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ABSTRACT OF THESIS 

 

 

AN INTEGRATED FRAMEWORK FOR APPLYING LEAN MANUFACTURING 
AND OTHER STRATEGIES IN MASS CUSTOMIZATION ENVIRONMENTS 

 
 

Manufacturing organizations are facing fragmented markets and increased demand of 
variety from consumers.  As a result, many of these firms have adopted mass 
customization manufacturing strategies in an effort to offer their customers the freedom 
of choice while maintaining operational efficiency.  Lean manufacturing strategies have 
also seen heavy use in manufacturing environments.  This study investigates the 
possibilities of integrating lean manufacturing principles and practices into mass 
customization environments in order to improve system performance.  The feasibility of 
other manufacturing strategies such as agility, Quick Response Manufacturing and the 
Theory of Constraints assisting in the application of lean manufacturing for mass 
customization is also explored with the goal of developing a theoretical framework for 
the application of these manufacturing systems in different types of mass customization 
environments.  The result of these investigations is tested and verified using a real world 
case study. 
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1. Introduction 

The processes of providing goods and services to meet customer need, and the 

strategies contained therein have been constantly changing and evolving over the past 

century, making great strides in efficiency, but more importantly increasing in 

complexity.  This evolution of manufacturing paradigms can be easily modeled by the 

automobile industry. 

In its infancy, the process of automobile manufacture was highly complex, expensive, 

and specialized, and was built to cater to the upper class citizen with excess money to 

spend.  Automobile manufacture began using the craft model of production.  Highly 

skilled craftsmen would design, fabricate, and build the vehicle from the ground up, 

which involved a great deal of individualization for the customer.  Buyers were able to 

specify features such as size, color, engine power, upholstery, and much more (Ford, 

1988).   

While craft manufacturing provides a great deal of individualization for the customer 

and ownership for the craftsman, its downfall lies in its inefficiency and long lead times.  

Henry Ford changed all this with the implementation of standardization, the moving 

assembly line, and the atomization of work.  This mass manufacturing strategy was 

highly effective and made Ford the premier auto manufacturer in the United States for 

many years (Womack et al., 1991; Ford, 1988).   

While mass manufacturing can be a very efficient means of production, it is also well 

known for its drawbacks, including excessive inventory and waste.  One of the most 

important shortcomings of mass manufacturing is the inability to produce a high variety 

of products on its production lines.  The invention of lean manufacturing, or the 

continuous improvement strategy, by Toyota in post World War II Japan seeks to 

overcome mass production issues (Womack et al., 1991).  Lean manufacturing makes use 

of the pull system, linking the shop floor to the customer, thereby greatly reducing 

inventory, throughput times, lead times, etc.  Waste is also sought out and eliminated and 

employees given a great deal of ownership through a team structure.  These 

improvements made it possible for the producer to add more variety to their products, but 

the strategy was still largely dependent on standardization (Womack et al., 1991).  
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Problem Background 

The once stable and homogeneous markets have recently begun to fragment among 

different customer bases, each demanding their own customized goods and/or services 

(Pine, 1993).  This has led to the emergence of mass customization, which can be defined 

in different ways.  Broadly defined it is the ability to provide high variety and 

customization at the individual customer level through the use of flexible and highly 

responsive manufacturing systems (Pine, 1993).  The “narrower” definition of mass 

customization is a “…system that uses information technology, flexible processes, and 

organization structures to deliver a wide range of products and services that meet specific 

needs of individual customers at a cost near that of mass produced items” (Da Silveira, 

2001).   

Also important to understanding the concept of mass customization is to recognize 

that there are different degrees of mass customization that are possible.  There are several 

examples of literature that have developed classification schemes for mass customizers 

and each of these have their own strengths and weaknesses.  However, most of them rely 

on the point of customer involvement in the value chain as a key classification criterion.  

The understanding of how the point of customer involvement affects the operation of the 

manufacturing system as a whole is tantamount to this research as it will directly affect 

the degree to which lean manufacturing and other strategies can be applied for mass 

customization. 

This combination of mass production and customization may seem contradictory and 

unrealistic, but firms such as Dell, Motorola, Paris Miki, Bally Engineered Structures, 

and many others are pursuing the strategy successfully (Selladurai, 2004; Gilmore and 

Pine, 1997).  Increased manufacturing capability due to flexible manufacturing and 

information system technologies, increased customization demand, and shorter product 

life cycles has steered the efforts of implementing mass customization (Da Silveira, 

2001).  Mass customization deals with niche markets (Berman, 2002), thus making it 

difficult to predict customer demand because the product is customizable.  It requires the 

ability to dynamically adapt at all stages of the value chain to meet demand.   

The need for efficient and flexible manufacturing systems to deliver mass customized 

products has been briefly discussed in the literature (Pine, 1993; Da Silveira, 2001).  The 
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potential of lean manufacturing to meet these requirements has also been raised.  While 

lean manufacturing has many capabilities that are essential for mass customization, the 

strategy can fail with higher degrees of customization.  Therefore, it is important to 

conduct a critical investigation of how and what aspects of lean manufacturing are 

applicable for successful mass customization.  This research is an attempt to critically 

review the use of lean manufacturing in the context of its application to mass 

customization manufacturing. 

Many lean manufacturing principles, such as continuous improvement and waste 

reduction, have the potential to be readily applied in any mass customization 

environment.  Other principles, however, are likely to fail in situations where the 

customer becomes involved very early in the value chain because of their reliance on 

stability and standardization as is the case with just-in-time and heijunka (load leveling).  

The high variability present in mass customization undoubtedly poses many challenges 

for lean manufacturing. 

It is important to understand in which situations these various lean principles will fail, 

and what strategies can be used to fill in the gaps between lean and mass customization.  

For this reason, other common manufacturing system structures such as Quick Response 

Manufacturing, the Theory of Constraints, Agile, Leagile, and Job Shop Lean must be 

brought into the discussion as a possible means of supplementing and strengthening lean 

manufacturing in situations where its principles may fall short. 

 

Research Objective 

To date, there has been little research completed on lean manufacturing integration 

for mass customization, and there is a need for further investigations into the topic.  

Further, due to the varying degrees in which mass customization can take place, it is 

necessary to understand how the variance in the type of mass customization affects the 

ability of lean manufacturing and other strategies to improve the performance of the 

system.  This research attempts to provide insight into the issue by qualitatively 

examining different manufacturing strategies to determine their strengths and weaknesses 

for application in mass customization environments, with the objective of developing a 

theoretical framework for the application of lean manufacturing and other strategies for 
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the different categories of mass customizers.  A mass customizing manufacturer is 

employed as a case study to apply this framework and demonstrate the proper selection of 

manufacturing strategies for the restructuring of the operations. 

The thesis document is organized as follows.  In Chapter 2, an overview of the core 

principles of lean manufacturing is given along with a discussion and evaluation of 

different mass customization classification schemes that have been developed.  Chapter 3 

presents discussions on mass customization competencies, the application of lean 

manufacturing for mass customization, and the characteristics of other prominent 

manufacturing strategies based on the literature reviewed.  In Chapter 4 the strengths and 

weaknesses of each of the aforementioned manufacturing strategies is critically reviewed 

and the theoretical framework is developed, while the characteristics of the case study 

company are given in Chapter 5.  Finally, the restructuring procedure for the 

manufacturing operations of the case study company is detailed in Chapter 6 along with a 

simulation to validate the improvements made, while Chapter 7 concludes the work with 

a discussion of the findings.   
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2. Background 

This chapter provides an overview of the mass customization and lean manufacturing 

strategies in order to investigate the opportunities for applying lean manufacturing 

concepts for mass customization.  A brief discussion of lean manufacturing principles 

and practices that create this cohesive system is given, along with a discussion of mass 

customization and the classification strategies that have evolved over time to classify 

mass customizers.  Lastly, these classification systems are critically reviewed, and one 

chosen for use throughout the research. 

 

2.1. Lean Manufacturing Overview 

Lean manufacturing is based on the Toyota Production System developed by Toyota 

after World War II by modifying Ford’s mass production system to meet the specific 

needs of the Japanese market at that time.  Toyota sought to reduce the inefficiencies of 

mass manufacturing by eliminating waste, reducing inventory, improving throughput, and 

encouraging employees to bring attention to problems and suggest improvements to fix 

them (Womack et al. 1991).  Figure 2.1 illustrates “The Toyota House,” a diagram 

showing the basic building blocks of lean systems operations (Liker, 2003).  The 

following sections will briefly discuss each of these key areas and their place in a 

successful lean manufacturing system. 

 

• Leveled Production (heijunka) 

One of the key principles of lean manufacturing is leveled production, or heijunka.  

Womack and Jones (1996) claim heijunka is a means “…to smooth out the perturbations 

in day-to-day order flow…”   It refers to the method of mixed model assembly, in which 

products of different varieties are produced in a sequence, rather than in batches as with 

traditional manufacturing.   

Also important for leveling is to produce only what is needed through accurate 

demand forecasting (Shingo, 1988).  If a firm can understand the demand and sequence to 

meet the requirements, heijunka eliminates variability of throughput and lead time that 

batched production brings. 
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Figure 2.1 The Toyota House (Liker, 2003) 

 

• Stable and Standardized Processes 

Lean manufacturing, while more capable of handling variety in production than mass 

manufacturing, is still built upon a platform of standardization, and thus constrained by it.  

Process standardization is achieved through the use of standardized work sheets, which 

outline the steps and the sequence in which those steps should be completed in order to 

fully process a component/product (Monden, 1998).  Thus, lean manufacturing requires 

standardization and stability in the processes used to create a product rather than the 

product itself.  In this sense the term standardization by no means implies a totally rigid 

and unvarying system, but rather is a means to aid continuous improvement (Bicheno, 

2000) and refers to “the best way” at a given time, which can change as improvements 

are developed.  Standardized work allows the comparison of results of suggested 

improvements to determine if the change was truly an advancement.  See Figure 2.2 for 

an illustration of lean standardization.   
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Figure 2.2 Lean Standardization 

 

• Visual Management 

Management through the use of visuals to maintain the standard conditions of the 

workplace is paramount to success with lean manufacturing.  Adding visibility to the 

production floor makes apparent the status of all operations allowing for efficient 

communication.  The principles of visual management can be broken down into two basic 

categories: 5s and Visual Controls. 

5s principles for workplace organization, the “S’s” of which refer to five Japanese 

words later adapted by Shingo to stand for sort, straighten, shine, systematize, and 

sustain (Bicheno, 2000),  offer shortened changeovers, reduced defects, lowered costs 

due to waste reduction, fewer delays, increased safety, fewer breakdowns, etc. (Hirano, 

1995). 

Visual control refers to activities such as labeling, color coding, and visual 

information systems.  Examples of these include maintaining WIP through first-in-first-

out (FIFO) methods, control limit markings on machine gauges (Monden, 1998), or an 

information marquis displaying current plant conditions to employees, etc. 

 

• Just-in-Time 

Just-in-Time (JIT) refers to the set of principles governing the flow of product 

through the manufacturing system.  JIT manufacturing that operates through a pull 

system to maintain continuous flow of products/components at the rate required by 

customers constitutes one of the main pillars of lean manufacturing (see Figure 2.1). 
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• Takt time refers to the “pacing” of the production line, or the time allowable to 

produce each product in order to meet demand.  Producing to a takt pace allows 

team members to be aware of their current status, enabling them to act 

accordingly (i.e. call for team leader aid if they are behind). 

• Continuous flow of a steady stream of product at a takt pace through the 

production system helps maintain little WIP (ideally single-piece flow) with FIFO 

at all stages.  This enables reducing lead time and increasing throughput, as 

products will not wait in large lines of WIP, but move quickly and directly to the 

next process in the order of arrival. 

• The Pull system is at the heart of lean manufacturing philosophy.  According to 

Wantuck (1989), the pull system serves as a linkage mechanism for the entire 

production enterprise, linking both internal and external elements.  The pull 

system relies on the downstream customer to signal that production should 

commence, whether they be the end customer or the next process operator in line 

(Bicheno, 2000; Wantuck, 1989; Shingo, 1988).  The traditional model of lean 

manufacturing is one that involves a single pull signal from the customer to the 

producer, the customer being the downstream process.  Regardless of the 

resolution of the examination, with lean manufacturing, the system operates with 

a single (or a few) pull signal(s) as shown in Figure 2.3 (Liker, 2003. Ohno, 

1988).  A monument type process within a plant may feed multiple production 

lines, but conceptually the amount of signals it must fulfill is still finite and 

relatively small.   

 

 
 

Figure 2.3 Lean Pull 
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 Kanban and CONWIP 

Kanban and CONWIP are the two prominent control methods within lean 

manufacturing that enable the pull system to work.  These systems seek to cap 

inventory and increase the ability for a set of manufacturing processes to flow 

(Co and Jacobson, 1994; Takahashi, et. al., 2005).  Kanban pull systems 

operate by utilizing a kanban card or kanban square as a means of indicating a 

need to produce.  For example, if a kanban card was attached to a bin of 

supplier parts, once that bin had been used the kanban card would be released 

indicating a new bin of parts would need to be ordered.  The same can be said 

for a kanban placed between two processes, in which an empty kanban would 

indicate a need for the upstream process to produce (Kumar et. al., 2007). 

While kanban operates completely on a pull system, CONWIP (constant 

work in process) seeks to combine elements of push and pull.  This system 

works by employing a card system to cap the total inventory in a given set of 

processes.  However while overall inventory is controlled via the total number 

of cards available, inventory between processes within the system are not and 

all product is pushed.  Thus, for a product to enter the CONWIP loop a card 

must be available for it to be attached to, and the cards is not made available 

again until the product exits the CONWIP loop (Huang et. al., 2007; Framinan 

et. al., 2006).  The combination of push and pull in a CONWIP system allows 

it to buffer work content variation between products and processes and better 

handle the issue of shifting bottlenecks due to variety (Takahashi, et. al., 

2005). 

 

• SMED (single minute exchange of dies) refers to the rapid changeover 

principle of lean manufacturing.  If a firm is to have leveled, mixed model 

production, then lengthy changeovers must be eliminated.  Wantuck, (1989), 

uses an example of Toyota changing over the die in an 800 ton press in less 

than ten minutes, a process that took one to two shifts at his own facility.  

Wantuck also claims that this was accomplished not with costly automation, 

but with rigidly applied systematic processes and some clever engineering.  
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Rapid changeovers are an enabler for continuous flowing, mixed model 

production with a pull system. 

 

• Jidoka 

The Japanese term jidoka refers to in process quality, or quality at the source.  One 

key area of source quality is poke yoke, or error proofing using simple mechanized error 

proofing devices.  Conversely, many quality check elements can only be performed 

through sensory perception, which is the role of the man, not the machine.   

Andon is a highly visual and audible notification method in the form of a lighted, 

multi-colored board hung in a factory (Monden, 1998).  Toyota, for example, places a 

cord and a light at each workstation.  Team members can pull the cord to announce a 

problem, and stop the line if need be (Bicheno, 2000; Shingo, 1986). 

Problem solving is another important aspect to source quality.  When a defect is 

created, multi-function work teams often work together to solve the problem and 

eliminate the threat of reoccurrence in the future.  One example of such a team, given 

by Tsutsui (1998) is Toyota’s quality circle, a cross disciplinary work team dedicated 

to solving problems that arise on the production floor.  

• Waste Reduction 

Waste reduction is an important structural component of the Toyota house.  The very 

term “lean” implies that wasteful excesses across the plant are sought out and eliminated.  

There are three types of waste, with the Japanese terms muda, mura, and muri.   

 

 Muda refers to various wastes dealing with production and quality that occur on 

the shop floor.  There are seven types (see Figure 2.4) (Womack, 1996; Bicheno, 

2000; Ohno, 1988). 

 Mura refers to the waste of overburden on workers.  An employee whose work is 

too burdensome is more prone to defects and less empowered to aid in 

improvement (Ohno, 1988). 

 Muri refers to the waste of unevenness.  This relates to the benefits of heijunka as 

opposed to batch production as discussed earlier (Ohno, 1988). 
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Figure 2.4 Different Types of Waste 

 

• Continuous Improvement 

Lean systems are dynamic and change through continuous improvement, or kaizen.  

Improvements can be achieved through two types of kaizen; flow kaizen and process 

kaizen (Bicheno, 2000).  Flow kaizen refers to improvement made throughout the value 

chain, while process kaizen refers to improvements that are isolated to specific processes.  

Everyone in a lean organization is responsible for improvements, from the team members 

to the plant manager.  A lean organization understands that continuous improvement is 

the only way to improve upon the standard and stay competitive.   

 

• People and Teamwork 

The people of a lean organization are what truly makes it work, and thus are 

supported by the components discussed above.  While mass production sought to atomize 

work and eliminate employee thinking, lean manufacturing seeks to empower the worker, 

standardize the process, and encourage team members to improve their process.  Lean 

manufacturing makes use of work teams, consisting of a small number of team members 

(5-10) who work under a team leader.  Those team leaders are assigned a group leader, 

who may report to an assistant manager (Ohno, 1988).  This system enables close 

relationships among employees, creating an environment conducive to safety and 
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improvement.  Lean leaders also follow a model of servant leadership, meaning that the 

leaders function is to support and serve their team members. 

 

Summary 

The building blocks that make up a lean manufacturing system have been discussed 

briefly, and it becomes obvious that while many limit lean to simply a JIT or TQM 

practice, it in fact involves much more than that.  Lean manufacturing implies a shift in 

the very culture of an organization; it is a philosophy or way of doing business that 

includes production methods, planning, and the way it treats people.  Lean manufacturing 

is an all encompassing method for operating a manufacturing firm in an effective manner. 

2.2. Mass Customization Overview and Classification Systems 

Mass customization began to emerge as a viable manufacturing strategy in the early 

1990’s and has since grown in popularity.  Many businesses began to find that their 

markets were becoming more fragmented and customers were demanding more 

individualization, and sales were being lost to competitors able to deliver custom goods 

in a timely manner (Pine 1993).  The main characteristic of mass customization is that 

absolutely no work is done in the manufacture of a product until the customer order is 

received.  This differs from the pull system and “make-to-order” operations in that there 

is no forecasting and each order is unique.  Essentially, a particular order does not exist in 

the system until the end customer submits it (Lampel and Mintzberg, 1996).  Mass 

customizers often make use of some sort of product configuration tool such as a 

salesperson or software to assist the customer in choosing their options (Boynton et. al., 

1995).   

Systems operation for mass customization manufacturing can be very different from 

the single pull scenario of lean manufacturing as the manufacturer could potentially 

receive many signals from individual consumers rather than distributors or retailers.  The 

effects of these multiple signals on operations depend upon the extent of mass 

customization; some strategies may have little or no impact, while others may alter it 

completely. 

Prior to an in depth evaluation of the applicability of lean principles for mass 

customization, a system for the classification of different mass customizers is necessary.  
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This will allow firms to be classified based on business strategy, and identify capabilities 

needed for the particular type of mass customization.  The following sections provide an 

overview of four well known mass customization classification systems, with an analysis 

to assess their suitability to serve as a framework to investigate the potential of using lean 

manufacturing principles and practices for mass customization.  

2.2.1. Single Dimensional Classification Schemes 

Pine (1993) Model 

Pine (1993) divided mass customizers into five different groups based on where 

customization takes place in the value chain: Development, production, marketing, or 

delivery.  The first group is the customizing of services around standardized products 

and services.  This is based on the ability of marketing and distribution to customize 

products by offering different services to customers, adding features to the product, 

packaging, etc.   

For the second group, create customizable products and service, customization takes 

place in either the development or marketing stage of the value chain, while not affecting 

the production and delivery stages.  With this system, a product is still mass produced, 

but because of the way it is designed, it will customize itself to the user.   

Provide point-of-delivery customization involves catering to the customer’s needs at 

the point of sale.  Pine (1993) uses the age old practice of tailoring as an example.  A 

customer chooses a standardized style of suit, after which the tailor measures and fits the 

suit to the customer’s specific body dimensions, thus providing on the spot 

customization. 

With provide quick response throughout the value chain customization begins at the 

delivery stage, and then filters back through the value chain all the way to development, 

causing the entire value chain to have to adapt rapidly to customer needs.  The Hertz’s #1 

Club Gold is an example of this strategy, where the tasks of transporting customers, 

preparing vehicles, service contracts, etc. cannot be accomplished without a highly 

adaptive value chain (Pine, 1993). 

The final mass customization strategy in Pine’s (1993) classification is to modularize 

components to customize end products and services.  Pine claims that this method of 
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using standard modular components as a basis for mass customized products is the most 

effective strategy.   

 In summary, this early classification model sought to break down the different 

mass customization strategies using point of customer involvement in the value chain.  

Pine’s model displays a wide range of mass customization behaviors, however little 

attention is paid to mass customization in the design and production stages.  This initial 

model is focused mainly on using as much standardization as possible while providing 

customization in the marketing and delivery stages.  The concept of modularity is 

employed in one of the five strategies, but the concept’s true place in mass customization 

practice seems to be underdeveloped.   

 

Lampel and Mintzberg (1996) Model 

Lampel and Mintzberg (1996) divide manufacturers into five different groups: Pure 

Standardization, Segmented Standardization, Customized Standardization, Tailored 

Customization, and Pure Customization.   

Pure Standardization is “...based on a “dominant design” targeted to the broadest 

possible group of buyers, produced on as large a scale as possible, and then distributed 

commonly to all.”  With this strategy, the product is completely standardized with no 

distinctions made between customers, as with Henry Ford’s Model T (Lampel and 

Mintzberg, 1996). 

Segmented Standardization involves building to the needs of “clusters” of buyers, 

with the product remaining standardized within those clusters.  Here, customization is 

decided upon and produced based on predictions of customer needs rather than individual 

customer requests, as with designer lamps (where one can find huge variety without 

individualization) (Lampel and Mintzberg, 1996). 

Customized Standardization occurs when “…products are made to order from 

standardized components.”  Also known as assemble to order, this strategy simply allows 

the customer to decide what mass produced features, are or are not, present in their 

individual product.  Allowing a customer to choose the options on their particular 

automobile, or choosing what ingredients are present in their hamburger at a fast food 

restaurant is an example (Lampel and Mintzberg, 1996). 
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Tailored Customization occurs when “The company presents a product prototype to a 

potential buyer and then adapts or tailors it to the individual’s wishes or needs.”  Here 

customization filters back to the fabrication stage, but not to the design stage, as there is 

still a standardized product prototype.  

Pure Customization is the highest degree of mass customization attainable, 

according to the Lampel and Mintzberg Model.  Here, the customer’s needs are outlined 

and catered to beginning early in the design process, greatly affecting all steps of the 

value chain.  Traditional artisans such as jewelers or residential architects, who design 

and build the product to the customer’s specifications, fall into this category (Lampel and 

Mintzberg, 1996).   

This framework of classifying mass customizers is slightly more developed and a 

more concrete classification model than that of Pine, (1993).  However, the first two 

classifications listed; pure standardization and segmented standardization, do not involve 

mass customization strategies at all.  Further, this model, too classified strategies only by 

customer involvement in the value chain in the assembly, delivery, or design stage (for 

customized standardization, tailored customization, and pure customization, 

respectively).  

 

Gilmore and Pine (1997) Model 

Gilmore and Pine (1997), divided mass customizers into four groups: Collaborative, 

Adaptive, Cosmetic, and Transparent customizers.  This model is an improvement over 

Pine’s previous model (1993) in that the criteria for each category have become more 

clearly defined and the model has shifted to include more customization in the design and 

fabrication stages.  

Transparent Customizers customize products based on predictions and observations 

of customer’s needs.  In this case, customers do not know that the product has been 

customized for them.  On the other hand, Cosmetic Customizers customize their products 

by making it appear different to different customers.  Custom features can include 

packaging, specific feature advertisement, and personalization such as engraving. 
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With Adaptive Customization manufacturers produce a standard product which will 

then automatically adapt itself to a customer’s needs.  Here the desire is for the product to 

perform differently based on the specific need at a given time.   

Collaborative Customizers work one on one with individual customers to understand 

and cater to their specific needs.  This strategy most embodies the idea of mass 

customization as we usually think of it.   

The Pine and Gilmore model is a much more generalized classification system 

compared to the two previous models.  Here, the idea of a transparent customizer, one 

who customizes products without customer specifications, is a new and intriguing idea 

not considered in the earlier taxonomies.  The customer essentially is only involved in the 

delivery stage, but their specific needs are taken into account from the design stage in that 

the mass customizer determines the needs of the customer themselves.  We also find once 

again that three of the four strategies allow for customer involvement only in the 

assembly and/or delivery stages, and modularity is again unaccounted for. 

2.2.2. Two Dimensional Classification Schemes 

The three classification schemes above include only point of customer involvement in 

their classification criteria.  However, modularity is also an important aspect of mass 

customization.   

When examining mass customization, one key concept that has played a large part in 

its success to this point is modularity.  Swaminathan claims that modularity can be 

present in product, process, or both.  A modular product can be manufactured by 

combining standardized modules into variable configurations.  A modular process occurs 

when different products undergo the same set of processing steps (Swaminathan, 2001).  

Pine claimed that for true mass customization to take place efficiently, modularity must 

be used (Pine, 1993).  Also, Duray states that modularity is a means to achieve some 

degree of economies of scale, as well as to “…provide variety and speed…” (Duray, 

2000).  Modularity allows firms to create base components, a kind of common 

denominator, among different product lines, thereby allowing for increased efficiencies 

for an individually customized product.  
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Duray et. al. (2000) Model 

The mass customization classification system developed by Duray et al. (2000) is one 

of the more recent and most advanced because it classifies mass customizers on two 

dimensions; point of customer involvement in the value chain, and type of modularity 

used by the producer.  They divide mass customizers into the following four groups: 

Assemblers, Modularizers, Involvers, and Fabricators. 

Assemblers involve the customer and use modularity in the assembly and delivery 

stages, enabling the customer to select different combinations of standard features to be 

interfaced with a base model of product.   

Modularizers are characterized by involving the customer in the assembly and 

delivery stages, but using modularity in the design and fabrication stages.  The producer 

uses standard modules to design and fabricate a base module, and specific customer 

needs are incorporated in assembly and delivery.   

Involvers involve the customer in the design and fabrication stages while using 

modularity in the assembly and delivery stages.  Customers are involved early in design, 

but this design must be created from a selection of standardized modules, as no new 

modules will be designed for them.     

Fabricators involve the customer and make use of modularity during the design and 

fabrication process.  Customers create their custom design, but modularity can be used to 

some degree to create similarities in components.   

Major differences are present between the Duray et. al. model and others;  this model 

not only classifies mass customizers based on point of customer involvement, but also 

use of modularity.  Further, it is more detailed and able to identify mass customization in 

the early stages of the value chain.  These are the major strengths of this latest model over 

the previous ones.  Though modularity is mentioned in the Pine (1993) model, its usage 

and importance to mass customization is developed in greater detail in the Duray et. al. 

(2000) model.   See Figure 2.5 below for a graphical representation of this model. 
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Figure 2.5 Duray et. al. (2000) Model for Mass Customization Classification  

 

 

2.2.3. Comparison and Selection  

In investigating the potential of applying lean manufacturing principles and practices 

for mass customization, a well defined taxonomy helps to classify, compare, and contrast 

different mass customizers.  The time based progression and evolution of mass 

customization thinking is evident when examining the different models detailed above.  

As each model is developed, one can see the divisions between groups of mass 

customizers becoming clearer while the focus begins to shift towards customer 

involvement in the early stages of the value chain.  Finally, in the latest model outlined 

here we have the aforementioned improvements becoming more developed, along with a 

new focus on a key concept in mass customization; modularity.   

In the following section, a basic decision matrix is used to compare and contrast the 

strengths and weaknesses of each of the four models, the result of which will allow one 

of them to be chosen for further use in this article.  The models are evaluated based on 

the following criteria as per the authors’ opinions and observations.   
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Customer Involvement: Ability to classify customizers based on customer 

involvement in the key value chain areas of design, fabrication, assembly, and 

delivery. 

Modularity:  Ability to classify customizers based on modularity usage in the key 

value chain areas of design, fabrication, assembly, and delivery. 

Early customer involvement (CI) Focus:  Tendency for the model to focus on 

customization early in the value chain. 

Strength of Classification:  Ability of the model to crisply define and classify a mass 

customizer into one of its respective categories. 

 

Each model is scored on a three point rating scale (corresponding to 0, 1, and 2 

points) in order to identify their strengths and weaknesses.  Figure 2.6 presents these 

results. 

As can be observed from Figure 2.6, it is evident that when considering the concepts 

of customer involvement and modularity across the value chain spectrum, the Duray, et. 

al. (2000) model provides the most complete mass customization classification system.  

The model also provides detail on early customer involvement in the value chain, and 

therefore is the most appropriate for use in the following sections.   

 

 
Figure 2.6 Classification Model Decision Matrix 
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2.3. Low Level and High Level Customization 

Having chosen the Duray (2000) model for further mass customizer analysis, it is 

possible to create two more general categories based on the similarities between 

involvers/fabricators and modularizers/assemblers and the impact to the manufacturing 

operations.  These categories will hereafter be referred to as high level customization and 

low level customization, based on the point of customer involvement in the value chain.   

A high level customizer is a company where customized goods are offered through 

customer involvement at the fabrication stage or earlier.  With low level customization, 

individualization is achieved by assembling (and/or packing and distributing) pre-

fabricated, standard components in a custom manner. 

A low level customizer will find it much easier to employ process modularity and will 

be able to more efficiently plan production so that WIP is reduced and flow is 

maximized.  A high level customizer, on the other hand, will find the need for a highly 

flexible manufacturing system configuration much greater than the former, and will also 

be more reliant on organizational learning in order to improve.  The two situations are 

illustrated in Figure 2.7. 

Low level customization includes the assembler and modularizer strategies from the 

Duray model (Duray, 2000).  In the case of assemblers, customized products are 

produced through assemble-to-order customization with customer involvement and 

modularity usage occurring at the assembly or delivery stage.  Modularizers operate in a 

similar fashion, but they differ from assemblers in that modularity is employed in the 

design or fabrication stage (Duray, 2000).  In either case, the design and fabrication 

stages of the value chain remain unaffected by customer involvement, warranting the 

combined discussion of these two strategies. 

With these strategies, product modularity and postponement are used to reduce the 

variability and facilitate mass customization efficiently.  Lean manufacturing principles 

and practices are very applicable in this context where standardized modules can be 

produced to forecasted demand (in the design and fabrication stages) for assembling-to-

order as illustrated in Figure 2.8.  As pull signals from consumers come in, those modules 

are assembled to the required configurations.  However, upstream processes will only 

have a single pull signal from the upstream customer.   
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Figure 2.7 High Level Customization vs. Low Level Customization 

 

High level customization, which includes the involver and fabricator strategies 

(according to the Duray model) involve the customer in either the design or fabrication 

stages of the value chain, allowing the customer to take part in the design of their product 

before its production has commenced.  The difference between the two strategies lies in 

the point where modularity is employed in the production system.  Involvers make use of 

modularity in the assembly/delivery stage, while fabricators employ modularity in the 

design/fabrication stage.  High level customization offers a high degree of customization 

by integrating the customer early in the value chain.   

These strategies have a great effect on production because manufacturing must wait 

for the customer orders to begin fabrication, and then follow the customer’s 

specifications in order to fabricate and assemble a customized product, with each 

successive product being different from the last.  Thus lean manufacturing is not so easily 

adapted to high level mass customization, as it is essentially impossible to forecast 
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demand and plan for work content variability.  See Figure 2.9 for a representation of the 

value chain for a high level customizer.  These mass customization classifications are 

employed in the upcoming sections for discussions regarding integrating lean 

manufacturing and other strategies with mass customization. 

 

 

 

 
 

Figure 2.8 Low Level Customization 

 

 

 

Figure 2.9 High Level Customization  
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3. Literature Review 

In this chapter, an account of the literature found through the course of the research 

for this document is given, beginning with an overview of the competencies required of 

any organization that is to be successful in its quest to become a mass customizer.  The 

competencies discussed therein pertain to both the production area of a manufacturing 

firm, as well as external areas such as logistics and information technology. 

 Next, an account of the available literature providing evidence of successful 

incorporation of lean manufacturing principles into a mass customization environment is 

given in order to lay the foundation for what has already been accomplished in this area.  

Lastly, an overview of some other strategies common in manufacturing is given along 

with a discussion of their application and benefits in order to investigate the feasibility of 

employing them in mass customization situations where lean manufacturing may fall 

short. 

3.1. Competency Models 

Mass customization is a complete paradigm shift from traditional manufacturing, thus 

identifying appropriate manufacturing system configurations and evaluating the use of 

lean manufacturing principles and practices mandates a review of the capabilities 

necessary to successfully implement it. According to Moser (2007), there is currently no 

concrete, empirically founded set of core competencies that have been proven necessary 

to pave the road towards mass customization and increased performance and market 

share.  However, there is ample literature that conceptually describes some of these 

necessary capabilities (Moser, 2007).  In an effort to identify mass customization 

competencies, two models are evaluated.  

Zipkin (2001) identified three major capabilities for successful mass customization as 

elicitation, process flexibility, and logistics.  These terms are defined as follows: 

Elicitation is the process of interacting with customers to determine their specific 

needs.  This includes activities such as marketing, product configuration (via salesperson, 

Internet, etc.), and gathering the required information to customize the offering (Berman, 

2002; Zipkin, 2001). 
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Process Flexibility refers to the various production methodologies and technologies 

that make the production of customized products possible.  Flexible Manufacturing 

Systems (FMS), Reconfigurable Manufacturing Systems (RMS), effective production 

control and scheduling, and human factors such as team structures and cross training 

facilitate achieving process flexibility (Berman, 2002; Zipkin, 2001). 

Logistics refers to processes involved in delivering raw materials to the production 

floor and delivering finished products to the customers.  Here, mass customizers face a 

greater challenge than traditional manufacturers because the product must often be 

delivered to specific customers rather than distribution centers.  Individual products must 

be tracked, customized, and delivered to the customer (Berman, 2002; Zipkin, 2001). 

 

Moser (2007) presented another, more comprehensive model to classify capabilities 

for mass customization, defining eight distinct categories.  He also exemplified the 

impact of these competencies using the mass customization value chain.  Figure 3.1 

provides the competency model put forth by Moser (2007), while Figure 3.2 illustrates 

the interaction of these capabilities in the value chain. 

 

I. Customer Integration

II. Application of product 
configuration systems

III. Employment of product 
modularity

IV. Product variant 
management

V. Central production and 
logistics planning

VI. Management of mass 
and individual production

VII. Management of flexible 
organization and processes

VIII. Process documentation 
and IT support

 Mass 
Customization 
Competencies

 
Figure 3.1 Mass Customization Competencies (Moser, 2007) 

 

 



 

25 
 

(1) Product
Development

(4) Production
(2) Customer

Interaction
(3) Logistics

(7) Leadership & Organization

(6) Complexity Management

(5) IT Systems

Primary Activities

I.

I. II.

II.

III. III.

III. IV.

V.V.

V.

VI.

VII.

VIII.

VIII.

Support 
Activities

 
Figure 3.2 Mass Customization Value Chain based on (Moser, 2007) 

 

 

Moser’s model is more descriptive, identifying the capabilities needed in 

manufacturing and support activities as well, while the Zipkin model mainly focuses on 

primary activities of the value chain.  However, both models cover the wide range of 

activities that must come together as one in order for a mass customized product to be 

marketed, configured, manufactured, and delivered.  Restricting the discussion to the 

focus of this thesis, a detailed review of production competencies is provided in the 

following sections.  A brief assessment of non-manufacturing (other) competencies is 

also provided.  

 

3.2. Production Competencies 

Production competencies are the various capabilities a firm must possess to 

efficiently receive orders from individual customers and manufacture them with short 

lead time and low cost; to operate under mass customization conditions.  Based on the 

research reviewed and empirical evidence, these capabilities can be broadly classified 

into the following; manufacturing system configuration (Koren et al., 1999; Mehrabi et 

al., 2000; Berman, 2002; Zipkin, 2001), process modularity (Swaminathan, 2001; 

Selladurai, 2003), production planning (Da Silveira et al., 2001; Zipkin, 2001; Selladurai, 
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2003), and organizational learning and continuous improvement (Barnett et al., 2004; 

Pine, 1993).  These manufacturing competencies are reviewed in further detail in the 

following sections. 

 

Flexible System Configuration 

Flexibility of the manufacturing system is a key success factor for a mass customizer.  

Zipkin (2001) dedicated one of his three areas of mass customization capabilities solely 

to process flexibility.  Moser (2007) also places value on a flexible manufacturing system 

configuration with the capability labeled “Management of flexible organization and 

processes.”  A company cannot hope to produce a mass customized product without a 

highly flexible and adaptive manufacturing system configuration.  

There have been some improvements in strategy over the outdated dedicated 

manufacturing systems (DMS) (Koren et al., 1999; Mehrabi et al., 2000).  Two such 

systems are flexible manufacturing systems (FMS), and reconfigurable manufacturing 

systems (RMS).  An FMS is characterized by expensive computer controlled machines 

capable of producing a variety of products with variable volume mixes (Koren et al., 

1999).  FMS, however, has its drawbacks, which include lower throughput than DMS, 

high cost (due to producers building all possible functions into the machine regardless of 

its final set of tasks), inability to easily modify software, and the equipment being 

designed to operate at full capacity from purchase (Koren et al., 1999, Mehrabi et al., 

2000).   

According to Mehrabi et al. (2000), some of the key requirements for the future of 

manufacturing is rapid new product ramp up, “…rapid integration of new functions and 

process technologies into existing systems,” and high capacity flexibility, which they 

postulate can be provided through RMS.   

An RMS consists of a highly flexible set of machines that are manufactured 

specifically for a certain product family, and are designed with a “middle of the road” 

capacity in mind, supplying capacity flexibility for changing market conditions.  Thus, 

the RMS makes use of modularity both in machine and software to allow for quick 

capacity adjustment, low changeover/setup between products, rapid adaptability of 
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software, and quick ramp up to new product production.  Table 1 provides a comparison 

between DMS, FMS, and RMS. 

 

        Table 1. Manufacturing System Comparison (Koren et. al., 1999) 

 DMS FMS RMS 
Machine Structure Fixed Adjustable Fixed 

System Focus Part Part Family Machine 
Scalability No Yes Yes 
Flexibility No Customized General 

Simult. Oper. Tool Yes Yes No 
 

Another manufacturing system configuration, proposed by Badurdeen and Masel 

(2007) is the modular minicell approach.  They state that traditional cellular 

manufacturing usually consists of cells dedicated to a product family based on machine 

requirements.  However, in a mass customization environment, there may be a limited 

number of products with a large amount of variations.  If one were to build a cell that 

contained all the processes and machines needed to handle these variants, the cell would 

likely become large and unmanageable.   

The proposed solution to this issue is to segregate products by the options that are or 

are not required for their manufacture.  This will allow a network of minicells to be 

configured with the operators and machines necessary to produce a particular option.  

Thus, with this network of small cells in place, products and parts may be routed through 

the necessary minicells, while bypassing the unnecessary ones (Badurdeen and Masel, 

2007; Badurdeen and Thuramalla, 2007). 

Whatever the method, there is no doubt that for successful mass customization to 

occur, there must be a flexible and highly responsive manufacturing system configuration 

in place on the production floor.  FMS, RMS, and minicells are just a few examples of 

the possible techniques for efficient mass customization. 

 

Process Modularity 

Modularity is a key concept for successful mass customization, enabling the creation 

of some commonality between products and allowing for higher efficiencies to be 

achieved while also permitting customization.  Ulrich and Tung (1991) define modularity 
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as “…the use of interchangeable units to create product variants.”  As mentioned earlier, 

the two most general types of modularity are product modularity and process modularity 

(Swaminathan, 2001; Selladurai, 2003).  The former is a design challenge while the latter 

is more significant from a systems perspective. Again referring to Zipkin (2001), process 

modularity falls under the process flexibility category.  Moser (2007) accounts for 

process modularity by claiming that variant management, process documentation, and 

flexible processes are among the mass customization required capabilities.  

A modular process is “…one where each product undergoes a discrete set of 

operations making it possible to store inventory in semi-finished form and where 

products differ from each other in terms of the subset of operations that are performed on 

them” (Swaminathan, 2001; Selladurai, 2003).  A modular process allows a team member 

to be trained to do a set of operations (not necessarily based on a specific product), 

enabling the manufacture of many different products based on the general set of steps to 

be completed in the processing.   

Postponement can be used along with modularity in both product and process to 

enable a higher degree of customization (Berman, 2002).  By performing standard 

operations using standard modules and postponing customization until latter stages of 

processing, a firm can achieve higher efficiency, lower costs (purchasing modules in 

bulk, and mass production of modules), and reduce inventory on-hand (Berman 2002; 

Swaminathan, 2001).  One example of such a strategy is that of Hewlett Packard (HP) 

Deskjet Printers.  Historically HP produced its printers to completion at a single location 

but later began to use modularity and postponement.  HP now assembles a base product 

using modular components and processes at a central locale, while the printers are later 

fully customized at various distribution centers.  This change in strategy amounted to a 

reported 25% reduction in total cost of manufacture (Lee and Feitzinger, 1995).   

 

Dynamic Production Planning 

When purchasing customized products, customers are not willing to wait a large 

amount of time to receive them.  Thus, the challenge with mass customization is 

achieving low throughput and lead times while enabling customizability.  This 

necessitates reducing the amount of inventory on hand and the amount of WIP (work in 
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process) on the floor in order to maintain visibility of the system and reduce throughput 

through better flow.  According to Swaminathan (2001), the keys to determining correct 

inventory levels are deciding “…which products to build-to-order, which to build-to-

stock, and which products may be substituted for another if need be.”  Also important to 

maintaining inventory levels is the proper determination of capacity requirements.  

Accurately predicting over and under utilization of equipment and taking measures to 

control capacity can help to control inventory levels and maintain predictability 

(Swaminathan, 2001).   

All of these key issues fall under the area of production planning.  Zipkin (2001) 

accounts for production planning in the elicitation and logistics areas.  Moser (2007) 

claims that central production and logistics planning, as well as management of 

individual and mass production are among the eight key mass customization capabilities.  

This leads to the notion that effective production planning is important for efficient mass 

customization. 

Organizational Learning and Continuous Improvement 

According to Selladurai (2003), the “…traditional mass production company is 

bureaucratic, hierarchical, and highly standardized.  Workers operate under close 

supervision and perform highly routine, standardized, and repetitive tasks.”  Mass 

customizers will require a new breed of highly skilled workers, capable of working in 

cross functional teams and performing a multitude of tasks (Pine, 1993).  Mehrabi, et al. 

(2000) state that the “…restructuring of organizations emphasizes moving from highly 

centralized to decentralized team-work (i.e., essentially creating modules and dividing the 

tasks among them to enhance flexibility, integration, and faster execution of new tasks).” 

Mehrabi, et al. (2000) alludes to the concept of an intellectual worker, one which 

continually strives to gain further knowledge of product and process to better support 

their company and work team.  The concept of the intellectual worker was first proposed 

by the lean manufacturing movement as a means to continuous improvement (Selladurai, 

2002), and this trend must continue into mass customization.  Given that “…mass 

customization environment typically entail shorter product life cycles…” thus intellectual 

workers capable of learning and continuous improvement are needed   (Swaminathan, 

2001).   
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Moser (2007) also accounted for learning and continuous improvement in his mass 

customization capability model.  Moser’s seventh capability is management of flexible 

organization and processes.  Indeed, it is important that the mass customizing 

organization, from team member to manager, be flexible and strive to continuously learn.  

Only through learning can improvement take place.  The knowledgeable and empowered 

employee will be vital to the swift introduction of new products.  Thus, employees of a 

mass customization firm must be empowered to make decisions and actively pursue new 

knowledge in order to produce quality products with low lead times, and allow their firm 

to continually introduce new and improved products with rapid ramp up so as to maintain 

and increase market share.   

3.3. Other Competencies 

Though not the focus of this paper, external competencies are noteworthy because 

they impact the production operations and system effectiveness for mass customization.  

The major non-manufacturing competencies significant for mass customization include: 

IT and Customer Interfacing, Product Development, and Logistics.  These competencies 

are discussed briefly in the following sections. 

A major development that has led to more prominent use of mass customization is the 

ever increasing popularity of internet business (Selladurai, 2002).  The Internet has 

allowed producers to create web-based “product configurators,” which allow customers 

to personalize products to individual preferences, within solution spaces defined by the 

producer.  

In the past, customer interaction (elicitation)  was costly and time consuming because 

it was performed by “skilled sales people,” and thus was often reserved only for high 

volume consumers (Berman, 2002).  Irrespective of the method, it is imperative that the 

consumers are able to decide on preferences, and then accurately convey their 

preferences to the producer in a timely manner.  The ability to provide these capabilities 

to consumers can have a great effect on a company’s market performance (Boynton and 

Pine, 1993).  The IT aspect of mass customization directly influences the shop floor 

operations in that customer orders for specific products must be communicated 

accurately, scheduled appropriately, and materials made available to deliver custom 

products in a short lead time. 
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A mass customizing firm must be able to quickly and efficiently introduce new 

products into the markets in order to keep up with dynamic market conditions.  

Sanderson and Uzumeri claim that “the emergence of global markets has fundamentally 

altered competition as many firms have known it.”  This has resulted in “forcing the 

compression of product development times and expansion of product variety” (Sanderson 

and Uzumeri, 1997).  This does not mean, however, that standardization and 

commonality cannot be made use of.  It has been found that the increasing focus on 

individual customers has led to “a failure to embrace commonality, compatibility, 

standardization, or modularization among different products or product lines” (Meyer and 

Lehnerd, 1997).  This leads to the idea that product design is vital to the success of a 

mass customizer.  Tseng et al. (1997) present the idea of product family architecture 

(PFA), a set of products with some commonality and standardization that can be 

produced as a family, possibly among a work cell on the production floor.   

Proper product development practices are directly related to the shop floor in that the 

developed product must be produced there.  The more a developer makes use of 

standardization, modularity, and commonality, the easier and more efficient the task of 

production will be. 

The third aspect of mass customization external competencies is that of logistics.  

Zipkin (2001) describes logistics as “…additional processing and transportation tasks.”  

One key issue with producing individualized products is that they must be tracked and 

produced by specific customer.  One example of how a current mass customizer 

accomplishes this is Levi Strauss, who attaches a water proof barcode to the cloth with 

the customer’s information.  This enables the products to be washed together, while 

maintaining the products individual identity (Zipkin, 2001).   

Also vital to mass customization logistics is the supply chain, which must be 

coordinated and constantly in contact with the client.  Berman (2002) claims that the key 

to a mass customized supply chain is “…close relationships with channel partners more 

capable than the firm in performing specific channel functions.”  The important concept 

here is a close, partnership like relationship between supplier and client.  This will allow 

for increased communication, trust, and integration between entities, enabling a mass 

customizer to obtain materials as needed. 
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The third aspect of logistics is distribution, which is difficult since products are now 

sent to individual customers, rather than “middle men” as with traditional manufacturing. 

Zipkin (2001) states that “…technologies underlying e-commerce logistics (including the 

internet, automated warehouses, and package delivery services) continue to develop, they 

will help bring mass-customization systems to fruition.  Today’s problems are 

opportunities for such companies as Federal Express and United Parcel Service (UPS).” 

Logistics is related to production in that it is vital for the shop floor to receive raw 

materials and components when they need them, so as to be neither starved nor 

overburdened with material.  Finished goods must also be quickly transported from 

production floor to customer upon completion of processing. 

 

Discussion 

In the previous sections, mass customization competencies presented by different 

authors were reviewed, and based on these four broad categories of competencies 

required for successful mass customization manufacturing have been identified.  It is 

evident, however, that as the degree of customization varies for different mass 

customization classification schemes as discussed in Chapter 2, so does the extent to 

which these competencies effect production.  Having established these competencies, the 

objective is to assess to what degree lean manufacturing principles and practices can meet 

them.   

3.4. Potential for Applying Lean Manufacturing For Mass     Customization 

A brief history of manufacturing evolution has been given and basic definitions of 

lean manufacturing and mass customization established.  Also, an examination of mass 

customization classification schemes was given along with a discussion on mass 

customization and lean manufacturing capabilities.  Having fully defined and discussed 

these two manufacturing strategies, a conceptual investigation into the transferability of 

lean techniques for mass customization is pertinent at this point.  An attempt was made to 

find literature pertaining to the application of lean manufacturing principles for mass 

customization, but there seems be little work in this area.   

Boynton and Pine (1995) claimed that becoming lean was an important step for a 

company wishing to transition to mass customization, but gave no details on the actual 
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employment of lean while mass customization is taking place.  The theme of viewing 

lean as a transitional step to achieving mass customization occurs with some regularity in 

the literature, but on the possibility of actual integration of lean principles into a mass 

customizing operation there is no supporting material to be found.  Several works refer to 

lean manufacturing in a build-to-order or make-to-order environment, but these 

essentially mean building only to demand as in a pull system (Michel, 2002; Clarke, 

2005).  Make-to-order operations differ from mass customization in that no work is done 

until the customer configures their individual product and delivers their specifications to 

the manufacturer.  This work will attempt to provide some insight into this previously 

unexplored topic. See Figure 3.3 for a visual representation of the overlap between lean 

manufacturing and mass customization that is to be explored. 
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Figure 3.3 Mass Customization with Lean Principles and Practices 

 

From the discussions above, it is evident that some aspects of lean manufacturing are 

directly transferrable to mass customization while others are not.  Also, the lean 

capabilities and tools that are applicable will vary based on the type of mass 

customization in use.  Lean manufacturing is readily adaptable to low level mass 

customization operations that delay customer involvement until later stages of the value 

chain such as assembly or delivery, but the uses of lean when the customer is involved in 
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the design or fabrication stage is much more abstract, and little research has been done on 

the subject. 

It is obvious that some aspects of lean can easily be used, and are in fact likely 

required for efficient mass customization no matter what strategy is in place.  One 

example of this is good team structures and continuous learning.  An operation that hopes 

to use mass customization cannot do so without the intellectual worker.  Employees must 

be highly trained and encouraged to continuously learn and share knowledge in order to 

improve their organization, just as employees of lean companies are required to do.  This 

concept is even more important for mass customization however, as the difficulty and 

variability of the processing is significantly higher as variety increases.   

Visual management is also a key lean practice that can be made use of in mass 

customization regardless of strategy.  It is important to visually represent the status of the 

production floor at all times.  This is especially so in mass customization as offering 

customized products while maintaining low lead times and throughput requires a high 

degree of organization.  5S can also be directly applied to mass customization, or to any 

environment, and will greatly aid in creating an organized shop floor.  

Mass customizers must also seek to continuously improve their operations and 

eliminate waste wherever possible.  While these lean capabilities may be more difficult in 

operation for some styles of mass customization, the principles still apply.  

Lean concepts that are not so easily adapted to mass customization include stable and 

standardized processes, JIT, and Jidoka.  The very definition of mass customization does 

not account for any degree of stability and standardization, and as variety increases and 

the customer becomes involved earlier in the value chain, these concepts become more 

difficult to apply.  Nevertheless, some degree of standardization can be reached, however 

small, in any process.  Tools such as process modularity can aid in creating some stability 

in the process when none is offered by the product. 

Leveled production and JIT (which includes the concepts of takt time, pull, and 

continuous flow) are also very difficult to use in mass customization, at least for 

involvers and fabricators where customization occurs early in the value chain.  When 

each product is completely individualized, accurately forecasting demand becomes 

increasingly difficult, and products are likely to have highly variable work content.  This 



 

35 
 

makes leveling production and use of takt pacing a near impossibility in many mass 

customization environments.  With little or no concept of takt and work leveling, it 

becomes difficult to continuously flow product through the plant.  However, some degree 

of pull and flow can be implemented on the shop floor, especially with the aid of good 

visual management.  This is much more possible for assemblers and modularizers.   

Jidoka, or source quality, is also increasingly difficult to adapt to mass customization 

as the customer becomes involved early in the process.  As products become increasingly 

more customized and variety rises, good quality control on the shop floor is more 

difficult.  One can still implement self and successor checks, but with much lower 

degrees of standardization in the product and process, these checks become less efficient.  

When producing a product that was individually designed for a single customer, the 

concept of “good quality” becomes more obscure as there is essentially no quality 

example to compare the product to.  The only quality standards available are those given 

in the design parameters.  However, some degree or source quality can be used in any 

mass customization environment.  For example, the characteristics of a quality weld are 

constant regardless of where and on what surface the weld is placed, and thus can be 

efficiently controlled with self and successor checks and other jidoka practices.   

Above all, any firm, mass customizing or lean, should seek to continuously improve 

itself.  Only through continuous learning, increased knowledge, and the active pursuit of 

solutions to problems and wastes can a producer hope to increase the efficiency of its 

operations and further itself in its market.  While many common lean tools, such as takt 

pacing and leveled production, are seemingly inapplicable in some mass customization 

manufacturing environments, there are many lean aspects that can be transferred directly.  

Lean is often viewed as simply a set of tools and used interchangeably with terms like JIT 

and TQM, but lean is actually a philosophy that encompasses all aspects of production.  

Within this philosophy, there are certain “cultural” areas, such as team work, continuous 

improvement, visual management and 5s, problem solving, and waste elimination that 

can be directly applied to any mass customization environment.   
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3.5. Potential for Integrating Other Strategies 

Various other strategies have emerged in the literature to cope with changing market 

requirements.  An investigation of these emerging strategies in the context of lean 

manufacturing and their applicability to mass customization is worthwhile at this point.  

These strategies include agile manufacturing, leagile manufacturing, job shop lean, Quick 

Response Manufacturing (QRM) and POLCA, and Theory of Constraints (TOC).   

 

Agile/Leagile 

Agility is defined as “…using market knowledge and a virtual corporation to exploit 

profitable opportunities in a volatile market place,” (Naylor et al., 1999).  Indeed, 

unstable and volatile markets, characterized by short product life cycles and highly 

variable demand is one of the main drivers for becoming agile by developing market 

knowledge and methods to rapidly respond to volatility.  Agile manufacturing is entirely 

different to the lean paradigm, and even mass customization (Stratton, 2003).  The focus 

of agile manufacturing is fast response throughout the supply chain to mitigate the effects 

of variability, while mass customization is focused on delivering customized products to 

each individual customer.  By nature, both paradigms are characterized by high variety 

and uncertain demand (Krishnamurthy et al., 2007). 

Many studies have shown that neither lean nor agile supply is the answer to all 

production issues, but in fact a combination of both may often be the best solution.  One 

such study consisting of a survey of some 600 companies in the United Kingdom 

concluded that it is more likely that lean and agile manufacturing should work together to 

be most effective (Yusuf and Adeleye, 2002, Agarwal et. al., 2006).  This combination of 

lean and agile has been termed leagile and is defined as “…the combination of the lean 

and agile paradigms within a total supply chain strategy by positioning of the decoupling 

point…” (Mason-Jones et al., 2000).  The decoupling point is the point at which the agile 

supply chain strategy and the lean supply chain are separated.  Everything upstream of 

the decoupling point uses lean principles to enable leveled production from accurately 

forecasted demand, while all stages after the decoupling point use agile concepts to 

maintain customer responsiveness and buffer the volatility of the market.  It is important 

to note that agile and lean sections must be used separately.  This is accomplished either 
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through decoupling or time based variation in strategy usage, meaning the strategy in use 

could vary depending on the season, for example (Towill and Christopher, 2002). 

With the decoupling point at the assembly stage, further improvements are feasible by 

incorporating leagile practices. This will enable upstream processes to operate very 

efficiently using lean, while assembly and other downstream processes can maintain 

customer responsiveness.      

According to Goldsby et al. (2006), three methods to create lean and agile hybrids are 

available.  The first uses the 80/20 rule, (i.e. 80% of the sales will come from 20% of the 

product varieties) to establish an efficient lean system for that 20% of high demand 

product, while agile and leagile concepts are used for the other 80% of the variations.  

While this concept may not be directly applicable to mass customization as the variety is 

potentially very high, it can in principle be used with accurate forecasting to reduce the 

variability in the system. 

The second hybrid method involves investing in excess (production) capacity in order 

to handle varying demand and work content fluctuations, which is also a useful strategy 

considering the volatility of mass customization markets.  Third is the principle of 

postponement (Goldsby et al., 2006).   

One well known example assembler/modularizer that uses postponement is Scion, a 

division of Toyota.  Customers are allowed to customize their cars online with a 

multitude of features.  Base models are manufactured in Japan applying lean 

manufacturing, then customized later at distribution centers, or even at the dealerships 

that sell them (Goldsby, et al., 2006).  Given that the customer involvement takes place 

late in the value chain for both low level customizers, these leagile strategies can possibly 

be implemented with a well placed decoupling point.  The best strategy to use will 

depend upon the product and its market.  While lean manufacturing is for the most part 

directly applicable to these mass customization scenarios, the use of a leagile hybrid 

system may increase customer responsiveness and further reduce the effect of variation 

on the supply chain. 
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Job Shop Lean 

Job shop lean is a relatively new method in which certain lean manufacturing 

principles and practices are applied to job shop environments (Brink and Ballard, 2005).  

The main focus of job shop lean is to use value stream mapping to gain a system wide 

perspective.  While it is difficult to quantify information such as processing times, lead 

times, etc. in a fully customizing production line, value stream mapping can still provide 

enough perspective over the system to enable the visualization many of the wastes (Brink 

and Ballard, 2005; Huang et. al., 2005; Alves et. al., 2005).  Other lean principles such as 

5s, visual management, WIP control through kanban, and total productive maintenance 

have found use in job shop environments (Brink and Ballard, 2005).  There is very little 

literature available on the actual application of job shop lean and its methods.  It is clear 

that this strategy is a variation of lean with many similarities, but accounts of successful 

implementation and the benefits of applying this strategy to custom manufacturing 

situations were unable to be found. 

 

Flexible Manufacturing Systems/Reconfigurable Manufacturing Systems 

Flexible/Reconfigurable manufacturing systems (FMS/RMS), as discussed earlier in 

the chapter, offer flexibility in the production systems for those manufacturing 

environments that heavily utilize equipment.  FMS, while expensive, offer the ability to 

handle a large number of products with rapid changeovers and setups, while the less 

expensive and perhaps more practical RMS focuses on efficiently handling products 

across a given family (Koren et. al., 1999).  The main advantage of RMS over FMS is the 

use of modularity in the equipment and software to quickly adjust capacity and allow for 

rapid new product ramp up (Mehrabi, et. al., 2000).   

While FMS/RMS are certainly viable strategies, they are limited to application in 

equipment intensive environments where they can have a profound impact on throughput.  

Companies will likely see little benefit in adding these expensive systems to a single or a 

few processes on the shop floor, as it has been proven that maximizing the efficiency of a 

single process may not effect or in fact be detrimental to overall system performance 

(Goldratt, 2004).   
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Theory of Constraints (TOC) 

The Theory of Constraints (TOC) is another strategy that has found success in many 

manufacturing situations.  Its focus is on the existence of a constraint or bottleneck which 

determines the throughput of the entire system and can be used as a pacemaker (Goldratt, 

2004; Mabin and Balderstone, 2000).  Control over the manufacturing system is 

established through the drum-buffer-rope (DBR) mechanism, where the constraint is the 

drum or pacemaker, a buffer is placed between the drum and the downstream processes 

to eliminate stoppage of the constraint, and the rope is employed to pull product to the 

bottleneck from the upstream processes (Klusewitz and Rerick, 1996; Goldratt, 2004; 

Mabin and Balderstone, 2000).  Figure 3.4 shows the operation of the DBR mechanism. 

 

Upstream
 Processes

Downstream
Processes

Drum
(Pacemaker Process)

Buffer
(Prevents stoppage of drum)

Rope
(Links drum pacing with 

order release)  
Figure 3.4 DBR Mechanism 

 

 TOC also seeks to create excess capacity for variability buffering in all non-

constraint resources while only the constraint itself is run at nearly 100% utilization to 

maximize throughput on the shop floor (Goldratt, 2004; Steel et. al, 2005).   This 

protective capacity has been proven to improve WIP and flow time, but with diminishing 

returns and benefits as variability increases (Kadipasaoglu et. al., 2000). 

(TOC) and the DBR mechanism have been proven to be effective and have been 

accepted by many manufacturers over the years, but at this point there is still little 

literature qualitatively analyzing situations where TOC is made more or less effective as 

a control system.  Mabin and Balderstone (2000) listed nearly 100 companies that had 

implemented TOC successfully, but little quantification of the results was given other 
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than accounts of reduced inventory and increased throughput.  Thus it is difficult to 

understand from the literature just how effective TOC can be in different situations, 

especially that of mass customization.  One key observation that can be made of the DBR 

mechanism is that it borrows from the lean principle of pull through the use of the rope 

for order release.  However, literature discussing any integration of lean principles along 

with TOC was not found.   

 

Quick Response Manufacturing (QRM) 

Quick Response Manufacturing (QRM) is a manufacturing control strategy that has 

found use in many situations where variety can be high.  QRM uses lead time reduction 

as its main performance measure and employs the paired cell-overlapping-loops of-

cards-with authorization (POLCA) (Suri, 1998).  QRM seeks to reduce lead times across 

all operations in order to gain responsiveness to the customer.  POLCA is a control 

mechanism that is efficient for controlling flow and inventory in manufacturing 

environments that face a high number of complex product routings (Fernandes and 

Carmo-Silva, 2006).  A POLCA system has cards for each possible product routing that 

are set to a number that can be determined through formulas based on indicators such as 

demand and lead time.  The cards are set for a routing between two cells, and are attached 

to the product upon entering the first cell in the routing and detached upon leaving the 

second cell (Suri, 1998).  In this way, POLCA controls inventory levels between each 

pair of cells and thus across all product routings.  See Figure 3.5 for the operation of a 

POLCA system. 

Figure 3.5 shows one possible routing for a product through this example system, and 

there would be a loop between each pair of cells for other product routings (i.e. P1F2, 

F1A3, A1S1, etc.).  For an explanation of the usage of POLCA cards the P1F1 loop in 

Figure 3.5 can be examined.  For a product to enter the P1 cell with a routing that had F1 

as its next process, a P1F1 card would have to be available.  The card would then be 

attached to the product and flow from P1 to F1 before being detached and returned to the 

P1 cell.   
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Figure 3.5 POLCA Control (Suri, 1998) 

 

Similarly, and F1A2 POLCA card would have to be available before the product could 

enter the F1 process, and so on.  In this way, POLCA controls inventory throughout a 

system with complex routing situations. 

It is apparent from the literature that QRM and POLCA are robust systems that can 

aid in situations where variety is high.  The focus on lead time reduction is an easy and 

effective performance measure to employ (Suri, 1998; Johnson and Harrison, 2004) 

where as lean manufacturing’s focus on waste reduction is more difficult to quantify.  

However, the POLCA system does have its drawbacks.  POLCA is intended to be used in 

the cellular manufacturing environment, and there is little literature to be found on the 

implementation of POLCA in non-cellular situations.  It also can tend to become very 

complex due to the requirement of having a set of cards for every possible cell-pair 

routing, thus the physical operation of the system can be tedious in some situations. 

The focus on lead time reduction and ability to handle high variety and product 

routings indicate that QRM could be a strong system for aiding in successful mass 

customization.  The literature also indicates that it can be integrated with some aspects of 

lean, such as combining lead time reduction and waste reduction as performance 

indicators.  POLCA and kanban can also be integrated by employing POLCA to control 

inventory between cells while kanban is used for control within each cell (Suri, 1994).  
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Short lead times in high variety situations is tantamount to successful mass customization 

by its very definition, and QRM can likely offer support for this.  

 

3.6. Discussion 

While the competencies required for successful mass customization and the principles 

associated with lean manufacturing are well documented and defined, it is apparent from 

the literature reviewed that there is a need for further investigation into the topic of 

applying lean manufacturing principles and practices to mass customization.  The 

literature on this subject is currently very sparse and no clear conclusions, empirical or 

otherwise, have been drawn on the applicability of lean or mass customization.  Also 

important to the research is the investigation into the application of the other 

manufacturing strategies discussed in Section 3.5 to fill in the gaps where lean 

manufacturing falls short, if there are any.  Overall there is little literature to support or 

discount neither the application of lean manufacturing in mass customization 

environments nor the successful integration of other common manufacturing strategies 

with lean.  Thus, an attempt will be made to shed some light on this topic through further 

research.  In the next chapter, the applicability for each manufacturing strategy discussed 

in Section 3.5 is discussed in terms of providing assistance for lean manufacturing, and a 

theoretical framework is developed showing the proposed interactions of the various 

systems based on the type of mass customization in place. 
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4. Methodology 

Having provided a discussion of the characteristics of lean manufacturing principles 

and practices and mass customization, and the applicability of the former to the latter, it 

is now necessary to review some of the other strategies prominent in manufacturing 

today.  In this section, strategies such as agile/leagile, job shop lean, quick response 

manufacturing, etc. are critically reviewed and arguments for or against their application 

toward filling in the gaps between lean manufacturing and mass customization are 

discussed.  Next, a framework is provided showing the strengths and weaknesses of lean 

manufacturing when applying it to mass customization and where the other strategies that 

have been reviewed can supplement lean.  Finally, the research objective and procedure 

is presented and the case study company introduced. 

 

4.1. Critical Review 

It is evident that lean manufacturing principles and practices are not wholly 

applicable in many mass customization environments, and that in many cases it will be 

necessary to utilize aspects of other manufacturing strategies.  In chapter 3, these 

strategies and their characteristics were discussed.  Here, their qualities are reviewed for 

robustness in their ability to fill in the gaps where lean manufacturing falls short. 

 

Agile/Leagile 

Agile and leagile are business strategies focused on the responsiveness of a 

manufacturing firm to the market conditions it must face.  These strategies have received 

quite a bit of attention in recent time as a means of handling the increasing fragmentation 

of market conditions and shortening of product life cycles (Stratton, 2003; Krishnamurthy 

et. al., 2007).  Again, Leagile differs from agile only in that it incorporates a decoupling 

point (Yusuf and Adeleye, 2002; Mason-Jones, 2000).   

While there is no doubt that responsiveness to market conditions and the quick 

introduction of new products is important, one cannot help but wonder exactly how an 

organization might become agile.  In all the literature reviewed, few accounts of an 

organization actually applying agility to their manufacturing system were found.  This is 
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most likely due to the fact that agility has at its core no principles or structure that an 

organization could follow in an attempt to transition to an agile organization.  The 

principles and practices of lean manufacturing, and to a lesser extent, mass 

customization, are well known and outlined, and the companies that have successfully 

employed them are numerous.  However, this is not true of agile manufacturing.   

The core objective of fast market response and new product introduction for 

agile/leagile manufacturing is certainly important for any business to have, however, the 

weakness of these strategies lies in the fact that it is limited to a business objective, an 

ideology to be applied across the enterprise, but lacking any tools for concrete application 

to the shop floor. 

  

Job Shop Lean 

It is difficult to see where this strategy differs from that of lean manufacturing other 

than the environment in which it is applied.  Both approaches utilize value stream 

mapping heavily to visualize the system and employ a strong focus on waste elimination 

(Brink and Ballard, 2005).  However, no tools or practices specifically unique to job shop 

lean were found in the literature, and case studies of organizations applying job shop lean 

were virtually non-existent.  As with agile/leagile manufacturing, the question is raised of 

how an organization might actually apply job shop lean, as no core tools other than value 

stream mapping and a focus on waste reduction seem to be present.   

While value stream mapping is a powerful tool and can be used in most any 

environment, it is difficult to see any solid benefits of applying job shop lean in mass 

customization organizations.  It is likely that job shop lean will be further developed in 

the future, but for now it remains a slight variation of lean manufacturing made less 

effective by the environment in which it is applied. 

 

Flexible/Reconfigurable Manufacturing Systems 

Flexible/Reconfigurable manufacturing systems (FMS/RMS) provide a means to 

handle processing and changeover/setup in high variety equipment intensive operations 

(Korent et. al., 1999; Mehrabi et. al., 2000).  The ability to handle a broad range of 

products in an efficient manner is a principle that is at the core of mass customization.  
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Lean manufacturing promotes fast setups and changeover strategies such as SMED, thus 

it is apparent that in applying lean manufacturing to mass customization the concepts of 

FMS/RMS hold some merit.  However, their weakness lies in the fact that they are both 

equipment focused strategies, and are lacking as a means of system wide control and 

operation of the manufacturing system.  Employing FMS/RMS will provide some benefit 

to many organizations, but focusing only on equipment must be avoided and close 

attention paid to the mass customization competencies such as dynamic production 

planning and process modularity.   

For the efficient management of the shop floor in a mass customization environment 

a more robust strategy than FMS/RMS is needed.  These approaches, however, 

depending on the products produced and their equipment requirements, can likely aid in 

filling in the gaps between lean manufacturing and mass customization. 

 

Theory of Constraints 

When considering the ability of TOC to aid in creating efficient mass customization, 

it is important to take into account the high variability that will be present.  Each order 

that a mass customizer receives is different and individual to the customer, thus work 

content can differ greatly, especially for those companies who involve the customer early 

in the value chain as in high level customization.  It has been found that once the DBR 

mechanism is implemented, the constraint can shift at times due to variation in the system 

(Goldratt, 2004), and these occasional shifts must be recognized and the system adjusted 

accordingly.  With mass customization, many companies will deal with high work 

content variation from each work piece to the next, thus it is likely that the constraint will 

shift frequently, with a higher effect for low volume manufacturers with larger cycle time 

ranges.   

For mass customizers of the low level variety, TOC and DBR could likely be a viable 

strategy for system control as these companies customize only in the assembly and 

delivery stages and efficient use of product modularity can help reduce the effect of order 

variability.  High level customizers, on the other hand, face much more variation because 

of the customer being involved in the design and fabrication stages.  For these companies, 
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it is likely that an attempt to implement TOC would result is implementing a strategy that 

requires a static constraint in a situation that is highly dynamic.   

The theory of constraints is a more complete strategy than those discussed earlier.  It 

provides a means of inventory control and system pacing on the shop floor.  One of its 

strengths is its simplicity in managing the whole shop floor based on the constraint; 

however it does not have the strong set of tools that make up the core of lean 

manufacturing.  The theory of constraints may be a very effective method of shop floor 

management for some manufacturers, but in many mass customization situations it will 

be difficult to implement due to its heavy reliance on a stable and consistent constraint in 

the system.    

 

Quick Response Manufacturing 

The focus on lead time reduction and the POLCA strategy of QRM make one of the 

more robust systems discussed thus far.  In some ways it seems to nearly parallel lean 

manufacturing.  For example, where the focus of lean is considered to be waste reduction, 

that of QRM is lead time reduction, and while lean utilizes the kanban/conwip card, 

QRM has the POLCA card.  QRM, like lean is an enterprise wide philosophy for the 

employees to utilize and follow, however QRM is intended to fulfil the needs of those 

firms facing higher product variation and seeking to cater to more unstable and 

fragmented markets.  POLCA itself is intended for use when many complex product 

routings are present, as a means of managing the inventory and flow from one cell to 

another (Suri, 1998; Suri, 1994; Fernandes and Carmo-Silva, 2006).   

QRM as a whole is a strong strategy for any organization to follow.  The simplicity of 

the measure of lead time reduction as the main performance indicator is a definite plus 

that can be applied across the enterprise.  POLCA is a robust means of system control, 

but it is also much more complex in operation than more prominent methods such as 

kanban.  It is meant to aid in managing a high variety of product routings and should not 

be used in situations where kanban will suffice.  QRM has already seen much success 

with mass customizing firms and will likely continue to do so.  It is apparent that QRM 

can provide some strength in the areas of weakness for lean manufacturing as customer 

involvement moves up the value chain.   
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4.2. Framework 

The strengths and weaknesses of applying lean manufacturing to mass customization 

have been analyzed, and a critical review of other strategies that may aid in filling in the 

gaps has been provided.  It is now necessary to provide a framework describing the 

findings thus far.  The ultimate goal of this framework is to provide a road map for 

applying lean manufacturing to mass customization, including an account of which lean 

principles and practices are applicable and to what degree based on the particular type of 

mass customization in place, and how other strategies such as Quick Response 

Manufacturing and the Theory of Constraints can pick up the slack where lean falls short. 

To begin, it is beneficial to once again examine the mass customization competencies 

put forth by Moser (2007), and show the varying degree to which each competency is 

important as customer involvement moves up the value chain (i.e. moving from 

assemblers to fabricators).  Figure 4.1 graphically presents this analysis in a spider 

diagram of mass customization. 
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Figure 4.1 Mass Customization Competencies by Strategy 
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As can be seen from Figure 4.1, each mass customization competency can be 

considered to carry a varying degree of importance based on the point of customer 

involvement in the value chain.  For the most part the importance of these competencies 

increases in a linear manner from assemblers with customer involvement taking place in 

the assembly or distribution phase, to fabricators who involve the customer in the design 

phase.  However, some of the competencies vary in this regard; customer integration, 

application of product configurations systems, and management of mass and individual 

production.   

Customer integration refers to the act of customers becoming involved in certain 

aspects of production, aspects that were likely once considered to be the sole 

responsibility of the manufacturer (Moser, 2007).  In figure 4.1 it is apparent that there is 

a larger gap between assemblers/modularizers and involvers/fabricators than is present in 

most of the other competencies.  The reasoning behind this is the fact that the need for 

customer input is much greater when customization takes place in the design and 

fabrication stages rather than the assembly and distribution phases.  For assemblers and 

modularizers, the customer integration likely refers to some simple choices of options to 

be present or absent on the product, as with 121TIME, a Swedish watch manufacturer 

which allows customers to configure the appearance of their watch and order it online 

(Moser, 2007).  This is a rather simple interaction that requires no efforts from the 

manufacturer itself to configure the product.  However, with involvers and fabricators the 

interaction between customer and manufacturer are likely to be much more personal and 

lengthy.  For example, Selve, a mass customizing shoe manufacturer, allows its 

customers to choose from a range of base models.  From there a dedicated salesperson 

scans their foot, and the basic shoe is displayed before features such as material, color, 

soles, etc. are chosen.  The salesperson works with the customer through this entire 

process as the customer becomes fully integrated into the production process from the 

fabrication stage (Moser, 2007).    

The reasoning behind the placement of the mass customization styles in the area of 

application of product configuration systems is much the same as those provided in the 

customer integration discussion.  Product configuration systems are important because 

they allow the customer the see the choices available to them and essentially build their 
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product in a virtual environment.  These product configurators can range from software 

programs to dedicated salesmen, and as the degree of customer integration increases, so 

does the necessary robustness of the product configuration system.   

Having shown the varying degree of importance of mass customization competencies 

for different types of mass customizers, it is now important to show that the same 

variation is true for lean manufacturing principles and practices.  Figure 4.2 takes the 

ideas on the importance of mass customization competencies expressed in Figure 4.1, and 

adds in the lean application aspect in terms mass customization style ranging from 

assemblers to fabricators.  Figure 4.2 attempts to give a sequence of mass customization 

competency importance and lean manufacturing principle and practice application.  

Starting from the top on the mass customization side, the Figure shows that customer 

integration is important for all mass customizers, but increases in importance as customer 

involvement moves up the value chain.   

 

 
 

Figure 4.2 Importance of MC Capabilities and Ease of Lean Implementation 
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When moving from assemblers to fabricators, these mass customization competencies 

become more pronounced and important to the efficient operation of the organization.  

For example, extensive product variant management techniques may not be prominent in 

an assembler type mass customizer, but will certainly be so for a involver and to an even 

greater extent for a fabricator.  The underlying idea is that different mass customizer 

families will strongly employ different core competencies with increasing applicability 

and importance of these competencies as customer involvement moves up the value 

chain. 

On the lean side of the figure, the increasing applicability of lean manufacturing 

principles and practices as customer involvement moves down the value chain is shown.  

For a fabricator, for example, only certain lean aspects will be readily applicable to the 

organization.  Principles such as people and teamwork, continuous improvement, and 

waste reduction are easily applied and important to any organization.  Visual 

management and jidoka are also likely to be applicable for all mass customization 

families, but become increasingly difficult to apply as the inherent variation of the 

products increase.  Finally, the principles of leveled production, stable and standardized 

processes, and just-in-time will almost certainly be applicable for mass customizers of the 

assembler/modularizer type, if at all.  This is due to the heavy reliance of these principles 

on the existence of consistent demand and work content, as well as a relatively low 

number of product variants. 

Having provided a theoretical representation of mass customization competencies and 

lean principle and practice application, it is now necessary to tie these two strategies 

together with those discussed in the critical review section into a comprehensive 

framework for this research.  See Figure 4.3. 

Figure 4.3 attempts to combine lean manufacturing, mass customization, and the 

other strategies that have been discussed into a comprehensive framework.  Across the 

top the core lean principles and practices are listed, and once again the trend of increasing 

ease of lean applicability as customer involvement moves down the value chain is 

demonstrated.  Above the lean principles the inventory control tools of CONWIP and 

Route Specific Kanban are listed in order to show that these are some key strategies that 
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aid in the implementation of the principles of Just-in-Time, stable and standardized 

processes, and leveled production.   

 

 
Figure 4.3 Theoretical Framework 

 

Also shown are the mass customization competencies as outlined by Moser (2007) across 

the bottom.  Here the increasing importance of these core competencies as customer 

involvement moves up the value chain is demonstrated. 

The most important aspect of this framework, however, is the information given on 

the possible application of other strategies (QRM, TOC, Agile/Leagile, FMS/RMS, Job 

Shop Lean) in combination with lean manufacturing to aid in effective mass 

customization.  Arrows of varying thickness are used to show for which mass customizer 

families a particular strategy is most likely to be useful, and to what degree it could be 

useful in relation to other types of mass customizers. 

The Theory of Constraints (TOC) strategy is shown in the figure as being most likely 

applicable in the cases of assembler and modularizer mass customization.  Since the 

customization takes place at earliest in the assembly stage for these mass customizers, 

variety and work content variation will be much lower than in the cases of fabricators and 

involvers.  For fabricators and involvers, the work content variation is likely to be such 
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that any constraint in the system will experience frequent shifts, thus hindering the ability 

of TOC to control the system flow.  For these reasons TOC is likely to find some 

beneficial application for those low level mass customizers. 

In the framework figure, FMS/RMS are shown as being beneficial to all types of 

mass customization, with increasing benefits as customer integration moves up the value 

chain.  It is apparent that high level customizers face more manufacturing challenges due 

to variety than low level customizers, and for this reason would benefit more from the 

implementation of an effective FMS/RMS.  Lean manufacturing also advocates setup 

reduction, so the combination of lean manufacturing principles on the shop floor with 

FMS/RMS capable equipment will be beneficial to any mass customizer whose products 

require significant machine time.  

Quick Response Manufacturing (QRM) is represented as being beneficial in filling in 

the gaps between lean and mass customization for the high level mass customizers.  Lean 

methods of Just-in-Time, stable and standardized processes, and leveled production fail at 

this point and inventory control through kanban is likely to be impossible.  Other lean 

principles such as visual management, jidoka, continuous improvement, etc. remain 

applicable but increase in difficulty of implementation. One of the key aspects of 

combining lean and QRM is the integration of the lean principle of waste reduction with 

a heavier focus on the QRM main performance measure of lead time reduction to help in 

the evaluation of the system’s status. 

  Often in these situations the issue of complex routings and inventory control 

between cells must be overcome, and POLCA, as discussed in Chapter 3 can do this.  

Manufacturers can also use POLCA in tandem with kanban, employing POLCA to 

manage routings and inventory between many cells, while kanban controls material flow 

within the cells themselves.  This combination of lean and QRM card-based control 

system would undoubtedly be of benefit to many mass customizers. 

Agile/Leagile manufacturing, as mentioned earlier in this chapter, does not have a 

concrete set of implementation tools and benefits of its own but is limited to a business 

perspective on market responsiveness and new product introduction.  The concept of the 

decoupling point in leagile manufacturing however, can likely be beneficial to those able 

to implement it.  This is more likely to occur for low level customizers than high level 
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ones, as the customization for high level customizers takes place so early in the value 

chain.   

Job shop lean is not in place on the figure but is discussed here as a strategy of note.  

It is difficult to view this strategies as robust and substantial as at this point there seems 

to be no significant tools or methods for implementation and control, and therefore any 

benefit they would provide to the shop floor of a mass customizing organization is 

unclear. 

It should be noted that while this framework attempts to give a clear picture of how 

lean and other manufacturing strategies can be combined for mass customization, it is by 

no means a complete representation of all cases.  For instance, the indication that QRM is 

beneficial for high level mass customizers is meant to show that these are the areas where 

QRM will most likely be needed.  Obviously, the specific applications of these strategies 

will differ on a case by case basis, and there are no doubt instances of low level 

customization that would benefit from QRM implementation, and the same is true of the 

other strategies present.  Overall the figure is an attempt to combine the findings thus far 

into a comprehensive framework to aid in the further research and experimentation of this 

work. 

 

4.3. Objective 

Having developed a theoretical framework for incorporating lean manufacturing with 

mass customization, it is now necessary to provide some validation of these theories.  The 

objective is to prove that the application of lean manufacturing principles is beneficial in 

the mass customization environment, but also that some mass customizers, mainly high 

level customizers, will often require the use of other manufacturing strategies such as 

QRM to supplement lean manufacturing.  However, to investigate all combinations of 

these strategies for all the styles of mass customization is too large of a task to be 

completed in this work.  For this reason, a single investigation into a mass customizer of 

the assembler family will be presented. 

The case study company in question is Skier’s Choice, a manufacturer of competition 

quality wakeboarding boats based in Maryville, Tennessee.  The competition 

wakeboarding boat market is the epitome of the types of markets many mass customizers 
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face; a fragmented niche market with high end products marketed towards adults with 

extra money to spend and who demand a plethora of customizable options. 

Throughout the remainder of this work, the operations of Skier’s Choice will be 

thoroughly investigated.  In Chapter 5, a detailed look into the features of the company, 

its product and option offerings, its mass customization competencies, and its overall 

manufacturing process is given.  In Chapter 6, the validity of applying the other strategies 

discussed in Chapters 3 and 4 (TOC, QRM, Agile/Leagile, FMS/RMS, Job Shop Lean) in 

the context of the case study company will be analyzed.  From this discussion, a strategy 

for restructuring the manufacturing operations will be chosen, followed by a step-by-step 

look and the restructuring process by department.  Finally, a simulation will be conducted 

comparing the current and future states in order to validate the benefits of restructuring 

the plant in the proposed manner 
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5. Case Study – Skier’s Choice 

Skier’s choice, a company based in Maryville, Tennessee, is involved in the 

manufacture of boats built for water sports such as wakeboarding.  This is a market that is 

highly specialized and targeted at a rather small group of consumers.  Also, as this is 

considered a luxury product, market conditions are highly turbulent.  Changes in the 

status of the economy can have a large effect on consumer demand as opposed to a 

product that would be considered more of a necessity.  Also, it is imperative that the 

producer constantly seek to update their product with improved functions, more options, 

and new aesthetic qualities, at least on an annual basis, in order to remain competitive in 

such a niche market.   

The market for these sport boats has been in existence for over 30 years, but as time 

has gone on the design of the boats has adapted to become more specialized specifically 

for wake boarding/water skiing.  Overall, demand has increased over the last decade, so 

the market can be considered to be new and growing.   

All manufacturers in this market offer a varying degree of mass customization to 

their consumers in the options that can be chosen for the boat.  Generally, a manufacturer 

will build a certain percentage of boats to be sold at a dealership, with options chosen by 

the dealer.  These boats usually represent a “middle of the road” model as far as options 

and expense are concern.  The remaining production will be mass customized items that 

were custom configured and individualized by the consumer working with a sales 

representative, usually a dealer.  

 

5.1. Brief Company Description 

Production at Skier’s Choice began over 26 years ago with their Supra model boat, 

one of two base models still built today.  Eleven years ago, they added a more basic, less 

expensive model called the Moomba.  Skier’s Choice has been under its current 

ownership for the last 11 years, and during that time has sought to increase market share 

by offering high quality products that cater to a wide range of budgets with many 

customizable options.  This motivation has led the company to become the fastest 

growing manufacturer in the market over the last eight years and propelled them to third 
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place in overall market share.  These trends of growth and improvement are projected to 

continue in the near future.   

When walking through the Skier’s Choice facility, one is reminded of the most 

traditional and basic manufacturing system, craftsmanship.  There is an almost total lack 

of automation, with operations being performed by highly skilled and trained team 

members.  Skier’s Choice has only one facility that manufactures this product, and thus 

the employees take great pride in knowing that when they see a Supra or Moomba on the 

water, they played a direct role in its manufacture.   

Indeed, it is this pride and drive for quality, along with allowing the customer to 

choose from many options to fit their needs and budget that has allowed Skier’s Choice 

to solidify and strengthen its position in a turbulent market.  See Table 1 for an overview 

of the company data and contact information. 

 

Table 2. Company Data 

 Company data 

Name Skier’s Choice 
Address 1717 Henry G. Lane St. 

Maryville, TN 37081 
WWW www.skierschoice.com 
Year of foundation 1980 

Number of employees 375 
Industry Boat manufacture 
Products Supra and Moomba boats 
Markets Wakeboarding/Water skiing tow boats, 

1,840 unit sales for 2007. 
 

 

5.2. Mass Customization Product 

As stated before, Skier’s Choice offers two base model lines of boats; the Moomba 

and the higher end Supra.  Within these lines, there are several different models from 

which the customer can choose.  See Table 2 for a listing of the offerings.   
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Table 3. Skier's Choice Model Offerings 

 
 

From Table 2 we see that there are 10 distinct models within the Supra line and 6 

models within the Moomba line.  The main differences between these models are in the 

area of horsepower, fuel tank capacity, ballast, length, width, draft, and occupant 

capacity.  For example, a Moomba Outback, a lower end model, features a length, width, 

and draft of 22’8”, 94”, and 24”, respectively, as well as a 40 gallon fuel tank, seating 

capacity of 10 people, and ballast options of 400 and 1200 pounds.  The higher end 

Moomba Mobius Gravity XLV, on the other hand, has a length, width, and draft of 25’, 

98”, and 26”, respectively.  This boat also features a 40 gallon fuel tank, seating capacity 

of 16 people, and ballast options of 650 and 1950 pounds. 

The more luxurious Supras vary in the same manner, but offer generally larger boats 

with lengths varying from 22’10” to 26’, fuel tank capacities from 34 to 52 gallons and 

higher ballast and seating capacity on average.  All models of Supra and Moomba offer a 

5.7L V-8 engine with 325hp except for the Supra Gravity 24 SSV which offers a 340hp 

V-8 power plant.    See Figures 5.1 and 5.2 for examples of the product lines. 

Within the 16 base models of Supra and Moomba boats, there are many different 

options that the consumer is able to customize.  One of the most highly customizable 

areas of the boat is the gel coat pattern, or paint scheme.  Within the Supra line there are 

37 possible gel coat spray patterns with individual models accounting for 1 to 8 of the 

variants (i.e. Gravity 24 SSV has only 1 pattern, 21V has eight possibilities).  The 

Moomba line has a total of 20 spray pattern varieties with individual models accounting 

for 1 to 7 of the variants.  Note that these variations take into account only the pattern of 

the gel coat spray scheme, not color information.   
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Figure 5.1 Supra Gravity 24SSV 

 

 
Figure 5.2 Mobius XLV 
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For color options, there are three areas that can be customized, the base gel coat, 

main gel coat, and small accent gel coat.  The base gel coat offers four color variants, 

while the main and small accent gel coats each offer 15 distinct choices.    

Besides gel coat schemes, there are many other customizable options for each boat, 

including engine option (engine size, salt water cooling system, etc.), appearance options 

(teak platform, docking lights, etc.), canvas options (tonneau cover, cockpit cover, etc.), 

audio/video options, performance options (tower w/ mirror bracket, Gravity III-d ballast 

system, etc.), trailer options (galvanized frame, 18” chrome wheels, etc.), and other 

miscellaneous options such as an automatic fire suppression system. 

 

5.3. Mass Customization Operations 

According to the classification method developed by Duray et. al. (2000), Skier’s 

Choice can be classified as an assembler in that the customer is allowed to configure their 

product by choosing from a selection of options.  Standard modules (the product models) 

are used as a baseline and specific customer needs are taken into account in the assembly 

and use stages.  The company incorporates a combination of make-to-stock and make to 

order production, the former being sent to dealerships based on forecasted demand while 

the latter is configured through customer-dealer interaction and made-to-order.   

While Skier’s Choice delivers a state of the art product to its consumers, their 

manufacturing capabilities are anything but.  They are very proficient in the area of 

product development as is evident from their frequent model changes and upgrades; 

however, in the area of manufacture their greatest asset is worker skill.  The production 

line uses the traditional push system, and a manifest moves along with the boat to 

indicate its model and options.  Orders are released to the floor on a daily basis based on 

a monthly production schedule.  Load leveling and hiejunka are not taken into account 

when making the schedule.  

In order to fully understand the complete operation of Skier’s Choice, its activities 

can be broken down and analyzed based on the mass customization competencies 

outlined in Chapter 3. 
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Production Competencies 

 

Manufacturing System Configuration 

The manufacturing system at Skier’s Choice is set up as a traditional moving 

assembly line with various feeder lines.  All feeder lines are functionally arranged by 

department. The main components of each boat; the deck and hull, move in a linear 

manner through lamination, rigging, final assembly and inspection, while components 

such as upholstery and small parsts sync up with the product along the way.   

The ability to handle high variety at Skier’s Choice comes from the flexibility of its 

work force instead of the utilization of advanced and costly tooling.  There is, however, 

an opportunity to improve the flexibility and responsiveness of the feeder lines by 

restructuring and combining departments to create a cellular manufacturing process.  

While modular minicells are likely unnecessary for this particular application, the system 

would surely benefit from the use of some traditional lean cells.  This is discussed in 

further detail in Chapter 6. 

 

Process Modularity 

Process modularity is in use in nearly every process at Skier’s Choice.  While each 

successive product is significantly different than the last, the subset of steps for 

completion of a particular process is similar, if not the same, for each product.  For 

example, in lamination, each boat must have its mold prepared then be gel coated.  The 

gel coat process involves spraying several different layers of a gel paint substance into 

the mold, with each layer being of different color, thickness, and shape.  This is the point 

of variety explosion in the manufacturing process.  To re-quote Swaminathan (2001) and 

Selladurai (2003), a modular process is “…one where each product undergoes a discrete 

set of operations making it possible to store inventory in semi-finished form and where 

products differ from each other in terms of the subset of operations that are performed on 

them.”  The gel coat process follows this definition in that the basic set of operations 

performed on each boat is standard, while the details of each operation differs.  

Essentially all of the processes at Skier’s Choice follow this trend. 
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Dynamic Production Planning 

Dynamic production planning refers to the ability of a firm to maintain low lead times 

while enabling customizability.  Skier’s Choice is a combination make-to-stock/make-to-

order operation, and managing both of these components while also controlling work in 

process (WIP) on the floor and limiting over/under utilization of people and equipment is 

important to the operation.  That being said, Skier’s Choice has no means of WIP control 

save floor space in the plant, nor does it have any clear picture of cycle times in any of its 

processes that could be used to predict capacity requirements.  This makes dynamic and 

efficient production planning virtually impossible.  By gathering some basic data on 

cycle times, and cycle time variation, as well as implementing some WIP control 

measures, Skier’s Choice could greatly improve their production planning capabilities. 

 

Organizational Learning and Continuous Improvement 

Organizational learning and continuous improvement is an area where Skier’s Choice 

is actively seeking to improve.  They have given classes to every team member in the 

plant on the basics of lean manufacturing principles and practices, and assigned lean 

projects (such as 5S) to teams made up of members from all levels of production, from 

team members to managers.  They have also created clearly defined teams with team 

leaders and group leaders on the shop floor, and are continuing to give more advanced 

classes in lean manufacturing, as well as assigning more involved improvement projects 

to the employees.  It is evident that Skier’s choice is committed to change and has begun 

by seeking to educate their entire workforce of the value of learning and improvement. 

 

Other Competencies 

 

Information Technology and Customer Interfacing 

Information technologies are also lacking at Skier’s Choice.  Materials requisition is 

not accomplished by a computerized system, but rather by a team of employees that are 

charged with constantly updating parts inventory information and ordering what will be 

needed for the next month’s schedule.  Typical lead time for supplier parts is four weeks.  

There is no method for visually representing the status of the production line to combat 
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problems, and individual departments within production cannot efficiently communicate 

what is needed.  These factors all combine to create a rather lengthy lead time of four to 

six weeks.  As a mass customizer, Skier’s Choice must seek to offer much faster lead 

times to their consumers. 

 

Product Development 

Skier’s Choice undergoes a model change process every year during the summer and 

fall seasons in preparation for the upcoming boating season.  These model changes often 

involve significant alterations to boat size and shape, paint schemes, and option offerings. 

Due to the frequency at which model change occurs, the product development cycle at 

Skier’s choice, from design to production, is well defined and provides for smooth 

transitions from one model to the next.  Model change has the largest effect on the 

rigging and assembly lines where the majority of the major components and option work 

are added, and the employees here are well trained and readied to transition to the new 

product and produce it efficiently and correctly. 

 

Logistics 

Logistics is an area where Skier’s Choice has both strengths and weaknesses.  The 

plant is located in somewhat of a boat manufacturing center, and thus many component 

part suppliers are located within a small radius of it.  The tower manufacturer, for 

example, is located within a half mile of the factory, while the trailer manufacturer is next 

door.  This enables Skier’s Choice to maintain close supplier relationship and low 

inventories for many of its component parts. 

The materials requisition and ordering system at Skier’s Choice are very outdated, 

however.  There is no computerized system such as MRP in place.  For parts requisition, 

there are various managers assigned to different aspects of the manufacturing operation.  

These managers use a paper booking system to know what parts are present in the 

warehouse, what is being used and will be used on the shop floor, what will be needed for 

manufacture in the next period.  By this system, parts are ordered on average every 2-6 

weeks.   
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The nature of this system makes it anything but dynamic, and does not allow Skier’s 

Choice to take full advantage of the close proximity of many of its suppliers.   

5.3.1. Manufacturing Operations 

In order to fully understand the nature of the manufacturing process at Skier’s Choice, 

a basic process map is given in Figure 5.3, followed by a detailed description of the 

operations. 

 

Deck/Hull 
Molding

Grinding Initial 
Inspection

Small Parts 
Molding

Plastics 

Upholstery

Rigging Final 
Assembly

Inspection/Lake 
Test

Final Finish

Skier’s Choice 
Basic Process 

Map

Lead Time: 6 weeks

 
 

Figure 5.3 Basic Process Map 

 

Lamination 

The process begins in the lamination department where the deck and hull 

components are molded.  Mold prep is the first operation, where matching deck and hull 

molds are selected and taped off according to the customizable paint scheme ordered by 

the customer.  From there, gel coat is sprayed onto the mold in multiple colors and 

thicknesses according to the scheme laid out by mold prep.  After drying, another coat of 

“barrier coat” is added for strength and allowed to dry.  Next fibreglass resin is sprayed 
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onto the molds along with fibreglass sheeting called bulk, and a coat of core spray is 

added.  Once this last coat has dried, the empty cavities of the mold are filled with foam 

which hardens for strength, and then the molds are pulled and sent to a grinding booth 

where excess material is removed and holes cut for future component parts to be added. 

 

Small Parts 

The small parts department operates in a similar manner to that of lamination, but 

creates simpler, smaller parts to be installed in various stages of production.  It supplies 

parts that are installed in the lamination line, such as the floor component, as well as 

some that are installed later in final assembly, as with the motor cover.  The process again 

begins with mold prep, and is followed by a single gel coat.  The major difference is that 

after gel coat the fibreglass resin is added and once dry the mold is pulled and sent to 

grinding, completing the process.  The barrier coat, core spray, bulk, and foam are not 

necessary in the construction of these parts.   

 

Plastics 

The plastics department is functionally arranged and consist of several machines that 

would be commonly found in a wood shop, such as table saws, routers, and mitre saws.  

The purpose of this area is to create a large variety of simply shaped plastic pieces which 

are cut from 4’x8’ sheets of raw material.  The finished parts are supplied to various areas 

of the plant, but their main function is to provide structural support for components added 

in assembly, and frames for components made in the upholstery department such as seats.  

It is a make-to-stock operation with a large storefront of finished parts.  Each type of 

part is stored in a rack with a minimum level denoted.  Team members in the area make 

parts to restock each part type when it nears its minimum level using the machines and a 

large variety of available jigs.  Because of the large variety of parts made here, and the 

nature of a make-to-stock operation, inventory contained here is enormous. 

 

Upholstery 

In the upholstery department, parts are acquired from the plastics store front and 

assembled into frames based on the specifications of the boat.  Foam, which comes 



 

65 
 

roughly pre-cut from the supplier, is then glued to the frames and excess foam is 

removed.  Meanwhile, a CNC cutting machine, the only computerized equipment in the 

plant, cuts out pieces of vinyl based on the size, shape, and color required by the boat 

specifications.  Once these pieces are cut, they are sorted and sent to a sewing department 

where team members sew the various pieces together to create a skin.  Lastly, the skins 

and frames are matched, and the skins are pulled over the frames and stapled before being 

sent to various stages of final assembly. 

 

Rigging and Assembly 

 After leaving lamination, the deck and hull components are briefly inspected and any 

blemishes from the molding process are repaired.  The deck and hull are also mated to 

ensure proper fit.  From there, boats are split by model (Supra or Moomba) and sent to 

separate lines where decks and hulls run parallel to each other.  In the next few processes, 

interior components such as bilge pumps, the engine, and wiring are added, as well as 

underwater gear such as propellers.   

Next, the deck and hull are mated permanently together and the boat undergoes a 

series of final finish processes, where components such as seats, the windshield, 

instrument panel, the tower, lighting, and the speaker system are installed based on the 

options specified by the consumer. 

 

Inspection 

The last stage of the manufacturing process is inspection.  Here, boats are removed 

from the plant and placed in a small pool where it is checked for leaks and the engine is 

hot tested.  Other aspects are also tested such as the sound system, steering, and 

instrumentation.  Each boat is then placed on its trailer and hauled 20 minutes each 

direction to a nearby lake where employees run each boat through a series of tests 

designed to put it through a wide range of operations and fully inspect its functionality 

and performance.  After testing is complete and the boat approved, it is hauled back to the 

factory where it is cleaned, and final components are added such as decals and 

compartment covers.   
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5.3.2. SWOT Analysis 

To conclude this chapter, a SWOT (strengths, weaknesses, opportunities, threats 

analysis) is provided as a capstone to the discussion of the operations and capabilities of 

the case study company; Skier’s Choice.  Overall, Skier’s Choice is a strong company 

with a strong mass customization product.  They have a solid hold in the marketplace and 

have experienced consistent growth.  However, there is much room for improvement in 

their manufacturing process which could enable them to obtain higher visibility and 

understanding of their system, and allow for shorter lead times, reduced inventory and 

workforce, creating a more dynamic and responsive system as a whole.  See Figure 5.4 

for the SWOT analysis. 

 

Strengths 
• Strong market niche is present 
• Solid foothold in market 
• Knowledgeable workforce 
• Open to improvement 
• Non-union 
• Strong product development 

cycle 
 

 

Weaknesses  
• No knowledge of cycle 

times or capacity 
• Production planning not 

dynamic 
• No inventory control, low 

system visibility 
• Push system throughout 

plant 

Opportunities 
• Improved supplier relations, 

some parts delivered JIT 
• Advancement of materials 

requisition system. 
• IT interfacing with the 

consumer, possible use of 
product configurators 

• Continuing education of 
workforce could lead to great 
improvement 

Threats  

• “Pleasure craft” market, 
fluctuates highly with 
state of economy. 

• Technological 
advancement of 
competitors’ 
manufacturing systems 
could cause SC to fall 
behind 

 
Figure 5.4 SWOT Analysis 
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6. Experimental Model Development 

 

The theoretical framework for this research has been laid based on the literature 

reviewed and the goals of the work, and a detailed overview of the case study company 

has been provided.  The next step is to systematically restructure the given case factory 

based on the framework provided in Chapter 4.  In this chapter, an account of the current 

state at Skier’s Choice is provided, followed by a discussion of the validity of applying 

the strategies (excluding lean) that have been discussed in an attempt to identify any area 

where the need for a supplemental method may be needed due to a failure of lean 

principles to provide adequate control for the system.  From this discussion, the overall 

strategy for restructuring the plant is chosen and each department is reconfigured.  

Finally, both the current state and future state are input into simulation software and 

performance measures are obtained for the comparison of the systems and measurement 

of improvement. 

6.1. The Current State  

The current state at Skier’s Choice is typical of the mass production environments.  

At first this does not seem to be the case when observing the manufacturing line as this is 

a relatively low volume producer, however closer inspection reveals that most of the 

same faults of mass manufacturing are present.  One of the first things one will notice is 

the lack of any kind of pacing of the assembly lines, which is evident even with the long 

processing times.  There is no inventory control in the system leading to WIP piling up in 

front of some processes, and others being starved.   

Overall, there is little control over the system as a whole, and even less visibility.  

There is a lack of any kind of visual management and processes often seem to run 

together.  Employees also have little knowledge of line pacing, making them unable to 

know whether they are ahead, behind, etc.  The amount of WIP on the shop floor is large 

in comparison to the daily volume the plant produces, and this WIP amounts to a 

significant cost given the relatively high cost of products in this market.   

Also of note is the fact that for the vast majority of the production process the main 

body of the boat is in two pieces which must be matched late in the assembly stage.  
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Upholstery parts are also custom made for each particular boat.  Obviously if these 

components are not ready the assembly is halted, yet there is no clear method of 

sequencing each section and correctly matching the components to the correct boat.  

During the course of the initial investigation it was quickly discovered that there was 

no quantitative knowledge of processing times in the factory.  In order to obtain this 

information, a tagging process was employed to gain information on the processing times 

for several different boat models.  While the products of Skier’s Choice can be 

configured in thousands of ways and processing times vary, the data obtained from this 

sampling activity provides a reasonable representation of the actual cycle times.  See 

Figure 6.1 for a current state value stream map generated from the process mapping and 

data collection activities conducted at Skier’s Choice. 

 

6.2. Discussion of Applicable Approaches 

Prior to a detailed discussion on the restructuring of the operations, it is necessary to 

examine all the manufacturing strategies discussed thus far and choose those that will 

serve best for improving the performance of the system.  In this section a discussion on 

the applicability of each of these other strategies is given in the context of their ability to 

be integrated with lean principles in improving the overall flow and lead time in the 

system.   

 

Agile/Leagile 

At Skier’s Choice, the use of postponement is not an option as the variety explosion 

occurs early in manufacturing at the gel coat process.  When customers choose their base 

model of boat and the gel coat scheme and color options, they are affecting the first two 

operations in the manufacturing process, thus creating high variety at the beginning of 

manufacturing.  There is no possibility of restructuring the order of operations to 

postpone variety in this case, as the decks and hulls which must be molded and painted 

are the very foundation of the overall product and all downstream operations depend on 

them.  For this reason it is apparent that the use of a decoupling point, at least in the  
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context of the manufacturing operations which are the focus of this research, is 

impossible.   

While being agile is certainly a desirable feature for mass customizers in terms of 

responding to markets, the inability to employ a decoupling point and the lack of tools 

and methods for making a manufacturing system agile makes these two strategies 

unviable for application at Skier’s Choice. 

 

Job Shop Lean 

Value stream mapping has already been shown to be useful for gaining a system 

perspective at Skier’s Choice in Figure 6.1, and Job Shop Lean advocates the use of this 

tool.  However, at this point, this strategy seems rather undeveloped from the literature 

reviewed and its full merits are yet to be known.  However it is known that Skier’s 

Choice is a mass customizing manufacturer, not a job shop.  Skier’s choice does have a 

set of base models from which all their products are created, and thus a strategy intended 

for job shops is not highly applicable.   

 

Flexible/Reconfigurable Manufacturing Systems 

These equipment design strategies will be useful in many cases for reducing setups 

and changeovers; however, they are of little value in the context of Skier’s Choice.  The 

process of manufacturing a boat in this company is almost wholly manual in nature, the 

only automated process being a CNC cutting machine for cutting out vinyl in the 

upholstery department.  The only changeover for this equipment is changing out the vinyl 

colors and the only setup required is programming the cutting parameters for the next 

boat, thus there is no need to employ an FMS/RMS here.  The rest of the manufacturing 

processes require little more than basic hand tools to complete, thus installing expensive 

FMS/RMS systems is totally unnecessary and unviable for Skier’s Choice at this point.   

 

Theory of Constraints (TOC)  

While TOC is a stronger and more complete strategy than those mentioned thus far in 

the context of system control for the manufacturing system, its weakness lies in its 
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reliance on the existence of a stand-alone and at least somewhat consistent constraint in 

the system.  As a mass customizer with high variability in work content, Skier’s Choice 

faces the problem of inconsistent cycle times in many of its processes.  Indeed, through 

investigations of the cycle times in the tagging process it was found that a single 

significant and consistent constraint to throughput could not be determined.  This means 

that the constraint is likely to shift on a boat by boat basis.   

The ability of TOC to control flow and WIP in the system will be greatly diminished 

in this situation of a frequently shifting constraint, as it will be very difficult to control 

the system based on a single process when this constraint to throughput is constantly 

moving.  This is a problem that will be faced by many mass customizers like Skier’s 

Choice.  While TOC as a whole is a solid method for systems control in manufacturing, 

the high variability faced by Skier’s Choice will make it difficult to apply the strategy. 

 

Quick Response Manufacturing (QRM) 

QRM can be a viable strategy for mass customizers to employ, and the POLCA 

(paired cell-overlapping-loops of-cards-with authorization) system can aid in 

manufacturing that involves many complex routings.  Its focus on lead time reduction can 

be compared to lean’s focus on waste reduction, while the POLCA system is comparable 

to the kanban system of lean.  Thus it is important to decide which of these strategies is 

most viable at Skier’s Choice.   

The kanban and CONWIP systems are meant to handle for the most part linear 

product routings from one process or cell to another, while POLCA provides for many 

different possible routings from one product to the next.  When examining the operations 

at Skier’s Choice, it is apparent that all boats undergo the same product routing from 

beginning to end, while each process along that routing differs from one boat to the next.  

Because POLCA is a robust system for high routing variation, it can be a somewhat 

complex system to operate and should not be unnecessarily implemented.  The degree of 

linearity and small number of departments/cells at Skier’s Choice imply that POLCA is 

not needed and that kanban will suffice.   

The lead time reduction aspect of QRM, however, is a focus that can and likely 

should be implemented as a performance measure.  Skier’s Choice can combine lean 
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manufacturing and QRM by encouraging departments to reduce both lead times and 

waste in order to seek continuous improvement. 

 

Having discussed the applicability of each of these other strategies to the operations 

of Skier’s Choice, it is apparent that in this particular situation lean manufacturing is the 

best choice for seeking improvement to system performance.  Each of these other 

strategies has their own strengths and weaknesses and can support lean manufacturing in 

improving mass customization operations in their own right.  In the following sections, 

combinations of lean principles such as kanban and CONWIP will be employed in order 

to restructure the manufacturing system at Skier’s Choice on a department by department 

basis. 

 

 

6.3. Restructuring the Operations 

The main concern at Skier’s Choice is the improvement of product flow and 

reduction of lead time across the system.  Various lean principles such as kanban, 

CONWIP, just-in-time, and others are used to facilitate the transition to a lean system. 

 

6.3.1. Lamination Shop 

The lamination shop (see Figure 6.2) is where the boat manufacturing process begins.   

Most of the major issues with this line relate to flow, inventory control, and visibility.  

Currently Skier’s Choice runs three parallel lines, one for hulls, another for decks, and 

another which essentially works on any deck or hull that is available.  It is entirely a push 

system building to a schedule of boats to be started on a particular day, and there is little 

visibility of the current status.  There is no means to visually deduce which deck matches 

which hull and what their current status is in terms of processing.  First-in-first-out 

(FIFO) is often not maintained which results in products getting off schedule.  Also, the 

physical layout of the line itself makes it difficult to see the actual flow of work and what 

processes are behind or ahead.  Because of these problems in the system are not made 

obvious and cannot be recognized early and counter-measured as would be done when 
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the principle of jidoka is employed.  The ability to immediately and visually understand 

the status of the shop floor is important to any system, lean or otherwise, but the current 

structure in the lamination shop does not allow for this, nor does it have any means of 

flow and inventory control. 

For the restructuring of the lamination shop the proposed system involves the lean 

principle of dedication for the Supra and Moomba product lines and the use of a 

CONWIP method to control WIP.  First, the physical layout would be changed to allow 

for four parallel lines instead of the current three.  One line each will be dedicated to 

Supra decks, Supra hulls, Moomba Decks, or Moomba hulls.  The reasoning behind this 

change to four lines is to allow the deck and hull for each boat to run parallel to one 

another, which will allow employees to quickly know where one component is in 

processing in relation to the other.  Also with these dedicated lines product variation will 

be less because each line works only on a deck or a hull for a particular product line, thus 

the processes become more stable and standardized.  Utilizing jidoka becomes more 

viable because delays can quickly be recognized and counter-measured. 

To control inventory in the lamination shop, CONWIP loops for the Supra and 

Moomba lines can be employed.  CONWIP excels over kanban in manufacturing systems 

that are linear and face variable cycle times, as is the case here.  The CONWIP system 

can also help with the key issue of matching decks to hulls in each pair of product lines.  

At the end of the lamination line the deck and the hull for each boat undergo a process of 

pre-fitting to make sure the molds come together as they should, meaning this process 

requires both components to be present.  To enable the quick matching of decks and 

hulls, a set of two CONWIP cards can be employed as opposed to a single one, and the 

principle of visual management can be used to color code each set of cards.  Thus, in 

order for the first process, mold prep, to start on a boat, a set of color coded cards must be 

available, and are attached to the deck and the hull.  Information contained on the card 

should include boat model and number for further verification purposes.  Once a set of 

cards has been attached to a deck and hull, it travels along with the components through 

the lamination line to the final inspection process.  Here team members can quickly 

match the deck and hull based on the color coded CONWIP cards and perform their 

operations.  Finally, after the process is complete the boat exits the lamination line, and 
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the cards are detached and physically returned to the mold prep station.  See Figure 6.3 

for an example of these CONWIP cards. 

By dedicating lines to product type and decks/hulls, the processes will be more 

standardized and the visibility in the system increased enabling problems to be 

recognized and resolved sooner. 

The employment of the CONWIP system allows overall WIP to be capped while still 

using push within the system to help reduce the effect of variable work content.  It also 

helps with matching each deck to its respective hull.  The optimal number of these sets of 

CONWIP cards for this shop is not yet known, but is investigated further using a 

simulation of the restructured system later in the chapter.     

   

SUPRA DECK

1 of xx

Boat NO. HFL07

Model: Gravity 24 SSV

SUPRA HULL

1 of xx

Boat NO. HFL07

Model: Gravity 24 SSV

Cards can be laminated 
and washable markers 

used to update boat 
number and model.

 
 

Figure 6.3 Lamination Shop CONWIP Cards 

 

 

 

6.3.2. Small Parts Department 

The problems of lack of visibility and poor inventory control present in the 

lamination line also appear in the small parts shop.  However, with the small parts line, 

the cycle time variation is much less significant, as the processing for the parts from one 

boat to the next usually differ only in size and color.  This lower amount of variability is 
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made evident from the tagging process conducted in the plant, which also shows that 

cycle times are shorter in general than lamination and the line as a whole appears to have 

some excess capacity.   

It is important to place some sort of control over this line, and the choice again is 

between kanban and CONWIP.  Due to the lower variation in cycle times and the fact 

that this feeder line has excess capacity, the best choice for control of the system is 

kanban.  Part specific kanban is not an option due to the high number of models 

manufactured, so route specific kanban is the obvious choice.  Route specific kanban 

squares placed on the factory floor can serve as a visual management aid to cap WIP in 

the system, meaning a process does not have authorization to produce unless there is an 

empty kanban square.  Since each boat requires multiple parts from the small parts line it 

is also desirable to employ kitting at the end of the line.  Kits can be created as a very 

visual means of showing what parts are yet needed to produce a finished boat of a 

particular type, with a full kit indicating completed processing of a boat for the small 

parts line.  A simple tag can be attached to each kit to give the boat number that it 

belongs to.  Lastly, the small parts department should be realigned to contain two parallel 

manufacturing lines, with one manufacturing small parts for Supra and the other for 

Moomba.  This again allows for more stability and standardization in the processing. 

The restructured small parts line is intended to operate very similar to the restructured 

lamination line.  As in lamination, manufacturing lines specific to product type run 

parallel to one another.  By using route specific kanban the WIP in the small parts line is 

capped and it can operate on a pull system with lamination pulling finished kits of parts.  

With this system, interaction between small parts and lamination will be smoother, 

overall visibility of the current status is improved, and the level of standardization from 

one product to the next is increased.  See Figure 6.4 for a representation of the 

restructured small parts line. 

6.3.3. Upholstery Department 

For restructuring this department, the employment of dedicated work cells is the best 

route for Skier’s Choice to take.  They have already taken the initial steps to do this in 

that they have defined the number of cells and the parts that will be manufactured in each 
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of them.  They call these cells stage 1, 2, and 3, based on the point at which the 

components that are made in the cell are actually installed during the final assembly 

process.  While this is an important initial step for the department, it can certainly be 

taken further.   
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Figure 6.4 Small Parts Shop 

 

Currently, the work cells include only the processes of sewing, foam, and assembly, 

while the plastics shop is a standalone department that works to fill a very large storefront 

of finished goods.  This shop supplies parts across the plant, but most of its work is done 

for the upholstery department.  Because of the large variety of plastic parts needed, there 

are two solid walls around the plastics shop consisting of sections dedicated to each 

possible type of plastic part that is used in a boat.  Since the rest of the operations at 

Skier’s Choice operate on a make to order basis, there is no reason why the plastics shop 

cannot do so as well.  In order to accomplish this, it is proposed that Skier’s Choice buy 

replicates of their plastic cutting equipment and dedicate them to the stage 1, 2, and 3 

sewing cells.  While equipment replication is often a considerable obstacle to dedication 

and work cells, in this case the equipment required is rather common and inexpensive, 

and the gains would far outweigh the costs of equipment.  If the equipment is replicated, 

the large storefront of finished goods can be eliminated and communication in the cells 

increased by completing all processes except vinyl cutting within a cell.  A fourth cell 
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with the necessary equipment could also be created to handle demand external to the 

upholstery department based on a pull system with kitted parts. 

The vinyl cutting process differs from plastic cutting in that the CNC equipment is 

expensive and not economical to replicate.  This is not a significant obstacle to increased 

efficiency in the upholstery department; however, as the basic operation of the vinyl 

cutting machine will remain the same.  Once the vinyl components needed for each boat 

are cut they are sorted and kitted based on their destination of either the stage 1, 2, or 3 

cells. 

Having established the design of the cells, it is now necessary to impose some form of 

inventory and flow control on the system overall and within the cells.  When making the 

choice between CONWIP and kanban, there are several factors to consider.  First, the 

upholstery department operates in a fan structure rather than a linear line due to the 

shared resource of the vinyl cutting machine and the three work cells and if CONWIP 

were employed there would have to be three separate loops of cards.  Second, the 

upholstery present on each boat is for the most part consistent, differing in color and size 

only, thus cycle times are more consistent than in other areas of the plant.  Thirdly, like 

small parts the upholstery department is a feeder line whose goal is to have a set of parts 

ready for use when they are needed by assembly, and thus should be placed on a pull 

system linked with assembly in order to have high responsiveness between the two 

departments.  For these reasons, employing route specific kanban in a similar manner as 

was used in the restructuring of the small parts line is the most viable solution. 

When employing route specific kanban, it is important to again consider the matching 

factor that was present in the lamination line.  Here the vinyl skins manufactured through 

the vinyl cut process and sewing must be matched with the frames created through the 

plastic cutting and foaming processes.  Color coded sets of cards can again be used to 

accomplish this matching and synchronization.  Whenever an order is launched into the 

vinyl cut process, a colored card will be attached with the vinyl for that boat.  At the same 

time, the second card in the set would be placed in a FIFO queue in front of the plastic 

cutting process.  By operating in this manner, orders are launched for both the frames and 

the vinyl at the same time and the cards which are attached to kits of parts can be easily 
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matched in order to mate the two components of each upholstery part in the final 

assembly stage.   

By operating in work cells, Skier’s Choice can again gain some degree of 

standardization in the upholstery processes based on product family, and employing 

visual management techniques through the use of kanban squares and color coded cards 

will increase the visibility of the system.  Responsiveness between upholstery and 

assembly will also be greatly improved through the pull system and cell structure.  Lastly, 

the inventory in the system will be reduced due to WIP capping with the pull system and 

the elimination of the make-to-stock operations in the plastic shop.  Figure 6.5 shows the 

proposed restructuring of the upholstery department. 

6.3.4. Rigging and Assembly Line 

The rigging and assembly line is the only department in the factory that already has 

some sort of inventory control method in place.  Skier’s Choice uses what they have 

termed a “pulse line,” where no boats move until all processing is complete in the line.  

For example, once every process is complete in the Moomba line from rigging 1 to 

assembly 4 (see Figure 6.6), every boat will shift downstream by one process.  While this 

method does effectively control inventory, it can result in an excessive amount of waiting 

for those processes that finish earlier than others, and those workers who are cross trained 

must move and help with other processes once they have finished their own.  For these 

reasons it is apparent that a different control mechanism may prove more beneficial to 

performance. 

Like the lamination line, the rigging and assembly line is linear and faces high work 

content variation, thus a CONWIP loop can once again be implemented.  Also as in 

lamination, the deck and hulls travel separately until the cap and rail process, so there is 

again a need for a matching mechanism.  This is not currently an issue with the pulse 

system because all boats move at the same time, but with CONWIP there will be a push 

system in the line and inventory will tend to gather in different areas based on the work 

contents of the boats currently in the system.  The color coded sets of CONWIP cards can 

once again be employed to solve this problem.  With these changes in place, the rigging 

and assembly line will pull boats from the inspection process in the lamination  
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Figure 6.5 Upholstery Shop 
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department.  There will be a set number of CONWIP cards for the system (which will 

be determined in the experimentation section) and in order for a deck and hull to enter the 

process one set of cards must be available.  Both the deck and hull will receive a card and 

travel through their respective lines before the cap and rail process utilizes the matching 

cards to mate the deck with the hull.  Once the boat has traveled through the assembly 

processes and exits the line the cards are detached and sent to the beginning of the line. 

This CONWIP system will help to buffer out the issues caused by work content 

variation and shifting bottlenecks, while also enabling easy matching of components.  

Visibility of the lines’ status will also be increased and problems with work flow made 

apparent early.  Like the current pulse system CONWIP will also cap inventory but with 

the added benefit of being able to handle variability from one boat and one process to the 

next.  See Figure 6.6 for a representation of the restructured rigging and assembly line. 

 

 

6.3.5. Inspection Line 

The last stage of the manufacturing process at Skier’s Choice is the inspection 

process (see Figure 6.7).  As with most of the other departments in the plant, the 

inspection process has no method of inventory control.  The line is fully linear with only 

a single routing and all boats undergo the same processing regardless of product line, thus 

the processes are shared between Supras and Moombas.  The processing in this line is 

very simple in relation to others in the plant, and the only real issue with the current 

system is a lack of inventory control.  While the cycle times for pool and lake testing are 

only slightly variable, the tagging data makes it evident that the time required for 

detailing/cleaning the boat can vary greatly.  For this reason and due to the fact that the 

processing is the same across all models, a simple CONWIP loop can serve to cap the 

inventory and help to control flow in the system.  Since the boats are fully assembled at 

this point, there is no need to employ the color coded card matching system used for 

restructuring other departments.  Figure 6.7 shows the restructured inspection line. 
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Figure 6.6 Rigging and Assembly Line
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Figure 6.7 Inspection Line 
 

Over the course of the last few sections lean principles such as CONWIP, route 

specific kanban, visual management, dedication, work cell design, and others have been 

employed in order to restructure the manufacturing operations at the case study company 

Skier’s choice.  The goal of these activities has been to improve the performance of the 

system by decreasing lead time and inventory and improving the flow of the entire 

operation.  The remainder of this chapter is dedicated to experimentation procedures 

through simulation in order to examine the performance of this new system and analyze 

the effect of varying demand and number of CONWIP cards.   

6.4. Simulation Model Design 

Before any testing of the current or future state model can be carried out it is 

necessary to obtain cycle time data for each of the processes at Skier’s Choice.  Any 

knowledge of how long a particular process took to complete was wholly tacit obtained 

from experience by the employees on the shop floor.  To resolve this issue a simple 

tagging exercise was developed in conjunction with the production engineering 

department at Skier’s Choice.  Data sheets were distributed across the plant in one of 

three different categories; main line, upholstery, and small parts. 
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The main line data sheets included processes for the lamination line, the assembly 

line, and the inspection line.  Here, the tagging sheet moves with the boat and receives a 

timestamp upon the beginning and ending of work for each process.  The upholstery shop 

data sheets were broken down by cell (stage 1, 2, or 3) and the processes contained within 

the cell, and each work item was time-stamped upon the beginning and ending of the 

upholstery items for a complete boat.  The same was true for the small parts shop, with 

one key difference.  The amount and type of small parts required varies greatly from boat 

to boat, but the two constant items are stringers and floors which are structural 

components.  Thus, these data sheets were able to give a representation for the variation 

of work time by showing the variation in the number and type of parts required based on 

boat type, and how long each of these parts took to manufacture.  

With this structure in place, data was collected for approximately one week and the 

results were compiled in a spreadsheet in order to find the mean, standard deviation, 

maximum, and minimum values for each process based on boat model.  Table 4 shows an 

example of a few data points for Supra boats in the assembly line. 

Having obtained all the necessary cycle time information the next step is to construct 

a simulation model for testing the new system.  The future state model was built using the 

program Simul8®.  The overall layout of the model is shown in Figure 6.8.  The figure is 

too large to study in detail, thus a further discussion of the simulation models for each 

individual department follows.   

 

Table 4. Example Cycle Time Data 

 
 



 
 

 
 

 

Figure 6.8 Skier's Choice Simulation Model
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Lamination Line Model 

Work begins in the simulation from two work entry points, one for Supra and one for 

Moomba.  The inter-arrival time is set to an average value based on the demand level that 

is to be tested.  Once the work is released, it enters a pre-system queue of orders that are 

ready to be manufactured on a first-in-first-out (FIFO) basis.  The next process is an order 

distribution mechanism with a fixed cycle time of zero.  The function of this process is to 

take an order from the queue and communicate to the feeder lines (small parts and 

upholstery) that a particular work item has entered the system and will require component 

parts.  These processes for Moomba and Supra essentially control the entire system, as 

they require a lamination CONWIP card for their specific product type to begin work.  If 

a CONWIP card is available, they will pull a work item from the queue and split it into 

four orders which are sent to the mold prep stations for decks and hulls, the small parts 

shop, and the upholstery department for its respective product type.  From the mold prep 

stations the deck and hull travel through the various processes until they reach the cap 

and paint station where they are joined.  Following the cap and paint process there is a 

buffer with a fixed maximum level (discussed in testing and results section) which 

separates the lamination and assembly loops.  If this buffer has available capacity the 

work item will leave the cap and paint process and the CONWIP card attached to it will 

be made available for more work to enter the system.  A detailed view of the lamination 

simulation model is shown in Figure 6.9. 

 

 

Small Parts Line Model 

The small parts feeder line receives orders from the order distribution processes.  

Each order goes to its respective dedicated feeder line based on Supra and Moomba 

product types.  Again, no products can be launched into the small parts line until the 

lamination loop indicates the system is ready based on the presence of a free CONWIP 

card.  Between each process is a buffer which indicates kanban squares and thus have a 

fixed maximum level.  This maximum level was determined by observing the minimum 

level which prevents starvation of the lamination line in the simulation, which was found 



 
 

 
 

 

 

 

 
Figure 6.9 Lamination Line Simulation Model
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to be 2 for Supra and 4 for Moomba.  It was also found by observation that if the 

small parts line is started empty as the other departments are, lamination will be starved 

at the beginning and the data will be skewed.  For this reason, the small parts line is 

started with full buffers.  The entire line operates on a strict pull system in which no 

products are manufactured until the lamination line has pulled components from the end 

buffer.  At the end of the line, there is a “kit-splitting” process with a fixed zero cycle 

time.  The purpose of this process is to divide work items created by the small parts line 

into two components, one of which goes to the deck line and the other the hull line in 

lamination.  Figure 6.10 shows the model of the small parts line. 

 

Upholstery Shop Model 

Like the small parts line, the upholstery shop receives orders from Supra and 

Moomba Order release, the main difference being that this line does not employ 

dedicated product lines.  Instead, the cell structure presented in the upholstery 

restructuring discussion is employed.  When an order is received, it is sent into the vinyl 

cutting process where all of the vinyl needed for a particular boat is cut out.  From there, 

the work item is sent into a kit separation which represents the vinyl being split into stage 

1, 2 and 3 components.  This process takes the single work item from vinyl cut and 

creates six work items, 3 of which represent kits of vinyl parts and the other three 

representing corresponding orders for frames for the upholstery parts.  Thus, orders are 

not launched for frames until the vinyl is ready, which aids at balancing the cells and 

matching the components together for assembly.  For inventory control buffers are again 

used as kanbans and set to a maximum level.  Since the main concern of this 

experimental investigation is the main line including lamination, assembly, and 

inspection, these buffers were set to the minimum level to prevent starvation of the 

assembly line, which was found by observation to be 3.  Figure 6.11 shows a detailed 

view of the upholstery shop simulation model. 

 



 
 

 
 

 

Figure 6.10 Small Parts Line Simulation Model 
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Figure 6.11 Upholstery Shop Simulation Model 

 

 

Assembly/Rigging Line Model 

The assembly and rigging line receives work items from the buffer after the cap and 

paint process in lamination.  At the beginning, a splitting process (with a fixed cycle time 

of zero) splits decks and hulls which were combined in the cap and paint process back 

into individual components.  This process cannot bring any work items into the line 

unless there is a CONWIP card available for its respective product type.  

Once this condition is met and the decks and hulls have been separated they travel 

down their respective rigging line before being joined for good in the cap and paint 

process.  The boat then travels through the four final assembly stages along with its 

CONWIP card.  During final assembly 2, 3, and 4, upholstery kits are pulled from 

upholstery cells 1, 2, and 3, respectively.   

From Supra/Moomba Order 

Release 

To Final Assy. 
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Since upholstery does not have dedicated Supra and Moomba product lines, it is 

important to constrain the simulation model such that Moomba upholstery parts are not 

placed in Supra boats.  To accomplish this, the assembly in these processes is 

conducted on a matching basis.  Upholstery parts and boats are mated based on a 

unique identification label.  This “Label Unique ID” is set from the order release 

processes, and the processing on the work item cannot be completed unless the 

upholstery part with the required identification is available.   

Once all of the processing in the final assembly stage is complete, the boat exits into a 

buffer between the assembly and rigging line and the inspection line.  Through 

observation it was found that these buffers never grow in size but are usually starved for 

work due to the inspection line being faster than the assembly line.  For this reason, no 

capacity restriction was placed on the buffers.  Figure 6.12 shows the detailed view of the 

assembly/rigging line model.   

 
Inspection Line Model 

The inspection line gathers work items ready for final processing from two queues, 

one being Supra final assembly and the other Moomba final assembly.  The WIP in the 

inspection line is wholly controlled by its CONWIP cards.  A work item cannot enter the 

line from one of the aforementioned buffers unless a CONWIP card is available, and the 

CONWIP card is freed for more work to enter the line only upon the completion of work.  

The first process in the line, lake test, chooses which queue to pull from based on time in 

the system.  Essentially, the work item that has been in the system the longest from either 

queue is pulled, which maintains FIFO.  The detailed view of the inspection line 

simulation model is shown in Figure 6.13. 

With the addition of the inspection line, the entire manufacturing system at Skier’s 

Choice has been successfully modeled based on the restructured departmental setups 

presented in Section 6.3.  This model can now be used to test the performance of the 

system with respect to the current state, as well as test the effect of and optimize the 

number of CONWIP cards in the system.  Simul8 gives many performance measures 

which can be used to understand the system as a whole and choose the best combination 

of different types of variables in order achieve the desired performance improvements.   



 
 

 

 
 

Figure 6.12 Assembly/Rigging Line Simulation Model 
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Figure 6.13 Inspection Line Simulation Model 

 

 

6.5. Experimental Design 

A set of experiments was designed to test the simulation model and determine 

optimal values for various parameters including the number of CONWIP cards in each 

loop.  Responses variables that are of key interest to this experimentation are lead time 

and work in process.  In order to fully test the performance of the system based on these 

responses under different demand scenarios and CONWIP card amounts, an approach 

similar to that used in a mixed-level factorial design of experiments was employed. 

The first step in designing the experiment is to determine the variables that will be 

changed over the course of the experiment.  The main areas of interest in the system are 

the lamination line, assembly/rigging line, and the inspection line, as these departments 

make up the main line and determine the overall throughput of the system.  Through 

observation appropriate buffers between the small parts and upholstery departments and 

the main lines which they feed were placed in order to prevent starvation.  Since lead 

time through the system is a key performance indicator, it is logical to elect the CONWIP 

card levels of each of the main-line departments as three factors that must be varied in the 

system, while ignoring the feeder lines as a limiter to throughput.   
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The fourth variable that is changed in the experiment is the demand level.  Skier’s 

Choice feeds a seasonal market as demand will tend to be higher in the warmer parts of 

the year, thus they face a cyclical demand scenario as is the case with many mass 

customizers.  Because of the relatively low volume of the operations, a small increase in 

demand can cause a significant effect on the performance of the system, and it is 

important to test the ability of the new system to handle this variability.   

With the experimental variables chosen as demand level and amounts of CONWIP 

cards in each of the three loops, the next step is to determine the levels of each of the 

factors that will be tested in the experiment.  When setting the number of levels for each 

factor, it is important to keep the number of experiments to a reasonable level while still 

showing accurate results.  Of the three CONWIP loops, lamination and assembly/rigging 

have the greatest affect on the system, as observation of the simulation shows that the 

inspection loop is often waiting on work from the assembly line.  Thus the inspection line 

CONWIP card factor is given two levels, while the lamination and assembly/rigging 

loops are given three levels in order to analyze their effect on system in more detail.  The 

demand factor is given two levels in order to represent the cyclical periods of higher 

demand in the spring and summer months and lower demand in the fall and winter. 

  The demand was varied between two levels one of which represents the fall and 

winter months and corresponds to a 96 minute inter-arrival time for Supras and an 80 

minute inter-arrival time for Moombas.  To represent higher demand in the spring and 

summer months, the daily demand on the system is raised by two boats; one Supra and 

one Moomba (18% increase in daily demand).  With the higher demand of six Supras and 

seven Moombas daily, the inter-arrival times at the work release points are set to 80 and 

68 minutes, respectively.    

When setting the number of CONWIP cards in the lamination loop, the number of 

processes must be taken into account.  For a CONWIP loop the minimum number of 

cards is generally considered to be the number of processes in the loop.  Both the Supra 

and Moomba lamination lines have 10 processes (excluding curing processes), which is a 

reasonable initial level of cards to set.  To take into account the slightly higher demand of 

Moomba products over Supra, the card count for the Moomba lamination line is raised by 

one card to 11.  For the medium and high levels of the factor, both Moomba and Supra 
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card values are raised in increments of two, to 12 and 13 for the medium level and to 14 

and 15 for the high level, respectively. 

For determining the levels of the CONWIP cards in the assembly/rigging lines, a key 

observation from running the simulation that must be taken into account is the fact that 

these lines run slower than the lamination and inspection lines and usually end up 

blocking/starving them.  While the assembly/rigging lines have only 8 processes as 

opposed to the 10 of lamination, it is advisable to set the lowest level of cards to a higher 

value than the number of processes to take into account the bottleneck effect.  Thus, the 

amount of CONWIP cards for Supra is set to 11 while the Moomba value is set to 12, 

with Moomba again having one more card due to higher demand.  For the medium and 

high levels, the values are once again raised in increments of 2 for a total of 13 Supra and 

14 Moomba and 15 Supra and 16 Moomba respectively.   

There are six processes in the inspection loop, thus the number of CONWIP cards 

was varied from 6 to 8.  Table 5 summarizes the variables and levels set for the 

experimentation.  The notation that is used here and for further discussions is (0) for the 

low level, (1) for the medium, and (2) for the high. 

 

 

 

Table 5. Variables and Levels of Experiment 

Summary of Variables and 
Levels 

Levels 
Low (0) Medium (1) High (2) 

Supra Moomba Supra Moomba Supra Moomba 

V
ar

ia
bl

es
 

Inter-arrival Times 
(Minutes) 96 80 N/A N/A 80 68 

Lamination CONWIP 
Cards 10 11 12 13 14 15 

Assembly CONWIP 
Cards 11 12 13 14 15 16 

Inspection CONWIP 
Cards 6 N/A 8 

 

 

The warm up period for the simulation is the time set to allow the system to fill with 

work and reach steady state operation.  Simul8 has a function that will inform the 
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operator if warm up and results collection periods are too short to truly show system 

performance.  Through the use of this tool and observations and testing, an appropriate 

warm up period was found to be 5,000 minutes or roughly two work weeks.  The results 

collection period was set to 10,000 minutes or approximately four work weeks. 

 

6.6. Testing and Results 

Based on the variables and levels described above, the statistical analysis program 

NCSS is used to create a test matrix.  From the test matrix, the CONWIP cards and inter-

arrival times are set up based on the levels of each treatment and the simulation run for 

results collection.  The performance measures of interest that results are collected for 

include average lead time, total WIP in the system, average WIP in each CONWIP loop, 

average amount of orders waiting to be manufactured in the pre-system queue, and 

average amount of boats completed.  All of the results are collected based on averages 

from a five trial replication with a base random number set of one.  Table 6 summarizes 

the test matrix and resulting performance measures.  When examining the results of the 

experiment it is worthwhile to consider the two levels of demand separately, as demand 

level will have a great effect on system performance.   

 Examining the table from left to right, it is evident that the WIP levels in the 

lamination, assembly/rigging, and inspection loops are simply a validation of the number 

of CONWIP cards in the loop.  The value for WIP is consistently equal to the total 

number of cards for Supra and Moomba in each respective loop, which shows that the 

CONWIP cards are accomplishing their objective of limiting the total inventory in the 

loop.  The total system WIP is simply the sum of the three CONWIP loop inventories, 

and as expected increases as the number of CONWIP cards increase.   

The pre-system WIP column corresponds to the total amount of boats (Supra and 

Moomba) waiting to be launched into the system.  Again, this response measure behaves 

as expected, as it decreases with increasing CONWIP cards indicating more WIP in the 

system and less waiting to be launched.  An important observation is that this queue is 

large compared to the boats completed over the time period of the simulation, especially 

for the high demand case.  
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Table 6. Experimental Results 

  

Ca
se

 N
o.

 

Variables RESPONSES (Random Number Set = 1) 

La
m

in
at

io
n 

CO
N

W
IP

 C
ar

ds
 

A
ss

em
bl

y 
CO

N
W

IP
 C

ar
ds

 

In
sp

ec
ti

on
 C

O
N

W
IP

 C
ar

ds
 

Pr
e-

Sy
st

em
 W

IP
 

La
m

in
at

io
n 

Lo
op

 W
IP

 

A
ss

em
bl

y 
Lo

op
 W

IP
 

In
sp

ec
ti

on
 W

IP
 

To
ta

l S
ys

te
m

 W
IP

 

Bo
at

s 
Co

m
pl

et
ed

 

Le
ad

 T
im

e 

Lo
w

 In
te

r-
ar

ri
va

l T
im

es
 

1 0 0 0 37.36 21 23 5.33 49.3 126 4437 

2 0 0 1 37.36 21 23 5.33 49.3 126 4421 

3 0 1 0 33.69 20.97 27 5.3 53.3 125 4485 

4 0 1 1 33.69 20.97 27 5.31 53.3 125 4469 

5 0 2 0 29.97 20.94 31 5.28 57.2 124 4474 

6 0 2 1 29.97 20.94 31 5.3 57.2 125 4460 

7 1 0 0 33.4 24.97 23 5.33 53.3 126 4429 

8 1 0 1 33.4 24.97 23 5.33 53.3 126 4400 

9 1 1 0 29.79 24.89 27 5.29 57.2 125 4455 

10 1 1 1 29.79 24.89 27 5.3 57.2 125 4437 

11 1 2 0 26.27 24.79 31 5.27 61.1 124 4473 

12 1 2 1 26.27 24.79 31 5.26 61.1 124 4452 

13 2 0 0 29.83 28.88 23 5.28 57.2 125 4451 

14 2 0 1 29.83 28.88 23 5.28 57.2 125 4434 

15 2 1 0 26.03 28.69 27 5.28 61 124 4464 

16 2 1 1 26.03 28.69 27 5.28 61 125 4443 

17 2 2 0 22.37 28.49 31 5.28 64.8 124 4458 

18 2 2 1 22.37 28.49 31 5.29 64.8 125 4436 
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19 0 0 0 80.39 21 23 5.6 49.6 123 5416 

20 0 0 1 80.39 21 23 5.25 49.3 124 4356 

21 0 1 0 76.35 21 27 5.18 53.2 122 5409 

22 0 1 1 76.35 21 27 5.19 53.2 122 5394 

23 0 2 0 72.17 21 31 5.17 57.2 122 5429 

24 0 2 1 72.17 21 31 5.17 57.2 122 5415 

25 1 0 0 75.68 25 23 5.28 53.3 124 5377 

26 1 0 1 75.68 25 23 5.28 53.3 124 5355 

27 1 1 0 71.71 25 27 5.26 57.3 124 5384 

28 1 1 1 71.71 25 27 5.27 57.3 124 5363 

29 1 2 0 67.98 25 31 5.22 61.2 123 5389 

30 1 2 1 67.98 25 31 5.24 61.2 123 5374 
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31 2 0 0 71.23 29 23 5.3 57.3 125 5341 

32 2 0 1 71.23 29 23 5.31 57.3 125 5298 

33 2 1 0 67.27 29 27 5.29 61.3 124 5345 

34 2 1 1 67.27 29 27 5.3 61.3 125 5328 

35 2 2 0 63.89 29 31 5.25 65.3 123 5368 

36 2 2 1 63.89 29 31 5.26 65.3 124 5358 
 

 

This indicates that the manufacturing system at Skier’s Choice, based on the cycle 

time data obtained from the tagging activity, is lacking adequate capacity to handle the 

current demand level and any increase in demand will make this inadequacy more 

prominent.   Skier’s Choice should investigate the possibilities of reducing cycle times 

and increasing their capacity.  One possible solution is to conduct kaizen events with the 

shop floor employees to identify and eliminate sources of process waste.   

In order to further validate the results, an analysis of variance (ANOVA) is 

performed, again using NCSS, to show which factors and/or interactions are most 

significant to the performance of the system.  The ANOVA was performed using two 

replications of the simulation with two different random number sets.   Based on the 

setup of the CONWIP loops, it is obvious that the factors corresponding to the amount of 

cards in each loop will be highly significant to determining the total WIP in the system, 

and therefore an ANOVA with total WIP as the response is arbitrary.  However when 

considering average lead time it is not clear which of the factors have the most significant 

effect, and thus an ANOVA is necessary.  Figures 6.14 and 6.15 show the summary of 

the ANOVA results for the high and low demand scenarios, respectively. 

 

 
Figure 6.14 Low Demand ANOVA 
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Figure 6.15 High Demand ANOVA 

 

Figures 6.14 and 6.15 show that none of the factors or interactions are statistically 

significant with an alpha value of .05.  However some important information can be 

gathered from these ANOVA tables.  First, it is confirmed in both scenarios based on the 

probability level that each of the three factors are much more significant than any 

interactions between them.  Also based on the probability level both figures show that the 

amount of cards in the lamination loop is the most significant factor to the response of 

average lead time, followed by inspection CONWIP cards and finally assembly/rigging 

CONWIP cards.  This is likely due to the fact that assembly as a whole is a bottleneck 

loop and is never starved or blocked by the upstream and downstream loops. 

Based on the key performance indicators of lead time and WIP, best case scenarios 

can be chosen from Table 6 for further analysis.  Examining the results, it is evident that 

for the low demand level case numbers 2 and 8 provide the best results.  Case 8 has the 

lowest average lead time with a total system WIP of 53.3 boats, while case 2 offers a 

slightly higher lead time but with a decrease in WIP of 4 boats for a total of 49.3.  

Similarly for the high demand level, case number 32 offers the lowest average lead time 

of 5,298 minutes, while case 20 has a higher lead time of 5,356 minutes but with a WIP 

reduction of 8 boats in the system.  These four cases, based on their better performance as 

compared to the others, are further analyzed and compared to the current state situation 

based on total WIP and lead time. 

 

Lead Time Comparison 

While average lead time data for the experimental treatments in question are readily 

available from Table 6, a measure of current state lead time is necessary for a 

quantification of the improvements gained.  The current state value stream map shown in 
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Figure 6.1 might suggest that the current state lead time can be taken from there, but this 

is inadvisable for a comparison with the simulation results.  The lead times present in the 

value stream map represent only manufacturing lead time and do not include the time that 

each order is waiting to enter the manufacturing system.  The simulation model, on the 

other hand, does include this queue time.  To resolve this issue, a second simulation was 

created that is very similar to the first, but without the constraint of CONWIP cards and 

capped buffers.  With this simulation the inter-arrival times can be set to the levels used 

in the future state evaluation and a measure of average lead time obtained for comparison 

with the restructured system’s performance.  For validation of the current state lead times 

given by the simulation, they can be compared to the current lead time that Skier’s 

Choice quotes from time of order placement to the completion of the product, which is 4-

6 weeks.  The values for lead time given by the current state simulation (and shown in the 

current state cases in Table 7) for the low and high demand levels are 8,045 minutes and 

9,147 minutes, respectively.  This corresponds to an approximate total lead time of 3.35 

weeks for the low demand level and 3.8 weeks for the high demand, which is in line with 

and in fact lower than the times quoted by Skier’s Choice.  Table 7 summarizes the 

results. 

 

Table 7. Average Lead Time Comparison 

  
Inter-Arrival Time 

(Minutes) 
Average Lead Time 

(Minutes)   
Case 
No. Demand Supra Moomba 

Future 
State 

Current 
State 

% 
Reduction 

2 Low 96 80 4421 8045 45 
8 Low 96 80 4400 8045 45 

20 High 80 68 5356 9147 41 
32 High 80 68 5298 9147 42 

 

 

Table 7 shows a highly significant reduction in lead time from the current state to the 

future state manufacturing system of 45% for the low demand scenario and 41-42% for 

the high demand scenario.  It is apparent from these results that the CONWIP loops are 

accomplishing their task of limiting WIP and helping the system to flow smoothly.  Due 



 

101 
 

to this smoother flow boats do not wait in the pre-system queue as long as they do in the 

current state.   

 

WIP Comparison 

Just as the current state lead time cannot be accurately compared with the future state 

using the value stream map, the WIP values cannot be fully compared using only the 

simulation.  When simulating the current state there is no constraint for work in process 

and thus inventory tends to pile up in several areas across the plant where cycle times are 

higher.  In reality, these WIP levels are simply controlled by the amount of storage space 

available.  Thus comparing future state WIP with that of the current state simulation is 

unrealistic and an alternative method is needed.  The current state value stream map can 

be employed as this alternative, since during the generation of the map a snapshot of the 

WIP conditions was created which can be considered the general state of the system.  

Using the total WIP values for the treatments in question and comparing them to the 

current state total WIP, Table 8 is generated for the comparison. 

 

Table 8. Average WIP Comparison 

  
Inter-Arrival Time 

(Minutes) 
Average Total WIP 

(Boats)   
Case 
No. Demand Supra Moomba 

Future 
State 

Current 
State 

% 
Reduction 

2 Low 96 80 49.3 64 23 
8 Low 96 80 53.3 64 17 
20 High 80 68 49.3 64 23 
32 High 80 68 57.3 64 10 

 

 

Table 8 shows that a 17-23% reduction in WIP for the low demand case and a 10-

23% reduction for the high demand case can be achieved by implementing the 

restructured manufacturing system.  When considering the high cost of these products it 

is apparent that these reductions equate to a significant reduction in investments that are 

tied up in the system at a given time.   
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Further Analysis 

Two other analyses that must be performed in order to complete the experimentation 

are investigations into the effect of the buffer size between lamination and assembly and 

the effect of random number variation on system performance.  From observation the 

simulation shows that the assembly/rigging line blocks the lamination line and the buffer 

between the two is usually at full capacity.  During the preliminary experimentation this 

buffer was set to a capacity of five boats of each product type for a total of 10 boats.  The 

reasoning behind this value is that 10 boats, which corresponds to a little less than a day 

of inventory, is likely representative of a maximum inventory that Skier’s Choice would 

wish to keep between the two CONWIP loops.   

Having chosen the best cases for further analysis, experimentation can now be 

performed to determine the effect of this buffer size on system performance.  While it is 

obvious that increasing the buffer size will increase the WIP in the system, the effect on 

average lead time is unknown.  Thus, the buffer was set to various levels ranging from 4 

to 12 boats and lead time data collected.  Table 9 summarizes the results. 

 

 

Table 9. Effect of Lamination/Assembly Buffer Size 

  
Case 
No. 

Lamination/Assembly Buffer Size 
4 6 8 10 12 

Le
ad

 T
im

es
 

(M
in

ut
es

) 2 4415 4408 4414 4421 4430 
8 4386 4404 4400 4400 4418 

20 5296 5297 5315 5356 5395 
32 5270 5295 5297 5298 5302 

 

 

Table 9 shows that for all cases an increase in buffer size will result in an increase in 

lead time, while a decrease in buffer size reduces the lead time.  While the size of the 

buffer does affect lead time, the increases/decreases are small and not very significant.  

The size of this buffer could be reduced in the simulation to a value of 4 or 6 boats which 

would result in lower WIP and a slightly decreased lead time, however it is important to 

keep in mind one of the key purposes that a buffer serves which is handling variability.  

Factors such as process downtime and employee absence can greatly affect the ability of 
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a system to keep a buffer consistently filled, and these concepts must be taken into 

account when setting the buffer level so as to prevent starvation of the bottleneck 

assembly/rigging lines.   

 

Simulation analyses are to some extent limited by the random demand and cycle time 

patterns generated for the multiple replications tested.  Since Simul8, too, initiates the 

same random number patterns of the inter-arrival and processing times for products for 

any trial run with five replications, the scope of the results is limited to the corresponding 

data set.  All of the trials thus far have been conducted using a base random number set of 

1, and the effect of changing this parameter must be tested.  Cases 2, 8, 20, and 32 were 

run using different random number sets, the variation of which was kept consistent from 

one case to the next.  Average lead times were taken from each run so that standard 

deviations could be found on a case by case basis.  Table 10 shows that simulating each 

of the treatments in question for 10 different random number sets will result in an 

approximate standard deviation of 90-100 minutes of the average lead time.  When 

compared with average lead times of 4,440 to 5,653 minutes for the treatments in 

question, a standard deviation of this size is not largely significant to system 

performance.  Overall this test shows that variability will affect system performance, but 

not to an excessive degree. 

 

Table 10. Effect of Random Number Variation 

 
 

 

Discussion and Selection 

The experimental procedures are complete and the system performance has been fully 

analyzed.  These procedures have proven that if this restructured system were 
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implemented Skier’s Choice would achieve significant improvement in average lead time 

and WIP on the shop floor.  These tests also prove that the size of the buffer between 

lamination and assembly does not have a large affect on lead time and needs only to be 

kept at a minimum appropriate level to buffer any variation and prevent starvation of the 

assembly/rigging line.  Lastly, the tests show that the system performs much the same 

regardless of the base random number set used to conduct the simulation. 

Upon the completion of these analyses, the levels of CONWIP cards that should be 

used for each demand level can be chosen.  For the low demand scenario, cases 2 and 8 

were presented as the best options for optimal system performance. Case 2 corresponds to 

an average lead time of 4,421 minutes with a total system WIP of 53.3 boats, while case 2 

has a lead time of 4,400 minutes with a WIP of 53.3 boats.  Based on these values, 

Skier’s Choice should elect to employ case 8 when setting the CONWIP card values as 

they can obtain a four boat reduction in WIP with only a 21 minute increase in lead time.   

For the high demand level cases 20 and 32 were shown as the best options from the 

preliminary experimentation.  Case 20 has a 5,356 minute lead time with a system WIP 

of 49.3 boats while case 32 has a lead time of 4,298 minutes with a WIP of 57.3 boats in 

the system.  Again, Skier’s Choice should choose the lower WIP case 20, as they can 

decrease the overall WIP in the system by 8 boats with a lead time increase of 58 

minutes.  Table 11 summarizes these choices and shows the resulting CONWIP card 

values that should be set. 

 

Table 11. Summary of Case Selections 

 
 

 

 

The investigation of the Skier’s Choice case study began with a need to evaluate the 

application of lean manufacturing principles and/or other strategies in order to achieve 
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performance improvements for the manufacturing system.  Based on the framework 

presented in Chapter 4 each of the manufacturing systems were evaluated in the context 

of application at Skier’s Choice and it was discovered that lean manufacturing principles 

alone were the best fit for the given situation, and from this each of the departments in the 

system were restructured according to lean principles.  Through system modeling and 

experimentation it has been proven that should the restructured system be implemented, 

significant gains in average lead time and system WIP would be gained while 

maintaining the ability to handle the high variation inherent in the products of this mass 

customizer.  
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7. Discussion and Conclusions 

 
Over the course of this research the validity of incorporating lean manufacturing 

principles and practices in mass customization environments has been thoroughly 

examined.  A classification scheme for mass customizers was selected, and the principles 

inherent in lean manufacturing and the competencies required of a successful mass 

customizer have been clearly defined and discussed.  The possibilities for integrating 

other manufacturing strategies in areas where lean may fall short as a tool for efficient 

mass customization have also been investigated and from these discussions and 

atheoretical framework for combining lean and mass customization was developed.  

Based on this framework, each of these manufacturing strategies were evaluated in their 

ability to offer performance improvements for Skier’s Choice.  The framework can now 

be reevaluated based on the findings from the investigation into the Skier’s Choice case 

study.  See Figure 7.1 for the revised theoretical framework. 

 

 
Figure 7.1 Revised Theoretical Framework 
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The theoretical framework in Chapter 4 stated that Agile, and particularly Leagile 

strategies, are more likely to be applicable for mass customizers classified as assemblers 

or modularizers.  Leagile manufacturing relies fully on the existence of a logical 

decoupling point which splits standardized upstream processing from customized 

downstream processing.  Hence, a mass customizer must first have some degree of 

standardization in the early stages of product manufacture, and also be able to define a 

specific point in processing at which standardized products become customized.  Despite 

the fact that Skier’s Choice is an assembler, it was found through further evaluation that 

due to their variety explosion occurring very early in the process the implementation of a 

decoupling point was impossible.  This indicates that in fact it may be difficult to define a 

decoupling point even for low level mass customizers, and the implementation of leagile 

manufacturing may be just as likely or unlikely in these cases as it is for high level 

customizers.  Based upon this reasoning, the applicability of agile and leagile systems has 

been represented equally across all types of mass customization as Figure 7.1 shows. 

Flexible/Reconfigurable manufacturing systems (FMS/RMS) were indicated in the 

original framework as being applicable to all mass customizers whose processing is 

equipment intensive, with increasing degrees of applicability as customer involvement 

moves up the value chain.  The evaluation of the case study company did show that there 

was little need for these equipment strategies for and assembler, but this is more a result 

of the particular type of manufacturing taken place and cannot be generalized for all mass 

customizers.  Essentially, the validity of these systems as a tool for mass customization 

will fully depend on the specific equipment needs of a given manufacturing system.  

Further research is needed in this area, but it can be speculated that for those 

manufacturing processes that do require equipment, the need will be greater for robust 

systems to handle variety as customer involvement moves up the value chain.  Thus the 

applicability of FMS/RMS has remained unchanged in the revised framework. 

The Theory of Constraints (TOC) was first represented  in Chapter 4 as being 

applicable mainly for low level customizers, and even then to a small degree.  In the 

evaluation of this strategy for Skier’s Choice TOC was not considered as a valid means 

of system control due to the high variation in cycle times which results in the shifting of 

the constraint.  Further analysis, however, has indicated that the assembly line as a whole 
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could be considered to be a bottleneck.  This observation begs the question of how TOC 

and the drum-buffer-rope mechanism could be applied not to a single process, but to a set 

of processes or a department.  It is entirely possible that the TOC system could be 

adapted to control the system in terms of departments rather than individual processes.  

For high level customizers, it is still likely that the bottleneck will shift frequently even 

on a departmental level due to the early customer involvement and very high variation 

from one design to the next.  However, for low level customization it is reasonable to 

increase the applicability of TOC as shown in Figure 7.1. 

Quick Response Manufacturing (QRM) was represented in the original framework as 

being applicable mainly for high level mass customizers.  QRM and the POLCA 

mechanism offers the ability to efficiently control product routings and inventory 

between pairs of cells.  The existence of many complex routings is more likely to occur 

when the customer becomes involved earlier in the value chain, and the case study helped 

to bolster this argument.  As an assembler, Skier’s Choice has a linear main product line 

in which product flow while obtaining parts from various feeder lines, thus there are no 

complex routings to consider.  The complexity of operating a POLCA system makes it 

undesirable to implement unless absolutely needed.  QRM also relies on the creation of a 

cellular structure across the manufacturing system in order to implement POLCA.  This 

system is robust, requires a specific system structure for implementation, and will often 

be unnecessary for low level customizers as was validated by the case study.  Thus no 

alterations to the original framework have been made in the context of QRM applicability 

in Figure 7.1. 

The theoretical framework enabled the selection of lean manufacturing principles as a 

means to fully structure and control the system at Skier’s Choice.  The experimentation 

with the model of the restructured manufacturing system has validated the use of lean 

principles in this mass customization environment by showing significant improvements 

in average lead time and WIP over the system currently in place.  Thus it is proven that 

lean manufacturing can be successfully integrated as a means of systems structure in at 

least some mass customization settings.  While the situation at Skier’s Choice is not 

representative in any way of all mass customizers, it does provide a reasonable 
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generalization of those mass customizers of the assembler variety as outlined by Duray 

(2000).   

It is apparent that certain lean principles such as continuous improvement, waste 

reduction, visual management, 5s, etc. can be readily implemented in most manufacturing 

environments.  However what is not known is to what extent principles such as JIT, 

stable and standardized processes, and load leveling can be applied for mass 

customization.  This research has attempted to investigate these principles further and 

determine just how applicable they can be for mass customization, and has successfully 

done so for the assembler variety of mass customizers. 

 

Future Work 

While the objective of validating lean manufacturing for use in mass customization 

environments has been achieved, there are several limitations of this research that should 

be the subject of future work.  It has been shown that for assemblers lean manufacturing 

can likely be employed, but the use of lean for the three other mass customizer 

classifications of modularizers, fabricators, and involvers is still in question and could not 

be further investigated due to time restrictions.   

It is likely that lean can be implemented for modularizers in much the same way that 

has been shown for Skier’s Choice.  While the most effective system structure and 

control mechanisms will vary, the overall application procedure should be similar due to 

the fact that both assemblers and modularizers involve the customer in the later stages of 

the value chain.  On the other hand fabricators and involvers, who involve the customer 

very early in the value chain, will likely find that many lean manufacturing principles, 

especially those that rely greatly on stability, are not readily applicable.  It is important 

that these styles of mass customization be further investigated in order to fully understand 

to what extent lean principles are applicable in each case. 

The second aspect of this research that must be further investigated is the integration 

of other manufacturing strategies such as Quick Response Manufacturing (QRM), the 

Theory of constraints (TOC), Agile and Leagile systems, FMS/RMS, and Job Shop Lean 

in situations where lean manufacturing does not adequately fulfill the needs of mass 

customizers.  While the restructuring of the operations of Skier’s Choice required only 
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lean principles, this will almost certainly not be the case for many mass customizers.  The 

POLCA strategy of QRM is a particularly robust mechanism for controlling inventory 

and flow in complex product routing situations as will be the case in many mass 

customization environments.  TOC also offers the drum-buffer-rope (DBR) mechanism 

which is a likely alternative for high level system control for those mass customizers who 

are able to define a consistent and stable constraint in their system such as a monument 

process.  Also the decoupling point property of leagile systems is of particular interest in 

those situations where a mass customizer can postpone variety explosion and run 

upstream processes according to lean principles.  

 While little has been shown to this point on the actual implementation of agile 

systems and Job Shop Lean on the manufacturing shop floor, further investigations into 

the ability of these strategies to aid in mass customization will undoubtedly be required as 

they become more developed.  The strengths and weaknesses of each of these strategies 

has been critically reviewed and the theoretical framework of the research has laid the 

groundwork for how and in what situations they can be integrated as a supplement to lean 

manufacturing for mass customization.  However, there is still much work to be 

completed in this area, and the theoretical framework presented in this work should be 

used as a base point for conducting further research into the application of lean 

manufacturing for involvers and fabricators as well as the possibilities for the integration 

of the other strategies discussed.   

In closing, this research has proven that lean manufacturing is not simply a tool for 

companies with stable demand and a strict definition of takt time.  Lean manufacturing is 

a very strong and robust strategy that when properly applied can and will increase the 

performance of at least some types of mass customizers, and while some classifications 

of mass customization present great obstacles to the application of lean manufacturing, 

many of its principles hold true for all manufacturers.  However, mass customizers must 

pay careful consideration to the individual properties of their system when contemplating 

the application of lean manufacturing.  One cannot simply reach into the lean toolbox and 

pull out the answers to their manufacturing woes.  Many consider the very idea of mass 

customization to be an oxymoron, but with the increasing fragmentation of markets and 

desire for individualization by consumers, there is no doubt that it is here to stay.  Those 



 

111 
 

companies that are able to offer this individualization with short lead times while 

maintaining system efficiency will gain a profound competitive advantage in their 

market, and this research has shown that for at least some classifications of mass 

customizers lean manufacturing can be the answer.   
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