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ABSTRACT OF THESIS 
 
 

 
 

IMPLEMENTATION AND VALIDATION OF THE HYBRID TURBULENCE 
MODELS IN AN UNSTRUCTURED GRID CODE 

 
                          

Since its introduction in 1997, the use of Detached Eddy Simulation (DES) and 
similar hybrid turbulence techniques has become increasingly popular in the field of 
CFD.  However, with increased use some of the limitations of the DES model have 
become apparent. One of these is the dependence of DES on grid construction, 
particularly regarding the point of transition between the Reynolds-Averaged Navier-
Stokes and Large Eddy Simulation models. An additional issue that arises with 
unstructured grids is the definition of the grid spacing in the implementation of a DES 
length scale. To lay the ground work to study these effects the Spalart-Allmaras one-
equation turbulence model, SA based DES hybrid turbulence model, and the Scale 
Adaptive Simulation hybrid turbulence model are implemented in an unstructured grid 
CFD code, UNCLE. The implemented SA based DES model is validated for flow over a 
three-dimensional circular cylinder for three different turbulent Reynolds numbers. 
Validation included studying the pressure, skin friction coefficient, centerline velocity 
distributions averaged in time and space. Tools to output the mean velocity profiles and 
Reynolds stresses were developed. A grid generation code was written to generate a 
two/three dimensional circular cylinder grid to simulate flow over the cylinder in 
UNCLE. The models implemented and validated, and the additional tools mentioned will 
be used in the future. 
 
KEYWORDS: Hybrid turbulence model, Detached Eddy Simulation, Reynolds-
Averaged Navier-Stokes, Large Eddy Simulation, grid construction 
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Chapter 1 : INTRODUCTION 
 

 
Most of the flows occurring in nature and that are of interest for engineering applications 

are said to be turbulent in nature. Turbulence in nature has random velocity fluctuations and 

contains a wide range of eddies with varying length scales.  Despite efforts by researchers for 

more than a century, complete understanding of turbulence to date is still an unsolved problem. 

The first attempt in understanding turbulence was made by Osborne Reynolds (1883, 1895), later 

on Prandtl (1925) with his mixing length model and Kolmogorov (1942) with a first complete 

turbulence model went a step further in turbulence research. By the late 1970’s three main 

approaches for solving a turbulence problem computationally had been developed. These were 

the Reynolds Averaged Navier Stokes equations, Direct Numerical Simulation, and Large Eddy 

Simulation.  

Many industrial applications in the field of computational fluid dynamics are based on 

the Reynolds Averaged Navier Stokes equations (RANS). The RANS approach is the most 

widely applied simulation technique for engineering applications involving wall bounded flows. 

Direct Numerical Simulation (DNS) forms another powerful tool in handling a turbulent flow 

problem as it resolves all the scales in a turbulent flow but with an added disadvantage of a large 

increase in computational cost with an increase in Reynolds number and with the complexity of 

the geometry to be handled. The Large Eddy Simulation (LES) technique, which falls in a 

category in between the RANS models and DNS, involves resolving the large scales in a flow 

and modeling small scales in the flow. The LES technique is generally superior to RANS models 

when compared for predictions of the separation regions at high Reynolds numbers. The non-

affordable computational cost of LES in the attached boundary layer flows and the limitations of 

the RANS models in the predictions of separation regions at high Reynolds numbers inspired the 

introduction of hybrid turbulence models combining the advantages of both the RANS and LES 

models. The leading hybrid model is Detached Eddy Simulation (DES). This has been followed 

by Scale Adaptive Simulation (SAS) and then the next version of DES which is Delayed 

Detached Eddy Simulation (DDES). Increasing popularity of these models for essentially three 

dimensional turbulent flows at turbulent Reynolds numbers is of interest in this thesis. Flow over 
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a circular cylinder is a standard, challenging test case for the validation of a hybrid turbulence 

model like DES and is considered as a test case in this study.  

  

1.1  Introduction to Turbulence 

 
Most flows occurring in nature are said to be turbulent. Turbulence is a highly complex 

phenomenon and is three-dimensional, non-linear, and time dependent in nature. However, it has 

always been a difficult task to give a watertight definition for turbulence [2].  Turbulence is often 

described as eddying motion. One of the best known informal definitions for turbulence is given 

by Richardson [3] as follows: 

“Big whorls have little whorls, 

                                               which feed on their velocity; 

       And little whorls have lesser whorls, 

                                               And so on to viscosity.” 

This means that the mechanical energy injected into a fluid undergoes an energy cascade 

on fairly large scales and it is transferred to smaller scales which in turn dissipate on molecular 

scales to heat. 

It is easier to give specific examples for turbulent flows rather than a definition. For 

example turbulent flows can be observed in the flow over a golf ball, the mixing of warm and 

cold air in the atmosphere by wind and external flow over vehicles such as cars, airplanes, ships 

and submarines. Coming to a everyday example one can find a turbulent flow on a breakfast 

table where turbulence greatly enhances the rate at which sugar and cream mix in a cup of 

coffee.  

Reynolds number is a dimensionless parameter that characterizes the flow behavior in 

different regimes. It is given as 

Re ULρ
=

μ
.      (1.1) 
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Here ρ is the density and μ is the dynamic viscosity, both of which are properties of the fluid. U 

is the velocity and L is the characteristic length scale of the flow, for example the radius of the 

pipe through which the fluid flows. 

For flows with low Reynolds numbers, low velocities, and small scales, the equations of 

motion for a viscous fluid have well behaved steady solutions. These flows are termed as laminar 

flows; they are controlled by the viscous diffusion of vorticity and momentum. The Reynolds 

number can also be defined as the ratio of inertia forces to the viscous forces and the inertia force 

of the fluid overcomes the viscous stresses when the Reynolds numbers are reasonably large 

leading to the instability of the flow. Such flows can be described as turbulent flows. 

Irregularity or randomness is one characteristic of turbulent flows. Alternately, one can 

describe a turbulent flow as chaotic but all chaotic flows are not turbulent e.g. 

Lagrangian/kinematic chaos or ‘Lagrangian turbulence’ [4]. Even though such a nature of 

turbulence emphasizes a deterministic approach rather than statistical one, the very nature of it 

makes turbulence an almost next to impossible task for a deterministic approach [5]. Turbulence 

is a continuum phenomenon governed by the equations of fluid mechanics as noted by Tennekes 

and Lumley [5] (1983).  

“Even the smallest scales occurring in a turbulent flow are ordinarily far larger than any 

molecular length scale” – Tennekes and Lumley  

In a viscous (real) flow the instabilities arise from the interaction between the non-linear 

inertial terms and the viscous terms of the Navier-Stokes equations and the interaction has a high 

level of complexity as by its nature it is rotational, three-dimensional, and time-dependent. This 

non-linearity leads to the interactions between fluctuations of differing wavelengths and 

directions. 

Since turbulent flow is rotational and three-dimensional, it hence contains vorticity. 

Vorticity is defined as the curl of the velocity, Ω =∇×U . The random vorticity fluctuations that 

characterize turbulence cannot maintain themselves if the velocity fluctuations are only two-

dimensional as there is no vortex stretching in a two-dimensional flow. Hence, turbulent flows 

always exhibit high levels of fluctuating vorticity [5].   
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Turbulent flows exhibit strongly enhanced transport processes of momentum, energy, 

heat, and mass due to its diffuse nature. This property of the fluid flow helps in preventing 

boundary-layer separation on airfoils at larger angles of attack, increases heat transfer rates, and 

also increases the momentum transfer between winds and ocean currents. All flows that appear 

to be random in nature cannot be considered as turbulent unless the flow is diffusive by nature 

and exhibits a spread of the velocity fluctuations by the surrounding fluid [5].  

 

 

Figure 1-1 Schematic of Large eddies in a Turbulent Flow [6] 

 

A wide range of a continuous spectrum of scales coexist in turbulent flows ranging from 

largest to the smallest and are superimposed in the flow, with the smaller ones inside the larger 

ones. A schematic for large eddies in a turbulent flow is presented in Figure 1-1. Often these 

scales in the turbulent flow are visualized as eddies, and a turbulent eddy can be thought of as a 

local swirling motion which has the dimension of a local turbulence length scale. These eddies 

are responsible for the vigorous mixing and turbulent stresses in the flow.  Turbulence gains 

energy if the vortex elements are oriented in such a way that the mean flow gradients can stretch 

them. The larger scale turbulent motion carries most of its energy and is responsible for 

diffusivity and turbulent stresses. Turbulent flows are essentially dissipative. Both the larger 

eddies and smaller eddies overlap in space where the larger eddies carry the smaller ones and the 

former ones loose their energy in the form of kinetic energy to the latter ones which in turn 

dissipate into heat through the action of molecular viscosity. 

It is appropriate to discuss the Kolmogorov length scale at this point. As turbulence 

follows the continuum phenomenon and the smallest length scales in turbulence are much larger 
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than molecular length scale of the flow, the magnitude of the smallest turbulent scales can be 

estimated by dimensional analysis if the physics of the turbulent flows at small scales are known. 

Equilibrium theory by Kolmogorov says that the smaller eddies should be in such a state that the 

rate of receiving energy from the larger eddies should be on the same order of its rate of 

dissipating energy to heat. In that case he argues that the smallest scales should only depend on 

the kinematic viscosity of the fluid, ν  and the rate of energy supply by the large eddies, 

dk dtε = − . The resulting Kolmogorov length, time, and velocity scales are given as 

( ) ( ) ( )
1 4 1 2 1 43 , ,η ν ε τ ν ε υ νε≡ ≡ ≡ .   (1.2) 

 

 

Figure 1-2  Energy Spectrum of a turbulent flow [6] 

 

As turbulent flows contain a continuous spectrum of scales the spectral distribution of 

energy in the flow was analyzed. Kolmogorov came up with the -5/3 law for the representation 

of energy spectrum for a turbulent flow. He assumed that a wide separation of scales exist in 

turbulent flows and his hypothesis says that a range of eddy sizes, which fall in between the 

largest and the smallest eddies, exists for a very large Reynolds numbers and for these eddies the 

cascade process is independent of the direct effects of molecular viscosity and the statistics of 

energy containing eddies. Hence, the -5/3 law is given as, 
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( ) 2 3 5 3 1,KE k C
l

ε κ κ 1
η

−= ,    (1.3) 

where  is the energy spectrum function, ( )E k κ  is the wave number,  is the characteristic 

length of the largest scale of the turbulent flow, 

l

η  is the Kolmogorov length scale which 

represents the length of the smallest eddies in turbulent flow, ε  is the dissipation rate from the 

larger eddies, and KC  is the Kolmogorov constant.  

The energy spectrum is presented in Figure 1-2. The range of wavenumbers that fall 

between the reciprocal of characteristic length of largest eddies and the reciprocal of the 

Kolmogorov length scale for smallest eddies was identified as the inertial subrange by 

Kolmogorov.  

 

 

Figure 1-3 Velocity Profile of a turbulent boundary layer [6] 

 

It is important to understand the physics in the boundary layers with increase in Reynolds 

numbers to deal with the grid construction where the initial spacing near the wall is considered to 

be critical to capture the smallest scales accurately. The velocity profile of a turbulent boundary 

layer is presented in Figure 1-3. Experiments for both internal and external flows show that in 

the flow near the wall, streamwise velocity varies logarithmically with the distance from the 

surface. Such a behavior is termed as the logarithmic law of the wall. At high Reynolds numbers, 
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the inertial forces and the pressure gradients are small near the surface and the flow near the wall 

is driven only by the rate of momentum transfer per unit area per unit time to the surface, local 

shear stressτ , and the molecular diffusion of momentum. The law of the wall is given as 

( )1 +u ln y
κ

+ C= + ,     (1.4) 

where, Uu
uτ

+ ≡  and u yy τ

ν
+ ≡ .    (1.5) 

wuτ
τ
ρ

≡ ,     (1.6) 

where uτ  is a velocity scale close to the wall called the friction velocity, wτ  is the surface shear 

stress, ν  is the kinematic viscosity, and y is the distance from the wall. From Figure 1-3 it can be 

observed that a turbulent boundary layer contains a viscous sublayer, a log layer, and a defect 

layer or the outer layer. The log layer is the overlap region between the inner and outer parts of 

the boundary layers. In the viscous sublayer (or inner layer), viscous shear forces dominate 

whereas in the outer layer the turbulent or eddy shear forces dominate and the velocity profile in 

the overlap region smoothly connects the inner and outer boundary layers and this region is 

dominated by both the viscous and turbulent shear forces.    

While historically many simulations have used a “law-of-the-wall” boundary, improved 

accuracy is achieved by placing the initial grid points within the sublayers. 

In summary of qualitative universal properties of turbulence are 

• intrinsic spatial-temporal randomness, irregularity, chaotic 

• unpredictability, stable statistical properties, sensitivity to initial conditions 

• wide range of scales in both time and space 

• highly dissipative, statistically irreversible, enhanced diffusion 

• non-linear, non-integrable, non-local 

• three dimensionality, rotational, time dependent 
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Hybrid turbulence models like DES attempt to capture these without requiring 

increasingly small grids near the wall. 

 

1.2  Brief History of Turbulence Modeling 

 
In this section the main highlights in the evolution of turbulence will be discussed briefly 

along with the history of turbulence modeling, particularly the statistical approach. Table 1-1 

presents a brief overview about the progress made by researchers in the area of turbulence during 

the previous centuries. 

 

 
Figure 1-4 Turbulence sketch by Leonardo da Vinci [33] 

 

Early examples [2, 6, 33, 34, 35, and 36] of turbulent studies can be found in the sketches 

of Leonardo da Vinci in the early 15th Century as presented in Figure 1-4. However, there was no 

quantitative understanding of this physical phenomenon until the late 19th Century. Boussinesq 

[32] in 1877 introduced the concept of eddy viscosity for a simple time-averaged turbulence 

closure. He replaced the molecular viscosity coefficient in the Navier-Stokes equations by 

turbulent or eddy viscosity coefficient and his hypothesis says that the “turbulent stresses are 

linearly proportional to mean strain rate.”  
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Table 1-1 Table presenting Evolution of Turbulence [4] 

 
Year Progress achieved in turbulence 

 
1500 Recognition of two states of fluid motion by Leonardo da Vinci and use of the term la 

turbolenza 
1839 ‘Rediscovery’ of two states of fluid motion by G. Hagen 
1883 Osborne Reynolds’ experiments on pipe flow. Concept of critical Reynolds number – 

transition from laminar to turbulent flow regime. 
1887 Introduction of the term ‘turbulence’ by Lord Kelvin 
1895 Reynolds decomposition. 
1909 D. Riabuchinsky invents the constant-current hot-wire anemometer. 
1912 J. T. Morris invents the constant-temperature hot-wire anemometer. 
1922 L. F. Richardson’s hierarchy of eddies. 
1924 L. V. Keller and A. A. Friedman formulate the hierarchy of moments. 
1938 G. I. Taylor discovers the prevalence of vortex stretching. 
1941 A. N. Kolmogorov local isotropy, 2/3 and 4/5 laws. 
1943 S. Corrsin establishes the existence of the sharp laminar/turbulent interface in shear flows 
1949 Discovery of intrinsic intermittence by G. Batchelor and A. Townsend 
1951 Turbulent spot of H. W. Emmons. 
1952 E. Hopf functional equation. 
1967 Bursting phenomenon by S. J. Kline et al. 
1976 Recapitulation of large scale coherent structures by A. Roshko. 
 

Towards the end of nineteenth century Osborne Reynolds [7] (1883) presented his path-

breaking work on the turbulence and his experiment of flow through a circular pipe with smooth 

transparent walls in which a dye streak was injected into the flow led to the observation of the 

transition of laminar flow to turbulent flow. Through this investigation he came up with a single 

dimensionless parameter called the Reynolds number, denoted by Re. His [8] observations 

(1895) led him to decompose the velocity field into the mean flow and a perturbation. 

Considering the perturbation flow either complicated or incomprehensible, he time averaged the 

Navier-Stokes equations based on the decomposition which led to the formulation of the well-

known Reynolds-averaged Navier-Stokes equations. However, Reynolds’s view of the 

unpredictability of the perturbations was not merely the result of observations, but was a 

viewpoint bolstered by the success of the statistical mechanics approach to the kinetic theory of 

gases.  
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It was only after 1920 that a successful calculation of a practical turbulent flow was 

achieved on the basis of the Reynolds-averaged Navier-Stokes equations with an eddy viscosity 

model. This was mainly due to the pioneering work of Prandtl [9] (1925) who introduced the 

mixing length, an analog of the mean free path of a gas, and a direct method for computing the 

turbulent or eddy viscosity in terms of the mixing length. 

Von Karman [10] (1930) made a significant contribution by relating the mixing length 

hypothesis to the eddy viscosity concept. This kind of model was categorized as an algebraic or 

zero equation model of turbulence. 

Later, with the aim of developing more realistic and general models, Prandtl [11] (1945) 

postulated a model in which the eddy viscosity depends on the kinetic energy of the turbulent 

fluctuations. This was the precursor to the so-called one-equation turbulence models. However, 

there was the necessity to specify the turbulence length scale, which varies with each flow, and 

without which a model is termed as incomplete.  

Kolmogorov [12] (1942) introduced a second parameter, in addition to the modeled 

equation k, which he termed as “the rate of dissipation of energy in unit volume and time.” This 

led to the formulation of the first so-called complete turbulence model and the model was termed 

a two-equation turbulence model. 

The foundation was laid for the formulation of a full Reynolds-stress turbulence model 

by Chou [13] (1945) and Rotta [14] (1951). The new model by Rotta, unlike the eddy-viscosity 

models, accounted for both the non-local and history effects on the evolution of Reynolds-stress 

tensor. Rotta has been successful in closing the Reynolds-Stress transport equation based on 

some of the statistical ideas of Kolmogorov. This model was termed or described as a stress-

transport model or as a second-order closure or second–moment closure. Thus, by the early 

1950’s four kinds of turbulence models have evolved: the Algebraic or Zero equation models, 

the One-Equation models, the Two-Equation models, and the Stress-Transport models. 

A key advance in zero-equation models occurred when Van Driest [15] (1956) applied a 

viscous damping correction for the mixing length model. Later, Cebeci and Smith [16] (1974) 

refined the model to work better for the attached boundary layer problems. A popular alternative 

algebraic model was suggested by Baldwin and Lomax [17] (1978). However, with continuously 

increasing computer power, algebraic models are used less frequently. 
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Coming to the developments in the one-equation models, the notable early model of this 

type was formulated by Bradshaw, Ferriss, and Atwell [18] (1967). After that the one-equation 

model was revisited by Baldwin and Barth [19] (1990), Goldberg [21] (1991), and the well-

known Spalart-Allmaras (1992) model which lately appears to be the most popular and widely 

used one-equation model for turbulent flows. 

Kolmogorov in the 1940’s was the first one to introduce the two-equation model, but the 

first widely used formulation was the k-ε model of Launder and Spalding [21] (1972). However, 

the k-ε model by Launder and Sharma in 1974 is now considered to be the standard version of 

the k-ε models. Saffman [22] (1970) formulated a k-ω model, without prior knowledge of 

Kolmogorov’s work, which had the advantage over the k-ε model for the prediction of flow in 

adverse pressure gradients. Apart from this, further work in the development of the k-ω model 

was taken by Wilcox and Alber [23] (1972), Saffman and Wilcox [24] (1974), Wilcox and Traci 

[25] (1976), and Wilcox and Rubesin [26] (1980). Later on the k-ω model was revisited by 

Wilcox but because of the disadvantage of the model which is sensitive to the free stream values 

and he further corrected the closure coefficients for the dissipation term in 1998 [6]. Meanwhile 

Menter in 1994 came up with the currently popular Shear Stress Transport model which retains 

the formulation of the k-ω model in the boundary layers and switches to a transformed k-ε model 

in the regions away from the wall, taking the transport effects into consideration.  

The wide availability of the computer power by the 1970’s gave a thrust for the 

development of the second-order closure models and the work began with Donaldson [27] 

(1972), and Daly and Harlow [28] (1970). A notable improvement of Rotta’s work came from 

Launder, Reece and Rodi [29] (1975), as they developed a turbulence model in which the 

Reynolds stresses along with the turbulence dissipation rate are obtained from the solution of 

transport equations. Pressure-strain correlations were also derived. Subsequently, some examples 

of the researchers working on the second-order closure models include Lumley [30] (1978), who 

made significant contributions to the modeling of pressure-strain correlation and buoyancy 

effects, Speziale (1985, 1987) who worked on the invariance arguments, and Harworth and Pope 

[31] (1986), who developed a model from the pdf-based  Langevin equation. 
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1.3  Governing Equations of Motion 

 
One can consider two methods for deriving the equations of motion of a fluid. The first 

method treats the fluid as molecules whose motions are governed by the law of dynamics [37]. 

Equations of mass, momentum, and energy can be obtained by this approach for a fluid which is 

in a state not far removed from equilibrium. But this theory remains incomplete for polyatomic 

gas molecules and for liquids. The second method considers that the fluid consists of continuous 

matter or a continuum, with each point in this fluid having a unique value for velocity, pressure, 

density, and the other field variables. This continuum approach requires that “the mean free path 

of the molecules be very small compared with the smallest physical-length scale of the fluid 

[37].” 

A material derivative represents the time derivative from a Lagrangian view (traveling 

with the fluid), and is related to the derivatives in the Eulerian view (from a fixed observer in 

absolute space). Here q can be any property of the fluid such as its mass, momentum, or energy 

in some direction . Then ( , , , )q q x y z t=

k
k

Dq q qu
Dt t x

∂ ∂
= +
∂ ∂

,    (1.7) 

and the Reynolds Transport Theorem relates the Eulerian and Lagrangian time derivatives for an 

arbitrary control volume (a material volume): 

( )k
kV V

D qqdV qu dV
Dt t x

⎡ ⎤∂ ∂
= +⎢ ⎥∂ ∂⎣ ⎦

∫ ∫ .   (1.8) 

Consider the equation for the conservation of mass, 

0
V

D dV
Dt

ρ =∫ .     (1.9) 

Applying Reynolds Transport theorem to the equation above gives us the continuity 

equation, 

( )k
k

u
t x

0∂ρ ∂
+ ρ =

∂ ∂
,    (1.10) 
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and the continuity equation for an incompressible (constant density) fluid becomes 

0k

k

u
x
∂

=
∂

.     (1.11) 

Applying Newton’s second law of motion, the rate at which the momentum of the fluid 

mass is changing is equal to the net external force acting on the mass [37], to an element of the 

fluid obtains the equation for conservation of momentum, 

j ij i j
V S V

D u dV n dS f dV
Dt

ρ = σ + ρ∫ ∫ ∫ .   (1.12) 

Applying the Reynolds Transport Theorem to the above equation gives the following 

form of the momentum equation: 

j j ij
k

k i

u u
u

t x x jf
∂ ∂ ∂σ

ρ +ρ = +ρ
∂ ∂ ∂

.    (1.13) 

Stokes postulated that there are four conditions which the stress tensor is supposed to 

satisfy: (a) when the fluid is at rest, stress is hydrostatic, mechanical pressure is the 

thermodynamic pressure, (b) the stress tensor is linear with the deformation rate tensor 

(Newtonian fluid), (c) there is no shear stress during solid body rotation (conservation of angular 

momentum) and (d) the fluid is isotropic. From these conditions, the stress tensor attains a form 

which is 

jk i
ij ij ij

k j

uu up
ix x x

⎛ ⎞∂∂ ∂
σ = − δ + λδ +μ +⎜⎜∂ ∂ ∂⎝ ⎠

⎟⎟ .   (1.14) 

Here, the quantity p is the thermodynamic pressure and ijδ is the Kronecker delta. The two 

parameters  and μ  must be determined experimentally or empirically. From Newton’s law of 

viscosity, the proportionality factor between shear stress and the velocity gradient in a simple 

shear flow is the dynamic viscosity which is 

λ

μ . The quantity λ  is called the second viscosity 

coefficient.  

As the difference between the mechanical pressure and the thermodynamic pressure is 

proportional to the divergence of the velocity vector, the proportionality factor K, called bulk 

viscosity, is ( )2 3K = λ + μ . However, if the fluid is a monatomic gas the mechanical pressure 
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and the thermodynamic pressure are the same and in this situation K = 0, hence ( )2 3λ = − μ . 

This is called Stokes’ relation. 

Substituting the obtained stress tensor equation in the momentum equation and 

considering the density to be constant (incompressible form) gives us the incompressible Navier-

Stokes equations, 
2

j j j
k

k j i i

u u upu
t x x x x

∂ ∂ ∂∂
ρ +ρ = − +μ +ρ
∂ ∂ ∂ ∂ ∂ jf .   (1.15) 

Applying the first law of thermodynamics to a fluid element to obtain the equation for 

conservation of energy yields 

1
2V S V

D e dV dS dV
Dt

⎛ ⎞ρ + ρ ⋅ = ⋅ + ⋅ρ − ⋅⎜ ⎟
⎝ ⎠∫ ∫ ∫u u u P u f q n

S

dS∫ .  (1.16) 

The Reynolds transport theorem is applied to equation (1.16) to convert it into an 

equation that contains Eulerian derivatives only, obtaining the energy equation in the following 

form, 

( )1 1
2 2

j
j j j j k j ij j j

k iV V V V

q
e u u e u u u u dV u f dV dV

t x x
∂⎧ ⎫⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞ρ + ρ + ρ + ρ = σ + ρ −⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭

∫ ∫
jx∂∫ ∫ . (1.17) 

Further simplification gives us the following form of the energy equation, 

j j ij j
k j j k j ij j j

k k i i

u u ue eu u u u u u f
t x t x x x

j

j

q
x

∂ ∂ ∂σ ∂ ∂∂ ∂
ρ +ρ +ρ +ρ = + σ + ρ −
∂ ∂ ∂ ∂ ∂ ∂ ∂

. (1.18) 

For a gas, it is often reasonable to assume a perfect gas (intermolecular forces are 

negligible [38]) equation of state  

p RT= ρ ,     (1.19) 

where R is the specific gas constant. In order to close the system of equations that govern the 

motion of a fluid it is necessary to consider a seventh equation that provides a thermodynamic 

relation between the state variables ( ( , )e e T p= ). For this reason, an equation for calorically 

perfect gas (constant specific heats) is often applied, 

ve c T= ,     (1.20) 

where  is the specific heat at constant volume. This equation is called the caloric equation of 

state. 

vc
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1.4  Research Objective 

 
Detached Eddy Simulation is a hybrid turbulence model that proposes to use the 

Reynolds Averaged Navier Stokes turbulence model in the thin boundary layers and the Large 

Eddy Simulation turbulence model in the regions of massive separation. Thinking of the project, 

the goal has been to study “grey area” and grid construction effects on the performance of hybrid 

turbulence models. In order to achieve this goal, the first step is to implement the DES model in 

the code that is required for this simulation. This code, UNCLE, is an in-house unstructured 

incompressible Navier-Stokes solver. As DES was initially formulated based on the one-equation 

Spalart-Allmaras (SA) turbulence model, there is a requirement for the implementation of the SA 

model in this unstructured grid code. The bigger project involves an extensive amount of 

computer time as it needs the implementation of the hybrid turbulence models along with the 

basic models and then the validation of these models for variety of test cases, analyzing and 

comparing with the benchmark results. After establishing the models in the code, the grid effects 

on the performance of the hybrid turbulence models can be studied.  

The objective of this thesis is to establish the SA turbulence model, and the hybrid 

turbulence models, Detached Eddy Simulation and Scale-Adaptive Simulation, in an 

unstructured grid code. The standard test case for a simulation involving the hybrid turbulence 

models will be a three-dimensional circular cylinder. This work includes the implementation of 

the above mentioned turbulence models and presentation of the results for the flow over a three-

dimensional circular cylinder for three different Reynolds numbers, 3900, 13400, and 140,000.  

  

1.5  Thesis Outline 

 
In Chapter 2 the numerical procedures for turbulence modeling will be discussed. These 

procedures include an introduction to the Direct Numerical Simulations, the Reynolds-Averaged 

Navier Stokes models, the Large Eddy Simulation procedures, the new hybrid turbulence model, 

Detached Eddy Simulation, and also other procedures that have been introduced in the hybrid 
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turbulence modeling. In Chapter 3, the turbulence models will be presented which include the 

Spalart-Allmaras one equation turbulence model, Menter’s Shear Stress Transport equation 

based on the  and  models, the SA based DES model, the SST based DES model, the 

recent SAS model by Menter, and the SA based Delayed Detached Eddy Simulation (DDES) 

model. In Chapter 4, the in-house CFD codes, UNCLE and GHOST, will be discussed. The 

various cluster architecture built by the CFD group used in running the 3D simulations of this 

thesis are discussed. The grid generation process in the in-house grid generator code and also in 

GAMBIT will be briefly presented. Chapter 5 will contain the validation studies for three test 

cases, first the 2D Flat plate case, second the 2D Circular Cylinder case, and last the 3D Circular 

Cylinder case. The last chapter, Chapter 6 will contain the conclusions and the proposed future 

work.  

k −ω k −ε
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Chapter 2 : TURBULENCE MODELING 
 

 

Increases in computer power since the 1960’s has given a great impetus for the 

advancement in turbulence modeling research. A number of approaches have been suggested for 

this turbulence modeling problem. This section deals with three main approaches for 

computational turbulence modeling: Reynolds-Averaged Navier Stokes equations (RANS), 

Direct Numerical Simulation (DNS), and Large Eddy Simulation (LES). The RANS models are 

solved to determine the mean velocity flow field by modeling all the scales in a turbulent flow. 

The DNS technique solves the Navier-Stokes equations by resolving all the length and time 

scales. In the LES technique large scale motions are computed directly whereas the effects of the 

small scale motions are modeled. The hybrid turbulence modeling approach is from the 

combination of the RANS and LES approaches and is the youngest approach of all; therefore, it 

which will be discussed in the current trends section.  

 

2.1  Reynolds Averaged Navier-Stokes Equations 

 
As mentioned earlier, a better understanding of the theory of turbulence came only after 

the pioneering work by Osborne Reynolds (1883, 1895). In 1883 it was the identification of the 

Reynolds number, Re. Then in 1895 [40], he concluded that turbulence was far too complicated 

to permit a detailed understanding [41] and, as stated by Tennekes and Lumley [5], in turbulence 

the description of the flow at all points in time and space is not feasible. Hence, Reynolds 

proposed to decompose all the values of the hydrodynamical [40] quantities in turbulent flows 

into mean and fluctuating components and to study only the mean values which vary in a 

comparatively smooth fashion with space and time. Further, to determine the mean values he 

suggested using time or space averaging. Beginning with this proposal the prevailing [41] view 

has been that turbulence consists of random fluctuations of various flow properties and hence it 

must be treated with statistical tools.  
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The three most prominent averaging methods in turbulence research are time averaging, 

spatial averaging, and ensemble averaging. Given a flow variable f(x, t), its time average, , 

is defined as 

( )TF x

1( ) lim ( , )x
t T

T T
t

F f
T

+

→∞
= ∫ x t dt .    (2.1) 

For homogeneous turbulence, which is a turbulent flow that is uniform in all directions 

on an average, a spatial average is often used. A spatial average is defined for a flow variable f(x, 

t) as 

1( ) lim ( , )xV VV
F t f

V→∞
= ∫∫∫ t dV .    (2.2) 

For flows that decay in time, ensemble averaging is the preferred method. If { }( )

1
( , )x

Ni

i
f t

=
 

is a sequence of realizations of a function f(x, t) defined for dx∈Ω⊂  and 0, ft t⎡∈ ⎣ ⎤⎦ , then the 

ensemble average for f is [41] 

( )

1

1( , ) lim ( , )x
N

i
E N n

xF t f
N→∞

=

= ∑ t .    (2.3) 

Here time averaging is considered and the averaged equations for continuity and Navier-Stokes 

will be presented. In the incompressible form of the governing equations, the energy equation is 

uncoupled from the continuity and momentum equations [37]. Hence the averaged equations for 

continuity and momentum are considered here onwards. For convenience the vector form of the 

equations is being considered. 

If f(x, t) is defined in a domain  and for, 1, 2,3d dΩ⊂ = [0, ]ft t∈ , then the Reynolds 

decomposition [41] of f(x, t) is given by ( , ) ( ) ( , )x x xf t f f t′= + . 

Start with the continuity equation, 

0U∇⋅ = .     (2.4) 

By the definition of time average the following relations hold: 

u u=  ; 0u′ = . 

Now decomposing the continuity equation into mean and perturbation values and then 

time averaging the equation gives 

( ) 0u u′∇ ⋅ + =   ⇒ 0u u′∇ ⋅ +∇⋅ =  
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⇒  0u∇⋅ = .      (2.5) 

Next, consider the following form of the Navier-Stokes equations for incompressible 

flow and no body forces, 
2

tU U U P U+ ⋅∇ = −∇ + ν∇ .    (2.6) 

Starting with the advection term, take the time average, 

( ) ( )

.

U U u u u u

u u u u u u u u

′ ′⋅∇ = + ⋅∇ +

′ ′ ′ ′= ⋅∇ + ⋅∇ + ⋅∇ + ⋅∇
   (2.7) 

The second and third terms may be eliminated as follows, 

0 0

0 0

1 1lim lim

1 1lim lim

0

T T

T T

T T

T T

u u u u u u dt u udt
T T

u u dt u dt
T T

→∞ →∞

→∞ →∞

′ ′ ′ ′⋅∇ + ⋅∇ = ⋅∇ + ⋅∇

⎡ ⎤ ⎡ ⎤
′ ′ u= ⋅∇ + ⋅∇⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
=

∫ ∫

∫ ∫   (2.8) 

Now consider the first term,  

( )
.

t t

t

U u u
u

′= +

=
     (2.9) 

The RHS is treated similarly and the N-S equation is reduced to the following form, 
2u u u u p u′ ′⋅∇ + ⋅∇ = −∇ + ν∇ .   (2.10) 

The LHS terms can be simplified further as, 
2 2u u p′ 2u∇⋅ +∇⋅ = −∇ + ν∇ .    (2.11) 

The Reynolds-Averaged Navier Stokes equations that have been derived contain more 

unknowns than earlier, as the fluctuating terms, such as 2u′  on the LHS, are unknown. Hence 

reducing the number of unknowns to a solvable number is the so-called “turbulence closure 

problem”. The terms, like 2u′  form the Reynolds stress tensor which when multiplied by density 

has the dimensions of a stress. The term 2u′  is written in a matrix representation: 

2

2 2

2

u u v u w

u v u v v w

w u w v w

⎛ ⎞′ ′ ′ ′ ′
⎜ ⎟
⎜ ⎟′ ′ ′ ′ ′ ′=
⎜ ⎟
⎜ ⎟′ ′ ′ ′ ′
⎝ ⎠

.    (2.12) 
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It is to be recalled that the term 2u′  has a divergence operator, and often the stress tensor term is 

represented in the following form, 

( )

2

2

2

, ij

u u v u w

u u v u v v w

w u w v w

⎛ ⎞′ ′ ′ ′ ′
⎜ ⎟
⎜′ ′ ′ ′ ′ ′ ′= ∇ ⋅ ∇ ⋅τ
⎜ ⎟
⎜ ⎟′ ′ ′ ′ ′
⎝ ⎠

R ⎟=     (2.13) 

Hence the alternative form for the Reynolds averaged Navier Stokes equation for an 

incompressible fluid neglecting the body forces is 

( )2 2 ,Ru p u u u′ ′∇ ⋅ = −∇ +ν∇ − .   (2.14) 

 

2.2  Direct Numerical Simulation 

 
In Direct Numerical Simulation [42] the Navier-Stokes equations are numerically solved 

for the complete detail of all the flow variables in a turbulent flow field. As given in [6], “direct 

numerical simulation means a complete three-dimensional and time dependent solution of the 

Navier-Stokes and continuity equations”. These direct numerical simulations in theory are 

required to get the accurate solutions of the equations of motion. In principle they are required to 

accurately resolve all the scales of turbulent motion with the given initial and boundary 

conditions.  

The foundations for DNS were laid by the meteorologists at the National Center for 

Atmospheric Research [39]. The first step came from the work of Orszag and Patterson [43] in 

1972. They performed a 323 computation of isotropic turbulence for a Taylor microscale based 

Reynolds number of 35. The Taylor microscale Reynolds number is ( ) ( )1/ 215-1/2
TRe A −= λ l  

where the Taylor microscale is given by ( )22 2u u x′ ′λ = ∂ ∂ , l is the integral length scale, the 

constant A is on the order of 1. The next major step was by Rogallo [73] in 1981. He combined 

an extension of the algorithm by Orszag-Patterson and transformed governing equations to 

compute homogeneous turbulence subjected to mean strain. His work has become a cornerstone 

for homogeneous turbulent flows. Further details of the history of DNS can be found in Moin 

and Mahesh (1998) and the references therein. 
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Even though the predictions about flow behavior by DNS have been quite accurate as all 

the scales in the flow are resolved, there are many numerical issues with DNS, when applied to 

engineering flows. These include spatial and time resolution, specification of boundary 

conditions, Reynolds numbers, computational costs, and the shock waves in compressible 

turbulent flows.  

Complete resolution of both the largest and the smallest length scales is required to define 

the turbulent flow field in DNS. For inhomogeneous flows the physical parameters, such as the 

characteristic width of the flow, determine the largest length scale whereas for homogeneous 

turbulence to ensure proper representation of large scales two-point correlations of the solution 

are required to decay nearly to zero within half the domain. The smallest scales that need to be 

resolved in both cases are on the order of the Kolmogorov length scale, ( )1 43η ν ε= . The 

measure of the smallest length scale, most of the time, is influenced by the numerical methods 

used. In spectral DNS methods the smallest scale required must capture the dissipation 

accurately, hence the smallest length scales are dependent on the energy spectrum, whose length 

scale is much greater than η . Finite differencing schemes, prone to larger numerical errors, 

require higher resolution at the small scales to retain the same degree of accuracy as spectral 

methods. The differentiation error and error from the non-linearity of the governing equations of 

motion are the two errors that demand higher resolution at smaller scales. However, a potentially 

more serious problem in spectral codes resulting from the non-linearity is aliasing which can 

cause numerical instability or excessive turbulence decay. Aliasing occurs when the nonlinear 

interactions among the resolved wave numbers produce waves with wave numbers greater than 

, which can be misinterpreted numerically [6]. maxκ

Even though spectral methods are potentially more accurate than finite differencing or 

finite volume schemes, the latter methods are often considered in the case of more non-uniform 

and unstructured grids. 

 The time step in the computation of DNS should be on the order of magnitude of 

Kolmogorov time scale, ( )1 2τ ν ε= . However, the time step is influenced by the accuracy 

required for DNS to resolve for resolving the wide range of scales accurately over time.  

While solid boundaries with their no-slip boundary conditions posed no special issues, 

specifying the boundary conditions at open boundaries has always been a critical issue with 
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DNS. It is relatively straightforward to impose periodic boundary conditions in the statistically 

homogeneous direction of the flow, so the issue is primarily about inflow and outflow boundary 

conditions. This problem earlier had been handled by assuming the flow to be homogeneous in 

the streamwise direction and it was allowed to evolve statistically in time. Spalart [44] in 1988 

presented a coordinate transformation that allowed the use of periodic boundary conditions in the 

streamwise direction, thereby allowing the flow to grow as a statistically stationary turbulent 

flow. Still, the method proposed by Spalart was restricted to a certain class of flows. An 

alternative method suggested was to add a random velocity field to a prescribed mean velocity 

field and allow the flow to evolve but the disturbances took considerably larger downstream 

distances to evolve into a true turbulence flow [42].   

Computations of shock waves with DNS mainly have been for steady aerodynamic flows. 

Because it is expensive to compute the shock-thickness in these flows, shock capturing schemes 

have been useful tools for such flows. However, the potential problem arising from such schemes 

is that they are highly dissipative and may dissipate important scales of turbulence if the 

resolution is not sufficiently fine [42]. 

Even though the increase in computer power to date had let DNS to stretch over a larger 

variety of conditions, the Reynolds numbers are still below those required for most practical 

engineering flows. The exceedingly large computational costs of DNS increase rapidly with the 

Reynolds number, approximately on the order of ( )3O Re  [46]. This remains a critical drawback 

of DNS. Computations from DNS possess a high degree of accuracy and it can be viewed in 

some cases as comparable as or better than experimental benchmark data. Practically, the 

computational results from DNS can be used in testing the proposed closure approximations in 

the turbulence models and are also useful in closely observing the turbulent structures and 

collecting some useful information about the immeasurable quantities like pressure fluctuations. 

 

2.3  Large-Eddy Simulation 

 
In Large Eddy Simulations the energy carrying large scales of turbulence motion are 

resolved or represented explicitly and the effects of smaller scales that appear in the residual 

stress terms are modeled. Initial work on the LES model came from Smagorinsky [45] in 1963, 
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Lilly [75] in 1967, and Deardorff [47, 76] in 1970, 1974 and much of their work was motivated 

by meteorological applications and atmospheric boundary layers. Initially, in the testing and 

development phase, the primary focus of LES was in the area of isotropic turbulence. Important 

examples of this type include the work of Kraichnan [77] in 1976 and Chasnov [78] in 1991. 

Another common flow was fully-developed channel flow like those of Deardorff [47] in 1970, 

Schumann [79] in 1975, Moin and Kim [80] in 1982, and Piomelli [81] in 1993. Much more 

detail about the history of LES models and their evolutionary process is discussed by Galperin 

and Orszag [82] (1993). 

By the nature of its formulation, the smallest scales in a LES model are modeled and can 

be much larger than the Kolmogorov length scales. The time step requirement by the LES model 

can be higher than the Kolmogorov time scale which allows the applicability of LES for much 

higher Reynolds numbers than DNS methods. However, DNS-like numerical issues such as the 

boundary condition specification difficulties and the degree of accuracy requirement in 

computing the derivatives for the smallest scales still hold for LES. An additional problem arises 

at the near wall regions where the largest eddies are quite small and if one needs to fully resolve 

these scales then numerically the requirements of LES models tends towards the DNS method. 

The goal of LES is not to compute all the dissipation scales but to compute the scales in the 

inertial range only. An LES model falls in a category between the class of RANS methods, in 

which turbulence motion is completely modeled, and the DNS methods, in which the all the 

scales need to be completely resolved. 

A classical solution procedure for LES, in principle, can be classified into four steps, 

i. The velocity field and the other flow variables are decomposed into the large and small 

scales. For this process a filtering operation is defined. 

ii. The decomposition is applied to the governing equations separating the non-linear terms 

which are to be modeled. 

iii. These non-linear terms are modeled. 

iv. The filtered governing equations are solved explicitly for the larger scales. 

Similar to the approach of Reynolds averaging the governing equations, LES 

decomposition was first introduced by Deardorff [47] but studied by Leonard [48] in detail for 

the incompressible Navier-Stokes equations.  

LES decomposition for a velocity vector U is given as 
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( ) ( ) ( ), ,t t ′= +U x u x u x, t

)

.    (2.15) 

The  term represents the resolved part, meaning larger scales, and the ( , tu x ( ), t′u x  

term represents the unresolved scales or the smaller scales of the flow. If  represents 

the large scale field, defined as a low-pass filter, then the filtering operation [49] is given as  

( , ,U x y z)

( ) ( ) ( ) ( )
3

1

, , , , , , ,i i i
iD

U x y z G x x U x y z dx dy dz u x y z
=

′= ≡∏∫ ,  (2.16) 

where G is the filter function and D is the entire computational domain. 

Even though many filtering techniques have emerged, a few notable filter functions have 

been the Gaussian filter function, the sharp Fourier cut-off filter, and the box filter. 

The Gaussian filter is defined as  

( ) ( )1 2 2

2

6, i i
i i i

i i

-6 x x
G x x exp

π

⎛ ⎞
2

′−⎛ ⎞
′ ⎜= ⎜ ⎟ ⎜Δ Δ⎝ ⎠ ⎝ ⎠

⎟
⎟

,   (2.17) 

where  is the filter width related to the grid size iΔ ixΔ . The sharp Fourier cut-off filter defined in 

the Fourier space is,  

( )
1,ˆ
0,

i ci
i i

for k K
G k

otherwise
<⎧

= ⎨
⎩

,    (2.18) 

where  is the cut-off wave number given by the correlation ciK ci
i

K π
=
Δ

 and  is the 

Fourier coefficient of the filter function . 

( )ˆ
i iG k

iG

The box filter function is defined as 

( ) 1 , 2
,

0,
i i i

i i i
for x x

G x x
otherwise

′⎧ Δ − ≤
′ = ⎨

⎩
iΔ .   (2.19) 

Once the low-pass filter for the large scales of motion is defined, the unresolved parts of 

the model or the smaller scales are defined as the high-pass filtered part for the velocity vector: 

( ) ( ) ( ), ,t t′ = −u x U x u x, t .    (2.20) 

The following relations hold as both the resolved and unresolved terms are not 

independent of time and space, 

( ) ( ), ,u x u xt t≠  and ( ),
~
u x t′ 0≠ .   (2.21) 
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The LES decomposition is applied to the governing equations in the incompressible form 

and for convenience the vector form of the equations is considered. Start with the continuity 

equation for incompressible flow in vector form, 

0∇⋅ =U .     (2.22) 

After a filtering operation to obtain the resolved scales, the continuity equation takes the 

following form [41], 

0∇⋅ =u .     (2.23) 

Now consider the momentum equations,  
2U U U Ut P+ ⋅∇ = −∇ + ν∇ .    (2.24) 

The reduced form of momentum equation after the filtering operation can be expressed 

as, 

( ) 2u UUt p u+∇ ⋅ = −∇ + ∇ν .    (2.25) 

It is a relatively easy task to apply the filtering operation for the RHS terms and for the 

time derivative, but a little work is needed to be done for the non-linear advection terms on the 

LHS.  

Consider the non-linear terms, 

( ) ( )( (′ ′∇ ⋅ = ∇ ⋅UU u+u ) u+u ) ,   (2.26) 

and then write the terms in the matrix form as follows, 

( )( ) ( )( ) ( )( )

( ( ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

u u u u u u v v u u w w

u u v v v v v v v v w w

u u w w v v w w w w w w

⎡ ⎤′ ′ ′ ′ ′+ + + + + +
⎢ ⎥

′ ′ ′ ′ ′ ′ ′ ′= + + + + + +⎢ ⎥
⎢ ⎥

′

′ ′ ′ ′ ′+ + + + + +⎢ ⎥⎣ ⎦

u+u ) u+u )

′

. (2.27) 

One of the terms from the matrix is considered and then expanded to get the following 

form, 

( )( )u u v v uv uv u v u v′ ′ ′ ′+ + = + + + ′ ′ .   (2.28) 

Unlike the Reynolds decomposition, the second and third terms on the right-hand side are 

not zeroes and these are termed as “cross stress” terms. It is required to model the cross stress 

terms as they contain the small scale factors. The first term, uv , on the right-hand side is called a 

Leonard stress and it can be calculated directly, as the equations for u  and v  are available. 

 Analogous to the Reynolds stress terms from the Reynolds decomposition, the last term 
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on the right-hand side is also named a “Reynolds stress” term. It is understood that even though 

the similarity in the names exist, the methods of modeling the Reynolds stresses differ from 

RANS to LES.  

In general, the notation given to the stress terms are 

ijL uv uv≡ − , 

ijC uv u v′ ′≡ + ,             (2.29) 

ijR u v′ ′≡ , 
where ijL represents the Leonard stress,  is the Cross stress and ijC ijR  is the Reynolds stress. 

In order to obtain the useful form of the momentum equations it is desirable to have the 

conservative form of ( )∇⋅ uu  [41]. For this reason the non-linear terms are revisited and the left-

hand side is rearranged as, 

( )( (uu u+u ) u+u ) uu uu SGSτ⎡ ⎤′ ′+ − ≡⎣ ⎦ +

SGS

.   (2.30) 

Hence the momentum equation can be reduced to the following useful form, 
2(u uu) ut p+∇ ⋅ = −∇ + ∇ −∇ ⋅ν τ ,   (2.31) 

where the LES subgrid scale stress is given by SGS ij ij ijL C Rτ ≡ + + . 

At this point the governing equations have passed through the filtering operation and the 

large scale part of the LES formulation has been obtained. The next step is to model the subgrid 

scale stress.  

In general, the small scales in turbulent flows tend to be isotropic and homogeneous in 

comparison with the larger scales and are considered to be able to be modeled using relatively 

simpler models than those used for Reynolds stress models [50]. For this reason the subgrid scale 

models are usually based on the eddy viscosity assumptions. Generally, the SGS models fall into 

three categories: eddy viscosity models, similarity models, and mixed models which combine 

both the eddy viscosity and similarity expressions [51]. Here, the discussion of the SGS models 

will be restricted to eddy viscosity models as we will be basically dealing with the Smagorinsky 

SGS model based on eddy viscosity assumptions. 

Smagorinsky [45] (1963) was the first to introduce the modeling procedures for the 

subgrid scale stress (SGS). His formulation was based on the Boussinesq eddy viscosity 

assumption. The basic equations applied to the SGS model are 
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2SGS T ijSτ ν= −   and ( )2
T SC Sν = Δ ,   (2.32) 

2 ij ijS S= S ,     (2.33) 

1
2

j i
ij

i j

u uS
x x

⎛ ⎞∂ ∂
= +⎜⎜ ∂ ∂⎝ ⎠

⎟⎟ .    (2.34) 

ijS  is the large scale strain rate tensor,  is the large scale velocity, the eddy viscosity iu Tν  is 

calculated similarly to a mixing length formulation, and Δ  is the grid spacing.  is the 

Smagorinsky constant which is on the order of 

SC

110−  and usually varies from flow to flow. For 

example, as determined by Lilly [52] in 1966  for homogeneous isotropic turbulent 

flows, but in the case of turbulent channel flows  had excessive damping on the large 

scale fluctuations and for this reason Deardorff [47] suggested . 

0.23sC

0.23sC

0.1sC

The Smagorinsky SGS model does enjoy success to an extent due to its simplicity and 

that it yields sufficient diffusion and dissipation [6] for numerical stability. But for the same 

reason that it is completely dissipative, the model is not adequate for the wall bounded flows. 

Also the model cannot account for the energy flow from smaller scales to larger scales which can 

be termed as “backscatter”. 

Further modifications made to the Smagorinsky model in the near wall regions include 

the work by Moin and Kim [53] in using the Van Driest [54] damping functions to account for 

the near wall effects and then Piomelli’s [55] choice of choosing a damping function to account 

for the asymptotic behavior of the shear stresses near the wall.  

A SGS model based on the renormalization group (RNG) theory of Yakhot and Orszag 

[56] was proposed by Yakhot [57] in 1989 for channel flows. This model predicts the stresses 

near the wall to be zero requiring no additional damping functions, but an ad hoc factor was 

introduced by Yakhot [57] to account for the anisotropy of the smaller scales in the near wall 

region. 

Germano [50] in 1991 proposed a SGS stress model based on the Smagorinsky SGS 

model, and this class of models was termed the dynamic models. Two filtering operations for the 

governing equations are used, one using the grid filter and the second one using the test filter. 

The filter width of test filter is larger than that of the grid filter from which it can be inferred that 

the test filter corresponds to a coarser mesh than the grid filter. The subgrid scale stresses are 
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obtained by the rescaled resolved stresses in the test filter band. The Smagorinsky constant is 

evaluated in the test filter band from the resolved stresses and then the same value is used to 

compute the subgrid scale stresses at the same point in space but at the next time step [6].  

The twice filtered tensor, ij i j i jT u u u u= − , and the SGS tensor, ij i j i ju u u uτ = − , from the 

test filter are related to the Leonard stress, ij i j i jL u u u u= − , obtained from the test filter which is 

termed the Germano identity. Hence, 

ij ij ijL T τ= − .      (2.35) 

Here, the Leonard stress can be calculated explicitly whereas the subgrid stress tensors are to be 

modeled. The Smagorinsky’s closure can be applied to the Germano identity, 

1
3ij ij kk ij S ijCτ τ τ δ≡ − = β ,    (2.36) 

1
3ij ij kk ij S ijT T T Cδ α≡ − = .    (2.37) 

The values ijα  and ijβ  should be treated as the SGS models (Smagorinsky) with the 

Smagorinsky constant removed and the other point to be noted is that  is actually (  from 

the Smagorinsky model. Using the Germano identity the Leonard stress tensor is 

SC )2
SC

(1
3ij ij kk ij S ij ijL L L C )δ α β≡ − = − .   (2.38) 

However, the above equation contains five independent equations for evaluating a single 

variable, , and hence is over determined. In order to overcome this situation two alternatives 

were proposed by Germano (1991) and Lilly (1992).  

SC

The correction given by Germano (1991) was to contract the above equation from the 

Germano identity with the strain-rate tensor  which is reformulated as ijS

ij ij
S

ij ij

L S
C

M S
= ,     (2.39) 

 

where (ij ij ijM )α β= − . Unfortunately the denominator could become excessively small or 

locally vanish which might lead to computational instabilities. Lilly (1992) used a least squares 

approach in order to evaluate the value of  that best satisfies the model, given as SC
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2
ij ij

S
ij

L M
C

M
= .     (2.40) 

Even after these corrections the model revealed another difficulty in that the  predicted 

by the above two models may strongly vary in space and can contain negative values which 

implies a negative SGS eddy viscosity which may cause instability to the computations. In order 

to avoid such problem averaging of the values both in time and space for numerators and 

denominators has been adopted. Later on averaging was suggested to be applied in the directions 

in which flow exhibits homogeneity; however, this process is restricted to simpler geometries. It 

is noted that schemes based on the spatial averages are still the most widely used LES methods 

for the apparent reason of their simplicity in implementation.  

SC

 

2.4  Current Trends  

 

2.4.1 Hybrid Turbulence Models 

 

The earlier sections cover in detail about the RANS, LES and DNS methods of 

turbulence modeling. The LES models by its nature falls in a category in between the DNS and 

the RANS models as these models do not completely model all the turbulent scales in a flow as 

in RANS but neither do they resolve all the scales of a flow as in DNS  

As suggested by Spalart [58], the known major challenges about turbulence predictions 

have been the prediction of the growth and separation of the boundary layer along with the 

accuracy in assessing the Reynolds stresses after the separation. The Reynolds-Averaged Navier-

Stokes equations are the most widely used today. For the past two decades many RANS models 

have been suggested and of them the k-ε, [74] the one-equation Spalart-Allmaras [60] turbulence 

model, and the two-equation Shear Stress Transport [62] (SST) turbulence model are popular. 

Even though the RANS models are very robust in predicting the boundary layer flows, in the 

prediction of the massively separated, unsteady turbulent flows these models tend to fail. DNS is 

out of question for the higher Reynolds numbers at which massive separation occurs because of 

its demand of fine grid spacing which increases the computational cost. The LES models have 
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the capability of handling the separation regions well as the large scales are resolved but not 

modeled. But when practical applications like a simulation on a airplane wing is considered the 

computational cost of LES goes high because of the number of grids points needed in the 

boundary layers because of the presence of large thin near-wall boundary layers containing small 

eddies whose local size is much smaller than the local boundary layer thickness. In such a case, 

Spalart [1] estimated the number of grid points that are needed to be on the order of 1011 and to 

get a clear solution the number of time steps needed are estimated to be 5X106.  

In order to retain the robustness of RANS models in accurately predicting the boundary 

layer flows and the well behaved LES models in the regions of massive separation at higher 

Reynolds number, a hybrid turbulence model was suggested by Spalart [1] in 1997. The non-

affordable computational cost of the LES in the attached boundary layers and the failure of 

RANS models in accurately predicting the massively separated regions at high Reynolds 

numbers lead to the formulation of the hybrid turbulence model. The attached boundary layers 

are modeled and the large scale detached eddies are resolved or simulated in this new hybrid 

turbulence model and hence the name “Detached Eddy Simulation” (DES) is given to this model. 

The DES model operates in RANS mode in the attached boundary layers and away from the wall 

it switches to the LES mode. 

Initially, the DES model was based on the one-equation Spalart-Allmaras turbulence 

model formulated by Spalart [1] in 1997. However, it was only in the year 2000 that an alternate 

DES was formulated based on Menter’s two-equation Shear Stress Transport turbulence model 

by Travin, Shur, Strelets and Spalart [59]. Later on Menter came up with a Scale Adaptive 

Simulation model in 2003 and in this paper [63] his intention was to demonstrate that the SAS 

modeling approach can be operated in RANS and LES modes without explicit grid dependency 

as opposed to the case of DES which is dependent on the grid spacing. The models along with 

the grid issues will be discussed in the next chapter. In 2006, Spalart and others [66] came up 

with a new hybrid turbulence model based on DES model but had a correction factor to allow for 

smooth transition from RANS to the LES mode. This new version is called as “Delayed 

Detached Eddy Simulation” [66]. 
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Chapter 3 : TURBULENCE MODELS 
 

 
In this chapter, the turbulence models based on the Reynolds-Averaged Navier Stokes 

equations and also the more recently popular hybrid turbulence models are described in detail. 

The RANS models covered include the one-equation Spalart-Allmaras turbulence model, the 

two-equation k-ω and k-ε models, and Menter’s Shear Stress Transport (SST) turbulence model. 

The hybrid turbulence models include the original formulation of the Detached Eddy Simulation 

(DES) by Spalart based on his one-equation Spalart-Allmaras turbulence model, the formulation 

of DES based on the Menter’s SST model, the Scale-Adaptive Simulation by Menter, and finally 

the Delayed Detached Eddy Simulation (DDES) formulation. 
 

3.1  One Equation Spalart – Allmaras Model 

 
The one equation Spalart-Allmaras (SA) model solves a transport equation for the 

variable ν  which is similar to the eddy viscosity. The equation is formulated using empiricism 

and the arguments of dimensional analysis, Galilean invariance, and selective dependence on the 

molecular viscosity [60]. The equation contains four terms which are a production term, a 

destruction or loss term, and two diffusion terms. The loss term depends on the distance to the 

wall. This turbulence model is compatible with both structured and unstructured grids. The 

insensitivity of this model to the free stream helps to obtain a stable solution. 

The Reynolds stresses, which are the cause of the so-called “closure problem”, are 

defined using the Boussinesq eddy viscosity concept as 

2i j t iju u S− = ν ,        where 2ji
ij

j i

UUS
x x

⎛ ⎞∂∂
≡ +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

.  (3.1) 

Alternatively, the strain rate can also be written as 2 ij ijS = Ω Ω  where 1
2

ji
ij

j i

UU
x x

⎛ ⎞∂∂
Ω = −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

. 
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The turbulent viscosity or eddy viscosity, Tν , is a function of ν , which is termed the 

high Reynolds number viscosity. The functional relation is 

1T vfν ν= ,     (3.2) 

  
3

1 3 3
1

v
v

f
c

χ
χ

=
+

 , νχ
ν

= ,     (3.3) 

where ν is the molecular viscosity and 1 7.1vc = . When ν ν , then  and 1 1vf ≈ Tν ν≈ . The 

evolution of ν  is governed by a transport equation 
2

21
1 1 2 2 12

1 ( )b
j b w w t b t

j k k

cU c S c f f c f
t x d x x x x

⎡ ⎤⎡ ⎤∂ν ∂ν ν ∂ ∂ν ∂ν ∂ν⎡ ⎤ ⎛ ⎞+ = ν − − + ν + ν + + Δ⎢ ⎥⎢ ⎥⎜ ⎟⎢ ⎥∂ ∂ κ σ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦ ⎢ ⎥⎣ ⎦⎣ ⎦k k

U . (3.4) 

The first term on the right hand side is the production term. In this term,  is a modeled 

magnitude of the strain rate 

S

22 2 vS S f
d
ν

κ
= + ,    (3.5) 

where d is the distance to the closest wall and 2vf  is given by the correlation, 

2
1

1
1v

v

f
f

χ
χ

= −
+

.    (3.6) 

The second term on the right hand side is the destruction or loss term. The function  is 

given by the correlation 

1wc

( )21
1 2

1 bb
w

ccc
κ σ

+
= ,    (3.7) 

where σ is the turbulent Prandtl number. The wall function wf  is defined as 

1
6 6

3
6 6

3

1 w
w

w

cf g
g c

⎛ ⎞+
= ⎜ +⎝ ⎠

⎟ ,     (3.8) 

2 2r
S d
ν
κ

= ,  ( )6
2wg r c r r= + − .    (3.9) 

The variable r, which is used in evaluating the wall function, wf , is typically truncated at 

10. As r approaches larger values the correlation that used to calculate the g function goes higher 

which lead to the value of the wall function wf  asymptotically to one. In order to avoid large 

values of r and the larger calculated values of g, r is truncated at 10. 
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The trip function terms, one added to the destruction term and another one added as the 

last term on the RHS side, provides a control over the laminar regions of the shear layers. As 

suggested by Spalart [1], one aspect of the control is keeping the flow laminar where desired and 

the other aspect being obtaining a transition where desired. The trip functions are defined as, 

( )2
2 3t t t4f c exp -c= χ ,     (3.10) 

2
2 2 2

1 1 2
t

t t t t2 t tf c g exp -c d g d
U

⎛ ⎞ω ⎡ ⎤= ⎜ + ⎟⎣ ⎦Δ⎝ ⎠
,   (3.11) 

0.1,t
t

Ug min
x

⎛ ⎞Δ
≡ ⎜ ⎟ω Δ⎝ ⎠

.     (3.12) 

Here d is the distance to the closest wall and  is the distance from the field point, local grid 

point, to the trip,  is the wall vorticity at the trip, 

td

tω UΔ  is the difference between the velocity at 

the field point and the velocity at the trip, and xΔ  is the grid spacing along the wall at the trip 

[1]. 

Setting up the trip functions to be zero to avoid the extra calculations in the model, the 

following form of the SA model in terms of the eddy viscosity, which includes eight closure 

coefficients and three closure functions, is implemented in the in-house codes (UNCLE and 

GHOST): 
2

2
1 1

1 ( ) b
j b w w

j k k

cU c S c f
t x d x x xk kx
ν ν ν νν ν ν

σ σ
⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ = − + + +⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎣ ⎦

ν ν . (3.13) 

The closure constants are given as follows:   

2
20.1355, 0.622, , 0.41
3b1 bc c= = σ = κ = , 

2
1 2 32

1 , 0.3, 2, 7.1b1 b
w w w

c cc c c=

+⎛ ⎞+ = =⎜ ⎟κ σ⎝ ⎠
1vc =

=

,   (3.14) 

1 2 3 41, 2, 1.1, 2t t t tc c c c= = = . 
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3.2  The Two Equation Models, k-ω and k-ε 

 

3.2.1 The k-ω Model 

 

After the introduction of the two equation model of turbulence by Kolmogorov in 1942, 

many improvements were made to the k-ω model. The k-ω model by Wilcox is considered to be 

a standard model of this type. The first improved model of k-ω by Wilcox was presented in 1988 

[61] and the next improved version was formulated in 1998 with new closure coefficients for the 

dissipation term. The k-ω model by Wilcox is considered to be accurate in the boundary layers. 

However, the older version of the Wilcox’s k-ω is sensitive to the free stream values away from 

the boundary layer. The improved version of k-ω (1998) [6] model is considered to be superior 

in predictive accuracy for free shear flows to its earlier (1988) version. 

For this model, the kinematic eddy viscosity is given by the following correlation, 

T kν = ω .     (3.15) 

The k-ω transport equations are 

( )* *i
j ij T

j j j

Uk kU k
t x x x x j

k⎡ ⎤∂∂ ∂ ∂ ∂
+ = τ −β ω+ ν + σ ν⎢ ⎥

∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
,  (3.16) 

( )2i
j ij T

j j j

UU
t x k x x x j

⎡ ⎤∂∂ω ∂ω ω ∂ ∂ω
+ = α τ −βω + ν + σν⎢ ⎥

∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
.  (3.17) 

The auxiliary equations which are required for the calculations of the functions in the k-ω 

equations are 

o fββ = β ,     (3.18) 

*
* *

o f
β

β = β ,     (3.19) 

1 70
1 80

f ω
β

ω

+ χ
=

+ χ
,           (3.20) 

( )3*

ij jk ki

o

S
ω

Ω Ω
χ =

β ω
,        (3.21) 
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,    (3.22) 

3

1
k

j j

k
x x
∂ ∂ω

χ ≡
ω ∂ ∂

.    (3.23) 

 

The mean strain rate tensor is defined as 1
2

ji
ij

j i

UUS
x x

⎛ ⎞∂∂
≡ +⎜⎜ ∂ ∂⎝ ⎠

⎟⎟ , and the mean rotation 

tensor is defined as 1
2

ji
ij

j i

UU
x x

⎛ ⎞∂∂
Ω = −⎜⎜ ∂ ∂⎝ ⎠

⎟⎟ . The correlations for the turbulence dissipation and 

turbulence length scale are respectively 
* kε = β ω , 1 2l k= ω .    (3.24) 

The closure constants for the k-ω equation are 

*13 1 1, ,
25 2 2

α = σ = σ = , 

*9 ,
125 100o oβ = β =

9 .    (3.25) 

The key differences between the two versions, 1988 and 1998, of the Wilcox’s k-ω 

model, as mentioned by Wilcox [6], are the coefficients of the dissipation terms,  and *β β . The 

functions fβ  and *f
β

, which depend on ωχ  and kχ  respectively, do not appear in the older 

version (1988). Also, the model constants α  and oβ  are recalibrated to newer values, 0.56 and 

0.075, from the older values of 0.52 and 0.072 respectively. Closer to a solid boundary ω is very 

large, keeping  and  small and hence the new dissipation coefficients have minimal effects 

on the boundary-layer flows. In this manner the nature of the older version in predicting the 

accuracy in the boundary-layer flows is retained in the new version. However,  and 

ωχ kχ

ωχ kχ  are 

significantly larger for free shear flows and hence the new version predicts more dissipation and 

is less sensitive to the free stream values compared to the older version. 
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3.2.2 The k-ε Model 

 

The k-ε model is one of the most popular two equation models. The earliest development 

for the k-ε model was by Chou (1945), Davidov (1961), and Harlow and Nakayama (1968). With 

the efforts of Jones and Launder in 1972 the k-ε model had a notable improvement and was 

referred to as a standard k-ε model after that. However, the closure coefficients were revisited 

and corrected by Launder and Sharma in 1974 and this model is in practice the standard k-ε 

model [6]. 

The kinematic eddy viscosity is given by the correlation 
2

T C kμν = ε .     (3.26) 

The standard k-ε model is given as 

( )i
j ij T k

j j j

Uk kU
t x x x x j

k⎡ ⎤∂∂ ∂ ∂ ∂
+ = τ − ε + ν + ν σ⎢ ⎥

∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
,  (3.27) 

( )
2

1 2
i

j ij T
j j j

U U C C
t x k x k x xε ε ε

j

⎡ ⎤∂∂ε ∂ε ε ε ∂ ∂ε
+ = τ − + ν + ν σ⎢ ⎥

∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
. (3.28) 

The closure coefficients for the k-ε model are 

1 21.44, 1.92, 1.0, 1.3, 0.09kC C Cε ε ε μ= = σ = σ = = .          (3.29) 

The turbulence dissipation and the turbulence length scale are given by the correlations, 

C kμ

ε
ω = , 

3 2C k
l μ=

ε
.    (3.30) 

 

3.3  Menter’s Two Equation Turbulence Models 

 
Menter’s models are two-equation eddy viscosity turbulence models with an emphasis on 

the engineering perspective [62].  The basic problem of two equation models has been the 

prediction of the separation in adverse pressure gradient flows. In response, Menter has 

developed a new two-equation turbulence model based on the elements of existing models. 

Menter’s first choice of model was the k-ω [61] model which is well-behaved in the 

sublayer of the boundary layer and its superior compared to the k-ε model in the logarithmic part 

 36



of the boundary layer, especially for adverse pressure gradient flows and compressible flows. A 

notable disadvantage in this model [61] is its failure in predicting the asymptotic behavior of the 

turbulence as it approaches the wall. However, the model does retain its accuracy in predicting 

the mean velocity profiles and the skin friction of high-Reynolds number flows. A key 

disadvantage is that the model [61] is highly sensitive to the freestream values outside the 

boundary layer. 

A new baseline model is developed on the basis of Menter’s original two equation 

turbulence models which have the advantage of both the models. The idea is to retain the 

accurate formulation of the k-ω model in the boundary-layer region and to that add the advantage 

of the k-ε model in the region of free shear layers to reduce the sensitivity to the freestream flow. 

To achieve this idea the k-ε model is transformed into an equivalent k-ω formulation. 

 

Formulation of the Baseline Model: 

 

The original [61] k-ω model is 

( )*
1

i
ij k t

j j

uD k kk
Dt x x x j

⎡ ⎤∂ ∂ ∂
= − + +⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦

ρ τ β ρω μ σ μ ,  (3.31) 

21
1 1( )i

ij t
t j j

uD
Dt v x x x j

⎡ ⎤∂ ∂ ∂
= − + +⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦
ω

γρω ωτ β ρω μ σ μ .  (3.32) 

The transformed k-ε model is 

( )*
2

i
ij k t

j j

uD k kk
Dt x x x j

⎡ ⎤∂ ∂ ∂
= − + +⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦

ρ τ β ρω μ σ μ ,  (3.33) 

22
2 2 2

1( ) 2i
ij t

t j j j j

uD k
Dt v x x x x x

⎡ ⎤∂

j

∂ ∂
= − + + +⎢ ⎥

∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
ω ω

γ ∂ ∂
∂

ρω ωτ β ρω μ σ μ ρσ
ω

ω . (3.34) 

A blending function  is introduced combine these two models.  and 1F 1F 11 F−  are 

multiplied with the k-ω and the k-ε models respectively to obtain the baseline version. To retain 

the characteristics of the k-ω model the blending factor  is set to one in the boundary-layer and 

the log-layer regions and gradually switches to zero in the wake region and the free shear layers 

to take advantage of the k-ε model. The eddy viscosity for the baseline model is defined as 

1F
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t
kv
ω

= .     (3.35) 

The definition for the shear stress tensor is given by 

2 2
3 3

ji k
ij t ij ij

j i k

uu u k
x x x

τ μ δ
⎛ ⎞∂∂ ∂

= + − −⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
ρ δ .   (3.36) 

The combined transport equations for the baseline model are 

( )*i
ij k t

j j

uD k kk
Dt x x x j

⎡ ⎤∂ ∂ ∂
= − + +⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦

ρ τ β ρω μ σ μ ,  (3.37) 

 

2
1 2

1( ) 2(1 )i
ij t

t j j j j

uD kF
Dt v x x x x x

⎡ ⎤∂

j

∂ ∂ ∂
= − + + + −⎢ ⎥

∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
ω ω

∂
∂

ρω γ ω ωτ βρω μ σ μ ρσ
ω

. (3.38) 

 
To generate the new closure coefficients, Menter proposed a similar blending function. If 

1φ  and 2φ  represents the original k-ω and k-ε model constants respectively, then the relation 

between 1φ  and 2φ  and the SST model constant φ  is given as 

1 1 1 2(1 )F F= + −φ φ φ .     (3.39) 

The closure constants for set 1 ( 1φ ) from the k-ω model are 

*
1 1 10.5, 0.5, 0.075, 0.09, 0.41k = = = = =ωσ σ β β κ , 

* 2
1 1 1/ /ω

*γ β β σ κ β= − .    (3.40) 

 
The closure constants for set 2 ( 2φ ) from the k-ε model are 

*
2 2 21.0, 0.856, 0.0828, 0.09, 0.41k = = = = =ωσ σ β β κ , 

* 2
2 2 2/ /ω

*γ β β σ κ β= − .    (3.41) 

 
The blending function is defined as 

4
1 tanh(arg )F = 1 ,    (3.42) 

2
1 2

4500arg , ;
0.09 k

kk vmin max 2y y CD y
⎡ ⎤⎛ ⎞

= ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

ω

ω

ρσ
ω ω

,  (3.43) 
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where y is the distance to nearest surface and kCD ω  is the positive portion of the cross diffusion 

term and is given as 

20
2

1max 2 ,10k
j j

kCD
x xω ω

ωρσ
ω

−
⎛ ⎞∂ ∂

= ⎜⎜ ∂ ∂⎝ ⎠
⎟⎟ .   (3.44) 

 

Formulation of Shear-Stress Transportation Model: 

 

Reynolds Stress models with respect to the aerodynamic applications account for the 

important effect of the transport of the principal shear stress, whereas the eddy viscosity models 

does not account for the transport effects. The baseline model was modified to take the transport 

effects into effect which leads to the formulation of the Shear Stress Transport Model. 

The eddy viscosity for the SST model is defined as 

1

1 2max( ; )t
k

F
αν
α ω

=
Ω

.     (3.45) 

Otherwise the Shear Stress Transportation model is identical to the baseline formulation 

except for the closure constants. The closure constants for set 1 are given as follows 
*

1 1 1 10.85, 0.5, 0.075, 0.09, 0.31, 0.41k = = = = = =ωσ σ β β α κ , 

* 2
1 1 1/ /ω

*γ β β σ κ β= − ,    (3.46) 

where Ω is the absolute value of vorticity. The blending function for the SST model is defined as 
2

2 tanh(arg )F = 2 ,    (3.47) 

2 2

500arg max 2 ;
0.09

k
y y

ν
ω ω

⎛ ⎞
= ⎜⎜

⎝ ⎠
⎟⎟ .   (3.48) 

This improved version, which includes the transport effects, of the baseline model shows 

a significant improvement in for the flows involving adverse pressure gradients and is able to 

accurately predict pressure-induced separation. 
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3.4  Hybrid Turbulence Models 

 

3.4.1 Formulation of DES Equations based on SA Turbulence model 

 

The hybrid turbulence model, DES, was first formulated by Spalart [1] in 1997. 

Formulation of the DES model was based on the one-equation SA turbulence model. In the SA 

model, when the destruction term is balanced with the production term then the eddy viscosity 

becomes proportional to the square of the distance to the wall and to the local deformation rate, 
2Sdν ∝ . This is similar to the subgrid scale model of Smagorinsky whose eddy viscosity is 

proportional to the square of the grid spacing, 2
T Sν ∝ Δ , where Δ  is the grid spacing. Hence the 

basic concept that the distance closest to the wall could be replaced by the proportional length 

scale, Δ . The new length scale, , is given by l

( ),w DESl min d C= Δ ,     (3.49) 

where  is the distance closest to the wall, Cwd DES is the new adjustable model constant, and ∆ is 

based on the largest dimension of the local grid cell, which is given by 

( ), ,x y zmax δ δ δΔ = .     (3.50) 

When , the DES model results in a model that functions as a SA model in the 

attached boundary layer. When  the model acts as a subgrid scale model in the regions of 

the flow away from the wall which includes the separated regions and wake regions. One thing 

that can be observed is that when l  is substituted with 

d Δ

dΔ

wd  the model reduces to the standard SA 

model. Once the field point is away from the attached boundary layer the model becomes grid 

dependent and the model performs as a subgrid scale version of the SA model. 

The new adjustable model constant CDES is assessed by experimenting with the 

homogeneous turbulence requiring a reasonable behavior from the computed energy spectrum at 

small scales. The model constant was suggested to be on the order of 1 by Spalart [1]. The CDES 

coefficient was calibrated to 0.65 for a homogeneous turbulence flow. This same value is used to 

carry out the simulation for a three dimensional turbulent flow over a circular cylinder.  
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Even though the formulation of the DES model has been a fairly simple process, there 

remains concern about the “grey area”. When the SA model length scale, , is on the same 

order of magnitude as  then the question is how the DES model behaves when these two 

length scales are roughly on the same order of magnitude. It is necessary to understand this “grey 

area” region and hence the transition point from RANS mode to LES mode becomes critical.  

wd

DESC Δ

A shift in the grey area region is possible with the increase in number of grid points in the 

spanwise direction as well as when the grid is further refined in the grey area region. The extent 

of grid dependency of this hybrid model is to be understood with changing grids and the grid 

spacing. 

An additional issue that arises with unstructured grids is the definition of the grid 

spacing. For the hexahedral grid shown, the conventional definition of Δ  can be applied in a 

fairly direct fashion, but more complicated cell volumes (such as tetrahedral or combined 

hexahedral-tetrahedral) do not have that luxury. If other means of defining the grid spacing are 

used, the region of RANS-LES transition can shift significantly. This has implications for both 

the location of the grey area and the magnitude of the dissipation term in the LES region. Also, 

the change in the method of evaluation of the grid spacing can lead to the change in the solution. 

It is due to the nature of dependency of the model on the grid spacing calculation. 

A correction for the DES length scale has been suggested by Spalart et al [66] for the 

flows with low Reynolds numbers. In the LES mode, the eddy viscosity normalized by the 

molecular viscosity decreases both with grid refinement and with low Reynolds numbers. In this 

case the DES length scale misinterprets the decrease due to low Reynolds numbers for that due 

to wall proximity, and hence reduces the eddy viscosity more than is warranted. The suggested 

modification in the length scale is given as 

( ),DES RANS DESl min l C= Ψ Δ ,    (3.51) 

where DESl  is the DES length scale,  is the distance closest to the wall and with RANSl DESC , Δ  

being defined earlier, and  is the correction factor introduced equivalent to Ψ χ ν ν≡ . Under 

the assumption that the convection and diffusion in the turbulence transport are negligible, the 

subgrid model driven by the length scale, DES DESl C= Ψ Δ

S

, is reduced to a Smagorinsky-like 

model, ( )2Cν = Δ , where C is a constant. 
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The correlation for  is given as Ψ

( )

( )

1
2 2* 2 *

2 1

1 2

1

1

w b
t t

w w w

v t

f c
2vf f f

f c f
f f

κ
⎡ ⎤− + −⎣ ⎦

Ψ =
−

.   (3.52) 

The equilibrium function is given as 

( )( ),w wf g r fφ χ⎡ ⎤= ⎣ ⎦ ,    (3.53) 

( ) ( ) ( )
1 66

1 2 3
2

1 1 3

1 1, ,b t w
w

w w b w w

c f cr f g g
c f c f g c

χ φ
κ

− ⎛ ⎞+
= ≡ ⎜− +⎝ ⎠

6 6 ⎟ .  (3.54) 

The above non-linear algebraic correlations are observed to be the functions of χ ν ν≡ . The 

limiter for the equilibrium function, *
wf , is set to 0.424.  

It is observed that *
w wf f  is a weak function of ν ν  for a range of 10ν ν> . Hence, the 

correlation for Ψ  is replaced with an appropriate expression 

( )

( )

1
2 2 22 *

2 2 1
10

1 2

1 1
10 ,

10 ,1

b
t t v

w w

v t

c f f f
c fmin

f max f
κ

−

⎡ ⎤⎡ ⎤− + −⎣ ⎦⎢ ⎥
⎢ ⎥Ψ =

−⎢ ⎥
⎢ ⎥⎣ ⎦

.   (3.55) 

The above formulation results in stronger value of Ψ  for the lower values of subgrid eddy 

viscosity and when the subgrid eddy viscosity values are higherΨ  is inactive or 1. 

 

3.4.2 Formulation of DES Equations based on Menter’s SST Turbulence model 

 

The DES model based on Menter’s SST turbulence model was formulated by Travin, 

Shur, Strelets and Spalart in 2002 [59]. Though the original DES model was based on the SA 

model with its length scale replaced, it was argued that a DES model can be obtained from any 

RANS model by appropriate change in the length scale which is explicitly or implicitly involved 

in any RANS turbulence model. In case of Menter’s SST model, the modification is applied to 

the k-ω portion of the model. 

In the Menter SST model the length scale in terms of k-ω is given by 
 

1/ 2 /( * )kl kω β ω− = .    (3.56) 
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Modifying the dissipative term of the - transport equation yields k
* 3/ 2 /k

RANS kD k k l ωρβ ω ρ −= = .    (3.57) 

Replacing kl ω− , with the DES length scale, , given as l

( ,k DESl min l Cω− )= Δ ,    (3.58) 

where CDES is a model constant. 
( ), ,x y zmax δ δ δΔ = ,    (3.59) 

where  is the largest dimension of the local grid cell. Substituting this in the above equation to 

obtain 

Δ

3/ 2 /k
DESD kρ= l ,    (3.60) 

and hence the DES model based on the Menter’s SST model is obtained. 

Coming to the correction factor for the models with low Reynolds number terms, as 

discussed in the earlier section, the length scale modification for the low Reynolds number terms 

is given as, 

( ),DES RANS DESl min l C= Ψ Δ .    (3.61) 

 

3.4.3 Scale-Adaptive Simulation (SAS) Turbulence Model 

 

Menter in 2003 presented a one-equation turbulence model (eddy-viscosity model) which 

is capable of resolving turbulent structures without any explicit grid dependency. Also, he argues 

that a reduction in the eddy viscosity allows a LES-like resolution of the turbulence flow field 

and that can be achieved if a natural destruction term can be added to an eddy-viscosity model. 

For this purpose he used the KE1E one-equation model for high Reynolds numbers, which he 

originally derived in [64], to demonstrate the relation between the one-equation and the two-

equation models and also to explain the grid sensitivity of the Baldwin-Barth [65] one-equation 

model. In order to achieve the goal of demonstrating the relation between the one- and two- 

equation models, a k-ε model was transformed into a one equation eddy viscosity model, the 

KE1E model. The Baldwin Barth method was followed [64] and the time derivative of eddy 

viscosity, from the definition of eddy viscosity given for the k-ε model, was expressed by the 

time derivatives of the k and ε and hence by replacing the derivatives with the k-ε equation itself 
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in an appropriate manner a one-equation model was formulated. Two more equations were 

considered in order to close the system, out of which one was the eddy viscosity definition itself 

and the other the definition of the turbulent shear stress. 

A von Karman length scale is adapted by this model as a scale determining variable, 

which determines the local scale of the flow field and hence allows the model to adapt to the 

length scale that is present in the flow. The model is therefore named the Scale-Adaptive 

Simulation (SAS) turbulence model.  

The kinematic eddy viscosity definition for the KE1E model is given as 
2

t
kcμν
ε

= .     (3.62) 

The turbulent shear stress is 

1
i

t
j

uu v a k
x

ν ∂′ ′− = =
∂

,     (3.63) 

1 , i

j

ua c S
xμ
∂

= =
∂

.     (3.64) 

The one-equation KE1E model is 

( ) ( ) 2

1 2
j tt t t

t
t

j vK j j

U
c S c

t x L x
ρ νρν

x
ν μ νμ ρ

σ

∂ ⎛ ⎞∂ ⎛ ⎞ ∂∂
+ = − + ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

.  (3.65) 

The model constants are given as 

1 20.144, 1, 1.86, 0.09c c μcσ= = = = .  (3.66) 

The von Karman length scale  is vKL

( )
vK

j j

S S
L

S S
x x

⋅
=
⎛ ⎞∂ ∂

⋅⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

,    (3.67) 

and the length scale in the boundary layers is 

1 2
2

1 2
vK

U xL
U x2

∂ ∂
=
∂ ∂

,    (3.68) 

where  is the velocity parallel to the wall and 1U 2x  is the coordinate normal to the surface. 

A problem with the proposed length scale is a singularity occurs when it goes to zero and 

hence it is not successful when used in a mixing length problem. To correct this, it was argued 

 44



that as the length scale is contained in the destruction term, and so it can be limited by any other 

term of same dimensions. The modified destruction term is 
2 2

2 2 lim;t t

vK vK j j

c c min c
L L

t t

x x
ν ν νρ ρ ν⎡ ⎤⎛ ⎞ ⎛ ⎞ ∂ ∂⎢ ⎥→⎜ ⎟ ⎜ ⎟ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

.  (3.69) 

However, after testing, it was found that the original length scale, considered to be the 

true size of turbulent eddies, was more promising than the limited length scale and the singularity 

problem had to be considered only when all the three velocity components are zero at the same 

location. This could be eliminated [63] by adding a small number to the denominator to insure a 

non-zero result and redefining the length scale to be 

2 2

2 2

i i

j j
vK SAS

l l

m n

U U
x x

L
U U
x x

−

∂ ∂
∂ ∂

=
∂ ∂
∂ ∂

.    (3.70) 

Replacing the original length scale with  and rewriting the formulation yields, vK SASL −

( ) ( ) 2

1 2
j tt t t

t
t

j vK SAS j j

U
c S c

t x L x
ρ νρν

x
ν μ νμ ρ

σ−

∂ ⎛ ⎞∂ ⎛ ⎞ ∂∂
+ = − + ⎜⎜ ⎟ ⎜∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎟⎟ . (3.71) 

Finally, the length scale is modified to in order to be operated in RANS and LES modes 

and to give correct LES decay rates: 

( ),vK SAS vK SAS SASL max L C− −= Δ ,   (3.72) 

( )min x, y, zΔ = Δ Δ Δ , 0.6SASC = .   (3.73) 

The modified length scale to operate in the RANS and LES modes is an option for the 

model in order to make sure of getting the correct LES decay rates. Otherwise, the SAS model is 

a turbulence model without an explicit grid dependency. 

 

3.4.4 Formulation of DDES Equations based on SA Turbulence Model 

 

The DES turbulence model can exhibit incorrect behavior in thick boundary layers and in 

the shallow separation region which is titled as a ‘grey area’ region. When the grid spacing 

parallel to the wall is less than the boundary layer thickness, the LES turbulence model takes 
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over as the length scale is fine enough for the DES to switch into a LES mode from RANS mode. 

Once the DES limiter is activated in such ambiguous grids, this limiter reduces the eddy 

viscosity and hence the modeled Reynolds stresses. However, the grid is not fine enough to 

support the LES content and also the resolved Reynolds stresses in LES mode do not completely 

replace the modeled Reynolds stresses from the RANS mode. This leads to the depletion of the 

stresses which in turn leads to the reduction in the skin friction computations leading to a 

premature separation. 

Considering these issues with the original DES model by Spalart [1], a new version of 

DES called Delayed Detached Eddy Simulation (DDES) was proposed in 2006. As described by 

Spalart [66], DDES is a derivative of the proposed solution within the DES equations by Menter 

and Kuntz [67], who use the blending functions of the SST model for the identification of the 

boundary layers to prevent a premature switch to LES. The arguments of these functions [66], 

except for the low Reynolds numbers, is the ratio of the internal length scale to the closest 

distance to the wall, k yω . However, there is no such internal length scale present in the SA 

model. Instead the parameter r, which is ratio of model length scale to the wall distance, is 

modified to obtain the new model. This new version (DDES) is applicable to any eddy viscosity 

model with slight modifications applied to the model constants.  

The correction to the parameter r is 

2 2
, ,

t
d

i j i j

r
U U d
ν ν

κ
+

≡ ,     (3.74) 

and the modified parameter is used in the function 

[ ]( )31 tanh 8df ≡ − dr .     (3.75) 

Here tν  is the kinematic eddy viscosity, ν is the molecular viscosity, and the term tν ν+  in the 

numerator can be replaced by ν  for the SA model. The term  represents the velocity 

gradients, d is the wall distance, and 

,i jU

κ  is the von Karman constant.  

The modification to the DES length scale  to obtain the length scale for DDES version 

is, 

d

( )dd d f max 0, d - CDES≡ − Δ .    (3.76) 
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Similar to the parameter r in the SA model,  shifts from 1 in the logarithmic region to 0 

towards the edge of the boundary layer. To ensure that the model is in LES region, the function 

dr

df  is set to 1 in that region. However, setting df  to 0 in the redefined length scale retains the 

RANS mode and setting it to 1 it retains the original DES formulation. The length scale in the 

one-equation SA model is the distance closest to the wall,  which is replaced with the 

modified length scale.   

wd

 With the increase in popularity of DES like models, some of the grid issues are becoming 

apparent. These hybrid models are dependent on the grid construction and the grid spacing 

except for the base SAS model which is argued to be operative in the RANS and LES regions 

without explicit grid dependency. The overall objective of this project is to study the effects of 

the grid dependencies on the performance of these hybrid turbulence models in the context of 

three-dimensional unstructured grid code. The tools that have been developed to study these 

problems are detailed in the next chapter. 
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Chapter 4 : FLOW SOLVERS 
 

 
In this chapter the two in-house codes, UNCLE and GHOST, used for the computations 

in this thesis will be discussed. Implementation of the Spalart-Allmaras (SA) one-equation 

turbulence model along with the hybrid turbulence model (DES) in the UNCLE and GHOST 

codes will be presented in detail. The information about the hardware that is used in these 

computations will be presented in brief. The two grid generation procedures that were used for 

carrying out theses simulations will be discussed, one using a grid generator code written in 

Fortran90 and the second using the commercial grid generation software, GAMBIT.  

 

4.1 UNCLE 

  
UNCLE is an in-house CFD code at the University of Kentucky, originally written by Dr. 

George Huang. It is designed to meet the challenges of physical problems with complex 

geometries, and complicated boundary conditions on parallel computers while maintaining high 

computational efficiency [68]. The laminar form of the code was validated by Dr. Chen Hua at 

the University of Kentucky using various test cases [69]. It is a two/three-dimensional, finite-

volume, unstructured incompressible Navier-Stokes solver for steady and unsteady flow fields. It 

is highly flexible in terms of grid geometry as it can handle volumes of various types such as 

triangular, quadrilateral, tetrahedral and hexahedral. METIS [70], a program based on multilevel 

26 graph partitioning schemes, is used for grid partitioning. The parallel construction of code is 

done using message passing interface (MPI) protocols. UNCLE relies on a cell-centered 

pressure-based method that is based on the SIMPLE algorithm with second order accuracy in 

both time and space. A second order upwind scheme is adopted to compute the advection terms 

and a second order central difference scheme is used for computing the diffusion terms. A 

collocated grid system with the Rhie and Chow momentum interpolation method [71] is 

employed to avoid the checkerboard solution of the pressure based scheme. Fluxes on the 
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volume faces are determined through interpolation of cell-centered values. The time 

discretization is a second-order fully implicit scheme. 

In order to discuss the numerical methods in UNCLE, it will be a good starting point to 

revisit the governing equations in brief. The governing equations for unsteady incompressible 

viscous flow neglecting body forces and heat transfer are, 

Mass Conservation:              i i
V S

dV u n dS
t

ρ ρ∂
= −

∂ ∫ ∫ ,                                                               (4.1) 

Momentum Conservation:    j i j i j ij i
V S S S

u dV u u n dS pn dS n dS
t

ρ ρ τ∂
= − − +

∂ ∫ ∫ ∫ ∫ ,                       (4.2) 

Energy Conservation:           i i j j j ij i
V S S S

EdV u n EdS pu n dS u n dS
t

ρ ρ τ∂
= − − +

∂ ∫ ∫ ∫ ∫ ,                 (4.3) 

where specific internal energy is ( 2 2 21
2 )E e u v w= + + + . Here, ρ  is the density,  are the 

velocity vector components,  is the unit normal vector of the interface, 

iu

in p  is the pressure, and 

ijτ  is the tensor of shear stress force. 

 

Convective and Diffusive Fluxes: 

 

In Figure 4-1, P1, P2 and V1, V2 represent the node and the vertex points of a face 

respectively. Here, ( , )ξ η  are the coordinates in the direction of P1 to P2 and V1 to V2 

respectively. The third dimension, say for a hexahedral cell which has four vertices for a face, ζ  

is the direction vector pointing into the paper and V1, V2, V3, V4 are the vertices of a four sided 

face with V3 behind V1 and V4 behind V2. The code follows a left hand thumb rule convention, 

when the index finger of the left hand is placed in the direction of the vertices, say from V1 to V2 

then the thumb of the left hand represents the direction of the node points to be considered, that 

is P1 to P2. UNCLE can handle four kinds of cell structures: triangular, quadrilateral, tetrahedral, 

and hexahedral; however, this thesis will focus on simulations using grids with quadrilateral and 

hexahedral cells. The integration volumes and areas vary with the varying cell structures.  
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Figure 4-1 Left-Hand Thumb rule Convention for a control volume cell 

  

Taylor series expansion is used to obtain the flow properties at the interfaces. The equations are 

( ) ( ) ( )1 1 1 1

1 11

LHS
P f P f P f P

P PP

x x y y z z HOT
x y z
φ φ φφ φ ∂ ∂ ∂

= + − + − + − +
∂ ∂ ∂

, (4.4) 

( ) ( ) ( )2 2 2 2

2 22

RHS
P f P f P f P

P PP

x x y y z z HOT
x y z
φ φ φφ φ ∂ ∂ ∂

= + − + − + − +
∂ ∂ ∂

, (4.5) 

where φ  represents any of the scalar quantities and velocity vector components, while the 

subscripts P1 and P2 represent the node points of a face and V1 and V2 correspond to the vertices 

of the same face. The vertices follow the left hand thumb rule convention. The superscripts LHS 

and RHS are for the left (P1) and right (P2) hand sides of the face (interface) and HOT stands for 

higher order terms. 

The equation that can be used to obtain the flow properties at the face is 

( ) ( )(1 1 1,
2 2

LHS RHS LHS RHS
f sign mφ φ φ φ φ= + − + ) .   (4.6) 

Gauss’s divergence theorem is used to calculate the gradients at the cell centers 

i
iV A

dV n dA
x
φ φ∂

=
∂∫ ∫ ,     (4.7) 
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,
1

faceN

i k k
k

i

n A

x V

φ
φ =∂
≈

∂

∑
,     (4.8) 

where φ  is the flow property to be calculated at the cell center, V is the volume of the cell, A is 

the area of face,  is the unit normal vector of the interface, and in faceN  is the total number of 

faces corresponding to the cell for which the flow property is being calculated. For diffusive 

fluxes, gradients at the interface can be evaluated using the following equations: 

x x x x
φ φ ξ φ η φ ζ

ξ η ζ
∂ ∂ ∂ ∂ ∂ ∂ ∂

= + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

, 

y y y y
φ φ ξ φ η φ ζ

ξ η ζ
∂ ∂ ∂ ∂ ∂ ∂ ∂

= + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

,    (4.9) 

z z z z
φ φ ξ φ η φ ζ

ξ η ζ
∂ ∂ ∂ ∂ ∂ ∂ ∂

= + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

. 

 

Cell-Centered Pressure method based on SIMPLE algorithm: 

 

As mentioned before, UNCLE uses the SIMPLE algorithm. A cell centered pressure 

based method is built on the SIMPLE algorithm with second order accuracy in both time and 

space. An initial pressure field  is used to obtain  by solving the momentum 

equations in a sequential manner. The delta form is used for the solution method on the LHS 

terms and the momentum equations can be written 

nP , , andn n nu v w

p nb
nb

a u a u RHSΔ = Δ + u∑ , 

p nb
nb

a v a v RHSΔ = Δ + v∑ ,         (4.10) 

p nb
nb

a w a w RHSΔ = Δ + w∑ , 

where the subscript p denotes the cell (node point) to be solved,  is the coefficient at the cell 

center, and  represents the coefficient of each individual neighbor of that cell. The 

coefficients  and  are 

pa

nba

pa nba

p n
nb

a a= b∑ ,            (4.11) 
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( ) ( )1 2 3,0nb f f x y za max -m n n nμ ξ ξ ξ= + + + A ,   (4.12) 

where A is the area of the interface, xξ , yξ , zξ  represent the local coordinate system on the 

interface, and fm  is the mass flux at the interface. The RHS terms are 

( ) ( ) ( )11 ,1 21 ,2 31 ,3
1

faceN
n n n n n

u i i i i i i ii i i
i

iRHS m u p n A n A n Aτ τ τ
=

⎡ ⎤= − − − − −⎣ ⎦∑ , 

( ) ( ) ( )12 ,1 22 ,2 32 ,3
1

faceN
n n n n n

v i i i i i i ii i
i

ii
RHS m v n A p n A n Aτ τ τ

=

⎡ ⎤= − − − − −⎣ ⎦∑ ,  (4.13) 

( ) ( ) ( )13 ,1 23 ,2 33 ,3
1

faceN
n n n n n

w i i i i i i ii i i
i

iRHS m w n A n A p n Aτ τ τ
=

⎡ ⎤= − − − − −⎣ ⎦∑ . 

The momentum equations represented in first order delta form are solved using Gauss-

Seidel point substitution. After this, the velocities at the current time step are given by 
* * *, ,n n nu u u v v v w w w= + Δ = + Δ = + Δ .   (4.14) 

However, the velocity obtained from solving the momentum equations does not necessarily 

satisfy the continuity equations. For this reason, the velocity is interpolated on to the interface 

and in order to get rid of checkerboard solutions the velocity at the interface needs to be solely 

driven by the pressure difference which is directly evaluated at the interface. To achieve this, 

interpolated interfacial velocity is divided into two components: the velocity component without 

the contribution of pressure and the velocity component with the contribution of pressure. The 

former is evaluated at the cell center by 

* * * * * *, ,
n n

p p

p p

V Vp pu u v v w w
n

p

p

Vp
x a y a

∂ ∂
= + = + = +

∂ ∂ z a
∂
∂

,  (4.15) 

and then are interpolated on to the faces of that cell. The latter is obtained from the pressure 

difference of the adjacent nodal points, P1 and P2, such that the velocity at interface is expressed 

by 

* * * * * *, ,
n n n

f f f
f f f f f f

f f ff f

V Vp pu u v v w w
f

Vp
x a y a

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂
= − = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠z a

∂
∂

. (4.16) 

Here, the ratio of the volume to the area, f fV a , at the face is obtained by interpolating the 

volume to area ratio of the cell on to the face. 
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In order to satisfy the continuity equation, corrections are added to the velocities 

evaluated at the interface as given above. After adding the corrections to the velocities they are 

substituted into the continuity equation 

( ) ( ) ( )* * *
1 2 3

1
0

faceN

f f f f f f
i

u u n v v n w w n Aρ
=

⎡ ⎤′ ′ ′+ Δ + + Δ + + Δ =⎣ ⎦∑ , 

* * *
1 2 3 1 2 3

1 1

face faceN N

f f f f f f
i i

u n v n w n A u n v n w n Aρ ρ
= =

′ ′ ′ ⎡ ⎤⎡ ⎤⇒ Δ + Δ + Δ = − + +⎣ ⎦ ⎣ ⎦∑ ∑ , (4.17) 

where the RHS represents the mass imbalance in the control volume cell. One then assumes that 

there is a corresponding pressure correction field p′  that drives the velocity corrections 

according to 

( ) ( )

( )

2 1 2 1

2 1
,

f
f f

P P x V V x
f

P P x
f

p Vu
x a

V p p p p
a

V p p
a

′∂⎛ ⎞ ⎛ ⎞′Δ ≈ −⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎡ ⎤′ ′ ′ ′= − + −⎜ ⎟ ⎣ ⎦⎝ ⎠

⎛ ⎞ ⎡ ⎤′ ′≈ −⎜ ⎟ ⎣ ⎦⎝ ⎠

ξ η

ξ

   (4.18) 

( ) ( )

( )

2 1 2 1

2 1
,

f
ff

P P y V V y
f

P P y
f

p Vv
y a

V p p p p
a

V p p
a

′⎛ ⎞∂ ⎛ ⎞′Δ ≈ −⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎡ ⎤′ ′ ′ ′= − + −⎜ ⎟ ⎣ ⎦⎝ ⎠

⎛ ⎞ ⎡ ⎤′ ′≈ −⎜ ⎟ ⎣ ⎦⎝ ⎠

ξ η

ξ

   (4.19) 

( ) ( )

( )

2 1 2 1

2 1
.

f
f f

P P z V V z
f

P P z
f

p Vw
z a

V p p p p
a

V p p
a

′∂⎛ ⎞ ⎛ ⎞′Δ ≈ −⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎡ ⎤′ ′ ′ ′= − + −⎜ ⎟ ⎣ ⎦⎝ ⎠

⎛ ⎞ ⎡ ⎤′ ′≈ −⎜ ⎟ ⎣ ⎦⎝ ⎠

ξ η

ξ

   (4.20) 

The equations for the pressure correction are obtained by substituting the velocity 

correction equations into the mass imbalance equation, 

p p nb nb
nb

a p a p b′ ′= +∑ ,     (4.21) 
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where                      1 2,p nb nb x y z
nb f f f

V V Va a a n n n
a a a

ρ ξ ξ ξ 3 A
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

∑ , (4.22) 

* * *
1 2 3f f f

nb
b u n v n w nρ A⎡ ⎤= − + +⎣ ⎦∑ .   (4.23) 

Now that the pressure correction has been obtained, the pressure field can be updated, 

        1n n
P pp p α+ p′= + ,       (4.24) 

where pα  is the under-relaxation factor for pressure and its range is typically 0.5-0.8. Then the 

velocity correction on the interfaces as well as the nodal points is updated. 

 

Time Discretization: 

 

A second order fully implicit scheme is employed for time discretization. Consider a one-

dimensional example 

( )11 13 4 0
2

nn n n f

t x

φφ φ φ
++ − ∂− +

+ =
Δ ∂

,   (4.25) 

where φ  is a primitive variable, f  is the interfacial flux, and n indicates the index in time. In 

order to obtain 1nφ + , a deferred iterative algorithm is employed, 

( ) ( ) ( )
11 1m m mn nφ φ
++ += + Δφ .    (4.26) 

Here, m represents the subiteration level. Substituting (4.26) equation in the (4.25) equation 

yields 

( ) ( ) ( )( ) ( )1 11 33
2 2 2

m mn nm m nn n ff
t x t t x

φ φ φφ φ φ φ
+ +− − ∂Δ ∂ Δ −

+ = − −
Δ ∂ Δ Δ ∂

. (4.27) 

The LHS of the above equation is evaluated based on the first order upwind differencing 

scheme and the RHS is recognized as explicit and is implemented in a straightforward manner to 

discretize the spatial derivative term. The solution for 1nφ +  is obtained by using inner iterations 

to reach a converged solution for the RHS and at least one subiteration is performed at every 

time step so the method is fully implicit. 
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Partitioning Approach using METIS: 

 

METIS [70] is the partitioning approach used to divide the unstructured grid for the cell 

centered pressure based method. It can partition an unstructured grid into any number of zones 

and is compatible with many platforms, convenient for running CFD codes on supercomputers to 

a variety of cluster architectures. This approach does not split the control volumes on the 

boundaries but communication of the nodal values at these boundaries is needed. For this reason 

the Message Passing Interface (MPI) is implemented in this unstructured grid code for parallel 

computation or the communication of the nodal values. An excellent load balancing between the 

partitioned grids is achieved by METIS [70].  

 

4.1.1 Implementation of SA Model in UNCLE 

 

In UNCLE code, the Menter’s SST turbulence model was implemented previously. 

However, in order to carry out the simulations for the hybrid turbulence model, DES, the one-

equation Spalart-Allmaras model is implemented in the UNCLE code. For convenience, the SA 

equation is presented,  
2

2
1 1

Production
Destruction Diffusion-IIDiffusion

1 ( ) b
j b w w

j k k

cU c S c f
t x d x x xk kx
ν ν ν νν ν ν

σ σ
⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ = − + + +⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎣ ⎦

ν ν

HS

. (4.28) 

The convective fluxes and the diffusive fluxes are treated similar to the velocity field, 

discussed in the previous section. The discretization of the turbulence equation is similar to the 

momentum equations except for the treatment of the right hand side which will be discussed 

here. The equation is solved in delta form and the time discretization is second order fully 

implicit.  

Similar to the momentum equations, the turbulence equation is evaluated in delta form, 

p nb
nb

a a Rν νΔ = Δ +∑
Source

,    (4.29) 
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p
nb

Loss Terma
ν

= + nba∑
For Stability

,    (4.30) 

( ) ( )( )1 2 3,0nb f x y za max -m n n nν ν ξ ξ ξ= + + + + A ,  (4.31) 

2
2

1 1
b

b w w
k k

cRHS c S c f
d x x
ν ν νν

σ
∂ ∂⎛ ⎞= − +⎜ ⎟ ∂ ∂⎝ ⎠

.  (4.32) 

The coefficients of the neighboring cells are evaluated similar to the momentum 

equations, however the loss term divided by the transport equation variable similar to eddy 

viscosity is added to the coefficient of the local cell  to increase numerical stability. The right-

hand side of the discretized equation, which is the source term, is formed by the production term, 

destruction term, and one of the diffusion terms. The equation is solved for 

pa

νΔ  and the turbulent 

viscosity, 1T vfν ν= , is evaluated and is updated to solve the momentum equation for the next 

time step. It should be mentioned that turbulence equations are solved after the momentum and 

continuity equations are solved in a given subiteration, so they are staggered. 

 

4.1.2 Implementation of SAS Model in UNCLE 

In addition to the SA model, and SA-DES model in the UNCLE code, the Scale Adaptive 

Simulation (SAS) hybrid turbulence was implemented in the UNCLE model. The SAS model, as 

mentioned earlier, is argued to be a hybrid turbulence model which is not explicitly grid 

dependent like the DES hybrid turbulence model. The purpose of implementing was to study the 

behavior of this model and compare it with the DES model. Revisiting the SAS model, 

( ) 2

1 2
j tt t

t
j vK SAS jProduction

Destruction Diffusion

U
c S c

t x L x x−

∂ ⎛ ⎞⎛ ⎞∂ ∂∂
+ = − + ⎜⎜ ⎟ ⎜∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

t t

j
⎟⎟

νν ν νν
σ

ν   (4.33) 

The convective and diffusive fluxes in the equation are discretized and treated in the 

same way as that of the momentum equations. It can be observed from equation (4.33) that it has 

a production term, a destruction term, and a diffusion term. The SAS model has the same form as 

the SA model and hence the discretization of the SAS equation is similar to the SA model except 

that it has a double derivative term in the length scale which requires an extra effort. The 

equation is solved in the delta form and the time discretization is second order fully implicit.  
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The discretized equation is solved in delta form as 

Source
p t nb t

nb
a aΔ = Δ + RHS∑ν ν ,    (4.34) 

For Stability

p
nbt

Loss Terma = + nba∑ν
,    (4.35) 

( ) ( )( )1 2 3,0nb f t x y za max -m n n nν ξ ξ ξ= + + + A ,  (4.36) 

2

1 2
t

t
vK SAS

RHS c S c
L −

⎛ ⎞
= − ⎜

⎝ ⎠

νν ⎟ ,    (4.37) 

2 2

2 2

i i

j j
vK SAS

l l

m n

U U
x x

L
U U
x x

−

∂ ∂
∂ ∂

=
∂ ∂
∂ ∂

.    (4.38) 

The Gauss’s divergence theorem is used to evaluate the double derivative terms in the 

length scale calculation. The approach used to calculate the first and second derivatives is 

i
iV A

dV n dA
x
φ φ∂

=
∂∫ ∫ ,    (4.39) 

,
1

faceN

i k k
k

i

n A

x V

φ
φ =∂
≈

∂

∑
,    (4.40) 

,2
1

2

faceN

i k k
k i

i

n A
x

x V
=

∂
∂∂

≈
∂

∑ φ
φ .    (4.41) 

The discretized equation is solved in the delta form for tΔν  and tν  is updated to solve 

the momentum equation. As mentioned earlier, the turbulence variables are solved after solving 

the momentum and continuity equations.  
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4.2 GHOST 

 
GHOST is a two-dimensional, finite volume, steady/unsteady, incompressible Navier-

Stokes solver. It uses standard chimera overset grids for parallel computing. GHOST is a very 

well established code which was tested for a variety of test cases including transitional turbo 

machinery flows and active flow control. It uses QUICK scheme with second order accuracy to 

discretize the advection terms and a second order central differencing scheme for the diffusive 

terms. The advection terms in the turbulence equations (RANS models) are evaluated by the 

Total Variation Diminishing (TVD) scheme. The cell-centered values are interpolated onto the 

interfaces in order to obtain the interfacial fluxes. A second order upwind time discretization is 

employed for the temporal terms, using a delta form sub-iterative scheme. GHOST was also 

designed to minimize memory usage which was accomplishes through extensive use of the 

allocation and de-allocation of variables in FORTRAN90. It uses a cell-centered partitioning 

approach and the internode communication protocol is MPI. It has mechanisms to do a form of 

automatic load balancing. Similar to UNCLE, GHOST uses a second order fully implicit method 

for time discretization. 

GHOST is designed to use structured grids and the variables are stored in individual 

arrays in i, j format, for example, 1 2 3, , ...... nφ φ φ φ . For a structured grid, the majority of 

calculations are performed as a series of bi-directional sweeps in nested double loops. The 

matrices resulting from each subiteration based on the QUICK and TVD schemes as well as 

evaluation of source/sink terms are solved with ADI-type decomposition into a pair of sweeps 

alternately in i- , j- directions which are solved sequentially in tri-diagonal matrices. Unlike 

UNCLE which uses a Gauss-Seidel point solver, GHOST uses a TDMA solver, which solves a 

tri-diagonal matrix.  

 The one-equation Spalart-Allmaras turbulence model and the hybrid turbulence model, 

DES were implemented in the GHOST code for cross validation with UNCLE. 
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4.3 HARDWARE DETAILS - KENTUCKY FLUID CLUSTERS 

 
The Kentucky Fluid Clusters, shortly called the KFC systems, are housed at the 

University of Kentucky. Even though most of the computational work for this thesis is carried 

out on the KFC4 and the KFC5 platforms, the details of the earlier machines KFC1 and KFC2 

will also be presented to make the readers aware of the increasing computer power and the 

efforts taken to keep up with the current trends in computer architectures.  

KFC1: Year of construction of this machine is spring 2001. This machine had 20 dual AMD 

nodes. Each node having two 1.4 GHz Athlon MP Processors with 384MB RAM per processor 

and 40GB of disk space for each node. 

KFC2: This machine has been operational since February 2003 and currently housed at the UK 

KAOS. It contained 47 nodes (including 3 spare nodes) with 50 2000+ XP Athlon processors 

and 256MB RAM per processor. A channel-bonded network with four 48-way switches, four 

NICs per node was used. But now it is cut down to 24 nodes. 

KFC4: This machine has been operational since February 2004 and is currently housed in the 

UK CFD Cluster room. It has 48 nodes with AMD Athlon XP 2500+ 1.826 GHz 32 bit Barton 

processor on each node (1 processor per node) and 512 MB RAM per processor. The nodes are 

linked by two networks: a single Fast Ethernet 100 Mb/s switch and a single Gigabit 1 Gb/s 

switch.   

KFC5: This machine became operational in September 2005 and is currently housed in the UK 

CFD Cluster room. It has 47 nodes with AMD Athlon 2.08 GHz 64 bit processor on each node (1 

processor per node) and 512 MB RAM per processor. It uses a single Gigabit 1 Gb/s switch for 

networking purposes.  

KFC6I: This machine became operational in December 2006 and is currently housed in the UK 

CFD Cluster room. It consists of 24 nodes with Intel e6400 Core 2 Duo 2.13 GHz 64 bit 2MB 

shared L2 Cache processor on each node (1 processor per node) and 1 GB RAM per processor. It 

uses a single 48 port Gigabit 1 Gb/s switch for networking purposes. 

KFC6A: This machine was also operational in December 2006 and is currently housed in the UK 

CFD Cluster room. It contains 23 nodes with AMD Athlon 64x2 4600+ (65W) 2.4 GHz 

2x512Kb Cache (socket AM2) processor on each node (1 processor per node) and 1 GB RAM 

per processor (DDR2 667MHz). It uses a single 24 port Gigabit 1 GB/s switch for networking. 
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Figure 4-2 Kentucky Fluid Clusters – UK CFD Cluster Room 

  
 

A photo of the UK CFD Cluster room is presented in Figure 4-2. One of the three 

dimensional simulations in this thesis use an unstructured grid (hexahedral cells) with 1084800 

grid points and partitioned into 18 zones using METIS. On the KFC5 machine (one zone per 

node) it takes about 14 hours of wall time to run 2000 iterations with an active turbulence model. 

On the same grid with same number of partitions it takes about twice the CPU time on KFC4 

compared to the KFC5 system. The final time step that is typically used for these runs is 5x10-4. 

The huge 3D computations are mainly carried out on KFC5 due to superior speed, while for 

carrying out the validation process, the KFC4 platform suffices. 
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4.4 GRID GENERATION 

 

4.4.1 Grid Generation with g.f90 and plot3d.f90 

 

The grid issues with the recently developed hybrid turbulence models, DES and DDES, 

put more emphasis on the grid generation process. It is definitely necessary to have highly 

controlled grids in order to study the transition from the RANS to LES regions. Even though grid 

generation software like GAMBIT is sufficient for a general grid, finer control over the exact 

grid structure is desirable. For this reason the in-house grid generation codes g.f90 and 

plot3d.f90 are modified to generate a 2D/3D unstructured grid that is readable by UNCLE.  

 

Grid Generator code, g.f90: 

 

The g.f90 code is the in-house grid generator which is used to generate 2D grids for the 

GHOST code. This code uses a Cartesian coordinate system that is capable of varying the 

stretching ratios and hence making the grid generation more flexible. Geometries ranging from 

simple to complicated can be generated from the code, for example, grid for a flat plate, grid for 

a cylinder, and grid for airfoils. It has the facility of partitioning the grids by mentioning the grid 

sizes, the boundaries, and the number of zones in the input file for the g.f90 code. Individual 

subroutines are used for generating different kinds of grids. For generating a grid for the present 

task a subroutine called “qcirc” was added. The subroutine works individually and the only 

input needed is the number of control volume cells and the boundary conditions. The other 

required quantities like the coordinate system including the stretching ratios are calculated by the 

subroutine itself. The grid starts from a circular form and stretches out to a square; the reason for 

adopting this kind of grid generation is that the boundary conditions can be applied in a fairly 

direct fashion. The input file, with comments, for generating a 3D grid from g.f90 with the 

subroutine “qcirc” is given in Table 4-1. 

Apart from the grid files for GHOST, the code outputs a plot3d.plt file which is an input 

file for plot3d.f90. 

 

 61



Table 4-1 Input file for g.f90 (for generating the circle extended to quadratic grid) 
/*3D !A THREE DIMENSIONAL GRID 
      !SPACE   
 0.3 5 peri ! 0.3- Z-SPACING, 5- NUMBER OF GRID POINTS IN Z-DIRECTION, PERI- PERIODIC BOUNDARIES 
IN SPANWISE DIRECTION 
 /*number_of_zone ! SPECIFY NUMBER OF ZONES 
 1  !THE QCIRCLE IS A SINGLE ENTITY, SO 1 
 /*zone_number 1 ! WHICH ZONE ARE WE IN? ITS FIRST 
      !SPACE 
 qcircle 159 100 5 2 ! QCIRCLE- G.F90 IDENTIFIES THE QCIRC ROUTINE, 159,100- GRID PTS IN I- & J- 
DIRECTION, 5- BC'S, 2- GHOST PTS 
 0.0 0.00024166042529 ! CENTER COORDINATES  
 0.0 360.0 0.5 8 ! 
 0.0 0.0 w 0.0 ! 
 1.00 1.0   !STRETCHING RATIO FOR CYLINDER 
 * wall 0 1 -99999 100000 1 1 0  ! WALL BC, 0 1 - SPECIFIES DIRECTION,FROM I= -99999 TO I= 
100000, FROM J= 1 TO J= 1, 0- NO PATCHES 
 * inlet   0 -1 60 100 99999 99999 0 ! INLET BC 
 * outflow 0 -1 1  20 99999 99999 0 ! OUTFLOW BC 
 * outflow 0 -1 20 60 99999 99999 0 ! OUTFLOW BC 
 * outflow 0 -1 100 160 99999 99999 0 ! OUTFLOW BC    
 /end ! END OF THE INPUT FILE 
 

 

 

Grid Generator code, plot3d.f90: 

 

As mentioned earlier, plot3d.f90 needs an input file plot3d.plt which is generated from 

g.f90. The code needs information about the coordinate system, the total number of control 

volume cells, and the boundary conditions. It outputs the input files needed by UNCLE which 

uses unstructured grids. The code can handle both 2D and 3D grids. As the grid generated for the 

present study follows unique directions in sweeping in the i-, j- directions, it was required to 

modify the code in order to account for such changes. The code was modified both for 2D and 

3D versions in the code. The output files “cell.dat”, “face.dat”, “vertex.dat”, and their format 

along with explanation are briefly presented in Table 4-2. 
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Table 4-2 Input files for UNCLE (Unstructured grid) 
Cell.dat 

!Total cell number       !Grid type 

62964       95718   3D 

Vertex.dat 
       79500 ! Total number of vertices 
!Vertex Number       x                          y                       z 
           1  0.500000000000000        0.00000000000000D+000   0.00000000000000D+000 
           2  0.499572879193651        2.06624871244066D-002   0.00000000000000D+000 
           3  0.498292246503335        4.12896727361662D-002   0.00000000000000D+000 

                  .               .                                          .                                       . 
Face.dat 

      172515 ! Total number of faces 
!Vertices number            {Vertex numbers for a face}           {Node numbers for face}     
!surrounding a face  V1          V2            V3         V4           P1         P2 
           4       16060       15901           1         160           1         159 
           4       16061       15902           2         161           2           1 
           4       16062       15903           3         162           3           2 
           .         .            .            .           .         .             .  
           7 ! Total number of Boundary Conditions 
         636  wall* * ! Total number of wall boundary conditions 
           4       15902       15901           1           2       62965           1 
           .         .            .            .           .         .             . 
         160  inle* * ! Total number of inlet boundary conditions 
           4       31701       31702       15802       15801       63601       15642 
           .         .            .            .           .         .             . 
         240  outf* * ! Total number of outflow boundary conditions  
           4       31742       15842       15841       31741       63997       15682 
           .         .            .            .           .         .             . 
          76  outf* * ! Total number of outflow boundary conditions 
           4       31643       15743       15742       31642       63761       15583 
           .         .            .            .           .         .             . 
         160  outf* * ! Total number of outflow boundary conditions 
           4       31661       31662       15762       15761       63837       15602  
           .         .            .            .           .         .             . 
       15741  peri * 1 0.0 0.0 0.3 ! Total number of Periodic BC’s in SPANWISE (+Z) direction  
           4         161           2           1         160       64237           1       79978 
           .         .            .            .           .         .             .         .  
       15741  peri * 1 0.0 0.0 -0.3 ! Total number of Periodic BC’s in SPANWISE (-Z) direction  
           4       63761       63760       63601       63602       79978       47224       64237 
           .         .            .            .           .         .             .         .  
 

 

The 2D cylinder grid generated from the g.f90 and plot3d.f90 codes is presented in 

Figure 4-3. For a 3D model, the grid spacing is uniform in the spanwise direction, so a 3D grid 

can be thought of as a series of 2D grids placed at equal distances. In order to confirm the 

functioning of this grid for UNCLE, it was necessary to validate the grid against benchmark 

results. The validation was carried out for a simpler laminar flow with Reynolds number, ReD = 

100 for both 2D and 3D grids and the results are compared with the Hua et al [69] results on 

UNCLE using a GAMBIT generated grid. 
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Table 4-3 Boundary conditions for Laminar test case 

 2D simulation 3D simulation 
Initial  
condition 

1; 0; 0u v p= = =  1; 0; 0; 0u v w p= = = =  

Boundary  
conditions 

Inflow: 1; 0; 0iu v p x= = ∂ ∂ =  
Outflow: 

0; 0; 0i iu x v x p x∂ ∂ = ∂ ∂ = ∂ ∂ =i  
Wall: 0; 0; 0iu v p x= = ∂ ∂ =  
 

Inflow: 1; 0; 0; 0iu v w p x= = = ∂ ∂ =  
Outflow: 

0; 0; 0; 0i i i iu x v x w x p x∂ ∂ = ∂ ∂ = ∂ ∂ = ∂ ∂ =  
Wall: 0; 0; 0; 0iu v w p x= = = ∂ ∂ =  
spanwise is periodic 

 

 
Figure 4-3 2D Grid Generated from G.F90 

 

 
Figure 4-4 (a) Lift-Drag plot for 2D cylinder ReD=100 (b) Lift-Drag plot for 3D cylinder ReD=100 
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It can be observed from the results presented, in Table 4-4 and Figure 4-4, that the 

Strouhal number, drag and lift coefficients are in agreement with the Hua et al [69] results. 
 

Table 4-4 Comparison of Present Test Case with Hua et al [69] results 

2D Cylinder, ReD=100 3D Cylinder, ReD=100 

Chen Hua 
St = 0.165 

CL = ±0.314 
CD = 1.325±0.008 

Chen Hua 
St = 0.164 

CL = ±0.322 
CD = 1.327±0.009 

Present Result 
St = 0.164 

CL = ±0.318 
CD =1.3271±0.0085 

Present Result 
St = 0.16324 
CL = ±0.326 

CD =1.3263±0.009 

 

Because of the initial problems faced in the generation of an UNCLE grid from g.f90 

code, GAMBIT was used to generate the grid. There was initially a leakage in the wake region of 

the cylinder which allowed higher mean velocity values. However, this problem has been fixed. 

As the simulations that are carried out are three dimensional, include a turbulence model, and 

have over a million grid points, it increases the complexity of the problem and hence increases 

the computation time while significantly limiting the time step. Approximately, it takes about   7-

8 weeks of wall time to obtain 50T non-dimensional time units with a final time step of 5x10-4. 

Initially, grid generated by GAMBIT was used for the 3D simulations and due to the limitations 

of the number of nodes (currently 3 jobs are running on about 54 nodes, 18 each) and the 

computational time required for these runs, the grid generated from the grid generator code was 

employed for the later simulations which include the simulation of the flow over the circular 

cylinder using a SAS hybrid turbulence model.   

It has always been complicated to run the 3D simulations for the reason that the time step 

needs to be decreased with increasing Reynolds numbers which need a much refined grid. 

Typically, a 3D simulation with a Reynolds number, Re=140,000, where the initial conditions for 

the velocity field are  and for the SA turbulence model the condition is 1; 0; 0; 0u v w p= = = =

5ν ν= , and with a million grid points is estimated to take about 4-5 weeks of time to get into the 

real flow because of the initial instability causing it to oscillate requiring to use a much smaller 

time step, say 1x10-6 at the start. A code is written in Fortran90 to avoid such a situation. The 

code takes the output from a 2D simulation using the same conditions that we are going to use 
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for a 3D simulation and then the velocity field and pressure field values are interpolated on to the 

3D grid and these values are used as the initial conditions for the 3D simulation. This is tested 

for a much coarser grid with 80X80X30 and also for the Scale Adaptive Simulation model which 

is implemented in UNCLE. The lift-drag plot from the simulation of the 3D circular cylinder 

with a grid size of 80X80X30 is presented in Figure 4-5. It can be observed from the drag curve 

in Figure 4-5 that initially there is noise in the flow which is on the order of 103. However, when 

the same simulation is started with better initial conditions the noise do not show up in the lift-

drag curves as shown in Figure 4-6. This is an advantage when doing a 3D simulation as the time 

taken to overcome the initial noise is reduced and an improved set of initial conditions are used 

for the 3D simulations. 

 
Figure 4-5 Lift-Drag plot of the 3D cylinder grid, 80X80X30 
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Figure 4-6 Lift-Drag plot of the 3D cylinder grid started with a better initial conditions 

 

4.4.2 Grid Generated from GAMBIT 

 
GAMBIT is commercial mesh generation software that comes with Fluent. Due to the 

above stated reasons the initial simulations use the grid generated from GAMBIT. The grid that 

is being used for the full-fledged problem of flow over a three dimensional circular cylinder will 

be discussed in this section while the details of the other grids which are used for validation and 

testing purpose are skipped and will be discussed along with the presentation of the results. A 

schematic of the grid that is currently used for the three dimensional simulations is presented in 

Figure 4-7. 
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Figure 4-7 Schematic for the circular cylinder grid 

 

The circular cylinder has a diameter of 1. It stretches out from the circular form to the 

square away from the wall for a cleaner specification of the boundaries. Lengthwise the grid 

stretches from -15.0 to 15.0 in the x-axis direction and height of the grid is also -15.0 to 15.0 in 

the y-axis direction. In the spanwise direction it is extended from 0.0 to 2.0. As shown in the 

figure, the grid is divided into 8 zones for a better meshing. The outer circle has a diameter of 

3.0. The inner zones 1, 2, 3 each have 50x120 cells, 50 in the θ direction and 120 in the r 

direction with the stretching ratio of 0.165 in θ direction and inner zone 4 has 76x120 cells, 76 in 

the θ direction and 120 in the r direction with the same stretching ratio 0.165 in r direction and 

with uniform spacing in the θ direction and the outer zones 5, 6, 7 each have 50x40 cells, 50 in 

the θ direction and 40 in the r direction with the stretching ratio of 0.7 in the r direction and the 

outer zone 8 has 76x40 cells, 76 in the θ direction and 40 in the r direction with the same 

stretching ratio 0.7 in the r direction. In the θ direction the grid points are uniformly placed 

(equal grid spacing) whereas the grid is only stretched in the r direction. The initial grid spacing 

is 5.0x10-5 near the wall. The spanwise direction has 30 grid points with uniform spacing. The 

boundaries are shown in the figure except for the periodic boundary, which are applied in the 

spanwise directions (+Z and –Z).  
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Chapter 5 : RESULTS 
 
 

 
The implemented one-equation Spalart-Allmaras turbulence model including the SA 

based DES hybrid turbulence model in the unstructured grid code, UNCLE, is tested on a two-

dimensional flat plate, a two-dimensional circular cylinder, and a three-dimensional circular 

cylinder. As this thesis is mainly aimed at testing the hybrid turbulence model, DES, the focus is 

on the three-dimensional results. The reason for choosing a three-dimensional circular cylinder 

as a test case for testing the DES model is because of its simple geometry, its symmetric nature, 

and because it is a standard test case that is used for DES studies. The two-dimensional test cases 

are considered to check whether the basic form of the turbulence model was implemented 

properly. The results for the test cases are presented in this section. 

 

5.1 Two-Dimensional Flat Plate 

 
Initially, the one-equation SA model in UNCLE and GHOST codes was validated 

comparing the results to the well-established results of the SST model in the GHOST code on a 

two-dimensional flat plate. A snapshot of the grid is presented in Figure 5-1. The grid stretches 

from 0.0 to 5.0 in the x-axis direction and from 0.0 to 0.5 in the y-axis direction. The number of 

grid points in the x-axis direction is 200 with a stretching ratio of 1.05 and in the y-axis direction 

the number of grid points is 120 with a stretching ratio of 1.07. The boundary conditions applied 

for this test case are: one inlet boundary condition, two outflow boundary conditions, and one 

wall boundary condition. The inlet boundary condition is applied at x = 0.0 from y = 0.0 to 0.5 

and the velocity is set to U = 1.0. The outflow boundary conditions applied at y = 0.5 from x = 

0.0 to 5.0 and at x = 5.0 from y = 0.0 to 0.5 are 0; 0; 0; 0∂ ∂ = ∂ ∂ = ∂ ∂ = ∂ ∂ =i i i iu x v x w x p x . No 

slip boundary condition is applied at the wall at y = 0.0 from x = 0.0 to 5.0. The Reynolds 

number for this validation case is Re = 2,000,000. In the case of the SA model, the transport 

variable of the SA turbulence model initialized with 3ν ν= , where ν  is the molecular viscosity. 
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In the case of the SST model, the transport variable k is initialized with , where FSTI is 

the turbulence intensity which is set to 0.1 and ω is initialized as 

2(FSTI )

( )k FSTVISρ ν , where FSTVIS 

is the turbulence viscosity which is set to 10.0. 

The stretching ratio in the y-axis direction is selected such that the y+ value is less than 1. 

The definition of y+ is 
*yuy

ν
+ =  where, *

2
fc

u = .    (5.1) 

For flat plate boundary layers a standard correlation for turbulent flows is 1 5

0.0576
f

x

c
Re−= , 

where =x
UxRe
ν

. 

 
Figure 5-1 2D Flat Plate Grid 
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The analysis based on the skin friction coefficient plots are considered to be a useful 

comparison in the case of flow over a flat plate. The skin friction coefficients evaluated based on 

the momentum thickness values are generally regarded as a more accurate representation of the 

skin friction coefficient values compared to the skin friction coefficients calculated based on the 

x values. The expression is provided by Karman-Schoenherr [Hopkins and Inouye (1971)] and is 

given as, 

( )2
10 10

1 17.08 log 25.11 log 6.012
f

Re Re
c θ θ= + + , where UReθ

θ
ν

= . (5.2) 

The momentum thickness can be calculated as 
0

1u u dy
U U

θ
∞ ⎛ ⎞= −⎜ ⎟

⎝ ⎠∫ .                                         (5.3)    

Numerically the momentum thickness is calculated by integrating the expression, 

 (considering the freestream velocity U = 1.0), from the surface to the boundary layer 

thickness value for given x value. In the in-house codes, the c

(1u u− )

f values are evaluated based on, 

21
2

w
fc

U

τ

ρ
=  where w

u
y

τ μ ∂
=

∂
, at the cell centers based on x values. The skin friction plots for 

this case are presented in Figure 5-2. For comparison, skin friction coefficient distribution 

evaluated based on x and skin friction coefficients evaluated based on the momentum thickness, 

θ are presented. The plots presented are for cf versus x (from the in-house codes) for both 

UNCLE and GHOST  with SST and SA models, and for cf versus θ for both UNCLE and 

GHOST with SST and SA models, and also for the theoretical values of the skin friction 

calculated using the standard correlation, 1 5

0.0576
f

x

c
Re−= . It should be note that in Figure 5-2 theta 

stands for the cf  calculated based on θ, x stands for cf  calculated based on x, and “Theoretical”  

curve is the theoretical values calculated using the standard correlation based on x. The 

“correlation” term in the plots represents the cf calculated using the correlation presented in 

equation (5.2). 

The skin friction coefficients calculated by SST models in UNCLE and GHOST based on 

the x values are well in agreement with each other and also with the cf values evaluated using the 

theoretical correlation. But, the SA models in UNCLE and GHOST over predict the coefficients 

of skin friction based on the x values.   
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The skin friction coefficient values calculated based on θ using the correlation in 

equation (5.2), by the SA, SST models in UNCLE and SA, SST models in GHOST are well in 

agreement with each other. However, the skin friction coefficients evaluated and plotted against 

the momentum thickness values, θ, by the SST models in UNCLE and GHOST are little lower in 

magnitude when compared with the correlations curve and the coefficients of skin friction by SA 

models in UNCLE and GHOST are higher when compared with the correlations curve.  The little 

jump at the end of the plate is because of the outflow boundary condition. 

 

  
Figure 5-2 Skin Friction Plot for a 2D Flat Plate 

 

The discrepancies in predicting the skin friction coefficient values is observed in SA 

models in both UNCLE and GHOST codes indicating that the implemented SA model in both 

the codes are consistent with each other. However, the discrepancies can be partly because of the 

reason that we are making a comparison between fundamentally two different models. The 

discrepancy means that the very near wall conditions are off but the overall boundary layer shape 

θ is reasonable. However, effort will be made to make the model closer to accurate in its 

predictions.  

 72



 

  
Figure 5-3 (a) Velocity Profile at x=0.5 and (b) Velocity Profile at x=4.0 for a 2D Flat Plate 
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Figure 5-4 Velocity profile at x=4.0 

 

The velocity profiles at x = 0.5 and x = 4.0 are presented in Figure 5-3. The reason for 

presenting the profiles at the beginning of the plate (x = 0.5) and nearly at the end of the plate (x 

= 4.0) is to observe the development of the boundary layer profile. On comparing the velocity 

profiles both at x = 0.5 and x = 4.0, it can be observed from the plots that the velocity predictions 

by SA model in UNCLE and GHOST are little higher when compared with SST model in 

UNCLE and GHOST, but still are in agreement with each other. The little discrepancy in the 

results reflects the fact that we are comparing a one-equation turbulence model with a two-

equation turbulence model. Also, the velocity profile at x = 4.0 is presented on the logarithmic 

scale in terms of u+ and y+ in Figure 5-4. It can be observed in the very near wall region both the 

SA and SST models behave similarly, but away from the wall in the sublayer region, a little 

discrepancy can be found between the two models. In the logarithmic region, the SST model 

behaves well compared with SA model, but again in the defect or the outer layer, both the 

models behave similarly. Though a discrepancy in the behavior of the SA model is observed, the 

velocity profile indicates that the basic shape is reasonable and the model clearly indicates the 

boundary layer regions (sublayer, log layer, and outer layer).  
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Figure 5-5 (a) Turbulent viscosity contour (SA-G) (b) Turbulent viscosity contour (SA-U) 
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Figure 5-6 (a) Turbulent viscosity contour (SST-G) (b) Turbulent viscosity contour (SST-U) 

 

The contour plots for the turbulent viscosity are presented in Figure 5-5 and Figure 5-6 

for the SA-UNCLE, SA-GHOST, SST-UNCLE, and SST-GHOST cases. Presented contour plots 

of turbulent viscosity are normalized with the molecular viscosity, ν .However, for a quantitative 
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observation the turbulent viscosity values are extracted from the individual contour plots at x=4.0 

and is presented for comparison in Figure 5-7. From the plot it can be seen that the turbulent 

viscosity values near the surface for the SA model in UNCLE and GHOST have a good match 

with the SST model in UNCLE and GHOST. However, away from the surface the SA model in 

UNCLE and GHOST follows the same profile but have higher values compared to the SST 

model in UNCLE and GHOST. The turbulent viscosity values for the SST model in GHOST and 

UNCLE follow the same profile.  

 

 
Figure 5-7 Turbulent viscosity at x=4.0 from the contour plot 

 

With this test case the basic implementation of the SA-DES model in the UNCLE code is tested. 

The results look reasonable when compared with the results from the well established GHOST 

model. The small discrepancies in the results when both the models are compared can be due to 

the reason that they are different models. 
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 5.2 Two-Dimensional Circular Cylinder 

 
Another test case that is considered to test if the implemented SA model in the UNCLE 

code is working is a two-dimensional circular cylinder. The data for these simulations are present 

in Travin et al [72]. The grid contains 200 grid points in the circumferential direction and with 

140 grid points in the radial direction. The grid runs from -15.0 to 15.0 in the x-axis direction 

and -15.0 to 15.0 in the y-axis direction, the center of the cylinder being at (0, 0). The boundary 

conditions for this test case are: one inlet boundary condition, three outflow boundary conditions, 

and one wall boundary condition. The inflow boundary is at x = -15.0 from y = -15.0 to 15.0 and 

the velocity is set to U = 1.0. The outflow boundary conditions are applied at the top at y = 15.0 

from x= -15.0 to 15.0, at the bottom at y = -15.0 from x = -15.0 to 15.0, and at x = 15.0 from y = -

15.0 to 15.0. No slip boundary condition is applied at the surface of the cylinder. The Reynolds 

number used for this test case is Re = 140,000. The grid for this test case is shown in Figure 5-8.  

The 2D cylinder grid is used for the runs with laminar initial SA, SST, SA-DES, SST-

DES models, and, turbulent initial SA, SA-DES models. The motivation for doing the 

simulations with two different initial conditions, laminar and turbulent, is from Travin et al [72]. 

A laminar initial flow in a SST model means the turbulence model is turned on but the 

turbulence intensity (FSTI) and the turbulence viscosity (FSTVIS) in the model is set to a very 

low value. A turbulent initial flow in a SST model means the turbulence model is turned on and 

the turbulence intensity in the model is set to a value of 0.01 and the turbulence viscosity is set to 

10.0 which represents that the flow is started with turbulence in it. In the SST model, the 

transport variables k is initialized as  and ω is initialized with2(FSTI ) )(( )k FSTVISρ ν . In the 

case of the SA model, a laminar initial flow has a inflow boundary condition set to 0ν = , where 

ν  is the transport variable of the SA turbulence model, and in a turbulent initial flow the inflow 

boundary condition is set to 5ν ν= , where ν  is the molecular viscosity. The transport variable 

of the SA model is initialized as 5ν ν=  in the domain of the 2D circular cylinder for both the 

laminar initial and turbulent initial flows. 
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Figure 5-8 2D Circular cylinder grid 

 

 
Figure 5-9 Pressure coefficient distribution at the surface of the circular cylinder 
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The pressure and the skin friction plots are presented in Figure 5-9 and Figure 5-10 

respectively. The results of the SA and the SA-DES model from UNCLE code for both laminar 

initial (LSA, LSADES) and turbulent initial (TSA, TSADES) flows along with the SST (LSST) 

models in UNCLE code are compared with each other and with the experimental results by 

Achenbach [85] at a Reynolds number Re = 2.6x105. Experiments for flow over a smooth 

circular cylinder were performed by Achenbach [85] up to Reynolds numbers of 5x106 in a wind 

tunnel section with the dimensions of 500 x 900 mm and with the air surrounding the cylinder. 

The diameter of the cylinder is 150 mm with the spanwise length of 500 mm. The pressure 

distribution at the surface of the cylinder for the SA and SA-DES models with laminar and 

turbulent initial conditions are in match with each other. However, the predictions of the pressure 

distribution by the SA, SA-DES models with laminar and turbulent initial conditions only agree 

with the results by Achenbach [85] in the θ ~ 0 to 50° region, and in the recovery region. But it 

should be noted that the present simulation is two-dimensional and is been compared with an 

experiment conducted on 3D cylinder flow. The skin friction coefficient predictions by all the 

models were higher in magnitude compared with skin friction coefficients evaluated by 

Achenbach [85]. The deviation of the skin friction coefficient curve from the usual trend in case 

of the SST and SST-DES models compared with the skin friction coefficients by the SA and SA-

DES models suggests that the SST model implementation in UNCLE needed corrections. Based 

on this assumption the three dimensional test cases are narrowed down to the SA model.  The 

lift-drag plots for all the models are presented in Figure 5-11 and the corresponding values of the 

drag coefficients are presented in Table 5-1 along with the available results from Travin et al 

[72]. However, there was no perfect test case available in [72] to match with for these 

simulations but some closer matches were found to compare the results. The purpose of this 

particular simulation is justified by mentioning the requirement of testing the implemented 

model for an unsteady flow. The Strouhal number for the laminar SA and SA-DES cases are 

compared with the results from Travin et al [72] at a Reynolds number of Re = 5x104 with grid 

size of 210x135, using laminar SA and SA-DES models respectively, where as for the turbulent 

SA case the results of TS1, using turbulent initial SA model, from [72] with grid size of 

118x105x30 at Re = 140000. The drag values for the turbulent SA and SA-DES cases are 

compared with results from [72] Re = 140000 with grid size of 150x109, using turbulent initial 
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SA and SA-DES models respectively, where as the laminar SA case was compared with results 

of LS7, using laminar initial SA model,  with grid size of 118x109x30 at Re = 140000. 

 

 
Figure 5-10 Skin friction plot of 2D circular cylinder 

 
Table 5-1 Comparison of present 2D simulation with results in Travin et al [72] 

 
Test case Drag coeff. Drag coeff. from present result St [72]  St (present)

Laminar SA 0.87 0.9183 0.22 0.291 
Laminar SA-DES - 0.9929 0.2 0.302 

Laminar SST - 0.5990 - 0.347 
Laminar SST-DES - 0.6978 - 0.364 

Turbulent SA 0.56 0.8825 0.3 0.293 
Turbulent SA-DES 0.83 0.9603 0.3 0.304 
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Figure 5-11 Lift-Drag plots for 2D circular cylinder at Re = 1.4 X 105 
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With this test case the basic implementation of the models in the UNCLE code have been 

tested for the unsteady flow. Further test cases were narrowed down to the SA based models for 

the reason that the skin friction coefficient distributions show significant discrepancies from the 

expected results in the case of the SST model. It should be noted that discrepancies were found 

in the earlier test case, flow over a 2D flat plate, in case of the SA model when compared with 

the SST model. From the present test case it is clear that there is an implementation problem with 

the SST model in UNCLE. However, as discussed in the earlier section efforts will be made to 

make the SA model closer to accurate. 

 

5.3 Blocking Test on Two-Dimensional Circular Cylinder 
 

 

When the boundaries are close to surface of the cylinder, there is a blocking issue to be 

considered and a correction is needed for the freestream velocity value. In order to investigate 

the blocking issue a two-dimensional circular cylinder with two different grids differing in the 

positions of the outer boundaries is considered.  

Mass is conserved in the domain that defines the fluid flow by the principle of 

conservation of mass. When the boundaries are close and when the flow reaches the top of the 

cylinder there is a reduction in the cross-sectional area, so in order to maintain the mass 

conservation principle the freestream velocity is increased to compensate for the change in area. 

The output tools in the code usually consider the freestream velocity to be 1.0 and there arises a 

need for correction to the output plots that consider the freestream velocity for the calculations. 

However when the boundaries are far the reduction in area is relatively small and the correction 

needed is negligible.  

To demonstrate these issues two grids are considered, one with the outer boundary placed 

at a distance of 15R and other one with the outer boundary placed at a distance of 30R. The grids 

are presented in Figure 5-12 and Figure 5-13. The boundary conditions of this test case are same 

as that of the previous 2D circular cylinder and also the initial conditions for the SA and the SA-

DES case are same as in the previous test case, with turbulent initial conditions. This test case is 

run at the Reynolds number of Re = 3900. 
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The grid with outer boundary placed at 15R square has 226 grid points in the 

circumferential direction and all the grid points are uniformly spaced. It has 160 grid points in 

the radial direction. Whereas, the grid with outer boundary placed at 30R square has 226 grid 

points in the circumferential direction with all the grid points uniformly spaced and 190 grid 

points in the radial direction. The initial grid spacing for both the grids is 5x10-5.  

 

 
Figure 5-12 2D Grid of a Circular Cylinder with 15R square 

 

The pressure plot and the coefficient of skin friction plot are presented in Figure 5-14. 

There is a notable increase in the values of the coefficient of pressure for the grid in the 15R 

square case when compared with the grid in the 30R square case. Results for both the SA and the 

SA-DES models are presented for comparison. There is a quantitative difference in the 

predictions of the SA model and the SA-DES models which can be observed from the pressure 

plot. The centerline velocity plot, defined as velocity in the streamwise direction at y = 0 in the 
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wake region, is presented in Figure 5-15. It can be observed from the centerline plot that the 

velocity profile near the surface in the wake region does not vary with change in position of the 

outer boundaries, but away from the surface of the cylinder the velocity profile differs 

quantitatively with the change in position of the outer boundaries for both the SA and the SA-

DES models. In order to show the flow behavior in the wake region, the vorticity plots are 

presented in Figure 5-16 and Figure 5-17. The lift-drag plots are presented in Figure 5-18 and 

Figure 5-19. The lift and drag coefficients along with the Strouhal number are presented in Table 

5-2. From these values it can be observed that there is a measurable change in the lift and drag 

coefficients including the Strouhal number when 15R square case is compared with the 30R 

square case. 

 

 
Figure 5-13 2D Grid of a Circular Cylinder with 30R square 

 

 85



 

 
Figure 5-14 (a) Pressure and (b) Skin friction coefficient distributions for blocking comparison 

 

 86



 
Figure 5-15 Centerline Velocity Plot for blocking comparison 

 
 

 
Figure 5-16 Vorticity plot for (a) SA model and (b) SA model with the grid of 30R  
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Figure 5-17 Vorticity plot for (a) SA-DES model and (b) SA-DES model with the grid of 30R 

 

 
Figure 5-18 Lift-Drag plots for (a) SA model and (b) SA model with the grid of 30R 

 
Table 5-2 Lift-Drag coefficients and Strouhal number for 2D circular cylinder 

 

 CL CD Strouhal number 

SA model with R15 ±1.133 1.278 ± 0.081 0.229 

SA model with R30 ±1.114 1.260 ± 0.079 0.227 

SA-DES model with R15 ±1.368 1.433 ± 0.164 0.244 

SA-DES model with R30 ±1.347 1.416 ± 0.162 0.242 
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Figure 5-19 Lift-Drag plots for (a) SA-DES model and (b) SA-DES model with the grid of 30R 

 

With this test case, the blocking effects have been shown and the differences in the 

pressure distribution at the surface with the change in location of boundaries from the surface are 

demonstrated. A correction for blocking will be discussed when looking at the 3D results. 

 

5.4 Three-Dimensional Circular Cylinder 

 

5.4.1 SA-DES case in UNCLE with Re = 1.4x105 

 

Initially a coarser grid is employed to carry out a full fledged three dimensional test case 

for flow over a circular cylinder. A three dimensional circular cylinder is used as the test case for 

the validation of SA based DES hybrid turbulence model. An initial grid with 660,000 grid 

points has been used with 200 grid points spaced uniformly in the circumferential direction, 110 

in the radial direction, and 30 in the spanwise direction spaced uniformly. The radius r/D = 0.5 is 

used for the validation purpose to compare with the available results with the same radius. A 

snap shot of the grid in the XY plane is presented in Figure 5-20. It is an unstructured grid and 

hexahedral cells are used. The grid runs from -15.0 to +15.0 in the x and y directions and 0.0 to 
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+2.0 in the z-direction. The boundary conditions applied for this case are: one inlet boundary 

condition, three outflow boundary conditions, one wall boundary condition, and a periodic 

boundary condition. Periodicity is applied for the first grid plane and the last grid plane in the 

spanwise direction. No slip conditions are applied to the surface of the cylinder and the inlet 

velocity is set to U = 1.0.  For convenience the grid is extended to a square on the outside 

boundaries to make the application of the boundary conditions easier. Results from the paper of 

Travin et al [72] and the referenced experiments within that paper are considered for the 

validation. The grid construction and the initial conditions are replicated from the Travin et al 

[72] definitions. The tripless version of the SA model is used with the implementation of the 

DES model in it and ν  is initiated to 5 times the molecular viscosity for this case. 

 

 
Figure 5-20 A snapshot of 3D Circular Cylinder Grid for Re = 1.4 X 105 

 

Figure 5-21 shows the pressure coefficient and the skin friction coefficient plots averaged 

over time and space from the model at a Reynolds number of 140,000. The pressure distribution 

is compared with the experimental results from van Nunen [84], at a Reynolds number Re = 

7.6x106, Roshko [83], at a Reynolds number of Re = 8.5x106, and Achenbach [85], at a Reynolds 

number of Re = 2.6x105, and the simulations by Travin et al [72] at a Reynolds number of Re = 
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140,000. The experimental results from van Nunen [84] are referred from Travin et al [72]. 

Experiments on the flow over a circular cylinder at high Reynolds number ranging from 106 to 

107 were conducted in a wind tunnel section by Roshko [83] which can be pressurized to 4 atm. 

The diameter of the cylinder is 18 in. with a spanwise length of 8.5 ft and the height and width of 

the domain are 8.5 ft and 11 ft. The experimental details of Achenbach [85] are discussed in the 

earlier section in the 2D cylinder test case. The comparison of the present results with the 

experiments with higher Reynolds number is justified by mentioning that the motivation for this 

test case was from Travin et al [72] and in his paper the comparisons were made with the 

experimental results by van Nunen [84] and Roshko [83]. The computations of the coefficient of 

pressure are in good agreement with the experimental results from Roshko [83]. The minimum 

value of the pressure coefficient occurs at θ = 76°, the flow separates at θ = 113°, and the 

recovery is after θ = 115°. Also, the pressure distribution in the present simulation is in good 

agreement with the results by Achenbach [85] and does a better job when compared with others. 

Even though the magnitude of the minimum pressure value is over predicted in the present 

simulation, it does a better job compared with others. And, the lower values in the wake region 

compared with the results by Travin et al [72] may be due to differences in the grid construction. 

Coming to the skin friction coefficient curve, the values were compared with the results with the 

experimental results by Achenbach [85], at a Reynolds number of Re = 3.6x106, and Re = 

2.6x105, and with the CFD simulation by Travin et al [72]. The results have a better match with 

the skin friction coefficients obtained by Achenbach [85] at Re = 3.6x106 than with Travin et al 

[72]. When compared with the results by Achenbach [85] at Re = 2.6x105, present simulation 

under predicts the skin friction coefficient values, but does a better job compared with Travin et 

al [72]. The wavy pattern in the wake region is likely a grid refinement issue again which is to be 

rectified in the next simulation by adding more number of grid points. Longer integration periods 

may also be necessary for obtaining average values (the integration has covered over 150 non-

dimensional (t = D/U) time units, but the average has only been taken over the last eight 

oscillation cycles). 
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Figure 5-21 (a) Pressure plot and (b) Skin friction plot of 3D cylinder at Re = 1.4 X 105 
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The lift-drag plot along with the vorticity plot is presented in Figure 5-22 and the 

centerline velocity plot averaged in time and space is presented in Figure 5-23. The average drag 

coefficient as in Travin et al [72] for Re = 1.4X105 is 0.57 with a Strouhal number of 0.3 and the 

presented results has a drag coefficient of 0.76 with a Strouhal number of 0.275 in Figure 5-

22(a). The drag value is higher and the Strouhal number is lower compared to Travin et al [72]. 

This again can be due to the grid resolution issues. Also, it can be observed that the vorticity plot 

do not contain the turbulent structures indicating that the grid is to be refined in the wake region. 

In the centerline velocity plot, current result is compared to the simulation of Travin et al [72] 

and to the experimental results by Cantwell and Coles [86]. Experiments on flow over 3D 

cylinder are conducted in a wind tunnel section by Cantwell and Coles [86] for Reynolds number 

Re = 140000. The wind tunnel has the height of 10 ft and width of 304.8 cm, and the cylinder has 

a diameter of 10.14 cm and is 2.97 m long. By observing the velocity curve, the occurrence of 

minimum value of the velocity is at x = 0.34 and the minimum in case of experimental value also 

occurs at x = 0.34. And the recovery of the velocity after the occurrence of the minimum value is 

after x = 0.34 in agreement with the experimental results, but differs in the magnitude of 

velocity. However, in the result from Travin et al [72] the raising curve is observed only after x = 

1.0. Even though an exact match cannot be found, qualitatively the velocity profile has the basic 

shape of a centerline velocity curve.  In order to get more accurate result a longer averaging over 

the time intervals also a finer grid is needed.  
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Figure 5-22 (a) Lift-Drag plot and (b) Vorticity plot at Re = 1.4 X 105
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Figure 5-23 Centerline velocity plot of 3D cylinder at Re = 1.4 x 105 

 

 
Figure 5-24 Lift oscillation at Re = 1.4 X 105 
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Four points were picked in the lift oscillation as shown in Figure 5-24 to observe the 

velocity distribution in the wake region in the streamwise and cross-flow directions. The velocity 

profiles were averaged in the z-direction and the mean of these profiles is taken over the four 

points on the lift oscillation mentioned above. Three different points are picked up in the wake 

region, x = 1.06, x = 1.54, and x = 2.04 to observe the velocity distributions. The velocity profiles 

are presented in Figure 5-25 at three different locations presented on the same plot. The 

minimum values of the velocities in streamwise direction at three different locations x = 1.06, x = 

1.54, and x = 2.04 are -1.05, -0.47, and -0.308 respectively. The magnitude of the velocities at 

the higher end of the oscillation in the velocity distribution in the cross-flow direction at x = 

1.06, x = 1.54, and x = 2.04 are 0.34, 0.196, and 0.12 respectively. The magnitude of the 

velocities at the lower end of the oscillation at x = 1.06, x = 1.54, and x = 2.04 are -0.409, -0.17, 

and -0.071. It can be observed that the velocity profiles smooth as the flow moves away from the 

surface of the cylinder. 

Instantaneous contour plots for the streamwise, cross-flow, and spanwise velocities are 

presented in Figure 5-26 along with the contour interval values in Table 5-3. These contours are 

in the YZ plane and are in the wake region. The reason for presenting these contours is to show 

the velocity field in the wake region. Also, the instantaneous contour plot of  2w′  with contour 

intervals of 0.002 is presented in Figure 5-27. This plot shows the three dimensionality of the 

flow and confirm that the simulation carried out is essentially three dimensional. Instantaneous 

plot of the iso-surfaces of vorticity magnitude is presented in Figure 5-28. The vortex structures 

in the wake region can be observed from this plot. 
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Figure 5-25 Velocity profiles in (a) Streamwise and (b) Cross-flow directions 
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Figure 5-26 Contour plots for (a) Streamwise (top) (b) Cross-flow (middle) and (c) Spanwise velocities 

(bottom) 

 
Table 5-3 Contour intervals for the streamwise, cross-flow, and spanwise velocity contour plots 

 Contour intervals
u 0.04 
v 0.095 
w 0.18 
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Figure 5-27 Contours of 2w′   

 

 
Figure 5-28 Iso-surfaces of vorticity magnitude 

 

This test case is the first three-dimensional simulation that is run using the SA-DES 

model. As this is the initial simulations, in order to test the full functioning of the SA-DES case a 
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coarser grid was used. Some of the discrepancies in the results may be partially due to the 

coarser grid. 

5.4.2 SA-DES case in UNCLE with Re = 3900 

 

The test case here uses a different grid than the earlier case in the wake region with the 

Reynolds number Re = 1.4x105. The grid used here is more refined in the wake region. The 

profile of the grid clearly is not changed as discussed in the earlier chapter in the GAMBIT grid 

generation section; however, the grid composition is changed which will be discussed here in 

detail. A snapshot of the grid is presented in Figure 5-29. The grid has 225 grid points in the 

circumferential direction with 75 grid points in the wake region with the grid points placed 

uniformly and the radial direction has 180 grid points with initial grid spacing of 2x10-4. The 

spanwise direction has 30 grid points with the grid extending from 0.0 to 2.0 and the grid points 

are placed uniformly. The boundary conditions applied and the initialization of the transport 

variable of the SA-DES turbulence model are same as in the previous test case of a 3D circular 

cylinder at a Re = 140,000. The Reynolds number used for this test case is Re = 3900.  

 

 
Figure 5-29 Snapshot of grid for Re = 3900 
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Figure 5-30 Lift-Drag Plot of 3D Cylinder at Re = 3900 

 

The lift-drag plot is presented in Figure 5-30. The mean drag coefficient for this test case 

is 1.1495, averaged over ~105T (from 79T to 184T), which is higher than the experimental value 

of 0.99 ±0.05, as referred in [87]. The pressure distribution and the skin friction coefficient 

distribution at the surface of the cylinder averaged over time and space presented in Figure 5-31 

are compared with the CFD simulation results by Amit et al [88] and with the experimental 

results by Norberg [89] at Re = 4200. Amit et al [88] did the simulation for a 3D cylinder flow 

using a grid composition of 100x100x30 with an initial grid spacing of 7.7x10-5 with the outer 

boundaries located at r/D = 75 at a Reynolds number of Re = 3900 using LES technique. 

Experiments on the cylinder flow were conducted in a wind tunnel section by Norberg [89] up to 

the Reynolds number of 4x104. The height, width, and length of the wind tunnel section are 1.25 

m, 1.8 m, and 2.9 m respectively and the tests were conducted for various diameters of the 

cylinder, D = 0.2, 0.5, 1, 2, 6, and 20 mm. The pressure coefficient values were low when 

compared with the results by Amit et al [88] and Norberg [89]. However, the lower values of the 
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pressure coefficient in the separation region can be corrected for the blocking effect. Corrections 

accounting for the blocking effects must be considered which might give better pressure 

coefficient values. The correction factor [91] that is applied to the pressure coefficient values is 

given as, 

( ) ( )21 1 1pc pc c ε= − − + ,    (5.4) 

where, ε  is the ratio of the diameter of the circular cylinder to the total width of the domain, 

which is 1/30. After the correction of values the pressure distribution at the surface is in much 

better in agreement with the other results. The corrected pressure coefficient plot is presented in 

Figure 5-32. In the profile the maximum value of pressure coefficient is at θ = 0°, the decrease in 

the slope of the pressure coefficient curve can be observed and the minimum of the pressure 

coefficient value can be observed at θ = 72°, the flow separates at θ = 90° and the recovery is 

only after θ = 102°. When compared to other results, occurrence of the recovery and the 

minimum value of  differ on the order of 2° which may be due to the lack of sufficient back 

pressure due to the lack of much finer grid in the wake region.  

pc

pc

It should be mentioned here that there is a correction factor involved with the lift and 

drag coefficients also as the square of the freestream velocity is used in calculating these terms. 

However, there are complications involved in correcting these terms as the evaluation of these 

terms involves both the pressure and the skin friction terms. Hence, the proposed solution for this 

problem is to expand the outer boundaries and employ a finer grid in the wake region. 
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Figure 5-31 (a) Pressure plot and (b) Skin friction coefficient of 3D cylinder at Re = 3900 
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Figure 5-32 Pressure distribution on the surface of 3D cylinder with blocking corrections 

  

 
Figure 5-33 Centerline velocity plot of 3D cylinder at Re = 3900 
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The centerline velocity profile averaged over time and space is presented in Figure 5-33. 

The velocity profile is compared with the experimental results by Lourenco and Shih [90] 

referred from Kravchenko and Moin [87], results from the numerical simulation Kravchenko and 

Moin [87] at Re = 3900, and Amit et al [88] at Re = 3900. Kravchenko and Moin [87] performed 

numerical simulations of the flow over a 3D cylinder with a grid composition of 185x205x48 

with the outer boundaries located at 60R (R = 0.5, radius of the cylinder) at a Reynolds number 

of Re = 3900 using the LES technique. The velocity profile has a good magnitude match at the 

minimum value of -0.29 when compared with the experimental result by Lourenco and Shih [90] 

at -0.25, while the minimum values of the profiles by Kravchenko and Moin [87] and Amit et al 

[88] occurring at -0.3969 and -0.3939 respectively which happen to be much lower. However, 

the velocity recovery at the lower end and the slope of this profile comes up a little earlier 

compared to the other results. The magnitude of the velocity profile at the higher end, which is 

approximately 0.79, is in agreement with the experimental [90] value of 0.776 at the higher end, 

notably better than the other simulations. 

As discussed in the previous section, in order to observe the velocity distribution in the 

wake region four points were picked up in the lift oscillation as shown in Figure 5-34.The mean 

of the velocity distribution at the above discussed four points on the lift oscillation is taken and 

also are averaged over the spanwise direction. The velocity profiles in the streamwise direction 

at three different points in the wake region, x = 1.06, x = 1.54, and x = 2.04, are presented in 

Figure 5-35(a) and also for comparison velocity profiles by Amit et al [88] are presented in 

Figure 5-35(b). Even though quantitatively the velocity magnitudes are low compared with the 

results by Amit et al [88], the profiles have a qualitative match. The minimum values of the 

velocity profiles at the three positions, x = 1.06, x = 1.54, and x = 2.04, are -1.257, -0.8129, and -

0.484 respectively and the results by Amit et al [88] have the minimum values of -1.4, -1.2, and -

0.8 respectively. It should be mentioned that the velocities have been averaged over only one 

time interval and longer integration over time intervals is needed to be in a position to accurately 

compare with the results by Amit et al [88]. Also, the velocity profiles in the cross-flow direction 

at three different points in the wake region, x = 1.06, x = 1.54, and x = 2.04, are shown in Figure 

5-36(a) and the results by Amit et al [88] are presented for comparison in Figure 5-36 (b). The 

magnitudes of the velocities at higher end of the oscillation at x = 1.06, x = 1.54, and x = 2.04 are 

0.3, 0.28, and 0.18 respectively and results by Amit et al [88] have 0.15, 0.3, and 0.25 
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respectively. And the magnitude of velocities at lower end of the oscillation at x = 1.06, x = 1.54, 

and x = 2.04 are -0.255, -0.232, and -0.125 respectively and results by Amit et al [88] have -0.2, 

-0.3, and -0.2 respectively. Similar to the streamwise velocity profiles, the velocity profiles in the 

cross-flow direction are qualitatively in match with the results by Amit et al [88], except at x = 

1.06 where the double oscillation is the results by Amit et al [88] is missing in the present 

simulation, and quantitatively differ when compared in terms of magnitude of the velocity. 

Again, longer integration over time intervals is required in order to be able to more accurately 

compare with the simulation results by Amit et al [88]. 

 Instantaneous contour plots for the streamwise, cross-flow, and spanwise velocities in the 

YZ plane are presented in Figure 5-37 along with the contour interval values in Table 5-4. As 

discussed in earlier section, reason for presenting these contours is to understand the velocity 

distribution in the wake region. Also, the instantaneous contour plot of  2w′  with the contour 

intervals of 0.002 is presented in Figure 5-38. The non-zero values of 2w′  confirm the three 

dimensionality of the simulation. In order to observe the vortex structures in the wake region, the 

instantaneous plot of the iso-surfaces of vorticity magnitude is presented in Figure 5-39.  

 

 
Figure 5-34 Lift oscillation at Re = 3900 
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Figure 5-35 Velocity profile in streamwise direction (a) Current simulation (b) Amit et al [88] and 

Kravchenko and Moin [87] at Re = 3900 
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Figure 5-36 Velocity profile in cross-flow direction (a) Current simulation (b) Amit et al [88] and Kravchenko 

and Moin [87] at Re = 3900 
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Figure 5-37 Contour plots for (a) Streamwise (top) (b) Cross-flow (middle) and (c) Spanwise velocities 

(bottom) 

 

Table 5-4 Contour intervals for the streamwise, cross-flow, and spanwise velocity contour plots 

 Contour intervals
u 0.1 
v 0.085 
w 0.035 
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Figure 5-38 Contours of 2w′  

 

 
Figure 5-39 Iso-surfaces of vorticity magnitude 
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This simulation has a better grid density compared to the previous simulation. The 

pressure distribution at the surface with the blocking correction has a better match with other 

results. The other discrepancies in the results may be due to the insufficient grid density in wake 

region when compared with others simulations or experiments. 

 

5.4.3 SA-DES case in UNCLE with Re = 13400 

 
The test case carried here uses a grid with finer grid spacing near the wall when 

compared with the earlier test case with the Reynolds number, Re = 3900. The grid generation 

approach is the same as the one discussed in chapter 4 in the GAMBIT grid generation section. 

The grid for this test case has a grid size of 226x160 with 226 grid points in the circumferential 

direction and 160 in the radial direction. The inner region in the wake region has a grid size of 

76x120 with 76 grid points in the circumferential direction and 120 in the radial direction. The 

initial grid spacing is 5x10-5, such that the first grid point is typically inside the sublayer. The 

spanwise direction stretches from 0.0 to 2.0 with 30 grid points uniformly spaced. The boundary 

conditions applied and the initialization of the transport variable of the SA-DES turbulence 

model are same as in the previous test case of a 3D circular cylinder at a Re = 140,000. The 

Reynolds number used for this case is Re = 13400.  

The pressure distribution and the skin friction coefficient distribution averaged in time 

and space at the surface of the cylinder are presented in Figure 5-40. The pressure coefficients at 

the separation region are much lower compared to the experimental results by Sarioglu [91] at a 

Reynolds number Re = 16024 and the computational results by Amit et al [88] for flow over a 

cylinder at a Reynolds number Re = 13400 using a LES technique using 3.9 million grid points 

with 48 grid points in the z-direction with an initial grid spacing of 6.9x10-5 and the outer 

boundaries located at r/D = 100. Experiments for flow over circular and square cylinder were 

conducted in a wind tunnel section in the range of Reynolds numbers 1.3x104 to 2x105 by 

Sarioglu [91]. The wind tunnel has a width of 289 mm, height of 457 mm, and length of 1830 

mm. The diameter of the circular cylinder is 50 mm. Comparison with the results by Sarioglu 

[91] is justified as both the Reynolds numbers Re = 13400 and Re = 16024 are in the same 

regime of transition in the shear layers. The lower pressure coefficient values even after the 

blocking correction can be due to the lack of integration over a sufficient number of time 

 111



intervals (depending on a specific flow conditions) and also may be due to the insufficient grid 

points in the wake region. However, after correcting for blocking the minimum value of the 

pressure coefficient occurs at θ = 74°, the flow separates at θ = 90°, and the recovery of the 

pressure curve occurs after θ = 125°. There was no data available for the comparison of the skin 

friction coefficient values and hence the result from the previous test case with Re = 3900 is used 

to show the difference in the skin friction coefficient with increase in Reynolds number. 

However, it should be mentioned here that to obtain a solution that is in a position to be 

compared with other results requires averaging over longer time intervals while the current 

simulation is only averaged over 8 oscillations for a non-dimensional time of ~30T. The 

centerline velocity plot averaged in time and space is presented in Figure 5-41. Also, as there is 

no data available for comparison, the velocity at the centerline in this simulation is compared 

with the centerline velocity values from the previous test case at Re = 3900.  

Mean velocity profiles in the streamwise and the cross-flow directions averaged over 

time and space are shown in Figure 5-42 and Figure 5-43. The velocity profiles are presented at 

the positions x = 1.06, x = 1.54, and x = 2.04. These profiles are compared with the 

computational results by Amit et al [88]. Even though there is a qualitative match between the 

current simulation and results by Amit et al [88], except cross-flow velocity profile at x =1.06 

where the double oscillation in the result by Amit is missing in the present simulation, it can be 

observed that current simulation is falling short in magnitude when compared quantitatively. The 

minimum values of the velocity profiles in the streamwise direction for three positions in the 

wake region, x = 1.06, x = 1.54, and x = 2.04, are -1.065, -0.55, and -0.37 respectively, and the 

simulation result by Amit et al [88] have the minimum values of -1.4, -1.1, and -0.7 respectively. 

In the cross-flow direction the magnitudes of the velocities at the higher ends of the oscillations 

at x = 1.06, x = 1.54, and x = 2.04, are 0.37, 0.21, and 0.11 respectively and results by Amit et al 

[88] have the values 0.2, 0.32, and 0.2 respectively. The magnitudes of the velocities at the lower 

ends of the oscillations at x = 1.06, x = 1.54, and x = 2.04, are -0.36, -0.17, and -0.085 

respectively and results by Amit et al [88] have the values -0.3, -0.3, and -0.15 respectively. The 

reason for the discrepancies in the magnitudes of the velocity distributions can be insufficient 

integration over sufficient number of time intervals. However, the nature of low magnitude of the 

minimum values in these mean velocity profiles are consistent with the lower minimum value of 

the centerline velocity behind the cylinder. 
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Figure 5-40 (a) Pressure plot and (b) Skin friction coefficient plot at Re=13400 
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Figure 5-41 Centerline velocity plot at Re=13400 

 
Instantaneous contour plots for the streamwise, cross-flow, and spanwise velocities in the 

YZ plane, the instantaneous contour plot of  2w′  with the contour intervals of 0.002, and the 

instantaneous plot of the iso-surfaces of vorticity magnitude are presented in Figure 5-44, Figure 

5-45, and Figure 5-46 respectively. The contour interval values for the contour plots for the 

streamwise, cross-flow, and spanwise velocities is presented in Table 5-5. Velocity contours 

represent the velocity distribution in the wake region. The non-zero values of 2w′  confirms the 

three dimensionality of this simulation. And the vortex structures in the wake region can be 

observed in the iso-surface plot of the vorticity magnitude. 

 

 114



 
Figure 5-42 Mean velocity profiles in streamwise direction (a) Current simulation and (b) Amit et al [88] 

 115



 
Figure 5-43 Mean velocity profiles in cross-flow direction (a) Current simulation and (b) Amit et al [88] 
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Figure 5-44 Contour plots for (a) Streamwise (top) (b) Cross-flow (middle) and (c) Spanwise velocities 

(bottom) 

 
Table 5-5 Contour intervals for the streamwise, cross-flow, and spanwise velocity contour plots 

 Contour intervals
u 0.1 
v 0.1 
w 0.054 
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Figure 5-45 Contours of 2w′  

 

 
Figure 5-46 Iso-surfaces of vorticity magnitude for Re =13400 

 

This test case has an improved grid density and initial grid spacing compared to the 

earlier simulations. To get better results longer integration over time intervals might be required. 
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5.4.4 SA-DES case in UNCLE with Re =140000 (Fine grid) 

 

In this test case the same grid that is used in the previous test case with Re = 13400 is employed 

to carry out this simulation. The initial and the boundary conditions are same as the conditions in 

earlier 3D simulations. However, the results presented in this section are averaged only over less 

than an oscillation. 

 The pressure distribution at the surface of the cylinder averaged in time and space is 

presented in Figure 5-47. The results are compared with the same experiments and CFD 

simulations as in case of the first test case with Re = 140000 with a coarse grid. However, in 

order to compare the difference in the simulation results with coarse and finer grids, the results 

from the first 3D test case with the coarse grid with Re = 140000 is compared with the present 

simulation with a relatively finer grid at the same Reynolds number. The minimum pressure 

coefficient occurs at θ = 78°, flow separates at θ = 105°, and the recovery region is after θ = 

115°. The skin friction coefficient distribution averaged in time and space is presented in Figure 

5-48. The comparison is again with the same experiments and numerical simulations as In case 

of the first 3D test case with Re = 140000.  

 
Figure 5-47 Pressure distribution at the surface of the cylinder at Re = 140000 (Fine grid) 
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Figure 5-48 Skin friction coefficient distribution at the surface of the cylinder at Re = 140000 (Fine grid) 

 
 

5.4.5 SAS case in UNCLE with Re=3900  

 

As discussed in Chapter 4, along with the SA-DES model, the SAS hybrid turbulence 

model is implemented in the unstructured grid code, UNCLE. This simulation is the first step 

towards the validation of the SAS model in UNCLE code. This simulation is run at a Reynolds 

number of Re=3900. The grid size is 225X159X15 with the initial spacing of 5x10-5. The reasons 

for considering less number of grid points in spanwise direction is to reduce the computational 

time for the basic test and to confirm if the basic implementation of the model is functional in the 

model. The initial condition for the transport variable of the SAS model is 5t =ν ν , where ν  is 

the molecular viscosity. The inflow boundary condition has, 5t =ν ν  and the outflow boundary 
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condition has, 0t ix∂ ∂ =ν . No slip condition is applied at the wall boundary and the transport 

variable has, 0t =ν . Periodic boundary conditions are applied in the spanwise direction. 

Better initial conditions are used for this simulation to avoid the computational time taken 

to overcome the initial noise in the flow. The concept of initial restart file is discussed in 

Chapter-4. Figure 5-49 shows the lift-drag plot where the simulation is started with an initial 

restart file, which is with better initial conditions. Figure 5-50 represents the SAS simulation 

started with out using the better initial conditions. Due to the double derivative term of velocity 

in the length scale calculation of the SAS model, the model is sensitive to the radical change in 

time step and requires a smaller time step of ~1x10-6. Hence, when started without better initial 

conditions, the time step used to start the simulation was 1x10-6 and the noise part was oscillating 

on the order of 103 as observed from Figure 5-50.  

 
Figure 5-49 Lift-Drag plot for SAS model with better initial conditions at Re = 3900 
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Figure 5-50 Lift-Drag plot for SAS model with out better initial conditions at Re = 3900 

 
 

This is the currently ongoing simulation and more time is required for the confirmation of 

the functioning of the SAS model. 
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Chapter 6 : CONCLUSIONS AND FUTURE WORK 
 

 

6.1 Summary and Conclusion 

 
The implemented SA and SA-DES models in the UNCLE code have been tested and the 

results presented. Initially, the models are tested for a steady state flow over a two-dimensional 

flat plate with a Reynolds number, Re = 2000000 and are compared with the results from the 

GHOST code along with the SST models implemented in both the codes. The results from the 

SA models in UNCLE and GHOST are in agreement with each other indicating that the 

implementation of the SA model in both the codes is consistent. However, the SA models over 

predict the skin friction coefficient values when compared with the results predicted by SST 

model, but shape of the curve looks reasonable. The velocity profiles suggest that the 

implementation part is in the right path. A two-dimensional circular cylinder was considered as 

an initial test case for an unsteady flow. The models were tested for a relatively high Reynolds 

number, Re=140,000. Results for the SA model with laminar and turbulent initial flows, SA-DES 

model with laminar and turbulent initial flows, and the SST model with laminar initial flow in 

UNCLE were compared with each other. The results were compared with the available data from 

Travin et al [72] and the drag coefficients were considerably higher for all the cases and the 

lower pressure coefficient values were observed near the separation point. The skin friction plot 

revealed that there was a problem with the SST model in UNCLE and hence the further test 

cases were restricted to SA and SA-DES models in UNCLE. For a full fledged testing of the SA-

DES model, unsteady flow over a three dimensional circular cylinder was considered as a test 

case. A coarser grid was used for the initial testing at a higher Reynolds number, Re = 140,000, 

to obtain results in a reasonably faster time to confirm the functioning of the implemented SA-

DES model. It is to be noted that this test case employed a coarse grid to confirm the functioning 

of the model in less amount of computational time as coarse grids take less amount of wall time 

compared to fine grids. A relatively finer grid was employed to test the model for a low 

Reynolds number, Re = 3900. The results display lower values of pressure coefficient and higher 
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values of drag coefficients. This discrepancy is found to be due to the lack of correction to the 

freestream value for the blocking effects. When corrections were applied to the pressure 

coefficient values, the results were in very good agreement with the experimental values. Then 

the test case with Re=13400 with an improved grid in terms of initial grid spacing compared with 

the test case with Re=3900 is being simulated. The results obtained were averaged over 8 

oscillations of the lift curve and requires averaging over more number of timer intervals.  

Also, another simulation with the same grid which is used in case of Re=13400 was 

employed to simulated the flow over 3D cylinder with Re=140000, which was earlier simulated 

with a relatively coarser grid. This simulation has the results only with averaging over less than 

an oscillation of the lift curve. Finally, the simulation to validate the implemented SAS hybrid 

turbulence model is started. 

Even though the goal of this thesis is to investigate the grid issues with the hybrid 

turbulence model, the DES model, it is only partially achieved due to the time constraint. A 

single three-dimensional simulation when run on the KFC5 machine takes about 20 hrs of wall 

time for 2000 iterations. The run time increases with the complexity of the problem, in this case 

when the Reynolds number is increased and when the grid is refined, and also due to CFDVAL 

criterion the time step used for a run should be decreased when the grid is refined. A full fledged 

run of a SA-DES model with a grid of 226X160X30 with an initial grid spacing of 5x10-5 on the 

KFC5 machine using 18 processors will take 10 – 12 weeks to complete.  

 

6.2 Future Work 

 
The future work needed for this project is to investigate the grey area effects on the 

Detached Eddy Simulation model. For this reason, highly controlled grids are to be constructed 

and a very good insight about the grids is recommended. The variation of the grey area region 

might be dependent on the method of calculation of the grid spacing, Δ. Hence, the test cases for 

future would be runs with higher Reynolds numbers with varying grid densities and variation of 

methods of calculating Δ. Also, the implemented SAS model in the UNCLE code is to be 

validated for the same set of Reynolds numbers on finer grids. 
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In order to overcome the errors due to the discrepancies in the grid especially in the wake 

region, new grids were made. The grid set up is motivated by the suggestions given by Travin et 

al in [72]. The grid compositions are, 217x189x30 and 217x189x42. In these grids the number of 

grid points in the circumferential and radial directions are kept constant and only the grid points 

in the spanwise direction are changed. The radius of the cylinder is 0.5. The positions of the 

outer boundaries in case of Travin et al [72] are at 30R and in case of Kravchenko and Moin [87] 

are at 60R. Hence, the locations of the outer boundaries are compromised to be placed at 40R.In 

the spanwise direction, the grid extends from 0.0 to 2.0. The initial grid spacing is 5x10-5 and the 

first grid point is typically well inside the sublayer. A snapshot of the grid in the XY plane is 

presented in Figure 6-1 and also a closer view can be seen in Figure 6-2. The grid is made such 

that the dimensions of a volume cell are roughly cubed, with the dimensions of ~0.05, in the 

wake region from x ~ 1.0 to 2.5.  The simulations will be run with these improved grids to get 

better results. 

 

 
Figure 6-1 Snapshot of the improved grid 
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Figure 6-2 Closer view of the improved grid 
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