_temp_LA(x,UR,la_step,num_of_prod,num_of_prod_sequenced_LA,milt_UR,eta_val,milt_UR_LA_max); 
            seq_good = seq_good - omega*cost(last_prod,x) -  zeta_ * milt_UR_temp;%this is the first goodness calc 
            milt_UR_LA(i,1,seq_page)=milt_UR_temp;%stores milt_ur of current seqn to be used for future LA steps of the seqn 
            num_of_prod_seqd_LA(i,x,seq_page)=num_of_prod_seqd_LA(i,x,seq_page)+1;%adds the LA seqd product to the number of  
     seqd products 
            if seq_goodness(i,3,seq_page) >= lookahead_time 
                seq_goodness(i,1,seq_page)=-2; 
            end 
            if (seq_goodness(i,2,seq_page)-seq_good)/abs(seq_good) >= (goodness_percentage)  %if the goodness for the last prod is not  
     better or equl to the previous goodness, the seq is flagged as bad 
                seq_goodness(i,1,seq_page)=decrs_gdns_flag; 
                seq_goodness(i,2,seq_page)=seq_good; 
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            else 
                seq_goodness_stored(i,seq_page,seq_page) = seq_good; 
                seq_goodness_stored(i,seq_page+1,seq_page) = mean(seq_goodness_stored(i,1:seq_page,seq_page)); 
                seq_goodness(i,2,seq_page)=seq_goodness_stored(i,seq_page+1,seq_page); 
            end 
        end 
    end 
    % 
    % Step #10 
    % 
    seq_flag=0; 
    seq_page_prev=seq_page;%the previous sheet number of the seq_good variable 
    seq_page=1+seq_page;  %the sheet number of the seq_good variable 
    la_step=la_step+1; %record step number for calculating milt_UR 
    row=1;i=1; 
    while i<=(increment-1) 
        seq_loc=13;%the column number of the last product in the sequence 
        a=seq_goodness(i,4,seq_page_prev); 
        b=seq_goodness(i,5,seq_page_prev); 
        c=seq_goodness(i,6,seq_page_prev); 
        d=seq_goodness(i,7,seq_page_prev); 
        e=seq_goodness(i,8,seq_page_prev); 
        f=seq_goodness(i,9,seq_page_prev); 
        g=seq_goodness(i,10,seq_page_prev); 
        h=seq_goodness(i,11,seq_page_prev); 
        x=seq_goodness(i,seq_loc-1,seq_page_prev); 
        if x > 0 && seq_goodness(i,1,seq_page_prev) >= 0 
            seq_goodness(row+num_of_prod*1,num_of_prod*1,seq_page)=0; 
            seq_goodness_stored(row+num_of_prod*1,seq_page+1,seq_page)=0; 
            goodness_tr(row+num_of_prod*1,num_of_prod*1,seq_page)=0; 
            goodness_tr_time(row+num_of_prod*1,num_of_prod*1,seq_page)=0; 
            thres_flag=0; 
            for y=1:num_of_prod;                 
                threshold_percentage=goodness_BF_level(i,y,seq_page_prev)/BF_max(y); 
                if (cost(x,y) <= cost_threshold && BF_threshold(y) >= threshold_percentage ); 
                    seq_goodness(row,4,seq_page)=a;%the 1st product of  the sequence 
                    seq_goodness(row,seq_loc-8,seq_page)=b;%the 2nd product of  the sequence 
                    seq_goodness(row,seq_loc-7,seq_page)=c;%the 2nd product of  the sequence 
                    seq_goodness(row,seq_loc-6,seq_page)=d;%the 2nd product of  the sequence 
                    seq_goodness(row,seq_loc-5,seq_page)=e;%the 2nd product of  the sequence 
                    seq_goodness(row,seq_loc-4,seq_page)=f;%the 2nd product of  the sequence 
                    seq_goodness(row,seq_loc-3,seq_page)=g;%the 3rd product of  the sequence 
                    seq_goodness(row,seq_loc-2,seq_page)=h;%the 4th product of  the sequence 
                    seq_goodness(row,seq_loc-1,seq_page)=x;%the 5th product of  the sequence 
                    seq_goodness(row,seq_loc,seq_page)=y;%the 6th product of  the sequence 
                    seq_goodness(row,2,seq_page)=seq_goodness(i,2,seq_page_prev);%previous goodness value 
                    seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev); 
                    goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev); 
                    goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev); 
                    goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously 
                    milt_UR_LA(row,1,seq_page)=milt_UR_LA(i,1,seq_page_prev); 
                    num_of_prod_seqd_LA(row,:,seq_page)=num_of_prod_seqd_LA(i,:,seq_page_prev);%copies the initial numer of seqd  

products 
                    goodness_tr(row,seq_loc-3,seq_page)=seq_goodness(i,3,seq_page_prev)+(BF_max(y)-goodness_BF_level(row,y, 

seq_page)+UR(y)*cost(x,y))/(PR(y)-UR(y))+cost(x,y); 
                    goodness_tr_time(row,y,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%flag product as being refilled previously 
                    seq_goodness(row,3,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%the total time of  the sequence 
                    row = row+1; 
                    if goodness_tr(row,seq_loc-3,seq_page) < lookahead_time 
                        seq_flag=1;%used to flag system to know that at least one sequence hasn't reach lookahead time yet 
                    end 
                    thres_flag=1; 
                end 
            end 
            if thres_flag==0 
                seq_goodness(i,3,seq_page_prev)=seq_goodness(i,3,seq_page_prev)+delta_t; 
                for j=1:num_of_prod 
                    goodness_BF_level(i,j,seq_page_prev)=goodness_BF_level(i,j,seq_page_prev)-UR(j)*delta_t; 
                end 
                i=i-1; 
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            end 
        else 
            if seq_goodness(i,1,seq_page_prev)== -2 
                seq_goodness(row,:,seq_page)=seq_goodness(i,:,seq_page_prev);% 
                goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev); 
                goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev); 
                goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously 
                seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev); 
                seq_goodness_stored(row,seq_page+1,seq_page) = seq_goodness_stored(row,seq_page,seq_page);  
                row = row+1; 
            end 
        end 
        i=i+1; 
    end 
    if seq_flag == 0 
        pg_num=seq_page-1; 
        if min(seq_goodness(:,1,pg_num))>-2 && max(seq_goodness(:,1,pg_num))<=0 
            seq_page=pg_num; 
        end 
        for i=1:size(seq_goodness_stored,1) 
            seq_goodness_stored(i,seq_page+1,seq_page)=min(seq_goodness_stored(i,1:seq_page,seq_page));%store min goodness val 
            seq_goodness_stored(i,seq_page+2,seq_page)=max(seq_goodness_stored(i,1:seq_page,seq_page));%store max goodness val 
            seq_goodness_stored(i,seq_page+3,seq_page)=i; 
        end 
        break 
    end 
    milt_UR_LA_max=max(1,max(milt_UR_LA(seq_page_prev))); 
    increment=row; 
    for i=1:(increment - 1)%this is to calc the goodness for the sequence 
        last_prod=seq_goodness(i,seq_loc-1,seq_page);%previous product 
        seq_good=0; 
        x=seq_goodness(i,seq_loc,seq_page);%most recent product 
        if x > 0 && seq_goodness(i,1,seq_page)>= 0 
            for j=1:num_of_prod 
                if j==x 
                    BF=goodness_BF_level(i,j,seq_page); 
                    seq_good= - chi*BF/UR(j) + psi*(BF_max(j)-BF)/(PR(j)-UR(j)) + phi*max(0,(BF_max(j)*BF_threshold(j) - BF)/UR(j)); 
                    BF = BF_max(j); 
                end                 
                if goodness_tr_time(i,j,seq_page)==0 
                    BF = BF_ini(j)- UR(j) * seq_goodness(i,3,seq_page); %calculate buffer fullness for products that haven't been refilled 
                else 
                    if goodness_tr_time(i,j,seq_page)>=lookahead_time 
                        BF = BF_max(j) - PR(j)*[lookahead_time - goodness_tr(i,seq_loc-4,seq_page)]; %calculate buffer fullness for product  
     that has been refilled, but time is greater than the lookahead time 
                    else 
                        BF = BF_max(j) - UR(j) * (seq_goodness(i,3,seq_page) - goodness_tr_time(i,j,seq_page)); %calculate buffer fullness  
     for products that have been refilled 
                    end 
                end 
                goodness_BF_level(i,j,seq_page)=BF; 
                if BF <= 0 
                    seq_goodness(i,1,seq_page)= -1; %label as bad b/c refill inventory is depleted 
                    j=num_of_prod; 
                end 
            end 
            milt_UR=milt_UR_LA(i,1,seq_page); 
            num_of_prod_sequenced_LA=num_of_prod_seqd_LA(i,:,seq_page);%copies number of seqd products into  
     num_of_prod_sequenced_LA to be used by function 
            calc_milt_u_temp_LA(x,UR,la_step,num_of_prod,num_of_prod_sequenced_LA,milt_UR,eta_val,milt_UR_LA_max); 
            seq_good = seq_good - omega*cost(last_prod,x) -  zeta_ * milt_UR_temp;%this is the first goodness calc 
            milt_UR_LA(i,1,seq_page)=milt_UR_temp;%stores milt_ur of current seqn to be used for future LA steps of the seqn 
            num_of_prod_seqd_LA(i,x,seq_page)=num_of_prod_seqd_LA(i,x,seq_page)+1;%adds the LA seqd product to the number of  
     seqd products 
            if seq_goodness(i,3,seq_page) >= lookahead_time 
                seq_goodness(i,1,seq_page)=-2; 
            end 
            if (seq_goodness(i,2,seq_page)-seq_good)/abs(seq_good) >= (goodness_percentage)  %if the goodness for the last prod is not  
     better or equl to the previous goodness, the seq is flagged as bad 
                seq_goodness(i,1,seq_page)=decrs_gdns_flag; 
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                seq_goodness(i,2,seq_page)=seq_good; 
            else 
                seq_goodness_stored(i,seq_page,seq_page) = seq_good; 
                seq_goodness_stored(i,seq_page+1,seq_page) = mean(seq_goodness_stored(i,1:seq_page,seq_page)); 
                seq_goodness(i,2,seq_page)=seq_goodness_stored(i,seq_page+1,seq_page); 
            end 
        end 
    end 
    % 
    % Step #11 
    % 
    seq_flag=0; 
    seq_page_prev=seq_page;%the previous sheet number of the seq_good variable 
    seq_page=1+seq_page  %the sheet number of the seq_good variable 
    la_step=la_step+1; %record step number for calculating milt_UR 
    row=1;i=1; 
    while i<=(increment-1) 
        seq_loc=14;%the column number of the last product in the sequence 
        a=seq_goodness(i,4,seq_page_prev); 
        b=seq_goodness(i,5,seq_page_prev); 
        c=seq_goodness(i,6,seq_page_prev); 
        d=seq_goodness(i,7,seq_page_prev); 
        e=seq_goodness(i,8,seq_page_prev); 
        f=seq_goodness(i,9,seq_page_prev); 
        g=seq_goodness(i,10,seq_page_prev); 
        h=seq_goodness(i,11,seq_page_prev); 
        m=seq_goodness(i,12,seq_page_prev); 
        x=seq_goodness(i,seq_loc-1,seq_page_prev); 
        if x > 0 && seq_goodness(i,1,seq_page_prev) >= 0 
            seq_goodness(row+num_of_prod*1,num_of_prod*1,seq_page)=0; 
            seq_goodness_stored(row+num_of_prod*1,seq_page+1,seq_page)=0; 
            goodness_tr(row+num_of_prod*1,num_of_prod*1,seq_page)=0; 
            goodness_tr_time(row+num_of_prod*1,num_of_prod*1,seq_page)=0; 
            thres_flag=0; 
            for y=1:num_of_prod;                
                threshold_percentage=goodness_BF_level(i,y,seq_page_prev)/BF_max(y); 
                if (cost(x,y) <= cost_threshold && BF_threshold(y) >= threshold_percentage ); 
                    seq_goodness(row,4,seq_page)=a;%the 1st product of  the sequence 
                    seq_goodness(row,seq_loc-9,seq_page)=b;%the 2nd product of  the sequence 
                    seq_goodness(row,seq_loc-8,seq_page)=c;%the 2nd product of  the sequence 
                    seq_goodness(row,seq_loc-7,seq_page)=d;%the 2nd product of  the sequence 
                    seq_goodness(row,seq_loc-6,seq_page)=e;%the 2nd product of  the sequence 
                    seq_goodness(row,seq_loc-5,seq_page)=f;%the 2nd product of  the sequence 
                    seq_goodness(row,seq_loc-4,seq_page)=g;%the 2nd product of  the sequence 
                    seq_goodness(row,seq_loc-3,seq_page)=h;%the 3rd product of  the sequence 
                    seq_goodness(row,seq_loc-2,seq_page)=m;%the 4th product of  the sequence 
                    seq_goodness(row,seq_loc-1,seq_page)=x;%the 5th product of  the sequence 
                    seq_goodness(row,seq_loc,seq_page)=y;%the 6th product of  the sequence 
                    seq_goodness(row,2,seq_page)=seq_goodness(i,2,seq_page_prev);%previous goodness value 
                    seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev); 
                    goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev); 
                    goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev); 
                    goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously 
                    milt_UR_LA(row,1,seq_page)=milt_UR_LA(i,1,seq_page_prev); 
                    num_of_prod_seqd_LA(row,:,seq_page)=num_of_prod_seqd_LA(i,:,seq_page_prev);%copies the initial numer of seqd  

products 
                    goodness_tr(row,seq_loc-3,seq_page)=seq_goodness(i,3,seq_page_prev)+(BF_max(y)-goodness_BF_level(row,y, 

seq_page)+UR(y)*cost(x,y))/(PR(y)-UR(y))+cost(x,y); 
                    goodness_tr_time(row,y,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%flag product as being refilled previously 
                    seq_goodness(row,3,seq_page)=goodness_tr(row,seq_loc-3,seq_page);%the total time of  the sequence 
                    row = row+1; 
                    if goodness_tr(row,seq_loc-3,seq_page) < lookahead_time 
                        seq_flag=1;%used to flag system to know that at least one sequence hasn't reach lookahead time yet 
                    end 
                    thres_flag=1; 
                end 
            end 
            if thres_flag==0 
                seq_goodness(i,3,seq_page_prev)=seq_goodness(i,3,seq_page_prev)+delta_t; 
                for j=1:num_of_prod 
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                    goodness_BF_level(i,j,seq_page_prev)=goodness_BF_level(i,j,seq_page_prev)-UR(j)*delta_t; 
                end 
                i=i-1; 
            end 
        else 
            if seq_goodness(i,1,seq_page_prev)== -2 
                seq_goodness(row,:,seq_page)=seq_goodness(i,:,seq_page_prev);% 
                goodness_BF_level(row,:,seq_page)=goodness_BF_level(i,:,seq_page_prev); 
                goodness_tr(row,:,seq_page)=goodness_tr(i,:,seq_page_prev); 
                goodness_tr_time(row,:,seq_page)=goodness_tr_time(i,:,seq_page_prev);%flag product as being refilled previously 
                seq_goodness_stored(row,:,seq_page) = seq_goodness_stored(i,:,seq_page_prev); 
                seq_goodness_stored(row,seq_page+1,seq_page) = seq_goodness_stored(row,seq_page,seq_page);  
                row = row+1; 
            end 
        end 
        i=i+1; 
    end 
    if seq_flag == 0 
        pg_num=seq_page-1; 
        if min(seq_goodness(:,1,pg_num))>-2 && max(seq_goodness(:,1,pg_num))<=0 
            seq_page=pg_num; 
        end 
        for i=1:size(seq_goodness_stored,1) 
            seq_goodness_stored(i,seq_page+1,seq_page)=min(seq_goodness_stored(i,1:seq_page,seq_page));%store min goodness val 
            seq_goodness_stored(i,seq_page+2,seq_page)=max(seq_goodness_stored(i,1:seq_page,seq_page));%store max goodness val 
            seq_goodness_stored(i,seq_page+3,seq_page)=i; 
        end 
        break 
    end 
    milt_UR_LA_max=max(1,max(milt_UR_LA(seq_page_prev))); 
    increment=row; 
    for i=1:(increment - 1)%this is to calc the goodness for the sequence 
        last_prod=seq_goodness(i,seq_loc-1,seq_page);%previous product 
        seq_good=0; 
        x=seq_goodness(i,seq_loc,seq_page);%most recent product 
        if x > 0 && seq_goodness(i,1,seq_page)>= 0 
            for j=1:num_of_prod 
                if j==x 
                    BF=goodness_BF_level(i,j,seq_page); 
                    seq_good= - chi*BF/UR(j) + psi*(BF_max(j)-BF)/(PR(j)-UR(j)) + phi*max(0,(BF_max(j)*BF_threshold(j) - BF)/UR(j)); 
                    BF = BF_max(j); 
                end                 
                if goodness_tr_time(i,j,seq_page)==0 
                    BF = BF_ini(j)- UR(j) * seq_goodness(i,3,seq_page); %calculate buffer fullness for products that haven't been refilled 
                else 
                    if goodness_tr_time(i,j,seq_page)>=lookahead_time 
                        BF = BF_max(j) - PR(j)*[lookahead_time - goodness_tr(i,seq_loc-4,seq_page)]; %calculate buffer fullness for product  
     that has been refilled, but time is greater than the lookahead time 
                    else 
                        BF = BF_max(j) - UR(j) * (seq_goodness(i,3,seq_page) - goodness_tr_time(i,j,seq_page)); %calculate buffer fullness  

for products that have been refilled 
                    end 
                end 
                goodness_BF_level(i,j,seq_page)=BF; 
                if BF <= 0 
                    seq_goodness(i,1,seq_page)= -1; %label as bad b/c refill inventory is depleted 
                    j=num_of_prod; 
                end 
            end 
            milt_UR=milt_UR_LA(i,1,seq_page); 
            num_of_prod_sequenced_LA=num_of_prod_seqd_LA(i,:,seq_page);%copies number of seqd products into  

num_of_prod_sequenced_LA to be used by function 
            calc_milt_u_temp_LA(x,UR,la_step,num_of_prod,num_of_prod_sequenced_LA,milt_UR,eta_val,milt_UR_LA_max); 
            seq_good = seq_good - omega*cost(last_prod,x) -  zeta_ * milt_UR_temp;%this is the first goodness calc 
            milt_UR_LA(i,1,seq_page)=milt_UR_temp;%stores milt_ur of current seqn to be used for future LA steps of the seqn 
            num_of_prod_seqd_LA(i,x,seq_page)=num_of_prod_seqd_LA(i,x,seq_page)+1;%adds the LA seqd product to the number of  

seqd products 
            if seq_goodness(i,3,seq_page) >= lookahead_time 
                seq_goodness(i,1,seq_page)=-2; 
            end 
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            if (seq_goodness(i,2,seq_page)-seq_good)/abs(seq_good) >= (goodness_percentage)  %if the goodness for the last prod is not  
better or equl to the previous goodness, the seq is flagged as bad 

                seq_goodness(i,1,seq_page)=decrs_gdns_flag; 
                seq_goodness(i,2,seq_page)=seq_good; 
            else 
                seq_goodness_stored(i,seq_page,seq_page) = seq_good; 
                seq_goodness_stored(i,seq_page+1,seq_page) = mean(seq_goodness_stored(i,1:seq_page,seq_page)); 
                seq_goodness(i,2,seq_page)=seq_goodness_stored(i,seq_page+1,seq_page); 
            end 
        end 
    end 
    seq_flag=0; 
end 
 
 
 
seq_usage_rate Function: 
function [milt_UR,num_of_prod_sequenced]=seq_usage_rate(final_sequence,num_of_prod,UR) 
global milt_UR, global total_demand,global record, global num_of_prod_sequenced 
num_of_prod_sequenced=[]; 
num_of_prod_sequenced(length(final_sequence)+1,num_of_prod)=0; 
%calc of the total number of products produced for each stage of the 
%sequence, used for Miltenberg's euation 
if length(final_sequence) >= 1 
    for k = 1:length(final_sequence) 
        for i = 1:num_of_prod 
            if final_sequence(k,1) == i 
                num_of_prod_sequenced(k+1,i)=num_of_prod_sequenced(k,i)+1; 
            else 
                num_of_prod_sequenced(k+1,i)=num_of_prod_sequenced(k,i); 
            end 
        end 
    end 
else 
    final_sequence=0; 
end 
if size(num_of_prod_sequenced,1) > 2 
    num_of_prod_sequenced(1:2,:)=[]; 
end 
milt_UR = 0; 
for k = 1:length(final_sequence)-1 
    for i = 1:num_of_prod 
        milt_UR=(num_of_prod_sequenced(k,i) - k * (UR(i)/sum(UR(1:num_of_prod))))^2+milt_UR; 
    end 
end 
 
 
 
 
calc_milt_u_temp Function: 
function [milt_UR_temp, 
eta]=calc_milt_u_temp(final_sequence,prod_i,UR,step,num_of_prod,num_of_prod_sequenced,milt_UR,etap,eta_val) 
global milt_UR_temp, global eta%, global eta_val 
if step > 1 
    stage=step-1; 
else 
    stage=1; 
end 
milt_UR_temp=0; 
for i = 1:num_of_prod 
    if i == prod_i 
        milt_UR_temp=(num_of_prod_sequenced(stage,i)+1 - stage * (UR(i)/sum(UR(1:num_of_prod))))^2+milt_UR_temp; 
    else 
        milt_UR_temp=(num_of_prod_sequenced(stage,i) - stage * (UR(i)/sum(UR(1:num_of_prod))))^2+milt_UR_temp; 
    end 
end 
if stage > 1 
    milt_UR_temp=milt_UR_temp+milt_UR; 
end 
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if milt_UR ~= 0 
    etap=1/milt_UR; 
else 
    etap=0; 
end 
eta = etap*eta_val; 
 
 
 
 
calc_milt_u_temp_LA Function: 
function [milt_UR_temp,zeta_]=calc_milt_u_temp_LA(x,UR,la_step,num_of_prod,num_of_prod_sequenced_LA,milt_UR, 
    eta_val,milt_UR_LA_max) 
global milt_UR_temp, global zeta_%, global eta_val 
prod_i=x; 
stage=la_step; 
milt_UR_temp=0; 
for z = 1:num_of_prod 
    if z == prod_i %if current product is being refilled, then number of prods is increased by 1 
        milt_UR_temp=(num_of_prod_sequenced_LA(z)+1 - stage * (UR(z)/sum(UR(1:num_of_prod))))^2+milt_UR_temp; 
    else 
        milt_UR_temp=(num_of_prod_sequenced_LA(z) - stage * (UR(z)/sum(UR(1:num_of_prod))))^2+milt_UR_temp; 
    end 
end 
milt_UR_temp=milt_UR_temp+milt_UR; 
zetap=1/milt_UR_LA_max; 
zeta_ = zetap*eta_val; 
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A History of Production Control Systems 

This appendix will provide general information and the history of the many different methods of 

scheduling production, such as Classical Scheduling, Bottleneck Scheduling, MRP, Pull 

Production Control, and Diagnostic Scheduling.   

 

Classical Scheduling 

Scheduling of jobs for manufacturing is as old as manufacturing itself but research in the area 

dates back to the early 1900s with the emergence of the scientific management movement.  The 

use of computers in the 1950s and 1960s allowed researchers to begin to perform serious analysis 

of scheduling problems and led to the eventual development of MRP.  Classical scheduling 

problems were examined before computers or MRP and many assumptions were required in order 

to be able to solve these problems by hand.    Some of the more common assumptions include: all 

jobs are available at the start of the problem, process times are deterministic, process times are 

independent from the schedule (no setup times), machines do not break down, and there is no 

preemption or cancellation of jobs.  These assumptions allow many of the scheduling problems to 

be reduced down to a manageable task.  In some cases these assumptions allow a sequence to be 

found instead of an actual schedule, but in other cases a full-blown schedule is needed which is 

much more difficult to determine. 

 

Classical scheduling problems are often highly simplified and generic but they can offer useful 

insights into scheduling issues even though most problems only address one, two, or possibly 

three machines.  An example of insight gained from classical scheduling is when a single 

machine is examined using the previously mentioned assumptions and the average cycle time is 

minimized; where cycle time is defined as the average time from the release of a job until it 

reaches an inventory point and the end of the routing.  It is interesting to note that although the 

total time to complete multiple jobs is independent of the sequence, the average cycle time is 

minimized by processing jobs in order of their processing times, starting with the shortest one 

first.  This is called the shortest process time (SPT) sequencing rule.  This problem shows that 

congestion in a factory can be reduced by processing shorter jobs first because they will move 

through the factory quicker and not block the longer processing time jobs.  Askin [87] provided a 

visual representation of this in the following chart, where the horizontal axis is the part number 

and the vertical axis is the manufacturing time required to process the job.  This shows how each 

subsequent job is delayed by the preceding job and the height of the column is the total time 

required to process job n. 
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Figure 1: Flow Time Delays 
 

The earliest due date (EDD) sequencing is another insight that was gained from classical 

scheduling.  The maximum lateness of any job was shown to be minimized by ordering the jobs 

according to their due dates, with the earliest due date first and the latest due date last.  The idea 

behind this sequencing technique is that all the jobs will be completed on time if it is possible.   

 

The minimization of the makespan, which is the total time to finish all jobs on two machines, is 

another area studied by classical scheduling.  The makespan time is dependent upon the order of 

the jobs because certain sequences could cause idle time at the second machine while it waits for 

the job on the first machine to be completed, while other sequences could cause the first machine 

to wait while the second machine completes a job.  Johnson [9] developed an algorithm to find a 

sequence that minimizes makespan for this problem.  The algorithm is as follows:   

 

Separate the job into two sets, A and B.  Jobs in set A are those whose process time on 
the first machine is less than or equal to the process time on the second machine.  Set B 
contains the remaining jobs.  The processing sequence begins with set A in the order of 
shortest processing time first.  Set B is processed after the completion of set A and the 
order of the jobs in set B begin with the longest processing time first. 

 

The insight from this algorithm is that by processing the shortest processing times in the 

beginning of the sequence allows the wait time for the second machine to be minimized because 

the second machine is idle until the first job is completed on the first machine.  The ending 
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sequence also helps to minimize the total processing time because the first machine will be idle as 

the second machine finishes the last job. 

 

Many of the assumptions used in classical scheduling are not true for most real-world 

manufacturing systems.  There are almost always more than three machines to schedule parts on 

in the real-world which makes classical scheduling infeasible.  Also, real-world processing times 

may appear to be deterministic but there will always be some randomness and variability which 

can cause a great deal of congestion in manufacturing systems.  The assumption that all jobs are 

ready at the beginning is far from accurate because jobs continue to arrive during the life of a 

manufacturing system and the system is not completely emptied prior to starting a new job.  

Another incorrect assumption is that process time is independent of the schedule because the 

sequence in which parts are scheduled can have a significant impact on the time to get through 

the plant because of setup times.  Time can often be saved if similar parts that share the same 

setup or a similar setup are scheduled together. 

 

Another problem with classical scheduling is the time required to determine an optimal schedule 

as the number of jobs is in the hundreds and the number of machines is in the tens.  The classical 

algorithms can be divided into two categories: (1) Class P problems that can be solved by 

algorithms whose computational time grows as a polynomial function of the size of the problem. 

(2)  NP-hard problems are those for which no polynomial algorithm exists and computational 

time increases exponentially with the size of the problem.  Hopp and Spearman [88] provided the 

following comparison between the two types of problems.  Suppose we want to determine the 

optimum sequence for twenty jobs on a single machine (NP-hard problem, 20! possibilities) and 

we use a computer that can examine 1,000,000 sequences per second.  This problem would take 

77,147 years to complete the sequencing problem, while ten jobs would take only 3.63 seconds.  

An example of a Class P problem would be to sort jobs for a processing center according to 

processing time.  Consider sorting twenty jobs and using a computer that can sort ten jobs in the 

same amount of time as sequencing ten jobs.  The sorting of twenty jobs would take only 9.4 

seconds.  The sorting of jobs can be accomplished by many well known algorithms for sorting a 

list of elements whose computation time is proportional to n log n, where n is the number of 

elements sorted.  This algorithm is bounded by n2, a polynomial. 

 

Most real world scheduling problems fall into the NP-hard category of problems and tend to be 

large and difficult to solve.  Often it is impossible to solve actual problems due to the required 
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computational time.  Fortunately a good solution can be found even though it is perhaps not the 

optimal solution.  The nonpolynomial nature of the problems implies that there are many 

solutions which can actually help to find a good solution.  Consider that if only one in a trillion of 

the possible solutions is good in the previous twenty job scheduling problem, there would still be 

almost 2.5 million good solutions. 

 

Problem size and lack of an efficient solution scheme often lead to the use of a heuristic to find a 

good, nearly optimal, solution to the problem.  The solution that is found may or may not be the 

optimum and even if it is optimal, there will be no way to confirm the solution.  Bartholdi and 

Platzman [89] gave the following heuristic summary: 

 
A heuristic may be viewed as an information processor that deliberately but judiciously 
ignores certain information.  By ignoring information, a heuristic is freed from whatever 
effort might have been required to read the data and compute with it.  Moreover, the solution 
produced by such a heuristic is independent of the ignored information, and thus unaffected 
by changes in that information.  Of course the art of heuristic design lies in knowing exactly 
what information to ignore.  Ideally, one seeks to ignore information that is expensive to 
gather and maintain, that is computationally expensive to exploit, and that contributes little 
additional accuracy to the solution. 

 

Heuristics must be used to find a solution to the very difficult real world problems because of the 

limited time in a real manufacturing setting and the need for a good solution that does not 

necessarily have to be the optimum.  A good heuristic will accurately represent the manufacturing 

system and omit superfluous information that would only slow down the solution. 

 

Bottleneck Scheduling 

The scheduling of multiple machines and multiple products can be a very difficult if not 

impossible task but it is often simplified by focusing on the bottleneck and using insight gained 

from classical scheduling techniques for a single process.  A bottleneck is defined as the process 

that takes the largest amount of time when compared to all the other processes required to make a 

product.  The bottleneck is the critical process that will determine the rate at which material will 

flow through all the other processes.  Once the bottleneck is sequenced, then the remaining 

machines are scheduled to prevent starvation by preceding processes and to prevent blocking of 

the bottleneck by subsequent processes. 

 

The Theory of Constraints (TOC) is a management philosophy that was developed by Eliyahu 

Goldratt and it focuses on both financial and operational measures to determine the performance 
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of a manufacturing operation.  TOC helps the company achieve its goal of making money by 

identifying the limitations due to the constraints in three areas: internal resources, market 

demand, and the company’s policies.  There are nine rules that are used to direct the management 

of the factory floor (the internal resources): 

 

1. Balance flow in the factory, not capacity. -- The flow of the product is more important 

than maintaining a high utilization of the capacity at each process, as long as there is 

sufficient capacity. 

2. Constraints determine the utilization of the non-bottleneck processes. -- Maximizing 

utilization of non-bottleneck processes only increases costs, idle time, and resources. 

3. Activity is not equivalent to utilization. -- Producing output that cannot fit into the 

schedule of the bottleneck only increases the inventory.  A busy machine is not 

equivalent to a productive machine that is meeting the required workload. 

4. An hour lost at the bottleneck is an hour lost for the entire system. -- This causes the 

bottleneck to be scheduled at or near full utilization in order to maximize the total 

production of the system.  This rule also encourages reduction in setups, setup times, and 

the use of large lots at the bottleneck. 

5. An hour saved at a non-bottleneck is a mirage. -- If the time is saved prior to the 

bottleneck the product will still be required to wait the hour that was saved in order to fit 

into the original schedule of the bottleneck.  However it is possible that if time can be 

saved at subsequent processes, the throughput time will be decreased because the product 

will leave the system quicker. 

6. The bottleneck governs both throughput and inventory of the system. -- The production 

rate of the bottleneck determines the throughput time and inventory (Little’s Law). 

7. The transfer batch to the next process should not always be equal to the process batch. -- 

It may be advantageous to transfer smaller batches between non-bottleneck processes in 

order to decrease idle time. 

8. The process batch size should be variable and not fixed. -- The process batch size 

depends on the current state of the system and most often should be large at the 

bottleneck and smaller elsewhere. 

9. The schedule should be determined by examining all the constraints simultaneously. -- 

Lead times are a function of the schedule and cannot be predetermined and will often be 

variable dependent upon the state of the system. 
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The TOC is somewhat intuitive but the implementation on the shop floor is perhaps slightly more 

difficult to grasp.  The Drum-Buffer-Rope (DBR) is a production control technique that is used 

for non-bottleneck processes to produce only enough to keep the bottleneck at the capacity 

required to meet demand.  The DBR technique can be thought of as a group of people traveling, 

each at different rates.  To keep everyone together a rope is connected between each person 

which will cause everyone to travel at the rate of the slowest person. 

 

The drum represents two possibilities, the bottleneck or the market demand, and will be 

responsible for “striking the beat” to set the pace for the entire system similar to the cadence set 

by the percussion section for a marching band.  The buffers are used to ensure that the cadence is 

maintained at critical points in the manufacturing system.  The buffers should be placed before 

and after the bottleneck and at shipping to ensure that due dates are met.  The real world demand 

and the bottleneck are tied together with the first rope and the bottleneck and the raw material 

release point are tied together with the second rope.  The rope also serves to constrain the WIP 

levels such as if the bottleneck machine breaks down, the upstream processes will not keep 

sending products downstream.  The DBR configuration will regulate the overall production rate 

so that the customer demand will be met and that the bottleneck will not be starved or overloaded 

with products from upstream processes. 

 

MRP 

Material Requirement Planning (MRP) has become widely used in industry to determine 

schedules for manufacturing systems and it was one of the first attempts to assist production 

planning with the use of computers.  MRP coordinates the release of orders to push the items 

through the production processes in an attempt to minimize any unnecessary inventory.  The 

decision making process for MRP relies on the use of inventory records, bill of material 

structures, the master production schedule, and lead time estimates. 

 

MRP operates on a continuous horizon of time periods, or time buckets, that most often represent 

up to one week of production.  For each period inventory status is updated and the bill of material 

(BOM) for each finished product is exploded down the product hierarchy one level at a time.  

Current inventory and open orders are matched against gross requirements at each level over the 

planning horizon and then order releases are planned to meet the remaining net requirements.  

The planned order releases for parent items become the gross requirements at the next lower level 

of the hierarchy.  This is accomplished by using the following steps: 
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1. Netting:  The net requirements are determined by subtracting on-hand inventory and 

scheduled receipts from the gross requirements. 

2. Lot sizing:  The netted demand is divided into appropriate lot sizes. 

3. Time phasing:  The due date of each job is offset by the lead time to determine the start 

time. 

4. BOM explosion:  The BOM is used to determine the gross requirements for required 

components at the next level. 

5. Iterate:  Repeat steps until all levels have been scheduled. 

To illustrate these steps, suppose a bicycle was being scheduled for production and it had the 

following BOM and 50 finished bikes are required for week number four and week number six.  

Currently 25 bikes are on-hand and the lead time for all components is one week. 

 

WheelAssy
(2 req)

Frame Assy Seat

Bike Assy

Tire Tube Rim

Level I

Level II

Level III  
Figure 2: Bike BOM 

 

Table 1.1: MRP Input Data 
Bike Assembly Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 

Gross Requirements       50   50 

Scheduled Receipts             

Projected On-hand 25             

Net Requirements             

Planned Order Releases             

 

Netting: 

The first step is to begin the netting process which computes the net demand.  Most MRP systems 

assume that the coverage of demand will come first from on-hand inventory, second from 

scheduled receipts, and finally from planned order releases.  The amount of coverage of the 

demand, tD , by the on-hand inventory, tI , and the scheduled receipt, tS , is calculated using the 

following equation where 0I is equal to the initial on-hand inventory. 
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tttt DSII −+= −1  

 

This equation is used for every time period until the demand becomes greater than the on-hand 

inventory and scheduled receipts are able to cover. 

 

The net requirements for period t, tN , will be zero for an period in which the on-hand inventory 

is greater than zero ( 0=tN   if  0≥tI ).  The net requirements for a period in which the on-hand 

inventory is less than zero is equal to the absolute value of the on-hand inventory ( tt IN =   if  

0<tI ).  This can be seen in the following table. 

 
Table 1.2: Updated Net Requirements 

Bike Assembly Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 

Gross Requirements       50   50 

Scheduled Receipts             

Projected On-hand 25  25  25 25  -25   0 -50  

Net Requirements        25   50  

Planned Order Releases             

 

Lot Sizing: 

This step involves determining how to dispatch jobs to meet the net requirements of the 

production schedule.  The simplest lot-sizing rule is known as lot for lot, and it states that the 

amount to be produced in a period is equal to the net requirements for the period.  This technique 

requires no thought or calculations and is similar to the just-in-time philosophy of making only 

what is needed.  For this example, 50 products would be released to meet the Week 6 demand and 

25 products to meet the Week 4 demand.   

 

Another simple lot-sizing rule is known as fixed order period (FOP) or period order quantity.  

This rule is an attempt to reduce the number of setups by combining the requirements of P 

periods and releasing the multiple requirements at the same time.  FOP becomes lot for lot when 

P is equal to one.  In this example, suppose P = 3, the net requirements for weeks 4, 5, and 6 

would all be released together as an order for 75 products. 
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Fixed order quantity and economic order quantity (EOQ) are along the same line of thinking as 

FOP except that a predetermined quantity is released when an order is required.  This is practical 

because often fixtures, carts, and other similar devices in a factory can hold only a set quantity of 

the product.  For instance, many more seats can be transported than bike frames.  EOQ is an 

attempt to find the optimum order quantity when minimizing setup costs (A) and inventory 

holding costs.  EOQ can provide an order quantity although it is based on flawed assumptions 

such as constant demand (D) and no relationship between inventory cost (h) and batch size.  EOQ 

is given by the following equation: 

 

h
ADQ 2

=
 

 

Time Phasing: 

This step is used to offset the release date of jobs by the lead time from when the net 

requirements are actually required.  The standard assumption used by MRP is that the lead time 

of a job is a constant value that is independent of the size of the job or the status of the shop floor.  

These assumptions potentially lead to problems that will be discussed later.  The equation used to 

offset the planned order releases for time t, tPOR , is shown below, where the lead time is 

represented by τ . 

 

τ+= tt NPOR  

 

The lead times for this example are assumed to be one week for the bike assembly and assuming 

the use of lot for lot replenishment rule, the net requirements for Week 4 would be offset by one 

week to Week 3.  The same would be done for the net requirements in Week 6, which would be 

offset to Week 5; the updated results are shown below.  Notice that the lot size for Week 5 is 

double that of Week 3, but both lots are assumed to be completed in one time period. 
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Table 1.3: Updated Lot Sizing and Time Phasing 
Bike Assembly Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 

Gross Requirements       50   50 

Scheduled Receipts             

Projected On-hand 25  25  25 25  -25   0 -50  

Net Requirements        25   50  

Planned Order Releases      25    50   

 

BOM Explosion: 

The purpose of this step is to transfer the release dates and lot sizes from the current level to the 

next lower level.  In this example the release dates and lot sizes for the top level (Level I) 

assembly will be transferred to the Level II components that are required to make the finished 

assembly.  From the BOM, two wheel assemblies, one frame assembly, and one seat are required 

for every bike.  The updated BOM explosion is shown in the tables below for each of the three 

components.  These gross requirements would be added to any other accumulated demand for the 

components, such as if the wheel assembly in this example was required for a tandem bike 

assembly or some other finished assembly.   

 

Table 1.4: Wheel Assembly BOM Explosion 
Wheel Assembly Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 

Gross Requirements   50  100  

Scheduled Receipts  25     

Projected On-hand 15       

Net Requirements       

Planned Order Releases       

 

Table 1.5: Frame Assembly BOM Explosion 
Frame Assembly Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 

Gross Requirements   25  50  

Scheduled Receipts       

Projected On-hand 5       

Net Requirements       

Planned Order Releases       

 



 

 

249 

 

Table 1.6: Seat BOM Explosion 
Seat Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 

Gross Requirements   25  50  

Scheduled Receipts       

Projected On-hand 35       

Net Requirements       

Planned Order Releases       

 

Iterate: 

The iteration step is the final step in the MRP process and is used to repeat the previous steps for 

all the subsequent levels of required components of the final assembly.  For this example the 

wheel assembly will be iterated to the lowest level (Level III), at which point all the components 

required will be scheduled.  The updated MRP table for the wheel assembly is shown below after 

the netting, lot sizing, and time phasing steps have been completed. 

 

Table 1.7: Updated Wheel Assembly 
Wheel Assembly Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 

Gross Requirements   50  100  

Scheduled Receipts  25     

Projected On-hand 15 15 40 -10 0 -100  

Net Requirements   10  100  

Planned Order Releases  10  100   

 

Table 1.8: Updated Frame Assembly 
Frame Assembly Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 

Gross Requirements   25  50  

Scheduled Receipts       

Projected On-hand 5 5 5 -20 0 -50  

Net Requirements   20  50  

Planned Order Releases  20  50   
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Table 1.9: Updated Seat 
Seat Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 

Gross Requirements   25  50  

Scheduled Receipts       

Projected On-hand 35 35 35 10 10 -40  

Net Requirements     40  

Planned Order Releases    40   

 

At this point the BOM explosion step is required for each of the Level II components.  The gross 

requirements for the components of the wheel assembly will have the following MRP tables after 

the BOM explosion step. 

 
Table 1.10: Input Tire Data 

Tire Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 

Gross Requirements    10    100     

Scheduled Receipts 15           

Projected On-hand 40         

Net Requirements         

Planned Order Releases             

 

Table 1.11: Input Tube Data 
Tube Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 

Gross Requirements   10    100     

Scheduled Receipts     30        

Projected On-hand 30             

Net Requirements             

Planned Order Releases             
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Table 1.12: Input Rim Data 
Rim Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 

Gross Requirements   10    100     

Scheduled Receipts   20         

Projected On-hand 20             

Net Requirements             

Planned Order Releases             

 

Once again the iteration of the previous steps is required to complete the production schedule for 

all the components required by the wheel assembly.  The final updated tables for each of the 

components are shown below.  At this point the MRP process is complete, but the process will 

need to be repeated for the current and subsequent levels if any of the values change for the gross 

requirements or scheduled receipts at any level in the BOM. 

 
Table 1.13: Input Tire Data 

Tire Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 

Gross Requirements    10    100     

Scheduled Receipts 15           

Projected On-hand 40 55 45 45 -55  -  - 

Net Requirements    55     

Planned Order Releases      55       

 
Table 1.14: Input Tube Data 

Tube Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 

Gross Requirements  10  100   

Scheduled Receipts   30    

Projected On-hand 30 30 20 50 -50   

Net Requirements    50   

Planned Order Releases   50    
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Table 1.15: Input Rim Data 
Rim Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 

Gross Requirements   10    100     

Scheduled Receipts   20         

Projected On-hand 20 20   30 30   -70     

Net Requirements        70     

Planned Order Releases      70       

 

Lead times: 

A problem with MRP is the use of the assumption that constant lead times accurately represent 

manufacturing lead times which actually vary continually due to randomness.  Lead time for a 

product is composed of the actual processing time on the machine, queuing delays, waiting time 

during machine breakdowns, etc.  To compensate for the variation in lead times, the user will 

often choose long pessimistic estimates for lead times because excess inventory is viewed as less 

critical than having a late job and missing the customer’s due date.  For example, suppose the 

average manufacturing lead time is three weeks with a standard deviation of one week.  The 

customer due date will be met if the planned lead time is chosen to be five weeks, but the 

majority of the jobs will be held in inventory for two weeks.  As planned lead times are increased, 

the waiting time for the next operation also increases which in turn causes the system to have 

more inventory.  In the previous example, the majority of the jobs will be held in inventory for 

three weeks on average.  Lead times must be increased for busy or near capacity production in 

order to compensate for the increased queuing delays in order to ensure that the product will still 

meet the due date of the customer.  The increase in lead times causes the inventory levels to 

increase which then causes the cycle times to further increase. 

 

The use of the assumption of constant lead times no matter the size of the job implies the 

assumption that the processing center has infinite capacity.  To illustrate how these two 

assumptions are intertwined with one another, imagine that the process is for a person to cross 

from one side of a highway, without any traffic, to the other.  If one person or fifty people try to 

cross the road, there will be enough room (infinite capacity) for everyone to cross at the same 

time so that the lead time is truly constant no matter the number of people which represent the 

batch or lot size.  However, a queue would be formed if everyone had to cross the road at the 

crosswalk and there would be some delay as people would wait for their turn to cross the road.  

The crosswalk represents a finite capacity process, where perhaps only four people can cross at 
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the same time, which is what occurs in real world manufacturing systems. 

 

Capacity infeasibility: 

The basic methodology and the assumption of MRP is that of a production line with a fixed lead 

time that is independent of the workload in the plant.  This means that MRP assumes that there 

will always be sufficient capacity on the line no matter how great the demand.  This assumption is 

much too simplistic to be effective and accurate at production scheduling.  As the plant 

approaches operation at or near capacity this assumption becomes inaccurate and will cause 

customer due dates to be missed and inventory levels to increase. 

 

Rough-cut capacity planning (RCCP) and capacity requirements planning (CRP) were two 

techniques developed to address capacity problems and to detect scheduling infeasibilities in 

MRP.  RCCP is used prior to MRP to detect capacity violations resulting from the master 

production schedule (MPS).  RCCP uses the bill of resources or bill of capacity, which gives the 

number of hours required at each critical resource to build a particular finished product as well as 

all exploded requirements, to check for infeasibilities of each finished product.  RCCP ignores 

lead times, lot sizes, and inventory status and merely translates the demand over time into a 

profile of capacity requirements by multiplying the number of hours required by the product at a 

resource times the demand for the product.  As an example to help understand RCCP, suppose 

part A and part B are made on the same machine and part A is composed of part A1 and part A2.  

Part A requires one hour of processing time on the machine, while part A1 requires half an hour 

of processing time and part A2 requires one hour and part B requires 2 hours of processing time.  

The bill of resources for these two parts is as follows: 

 
Table 1.16: Bill of Resources 

Part A Part B 

2.5 2 

 
Table 1.17: Demand 

Week 1 2 3 4 5 6 7 8 

Part A 10 10 10 20 20 20 20 10 

Part B 5 25 5 15 10 25 15 5 

 

Based on the demand above for part A and part B the RCCP calculations will be as follows: 
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Table 1.18: RCCP Calculations 

Week 1 2 3 4 5 6 7 8 

Total 

(hours) 

Part A (hours) 25 25 25 50 50 50 50 25 300 

Part B (hours) 10 50 10 30 20 50 30 10 210 

Total 35 75 35 80 70 100 80 35 510 

Available 65 65 65 65 65 65 65 65 520 

Over(+)/Under(-) 30 -10 30 -15 -5 -35 -15 30 - 

 

From these calculations, it is obvious that there are times in which there is insufficient capacity.  

Although if one only considers the eight time periods in aggregate there appears to be an excess 

of ten hours of production capacity.  The planner must decide how to correct the time periods 

with capacity infeasibilities because RCCP only notifies the planner of a problem and does 

nothing to correct the situation.  It is also important to note that RCCP assumes that the part and 

all subassemblies are processed on the same machine during the same time period and the 

processing time is independent of job sequence. 

 

CRP provides a more detailed capacity check on an MRP produced schedule than RCCP.  CRP 

requires the knowledge of planned order releases, existing WIP positions, routing data, capacity, 

and lead times for all resources in order to calculate the capacity required for the remaining orders 

(after WIP and inventories have been subtracted).  CRP assumes that the time to go through a 

machine does not change even when the load exceeds capacity.  CRP is only a good predictor of 

loading conditions in the very near term and it does not generate finite capacity analysis.  CRP 

performs infinite forward loading, which means that it uses fixed lead times to predict job 

completion times for each process center and then computes a predicted loading over time.  The 

predicted loadings are then compared against the available capacity, but no corrections are made 

for overload situations; therefore, all estimates of CRP beyond an overloaded condition are 

erroneous. 

 

To better illustrate how CRP works, consider a processing center with a capacity of 400 parts per 

day, a three day lead time, and with no work in the processing center at the start.  Also assume 

that the schedule uses a lot-sizing rule to reduce setups and the planned order releases are for 

1,200 units on Day 1 and Day 4.  CRP would produce a load profile for the processing center that 

has an overload condition on Day 3 and Day 6 and no production for the other days.  A very 
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different result would be found if a finite capacity loading analysis were performed.  The results 

would show that there is no output for the first two days as the product works through the 

processing center, but on Day 3 there would be an output of 400 units and this would continue for 

the next six days.  The second release of 1,200 units would arrive at the processing center just as 

the last 400 units of the previous order are pulled into the processing center. 

 

Nervousness: 

Nervousness in an MRP system occurs when a small change in the master production schedule 

(MPS) causes a significant change in the planned order releases.  Vollmann et al. [90] 

demonstrate an example in which a small decrease in demand in the MPS can cause a formerly 

feasible MRP plan to become infeasible.  For this example, consider two parts.  Part A has a two 

week lead time and uses FOP lot-sizing rule with an order period of five weeks and requires one 

unit of Part B.  Part B has a lead time of four weeks and uses the FOP lot-sizing rule with a period 

of five weeks.  The initial MRP calculations are shown before, prior to a change in demand. 

 
Table 1.19: MRP Calculations for Part A 

Part A 

Week 

1 

Week 

2 

Week 

3 

Week 

4 

Week 

5 

Week 

6 

Week 

7 

Week 

8 

Gross Requirements 2 24 3 5 1 3 4 50 

Scheduled Receipts                 

Projected On-hand 28 26 2 -1 -5 -1 -3 -4 -50 

Net Requirements     1 5 1 3 4 50 

Planned Order Releases 14         50     

 

Table 1.20: MRP Calculations for Part B 

Part B 

Week 

1 

Week 

2 

Week 

3 

Week 

4 

Week 

5 

Week 

6 

Week 

7 

Week 

8 

Gross Requirements 14         50     

Scheduled Receipts 14               

Projected On-hand 2 2 2 2 2 2 -48     

Net Requirements           48     

Planned Order Releases   48             

 

The nervousness of the system becomes apparent when the demand for Part A is decreased in 
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Week 2 from 24 units to 23 units.  One would think that a schedule that is feasible for 24 units 

should also be feasible for a decreased demand of 23 units in the same period, but notice what 

happens in the MRP calculations shown below. 

 
Table 1.21: Updated MRP Calculations for Part A 

Part A 

Week 

1 

Week 

2 

Week 

3 

Week 

4 

Week 

5 

Week 

6 

Week 

7 

Week 

8 

Gross Requirements 2 23 3 5 1 3 4 50 

Scheduled Receipts                 

Projected On-hand 28 26 3 0 -5 -1 -3 -4 -50 

Net Requirements       5 1 3 4 50 

Planned Order Releases   63             

 

The original planned order releases were scheduled for 14 units during Week 1 and 50 units 

during Week 6, but because of the decrease in demand by one unit 63 units are scheduled to be 

released during Week 2.  This would be a major change in the production schedule for a 

manufacturer who is attempting to meet the due dates of many customers at the same time in a 

dynamic environment where customer demand might fluctuate from week to week. 

 

Vollmann suggests the use of different lot-sizing rules for each level in the BOM, with fixed 

order quantities for finished products, lot-for-lot or fixed order quantity for intermediate levels, 

and fixed order period for the lower levels.  Another technique to decrease the nervousness of the 

system is to freeze the beginning of the MPS.  This is very effective because changes in the near 

production order releases are the most disruptive and this method creates a frozen zone in which 

the first X time periods cannot be modified. 

 

MRP Production Control: 

MRP has been used by many companies over the past few decades as a production control system 

to schedule production and determine when to order materials to supply the production.  MRP is 

useful to determine material requirements from outside the manufacturing system such as for 

subcomponents from vendors or orders for raw materials.  MRP fails when it is used to schedule 

release periods for production on the shop floor because it operates independent of the status of 

jobs on the floor.  MRP uses the push philosophy of moving products through the different stages 

of production and if there is any problem during production the system will fill up with WIP.  
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MRP is much like running water into a bathtub because there is no connection between the faucet 

and the drain.  Once the faucet is turned on, water will continue to run whether the drain is open 

or if it is plugged; the user must be aware of the system and determine the amount of water flow 

to keep the tub from overflowing.  

 

MRP provides no information to the scheduler regarding bottleneck processes, whether it is being 

starved, overloaded, or if it is dynamic and moves from one station to another.  Classical 

scheduling techniques have been seen as providing valuable information for the scheduling of 

bottlenecks. 

 

Pull Production Systems: 

The just-in-time (JIT) or pull production method was very successfully implemented by the 

Japanese over the past several decades.  This method is somewhat similar to the DBR in the sense 

that the customer demand and the rope is what control the production upstream from the finished 

products and the WIP is capped.  JIT differs from other production methods in that it is a 

philosophy for the entire production system as much as it is a production scheduling technique.  

JIT is referred to as a pull production method because the material is pulled downstream as the 

customer removes a finished product from the company.  Pull production systems will process a 

component to replace stock, meaning the component that was taken by the customer who could 

be the downstream process or an external customer removing finished goods.  A push system 

processes a component to meet an order whether it is forecasted demand or a “hard” order from a 

customer. 

 

The JIT or pull production method has been very successfully implemented by the Japanese over 

the past several decades.  JIT differs from other production methods in that it is a philosophy for 

the entire production system as much as it is a production scheduling technique.  JIT is referred to 

as a pull production method because information flows upstream as the material is pulled 

downstream when the customer removes a finished product from the company.   

 

The pull production method used as a production scheduler has many advantages over 

conventional push methods.  The first and largest advantage is that production under pull 

conditions actually is dependent upon the condition of the shopfloor.  MRP uses estimated lead 

times and timed releases of jobs and it assumes that the product will flow through the factory 

smoothly and lead times must be inflated to account for disruptions.  Conversely, with pull 
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production jobs are released only when there is customer demand and the downstream station 

authorizes the preceding station to begin work.  If there is a machine that has a breakdown then 

the upstream machines that feed the broken machine will sit idle until the breakdown is fixed.  

This implies that the WIP in a pull system is capped and it will never exceed the initial line 

loading.  The controlled status of WIP between adjacent processes also allows for strategic 

planning to help smooth product flow, such as ensuring that a static bottleneck is never starved or 

blocked.  Often pull production will not be able to function well if the bottleneck is dynamic and 

moves around the factory floor.  The controlled lower WIP status of a pull system allows for 

faster throughput times, lower holding costs, and improved quality controls.  The high level of 

WIP in push production can cover many problems that become evident in a pull system, similar 

to exposing rocks hidden at the bottom of a stream by lowering the water level.  The lower WIP 

levels of pull decrease the variability in lead times and lessen the need for inflated safety lead 

times that are often used with MRP.  An MRP system will likely experience problems with 

starvation of processes when operated at low levels of WIP and will experience a WIP explosion 

when operating near full capacity; neither of these problems occur with pull production.  

 

A pull system when implemented on the shopfloor can take on many different forms, including 

the following: a storefront system, kanban system, two-card kanban system, route-specific kanban 

system, CONWIP line, tandem CONWIP line, or a hybrid push/pull or pull/pull system.  None of 

these pull systems can be deemed superior to the rest because each system will work well when 

matched correctly with the appropriate manufacturing process.   

 

Storefront or Supermarket Pull System: 

Pull systems have been functioning for decades in the form of grocery stores where the customer 

removes the goods from the shelves.  This system can have many different looks, but typically in 

manufacturing environments a space is designated for one or more finished products on the 

outbound side of the process, production is signaled to begin when a space becomes open.  This 

type of a pull system is referred to as a storefront or supermarket pull system and it works very 

well in manufacturing environments with low product variety because the storefront for a process 

will require one or more products in the storefront for every variant that is required for the 

downstream process.  A storefront system will require very high levels of WIP in each storefront 

for a manufacturer that produces hundreds of different products. 
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Kanban Pull System: 

The kanban pull system gets its name from the work authorization signal, which is issued by a 

kanban, which is a Japanese word and loosely translates as card and is used to govern the flow of 

materials through the plant.  Production is triggered by the demand of a part being removed from 

the final inventory point.  The kanban is removed from the finished product that the customer is 

taking and given to the preceding workstation at which point the work station is given 

authorization to replace the part that has been removed.  This workstation then removes a part 

from the input buffer and sends the kanban upstream to the previous workstation to replace the 

part that was just used by the downstream station.  This is propagated up the production line 

authorizing each workstation to replenish the void that was created by the demand.  The 

authorizations flow in the opposite direction of the flow of material and pull the job through the 

stages of production. 

 

Signal Kanban Pull System: 

The signal kanban is a pull system that is often used when production involves significant time or 

costs associated with setups [8].  The signal kanban system uses a single signal or authorization 

for production, called a signal kanban.  Each product has a specific level of inventory and the 

signal is released to replenish the inventory when the inventory falls below that level.  The signal 

enters into the queue at the process, which creates a sequenced production at the process.  Often 

this system is used when the process has significant setups or minimum batch sizes.  This system 

was in use at the metal stamping line at the Toyota manufacturing plant in Georgetown, 

Kentucky.  A more detail discussion of this system can be found in Monden [91]. 

 

Two-Card Kanban Pull System: 

The two-card kanban pull system differs with the previously discussed kanban system in that 

there are two kanban cards used to authorize production and the workstations are not collocated.  

Examination of the following diagram will clarify how this system is used on the shopfloor.  

Workstation B has two containers of parts that have been removed by the customer, shown by the 

dashed outline of each container.  The kanban card for each container is then placed in production 

kanban container, where one production card is still located (Steps 1 and 2).  The operator of 

Workstation B will then remove the production kanban from the production kanban container and 

verify that the parts required to replenish the kanban are present at the station (Step 3).  If the 

required parts are not present then the operator will move to the next kanban card in FIFO order 

until the production kanban and required parts are both available at the workstation.  The operator 
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then removes the transport kanban and places it in the transportation kanban container (Step 4) 

where it will wait until it is picked up by the transporter who will carry the transportation kanban 

to Workstation A (Step 6).  The operator of Workstation B moves the inbound container of parts 

needed to replenish the outbound production kanban, which is represented in the diagram by the 

dashed outline of the inbound container (Step 5).  Upon arrival at Workstation A the transporter 

will remove the container of parts specified on the transportation kanban and place the attached 

production kanban in the production kanban container at Workstation A (Steps 7 and 8).  The 

transporter will attach the transportation kanban on the parts container (Step 9) and transport the 

container back to Workstation B where it will be placed in the inbound stock buffer (Step 10).  

The production kanban at Workstation A will authorize the replenishment of the removed 

container and this will start the same process of production and transportation from the preceding 

workstation. 

 

 
Figure 3: Two-Card Kanban Pull System 

 

Route Specific Kanbans:  

The issue of stock aggregation and the type of kanban that is used to manage the product variety 

is often solved by using route specific kanbans.  A segregated inventory accommodates variation 

for each variant individually while an aggregated inventory will accommodate variation for all 

variants combined into the whole system.  A kanban can be issued for a specific part or a specific 

route, as shown in the diagram below.  The difference in the inventory levels at each workstation 

is very apparent.  The part-specific kanban (top diagram) will have a much higher WIP level than 

the route-specific kanban system.  A build list is used to control the variation in the route-specific 

kanban system and the type of part being built can be one of two parts for the top route and one of 

three parts for the bottom route.  The route specific method can handle a large number of product 

variations, as well as more demand variability with a given WIP level.  A supplemental source of 

information is required to define what product to build for a route-specific kanban system. 
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Figure 4: Part-Specific versus Route-Specific Kanban Systems 

 

The route-specific kanban system works very similar to the previously discussed kanban systems 

in that a card authorizes work and the product is pulled through the various stages.  There are 

different ways in which the product variation can be controlled, such as using a build list at each 

stage to control which variant to build.  This option can become very difficult to manage due to 

the requirement of parts arriving and leaving each stage at a predicted time.  Another option for 

controlling the product variation is to use a build list at an early stage to define the build order for 

all subsequent stages and kanban will pull the products through production in FIFO order.  This 

control method is similar to the CONWIP pull system. 

 

CONWIP Pull System: 

CONWIP, constant work in progress, is a technique comparable to kanban systems but it uses 

loops on one or more machines to limit the amount of WIP.  Each job will have a card associated 

with it and when a job exits the loop the card will be freed and sent to the beginning of the loop.  

The freed card at the beginning of the loop authorizes the release of another job into the loop.  
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The released job may be different than the job that just exited the system and depends upon the 

build list or sequence to control the variants.  The released job is simply pushed through the 

CONWIP loop using the first-in-system, first-out (FISFO) processing rule.  This causes some to 

not classify this production system as a pull production system, but for this research a pull system 

is defined as a system with capped WIP and information flow in the opposite direction of material 

flow. 

 

A CONWIP system will perform very similar to a route-specific kanban system although a card 

could authorize work for several workstations instead of a single workstation.  If a disruption 

occurs in a CONWIP system the products downstream will continue to flow out of the loop and 

new jobs will be released into the system and all the jobs will eventually accumulate at the 

disruption if it lasts long enough.  All the jobs will also eventually accumulate behind the 

bottleneck if it is stationary and the system runs for an extended amount of time. 

 

Hybrid Pull Systems: 

There are differing opinions of how to design an appropriate hybrid pull system according to 

research that has been conducted over the past decade.  Some researchers define a hybrid system 

as a mixture of CONWIP loops and kanban loops, referred to as a hybrid pull/pull system, which 

one could argue is actually a Tandem CONWIP system with some single machine loops included 

with larger CONWIP loops.  Other researchers believe that an effective hybrid system, referred to 

as a hybrid push/pull system, is one in which the material is pushed into the system and the 

product is pulled through processing and assembly stages.  Other researchers (and the final 

assembly line at the Toyota plant in Georgetown, Kentucky) believe that an effective hybrid 

system is one that pulls products through the initial stages and push products through the final 

stages.  The point at which the push/pull interface occurs is often referred to as a junction point or 

a pacemaker and it is the point where product variety significantly increases.   

 

Diagnostic Scheduling 

Diagnostic scheduling is a technique that evolved from MRP over the past few decades as 

researchers began to realize that effective scheduling is far more advanced than merely finding a 

solution to mathematical problems.  The key advantage of diagnostic scheduling is that it allows 

the user to determine the best solution when taking into account factors that cannot be evaluated 

by a computer such as: increasing capacity by adding overtime, the use of temporary workers, 

pushing back due dates for certain jobs or splitting jobs for customers that can tolerate missed due 
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dates.  Ideally diagnostic scheduling will provide a feasible solution but if one is not available, 

possible changes to make the schedule feasible will be suggested to the user. 

 

The two types of schedule infeasibility that diagnostic scheduling will predict are WIP 

infeasibility and capacity infeasibility.  WIP infeasibility is caused by WIP that is inappropriately 

positioned, the only solution for finished products that are near the due date is to push or postpone 

the demand.  Infinite capacity would be of no help to solve WIP infeasibility because the WIP is 

not where it needs to be in order to produce the finished product.  Capacity infeasibility is caused 

by lacking sufficient capacity for a given job and it can be corrected by pushing out the demand 

or by increasing the capacity by means such as adding overtime. 

 

To illustrate this, suppose for example, that Part A is built from two units of Part B at the rate of 

150 parts per day.  The demand for Part A is 100 units on day one, 100 units on day two, and 200 

units on day three with 100 units of Part B available on day one, 500 on day two, and 200 units of 

Part B available on day three.  One can quickly see that only 50 units of Part A can be produced 

on day one because of the lack of units of Part B.  To fix this WIP infeasibility, the only solution 

is to postpone 50 units of Part A to day two where there is sufficient capacity to produce 150 

units of Part A and a sufficient number of available units of Part B.  Day two has sufficient 

capacity and 200 extra units of Part B that can be carried over to Day 3 in the form of available 

WIP in order to meet the requirement of 400 units of Part B.  The demand for Day 3 is greater 

than the capacity, therefore it is capacity infeasible, but this can be corrected by postponing the 

production of 50 units of Part A until Day 4 or increase capacity for Day 3 by 50 units. 

 

A further extension of diagnostic scheduling is capacitated material requirements planning (MRP-

C), which was developed for a Doctoral dissertation by Tardif [92].  This is a procedure to 

determine a manufacturing schedule and during the scheduling process it will detect and remedy 

infeasibilities and allow user intervention.  MRP-C begins by determining a low-level schedule 

that meets all due dates without exceeding capacity and builds the minimum possible amount of 

inventory before it is needed, i.e. build-ahead inventory.  The objective of MRP-C is to find a 

feasible schedule with minimum build-ahead inventory.  But if a feasible schedule is not possible, 

the causes of the infeasibility will be highlighted so the user can adjust capacity and/or due dates 

to correct the infeasibility. 

 

The algorithm used in MRP-C is based on a conveyor model that characterizes the behavior at 
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each process in the system and it requires estimating two parameters, lp and kpj.  The minimum 

practical lead time is denoted by lp and it represents the processing time for a job with no queuing 

delays, but common (non-queuing) “dead” time should be included, such as the time that a job 

typically sits before being moved between machines.  The unit capacity requirement, kpj, which is 

actually the inverse of the practical production rate, represents the processing time for an item p 

on process j.  These two parameters allow MRP-C to evaluate a simplified relationship between 

WIP and cycle time for an entire process. 

 

The parameter lp will be equal to kpj for the case of processing a single part on a single machine.  

In the case of where the processing center is composed of several machines in series, then kpj will 

be the time required to process one item p on the slowest machine, i.e. the bottleneck production 

rate, and lp will be the sum of the time that is spent on each machine by item p.  The last case is 

for batch production such as for a heat treating process where the processing time is independent 

of the batch size.  For this case lp will be the batch processing time, the amount of time in the 

oven, the parameter kpj will be equivalent to the batch processing time lp divided by the total 

number of parts treated at once, the batch size. 

 

MRP-C develops a production schedule in basically two phases.  The first phase evaluates 

demand, WIP in the system, and the available capacity to determine if there is any infeasibility.  

After the infeasibilities have been addressed, the second phase starts at the furthest planning 

period and works backward in time to the current planning period to determine the minimum 

releases required to meet demand. 

 

Tardif [93] further extended the MRP-C process to prioritize the production schedule based on 

the location of WIP within the manufacturing system.  This process is composed of four steps.  

First, the algorithm determines the status of WIP at the preceding processing centers that are only 

one step upstream and feed the current stage.  The algorithm then determines which requirements 

are covered and uncovered by the available WIP and schedules the covered requirements as early 

as possible.  The missing capacity is then allocated to the uncovered requirements and the 

available capacity is then allocated to the uncovered requirements and scheduled as late as 

possible.   

 

Tardif also included the ability to prioritize the scheduling with respect to the different capacity 

requirements when disaggregating into individual run quantities.  The disaggregation scheme 
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orders items based on their capacity requirement and it is a generalization of the results from 

Gabbay [94] who developed an optimal solution algorithm for a production environment with 

serial product structure, no WIP, no yield losses, and where products have equal capacity 

requirements at each resource.  The algorithm showed that the optimum solution occurs when the 

ordering of the products are in decreasing order of capacity requirements. 

 

MRP-C has some advantages over MRP such as: the model it uses is more accurate and it 

explicitly considers capacity, and the planner is provided useful diagnostics.  MRP-C also has 

some disadvantages.  MRP-C relies on a heuristic, and thus it cannot be guaranteed that a feasible 

schedule will be found if one exists, but if a feasible schedule is found then it is truly a feasible 

schedule.  Any errors produced by MRP-C will make the schedule more conservative, meaning 

that schedules will be more feasible than they need to be and should have a better chance of being 

successfully executed.  The second problem is that it implies a push philosophy which makes it 

subject to all the possible drawbacks of push production although MRP-C is easily incorporated 

into a pull production method.  In pull production a sequence is all that is required, but by 

incorporating MRP-C the actual “when” to produce a product is known.  This can allow for the 

implementation of a pull system into a dynamic job shop environment to take advantage of the 

pull system’s inherent knowledge of the operating conditions. 

 

A pull system incorporated with MRP-C would be similar to a CONWIP system with MRP-C 

providing a production schedule for the system.  The MRP-C generated release times will be 

close to the timing of the pull signals if all the parameters are correct for the MRP-C algorithms.  

Variability in the system will keep the times from matching exactly but on average the times 

should be consistent.  If production falls behind, it can be made up by scheduling overtime or by 

adjusting the schedule at the next regeneration. 
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Appendix IV: Common Liquid Packaging Issues 
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Common Liquid Packaging Issues 

The process of packaging large quantities of a liquid into smaller containers or repacking from 

one container into multiple smaller containers has certain unavoidable issues that are present 

independent of what type of liquid is being packaged.  Often these issues will make the transition 

from the typical batch and queue mass production system to a Just-In-Time production system 

very difficult.  This section will discuss these issues and the implications on a transformation to a 

lean system. 

 

Cleanout Between Materials 

A changeover between materials in a traditional packing facility can be a very laborious task and 

if not done correctly can be very costly in the contamination of products, loss of material, 

employees sustaining injuries, or polluting the surrounding environment.  The actual cleanout 

process can differ between packaging facilities but when viewed in the broader sense of the entire 

production system it is equivalent to a changeover in other manufacturing systems. 

 

The cleanout process can cause problems when transitioning to lean if it is a time consuming 

process.  The large downtime between materials will make production managers hesitant from 

moving from large batches to small batches with many rapid changeovers per shift, which is a 

goal of lean manufacturing.  A rapid cleanout process is necessary prior to transitioning a 

packaging facility to a lean packaging system. 

 

The typical packing station will have some length of piping that is shared by all material that is 

packaged at the station.  The length of piping will differ in length from facility to facility.  Some 

facilities with stationary tanks will use independent piping up to a manifold and only share the 

last few feet of piping and nozzles.  Other facilities will use a shared pump and piping that runs 

tens or hundreds of feet from an outside loading dock for truck or rail tankers.  Often facilities 

with significant lengths of piping also have the problem of many elevation changes in the piping 

and locations where material pools within the line making a thorough cleanout a very difficult 

and slow process.  The poor layout of piping is often due to the need to rapidly increase 

packaging capacity without time to reengineer the facility or from the need to retrofit a facility to 

incorporate packaging processes into a facility that previously focused on other manufacturing 

processes.  Unfortunately the solution to piping problems is often very costly and involves a 

complete redesign of the piping and a re-piping of the entire facility. 
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The actual method used to cleanout the piping will vary depending on the material being 

packaged and the facility packaging the material.  Some chemicals such as glycerin, 

formaldehyde, or ammonium require cleaning using water while other chemicals such as ether or 

isopropyl alcohol only require a nitrogen and compressed air to cleanout the piping, but other 

materials such as petroleum products might require a solvent to clean the piping.  The use of 

compressed air and nitrogen for cleanout can cause other issues to arise in addition to the 

downtime.  This type of a cleanout can release the chemicals into the atmosphere which can be 

dangerous to the employees.  During this research of packaging facilities, it was found that one 

facility performed pressurized nitrogen and air cleanouts of piping at the end of the day because 

workers could not be in the packaging room for a minimum of an hour from the start of the 

cleanout without protective clothing and a breathing apparatus.  A cleanout at the end of the day 

implies that a station or line has a downtime from when the last container is filled until the next 

morning when a new material will begin to be packaged. 

 

Packaging Sequence and Material Grades 

Another issue of changeover between chemicals is the sequence in which some chemicals must 

be packaged.  The sequencing of chemicals is important because certain chemicals have strong 

odors such as acetates or xylenes and other chemicals such as glycerin absorb odors, therefore 

glycerin should not be packaged after acetate has been packaged.  Another issue of chemical 

sequencing deals with the type of cleanout used for the previous chemical and the susceptibility 

of the following chemical to absorb water.  The following chemicals are an example of a few that 

should not follow a water cleanout: chloroform, dichloromethane, hexanes, xylenes, and toluene.  

Sequencing of chemicals is also important when a high purity level is desired because a chemical 

analysis of it will not show the contamination from the previous chemical.  An example of this is 

that hexane and PET ether will appear pure even when a trace of one chemical is present in the 

lab work of the other chemical.  The necessity to sequence materials in a packaging system adds 

another layer of complexity when trying to develop a pull production control system.  The pull 

system must have an inherent intelligence that allows it to sequence the materials in the proper 

order to avoid the previously mentioned issues. 

 

Packaging of various grades of the same chemical is sometimes a cause for changeovers to occur.  

One facility studied for this research is responsible for packaging three grades of products: the 

Lab grade of materials, Bio-Pharmaceutical grade of materials, and Micro-Electronic grade of 

materials, where each grade is composed of various sub-grades of materials.  Numerous grades of 
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materials can be a difficult hurdle to overcome in transitioning to a lean system due to the 

introduction of a high variety of products.  This hurdle becomes even greater when the production 

volume is low for materials but the materials are only available in high volumes. 

 

Transportation and Containment of Raw Materials 

The minimum order size of a truck tanker (typically 6,000 gallons) that some suppliers require is 

an issue to overcome in order to transition to a lean system.  Ideally a packaging facility would be 

able to procure only enough material to meet the customer’s need and perhaps a little extra for a 

small safety buffer of inventory.  The difference between a customer order of 500 gallons and an 

incoming shipment of 6,000 gallons is significant because the large shipment will require much 

more time to package, create an over abundance of finished goods inventory (FGI), and tie up 

capital that could be used for other ventures.  A lean system will function better if smaller more 

frequent shipments can be arranged.   

 

A compartmentalized truck tanker, a normal tanker that is divided into three sealed 

compartments, can help to reduce the incoming shipment size, if the supplier is willing to supply 

a smaller order size.  One drawback to the use of compartmental tankers is that there are federal 

regulations that restrict which chemicals can be transported on the same tanker, in order to protect 

the public if a mishap occurs.  There is typically an increase in the cost of the chemical when the 

shipment size is reduced, which can be a drawback but can be offset by the packaging flexibility 

offered by a smaller shipment plus the financial savings due to a reduction in FGI.  The last 

possible drawback to the use of compartment tankers is the supplier location and mix of 

chemicals to be purchased.  A great distance between three chemicals that comprise one shipment 

can be a drawback to using a compartment tanker, such as if one supplier is in Virginia, another 

in Alabama, and the last is located in Texas.  The supplier location can actually be beneficial if 

one supplier can be visited to purchase three compatible chemicals or if the three chemical 

suppliers are collocated. Collocated suppliers can be visited efficiently by the development of a 

“milk-run” strategy.   

 

Compartment tankers are one possible solution to reduce shipment size, but the use of reusable 

container, perhaps 500 or 1,000 gallons in volume, is another solution if the supplier is willing to 

cooperate.  Reusable containers can not only help to provide smaller more frequent deliveries of 

chemicals but also reduce changeover time due to the piping cleanout issues previously discussed.  
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These containers could be used directly at the packaging station with some reengineering of the 

layout of a packaging facility. 

 

Chemical Instability 

The type of container used to transport or hold some reactive chemicals must be chosen wisely 

because the container can rapidly deteriorate the quality of the chemical.  The deterioration 

occurs as the chemical leaches some of the container material, which obviously worsens as the 

holding time increases.  A liner can be used in a container to decrease the rate of leaching, but it 

can still contaminate the chemical if it is stored for a lengthy period of time. 

 

Another form of chemical instability that leads to contamination or deterioration is the oxidation 

of some chemicals when exposed to the atmosphere.  A tanker is typically vented to the 

atmosphere as it is being packaged or unloaded, which means that more air enters the tanker 

causing the last material to be removed to have been exposed to a great deal of air.  The last of the 

material removed will be significantly lower in quality than the first material to be removed if the 

material deteriorates when exposed to atmosphere.  Backfilling the tanker with nitrogen is often 

done to maintain the quality throughout the unloading process.  

 

Evaporation of materials such as ether is another problem that often occurs during the warmer 

summer months at some packaging facilities.  Hundreds of gallons can evaporate from a tanker 

during a period of a few days with high temperatures and when the tanker is in direct sunlight.  

The best way to solve this problem is to be able to unload the material quickly from the tanker to 

be placed in a sealed container. 

 

Various Packaging Containers 

Customer requirements increase the complexity for packaging facilities by requiring proprietary 

labels and distinct container sizes and shapes.  An example of this occurred at one of the 

packaging facilities studied for this research, the company was purchased years ago by a 

conglomerate, but a single material that is packaged at the facility can leave the facility with two 

or three different labels, each labeled with a different company’s name and format.  The 

complexity of the labeling could easily be solved in a lean system by using postponement, but 

federal regulations exist requiring certain chemicals to be labeled immediately after packaging.  A 

solution could be to use a generic label during the packaging process with the important 

information; chemical, lot number, packaging date and station, etc.  A customer specific label 
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could be applied as the containers are being pulled from FGI and prepared for shipment.  This 

would greatly decrease the amount of FGI required for each chemical, by a factor of two or three 

depending on the number of possible labels for each chemical. 

 

The various sizes and shapes of containers is a more difficult problem to solve.  Losing a 

customer by not offering the desired container is not an option, but perhaps through a good 

customer-supplier relationship certain concessions could be reached that would be mutually 

beneficial, such as a container that will meet the needs of many customers and reduce the possible 

variations for the packaging facility.  In The Machine That Changed the World, Womack [95] 

discusses the different approach that Japanese manufacturers take toward their customers and 

suppliers.  Suppliers and manufacturers come to mutually beneficial agreements on prices and 

delivery schedules where both parties can make a profit and both share information to help reduce 

costs which are split equally between the supplier and manufacturer.  The manufacturer 

approaches the customer on his or her terms in order to “maximize the stream of income from a 

customer over the long term.”  The customers are made to feel as though they are part of an 

extended family and the manufacturer is the parent.  This type of an approach develops trust and 

loyalty and more importantly a long-term relationship. 
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