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ABSTRACT OF THESIS 

AN APPROACH TO INVERSE MODELING THROUGH THE INTEGRATION OF 

ARTIFICIAL NEURAL NETWORKS AND GENETIC ALGORITHMS  

 

A hybrid model integrating predictive capabilities of Artificial Neural Network (ANN) 

and optimization feature of Genetic Algorithm (GA) is developed for the purpose of 

inverse modeling. The proposed approach is applied to Superplastic forming of materials 

to predict the material properties which characterize the performance of a material. The 

study is carried out on two problems. For the first problem, ANN is trained to predict the 

strain rate sensitivity index m given the temperature and the strain rate. The performance 

of different gradient search methods used in training the ANN model is demonstrated. 

Similar approach is used for the second problem. The objective of which is to predict the 

input parameters, i.e. strain rate and temperature corresponding to a given flow stress 

value. An attempt to address one of the major drawbacks of ANN, which is the black box 

behavior of the model, is made by collecting information about the weights and biases 

used in training and formulating a mathematical expression. The results from the two 

problems are compared to the experimental data and validated. The results indicated 

proximity to the experimental data. 

KEYWORDS: Artificial Neural Networks, Genetic Algorithms, Hybrid Modeling, 

Gradient Search, Superplastic Forming 
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Chapter 1: Overview 

 

Increasing global population, speedy conversion of the critical habitat for other uses, and 

rapid pollution etc. have lead to ecological imbalance and thus environmental problems 

which respect no borders and threaten both life and prosperity. Researchers in the field of 

manufacturing tried to address this issue through innovations. Environmental concerns 

and economical expectations of customers are the major driving forces for the automobile 

sector to come up with clean technologies and explore all possible means to meet these 

requirements. Conventional materials are continuously replaced with more efficient and 

much durable light-weight materials such as aluminum and magnesium. This calls for 

extensive research to explore the mechanical properties and behavior of these metals.  

Magnesium is one of the lightest metals on earth and is widely in application due 

to its light-weight and also due to its good mechanical and electrical properties. Research 

indicates the use of magnesium components in automobiles to have an environmental 

advantage as well. BMW claims to have been able to reduce engine weight by 24 % and 

also reduce engine noise transmission by using magnesium [Curtis et al, 2005]. Owing to 

its ease in machining and processing, Mg has been in use not just in automobile and 

aerospace industries but also in medical applications. However, there are some issues 

with magnesium which does not lend it be used easily for sheet metal applications, this is 

mainly due to inferior ductility at room temperature. 

    But it was observed that Mg alloys behaved differently when worked upon at high 

operating conditions such as high temperatures and high strain rates; this process is 

termed Superplastic forming (SPF). This phenomenon has gained an explosion of interest 
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in the recent years and a lot of research is being carried out in this field. Materials which 

exhibit these properties are termed Superplastic materials. SPF offers many advantages 

when compared to conventional forming techniques. A few to list would be enhanced 

design freedom, low cost tooling etc. Superplastic alloys can undergo large uniform 

strains before they fail. For deformation in uni-axial tension, elongations to failure in 

excess of 200% are usually indicative of Superplasticity, although several materials can 

attain extensions greater than 1000%. The highest elongations reported are 4850% and 

7750% in a Pb-Sn eutectic alloy; 5500% and greater than 8000% for an aluminum bronze 

[Superform-aluminum]. Superplastically formed materials are in wide use in automobile, 

aerospace, medical and architectural applications. Latest versions of Morgan sports cars 

are featuring one piece wings made from Superplastically formed aluminum. A few other 

examples are wing access panels in the Airbus A310 and A320, bathroom sinks in the 

Boeing 737, turbo-fan-engine cooling-duct components, external window frames in the 

space shuttle, front covers of slot machines, and architectural siding for buildings etc. 

Though the superplastic phenomenon has received wide spread acceptance, it has 

not been applied in large scale as anticipated due to certain drawbacks such as 

unavailability of models which could accurately capture the behavior of superplastic 

materials during deformation and thus help predict the failure of the material beforehand.  

Different techniques to model the behavior of superplastic materials are in use, 

such as analytical modeling, Finite element modeling, Artificial Neural Networks, Hybrid 

modeling etc. The use of these approaches has helped in overcoming most of the 

problems associated with SPF. The present research focuses on inverse modeling, i.e. 

predicting the process parameters which would lead to a specific condition of the metal. 
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This is attempted with the aid of two meta- heuristics, Artificial Neural Networks (ANN) 

and Genetic Algorithms (GA). The use of such tools reduces the time, resources and 

effort involved in modeling a process without forgoing the final result. 

1.1. Motivation 

 

With SPF offering so many advantages over conventional forming methods it appears 

worthy to spend resources on addressing the drawbacks of the same. Using meta-

heuristics to model the SPF offers considerable advantages in comparison to other 

modeling techniques. 

 

1.1.1. Time and Resources 

The application of ANN-GA approach in modeling the SPF reduces the time and 

resources involved in modeling the process by simulating the process itself. Especially 

with ANN modeling there is no need to assume an underlying data distribution such as is 

usually done in statistical modeling and also they work well for complex non-linear 

relations. 

1.1.2. Controlling the Process 

 

In the present approach ANN and GA are integrated to inverse model the input 

parameters that must be maintained to achieve a given value for the output parameter. For 

example, this involves predicting the operating conditions such as the strain rate and 

temperature that must be used to attain a specific value of strain rate sensitivity index (m), 

one of the important mechanical properties of superplastic materials. High strain rate 
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sensitivity leads to a high resistance to necking and enables higher tensile elongations in 

superplastic materials. The deformation rate during superplastic forming needs to be 

controlled so that the forming process can be optimized to reduce the forming times. 

Therefore, knowing the process parameters affecting the m value beforehand would aid 

in significantly controlling the process. This will also eliminate the need to follow a trial 

and error method during the actual forming process to achieve desired output. 

1.2. Objectives 

The objectives of the present research are to model the behavior of superplastic materials 

and to build an approach for inverse modeling which would help in predicting the process 

parameters necessary to attain a given output. This is achieved with the use of meta- 

heuristic; ANN and GA behave analogous to the human nervous system, and in fact are 

considered as generalized mathematical models of nervous system [Stanford, Neural 

Networks].  

1.3. Approach 

The above mentioned objectives are achieved through a procedure which involves: 

1. The first step involves collecting data for training the ANN models. The data 

required to train the models is obtained from literature for the first case study 

and from the experiments conducted using INSTRON 5582 universal testing 

machine at different operating conditions for the second case study. 

2. The data collected is normalized before feeding it to the model, the 

normalization co-efficient is computed based on the minimum and maximum 
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values found across all of the data sets. This is done to enable the neural 

networks produce accurate forecasts. 

3. The Artificial Neural Network (ANN) models are trained with the pre- 

processed (Normalized) data. The models are trained with six different 

gradient search methods. The stop criterion for the training is the number of 

epochs. The gradient search method yielding the lowest mean square error is 

considered and further experimentation is carried out using the same. 

4. The ANN models is cross validated using the experimental data which is 

different from the one used for training the networks. Cross validation is used 

as a stop criterion when the network gets over trained.  

5. Collecting the information pertaining to the training of the networks which 

includes the weights and biases the model uses to map the relationship 

between the input and the output parameters. 

6. The neural network models are validated by feeding a totally unseen set of 

data and predicting the output for the same and these results are compared to 

the already existing results from the literature and the experimental results. 

7. Formulating the relationship between the input process parameters and the 

output with the help of the weights and biases gathered at the end of the 

training. 

8. The mathematical relationship from the previous step is used as the objective 

function for the Genetic Algorithm (GA). 

9. The various constraints on the objective function and the process parameters 

are defined and also the information pertaining to the limits of the process 
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parameters and other experimental parameters is fed to the GA. Multiple trials 

are made. 

10. The genes in each chromosome generated at the end of the trials are the 

process parameters achieved through inverse modeling. 

11. The results obtained from these trials are compared to the experimental data 

and the hybrid modeling approach is validated. 

This approach has been represented schematically in figure 1. 
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Figure 1: Flow Chart Representation of the approach 



  

8 

1.4. Thesis Organization 

Chapter 2 gives an introduction to the concept of SPF and about the various modeling 

techniques in use to model SPF. Different meta-heuristic methods such as, ANN and 

GA in particular are also discussed. This is followed by an introduction to inverse 

modeling, different approaches in existence for inverse modeling and the significance 

of the present approach and literature related to above topics and recent developments 

are also discussed. 

A detailed discussion of the methodology used in the present research to inverse 

model using ANN and GA is presented in chapter 3. 

Chapter 4 includes the application of the proposed approach on data characterizing 

the superplastic behavior of Mg AZ31 alloy, and the data for this is obtained from the 

uniaxial tensile tests and strain rate jump tests. 

Chapter 5 discusses the experimental results obtained from applying the approach to 

SPF  

Conclusions and the anticipated future work are put forth in the last chapter. 
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Chapter 2: Literature Review 

 

2.1. Introduction 

 

Superplastic forming (SPF) is considered as a net shape forming method which offers 

many advantages such as weight reduction and cost reduction. In addition to these 

Superplastic materials exhibit properties such as extended elongation, these materials can 

undergo elongation which is almost 200% excessive of the conventional materials. And, 

also can form very complex shapes which are not easily achievable using conventional 

forming methods, the die cost is significantly reduced in this approach and also this is a 

single step process, Superplastic materials have proved to be environmentally benign too. 

For a material to behave Superplastically, it needs to have fine and stable grain structure, 

should exhibit controlled deformation rate and the forming temperature needs to be high, 

at least half the absolute melting temperature of the material. Superplastically formed 

materials are now in wide spread use in many applications mainly in the automotive, 

aerospace and medical industry. Significant reduction in weight of the automotive 

components could be achieved through the replacement of conventional materials with 

superplastic materials. It has been observed that in the past couple of years there is a 

gradual decrease of 25% to 30% of the weight in the vehicles. Studies indicate that this 

reduction in weight has led to energy saving and environmental protection [mse-mtu, 

Superplastic forming]. Figure 2 indicates some superplastic applications in the 

automotive industry. 
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              Figure 2: SPF application in automotive industry [Superform-aluminum] 

The use of SPF in aerospace industry is mainly driven by omnipresent need for structures 

of optimum specific strength and stiffness, with minimum cost. Figure 3 indicates some 

such applications. 

                          

Figure 3 : SPF applications in Aerospace Industry [Superform-aluminum] 

Reliable and net shape prostheses could be achieved in medical and dentistry through the 

application of superplastic forming. The following Figure are some examples of such 

applications 

 

Figure 4 : SPF in medicine and dentistry [Curtis et al, 2005] 
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Superplasticity can be characterized by low flow stress and high sensitivity of the flow 

stress to the strain rate; this can be simply expressed by the following relation: 

                                                          σ = C ε&
m     

(1)                                                                    

Where σ is the flow stress, ε&  the effective strain rate, C is the strength coefficient and m 

is the strain rate sensitivity index. The value of m ranges from 0.3 to 0.7 for superplastic 

materials. Figure 5 indicates a typical stress-strain rate curve for a superplastic material. 

 

Figure 5 : Logarithmic stress-strain rate curve and the sensitivity index (m) for a 

superplastic material [Abu-Farha, 2007]. 



  

12 

The logarithmic curve can be divided into three regions, superplasticity is indicated only 

be region II of the curve where the material exhibits high strain rate sensitivity index (m). 

The high value of m confers a high resistance to neck development and thus results in 

high tensile elongations. Though the deformation process in this region is not very well 

understood because of the absence of any mechanism that could explain the deformation 

in this region, it is believed that grain boundary sliding accompanied by diffusion or 

dislocation glide and climb is the dominant mechanism.  

2.2. Superplastic Blow Forming Method 

 

Figure 6 indicates a schematic representation of the superplastic blow forming process. 

Blow forming is extensively used to form complex shapes. This is mainly a three step 

process, first a metal sheet is clamped and gas pressure is applied to it, generally argon 

gas is used for this purpose as it also helps maintain a protective environment. Initially 

the sheet is not in contact with the die and the deformation is concentrated at the pole, 

greatest strain occur at this region and once the material gets in contact with the die 

surface the material is locked due to friction and thus any further deformation is 

prevented. The remaining regions deform thus expanding to take the shape of the die. 

Usually the corners of the dies are more prone to failures as they are the last to fill and 

more strain occurs in this region. 
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Figure 6 : Superplastic Blow forming process [Abu-Farha, F., 2007] 

 

2.3. Modeling Using Numerical Methods 

 

Though superplastic forming offers many advantages over conventional forming 

methods, there are certain drawbacks attached to the process and the materials which 

hinder the wide spread use of these in many applications. A few such disadvantages to 

list would be: 

1. Slow forming process 

2. Higher material cost 

3. Trial and error in design 

4. Lack of accurate models to model the deformation and failure. 

Considerable research is being done to develop more accurate models to model the 

behavior of these materials. Over the years many process models based on analytical and 

simplified numerical methods have been developed to provide a better understanding of 

the process mechanics [Chandra, 1998]. Use of Numerical Analysis techniques in the 

present day research has reduced the use of trial and error procedures considerably. 

Tikkaya, et al. [2000] has presented a review on the applications of Finite Element 

Simulation in the sheet metal forming industry. Finite Element Simulations are used to 
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model and analyze a wide range of problems that are too complicated to solve by 

classical analytical methods. Khraisheh, et al. [2004] used Finite Element Simulations to 

model and optimize the superplastic blow forming process. Tan and Liew [2004] used 

Finite element Simulation method to analyze three dimensional SPF. 

But Finite element modeling (FEM)  approach has some drawbacks such as when 

a finite element software runs on a PC it uses almost all the computer resources and takes 

long time to finish one analysis of a certain working condition. Also the trial and error 

methods are still used widely in numerical simulation process to endure an appropriate 

working condition. Due to this and the property of FEM, the virtual simulation process 

will occupy a large quantity of time and computer resource [Sadghei, 1997]. While 

describing the behavior of material during deformation, numerical simulations with the 

FEM are reliable only when the law to describe the material is described correctly. But 

during the hot deformation process, there are many factors that influence the flow stress 

of the metal. The effects of these factors on the flow stress are complex and the 

relationship between the flow stress and these factors is no-linear [Dehsmuk,2004]. 

Lately Artificial Intelligence tools such as ANN and GA are widely used in modeling 

different manufacturing processes. Considerable research has already been done in the 

field of superplastic forming using these methods. The following sections provide an 

overview of these AI tools and previous work involving these tools. 
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2.4. Artificial Intelligence in Manufacturing 

 

A great deal of research has been done and is still in progress involve the application of 

Artificial intelligent tools such as ANN, GA and Fuzzy logics in manufacturing. This 

research focuses on applying ANN and GA to inverse modeling of SPF. The following 

sections are devoted to a discussion of literature on ANN and GA. 

2.4.1. Artificial Neural Networks (ANN) 

 

Neural Networks have gained an explosion of interest in the recent years due to their 

capability to learn by example and be able to predict.  Artificial Neural Network (ANN) 

is an information processing system which functions analogous to a human nervous 

system which is composed of biological neurons, as shown in Figure 7. ANNs have been 

developed as generalizations of mathematical models of human cognition or neural 

biology [Kohnen, 1997]. These networks are composed of a large number of processing 

elements called the neurons which work co-ordinate with each other to solve specific 

problems. Each processing element multiplies and input with a set of weights, and 

nonlinearly transforms it to a desired output. A conventional neural network has multiple 

layers of processing elements, the first or the input layer is where the input parameters are 

fed to the network, and these input parameters are processed in the hidden layers and the 

last layer is the output layer. Figure 8 is a schematic representation of a typical neural 

network structure.  

In actual neurons the dendrite receives electrical signals from the axons of other 

neurons whereas in the ANN these electrical signals are represented as numerical values. 
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At the synapses between the dendrite and axons, electrical signals are modulated in 

various amounts. This is modeled in the ANN by multiplying each input value by a value 

called the weight. An actual neuron fires an output signal only when the total strength of 

the input signals exceeds a certain threshold. We model this phenomenon in an ANN by 

calculating the weighted sum of the inputs to represent the total strength of the input 

signals, and applying a function on the sum to determine its output.  

The emergence of Artificial Intelligence (AI) dates back to the 1950s. Neural 

Networks in particular are gaining more and more visibility and are in wide use in the 

field of manufacturing mainly due to the several advantages they offer [Fausete, 1994]. A 

Neural network could be used for solving problems where pre hand analysis is not readily 

available; they are able to describe accurately even nonlinear relationships, and using an 

ANN does not require a mathematical model. 

 

Figure 7 : A Typical Neural Network Structure [Beliganur, 2007] 
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Figure 8 : A Biological Neuron [Stanford, Neural Networks] 

Neural Networks are massively parallel interconnected networks of simple 

elements and their hierarchical organizations are intended to interact with objects of the 

real world in the same way as biological nervous systems do [Kohonen, 1988]. These can 

be classified into two categories, namely unsupervised learning and supervised learning 

depending on the amount of guidance given to the networks during the training process. 

The former type of network classifies the input sets without any knowledge about the 

data, the latter works on the basis of the difference between output generated and the 

desired values [Beliganur, 2007]. Neural Networks are used for modeling and control, 

optimization, and prediction, monitoring and diagnosis, pattern recognition etc. 

Neural networks have been extensively used for applications such as pattern and 

feature recognition. Some of the very first researchers who used ANN approach for 

feature recognition in manufacturing were Hwang and Henderson [1992]. Osakada 

[1991] has utilized the ability of pattern recognition of neural networks to determine the 

number of forming steps to achieve the desired shapes of rotationally symmetric 

products. A three layer back-propagation neural network (BPN) was used for feature 

recognition from a solid B-rep solid model in order to automate the process planning of 
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manufactured products in [44]; the results indicated that the networks were consistent in 

recognizing the features.   

A back-propagation algorithm was used to capture the system behavior during a 

grinding process in [Satyanarayana et al., 1994], inputs such as feed rate, depth of cut and 

wheel bond type are associated to outputs such as surface finish, force and power.  

2.4.1.1. Finite Element Modeling and Artificial Neural Network 

 

FEM and ANN modeling are applied in conjunction by many researchers. Results from 

the finite element simulations at different working condition parameters such as material 

thickness, punch speed, friction coefficient between punch, die and sheet metal and blank 

holder force were used to train a three layer back propagation neural network in [Lin et 

al., 2006]. The learning algorithm used here was Levenberg - Marquardt. The network 

was trained to predict the Limiting Dome Height (LDH). The outcome from the neural 

network was validated using the Finite element simulations again.  

Similar approach is found in [Clocke et al., 2006], where FEM programs and 

ANNs are used to predict the ductile fracture in a cold forming process to enable efficient 

process design. FEM was used to model the entire process to get the entire forming 

history starting from the first principle stress, equivalent stress and the equivalent strain 

starting with the first deformation to the first crack occurrence. This database consisting 

of the information pertaining to failure during a forming process was used to train the 

neural network model. It was observed that the ANN model could predict the failure for 

new forming histories. 
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Singh and Kumar [2005] have used a feed-forward back propagation neural 

network model to predict the thickness along the cup wall in hydro-mechanical deep 

drawing. The experimental results from the hydro mechanical deep drawing process were 

used to train the ANN model and the trained model was tested using a new set of data for 

the prediction of thickness strains. A finite element simulation of the same process is also 

attempted. The results from the experiments, ANN and the FEM were compared. A 

similar approach is employed by Lefik and Schrefler [2003] to model the behavior of 

physically non-linear body and by Casotto, et al., [2005] to predict the final geometry of 

forged rings after cooling and also by many other researchers. 

The concept of using ANN in constitutive modeling was proposed by Ghaboussi 

et al. Kong and Hodgson [1999] used a combination of constitutive models and ANN 

models to predict the hot strength of steels. This approach was adapted to address the 

limitations of these models when used independently. The author in fact considers ANN 

models as alternatives to constitutive modeling due to their ability to predict accurately 

and correlate nonlinear relationships between inputs and outputs. Javadi and Tan [2003] 

in have used a novel approach to predict the stress strain relationship in a material. The 

ANN model in this case was trained using raw data from experiments which represents 

the mechanical response of the material to which the load is applied. This trained network 

is then incorporated into a finite element program to substitute the conventional 

constitutive model. The results obtained from such an approach were validated with 

results from the conventional constitutive models. 

Pathak et al. [2005] modeled the sheet metal bending process using ANN. The 

approach was used to predict the responses of the process such as the stresses, strains, 
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springback, loads etc. The inputs for the ANN were sheet thickness and the die. The 

networks were trained for 44 cases analyzed using FEM and then the ANN model was 

then tested for five new patterns. The approach proved to economize the computation 

time used in modeling such process using conventional methods. 

2.4.1.2. Artificial Neural Networks and Superplastic Forming 

 

Bariani et al. [2001] used neural networks to model the rheological behavior of nickel-

based superalloys under varying hot deformation conditions. Data from constant strain 

rate compression experiments and continuously varying strain rate compression 

experiments was used to train the back propagation neural network model. These 

experiments were carried out using Gleeble 3800 
TM

 system and on cylindrical 

specimens. The results when validated using experimental data indicated that a properly 

trained neural network model can be used as an alternative approach to constitutive 

equations when material is deformed under varying conditions. 

Chen et al. [2002] utilized a single hidden layer fuzzy-neural network model 

trained using a back-propagation algorithm to predict the microstructure evolution and 

the constitutive relation of 15 vol% SiCp/LY 12 under various superplastic deformation 

conditions. The process parameters of superplastic deformation were considered as the 

input variables and the grain size, volume fraction of cavities and true stress were taken 

as the output variables. The results when compared with the experimental data proved the 

neural network was capable of prediction. 

Multiple investigations using artificial neural network analysis have been 

illustrated by Hsiang et al., 2005. A database containing various aspects of magnesium 
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alloy hot extrusion process was constructed. ANN is used to determine the shapes of dies 

of various extrusion ratios, predict the optimized process parameters for the process and 

finally predict the tensile strength and maximum extrusion load of the finished product. 

This study has set the tensile strength and extrusion load of the finished product as the 

quality characteristics using the Taguchi method, in order to obtain optimal process 

parameters. Then the weights of the important parameters are changed by conducting the 

analysis of variance (ANOVA) to analyze the influence of parameters on the extrusion 

process.  

Hsiang, Kuo and Yang [2006] have used a back propagation neural network 

trained based on steepest gradient search method to analyze the relationship between the 

temperature and the tensile strengths of a rectangular tube at various extrusion speeds and 

extrusion ratios. The results from the ANN were confirmed by comparing them to the 

results from the experiments conducted at different extrusion speeds and ratios. 

Observing the microstructure of helped in acquiring the relationship between the sizes of 

the crystalline grain of the magnesium alloy at different working conditions such as 

temperature. 

 An ANN constitutive model was developed by Jamal et al., 2007 to model the 

high strain rate deformation in Al 7075-T6. The research proved that ANN modeling for 

this application took less development time over other traditional mathematical 

approaches and also indicated that the existing constitutive model could be easily 

extended with experimental data using an ANN. 
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 Okuyucu et al. [2007] developed an ANN model to analyze and simulate the 

correlation between the friction stir welding parameters of aluminum and the mechanical 

properties. The ANN model was trained and tested using the data from the welding 

process and the tensile tests. 

 One major drawback of ANN modeling is the inefficient extrapolation capability. 

This limitation of an ANN was addressed by Bruschi and Nego [2005] by including the 

mechanistic knowledge of an analytical equation in ANN modeling. The model chosen as 

the analytical component here is the Norton-Hoff model, widely used in FEM 

calculations. It is an empirical constitutive equation representing the instantaneous flow 

stress as a function of the instantaneous values of the process parameters: 

                                     σ = kε
n
ε&

m
 exp (β/T)      (2) 

Where k, n, m and β are material coefficients. The results proved that this approach 

helped in addressing the extrapolation limitation of ANN. 

2.4.2. Genetic Algorithms 

 

Genetic Algorithm (GA) is an optimization tool which falls under the category of 

evolutionary algorithms. Genetic Algorithms are a relatively new class of optimization 

techniques, which are generating a growing interest in the engineering community. They 

are well suited for a broad range of problems encountered in science and engineering 

[Goldberg et al., 1989]. GAs were first developed by John Holland in 1975. These 

algorithms use ideas and get inspiration from natural evolution and adaptation. The 



  

23 

principle behind their working is the maintenance of a population of solutions to the 

problem that evolve towards the global optimum.  

GAs are based on the triangle of genetic reproduction, evaluation, and selection. 

These are classified into two types depending on the genetic representation namely the 

binary coded GA and the real coded GA. A conventional binary coded GA uses binary 

representation for the genes but in a real coded GA the gene transformation is allowed 

directly on the real valued representation of the design variables. The genetic 

reproduction takes place by means of the crossover and the mutation operator. The 

crossover schemes available are classified into two types Genotype and Phenotype. In 

natural systems one or more chromosomes combining to form a total genetic prescription 

for the construction and operation of an organism are called the genotype; on the other 

hand, organisms formed by the interaction of the total genetic package with the 

environment are called the phenotypes [Beliganur, 2007]. 

 Figure 9 represents a conventional GA as described by Salem, 2002. The 

following steps illustrate the working of a GA. 

1. Initialization: An initial population of chromosomes is randomly 

generated. 

2. Evaluation: The fitness used as a measure to reflect the degree of accuracy 

of the individual is calculated for each individual in the population. 

3. Selection: The selection probabilities for each individual in the population 

are defined and the selected individuals enter a mating pool, the chance of 
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a chromosome to be selected for mating is dependent on its fitness 

function value. Hereafter the overall quality of the population increases. 

4. Crossover: This operator combines the features of two parent individuals 

to form two children individuals that may have new and possibly better 

characteristics compared to those of their parents and play a central role in 

the GA optimization process. 

5. Mutation: This is generally performed to prevent premature convergence 

of the genetic algorithm search. 

6. Replacement:  The offspring population generated at the end of the 

mutation replaces the parent population either completely or partially, and 

this new population is taken further for more experimentation. 

7. Termination: This is generally a user defined condition indicating when 

the GA could terminate. It could be the number of generations, or a 

specific objective function value etc. 
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Figure 9 : A Conventional Procedure for Genetic Algorithm [Salem, 2002] 

 

The fact that GAs use only objective function information without the need to 

incorporate highly domain-specific knowledge points to both the simplicity of the 

approach from one side and its versatility. This means that once a GA is developed to 

handle a certain problem, it can easily be modified to handle any type of problems by 

changing the objective function in the existing algorithm. This is why GAs are classified 

as general-purpose search strategies [Goldberg, 1989] 
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Lin, J. and Yang, J. [1999] developed a genetic algorithm based multiple objective 

optimization technique and applied it to determine the unified viscoplastic constitutive 

equations for superplastic alloys. 

The superplasticity of a material greatly depends on the temperature and occurs 

only in a narrow range of strain rates with an optimum value which is unique to each 

material. Thus, the control of deformation rate in a superplastic forming process is 

extremely important. In order to accurately simulate the superplastic forming process and 

thoroughly understand the superplastic deformation mechanisms of materials, unified 

viscoplastic constitutive equations for superplastic alloys need to be established. One of 

the most difficult tasks encountered in developing the viscoplastic constitutive equations 

is, how to accurately determine material constants arising in the equations from 

experimental data and for a set of viscoplastic constitutive equations, the flow stress is 

related to the accumulated plastic strain, and the plastic strain rate is often a function of 

stress, hardening parameters, grain size, etc. Apart from this, the equations are not 

continuous due to the existence of a yield stress parameter. This makes the constitutive 

models very complicated and strongly non-linear behavior in nature. 

It has been found that the GA-based optimization technique is very effective in 

solving this kind of problems. The authors develop a generic GA to determine material 

constants for a range of constitutive equations, such as creep damage, cyclic plasticity 

and superplasticity. 
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The GA based multiple objective optimization was successfully used for 

determining material constants arising in viscoplastic constitutive equations, and a 

software package, named MECHOPT, was developed. 

The effectiveness of the technique was demonstrated by determining the material 

constants within the following equation for the experimental values of Ti-6Al-4V at 927 

C. 

                                     (3) 

                                                                   (4) 

                                                                   (5) 

                                                                 (6) 

                                                                        (7) 

Where  and  are total and plastic strain; X and R the hardening variables and d the 

grain size. K, k, n, u, C,  b, Q,    are material constants to be determined from 

experimental data. E is Young's modulus and E = 1000 MPa for Ti-6Al-4V at 927 C. 

The optimization technique provided an easy means for simplifying the unified 

constitutive equations and for the Ti-6Al-4V at 927 C model the original four differential 

equations was reduced to two and the number of material constants were reduced to 

seven from eleven. 
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2.4.3. Integrating Genetic Algorithms and Artificial Neural Network 

 

Once an ANN model is properly trained it can be used in conjunction with other 

optimization techniques such as GA to optimize process parameters with regard to some 

metric that determines the final performance. This could be achieved through the search 

over process parameters for the combination of values which yield the best performance 

of the objective function. The goal in process design of any manufacturing process is to 

determine the critical process parameters and optimize them in order to produce the final 

parts within the desired specifications. Literature illustrates a lot of research where GA 

and ANN are integrated and applied to solve problems in manufacturing and other fields 

too. 

Holter et al [1998] developed a prototype 'controller' to study the integration of 

several functions and the utilization of status data to evaluate scheduling and control 

design alternatives of a single manufacturing machine. The prediction capability was 

implemented by using ANN, simulation, and GA. The controller attempts to control the 

planning, scheduling, monitoring, execution, and interfacing of resources. Neural 

networks are used to predict the behavior of different sequencing policies available in the 

system and using these policies a simulation is conducted. The results from the 

simulation are later analyzed and GA is applied to further improve the results. The 

'intelligent controller' successfully produces new alternatives which were not thought off 

by the designers for scheduling and this was used to modify the decision making 

structure. 
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Cook et al. [2000] developed a GA-NN system to predict the process parameter 

values of a particleboard manufacturing process. Particleboard is a composite wood 

product used in various furniture and building applications. One of the main measures of 

the quality of the particleboard is the strength of the final board which can be calculated 

by using the process parameters, i.e. internal bond and modulus of rupture. An ANN 

model consisting of 26 input parameters and 3 output parameters is used to predict the 

critical strength parameter based on the process operation parameters and conditions. A 

GA is then applied to the trained NN model (which acts as the fitness function) to 

determine which process parameter values would result in the desired product 

characteristics. These parameter values result in desired levels of the strength parameters 

for given operation conditions. 

 Mok et al [2001] developed a hybrid ANN and GA system for the determination 

of set of initial process parameter settings for injection molding. Initial process parameter 

setting is a very important step in the molding process as it determines the development 

time and the quality of molded parts. The system was developed to replace the trial-and-

error and operators intuition method, which was followed in the molding industry to 

determine the initial processes parameters. The NN was employed to model the complex 

non-linear relationships among the parameters involved in the initial process parameter 

setting of injection molding, and the GA was applied to determine a set of near optimal 

process parameter for injection molding. 

 Figure-10 shows the ANN-GA system which was used for determining the initial 

process parameters of injection molding.  
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The system was successfully implemented and without violating the quality 

criteria, the ANN-GA system was able to recommend the initial process parameters 

which resulted in molding of high quality molded parts. 

 

 

Figure 10 : A hybrid ANN-GA approach to the determination of initial process 

parameters [Mok et al., 2001] 
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Kumar et al. [2003] introduced the concept of "artificially intelligent genetic 

algorithms", in the form of an ANN, to fit the data pertaining to superplastic deformation 

of several metal alloys. The authors used the combination of ANN with GA to transform 

a randomly generated initial population of deformation data to a final set of populations 

that contained solutions approximating to the actual deformation data. In this study, a 

constitutive equation that describes the superplastic behavior of the material was 

considered.  

                      (8) 

                                                                                                      

(9) 

Strain rate of the deformation, σ = Applied stress, C1   = material and 

temperature dependent constant, σ0  = long range threshold stress, σm  and α mean and 

standard deviation of the internal stress distribution arising from the sliding process, C = 

material constant, Q = activation energy term characteristic of the sliding process, R = 

Universal gas constant, T= absolute temperature. 

The experimental data in the form of stress-strain rate responses of a material at 

different temperatures were analyzed using an ANN controlled genetic algorithm. The 

genetic algorithm used in this research was capable of performing parallel computation, 

thus could be run on a multi node cluster, therefore reducing the overall computation 

time. 
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The fitness function used for GA evaluation is, 

                                                                                     

(10) 

A feed forward ANN which was trained using supervised learning strategy was 

used to control the mating rate of the genetic algorithm. The ANN had 40 input nodes, 

two layers of 90 and 35 hidden layers and 5 output nodes. A fraction of the output of this 

ANN was utilized for the GA mating process. A similar ANN was also used to control 

the mutation and migration rates of the GA. The model was successfully implemented to 

predict the deformation parameters that govern the constitutive equation of different 

superplastic materials by validating the results against experimental data. 

2.5. Summary 

 

This chapter includes a discussion on the previous research in the field of Superplastic 

forming, Modeling techniques involved in Superplastic forming, Artificial Neural 

Network applications in manufacturing, Genetic Algorithms in manufacturing  and the 

application of ANN-GA integration models to different applications and to Superplastic 

forming. 
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Chapter 3: Methodology 

 

The Flow diagram in figure 11 is a schematic representation of the approach 

discussed in this chapter. All the steps indicated in the flow diagram are explained in 

detail in the following sections. 

 

         Figure 11 : Schematic representation of the ANN-GA approach 
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A study involving the comprehensive investigation of the elevated temperature 

superplastic behavior in the AZ31-H24 magnesium alloy has been carried out by F.K. 

Abu-Farha and M.K. Khraisheh. Various mechanical aspects and microstructural changes 

during superplastic deformation have been studied. The mechanical aspects considered in 

this study are the flow stress, fracture strain and the strain rate sensitivity index m. These 

aspects of superplastic deformation are investigated through sets of uniaxial tensile tests 

and strain rate jump tests. The details of these tests are covered in the following sections.  

 

3.1. Uniaxial Tensile Tests 

 

Uniaxial tensile tests were carried out on a 5582 INSTRON universal load frame 

equipped with an electrical resistance furnace that provides a temperature up to 610˚C. 

Figure 12 is a snapshot of the set up. A 5 KN capacity load cell was used for load 

measurements. These tests were carried out at constant strain rates, varying between 2 x 

10
-5

 and 10
-2

 s
-1

. Each band of the strain rates is covered at temperatures ranging between 

325 and 450˚C at 25˚ C increments. The strains were measured through the direct 

displacement of the crosshead beam.   3.22mm thick -H24 magnesium alloy sheets were 

used for the test specimens, 19 x 6.35 mm gauge section specimens were machined at 0˚ 

with respect to the rolling direction of the sheet [Abu-Farha, Fadi., 2007].   
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                   Figure 12 : Load Frame equipped with a chamber [Abu-Farha, F., 2007] 

A pre-assigned holding time was allowed before stretching the test specimen at a 

constant strain rate value up to failure at each temperature. The same was repeated for 

different strain rates ranging from 2 x 10
-5

 to 10
-2

 s
-1

. By combining all these results the 

effects of forming temperature and strain rate on the superplastic behavior could be 
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assessed. Figure 13 represents the flow stress/strain rate curves at various forming 

temperatures [Abu-Farha, F., 2007].  

 

Figure 13 : Stress/ Strain rate curves at different temperatures [Abu-Farha, F., 2007] 

 

The second variable influencing the superplastic behavior of the alloy is the 

maximum elongation prior to failure, the fracture strain. The fracture strain is plotted 

against the strain rate for different temperatures in Figure 14. 
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Figure 14 : Fracture strain Vs Strain rate at different temperatures [Abu-Farha, F., 2007] 

 

3.2. Strain - rate Jump Tests 

 

 Strain rate sensitivity represents the capacity of the material to resist necking and 

influences the overall deformation and stability during superplastic deformation 

[Dehsmuk, P., 2004]. Therefore, in order to capture the deformation characteristics of the 

materials, the strain rate sensitivity index of the materials needs to be determined.  

 The strain rate jump tests are considered a good procedure to accurately evaluate 

m [Abu-Farha, F., 2007]. Strain rate jump tests were conducted over a band of strain rates 

ranging between 1x10
-5

 and 2.5x10
-2

 s
-1 

covering temperatures between 325˚C and 450˚C. 

To investigate the effect of plastic strain, and enhance the accuracy of the evaluation, 

jumps between every two successive strain rates were carried out at four plastic strain 

values, upward jumps were at 0.2 and 0.4 and downward jumps were at 0.3 and 0.5. The 
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average of the four m values was set corresponding to the mean of the two strain rates 

between which the jump took place. The results from the entire jump tests at different 

temperatures were combined together and the average m value for each combination of 

temperature and strain rate were obtained from the plots. Figure 15 shows the graph 

plotted for the average strain rate sensitivity index m versus strain rate. 

 

Figure 15 : Average strain rate sensitivity index m Vs Strain rate [Abu-Farha, F., 2007] 

 

3.3. Artificial Neural Network Modeling  

 

 NeuroSolutions software is used for ANN modeling in this research. The software 

is designed with many capabilities. A user can use the software to model through 4 
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different approaches. NBuilder, here the user can build his own models, define the 

number of hidden layers , Processing elements etc. thus letting one implement their own 

ANN models. NSExcel, NeuroSolutions for Excel is an Excel Add-in that integrates 

NeuroSolutions to MS Excel providing a very powerful environment for manipulating 

your data, generating reports, and running batches of experiments. The Custom solution 

wizard (CSW), This is a program that will take any neural network created with 

NeuroSolutions and automatically generate and compile a Dynamic Link Library (DLL) 

for that network, which you can then embed into your own application.  NExpert, this has 

models ready to use and once the data is fed to the model, the software decides on the 

number of hidden layers, processing elements, training paradigm etc. NExpert is used for 

ANN modeling in the present research. The software also provides unrestricted 

topologies, 6 different learning paradigms and also has a feature to integrate genetic 

optimization to these networks.  

Modeling any process using ANN involves the following steps: 

• Data Collection 

• Data Normalization 

• Training 

• Cross-Validation 

• Testing/Production 

 This section will present a detailed description about the modeling of ANN to 

assess the superplastic behavior of materials. 
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3.3.1. Data Collection 

 

Once a problem is defined, the next step is to select the input variables and the desired 

responses to model the problem. The variables and conditions that appear relevant to the 

problem need to be analyzed. While collecting the data, one should take care to collect 

data which covers a wide spectrum of the case, which means the data collected for 

modeling needs to also cover conditions which might not be present in the training phase 

but might encounter later. Since ANNs learn from the data, the data must be valid for the 

results to be meaningful [Neuro Solutions help]. Collecting a large amount of data is not 

the only requirement but also to have data which is truly representative of the problem 

and data that will capture the fundamental principles of the problem is quintessential.  

The input and the desired response data used for modeling needs to be stored in either 

ASCII, column-formatted ASCII or binary and bitmap (bmp image) format. Column-

formatted ASCII is the most commonly used, since it is directly exportable from 

commercial spreadsheet programs [Neuro Solutions help]. 

The variables used as inputs for the ANN models in the present research are strain 

rate and temperature. The desired responses are the mechanical aspects of flow stress, 

fracture strain and strain rate sensitivity index m which describe the behavior of 

superplastic materials. As mentioned earlier in the last section the data for training the 

ANN models to predict the flow stress is obtained from uniaxial tensile tests and the 

strain rate sensitivity index m is obtained from the strain rate jump tests.  
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3.3.2. Data Normalization 

 

If the data for individual inputs has significant numerical differences, then the data needs 

to be normalized. Using raw and non-normalized data might influence the rate of 

convergence of the networks and thus lead to inaccurate predictions. Multiple sets of data 

are divided by a common variable in order to negate that variable's effect on the data, 

thus allowing underlying characteristics of the data sets to be compared. Literature 

indicated that the ANNs performed better if the data used for the training was 

normalized. 

Using NeuroSolutions software for the network design eliminates the need to 

decide the number of hidden layers and the PEs in each layer. The experimental data used 

in the present research was spread over a wide range and therefore data normalization had 

to be performed. All the process variables including the input process parameters and 

their corresponding output responses were normalized by dividing each parameter by the 

highest value of the parameter in the data set, thus reducing the range of all the 

parameters to the range (0, 1). 

3.3.3. Network Topology 

 

Deciding the number of hidden layers and the number of processing elements in each 

layer of the ANN depends on the complexity of the problem being considered. And this 

decision is based on a trial and error approach.  

 A Multi-layer feed forward ANN is used in the present research. Both the ANN 

models for strain rate sensitivity index m and the flow stress have a single hidden layer 

with four processing elements (PE) in the hidden layer for the first case and three for the 
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latter case. Figure 16 indicates a schematic representation of a conventional feed forward 

ANN. The input layer in a network receives the input from the experimental data and 

each node of this layer represents and independent parameter which is directly related to 

the process parameters. The hidden layer processes all the input signals by applying 

weights to them and the output layer delivers to the output response of the network. 

 

 

Figure 16 : A Neural Network Architecture 

3.3.4. Training 

 

The network learning in the present application is supervised, because the network learns 

based on the error (i.e. difference between input and network output) and corrects output 

to minimize error. For good ANN performance, the cost function given by the mean 

squared difference between the desired output and the actual output must be minimized. 

Weights are assigned to each of the linkages between the inputs and hidden layer PEs. 

These weights are optimized during the training phase to achieve the lowest MSE. The 

error at the end of each epoch is propagated back to the network to train the weights. The 
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NeuroSolutions offers a number of gradient search methods to train the ANN models. 

The following discussion briefly presents different gradient search methods used in this 

research.  

3.3.4.1. Levenberg Marquardt  

 

The Levenberg-Marquardt algorithm is a general, non-linear downhill minimization 

algorithm used when derivatives of the objective function are known. The objective 

function in this case is the error. This particular search method performed better on data 

sets when the relation existing between the input and output parameters is very complex. 

It also performs well in comparison with the other search methods when the number of 

data sets is less. The only disadvantage with this gradient search method is that it tries to 

over fit the data. Thus it can be misleading to the user because at times though the mean 

square error at the end of the training phase is less when compared to other search 

methods, results obtained in the production or testing phase may not be appropriate.  

3.3.4.2. Momentum Gradient  

 

Momentum learning is a robust method to speed up learning and is recommended as the 

default search rule for all the networks with non-linearity. With the momentum learning 

rule, weights are changed proportional to how much they were updated in the last 

iteration. The gradient of the error function is computed for each new combination of 

weights. However, instead of just following the negative gradient direction a weighted 

average of the current gradient and the previous correction direction is computed at each 

step. Theoretically, this approach provides the search process with a kind of inertia. 
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      The weights update equation used by this search method is: 

 

                                             (11) 

 

 

 

 

 

 

3.3.4.3. Conjugate Gradient 

 

 NeuroSolutions uses the Scaled Conjugate Gradient implementation for this 

learning technique. Second order learning methods (such as Newton’s method) use not 

only the slope of the performance surface but also the curvature to adjust the weights. As 

an example of the power of second order methods, it is known that linear systems always 

have a quadratic performance surface. Though computationally expensive second order 

methods can reach the bottom of a quadratic performance surface in one step. Conjugate 

gradient is an approximate second order method that is an excellent trade-off between 

computational complexity and increased learning speed [Stanford, Neural Networks]. In 

general, a conjugate gradient training epoch in NeuroSolutions will take twice as long as 

a standard gradient descent training epoch. The conjugate gradient method, however, will 

typically train in much fewer epochs and also move to a lower final MSE. Another 

significant advantage of scaled conjugate gradient learning is that it is parameterless, i.e. 
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there is no need to set learning rates or momentum terms. It automatically determines the 

“best” step size at each iteration. 

3.3.4.4. Quick Propagation 

Despite the name, quick propagation Fahlman, [1988], Patterson, [1996] is not 

necessarily faster than back propagation, although it may prove significantly faster for 

some applications. Quick propagation also sometimes seems more inclined to instability 

and to getting stuck in local minima, than back propagation; these tendencies may 

determine whether quick propagation is more appropriate for a particular problem. Quick 

propagation is a batch update algorithm: whereas back propagation adjusts the network 

weights after each example, quick propagation works out the average gradient of the error 

surface across all cases before updating the weights once at the end of the epoch. For this 

reason, there is no shuffle option available with quick propagation, since it would clearly 

serve no useful function. Quick propagation works by making the (typically ill-founded) 

assumption that the error surface is locally quadratic, with the axes of the hyper-ellipsoid 

error surface aligned with the weights. If this is true, then the minimum of the error 

surface can be found after only a couple of epochs. Of course, the assumption is not 

generally valid, but if it is even close to true, the algorithm can converge on the minimum 

very rapidly. Based on this assumption, quick propagation works as follows: 

On the first epoch, the weights are adjusted using the same rule as back propagation, 

based upon the local gradient and the learning rate. 

On subsequent epochs, the quadratic assumption is used to attempt to move directly to 

the minimum. 
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The basic quick propagation formula suffers from a number of numerical problems. First, 

if the error surface is not concave, the algorithm can actually go the wrong way. If the 

gradient changes little or not at all, the change can be extremely large, or even infinite! 

Finally, if a zero gradient is encountered, a weight will stop changing permanently. 

3.3.4.5. Delta Bar Delta 

 

 According to Jacobs et al. Delta-bar-Delta is an alternative to back propagation, which is 

sometimes more efficient, although it can be more inclined to stick in local minima than 

back propagation. Similar to quick propagation, Delta-bar-Delta is a batch algorithm: the 

average error gradient across all the training cases is calculated on each epoch, and then 

the weights are updated once at the end of the epoch. However, it differs in that Delta-

bar-Delta tends to be quite stable. Delta-bar-Delta is inspired by the observation that the 

error surface may have a different gradient along each weight direction, and that 

consequently each weight should have its own learning rate (i.e. step size). 

In Delta-bar-Delta, the individual learning rates for each weight are altered on each epoch 

to satisfy two important heuristics: 

If the derivative has the same sign for several iterations, the learning rate is increased (the 

error surface has a low curvature, and so is likely to continue sloping the same way for 

some distance); 

If the sign of the derivative alternates for several iterations, the learning rate is rapidly 

decreased (otherwise the algorithm may oscillate across points of high curvature). 
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To satisfy these heuristics, Delta-bar-Delta has an initial learning rate used for all weights 

on the first epoch, an increment factor added to learning rates when the derivative does 

not change sign, and a decay rate multiplied by the learning rates when the derivative 

does change sign. Using linear growth and exponential decay of learning rates contributes 

to stability. 

The algorithm described above could still be prone to poor behavior on noisy error 

surfaces, where the derivative changes sign rapidly even within an overall downward 

trend. Consequently, the increase or decrease of learning rate is actually based on a 

smoothed version of the derivative [Statsoft, ANN]. 

 The stop criteria for learning are very important. The stop criterion based on the 

error of the cross validation set is very popular. Using a cross-validation set also helps in 

identifying over learning of the ANN model. Other methods limit the total number of 

iterations (hence the training time), stopping the training regardless of the networks 

performance. Another method stops training when the error reaches a given value. Since 

the error is a relative quantity, and the length of time needed for the simulation to get 

there is unknown and hence this may not be the best stop criterion. Another alternative is 

to stop on incremental error. This method stops the training at the point of diminishing 

returns, when iteration is only able to decrease the error by a negligible amount. 

However, the training can be prematurely stopped with this criterion because 

performance surfaces may have plateaus where the error changes very little from iteration 

to iteration [48]. The stop criterion adopted in the present research is the number of 

iterations, which was set to 1000. 
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3.3.5. Testing and Validation 

 

Once the network is trained enough to model the data, the next step which follows is 

the production. Here the model is fed with a set of input parameters but to predict output. 

In this phase the neural network model uses the knowledge gained during the training 

phase (stored in the form of weights and biases) to predict the desired responses. Thus, in 

this research an unseen set of data for strain rate and the temperature is used to predict the 

strain rate sensitivity index and the flow stress, respectively in the two models. 

The predicted responses from the neural network model are compared with the 

experimental results to validate the performance of the neural network model. 

As mentioned earlier the objective of the present research is to inverse model the 

superplastic behavior of materials. Neural network models are used to simulate the 

behavior in the forward direction, i.e. given a particular strain rate and temperature the 

model is trained to predict the corresponding strain rate sensitivity index m and the flow 

stress. Now the next goal is to construct an approach to enable predicting the input 

process parameters corresponding to a given m value or flow stress. The formulation of a 

mathematical relationship between the output and input process parameters is explained 

in detail in the following section. 

3.4. Mathematical Formulation using the Weights from the ANN Models 

 

ANN models can be trained to high precision levels to predict or to substitute a 

process or a constitutive relationship. However these models cannot generate a 

mathematical relationship existing between the inputs and the corresponding outputs. 
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Mathematical formulation of a model can be considered as an approach to addressing the 

black box issue of the ANN. 

The information or knowledge gained during the training phase of ANN modeling is 

stored in the form of weights. At the end of the training these weights are saved and the 

file is retrieved to obtain all the possible information on the weights and biases generated 

during the training process. This information is gathered and a mathematical relation 

which gives the output (either the strain rate sensitivity index m or the flow stress) as a 

function of the two process parameters, the temperature and the strain rate is formulated. 

The mathematical formulation is again cross validated using the results from the 

experiments. This relationship is then used as the objective function for the GA, details of 

which are presented in the next section. 

3.5. Genetic Algorithms (GA) 

 

A detailed description about GA and related concepts has been presented in the last 

chapter. This section is problem specific and gives details about the various strategies 

used in the present application. The GA code used for this research is from the Genetic 

Algorithms Laboratory (KanGAL), IIT Kanpur, India. It’s a generic code written in C 

language. It is specifically written for single objective optimization problems. The code 

provides the flexibility to change the objective function and other GA parameters as well 

as the input parameters to make it problem specific. The selection strategy used, 

Chromosome representation, the objective function, the crossover strategy, the mutation 

strategy and the termination criterion have been explained in detail in this section. The 

following is a general structure of a GA [Mitsuo Gen, et al.]: 
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3.5.1. Chromosome Representation 

 

The working of the GA starts with a set of initial solutions called the population. Every 

individual solution in the population is called a chromosome; the chromosome comprises 

of a string of parameters called the genes. These genes could be binary representations 

such 0 and 1 or could be real numbers.  

In the present research a two gene chromosome is used. The first gene represents the 

strain rate and the second the temperature and they are represented using real numbers. 

The upper bounds and the lower bounds for both genes are determined beforehand. 

Depending on user specifications, the chromosomes are encoded to have values for genes 

within these bounds. Figure 17 is a schematic representation of the chromosome 

representation used for the present application. 
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To begin the GA, we define an initial population of popN  chromosomes. A matrix 

represents the population with each row in the matrix being a var1 N× array (chromosome) 

of continuous values. Given an initial population of popN  chromosomes, the full matrix 

of varpopN N×  random values is generated by using a random number generator. ( Nvar=2 

in this case).  

0.0035 325

0.0005 400

Chromosome 1

Chromosome 2

Strain rate Temperature

 

Figure 17 : Chromosome Representation 

  

3.5.2. Fitness Function 

 

The fitness function is the objective function for the problem. This objective function 

is used to evaluate the fitness or goodness of the chromosomes in solving the given 

problem. The very purpose of using a GA is to either minimize or maximize this 

objective function.  

The objective function used in the present research is the error which is the difference 

between the Experimental values and output responses obtained from the GA. And the 

objective function is minimized in this case. The following is an illustration of the same.  
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The Fitness function used is generated using the weights and the biases got at the end of 

the ANN training.  

3.5.3. Selection Strategy 

 

Choosing the right selection method is essential to ensure the best chromosomes are 

chosen. The extent to which the better individuals are generated depends mainly on the 

selection pressure. The convergence rate of a GA depends on the selection pressure, 

higher the selection pressure higher are the convergence rates.  

Tournament selection is employed for the selection process in the present work. 

Tournament selection is one of the robust selection mechanisms used in genetic 

algorithms. The working of this mechanism is very simple. Tournament selection 

involves randomly choosing two candidates from the current population, comparing their 

fitness values and choosing the fit one.  

3.5.4. Crossover Strategy 

 

The most-fit chromosomes from the mating pool, make up for a mother and a 

father pair in some random fashion. Each pair produces two offspring that contain traits 

from each parent. In addition the parents survive to be part of the next generation. There 

are several approaches for pairing the chromosomes, such as top-down pairing, random 
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pairing, tournament selection, rank weighting, and cost weighting. The one used in the 

current research is ‘Simulated Binary Crossover (SBX)’.  

(SBX) is a real-parameter recombination operator. The operator involves a 

parameter which dictates the spread of offspring solutions in direct relation to the parent 

solutions. This simulates the working of the single point crossover which is generally in 

use in binary coded Gas. The intervals in the parents are preserved in the offspring. Thus 

the two offspring are symmetric about the parent solutions. This avoids a bias towards a 

particular parent solution. 

3.5.5. Mutation Strategy 

 

Mutation is an important GA operator which makes sure that the search does not 

get stuck in local optima. GA may converge too quickly to some region of the fitness 

surface. If this area is a region of global optima, it is good; but this does not happen often. 

To avoid this problem of overly fast convergence, we force the routine to explore other 

areas of the cost surface by randomly introducing changes, or mutations, in some of the 

variables. The mutation rate determines the percentage of genes to be mutated. 

In the present research polynomial mutation strategy is used for mutation. A 

random number generates a random number between the upper and the lower bounds 

corresponding to each gene (process parameter). 

The above mentioned procedure is repeated until the stated number of generations is 

reached. The final results which are the gene values corresponding to the best solution are 

validated using the results from the uniaxial tensile tests for the first application and the 

strain rate jump tests for the second application.  
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3.6. Summary 

 

A hybrid approach which can be used in inverse design is built. This approach involved 

the integration of ANN and GA. The chapter discussed in detail the construction of the 

approach. 
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Chapter 4: Application of the Proposed Approach to Model the Behavior of 

Superplastic Materials 

 

Two cases are used to demonstrate the application of the ANN-GA model for the inverse 

modeling. The first case involved the prediction of the strain rate and the temperature to 

achieve a given strain rate sensitivity index m. The second case involves the prediction of 

the same two parameters as in the first case to achieve a given flow stress. 

 4.1. Problem 1: Input Parameter Prediction for Strain - rate Sensitivity Index 

 

 4.1.1. Strain - rate Jump Tests 

 

As mentioned in the previous chapter data from the uniaxial tensile tests were used to 

develop the ANN model. The strain rates range from 1x10
-5

 and 2.5x10
-2

 s
-1

and the 

temperatures vary from 225˚C to 450 ˚C in increments of 25 ˚C as indicated in figure 16 

and table 1. These strain rates, temperatures and the corresponding m values are used for 

further experimentation.  

 4.1.2. Artificial Neural Network Modeling 

 

 4.1.2.1. Data Collection 

 

The input parameters for the neural network model are the strain rates and the 

temperatures obtained from the strain rate jump tests and the desired output is the strain 

rate sensitivity m. 65 Exemplars of data are used for training.  The data used to train the 

ANN model is given in table 1.  This data is closely representative of the problem as it is 
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spread over a wide spectrum of the problem. The input data to the ANN needs to be in 

Column-formatted ASCII. 

 

Figure 18: 3D surface plot of the training data for ANN model 
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Table 1 : Training data for ANN 

Strain Rate 225 C 325 C 350 C 375 C 400 C 425 C 450 C 

0.0175 0.112 0.155 0.170  0.219 0.232 0.240 

0.0075 0.12 0.160  0.224 0.252 0.270 0.277 

0.00375  0.208 0.245 0.265 0.293 0.309  

0.00175 0.16 0.239 0.294 0.326 0.356 0.380 0.364 

0.00075 0.183 0.314 0.372 0.412 0.450 0.478 0.442 

0.00035 0.211 0.342 0.461 0.476  0.571 0.539 

0.00015 0.241 0.425 0.560 0.571 0.632 0.641 0.624 

0.000075 0.265 0.485 0.625 0.624 0.662 0.673 0.664 

0.000035 0.302 0.587 0.646 0.660 0.681  0.680 

0.000015 0.369 0.601 0.651 0.657 0.687 0.678 0.706 

 

 4.1.2.2. Network Topology 

 

A Multi layer feed forward network is used for this application. It is a 3 layer network 

with one hidden layer. The number of processing elements in the first layer is two 

corresponding to the two input parameters, the strain rate and the temperature. The 

hidden layer has four processing elements. The output layer has one processing element, 

which is the strain rate sensitivity index m. Figure 19 is a schematic representation of the 

ANN architecture used for the prediction of m. 
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έ

Input Layer Hidden Layer Output Layer

m

 

Figure 19 : ANN architecture for Application 1 

 

 4.1.2.3. Training 

 

The ANN model used to predict the m value is trained using six different gradient search 

methods. The mean square error obtained at the end of the training is used for comparison 

and the best gradient search method is taken further for experimentation. Using each 

gradient search method the ANN model is trained for 1000 epochs.  

Cross-validation of the data could not be performed due to the limit on the 

number of exemplars available. Table 2 includes the mean square error at the end of 

training. As mentioned earlier the ANN is trained using 6 different gradient search 

methods, the performance of the ANN using the all these search methods is illustrated in 

the following 6 plots. 

T 
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Figure 20 :  Comparison of the actual m values to the ANN (GS: Step) predicted values 
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Figure 21 : Comparison of the actual m values to the ANN (GS: Momentum) predicted 

values 
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Figure 22 : Comparison of the actual m values to the ANN (GS: Conjugate) predicted 

values 
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Figure 23 : Comparison of the actual m values to the ANN (GS: Delta-Bar-Delta) 

predicted values 
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Figure 24 : Comparison of the actual m values to the ANN (GS: Levenberg-Marquardt) 

predicted values 
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Figure 25 : Comparison of the actual m values to the ANN (GS: Quick Propagation) 

predicted values 
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Table 2 : Mean Square Errors 

Gradient 

Search 

Method 

Step Momentum 

Conjugate 

Gradient 

Delta-

Bar-

Delta 

Quick 

Propagation 

Levenberg- 

Marquardt 

MSE 0.0188 0.0141 0.0038 0.0066 0.0187 0.0014 

 

 

It can be observed that Levenberg-Marquardt gradient search (GS) method outperformed 

all the other gradient search methods. The weights and biases obtained using this GS 

method is used to develop a mathematical expression. 

 4.1.3. Mathematical Formulation 

 

The weights and biases are used to formulate a mathematical relationship between the 

input parameters, the strain rate and the temperature and the output strain rate sensitivity 

index. The breadboard obtained using the Levenberg-Marquardt training paradigm are 

included in the Appendix.  The following relations are used to obtain the mathematical 

expression. 

                                                                                                    (12) 

                                                                                                   (13) 
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(                                                               (14)                                            

  

 

 

 

                                                                                (15)                                       

 

 

 

 

                                                     (16) 

                                      (17) 

The above mentioned procedure is demonstrated using the data from the breadboard 

saved at the end of the training for Levenberg-Marqaurdt GS method. 

Step 1: Normalizing Data 

Input Number Input Amplitude Offset Ndata 

1. 0.00035 103 -0.902 -0.866 

2. 400 0.008 -2.7 0.5 

Refer to equations (12) and (13) for Ndata 
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Step 2: Calculations for hidden layer 

Weights N1 N2 N3 N4 

1. -1.07 20.9 1.96 1.66 

2. -2.15 -0.583 2.51 2.34 

 

The number of processing elements in the hidden layer = 4 

Ndata*W -0.149 -18.4 -0.441 -0.267 

Bias -0.147 18.6 0.405 0.322 

Tanh -0.297 0.181 -0.0369 0.055 

 

Refer to Equation (14) for tanh calculation 

Step 3: Calculation of the output 

Weights -8.8 -0.607 16.2 -24.8 

Weights*Tanh 2.61 -0.11 -0.598 -1.36 

 

Bias 0.00532 

Noutput 0.544 

 

Step 4: Normalizing the output 

For Output 

Amplitude Offset 

3.03 -1.24 

Result 0.589 
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Actual Output 0.5422 

Relative error 0.0816 

 

From equations (15) and (16) 

The mathematical relationship was formulated using the above mentioned procedure. The 

final relationship gives the strain rate sensitivity index m as a function of the temperature 

and strain rate, as shown in equation (18). The coefficients of the equation are determined 

through the simplification of the weights and biases.  

                                                                                              (18) 

where, 

 

 

 

 4.1.4. Optimization Using Genetic Algorithms 

 

The genetic algorithm code from the Kanpur Genetic Algorithm Laboratory (KanGAL), 

IIT Kanpur, India is used in this research The code is written in C language. The code is 

customized to meet the present requirements by changing a few subroutines 

corresponding to the objective function, the chromosome representation, and by defining 

the GA parameters apt for our application. 
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 4.1.4.1. Chromosome Representation 

 

The genetic representation used for this application is real coded. So the genetic 

transformations are carried out on the real parameter representations which are the design 

variables. The design variables in this case are the strain rate and the temperature. There 

the chromosome is a 1x2 matrix, and the genes corresponding to the  and . Figure 26 is 

a schematic representation of the chromosome used for this application. 

 

Figure 26 : Chromosome Representation 

 4.1.4.2. Fitness Function 

 

The fitness function or the objective function for the GA is the relative error which is 

given as the difference between the GA generated strain rate sensitivity index mGA and 

the experimental m value. The mathematical representation of the objective is as follows  

                                                                                                    (19) 

where, 

 

 



  

67 

The objective of the problem is to generate the strain rates and temperatures which would 

minimize the error. The fitness function value is the basis for ranking the chromosomes 

to be selected for further processing.  

 4.1.4.3. Genetic Algorithm Parameters Used for Simulations 

 

Four different strategies are used for experimentation. The parameters which are varied in 

the four categories are the number of trials and the crossover and mutation probabilities. 

The purpose of varying the number of trials is to check for the repeatability of the GA. 

The results for the 10 trials or strategy 1 have been included in the discussion in this 

thesis. Results corresponding to the other strategies are included in the Appendix. 
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Table 3 : GA parameters for experimentation 

 Strategy 1 Strategy 2 Strategy 3 Strategy 4 

Number of 

generations 
100 100 100 100 

Population Size 10 20 10 10 

Lower & upper 

limits for  
(0.0175, 

0.000015) 

(0.0175, 

0.000015) 

(0.0175, 

0.000015) 

(0.0175, 

0.000015) 

Lower & upper 

limits for  
(225, 450) (225, 450) (225, 450) (225, 450) 

Niching 

Parameter* 
0.1 0.1 0.1 0.1 

Number of Trials 10 20 50 10 

Crossover 

Probability (Cp) 
0.45 0.45 0.45 0.5 

Mutation 

Probability (Mp) 
0.15 0.15 0.15 0.2 

Seeding Factor** 0.0001 0.0001 0.0001 Varying 

*Niching allows restricted tournament selection. A Niching factor of 0.1 is recommended. 

**Seeding factor helps by speeding up the GA in finding a solution. 

 

With the above tabulated values as the operating parameters for the GA, The ANN 

predicted m value is fed to the genetic algorithm. The GA gives the strain rate and 

temperature values corresponding to a minimized error. This is carried out for six 

different m values using the four different strategies mentioned in table 3. The results 

obtained using strategy 1 is considered for further analysis. The results from the GA 

corresponding to each m value using strategy 1 are represented in the following 6 plots. 
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Figure 27: Strategy 1 GA results for m = 0.14 
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Figure 28 : Strategy 1 GA results for m = 0.2 
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Figure 29 : Strategy 1 GA results for m = 0.195 
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Figure 30 : Strategy 1 GA results for m = 0.304 
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Figure 31 : Strategy 1 GA results for m = 0.54 
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Figure 32: Strategy 1 GA results for m = 0.7 
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 4.2. Problem 2:  Input Parameters Prediction for Flow Stress 

 

 4.2.1. Uniaxial Tensile Tests 

 

As mentioned in chapter 3 data from the strain rate jump tests is used to model the ANN 

model. The strain rates range from 1x10
-5

 and 2.5x10
-2

 s
-1

and the temperatures from 

225˚C to 450 ˚C in increments of 25 ˚C. These strain rates, temperatures and the 

corresponding Flow stress values are used for further experimentation.  

 4.2.2. Artificial Neural Network Modeling 

 

 4.2.2.1. Data collection 

 

50 Exemplars of data are used for training. The input parameters here are the strain rates 

and temperatures and the output response is the flow stress. This data collected from the 

uniaxial tensile tests is spread over a broad range and thus is closely representative of the 

problem. Similar to the first application, in this case too the data to be fed to the ANN is 

in column-formatted ASCII. Figure 33 is the graphical representation of the data used in 

training the ANN. 
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Figure 33 : Uniaxial Tensile tests data used for training the ANN 

 

Table 4: Data used for training ANN 

Strain 

Rate 225 C 325 C 350 C 375 C 400 C 425 C 450 C 

0.01   45 38 33 28 23 

0.005 86 48 40 34 30 24 19.3 

0.0025 81 43 35 30 23.33 20 16 

0.001 73.5 36 27 22 16 11 10.4 

0.0005 67 30 17.5 13 11 7 6 

0.0002 59 17 9 6 4.75 4 3.3 

0.0001 50 10 5.75 3.75 2.75 2 1.8 

0.00005 42 6.5 4 2.5 1.9 1.6 1.2 

0.00002   2 1.4 1.4   
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 4.2.2.2. Network Topology 

 

The ANN model used in this application is a 3 layered network with one hidden layer. 

The number of processing elements in the hidden layer is 3. Each processing element in 

the input layer corresponds to the input parameters, the strain rate and the temperature. 

The one processing element in the output layer corresponds to flow stress. Figure 34 is a 

schematic representation of the ANN model used for this application. 

έ

Input Layer Hidden Layer Output Layer

TextText

 

Figure 34 : ANN architecture for application 2 
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 4.2.2.3. Training 

 

The training procedure is similar to the one used in the strain rate sensitivity index 

prediction. The ANN was trained using the six gradient search methods and for 1000 

epochs. The training set included the strain rate and the temperature as the input process 

parameters and the flow stress was also fed to the model as the desired response. 

The weights and the biases at the end of the training were saved for all the gradient 

search methods. The error which is the deciding factor for the gradient search methods is 

tabulated in the table 5. The predictions of the ANN model using the six different 

gradient search methods are graphically represented in the following six plots. 

Table 5 : Mean Square Errors 

Gradient 

Search 

Method 

Step Momentum 
Conjugate 

Gradient 

Delta-

Bar-

Delta 

Quick 

Propagation 

Levenberg- 

Marquardt 

MSE 

 

0.00052 

 

 

0.000219 

 

 

0.0001 

 

 

0.000169 

 

 

0.00054 

 

 

0.00034 

 

 

It can be observed that Conjugate gradient search (GS) method outperformed all the other 

gradient search methods. The weights and biases obtained using this GS method is used 

to develop a mathematical expression.  



  

76 

0

20

40

60

80

100

0 0.002 0.004 0.006

F
lo

w
 S

tr
e

ss
 (

M
P

a
)

Strain rate (s-1)

Experimental

ANN

 

Figure 35: Comparison of Experimental σ values to ANN (GS: Conjugate gradient) 

predicted values 
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Figure 36: Comparison of Experimental σ values to ANN (GS: Momentum) predicted 

values 
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Figure 37 : Comparison of Experimental σ values to ANN (GS: Levenberg- Marquardt) 

predicted values 
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Figure 38 : Comparison of Experimental σ values to ANN (GS: Quick Propagation) 

predicted values 
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Figure 39 : Comparison of Experimental σ values to ANN (GS: Step) predicted values 
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Figure 40 : Comparison of Experimental σ values to ANN (GS: DBD) predicted value 
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 4.2.3. Mathematical Formulation 

 

Similar to the previous application the best performing gradient search method is chosen 

for further experimentation. The weights and biases obtained at the end of the training are 

saved. This saved information on the weights and biases is used to formulate a 

mathematical relationship. 

 Refer to equations (1), (2), (3), (4), (5) and (6) for the mathematical formulation. In this 

case the value of i = 1, 2, 3. This is because the number of processing elements in the 

hidden layer is 3. 

The procedure is demonstrated using the data from the breadboard saved at the end of the 

training for Conjugate GS method. 

In this application the mathematical relationship obtained represents the output, which is 

the flow stress given as a function of the weights and biases and the inputs, temperature 

and the strain rate.  

Step 1: Normalizing Data 

Input Number Input Amplitude Offset Ndata 

1. 0.0002 364 -0.918 -0.845 

2. 400 0.008 -2.7 0.5 

Refer to equations (12) and (13) for Ndata 

Step 2: Calculations for hidden layer 

Weights N1 N2 N3 

1. -0.584 -1.38 0.623 

2. 0.843 0.109 0.174 
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The number of processing elements in the hidden layer = 3 

Ndata*W 0.915 1.22 -0.439 

Bias 0.299 0.209 0.527 

Tanh 1.21 1.43 0.0878 

 

Refer to Equation (14) for tanh calculation 

Step 3: Calculation of the output 

Weights -1.87 1.31 1.54 

Weights*Tanh -2.27 1.88 0.135 

 

Bias -0.569 

Noutput -0.825 

 

Step 4: Normalizing the output 

For Output 

Amplitude Offset 

1.83 -0.925 

 

Result 4.74 

Actual Output 4.45 

Relative error 0.062 

 

From equations (15) and (16) 

The mathematical relationship formulated using the above mentioned procedure is as 

follows. The final relationship gives the Flow stress as a function of the temperature and 
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strain rate, as shown in equation (20). The coefficients of the equation are determined 

through the simplification of the weights and biases.  

                                                                                           (20) 

where, 

    

    

 

 4.2.4. Optimization Using Genetic Algorithms 

 

The code used for the previous application is used here too. The subroutines 

corresponding to the objective function and the GA parameters are changed to best fit this 

problem. 

 4.2.4.1. Chromosome Representation 

 

The chromosome representation for both the applications is the same. The genes in the 

string represent the strain rate and the temperature respectively. Refer to figure 24 for the 

schematic representation of the chromosome. 
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 4.2.4.2. Fitness Function 

 

The fitness function or the objective function here is the relative error computed as a 

difference of the Experimental flow stress  and GA predicted flow stress GA. The 

mathematical representation of the objective is as follows 

                                                                                                   (21) 

where, 

 

 

 4.2.4.3. Genetic Algorithm parameters used in experimentation 

 

Similar to Case 1 four different strategies have been used for the purpose of 

experimentation. The results obtained using strategy 1 is discussed in this section. The 

results from the other three strategies are included in the Appendix. 
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Table 6 : GA parameters used for simulations 

 Strategy 1 Strategy 2 Strategy 3 Strategy 4 

Number of generations 100 100 100 100 

Population Size 10 20 10 10 

Lower & upper limits 

for  

(0.01, 

0.00002) 

(0.01, 

0.00002) 

(0.01, 

0.00002) 

(0.01, 

0.00002) 

Lower & upper limits 

for  
(225, 450) (225, 450) (225, 450) (225, 450) 

Niching Parameter* 0.1 0.1 0.1 0.1 

Number of Trials 10 20 50 10 

Crossover Probability 

(Cp) 

0.35 0.35 0.35 0.5 

Mutation Probability 

(Mp) 

0.15 0.15 0.15 0.2 

Seeding Factor** 0.0001 0.0001 0.0001 Varying 

*Niching allows restricted tournament selection. A Niching factor of 0.1 is recommended. 

**Seeding factor helps by speeding up the GA in finding a solution. 
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Using these GA parameters for the simulations, the Experimental flow stress value is fed 

to the GA. The GA gives the strain rate and the temperature values which minimize the 

error. This has been tried for five different flow stress values and has been carried out 

with four different strategies as mentioned previously and in table 6. The results obtained 

using strategy 1 are presented in the following 5 plots. 
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Figure 41 : GA results for  σ  = 1.6 MPA 
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Figure 42 : GA results for σ = 4.75 Mpa 
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Figure 43 : GA results for σ = 13 MPa 
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Figure 44 : GA results for σ = 48 MPa 
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Figure 45 : GA results for σ = 81 MPa 
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 4.3. Summary 

 

The proposed approach integrating ANN to GA is applied to Superplastic forming in this 

chapter. In the first application ANN is used to predict the strain rate sensitivity index 

given the strain rates and the temperatures and is then integrated to GA via a 

mathematical formulation using MS Excel. This integration is used as an inverse design 

tool. Given a desired m value the integrated model is prepared to predict the strain rates 

and temperatures which yield the given m value. 

The second problem is a similar application where the ANN-GA integration model is 

used to obtain the strain rate and the temperature values which would generate a desired 

flow stress value. 
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Chapter 5: Results and Discussions 

 

5.1. Problem 1 

 

Six different gradient search (GS) methods have been used for training the ANN model. 

The best among these was taken further for the experimentation. This selection was made 

on the basis of the mean square error at the end of the training and also the proximity of 

the predicted data to the actual experimental data is considered. Figure 46 is a screenshot 

of the ANN model with Levenberg-Marquardt as the gradient search or the learning 

paradigm. 

 

Figure 46 : Screenshot of an ANN breadboard 

Input layer Hidden Layer Output Layer 
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Table 7 : Experimental parameters for ANN training 

 

 

 

 

 

                        

The following includes the results obtained using all the six gradient search methods. 

Table 8: The results obtained using different GS methods 

Actual m Conjugate 

Delta-Bar-

Delta 

Levenberg-

Marquardt Momentum 

Quick 

Propagation Step 

0.700 0.688651 0.643422 0.688842 0.601488 0.57738 0.577354 

0.540 0.563476 0.587073 0.542263 0.562282 0.542127 0.542127 

0.14 0.088934 0.068377 0.156038 0.104352 0.114558 0.114625 

0.304 0.298574 0.223232 0.303339 0.322767 0.391 0.391046 

0.200 0.197347 0.262647 0.196503 0.157556 0.15818 0.158138 

0.195 0.204395 0.160639 0.17645 0.191361 0.225262 0.225182 

 

Among the six GS methods it was observed that Levenberg-Marquardt training algorithm 

outperformed all the others. This is clearly evident from figure 47 and also from table 7. 

• GS Method: Levenberg-Marquardt 

• No. of input parameters : 2 

• No. of Output parameters: 1 

• No. of hidden layers : 1 

• No. of PEs in hidden layer : 4 

• Termination Criteria : Epochs 

• No. of Epochs:  1000 
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Figure 47 : Performance of Levenberg-Marquardt gradient search method 

 

Thus the Levenberg-Marquardt (LM) gradient search method is used for further 

experimentation. The weights and the biases saved at the end of the training using LM are 

retrieved to formulate mathematical relationship which is used as an objective function.  

Simulations are made using GA to obtain the best combination of strain rates and the 

temperatures which yield the required value of m. Figure 48 is a screenshot of the user 

interface for the GA. The subroutines customized for the purpose of the present research 

are included in the appendix. 
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Figure 48: Screenshot of the user interface for the GA [67] 

 

4 different strategies have been used for experimentation. This discussion would include 

only strategy 1 as the performance using this set of parameters was found to be better. 

The parameters in this strategy are illustrated in table 9. 
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Table 9 : Strategy 1 

Seeding 

Factor

100 10 (0.0175, 

0.000015)

(225, 450) 0.1 10 0.45 0.15 0.0001

Number of 

generations

Population 

size

Range for Range for Niching 

Parameter

Number of 

Trials

Crossover 

Probability (Cp)

Mutation 

Probability (Mp)

 

ANN is trained to predict the strain rate sensitivity corresponding to the strain rates and 

the temperatures. The weights and the biases used during learning are retrieved and a 

mathematical expression is formulated which represents m as a function of strain rate and 

the temperature. The error which is the relative difference between the actual m and the 

GA predicted m is used as an objective function. The results which are the temperatures 

and the strain rates corresponding to a specific value of m are presented in the following 

plots and in table 10.  
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Figure 49 : Comparison of GA predicted values for m = 0.14 and the experimental values 
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Figure 50 : Comparison of GA predicted values for m = 0.195 and the experimental 

values 
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Figure 51 : Comparison of GA predicted values for m = 0.2 and the experimental value  
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Figure 52 :  Comparison of GA predicted values for m = 0.304 and the experimental 

value 
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Figure 53 :  Comparison of GA predicted values for m = 0.54 and the experimental   

value 
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Figure 54 :  Comparison of GA predicted values for m = 0.7 and the experimental  value 
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Table 10: GA predicted strain rates and temperatures 

  m=0.14   m=0.2   m=0.195   

Trial SR Temp SR Temp SR Temp 

1 9E-05 389.9614 0.000123 392.7945 0.000136 418.524 

2 0.0003 415.6743 0.000202 441.5649 0.000177 387.1938 

3 0.0005 353.9275 0.00025 343.0425 0.000181 318.3776 

4 0.0006 356.3202 0.000319 325.5796 0.000334 313.3751 

5 0.0011 365.9735 0.000378 293.2905 0.000595 330.6296 

6 0.0013 376.6664 0.000434 357.1834 0.000786 428.2114 

7 0.0014 413.3571 0.000643 448.2808 0.000843 371.0082 

8 0.0014 414.1958 0.000764 395.2515 0.001021 408.3773 

9 0.0016 421.5216 0.000942 366.0753 0.001115 434.7239 

10 0.0021 446.3404 0.001478 431.8206 0.001909 429.3818 

Average 0.001 395.3938 0.000553 379.4884 0.00071 383.9803 

Actual 0.0038 225 0.0075 350 0.0175 375 

 

  m=0.54   m=0.7   m=0.304   

Trial SR Temp SR Temp SR Temp 

1 0.000067 366.1785 0.000307 335.1543 0.000089 395.0438 

2 0.000069 277.2722 0.000503 349.2239 0.000181 319.7039 

3 0.000254 410.4168 0.000556 321.1812 0.000187 307.7927 

4 0.00031 360.9239 0.000676 387.3453 0.000307 335.1543 

5 0.000358 359.2024 0.000762 387.7812 0.001018 428.5065 

6 0.000771 360.5737 0.001143 404.2414 0.001145 401.3186 

7 0.000848 363.7031 0.001177 362.9292 0.001509 401.07 

8 0.001093 365.9514 0.001222 403.2475 0.001566 397.7471 

9 0.00151 414.0023 0.001254 393.1675 0.001706 438.7524 

10 0.010493 409.6965 0.002052 446.2812 0.003065 267.4946 

Average 0.001577 368.7921 0.000965 379.0553 0.001077 369.2584 

Actual 0.00035 400 0.000035 425 0.00375 450 
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By comparing the experimental strain rate and temperature values corresponding to each 

of these six strain rate sensitivity index (m) values with the GA generated strain rate and 

temperature values, it can be observed that in most of the cases the GA predictions were 

close to the actual experimental values though they could not give the best fit. And also a 

unique solution to these problems cannot be anticipated using a GA. This is one 

drawback of the approach.  

The experimentation using GA is carried out for four different strategies as mentioned 

previously. These experiments were done for 10, 20 and 50 trials. The purpose of which 

was to check for the repeatability of the GA and thus establish a guideline on how 

predictable the GA is. The results presented in the plots are for 10 trials. The results for 

20 and 50 trials are included in the Appendix. 
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Figure 55 : Results from the ANN-GA model corresponding to strain rates  

(0.0003-0.0006) and (0.001-0.002) 
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Figure 56 : Experimental results for strain rates (0.0003-0.0006) and (0.001-0.002) 
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Figure 57 : Results from the ANN-GA model corresponding to temperatures (330-380) 

and (380-430) 
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Figure 58 : Experimental results for temperatures (330-380) and (380-430) 
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Figure 59: Results from the ANN-GA model for strain rates (0.001-0.002) and (0.0003-

0.0006) 
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Figure 60 : Experimental results for strain rates (0.001-0.002) and (0.0003-0.0006) 
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Figure 61 : Results from the ANN-GA model for temperatures (330-380C) and (380-

430C) 
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Figure 62 : Experimental results for temperatures (330-380C) and (380-430C) 
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The plots 55, 56 represent the results generated by the GA for 2 different strain rate 

ranges. These results are plotted in order to address the concern that the GA results did 

not give a best fit when compared to the experimental results. Observing the results in 

these plots indicated that the trend followed by the results from the ANN-GA model is 

similar to the experimental results.  

Similarly plots 57 and 58 give a comparison of the behavior of the ANN-GA results to 

the experimental results for 2 different range of temperatures. It is again observed that 

both these sets follow the same trend. 

A similar comparison of results at a specific range of strain rates and temperatures is 

presented in plots 59 through 62 too. 
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5.2. Problem 2 

 

Among the six gradient search methods used for training the model for this problem, it 

was found that conjugate gradient search method outperformed all the other GS methods. 

The screenshot of the ANN model using Conjugate GS method is presented in figure 55. 

  

Figure 63: Screenshot of the ANN model used in predicting the flow stress 
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Table 11 : Experimental parameters for ANN training 

 

 

 

 

 

 

The best performing GS method was chosen on the basis of the mean square error at the 

end of the training and the proximity of the predicted values to the actual experimental 

values. The same has been presented in the following plot and the table. 

Table 12 : The results obtained using different GS methods 

Actual 

σ 
Conjugate 

Levenberg-

Marquardt 
Momentum 

Quick 

Propagation 
Step 

Delta-

Bar-

Delta 

81 87.29923 66.25482 99.65938 95.56296 95.858733 95.07692 

13 11.69232 16.67334 12.98519 18.46343 18.280565 11.06591 

4.75 4.446782 5.222236 6.415669 10.86201 10.695521 4.690423 

1.6 1.17853 1.181354 2.751108 5.37917 5.2817556 1.697771 

49 52.43645 56.86877 51.89711 50.78108 50.864955 52.486 

 

• GS Method: Conjugate 

• No. of input parameters : 2 

• No. of Output parameters: 1 

• No. of hidden layers : 1 

• No. of PEs in hidden layer : 3 

• Termination Criteria : Epochs 

• No. of Epochs:  1000 
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Figure 64 : Performance of Conjugate gradient search method 

 

The weights and biases saved at the end of the training using Conjugate gradient search 

are used to formulate a mathematical relationship. This relationship is used as an 

objective function for the GA. 

Similar to problem 1, four different strategies were used for the GA experimentation. 

Results obtained using strategy 1 is discussed here. The following table lists the 

parameters included for strategy 1. 
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Table 13: Parameters used in strategy 1 

Seeding 

Factor

100 10 (0.00002, 

0.000015)

(225, 450) 0.1 10 0.45 0.15 0.0001

Number of 

generations

Population 

size

Range for Range for Niching 

Parameter

Number of 

Trials

Crossover 

Probability (Cp)

Mutation 

Probability (Mp)

 

The results from the GA simulations using the above mentioned strategy are represented 

in table 12 and the plots following it. 

 

 Table 14: GA predicted strain rates and temperatures  

 

σ = 1.6 

Mpa   

σ = 4.75 

Mpa   

σ = 13 

Mpa   

Trial  T  T  T 

1 0.00002 447.4554 0.00006 430.31766 0.00092 354.28539 

2 0.0004 234.1116 0.00012 372.85297 0.00198 290.84511 

3 0.00207 425.4281 0.00175 228.7983 0.00349 311.0736 

4 0.00226 429.8928 0.00233 436.73114 0.00458 426.18579 

5 0.00229 394.3834 0.00302 226.51111 0.0049 387.64135 

6 0.00497 263.3338 0.00432 404.3306 0.00648 361.83757 

7 0.00813 390.2924 0.00483 344.57966 0.00665 278.71366 

8 0.00849 441.7477 0.00675 245.57541 0.00895 392.32321 

9 0.00927 299.3539 0.00959 390.71399 0.00959 287.06816 

10 0.00959 387.9649 0.0098 365.44214 0.00964 431.78109 

Average 0.004749 371.3964 0.004257 344.5853 0.005718 352.175493 

Actual 0.00005 425 0.0002 400 0.0005 375 
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 σ = 48 Mpa   σ = 81Mpa   

Trial  T  T 

1 0.00029 327.3049 0.00371 342.5149 

2 0.0003 241.2822 0.00386 328.0034 

3 0.0003 244.3431 0.00504 337.2322 

4 0.00038 342.3936 0.00505 318.6432 

5 0.00182 372.0016 0.00667 449.5732 

6 0.00222 274.1863 0.00755 373.597 

7 0.00391 319.1848 0.00867 348.6764 

8 0.00545 418.5309 0.0093 429.698 

9 0.00657 329.0017 0.00961 296.9257 

10 0.00771 343.8835 0.00966 405.0093 

Average 0.002895 321.2112 0.006912 362.9873 

Actual 0.005 325 0.0025 225 
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Figure 65: Comparison of GA predicted values for σ = 1.6 MPa and the experimental 

values  
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Figure 66 : Comparison of GA predicted values for σ = 4.75 MPa and the experimental 

values 
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Figure 67 : Comparison of GA predicted values for σ = 13 MPa and the experimental 

values 
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Figure 68 : Comparison of GA predicted values for σ = 48 MPa and the experimental 

values 
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Figure 69 : Comparison of GA predicted values for σ = 81 MPa and the experimental 

values 
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The GA simulations were done for 5 different flow stress values. It is evident from the 

plots that the strain rate and the temperature values predicted using the GA was close to 

the actual experimental values. But similar to the problem 1 a unique pair of strain rate 

and temperature corresponding to specific value of flow stress could not be obtained. 

The results presented in the plots 57 through 61 are simulations carried out for 10 trials. 

The GA has been checked for repeatability by running the simulations for 20 and 50 

trials. The results from these trials are included in the Appendix. 
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Figure 70 : Results from the ANN-GA model for strain rates (0.001-0.005) and (0.005-

0.01) 
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Figure 71 : Experimental Results for strain rates (0.001-0.005) and (0.005-0.01) 

The results obtained from the ANN-GA model for strain rate ranges of (0.001-0.005) and 

(0.005-0.01) are plotted and these when compared to the experimental results from the 

same strain rate ranges indicate that they have a similar trend.  This is one approach to 

validate the ANN-GA model developed in this research. 

5.3. Summary 

The results obtained by applying the proposed approach to the two problems mentioned 

in chapter 3 and 4 have been illustrated in this chapter. A discussion on the results is also 

presented. 
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Chapter 6: Conclusions and Future Recommendations 

 

6.1. Conclusions 

 

A hybrid model integrating predictive capabilities of ANN and optimization feature of 

GA is developed for the purpose of inverse modeling. The proposed approach is applied 

to Superplastic forming of materials to predict the material properties which characterize 

the performance of a material. The study is conducted using two problems. For the first 

problem, ANN is trained to predict the strain rate sensitivity index m given the 

temperature and the strain rate. The performance of different gradient search methods 

used in training the ANN model is demonstrated. The weights and the biases from the 

best Gradient Search method which is the Levenberg-Marquardt in this case are used to 

formulate the objective function of the GA. GA simulations are performed using 4 

different strategies.  

 Similar approach is used for the second problem. The objective of this problem is 

to predict the input parameters, i.e. strain rate and temperature corresponding to a given 

flow stress value. The best performing GS in this case is the Conjugate GS method. 

Similar to the first problem the experiments using the GA are conducted using 4 different 

strategies. These strategies mainly differed in the number of trials, crossover and the 

mutation probabilities. 

  Results from strategy 1 (10 trials) are discussed in detail. The GA generated strain 

rate and the temperatures corresponding to a given m in the first case and the flow stress 
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in the second case were compared to the experimental results. Results obtained in both 

the problems indicate proximity to the experimental results.  

 One of the drawbacks of this approach is that a unique solution cannot be 

obtained. The results generated using this approach is near optimal. Therefore this cannot 

be applied to applications where a unique solution to the problem is desired.  

6.2. Unique Features 

 

• Integrating the ANN and the GA for inverse design 

ANN model is trained to learn the relationship between the process parameters. The 

relationship developed is used in the objective function of the GA to generate near 

optimal solutions. 

• Application of ANN-GA model for Material Informatics 

Materials informatics studies the collection, classification, storage, retrieval, transfer, and 

dissemination of material science information to support the advancement of knowledge 

in this domain.  This in the present approach is obtained through the application of the 

ANN-GA model. 

• Model validated to be used for design and optimizing processes 

The working of the ANN-GA model is demonstrated using an example from Superplastic 

forming. 
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6.3. Future Work 

 

The proposed approach can be further validated by applying it on better data sets. Better 

in terms of the number of exemplars and also the number of process parameters. 

The performance of the ANN-GA model can be tested by establishing physical 

boundaries to the process parameters. 

One of the drawbacks of this approach is that it cannot give a unique solution. The 

solutions thus obtained are near optimal. Therefore a method to filter the outcome of this 

model can be one scope for further research. 

GA simulations can be performed with more strategies by varying the different 

parameters such as the crossover probability, mutation probability, Niching, Seeding 

parameters.  
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APPENDIX I 

Weights File from NeuroSolutions Breadboard: Problem 1 

(Only data used in the computations are shown) 
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APPENDIX II 

 

GA Results from Problem 1 using Strategy 2: 

 

m=0.14 m=0.195 m=0.7

Trial SR T SR T SR T

1 0.01631 225.0796 0.00002 428.2757 0.0175 352.6964

2 0.00002 304.375 0.00002 449.3368 0.00002 432.2727

3 0.00002 323.7123 0.00002 449.9592 0.00002 400.4278

4 0.00002 351.6458 0.00002 448.9044 0.0175 330.5269

5 0.00004 368.7212 0.00002 410.9573 0.00002 341.2635

6 0.00007 380.2456 0.00002 446.0393 0.00002 449.1656

7 0.00002 397.0476 0.00006 417.9013 0.00002 403.1501

8 0.00006 399.0258 0.00026 449.0318 0.00002 449.9989

9 0.00002 400.387 0.00002 449.7089 0.00002 410.0573

10 0.00005 407.5465 0.00002 355.0602 0.00002 386.7713

11 0.00006 419.3335 0.00046 304.9271 0.00002 443.9391

12 0.00002 428.2757 0.0004 449.9784 0.0175 444.6586

13 0.00002 431.0821 0.00037 443.492 0.00002 346.1493

14 0.00004 435.4073 0.00055 413.0386 0.00002 382.7637

15 0.0005 440.5721 0.00011 448.2515 0.0175 372.8545

16 0.00009 443.2644 0.00032 357.8598 0.00002 394.2146

17 0.00002 445.6445 0.01725 225.0279 0.00002 308.8201

18 0.00022 449.2016 0.00002 449.9454 0.00002 433.2761

19 0.00002 449.3509 0.00014 449.7632 0.0175 303.5835

20 0.00003 449.9977 0.01633 226.9856 0.00002 296.2158

Average 0.000883 397.4958 0.001822 403.7222 0.00439 384.1403

Actual 0.00375 225 0.0175 375 0.000035 425
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m=0.304 m=0.2 m=0.54

Trial SR T SR T SR T

1 0.00015 225.021 0.00002 362.2633 0.00002 443.0425

2 0.00039 438.0816 0.00002 445.2871 0.00075 449.5241

3 0.00007 449.1579 0.00001 447.909 0.00002 298.7531

4 0.00032 388.3095 0.00005 419.0644 0.00004 449.9983

5 0.00002 369.3845 0.00126 391.3193 0.00031 448.634

6 0.00002 448.7909 0.00002 443.6847 0.00005 448.2657

7 0.00007 446.4957 0.00002 435.5542 0.00004 437.9275

8 0.0001 444.2508 0.00002 404.7272 0.00001 438.5166

9 0.00002 444.9552 0.00004 359.466 0.00002 435.3308

10 0.00002 438.7029 0.00002 446.3157 0.00002 293.0021

11 0.00004 449.2372 0.00002 449.8764 0.00041 448.7764

12 0.0002 445.0237 0.00007 448.9482 0.00019 449.9975

13 0.01748 260.0993 0.00008 225.0743 0.00002 254.1494

14 0.00002 395.4827 0.00134 448.9146 0.00022 402.2176

15 0.00003 438.5407 0.0002 341.5551 0.00003 444.4388

16 0.00002 306.8473 0.00004 449.6852 0.00002 445.3001

17 0.00021 449.3605 0.00002 437.84 0.00001 440.7581

18 0.00003 449.3216 0.00002 429.3754 0.00051 393.6114

19 0.00067 446.9618 0.00013 447.5772 0.00056 448.3694

20 0.00002 432.6523 0.00002 435.3358 0.00002 445.6911

Average 0.000995 408.3339 0.000171 413.4887 0.000164 415.8152

Actual 0.00375 450 0.0075 350 0.00035 400  
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GA Results from Problem 1 using Strategy 3: 
m=0.2 m=0.7 m=0.195

SR T SR T SR T

Trial 1 0.00004 430.6504 0.00002 345.5316 0.00002 437.0077

Trial 2 0.00003 426.4398 0.00005 441.2532 0.00005 444.455

Trial 3 0.00005 427.1583 0.00002 437.1593 0.00002 437.9822

Trial 4 0.00002 442.8729 0.01734 230.3529 0.00002 426.3098

Trial 5 0.00004 443.7792 0.00004 430.944 0.00004 422.7049

Trial 6 0.00165 448.5861 0.00002 449.7272 0.00002 445.7304

Trial 7 0.00002 436.2172 0.00002 303.3709 0.01748 226.2558

Trial 8 0.00002 440.7572 0.00005 441.0649 0.00002 449.9991

Trial 9 0.00002 447.8623 0.00008 439.884 0.00004 342.2148

Trial 10 0.00005 413.652 0.00003 449.8721 0.00006 449.9663

Trial 11 0.00001 449.6337 0.00002 449.4864 0.00011 419.2168

Trial 12 0.00003 225.115 0.00021 404.0005 0.00002 446.8349

Trial 13 0.01584 411.7664 0.00002 340.9164 0.00002 439.4591

Trial 14 0.00015 444.9511 0.01571 225.9177 0.00008 446.1457

Trial 15 0.00002 449.3738 0.00002 380.8889 0.00257 442.7468

Trial 16 0.0002 448.3926 0.01741 449.693 0.00002 446.0248

Trial 17 0.00002 449.7865 0.00003 378.4982 0.00005 449.2546

Trial 18 0.00029 393.5369 0.00023 443.4382 0.01712 262.0372

Trial 19 0.00002 449.984 0.00032 449.319 0.00149 449.9567

Trial 20 0.00094 438.6393 0.01625 409.9016 0.00004 416.2045

Trial 21 0.00002 442.8783 0.00002 436.2718 0.00002 442.0203

Trial 22 0.00002 312.5404 0.00001 433.5319 0.00002 449.8914

Trial 23 0.00002 433.6628 0.00004 449.3329 0.00004 430.8943

Trial 24 0.00002 449.5669 0.00005 449.9147 0.00003 447.151

Trial 25 0.0174 250.2052 0.00002 449.7502 0.00003 447.5728

Trial 26 0.00037 443.2658 0.00002 404.9225 0.01745 444.6479

Trial 27 0.00003 448.8032 0.00002 386.3574 0.00002 423.0024

Trial 28 0.00003 449.5013 0.00003 445.582 0.00005 445.8708

Trial 29 0.00002 444.0454 0.00008 442.9106 0.00002 403.1001

Trial 30 0.00008 449.7949 0.00201 231.8712 0.00002 443.0923

Trial 31 0.00055 443.4954 0.00002 353.2835 0.00002 435.2026

Trial 32 0.00002 391.3625 0.00002 374.777 0.00002 375.0012

Trial 33 0.01735 449.9443 0.00004 449.5552 0.00207 226.0529

Trial 34 0.00048 442.247 0.00048 449.4306 0.00042 435.3977

Trial 35 0.00005 428.2871 0.00005 435.9785 0.00019 424.0173

Trial 36 0.00002 449.9466 0.00005 393.0448 0.00003 449.8872

Trial 37 0.00002 424.4175 0.00002 449.342 0.00003 360.1835

Trial 38 0.0001 448.5243 0.00002 449.9966 0.00007 449.4759

Trial 39 0.00005 449.5967 0.00003 414.0121 0.00002 269.2925

Trial 40 0.00002 449.757 0.01726 229.2119 0.0002 443.6475

Trial 41 0.00002 449.8778 0.00002 416.7897 0.00002 449.9937

Trial 42 0.00005 382.6349 0.00003 449.8141 0.00002 446.1036

Trial 43 0.00011 449.9026 0.00002 447.1135 0.00013 445.3974

Trial 44 0.00002 423.7458 0.00002 443.6371 0.00002 449.2558

Trial 45 0.01744 225.2734 0.01735 225.5271 0.00024 449.1785

Trial 46 0.00002 421.7117 0.00007 365.7406 0.00002 410.1862

Trial 47 0.00002 415.8436 0.00013 449.5003 0.00002 447.6991

Trial 48 0.00002 449.325 0.01747 225.2336 0.01736 229.5344

Trial 49 0.00005 448.6066 0.00002 361.4775 0.00007 429.2197

Trial 50 0.00003 358.7793 0.00042 419.0126 0.00005 449.9512

Average 0.001478 420.9339 0.002475 396.6829 0.00156 415.0486

Actual 0.0075 350 0.000035 425 0.0175 375
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m=0.304 m=0.14 m=0.54

SR T SR T SR T

Trial 1 0.00021 436.2064 0.00029 434.4437 0.00002 443.0818

Trial 2 0.00004 429.3591 0.00006 441.3638 0.00002 443.2977

Trial 3 0.00267 448.4805 0.00013 449.8012 0.00012 378.7243

Trial 4 0.00005 430.7244 0.00008 449.0495 0.00004 421.5831

Trial 5 0.00002 444.0592 0.00008 385.3709 0.00009 431.8546

Trial 6 0.00005 401.5406 0.00004 441.9221 0.00002 439.8508

Trial 7 0.00002 449.8243 0.00002 433.0627 0.00004 384.3332

Trial 8 0.00013 421.0245 0.00002 445.7575 0.00002 227.8881

Trial 9 0.00029 448.9975 0.00005 446.1227 0.00003 414.1627

Trial 10 0.00003 446.8052 0.00002 449.969 0.00003 449.9342

Trial 11 0.00002 336.3405 0.00121 449.819 0.01742 225.2764

Trial 12 0.00006 403.4891 0.01721 286.1481 0.00028 447.5662

Trial 13 0.00002 410.905 0.00004 448.4657 0.00002 447.1054

Trial 14 0.00002 448.3122 0.0003 449.994 0.00001 449.8122

Trial 15 0.00002 425.4038 0.00002 368.9324 0.00007 449.7799

Trial 16 0.00003 449.9503 0.00002 449.8023 0.00034 415.8289

Trial 17 0.00002 435.6053 0.01632 254.4224 0.00002 361.3482

Trial 18 0.00082 226.0666 0.00002 426.9629 0.00002 449.0369

Trial 19 0.00003 374.2643 0.00003 442.9463 0.00002 449.9734

Trial 20 0.00064 408.3079 0.00019 439.3564 0.00002 375.6875

Trial 21 0.00002 444.0064 0.00006 449.0873 0.00012 444.9424

Trial 22 0.0001 413.1855 0.00004 449.9993 0.00015 449.2363

Trial 23 0.00002 376.1961 0.00014 447.1258 0.00033 407.2452

Trial 24 0.00016 449.8672 0.00002 447.4184 0.00004 438.8346

Trial 25 0.00003 449.982 0.01716 225.1254 0.00002 344.3019

Trial 26 0.00002 432.7038 0.01053 353.0398 0.00003 445.6961

Trial 27 0.00002 448.3292 0.00002 419.1706 0.00014 449.7622

Trial 28 0.00008 412.1086 0.00005 443.98 0.00066 448.037

Trial 29 0.00011 377.9749 0.00007 449.0362 0.00006 413.2902

Trial 30 0.00003 437.7718 0.00002 449.0377 0.00002 410.4757

Trial 31 0.00003 449.8951 0.00005 445.816 0.00124 448.6352

Trial 32 0.00636 248.2501 0.00002 289.0735 0.00004 449.7572

Trial 33 0.00033 438.1701 0.00005 431.5263 0.00005 360.3479

Trial 34 0.01558 255.9067 0.00002 423.1748 0.00003 448.6897

Trial 35 0.00024 437.4805 0.00003 449.992 0.00004 449.9285

Trial 36 0.00004 448.1317 0.00002 426.9008 0.00002 414.5187

Trial 37 0.00002 449.9598 0.00012 448.4353 0.00002 432.9832

Trial 38 0.00002 434.7614 0.00017 427.3637 0.00002 449.4574

Trial 39 0.00004 311.5283 0.01462 228.3145 0.00002 447.9749

Trial 40 0.00002 441.4259 0.00003 447.9649 0.01743 235.517

Trial 41 0.00002 347.3537 0.00002 449.9695 0.00002 449.8977

Trial 42 0.00003 304.3679 0.00012 445.3544 0.01634 241.0427

Trial 43 0.00028 346.58 0.00007 447.0919 0.00004 449.8473

Trial 44 0.00003 444.7796 0.00002 440.8594 0.00004 449.9366

Trial 45 0.00002 442.2124 0.01717 225.4527 0.00011 386.7781

Trial 46 0.00002 447.7293 0.00002 438.8835 0.00437 226.8161

Trial 47 0.00002 449.9228 0.00017 440.1266 0.00013 436.1576

Trial 48 0.00002 404.971 0.00002 449.3426 0.00012 449.9958

Trial 49 0.01353 243.3575 0.00002 420.6423 0.00061 444.107

Trial 50 0.00002 434.426 0.00003 438.0274 0.00003 391.8147

Average 0.000849 405.98 0.001941 414.8209 0.001219 408.443

Actual 0.00375 450 0.00375 225 0.00035 400  
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GA Results for Problem 1 using strategy 4: 

 

m=0.14 m=0.2 m=0.195

Trial SR Temp SR Temp SR Temp

1 0.00009 277.673 0.00017 395.4563 0.00049 225.6732

2 0.00026 237.7767 0.00059 233.0007 0.00073 338.0921

3 0.00039 308.7622 0.0008 245.04 0.00159 364.0583

4 0.00135 417.572 0.00101 227.2374 0.00207 230.2629

5 0.00159 424.8877 0.00151 431.4439 0.00497 306.8274

6 0.00449 346.3549 0.00457 229.4597 0.00522 440.3328

7 0.00656 440.6096 0.00708 332.312 0.00708 358.9652

8 0.00866 308.7936 0.00749 275.6735 0.00762 277.4538

9 0.00944 414.2815 0.00811 430.3569 0.00954 394.3941

10 0.00965 323.5482 0.00998 400.0518 0.00958 245.0889

Actual 0.00375 225 0.0075 350 0.0175 375
 

 

 

m=0.54 m=0.7

Trial SR Temp SR Temp

1 0.00003 394.3101 0.00009 277.673

2 0.0005 239.8838 0.00026 237.7767

3 0.00065 390.9645 0.00039 308.7622

4 0.00065 263.7095 0.00135 417.572

5 0.00102 257.7002 0.00159 424.8877

6 0.0029 249.6448 0.00449 346.3549

7 0.00402 341.5794 0.00656 440.6096

8 0.00531 384.732 0.00866 308.7936

9 0.00653 306.6556 0.00944 414.2815

10 0.00998 443.1387 0.00965 323.5482

Actual 0.00035 400 0.000035 425  
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