
University of Kentucky
UKnowledge

University of Kentucky Master's Theses Graduate School

2008

PERFORMANCE OPTIMIZATION OF A
STRUCTURED CFD CODE - GHOST ON
COMMODITY CLUSTER ARCHITECTURES
Pavan K. Kristipati
University of Kentucky, pavan.kristipati@gmail.com

Click here to let us know how access to this document benefits you.

This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of
Kentucky Master's Theses by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

Recommended Citation
Kristipati, Pavan K., "PERFORMANCE OPTIMIZATION OF A STRUCTURED CFD CODE - GHOST ON COMMODITY
CLUSTER ARCHITECTURES" (2008). University of Kentucky Master's Theses. 567.
https://uknowledge.uky.edu/gradschool_theses/567

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu
https://uknowledge.uky.edu/gradschool_theses
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


 
 
 
 

ABSTRACT OF THESIS 
 

PERFORMANCE OPTIMIZATION OF A STRUCTURED CFD CODE - GHOST ON 
COMMODITY CLUSTER ARCHITECTURES 

 
 

This thesis focuses on optimizing the performance of an in-house, structured, 2D CFD 
code – GHOST, on commodity cluster architectures. The basic philosophy of the work is 
to optimize the cache usage of the code by implementing efficient coding techniques 
without changing the underlying numerical algorithm. Various optimization techniques 
that were implemented and the resulting changes in performance have been presented. 
Two techniques, external and internal blocking that were implemented earlier to tune the 
performance of this code have been reviewed. What follows is further tuning effort in 
order to circumvent the problems associated with using the blocking techniques. Later, to 
establish the universality of the optimization techniques, testing has been done on more 
complicated test case. All the techniques presented in this thesis have been tested on 
steady, laminar test cases. It has been proved that optimized versions of the code achieve 
better performances on variety of commodity cluster architectures chosen in this study. 
 
KEYWORDS: Cache Optimization, Structured CFD Code Optimization, Efficient 
Coding Techniques, Improving Performance Without Changing Algorithm, Commodity 
Cluster Architectures. 
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CHAPTER – 1 

1. INTRODUCTION 

1.1 WHY CFD? 

To face the demands from the market and the challenge from competitors, 

engineering firms consistently look for methods to reduce the time taken at any phase, 

whether it is a design process or a manufacturing process or a decision-making process. 

Computational Fluid Dynamics (CFD) is one particular science that many companies rely 

on in order to achieve time-compression. This is evident with the role CFD played in the 

recent development of Aston Martin racing car DBR9 [1]. Instead of the traditional route 

of using wind tunnels for design development, Aston Martin went straight from a CFD 

program to put the DBR9 on track. Another example of reliance on this science is a 

choice made by the BMW Sauber F1 team [2] to invest on performing simulations on its 

Intel® Xeon® dual- and quad-core processor-based supercomputer, rather than investing 

in a second wind tunnel. Heavy hydraulic equipment manufacturer Caterpillar effectively 

used computational fluid dynamics to make vital adjustments [3] to some of its hydraulic 

systems after making changes to a CFD model and analyzing the results. The various 

models allowed Caterpillar to improve the design of the tank. This prevented hydraulic 

pumps vehicles from failing before their expected shelf life as had been the case 

previously. While computational fluid dynamics has been in use at Boeing for since the 

mid 1970s, the most extensive application has been their newest commercial aircraft, the 

787 Dreamliner [4]. The use of CFD tools has allowed Boeing to address a wide variety 

of design challenges, including traditional wing design, the even distribution of cabin air 

and a reduction in overall airplane noise. Also, CFD simulations shortened the 

development period of their latest aircraft Dreamliner by 18 months. Another example of 

benefit of application of this science has been in their wing development. In 1980, Boeing 

tested 77 wings in wind tunnels to arrive at the final configuration of their 767 model. 25 

years later, they built and tested 11 wings for the 787, a reduction of over 80% in number 

of models tested. Those 11 wings required fewer resources (viz. man-power and time) 

and the wind tunnel results matched the CFD predictions. These are few examples of 

many instances in which CFD is being effectively used to reduce the time taken from 

design to manufacturing the product. 
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CFD has made it possible to predict many “what-ifs” under a given set of 

circumstances. Companies rely on this science because it is possible to predict how a 

particular design will perform before physical prototyping and testing. This reduces trial 

and error experimental testing processes thereby reducing the time it takes to manufacture 

a product. One classic example of this is in the aircraft industry. Before a prototype flies, 

the aerodynamics of an aircraft viz. lift, drag, side forces, moments must be determined. 

One option to obtain such aerodynamic data is to build many models and test them in 

wind tunnels under different test conditions. This is a costly process in regards to both 

time and money. Williams Grand Prix Engineering (Grove, England) [1] is an example of 

a company that with the help of computational fluid dynamics accelerated the 

development of their product Williams BMW FW27. CFD crash simulations on carbon 

fiber structures enabled this company to create energy-absorption plots that permit them 

to design parts without having to do lot of experimental crashes in order to find out the 

optimum balance between the energy absorption and weight reduction of the material. 

1.2 SOLUTION PROCESS IN CFD 

As presented in earlier section, although CFD is being widely used in real-world 

scenarios, understanding how to use it and being able to use it involves non-trivial 

processes that include problem analysis and access to computing power.  This starts with 

understanding that fundamentally computational fluid dynamics deals with obtaining 

approximate computer-based solutions to a set of governing equations (conservation of 

mass, momentum and energy) that describe fluid flow. Obtaining analytical solution to 

these non-linear partial differential equations is not possible for most engineering 

problems and that is where computational fluid dynamics fills the gap. 

The analysis process, shown in Figure 1-1, involves developing a computer model 

that performs CFD simulations. A typical approach is to first formulate the flow problem 

that is being simulated. The flow (computational) domain (control volume in which the 

flow field is computed) is then defined. Volume occupied by the fluid is then divided into 

discrete cells. This process is called grid generation. The next step involves specifying 

numerical conditions that are to be applied at the boundaries of the flow domain. These 

are called boundary conditions. Initial conditions of the flow field are then defined for 
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numerical methods to have a starting point. The fluid problem, defined by numerical 

equations, is then iteratively solved until the solution converges. 

 

Figure 1-1 CFD analysis process 

In CFD, a continuous problem domain is replaced by a discrete domain (a grid). 

In a continuous problem, flow variables like velocity, pressure, and temperature are 

defined at every point in the domain. For example, pressure p in a continuous 1D domain 

would be defined as: 

 .              (1-1) 10),(  xxpp

In a discrete domain, each flow variable is defined only at grid points. For 

example, pressure p in a discrete 1D domain would be defined at ‘N’ grid points as: 

Nixpp ii .,,.........3,2,1),(               (1-2) 

The solution process involves solving for the relevant flow variables only at grid 

points. Values at other locations are calculated by interpolating values between grid 

points. The governing partial differential equations along with boundary conditions are 

defined in terms of continuous variables like p and V (velocity). In the discrete domain, 

these can be approximated in terms of discrete variables like pi and Vi. This is illustrated 

with the help of a simple 1D example with ‘N’ points on a grid as shown in Figure 1-2. 
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The discrete system involves a set of coupled, algebraic equations in discrete variables as 

discussed below with an example. 

 

Figure 1-2 Continuous Domain and Discrete Domain 

1.3 CFD AND COMPUTING POWER 

In order to comprehend the amount of computing power needed to solve CFD 

problems, it is important to understand the fundamental ideas underlying CFD. To keep 

details simple, numerics behind the solution process are illustrated with a simple 1D 

equation shown below [76]: 

1)0(;10;0 







uxu
dx

du m

i

.                            (1-3) 

When m=1 (for linear case), we have the equation: 

0







i
i

u
dx

du
,                                                                                                   (1-4) 

where i is any grid point. For simplicity, a 1-D grid with 4 points is considered as shown 

in Figure 1-3. 

 

Figure 1-3 1-D grid 

The grid has four equally-spaced grid points. The space between any two successive 

points is . Taylor’s series expansion in terms of u gives  x

)( 2
1 xO

dx
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xuu
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Rearranging the above equation, we get 
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Substituting Equation 1-4 in the above equation and neglecting the error, we get 

01 

 

i
ii u

x

uu
.                                                   (1-7) 

The above method of deriving a discrete equation from a differential equation using 

Taylor’s series is termed as finite-difference method. Applying the above equation to 4 

grid points on the grid and assuming u1=1 as boundary condition, we get 

)1(11  iu ,                                       (1-8) 

)2(0)1( 21  iuxu ,                                       (1-9) 

)3(0)1( 32  iuxu  ,                                       (1-10) 

)4(0)1( 42  iuxu .                                       (1-11) 

The above system of equations comprises of four simultaneous algebraic equations. The 

above equations can be written in matrix form as 
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Solving for u1, u2, u3 and u4 by inverting the matrix on the left hand side and using 

x=1/3, we get 

64/27,16/9,4/3,1 4321  uuuu  

The above example demonstrates the details of solving a simple 1D flow problem. 

In practical 2D/3D CFD applications, the above shown discrete system comprises of tens 

of thousands and possibly millions of equations. Setting up and solving such a large 

system involves an exceedingly high number of repetitive calculations. For example, the 

solution to a simple 2-D cavity flow problem (described in chapter 3) on a 600x600 

(=360,000 grid points) grid essentially involves inverting a matrix of order 

360,000x360,000. Although the matrix is sparse, the problem is magnified in that it is an 

iterative process and the process needs to run repeatedly until the solution converges or 

the optimum result is achieved.  

For industry problems, CFD simulations are even more demanding in time and 

computing power as the number of grid points is on order of millions. For example, 

Baggett, et al. [5] calculated that number of grid points required for accurate Large Eddy 
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Simulation (LES) of a turbulent boundary layer scales as N ~ Re2 where Re is Reynolds 

number and is of order 10 to 100 million in airplane simulations. 

1.4 PARALLEL COMPUTING AND BEOWULF CLUSTERS 

 Over the years CFD simulations have expanded from the traditional applications 

of aerospace engineers and meteorologists to more diverse problems. Typically, complex 

CFD problems are solved at a national supercomputer center or similar facilities. 

Woodward et al. [7] and Anderson et al. [8] describe large scale simulations done on 

large parallel machines located at national laboratories. For many years, such computing 

resources could be afforded by only heavily-funded organizations and government 

laboratories, with limited access to outside organizations and academia. Alternatively, 

shared-memory supercomputers built by IBM or HP could be purchased by universities 

and large corporations; however, these machines are expensive with relatively high 

maintenance cost and unclear upgrade paths. One more alternative is for these 

organizations to pay for accessing super computing facilities; however, a queuing system 

that is typical in such cases controlled the timeline of projects based on CFD simulations. 

Thus, the high up-front cost of CFD analysis placed limitations on the size and 

complexity of the problem that could be solved by researchers and engineers whose 

applications could have benefited from the capabilities of CFD codes. 

As the science of CFD advanced, so did the need for super fast computing 

sources. Hardware and resources on single processor workstations and serial computers 

became the bottleneck for performing complex simulations. In response, Thomas Sterling 

and Donald Becker [9] at NASA’s Center of Excellence in Space Data and Information 

Sciences (CESDIS), in 1994, built a parallel computer from Common Off The Shelf 

(COTS) components. This resulted in an economical solution for high performance 

computing needs (Spector 2000). Their design had 16 486DX4 class workstations 

interconnected by a 10 base-T Ethernet network. Linux, a free UNIX clone was the 

operating system. Their creation, which they called “Boewulf” [9] was an instant success. 

This concept of building parallel computers from COTS components quickly spread 

through out NASA and the CFD research community.  Advancements in computer 

technology and advantages like low cost, flexibility and access to latest technology 

fuelled Network of Workstations (NOWs) [10] and Beowulf models of COTS to make 
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substantial gains in the High Performance Computing (HPC) market. This trend has not 

seemed to slow down as clusters that operate on Linux are paving the way for multi-site 

supercomputing systems such as NSF’s Distributed Terascale Facility (DTF) [11]. 

Computing systems like this support research such as climate, storm, and earthquake 

predictions. Clusters like this scale out and challenge traditional big supercomputers. 

The principle of parallel computing that has been around for around 3 decades 

forms the basis of cluster computing. In parallel computing, a large problem is broken 

into discrete parts that can be solved concurrently. Each of these parts is further broken 

down into a series of instructions. These instructions are then executed simultaneously on 

different CPUs. These computing resources can be a single computer with multiple 

processors, many computers connected by a network or combination of both. It is also 

possible to take advantage of computing resources that are not local. For example, 

computers on a wide area network or even the ones on Internet can be used when local 

computing resources are scarce. 

A commodity cluster [12] uses several such off-the-shelf PCs or customized PCs 

connected via Ethernet to solve problems that would otherwise needed to be handled by a 

supercomputer. Advances in clustering technology that redefined the price to 

performance curve made companies and organizations to embrace commodity clusters as 

their computing platforms. For example, PSA Peugeot Citroën [3] had been using 

proprietary Unix OS computer platforms for its CFD simulations, but in 2006 it decided 

to move to a more standardized 400 processor cluster of compute nodes using AMD 

Opteron processors inter-connected by a fast Myrinet [13] network in Linux. A 

combination of commercially available FLUENT software and AMD Linux cluster now 

enables PSA Peugeot Citroën engineers with a fluid flow modeling capability customized 

to the required level of performance and stability, yet less expensive to purchase and 

maintain than the previous approach.  As shown by above examples, clusters not only 

increase computational resources multifold, but also eliminate the wait time that is typical 

in a super-computing environment. This is because clusters could possibly be dedicated 

for a specific department or to a particular project. 
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1.5 INTRODUCTION TO PROBLEM 

The last two decades have witnessed a great increase in the amount of 

computational resources. Supercomputers in the current decade have reached more than 

100TFLOPS (FLOPS – Floating Point Operations Per Second, is one of the ways to 

measure a computer’s performance, especially in fields of scientific calculations that 

make heavy use of floating point calculations) while Cray machines of the early 1980s 

were operating at just a few Gigaflops/s. Such a rate of increase in peak performance 

shows no signs of slowing down. For example, the mythic Peta Flops (PFlops) has been 

achieved by IBM’s Roadrunner in June 2008 [14] much earlier than a previous prediction 

of 2010 [15]. Such unprecedented growth in computational resources has become 

essential key for numerical simulation in industrial design and scientific research. But, 

such advancements in computer hardware technology is by no means a complete solution 

to the high computing needs for CFD in science and engineering. For example, Moin and 

Kim [16] report that even with a sustained performance of 1 Teraflops, even to simulate 

just one second of flight time of an airplane with 50-meter-long fuselage and wings with 

a chord length of 5 meters, cruising at 250 m/s at an altitude of 10,000 meters would take 

several thousand years. Spalart [6] estimated that even if computer performance 

continues to increase, Large Eddy Simulation (LES) for an aircraft will not be feasible 

until 2045 due to the high complexity of the problem. 

Although the challenges caused by lack of access to suitable computing resources 

or lack of large amounts of money associated with accessing or owning such facilities 

could be overcome with cluster computing technology, new challenges started to arise. 

Coordinating concurrent operation of many processors (hundreds if not thousands), 

which is the basis of cluster computing, is a complex task that requires sophisticated 

software related tools viz. parallelized versions of CFD codes, debuggers, analysis tools 

and communication libraries. Because of this, the search for new and efficient algorithms 

and computational techniques became heart of CFD and so did the role of numerical 

mathematics. 

The search for efficient algorithms is also fuelled by non-uniform growth in 

computer hardware. For example, the processing speed of a CPU has historically 

increased at a rate of about 55% per year, whereas the main memory access speed has 
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increased at a rate of only 7% per year [17]. This means over the years the gap in the 

speed to access the memory increased and this has been estimated at 45% per year [18]. 

Because of this performance mismatch, processors rely on caches (discussed in detail in 

chapter 2) to reduce effective memory access time. Even with the introduction of caches 

and other advancements in hardware, present-day compilers can perform certain simple 

code optimizations, but they are not sophisticated enough to change the codes so that they 

can make best use of the memory hierarchy. Meanwhile, scientific programs tend to be 

particularly memory-intensive and dependent on memory hierarchy. The key to achieving 

high performance is an optimal architecture-algorithm mapping. It is not uncommon to 

experience poor performance when such mapping is not established. For example, in 

1992, a simulation study by Mowry et al. [18] discovered that scientific programs spend 

from a quarter to half of overall execution time waiting for data to be fetched from 

memory during sequential execution. It was noticed by Beyls et al [19] that the processor 

stalled on data memory access for almost 50% of the execution time for the SPEC2000 

programs which were compiled with the highest level of optimization present in Intel’s 

state-of-the-art compiler. Thus, achieving high performance on modern architectures is 

intimately related to the coding style. This is particularly true with respect to CFD codes 

as almost all of them are numerically intensive. Otherwise, while the peak performance 

of workstations and parallel machines increases, the gap between peak and actual 

performance of codes becomes wider when no attention is paid to optimal memory 

utilization. As it would be observed in later chapters, this effort to make memory 

utilization optimal has resulted in dramatic performance gains in a CFD code. 

1.6 PRESENT WORK 

Over the years, although there have been positive claims in favor of commodity 

clusters, achieving optimum code performance on them involves non-trivial effort viz. 

carefully engineering the cluster design, using tools to improve application performance 

and restructuring the code. The present work deals with optimizing performance of a 

CFD code, GHOST, on commodity clusters. These clusters are essentially modern cache-

based processor architectures. Although CFD codes are now rarely run on a single node, 

the present work first focuses on tuning the code on a single node. This is because 

performance of a parallel code is a combination of both single node performance and 
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code scalability across an increasing number of nodes. Improvements in one of these two 

areas may be masked by lower performance in the other, complicating the already non-

trivial optimization process. Also, code performance can vary unexpectedly with changes 

in grid size as circumstantial choices can lead to fortuitous or detrimental memory 

storage and cache performance. As discussed in the previous section, the fundamental 

idea of the present work is to achieve optimum memory usage by mapping the algorithm 

to the memory architecture without modifying the underlying algorithm. Later, the fine-

tuned code on a single processor is run on multiple nodes and scalability of the code is 

presented. Subsequently, lessons learned on a commodity cluster have been applied on 

other platforms; similar or better performance gains have been observed as explained in 

further chapters. 

The present work presents the results of optimization effort on a two-dimensional 

CFD code GHOST on commodity cluster architectures. Some of the techniques that have 

been applied to improve performance of the code are presented in chapter 2.  The 

GHOST code is discussed in great detail in chapter 3. This code is extensively used 

across several commodity cluster platforms KFC3, KFC4, KFC5 and KFC6. Details of 

these clusters along with the test case are discussed in chapter 3. The goal of the present 

work is to minimize the walltime (viz. the amount of time that passes if you are looking at 

a clock on the wall for the code to finish solving a problem) of the code while 

maintaining the accuracy of the code and without altering the solution from the code. 

Another aspect of the work is to apply the lessons learned in the optimization process and 

apply them to different architectures. Essentially, there are two stages in this tuning 

effort. First stage of tuning effort was focused on tuning GHOST on KFC3 and KFC4; it 

was carried out till December 2004. The second stage (September – November 2008) of 

tuning effort comprises of testing the tuned codes on KFC6 architectures. These results 

are presented in chapter 4 along with the results on KFC3 and KFC4 for comparison 

purposes. External and Internal Blocking techniques that were used to tune GHOST in 

the interim are reviewed in chapter 5. Later, results of subsequent tuning effort (that is 

part of second stage of the tuning effort) are presented in chapter 5 along with presenting 

the results on a second test case. Conclusions and future work are presented in chapter 6. 

Copyright © Pavan K Kristipati, 2008 
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CHAPTER – 2 

2. CACHE-BASED ARCHITECTURES 

2.1 INTRODUCTION 

As a programmer, it would be ideal to not to need to know about the details of an 

underlying computer architecture. However, there have been dramatic changes in the 

design of computer architectures in the past two decades. Memory chips and micro-

processors have increased in performance exponentially over time [20]. Cache has been 

introduced in computer architectures to bridge the gap between the processor speed and 

memory speed. When a scientific programmer understands these developments and 

exploits the knowledge of the memory hierarchy, it is possible to achieve impressive 

speedups without modifying the underlying algorithms. This is particularly observed in 

CFD codes which generally apply mathematically simple but repetitive operations to a 

large set of data. In such codes, the number of times the data is piped in and out of the 

CPU from the memory is often a limiting factor for performance. This correlation is 

discussed in detail in this chapter. Also, in the case of computers with distributed memory 

[21], the speed of interprocess communication also plays a major role in the overall 

performance of a code, with slower speeds of accessing data on another processor further 

limiting the code’s speed. Thus details of the computer architecture have a significant 

impact on the speed of a code running on a given machine. 

2.2 EVOLUTION OF CACHE-BASED ARCHITECTURES  

Early designs of Personal Computers (PCs) had processors running at ~8 MHz or 

less. It was not often that the processor would be waiting for the system memory. It did 

not matter much if the memory was slow, the processor was not fast either. Within a few 

years of the invention of the PC, every component had increased in speed. However, 

some increased far faster than others. Memory and memory subsystems are now much 

faster than they were, by a factor of 10 or more. However a current top of the line 

processor has a performance over 1000 times that of the original IBM PC (4.77 MHz) 

[22, 23]. This disparity in performance improvement has left us with processors that run 

much faster than everything else in the computer. These powerful processors would not 

be giving their best performance without the use of special high-bandwidth memory 
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reserves called cache. Without cache, getting data and instructions would be bottlenecked 

by the relatively snail-paced capability of the system memory or Random Access 

Memory (RAM). This is the reason why modern microprocessors have cache. Almost all 

of them have multiple layers of it. As cache memory is relatively expensive (a 4 MB of 

Compaq L2 cache costs ~ $400 [24]), instead of trying to make the whole of systems 

memory (RAM) faster, a smaller piece, typically starting with few KB, is often a starting 

point. Cache is then used to hold information most recently used by the processor, as in 

general the processor is more likely to need information it has recently used, compared to 

a random piece of information in memory. Details about the internal working of cache 

memory are presented in later sections. 

During 1961-62, a research group at Manchester [25, 26], England introduced the 

concept of virtual memory. This gave the programmer the illusion that he had access to 

an extremely large main memory even though the computer actually had a relatively 

small main memory [27]. They came up with an algorithm that would move the 

information that was not currently being used, back into the secondary memory viz. hard 

drive. All this was carried out by the operating system. This concept was widely used in 

most of the operating systems in the 1960s. In 1965 Maurice Wilkes [28] proposed the 

“slave memory”, which was a small fast access storage device on the processor to hold a 

small amount of the instructions and data most recently used by the processor. This was 

later called “Cache Memory” in 1968 when IBM introduced it on the 360 / 85 machines 

[29]. Cache memory is now a standard part of memory architecture. 

2.3 MEMORY ARCHITECTURE 

While a cache-based CPU is a common design, the specifics of the hardware 

structure vary from processor to processor. In order to be able to maximize code 

performance on commodity clusters, it is essential to maximize the code performance on 

a single processor. To do this, it is important to understand the underlying memory 

architecture. The following section presents a brief discussion of memory architecture. 

Most modern day computer systems have multiple levels of memory as shown in 

the Figure 2-1. Each level is of a different size and operates at different speed. The fastest 

is the closest to the CPU and each subsequent layer gets slower, farther from the 

processor. 
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Figure 2-1 Memory hierarchy in a modern day computer [30] 

At the top of memory hierarchy is the Central Processing Unit’s (CPU) general 

purpose registers. Registers provide the fastest access to data (less than 1 clock cycle) and 

are the smallest memory object in the memory hierarchy. These are also the most 

expensive memory locations. Processors can only work on the data available in the 

register. Registers are measured by the number of bits they can hold viz. an “8-bit 

register” or a “32-bit register”. 

The next highest performance subsystem in the memory hierarchy is the Level 

one (L1) cache [31]. Although L1 cache size is quite small (4 KB to ~256 KB), its size is 

much larger than the registers on the CPU. Most memory architectures have Level two 

(L2) cache as part of the CPU package. L2 cache is generally larger (256 KB to few MB) 

than the L1 cache and is a secondary staging area that feeds the L1 cache. L2 may be 

built into the CPU chip, reside on a separate chip, or be a separate bank of chips on the 

motherboard. Generally, L1 and L2 caches are split into instruction and data caches. If 

the data present in the L1 cache is also present in the L2 cache, they are called inclusive 

(e.g. Intel Pentium 2, 3 and 4). If the data is present at most in either the L1 or the L2 

cache, they are called exclusive (e.g., AMD Athlon). Exclusive caches can hold more 

data compared to inclusive ones, the downside being the penalty incurred while 
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transferring the data from L2 to L1 cache. In inclusive caches, data from L2 is directly 

written on L1 by deleting some part of the data already present. 

L1 and L2 caches are made out of expensive SRAM (Static RAM) memory. 

SRAM is distinctly different from the main memory viz. DRAM (Dynamic RAM).  A 

few differences are outlined in Table 2-1. SRAM uses more transistors for each bit of 

information; it draws more power and takes up more space for this reason. 

Table 2-1 Differences between SRAM and DRAM 

SRAM DRAM 

Static RAM Dynamic RAM 

Faster and expensive than DRAM Slower and inexpensive than SRAM 

Access times of ~10 nanoseconds Access times of ~60 seconds 

Does not need to be refreshed like DRAM Needs constant refresh 

Generally used for cache (viz. L1, L2) Generally used for system memory 

 

System Memory (RAM) [30] is another kind of data storage used in a computer 

and is present between the cache and the hard drive. It can be thought of as a larger and 

slower cache which allows random access to the data that is stored on it. Similar to the 

cache, RAM loses its data when the computer is switched off. It takes the form of 

integrated circuits (ICs) that allow the data to be accessed in any order, i.e., at random. 

The word random thus refers to the fact that any piece of data can be returned to the 

requestor in the same time regardless of its physical location and whether or not it is 

related to the previous piece of data. 

2.4 CACHE’S ROLE IN THE PERFORMANCE OF A CODE 

When compared to the size of a hard disk, the size of cache is usually small. Yet, 

its effective usage helps in increasing the speed of the program execution. This section 

presents cache’s role in the performance of a code. 

2.4.1 LOCALITY OF REFERENCE 

The Principle of Locality of Reference states “Programs tend to reuse data and 

instructions they have used recently. A widely held rule of thumb is that a program 
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spends around 90% of its execution time in only about 10% of the code.” [20]. Locality 

can be subdivided into temporal locality and spatial locality. 

Temporal locality – A sequence of references exhibits temporal locality if 

recently accessed data/instructions are likely to be accessed again in the near future. 

Spatial Locality – A sequence of references exhibits spatial locality if data 

located close together in address space tend to be referenced close together in time. 

Hence if a code’s algorithm could supply this information (that is used 90% of the 

time) readily to the processor, performance improvements can be achieved. This is where 

cache plays an important role in performance of a code. Once the data is stored in the 

cache, future use can be made by accessing the cached copy rather than re-fetching or re-

computing the original data. This reduces the average access time to this piece of data 

since the access time increases as we move further away from the registers towards RAM 

as shown in Table 2-2. In order to demonstrate why locality of reference works, a 

pseudo-code is presented in Figure 2-2.  

Table 2-2 Characteristics of memory types 

 Type Typical Access 

Speed 

Latency Size 

Registers ~2 nanoseconds ~ 0 -  Cycles ~1b 

L1 Cache ~10 nanoseconds ~1 – Cycle ~ 4 KB – 256 KB 

L2 Cache ~20 –30 nanoseconds ~ 10 – Cycles ~ 128KB – 4 MB 

RAM ~60 nanoseconds ~ 100 – Cycles ~ 128 MB – 4GB 

Hard Disk ~ 10 milliseconds           - ~ 20GB – 500 GB 

 

This program asks the user to enter a number between 1 and 1000. It reads the value 

entered by the user. Then, the program divides every number between 1 and 1000 by the 

number entered by the user. It checks if the remainder is zero (integer division). If so, the 

program outputs “C is a multiple of A”. Then the program ends. Out of the 10 lines of 

this program, the loop part (lines 6 to 9) of the program is executed 1000 times. The 

remaining lines are executed only once. Lines 6 to 9 will run significantly faster because 

of caching. As this program is very small, it can entirely fit in the cache memory. 
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Figure 2-2 Illustration of working of locality of reference 

Even in larger programs, a lot of processing happens inside loops. For example, a 

word processor spends 95% of the time waiting for user input and to display it on the 

screen [31]. This part of the word-processor program is put in the cache. In case of a 

word processor, this 95% to 5% is what is called as locality of reference.  Locality of 

reference can be exploited when an algorithm makes best use of cache memory because 

caches are faster memory subsystems specially designed to store recently referenced data 

and data near recently referenced data. This can lead to potential performance increases. 

2.4.2 CACHE HIT AND CACHE MISS 

During a computation, if the processor requests data, it is first searched for in the 

L1 cache. If it is found in the L1 cache, it is called a L1 cache hit; otherwise it is called a 

L1 cache miss. Then the data is searched in the immediate lower (in hierarchy) memory, 

in this case the L2 cache. If the data is found in the L2 cache it is a L2 cache hit or if the 

data is not in the L2 cache the next higher memory is searched and it is called a L2 cache 

miss. This process continues with however many levels of cache the system has before 

the processor has no other option than to retrieve the data from external memory, the 

slowest option of them all. Assuming that the requested data is found in main memory, it 

is copied from main memory along with neighboring bytes in the form of cache block or 

cache line, into the L2 cache and then into L1 cache. When the CPU requests this data 

again, if this data is found in the L1 cache, it is a L1 cache hit or else a L1 cache miss and 

then the above described process repeats again till data is found. Hennessy and Patterson 
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[34] classified cache misses into three categories depending on the situation that brought 

about the cache miss: 

Compulsory cache misses is a cache miss that occurs because the desired data was 

never in the cache and therefore must be brought in for the first time during a program’s 

execution. These are also called cold start misses or first reference misses. 

Capacity misses are those misses that occur due to the fact that a particular data 

block was moved out of cache to accommodate other blocks of data. This is due to the 

fact that the cache memory is of finite size and so cannot accommodate all blocks that are 

needed for program’s execution. 

Conflict cache misses are those misses that occur because an earlier entry was 

evicted. This type of misses can be further broken down into mapping misses, that are 

unavoidable given a particular amount of associativity, and replacement misses, which 

are due to the particular victim choice of the replacement policy. Conflict cache misses 

are discussed in detail in later sections. 

As a cache miss refers to a failed attempt to read or write a piece of data in the 

cache, cache misses can also be classified based on if it is an instruction miss or data 

miss. 

A cache read miss from an instruction cache causes the most delay, because the 

processor has to wait until the instruction is fetched from memory. However, instruction 

cache misses do not have significant impact on performance of numerically intensive 

codes viz. CFD codes as most of their execution time is spent in small computational 

kernels based on loop nests though repetitive do not involve complex calculations. 

A cache read miss from a data cache happens when a particular piece of data 

requested by the CPU is not found in the cache. This type of cache misses has the most 

impact on the performance of a numerically intensive code. 

A cache write miss to a data cache generally causes the least delay because the 

write can be queued. The processor can continue with its operation until the queue is full. 

But, in numerically intensive codes, this might not always be true as the code might 

require this updated data in subsequent instructions and the processor might have to wait 

till the value is written to the RAM. 
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So ideally, for the fastest execution of any code, we need to have data stored in 

such a fashion that there are no cache misses. This is possible only for small grids which 

fit into L1 or L2 cache, but this may be impractical for large CFD calculations. So the 

idea is to reduce the L1 and L2 caches misses and bring them as close as reasonable to 

zero. A few techniques to achieve this are described in detail in later sections of this 

chapter. 

From Table 2-2, it is evident that cache misses lead to a reduction in the 

efficiency of the code due to increased delay in data or instruction access. When the 

processor is unable to find the necessary data in the cache, it has to go look for it in the 

main memory or random access memory (RAM). This leads to a latency of around 60 

nanoseconds. Over the years, this latency difference between main memory and the 

fastest cache has become larger. For example, Clark et. al [35] in 1983, report that the 

time to service a cache miss to memory for the Vax 11/780 machine was 6 cycles while 

Fenwick et. al [36] in 1995, report that it is 120 cycles for AlphaServer 8400. Because of 

this, some processors have begun to utilize three levels of on-chip cache. For example, in 

2003, Itanium2 began shipping with a 6 MiB (1 Mebibyte (MiB) = 2^20 bytes ~ 1 MB) 

unified Level 3 (L3) cache on chip [35]. The IBM Power 4 series has a 256 MiB L3 

cache off chip, shared among several processors. The new AMD Phenom series of chips 

carries a 2MB on die L3 cache. 

Presence of multiple levels of cache does not automatically mean better cache-hit 

rate or better performance. Cache-hit rate often correlates to the program's locality of 

reference, meaning the degree to which a program's memory accesses are limited to a 

relatively small number of addresses. Conversely, a program that accesses a large amount 

of data from scattered addresses is less likely to use cache efficiently. 

2.4.3 HOW CACHE MEMORY WORKS 

In order to have a deeper understanding of cache memory’s role in the 

performance of a code, it is important to understand the internal working of cache 

memory. When a computer is turned on, cache memory is empty and so for first 

instruction/data request, access to RAM is compulsory. Since usually programs flow in a 

sequential manner, the next memory position the CPU will request is probably be the 

position immediately below the memory position that got loaded. After the first 
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instruction/data is loaded from a certain memory position, a circuit called the memory 

cache controller loads a small block of data below the current position that the CPU has 

just loaded. This amount of data is called a cache line and is usually 16 to 128 bytes long 

[31]. Typically, it is 64 bytes for most caches. This prevents the CPU from reaching to 

RAM for data access. Besides loading this small amount of data, the memory controller 

always tries to guess for what the processor will ask next. A circuit called the prefetcher 

loads more data located after these first 64 bytes from RAM into the cache memory. If 

the program continues to ask for instructions and data from memory positions in a 

sequential manner, they are already available in the cache memory because of caching. 

This process can be summarized in a few steps as shown below: 

 CPU asks for instruction/data stored in address ‘x’ 

 Since the contents from address ‘x’ are not inside the cache memory, this will 

be fetched from RAM. 

 Cache controller loads a line (typically 64 bytes) starting at address ‘a’ into 

the memory cache. This is more data than the CPU requested; so, if the 

program continues to run sequentially, (i.e., asks for address x+1) the next 

instruction/data for which the CPU will ask is already in the cache. 

 A circuit called prefetcher loads more data located after this line, i.e., starts 

loading the contents from address x+64 into the cache. For example, Pentium 

4 processors have a 256-byte prefetcher, so it loads the next 256 bytes after 

the line already loaded into the cache. 

However, programs do not run in a sequential manner always. The control jumps from 

one memory location to the other, some times at random. The main challenge of a cache 

controller is to guess what address the CPU will ask in future so that this address can be 

loaded into cache to avoid CPU from going to RAM to fetch this address. This task is 

called branch predicting [30] and all modern CPUs have this feature. 

2.5 CACHE MEMORY ORGANIZATION 

Internally, cache memory is divided into lines, each line holding from 16 to 128 

bytes, depending on the CPU. What follows is a discussion of how memory cache is 

organized using 64-byte lines as an example. Figure 2-3 presents how a 512 KB L2 cache 

memory is divided into 8192 lines (512 * 1024 / 64 = 8192). 
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Cache memory can be classified into 3 types based on how it is mapped with RAM. 

1) Direct mapping 

2) Fully associative 

3) Set associative (also called n-way set associative) 

 

Figure 2-3 512 KB L2 memory [31] 

Direct Mapping: In this configuration, RAM is divided into the same number of lines as 

the cache memory. For example, a 1 GB RAM will be divided into 8192 blocks 

(assuming cache memory uses the configuration shown in Figure 2-4) and so each block 

is 128 KB. This is illustrated in Figure 2-4. 

The main advantage of direct mapping is that it is the easiest configuration to 

implement. When the CPU asks for an address from RAM (example address 2000), the 

cache controller loads a cache line (64 bytes) from RAM into cache memory. These 

addresses (from 2000 to 2063) are stored in cache. If CPU requests any of these 

addresses, they are already available in cache. 

The problem surfaces when CPU requests two addresses that are mapped to the 

same cache line. Since there is only one possible place that any memory location can be 

cached, there is nothing to search. The cache line either contains the memory information 

being looked for, or it does not. For example, assume CPU requests two different 

addresses A and B that map to the same cache line, in alternating sequence (A, B, A, B). 

This could happen in a small loop. The processor will load A from memory and store it in 

cache. 
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Then it will look for B, but B uses the same cache line as A, so it would not be 

available. So, B is loaded from memory and stored in cache for future use. But, then the 

processor requests A and looks for in the cache. It finds B instead of A. 

 

Figure 2-4 Direct Mapping cache [31] 

This conflict occurs repeatedly. These are called Collision or Conflict misses [34]. 

The net result is that the hit ratio, in this example, is 0%. This is a worst case scenario. 

But in general, the performance for this type of mapping is worse compared to the other 

two mappings. 

Also, if the program has a loop that is more than 64 bytes (cache line) long, cache 

misses are experienced for the entire duration of the loop. For example, if the loop goes 

from address 1000 to address 1100, the processor will have to load all the 

instructions/data from RAM as long as the program’s control is inside the loop (which is 

90% of the time as depicted in example at the beginning of this chapter, especially in 

numerically intensive codes). If the loop is executed 1000 times, the processor will have 
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to go to RAM to fetch the data/instructions leading to adverse impact on code’s 

performance. This is why direct mapping is considered to be the least efficient cache 

configuration. 

Fully Associative: In a fully associative configuration, there is no hard linking 

between memory addresses in RAM and cache lines. The cache controller can store any 

address. Thus, the problems that surface in direct mapping configuration do not occur in 

this case. Although this makes this configuration the most efficient, the control circuit is 

far more complex as it needs to keep track of what memory locations are loaded inside 

the cache memory. To mitigate the disadvantages of direct mapping and to take 

advantage of fully associative cache mapping, a hybrid solution called Set Associative is 

used most often. 

N-way Set Associative: In this configuration, cache memory is divided into 

several blocks (sets), each block containing ‘n’ lines. For example, a 4-way associative 

cache (of 8192 cache lines) contains 2048 blocks having 4 lines each. This is shown in 

Figure 2-5. In this type of cache configuration, the system’s RAM is divided into the 

same number of blocks as the cache memory. Thus, in our example, 1 GB RAM is 

divided into 2048 blocks each of 256 KB as shown in Figure 2-6. 

 

22  



 

Figure 2-5 4-way associative 512 KB L2 cache memory [31] 

 
 

 

Figure 2-6 512 KB L2 cache memory configured as 4-way associative [31] 

 
As can be observed, mapping in this case is very similar to direct mapping; the 

difference being for each memory block, there is now more than one cache line available 

on cache memory. Each cache line, in this type of configuration, can hold the contents 

from any address inside the mapped block on RAM. For example, on a 4-way set 

associative cache, each memory address inside a mapped block is assigned a set, and can 

be cached in any one of 4 locations within the set that it is assigned to. In other words, 

within each set the cache is associative, and thus the name. With this design, the 

problems (viz. collision, conflict and loop) presented by direct mapped cache are 

mitigated. Added to this, because of the ease of implementation, this type of cache 

configuration is the most used in PCs, although it provides lower performance compared 

to the fully associative cache configuration. 
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This design means that there are “N” possible places that a given memory location 

may be in the cache. The trade off is that there are “N” times as many memory locations 

competing for the same “N” lines in the set. In the example discussed above, instead of a 

single block of 8192 lines, we have 4096 sets with 4 lines in each set. Each of these sets 

is shared by 4096 blocks of memory on RAM each of 256 KB size. As each set has 4 

cache lines in it, each address can be cached in any of 4 cache lines. This means that in 

the example described in the direct mapped cache description above, where two 

addresses (A and B) that map to the same cache line were accesses alternately, they would 

now map to the same cache set instead. This set has 4 lines (in 4-way set associative) and 

so one could hold A and the other could hold Y. This raises the hit ratio from 0% to 

100%. Table 2-3 summarizes different cache mapping techniques and their relative 

performance. 

Table 2-3 Mapping techniques and their relative performance [31] 

Cache Type Hit Ratio Search Speed 

Direct Mapped Good Best 

Fully Associative Best Moderate 

N-Way Set 
Associative, N>1 

Very Good, Better as N 
Increases 

Good, Worse as N 
Increases 

 

The mapping between memory block and cache lines (which memory block goes 

into which cache line) and replacing the contents of cache line is decided by a 

replacement strategy. The most commonly used strategies for today’s microprocessor 

caches are random and least recently used (LRU). The random replacement strategy 

chooses a random cache line to be replaced. The LRU strategy replaces the block which 

has not been accessed for the longest time interval. This confirms with the principle of 

locality in that it is more likely that a set of data that has been recently used would be 

used in the near future. Less common strategies are least frequently used (LFU) and first 

in, first out (FIFO). The former replaces the memory block in the cache line which has 

been least frequently used, whereas the latter replaces the data that has been residing in 
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cache for the longest time. Eventually, the optimal replacement strategy replaces the 

memory block that has not been accessed for the longest time. It is not practical to 

implement such an optimal replacement strategy in real world scenarios as such a design 

would require information about future cache references. 

2.6 CACHE OPTIMIZATION GUIDELINES 

Although the market that caters to the scientific community is diverse, there is 

still a certain convergence in the architectural design of machines. For example, RISC 

(Reduced Instruction Set Computer) architectures from many vendors (IBM, SUN etc) 

are relatively similar. Registers, cache, memory, and disk are now present in one form or 

another in all architectures of practical interest. Consequently, understanding how to 

achieve high performance on a given architecture is often of sufficient generality to allow 

efficient computations on architecturally similar computers. As machines evolve, new 

and improved numerical algorithms need to be developed that not only solve the 

equations but also take fuller advantage of the advances in the architecture of the 

computers on which they run. The key to achieving high performance is an optimal 

architecture-algorithm mapping. Since the effective use of cache memory is critically 

important to any overall code performance, numerous research papers have discussed 

cache optimizations in the last forty years [38]. The proposed optimizations range from 

hardware modifications, over micro architectural enhancements, optimizations in 

compilers and operating systems, to improvements at the algorithmic level. This section 

presents cache optimization methodologies for better code performance. 

Optimizations techniques presented below can be classified into the following 

categories: 

 Optimizing memory access 

 Optimizing floating point calculations 

 Using compiler optimizations 

Each of these will be discussed in subsequent sections. 

2.6.1 TECHNIQUES FOR OPTIMIZING MEMORY ACCESS 

The techniques that optimize memory access also reduce capacity misses. They 

essentially aid in holding on the data in cache for a longer time so that as many necessary 
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calculations as possible in which the data is required are carried out before this data 

leaves the cache. Some of these are presented below. 

2.6.1.1 Optimal Data Layout 

The idea is to ensure that the data processed in sequence should be located close 

to each other in physical memory. This ensures data locality, meaning that data that are 

brought in cache will be used at least once before being flushed out of cache. For 

example, a Fortran 77 array containing the positions of a collection of n particles should 

be dimensioned as dimension r(5,n)instead of dimension r(n,5)since typically the five 

spatial coordinates for a given particle are accessed consecutively. The same 

considerations apply to data structures defined in Fortran90. The effect of other 

performance improvement techniques on numerically intensive codes might be mitigated 

with a poor data layout as described above. 

2.6.1.2 Loop Interchange 

This technique suggests reversing the order of two adjacent loops, if needed, in a 

nested loop [40, 41]. The idea is to optimize the inner-loop memory access. In 

FORTRAN, the data is accessed row by row instead of column by column as in C and 

C++. As the value of the inner loop changes most frequently, this type of loop 

interchange results in a performance gain because the order of data access is similar to 

the order of data storage. It is critical to understand the order in which the data is 

accessed in the language in which the code is being written and design the order of nested 

loops to match with the data access strides. 

In the untuned version of the code shown in Figure 2-7, the loop accesses the 

arrays x, y and z row by row while FORTRAN program stores array elements in column-

major fashion. (Elements from the same column example: x[1,1], x[2,1], x[3,1] are stored 

together). This might result in heavy cache misses as the contiguously accessed array 

elements within the loop come from a different cache line. Loop interchange can help 

prevent this as shown in the tuned version of the code below. As shown in Figure 2-7, the 

data pertaining to adjacent cells in a single row will be stored in a cache line. This 

maximizes the possibility of re-use of data in cache memory thereby reducing the number 

of data calls. 
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It is to be noted that loop interchange might not always be achievable due to 

dependencies between statements. Sufficient analysis needs to be done to ensure that 

results do not change before this technique can be rolled into the final code. 

 

Figure 2-7 Illustration of Loop Transformation 

2.6.1.3 Using Data Structures instead of arrays 

This technique suggests replacing the usage of arrays by using data structures. 

While using arrays has its own advantages over using regular variables, sometimes using 

data structures in place of arrays proves to be highly efficient. Most CFD codes, like 

GHOST, involve lots of numerical calculations. The scenarios where addition, 

subtraction, multiplication or division of a variable the given point on a grid with a 

different variable at surrounding points on the grid are ubiquitous. This is where using 

data structures may prove quite useful as variables at a grid point (when declared as a 

data structure) are stored in contiguous memory locations thus improving the spatial 

locality of the program. Sufficient care has to be taken when data structures are used. For 
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example, the order in which variables are declared in a data structures can make a 

difference. This is explained with the help of two seemingly identical structures shown in 

Figure 2-8. 

 

Figure 2-8 Example to illustrate the importance of definition of data structure 

The code with Struct A is likely to experience a decrease in performance. This is 

because, in memory, data is usually stored in what is called a long word, or a 32-bit word; 

a 4 byte unit. Longs take 4 byes; chars take 1 byte.  In Struct A, the first char will take up 

the first byte of a word, and the next long, being 4 bytes, will overfill that word, so it will 

be allocated starting on the next long word.  In memory, the way the two structures look 

is represented in Figure 2-11. 

In the above example, while Struct B wastes only 2 bytes, Struct A wastes 6 bytes. 

This difference of 4 bytes, just because of order of variable declaration inside a structure 

is a common occurrence. The total number of bytes that would be wasted can be 

enormous when the size of structure is huge and especially when the code uses arrays of 

such structures, which is common in numerically intensive codes. Figure 2-9 presents an 

example in which arrays can be replaced by data structures. 

 

Figure 2-9 Arithmetic operations on arrays elements 

If there are lot of occurrences in which the arrays a, w, n, s and p are being used 

together for calculations like the one shown above as example, it was observed, as shown 

28  



 

in next chapters, that data structures usage could prove to be beneficial. The example 

shown in Figure 2-9 can be re-written as shown in Figure 2-10. 

 

Figure 2-10 Using data structures instead of arrays 

When variables are declared inside a data structure and the code is modified to 

use an array of such data structures, the compiler can fetch values of the required 

variables at once without the possibility of data cache misses. This is because when the 

processor requests a set of variables, a cache line is loaded into cache and because arrays 

are replaced by data structures, all variables that are required in arithmetic operations are 

found in cache leading to fewer data misses. 
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Figure 2-11 Schematic representation of memory storage for seemingly identical 
Structures. 

2.6.1.4 Loop Blocking 

 This technique, also referred to as loop tiling, tends to increase the depth of a loop 

nest with depth n by adding additional loops to the loop nest [40].  This is illustrated in 

Figure 2-12. As mentioned earlier that the cache works based on the principle of locality 

of reference, the data pertaining to points surrounding a cell will be saved in the cache. 

Since the code traverses through the blocks, most of the data necessary will be stored in 

the cache in advance. This helps to improve performance by reducing cache misses. 

 

Figure 2-12 Illustration of Loop Blocking 

2.6.2 OPTIMIZING FLOATING POINT OPERATIONS 

In order to discern the effect of floating point optimizations, it is necessary to 

eliminate the limiting effects due to memory access issues. Some of the techniques 

presented in the earlier sections address memory access issues. In this section, a few 

techniques that can optimize floating point operations are discussed. 
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2.6.2.1 Removing Floating Ifs 

‘IF’ statements slow down a program for several reasons. Some of them are: 

 the compiler can do fewer optimizations in their presence, such as loop 

unrolling 

 evaluation of the conditional takes time 

 the continuous flow of data through the pipeline is interrupted when 

branching. 

Often, the performance impact of ‘if’ statements can be significantly reduced by 

restructuring the program. For example, if the result of an ‘if’ statement does not change 

from iteration to iteration, it can be moved out of the loop. Compilers can usually do this 

except when loops contain calls to subroutines and when the loops are bounded by 

variables [40]. This is illustrated with an example in Table 2-4. 

Table 2-4 Illustration of removing floating ‘IF’ 

 
!Original Code 
do i = 1, lda      
  do j = 1, lda      
    if (a(i) .GT. 100) then 
      b(i) = a(i) - 3.7         
   endif        
x = x + a(j) + b(i)      
enddo       
enddo    
  

 
!After removing floating ‘if’ 
do i = 1, lda 
if (a(i) .GT. 100) then 
b(i) = a(i) - 3.7 
endif 
do j = 1, lda 
x = x + a(j) + b(i) 
 enddo 
 enddo 

2.6.2.2 Removing unwanted constants inside loops 

 If a constant value need not be initialized within a loop, it better to initialize it 

outside the loop. This is presented in table 2-5. 

2.6.2.3 Avoiding Unnecessary Recalculations inside Loops 

When iterating inside a loop, using pre-calculated values wherever possible 

instead of recalculating them every time can save a considerable amount of time. Table 2-

6 illustrates this idea with an example. 
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Table 2-5 Illustration of removing unwanted constants inside loops 

 
!Original Code 
do i =1,n 
  i1 = 0 
 i2 = 0 
b(i1) = i+i1 
b(i2) = i+i2     
  ………. 
Enddo     

 
!After removing unwanted constants 
i1=0 
i2=0 
 do i = 1, n 
 b(i1) = i+i1                            
b(i2) = i+i2 
…………. 
end do 

 

Table 2-6 Illustration of removing unnecessary recalculations inside loops 

 
!Original Code 
for (c = 0; p < yy; p++) 
{     
z+= x*y + p;    
} 

 
!After removing unnecessary 
recalculations 
int n=x*y 
for (c=0; p<yy; p++) 
{  z+=n+p; 
} 

2.6.2.4 Reducing division latency by using reciprocals 

In general, a floating point division operation takes a longer time (or is said to 

have higher latency) than multiplication or addition operations. Although division 

operations are infrequent than multiplication and addition operations, when their high 

cost is considered, even a few divisions in a code can significantly degrade its 

performance. For example, Flynn et al. [42], with experiments on their bench mark suite, 

describe how a relatively few number of division operations, that account for only 3% of 

all floating point operations, account for 40% of the latency, while multiplication 

operations that account for 37% of instructions contribute only to 18% of over all latency 

caused by arithmetic operations. 

Table 2-7 Cycle times for division and multiplication operations on leading 
microprocessors [30] 

Processor Multiplication Division 

Intel 64-bit 12 161 

AMD 64-bit 5 71 
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Table 2-7 gives an idea of amount of latency in machine cycles for multiplication 

and division operations. While multiplication requires 5 to 12 machine cycles, division 

latencies have a higher range and because of this great variation in latency for division 

operations, it is highly suggested that they are replaced by their reciprocal values 

especially inside a loop and nested loops thus preventing unnecessary repeated divisions. 

It is important to note that multiplication by a reciprocal value might sometimes alter the 

result. So, it is highly desirable to save the reciprocal value to the highest possible 

precision value before doing any subsequent operations. Many alternatives to replacing 

division with reciprocal have been presented over the years. For example, Oberman et al. 

[43] compares various algorithms that can be implemented in division operations in terms 

of their efficiency. 

2.6.2.5 Subroutine Inlining 

Subroutine calls incur overheads for the same reasons as loops do. To eliminate 

these overheads, the process of replacing the subroutine call with the function code itself 

is called Subroutine Inlining. This is particularly useful in loops with subroutine calls that 

have a large iteration count. Small subroutines that are called many times are good 

candidates for inlining. However, subroutine inlining done explicitly does not always 

guarantee a better performance of a code as most compilers can automatically do inlining, 

although this automatic compiler-inlining might not be efficient on large codes. It is 

advisable to avoid frequent transfer control to a subroutine, especially in loops with large 

iterations, as overheads of 100 cycles or more are possible for very complex subroutine 

calls [40]. The measured overhead on an IBM 590 for calling a simple subroutine shown 

in Figure 2-13 was 10 cycles [40]. 

 

Figure 2-13 Example to illustrate cost of calling a subroutine 
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However, if the subroutine to be inlined contains many lines of code, inlining can 

considerably increase the size of the whole code and lead to storage, readability and other 

performance problems. An example of subroutine inlining is illustrated in Table 2-8. 

Table 2-8 Illustration of subroutine inlining 

!Original Code 
do 10 I=1, 1000          
call Celss (A(I),B(I))     
10 continue              
...      
subroutine celss(C,F)    
real C,F         
C = (F - 32.0) * 5.0/9.0         
return   
end    

!After subroutine inlining 
Do 10 I=1, 1000 
A(I) = (B(I) - 32.0) * 5.0/9.0 
10 continue 

Table 2-9 Illustration of loop incorporation 

!Original Code 
do 10 i=1, 1000                
call celcius(x(i),y(i))   
10 continue            
        
subroutine celcius(c,f)               
real c,f               
c = (f - 32.0) * 5.0/9.0              
return         
    end    

!After loop incorporation 
call celciusnew(n,x,y) 
 
subroutine celciusnew(n,c,f) 
integer n 
real c(n), f(n) 
d0 10 i=1,n 
c(i) = ( f(i) - 32.0 ) * 5.0/9.0 
10 continue 
return 
end 

2.6.2.7 Loop Unwinding 

The technique of eliminating the inner loop by explicitly repeating the statements 

comprising the loop is called Loop Unwinding. This technique is also called Loop 

Unrolling. The idea is to reduce the number of overhead instructions that the CPU has to 

execute in a loop. This is illustrated in Table 2-10. 

Table 2-10 Illustration of loop unwinding 

!Original Code 
do 10 i=1, 1000     
do 20 j=1,4          
a(i,j) = b(i,j) * 6.5       
20 continue          
10 continue    

!After loop unwinding 
do 10 i=1, 1000 
a(i,1) = b(i,1) * 6.5 
a(i,2) = b(i,2) * 6.5 
a(i,3) = b(i,3) * 6.5 
a(i,4) = b(i,4) * 6.5 
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10 continue 
 

2.6.2.8 Loop Defactorization 

In a code with branches inside loops, in most of the cases, the body of a loop is 

executed in every iteration. Thus, the CPU has to do more work even where not 

necessary, leading to poor performance. The solution is to split the loop with a temporary 

array containing indices of elements to be computed on the branch (these elements 

usually qualified by an IF as shown below). This is termed as Loop Defactorization [40]. 

An example is presented in Table 2-11. 

Table 2-11 Illustration of Loop Defactorization 

!Original Code 
do i = 1, n       
if (t(i).gt.0.0) then  
a(i)=2.0*b(i-1)  
end if 
end do  

!After loop defactorization 
inc = 0 
 do i = 1, n 
  tmp(inc) = i 
  if (t(I).gt.0.0) then 
   inc = inc + 1 
  end if 
 enddo 
 do I = 1, inc 
  a(tmp(I))=2.0*b((tmp(I)-1) 
 enddo 

2.6.3 OPTIMIZING FLOATING POINT OPERATIONS 

On many RISC architectures, programs compiled without any optimization 

usually run slowly. Typically, medium optimization level (order of 2) leads to a speedup 

by factors of 2 to 3 [40] without a significant increase in compilation time. It is certainly 

worthwhile to try several optimization levels and possibly some other compiler options as 

well, and to assess their effect on the overall program speed. 

2.7 PREVIOUS WORK 

The growing dominance of parallel computational fluid dynamics has inspired 

greater interest in code performance and code optimization to achieve efficient use of 

large parallel system. This section presents some previous work done on performance 

tuning of various codes on wide variety of computer systems. 

Douglas et al. [44] present optimization strategies viz. 2D blocking strategy, loop 

unrolling for both structured and unstructured grids. Speeds ups in the range of 2-5 have 
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been achieved on Gauss-Seidel algorithm with natural or red-black ordering on a variety 

of platforms. Kaushik et al. [45] discuss how performance tuning methodologies like 

field interlacing, structural blocking, edge reordering yielded improvement ratios of the 

order 2.26 to 6.97 on FUN3D[46] on NASA’s IBM P2SC machine. 

 Hauser et al [47] discuss techniques and tools that they developed to tune their 

Direct Numerical Simulation (DNS) code DNSTool on a fairly inexpensive commodity 

cluster (cost $41205) Kentucky Linux Athlon Testbed2 (KLAT2). DNS was done on the 

flow over a single turbine blade and their grid was of order 16 million grid points. Their 

performance tuning effort involved both recoding of the application to improve cache 

behavior and careful engineering of cluster design. Sustained performance of 14.99 Giga 

Floating Point Operations per Second (GFLOPS) ($2.75 per MFLOPS) and 22.1 GLOPS 

($1.86 per MFLOPS) has been achieved for double precision and single precision 

operations respectively. 

Kadambi et al. [48] studied an algorithm to solve compressible Euler equations 

with regard to temporal and spatial access of data. They optimized the code by using loop 

interchange, reallocation of data spaces and loop fusion. They achieved a performance 

improvement of 45% in their best case. The L1 cache miss rate was reduced by more than 

a factor of four but the secondary cache miss rate did not show any significant changes. 

Gropp et al. [49, 50] present optimization techniques of their CFD code FUN3D,. 

The first was: Interlacing, which leads to the high reuse of data brought into the cache, 

makes memory references closely spaced, and decreases the size of the working set of the 

data cache. The second was structural blocking, which lead to a significant reduction in 

the number of integer loads and enhanced the reuse of data in the registers. The last 

technique was edge and node reordering; which lead to a decrease in the TLB misses (viz. 

a kind of cache miss) by an order of two and a decrease in the L2 miss rate by a factor of 

3.5. The combination of the three techniques led to an overall improvement in the 

execution time by a factor of 5.7. 

Gupta et al. [51] and LeBeau et al. [52] carried out a comprehensive study of the 

effects of application of various cache optimizing techniques to the 3-D unstructured 

CFD code UNCLE. They applied space filling curve, loop blocking and optimized data 
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access. An overall improvement of 50% in walltime was obtained from the application of 

these techniques. 

Palki [53] present the results of performance optimization effort of their 2-D CFD 

code GHOST on modern commodity clusters. Performance improvements of up to 79% 

were observed (when compared to original unsubblocked code) with the application of a 

technique called internal blocking to the unoptimized version of GHOST code. This 

technique involves breaking up the grid into smaller cache fitting blocks, solving the 

governing equations on these smaller blocks, and then putting them back together before 

the start of the MPI communications to get the overall solution. 
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CHAPTER - 3 

3. COMPUTATIONAL TOOLS 
This chapter presents a comprehensive description of the computational tools and 

platforms that have been used in this study. During the performance optimization process, 

it is necessary to understand the underlying algorithm in order to map it to the memory 

architecture of the machine on which the code runs. For this purpose, a discussion of 

numerics involved in the GHOST code, is presented. Linux architectures on which the 

optimization effort is carried on are likewise described. The latter part of the chapter 

consists of a discussion about Valgrind, a cache simulator tool. This chapter concludes 

with a discussion about methods used to gauge performance of the code followed by 

discussion about characteristics of the original version of the GHOST code. 

3.1 DESCRIPTION OF GHOST 

This section presents a description of original version of GHOST.  It is a well 

established solver and has been used to carry out a number of published analyses of 

transitional turbomachinery flows and active flow control. Examples of recent 

applications of this code include the development and testing of a new laminar-turbulent 

transition model for turbomachinery [54, 55], simulation of an oscillatory morphing 

airfoil [56], the evaluation of configurations for steady jet flow control [57,58] and the 

simulation of plasma actuators [59]. 

GHOST is a two-dimensional incompressible finite-volume structured CFD code 

with chimera overset grids for parallel computing. The QUICK scheme is applied to 

discretize the advective terms in the momentum equations with second-order accuracy. A 

second-order central difference scheme is used for the diffusive terms. For the RANS 

(Reynolds Average Navier-Stokes) turbulence equations, the Total Variation Diminishing 

(TVD) scheme is employed for the advective terms. Interfacial fluxes are determined 

through interpolation of cell-centered values. Second order upwind time discretization is 

employed for the temporal terms, using a delta form subiterative scheme. GHOST is 

written in FORTRAN90 and has been ported to a wide variety of platforms. Its original 

version is just over 5300 lines broken into multiple subroutines. GHOST also originally 

designed to minimize memory usage, accomplished through extensive use of the 
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allocation and de-allocation of variables in FORTRAN90. GHOST uses a cell-centered 

partitioning approach, and the internode communication protocol is MPI. GHOST has 

mechanisms to do a form of automatic load balancing, but this is unnecessary for simple 

test geometries. 

Flow and geometry data in GHOST for a given grid or subgrid are stored in 

individual arrays, as in 1(i,j), 2(i,j), …. n(i,j). On a given grid, GHOST performs the 

majority of its calculations as a series of i-j bi-directional sweeps in nested double loops.  

There are more than 60 such i-j nested double loops in the original version of the code. 

For unsteady flow, second order upwind time discretization is employed for the temporal 

terms, which is made effectively implicit through the use of multiple subiterations within 

a given time step. 

The momentum equations are formulated in terms of delta variables, defined as 

 = n+1 - n, where  represents any variable (u, v) and n is the iteration level. The 

resulting form of the momentum equations are solved implicitly in delta form and are 

shown in Eq. (3-1) for the time discretization in one dimension:  

1 1 13( ) ( ) ( ) 3(( ) ) (( ) )

2 2 2

m m n n n m n nf f

t x t t x

             
   

    

m

,                         (3-1) 

where m is the subiteration level. The right-hand side of Eq. (3-1) is explicit and can be 

implemented in a straightforward manner to discretize the spatial derivative term. The 

left-hand side terms are evaluated based on the first order upwind differencing scheme. 

The deferred iterative algorithm is strongly stable, and the solution n+1 is obtained by 

using inner iterations to reach the convergent solution of the right-hand side of Eq. (3-1), 

corresponding to  approaching zero. At least one subiteration is performed at every 

time step so that this method is fully implicit. For steady flows, t is set to infinity and 

convergence is achieved through the subiteration cycle. 

The resulting matrices generated at each subiteration based on the QUICK and 

TVD schemes as well as evaluation of source/sink terms are solved with ADI-type 

decomposition into a pair of sweeps alternately in the i- and j-directions which are solved 

sequentially in tri-diagonal matrices. This sequence may be repeated for improved 

accuracy. The techniques of Rhie and Chow [60] are then used to extract the pressure 

field from the continuity equation. Other equations, such as energy conservation and 
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turbulence models, are computed in turn as necessary. Then, the subiteration sequence is 

repeated until satisfactory convergence is achieved. 

For clarity most of the performance testing was conducted on the simplest form of 

GHOST that has only the steady-state version of the code, laminar model only (no 

turbulent flow), and only a single pair (one in i, one in j) of ADI computations is 

completed per iteration. However, the iterative core of the code is retained even in this 

simplified version. 

There are many different schemes that can be employed besides those 

implemented in GHOST, but many CFD codes follow similar procedures that require 

discretization of the conservation equations and then solving the system of equations for 

the grid. Therefore, the GHOST code that is analyzed here can be considered a 

representative sample of this common type of CFD algorithm. 

3.1.1 GHOST FLOW CHART 

The underlying algorithm in GHOST code was described in fair amount of detail 

in previous section. This section describes the flow chart of GHOST code that is shown 

in Figure 3-1. 

The first task that is performed by the code is to find out the number of grid files 

to be read and the number of processors to be used in solving the problem. This is done in 

subroutine read_map. The code reads this information from the file called mpi.in. 

Contents of the file mpi.in are shown in Figure 3-2. 

The second task performed by the code is to read the grid files. This is done in 

subroutine read_data. Flow field variables (viz. u, v) and boundary conditions are 

initialized next. In case the grids are located on different processors, the boundary 

conditions are communicated between the grids by using MPI broadcasts. Before the 

code starts the calculations, it checks to see if there are any restart files present. This is 

done by subroutine read_restart. Restart files mainly contain the u, v and p values at each 

of the grid points from the previous run. 
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Read Grid Files and load arrays with grid data

Find out number of zones Read_Map

Read_Data

Initialize initial values and boundary conditions
       Init_flowfield
       Update_real_bc
       Update_ghost_bc

MPI Broadcasts

Read Restart Files if any Read_restart

Iter = Iter + 1

Calculate u,v,p

Izone = Izone + 1

Update Boundary Conditions

MPI Broadcasts

Is Izone > Nzone ?

NO

 More MPI Broadcasts ...

YES

Print residuals

Is Iter > Maxit ?

NO

Write solution & restart files

YES

END

Write_restart
Vector

Contour

Calc_flowfield,
Cal_property,

Cal_u, Cal_v , Cont ,
Tdma , Quick

 

Figure 3-1 Flowchart depicting the working of GHOST [53] 

 

Figure 3-2 Contents of the file mpi.in 
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Flow calculations that were mentioned in the previous paragraph are carried out in 

subroutine calc_flowfield. This subroutine initially calculates the variables that are 

necessary to solve the momentum and continuity equations. These equations are actually 

solved in subroutine cal_property. 

The next task performed by the code is to update the u velocity by solving the x-

momentum equation. This is done in subroutine cal_u. Subroutine quick initially applies 

the QUICK scheme and calculates the required parameters. Subroutine tdma then solves 

the tri-diagonal matrix that is formed. This is done using the standard TDMA method. 

In a similar way, the y-momentum equation is solved to get the v velocity field 

(subroutines cal_v, quick, tdma). Once the x and y momentum equations have been 

solved and the velocity field has been obtained, the pressure field is extracted from the 

continuity equation using the Rhie and Chow technique [60] (subroutines cont, quick, 

tdma). 

If the energy equation is switched on then an additional subroutine is used to 

calculate the temperature field (subroutine cal_t). If the turbulence model is switched on, 

two additional subroutines are used to calculate the eddy viscosity (subroutines cal_tk, 

cal_ed). Once all the required flow field variables have been calculated, the code 

broadcasts these values to all the processors since they are required to calculate the values 

at the boundary points and to update them.  

After the values at boundaries points are calculated, the code once again 

broadcasts these newly calculated values. It then calculates the residuals and prints them. 

If the solution is converged, the solution is written to a file, if not it starts off with next 

iteration until either the solution converges or the iteration number is greater than the 

maxit value in the code. A summary of what each subroutine does is shown in Table 3-1. 

Table 3-1 Summary of subroutines in original version of GHOST 

Subroutine Function 

Cal_u Solves the x-momentum equation to update the u - velocity field. 

Cal_v Solves the y-momentum equation to update the v - velocity field. 

Cont Extracts pressure field from continuity equation. 

tdma Tri diagonal matrix solver 

cal_property Computes the values of variables necessary to solve governing 
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equations. 

quick Implements the QUICK scheme to determine the advective fluxes. 

cal_t Solves the energy equation to calculate the temperature field. 

cal_tk Computes the turbulent kinetic energy (k) 

cal_ed Computes the energy dissipation rate (ε) 

3.1.2 GOVERNING EQUATIONS 

The governing equations for unsteady incompressible viscous flow under the 

assumption of no body force and heat transfer that are used to calculate the various flow 

field parameters in GHOST are as below: 

 Conservation of Mass 
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  ;                                                 (3-2) 

Conservation of Momentum 
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Conservation of Energy 
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where  is density, p is pressure, ui are the components of the velocity vector, ni is 

unit normal vector of the interface, ij is tensor of shear force, and specific energy is 

)( 222
2
1 wvueE  . 

3.1.3 CALCULATION AT ARTIFICIAL BOUNDARIES 

GHOST uses the chimera overset grid [63] method to carry out parallel 

computations. This technique is used to carry out calculation at artificial boundaries that 

are formed due to splitting the grid into smaller blocks. This is done to carry out parallel 

computations. This section briefly explains this technique. 

Figure 3-3 shows a grid that has been split into two halves for the sake of 

performing parallel computations. A magnified view of the region of overlap is shown 

below the actual grid. As can be noticed in the Figure 3-3, four grid points from each 

zone are overlapped. The last two overlapped grid points for each zone are referred to as 
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“Ghost Points”. No calculations are carried out at the Ghost Points. The number of Ghost 

Points required depends upon the order of accuracy of the code. GHOST is second order 

accurate; so it uses information from two grid points in each direction surrounding the 

grid point while calculating the diffusive and convective fluxes. Hence it requires two 

Ghost Points at the artificial boundaries. 

Assume that each of these zones is located on two separate nodes of a parallel 

computer. For the first iteration, the code performs the calculation on each of the nodes 

simultaneously using the initial values and real boundary conditions. There is no transfer 

of data between the nodes during this stage (This capability has been used to implement 

internal blocking [53]). At the end of the first iteration, using MPI communication, the 

boundary information is transferred between the nodes. For a laminar case with no heat 

generation, the values of velocities (u, v) and the pressure (p) are swapped between the 

nodes. The values at the boundary points of zone 1, i.e. Wn-1 and Wn , are passed on to the 

ghost points of zone 2, i.e. E0 and E1  and the same is done between the ghost points of 

zone 1 and boundary points of zone – 2. During the second iteration, the ghost point 

values are used to calculate the values at the boundary points. The same process is 

followed at the end of each iteration. 

3.2 COMPUTATIONAL GRID 

3.2.1 FINITE VOLUME METHOD 

GHOST uses the finite volume method to solve the governing flow equations. 

This section presents a brief introduction to this technique. “Finite volume” refers to the 

small control volume surrounding each node point on a mesh. The governing integral 

equations are enforced on this control volume. A typical control volume (CV), along with 

the notations is shown in the Figure 3-4. 

The control volume consists of four faces, denoted by lower-case letters (n, e, w, 

s) corresponding to their location with respect to the central node C. Adjacent nodes are 

denoted by upper case letters (i.e. N, E, W, S). The values of the flow variables are 

calculated and stored at the cell centers i.e. nodes. The vertices around the central node C 

are denoted by lower-case letters (ne, nw, sw, se). The values of the flow variables at the 

vertices are calculated by taking the weighted average of the values at the nodes (N, E, W 

and S) surrounding the vertex. 
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Figure 3-3 Illustration of artificial boundaries 
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Figure 3-4 A grid in generalized coordinate system [64] 

3.2.2 GRID FILES 

Since GHOST works off a generalized coordinate system, it requires a lot of grid 

data apart from just the x, y co-ordinates of the grid points. This data is generated by the 

code g.f90. In this section we briefly describe the grid data that is generated by this code 

or the contents of the grid file for a non moving grid are as follows: 

 Number of ghost points, 

 Grid point weight in the x and y direction, 

 x and y co-ordinates of the grid points, 

 Volume of the cell surrounding each grid point, 

 Distance between the wall and the grid point, 

 Values for the various transformation functions such as ηx, ηy, ξx and ξy, 

 A variable called “inx” which specifies if a particular grid point is a ghost point or 

not. If the value of inx for a grid point is 1, then that particular grid point is treated as 

a ghost point, whereas if its zero, it is treated as a normal point. 

 Boundary conditions. 

GHOST reads all these flow and geometry data of the computational domain from the 

grid files and stores them in a single structure consisting of various arrays for each of the 

above mentioned data. 
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3.2.3 DESCRIPTION OF INPUT FILE 

As mentioned in the previous section, g.f90 is used to generate the grid data 

required by GHOST. In order for g.f90 to generate a grid it requires certain data 

regarding the size of the computational grid, boundary conditions and number of grid 

points. This data is provided using the file called “input”. An input file to generate a 

200x200 grid (split into 4 blocks) is shown in Figure 3-5, with explanations inline. Under 

the column “Patch Zone Number” the value for the row labeled right (in zone 1) is 2, 

which means that the zone 2 is to the right of zone1. Similarly in the row labeled left in 

zone 2, we have specified the value as 1, which means that the zone 1 is to the left of 

zone 2. Input file to generate a single zone 100 x 100 grid is shown in Figure 3.6 and is 

simpler than the one for multiple zones. 

  /*number_of_zone 
   4 
  /* zone_number 1 
  quadratic 100 100  4 2 
(!Type of grid , No. of point in x direction , y direction , No. of Boundary Conditions, 
No. of Ghost Points) 
       0.00      0.00     (!Center co-ordinates) 
       0.00      0.50      0.50      0.00   (!X -co-ordinates of corners of the grid) 
       0.00      0.00      0.50      0.50  (!Y -co-ordinates of corners of the grid) 
       0.00      0.00      0.00      0.00  (!Wall co-ordinates) 
       0.99       1.0    (!Ratio to specify the grid density.) 
[ If < 1 (Eg. 0.99) then the grid density INCREASES from left to right, ] 

[If > 1 (Eg. 1.04) then the grid density DECREASES from left to right.] 

 (! Boundary Conditions Type of Boundary,  Relative Position,  Patch zone number) 

 * wall                left     1       1       1      99999  0 
 * wall               top     -99999   100000  99999  99999  0 
 * patch               right    99999   99999   1      99999  2 
 * wall               bottom  -99999   100000  1      1      0 
  /* zone_number 2 
  quadratic 100 100  4 2 
       0.00      0.00 
       0.50      1.00      1.00      0.50 
       0.00      0.00      0.50      0.50 
       0.00      0.00      0.00      0.00 
       1.0       1.0 
 * patch               left     1       1       1      99999  1 
 * wall               top     -99999   100000  99999  99999  0 
 * wall               right    99999   99999   1      99999  0 
 * wall               bottom  -99999   100000  1      1      0 
  /* zone_number 3 
  quadratic 100 100  4 2 
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       0.00      0.00 
       0.50      1.00      1.00      0.50 
       0.50      0.50      1.00      1.00 
       0.00      0.00      0.00      0.00 
       1.0       1.0 
 * patch               left     1       1       1      99999  4 
 m inlet               top     -99999   100000  99999  99999  0 
 * wall               right    99999   99999   1      99999  0 
 * patch               bottom  -99999   100000  1      1      2 
  /* zone_number 4 
  quadratic 100 100  4 2 
       0.00      0.00 
       0.00      0.50      0.50      0.00 
       0.50      0.50      1.00      1.00 
       0.00      0.00      0.00      0.00 
       1.0       1.0 
 * wall               left     1       1       1      99999  0 
 m inlet               top     -99999   100000  99999  99999  0 
 * patch                right    99999   99999   1      99999  3 
 * patch               bottom  -99999   100000  1      1      1 
 /end 
Figure 3-5 Description of input file for 4 a zone grid 

  /*number_of_zone 
   1 
  /* zone_number 1 
  quadratic 100 100  4 2 
       0.00      0.00      
       0.00      1.00      1.00      0.00  
       0.00      0.00      0.50      0.50 
       0.00      0.00      0.00      0.00 
       0.99       1.0 
* wall                left     1       1       1      99999  0 
m inlet               top     -99999   100000  99999  99999  0 
 * wall               right    99999   99999   1      99999  0 
 * wall               bottom  -99999   100000  1      1      0 
/end 

Figure 3-6 Description of input file for a 1 zone grid 

3.3 COMPILERS and MPI ENVIRONMENT 

The Intel FORTRAN Compiler and g95 FORTRAN compiler were used to 

compile the code for this work. Since GHOST is an MPI based code, an MPI 

environment has to be installed on the machines for it to be compiled and run. LAM/MPI 

has been used for this purpose. Compilers that have been used in the present work are 

Intel FORTRAN Compiler Ver. 7.1 (Ifc), and the FORTRAN Compiler Ver. 9 (Ifort) 
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LAM/MPI [65] was originally developed at the Ohio Supercomputing Center. It is 

a high quality implementation of the Message Passing Interface (MPI) Standard. 

LAM/MPI provides high performance on a variety of platforms, from small off-the-shelf 

single CPU clusters to large SMP machines with high speed networks. In addition to high 

performance LAM provides a number of usability features key to developing large scale 

MPI applications. MPICH a freely available, portable implementation of MPI and is used 

on KFC6A (described later). 

3.4 PROFILING TOOLS 

In recent years, with the advent of memory debuggers and profilers, it has become 

relatively easier to identify bottlenecks in a given code. These kinds of tools are 

particularly useful while working on performance optimization of CFD codes. Valgrind 

[61] is one such memory debugger and profiler that has been used in this work. With 

Valgrind's tool suite, a programmer can automatically detect many memory management 

and threading bugs, making programs more stable. Detailed profiling can also be done to 

help speed up the programs. Valgrind is an open source tool and it does not require the 

user to recompile, relink, or modify the source code. On the other hand it has the 

disadvantage of slower runtime. This is usually justified keeping in view the time that is 

saved once the code is optimized. 

When tuning a code, it is advised to optimize the largest bottleneck first. With the 

help of Valgrind, we will be able to identify how much time is being spent on each of the 

subroutines as shown as an example in Table 3-2 below: 

Table 3-2 Illustration of Valgrind output 

PROCEDURE TIME 

main() 13% 

subroutine1 17% 

subroutine2 20% 

subroutine3 50% 
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Profiling output from Valgrind, like the one shown in Table 3-2 empowers the 

researcher with a good starting point. In the above example, when a tuning effort is begun 

with subroutine3, for instance, a 20% decrease in its time will yield an overall 10% 

increase in performance while on the other hand, a 20% decrease in main() will yield 

only an overall 2.6% increase in performance. Thus, as discussed above, Valgrind aids 

programmers and scientists with a good starting point and an overall map for the tuning 

effort. Some of the benefits associated with Valgrind are that: 

 Uses dynamic binary translation so that modification, recompilation or 

relinking of the source code is not necessary; 

 Debugs and profiles large and complex codes; 

 Can be used on any kind of code written in any language; 

 Works with the entire code, including the libraries; 

 Can be used with other tools, such as GDB; 

 Serves as a platform for writing and testing new debugging tools. 

The Valgrind suite comprises of five major tools Memcheck, Addrcheck, Cachegrind, 

Massif, and Helgrind which are tightly integrated into the Valgrind core. 

Memcheck checks for the use of uninitialized memory and all memory reads and 

writes. All the calls to malloc, free and delete are instrumented when memcheck is run. It 

immediately reports the error as it happens, with the line number in the source code if 

possible. The function stack tracing tells us how the error line was reached. The tracks 

are addressed at byte level and initialization of values is addressed at bit level. This helps 

Valgrind detect the non-initialization of even a single unused bit and note report spurious 

errors on bitfield operations. The drawback of memcheck is that it makes the program run 

10 to 30 times slower than normal. 

Addrcheck is a toned down version of Memcheck. Unlike Memcheck it does not 

check for uninitialized data, which leads to Addrcheck detecting fewer errors than 

Memcheck. On the brighter side it runs approximately twice as fast (5 to 20 times than 

normal) and uses less memory. This allows the programs to run for longer time and cover 

more test scenarios. In summation, Addrcheck should be run lo locate major memory 

bugs while Memcheck should be used to do a thorough analysis. 
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Massif is a heap profiler. The detailed heap profiling is done by taking snapshots 

of the program’s heap. It produces a graph showing heap usage over time. It also 

provides information about the parts of the code that are responsible for the most memory 

allocations. The graph is complemented by a text or HTML file that includes information 

about determining where the most memory is being allocated. Massif makes the program 

run approximately 20 times slower than the normal.  

Helgrind is a thread debugger. It finds data races in multithreaded codes. It 

searches for the memory locations which are accessed by more than one thread but for 

which no consistently used lock can be found. These locations indicate of loss of 

synchronization between threads and could potentially cause timing-dependent problems. 

3.4.1 CACHEGRIND 

Cachegrind is a cache profiler. It performs detailed simulation of the L1, D1, and 

L2 caches in a CPU. It helps in accurately pinpointing the sources of cache misses in the 

source code. It provides the number of cache misses, memory references, and instructions 

executed for each line of source code. It also provides per-function, per-module, and 

whole-program summaries. The programs run approximately 20 to 100 times slower than 

normal run times. With the help of the KCacheGrind [62] visualization tool, these 

profiling results can be seen in a graphical form which is easier to comprehend. 

Cachegrind has been extensively used in this study. 

Once the code is compiled and the executable file is generated, cachegrind can be 

run on the executable file to analyze the cache behavior of the code. If, for example, 

tempsstnt is the executable code for GHOST code, cache analysis using cachegrind is 

done at the command prompt as shown below: 

$ mpirun –np n valgrind –skin=cachegrind tempsstnt 

where n = number of processors. A sample output of the above command is shown in 

Figure 3-7 

  In addition to the above shown output, cachegrind also provides the number of 

cache misses (both instruction and data), instruction references, and data references at 

subroutine level. This information is critical in understanding how a particular change in 

the code translated to change in cache behavior at subroutine level. This is explained in 

detail in chapter 4. 
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Figure 3-7 Sample output from cachegrind 

In the Figure 3-7, 

I refs = Instructions executed 

I1 misses = instruction read misses in L1 cache memory 

L2i misses = instruction read misses in L2 cache memory 

I1 miss rate = instruction miss rate on L1 cache memory 

L2i miss rate = instruction miss rate on L2 cache memory 

D refs = Sum of data cache reads (i.e., memory reads) and data cache writes (i.e., 

memory writes) 

D1 misses = data misses on L1 cache memory (D1 misses = sum of L1 data read and L1 

data write misses) 

L2d misses = data misses on L2 cache memory (L2d misses = sum of L2 data read and 

L2 data write misses) 

L2 refs = number of references to L2 cache (L2 refs = sum of L2 data read and L2 data 

write references) 

Valgrind's cache profiling has a number of shortcomings [61] 

 It does not account for kernel activity -- the effect of system calls on the cache 

contents is ignored.  
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 It does not account for other process activity (although this is probably desirable 

when considering a single program).  

 It does not account for cache misses that are not visible at the instruction level, eg. 

those arising from TLB misses, or speculative execution.  

 Valgrind's custom threads implementation will schedule threads differently to the 

fsave) are treated as 

though they only access 16 bytes. These instructions seem to be rare so hopefully this 

d on optimizing the CFD code GHOST on Kentucky Fluid Clusters 3, 4, 5 

and 6A

 a time; as such, the difference between the CPU 

time an

er) and each processor has a L2 cache of 512 KB. 

KFC3 nodes are off-the-shelf Dell PCs, resulting in a minimum of hardware construction 

in exchange for a higher per node cost. 

 

standard one. This could warp the results for threaded programs. This should only 

happen rarely.  

 FPU instructions with data sizes of 28 and 108 bytes (e.g. 

will not affect accuracy much. 

3.5 KENTUCKY FLUID CLUSTERS 

This section has brief technical configuration information about different clusters 

on which the performance optimization effort has been carried out. These clusters are 

housed at Department of Mechanical Engineering, University of Kentucky. The current 

work is focuse

 and 6I. Kentucky Fluid Clusters 3, 4 and 5 (KFC3, KFC4 and KFC5) are shown 

in Figure 3-8. 

The Intel FORTRAN90 compiler (ifort) with -O3 optimization, the G95 compiler 

also with -O3 optimization, LAM MPI, and MPICH were used for the purpose of 

compiling GHOST for this study. Since these clusters are controlled in-house, nodes can 

be readily restricted to a single job at

d the walltime has proven negligible, so walltime is used as the basis of the 

testing. Time values also exclude I/O. 

Kentucky Fluid Cluster 3 consists of fifteen 2.4 GHz Pentium 4 nodes and one 3.0 

GHz Pentium 4 server/node linked by a 16-port commodity Gigabit switch. Each node 

has 512 MB of RAM (2 GB on the serv

53  



 

 

Figure 3-8 Kentucky Fluid Clusters (KFC) 3, 4 and 5 

 
Kentucky Fluid Cluster 4 is constructed with AMD Athlon 2500+ 1.826 Ghz 32 

bit Barton processors. The current configuration is a 47 node system linked by two 

networks: a single Fast Ethernet (100 Mb/s) switch and a single Gigabit (1Gb/s) switch. 

Each node has 512 MB of RAM and each processor has a L2 cache of 512 KB. The 

server is separate from the nodes and plays no direct role in the iterative computation. 

KFC4 is housed at the University of Kentucky. 

Kentucky Fluid Cluster 5 is a 64-bit architecture, constructed of 47 AMD64 2.08 

GHz processors linked by a single Gigabit (1Gb/s) switch. Each node has 512 MB of 

RAM and each processor has a L2 cache of 512 KB. The server is separate from the 

nodes and plays no direct role in the iterative computation. Like KFC4, KFC5 is housed 

at the University of Kentucky.  

Kentucky Fluid Clusters 6A and 6I are two similar clusters based on dual-core 

processors. Each node has 1 GB of memory and the nodes are linked by a Gigabit switch. 
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KFC6A has 23 4600+ AMD Athlon 64 X2 dual core processors at 2.4 GHz and 512 KB 

x2 L2 cache. KFC6I has 24 Intel Core 2 Duo E6400 processors running at 2.13 GHz and 

with 2 MB L2 cache. In addition, as part of the cluster design processes a single 

workstation with a 4200+ AMD Athlon 64 X2 dual core processor has been constructed 

and used for testing. The critical difference between the 4200 and 4600 is a lower 

processor speed (2.2 GHz). Details of these processors that are relevant to the current 

work are given in the Table 3-3. 

Table 3-3 Comparison of the KFC6 processors based on certain parameters 

 
Processor Clock Speed L1 Cache Size L2 Cache Size FSB 

Intel E-6400 2.13 GHz 2 X 32 Kb 1 X 2 Mb 1066 MHz 

AMD 4200+ 2.2 GHz 2 X 128 Kb 2 X 512 Kb 2000 MHz 

AMD 4600+ 2.4 Ghz 2 X 128 Kb 2 X 512 Kb 2000 MHz 

3.6 METHODS USED TO MEASURE PERFORMANCE 

In the computing world two ways of measuring the time taken by a code are 

referred to as “wall clock time” and “CPU time” [66].  Wall clock time is the time that 

passes if you are looking at a clock on the wall for the code to finish a problem. CPU 

time is the amount of time spent by the CPU in carrying out the calculations. The CPU 

time excludes time for events such as passing the data across the network, I/O time, CPU 

interrupt time and processing TCP packets. All these usually affect the total time taken to 

complete the job. Hence CPU time can miss critical time costs for someone doing CFD 

runs on parallel systems. CPU time can be calculated by calling cpu_time function. 

In the present work, wall clock time is used to measure the code performance 

improvements in spite of running all our tests on a single node. All our tests have been 

carried out on clusters that are controlled in-house. Hence it was seen to it that only a 

single job is running on the node while carrying out the timing tests. Based on the initial 

tests that were conducted, it was noticed that the difference between the walltime and 

CPU time was minimal under these conditions. 
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Walltime is the sum of the time taken by the code to read the grid files and to 

write the solution (I/O time) and time taken to complete the calculations (Solver time). 

Since this work is concerned with the optimization of the solver portion of the job only, 

the solver time alone was considered while calculating the performance improvements 

gained, which meant I/O time was not considered as the walltime. So, a reference to 

walltime from now on actually means walltime excluding I/O. Walltime is calculated by 

using mpi_wtime() function. This function returns a floating-point number of seconds, 

representing elapsed wall clock time since some time in the past. This function is called 

at appropriate places in the code and walltime is calculated by difference of two 

consecutive calls. 

For a given problem and a code, walltime is a function of the grid size and the 

number of iterations. If the number of iterations is kept constant and the grid size 

increased, the walltime will increase too. In order to compare the performance 

improvements obtained with varying grid sizes, the walltime has been normalized by the 

grid size and number of iterations. Hence the walltime that has been used to measure the 

performance improvement is approximately the wall clock time of the code to perform a 

single iteration on a single grid point. This is further explained in detail in chapter 4. 

3.7 EXTERNAL BLOCKING 

This technique has been widely used to carry out multi-node performance tests 

that are described in chapter 4. External blocking involves the breaking up of the 

computational grid into smaller sized cache friendly blocks (Figure 3-9) so that these 

blocks can be solved on more than one node instead of solving the entire grid on one 

node. This step is carried out during the grid generation process. The only difference in 

the process of generating the grid with a single block vs. multiple blocks is that the 

content of input file has to reflect the details in either case. This has been described in 

section 3.2.3. 

3.8 CHARACTERISTICS OF ORIGINAL CODE 

Before we delve into the details of tuning process (presented in chapter 4), it is 

important to understand the characteristics of the original version of the GHOST code 

(V0). In this section, performance behavior of V0 is presented with reference to the 
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cavity flow problem as test case. The behavior might vary based on hardware and the 

type of computational problem, but relative results are consistent if a sufficiently large 

grid and large number of iterations are used. 

As described in earlier sections of this chapter, the original version of the GHOST 

was designed to minimize memory usage and this is accomplished through extensive use 

of the allocation and de-allocation of variables in FORTRAN90. As with many 

numerically intensive codes, GHOST is no exception to the 80-20 rule. More than 98 

percent of the computing time is spent in six subroutines for a reasonable grid size and in 

laminar flow conditions. Table 3-4  

Approximate computing time spent in each subroutine is shown in Table 3-4. 

These subroutines represent the sub iteration cycle for a two-dimensional, laminar flow. 

Table 3-4 Approximate percentage of time spent in each subroutine in V0 for a 2-D 
cavity laminar flow 

 

module::subroutine % of total computing time 

calc::cont 40% 

calc::tdma 20% 

calc::cal_property 19% 

Global::quick 7% 

calc::cal_v 6% 

calc::cal_u 5% 

 

57  



 

 

Figure 3-9 External blocking 

3.8.1 DETAILS OF CRITICAL SUBROUTINES 

This section presents important details of the subroutines in Table 3-4 in V0. 

Although there is no direct correlation between the size of a code and the time taken to 

run, details of the size of each subroutine are presented in the discussion for clarity.  

 
   P1 

 
   P2 

 
   P3 

 
   P4 

 

Whole Grid 

Parallel Processing 

 
   P1 
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 Subroutine Cont: Out of 5300 lines of V0, this subroutine is not more than 240 

lines long but accounts to 40% of total computation time as presented in Table 3-4 

i.e., approximately 4.5% of the code taking up to 40% of the computation time. The 

number of calls to this subroutine is equal to the number of iterations. This 

subroutine has 8 nested loops that span across the dimensions of the grid. The 

following details have been observed in these nested loops: 

o 5 out of the 8 nested loops have their sweeps in i, j order. However, this is the 

not the physical order in memory according to FORTRAN convention as 

discussed in chapter-1. For example, in the nested loop presented in the Figure 

3-10, the elements au(i,j) and au(i+1,j) are actually nj addresses apart, and 

thus a cache miss will occur not only on the first nj loads of this array au but 

also the order of the mismatch between the order of data accesses and data 

storage in FORTRAN leads to repeated cache misses. 

 

   Figure 3-10 Example of mismatch between data access and data storage 

o Reciprocal values of variables au and av are being repeatedly calculated 

inside i-j sweeps. For example, the reciprocal of variable au is being 

calculated 26 times in one sweep along y-direction. As discussed in chapter 1, 

division operations considerably take more cycles than any other arithmetic 

operation. Added to this, the fact that these reciprocals are being calculated 

inside nested do loop whose sweep does not coincide with physical order in 

memory compounds this problem and leads to unnecessary cycles and heavy 

cache misses. 

 Subroutine tdma: Out of 5300 lines of V0, this subroutine is not more than 110 lines 

long but accounts to 20% of total computation time as presented in the Table 3-4 i.e., 

approximately 2.0% of the code taking up to 20% of the computation time. This 

subroutine solves the tri-diagonal system of equations using the TDMA method [67]. 
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The high cost of this subroutine is attributed to the fact that calculations like the one 

shown in Figure 3-11 compel the processor to make repetitive reference to elements 

of arrays viz  ae, aw, an, as, ap. 

 

     Figure 3-11 Example of repetitive reference to array elements in GHOST 

Due to their size, these arrays cannot be fit into cache and so will lead to repetitive 

cache misses. An attempt has been made to replace arrays with arrays of data 

structures with an aim of addressing this problem. This is discussed in chapter 4. This 

subroutine also has a nested loop in which the data access does not match with the 

data storage in FORTRAN. The orientation of i, j loop cannot be reversed as such a 

change will change the algorithm of this subroutine. Also, the problem is 

compounded by the fact that, in every iteration, this subroutine is called by three 

subroutines viz. cal_u, cal_v and cont. This means, the total number of calls to this 

subroutine is three times the number of iterations. 

 Subroutine cal_property: Out of 5300 lines of V0, the part of this subroutine that 

deals with laminar flow is approximately 150 lines long. This accounts to 

approximately 19% of total computation time as presented in Table 3-4 i.e., 

approximately 2.8% of the code taking up 19% of the computation time. The high 

cost of this subroutine can be attributed to the fact that out of three nested do loops 

that span across the dimensions of the grid, two of them have their sweeps in i, j 

order. However, this is the not the physical order in memory according to FORTRAN 

convention as discussed in chapter 1. This leads to repetitive cache misses as 

explained above in subroutine cont. 

 Subroutines quick, cal_u and cal_v: These subroutines are mainly plagued by i,j loop 

orientation in nested loops. Subroutines cal_u and cal_v call subroutine quick and 

subroutine tdma as discussed above. 
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3.9 SUMMARY 

GHOST is a generalized 2D incompressible structured CFD solver with an ability 

to perform computations in parallel using an MPI environment. The single node 

performance of the code was found to be poor (as described in next chapter) due to the 

high cache miss percentage when it was tested on the in-house clusters. The top six 

subroutines that contribute to 98% of the run time have been identified and the starting 

point was to tune these subroutines. The next chapter presents various techniques that 

improved single node performance as well as speed up across multiple nodes. The single 

node performance was mainly improved by focusing on reducing cache misses.  
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CHAPTER-4 

4. STAGE ONE PERFORMANCE TUNING RESULTS 
 

This chapter provides a detailed description of stage one of the tuning efforts 

carried out on the GHOST code. Stage one of the tuning efforts was carried out until 

December 2004 and was primarily focused on KFC3 and KFC4. Later, techniques that 

yielded performance improvements on KFC3 and KFC4 were tested on KFC6 

architectures. This effort started around September 2008 and fall into stage 2 of the 

tuning efforts. Although the results on KFC6 architectures fall into stage 2 of tuning 

effort, in order to comprehend the impact of applying these tuning techniques on older 

and newer architectures and for comparison purposes, the results on KFC6 architectures 

are presented as part of stage one along with the ones on KFC3, KFC4. This chapter 

begins with a description of the types of tests conducted during the tuning effort. The test 

case is then presented. Later, results from applying some of the tuning techniques 

discussed in chapter 2 are presented. Changes in the cache behavior of the code are 

discussed along with the details of performance improvements. 

4.1 TYPES OF TESTS 

 This section describes the kinds of tests that were carried out. They are briefly 

summarized below: 

 Single Node Performance Tests:  In the current work, the tuning effort is carried 

out in stages. To assess the impact of changes to GHOST at each stage, walltime, 

calculated using UNIX functions, is compared between the earlier version and the most 

tuned version at that point. For assessment purposes, walltime is effectively the average 

time for a single iteration over a 5000 iteration simulation and it is normalized to 

eliminate the effect of increasing walltime with increasing grid sizes. These tests are 

carried out on KFC3, KFC4, KFC5, KFC6I and KFC6A. These commodity clusters have 

been described in chapter 3. A wide variety of commodity clusters was chosen so as to be 

able to analyze the effect of optimization techniques on the code running on different 

architectures.  Since the optimizations carried out were not focused around input/output 
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(I/O) operations, the time taken by I/O operations is not included in the walltime and as 

such walltime actually reflects the one excluding I/O. 

 Multiple Node Performance Tests: Speedup, defined as the ratio of walltime on 

a single node to the walltime on multiple nodes, forms the basis for these kinds of tests. 

The baseline performance test for CFD codes on commodity clusters is the measurement 

of multinode speedup, which to the first order is an evaluation of communication time 

versus computational time as the number of processor nodes used is increased. This is 

often a critical consideration for CFD simulations on commodity clusters which use 

relatively inexpensive networks that could create communication delays if the code is not 

effectively designed. Speedup tests are performed to understand the scalability of a code 

across multiple nodes. 

 Cache Performance Tests: These tests are done to explore the connection 

between cache behavior and the overall performance of the code on various grid sizes. 

The cache miss rate was determined by the cachegrind cache profile simulator, which 

was described in chapter 3. The focus was on reducing L2 cache misses as they are more 

expensive than L1 cache misses and a high L2 cache miss rate has a detrimental effect on 

the performance of a code. As cache-profiling on a code takes considerably more (10 to 

100 times longer) time than the original simulation, there was a need to extrapolate from 

over a series of iterations. Figure 4-1 shows the L2 cache miss rate versus iterations on 

KFC4 for the original version of GHOST over a series of grid sizes. As observed for the 

cavity flow test case, there is an initial transient period, but the L2 cache miss rates settle 

into a near-constant value beyond 400 iterations starting this transition at around 200 

iterations for a given grid size. This behavior was observed on all the machines. So, to 

carry out the cache performance of GHOST, cache profiling was done for 500 iterations 

on all the machines. 
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Figure 4-1 L2 cache miss rate for GHOST as a function of iterations from a cold start on 
KFC4 

 Accuracy Tests: During the tuning process, although there was no change in 

underlying algorithm, there was a fair bit of coding change. To confirm that the results 

from running the simulation have not been altered, tests were run to confirm that the 

results were in agreement with the solutions obtained by Ghia et al. [66] for cavity flow 

problem. 

4.2 TEST CASE 

The basic flow test case that has been used to carry out the tuning activity is two-

dimensional incompressible driven cavity flow. This is also known as lid-driven cavity 

flow. This test case was used in proof of concept stage. The cavity is square with a 

Reynolds number of 1000. This value was chosen to make sure the flow is laminar. This 

test case has a non-dimensional u-velocity value of unity and v-velocity value of zero at 

the top boundary. The walls on the side and the bottom have no-slip boundary conditions. 

Stationary interior flow is considered as the initial condition. This test case was selected 

in part because it represents a real and reasonably complex flow from which performance 

characteristics can be extrapolated to more challenging cases. At the same time, the 

simple geometry allows for straightforward partitioning and re-gridding, simplifying the 

evaluation of performance as the grid density and the number of computational nodes is 
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varied. A schematic diagram of this test case is shown in Figure 4-2. The results from 

simulations run to completion with original version of the GHOST code are in agreement 

with Ghia et al [66] as shown in Figure 4-3.  

 

Figure 4-2 Schematic diagram of lid-driven cavity shown with boundary conditions 

 

1 

Figure 4-3 The midline u-velocity profile for the original version of GHOST 

4.3 PERFORMANCE BEHAVIOR OF V0 

The initial step of the optimization was to assess the basic picture of performance 

of the original version (V0) of the GHOST code based on test simulations. While it is 
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important for a parallel code to scale across multiple nodes, an often ignored fact is that 

speedup on n nodes is calculated based on the performance of a code on a single node. If 

the code takes exceedingly more time to run on a single node, speedup calculated as ratio 

of walltime on a single node to walltime on multiple nodes might result in superlinear 

values. Such superlinear speedup was observed with GHOST, a phenomenon hardly 

unique in the annals of performance evaluation of parallel codes [68, 69, 70, 71]. The 

results of speedup tests on KFC3 and KFC4 are presented in Figure 4-4a while the results 

of speedup tests on KFC6A and KFC6I are presented in Figure 4-4b. For speedup tests, 

walltime on a single node for various grids of single block ranging 200 x 200 to 1000 x 

1000 is calculated. Next, these grids are split into 4, 8, 12 and 16 blocks (external 

blocking explained in chapter 3) and walltime is calculated by solving them on the same 

number of nodes as the blocks. Speedup is then calculated as the ratio of the walltime on 

a single node to walltime on n nodes. Ideally, the speedup should be linear. From Figure 

4-4a and b, it can be observed that despite the differences in the year of construction 

(KFC3 in 2003 through KFC6 in 2006) and disparity in hardware (for example KFC6A 

has an AMD processor while KFC6I has an Intel processor) and networks (relatively fast 

on KFC3, relatively slow on KFC4), GHOST exhibits dramatically superlinear speedup 

across a range of problem sizes on all platforms. This behavior is less pronounced on the 

relatively newer machines KFC6I and KFC6A due to their advanced hardware. 

To further examine this dataset, the normalized walltime (walltime normalized by 

number of grid points and per iteration) is plotted against computational grids of varying 

sizes. If the code had been running efficiently on a single node, the normalized walltime 

would have increased as we moved from grids that fit into cache to grids that are 

considerably larger than cache. After that, the normalized walltime would have 

essentially remained same even as the size of grid increased. However, this was not what 

was observed. Normalized walltime for the cavity flow test case over total grid sizes 

ranging from 30 x 30 to 700 x 700 on five different platforms is shown in Figure 4-5. 
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Figure 4-4a Original speedup of GHOST on KFC3, KFC4 for grids of varying size 

 

Figure 4-4b Original speedup of GHOST on KFC6A, KFC6I for grids of varying size 
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Figure 4-5 Original walltime of GHOST 

 
In the Figure 4-5, walltime is the walltime required to run 5000 timesteps on a 

dedicated node normalized by the number of grid points. For laminar, steady simulations, 

the smallest grid, 30 x 30 is effectively contained within L2 cache on all the machines; 

the largest occupies a majority of the available RAM (512 MB) on KFC3 and KFC4. As 

suggested by the cavity test problem, all the grids used had an equal number of points in i 

and j, a convention that will be used throughout the GHOST analysis. It can be observed 

that normalized walltime keeps increasing with increasing grid size. This trend is 

observed irrespective of the architecture of the machine. On older machines KFC3 (2003) 

and KFC4 (2004), the slope of the line is steeper while in newer machines KFC5 (2005), 

KFC6A (2006) and KFC6I (2006), the line appears to be flattening out. This is because 

of faster processors, larger caches (2 MB L2 cache on KFC6A and 1 MB on KFC6I) and 

a faster Front Side Bus (FSB) that controls the speed of transfer of data from RAM to 

cache. Increases in walltime with increasing grid sizes can be attributed to high cache 

misses as evident from Figure 4-6 which represents external blocking (introduced in 

chapter 3) results on KFC3 for block size of range from 30 x 30 (which effectively fits in 
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L2 cache) to 70 x 70 along with the results of unblocked grids. The best performance 

improvement was obtained with the 30 x 30 block grid. As explained above, this is 

because a 30 x 30 grid can effectively fit into cache. In the case of the 600 x 600 grid the 

walltime for the 30 x 30 block grid is 1/6 that of the unblocked code on KFC3. This is 

because fitting the computation problem into cache can largely hide a variety of other 

program flaws that cause the problem of increasing walltime with increasing grid size as 

shown in Figures 4-5. In effect, a 30 x 30 external blocking extends the normalized 

computational speed of the 30 x 30 single grid to much larger grids. The blocked 

performance is also highly scalable, remaining constant over a wide range of grid sizes. 

But, in general, the size of the grid on the node appears to be the dominant determinant of 

the walltime required for the computation in the original version of GHOST. 

In order to more deeply explore the connection between cache performance and 

the above grid dependence, the cache miss rate was measured by the ‘cachegrind’ cache 

profile simulator of the Valgrind toolkit. This tool was introduced in chapter 3. As 

discussed earlier (Figure 4-1), cache miss rate begins to asymptote beyond about 400 

iterations for a given grid size. Accepting this asymptotic miss rate as typical for that grid 

size, a plot of the miss rate versus grid size has been generated. These results are 

displayed in Figure 4-7 which shows the data cache miss rate (L2D) and overall (data + 

instruction, L2) miss rate of the L2 cache for GHOST on KFC4 and KFC3. The 

instruction cache miss rate was negligible for all cases, so the cache variations in 

performance are dominated by the L2D characteristics. There is also little difference 

between the Intel Pentium processor on KFC3 and the Athlon processor on KFC4. 

In order to explore the correlation between the size of the problem, walltime 

behavior and the cache miss rate, the memory footprint of the grid was determined by 

cluster toolkit Warewulf [72]. The memory footprint corresponds to the amount of 

random-access memory required by the code for a particular grid size. The GHOST code 

miss rate varies significantly with memory footprint, generally increasing with increasing 

grid size but with notable spikes at certain points. The direct correlation between the miss 

rate and the speedup performance of GHOST on KFC4 can be seen in Figure 4-8. The 

walltime is normalized by the memory footprint to effectively remove the time increase 

expected due to increased grid size. The resulting curve largely tracks the L2 miss rate for 
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GHOST. The implication is that much of the superlinear speedup in GHOST is directly 

traceable to L2 cache performance, as shrinking the grid size will generally improve 

cache performance. 

 

Figure 4-6 Walltime as a function of subgrid size (or grid size for a single node case) for 
GHOST (V0) on KFC3 

   

Figure 4-7 L2 and L2D cache miss rate for GHOST (V0) on KFC3 and KFC4 
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Figure 4-8 Comparisons of L2 cache miss rate on KFC4 (blue and green lines) and the 
walltime/MB (lines) versus the RAM footprint of the given grid/subgrid for GHOST (V0) 

 
Although external blocking might seem to be a feasible solution to overcome the 

problem of increasing walltime per grid point, the amount of time it takes to split the grid 

into cache size blocks puts the programmer at a disadvantage especially when dealing 

with larger grids. For example, as presented in Figure 4-6, in order to split the grid into 

cache size blocks, a 600 x 600 grid had to be split into 400 blocks of 30 x 30 each. 

Although splitting larger grids into smaller blocks that fit into cache yields the best 

walltime, this process becomes more challenging when dealing with complicated grids of 

multiple zones and different boundary conditions and thus cannot be used as a standard 

process to mitigate the problem of increasing walltime with increasing grid sizes. 

However, the superlinear speedup behavior of GHOST presented above along with the 

correlation between high cache miss rates and increasing walltime for single zone grids 

represents an opportunity to tune the code on a single node by improving its cache 

behavior. This made a strong case for the tuning process to target the L2 cache miss rate 
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with the aims of reducing the miss rate and attempting to achieve a more uniform 

distribution. 

4.4 TUNING PROCESS – CODE VERSIONS 

The original version of the GHOST code is referred to as V0. In order to 

distinguish various stages of tuning effort, each stage in the tuning process has been 

associated with a code version viz. Version 1 (V1), Version 2 (V2), Version 3 (V3). The 

following is the list of steps taken during the tuning process. 

1. Replacing the allocation/de-allocation scheme with permanent variables. 

2. Correcting the orientation of the i,j sweeps to the cache-conserving form 

(i.e. outer loop j, inner loop i) consistent with the storage in memory, 

(Loop Interchange). 

3. Aggressive cleaning of redundant computations, unnecessary divisions, 

and other excessive mathematical activity. 

4. Removal of unwanted if-then structures, particularly on sweeps that do 

not encompass the full i,j grid 

5. Restructuring the variables from the single array form, 1( , )i j  

and 2 ( , )i j , to an array of structures 1 2( , ) : ,i j   .  

Step (1) proved ineffective resulting in neither a significant change in walltime or 

cache performance and as such is left out of the subsequent analysis. Steps (2-5) are 

discussed in detail in later sections of this chapter. Based on the above steps, various 

versions of the GHOST code were constructed and tested. The following versions are 

discussed in this chapter. 

V0 – original code              V1 – original + step 2            V2 – original + steps 2-4 

V3- original + steps 2, 5 

4.5 CODE CHANGES AND PERFORMANCE TUNING RESULTS 

4.5.1 VERSION 1 OR V1 

Version-1 or V1 is the result of the first stage of the tuning effort. It was observed 

that in the original version of code V0, the order (outer loop–i, inner loop– j) of the 

majority of the nested i,j loops do not allow the compiler to take advantage of the order of 

data storage in memory. When dealing with large data sets, mismatch in data storage and 
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data access leads to heavy cache miss rates leading to the poor performance of V0. V1 is 

the version of GHOST code in which the Loop Interchange technique was applied to 

improve V0. This technique was introduced in chapter 2. The orientation of i,j sweeps 

was corrected to the cache-conserving form (i.e., outer loop j, inner loop i) to be in 

consistent with the storage in memory. Subroutines that underwent changes in this stage 

of tuning are quick, cal_property, cal_u, cal_v, cont, cal_t and cal_tk. 

4.5.1.1 KFC3 and KFC4 Results 

The results of applying the Loop Interchange technique on KFC3 and KFC4 are 

presented in Figure 4-9. Despite the disparity in hardware and network, walltime 

normalized per grid point and per iteration results remain relatively flatter and extend to 

large grid sizes at least up to one million grid points. For the largest grid (one million grid 

points), walltime for V1 on KFC3 is 25% that of V0 while on KFC4 performance gains 

are much more pronounced; for larger grids, V1 is at least 6 times faster than V0. 

As shown in Figure 4-10, the observed performance gains can be attributed to 

reduction in cache misses in V1 when compared to V0. For example, for V1 on KFC4, 

D1 cache miss (data calls that miss L1 cache are called D1 cache misses) rates vary from 

0.3 (for smaller grids) to 0.5 (for larger grids) of those for V0. L2D and L2 cache miss 

rates settle to a near constant value of 1.7 and 0.6 respectively through out the problem 

size range while these values increased with increasing grid size for V0. 

Figure 4-11a and b plot walltime and the number of data calls, D1 cache misses, 

and L2D cache misses normalized by number of grid points versus grid size for V0 and 

V1 on KFC4. Note the cache data is taken from Valgrind simulations ranging from 400 to 

600 iterations and extrapolated to 5000 iterations based on the arguments previously 

presented in conjunction with Figure 4-1. As seen from Figure 4-11b, walltime 

improvements can be directly traced to decrease in D1 cache misses and L2D cache 

misses when compared to those in V0 (Figure 4-11a). L2D misses largely trace the 

walltime plot in V1 on KFC4 as in V0; the difference being L2D misses normalized by 

grid points flatten out at 200000 grid points in V1 while they tend to keep increasing in 

V0. Also, for grid sizes beyond 200x200, V1 at least has 50% fewer D1 cache misses 

than V0 thus explaining drastic improvements in walltime beyond this grid size. Absolute 
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walltime values for V0 and V1 for various grid sizes on KFC4 are shown in Table 4-1 for 

comparison. 

 

Figure 4-9 Comparison of walltime between V0 and V1 on KFC3 and KFC4 
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Figure 4-10 Comparison of D1, L2 and L2D cache miss rates for V0 and V1 on KFC4 

(a)  

     (b)  
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Figure 4-11 Comparisons of normalized walltime and normalized number of data calls 
(divided by 10), D1 cache misses and L2D cache misses on KFC4 for GHOST (a) 
Version 0 (b) Version 1 

Table 4-1 Comparison of Walltime (in seconds) for V0 and V1 on KFC4  

Grid size V0-Walltime V1-Walltime % improvement 

30 x 30 12.09 11.37 5.96 

60 x 60 91.97 72.77 20.88 

80 x 80 130.47 94.59 27.50 

100 x 100 232.67 232.43 0.10 

200 x 200 1235.4 769.07 37.75 

300 x 300 3371.63 1783.43 47.10 

400 x 400 7324.08 3152.79 56.95 

500 x 500 16770.23 5028.45 70.02 

600 x 600 32662.18 7615.41 76.68 

700 x 700 59122.85 12698.62 78.52 

800 x 800 80974.31 13845.95 82.90 

900 x 900 115577.1 18958.21 83.60 

1000 x 1000 154196 24295.93 84.24 
 

4.5.1.2 KFC6 Results  

Results of performance gains on KFC6A and KFC6I are presented in Figure 4-12. 

Performance gains are relatively less on these clusters when compared to the older and 

slower machines KFC3 and KFC4. This is not unexpected and can be attributed to faster 

processors and bigger caches along with a faster Front Side Bus (FSB) as discussed 

earlier. For the largest grid (one million grid points), walltime for V1 on KFC6A is 27% 

that for V0 while on KFC6I performance gains are higher; for the largest grid, V1 is 

almost twice as fast as V0. Improvements in walltime can again be attributed to 

improvements in cache behavior with the exception of these improvements mainly 

coming from D1 cache. As presented in Figure 4-13, while L2 and L2D cache miss rates 

remain similar, D1 cache misses reduce by 50% through out the problem size range in 

V1. Thus, walltime improvements can largely be attributed to improvements in D1 cache 

behavior. This is evident from the Figures 4-14a and b. For comparison purpose, 

normalized walltime and the number of data calls (sum of memory reads and memory 

writes) normalized by grid points divided by 10, D1 cache misses and L2D cache misses 
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normalized by grid points are presented in Figures 4-14a and b. Note that the cache data 

is taken from Valgrind simulations for 500 iterations and extrapolated to 5000 iterations 

based on the arguments previously presented in conjunction with Figure 4-1. D1 misses 

for V1 are at least 50% less than those in V0. 

 

Figure 4-12 Comparison of walltime between V0 and V1 on KFC6A and KFC6I 

 

Figure 4-13 Comparison of D1, L2 and L2D cache miss rates for V0 and V1 on KFC6I 
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(a)  

(b)  

Figure 4-14 Comparisons of normalized walltime and normalized number of data calls 
(divided by 10), D1 cache misses and L2D cache misses on KFC6I for GHOST (a) V0 
(b) V1 
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4.5.2 VERSION 2 OR V2 

Version 2 or V2 is the result of the second stage of the tuning effort. This version 

is an improved version of V1. In other words, V2 is V0 with Loop Interchange technique 

implemented (V1) along with the techniques implemented to avoid redundant operations. 

The focus of this tuning stage was to avoid unnecessary mathematical computations in 

the code and to speed up at least some of the mathematical calculations by incorporating 

changes without modifying the underlying algorithm. These are described in the next few 

paragraphs. 

4.5.2.1 Avoiding Unnecessary Recalculations 

When iterating inside a loop, using pre-calculated values wherever possible 

instead of recalculating them every time saves considerable amount of time especially if 

similar values are being calculated repeatedly. This technique was briefly discussed in 

chapter 2 under ‘Optimizing Floating Point Operations’ section. 

4.5.2.2 Avoiding Division inside loops 

In V1 (as well as V0), there are a few subroutines (cont, cal_u, cal_v) that do 

repeated divisions inside nested loops. The idea is to calculate the reciprocal value, store 

and later reuse the result without having to repeat the calculation, a technique often 

termed as implementing Reciprocal Cache [42, 43]. In V1, as the subroutine cont is the 

most expensive of all subroutines, in V2 Reciprocal Cache was implemented for this 

subroutine only. An example is shown in Figure 4-15. In subroutine cont, there were 52 

instances where repeated division operations were replaced by a pre-calculated value that 

was calculated outside nested loop. Repeated divisions (52 in total) in V1 were being 

done inside 4 nested i, j loops that span across the dimensions of the grid. As subroutine 

cont is executed in every iteration, repeated divisions were being done for every iteration. 

For example in a 600 x 600 grid, this means in a given iteration, 52*600*600 divisions 

were being done in subroutine cont. With high cost of division operations (details 

discussed in chapter 2), this was a bottleneck for optimum performance of this subroutine 

in V1 (and V0). In V2, the reciprocal values calculated only once at the beginning of the 

subroutine cont are used throughout its code avoiding further division operations. This 

essentially means 52 repeated division operations per iteration have been replaced by a 

single division operation per iteration. This reduction in number of division operations 
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leads to savings in machine cycles. For example, cycle time for a division operation on 

AMD 64-bit architecture is 71 cycles while on Intel 64-bit it is 161 cycles [30] and 

because of this variation in cost of division operations between architectures, actual gains 

depend on architecture of a machine on which Reciprocal Cache is being implemented. 

4.5.2.3 Merging Loops 

In V1, two adjacent nested loops (shown in Figure 4-16) were found in subroutine 

cal_u. A simple analysis confirmed that the algorithm does not alter when these two 

loops are merged. 

Although with this change, two new loops are introduced due to variation in the 

upper bounds of the merged loop, speed up was still observed as this reduces the number 

of i,j sweeps due to loop merging. This technique encourages temporal locality as the 

number of iterations that separate successive accesses to a given reused data is reduced if 

same data elements were being referenced in two consecutive loops before their merge. 

 

 

Figure 4-15 Using Reciprocal Cache in subroutine cont 

80  



 

 

For example, in V1 for a 600 x 600 grid and a given set of values of i and j, the 

same values of u(i,j)  and du(i,j) would be accessed 360000 sweeps later because of an 

immediate nested loop following the first loop. As this number is high, the compiler does 

not expect the requirement for these values soon. When this happens, because of the 

limited size of the cache memory, the compiler does not tend to retain these values in 

cache. This increases the number of memory references. 

On the other hand, in the case of V2, for the same 600 x 600 grid, as the same 

value of u(i,j) is being used in two different operations in a single nested loop, there is a 

possibility of improvement of temporal locality. The two superfluous reloads in V1 have 

been avoided in V2 as the loops are merged into a single one as shown in Figure 4-16. 

 

 

  Figure 4-16 Merging nested loops in cal_u 

 
For a given set of values of i and j, the cache controller will load the element u(i,j) 

only once. The attempt is also made to hold on to this data element as this value is being 
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reused in the next operation. This leads to fewer memory references and improves 

temporal locality. Similar changes have been implemented in the same subroutine (cal_u) 

at a different place as shown in Figure 4-17a and in subroutine cal_v as shown in Figures 

4-17b. 

4.5.2.4 Getting rid of IF-THEN in loops 

 As described in chapter 2, conditional statements inside nested loops are 

expensive. In V1 (subroutine cont), the IF-THEN-ELSE structure was found inside 

nested loops. The nested loop was modified by removing the IF-THEN-ELSE structure 

out of the loop. This is presented in Figure 4-18. 

The loop merging technique was then applied to this part of subroutine cont. In 

order to deal with differences in the bounds of two nested loops (shown in Figure 4-18), 

sweeps along i and j have been added in V2. As the value of i ranges from 0 to ni, the IF 

condition would be true in 4 cases, when i=0 or 1 or when i=nim1 (i.e., ni-1) or when 

i=ni. So as to be able to merge this loop with the other loop in the same subroutine, these 

4 cases have been handled outside the original loop. This technique is a different way of 

implementing Inlining, a technique described in chapter 2. 

4.5.2.5 KFC3 and KFC4 Results  

The results of applying the above discussed techniques on KFC3 and KFC4 are 

presented in Figure 4-19. We were not able to collect walltime information for large 

problem sizes beyond 800 x 800 (640000 grid points) on KFC4 due to problems with 

stack; but, it is believed that the data collected is sufficient enough to realize the benefits 

of V2 over V1 because the largest problem size (700 x 700) for which walltime has been 

recorded is much larger than L2 cache. Walltime for V2 is better than V1 by 5-10% for 

most of the problem sizes on both clusters. Table 4-2 presents absolute walltime values 

for V1 and V2 on KFC4. Performance gains are not drastic as only one subroutine (cont) 

was tuned in this stage. Later, techniques that have been implemented in subroutine cont 

have been applied to remaining part of the code. These changes are presented in the next 

chapter as this fell under a separate stage of tuning GHOST. 

Figure 4-20 presents cache miss rates for V1 and V2 on KFC4 for grids only up to 

160000 grid points due to stack problems encountered while running Valgrind beyond 
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this grid size. Cache behavior in V2 does not show much improvement when compared 

to V1; in fact, the D1 miss rate for V2 is more than that for V1. This is attributed to the 

fact that tuning effort in this stage was focused on reducing the number of data calls (as 

discussed above) and this value being in the denominator (while calculating D1 miss rate) 

might lead to a larger fraction (D1 miss rate). This is evident from the Figures 4-21a and 

b. For comparison purposes, normalized walltime and the number of data calls (sum of 

memory reads and memory writes) normalized by grid points divided by 10, D1 cache 

misses and L2D cache misses normalized by grid points are presented in Figures 4-21a 

and b. 

Note that the cache data is taken from Valgrind simulations for 500 iterations and 

extrapolated to 5000 iterations based on the arguments previously presented in 

conjunction with Figure 4-1. From Figures 4-21a and b, D1 calls in V2 are at least 3% 

less than those in V1 for grid sizes presented. It can also be observed that L2d misses 

largely track walltime plot across all grid sizes. From this it is evident that even though 

we are not able to explain walltime gains with improvements in cache miss rates for V2 

(in Figure 4-20), combination of all three types (Data calls, L2d and D1 misses) of cache 

activity provides an explanation of walltime behavior confirming the effect of cache 

efficiency on code performance. 

4.5.2.6 KFC6 Results  

Results of performance gains for V2 on KFC6A and KFC6I are presented in 

Figure 4-22. Again, due to faster processors and bigger caches, larger walltime 

improvements of only 10% are observed. Even on KFC6I, walltime improvements in V2 

do not correspond to improvements in cache miss rates.  Cache miss rates for V1 and V2 

are presented in Figure 4-23 for comparison. However, as discussed earlier, the focus of 

the tuning effort in this stage was to avoid unnecessary and repeated calculations inside 

loops in order to reduce the number of memory references. As expected, V2 is 

characterized by fewer (by 5%) data references than V1 on KFC6I as shown in Figures 4-

24a and b and this is the probable reason for improvement in walltime in V2. 
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Figure 4-17a Merging nested loops in cal_u 
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Figure 4-17b Merging nested loops in cal_v 
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Table 4-2 Comparison of Walltime (in seconds) for V1 and V2 on KFC4 

 
Grid 
size V1-Walltime V2-walltime 

% 
improvement 

30x30 11.37 11.58 -1.84 

60x60 72.77 48.98 32.69 

80x80 94.59 93.62 1.02 

100x100 232.43 155.72 33.00 

200x200 769.07 717.83 6.66 

300x300 1783.43 1576.24 11.61 

400x400 3152.79 2936.26 6.86 

500x500 5028.45 4736.61 5.80 

600x600 7615.41 7131.86 6.34 

700x700 12698.62
          

11584.7 8.77 

800x800 13845.95 13619.22 1.63 
 

 

Figure 4-19 Comparison of walltime on KFC3 and KFC4 for V2 and V1 
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Figure 4-18 Removing IF-THEN-ELSE inside loops in V1 
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Figure 4-20 Comparison of D1, L2 and L2D cache miss rates for V1 and V2 on KFC4 

(a)  
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(b)  

Figure 4-21 Comparisons of normalized walltime and normalized number of data calls 
(divided by 10), D1 cache misses and L2D cache misses on KFC4 for GHOST (a) V1 (b) 
V2. 
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Figure 4-22 Comparison of walltime between V1 and V2 on KFC6A and KFC6I 

 

Figure 4-23 Comparison of D1, L2 and L2D cache miss rates for V1 and V2 on KFC6I 

(a)  
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(b)  

Figure 4-24 Comparisons of normalized walltime and normalized number of data calls 
(divided by 10), D1 cache misses and L2D cache misses on KFC6I for GHOST (a) V1 
(b) V2  

4.5.3 VERSION 3 OR V3 

V3 is the result of the third stage of the tuning effort. In order to understand the 

effect of usage of data structures, the changes done to the code from V1 to V2 have not 

been implemented in V3. Thus, V3 is V1 with data structures implemented in place of 

arrays to aid in data fetch. The focus of this tuning stage was to avoid data misses that 

might be possible due to usage of arrays in the code as explained in chapter 2. The 

subroutines that have undergone modification with implementing structures are cal_u, 

cal_v, cont, quick and tdma. 

As the current work focused on optimizing the laminar part of the code, there was 

a need for preserving the part of the code that deals with turbulent flows. Subroutines 

quick and tdma were being used for both laminar and turbulent flow type problems. 

Modifying these subroutines would have essentially modified a part of the code that deals 

with turbulent flows and so there was a need for two new subroutines customized for 

laminar flows. They are quick_struct and tdma_struct. These two subroutines essentially 
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have the same code as subroutines quick and tdma respectively except that they have 

arrays of data structures implemented in them rather than arrays. In V3, all function calls 

to quick and tdma have been replaced by quick_struct and tdma_struct respectively and 

the part of the code that deals with turbulent flows is left in its original state. 

Subroutines cal_u, cal_v, cont, quick and tdma have several lines of code that 

perform arithmetic calculations on elements of various arrays at a grid point or its nearby 

points. An example of such a calculation is:   

ap(i,j) = ae(i,j) + aw(i,j) + an(i,j) + as(i,j) 

Operations like this need the compiler to fetch the data from multiple arrays. Such 

operations involve arithmetic calculations on the data from the same grid point or 

surrounding grid points. This makes a strong case for using data structures in place of 

arrays because when such variables are declared inside a data structure and when the 

code is modified to use an array of such data structures, the compiler can fetch values of 

the required variables at once without the possibility of data cache misses. This is 

because when the processor requests a set of variables, a cache line is loaded into cache 

and because arrays are replaced by data structures, all variables that are required in 

arithmetic operations are found in cache leading to fewer data misses. In GHOST, in a 

given arithmetic operation, the possibility of needing to access values beyond a cache line 

does not arise because arithmetic operations are performed on variables at a given grid 

point or its immediate neighboring points. This feature of GHOST makes a strong case 

for using data structures because arithmetic operations that do not involve data elements 

located far away from each other on a grid benefit from usage of data structures because 

of the above explained concept. Details of using data structures in place of arrays are 

presented in Figure 4-25. 

4.5.3.1 KFC3 and KFC4 Results  

The results of incorporating arrays of data structures in place of arrays on KFC3 and 

KFC4 are presented in Figures 4-26a and b. This figure presents comparisons between 

V1 and V3 because as discussed earlier, V3 is a modified version of V1 (leaving behind 

all the changes that were incorporated in V2). Performance gains are up to 40% on KFC3 

while the gains are lower on KFC4.  
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One distinct feature of V3 is that the normalized walltime values on KFC3 

remains practically same after reaching 125 x 125 grid while for V1 on KFC3, walltime 

values kept increasing with increasing grid size beyond 125 x 125 grid. Table 4-3 

presents normalized walltime values for V1 and V3 on KFC3 for comparison. On KFC4, 

techniques implemented in V3 remove the sporadic behavior (150 x 150 and 700 x 700 

grids) in V2 and the smooth behavior of the walltime plot is obvious from the zoomed 

plot in Figure 4-26b. Performance gains are more pronounced for larger (250000) grids 

and gains up to 20% (when compared to V1) are realized in V3 on KFC4. 

Valgrind results on KFC4 are presented in Figure 4-27. Drastic reduction in D1 

cache misses are seen for grid 300 x 300 on KFC4 although this does not translate to 

huge gains in walltime. Cache miss rates between V1 and V3 do not differ by large 

numbers. However fewer D1 misses (by as much as 50%) as shown in Figures 4-28a and 

b contribute to improvements in walltime. 

 

Figure 4-25 Using data structures in place of arrays in V3 
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Table 4-3 Normalized walltime values (in micro seconds) for V1 and V3 on KFC3 

 
Grid size Walltime - V1 Walltime - V3 

30 x 30 2.96 2.86 

60 x 60 3.38 3.17 

80 x 80 3.60 3.54 

100 x 100 3.82 4.03 

125 x 125 4.45 4.26 

150 x 150 4.21 4.24 

200 x 200 4.21 4.23 

300 x 300 4.40 4.34 

400 x 400 4.58 4.29 

500 x 500 4.49 4.30 

600 x 600 5.30 4.22 

800 x 800 6.11 ------ 

900 x 900 6.24 ------ 

1000 x 1000 6.45 4.41 

(a)  
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(b)  

Figure 4-26 Walltime as a function of grid size on KFC3 and KFC4 for V1 and V3 (a) for 
all grid sizes (b) zoomed plot 

 

Figure 4-27 Comparison of D1, L2 and L2D cache miss rates for V1 and V3 on KFC4 
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(a)  

(b)  

Figure 4-28 Comparisons of normalized walltime and normalized number of data calls 
(divided by 10), D1 cache misses and L2D cache misses on KFC4 for GHOST (a) V1 (b) 
V3. 
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4.5.3.2 KFC6 Results  

Results of walltime plot on KFC6A and KFC6I is presented in Figures 4-29 and 

b. Improvements on KFC6A vary from 5 to 10% for smaller grids (up to 400 x 400) 

while for larger grids, performance gains up to 15% are observed. As can be noticed, 

improvements on KFC6I are meager and can be attributed to faster processors and 

advanced hardware. In KFC6A, performance improvements in V3 are sporadic. As seen 

from Figures 4-29a and b, V3 on KFC6A performs better (gains of up to 16%) for larger 

grids starting around 250000 grid points probably because of benefits of using data 

structures are realized due to data size becoming exponentially large at such grid sizes.  

Valgrind results are presented in Figure 4-30. On KFC6I, cache miss rates are more in V3 

than in V1 because of fewer (by 5%) data misses (Figures 4-31a, b) and this might be the 

reason for improvements in walltime. But, walltime behavior cannot be simply explained 

with cache miss data. 

(a)  
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(b)  

Figure 4-29 Walltime as a function of grid size on KFC6I and KFC6A for V2 and V3 (a) 
for all grid sizes (b) zoomed plot till 100000 grid points 

 

Figure 4-30 Comparison of D1, L2 and L2D cache miss rates for V1 and V3 on KFC6I 
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(a)  

 

(b)  

Figure 4-31 Comparisons of normalized walltime and normalized number of data calls 
(divided by 10), D1 cache misses and L2D cache misses on KFC6I for GHOST (a) V1 
(b) V3 
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4.6 SUMMARY OF OPTIMIZATION EFFORT AND RESULTS OF FURTHER 
EFFORTS OF TUNING GHOST 

This section provides an overall analysis of results of optimization effort carried 

out on GHOST. The work presented above was carried out till December 2004. This 

work was incorporated into the paper by “R. P. LeBeau, P. Kristipati, S. Gupta, H. Chen, 

P. G. Huang, “Joint Performance Evaluation and Optimization of Two CFD Codes on 

Commodity Clusters”, AIAA – 2005 – 1380, January 2005” [52]. This paper included 

further optimization efforts on GHOST beyond the scope of this thesis, but based on the 

work presented so far. This analysis focused on KFC3 and KFC4. This section presents 

these results along with summarizing the results presented above on those clusters. 

In this optimization effort, the optimization steps were similar to those presented 

previously in section 4.4 except for step 6: 

1) Replacing the allocation/de-allocation scheme with permanent variables 

2) Correcting the orientation of the i,j sweeps to the cache-conserving form (outer 

loop i, inner loop j) consistent with the storage in memory. 

3) Aggressive cleaning of redundant computations, unnecessary divisions, and 

other excessive mathematical activity. 

4) Removing unneeded if-then structures, particularly on sweeps that do not 

encompass the full i,j grid. 

5) Restructuring the variables from the single array form, 1( , )i j  and 2 ( , )i j , to 

an array of structures 1 2( , ) : ,i j   .  

6) Applying a sub-blocking scheme in which a grid is divided into subgrids that 

effectively fit into the L2 cache. 

Based on the above steps, the results presented above account for the three 

versions of GHOST viz. V1, V2 and V3. In order to have a deeper understanding of effect 

of applying each of the above discussed techniques, LeBeau et al. [52] presents more 

optimized versions of GHOST as shown below: 

 V4 – V0 + step 5  5 – original + step 6 

 V6 – original + steps 2-4, 6 V7 – original + steps 2-6 

The standard LINUX tool gprof was used to determine the relative cost of each of 

the six key GHOST subroutines, which collectively involve over 95% of the total 
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runtime. Table 4-4 presents the profile results over a 5000 iteration simulation for code 

versions 0-4 for four different grid sizes. As a result of coding improvements, the three 

most costly routines (cont, tdma, quick) shift positions relative to one another, while the 

other three key subroutines generally hold their relative positions and proportions. An 

exception to this is the application of the array of structures (step 5) which serves in the 

largest (900 x 900) grid to significantly reduce the tdma cost relative to the versions 

without step 5 (compare V0 and V4, V2 and V3). This is not unexpected, as the array of 

structures was designed based on the loops in tdma; however, for smaller grids the 

relationship to tdma is not as apparent, either leading to across the board improvements 

(90 x 90, V2 to V3) or a decline in tdma performance but improved performance in other 

subroutines (150 x 150, V2 to V3). Adding only step 5 to the original code was only 

clearly a benefit on the largest grid and in some cases proved detrimental, a fact reflected 

in the curves in Figure 4-32. This is not inconsistent with the results presented so far; it 

was observed that using the array of structures instead of arrays essentially did not 

improve performance but lead to a more consistent behavior of walltime plot as discussed 

in section 4.5.3.1. 

Table 4-4 Walltime in seconds spent in key subroutines for GHOST on four grid sizes 
over 5000 iterations 

 
90x90 

 
V0 

 
V1 

 
V2 

 
V3 

 
V4 

  
150x150 

 
V0 

 
V1 

 
V2 

 
V3 

 
V4 

Total 174.
0 

127.1 177.4 131.7 181.9 Total 590.3 593.1 588.7 452.3 658.9 

Cont 53.4 42.2 54.5 41.2 53.5 cont 170.8 170.5 170.4 129.4 166.8 

Quick 37.5 23.6 38.5 29.4 40.1 quick 111.2 113.6 111.1 81.1 126.8 

Tdma 25.3 24.6 25.9 19.3 20.0 tdma 99.9 100.3 99.9 114.7 119.4 

cal_prop 21.4 13.9 22.0 14.4 21.9 cal_prop 82.2 83.7 82.1 46.5 82.7 

cal_v 14.9 9.2 15.2 10.4 18.3 cal_v 54.0 52.9 52.5 30.7 64.5 

cal_u 14.8 8.5 14.8 10.0 17.6 cal_u 52.6 54.4 54.0 31.56 66.0 

other 6.8 5.1 6.7 7.0 10.5 other 19.6 17.7 18.8 18.3 32.9 
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300x300 

 
V0 

 
V1 

 
V2 

 
V3 

 
V4 

 
900x900 

 
V0 

 
V1 

 
V2 

 
V3 

 
V4 

Total 3278 1736 1656 1849 3344 Total 48584 - 17239 16750 37269

Cont 930 496 425 510 887 Cont 15339 - 4309 4808 11305

quick 664 258 261 319 702 quick 6901 - 2697 3011 6108 

tdma 509 494 489 502 510 tdma 5371 - 5673 4127 4273 

cal_prop 484 201 203 202 476 cal_prop 6582 - 1980 1992 6687 

cal_v 322 113 110 121 330 cal_v 7261 - 1047 1083 4817 

cal_u 308 122 117 123 334 cal_u 6688 - 1081 1098 3559 

other 61 51 52 72 104 other 443 - 452 631 520 

 

The direct comparison between L2D miss rate and normalized walltime is shown 

in Figures 4-33a and b. The L2D miss rate largely parallels and therefore likely explains 

the overall shape of the curve for the larger grids, but the smaller grids (less than 200 x 

200) and for the scaling and the secondary variations in the larger grids, an explanation 

based solely on L2 cache is inadequate. 

(a)  
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(b)  

Figure 4-32 Overall performance of the eight versions of GHOST in terms of 
walltime/gridpoint versus grid size with (a) the full range and (b) the more complicated 
region for grids smaller than 200 x 200 

 

(a)  
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(b)  

Figure 4-33 Comparisons of L2 cache miss rate and normalized walltime versus grid size 
on KFC4 for GHOST (a) Version 0 and Version 4, (b) Versions 1-3 

Instead, as discussed in the above section, the overall performance is also tied to 

the L1 data cache miss rate (D1), which varied in an unpredictable fashion on the smaller 

grids, and the number of total data calls required, which could vary significantly from 

code version to code version for the same grid size particularly with the addition of the 

variable array structure (step 5) or sub-blocking (step 6). Several walltime features that 

are not clearly explained by L2D misses can at least be qualitatively explained by the 

other two features. Sharp peaks in the D1 cache misses create much of the erratic 

behavior on the small grids as in the case in Figure 4-28, as well as generating the small 

oscillations in normalized walltime for large grids in version 2 for example near 500,000 

grid points in Figure 4-22. So, the combination of all three types of cache activity does 

provide an explanation of most of the walltime profile features, confirming the strong 

effect of cache efficiency on code performance. 

Several conclusions are drawn from this analysis. The first is that the increase of 

cache miss rate with grid size was largely a function of poor loop construction and was 

solved for large grids (greater than 200 x 200) by step 2 and that this improvement by 
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itself yields dramatic gains in performance at these large grid sizes. The addition of steps 

3 and 4 further decreases normalized walltime, if not as dramatically, for large grids. Step 

5 also provides an incremental performance boost for the largest grids (greater than 600 x 

600) but for intermediate grids it is slightly detrimental. For grids smaller than 200 x 200, 

the performance is strongly influenced by variations in the L1 cache miss rate as well as 

L2. The result is a strongly variable normalized walltime and cache miss rate, with strong 

peaks in both between grid sizes of 125 x 125 and 130 x 130, as well as smaller peaks 

elsewhere. This behavior largely eliminates the benefits of optimization steps 2-4 at many 

grid sizes, but the addition of Step 5 appears to reduce much of the erratic behavior in this 

region, yielding a much smoother set of normalized cache and walltime curves. 

4.6.1 OVERALL PERFORMANCE 

Revisiting the speedup plots in Figure 4-34, it is clear that the optimized versions 

of the code do not exhibit significant superlinear speedup but either near-linear or for 

smaller grids a sublinear curve, confirming that the dramatic superlinear speedup was a 

result of cache effects. Alternatively, one can examine the walltime data starting with the 

fact that for the smallest grids (30 x 30 and smaller) for all non-sub-blocked versions the 

L2D cache miss rate is less than 0.1% and the D1 miss rate is typically less than 2%. This 

suggests that normalized walltimes for these small grids are close to the best possible 

cache-driven performance (where in theory the total cache miss rate would be 0%). The 

absolute best normalized walltime of the cases considered is for version 3 on a 30 x 30 

grid at 11.8 ms/gridpoint for 5000 iterations. If all the normalized walltime values are 

divided by this optimal value as in Figure 4-35, the result shows how close to ideal each 

code version is. The best optimized code (version 3) is within a factor of 2 of this best 

result across all grid sizes. This is considerably better than the original code, which can 

be as much as 13 times slower that the theoretical optimum. The limited sub-blocking 

data stays within about 30% of the best value, with the exception of the largest grid tested 

with the original code plus sub-blocking (version 5). 
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Figure 4-34 Speedup of GHOST on KFC4 for grids of varying size with (a) Version 2 
and (b) Version 3  

(a)  (b)   

(a) (b)  

 

Figure 4-35 Overall performance of the eight versions of GHOST relative to the 
“optimal” value of 11.8 ms/gridpoint for 5000 iterations with (a) the full range and (b) 
grids smaller than 200 x 200 
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4.7 ACCURACY RESULTS 

Accuracy tests conducted by A. Palki [53] showed that the results were 

unchanged by the code changes and the final results are in agreement with Ghia et. al. 

[66]. 

4.8 SUMMARY AND FURTHER WORK 

This chapter presented the results of applying various techniques to optimize the 

performance of GHOST on commodity cluster architectures. It was observed that the best 

optimized version (V3) of the code was within a factor of 2 of the estimated optimal 

performance over all the tested grid sizes and the overall performance improvement for 

this case relative to the original code ranged from 20% faster for small grids to over 6 

times faster for the largest. In next chapter, results of External and Internal blocking, (a 

new technique that will be introduced in next chapter) are presented along with results of 

further optimization effort. 
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CHAPTER - 5 

5. STAGE TWO PERFORMANCE TUNING RESULTS 
As discussed in chapter 4, the best tuned version of GHOST was with in a factor 

of 2 of the estimated optimal performance over all the tested grid sizes and the overall 

performance for this version ranged from 20% faster for smaller grids to over 6 times 

faster for the largest. After the tuning effort that was presented in chapter 4 was carried 

out, Palki [53] did extensive investigation and optimized the performance of GHOST by 

applying external and internal blocking techniques on V3. This chapter summarizes the 

results of the optimization effort carried out by Palki [53] to show the performance of V0 

and V3 when these techniques are applied along with problems associated with these 

techniques. Later, results of stage two of optimization effort carried out in this work are 

presented. 

5.1 EXTERNAL BLOCKING 

As discussed earlier, external blocking involves the breaking the computational 

grid into smaller sized cache friendly blocks. This step is carried out during the grid 

generation process and is done by the grid generator code g.f90 introduced in chapter 3. 

This section reviews external blocking results compiled by Palki [53] on the best 

optimized version (V3) of GHOST for cavity flow problem that was described in chapter 

4. 

5.1.1 KFC4 AND KFC5 RESULTS 

The walltime (normalized by grid size and iterations) plot for the tuned V3 code 

on KFC4 is shown in Figure 5-1(a). For comparison, a similar plot is shown for the V0 

code in Figure 5-1(b). In the case of V3 (because of the optimization effort), the walltime 

for the unblocked (single zone) code does not increase with an increase in the grid size. 

The performance of V0 when external blocking is applied is similar to the performance of 

V3 without external blocking. The optimization effort thus relieves the burden on the 

programmer to split the grid into cache sized blocks so as to realize improved 

performance. Still, external blocking applied to V3 yields more favorable results. As 

presented in Table 5-1, in the case of V3, external blocking on a 600 x 600 grid yields an 

108  



 

improvement of approximately 30% in walltime and this value remains the same 

throughout the block sizes (30 x 30, 40 x 40 and 50 x 50) tested. This is a noticeable 

difference between V0 Ext and V3 Ext (V0 and V3 with external blocking applied 

respectively) because walltime for V0 Ext was largely dependent on the subblock size as 

discussed in chapter 5. This further relieves the burden from the programmer in that 

while splitting the grid a relatively larger subblock size can be chosen leading to fewer 

zones, meaning less complexity in designing the input file and fewer ghost points leading 

to fewer data calls. In the case of V3, the performance of the externally blocked grid is 

also highly scalable and unchanging over a wide range of grid sizes i.e., the normalized 

walltime tends to stay almost constant irrespective of the grid size. Hence the actual 

normalized speed of a blocked computation is comparable to the single grid computation 

of the same size for reasonably large (at least till tested 70 x 70 grid) computational 

problems. Similar walltime results on KFC5 are presented in Figure 5-2. Table 5-2 

presents improvements in walltime for a 600 x 600 grid on KFC5 because of external 

blocking applied to V3. 

Table 5-1 External Blocking results for 600 x 600 grid on KFC4 with various 
subgrids[53] 

Walltime/Grid Point/Iteration [µ 
secs] 

% Improvement compared to No 
Block 

 
Block Size 

V0 V3 V0 V3 
No Block 18.83 4.63 - - 
70 x 70 4.55 3.48 75.8% 24.8% 
60 x 60 4.75 3.40 74.7% 26.56% 
50 x 50 4.12 3.33 78.1% 28.07% 
40 x 40 3.97 3.31 78.9% 28.5% 
30 x 30 3.69 3.29 80.4% 28.9% 

Table 5-2 External Blocking results for 600 x 600 grid on KFC5 with various 
subgrids[53] 

Walltime/Grid Point/Iteration [µ 
secs] 

% Improvement compared to No 
Block Block Size 

V0 V3 V0 V3 
No Block 6.51 2.41 - - 
70 x 70 2.32 1.89 64.3% 21.5% 
60 x 60 2.31 1.86 64.5% 22.8% 
50 x 50 2.18 1.78 66.5% 26.1% 
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40 x 40 2.03 1.76 68.8% 26.9% 
30 x 30 1.98 1.74 69.5% 27.8% 

As expected, due to better and faster processors the overall code performance is 

improved for the unblocked grid on KFC5 compared to KFC4. The potential gain 

obtained from improving cache performance is reduced due to the greater bandwidth and 

better memory hierarchy structure. With the application of 30 x 30 subblocks for a 600 x 

600 grid on KFC5, a decrease of 69% was observed for the V0 code and 27.8% for the 

V3 code when compared to the unsubblocked code as potential gains had already been 

realized in V3 because of applying code optimization techniques. But, it is important to 

note that subblocking applied on V3 leads to better results than on V0 as V3 is already 

improvised version of V0 (as discussed in chapter 4). Thus, in order to realize the full 

benefits of external blocking technique, the code must be optimized on a single node first, 

the details of which are presented in chapter 4. 
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b) 

Figure 5-1 External Blocking - Walltime as a function of grid size on KFC4 for the 
lid-driven test case. (a)V0 (b)V3 [53] 
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b) 

Figure 5-2 External Blocking - Walltime as a function of subgrid size on KFC5 for 
the lid-driven test case. (a) V0 (b) V3 [53] 

 

Although external blocking can yield impressive performance improvements (as 

shown above), a major disadvantage of this technique is the difficulty in implementing it, 

since it is not easy to break up a grid with a complicated geometry or boundary 

conditions into smaller blocks. Creating a viable automated system to split the grid led to 

the idea of internal blocking technique, which is an automated version of external 

blocking. 

5.2 INTERNAL BLOCKING 

The underlying principle behind internal blocking is quite similar to that of 

external blocking. It involves breaking up the grid into smaller cache fitting blocks, 

solving the governing equations on these smaller blocks, and then putting them back 

together before the start of the MPI communications to get the overall solution. As 

discussed at the beginning of this chapter, Palki [53] did extensive investigation on this 
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technique and developed an automated process to split the grid into smaller blocks that fit 

into L2 cache of the processor on which calculations are being carried out. 

This technique has been presented in Figure 5-3. The grid presented is that of an 

airfoil at a certain angle of attack. In order to decrease the computation time through 

parallel processing, the grid had already been split into multiple blocks (external 

blocking). The flow field across each of the blocks can be solved on a different processor. 

As discussed above, internal blocking involves the splitting of each of these individual 

blocks into cache sized blocks. This has been illustrated with the help of a magnified 

view of the subblocks in Figure 6-3. 

 

 

3

1 2

4

Figure 5-3 Illustration of Internal Blocking [53] 
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5.2.1 IMPLEMENTATION OF INTERNAL BLOCKING IN GHOST 

In order to implement internal blocking into GHOST, four additional subroutines 

(Internal_block, break_velocity, scalc_flowfield, combine_velocity) have been added 

[53]. All the information pertaining to a grid such as the x, y coordinates of the grid 

points are stored in arrays. The subroutines split these arrays into smaller sized arrays 

such that each array will hold all the necessary information pertaining to a smaller sized 

block. This is equivalent to breaking up the grid into smaller sized, cache fitting blocks. 

Since the grid parameters remain constant for a given grid, this operation needs to be 

performed only once. The flow variables such as u, v, and p are also stored in arrays. 

Unlike the grid parameters, the values of these variables are updated every iteration. 

These updated values are required to calculate the values across the artificial boundaries. 

Hence, the subroutines split up the arrays consisting of these flow variables at the start of 

the calculations and then put them back together before the beginning of the MPI 

communication. 

5.2.2 KFC3 AND KFC4 RESULTS 

A plot of walltime as a function of subgrid size for the untuned V0 code on KFC4 

is shown in Figure 5-4(a). As mentioned in chapter 4, walltime is the average time for a 

single iteration over a 5000 iteration simulation and it is normalized by the number of 

grid points to eliminate the effect of increasing walltime with increasing grid sizes. 

Walltime behavior with internal blocking applied closely matches with the one 

with external blocking. Walltime for “V0 Int - No Subblock” (V0 with no subblocking) 

increases with increasing grid size. Even with internal subblocking, walltime for V0 

increases with subblock size and largely depends on subblock size. The best performance 

improvement was obtained with the 30 x 30 subblock grid. In the case of 600 x 600 grid, 

walltime with 30 x 30 subblock is lower by a factor of 4.75 compared to the 

unsubblocked grid. The walltime plot for the tuned V3 code on KFC4 is shown in Figure 

4-3(b). There is a decrease of 23.5% when compared to the unsubblocked code.  

Walltime values for 600 x 600 grid for various subblock sizes (with Internal Blocking) 

are shown in Table 5-3. 

 

114  



 

Table 5-3 Internal Blocking results for 600 x 600 grid on KFC4 with subgrids of various 
sizes [53] 

Walltime/Grid Point/Iteration [µ secs]
% Improvement compared to No 

Block Block Size 
V0 V3 V0 V3 

No Block 18.83 4.63 - - 
70 x 70 4.74 3.57 74.82 22.89 
60 x 60 4.43 3.50 76.47 24.406 
50 x 50 4.24 3.40 77.48 26.56 
40 x 40 3.98 3.44 78.86 25.7 
30 x 30 3.93 3.53 79.12 23.75 
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b) 

Figure 5-4 Internal Blocking Results - Walltime as a function of subgrid size for GHOST 
on KFC4 for the lid-driven test case (a) V0 (b) V3 [53] 

 

With internal blocking, for V0 the best performance is obtained with 30 x 30 

blocks, while for V3, 50 x 50 blocks showed the best performance, although for the V3 

code the difference in the value of the walltime is quite small for the various block sizes. 

Hence the performance improvement obtained by splitting up the grid using only 30 x 30 
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blocks will be almost the same as a grid broken up using blocks of sizes varying from 30 

x 30 to 70 x 70. Also, walltime values scale well through out the problem sizes tested for 

all subblocks presented in the Figure 5-4. 

5.2.3 ACCURACY TEST RESULTS 

Although the internal blocking technique did not pose any problems in terms of 

accuracy of results for cavity flow test case (presented in chapter 4), the results were not 

accurate [53] for a more complicated test case when the grid was subblocked in the same 

way as in cavity flow problem. Accuracy tests were conducted for flow over a NACA 

4415 airfoil test case with Reynolds number of 100,000 and a time step dt = 0.0025. 

Inaccurate results were attributed to probable coding error in the way the boundary 

conditions were implemented. In addition to the problems in terms of the accuracy of the 

results, the internal blocking approach requires a fair bit of change in the underlying 

algorithm of the code. Also, from results in chapter 4, it was noticed that L2D cache miss 

rates of 2% are still persistent in the most optimized version (V3) of GHOST. This 

presented an opportunity for more tuning effort on V3 with the aim of reducing the cache 

miss rates to the maximum extent possible, without relying on subblocking. Results of 

further tuning effort on GHOST are presented in the next sections. 

5.3 FURTHER TUNING EFFORT ON GHOST 

 A detailed review of V3 revealed the possibility of implementing the following 

steps:   

 1) Subroutine inlining 

  2) Additional cleaning of redundant computations, unnecessary divisions and 

other excessive mathematical activity. 

In step 1, the inlining technique, discussed in chapter 2, was applied on subroutine 

quick_struct. The algorithm of this subroutine was inlined into the code by replacing it 

with the function call. The reason for choosing this subroutine was because this 

subroutine is called only twice in a given iteration and because of this, it is fairly easy to 

implement the inlining technique. Step 1 proved ineffective resulting in neither a 

significant change in walltime or cache performance and as such is left out of the 

subsequent analysis.  

116  



 

Step 2 has similar techniques that were implemented in V2. As discussed in 

chapter 4, the tuning effort for V2 was focused on subroutine cont as such other 

subroutines were unchanged. It was observed that advanced architectures (like KFC6) 

benefited (decrease in data calls, data misses and L2D misses) more from changes in V2 

than changes in V3 while relatively older architectures (like KFC3 and KFC4) benefited 

significantly from almost all of the optimization techniques discussed in chapter 4. This 

observation directed further optimization effort to focus on reducing redundant 

mathematical activity so as to reduce number of data calls. The cavity flow test case is 

the test case on which further optimization effort was carried out and Valgrind was used 

to analyze cache behavior of the code on different machines. 

5.4 RESULTS OF FURTHER TUNING EFFORT 

As discussed in chapter 4, initial performance tuning efforts primarily resulted in 

three major versions of the original GHOST code. They are V1, V2 and V3. Further 

optimization efforts [52] resulted in V4, V5, V6 and V7. But, as presented in chapter 4, 

the most optimized version of GHOST was considered V3 and so further performance 

optimization effort on GHOST was base lined from V3 and as such V8 is an improvised 

version of V3. 

5.4.1 VERSION 8 OR V8 

  
Version 8 or V8 is the result of stage two of performance tuning effort. As 

discussed above, the focus in this stage was to carry out additional cleaning of redundant 

computations, unnecessary divisions and other excessive mathematical activity by 

incorporating changes without modifying the underlying algorithm. These are discussed 

in the next few paragraphs. 

5.4.1.1 Changing the Order of Condition Check in IF statements 

As discussed in chapter 2, ‘IF’ statements slow down a program for several 

reasons. Some of them are: 

 Compiler can do fewer optimizations in their presence, such as loop 

unrolling 

 Evaluation of the conditional takes time 
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 The continuous flow of data through the pipeline is interrupted when 

branching. 

Often, the performance impact of ‘if’ statements can be reduced by restructuring the 

program. It was observed that in V3, subroutines cal_u, cal_v and cont have a conditional 

check that might be improved with a minor change in the order of the condition check. It 

is well known that in most of the programming languages, the comparisons equal and not 

equal are faster than the comparisons less than and greater than. Although resultant 

improvements might be minor, this technique was implemented in three subroutines 

cal_u, cal_v and cont. This is presented in Figure 5-5. 

 

Figure 5-5 Correcting the order of a conditional statement 

5.4.1.2 Implementing Reciprocal Cache 

 As discussed in chapters 2 and 4 division operations have high latency. In V3, a 

few more areas (subroutines cal_u, cal_v) were identified where repeated division 

operations can be replaced by pre-calculated reciprocal values, a technique that was 

implemented in subroutine cont in V2. There were 10 instances in total where repeated 

division operations were replaced by a pre-calculated value that was calculated outside 

nested loop. Repeated divisions in V3 were being done inside nested i, j loops that span 

across the dimensions of the grid. As subroutines cal_u and cal_v are executed in each 

iteration, repeated divisions were being done for every iteration. For example in a 600 x 

600 grid, this means in a given iteration, 10*600*600 divisions were being done in 

subroutines cal_u and cal_v. With the high cost of division operations (details discussed 

in chapter 2), this was a bottleneck for optimum performance of these subroutine in V3. 
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In V8, the reciprocal values calculated only once at the beginning of subroutines cal_u 

and cal_v are used throughout their code avoiding further division operations. This 

essentially mean 10 repeated division operations per iteration have been replaced by two 

(one per subroutine) division operations per iteration. This reduction in the number of 

division operations leads to savings in machine cycles. For example, cycle time for a 

division operation on AMD 64-bit architectures is 71 cycles while on Intel 64-bit it is 161 

cycles [30] and because of this variation in cost of division operations between 

architectures, actual gains depend on architecture of a machine on which Reciprocal 

Cache is being implemented. 

5.4.1.3 Loop Merging 

As discussed in chapters 2 and 4, loop merging encourages temporal locality as 

the number of iterations that separate successive accesses to a given reused data is 

reduced if same data elements were being referenced in two consecutive loops before 

their merge. Figure 5-6 presents implementing reciprocal cache and loop merging 

techniques in subroutine cal_u. The fact that two nested loops were separated by a call to 

subroutine tdma_struct did not prevent us from implementing loop merging because the 

data elements inside the nested loops were not being used in the subroutine tdma_struct 

and so loop merging did not affect the integrity of the code and thus accuracy of the 

results were unaltered. 

5.4.1.4 KFC3 and KFC4 Results 

Walltime plots for V8 on KFC3 and KFC4 are presented in Figures 5-7a and b. 

Walltime values are compared with the ones for V3 as discussed earlier, V8 is 

improvised version of V3. Performance gains in V8 are more pronounced in KFC3 than 

in KFC4 although changes in V8 introduce spike in walltime value at 500 x 500 grid on 

KFC3. The walltime value for this particular grid is 30% more in V8 when compared to 

V0. Otherwise, performance gains up to 25% are realized for the remaining grids. The 

cause of the spike in KFC3 is unknown as Valgrind data was not collected on KFC3. On 

KFC4 like in KFC3 performance gains are more at smaller grids. But, for remaining 

grids, no huge performance gains are realized. Absolute walltime values for V3 and V8 

on KFC4 and KFC3 are presented in Table 5-4 and Table 5-5 for comparison. Valgrind 
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results on KFC4 are presented in Figures 5-8. Cache miss rates appear to be more than 

the ones for V3 due to a minor decrease in number of data calls as presented in Figures 5-

9a and b. This figure compares normalized data calls, D1 misses and L2D misses for V3 

and V8 on KFC4. A major reduction in D1 cache misses is seen for grid 200 x 200 

explaining walltime gains of up to 10% for this grid. 

5.4.1.5 KFC6 Results 

 Performance results for V8 on KFC6 architectures are presented in Figures 5-10 

and 5-11. Figure 5-10 compares walltime values for V3 and V8 on KFC6I and KFC6A. 

On KFC6I, walltime values show improvements in the range of 12% to 19%, larger gains 

realized at smaller grids as on KFC3. Relative gains in KFC6 architectures in walltime 

values are more pronounced than in KFC3 and KFC4. 

Table 5-4 Absolute walltime values (in seconds) on KFC4 for V3 and V8 
Grid Walltime-V3 Walltime-V8 % Improvement 

30 x 30 11.52 10.45 9.29 

60 x 60 49.37 47.79 3.20 

80 x 80 99.84 100.66 -0.82 

100 x 100 171.87 174.91 -1.77 

125 x 125 282.33 287.01 -1.66 

150 x 150 413.06 423.86 -2.61 

200 x 200 757.27 745.26 1.59 

300 x 300 1755.89 1714.92 2.33 

400 x 400 3154.64 3192.61 -1.20 

500 x 500 4959.73 4993.15 -0.67 

600 x 600 7257.02 7148.34 1.50 

700 x 700 9973.19 10042.25 -0.69 

800 x 800 12852.52 12866.5 -0.11 

Table 5-5 Absolute walltime values (in seconds) on KFC3 for V3 and V8 

Grid Walltime-V3 Walltime-V8 % Improvement 

30 x 30 12.88 9.71 24.61 

60 x 60 57.04 48.55 14.88 

80 x 80 113.35 100.87 11.01 

100 x 100 201.34 178.41 11.39 

125 x 125 332.76 299.63 9.96 

150 x 150 476.77 425.66 10.72 

200 x 200 846.55 765.73 9.55 

300 x 300 1954.73 1753.39 10.30 

400 x 400 3429.26 3097.44 9.68 
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500 x 500 5375.1 6956.37 -29.42 

600 x 600 7603.56 7148.34 5.99 

700 x 700 9973.19 10042.25 -0.69 

800 x 800 12852.52 12866.5 -0.11 

900 x 900 16671.13 --- --- 

1000 x 1000 22035 20158.89 8.51 
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Figure 5-6 Implementing Reciprocal Cache and loop merging in subroutine cal_u 

(a)  

(b)  

Figure 5-7 Walltime as a function of grid size for V3 and V8 on (a) KFC4 (b) KFC3 
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Figure 5-8 Comparison of D1, L2 and L2D cache miss rates for V3 and V8 on KFC4 

 

(a)  
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(b)  

Figure 5-9 Comparisons of normalized walltime and normalized number of data calls 
(divided by 10), D1 cache misses and L2D cache misses on KFC4 for GHOST (a) V3 (b) 
V8 

 

Figure 5-10 Walltime as a function of grid size for V3 and V8 on KFC6I and KFC6A. 
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 (a)  

        (b)  

Figure 5-11 Walltime as a function of grid size for V2, V3 and V8 on KFC6I and KFC6A 
for all grid sizes (b) zoomed plot for grid points up to 250000 

 
This is not unexpected as V2 was the best tuned code (as presented in chapter 4) on 

KFC6 architectures and techniques similar to the ones in V2 have been applied inV8.  

On KFC6A, performance gains range from 7% to 15%. Similar to KFC6I, gains 

are more at smaller grids. Figures 5-11a and b present walltime comparisons for V2, V3 

and V8 on KFC6 architectures. Also, absolute walltime values for these versions on 

KFC6 architectures are presented in Tables 5-6a and b. 
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Table 5-6a Absolute walltime values (in seconds) on KFC6I for V3 and V8 

Grid 
Walltime-
V2 

Walltime-
V3 

Walltime-
V8 

% 
Improvement 
from V2 to V8 

% 
Improvement 
from V3 to V8 

30 x 30 5.94 7.15 5.81 2.14 18.70 

60 x 60 24.51 29.6 23.94 2.34 19.13 

80 x 80 44.44 53.4 43.29 2.59 18.94 

100 x 100 71.11 85.39 69.41 2.39 18.72 

125 x 125 114.65 139.44 113.89 0.66 18.32 

150 x 150 167.38 204.51 174.77 -4.41 14.54 

200 x 200 314.19 385.99 331.45 -5.49 14.13 

300 x 300 729.54 909.99 785.18 -7.63 13.72 

400 x 400 1317.01 1613.48 1388.41 -5.42 13.95 

500 x 500 2079.46 2517.36 2174.18 -4.56 13.63 

600 x 600 3315.71 3804.55 3330.30 -0.44 12.47 

700 x 700 4578.25 5178.44 4538.26 0.87 12.36 

800 x 800 5926.16 6769.47 5932.76 -0.11 12.36 

900 x 900 7477.15 8599.42 7506.82 -0.40 12.71 

1000 x1000 9308.88 10588.74 9292.79 0.17 12.24 

Table 5-6b Absolute walltime values (in seconds) on KFC6A for V3 and V8 

Grid 
V2-
walltime(s) 

V3-
walltime (s)

V8-
walltime(s) 

% 
Improvement 
from 
 V2 to V8 

% 
Improvement 
from 
V3 to V8 

30 x 30 4.81 5.82 4.99 -3.79 14.22 

60 x 60 22.95 28.35 24.05 -4.77 15.18 

80 x 80 43.73 54.06 47.55 -8.73 12.05 

100 x 100 73.01 90.5 80.39 -10.10 11.18 

125 x 125 120.6 148.73 132.14 -9.56 11.16 

150 x 150 175.19 215.6 192.37 -9.81 10.77 

200 x 200 309.22 380.74 336.81 -8.92 11.54 

300 x 300 738.11 876.41 780.90 -5.80 10.90 

400 x 400 1312.16 1562.98 1385.17 -5.56 11.38 

500 x 500 2148.26 2474.13 2210.29 -2.89 10.66 

600 x 600 3470.18 3817.54 3449.56 0.59 9.64 

700 x 700 5749.77 5318.88 4929.94 14.26 7.31 

800 x 800 6448.75 6830.06 6197.23 3.90 9.27 

900 x 900 9126.26 9153.32 8422.71 7.71 7.98 

1000x1000 11191.61 10690.38 9707.16 13.26 9.20 
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 V3 vs. V8 on KFC6I and KFC6A: V8 performs better than V3 for all grid sizes 

tested on KFC6I and KFC6A. This is not unexpected because performance 

optimization techniques that were implemented in V8 were similar to the ones in 

V2 (and V2 was the best code for KFC6I as discussed in chapter 4). 

 V2 vs. V8 on KFC6I: As seen from Table 5-6a, for small grids and large grids 

V8 is equal or better than V2 on KFC6I. For moderate grids, V2 is better 

 V2 vs. V8 on KFC6A: In V8, performance gains of up to 14% are realized at 

larger grids on KFC6A. However, V2 tends to perform better than V8 at smaller 

grids. Valgrind data was not collected on KFC6A and so no proper explanation is 

available.  

As discussed at the beginning of this chapter, the focus in V8 was to extend the 

optimization techniques that were applied to subroutine cont to other subroutines (cal_u 

and cal_v) to test if gains realized in V2 can be realized in V8 as well. As presented in 

Figures 5-11a and b and Tables 5-7a and b, on KFC6I performance gains in V8 are 

realized only at larger grids (beyond 600 x 600). V8 performs better than V2 by a minor 

margin (2-3%) on KFC6I while it performs better (up to 13%) than V8 on KFC6A for 

larger grids. Figures 5-12 a and b present normalized values of data calls, L2D misses 

and D1 misses on KFC6I for V3 and V8 for comparison. As seen in the Figure 5-12 for 

V8, there is a drop in number of data calls and L2D misses at larger grids (beyond 500 x 

500) although this does not translate to improvements in walltime on KFC6I as can be 

seen from Table 5-6a. 

From the analysis below, it is clear that using data structures (in V3) proved to be 

beneficial for larger grids while it is more detrimental for moderate grids and yields 

mixed results for smaller grids. The negative effect of data structures on walltime is more 

pronounced on KFC6 architectures. 
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(a)  

(b)  

Figure 5-12 Comparisons of normalized walltime and normalized number of data calls 
(divided by 10), D1 cache misses and L2D cache misses on KFC6I for GHOST (a) 
Version 3 (b) Version 8 
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5.5 AIR FOIL TEST CASE 

In order to test the universality of the presented tuning techniques, the flow over a 

NACA 4318 airfoil inside a 24 x 24 inch wind tunnel section was chosen as a second test 

case. The experimental setup for this case is as shown in Figure 5-13. The computational 

grid for the airfoil comprises of 1031 x 120 grid points. The overall computational grid 

consisting of two-dimensional multi-zonal blocks is shown in Figure 5-14. The airfoil 

grid overlaps the central background grid. This background grid is surrounded by eight 

other rectangular grids. 

On the outer boundary, the left (inlet) boundary is fixed with a uniform 

dimensionless inlet velocity u∞ = 1.0 and the upper and lower boundary condition are no-

slip wall boundaries representing the top and bottom of the wind tunnel test section. For 

the airfoil blocks, the inner boundary condition is a no-slip wall boundary condition, and 

the outside boundary is set to “overlap” which allows the background grid points to be 

overlapped by the airfoil block grid points to interpolate values from the foreground 

airfoil grid points. 

Computation information between adjacent blocks is exchanged by two ghost 

points. All the parameters chosen in the computation are dimensionless. Information 

regarding the grid sizes of the individual blocks in the grid is presented in Table 5-7. 

 

Figure 5-13 24 x 24 inch experimental test section 
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Table 5-7 Block sizes of individual zones on airfoil grid  

Grid Size Grid Size 
Zone 

i x j 
Zone 

i x j 

1 1031 x 120 6 300 x 40 

2 50 x 100 7 50 x 40 

3 300 x 100 8 50 x 40 

4 50 x 100 9 300 x 40 

5 50 x 40 10 50 x 40 

 

 

Figure 5-14 Grid used for 24 x 24 inch wind tunnel section 

 

5.5.1 PERFORMANCE TEST RESULTS 

Table 5-7 contains the information regarding the grid sizes of the individual 

blocks in the grid. Walltime values for the above discussed test case have been recorded 

on KFC3 and KFC6I. Although the airfoil grid block (zone 1) contains relatively more 

number of points than the surrounding blocks, no external/internal blocking has been 

applied to this block in order to test the optimization techniques presented in chapter 4. 

The code was run on a single node for 5000 iterations. A Reynolds number of 25000 was 

used. A comparison of the absolute walltime values for 5000 iterations is presented in the 

Table 5-8. 
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Table 5-8 Comparison of walltime values for various versions of GHOST for flow over a 
NACA 4318 airfoil on various hardware platforms 

Platfor
m 

V0 

V1 
(%Improvem

ent 
compared to 

V0) 

V2 
(%Improvem

ent 
compared to 

V1) 

V3 
(%Improvem

ent 
Compared to 

V1) 

V8 
(% Improvement 

compared to 
fastest version so 

far) 

KFC3 6757.87 

 
5125.51 

(24.15%) 

4683.14 

(8.63%) 

5042.54 

(1.61%) 

4590.09 

(1.98% - fastest) 

KFC6I 2899.3 
2288.25 
(21.07%) 

1916.56 
(16.24% - 

fastest) 

2298.37 
(- 0.44%) 

 

1959.03 
(- 2.21%) 

 

On KFC3, V8 performs better than any other version of GHOST while on KFC6, 

V2 performs better than any other version. This is not unexpected from the results 

discussed at the beginning of this chapter and in chapter 4. V3 has in it arrays of data 

structures replaced by arrays and this technique appears to be detrimental for the 

performance of the code for this test case on both KFC3 and KFC6. However, 

performance tuning techniques have largely been beneficial for airfoil test as well, thus 

proving that the code optimization techniques do result in better performance for other 

test cases as well. 

5.6 SUMMARY 

Results of external and internal blocking techniques were briefly presented at the 

beginning of this chapter. While the performance gains attained from application of 

external and internal blocking techniques were impressive, each of these techniques has 

its own disadvantages. Implementing external blocking is more time consuming on 

complicated grids while internal blocking has problems in terms of accuracy of the 

results for complicated grids. This represented an opportunity to carry out further tuning 

effort that in addition to the efforts discussed in chapter 4 with a goal to realize further 

gains and to circumvent the problems of external and internal blocking techniques. 

Results of further optimization effort on GHOST have been presented with gains up to 

25% for smaller grids and up to 9% on larger grids (1 million grid points) when 
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compared to V3 on KFC3 and KFC4. While these gains were sporadic, performance 

gains up to 20% were realized for all grid sizes tested on KFC6I and KFC6A. 

Performance gains in V8 when compared to V2 are meager. Only about 2% gains were 

realized for smaller grids in V8 when compared to V2 on KFC6I. For other grids, 

performance is almost the same for both the codes. On KFC6A in V8, performance gains 

up to 14% were realized. These gains were only for larger grids. To conclude V8 is better 

than V2 only for larger grids on KFC6 architectures while gains were more pronounced 

at smaller grids on KFC3 and KFC4. Later, performance tests were conducted on KFC3 

and KFC6I on a NACA 4318 airfoil to establish that the code optimization techniques do 

result in better performance for other test cases as well. 
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CHAPTER-6 

6. CONCLUSIONS AND FUTURE WORK 

6.1  SUMMARY AND CONCLUSIONS 

In the present work, results of optimization effort on a 2D structured CFD code 

GHOST are presented. The beginning part of the work consists of a discussion of why 

faster processors and newer computers do not necessarily translate into better 

performance of scientific codes. Later, background information about memory 

architecture is presented. A description of the commodity clusters on which tuning effort 

has been carried out is then presented. Later, various code optimization techniques were 

presented. Parts of the GHOST code that were detrimental to its performance were 

identified and the tuning effort was carried out in stages. 

Optimization effort primarily began with identifying the bottlenecks in the 

original version of GHOST (V0) and creating a baseline in terms of performance. Initial 

tests were conducted using the laminar lid-driven cavity flow test case. To measure the 

performance of the code, cache behavior was analyzed with the Valgrind toolkit while 

walltime information was captured using UNIX functions. Walltime values for 5000 

iterations were normalized by the number of grid points of the computational problem 

and by the number of iterations so as to eliminate the effect of increasing grid size. If the 

code had been running efficiently on a single node, the normalized walltime sould have 

increased as we moved from grids that fit into cache to grids that are considerably larger 

than cache. After that, the normalized walltime would have essentially remained same 

even as the size of grid increased. However, this was not what was observed. The 

performance of the code was sub-optimal on a single node and was characterized by 

increasing normalized walltime values with increasing grid sizes. The performance was 

plagued by high cache miss rates due to mismatch between data access and data storage 

in memory along with redundant mathematical activity in the code leading to unnecessary 

data calls. Sub-optimal performance of this code on a single node was traced to heavy 

cache misses. 

Sub-optimal performances of GHOST on a single node lead to its super linear 

behavior across multiple nodes because speedup is calculated based on the performance 
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of the code on a single node. The fact that this super linear behavior was observed on all 

machines tested despite the differences in the year of construction (KFC3 in 2003 

through KFC6 in 2006) and disparity in hardware (for example KFC6A has an AMD 

processor while KFC6I has an Intel processor) and networks (relatively fast on KFC3, 

relatively slow on KFC4) made a strong case for the need for tuning GHOST 

Optimization efforts on GHOST can largely be classified into two parts and 

have proved largely successful. The first part of the tuning effort (carried out till 

December 2004) primarily consisted of optimization effort on KFC3 and KFC4. Major 

performance problems that were identified in the original version of GHOST were 

addressed in this part. This part of the tuning effort essentially has 3 stages to it. In each 

stage, various code optimization techniques were implemented and the performance of 

the code was measured in terms of walltime values and cache behavior (L2D misses, D1 

misses, Data calls, L2D cache miss rate, and L2 cache miss rate). These values were 

compared with the values in previous versions of the code.  

In the first stage, the order of i, j sweeps was corrected to the cache conserving 

form so that there is no mismatch between the order of data access and data storage. This 

yielded 5% (on smaller grids) to 85% gains (on larger grids) on KFC3 and KFC4 while 

performance gains were up to 50% on KFC6I while on KFC6A, they were 28%. Lower 

gains are because of the faster processor and bigger caches (when compared to KFC3 and 

KFC4) along with faster Front Side Bus (FSB). Walltime improvements were attributed 

to improvements in D1 cache behavior. On KFC6I, D1 misses were almost 50% lesser 

for V1 when compared to V0. 

The second stage of tuning effort was focused on reducing redundant 

mathematical operations with a goal of reducing floating point operations. In this stage, 

the focus was on subroutine cont as it was the most expensive. Repeated divisions inside 

loops were replaced by pre calculated reciprocal values thereby reducing the frequency of 

division as division operations have higher latency when compared to other mathematical 

operations. When nested loops were next to each other, proper analysis was done if there 

is a possibility of merging them. If it turned out that the merge of nested loops did not 

alter the algorithm of the code, loop merging (a technique discussed in chapter 2) was 

done to achieve temporal locality as the number of iterations that separate successive 
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accesses to a given reused data is reduced if same data elements were being referenced in 

two consecutive loops before their merge. Conditional statements inside nested loops 

were also removed by re-writing the code without conditional checks. In V2, 

performance gains on KFC3 and KFC4 were not huge as the focus was only on tuning 

one subroutine (cont). On the other hand, improvements up to 10% (when compared to 

V1) were noticed on KFC6 architectures due to decrease in number of data calls and D1 

misses. 

V3 is the result of the third stage of the tuning effort. In order to understand the 

effect of usage of data structures, the changes done to the code from V1 to V2 have not 

been implemented in V3. Thus, V3 is V1 with data structures implemented in place of 

arrays to aid in data fetch. The focus of this tuning stage was to avoid data misses that 

might be possible due to usage of arrays in the code as explained in chapter 2. On KFC3 

and KFC4, performance gains up to 20% were noticed for larger grids (1 Million grid 

points). However, there was performance degradation in V3 (when compared to V1 and 

V2) on KFC6 architectures. Walltime behavior in this case could not simply be explained 

by cache miss data. The results of efforts of the above presented optimization techniques 

were incorporated into LeBeau et. al. [52]. This paper included further optimization 

efforts on GHOST beyond the scope of this thesis, but based on the work presented so 

far. Results of their performance tuning effort were summarized at the end of chapter 4.  

From performance tuning efforts in stage 1, the best optimized version of the 

code was within a factor of 2 of the estimated optimal performance over all the tested 

grid sizes and the overall performance improvement for this case relative to the original 

code ranged from 20% faster for small grids to over 6 times faster for the largest.  

The second part of the tuning effort comprises of improvising on the 

performance effort carried out on GHOST between December 2004 and November 2008. 

Two techniques that were analyzed were External blocking and Internal blocking. Results 

of the tuning efforts by Palki [53] for a laminar lid-driven cavity flow test case were 

presented in chapter 5. With the application of External blocking technique, performance 

improvements up to 28% were observed on KFC4 for all grid sizes tested (up to 360000 

grid points) achieved on previously tuned (V3) laminar version of GHOST. With Internal 
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blocking, improvements up to 26% were observed on KFC4. Improvements attained by 

using both these techniques were less on KFC6 architectures due to advanced hardware. 

While the performance gains attained from application of external and internal 

blocking techniques were impressive, each of these techniques has its own disadvantages. 

Implementing external blocking is more time consuming on complicated grids while 

internal blocking technique has problems in terms of accuracy for complicated grids. This 

represented an opportunity to carry out further tuning effort that was discussed in chapter 

4 so as to realize further gains and to circumvent the problems of external and internal 

blocking techniques. Results of further optimization effort (similar techniques applied in 

V2) on GHOST have been presented with gains up to 25% for smaller grids and up to 9% 

on larger grids (1 million grid points) when compared to V3 on KFC3 and KFC4. While 

these gains were sporadic, performance gains up to 20% were realized for all grid sizes 

tested on KFC6I and KFC6A. Later, performance tests were conducted on KFC3 and 

KFC6I on a NACA 4318 airfoil to establish that the code optimization techniques do 

result in better performance for other test cases as well. 

From the results of optimization effort carried out in stages 1 and 2, it can be 

concluded the best optimized version of GHOST on KFC3 and KFC4 was V8 while it 

was V2 and V8 performed equally well on KFC6 architectures. Arrays of data structures 

implemented in place of arrays in V3 resulted in performance gains on KFC3 and KFC4 

while they were detrimental on KFC6I and KFC6A. However, the techniques 

implemented in V8 resulted in more gains on KFC6 architectures almost nullifying the 

loss due to implementation of data structures in V3. 

6.2 IMPACT OF CURRENT WORK 

 The impact of the current work is realized in multiple projects because optimized 

versions of the GHOST code based on the presented techniques are being successfully 

used in them. Optimized versions of GHOST have saved hundreds of hours of CPU time 

and the projects have been completed within a fraction of the time it would have taken if 

the original version of GHOST had been used for CFD simulations. Some of these 

projects use an airfoil similar to the one presented in chapter 5. 

For example, in studies on “Applying Genetic Algorithms (GA) to Complex Fluid 

Dynamics Simulations” [73], “Application of Genetic Algorithms and Neural Networks 
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to Unsteady Flow Control Optimization” [74] optimized versions of GHOST code based 

on techniques presented in this work were used to perform CFD simulations. The test 

problems were similar in these studies except that the first one was a steady flow on a 

NACA 0012 airfoil at an 18 degree angle of attack and a Reynolds number of 500,000 

while the latter one was an unsteady flow on the same airfoil with same values of the 

angle of attack and Reynolds number. Commodity cluster architectures KFC5, KFC6 and 

KFC6A that were discussed in this work were used as computational platforms. In the 

former study, 2800 simulations (50 generations) were performed using GHOST and each 

generation took 29 hours and 23 hours respectively on 19 nodes on KFC5 and KFC6A. 

In a different study “Experimental and Computational Investigation of a Modified 

NACA 4415 in Low-Re Flows”, [75] the test case was flow over a NACA 4415 airfoil 

with Reynolds numbers ranging from 2.5 x 104 to 10 x 104 and over a range of angles of 

attack. The computational grid comprised of 85000 grid points. With a baseline 

dimensionless timestep of t=0.0001, 10 subiterations were run on three processors on 

KFC4. The runtime was 12 hours per dimensionless time unit for laminar simulations and 

21 hours for transitional simulations. Optimized versions of GHOST code based on 

techniques presented in this work were used to perform CFD simulations in this work as 

well. These are few examples of many instances in which optimized versions of the 

GHOST code have been used. 

As demonstrated in chapter 5, for a steady, laminar flow on a NACA airfoil 4318 

performance gains up to 32% were realized on KFC3. Similar or better gains have been 

achieved when the techniques presented were applied to the above presented test cases. 

For turbulent flows, performance gains were up to 50% effectively cutting down the 

simulation times into half. Thus, the optimized versions of the GHOST code had a major 

impact on projects undertaken by the UK Cluster Fluid Dynamics Group at the 

University of Kentucky. 

6.3 FUTURE WORK 

The present work has been largely successful in improving the performance of 

GHOST on commodity cluster architectures. It has been quite successful in attaining its 

main objective viz. to reduce cache miss rates to the lowest possible number. The relation 
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between the performance of a code and its cache behavior has been studied in detail. 

Unexpected behaviors of the code with implementing data structures on modern (KFC6) 

architectures need to be studied in detail as such behavior could not be traced to cache 

behavior of the code. Also, based on walltime recorded for V8 on KFC6 architectures, 

initial conclusion was V8 without data structures would be the optimum code on KFC6 

architectures. Accordingly, a new code V9 was constructed from V8 re-implementing 

arrays instead of arrays of data structures. However, walltime values for V9 do not prove 

that V9 is a better code than V8 on KFC6 architectures. As the effects of using data 

structures in GHOST is not clear on dual-core KFC6 machines, further analysis is 

required. A probable starting point is to explore this relation of data structures on 

walltime values by experimenting with a new data structure using a different set of 

variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © Pavan K Kristipati, 2008 

138  



 

REFERENCES 

1. www.autofieldguide.com 

2. http://www.intel.com/business/casestudies/BMW_Sauber_F1_case_study.pdf 

3. www.cfdreview.com 

4. www.boeing.com 

5. Baggett, J. S. 1997 -- Some modeling requirements for wall models in large eddy 
simulation. Annual Research Briefs 1997, Center for Turbulence Research, NASA 
Ames/Stanford Univ., 123-134. 

6. http://www.aps.org/units/dfd/meetings/upload/Spalart_DFD04.pdf 

7. Paul r. Woodward, David h. Porter, Igor sytine, S. E. Anderson,  Arthur a. Mirin, B. 
C. Curtis, Ronald h. Cohen, William P. Dannevik, Andris M. Dimits, Donald E. 
Eliason Karl-Heinz Winkler, Stephen W. Hodson -- Very high resolution simulations 
of compressible, turbulence on IBM-SP system, in Proceedings of the ACM/IEEE 
SC99 Conference, Portland, Oregan, November 13-18 1999, 
http://www.supercomp.org/sc99/proceedings/index.htm 

8. W.K. Anderson, W.D. Gropp, D.K. Kaushik, D.E. Keyes, B.F. Smith – Achieving 
high sustained performance in an unstructured mesh CFD application, in Proceedings 
of the ACM/IEEE SC99 Conference, Portland Oregan, November 13-18 1999, 
http://www.supercomp.org/sc99/proceedings/index.htm 

9. Donald J. Becker, Thomas Sterling, Daniel Savarese, John E. Dorband, Udaya A. 
Ranawak, and Charles V. Packer. Beowulf: A parallel workstation for scientific 
computation. In Proceedings, International Conference on Parallel Processing, 
1995. 

10. T. E. Anderson, D. E. Culler, and D. A. Patterson. A case for networks of 
workstations: NOW. IEEE Micro, Feb. 1995. 

11. Distributed Terascale Facility to Commence with $53 Million NSF Award. 
http://www.nsf.gov/od/lpa/news/press/01/pr0167.htm. 

12. T. Hauser, T. I. Mattox, R. P. LeBeau, H. G. Dietz and P. G. Huang, “High-cost CFD 
on a low-cost cluster”, Supercomputing 2000, November 2000. 

13. http://www.myricom.com/myrinet/overview/ 

14. http://www.hpcwire.com – IBM Roadrunner takes the Gold in the Petaflop Race – by 
Michael Feldman – June 09, 2008. 

15. Thomas Sterling and Ian Foster, “Proceedings of the Petaflops Systems Workshops,” 
Technical Report CACR-133, California Institute of Technology, Oct. 1996. 

16. P. Moin and K. Kim, “Tackling turbulence with supercomputers”, Scientific 
American, January 1997, vol. 276, No 1, pp 62-68 

17. Markus Nordén, Malik Silva, Sverker Holmgren, Michael Thuné, Richard Wait – 
Implementation issues for High Performance CFD. 

139  

http://www.autofieldguide.com/
http://www.cfdreview.com/
http://www.aps.org/units/dfd/meetings/upload/Spalart_DFD04.pdf
http://www.supercomp.org/sc99/proceedings/index.htm
http://www.supercomp.org/sc99/proceedings/index.htm
http://www.nsf.gov/od/lpa/news/press/01/pr0167.htm
http://www.myricom.com/myrinet/overview/
http://www.hpcwire.com/


 

18. T. Mowry, M. Lam and A. Gupta – Design and evaluation of a compiler algorithm 
for prefetching. In Proceedings of the Fifth International Conference on Architecture 
Support for Programming Languages and Operating Systems (ASPLOS-V), pages 
62-73, Boston, MA, October 1992. 

19. K. Beyls, “Software Methods to Improve Data Locality and Cache Behavior,” - 
Doctoraatsproefschrift Faculteit Toegepaste Wetenschappen, Universiteit Gent, 
2004. 

20. D. A. Patterson and J. L. Hennesey, Computer Organization and Design, Morgan 
Kaufmann Publishers, San Francisco, 1998. 

21. http://en.wikipedia.org/wiki/Distributed_memory 

22. www.pcguide.com 

23. http://en.wikipedia.org/wiki/IBM_PC 

24. www.amazon.com 

25. Fotheringham, J. 1961. “Dynamic storage allocation in the Atlas computer, including 
an automatic use of a backing store.” ACM Communications 4, 10 (October), 435-
436. 

26. Kilburn, T., D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner. 1962. “One-level 
storage system.” IRE Transactions EC-11, 2 (April), 223-235. 

27. P. Mazzucco, “The Fundamentals of Cache”, Systemlogic.net, October 2000. 

28. Wilkes, M.V- Slave Memories and Dynamic Storage Allocation. IEEE Trans. EC-14, 
1965, pp 270-271. 

29. Roger W. Hockney, C.R. Jesshope – Parallel Computers 2: Architecture, 
Programming, and Algorithms -- Published by CRC Press, 1988 ISBN 0852748116, 
9780852748114 -- 625 pages. 

30. J. Tyson – “How Computer Memory Works”, HowStuffWorks – 
www.howstuffworks.com 

31. www.hardwaresecrets.com 

32. http://en.wikipedia.org/wiki/Cache 

33.  http://www.webopedia.com/TERM/S/SRAM.html 

34. J.L. Hennessy and D.A. Patterson, Computer Architecture – A Quantitative 
Approach, Morgan Kaufmann Publishers, third edition, 2002. 

35. Douglas W. Clark – Cache Performance of the VAX-11/780. ACM Transactions on 
Computer systems, 1(1): 24-37, 1983. 

36. D. Fenwick, D. Foley, W. Gist, S. VanDoren and D. Wissell – The AlphaServer 
8000 Series: High end server platform development. Digital Technical Journal, 7(1): 
43-65, 1995 

37. http://en.wikipedia.org/wiki/CPU_cache 

140  

http://en.wikipedia.org/wiki/Distributed_memory
http://www.pcguide.com/
http://en.wikipedia.org/wiki/IBM_PC
http://www.shopping.com/
http://www.howstuffworks.com/
http://www.webopedia.com/TERM/S/SRAM.html
http://en.wikipedia.org/wiki/CPU_cache


 

38. J. L. Baer, “2k papers on caches by Y2K: Do we need more?” Keynote address at the 
6th International Symposium on High-Performance Computer Architecture, January 
2000. 

39. M. Jahed Djomehri , Rupak Biswas - Performance Enhancement Strategies for 
Multi-Block Overset Grid CFD Applications -- Volume 29 ,  Issue 11-12 
 (November/December 2003) Special issue: Parallel and distributed scientific and engineering 
computing - Pages: 1791 - 1810 Year of Publication: 2003 - ISSN:0167-8191. 

40. Stefan Goedecker, Adolfy Hoisie -- Performance optimization – Numerically 
Intensive Codes – Publisher: The Society for Industrial and Applied Mathematics; 
ISBN 0-89871-484-2. 

41. K. S. McKinley, S. Carr and C. –W. Tseng, “Improving data locality with loop 
transformations”, ACM Transactions on Programming Languages and Systems, 
18(4):424-453, July 1996. 

42. Michael J. Flynn, Stuart F. Oberman -- Design Issues in Floating-Point Division – 
Technical Report: CSL-TR-94-647; Computer Architecture and Arithmetic Group, 
Stanford University. 

43. Stuart F. Oberman, Michael J. Flynn -- An analysis of division algorithms and 
implementations – Technical Report: CSL-TR-95-675; Computer Architecture and 
Arithmetic Group, Stanford University. 

44. Craig C. Douglas, Jonathan Hu, Markus Kowarschik, Ulrich Rude, Christian Weiss – 
Cache Optimization For Structured and Unstructured Grid Multigrid – Electronic 
Transactions on Numerical Analysis Journal – volume 10, 2000 – pp 21-40, ISSN: 
1068-9613. 

45. Dinesh K. Kaushik, David E. Keyes, and Barry F. Smith -- On the Interaction of 
Architecture and Algorithm in the Domain-based Parallelization of an Unstructured-
grid Incompressible Flow Code -- Proceedings of the 10th Intl. Conf. on Domain 
Decomposition Methods, pages 311-319, 1998. 

46. http://fun3d.larc.nasa.gov/ 

47. Thomas Hauser, Timothy I. Mattox, Raymond P. LeBeau, Henry G. Dietz, P. George 
Huang, "High-Cost CFD on a Low-Cost Cluster," sc,pp.55, ACM/IEEE SC 2000 
Conference (SC 2000), 2000. 

48. S. Kadambi and J.C. Harden, “Accelerating CFD applications by improving cached 
data reuse”, ssst, p. 120, 27th Southeastern Symposium on System Theory (SSST’95), 
1995 

49. W. Gropp, D. Kaushik, D. Keyes, and B. Smith, “Performance modeling and tuning 
of an unstructured mesh CFD application”, Proceedings of SC2000. 

50. W. Gropp, D. Kaushik, D. Keyes, and B. Smith, “High performance parallel implicit 
CFD”, Parallel Computing, 27(4):337—362, March 2001. 

51. S. Gupta, “Performance evaluation and optimization of the unstructured CFD code 
UNCLE”, Thesis, University of Kentucky, May 2006. 

141  

http://fun3d.larc.nasa.gov/


 

52. R. P. LeBeau, P. Kristipati, S. Gupta, H. Chen, P. G. Huang, “Joint Performance 
Evaluation and Optimization of Two CFD Codes on Commodity Clusters”, AIAA – 
2005 – 1380, January 2005. 

53. Anand Palki – “Cache optimization and performance evaluation of a structured CFD 
code – GHOST”, Thesis, University of Kentucky, December 2006. 

54. Y. B. Suzen and P. G. Huang, “Numerical simulations of wake passing on turbine 
cascades”, AIAA-2003-1256, 2003. 

55. Y. B. Suzen and P. G. Huang, “Predictions of separated and transistional boundary 
layers under low-pressure turbine airfoil conditions using an intermittency transport 
equation”, Journal of Turbomachinery, Vol. 125, No.3, Jul. 2003, pp. 455-464. 

56. Katam, V., LeBeau , R.P., and Jacob, J.D. “Simulation of Separation Control on a 
Morphing Wing with Conformal Camber”, AIAA-2005-4880, 2005. 

57. L. Huang, P. G. Huang, R. P. LeBeau and Th. Hauser, “Numerical study of blowing 
and suction control mechanism on NACA0012 airfoil”, Journal of Aircraft, Vol. 41, 
2004, pp. 1005 – 1013. 

58. L. Huang, P. G. Huang, R. P. LeBeau and Th. Hauser, “Optimization of blowing and 
suction control on NACA 0012 airfoil using a genetic algorithm”, AIAA -2004-0423, 
2004. 

59. Suzen, Y. and Huang, G., “Simulations of Flow Separation Control using Plasma 
Acuators”, AIAA-2006-877, 2006. 

60. C. M. Rhie and W. L. Chow, “Numerical study of the turbulent flow past an airfoil 
with tailing edge separation”, AIAA Journal, Vol. 21, 1983, pp. 1523-1532. 

61. Valgrind Home – http://www.valgrind.org 

62. http://kcachegrind.sourceforge.net 

63. http://www.cfg-online.com/Wiki/Overset_grids 

64. F. N. Felten and T. S. Lund, “Kinetic energy conservation issues associated with the 
collocated mesh scheme for incompressible flow”, Journal of Computational Physics, 
November 7, 2005. 

65. Jeff Layton, “Tips and tricks for tuning CFD codes”, White Paper for Linux 
Networx. 

66. U. Ghia, K. N. Ghia and C. T. Shin, “High-resolution for incompressible flow using 
the Navier-Stokes equations and a multigrid method”, Journal of Computational 
Physics, Vol. 48, 1982, pp. 387 – 411. 

67. http://www.cfd-online.com/Wiki/Tridiagonal_matrix_algorithm_-
_TDMA_(Thomas_algorithm) 

68. Spinnato, P., Van Albada, G.D., and Sloot, P.M.A., “Performance Analysis of 
Parallel N-body Codes”, Proceedings of the sixth annual conference of the Advanced 
School of Computing and Imaging, ASCI Delft, Jun. 2000, pp. 213-220. 

142  

http://www.valgrind.org/
http://kcachegrind.sourceforge.net/
http://www.cfg-online.com/Wiki/Overset_grids
http://www.cfd-online.com/Wiki/Tridiagonal_matrix_algorithm_-_TDMA_(Thomas_algorithm)
http://www.cfd-online.com/Wiki/Tridiagonal_matrix_algorithm_-_TDMA_(Thomas_algorithm)


 

69. Ewing, A. and Henty, D., “Edinburgh Parallel Computing Centre: T3D Technical 
Report”, EPCC-TR95-05, Version 1.0, Oct. 1995. 

70. Agarwal, G., and Saltz, J., “Interprocedural Compilation of Irregular Applications for 
Distributed Memory Machines”, Proceedings of IEEE/ACM SC1995, 1995. 

71. Nielsen, E.J., Anderson, W.K., and Kaushik, D.K., “Implementation of a Parallel 
Framework for Aerodynamic Design Optimization on Unstructured Meshes”, 
Proceedings of Parallel Computational Fluid Dynamics ’99, May, 1999 

72. URL: http://warewulf-cluster.org/. 

73. Raymond P. LeBeau, Thomas Hauser, Narendra Beliganur, Daniel G. Schauerhamer, 
“Applying Genetic Algorithms to Complex Computational Fluid Dynamics 
Simulations”, 45th AIAA Aerospace Sciences Meeting and Exhibit, 8-11 January 
2007, Reno, Nevada. 

74. Narendra K. Beliganur, Raymond P. LeBeau, Thomas Hauser, “Application of 
Genetic Algorithms and Neural Networks to Unsteady Flow Control Optimization”, 
18th AIAA Computational Fluid Dynamics Conference, 25 – 28 June 2007, Miami, 
FL. 

75. Vamsidhar Katam, Raymond P. LeBeau, Jamey D. Jacob, “Experimental and 
Computational Investigation of a Modified NACA 4415 in Low-Re-Flows”, AIAA-
2004-4972 22nd Applied Aerodynamics Conference and Exhibit, Providence, Rhode 
Island, Aug. 16-19, 2004. 

76. Rajesh Bhaskaran, Lance Collins “Introduction to CFD Basics” 

143  

http://warewulf-cluster.org/


 

144  

VITA 

 
Pavan K. Kristipati was born on April 5th 1981 in Anantapur, India. He received 

Bachelors degree in Mechanical Engineering from Jawaharlal Nehru Technological 

University, Hyderabad, India in June 2002. Currently, he is working on completing this 

Masters Program while working fulltime. 

 

Professional Summary: 

1) Programmer/Analyst – Current 

Marlabs, Inc. 

Edison, NJ. 

2) Teaching / Research Assistant – Spring 2003 – Fall 2004 

Department of Mechanical Engineering, 

University of Kentucky, Lexington, KY. 

 

Scholastic Honors: 

Kentucky Graduate Scholarship, Fall 2002 – Fall 2004 

University of Kentucky, Lexington, KY. 

 

Papers and Conferences: 

 

1. Raymond P. LeBeau, Jr., Pavan Kristipati, Saurabh Gupta, Hua Chen, George P. 

G. Huang – “Joint Performance Evaluation and Optimization of Two CFD Codes 

On Commodity Clusters” – 43rd Aerospace Sciences Meeting and Exhibit – 

January 10-13, 2005, Reno, Nevada. 

2. Gupta S., LeBeau Jr. R.P., Kristipati P., Huang P.G., (2005) “Performance 

Optimization of a Structured and Unstructured Code on Commodity Clusters,” 

presented at 31st AIAA Dayton- Cincinnati Aerospace Sciences Symposium, 

Dayton, Ohio. March, 2005. 


	University of Kentucky
	UKnowledge
	2008

	PERFORMANCE OPTIMIZATION OF A STRUCTURED CFD CODE - GHOST ON COMMODITY CLUSTER ARCHITECTURES
	Pavan K. Kristipati
	Recommended Citation


	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF FILES
	1. INTRODUCTION
	1.1 WHY CFD?
	1.2 SOLUTION PROCESS IN CFD
	Figure 1-1 CFD analysis process
	Figure 1-2 Continuous Domain and Discrete Domain

	1.3 CFD AND COMPUTING POWER
	Figure 1-3 1-D grid

	1.4 PARALLEL COMPUTING AND BEOWULF CLUSTERS
	1.5 INTRODUCTION TO PROBLEM
	1.6 PRESENT WORK
	2. CACHE-BASED ARCHITECTURES
	2.1 INTRODUCTION
	2.2 EVOLUTION OF CACHE-BASED ARCHITECTURES 
	2.3 MEMORY ARCHITECTURE
	Figure 2-1 Memory hierarchy in a modern day computer [30]
	Table 2-1 Differences between SRAM and DRAM


	2.4 CACHE’S ROLE IN THE PERFORMANCE OF A CODE
	2.4.1 LOCALITY OF REFERENCE
	Table 2-2 Characteristics of memory types
	Figure 2-2 Illustration of working of locality of reference


	2.4.2 CACHE HIT AND CACHE MISS
	2.4.3 HOW CACHE MEMORY WORKS

	2.5 CACHE MEMORY ORGANIZATION
	Figure 2-3 512 KB L2 memory [31]
	Figure 2-4 Direct Mapping cache [31]
	Figure 2-5 4-way associative 512 KB L2 cache memory [31]
	Figure 2-6 512 KB L2 cache memory configured as 4-way associative [31]
	Table 2-3 Mapping techniques and their relative performance [31]


	2.6 CACHE OPTIMIZATION GUIDELINES
	2.6.1 TECHNIQUES FOR OPTIMIZING MEMORY ACCESS
	2.6.1.1 Optimal Data Layout
	2.6.1.2 Loop Interchange
	Figure 2-7 Illustration of Loop Transformation

	2.6.1.3 Using Data Structures instead of arrays
	Figure 2-9 Arithmetic operations on arrays elements
	Figure 2-10 Using data structures instead of arrays
	Figure 2-11 Schematic representation of memory storage for seemingly identical Structures.

	2.6.1.4 Loop Blocking
	Figure 2-12 Illustration of Loop Blocking


	2.6.2 OPTIMIZING FLOATING POINT OPERATIONS
	2.6.2.1 Removing Floating Ifs
	Table 2-4 Illustration of removing floating ‘IF’

	2.6.2.2 Removing unwanted constants inside loops
	2.6.2.3 Avoiding Unnecessary Recalculations inside Loops
	Table 2-5 Illustration of removing unwanted constants inside loops
	Table 2-6 Illustration of removing unnecessary recalculations inside loops

	2.6.2.4 Reducing division latency by using reciprocals
	Table 2-7 Cycle times for division and multiplication operations on leading microprocessors [30]

	2.6.2.5 Subroutine Inlining
	Figure 2-13 Example to illustrate cost of calling a subroutine
	Table 2-8 Illustration of subroutine inlining
	Table 2-9 Illustration of loop incorporation


	2.6.2.7 Loop Unwinding
	Table 2-10 Illustration of loop unwinding

	2.6.2.8 Loop Defactorization
	Table 2-11 Illustration of Loop Defactorization


	2.6.3 OPTIMIZING FLOATING POINT OPERATIONS

	2.7 PREVIOUS WORK
	3. COMPUTATIONAL TOOLS
	3.1 DESCRIPTION OF GHOST
	3.1.1 GHOST FLOW CHART
	Figure 3-1 Flowchart depicting the working of GHOST [53]
	Figure 3-2 Contents of the file mpi.in

	3.1.2 GOVERNING EQUATIONS
	3.1.3 CALCULATION AT ARTIFICIAL BOUNDARIES

	3.2 COMPUTATIONAL GRID
	3.2.1 FINITE VOLUME METHOD
	Figure 3-4 A grid in generalized coordinate system [64]

	3.2.2 GRID FILES
	3.2.3 DESCRIPTION OF INPUT FILE

	3.3 COMPILERS and MPI ENVIRONMENT
	3.4 PROFILING TOOLS
	Table 3-2 Illustration of Valgrind output
	3.4.1 CACHEGRIND
	Figure 3-7 Sample output from cachegrind


	3.5 KENTUCKY FLUID CLUSTERS
	Figure 3-8 Kentucky Fluid Clusters (KFC) 3, 4 and 5
	Table 3-3 Comparison of the KFC6 processors based on certain parameters


	3.6 METHODS USED TO MEASURE PERFORMANCE
	3.7 EXTERNAL BLOCKING
	3.8 CHARACTERISTICS OF ORIGINAL CODE
	Table 3-4 Approximate percentage of time spent in each subroutine in V0 for a 2-D cavity laminar flow
	Figure 3-9 External blocking

	3.8.1 DETAILS OF CRITICAL SUBROUTINES
	     Figure 3-11 Example of repetitive reference to array elements in GHOST


	3.9 SUMMARY
	4. STAGE ONE PERFORMANCE TUNING RESULTS
	4.1 TYPES OF TESTS
	Figure 4-1 L2 cache miss rate for GHOST as a function of iterations from a cold start on KFC4

	4.2 TEST CASE
	Figure 4-2 Schematic diagram of lid-driven cavity shown with boundary conditions
	Figure 4-3 The midline u-velocity profile for the original version of GHOST

	4.3 PERFORMANCE BEHAVIOR OF V0
	Figure 4-4a Original speedup of GHOST on KFC3, KFC4 for grids of varying size
	Figure 4-4b Original speedup of GHOST on KFC6A, KFC6I for grids of varying size
	Figure 4-5 Original walltime of GHOST
	Figure 4-6 Walltime as a function of subgrid size (or grid size for a single node case) for GHOST (V0) on KFC3
	Figure 4-7 L2 and L2D cache miss rate for GHOST (V0) on KFC3 and KFC4
	Figure 4-8 Comparisons of L2 cache miss rate on KFC4 (blue and green lines) and the walltime/MB (lines) versus the RAM footprint of the given grid/subgrid for GHOST (V0)

	4.4 TUNING PROCESS – CODE VERSIONS
	4.5 CODE CHANGES AND PERFORMANCE TUNING RESULTS
	4.5.1 VERSION 1 OR V1
	4.5.1.1 KFC3 and KFC4 Results
	Figure 4-9 Comparison of walltime between V0 and V1 on KFC3 and KFC4
	Figure 4-10 Comparison of D1, L2 and L2D cache miss rates for V0 and V1 on KFC4
	Figure 4-11 Comparisons of normalized walltime and normalized number of data calls (divided by 10), D1 cache misses and L2D cache misses on KFC4 for GHOST (a) Version 0 (b) Version 1
	Table 4-1 Comparison of Walltime (in seconds) for V0 and V1 on KFC4 


	4.5.1.2 KFC6 Results 
	Figure 4-12 Comparison of walltime between V0 and V1 on KFC6A and KFC6I
	Figure 4-13 Comparison of D1, L2 and L2D cache miss rates for V0 and V1 on KFC6I
	Figure 4-14 Comparisons of normalized walltime and normalized number of data calls (divided by 10), D1 cache misses and L2D cache misses on KFC6I for GHOST (a) V0 (b) V1


	4.5.2 VERSION 2 OR V2
	4.5.2.1 Avoiding Unnecessary Recalculations
	4.5.2.2 Avoiding Division inside loops
	4.5.2.3 Merging Loops
	Figure 4-15 Using Reciprocal Cache in subroutine cont
	  Figure 4-16 Merging nested loops in cal_u

	4.5.2.4 Getting rid of IF-THEN in loops
	4.5.2.5 KFC3 and KFC4 Results 
	4.5.2.6 KFC6 Results 
	Figure 4-17a Merging nested loops in cal_u
	Figure 4-17b Merging nested loops in cal_v
	Table 4-2 Comparison of Walltime (in seconds) for V1 and V2 on KFC4
	Figure 4-19 Comparison of walltime on KFC3 and KFC4 for V2 and V1
	Figure 4-18 Removing IF-THEN-ELSE inside loops in V1
	Figure 4-20 Comparison of D1, L2 and L2D cache miss rates for V1 and V2 on KFC4
	Figure 4-21 Comparisons of normalized walltime and normalized number of data calls (divided by 10), D1 cache misses and L2D cache misses on KFC4 for GHOST (a) V1 (b) V2.
	Figure 4-22 Comparison of walltime between V1 and V2 on KFC6A and KFC6I
	Figure 4-23 Comparison of D1, L2 and L2D cache miss rates for V1 and V2 on KFC6I
	Figure 4-24 Comparisons of normalized walltime and normalized number of data calls (divided by 10), D1 cache misses and L2D cache misses on KFC6I for GHOST (a) V1 (b) V2 




	4.5.3 VERSION 3 OR V3
	4.5.3.1 KFC3 and KFC4 Results 
	Figure 4-25 Using data structures in place of arrays in V3
	Table 4-3 Normalized walltime values (in micro seconds) for V1 and V3 on KFC3
	Figure 4-26 Walltime as a function of grid size on KFC3 and KFC4 for V1 and V3 (a) for all grid sizes (b) zoomed plot
	Figure 4-27 Comparison of D1, L2 and L2D cache miss rates for V1 and V3 on KFC4
	Figure 4-28 Comparisons of normalized walltime and normalized number of data calls (divided by 10), D1 cache misses and L2D cache misses on KFC4 for GHOST (a) V1 (b) V3.



	4.5.3.2 KFC6 Results 
	Figure 4-29 Walltime as a function of grid size on KFC6I and KFC6A for V2 and V3 (a) for all grid sizes (b) zoomed plot till 100000 grid points
	Figure 4-30 Comparison of D1, L2 and L2D cache miss rates for V1 and V3 on KFC6I
	Figure 4-31 Comparisons of normalized walltime and normalized number of data calls (divided by 10), D1 cache misses and L2D cache misses on KFC6I for GHOST (a) V1 (b) V3



	4.6 SUMMARY OF OPTIMIZATION EFFORT AND RESULTS OF FURTHER EFFORTS OF TUNING GHOST
	Table 4-4 Walltime in seconds spent in key subroutines for GHOST on four grid sizes over 5000 iterations
	Figure 4-32 Overall performance of the eight versions of GHOST in terms of walltime/gridpoint versus grid size with (a) the full range and (b) the more complicated region for grids smaller than 200 x 200
	Figure 4-33 Comparisons of L2 cache miss rate and normalized walltime versus grid size on KFC4 for GHOST (a) Version 0 and Version 4, (b) Versions 1-3

	4.6.1 OVERALL PERFORMANCE
	Figure 4-34 Speedup of GHOST on KFC4 for grids of varying size with (a) Version 2 and (b) Version 3 
	Figure 4-35 Overall performance of the eight versions of GHOST relative to the “optimal” value of 11.8 ms/gridpoint for 5000 iterations with (a) the full range and (b) grids smaller than 200 x 200


	4.7 ACCURACY RESULTS
	4.8 SUMMARY AND FURTHER WORK
	5. STAGE TWO PERFORMANCE TUNING RESULTS
	5.1 EXTERNAL BLOCKING
	5.1.1 KFC4 AND KFC5 RESULTS
	Table 5-1 External Blocking results for 600 x 600 grid on KFC4 with various subgrids[53]
	Table 5-2 External Blocking results for 600 x 600 grid on KFC5 with various subgrids[53]
	Figure 5-1 External Blocking - Walltime as a function of grid size on KFC4 for the lid-driven test case. (a)V0 (b)V3 [53]
	Figure 5-2 External Blocking - Walltime as a function of subgrid size on KFC5 for the lid-driven test case. (a) V0 (b) V3 [53]



	5.2 INTERNAL BLOCKING
	Figure 5-3 Illustration of Internal Blocking [53]
	5.2.1 IMPLEMENTATION OF INTERNAL BLOCKING IN GHOST
	5.2.2 KFC3 AND KFC4 RESULTS
	Table 5-3 Internal Blocking results for 600 x 600 grid on KFC4 with subgrids of various sizes [53]
	Figure 5-4 Internal Blocking Results - Walltime as a function of subgrid size for GHOST on KFC4 for the lid-driven test case (a) V0 (b) V3 [53]


	5.2.3 ACCURACY TEST RESULTS

	5.3 FURTHER TUNING EFFORT ON GHOST
	5.4 RESULTS OF FURTHER TUNING EFFORT
	5.4.1 VERSION 8 OR V8
	5.4.1.1 Changing the Order of Condition Check in IF statements
	Figure 5-5 Correcting the order of a conditional statement

	5.4.1.2 Implementing Reciprocal Cache
	5.4.1.3 Loop Merging
	5.4.1.4 KFC3 and KFC4 Results
	5.4.1.5 KFC6 Results
	Table 5-4 Absolute walltime values (in seconds) on KFC4 for V3 and V8
	Table 5-5 Absolute walltime values (in seconds) on KFC3 for V3 and V8
	Figure 5-6 Implementing Reciprocal Cache and loop merging in subroutine cal_u
	Figure 5-7 Walltime as a function of grid size for V3 and V8 on (a) KFC4 (b) KFC3
	Figure 5-8 Comparison of D1, L2 and L2D cache miss rates for V3 and V8 on KFC4
	Figure 5-9 Comparisons of normalized walltime and normalized number of data calls (divided by 10), D1 cache misses and L2D cache misses on KFC4 for GHOST (a) V3 (b) V8
	Figure 5-10 Walltime as a function of grid size for V3 and V8 on KFC6I and KFC6A.
	Figure 5-11 Walltime as a function of grid size for V2, V3 and V8 on KFC6I and KFC6A for all grid sizes (b) zoomed plot for grid points up to 250000
	Table 5-6a Absolute walltime values (in seconds) on KFC6I for V3 and V8
	Table 5-6b Absolute walltime values (in seconds) on KFC6A for V3 and V8
	Figure 5-12 Comparisons of normalized walltime and normalized number of data calls (divided by 10), D1 cache misses and L2D cache misses on KFC6I for GHOST (a) Version 3 (b) Version 8






	5.5 AIR FOIL TEST CASE
	Figure 5-13 24 x 24 inch experimental test section
	Table 5-7 Block sizes of individual zones on airfoil grid 
	Figure 5-14 Grid used for 24 x 24 inch wind tunnel section


	5.5.1 PERFORMANCE TEST RESULTS
	Table 5-8 Comparison of walltime values for various versions of GHOST for flow over a NACA 4318 airfoil on various hardware platforms


	5.6 SUMMARY
	6. CONCLUSIONS AND FUTURE WORK
	6.1  SUMMARY AND CONCLUSIONS
	6.3 FUTURE WORK
	REFERENCES
	VITA

