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ABSTRACT OF THE THESIS 
 

ELASTIC-PLASTIC INDENTATION DEFORMATION IN HOMOGENEOUS AND 
LAYERED MATERIALS: FINITE ELEMENT ANALYSIS 

The complex phenomenon of indentation deformation is studied using finite element 
analysis for both homogeneous and layered materials. For the homogeneous materials, 
the elastic-plastic deformation at large indentation depth is studied. The variation of the 
load-displacement curves as well as the variation of the energy ratio with the applied 
indentation depth for different strain hardening indices is presented. The power law 
relation between the indentation load and depth for shallow indentation becomes invalid 
for deep indentation. The ratio of plastic energy to total mechanical work is a linear 
function of the ratio of residual indentation depth and maximum indentation depth. For 
the layered materials (film-substrate systems), the elastic deformation under an indenter 
is studied. Various material parameters are investigated, including film thickness and 
modulus. A generalized power law equation is presented for characterizing the 
indentation load-displacement responses of film-substrate structures.  

KEYWORDS: Indentation; Spherical indenter; Homogeneous Material; Layered 
Material; Finite Element Method. 

SIVA N V R K KURAPATI 

  DATE: 01/16/2008 

 

 

 

Copyright © Siva N V R K Kurapati 2009

 



ELASTIC-PLASTIC INDENTATION DEFORMATION IN HOMOGENEOUS AND 
LAYERED MATERIALS: FINITE ELEMENT ANALYSIS  

 

By 

 

SIVA NAGA VENKATA RAVI KIRAN KURAPATI 

 

 

Dr. Yuebin Charles Lu 

Co-Director of Thesis 

Dr. Fuqian Yang 

Co-Director of Thesis 

Copyright © Siva N V R K Kurapati 2009 

Dr. Scott L Stephens 

Director of Graduate Studies 

Date: 01/16/2009 

 

 

 



RULES FOR THE USE OF THESES 
 
 
Unpublished theses submitted for the Master’s degree and deposited in the University of 
Kentucky Library are as a rule open for inspection, but are to be used only with due 
regard to the rights of the authors. Bibliographical references may be noted, but 
quotations or summaries of parts may be published only with the permission of the 
author, and with the usual scholarly acknowledgments. 
 
Extensive copying or publication of the thesis in whole or in part also requires the 
consent of the Dean of the Graduate School of the University of Kentucky. 
 
A library that borrows this thesis for use by its patrons is expected to secure the signature 
of each user. 
 
Name            Date 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



THESIS 
 
 
 
 
 
 
 
 
 
 

SIVA NAGA VENKATA RAVI KIRAN KURAPATI 
 
 
 
 
 
 
 
 
 
 

THE GRADUATE SCHOOL 

UNIVERSITY OF KENTUCKY 

2009



ELASTIC-PLASTIC INDENTATION DEFORMATION IN HOMOGENEOUS AND 
LAYERED MATERIALS: FINITE ELEMENT ANALYSIS 

 
 
 
 

THESIS 
 
 

A thesis submitted in partial fulfillment of the  
requirements for the degree of Master of Science in Mechanical Engineering  

in the College of Engineering 
 at the University of Kentucky  

 
 
 

By  
 

SIVA NAGA VENKATA RAVI KIRAN KURAPATI 
 

Lexington, Kentucky 
 

Co-Directors: Dr. Yuebin Charles Lu, Assistant Professor of Mechanical Engineering  
and  Dr. Fuqian Yang, Assistant Professor of Materials Engineering  

 
Lexington, Kentucky  

 
2009 

 
 
 
 

Copyright © Siva N V R K Kurapati 2009 



 
 
 
 
 
 
 
 
 
 
 
 
 

Dedicated to my parents and family



iii 
 

ACKNOWLEDGEMENTS  
 

I am very grateful to my parents, my younger brother and my relatives for their immense 

love, moral and financial support. I wouldn’t have been here without their help. With due 

respect and love I would like to dedicate this thesis to my parents.  

I wish to thank my research advisor and committee chair, Dr. Yuebin Charles Lu, for his 

intellectual support and enthusiasm on the whole process of this research project and 

thesis writing, which made this thesis possible. I thank Dr. Fuqian Yang for his valuable 

guidance throughout my research work and serving on my thesis committee as co-chair. I 

genuinely appreciate for his continuous encouragement.  

I am thankful to Dr. Tingwen Wu and Dr. Haluk Karaca for being as my committee 

members, for their precious suggestions and persistent support. I am also thankful to 

Colleagues and friends in the research group who offered many discussions that were 

helpful for this work.  

I am grateful to my parents for their support and encouragement. They are my 

indispensable impetus to move forward. 

 

 

 

 

 

 



iv 
 

Table of Contents 
 

 

ACKNOWLEDGEMENTS ............................................................................................... iii 

List of Tables .................................................................................................................... vii 

List of Figures .................................................................................................................. viii 

1.0 Introduction ...............................................................................................................1 

1.1 Background ...........................................................................................................1 

1.2 Objectives of the Thesis ........................................................................................5 

1.3 Organization of the Thesis ....................................................................................5 

2.0 Review of Literatures ................................................................................................7 

2.1 Elastic-Plastic Indentation of Homogeneous Materials ........................................7 

2.2 Elastic-Plastic Indentation of Layered Materials (Thin Film-Substrate Systems)10 

3.0 Finite Element Modeling ........................................................................................14 

3.1 Introduction .........................................................................................................14 

3.2 ABAQUS Software Package ...............................................................................14 

3.3 Nonlinear Analysis in ABAQUS ........................................................................15 

3.4 Material Characteristics .......................................................................................17 

3.1.1 Linear Elastic Model ....................................................................................17 

3.1.2 Power Law Work Hardening Models ..........................................................18 



v 
 

3.5 Modeling of Indentation Deformation ................................................................20 

3.6 Types of Load Application ..................................................................................22 

3.7 Contact Interaction ..............................................................................................24 

4.0 Elastic-Plastic Indentation of Homogeneous Materials ..........................................25 

4.1 Introduction .........................................................................................................25 

4.2 Spherical Indentation as a Boundary Value Problem ..........................................25 

4.3 Finite Element Model of Homogeneous Material ...............................................28 

4.4 Results and Discussion ........................................................................................30 

4.4.1 Validation of the Spherical Indentation .......................................................30 

4.4.2 Load-Displacement Response ......................................................................33 

4.4.3 Elastic Energy ..............................................................................................37 

4.4.4 Surface Profile .............................................................................................40 

4.5 Summary .............................................................................................................43 

5.0 Elastic Indentation of Layered Materials ................................................................44 

5.1 Introduction ..............................................................................................................44 

5.2 Spherical Indentation as a Boundary Value Problem ..........................................45 

5.3 Finite Element Model of Film-Substrate Systems ..............................................47 

5.4 Results and Discussion ........................................................................................51 

5.4.1 Load-Displacement Response ......................................................................51 



vi 
 

5.4.4 Effect of Film Thickness ..............................................................................54 

5.4.5 Effect of Film Elastic Modulus ....................................................................56 

5.4.6 Load-displacement Relation: A Generalized Power Law Model ................59 

6.0 Conclusions and Future Work ................................................................................64 

6.1 Conclusions .........................................................................................................64 

6.2 Future Works .......................................................................................................66 

Appendix - A......................................................................................................................68 

References ........................................................................................................................102 

VITA  ..............................................................................................................................114 

 



vii 
 

List of Tables 

 

Table 4.4-1 Different Properties of the Indentation.   ....................................................... 39

Table 5.3-1  Film Thickness Used in Finite Element Analysis.   ...................................... 49

Table 5.3-2  Material Properties of the Substrate Used in Finite Element Analysis.   ...... 49

Table 5.3-3  Ratio of Young’s Modulus for Film and Substrate   ..................................... 49

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

List of Figures 
 

Figure 1.1-1  The hardness test as illustrated by a sphere. (a) A loaded indenter is placed 

in contact with the specimen; (b) The hardness number depends on the 

indentation that remains when the indenter is removed. The indentation can 

be estimated either by the impression area or the impression depth - O’Neill 

1967 [9].   ........................................................................................................ 2

Figure 1.1-2 A Commercial Nanoindentation Apparatus for Nano-Scale Mechanical 

Measurements   (MTS Nano Indenter User’s Manuel, [81]).   ....................... 3

Figure 3.5-1 – Schematic Diagrams Show that a 3-D Indentation Problem Can Be Solved 

Using A 2-D Axisymmetric Model.                                                          

(Left) 3-dimensional indentation, (right) 2-dimensional axisymmetric 

model.   .......................................................................................................... 21

Figure 3.6-1  Load-Depth Curve Comparisons for Different Loading Methods   ............. 23

Figure 4.2-1  Schematic of the Axisymmetric Indentation of a Semi-Infinite Elastoplastic 

Material with a Spherical Indenter   .............................................................. 26

Figure 4.3-1  Finite Element Model of the Homogeneous Model   .................................... 29

Figure 4.3-2  Stress Strain Curves for Different Strain Hardening Indices   ...................... 29

Figure 4.4-1  Comparison of Reaction Force from FEM Model and Hertz Model for 

Spherical Indenter   ....................................................................................... 32

Figure 4.4-2 Typical Indentation Loading-Unloading Curves for Various Strain 

Hardening Indexes   ....................................................................................... 34



ix 
 

Figure 4.4-3  Dependence of the Ratio of the Dimensionless Load ( 2/F ERπ ) to the 

Dimensionless Depth ( / Rδ ) on the Strain Hardening Index;                                           

(a) The Results for / 0.1Rδ ≤ , & (b) The Results for / 0.1Rδ ≥  .............. 35 

Figure 4.4-4  Dependence of the Ratio of the Dimensionless Load ( 2/F ERπ ) to the 

Dimensionless Depth ( / Rδ ) on the Indentation Depth for Different Strain 

Hardening Indexes   ....................................................................................... 36

Figure 4.4-5 Dependence of the Energy Ratio,  / plasticE W , on the Depth Ratio, max/ rδ δ  

for Various Strain Hardening Indexes   ......................................................... 40

Figure 4.4-6 Sketch of Pile-Up Occurred During Indentation of an Elastic-Plastic 

Material.   ...................................................................................................... 41

Figure 4.4-7 Surface Profiles of a Specimen under a Spherical Indenter.   ....................... 41

Figure 4.4-8 Dependence of the Pile-Up on the Strain Hardening Index.   ....................... 42

Figure 5.2-1  Schematic of the Axi-Symmetric Indentation of a Semi-Infinite Thin Film-

substrate Material with a Spherical Indenter.   .............................................. 45

Figure 5.3-1  Finite Element Model of a Double Layer Model.   ....................................... 48

Figure 5.3-2  Comparison of the FEM Result with the Hertz Equation.   .......................... 50

Figure 5.4-1  Load-displacement Curve for Soft Film-Hard Substrate   ........................... 51

Figure 5.4-2  Load-displacement Curve for Hard Film-Soft Substrate   ........................... 52

Figure 5.4-3 Stress Patterns for (a) Soft Film Over Hard Substrate and (b) Hard Film   ... 53

Figure 5.4-4  Variation of Load-displacement Data with Increase in the Layer Thickness 

(E1/E2=2.2)   .................................................................................................. 54

Figure 5.4-5  Variation of Load-displacement Data with increase in the Layer Thickness 

(E1/E2=0.45)   ................................................................................................ 55



x 
 

Figure 5.4-6  Variation of Maximum Mises Stress for Soft Thin Film over Hard Substrate 

Model   .......................................................................................................... 55

Figure 5.4-7  Variation of Maximum Mises Stress for Hard Thin Film over Soft 

Substrate Model   ........................................................................................... 56

Figure 5.4-8  Variation of Load-displacement Data for Different Layer and Substrate 

Combinations for a Given Thickness of the Layer   ..................................... 58

Figure 5.4-9 Variation of Maximum Mises Stress for a Given Thin Film-substrate Model 

with the Ratio of the Young’s Modulus of Thin Film and Substrate   .......... 59

Figure 5.4-10 Load-displacement Curves from FEM and from Equation Generated 

(h/R=0.5 & E1/E2-5).   ................................................................................... 62

 

 



1 
 

1.0 Introduction 
 

1.1  Background 

By virtue of the senses provided by the nature, all living things have always been 

sensing and distinguishing the hard and soft nature of the objects that they come 

across in their day to day life right from the day of existence. But it was not until 

recently that humans learn the importance of this unique sensing quality, which can 

be effectively used in their quest to make things which fulfill their requirements. 

The difference between the hard and soft surface can be defined by the hardness 

nature of the surface, but quantitative evaluation of the hardness was not made 

possible until Johan August Brinell (1849-1925) who developed  the hardness test, 

also known as the “indentation” test, a non-destructive means to categorize the 

steels in the Fagersta Ironworks as a chief engineer at Jernkontoret. Since then, 

other standard hardness tests have been developed and are routinely used, including 

the Vickers, Knoop, and Rockwell tests. Usually the hardness is determined by 

indenting a surface using a harder surface (a steel ball in Brinell method, a square-

based pyramid with an angle of 136° between opposite faces in Vickers method, a 

pyramidal diamond in Knoop method, and a diamond cone in Rockwell method)  to 

form a permanent impression with plastic deformation, and is defined by a number 

called as hardness number obtained by the ratio of the applied load to the projected 

area of the residual surface. A illustration of hardness test using a sphere is shown 

in Figure 1.1-1. 
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Figure 1.1-1  The hardness test as illustrated by a sphere. (a) A loaded indenter 

is placed in contact with the specimen; (b) The hardness number depends on the 

indentation that remains when the indenter is removed. The indentation can be 

estimated either by the impression area or the impression depth - O’Neill 1967 [9]. 

 

In the past two decades, a more sophisticated form of indentation test has been 

developed, namely “microindentation” or “nanoindentation” test. The renewed 

interest in developing this small-scale indentation has been driven mostly by the 

modern interests in designing micro-/nano- materials and structures and in studying 

the micro-/nano- mechanics and deformation. The small-scale instruments are made 

possible by the improvements in piezoelectric positioning instrumentation which 

allow for the atomically precise displacement control.  
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Figure 1.1-2 A Commercial Nanoindentation Apparatus for Nano-Scale 

Mechanical Measurements   (MTS Nano Indenter User’s Manuel, [81]). 

 



4 
 

The new “microindentation” or “nanoindentation” test offers significant advantages 

over a traditional hardness test. In this test, an indenter tip is pushed into the surface 

of the material under precise load or displacement control (the load and 

displacement resolutions are in the magnitude of mille-Newton (µN) and nanometer 

(nm), respectively). The extremely small forces and displacements are recorded 

continuously throughout the loading-unloading cycle. By analyzing the load-

displacement curve, one can obtain many material properties which extend beyond 

the obtainable from the standard hardness test.  

The elastic deformation under a microindenter or nanoindenter can be well 

described by the classical contact theories developed by Hertz [1] and Sneddon [4]. 

Based on these theories, the elastic properties of the materials are calculated. 

However, the plastic deformation under the indenter is much more complex. Since 

the constitutive equations are nonlinear and a number of material parameters must 

be included to describe material behavior (e.g., yield strength and work hardening 

exponent), analytical solutions are not easily obtained. The available theoretical 

treatments are limited because of the simplifying assumptions required to make 

such analysis tractable. As a result, much of our understanding of the importance of 

plasticity in the indenter contact problems has been derived through 

experimentation and finite element modeling (FEM). With the advancements of 

computational methods and computer hardware, the FEM has proven to be effective 

tool in conducting a pre assessment of the procedure that is being considered. 
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1.2 Objectives of the Thesis 

 

In this thesis, we conducted the finite element analysis on the indentation of 

homogeneous and layered materials. The overall objective is to study the elastic-

plastic deformation occurred under the indenter in both homogeneous and layered 

material systems. For homogeneous materials, existing work as reported in 

literatures mostly deal with shallower indentation (the normalized indentation depth 

δ/R<0.05 where δ is the indenter penetration and R is the indenter radius). The 

present analysis focuses on relatively “deeper” indentation, where the normalized 

indentation depth reaches a unity (δ/R≈1). The load-displacement response and 

mechanical energy at that level of indentation are explored. For the indentation of 

layered materials (film-substrate systems), the classical Hertz contact theorem 

becomes invalid. The present analysis aims to explore the load-displacement 

responses of layered materials with various film/substrate properties, and then to 

find a empirical equation to characterize these responses.    

 

1.3  Organization of the Thesis 

 

The second chapter (Chapter 2) details the literature in the areas of the deep 

indentation of homogenous and layered materials. There is a large volume of 

literature dealt with micro-/nano-indentation. The review is focused on the 
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numerical aspects of nanoindentation analysis (using finite element method).  

Chapter 3 gives a brief overview of the finite element method (FEM) used in the 

present work in relation to the indentation models as well as a brief review of the 

software package ABAQUS used to obtain the present results.  Chapter 4 details the 

work concerning the elastic-plastic indentation of homogeneous materials. Chapter 

5 details the work concerning the elastic indentation of layered materials. Chapter 6 

summarizes the overall results and gives in brief the possible future work. 
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2.0 Review of Literatures 
 

 

2.1 Elastic-Plastic Indentation of Homogeneous Materials 

 

Various methods have been developed to solve the indentation deformation of 

elastic materials, including the use of stress-potential functions and integral 

transforms [1-4, 7, 50, 72]. Those analytical solutions provide the rational for 

characterizing the elastic properties of materials from micro- or nano-indentation. 

Finite element modeling has been applied to indentation measurements to help 

understand the indentation process and improve the accuracy of the analytical 

methods.  

 

Bhattacharya and Nix [20, 23] used the finite element method to study the 

indentation experiment. A simulation on conical indentation was performed. The 

indentation load-depth curves were obtained, from which the elastic modulus was 

calculated. The results justified the use of the stiffness method commonly used in 

analyzing nanoindentation data. Pharr and Bolshakov [51] conducted similar 

analysis on Berkovich indentation. Using finite element simulation, they analyzed 

the deformation process during unloading and proposed the concept of “effective 

indenter shape”. The concept provides a physical justification to the mathematical 

equation used to describe the nano-indentation unloading curve.     
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Larsson et al [44] performed finite element simulation of Berkovich indentation. 

The indentation load-depth curves were obtained and then compared to 

experimental measurements. The contact area between material and indenter was 

computed based on the displacement contours.  Shih et al. [25] evaluated the effect 

of the indenter tip on the relation between contact area and depth of indent. The 

blunt tip geometry of the so-called nano-indenter is modeled by a spherical cap of 

various radii. It was found that the relation between area and penetration depth of 

the indenter is comparable with experimental results only if the radius of the tip is 

above 1.0 µm.  A similar study was conducted later by Cheng and Cheng [54] using 

finite element method and the effect of indenter tip roundness on indentation 

measurement was comprehensively studied.  

 

The elastoplastic deformation during indentation is much more complex; and there 

is no analytical solution describing the indentation deformation. Numerical analysis 

has become a major technique to study the indentation deformation of elastoplastic 

materials [25, 33, 38, 40, 48-50, 87].  

 

Shu and Fleck [48], Sinisa, Mesarovic and Fleck [62] conducted the finite element 

simulation on spherical indentation. The elastic-plastic deformation under the 

sphere was analyzed using the linear power law theory and Ramberg-Osgood law. 

The boundary of the plastic zone was analyzed as a function of elastic and plastic 

properties of the indented materials.  The friction between the indenter and the 
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substrate was also investigated and found to have a strong effect on strain field 

beneath the indenter. The indenter size effect on indentation was also evaluated 

using the theory of the strain gradient plasticity.  

 

Taljat et al. [49, 79] used the finite element method to study the material pile-up 

occurred around elastic-plastic indentation. A wide range of materials with different 

elastic moduli, yield strength, strain hardening exponents, and friction coefficients 

were examined. Results showed that the material pile-up increases as the indenter is 

driven into the material, even when the deformation reached full plastic stage. The 

amount of pile-up was affected by the friction between indenter and material and 

the heights of the pile-up were quite different before and after unloading the 

indenter.  

 

Montmitonnet et al. [33] and Sadeghipour et al. [38] used the finite element method 

to study the friction and sliding/sticking phenomena between indenter and 

specimen. The formation of ring cracks developed in these materials was also 

discussed.  

 

Most of the studies mentioned above have been focused on relative shallower 

indentation. There is little study on deeper indentation of elastic-plastic materials. 
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Previously, the deep indentation of elastic-plastic materials was conducted with a 

flat-ended indenter, as seen in Appendix A. 

 

2.2 Elastic-Plastic Indentation of Layered Materials (Thin Film-Substrate 

Systems) 

 

In the indentation of homogeneous materials (as discussed in previous section), the 

material is assumed to have an infinite thickness. When the thickness of the 

specimen becomes finite (as in the case of film-substrate systems), the substrate will 

strongly affect the indentation measurement and this effect should be considered 

when calculating the film properties. Numerous investigators have used both 

experimental [17, 24, 47, 52, 57] and theoretical [16, 18, 22, 26, 50] methods to 

study the problem of extracting ‘true’ film properties from nano-indentation of 

film/substrate systems. Finite element technique has also been employed to simulate 

the elastic and plastic response of the layered materials.  

 

King [16] has studied the elastic properties of the films adhered on rigid substrates. 

It was found that the substrate played a dominating role in increasing or decreasing 

the hardness of a film. Doerner et al [14] examined the plastic properties of the 

films (Al and W) on silicone substrate (Si). The effect of thickness on the strength 

of Al and W thin films on Si was studied. For Al the film strength was found to 
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increase with decreasing film thickness whereas for tungsten the strength decreases 

with decreasing film thickness. The effective composite Young’s modulus, Eeff, in a 

layered solid can be described as a function of plane strain Young’s modulus,

 1
𝐸𝐸∗

= (1−𝜐𝜐2)
𝐸𝐸

 , of the relevant materials: 1
𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒
∗ = 1

𝐸𝐸𝑒𝑒
∗ �1 − 𝑒𝑒−𝛽𝛽�

𝑡𝑡
ℎ�� + 1

𝐸𝐸𝑠𝑠∗
𝑒𝑒−𝛽𝛽(𝑡𝑡ℎ)  where 

β is an unknown parameter, t the film thickness, E Young’s modulus, and ν 

Poisson’s ratio. Subscripts f and s refer to the film and substrate properties, 

respectively.  

 

Djabella and Arnell [31] used finite element method to investigate the contact 

stresses due to Hertzian indentation of coating/substrate systems consisting of a 

high modulus surface coating on a relatively low modulus substrate. The stresses 

which cause the coating failure in-plane compressive tensile and interfacial shear 

stresses depend on the coating thickness and the modulus ratio in a complicated 

fashion i.e., the stress is compressive and tensile for different thickness of the layer. 

Also using FEM, Cai [33] studied the influence of different parameters involved in 

calculation of the material properties in indentation and the most influential 

parameters, the geometry and the blunting of the indenter tip, cause a decrease or an 

increase of the calculated hardness at very low indentation depths. It is also reported 

that the calculations depend on the substrate properties.  
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Page and Hainsworth [36] studied the coated systems and found that the critical 

ratio of thickness is a function of the yield strength ratio of the coating to the 

substrate and the indenter tip radius. The effect of thickness on the stress magnitude 

is demonstrated by normal stress σzz and the principal stress on a Zirconia-stainless 

steel couple. It was reported, to reduce the substrate effect the indentation 

penetration should be less than 15% of the layer thickness [47]. The roundness or 

truncation of the indenter tip is crucial for the measurement of thin films using 

nanoindentation, based on the finite element analysis conducted by Tang and Arnell 

[54]. 

 

Mesarovic and Fleck [62] conducted comprehensive finite element studies on 

layered systems and found that the substrate hardness effect over the film hardness 

for a soft film over the hard substrate was negligible but the effect was considerable 

for the hard film over the soft substrate. The results from Chollacoop et al [73] had 

showed that to eliminate the substrate effect the indentation displacement should be 

only 5% of the thickness instead of 10% the rule of thumb. 

 

Using an axi-symmetric conical indenter and FEM, Panich and Sun [80] studied the 

influence of yield strength ratio on critical indentation depth. For the range of 0.2-

0.8 of yield strength ratio the critical depth increased with the decreasing ratio and 

below 0.2 an abrupt increase was reported. A model is generated to study the 

loading and unloading curves for either the coating or the substrate for a wide range 

of depths. The mechanical properties obtained using this model is sensitive to the 
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indentation depth. It was reported that at large indentation depths, the properties are 

asymptotic to values of the substrate [83]. Numerical simulation of bulk materials 

pure copper, pure titanium, pure iron and copper film are obtained using ABAQUS. 

It was found that the results depended greatly on mesh size, indenter tip radius and 

the hardening law used [84]. 

 

So far, most published work has been using the finite element method to simulate 

the deformation process. Fewer have focused on the quantitative aspects of the 

indentation of layered materials, i.e., the load-displacement responses.  The 

classical Hertz contact theory that is used to characterize the load-displacement 

curves of homogeneous materials is invalid for the indentation of layered materials. 

An empirical solution for describing the load-displacement responses of layered 

materials is still lacking.   
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3.0 Finite Element Modeling 
 

 

3.1 Introduction       

 

In the present work, the finite element method was used to study the elastic-plastic 

deformation in homogeneous and layered materials. A spherical indenter was used. 

The advantage of using spherical indenter, as compared to other indenters, lies in 

the fact that the indentation strain increases with the penetration depth so that the 

deformation transitions from purely elastic at small indentation to elastic-plastic at 

large indentation. Finite element analysis (FEA) software package ABAQUS 

version 6.7 [92] was used in the indentation simulation which is a commercial 

product. In this chapter, a brief overview about the FEA software and analysis 

procedure is presented. 

 

3.2 ABAQUS Software Package       

 

ABAQUS is developed by Hibbitt, Karlsson & Sorensen, Inc [92]. It is a complete 

package of powerful engineering simulation programs, based on the finite element 

method. This simulation software is capable of performing simple linear analysis to 

the most complex nonlinear simulations.  
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ABAQUS-Standard and ABAQUS-Explicit are two main analysis modules 

available in ABAQUS. ABAQUS-Standard is an all purpose analysis module that 

can solve a variety of problems covering linear and nonlinear problems maintaining 

the accuracy and the reliability of the results. ABAQUS-Explicit is a special-

purpose analysis module that uses dynamic finite element formulation, which is 

applied to deal with the problems of transient and dynamic in nature. The 

indentation procedure is assumed to be quasi-static problem, in which no time 

effect is considered. Hence ABAQUS-Standard is used in this work. ABAQUS 

process of solving usually consists of three distinct stages: preprocessing, 

simulation and post processing. 

 

ABAQUS-CAE is the total ABAQUS working interface that includes all the 

options to generate ABAQUS models, to submit and monitor jobs for analysis and 

also a means to review the results. In the present work, ABAQUS-CAE is used for 

the preprocessor of different stages of the model creation starting from the creation 

of Part, Property, and Assembly, defining the Step, Interaction, Load, Mesh, and 

generating the Job from the respective module and postprocessor to extract the 

results using Visualization module. 

 

3.3 Nonlinear Analysis in ABAQUS 

 
Non-linearity in simulating the indentation problem is primarily due to two sources 

one of which is material nonlinearity and the other is geometric nonlinearity. 
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Stress strain follows Hooke’s law giving a linear relationship at low strain values 

which is true for most of the metals but at higher strains the material yields, at 

which point the relationship becomes nonlinear and  irreversible, can be described 

as material nonlinearity. The process of indentation generates large deformation in 

the specimens below and around the indenter. The magnitude of displacement 

affects the response of the structure can be stated as the geometry nonlinearity. 

 

Newton-Raphson method is used in ABAQUS to obtain solutions for nonlinear 

problems. By applying the specified loads gradually and incrementally the solution 

is found reaching towards the final solution. ABAQUS breaks the analysis into a 

number of load increments and finds the approximate equilibrium configuration at 

the end of each load increment. Hence it often takes ABAQUS several iterations to 

find an acceptable solution for a defined loading condition. The sum of all of the 

incremental responses is the approximate solution for the nonlinear analysis.  

 

The load history for a simulation may have one or more steps. The steps consists 

the information related to the type of the analysis to be performed like static, 

thermal etc., and the different loading conditions for each specific type of analysis 

and the different output requests as required by the user depending on the type of 

the problem. Since ABAQUS carries out the analysis in small increments, an 

increment is part of a step. Hence in a nonlinear analysis the total load applied in a 

step is broken into smaller increments so that the nonlinear solution can be analyzed 
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making it linear between very small increments. However the user suggests the size 

of the first increment and ABAQUS program automatically chooses the size of the 

subsequent increments. At the end of each increment the structure is in approximate 

equilibrium and results are available for writing to the restart, data or results files. 

ABAQUS uses several iterations in an attempt to find equilibrium solution. In a 

nonlinear analysis a step takes place over a finite period of ‘time’, although this 

‘time’ has no physical meaning unless otherwise inertial effects or rate dependent 

behavior are important. 

 

3.4 Material Characteristics 

3.1.1 Linear Elastic Model 

 

Elastic deformation is observed in all the materials, when the deformation is small. 

For isotropic linear elastic materials, the deformation is proportional to the applied 

load. For a uniaxial tension state the stress-strain relationship can be expressed as 

Equation 3.4-1 

σ=Eε      ----------------3.4.1 

where ε is the uni-axial strain, σ is the uni-axial stress, and E, is the elastic 

modulus, the proportional coefficient  also known as Young’s modulus. 

In three dimensional state, the stress-strain relationship of a linear elastic material 

can be expressed as   

Equation 3.4-2  
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            𝜎𝜎𝑖𝑖𝑖𝑖 = 𝐸𝐸
1+𝜐𝜐

𝜀𝜀𝑖𝑖𝑖𝑖 + 𝐸𝐸𝜐𝜐
(1+𝜐𝜐)(1−2𝜐𝜐)

𝛿𝛿𝑖𝑖𝑖𝑖 𝜀𝜀𝑘𝑘𝑘𝑘    ----------------3.4.2 

 where 𝜎𝜎𝑖𝑖𝑖𝑖  and 𝜀𝜀𝑖𝑖𝑖𝑖  are the stress components and strain components respectively. υ 

is the Poisson’s ratio which is a measure of transverse strain against axial strain 

when a uniaxial stress is applied. 

 

3.1.2 Power Law Work Hardening Models 
 
 

Once the external force applied on a material cross its elastic limit, the material will 

undergo plastic deformation. A power law work hardening model is accepted by 

most engineering materials such as metals and alloys approximately which is a 

material constitutive relation, the modified uniaxial stress-strain (σ-ε) curve of a 

stress free material can be expressed as 

 

Equation 3.4-3 

    �
𝜎𝜎 = 𝐸𝐸𝜀𝜀 𝑒𝑒𝑓𝑓𝑓𝑓 𝜀𝜀 ≤ 𝜎𝜎𝑦𝑦

𝐸𝐸

𝜎𝜎 = 𝐾𝐾𝜀𝜀𝑛𝑛  𝑒𝑒𝑓𝑓𝑓𝑓 𝜀𝜀 ≥ 𝜎𝜎𝑦𝑦
𝐸𝐸

�      ----------------3.4.3 

 

where E is elastic modulus, σy is yield stress, n is the work hardening exponent and   

K= σy(
𝐸𝐸
𝜎𝜎𝑦𝑦

)n is the work hardening rate. When n is zero, the above (Equation 3.4-3) 

reduces to an elastic-perfectly plastic material. To completely characterize the 

elasto-plastic properties of a power-law material, four independent parameters, i.e., 

elastic modulus E, yield stress σy, work-hardening exponent n, and Poisson’s ratio 
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υ, are needed. One of the major objectives of this thesis, is to relate these 

parameters (E, σy, n, υ) with the indentation responses. Since indentation induces 

very complicated stress and strain field beneath the indenter, FEM results obtained 

are useful in guiding future experiments. 

 

To define the plastic properties of a material in ABAQUS the power law hardening 

material model is used, a true stress strain data spreadsheet at first is generated from 

the Equation 3.4-3. Then using the below equation, plastic strain (εp) is calculated.  

Equation 3.4-4 

       𝜀𝜀𝑝𝑝 = 𝜀𝜀 − 𝜎𝜎𝑦𝑦
𝐸𝐸

     ----------------

3.4.4 

 

One thing to point out is the unit system in the FEM simulation. Since the 

ABAQUS does not specify a unit system, the users could use a unit system 

arbitrarily, as long as they are in consistency in one problem. In this problem, we 

are considering Newton (N) for the force(load) and millimeter (mm) as the unit for 

the penetration(displacement). So the input mechanical properties value should be 

converted to be consistent with the units. For example, for 6061 T6 aluminum 

alloys, E=69 GPa, σY=255 MPa. In ABAQUS, for aluminum the value of Young’s 

modulus input as E=69000 N/(mm)2 and σy=255N/(mm)2 and for silicon the 

respective values are E=150000 N/(mm)2 and σy=4410N/(mm)2. 
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3.5 Modeling of Indentation Deformation 

 

Due to the symmetries of both geometry and loading condition, the present 

indentation problem can be reduced to an axi-symmetric (2-dimensional) model.  

Since the indenter is much stiffer than the solids, the indenter is considered to be 

perfectly rigid and is modeled as analytical rigid surface. It is cost-effective since 

the only variables associated with a rigid surface are the translations and rotations 

on a single node, known as the rigid body reference node. In our case, reference 

point is assigned on the indenter tip, which manipulates the rigid body translation of 

the indenter. In addition, ABAQUS does not need to calculate the stiffness or 

stresses within the rigid body. The rigid surface is always the master surface in a 

contact pair. 
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Figure 3.5-1 – Schematic Diagrams Show that a 3-D Indentation Problem Can Be 

Solved Using A 2-D Axisymmetric Model.                                                          

(Left) 3-dimensional indentation, (right) 2-dimensional axisymmetric model. 

 

Four-node axi-symmetric linear quadrilateral elements are employed in the analysis. 

The Reduced integration option available is used to save calculation time. The 

element type used in ABAQUS is ‘CAX4R’, in which the letter or number indicates 

the type of element which is of continuum type, axi-symmetric in nature has 4-

nodes bilinear and reduced integration with hourglass control respectively. 

ABAQUS user manual [92] indicates, while selecting elements for contact analysis, 

it is better to use first-order elements for those parts of a model which will form a 

slave surface. Second order elements can cause problems in contact simulations 

because of the way these elements calculate consistent nodal loads for a constant 

pressure.  
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3.6 Types of Load Application 

 

In ABAQUS there are two methods to simulate the process of indentation into a 

half space material: load control and displacement control. 

 

A concentrated force is applied to an analytically rigid indenter in the load 

controlled mode. In order to avoid the non linearity in the finite element analysis 

the total load is applied in incremental steps as the applied load is large. The entire 

load increments are divided such that the total time for the step is 1. Linear 

interpolation is employed for each increment in the step, to calculate real load F. 

For the applied concentrated force the rigid indenter penetrates into the half space 

material.  Hence calculating the displacement of a node of the material right below 

the indenter gives the indenter penetration depth. Measuring these two quantities 

the force applied and the indenter penetration can be used to generate the load 

displacement data. 

 

In the case of the displacement controlled analysis displacement is specified as 

input, which is equal to the indentation depth. As in the above case of force 

controlled, here the indentation depth (δ) is calculated by linear proportion to the 

incremental time. For the applied displacement the reaction load (F) on the indenter 

is the summation of force over the contact zone along the penetration direction. 

Hence the F-δ curve is obtained. 
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Two simulations based on these two methods respectively are performed to observe 

the influence. The material is selected as aluminum, which has the material 

mechanical properties as below: 

E=69 GPa, ν=0.33 

 

The spherical indenter which has diameter of 100mm is used in the simulation. The 

load-displacement curves (F-δ) are extracted respectively from both simulations 

and results are shown in (Figure 3.6-1). The comparison shows the two curves 

overlapped each other very well, which indicates the results are essentially the same 

no matter which method of applying load is used. In the subsequent simulations, the 

‘control displacement’ method is employed unless otherwise specified. 

 

 

 

Figure 3.6-1  Load-Depth Curve Comparisons for Different Loading Methods 
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3.7 Contact Interaction 

 
Since Indentation is an example of typical contact problem, it is very important to 

define the contact formulation in ABAQUS. In general the interaction between 

contacting surfaces consists of two components: one normal to the surfaces and one 

tangential to the surfaces. The normal component may be referred as contact 

pressure and the tangential component generates the relative motion (sliding) of the 

surfaces involving friction. ABAQUS uses Coulomb friction model to define the 

interaction of contacting surfaces. The model characterizes the friction behavior 

between the surfaces using a coefficient of friction μ. The product μP, where P is 

the contact pressure between the two surfaces, gives the limiting frictional shear 

stress. The contact surfaces will not slip (sliding relative to each other) until the 

shear stress across their interface equals the limiting frictional shear stress, μP.   

 

In our work it is assumed that the friction effect is negligible and μ=0 is defined in 

all the models assuming there is no slip between the surfaces in contact. The 

interaction between the indenter and the specimen is modeled as contact pair 

without any friction. According to ABAQUS user manual [92], the indenter surface 

is defined as the ‘master’ surface since the indenter is rigid body. The top of the 

specimen is the ‘slave’ surface.  
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4.0 Elastic-Plastic Indentation of Homogeneous Materials 

 

4.1 Introduction 

 

In this chapter, the finite element method is used to analyze the indentation of 

elasto-plastic materials by a rigid, spherical indenter. The elastoplastic materials are 

modeled by a power-law constitutive relationship between stress and strain. In 

contrast to the work reported in literature, the focus is on deep indentation and on 

the effect of the strain hardening index on the indentation deformation. Discussions 

are also given on the effect of the strain hardening index on the energy ratio of the 

dissipated plastic energy to the total mechanical work. In the simulation, we 

assume: 1) the material is isotropic and homogeneous, 2) the system is isothermal, 

and 3) the material is not subjected to body force. 

 

4.2 Spherical Indentation as a Boundary Value Problem 

 

Without any body force, the mechanical equilibrium conditions are valid during 

indentation, 
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Equation 4.2-1 

0ij

jx
∂σ

=
∂

                      ----------------4.2.1                                   

 

Figure 4.2-1  Schematic of the Axisymmetric Indentation of a Semi-Infinite 

Elastoplastic Material with a Spherical Indenter 

 

where ijσ  ( ,  1,  2,  3i j = ) are the components of the stress tensor and ix  are the 

components of the position vector of a material point. 
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As shown in (Figure 4.2-1), a rigid, spherical indenter is pressed onto the surface of 

a semi-infinite elasto-plastic material. The contact boundary conditions in a 

cylindrical coordinate ( ,  ,  )r zθ  are 

Equation 4.2-2 

( ,0) 0rz rσ =     for r a<    ----------------4.2.2 

Equation 4.2-3 

( ,0) ( )zu r f r= − δ  for r a<   ----------------4.2.3 

where rzσ  and zzσ  are respectively the shear and normal components of the stress 

tensor, zu  is the displacement component along the loading direction, ( )f r  is the 

surface profile of the indenter tip, δ  is the displacement of the indenter, and a  is 

the radius of the contact area to be determined in the simulation.  

Equation 4.2-2 and Equation 4.2-3 represents the condition of frictionless contact 

between the indenter and the material. Outside the contact area, the surface is at 

stress-free state, i.e. 

Equation 4.2-4 

( ,0) ( ,0) 0rz zzr rσ = σ =  for  r a>   ----------------4.2.4 

The far field condition requires, ( , ) 0rz r zσ → , ( , ) 0zz r zσ → , ( , ) 0ru r z → , and 

( , ) 0zu r z →  as r → ∞  or z → −∞ . The indentation load applied to the indenter 

can be calculated as 
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Equation 4.2-5 

0
2 ( ,0)

a

zzF r rdr= − π σ∫   ----------------4.2.5  

4.3 Finite Element Model of Homogeneous Material 

 

The overall size of the finite element model is taken large enough to ensure the 

characteristic of a half space. The ratio of the radius of the rigid, spherical indenter 

to the length of the geometrical model is 1:12 along the loading and radial 

directions to allow for considerable decrease in deformation before reaching 

constrained boundaries. As shown in (Figure 4.3-1) finer mesh is created around the 

indenter and the element size is increased making the mesh denser away from the 

indenter towards the boundary of the model. 

 

Using the homogenous model the effect of strain hardening index ‘n’ in Equation 

3.4-3 is analyzed by varying the material properties generated using Equation 3.4-3. 

Figure 4.3-2 shows the variation of the material properties for different strain 

hardening indices which are used. 



29 
 

    

            Figure 4.3-1  Finite Element Model of the Homogeneous Model 

 

 

Figure 4.3-2  Stress Strain Curves for Different Strain Hardening Indices 
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4.4 Results and Discussion 

 

4.4.1 Validation of the Spherical Indentation 

 

A general theoretical framework can be proposed in terms of the original 

formulation derived by Hertz [1]. In the context of F-δ measurements on a flat 

surface (with infinite radius of curvature), which is indented by an elastic sphere, 

Hertz showed that: 

Equation 4.4-1 

          𝐹𝐹 = 𝐶𝐶δ
3
2     ----------------4.4.1 

Equation 4.4-2 

        𝐶𝐶 = 2√2
3
𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒 𝐷𝐷

1
2       ----------------4.4.2 

where D is the diameter of the sphere and Eeff is the reduced Young’s modulus of 

the specimen indenter system defined by Equation 4.4-3. 

Equation 4.4-3 

               
1

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒
= 1−𝜐𝜐2

𝐸𝐸
+ 1−𝜐𝜐𝑖𝑖

2

𝐸𝐸𝑖𝑖
  ----------------4.4.3 

Where E and 𝜐𝜐 are the elastic parameters for the material, Ei and 𝜐𝜐𝑖𝑖  are the elastic 

parameters related to indenter. 
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Assuming spherical indenter to be perfectly rigid the above equation for the force 

reduces to 

Equation 4.4-4 

            𝐹𝐹 = 2√2
3

𝐸𝐸√𝐷𝐷
1−𝜈𝜈2 𝛿𝛿

3
2   ----------------4.4.4 

  

4.4.1.1 Elastic finite element model 
 

 

In the elastic finite element model, the frictionless interface is assumed to compare 

results with the Hertz analytical solution. Only elastic properties are required to be 

input in ABAQUS. Here E=69 MPa and ν=0.33 are used. 

 

Since the analytical elastic solution is based on the assumption of small 

deformation, a relatively shallow indentation is simulated to compare with it. The 

maximum indentation depth δ=50 mm, using diameter D=100 mm indenter. Also 

the indenter here is assumed to be perfectly rigid. 
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Figure 4.4-1  Comparison of Reaction Force from FEM Model and Hertz Model 

for Spherical Indenter 

 

It can be noticed from (Figure 4.4-1) that the agreement of load-depth curve fits 

better in the small load than the large load. The latter part error on the comparison 

curve could result from the large deformation underneath the indenter caused by 

large load, which is not compatible with the small deformation assumption of 

elastic theory. In view of the favorable comparisons with Hertz analytical results, it 

may be concluded that the finite element mesh and modeling assumptions are 

appropriate for simulating the indentation of a half-space by a rigid sphere. 
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4.4.2 Load-Displacement Response 

 

 

The finite element simulation has been performed by using the condition of 

frictionless contact between the indenter and the material. The indentation results 

are normalized by using the parameters of 2/F ERπ  and / Rδ  for the indentation 

load and the indentation depth, respectively. Figure 4.4-2 shows the indentation 

loading-unloading curves for the strain hardening indexes of 0, 0.1, 0.2, 0.3, and 

0.4. Clearly, higher indentation load is required to make the same indentation depth 

for the materials of large strain hardening index than that for the materials of small 

strain hardening index. The strain hardening has no significant effect on the slope of 

the unloading curves at the onset of the unloading, as expected. This suggests that 

the unloading behavior is controlled by the elastic properties of materials if there is 

no change in the microstructure and defects of materials. It is worth mentioning that 

there exist numerous dislocations and dislocation networks in metals, which could 

alter the unloading behavior of metals due to plastic recovery. However, this work 

only focuses on the indentation deformation from continuum plasticity. 

 

Figure 4.4-3 shows the effect of the strain hardening index on the ratio of the 

dimensionless force, 2/F ERπ , to the dimensionless indentation depth, / Rδ . In 

general, the ratio increases with the increase in the strain hardening index for the 

same indentation depth due to the strain hardening behavior. However, 
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approximately linear relation between the strain hardening index and the ratio is 

observed for / 0.05Rδ <  and / 0.2Rδ ≥ . The ratio reaches the maximum value at 

/ 0.1Rδ ≈ , dependent of the strain hardening index. Such a behavior reveals the 

effect of the indenter size on the indentation deformation. The indentation 

deformation is a complicated function of the strain hardening index and the 

indentation load, even though the indentation depth increases with the increase in 

the indentation load.  

 

0

0.005

0.01

0.015

0.02

0.025

0 0.2 0.4 0.6 0.8 1

0.1
0.2
0.3

0.4
0

F/
πE

R2

δ/R

Strain hardening index: 

 

Figure 4.4-2 Typical Indentation Loading-Unloading Curves for Various Strain 

Hardening Indexes 

 

 



35 
 

0

0.01

0.02

0.03

0.04

0 0.1 0.2 0.3 0.4 0.5

0.002

0.01

0.02

0.05

0.1

F/
πδ

ER

n

δ/R:

  

(a)  

0

0.01

0.02

0.03

0.04

0 0.1 0.2 0.3 0.4 0.5

0.1
0.2
0.3

0.4
0.9

n

F/π
δE

R

δ/R:

 

(b) 

Figure 4.4-3  Dependence of the Ratio of the Dimensionless Load ( 2/F ERπ ) to the 

Dimensionless Depth ( / Rδ ) on the Strain Hardening Index;                                           

(a) The Results for / 0.1Rδ ≤ , & (b) The Results for / 0.1Rδ ≥  
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Figure 4.4-4  Dependence of the Ratio of the Dimensionless Load ( 2/F ERπ ) to 

the Dimensionless Depth ( / Rδ ) on the Indentation Depth for Different Strain 

Hardening Indexes 

 

In general, the indentation load is a power function of the indentation depth with the 

power in the range of 1.2 to 2 for shallow indentation. Figure 4.4-4 shows the 

dependence of the ratio on the indentation depth for different strain hardening 

indexes. The ratio increases first with increasing the indentation depth, reaches the 

maximum value, and then decreases with the indentation depth. The results suggest 

that the relation between the indentation depth and the indentation load cannot be 

simply described by a power function. Actually, such a power law relation can only 

hold for shallow indentation of / 0.05Rδ ≤  for 0.1 0.4n≤ ≤ , as shown in Figure 
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4.4-4. Caution needs to be taken in analyzing experimental results for indentations 

by rigid, spherical indenters. 

 

4.4.3 Elastic Energy 

 

 From the computed indentation loading-unloading curve, one can calculate the 

total mechanical work done to the material as 

Equation 4.4-5 

   
max

0
W Fd

δ
= δ∫                 ----------------4.4.5     

where maxδ  is the maximum indentation depth. The mechanical work can be 

calculated from the area under the indentation loading curve. One can calculate the 

elastic recovery energy released during the unloading process, Eelastic, as 

  Equation 4.4-6 

max

r
elastic unE F d

δ

δ
= δ∫     ----------------4.4.6 

where rδ  is the residual indentation depth. The elastic recovery energy can be 

evaluated from the area under the unloading curve. Thus the plastic energy 

dissipated in an indentation loading-unloading cycle, Eplastic, as represented by the 

area enclosed by the indentation loading-unloading curve and the depth axis, is 

given asEquation 4.4-7 

plastic elasticE W E= −        ----------------4.4.7
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Table 4.4-1 summarizes the different parameters of the indentation as function of 

strain hardening index. The stiffness decreases with increasing the strain hardening 

index. Residual depth is shown a reducing trend with the increasing ‘n’ for a given 

friction factor and for a given ‘n’ the residual depth decreased with increase in 

friction factor. Increase in reaction force was observed as 44% for n-0.1 from that 

of 0. The plastic energy and total energy increased constantly with ‘n’. 

 

It has been proposed [71] for sharp indenters that there exists a linear relationship 

between the energy ratio,  / plasticE W , and the indentation depth ratio, max/ rδ δ , for 

max/ 0.4rδ δ > . Figure 4.4-5 shows the dependence of the energy ratio on the 

indentation-depth ratio for the indentation depth up to 0.9R . Clearly, the energy 

ratio is a linear function of the indentation-depth ratio in accordance with the results 

for indentation by sharp indenters [71]. Using curve-fitting for a linear function, one 

can obtain the extrapolated value of the energy ratio as max/ 0rδ δ → . The 

extrapolated value of the energy ratio is 0.093 in contrast to the value of -0.27 given 

by Cheng et al. [71] for sharp instrumented indentations. Such a difference is likely 

due to the shape effect of the indenter tip, which creates different stress field 

underneath the indenter and different plastic deformation zone. Severer plastic 

deformation is made by sharp indenters than those by spherical indenters.  
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Table 4.4-1  Different properties of the indentation. 

 

 

 

 

  
n 

Contact 

stiffness 

Contact  

radius 

Max. 

depth 

Residual  

Depth 
E (total) E (plastic) 

Reaction 

force 

Yield stress 

location from 

indenter 

0 7786807 49.25 45 43.97 1.58E+08 1.56E+08 5.47E+06  

0.1 7540706 49.28 45 43.67 1.88E+08 1.85E+08 6.48E+06 156 

0.2 7429638 49.35 45 43.49 2.23E+08 2.19E+08 7.73E+06 166 

0.3 7404118 49.45 45 43.30 2.64E+08 2.58E+08 9.19E+06 177 

0.4 7398427 49.54 45 42.73 3.12E+08 3.03E+08 1.09E+07 184 
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Figure 4.4-5 Dependence of the Energy Ratio,  / plasticE W , on the Depth Ratio, 

max/ rδ δ  for Various Strain Hardening Indexes 

 

4.4.4 Surface Profile 

 

One of important parameters affecting the analysis of the indentation deformation is 

the size of the pile-up, δpile-up (Figure 4.4-6).  Pile-up occurs during the indentation 

of elasto-plastic materials. Bolshkov and Pharr [79] examined the significance of 

materials pile-up for conical indenters and found that if pile-up is neglected, the 

calculated material properties can be underestimated by as much as 60%.   
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Figure 4.4-6 Sketch of Pile-Up Occurred During Indentation of an Elastic-

Plastic Material. 

The material pile-up occurred during deep indentation by a spherical indenter was 

examined using the finite element simulation. The surface profiles during 

indentation were constructed, as seen in Figure 4.4-7, based upon the nodal 

displacements. From these plots, the amount of pile up was calculated.  

 

Figure 4.4-7 Surface Profiles of a Specimen under a Spherical Indenter.  
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Figure 4.4-8 Dependence of the Pile-Up on the Strain Hardening Index. 

 

 

Figure 4.4-8 shows the dependence of the pile-up on the strain hardening index with 

the maximum indentation depth of 0.9 R. The pile-up linearly decreases with the 

increase in the strain hardening index. The material has larger pile-up at the 

unloading state than that subjected to the peak indentation load. During the 

unloading, elastic recovery occurs which allows material to move to the self-

equilibrium state. 
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4.5   Summary 

 

The finite element analysis has been used to simulate the deep indentation of strain-

hardening, elastoplastic materials by a rigid, spherical indenter. The displacement of 

the indenter has been pushed up to 90% of the radius of the spherical indenter onto 

the materials. A linear relation is observed between the strain hardening index and 

the ratio of the peak indentation load to the maximum indentation depth. The power 

law relation between the indentation load and the indentation depth is only valid for 

shallow indentation of the maximum indentation depth up to 5% of the indenter 

radius. For deep indentation, the power law relation breaks, and caution needs to be 

taken in analyzing experimental results for deep indentations by spherical indenters. 

Similar to sharp instrumented indentation for the ratio of the residual indentation 

depth to the maximum indentation depth larger than 0.57, the ratio of the plastic 

energy to the total mechanical work is a linear function of the ratio of the residual 

indentation depth to the maximum indentation depth for the indentations by 

spherical indenters, independent of the strain hardening index. However, the 

extrapolated value of the energy ratio is different from that for the sharp 

instrumented indentation. 
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5.0 Elastic Indentation of Layered Materials 

 

        5.1 Introduction  

 

Layered materials (film-substrate systems) have been increasingly used in 

applications such as microelectronics, optoelectronics and protective coatings on 

engineering structures. The low-load/low-depth indentation, or nano-indentation, 

has recently been used to characterize the mechanical properties of films and multi 

layers. When a thin film is deposited on a substrate, the deformation and stress field 

in the resultant layered materials becomes much more complex. The classical Hertz 

contact theorem is no longer valid in characterizing the load-depth response for the 

indentation of a layered material. Considerable efforts have been devoted to 

analyzing the indentation on film-substrate systems, including experimental testing 

and analytical modeling.  In the present study, the finite element analysis was 

carried out on the film-substrate systems (layered materials) under a spherical 

indenter. The emphasis was placed on the quantitative aspects of the indentation: 

the load-depth response.  

 

There are two types of film-substrate systems:  soft film-hard substrate systems and 

hard film-soft substrate systems. Both types of system were modeled in the present 

study. In all studies, the substrate was assumed to be the same, i.e., having the fixed 
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elastic modulus (E2) and Poisson’s ratio (ν2).  The films were assigned to different 

property E1 as normalized with the properties of the substrate, however ν2 itself 

used as the Poisson’s ratio.   

 

5.2   Spherical Indentation as a Boundary Value Problem 

 

 

Figure 5.2-1  Schematic of the Axi-Symmetric Indentation of a Semi-Infinite Thin 

Film-substrate Material with a Spherical Indenter. 
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Without any body force, the mechanical equilibrium conditions are assumed valid 

during indentation, Equation 5.2-1 

       
𝜕𝜕𝜎𝜎𝑖𝑖𝑖𝑖

(1)

𝜕𝜕𝜕𝜕𝑖𝑖
=

𝜕𝜕𝜎𝜎𝑖𝑖𝑖𝑖
(2)

𝜕𝜕𝜕𝜕𝑖𝑖
 = 0    ----------------5.2.1 

where 𝜎𝜎𝑖𝑖𝑖𝑖
(𝑘𝑘)  ( ,  1,  2,  3i j = ) are the components of the stress tensor, for superscript 

k=1,2 for film and substrate respectively, 𝜕𝜕𝜕𝜕𝑖𝑖  are the components of the position 

vector of a material point. 

As shown in (Figure 5.2-1), a rigid, spherical indenter is pressed onto the surface of 

a semi-infinite elasto-plastic thin film-substrate material. The contact boundary 

conditions in a cylindrical coordinate ( ,  ,  )r zθ  are 

Equation 5.2-2 

𝜎𝜎𝑓𝑓𝑟𝑟
(1)(𝑓𝑓, 0) = 0     for r < a   ----------------5.2.2 

Equation 5.2-3 

𝑢𝑢𝑟𝑟
(1)(𝑓𝑓, 0)  = f(r) - δ   for r < a    ----------------5.2.3 

where 𝜎𝜎𝑓𝑓𝑟𝑟
(1) and 𝜎𝜎𝑟𝑟𝑟𝑟

(1) are respectively the shear and normal components of the stress 

tensor for the film, 𝑢𝑢𝑟𝑟
(1) is the displacement component along the loading direction, 

( )f r  is the surface profile of the indenter tip, δ  is the displacement of the indenter, 

and a is the radius of the contact area to be determined in the simulation. Equation 

5.2-2 and Equation 5.2-3 represents the condition of frictionless contact between the 
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indenter and the material. Outside the contact area, the surface is at stress-free state, 

i.e.Equation 5.2-4 

𝜎𝜎𝑓𝑓𝑟𝑟1 (𝑓𝑓, 0) = 𝜎𝜎𝑟𝑟𝑟𝑟1 (𝑓𝑓, 0) =0 for r > a      ----------------5.2.4 

 

The far field condition requires, 𝜎𝜎𝑓𝑓𝑟𝑟
(𝑘𝑘)(𝑓𝑓, 𝑟𝑟)→0, 𝜎𝜎𝑟𝑟𝑟𝑟

(𝑘𝑘)(𝑓𝑓, 𝑟𝑟)→0, 𝑢𝑢𝑓𝑓
(𝑘𝑘)(𝑓𝑓, 𝑟𝑟)→0, and 

𝑢𝑢𝑟𝑟
(𝑘𝑘)(𝑓𝑓, 𝑟𝑟)→0 as r → ∞  and z → -∞. 

At the interface, it requires the continuity of the displacement and stresses, i.e. 

     𝑢𝑢𝑓𝑓
(1) = 𝑢𝑢𝑓𝑓

(2)  and 𝑢𝑢𝑟𝑟
(1) = 𝑢𝑢𝑟𝑟

(2)
   

   𝜎𝜎𝑓𝑓𝑟𝑟
(1) = 𝜎𝜎𝑓𝑓𝑟𝑟

(2) and 𝜎𝜎𝑟𝑟𝑟𝑟
(1) = 𝜎𝜎𝑟𝑟𝑟𝑟

(2) 

where superscripts (1) and (2) represent the film and substrate respectively. 

The indentation load applied to the indenter can be calculated as 

Equation 5.2-5 

0
2 ( ,0)

a

zzF r rdr= − π σ∫     ----------------5.2.5 

5.3 Finite Element Model of Film-Substrate Systems  

 

As shown in Figure 5.3-1, a thin film-substrate model is generated with thin film 

and substrate making up the entire model to simulate the layered condition in the 

process of indentation using finite element method. Spherical indenter is used to 

simulate the layer model.  
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Figure 5.3-1  Finite Element Model of a Double Layer Model. 

 

Both soft and hard films were analyzed using the layered model with varying 

material properties. The surfaces between interior parts of the sample, as the 

interface between the deposited layer and the substrate is defined as being perfectly 

bonded, that is no delamination or slippage can occur. To study the effect of the 

layer thickness, different models are generated with varying thickness of the layers. 

The coating thickness is varied as listed out in  

 

Table 5.3-1. Starting with minimum thickness of 10 of the layer equal to 20% of the 

indenter radius, with a step increase of 10 also equal to 20% of the indenter radius, 

the models are analyzed for a maximum coating thickness of 50 which is equal to 

the radius of the indenter in relation to the model size of 400X400. 
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Table 5.3-1  Film Thickness Used in Finite Element Analysis. 

Thickness of film (h) 
Normalized 

Thickness of the film 
(h/R) 

10 0.2 
20 0.4 
30 0.6 
40 0.8 
50 1 

 

The effect of the film modulus was also investigated.  In the present analysis, the 

substrate material was fixed (Al-6061) and its properties are shown in Table 5.3-2. 

 The properties of the film (E1) were varied by normalizing with the modulus of 

substrate (E2), as shown in Table 5.3-3.   

Table 5.3-2  Material Properties of the Substrate Used in Finite Element Analysis. 

Material E (N/mm2) Poisson ratio 

AA 6061-T6 69000 0.33 

 

Table 5.3-3  Ratio of Young’s Modulus for Film and Substrate 

E1/E2 
0.01 
0.025 
0.05 
0.075 
0.1 
0.25 
0.5 
0.75 

1 
10 
25 
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50 
75 
100 

To verify the FE model, the film-substrate system was first analyzed by assuming 

that the film and the substrate have the same properties. The problem therefore 

becomes an indentation of homogeneous material. The resultant load-displacement 

curve of this film-substrate system is seen in Figure 5.3-2. Also included is the 

Hertz’s solution calculated using Equation 4.4-4. It is observed that the data 

generated from the FE model is in good agreement with the Hertz equation. Hence 

the FE model generated can be used for subsequent film-substrate analysis. 

 

Figure 5.3-2  Comparison of the FEM Result with the Hertz Equation. 
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5.4 Results and Discussion 

 

5.4.1 Load-Displacement Response 

 

Figure 5.4-1 and Figure 5.4-2 show the typical load-displacement curves of a hard 

film- substrate system and a soft film- substrate system, respectively.  As expected, 

the load-displacement responses of the film-substrate systems are bounded between 

the homogeneous films and substrates.  

 

Figure 5.4-1  Load-displacement Curve for Soft Film-Hard Substrate  

(h=10 & E1/E2-0.01, ν1/ν2-1) 
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Figure 5.4-2  Load-displacement Curve for Hard Film-Soft Substrate  

(h=10 & E1/E2-10, ν1/ν2-1) 

 

Figure 5.4-3(a) and (b) shows the stress plots for a soft film over hard substrate and for a 

hard film over soft substrate for same penetration depth and same spherical indenter. 

From these two plots we can observe for the soft film over the hard substrate the 

maximum Mises stress is right underneath the indenter whereas for the other model 

which is hard film over the soft substrate the value is observed at the interface of thin 

film and substrate. Hence for the hard film over the soft substrate, the interface is prone 

to more failure risk than the other condition. 
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Figure 5.4-3 Stress Patterns for (a) Soft Film Over Hard Substrate and (b) Hard Film 

over the Soft Substrate for the Same Applied Indentation Penetration. 



 

54 
 

5.4.4 Effect of Film Thickness 

 

Figure 5.4-4 & Figure 5.4-5 show the indentation load-displacement curves in film-

substrate structures with varying the film thickness. From these plots, we can 

observe that the maximum load reached and also the slope of the load-displacement 

curve changed with the thickness of the layer for the same applied penetration 

displacement. In the case of soft film-hard substrate system, the indentation load 

decreases with the increase of the film thickness; while in the case of hard film-soft 

substrate system, the indentation load increases with the increase of the film 

thickness. 

 

Figure 5.4-4  Variation of Load-displacement Data with Increase in the Layer 

Thickness (E1/E2=2.2) 
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Figure 5.4-5  Variation of Load-displacement Data with increase in the Layer 

Thickness (E1/E2=0.45) 

 

Figure 5.4-6  Variation of Maximum Mises Stress for Soft Thin Film over Hard 

Substrate Model  
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Figure 5.4-7  Variation of Maximum Mises Stress for Hard Thin Film over Soft 

Substrate Model  

Figure 5.4-6 show the effect of film thickness on von Mises stress soft thin film over 

hard substrate and Figure 5.4-7 shows hard thin film over soft substrate.  The 

maximum stress is observed to reduce with increase in the value of h for E1/E2<1, but 

for E1/E2>1 the maximum stress is observed to reduce first and then increase with the 

increase in the layer thickness.  

 

5.4.5  Effect of Film Elastic Modulus 

 

Figure 5.4-8 (a) (b) & (c) shows the load-displacement responses of film-substrate 

systems with different elastic modulus ratio mentioned in the Table 5.3-3 for h=10, 

30 and 50 respectively . It is observed that the maximum load as well as the slope of 

the load-displacement curve change with the Young’s modulus ratio. The variation of 
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the maximum Mises stress underneath the indenter along the symmetric axis is given 

in Figure 5.4-9. From the figure, we can observe that the maximum stress increases 

with increasing the ratio of Young’s modulus (E1/E2). 
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Figure 5.4-8  Variation of Load-displacement Data for Different Layer and 

Substrate Combinations for a Given Thickness of the Layer  

(a) h=10, (b) h=30, (c) h=50. 
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Figure 5.4-9 Variation of Maximum Mises Stress for a Given Thin Film-substrate 

Model with the Ratio of the Young’s Modulus of Thin Film and Substrate 

 

 

5.4.6 Load-displacement Relation: A Generalized Power Law Model 
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using a wide range of film/substrate properties, a generalized power-law equation is 

obtained as follows 

Equation 5.4-1 

     F= CE2δp    ----------------5.4.1 

where F is the indentation load and δ the indentation penetration.  C and p are 

material constants and defined by 

C=10 ^ {C0 + C1 (Log(𝐸𝐸1
𝐸𝐸2

)) + C2 (Log (𝐸𝐸1
𝐸𝐸2

))2 +  C3 (Log (𝐸𝐸1
𝐸𝐸2

))3} 

 C0 = 0.9892-0.02725 (ℎ
𝑅𝑅
) +0.068268 (ℎ

𝑅𝑅
)2 -0.03375 (ℎ

𝑅𝑅
)3 

                C1 = 0.2939+1.7397 (ℎ
𝑅𝑅
)-1.9264(ℎ

𝑅𝑅
)2 +0.77333(ℎ

𝑅𝑅
)3 

 C2 = -0.11509+0.064477 (ℎ
𝑅𝑅
) +0.00013037 (ℎ

𝑅𝑅
)2 -0.013021(ℎ

𝑅𝑅
)3 

 C3 = 0.038188-0.15565 (ℎ
𝑅𝑅
) + 0.18009 (ℎ

𝑅𝑅
)2 -0.072568 (ℎ

𝑅𝑅
)3 

p=10 ^ {p0 + p1 (Log(𝐸𝐸1
𝐸𝐸2

)) + p2 (Log (𝐸𝐸1
𝐸𝐸2

))2 +  p3 (Log (𝐸𝐸1
𝐸𝐸2

))3 + p4 (Log (𝐸𝐸1
𝐸𝐸2

))4} 

 p0 = 0.18478 -0.010549 (ℎ
𝑅𝑅
) + 0.0081517 (ℎ

𝑅𝑅
)2 -0.0017708 (ℎ

𝑅𝑅
)3 

 p1 = -0.11958+ 0.15183 (ℎ
𝑅𝑅
) -0.082706 (ℎ

𝑅𝑅
)2 + 0.013552 (ℎ

𝑅𝑅
)3 

 p2 = -0.0000081967 -0.081956 (ℎ
𝑅𝑅
) + 0.11148 (ℎ

𝑅𝑅
)2 -0.047344 (ℎ

𝑅𝑅
)3 
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 p3 = 0.0089133 -0.0059241 (ℎ
𝑅𝑅
) -0.010213 (ℎ

𝑅𝑅
)2 +0.0081615 (ℎ

𝑅𝑅
)3 

 p4 = 0.0006394+ 0.0070813 (ℎ
𝑅𝑅
) -0.010569 (ℎ

𝑅𝑅
)2 + 0.0045875 (ℎ

𝑅𝑅
)3 

 

where  E1-elastic modulus of the layer material 

  E2- elastic modulus of the substrate material 

  h-layer thickness 

  R-radius of the indenter 

 

The above equation indicates that for the indentation of any elastic film-substrate 

system, the resultant load-displacement response follows a general power-law 

relation that is defined by the normalized film modulus (E1/E2) and the normalized 

film thickness (h/R).  The validity of this generalized power-law equation has been 

validated with the testing data generated from the FEM. 

Figure 5.4-10 show the comparison of the load-displacement curves from FEM and 

from Equation 5.4-1 for the case of film thickness ratio h/R=0.5 and Young’s 

modulus ratio (E1/E2-5). In the plot, the load-displacement curves of the film and 

substrate as homogeneous materials were also included. The plot is presented in the 

log-log scale to have good comparison. From the plots, we can observe that the 

load-displacement curves generated from FEM can be well fitted by the generalized 
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power law equation (Equation 5.4-1), up to the indentation penetration of 12% of 

the indenter radius.  

  

 

 

Figure 5.4-10 Load-displacement Curves from FEM and from Equation Generated 

(h/R=0.5 & E1/E2-5). 
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5.5 Summary 

The finite element analysis has been used to simulate the indentation of layered 

materials (film-substrate systems) by a rigid, spherical indenter. The configurations 

of the layered materials include both soft film-hard substrate structures (E1/E2<1) 

and hard film-soft substrate structures (E1/E2>1). The indentation response was 

found to be dependent upon the film thickness (h/R). For soft film-hard substrate 

materials, the maximum Mises stress decreases with increasing film thickness; while   

for hard film-soft substrate materials, the maximum Mises stress decreases first and 

then increase with increasing film thickness. In all cases, the maximum Mises in the 

film increases with the increase of film modulus (E1/E2).  The indentation load-

displacement curves of layered materials in wide range of configurations have been 

generated from the present finite element simulation (FEM). An empirical power 

law equation has been proposed for characterizing the indentation load-displacement 

responses of layered materials. Good correlations between the FEM and the power 

law equation have been obtained. The equation takes into account of film properties 

(thickness, h/R, and modulus, E1/E2) and thus is applicable to a generic 

film/substrate system.   
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6.0 Conclusions and Future Work 

 

6.1 Conclusions 

Micro-/nano-indentation is widely used to measure the mechanical properties of 

materials and structures in small volumes. Although the elastic contact deformation 

between a rigid indenter and a homogeneous medium is now well understood, the 

elastic-plastic contact deformation occurred at larger indentation depth has not been 

well studied, nor the contact deformation occurred in layered systems. In this thesis, 

the comprehensive finite element simulations are performed to study the elastic-

plastic indentation of homogeneous materials and the elastic indentation of layered 

materials.   

 

(1) Elastic-plastic indentation of homogeneous materials   

The finite element analysis is used to simulate the deep indentation of elastic-plastic 

materials under a spherical indenter. The depth of the indentation has been pushed 

up to 100% of the indenter radius (δ/R≈1). The following remarks can be drawn 

from the investigations: 

 

• The power-law relation between indentation load and indentation depth is valid 

only at shallow indentation, δ/R≈0.05.  
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• The power-law relation between indentation load and indentation depth breaks at 

deep indentation, δ/R>0.2. Thus, caution needs to be taken in analyzing 

experimental results involving deep indentation.  

 

• The ratio of the plastic energy to the total mechanical work is a linear function of 

the ratio of the residual indentation depth to the maximum indentation depth for the 

indentations by spherical indenters, independent of the strain hardening index.  

 

• The extrapolated value of the energy ratio for a spherical indenter is different from 

that for the sharp instrumented indentation. 

 

• The material pile-up occurred during large indentation decreases linearly with the 

increase of the strain hardening index.  

  

(2) Elastic indentation of layered materials  

The finite element analysis is used to simulate the elastic indentation of layered 

materials (film-substrate structures) under a spherical indenter. Materials in a wide 

range of configurations are studied, including film thickness (h/R) and film 

modulus (E1/E2). The following remarks can be drawn from the investigations: 
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• The load-displacement response of a film-substrate system is bounded between the 

film and substrate in homogeneous form.  

 

• The indentation response of a film-substrate system depends upon the film 

thickness (h/R). For soft film-hard substrate materials, the maximum Mises stress 

decreases with increasing film thickness; while for hard film-soft substrate 

materials, the maximum Mises stress decreases first and then increase with 

increasing film thickness. 

 

• The indentation response of a film-substrate system depends upon the film modulus 

(E1/E2). The maximum Mises in the film increases with the increase of film 

modulus (E1/E2).  

 

• A universal power law equation has been proposed to characterize the indentation 

load-displacement responses of layered materials. The equation takes into account 

of film properties (thickness, h/R, and modulus, E1/E2) and thus is universally 

applicable to an elastic film/substrate system.  

 

6.2 Future Works 

Finite element simulation has become a powerful tool to study the micro-/nano-

indentation processes and thus to help develop improvements in the analytical 

methods used to extract mechanical properties from experimental data. In this 
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thesis, the finite element simulations are used to study the elastic-plastic indentation 

of homogeneous materials and elastic indentation of layered materials. To support 

the current studies, some experimental investigations can be performed to validate 

the numerical findings and proposed empirical model.  For the indentation of 

layered materials, the work can be extended to the elastic-plastic film-substrate 

systems. In addition, the existing numerical model can be extended to study some 

urgent issues that are facing the nanomechanics community, such as the indentation 

deformation of visco-elatsic materials and visco-elastic-plastic materials. 

Engineering materials such as polymers have properties that are dependent upon 

time/frequency. The current empirical equation for extracting mechanical properties 

from nanoindenation data is only applicable to the elastic materials. Finite element 

simulation on the indentation of visco-elastic and visco-elastic-plastic materials will 

help develop reliable analytical solutions for extracting mechanical properties of 

materials that are time-dependent.     
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Abstract 

 

The cylindrical indentation is analyzed, using finite element method, for determining 

the plastic properties of elastic-plastic materials and the effect of strain hardening. 

The results are compared to those obtained from spherical indentation, the commonly 

used technique for measuring plastic properties of materials in small volumes. The 

analysis shows that the deformation under a cylindrical indenter quickly reaches a 

fully plastic state and that the size (diameter) of the plastic zone remains constant 

during further indentation. The indentation load is proportional to the indentation 

depth at large indentation depth, from which the indentation pressure Pm at the onset 

of yielding can be readily extrapolated. The analysis of cylindrical indentation 

suggests that it does not need such parameters as impression radius (a) and contact 

stiffness (S) for determining the plastic behavior of materials. Thus the cylindrical 

indentation can suppress the uncertainties in measuring material properties.  
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1. Introduction 

 

Micro- and nano-indentation have been widely used for measuring the mechanical 

properties of materials and structures in small dimensions. Most of works have 

focused on measuring the elastic properties of materials using sharp indenters such 

as conical and Berkovich indenters. There has been continuous interest in 

measuring the plastic properties of materials such as yield strength using spherical 

indenters [1-6]. The advantage of using spherical indenters (in comparing to sharp 

indenters) is that the indentation strain can be associated with the tension strain 

through Tabor’s relation. By analyzing the stress (or strain) distribution underneath 

the indentation, the onset of plastic yielding of a material can be identified and the 

corresponding indentation pressure (Pm) be calculated, which is proportional to the 

yield strength of the material [1, 6, 7].  

 

The indentation of elastic-plastic materials with cylindrical indenters has been 

reported [8, 9, 10]. The main advantage of using cylindrical indenter is that the 

contact area between the indenter and the specimen remains constant during the 

indentation test. As a result, the deformation underneath the indenter can change 

distinctly from purely elastic at initial contact to fully plastic in the later stage. 

Wright et al [8] performed the cylindrical indentation tests on polycarbonate using 

macroscopic indenters (3.5<diameter<14mm). The measured indentation load 

increased linearly with the indentation depth initially, with a sudden, relatively 

sharp decrease in slope, followed by a second linear portion at deep indentation. 
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The linear response of the indentation load at the deep indentation indicates that the 

material underneath the indenter deformed fully plastically. By back-extrapolating 

the load-depth curve at large indentation depth to zero displacement, the mean axial 

load was determined which was used subsequently for computing the mean 

indentation pressure Pm. Lu and Shinozaki [9] have recently extended this technique 

to smaller indenters (10<diameter<100µm) to measure the plastic properties of 

polymeric solids. 

 

The present work is to compare the cylindrical indentation to the spherical one in 

measuring the plastic property (yield strength) of materials of small volumes. The 

finite element simulation is used to investigate the indentation load-depth responses 

of the cylindrical and spherical indentations and to explore the deformation 

behavior under these two types of indenters. The methods for estimating the yield 

strength from the indentations are described.   

 

In the simulation, the compression molded high impact polystyrene (HIPS) and cast 

aluminum (Al) are used as testing materials to compare the indentation behavior by 

the cylindrical and spherical indenters. These materials are chosen since their 

deformation behaviors have been extensively studied in the literature [1, 11-15], 

and the constitutive behaviors of these two materials can be accurately modeled by 

the linear elastic and power-law plasticity [5, 6, 9] available in most commercial 

finite element codes. 
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2. Theory  

2.1 Spherical indentation 

 

The use of spherical indenters to measure plastic properties of materials of small 

volumes or dimensions has been well studied [1, 2], and generally followed the 

approach developed by Oliver and Pharr [16, 17]. The indentation pressure (P) by a 

spherical indenter is calculated as the ratio of the normal load (La) to the impression 

area (A=πa2) 

      2
a

a
L

P
π

=       (1) 

where a is the impression radius, given by 

 

      2
cc hRh2a −=      (2) 

 

where R is the radius of the spherical indenter and hc the actual contact depth. The 

contact depth hc is calculated from the Oliver-Pharr model [16, 17] 

     
S

L
hh a

c η−=       (3) 
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where h is the total indentation depth into the specimen, and η is a geometric 

constant (η=0.75 for spherical indenter). S is the elastic contact stiffness that can be 

determined from the slope of the initial indentation unloading curve [16, 17]. In 

general, an area function needs to be established between the impression area and 

the indentation depth through the calibration process.  

 

Substitution of Eqs. (2) and (3) into (1) gives the indentation pressure as 

 

      
])

S
L

75.0h(R)
S

L
75.0h2[(

L
P

2aa

a

−−−π
=   (4) 

 

It is observed that the indentation pressure (P) depends upon three quantities: (1) the 

normal indentation load (La), (2) the indentation depth (h), and (3) the contact 

stiffness (S). In a typical indentation test, the indenter is moved onto and then 

withdrawn from the specimen and the indentation load and displacement are 

recorded. From the loading-unloading curve, the three quantities (La, h, S) can be 

obtained. Then, the corresponding indentation pressure P can be computed using 

Eq. (4). By performing a multi-step loading-unloading test, the indentation pressure 

at different indentation depths can be determined. From engineering point of view, 

a mean indentation pressure (Pm), also known as hardness, is more useful, which is 

determined as the indentation pressure corresponding to the initial yielding [2, 6].  
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2.2 Cylindrical indentation 

The elastic-plastic indentation using a cylindrical indenter has been studied by 

Wright, Huang and Fleck [8] and Lu and Shinozaki [9]. When a cylindrical indenter 

of a in radius is pressed onto a specimen, the total load (Ltotal) acting on the indenter 

is: 

    fatotal LLL +=                    (5) 

where aL  is the axial load acting on the indenter end face and fL  the frictional load 

acting on the indenter side wall.  

 

The mean indentation pressure (P) acting on the indenter end is simply expressed as 

     2
a

m a
LP
π

=         (6) 

The frictional load ( fL ) on the indenter side wall is defined by τπ= cf ah2L , where 

τ  is the frictional shear stress. Assume that the frictional stress is constant on the 

indenter wall, then the frictional load ( fL ) should increase linearly with indentation 

depth, since the lateral surface area in contact with the material (2π cha ⋅ ) increases 

almost linearly.  

 

The mean indentation pressure (Pm) defined in Eqs. (4) and (6) is found to be 

proportional to the yield strength of the material obtained from conventional 
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uniaxial test: Pm=C⋅σy, where C is a constraint factor and σy the yield strength 

corresponding to a plastic strain of 0.2% [7]. The magnitude of the constraint factor 

has been found to depend upon the material properties, particularly on the ratio of 

the modulus to the yield stress, E/σy [1, 6]. For most metals, E/σy >100, the 

constraint factor is approximately equal to 3 ( 3C ≈ ) [1, 6].  For polymers, the ratio 

of E/σy <10, and the constraint factor is less than 3 (C<3) [9].  

 

3. Finite element modeling 

The deformation of purely elastic indentation has been well understood for 

indenters of various geometries, and the stress fields around indentation can 

generally be described accurately in closed form equations for the indentation of 

semi-infinite elastic materials [18, 19]. The indentation deformation of elastic-

plastic or plastic materials is more complex. In this study, the large-depth 

indentations by a spherical indenter and a cylindrical indenter of flat end were 

simulated using the finite element method (Figure 1). The commercial nonlinear 

finite element (FE) code ABAQUS was used [20]. 4-node axisymmetric elements 

were used in the FE simulation to deal the potential large distortions of the elements 

present during the deep indentation. The indenter was assumed as rigid and thus 

modeled by rigid surfaces. Most analyses were conduced by using an indenter of a 

radius of 50 µm unless stated otherwise. The base of the specimen was completely 

constrained while the nodes along the center line are constrained in the horizontal 

direction. A vertical displacement was applied to the rigid surface through a 
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reference node and the reactant force was calculated. The plasticity was modeled by 

the von Mises (J2) flow criterion [20].  

 

Two linear elastic, power-law plastic materials were used in the simulation: one was 

the compression molded high-impact polystyrene (HIPS) – a low modulus material 

and the other the cast aluminum (Al) – a high modulus material.  The one-

dimensional constitutive relation for the linear elastic, power law plastic material 

was described as   

 

   






σ>σ
ε
ε

σ

σ≤σε
=σ  for     )(

for              E

0
n

0
0

0

     (7) 

 

where “σ” and “ε” were the uniaxial stress and strain; “σ0” and “ε0” the 

proportionality limit of the corresponding stress and strain;  “E” the Young’s 

modulus; and “n” the strain hardening index describing the post-yield material 

behavior as a power law relation. The properties of the two materials are listed in 

Table 1.  
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4 Results and discussion 

 

4.1 Indentation load-depth responses 

 

The load-depth responses for the indentations of high-impact polystyrene (HIPS) 

and aluminum (Al) by a spherical indenter are shown in Figures 2a and 2b. At small 

indentation, the material beneath the indenter experiences elastic deforms, while the 

indentation load-depth curves exhibit nonlinear response (inserted figure in Figure 

2a), since the contact area between the spherical indenter (or any sharp indenter) 

and the specimen increases nonlinearly. This elastic deformation at small 

indentation can be described by the classical Hertz solution: 2/3
2 h

v1
a2E

3
22L

−
=  

[18]. It is seen that the results from the finite element simulation are in good accord 

with the Hertz’s contact theory, which indicates that the present FEM model is 

appropriate for the spherical indentation.   

 

As the indentation depth further increases, the material underneath the indenter 

starts to deform plastically. The resultant load increases continuously due to the 

increase in the contact area. The change rate of the indentation load with the 

indentation depth decrease progressively at large indentation, particularly for a 

material that possesses a larger value of E/σy (aluminum).  



 

78 
 

Figures 3a and 3b show the indentation load-depth curves for the indentations of 

high-impact polystyrene (HIPS) and aluminum (Al) by a cylindrical, flat-tipped 

indenter.  Each curve exhibits a distinguished bilinear response: linear elastic 

response at small depth and linear plastic response at large depth. At small 

penetrations, the material underneath the indenter deforms mainly elastically 

(inserted figure in Figure 3), consistent with Sneddon’s solution on elastic 

indentation by a flat-ended cylindrical indenter, i.e. h
v1

Ea2L 2−
=  [19]. It is seen that 

the results from the FEM simulation correlate well with the Sneddon’s solution at 

small indentation depth, while it deviates from the elastic solution at large depths. 

This is likely due to the presence of local plastic deformation in the material near 

the indenter circumference.  

 

The stress field in an elastic medium under a flat-ended indenter has been solved 

analytically by Sneddon [21]. In particular, the normal compressive stress σz at 

specimen surface (z=0) under a flat indenter is given by 

 

  2/122
0zz )ra(aP

2
1)( −

= −−=σ       (8) 

 

The compressive stress σz is plotted with respect to r/a and z/a for the aluminum 

material (v=0.3) (Figure 4). It is observed that the compressive stress increases 
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progressively from P
2
1

 at the center of the indenter (r/a=0) towards the edge. Right 

at the indenter edge (r/a=1), this compressive stress approaches infinity. It indicates 

that even for a small load, a local plastic deformation may occur near the corners of 

the indenter.  The initial yielding can be identified by examining the distribution of 

the van Mises stress in the medium under the indenter (Figure 5). It is seen that the 

maximum value of van Mises stress is approximately P78.0Mises ≈σ , right beneath 

the indenter edge. So, the initial yielding occurs at the indentation pressure of 

28.1P

y

≈
σ

, where σy is the tensile yield stress of the indented material. This initial 

yielding corresponds to the early stages of indentation, before the gross yield point 

(at the “knee” of the indentation load-depth curve shown in Figure 3). 

 

As the indentation depth increases, more material deforms plastically. A fully 

developed plastic zone is formed underneath the indenter, corresponding to the 

indentation depth at which the indentation load-depth curve reaches the beginning 

of the second (lower) slope linear region. The bilinear load-depth responses from 

the FEM simulation are consistent with experimental observations reported by 

Wright, Huang and Fleck [8] and by Lu and Shinozaki [9]. Wright, Huang and 

Fleck [8] conducted macroscopic cylindrical indentation tests on polycarbonate 

(PC) that exhibits exponential work-hardening. The linear load responses were 

observed at large indentation depths, up to a depth of 4-5 time of the indenter 

diameter. Lu and Shinozaki [9] performed the microindentaion tests on various 
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polymeric materials including high density polyethylene (HDPE), polystyrene (PS), 

polymethyl methacrylate (PMMA) and high impact polystyrene (HIPS - the 

material used in the present FEM simulation). In all cases, the indentation load-

depth curves were linear at large indentation depths.  

 

According to Eq. (5), the load response at large indentation depth can be affected by 

the frictional load (Lf) on the side wall of the moving cylindrical indenter, the area 

of which increases linearly with depth. The effect of friction between indenter and 

specimen was examined by introducing a frictional component and recalculating the 

indentation test curve.  A contact pair was defined between indenter sidewall and 

specimen upper surface and the coefficient of friction at the interface was varied 

from 0.0 to 0.6. Figures 6 and 7 show the resultant load-depth curves for HIPS and 

Al, respectively.  It is observed that with the increase of interfacial friction at 

indenter-sample interface, the slope of the load-depth curves at large indentation 

depth increases. The friction is seen to have a greater effect on indentation response 

of relatively soft material (HIPS), whose modulus (E/σy) is approximately 1/10th of 

the modulus of the aluminum.  

 

The HIPS has been tested previously by using a cylindrical indenter of radius 

a=38.1 mm [9]. The experimental result is compared to the current simulations with 

various frictional coefficients. It is seen that the simulation without friction is more 

resemble to the experimental measurement (Figure 7), indicating that the frictional 
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stress for current HIPS is effectively zero.  The aluminum has shown little 

dependence on friction (Figure 6). Thus, the frictionless condition is mostly used in 

subsequent analyses.  

 

4.2 Indentation deformation  

 

The deformation behavior of materials underneath indentation can be examined by 

computing the equivalent plastic strain (εeq) contours. The equivalent plastic 

strain  εeq is defined as ])()()[(
3
2 2pl

3
2pl

2
2pl

1
eq ε+ε+ε=ε , and pl

1ε , pl
2ε and 

pl
3ε , are the 

principal strains [14].  For εeq>0, the plastic deformation occurs.   

 

The plastic deformation under a spherical indenter has been studied recently by a 

number of researchers [1, 7, 22, 23]. Overall, the size of plastic zone underneath the 

spherical indenter increases with indentation depth since the contact between 

indenter and specimen keeps increasing. The plastic deformation generally initiates 

beneath the specimen surface and then moves towards the contact surface.  

 

The plastic deformation for the indentation by a cylindrical indenter is significantly 

different from that by a spherical indenter. Figures 8 and 9 show the equivalent 

plastic strain (εeq) under a cylindrical indenter for HIPS and Al, respectively. It is 
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seen that the plastic deformation beneath the cylindrical indenter initiates around 

the circumference of the indenter. As the indentation depth increases, the plastic 

flow reaches a steady state. The size (diameter) of the plastic zone remains 

relatively constant, being approximately twice of the indenter diameter. For 

material with higher elastic modulus (aluminum), more pile-up is observed around 

the indenter (Figure 9), consistent with the recent investigation by Taljat and Pharr 

[22].  It is also noticed that the material directly ahead of the indenter shows little or 

no plastic deformation and remains constant, conical shape during the indentation.  

  

4.3 Determinations of yield strength 

 

The use of the spherical indentation for determining plastic properties of a material 

of small volume requires the use of multi-step loading-unloading indentation test. 

The responses of such tests from the FEM simulation are shown in Figures 10a, 

10b, for HIPS and Al, respectively. From the loading-unloading curves, the 

indentation parameters, La, S, hc, at each step are determined. The indentation 

pressures (P) are then calculated using Eq. (4). The indentation pressure is plotted 

against the normalized indentation strain (a/R), as shown in Figures 11a and 11b. It 

is observed that the indentation pressure obtained from the spherical indentation 

varies nonlinearly with the indentation strain. This is partially due to the fact that 

the deformation underneath the spherical indenter is at the elastic-plastic state.  

 



 

83 
 

 To determine the yield strength of materials from the spherical indentation, the 

occurrence of initial plastic yielding is needed [1]. Mesarovic and Fleck [7] recently 

conducted a comprehensive finite element analysis of the spherical indentation of 

elastic-plastic materials and found that the occurrence of initial yielding was 

correlated to a critical indentation strain ac/R. The magnitude of this critical 

indentation strain depends upon the normalized modulus of materials (E/σy). A 

detailed deformation map has been constructed for determining the critical 

indentation strain (ac/R) as a function of E/σy. For materials with σy/E exceeding 

approximately 2x10-4, the initial yielding has been found to occur at a critical 

indentation strain of ac/R≈0.16 [7]. Once ac/R is known, the corresponding mean 

indentation pressure Pm can be determined.  Using the critical indentation strain of 

ac/R=0.16, the mean indentation pressure Pm is estimated as shown in Figures 11a 

and 11b, for HIPS and Al, respectively.       

 

For cylindrical indentations, only one monotonic loading test is required for each 

material, as illustrated by Figures 3a and 3b. The indentation deformation consists 

of two distinct regions: linear elastic at small indentation and linear plastic at large 

indentation.  

 

The linear plastic response at large indentation is a result of constant material flow 

under the indenter. The total indentation load is a sum of the axial load acting on the 

indenter end (La) and the frictional load acting on the indenter sidewall (Lf) 
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(Equation 5). The mean axial load (La) can be determined simply by extrapolating 

the load at large indentation, as shown in Figure 3, back to zero depth [Lf becomes 

zero in Eq. (5)]. The mean indentation pressure is then calculated from the mean 

axial load using Eq. (6). The mean indentation pressure for HIPS obtained from the 

current 50 µm diameter indenter is approximately 36 MPa. Indenters of various 

sizes have been used in the simulation; and the resultant mean indentation pressures 

are approximately the same independent of the indenter size, as shown in Fig. 11, 

consistent with the experimental result [9]. 

 

The calculated mean indentation pressure (Pm) for HIPS and Al are summarized in 

Table 2 for both type of indenters. The yield strength corresponding to the plastic 

strain of 0.2% is determined for each material by using the appropriate constraint 

factors: C=3 for aluminum [6, 7] and C=2.6 for HIPS [9].  The overall predictions 

of the yield strength from both methods are identical, with the results from the 

cylindrical indentation being slightly closer to the yield strengths used for analysis. 

However, compared to the spherical indentation, the technique of the cylindrical 

indentation is more effective. It requires only one monotonic loading test, in 

contrast to the multi-step loading-unloading tests required by the method of 

spherical indentation. The analysis of the cylindrical indentation is much simpler, 

and it requires fewer parameters for computing the mean indentation pressure. This 

thus reduces the uncertainties in estimating the yield strength of materials.   
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5. Conclusions 

The cylindrical indentation test has been analyzed by finite element simulation for 

determining plastic properties of two linear elastic, power law materials (HIPS and 

Al). The results have been compared to those obtained from spherical indentation 

tests. The computed deformation zones in material ahead of the two types of 

indenters are different.  The deformation under a spherical indenter is mostly 

elastic-plastic and the resultant load in nonlinear. To obtain the mean indentation 

pressure, the existing spherical indentation technique requires the use of multi-step 

loading-unloading curves and then the estimates of several parameters, thus has 

greater uncertainties. In contrast, the deformation under a cylindrical indenter can 

quickly reach a steady state, fully plastic flow. As a result, the reaction load at that 

region is linear. The mean axial load can be readily obtained by extrapolating the 

load response at large indentation back to zero depth. The cylindrical indentation 

method requires only one monotonic loading test. The overall methodology is much 

simpler compared to the commonly used spherical indentation.   

 

The cylindrical indentation technique can be useful in estimating the yield strength 

of the materials in small volumes such as thing films, coatings, interfaces, micro-

electromechanical system (MEMS) and functionally graded materials, with which 

the conventional mechanical tests become ineffective or inaccessible.   
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Figure 1 – The finite element models used for (a) spherical indentation (b) cylindrical 

indentation. 

(a) 

(b) 
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Figure 2 - Indentation load-depth curves of (a) high-impact polystyrene and (b) aluminum 

from spherical indentation. 

(a) (b) 
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Figure 3 - Indentation load-depth curves of (a) high-impact polystyrene and (b) aluminum 

from cylindrical indentation. 
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Figure  4 – Variation of indentation compressive stress (σz) with z/a and r/a in a material 
(υ=0.3) under cylindrical indenter. 
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Figure  5 – Distribution of van Mises stress in aluminum under a flat indenter. 
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Figure  6 – Effect of interfacial friction on indentation load-depth responses of (a) high-
impact polystyrene and (b) aluminum from cylindrical indentation. 
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Figure  7 – Comparison of indentation load-depth responses of high-impact polystyrene 
between experiment and simulation. The indenter radius is 38.1 µm. 
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Figure 8 - Contours of equivalent plastic strain of high-impact polystyrene showing the 

development of the plastic zone under a cylindrical indenter. 
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Figure 9 - Contours of equivalent plastic strain of aluminum showing the development of 
the plastic zone under a cylindrical indenter. 
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Figure 10 Figure 10 – The multi-step loading-unloading curves of (a) high-impact 

polystyrene and (b) aluminum from spherical indentation. 
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Figure 11 – The indentation pressure-strain responses of (a) high-impact polystyrene and 

(b) aluminum from spherical indentation. The mean indentation pressures are 

determined by using the critical indentation strain ac /R≈0.16, shown as 

dashed lines. 
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Figure 12 – The mean indentation pressures of high-impact polystyrene obtained from 

cylindrical indenters of various sizes (diameters).  The experimental result is 

obtained with a cylindrical indenter of 72 µm diameter. 
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Table 1 - The material coefficients used in finite element analysis. 

 Modulus E 
(MPa) 

Poisson’s 
ratio v 

Proportionality 
limit stress σ0 
(MPa) 

 Strain 
hardening 
index n 

HIPS 480 0.3 16 0.06 

Aluminum 69000 0.33 255 0.1 

 

 

Table 2 - Comparisons of plastic properties obtained from spherical indentation and 

cylindrical indentation. 

 

* The theoretical yield strength is referred to the stress at 0.2% plastic strain, obtained 
form the stress-strain curves used in finite element analysis. 

 

 

 

 

Mean indentation stress Pm 

(MPa) 

Yield strength σy 

(MPa) 

*Theoretical  

yield strength σy 

(MPa) 

 

spherical cylindrical spherical cylindrical 

HIPS 32 36 12 14 15 

Al 920 789 306 263 264 
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