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ABSTRACT OF THESIS

ANALYTICAL METHODS FOR TRANSPORT EQUATIONS IN SIMILARITY FORM

We present a novel approach for deriving analytical solutions to transport equations ex-
pressed in similarity variables. We apply a fixed-point iteration procedure to these transformed
equations by formally solving for the highest derivative term and then integrating to obtain
an expression for the solution in terms of a previous estimate. We are able to analytically
obtain the Lipschitz condition for this iteration procedure and, from this (via requirements for
convergence given by the contraction mapping principle), deduce a range of values for the outer
limit of the solution domain, for which the fixed-point iteration is guaranteed to converge.

KEYWORDS: transport equations, analytical solutions, similarity variables, fixed-point itera-
tion, Lipschitz condition
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Chapter 1

Introduction

The nonlinear nature of the Navier–Stokes equations makes it difficult to achieve exact

solutions. Researchers have been employing different methods to study them. Most existing

exact solutions of the Navier–Stokes equations are for fluids with constant viscosity and constant

thermal conductivity. The various methods employed and the exact solutions of Navier–Stokes

equations can be found in Berker [1, 2, 3]. These equations, which have been known for more

than 100 years in their complete form, are very difficult to solve, even on modern computers.

In fact at high Reynolds numbers (turbulent flow), the equations are, in effect, impossible

to solve with present mathematical techniques, because the boundary conditions become time-

dependent. Nevertheless, it is very instructive to derive and discuss these fundamental equations

because they reveal many important concepts, yield several particular solutions, and can be

examined for modeling laws.

1.1 Transport equations

In fluid mechanics and heat transfer, these Navier–Stokes equations are also designated as

transport equations because of the relation they bear to movement, or transport, of momentum,

heat and mass. The three most important properties are viscosity, thermal conductivity and

diffusivity. Each of the three coefficients relates flux or transport to the gradient of a property.

Viscosity relates the momentum flux to velocity gradient, thermal conductivity relates the

heat flux to temperature gradient, and the diffusion coefficient relates the mass transport to

concentration gradient. An example of a simple transport equation can be expressed as follows:

ut + cux = 0 , (1.1)

where u is a function of two variables x and t, and the subscripts denote partial derivatives.

Here c is a fixed constant. Given an initial condition

u(x, 0) = f(x) , (1.2)

we would like to find a function of two variables that satisfies both the transport equation (1.1)

and the initial condition (1.2). This equation can be used to model pollution, dye dispersion or

even traffic flow, with u representing the density of the pollutant (or dye or traffic, respectively)

at position x and time t. In general a “Generic transport equation” which can describe transport
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phenomena such as heat transfer, mass transfer, fluid dynamics etc., can be written as

∂ρφ

∂t
︸︷︷︸

Transient term

+ ∇ · (ρ~uφ)
︸ ︷︷ ︸

Convection term

= ∇ · (τ∇φ)
︸ ︷︷ ︸

Diffusion term

+ Sφ
︸︷︷︸

Source term

. (1.3)

Upon inspection of the above equation, it can be inferred that all the dependent variables

seem to obey a generalized conservation principle. In this respect, any differential equation

addresses a certain quantity as its dependent variable and thus expresses the balance between

the phenomena affecting the evolution of this quantity. The various terms in Eq. (1.3) represents

the following:

• the transient term, ∂ρφ/∂t, accounts for the accumulation of φ in the concerned volume ;

• the convection term, ∇· (ρ~uφ), accounts for the transport of φ due to the existence of the

velocity field ;

• The diffusion term, ∇ · (τ∇φ), accounts for the transport of phi due to its gradients ;

• the source term, Sφ, acccounts for any sources or sinks that either create or destroy phi.

Any extra terms that cannot be cast into the convection or diffusion terms are considered

as source terms ;

This general transport equation in the form of N.-S. equations poses a formidable system of

nonlinear partial differential equations. No general analytical method yet exists for attacking

this system although the digital-computer numerical techniques [97, 98, 99, 100, 101, 102]

show great promise for the future. No exact solutions are known for problems like the airfoil

problems, flow past a flat plates, condensation over a vertical plates, stagnation flows and

other boundary-layer flow problems. In accumulating exact solutions over the past 100 years,

a considerable number of exact but particular solutions have been found which satisfy the

complete equations for some special geometry. Almost all the known particular solutions are

for the case of incompressible Newtonian flow with constant transport properties for which the

basic equations of mass and momentum reduce to

Continuity:

divV = 0 , (1.4)

Momentum:

ρ
DV

Dt
= −∇p̂+ µ∇2

V . (1.5)

There are basically two types of analytical solutions of Eq. (1.5):
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1. Linear solutions, where the acceleration V · ∇ vanishes.

2. Nonlinear solutions, where V · ∇ does not vanish.

The existing exact solutions of the Navier–Stokes equations have been published in a wide

variety of journals [12, 13, 15, 16, 18]. These exact solutions are for the following flows: Couette

steady flows, Poiseuille steady duct flows, unsteady duct flows, unsteady flows with moving

boundaries, duct flows with suction and injection, Ekman flows. All of these exact solutions

are deduced by standard methods of solution, for example, method of separation of variables,

Bessels functions, Laplace transformation etc. Some of these exact solutions are briefly discussed

in the next chapter.

In all the above cases, the basic equations expressing physical laws as mentioned earlier

are partial differential equations. In certain cases standard methods of solution (separation of

variables, Laplace transforms, etc.) are of value, and the solution can be found. Nevertheless,

there are a number of problems in which solutions cannot be found by the usual classical

methods. This is particularly true if the equations encountered are nonlinear.

It is of interest to note that solutions of certain sets of partial differential equations occurring

in these flows can be found quite readily inspite of the failure of the classical methods to

yield results. Notable among such solutions are those that have been obtained by employing

transformations that reduce the system of partial differential equations to a system of ordinary

differential equations. These transformations are designated as “Similarity Transformations,”

and the resulting solutions are known as similarity solutions.

1.2 Similarity transformation

Symmetrical problems are the simplest ones to solve. The symmetry of the equilateral

triangle and that of the circle are obvious because these figures can readily be visualized. Less

obvious but equally real is the algebraic symmetry of ordinary and partial differential equations,

which, if present, can facilitate the solution of the equations just as geometrical symmetry can

facilitate the solution of geometrical problems.

Mathematically, an object is said to possess symmetry if performing certain operations on

it leaves it looking the same. For example, rotating an equilateral triangle by 120◦ around its

centroid does not change its appearance. We express the symmetry of the triangle by saying it

is invariant to rotation of 120◦ around its centroid. Differential equations, both ordinary and

partial, are sometimes invariant to groups of algebraic transformations, and these algebraic

3



invariances, like the geometric ones mentioned above, are also symmetries. One of the pioneers

to come up with the idea of using algebraic symmetry to find the solution of ordinary differential

equations was the mathematician Sophus Lie [103, 104]. In his course of works he achieved two

important results; he showed how to use knowledge of the transformation group:

1. to construct an integrating factor for first-order ordinary differential equations, and

2. to reduce second-order ordinary differential equations to first order by a change of vari-

ables.

These two results are all the more important because they do not depend on the equation’s being

linear. Another important contribution to this theory was given by the Austrian physicist L.

Boltzmann [105], who used the algebraic symmetry of the partial differential diffusion equation

to study diffusion with a concentration-dependent diffusion coefficient. The crux of his method

is using the symmetry to find the special solutions of the partial differential equation by solving

a related ordinary differential equation. The American mathematician Garett Birkhoff [106]

was first to recognize that Boltzmann’s procedure depended on the algebraic symmetry of the

diffusion equation and could be generalized to other partial differential equations, including

nonlinear ones. Using the algebraic symmetry of the partial differential equation, he showed

how solutions can be found merely by solving a related ordinary differential equation. This

method of deriving similarity solutions by using group invariance property is known as Group

theory method [4] . The other commonly used techniques to carry out similarity analysis are:

free parameter method, separation of variables and dimensional analysis.

In the “free parameter method,” it is assumed that the dependent variable occurring in a

particular partial differential equation can be expressed as a product of two functions. One of

the functions in this product is a function of all of the independent variables except one. The

other function is assumed to depend on a single parameter, η, where η is a variable obtained

from a transformation of the variables involving the independent variable not occurring in the

first function. Hansen [6] has provided a very detailed discussion of this procedure.

A second method of performing a similarity analysis which incorporates the classical sepa-

ration of variables method of solution has been formulated by D. E. Abbott and S. J. Kline [48].

This method is concerned with finding similarity transformations and takes boundary condi-

tions into account. The form of the similarity variable is specified. Once a specific form of the

similarity variable is chosen the original partial differential equation is transformed under the

selected coordinate transformations. The dependent variable is considered to be a function of

4



new coordinates. It is at this point that the separation of variables concept enters the analysis.

The dependent variable is expressed as a product of separable functions of the new indepen-

dent variables. Substitution of the product form of the dependent variable into the equation

generally leads to an equation in which the functions of one variable cannot be isolated on the

two sides of the equation unless certain parameters are specified . Usually, these parameters

can be specified quite readily and “separation of variables” is achieved.

Another important method of performing similarity analysis of partial differential differential

equations is dimensional analysis. This method is discussed thoroughly by the Sedov [49]. This

method shows how variables may be transformed. Furthermore, if the physical law is expressed

as a differential equation, it may be clear from the transformed variables how the number of

variables may be reduced.

Before moving further we would like to mention why these solutions are known as “similarity

solution.” Given below is the example of a 1-dimensional diffusion equation exhibiting similarity

solution and its nature.

1.2.1 What is a similarity behavior?

Consider the following partial differential equation for a 1-dimensional diffusion equation:

∂θ

∂t
= c1

∂2θ

∂y2
. (1.6)

Depending on the physical significance attached to the variables, Eq. (1.6) is representative

of a wide range of physical phenomena. For example, if we define θ define as temperature, c1

as thermal conductivity, t as time, and choose y as a coordinate normal to a wall, Eq. (1.6)

describes the propagation of heat in a finite solid when the wall (of thickness l) is suddenly

heated to a temperature exceeding that of its surroundings. Here, we have assumed that prior

to the temperature change the wall is in steady state condition (Tw). The initial and boundary

condition are taken as θ(y, 0) = Twy/l and θ(0, t) = 0, θ(l, t) = 0 respectively.

Again, we might define θ as a velocity of a flow parallel to a plate, choose c1 as the kinematic

viscosity, let y be the normal distance from the plate, and t be time. Eq. (1.6) then describes

the velocity variation of the flow if the wall is suddenly set into motion. Diffusion of vorticity in

a fluid, slowing down of neutrons in matter, etc., are also represented by Eq. (1.6). Solutions to

Eq. (1.6) can be found by applying rather standard mathematical methods. We will attempt

to find a solution, however, based on the following technique.
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Let us transform variables by choosing a new independent variable η, defined by

η =
y

2
√
c1t

(1.7)

Suppose also that the dependent variable θ can be expressed as

θ = Θ(t)F (η) . (1.8)

From Eqs. (1.7) and (1.8) we have

∂θ

∂y
=
∂θ

∂η

∂η

∂y
= ΘF ′(η)

1

2
√
c1t

;
∂2θ

∂y2
= ΘF ′′(η)

1

4c1t
(1.9)

and
∂θ

∂t
= Θ′F + ΘF ′

∂η

∂t
= Θ′F + ΘF ′

(

− η

2t

)

, (1.10)

where
∂η

∂t
= − c1y

4(c1t)3/2
= − η

2t
. (1.11)

Substituting Eq. (1.11) and Eq. (1.10) into Eq. (1.6) we get,

Θ(F ′′ + 2ηF ′) = 4tΘ′F . (1.12)

Therefore if Θ = c2t
n Eq. (1.12) can be written as:

F ′′ + 2ηF ′ − 4nF = 0 . (1.13)

Thus by transformation of variables, we have been able to reduce a partial differential equation

in two variables to an ordinary differential equation in one variable. If the above equation is

considered as an equation for momentum of a fluid motion over a suddenly accelerated plane,

then the problem is to find the velocity of the fluid surrounding the plate as a function of time

and distance from the plate. Thus in this case θ will become u and c1 will become ν. The term

Θ(t) in Eq. (1.8) is replaced by U0 so that,

u = U0F (η) ,

where

η = y/2
√
νt .

The boundary and initial conditions on u are are now applied to F (η) and become

lim
η→∞

F (η) = 0 , F (0) = 1 . (1.14)

6



The choice of Θ(t) = U0 = constant implies n = 0 in Eq. (1.13). Thus the equation becomes,

F ′′ + 2F ′ = 0 . (1.15)

The solution of Eq. (1.15) is readilly found to be

F (η) = 1 − 2√
π

η∫

0

e−η2

dη = erfc η . (1.16)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.4

0.6

0.8

1

η

u/U0

Figure 1.1 Graphical illustration of similarity behavior.

The function erfc η is the complimentary error funtion. Its value can be found from tabula-

tions of the error function erfc η which are given in a number of standard reference tables [127].

The solution for u is, therefore, given by

u = U0 erfc η (1.17)

or

u/U0 = F (η) .

Thus the nondimensional velocity u/U0 is a function of the single variable η. A plot of η versus

u/U0 is shown in Fig. (1.1). For any given time t0, the parameter η can be replaced by a scalar

multiple of y. Thus we see that if u/U0 were plotted against y for various times, the velocity

profiles would be all “similar” in form and collapse onto the single curve defined by Eq. (1.17).

That is, the velocity profiles at various times differ only by coordinate scale changes . This

geometry property is a characteristic of similarity solutions and is the reason for the choice of

the name.

Copyright c© Abhishek Tiwari 2007
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Chapter 2

Background

The characteristics of transport phenomena, as we have seen, are essentially nonlinear–

a fact that has long been recognized. Indeed the advances in the analytic theory of fluid

mechanics have rested heavily upon and have contributed greatly to our knowledge of nonlinear

differential equations, both ordinary and partial. This chapter is primarily concerned with

methods of solution for nonlinear differential equations arising from transport processes– which

herein interpret to mean chemical kinetics, fluid mechanics, diffusion, heat transfer, and related

areas. The exposition is a mixture of theory and examples. A section on the origin of some

equations is followed by sections on exact solutions, detailed examples, approximate methods,

and numerical methods.

2.1 What is nonlinearity?

In many engineering investigations, perhaps the most common procedure is to mention

nonlinearities merely to dismiss them. In elementary studies, we often get the impression that

everything is ideal, frictionless, inelastic, rigid, inviscid, incompressible, and the like.

What in fact is the complication that causes us to mutter these phrases? Recall that the

derivative, denoted by D, possesses the fundamental property “the derivative of the sum of two

functions f and g is equal to the sum of derivative of the functions;” that is, for any constants

a,b,

D[af + bg] = aDf + bDg. (2.1)

This property is also possessed by the integral, all difference operators, and combinations of the

above classes. However, the mere possession of linearity by the operators does not ensure that

the complete equation will have this property. In general we say that an operator L is linear if

L[af + bg] = aLf + bLg (2.2)

where f and g are functions, and a and b are constants. Logarithm operator, squaring operator,

exponential operator are examples which do not possess this property. Recall that

exp[af + bg] = exp[af ] exp[bg] , (2.3)

6= a exp f + b exp g .
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Consider the linear ordinary differential equation

d2x

dt2
+ ax = 0 (2.4)

where a is constant. If x1 and x2 are both solutions of Eq. (2.4), i.e.,

d2x1

dt2
+ ax1 = 0,

d2x2

dt2
+ ax2 = 0 (2.5)

then it follows, by the linearity of the second derivative that Ax1 + Bx2 is a solution, where

A and B are arbitrary constants. This fact is the foundation of the principle of superposition

which has been essentially responsible for the great successes of the past in constructing effective

theories for (linearized) physical phenomena.

Let us now suppose that Eq. (2.4) is modified to account for the nonlinear restoring force

ax+ bx2. The equation now becomes

d2x

dt2
+ ax+ bx2 = 0 . (2.6)

If two solutions x1(t) and x2(t) of Eq. (2.6) have been found, is x1 + x2 also a solution? Upon

substituting x1 + x2 for x we find
[
d2x1

dt2
+ ax1 + bx1

2

]

+

[
d2x2

dt2
+ ax2 + bx2

2

]

+ 2bx1x2 . (2.7)

The two bracketed expressions of relation (2.7) vanish by assumption, but the last term is not

zero. Hence x1 + x2 is not a solution. Thus the principle of superposition no longer holds and

we have suffered a major setback. It is the loss of this principle and the lack of an effective

replacement that leads to many difficulties.

It should be noted here that the use of the phrases linear and nonlinear does not refer to

the graphical character of a function. Rather they concern the properties of operators. If in an

ordinary differential equation the dependent variable y and its derivetives are of the first degree

only and no product of these terms, such as y′y′′′, yy′y′′, occur then the equation is clearly

linear. Thus, y′′′ + y′y′′ = 0,(y′′)2 + y′ + y1/2 = 0 are nonlinear equations of third and second

order, respectively. The nonlinear terms are y′y′′, (y′′)2, and y1/2. An immediate observation is

that types of nonlinearities are legion. Some are more difficult to handle than others. Such a

great variety leads one to suspect that no single theory of nonlinearity is possible.

2.1.1 Literature

Refinements and advances in science and technology, the demands of the space age and the

availability of computing machines have created great interest in a whole range of nonlinear
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problems. Much of this work originated in astronomy and nonlinear mechanics. In astronomy

one encounters the Lane-Emden equation for the gravitational equilibrium of gaseous configu-

rations. It originted with Lane [19] and has been further investigated by Emden [20] and Kelvin

[21]. Chandrashekhar [22] and Davis [23] contributed in developing a general form.

Mechanical and electrical oscillations have concerned numerous researchers. Here we find

the works of Andronow and Chaikin [24], Stoker [25], McLachaln [26], Kryloff and Bogoliuboff

[27], Minorsky[28, 29, 30], Cunningham [31], and Malkin [32]. Stability and other theoretical

concepts are explored in the monographs by Hale [33], Lasalle and Lefschetz [34] and Lefschetz

[35].

The theory of elasticity and plasticity is rich in nonlinear equations. Probably the earliest

problem was that of the “elastica” discussed by McLachlan [26]. Bickley [36] has modified the

idea to characterize the drape of fabrics by means of a “bending length.” A substantial number

of pre-1940 papers are summarized by von Karman [37]. This excellent summary concerns the

large-deflection of elastic structures as well as problems in plasticity and fluid mechanics. It is

partially concerned with nonlinear partial differential equations.

In electricity, nonlinearity arises from saturation of ironcored apparatus. The triode oscil-

lator is an example of a nonlinear device. Van der Pol and Appleton were leaders in triode

problems and the Van der Pol equation has served as a fundamental model for many investiga-

tions.

Extensive research in connection with Newtonian and non-Newtonian fluids has been con-

ducted by many authors. The pioneer work is done by Prandtl [38, 39], Blasius [40, 41],

Goldstein [42], Bickley [36], Karman [37], Oseen [43], Reynolds [44] and Taylor (see Karman

[37] and Schlichting [9]). Most of these conspicuous advances in fluid mechanics have occurred

because of similarity solutions. Apart from these early contributions, theory and examples,

in various disciplines, are given by Hansen [6], Ames [45, 46], Kline [47] and Sedov [49]. The

ordinary differential equations which arise from the construction of similarity varibles are often

of intractable form. The difficulties are compounded because the boundary conditions occur

in part at infinity. The next section begins with several examples whose exact solutions are

attainable. In the next section a comprehensive review of exact solutions to N.–S. equations is

discussed.
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2.2 Exact solutions of Navier–Stokes

Our discussion about the exact solutions of N.–S. can be divided into two categories. In

the, first category, the nonlinear terms in the N.–S. equations are identically zero, or sum to

zero, or are forced to linearize. In the second category we include the exact solutions that most

fully take into account the nonlinearities of the convection terms.

2.2.1 Solutions without nonlinear convection terms

Parallel flows: For parallel flows, the nonlinear convection terms in the equations are

identically zero. Superposition of solutions in the same domain is possible if the governing

equations and boundary conditions are linear and homogeneous. The physical problem involves

flows due to longitudinally moving boundaries. A well-known example is the Couette flow

between two plates. Other examples can be found in Berker [1, 2, 3] and in potential theory

literature. One important class of parallel flows is the flow in long cylinders driven by a pressure

gradient. The governing equation is the Poisson equation. Exact solutions inlclude Poiseuille

flow between plates and in a circular tube and other cross sectional geometries, such as annuli,

eccentric circles, ellipses, confocal ellipses, equilateral triangles, cirlcles with circular notches,

limacons, lemniscates, epitrochiods, etc. An excellent review has been given by Shah and

London (1978) [11]. The following describe some flows closely related to parallel flows.

Concentric flows: Let (r, θ, z) be cylindrical coordinates. Concentric flows are those in

which the velocity v is in the θ direction only. The Navier–Stokes equations give

vrr +
1

r
vr −

v

r2
= 0. (2.8)

Examples are the flow between concentric rotating circular cylinders and the flow due to a single

rotating cylinder in an infinite fluid. Concentric flows and parallel flows can be superposed,

provided that the boundaries coincide.

Flows that are Essentially Parallel or Concentric: These flows are governed by linear

equations. There are two main categories: asymptotic suction flows and spiral flows.

If a constant normal velocity −V is added to a parallel flow w(y), the constant-pressure

Navier–Stokes equations become

−V wy = νwyy (2.9)

A solution is the asymptotic suction profile

w = W [1 − exp(−V y/ν)], (2.10)
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where W is a constant. Equation (2.9) is also applicable to the flow between two porous plates

with injection on one plate and suction of the same magnitude on the other plate Berman

[50, 51]. The axisymmetric analogue of the asymptotic suction profile on a porous plate is the

longitudinal flow over a porous circular cylinder with constant suction, was found independently

by Wuest [52], Lew [53], and Yashura [54]. The flow in an annulus with radial velocity −V a/r
was studied by Berman [50], and that along a corner with suction was examined by Stuart [55].

Many other spiral flows and their solution can be found in Berker [3].

Other Linear Flows: These flows are neither parallel nor essentially parallel. They are

governed by nondegenrate linear equations, i.e. the order of the governing equations is the

same as in the original N.–S. equations. The solutions reviewed are pseudo-plane flows, where

all path lines lie in their own plane, or essentially pseudo-plane flows. Other pseudo-plane flows

can be found in Berkers’s [1, 2, 3] works.

The most important of these flows is Ekman flow. In a coordinate system rotating with an-

gular velocity ω, let the Cartesian velocities be [u(z), v(z), 0]. The governing equations become

−2ωv = νuzz, 2ωu = νvzz. (2.11)

Ekman [5] found the solution for a moving plate in a rotating system to be

u+ iv = Uexp

[

−
√
ω

ν
(1 + i)z

]

. (2.12)

Ekman flow was extended by Gupta (1972) [56] to include suction or weak injection on the

plate. The flow due to a pressure gradient between two plates in a rotating system was studied

by Vidyanidhi and Nigam (1967) [57] and Vidyanidhi et al. (1975) [58]. A related pseudo-plane

flow is that between two noncoaxial rotating plates, studied by Abbott and Walters (1970) [59].

Nonunique solutions were found by Berker (1979,1982) [1, 3]. Addition of a constant suction

was considered by Erdogan (1976) [60] and Rajagopal (1984) [8].

Beltrami flows or screw fields: These are the flows with the property ζ · q = 0 (i.e.

vorticity is parallel to velocity and the flow is necessarily three dimensional). Exact solutions for

planar generalized Beltrami flows were first investigated by Kamṕe de Fériet (1930,1932) [61, 62]

and by Strakhovitch (1934) [63]. For axisymmetric generalized Beltrami flows Weinbaum and

O’Brien (1967) [17] provided the useful solutions. For Beltrami flows a comprehensive account

can be found in Wang [12].

2.2.2 Solutions of Navier–Stokes with acceleration terms

Similarity solutions: So far we have discussed cases where the nonlinear terms in the N.–
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S. equations are identically zero, or sum to zero, or are forced to linearize. Similarity solutions

are the exact solutions that most fully take into account the nonlinearities of the convection

terms. Phenomena such as nonexistence and nonuniqueness may occur, and analytic analyses

of these and other phenomena, such as stability, are greatly facilitated by the reduction of

N.–S. equations to ordinary differential equations. Several methods for example, separation of

variables, integration factor, asymptotic expansion, power series expansion, Laplace transfor-

mation, Euler transformation etc., can be used to solve these ordinary differential equations.

In what follows we describe steady similarity solutions of the Navier–Stokes equations.

Radial flows: Two-dimensional radial flow was first studied by Jeffrey (1915) [125].

In planar cylindrical coordinates (r, θ) let the radial velocity be given by

u =
νF (θ)

r
(2.13)

where ν is kinematic viscosity. The Navier–Stokes equations reduce to

F ′′′ + 2FF ′ + 4F ′ = 0 . (2.14)

The solution to this nonlinear equation can be expressed in terms of elliptic functions.

Stretching flows: The flow due to stretching surface may be applied to the extrusion of

sheet materials. Due to the zero tangential pressure gradient and the similarity transformation

the Navier–Stokes equations reduce to

f ′′′ + ff ′′ − (f ′)2 = 0 (2.15)

with the following boundary conditions:

f(0) = f ′(∞) = 0 , f ′(0) = 1 . (2.16)

Crane (1970) [126] obtained the rare closed-form similarity solution

f = 1 − exp(−ζ) where ζ is a similarity variable . (2.17)

Axisymmetric, three-dimensional and other extensions of these flows can be found in Wang

[14].

Free shear flows: Free shear flows are unaffected by walls and develop and spread in an

open ambient fluid. There are mainly three types of free shear flows: (1) free shear layer between

parallel moving streams, (2) plane laminar jet and (3) the wake behind a body immersed in a
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stream. Out of these three types, only plane laminar jet flow exhibits a closed form of solution.

Given below is the similarity form of plane laminar jet

f ′′′ + ff ′′ + (f ′)2 = 0 (2.18)

with

f(0) = f ′′(0) = 0 , f ′(∞) = 0 as boundary conditions. (2.19)

The exact analytic solution of Eq. (2.18) (deduced by Schlitching [10]) is the following:

f(η) = 2a tanh(aη) (2.20)

where η is a similarity variable, and a is constant determined by momentum flux.

Point sink flow: This flow which is also known as flow into a convergent channel also yields

to a closed form of solution. The similarity equation and the associated boundary conditions

for this are as follows:

f ′′′ + f ′2 + 1 = 0 (2.21)

f(0) = f ′(0) = 0 , f ′(∞) = 1 . (2.22)

The exact solution of which in terms of f ′ is,

f ′ = 3 tanh2

(

η√
2

+ tanh−1

√

2

3

)

− 2 . (2.23)

In this brief review we have seen that very few closed form solutions exist for N.–S. equa-

tions. These solutions may be classified into three major types: parallel and related flows,

generalized Beltrami and related flows, and similarity solutions. Among these three types the

most interesting are the similarity solutions of N.–S. equations, which usually pose two-point

BVPs in the form of a nonlinear ordinary differential equation. Generally these nonlinear ODEs

cannot be solved analytically, so recourse must be made to a numerical approach; however no

single numerical method is applicable to every nonlinear ODE. The large variety of possible

problems precludes a well defined useful choice criterion. Some of the popular methods that

are available to solve these two-point BVPs are discussed in the next few paragraphs. All these

methods can be divided broadly into two main categories: numerical methods and approximate

methods.

Approximate methods

By approximate methods we shall mean analytical procedures for developing solutions in

the form of functions which are close, in some sense, to the exact solution of the nonlinear
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problem. Therefore numerical methods fall into a separate category since they result in tables

of values rather than functional forms.

Approximate methods may be divided into three broad interrelated categories; “iterative,”

“asymptotic,” and “weighted residual.” The iterative methods include the development of series,

methods of successive approximation, etc. Some form of the repetitive calculation via some

operation F whose character is un+1 = F [un, un−1, ...] successively improves the approximation.

Transformation of the equation to an integral equation leads to a natural iterative method.

Asymptotic procedures have at their foundation a desire to develop solutions that are ap-

proximately valid when a physical parameter (or variable) of the problem is very small, very

large or in close proximity to some characteristic value. Typical of these methods are the

perturbation procedures both regular and singular.

The weighted residual methods, probably originating in the calculus of variations, require

that the approximate solution be close to the exact solution in the sense that the difference

between them (residual) is somehow minimized. Collocation insists that the residual vanish at

a predetermined set of points while Galerkin’s method is so formulated that weighted integrals

of the residual vanish. Following are the brief accounts of prevalent approximate methods.

Variational methods: The two-point boundary-value problem is replaced by the variational

problem of minimizing a certain integral, and the resulting variational problem is solved by the

Rayleigh–Ritz methods [65, 66]. Many boundary-value problems (for the determination of some

equilibrium state of a physical system, for example) can be formulated in terms of variational

problems. That is, some functional (representing for example, the energy of the system) is to

be minimized over an appropriate space of admissible functions, say H (Hilbert space). Or

we may easily form some functional whose minimum value is attained for the solution of the

boundary-value problem. As an example, consider the expression

I {w, λ, σ} ≡
b∫

a

‖w′(x) − f(x,w(x);λ, σ)‖2
I dx + ‖g(w(a),w(b);λ, σ)‖2

II , (2.24)

where ‖·‖I and ‖·‖II are some vector norms for n- and (n + m)-dimensional real vector spaces,

respectively. Clearly I {w, λ, σ} ≥ 0 for all w(x) ∈ C1(a,b) and I{·} = 0 for a solution of ,

y′ = f(x,y;λ, σ) , a < x < b ; (2.25)

g(y(a),y(b);λ, σ) = 0 . (2.26)
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For any functional I{·}, using an approximation of the form

wN(x) =
N∑

j=1

ζjφj(x) , (2.27)

a scalar function of the N coefficient vectors, ζj, and the eigenvalue parameters λ, as well as σ

is defined by

Φ(ζ1, ζ2, ..., ζN , λ, σ) ≡ I{wN(x), λ, σ} . (2.28)

The Ritz procedure is to minimize Φ with respect to the components ζij of ζj and the compo-

nents λk of λ . In general this leads to the system of (nN+m) equations

∂Φ

∂ζij
(ζ1, ..., ζN , λ, σ) = 0 , i = 1, 2, ..., n, j = 1, 2, ..., N ; (2.29)

∂Φ

∂λk

(ζ1, ..., ζN , λ, σ) = 0 , i = 1, 2, ...,m . (2.30)

For many special cases that frequently occur in physical applications, the systems (2.29) and

(2.30) simplify in various ways. The most familar example occurs when the integrand in the

functional I{·} is a homogeneous quadratic form in w and w′ and the space H is such that the

boundary conditions are automatically satisfied. In fact, under fairly common circumstances,

the Ritz and Galerkin procedures are identical [Kantrovich and Krylov (1958) [68]].

Convergence of the Ritz method has been studied extensively for variational problems lead-

ing to linear boundary-value problems. An interesting exception, given by Ciarlet, Schultz,

and Varga (1967) [69], leads to higher-order-accurate approximations to the solution of various

nonlinear problems of second and higher order.

For linear boundary-value problems that come from variational problems, the Ritz procedure

can lead to finite-difference methods. The basic idea here is to employ “basis” functions φj(x)

which are piecewise-linear and continuous, and vanish at all but one point (at which it takes on

the value unity) of some net. See, for example, Courant (1943) of Friedrichs and Keller (1966)

[73].

Galerkin procedure: The approximating functions are chosen from some Hilbert space H of

functions that are, say, piecewise continuously differentiable on [a,b]. Specifically let us assume

that φj(x) is an orthonormal basis for H, with

(φj, φk) ≡
b∫

a

φj(x)φk(x)w(x)dx = δij i, j = 1, 2, ... . (2.31)
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Here w(x) is the (positive) weight function defining the inner product on H. Then we may

define an Nth-order approximation to a solution of Eqs. (2.25) and (2.31) as a combination of

the form

uN(x) =
N∑

j=1

ξjφj(x) . (2.32)

The N coefficient vectors ξj of dimension n are to be determined by requiring that

γk(ξ1, ..., ξN ) ≡
b∫

a

[u′

N(x) − f(x,uN(x);λ, σ)]φk(x)w(x)dx = 0 , k = 1, 2, ..., N − 1, (2.33)

and

γN(ξ1, ..., ξN ;λ, σ) ≡ g(uN(a),uN(b);λ, σ) = 0. (2.34)

Thus in Galerkin’s method to “approximately satisfy the boundary-value problem” means to

satisfy the boundary conditions exactly and, for the error, in satisfying the equation to be

orthogonal to the first N − 1 basis functions. That is, the measure of error to be made zero is

the projection of the error in satisfying the equation on the subspace spanned by φ1, ...φN−1.

Of course any function orthogonal to all of the basis functions vanishes, and so in the limit as

N −→ ∞ the functions uN(x) may very well converge to a solution.

If the differential equation and the boundary conditions are all linear, then the system (2.33)

and (2.34) is linear in the components of the ξj ≡ 0 , j = 1, 2, ..., N is clearly a solution, and we

have in fact an algebraic eigenvalue problem in which λ is to be determined so that nontrivial

solutions exist. In the nonlinear case, Newton’s method is again an excellent scheme for seeking

accurate approximations to the roots of (2.33) and (2.34).

Method of Collocation: The solution of the two-point boundary-value problem is represented

by a function of several parameters which satisfies the boundary conditions for any set of values

of the parameters. The approximate solution is substituted in the differential equations, and the

parameters are determined by the satisfaction of some error criterion [65]. In this technique we

assume that the functions ψj(x) form a complete set on some Banach space, B, which includes

C1(a, b). Further, let interpolation by linear combination of these functions converge, together

with the first derivatives, for functions in C1(a, b). This means that for each finite set

ψ1(x), ψ2(x), ..., ψN (x) (2.35)

there are corresponding points xj,N ∈ [a, b] such that for any φ(x) ∈ C1(a, b) there exist (unique

constants) ak,N such that

φ(xj,N) =
N∑

k=1

ak,Nψk(xj,N) , j = 1, 2, ..., N . (2.36)
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Further, for these combinations, it is required that:

lim
N→∞

N∑

k=1

ak,Nψk(x) = φ(x)

lim
N→∞

N∑

k=1

ak,Nψ
′

k(x) = φ′(x) .

Approximate solutions of (2.25) and (2.31) are now sought, for a given value of N, in the form

vN(x) ≡
N∑

j=1

ηjψj(x) . (2.37)

The conditions for determining the coefficients ηj and the eigenvalues λ are that vN(x) should

satisfy the differential equation at N − 1 distinct points xj,N−1 ∈ [a, b] and should satisfy the

boundary conditions. Thus we obtain the (nN +m) equations in as many unknowns

γk(η1, ..., ηN ;λ, σ) ≡ v′

N(xk,N−1), f(xk,N−1;λ, σ) = 0 ,

k = 1, 2, ..., N − 1; (2.38)

γN(η1, ..., ηN ;λ, σ) ≡ g((v)N(a), (v)N(a);λ, σ) , (2.39)

these equations can be solved by Newton’s method. Specifically if n = 2,m = q = 1, so

that all of the features of the system (2.25) and (2.26) are included in this example. The

estimate λ = λ(ν), say, of the eigenvalue is kept fixed, and Newton’s method is employed on

the n(N − 1) equations in (2.38) and some selected n of the (n + m) equations in (2.39) to

determine the (converged) vectors η
(ν)
1 , ..., η

(ν)
N . This stage is referred as “inner iteration.” After

the convergence of these inner iterations, the function

vN(x) ≡
N∑

j=1

ηjψj(x) (2.40)

is presumably an (accurate) approximation to the solution of some boundary-value problem for

(2.25) with λ = λ(ν). But it only satisfies n of the required n+m boundary conditions (2.26).

The “outer iterations” are designed to change λ(ν) so that the remaining m conditions in

(2.39) are more nearly satisfied. Generally Newton’s method is applied to these m equations in

the unknowns λ.

Quasilinearization: In this method, applicable only to two-point boundary-value problems

for systems of nonlinear ordinary differential equations, the original nonlinear problem is re-

placed by a sequence of more easily solved linear problems whose solutions converge under
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appropriate conditions to the solution of original problem. Quasilineariztion is equivalent to

Newton’s method except in its specifics of its implementation [143]. In Newton’s method we

discretize the nonlinear equation and then locally linearize the nonlinear difference equations at

each iteartion. By way of contrast in quasilinearization (often called the Newton–Kantorovich

procedure) we first linearize the nonlinear operator(s), and then discretize the linear equa-

tions. Iterations are performed in a manner similar to that of Picard iteration, using a different

iterative function. Mathematically, if we have the following nonlinear equation

Lu = f(x, u, u′) , (2.41)

where f is generally nonlinear in u and u ′. We view u and u ′ as being distinct independent

functions and expand f in Frechét–Taylor series in the following way:

f(x, u, u′) = f(x, u(0), u′(0)) +

(
∂f

∂u

)(0)

(u− u(0)) +

(
∂f

∂u′

)(0)

(u′ − u′(0)) + ... , (2.42)

where u(0) and u′(0) are initial estimates of u and u′ respectively. Thus equation () now can be

written as,

[

L−
(
∂f

∂u′

)(0)
d

dx
−
(
∂f

∂u

)(0)
]

u = f(x, u(0), u′(0)) −
(
∂f

∂u

)(0)

u(0) −
(
∂f

∂u′

)(0)

u′(0) . (2.43)

it is clear that this equation is linear in u and can be discretized in a usual manner.

Regular perturbation method: The method of regular perturbation should properly be called

the “small parameter method” of Poincaré [75]. It is one of the outstanding approximate

methods because it can be justified rigorously. That is to say, one can establish the existence

of the solution and the convergence of the series expansion in the small parameter under rather

general conditions (see e.g., Davies and James [107]). Their results are discussed in terms of

following pair of equations.

dx

dt
= f(x, y, t;µ) ,

dy

dt
= g(x, y, t;µ) (2.44)

where µ is a parameter. If f and g possess a Taylor series in x,y, and µ for all values of t in

0 ≤ t ≤ t1 then the pair of Eqs. (2.44) have solutions x and y which can be expressed in the form

of Taylor series in the parameter µ. These series will converge when µ is sufficiently small. Of

course there is no reason why only one “small” parameter must be used. Nowinski and Ismail

[76] have utilized a multiparameter expansion in electrostatics. Ames and Sontowski [77] have

applied applied multiparameter procedures to solve algebraic problems.
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Extensive use has been made of the regular perturbation method in nonlinear mechanics.

Some of the pertinent references include Stoker [25], Mclachlan [26], Cunningham [31], and

Kryloff and Bogliuboff [27]. As an example, we would consider the boundary-layer flow past a

wedge where the flow outside the boundary-layer is

U(x) = u1x
m . (2.45)

From Schlichting [9] the similarity equation is

f ′′′ + ff ′′ + β(1 − f ′2) = 0 (2.46)

with f(0) = f ′(0) = f ′(∞) − 1 = 0. β is related to m through the relation

β =
2m

m+ 1
. (2.47)

For m << 1 it follows that β << 1. Thus we suppose f can be expanded in the regular

perturbation series in β

f = f0 + βf1 + β2f2 + ... . (2.48)

Then the sequence fn satisfies the equations

f ′′′

0 + f0f
′′

0 = 0 , (2.49)

f ′′′

1 + f0f
′′

1 + f ′′

0 f1 = (f ′2
0 − 1) (2.50)

together with f0(0) = f ′

0(0) = 0 , f ′

0(∞) = 1, and fi(0) = f ′

i(0) = 0 f ′

i(∞) = 0 all i > 0. The

nonlinear problem for f0 is essentially that of the Blasius problem. The remaining equations

are linear. Only the first equation is nonlinear, and it is identical with that for a flat plate

at zero incidence. All remaining equations are linear and contain only the function f0 in the

homogeneous portion, whereas the non-homogeneous terms are formed with the aid of the

remaining functions fi. L. Howarth [7] solved the first seven differential equations (up to and

including f6), and calculated tables from them.

Modified perturbation methods: Various devices have been introduced to extend the range

of validity of regular perturbation expansions. One of these is due to Shohat [78]; this useful

device yields results that are accurate for large values of parameter µ. His method has been

further amplified and applied by Bellman [79, 80]. The other modifications to the perturbation

methods are applied with the view to address the equations of the following form:

µx(n)(t) + F [x, x′, x′′, ..., x(n−1), µ] = 0. (2.51)
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If a regular expansion is attempted we expect difficulties because the zero order equation,

obtained by setting µ = 0, is of lower order than the original equation. These problems can be

solved by singular perturbation method suggested by Friedrichs [81]. In this method one of the

boundary conditions is dropped, and an approximation is obtained. This approximation is a

good appriximation except within the bounadry layer. This solution, which holds good outside

the boundary-layer is known as outer solution.

What about the inner solution in the boundary-layer? Over the years since the end of WWII

a philosophy and procedure has evoloved for treating these problems. The ideas underlying the

“ method of inner and outer expansions” or of “double asymptotic expansions” or “the method

of matched asymptotic expansions” (Bretherton [84] ) have been contributed to by many. It was

used by Friedrichs [82] in the 1950s. It was systematically developed and applied by Kaplun [83],

Lagerstrom and Cole [85]. A treatment of the developments and many more references is given

by Van Dyke [86]. One of the guiding principles that should be kept in mind (Van Dyke [86]) is

“When terms are lost or boundary conditions are discarded for the outer solution they must be

included in the development of the inner solution.” Since the “inner” boundary condition was

abandoned for the outer solution the “outer” boundary condition must be abandoned for the

inner solution. This means that an overlapping domain exists between the two solutions. The

inner solution must be matched to the outer solution in some fashion. Kaplun and Lagerstrom

[83] assert that the existence of an overlapping domain between the two solutions implies that

the inner expansion of the outer expansion should, to appropriate (perturbation) parameter

orders of magnitude, agree with the outer expansion of the inner expansion. This general

matching principle is usually bent to the investigator’s taste—the asymptotic form found most

useful by Van Dyke [86] is the asympototic matching principle.

Methods of iteration/Cauchy–Picard iteration: Approximate methods which generate a new

estimate at the nth step in terms of one or more of the approximations in the preceding steps

are called methods of iteration. Some of these methods have been extensively used by mathe-

maticians in the development of existence theorems. Perhaps the best known of these iterative

methods is the Cauchy–Picard process. Of less notoriety are some modifications of this process

and those operational methods of Pipes [74].

Let L be a differential operator and

Lu = f . (2.52)

If we wish to develop an iterative solution for Eq. (2.52) what is required is a sequence
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u0, u1, ...un, ... which converges to the exact solution as n increases indefinitely. Each itera-

tion is based upon some relation of the form

un+1 = F (un, un−1, ...) (2.53)

where F is an operator intimately related to the equation to be solved.

Consider the set of n simultaneous differential equations

dyj

dt
= fj(y1, ..., yn, t) , j = 1, 2, ..., n (2.54)

having the prescribed initial values yj(t0). Upon integrating from t0 to t and evaluating the

integration constants we have the relation

yj(t) = yj(t0) +

t∫

0

fj(y1, ..., yn, t)dt . (2.55)

The iteration process begins with a set of initial trial functions y
(0)
j which may be arbitrarily

chosen but usually are selected as the initial condition constants. A sequence of iterative

approximations are then constructed according to the scheme

y
(k+1)
j = yj(t0) +

t∫

t0

fj(y
(k)
1 , ..., y(k)

n , t)dt (2.56)

k = 0, 1, 2, ...; j = 1, 2, ..., n. The following observations concerning Cauchy-Picard iteration are

worthy of note:

(a) If the system (2.54) satisfies the assumptions of the existence-uniqueness theorem in

some neighbourhood of the initial data,—then the Cauchy–Picard iteration converges to the

true solution.

(b) This iterative process constructs the power series expansion (if it exists) which agrees

with the Taylor series. If the Taylor series does not exist, the iterative method can still be

applied. Nonexistence of the Taylor series occurs if the expansion center is a singular point.

(c) Integrations are required. If the fj are sufficiently complicated, analytic integration may

be difficult. In such cases numerical or approximate integration may be necessary.

(d) This method is equivalent to replacing Eq. (2.54) by

dyk+1
j

dt
= fj(y

(k)
1 , ..., y(k)

n , t) , (2.57)

yk+1
j (t0) = yj(t0) . (2.58)
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The Cauchy-Picard iteration develops a sequence y
(k)
j which converges to the true solution under

the proper conditions.

Series solutions: For many boundary-value problems, especially those with a simple analytic

formulation, a solution can be obtained in the form of an infinite series,

y(x) =
∞∑

n=1

Cnψn(x) (2.59)

of given functions ψn(x) whose coefficients Cn are initially undetermined. The success of the

method depends principally on the nature of the boundary-value problem and on a suitable choice

of the system of functions ψn. In some cases this method works very well, and assumed series

converges very well, while in some cases infinite series either converges very slowly or does not

converge at all.

Blasius series/modified Blasius series: In boundary-layer theory H. Blasius [40] was among

the first few who recognized the asymptotic behavior of the solutions to the boundary-layer

problems. He proposed the solution for the case of boundary layer on a cylindrical body in the

form of a power series; it was further developed by K. Hiemenz [87] and L. Howarth [7]. In

this method they assumed the velocity of the potential flow in the form of a power series in

x, where x denotes the distance from the stagnation point measured along the contour. The

velocity profile in the boundary layer is also represented as a similar power series in x, where

the coefficients are assumed to be functions of the coordinate y, measured at right angles to the

wall (Blasius series). It is important to note in this connection that L. Howarth [7] succeeded in

finding a substitution for the velocity profile which confers universal validity on the y-dependent

coefficients. In other words, by a suitable assumption regarding the power series, its coefficients

have been made independent of the particulars of the cylindrical body, so that the resulting

functions could be evaluated and presented in the form of tables. Thus the calculation of the

boundary layer for a given shape becomes very simple if use is made of the tables, provided

that the tabulation extends over a sufficiently large number of terms of the series.

The usefulness of Blasius’ method is, however, severely restricted by the fact that, precisely

in the most important case of very slender body shapes, a large number of terms is required;

in fact, their number is so large that it ceases to be practicable to tabulate them all with

a reasonable amount of numerical work. This occurs because the potential velocity increases

steeply at the leading edge and then varies very slowly over a considerable distance downstream.

Application of this procedure is given in Blasius [40, 41]. Subsequent work on Blasius’ series

includes the contribution from N. Froessling [88], A. Ulrich [89], A. N. Tifford [90], L. Howarth
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[7], K. Hiemenz [87] and I. Tani [91] .

Goertler series: The Blasius series described above is suitable for the calculation of boundary

layers on all cylinders provided that the flow starts with the stagnation point. On the other

hand, the series expansion given by L.Howarth and I.Tani are suitable for only the flat plate.

A generalization of all hitherto known series expansions was given by H. Goertler [92, 93] who

also improved the convergence of the new series with respect to the old ones by introducing

new variables.

Meksyn’s asymptotic method: Meksyn [94] also acknowledged the fact that solutions to

boundary-layer problems are asymptotic in nature, i.e., the boundary-layer functions are rapidly

decreasing functions of the coordinate η, normal to the solid boundary. They can, therefore, be

treated as asymptotic solutions for the η variable of the boundary-layer equations; they are also

slowly varying functions with respect to the coordinate ξ along the boundary; the equation for

the ξ variable can be easily solved step by step. An essential part of the solution consists of an

evaluation of definite integrals; it is done by the method of steepest descent; the results obtained

are usually divergent; their numerical value is found by Euler’s transformation. Further details

of this method are given in Meksyn [94].

Homotopy analysis method (HAM): This method is proposed by Liao [95] in his Ph.D. disser-

tation. Contrary to perturbation techniques which are strongly dependent on small parameters

in considered nonlinear equations, it is independent of these parameters. This method has

been applied to many boundary-layer problems with reasaonable accuracy, such as the Darcy

or non-Darcy free convection heat and mass transfer in porous medium (see Wang et al. [122]),

liquid film on a unsteady stretching surface [96]. The method is in principle based on Taylor’s

series with respect to an embedding parameter. As a brief view on this method, consider Ñ is

a nonlinear differential operator, let h 6= 0 and p be complex numbers, and A(p) and B(p) be

two complex functions analytic in the region |p| ≤ 1, which satisfy

A(0) = B(0) , A(1) = B(1) = 1 , (2.60)

respectively. Let

A(p) =
∞∑

k=1

α1,kp
k , B(p) =

∞∑

k=1

β1,kp
k (2.61)

denote Maclaurin’s series of A(p) and B(p) respectively. The complex functions A(p) and B(p)

are called the embedding functions and p is the embedding parameter.

Consider the nonlinear differential equation in general form

Ñ(u(r)) = 0 , r ∈ Ω , (2.62)
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where Ñ is a differential operator and u(r) is a solution defined in the region r ∈ Ω. Applying

the HAM to solve it, we first need to construct the following family of equations:

[1 −B(p)]£[θ(r , p) − u0 (r)] = ~A(p)Ñ [θ(r, p)] , (2.63)

where £ is a properly selected auxiliary linear operator satisfying

£(0 ) = 0 , (2.64)

~ 6= 0 is an auxillary parameter, and u0(r) us an initial approximation. According to the

definition of the embedding functions A(p) and B(p), Eq. (2.63) gives

θ(r, 0) = u0(r) (2.65)

when p = 0. Similarly, when p = 1, Eq. (2.63) is the same as Eq. (2.62) so that we have

θ(r, 1) = u(r) . (2.66)

Suppose that Eq. (2.62) has solution θ(r, p) that converges for all 0 ≤ p ≤ 1 for properly

selected ~, A(p) and B(p). Suppose further that θ(r, p) is infinitely differentiable at p = 0, that

is

θk
0(r) =

∂kθ(r, p)

∂pk
|p=0 , k = 1,2,3... . (2.67)

Thus as p increases from 0 to 1, the solution θ(r, p) of Eq. (2.63) varies continuously from the

initial approximation u0(r) to the solution u(r) of the original Eq. (2.62). Clearly, Eqs. (2.65)

and (2.66) give an indirect relation between the initial approximation u0(r) and the general

solution u(r). Thus HAM depends on finding a direct relationship between the two solutions

[95].

Integral analysis of the boundary layer: The exact boundary-layer equations are not always

possible to solve. In 1921 von Kármán derived a momentum equation by integrating the

boundary-layer equations across the boundary layer, and thus reducing the partial differential

equation to an ordinary differential equation; this enables us to find an approximate solution of

the exact solution. Such approximate methods can be devised if we do not insist on satisfying the

differential equations for every fluid particle. Instead, the boundary-layer equation is satisfied

in a stratum near the wall and near the region of transition to the external flow by satisfying

the boundary conditions, together with certain compatibility conditions. In the remaining

region of fluid in the boundary layer only a mean over the differential equation is satisfied,

the mean being taken over the whole thickness of the boundary layer. Such a mean value is
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obtained from the momentum equation which is, in turn, derived from the equation of motion

by integration over the boundary-layer thickness. Since this equation will be often used in the

approximate methods, to be discussed later, we shall deduce it now, writing it in its modern

form. The equation is known as the momentum integral equation of boundary-layer thoery, or

as von Kármán’s integral condition [124].

We shall restrict ourselves to the case of steady, two-dimensional, and incompressible flow,

i.e., we shall refer to the following equations:

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

dp

dx
+ ν

∂2u

∂y2
, (2.68)

∂u

∂x
+
∂v

∂y
= 0 . (2.69)

Upon integrating the equation of motion (2.68) with respect to y, from y = 0 (wall) to y = h,

where the layer y = h is everywhere outside the boundary-layer, we obtain:

h∫

0

(

u
∂u

∂x
+ v

∂u

∂y
− U

dU

dx

)

dy = −τ0
ρ
. (2.70)

The shear stress at the wall, τ0, has been substituted for µ(∂u/∂y)0, so that Eq. (2.70) is

seen to be valid both for laminar and turbulent flows, on condition that in the latter case u

and v denote the time averages of the respective velocity components. The normal velocity

component, v, can be replaced by v = −
y∫

0

µ(∂u/∂x)dy, as seen from the equation of continuity,

and, consequently, we have

h∫

0



u
∂u

∂x
− ∂u

∂y

y∫

0

∂u

∂x
dy − U

dU

dx



 dy = −τ0
ρ
. (2.71)

Integrating by parts and going through mathematical manipulation, we obtain the following:

h∫

0

∂

∂x
[u(U − u)]dy +

dU

dx

h∫

0

(U − u)dy =
τ0
ρ
. (2.72)

Since in both integrals the integrand vanishes outside the boundary layer, it is permissible to

put h→ ∞.

We now introduce the displacement thickness δ∗ and the momentum thickness θ. They are

defined by

δ∗U =

∞∫

0

(U − u)dy displacement thickness , (2.73)
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θU2 =

∞∫

0

u(U − u)dy momentum thickness . (2.74)

It will be noted that in the first term of the equation (2.72), differentiation with respect to x,

and integration with respect to y, may be interchanged as the upper limit h is independent of

x. Hence,
τ0
ρ

=
d

dx
(U 2θ) + δ∗U

dU

dx
. (2.75)

This is the momentum integral equation for two-dimensional incompressible boundary layers.

As long as no statement is made concerning τ0, Eq. (2.75) applies to laminar and turbulent

boundary layers alike. This modern form of the momentum integral equation was first given

by H. Gruschwitz [114]. It finds its application in the approximate theories for laminar and

turbulent boundary layers (see Schlichting [9]). It can be extended to symmetrical boundary

layers also.

Using a similar approach, K. Wieghardt [115] deduced in recent times an energy integral

equation for laminar boundary layers. This equation is obtained by multiplying the equation

of motion by u and then integrating from y = 0 to y = h > δ(x). Substituting, again, v from

the equation of continuity, we obtain

ρ

h∫

0



u2∂u

∂x
− u

∂u

∂y





y∫

0

∂u

∂x



− uU
dU

dx



 dy = µ

h∫

0

∂2u

∂y2
dy , (2.76)

which will transform into following after series of mathematical operations:

1

2
ρ
d

dx

∞∫

0

u(U 2 − u2)dy = µ

∞∫

0

(
∂u

∂y

2)

dy. (2.77)

The upper limit of integration could here, too, be replaced by y = ∞ because the integrands

become equal to zero outside the boundary layer. The quantity µ(∂u/∂y)2 represents the energy,

per unit volume and time, which is transformed into heat by friction. The term (1/2)ρ(U 2−u2)

on the left-hand side represents the loss in mechanical energy (kinetic and pressure energy)

taking place in the boundary layer as compared with the potential flow. Hence the term

(1/2)ρ
∞∫

0

(U 2 − u2)dy represents the flux of dissipated energy, and the left-hand side represents

the rate of change of the flux of dissipated energy per unit length in the x direction.

If, in addition to the displacement and momentum thickness from Eqs. (2.73) and (2.74)

respectively, we introduce the dissipation energy thickness δ∗∗ from the definition

U3δ∗∗ =

∞∫

0

u(U 2 − u2)dy (energy thickness) , (2.78)
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we can write the energy integral equation (2.78) in the following simplified form:

d

dx
(U 3δ∗∗) = 2ν

∞∫

0

(
∂u

∂x

)2

dy , (2.79)

which represents the energy equation for two-dimensional laminar boundary layers in incom-

pressible flow.

Thus, if a linear velocity distribution is considered, we find: displacement thickness δ∗ =

(1/2)δ; momentum thickness θ = (1/6)δ; Energy thickness δ∗∗ = (1/4)δ. Pohlhausen (1921)

[118] was the first, who applied von Kármán’s equation to solve boundary-layer problems.

Polhausen’s procedure was subsequently partly modified by Holstein and Bohlen (1940) [117].

The details of this method can be found in Schlichting (1958) [119].

The momentum equation gives good results for accelerated flow, but it is less satisfactory for

retarded flow. The position of the separation point, in the case when the method leads to such

a point, is usually downstream of the separation point found by an exact solution. Extension of

von Kármán’s procedure to all boundary-layer problems (heat transfer, compressible flow, three-

dimensional flow) is given in heat transfer [120], compressible flow [121] and three-dimensional

flow [116]

Green’s functions; Equivalent Integral Equations: It is a very usual practice of solving initial

value problems by integral equations. The integral equations are then evaluated by applying

quadrature formulae. The same however, can be applied to boundary-value problems, but the

derivation of equivalent integral equations is complicated. It is based on determination of the

Green’s function for a linear/nonlinear boundary-value problem. The Green’s function for a

linear boundary-value problem is roughly analogous to the inverse of the coefficient matrix in

a linear system of equations. For nonlinear boundary-value problems several ways in which

Green’s function can be used to reduce nonlinear BVPs to integral equations are discussed in

Keller [70], Collatz [65] and Courant-Hilbert [72]. In brief, let the boundary-value problem be,

for example,

Ly = f(x, y, y′) , (2.80)

y(a) = y(b) = 0 , (2.81)

where L is a differential operator. Then the Green’s function, g(x, ξ), is a function such that

the solution of (2.80) is given by

y(x) = −
b∫

a

g(x, ξ)f(ξ, y(ξ), y′(ξ)) dξ . (2.82)
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If the boundary conditions are replaced by inhomogeneous conditions, then the corresponding

integral equation (2.82) is modified by the addition of an inhomogeneous term.

Numerical methods

The purpose of this section is to describe in some detail the methods for the numerical

solution of two-point boundary-value problems for linear and nonlinear ordinary differential

equations. Two-point boundary-value problems occur in a number of areas of applied mathe-

matics, theoretical physics, and engineering; among them boundary layers, the study of stellar

interiors, and control and optimization theory are the significant ones. Since it is usually im-

possible to obtain analytical (closed-form) solutions to two-point boundary-value problems met

in practice, these problems must be attacked by numerical methods.

In contrast to initial value problems for ordinary differential equations in which all the

conditions are specified for one value of the independent variable (the initial point), two-point

boundary-value problems, as the name implies, have the property that conditions are specified

at two values of the independent variable (the initial point and the final point; collectively, the

boundary points).

This apparently minor change can lead to profound changes in the behavior of the differential

equations. It is not hard to give examples of linear differential equations that possess unique

solutions as initial value problems, but which may have no solution, a unique solution, or an

infinite number of solutions as two-point boundary-value problems. For example, the initial

value problem

ÿ + y = 0 , y(0) = c1 , ẏ(0) = c2 (2.83)

has the unique solution y(x) = c1 cos x + c2 sinx for any set of values c1, c2. However the

boundary-value problem

ÿ + y = 0 , y(0) = 1 , y(π) = 0 (2.84)

has no solution; the problem

ÿ + y = 0 , y(0) = 1 , y(2) = 0 (2.85)

has the unique solution y(x) = cos x− (cot 2) sinx; while the problem

ÿ + y = 0 , y(0) = 0 , y(π) = 0 (2.86)

has an infinite number of solutions y(x) = B sinx, where B may have any value.
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In the examples above, values of the solution at the two ends of the interval were specified,

and different combinations of end points and values of the solution led to different conditions of

existence and uniqueness of solutions. The specification of the derivative of the solution, rather

than the value of the solution itself, may also lead to different conclusions with regard to the

existence and uniqueness of solutions of two-point boundary-value problems.

In view of the complicated behavior that solutions of two-point boundary-value problems

can exhibit, it should not be surprising that the theory of the existence and uniqueness of

solutions of these problems is in a less satisfactory condition than the corresponding theory for

initial value problems. And it should be expected that the numerical solution of a two-point

boundary-value problem for a given ordinary differential equation will in general be a more

difficult matter than the numerical solution of the corresponding initial value problem.

There now exist a number of efficient methods for the step-by-step numerical integration of

initial value problems. The standard procedures include Runge-Kutta and multi-step methods

such as Hamming’s modification of Milne’s method. These methods have in common that the

solution is computed at a succession of values of the independent variable, say x1, x2, x3, ...,

where x0 is the initial point. The initial conditions at x0 contain sufficient information for the

solution to be computed at x1; and so on. (The progression of the solution from x0 to x1 to x2,

etc., explains why initial value problems are sometimes called “marching” problems.) Iteration

at the points xi is sometimes used to improve the numerical accuracy, but no “guessing” is

involved because the method has already furnished a good first approximation. In two-point

boundary-value problems, on the other hand, there is not sufficient information at the initial

point to start a step-by-step solution; hence a way must be found to determine the missing initial

conditions, or an approach other than step-by-step integration must be used. Also, iteration

is more likely to be an essential feature of a method for the solution of two-point boundary-

value problems, and it is usual that missing initial conditions or even solution profiles must be

guessed, with no other a priori knowledge.

Two-point boundary-value problems have been attacked by a variety of numerical tech-

niques, among them:

Interpolation methods: Solutions of the differential equations are found by numerical inte-

gration for sets of values of the missing initial conditions. These solutions will not in general

satisfy the prescribed boundary conditions. The correct values of the missing initial conditions

are then found by inverse interpolation [65, 64].

Shooting methods: They take their name from the situation in the two-point boundary-
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value problem for a single second-order differential equation with initial and final values of the

solution prescribed. Varying the initial slope gives rise to a set of profiles which suggest the

trajectory of a projectile “shot” from the initial point. That initial slope is sought which results

in the trajectory “hitting” the target; that is, the final boundary value [70, 123].

This hit-or-miss method is of course unsuitable for the solution of two-point boundary-value

problems on high-speed digital computers. What is needed is a more systematic way to vary

the missing conditions based on the amount by which the final values are missed. The shooting

methods we are concerned with have this property. In fact, linear problems can be solved by

shooting methods without iteration, and the iterations necessary for nonlinear problems can be

shown to converge under appropriate conditions.

For nonlinear differential equations, shooting methods are a good choice. The methods are

quite general and are applicable to wide variety of differential equations. It is not necessary for

the applicability of shooting methods that the equations be of special types such as even-order

self-adjoint. Despite this, shooting methods, like all methods, have their limitations. Shooting

methods sometimes fail to converge for the problems which are sensitive to initial conditions.

Several different shooting methods have been presented in the literature, the most popular

choices among them are Runge-Kutta and Newton-Raphson methods.

Theoretically, we can solve all boundary-value problems by initial value processes. Generally,

initial value systems are formed from the boundary-value problems by adding sufficient guessed

conditions at one point. These conditions are adjusted by some algorithm until the required

relations are satisfied at the other point. For such problems a Runge-Kutta method is easily

applied. The other popular choices are multistep methods proposed by Bashforth and Adams,

Predictor-corrector methods, Gill’s method and Milne’s method. An excellent comprehensive

dicussion about the numerical solutions of differential equations can be found in Bennett et al.

[108], Collatz [65], Fox [64], Levy and Baggott [109], Milne [112], Mikeladze [113], von Sanden

[111] and Henrici [110].

2.3 Objective

In the previous section we discussed both approximate and numerical methods. These

methods are capable of producing reasonable solutions of the nonlinear differential equations.

However, these methods do not offer much insight in obtaining the analytical solutions to the

nonlinear ODEs.

In the case of approximate methods, we have some success in obtaining solutions in the form
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of series (Goertler and Blasius series), but, that too is restricted for wedge profile boundary-

layer problems, while von Karman’s integral equations uses an arbitrary expression for velocity

profiles. Nevertheless, there are a number of problems, especially the boundary-layer flows,

which pose two-point boundary-value problems (BVP) in similarity form. No general method

yet exists to obtain exact solutions of these BVPs. Several attempts have been made to solve

problems of flow past a flat plate (Blasius equation), Falkner–Skan wedge flows, etc.; but none

of these yield exact analytical solutions. Apart from this there are also various scenarios in heat

transfer, for instance laminar film condensation over a vertical plate, which are also in similarity

form and lead to nonlinear ordinary differential equation. Even in these cases no analytical

method has yet been formulated. Moreover, the advent of supercomputing has further driven

away the interest of the scientific community to explore exact solutions of the Navier–Stokes

equations. But there is always a need for exact solutions because of the following two reasons:

1. The solutions represent fundamental fluid-dynamic flows. Also, owing to the uniform

validity of exact solutions, the basic phenomena described by Navier–Stokes equations

can be more closely studied.

2. Exact solutions serve as standards for checking the accuracies of the many approximate

methods, whether they are numerical, asymptotic, or empirical. Current advances in

computer technology make the complete numerical integration of Navier–Stokes equa-

tions more feasible. However, the accuracy of the results can only be ascertained by a

comparison with an appropriate exact solution.

In this research we present a novel approach for deriving analytical solutions to transprot

equations expressed in similarity variables. We apply a fixed-point iteration procedure to these

transformed equations by formally solving for the highest derivative term and then integrating

to obtain an expression for the solution in terms of a previous estimate. We are able to

analytically obtain the Lipschitz condition for this iteration procedure and, from this, deduce

a range of values for the outer limit of the solution domain for which the fixed-point iteration

is guaranteed to converge.

Copyright c© Abhishek Tiwari 2007

32



Chapter 3

Mathematical Formulation

In numerical analysis we often use fixed-point iteration to seek the solution of nonlinear

ordinary differential equations, but usually do not employ this method when seeking analytical

solutions. In this research effort, we have used fixed-point iteration [143] to find the solution of

some transport equations (based on boundary-layer theory) in similarity form.

In successive approximation methods we begin with a function called the iteration function,

which maps one approximation into a better approximation, thus creating a sequence of possible

solutions to the problem. Mathematically, a fixed-point can be described as any point that is

mapped back to itself by the mapping. Thus, let f : D −→ D, D ⊂ R
N, and x = f(x). Then x

is said to be a fixed-point of f in D. In other words, a fixed-point is mapped back to itself by

the mapping. From the mapping we can write x = f(x) or

x− f(x) = 0 . (3.1)

Now if we apply the following iteration scheme:

x1 = f(x0)

x2 = f(x1)

x3 = f(x2)

·

·

xm = f(xm−1)

·

·

where x0 is an initial guess. This iteration procedure will generate the sequence xm of ap-

proximations to the fixed-point x∗. Geometrically, the fixed-points of a function f(x) are the

point(s) of intersection of the curve z = f(x) and the line y = x as shown in Fig. 3.1. Clearly,

there exists x = x∗ such that y = z is the fixed-point of f ; that is, x∗ = f(x∗). Thus, if we begin
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Figure 3.1 Graphical illustration of fixed-point iteration [143].

with x0 as an initial guess, we find f(x0) on the curve z = f(x). But according to the iteration

scheme, x1 = f(x0), so we move horizontally to the curve y = x. This locates the next iterate,

x1 on the x-axis, as shown in the figure. This process can now be repeated by again moving

vertically to z = f(x) to evaluate f(x1) and thus a new approximation x2. An important

feature of this iteration procedure is that it converges very fast. For the success of a fixed-point

iteration scheme, an iteration function should have a slope less than unity in a neighbourhood

of the fixed-point. In such cases, f is said to be a contraction. The following principle [143]

provides the sufficient condition for convergence of fixed-point iterations in finite-dimensional

spaces of dimension N.

Contraction Mapping Principle: Let f be continuous on a compact subset D ⊂ R
N with

f : D −→ D, and suppose ∃ a positive constant L < 1 3

‖f(y) − f(x)‖ ≤ L‖y − x‖ ∀x, y ∈ D . (3.2)

Then ∃ a unique x∗ ∈D 3 x∗=f(x∗) and the sequence {xm}∞m=0 generated by xm+1 = f(xm)

converges to x∗ from any guess, x0 ∈D. Here L is a Lipschitz constant whose mathematical

significance can be understood via the following inequality:

The inequality,

‖f(y) − f(x)‖ ≤ L‖y − x‖ ∀x, y ∈ D (3.3)

is called a Lipschitz condition, and L is the Lipschitz constant.
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This theorem reveals two important aspects of the convergence of iterations. The first is

that satisfying L < 1 is a sufficient condition but not a necessary condition for the convergence

of the corresponding iterations. The second is of mapping f which if holds Eq. (3.2) throughout

in any set D, signifies that x∗ is the unique fixed-point of f in D. This means that the iterations

will converge to x∗ using any starting guess, whatever, as long as it is element of the set D. It

should be noted that f is considered continuous in D. We now discuss “how to estimate” the

Lipschitz constant for a given function f .

Calculation of Lipschitz constant: We have assumed that f is only continuous in D, but if we

assume that it also possesses a bounded derivative in this domain [143], then the mean value

theorem provides the following relationship for D ⊂ R
1: if

f(b) − f(a) = f ′(ξ)(b− a) , for some ξ ∈ (a, b) (3.4)

then

|f(b) − f(a)| = |f ′(ξ)||b− a| ≤
(

max
x∈[a,b]

|f ′(x)|
)

|b− a| , (3.5)

and we take

L = max
x∈[a,b]

|f ′(x)| . (3.6)

However, this discussion of fixed-point iteration in number spaces can also be applied to the

polynomial spaces. The only exception that we will observe here is in the iteration of the

solution in the polynomial space instead of number space. This in turn implies here that at

each iteration a polynomial of different degree will be obtained. Hence if D ⊂ P then we will be

iterating f with the mapping f − F (f) = 0, where f is a polynomial. Thus, we get a sequence

of polynomials (of different degrees) at each iteration which will converge to a fixed solution.

3.1 Analytical Iteration Method (AIM)

In this section we will describe an analytical procedure to analyze boundary-value problems

in similarity form, which are third-order nonlinear ordinary differential equations. We term our

method of finding analytical solutions as “Analytical Iteration Method (AIM).” This method

is based on fixed-point iteration over spaces of polynomials. We start our analytical procedure

with the original ordinary differential equation re-written for the highest derivative and integrate

it to find the solution. As a result of this integration, constants of integration appear in the

solution; these constants are evaluated using boundary conditions specified for the physical

problem. Once we have this new solution, we can obtain all the derivatives appearing in the

above-mentioned, re-written ordinary differential equation and repeat the procedure.
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Following the above discussion, we begin with the following nonlinear ordinary differential

equation:

F (η, f) = 0 (3.7)

and split it into the two components

L(f) + N (f) = 0 , (3.8)

where L and N are the linear and nonlinear parts of F , respectively. For the 3rd order nonlinear

equations, the splitting of the problem into linear and nonlinear parts is given by

L(f) = f ′′′ , (3.9)

N (f) = F − L(f) . (3.10)

The above splitting is done for separating the linear part and integrating it to obtain the initial

guess for the solution of nonlinear Eq. (3.7). Thus

L(f) = f ′′′ = 0 . (3.11)

Integrating the above equation thrice with respect to η will generate a polynomial of the fol-

lowing form:

f0(η) = C10 + C20η + C30η
2 (3.12)

along with its first and second derivatives as

f ′

0(η) = C20 + 2C30η , (3.13)

f ′′

0 (η) = 2C30 , (3.14)

respectively. Here C10, C20 and C30 are constants of integration and will be evaluated using

boundary conditons. In this way an initial solution is obtained, which can be used to obtain the

next approximation for the solution of Eq. (3.7). In symbolic notation this iteration procedure

for the first iteration can be summarized as follows:

Let f0, f
′

0 and f ′′

0 be the zeroth approximation of the solution and its derivatives, respectively.

We now rewrite the the original ordinary differential equation for the highest derivative with

all the other derivatives substituted by the derivatives obtained at the zeroth approximation.

Integrating this equation will yield the first approximation,

f1(η) = −L−1[N (f0(η))] + C11 + C21η + C31η
2 . (3.15)
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with

f ′

1(η) =

∫ ∫

N (f0(η)) dz dy + C21 + 2C31η (3.16)

and

f ′′

1 (η) =

∫

N (f0(η)) dz + 2C31 (3.17)

as the first and second derivatives,respectively of this first approximation. Here L−1 =
∫ ∫ ∫

dz

dy dx, and C11, C21 and C31 are constants of integration obtained at the first iteration which

will be evaluated as before. This procedure can now be generalized to generate a series for

obtaining a solution of the equation (3.7). Thus we can express the nth approximatiom of the

solution as

fn(η) = −L−1[N (fn−1(η))] + C1n + C2nη + C3nη
2 . (3.18)

3.1.1 Convergence of AIM

It is clearly evident that to begin the above analytical procedure we need to have an initial

guess of the solution function and its derivatives, all of which appear in the equation written for

the highest derivative. For this initial guess we solve the linear part of the nonlinear ordinary

differential equation. This linear part in boundary-layer flows contains the highest derivative.

Integrating this linear part yields an initial guess of the solution and its derivatives. For this

initial guess to be the solution of the given nonlinear ordinary differential equation, the following

convergence analysis is performed:

Let f be the solution of a nonlinear ordinary differential equation

F (η, f) = 0 ,

where f ∈ P; i.e., f(η) is in a space of polynomials. We say f satisfies a Lipschitz condition on

P if ∃ L < l, where l is some definite number, such that

‖F (f) − F (g)‖ ≤ L ‖f − g‖ ∀ f, g ∈ P.

Since all f, g ∈ P are in C∞ we can take

L = max
f∈P

‖F ′(f)‖ , (3.19)

if F is sufficiently regular. Since we will be implementing fixed-point iteration, which underlies

the theory of “contraction mapping,” the value of the Lipschitz constant is constrained by

L < 1 for convergence. This will reduce Eq. (3.19) to an inequality, which can be solved for
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the maximum domain size ηmax. Once we know ηmax for a given nonlinear ordinary differential

equation, we can apply the analytical procedure alluded to before to solve it. It should be

worthwhile to mention here that this analysis only suggests the sufficient condition and not the

necessary condition for the convergence of iterations thus leading to varied rates of convergence

of iterations for values of η ∈ (0, ηmax]. Moreover, this whole analysis depends on the initial

guess of the solution and its derivatives, which are not converged. Therefore it gives only a rough

estimate about the maximum size of domain ηmax instead of a precise one. However, given the

simplicity of this analysis and its reasonable estimate about the radius of convergence of AIM, it

can be applied to different boundary-layer flows having governing equations in similarity form.

For the present thesis two cases are discussed: laminar film condensation over a vertical plate

and flow past a flat plate (Blasius equation). In the next chapter, both of these equations and

their solution procedures via AIM are discussed in great detail.

Copyright c©Abhishek Tiwari 2007
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Chapter 4

Condensation

Condensation is defined as the removal of heat from a system in such a manner that vapor is

converted into liquid. This may happen when vapor is cooled sufficiently below the saturation

temperature to induce the nucleation of droplets. Such nucleation may occur homogeneously

within the vapor or heterogeneously on entrained particulate matter. Heterogeneous nucleation

may also occur on the walls of the system, particularly if these are cooled as in the case of

a surface condenser. In this latter case there are two forms of heterogeneous condensation,

drop-wise condensation and film-wise condensation, corresponding to the analogous cases in

evaporation: nucleate boiling and film boiling. Film-wise condensation occurs on a cooled

surface which is easily wetted. On non-wetted surfaces the vapor condenses in drops which

grow by further condensation and coalescence, then roll over the surface. New drops then form

to take their place. In the next few paragraphs a brief introduction of both drop-wise and

film-wise condensation is outlined.

It is quite possible for a thin film of liquid to be adsorbed on all or part of a solid surface.

This is very common when adsorption takes place at metal surfaces. Apart from this, polarity

of a fluid also enhances the tendency of adorsbtion at the surface, for example, water is the

fluid, its polar nature can enhance the tendency of water molecules to attach to portions of

the solid surface. These distinct sites of adsorbed liquid molecules on the solid surface can

thus serve as nuclei for condensation of the liquid phase when the vapor is supersaturated.

The process of drop-wise condensation on the surface begin as the formation of very small

droplets on the surface at these sites. The most common example of drop-wise condensation

process is the condensation of water vapor present in the air on a cold beverage glass. This

is usually interpreted as being a direct consequence of the fact that the liquid poorly wets

the glass, except at nuclei locations where water molecules have adsorbed to crevices. Thus

drop-wise condensation may occur when the surface is poorly wetted by the liquid phase of the

surrounding vapor. In practice, this can be achieved for steam by (1) injecting a nonwetting

chemical into the vapor, which subsequently deposits on the surface; (2) introducing a substance

such as a fatty acid or wax on to the solid surface; or (3) by permanently coating the surface

with a low-surface energy polymer or a noble metal.

As said earlier, in drop-wise condensation, the condensate is usually observed to appear in

39



Figure 4.1 Drop-wise condensation from Carey [134].

the form of droplets, which grow on the surface and coalesce with adjacent droplets. When

droplets become large enough, they are generally removed from the surface by the action of

gravity or drag forces resulting from the motion of the surrounding gas. As drops roll or fall

from the surface, they combine with other droplets in their path and thus sweeping the surface

clean of droplets. New droplets then begin to grow on the freshly exposed solid surface. This

sweeping and renewal of the droplet growth process is responsible for the high heat transfer

coefficients associated with drop-wise condensation. Fig. 4.1 shows the appearance of dropwise

condensation. As a matter of fact, dropwise condensaton and its mechanism is a topic of much

debate. Excellent discussion of this subject are given in the works of Euken [137], McCormick

and Baer [138], Umur and Griffith [139], Silver [141], and Welch and Westwater [140].

4.1 Film-wise condensation

In film-wise condensation, the liquid phase forms a thin film on the cold surface. In other

words, the liquid phase fully wets a cold surface in contact with a vapor near saturation condi-

tions 4.2. As this process of condensation takes place at the interface of a liquid film covering

the solid surface, the removal of latent heat of vaporization occurs at the interface only. Thus

the rate of condensation is equal to the rate at which heat is transported across the liquid film

from the interface to the surface. This process of laminar film condensation on a vertical plate

was first analyzed by Nusselt [142] in 1916 neglecting the acceleration terms and the nonlinear

temperature distribution in the liquid film.

40



Figure 4.2 Film-wise condensation from [136].

4.1.1 Nusselt’s classical model

The Nusselt analysis [142] of laminar film condensation on a vertical surface is shown in Fig.

4.3. The surface exposed to a stationary ambient saturated vapor is taken to be isothermal

with a temperature below the saturation temperature (of vapor).

A simple force balance on the shaded film element (4.3) yields

(δ − y)dx(ρl − ρv)g = µl
du

dy
dx . (4.1)

The idealizations of classical Nusselt analysis are as follows:

1. laminar flow,

2. constant properties,

3. subcooling of liquid is negligible in the energy balance,

4. inertia effects are negligible in the momentum balance,

5. the vapor is stationary and exerts no drag,

6. the liquid–vapor interface is smooth,
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Figure 4.3 Physical model of Film-wise condensation for Nusselt’s analysis.

7. heat transfer across film is only by conduction (convection is neglected).

Because heat transfer across the film is by conduction alone, the local heat transfer coefficient

is given by hl = kl/δ and local Nusselt number by

Nux =
hlx

kl

=

[
ρl(ρl − ρv)ghfgx

3

4klµl(Tsat − Tw)

] 1

4

. (4.2)

The mean Nusselt number can be obtained as:

Num =
hlmx

kl

= 0.943

[
ρl(ρl − ρv)ghfgx

3

4klµl(Tsat − Tw)

] 1

4

(4.3)

This solution implies invariant physical properties, negligible viscous dissipation and non-

rippling flow. Nusselt also derived an (erroneous) first-order correction for the effect of the

specific heat of the condensate, a correction for a fixed vapor velocity and a correction for

the effect of superheat; and he discussed the effect of non-condensables semi-quantatively. He

further asserted that the results for a vertical plate were directly applicable for condensation

inside and outside vertical tubes, and by neglecting the effect of surfac tension readily modified

his basic solution for condensation outside horizontal tubes.

The basic solution derived by Nusselt has been found to be in good functional accord with

subsequent experimental data although the observed rates of heat transfer are somewhat higher

than the predicted values, owing primarily to rippling of the film.

Many modifications have been made to the assumptions cited above to incorporate various

effects. For example, Nusselt himself assumed the linear temperature distribution in the laminar
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film as a first approximation and obtained the relationship for enthalpy change from saturated

vapor to liquid at the mean temparature of the liquid film. The mean heat transfer coefficient

is

hm = 0.943
4

√
√
√
√ρl(ρl − ρv)gk3

l hfg

(

1 +
3cpl(Tsat−Tw)

8hfg

)

µlx(Tsat − Tw)
(4.4)

and the mean Nusselt number is

Num =
hmx

kl

= 0.943
4

√
√
√
√ρl(ρl − ρv)gx3hfg

(

1 +
3cpl(Tsat−Tw)

8hfg

)

µlkl(Tsat − Tw)
. (4.5)

Most of the idealizations employed by Nusselt have been investigated theoretically, and many

extensions and improvements have been proposed. Bromley [133] derived an improved first-

order correction in closed form for the effect of the heat capacity of the condensate. Rosenhow

[129] used an alternative procedure to obtain a similar result. Sparrow and Gregg [128] obtained

numerical results for the effects of inertia (for Pr from 1 to 100) and heat capacity of the

condensate (for Ja ≡ cpl(Tsat −Tw)/hfg up to 2) by solving a boundary-layer formulation model

for the liquid phase. Koh et al. [131] solved a boundary-layer model for both the condensate and

vapor numerically and obtained results for a few discrete values for Pr from 0.003 to 810 and Ja

from 5×10−5 to 1.2. This solution revealed that the terms of the model representing vapor drag

become increasingly significant as Pr decreases and are in all cases more significant than those

representing the inertia of the condensate. Koh [132] solved the same model approximately,

using an integral boundary-layer formulation, and attained results in reasonable agreement with

the numerical solution. Chen [130] derived a solution for a modified integral-boundary-layer

formulation using a perturbation technique.

4.1.2 Rohsenow’s model

Rohsenow in 1956 [129] presented his analysis to obtain the correct nonlinear temperature

distribution and heat transfer rates in a liquid condensate film which under the influence of

gravity flows downward in essentially laminar flow on vertical plates or tubes. In the analysis,

it is assumed that the vapor is saturated with no noncondensable gas present, the wall surface

tempaerature is uniform, there is no appreciable vapor shear stress existing at the liquid-vapor

interface, and the physical properties of the fluid are constant and uniform. Thus Nusselt’s

analysis may be improved by determining the actual temperature distribution which is not

linear because of the addition of Tsat to the outer edge of the film. He solved the energy balance

equation by successive approximations for T as a function for δ. Following is the modified mean
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heat transfer coefficient of Rohsenow’s model:

hm = 0.943
4

√
√
√
√
√
√
√

ρl(ρl − ρv)gk3
l h

∗

fg

[

1 − 1
10

cpl∆T

h∗

fg

− 0.0328
(

cpl∆T

h∗

fg

)2
]

µlx∆T
(

1 − 1
10

cpl∆T

h∗

fg

)4 . (4.6)

where

h∗fg = hfg +
3

8
cpl(Tsat − Tw) . (4.7)

For a range 0 < cpl∆T/hfg < 1.0 this equation is very closely approximated by

hm = 0.943
4

√
√
√
√ρl(ρl − ρv)gk3

l hfg

(

1 + 0.68
cpl∆T

hfg

)

µlx∆T
. (4.8)

4.1.3 Bromley’s model

L. A. Bromley [133] derived a first-order correction in closed form for the effect of heat

capacity of the condensate. He also correctly included the effect of cross flow on the heat

transfer. He used the enthalpy of the liquid at the boiling as a basis. Thus, the heat flow by

conduction at a given point y in the condensate film is equal to the decrease in enthalpy of the

material between y and y0 plus the heat liberated by the condensate minus the heat carried by

cross flow. Following is the relationship he derived for the mean heat transfer coefficient:

hm = 0.943

(

1 + 3
8

∆Tcpl

hfg

)

(

1 + 11
40

∆Tcpl

hfg

)3/4

4

√

k3
l ρl(ρl − ρv)ghfg

xµl∆T
. (4.9)

This approximate equation, on expansion for small values of ∆Tcpl/hfg yields the following:

hm = 0.943
4

√
√
√
√ρl(ρl − ρv)gk3

l hfg

(

1 + 0.675
cpl∆T

hfg

)

µlx∆T
, (4.10)

which is nearly same as the one Rohsenow showed in his analysis.

4.1.4 Chen’s Model

Chen [130] proposed a solution of the condensation problem, including the effect of the

drag, due to an initially stationary body of vapor. The method of solution is as follows: the

momentum and energy equations are written in integral form using boundary-layer assump-

tions; these are supplemented by an internal momentum balance for the solution of velocity

profiles and an internal energy balance for the solution of temperature profiles. Perturbation

methods are employed to solve these equations. The computed velocity profiles show a negative
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gradient at the interface, as expected, and the heat-transfer results for low Prandtl numbers

are significantly lower than previous theories neglecting the vapor drag. He gave the results in

the form of ratio of the Nusselt numbers computed from his model and from the classical model

of Nusselt. Thus
hm

hm,00

=

(
1 + 0.68ξ + 0.02ξζ

1 + 0.85ξ − 0.15ξζ

)1/4

(4.11)

where hm,00 represent the values for ξ = 0, ζ = 0.

4.1.5 Koh’s model

Koh, Sparrow and Harnett [131] analyzed the film condensation problem by solving the

complete liquid and vapor boundary-layer equations simultaneously. By using the integral-

method, the task of solving the complicated two-phase boundary-layer differential equations in

laminar film condensation has been reduced to the simple work of solving an algebraic equation.

In this model they assumed the profile of velocity for both liquid and vapor and equated them

at the interface boundary condition. Following is one of the key eepressions which dictates the

relationship of the two constants that were considered in their analysis:

1

2

(

X1 +
√

X2
1 +X2

2

)

=
24 + 4

β2

l

αl
+ 3αlβ

2
l − 1

2
β4

l

16 − 3αlβ2
l

, (4.12)

where X1 and X2 are functions of αl and βl. Here αl and βl are related to liquid layer thickness

δ and uδ respectively. It is demonstrated by Sparrow and Gregg [128] that δ is related to the

physical quantity cpl∆T/hfg; thus, Eq. (4.12) allows to calculate αl for any given βl. Once αl

is known the heat transfer can be found by solving the energy equation.

4.2 Gregg and Sparrow’s model

In this section we will describe the model proposed [128] which is the basis of modern analysis

of condensation (Chen [130] , Koh et al [131]). The problem of laminar film condensation on a

vertical plate is solved using boundary-layer theory. Starting with the boundary-layer (partial

differential) equations, a similarity transformation is found which reduces them to ordinary

differential equations. An analytical solution for this model of Sparrow and Gregg [128] is

obtained via AIM.

4.2.1 Boundary layer analysis of laminar film condensation

A schematic representation of the physical model and coordinate system is shown in Fig.

4.4. A vertical plate is suspended in a large body of pure vapor. The vapor is at its saturation

45



temperature, Tsat. The plate temperature, Tw, (Tsat > Tw) is taken to be uniform in the main

body of the analysis. A continuous laminar film of condensate runs downward along the plate.

Velocities in the vapor are assumed to have no effect on the condensate film.

Formulation of model and conservation laws. The equations expressing conservation

of mass, momentum, and energy for steady laminar flow in a boundary layer on a vertical plate

are, respectively,

Figure 4.4 Physical model of Film-wise condensation for similarity analysis.

∂u

∂x
+
∂u

∂y
= 0 , (4.13)

ρl

(

u
∂u

∂x
+ v

∂u

∂y

)

= g(ρl − ρv) + µl
∂2u

∂y2
, (4.14)

ρlcpl

(

u
∂T

∂x
+ v

∂T

∂y

)

= kl
∂2T

∂y2
. (4.15)

Except ρv, which represents the vapor density, the fluid properties are those of the condensate.

Various dissipation has been neglected, as has been the temperature dependence of the fluid

properties. The boundary conditions at the cooled plate (y = 0), and at the liquid-vapor

interface (y = δ) are

at y = 0 : u = v = 0 , T = Tw , (4.16)

at y = δ :
∂u

∂y
= 0 , T = Tsat. (4.17)

At the plate, the boundary conditions are a consequence of the no-slip condition and the

isothermal wall specification. The relations (4.17), which apply for y = δ, specify continuity
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of the temperature profiles across the interface and a negligible shear stress exerted by the

surrounding vapor on the liquid film. The solution of Eq. (4.13), as usual, may be written in

terms of a stream function ψ defined by the relations,

u =
∂ψ

∂y
, v = −∂ψ

∂x
, (4.18)

it follows that the continuity equation (4.13) is automatically satisfied, while the Eqs. (4.14)

and (4.15) result in the following pair of partial differential equations for ψ and T as functions

of x and y :
∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
− =

g(ρl − ρv)

ρl

+ νl
∂2ψ

∂y2
, (4.19)

∂ψ

∂y

∂T

∂x
− ∂ψ

∂T

∂T

∂y
= α

∂2T

∂y2
. (4.20)

Rather than deal with these two formidable partial differential equations directly, we transform

these equations into ordinary differential equations by similarity transformation. Thus, we

define a new independent variable η as follows:

η = cyx−1/4 , (4.21)

with

ψ = 4αcx3/4f(η) , (4.22)

and

θ(η) =
Tsat − T

Tsat − Tw

, (4.23)

where

c =

[
gcpl(ρl − ρv)

4νlkl

]1/4

. (4.24)

The velocity components are related to the similarity variables as

u = 4c2αx1/2f ′(η) , (4.25)

v = cαx−1/4[ηf ′(η) − 3f(η)], (4.26)

where the primes indicate differentiation with respect to η.

Under the transformation Eqs. (4.21), (4.22), (4.23) and (4.24), the partial differential

equations of momentum (4.19) and energy (4.20) become

f ′′′ +
1

Pr
[3ff ′′ − 2(f ′)2] + 1 = 0 , (4.27)

θ′′ + 3fθ′ = 0 , (4.28)
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where Pr represents the Prandtl number (Prandtl number enters the problem because the

acceleration terms were retained). The boundary conditions (4.16) and (4.17) transform to,

f(0) = f ′(0) = 0 , f ′′(ηδ) = 0 , (4.29)

θ(ηδ) = 0 , θ(0) = 1 , (4.30)

where ηδ is the value of η corresponding to y = δ. Evidently, the solution of Eqs. (4.27) and

(4.28) subject to the boundary conditions (4.29) and (4.30) depends upon the specification of

two parameters, Pr and ηδ. The mathematical problem posed by Eqs. (4.27) and (4.28) with

boundary conditions (4.29) and (4.30) is a fifth-order system of nonlinear ordinary differential

equations with five boundary conditions. The system is therefore closed if we can specify the

location of the interface. However, the location of the interface is not known a priori. The

interface location is dictated by the transport, and it therefore must be determined as a part

of the solution process.

It may also be observed that while the foregoing development has much in common with

that for free convection, there do exist some differences:

1. equations (4.27) and (4.28) need not be solved simultaneously, whereas the corresponding

free-convection equations require simultaneous solution;

2. the current problem is a two-parameter problem while in convection only the Pr enters.

The additional relation needed to determine the location of interface is obtained from an

energy balance over a segment of film. Thus, to relate ηδ to known physical quantities this

balance can be written as:

x∫

0

[

k

(
∂T

∂y

)

y=δ

]

dx =

δ∫

0

ρuhfg dy . (4.31)

The left-hand side represents the heat transferred from the condensate to the plate over a

length from x = 0 to x = x. The term on the right is the energy liberated as latent heat. The

assumption of negligible heat conduction across the liquid-vapor interface, which is standard in

condensation theory, has been used. In terms of similarity variables defined above, Eq. (4.31)

can be written as

−3f(ηδ)

θ′(ηδ)
= Ja =

cpl(Tsat − Tw)

hfg

(4.32)

where θ′(ηδ) and f(ηδ) are the values of dθ/dη and f at η = ηδ. The problem is now closed

mathematically. From a solution of Eqs. (4.27) and (4.28) corresponding to given values of ηδ
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and Pr, the quantities on the right-hand side of Eq. (4.32) are known. Hence cpl∆T/hfg is

determined. In other words, for a fixed Pr, there is a unique relation between ηδ and cpl∆T/hfg.

4.2.2 Analytical solution of condensation equation

In this section, we will demonstrate a procedure to solve Eqs. (4.27) and (4.28) analytically

via AIM. Recall that both of the equations (4.27) and (4.28) need not be solved simultaneously.

Thus, we will apply AIM first to solve Eq. (4.27) and then to Eq. (4.28). We will start with the

splitting of the given nonlinear ordinary differential equation (4.27) into linear and nonlinear

parts; thus if

F (η, f) = f ′′′ +
1

Pr
[3ff ′′ − 2(f ′)2] + 1 = 0 , (4.33)

splitting this into linear and nonlinear parts will yield

L(f) = f ′′′ + 1 , (4.34)

and

N (f) = F − L(f) =
1

Pr
[3ff ′′ − 2(f ′)2] . (4.35)

Integrating linear part (4.34) will give us an initial guess for the solution and its derivatives

(zeroth approximation) appearing in Eq. (4.27),

f0 = −η
3

6
+ C10

η2

2
+ C20η + C30 , (4.36)

f ′

0 = −η
2

2
+ C10η + C20 , (4.37)

f ′′

0 = −η + C10 , (4.38)

where C10, C20 and C30 are constants of integration. These constants are evaluated using bound-

ary conditions (4.16). Thus, as an initial guess to the solution of Eq. (4.27), we obtain the

following:

f0 = −η
3

6
+ ηδ

η2

2
, (4.39)

f ′

0 = −η
2

2
+ ηδη , (4.40)

f ′′

0 = −η + ηδ . (4.41)

Once the initial guess for the solution and its derivatives are obtained, we can perform conver-

gence analysis as follows:
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Convergence analysis for condensation equation

In the convergence analysis for the momentum equation of condensation, we begin with

re-writing the original nonlinear differential equation in terms of the highest derivative, viz,

f ′′′ = − 3

Pr
ff ′′ +

2

Pr
(f ′)2 − 1 . (4.42)

We now integrate Eq. (4.42) and define

F (f) ≡ − 3

Pr

η∫

0

ζ∫

0

ξ∫

0

f ′′f dx dy dz +
2

Pr

η∫

0

ζ∫

0

ξ∫

0

(f ′)2 dx dy dz −
η∫

0

ζ∫

0

ξ∫

0

1 dx dy dz . (4.43)

or

F ′(f) =
d

df









− 3

Pr

η∫

0

ζ∫

0

ξ∫

0

f ′′f dx dy dz

︸ ︷︷ ︸

I

+
2

Pr

η∫

0

ζ∫

0

ξ∫

0

(f ′)2 dx dy dz

︸ ︷︷ ︸

II

−
η∫

0

ζ∫

0

ξ∫

0

1 dx dy dz

︸ ︷︷ ︸

III









.

(4.44)

We now simplify each of these I, II and III term. Thus, starting with the I term, we simplify

it as follows:

d

df
I = − 3

Pr

d

df

η∫

0

ζ∫

0

ξ∫

0

f ′′f dx dy dz (4.45)

or

d

df
I = − 3

Pr

d

df

η∫

0

ζ∫

0



f f ′ −
ξ∫

0

(f ′)2 dx



 dy dz . (4.46)

The first term of the bracketed expression will remain as it is, while the second term of the

bracketed expression of Eq. (4.46) will be combined with the II term, yielding

F ′(f) = − 3

Pr

d

df

η∫

0

ζ∫

0

ff ′ dy dz +
5

Pr

d

df

η∫

0

ζ∫

0

ξ∫

0

(f ′)2 dx dy dz − d

df

η∫

0

ζ∫

0

ξ∫

0

1 dx dy dz . (4.47)

Simplifying the above equation further, we obtain

F ′(f) = − 3

Pr

d

df




1

2

η∫

0

f 2 dz



+
5

Pr

d

df

η∫

0

ζ∫

0

ξ∫

0

(f ′)2 dx dy dz − d

df

η∫

0

ζ∫

0

ξ∫

0

1 dx dy dz . (4.48)

In the above equation, we will commute the integral operator with the differential operator in

the first and the second term on the RHS. Thus,

F ′(f) = − 3

Pr




1

2

η∫

0

d

df
f 2 dz



+
5

Pr

η∫

0

ζ∫

0

ξ∫

0

d

df
(f ′)2 dx dy dz − d

df

η∫

0

ζ∫

0

ξ∫

0

1 dx dy dz . (4.49)
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The third term on the RHS is differentiated after the integration. It should be noted that while

differentiating the second term of the Eq. (4.48), the f ′ is taken as the function of f . Here f ,

f ′ and f ′′ are initial guesses or the zeroth approximation of the solution.

F ′(f) = − 3

Pr





η∫

0

(

−η
3

6
+ ηδ

η2

2

)

dz



+
5

Pr

η∫

0

ζ∫

0

ξ∫

0

d

df

(
2f

η
− η2

6

)2

dx dy dz+

d

df

η∫

0

ζ∫

0

ξ∫

0

f ′′′ dx dy dz . (4.50)

Simplyfying Eq. (4.50) we obtain the following expression for the F ′(f):

F ′(f) =
1

Pr

[

− 7

24
η4 +

17

6
η3ηδ

]

+ 1 .

From the definition of L1 norm for polynomial spaces, we can write

max‖F ′(f)‖1 =

ηδ∫

0

∣
∣
∣
∣

1

Pr

[

− 7

24
η4 +

17

6
η3ηδ

]

+ 1

∣
∣
∣
∣
dη

or

max‖F ′(f)‖1 =
78η5

δ

120Pr
+ ηδ , (4.51)

where the term inside the |·| is monotone. If we consider the expression inside |·| as

G(η) =
1

Pr

[

− 7

24
η4 +

17

6
η3ηδ

]

+ 1 (4.52)

then this G(η) is monotone in [0, ηδ] if

G(0) < G(ηδ) for 0 < ηδ . (4.53)

Thus evaluating G(0) and G(ηδ

G(0) = 1 (4.54)

and

G(ηδ) =
61

24
η4

δ + 1 , (4.55)

since (61/24)η4
δ is a positive quantity, the function G(η) satisfies the condition of monotonocity

(4.53). Hence, we can now apply the following Lipschitz condition to the Eq. (4.51):

L = max‖F ′(f)‖1 where L < 1 for convergence , (4.56)

78η5
δ

120Pr
+ ηδ < 1 . (4.57)
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This is a fifth-degree polynomial, that has five roots, but as it is known that ηδ > 0, so we

will adopt only positive values. The above relationship of Pr and ηδ defines the stability of the

AIM. However, different trends in the stability of the AIM are observed for different Prandtl

numbers. All these trends and their discussions are included in detail in the results section

(Refer to the discussion of Fig. 4.25).

Analytical iteration method for condensation equation

We will now begin the analytical iterations by integrating Eq. (4.42) thrice. The constants

of integration as a result of this successive integration will be evaluated via given boundary

conditions (4.29). Recalling the general symbolic form of the nth approximation of the AIM

(3.18), we can express the first iteration for the momentum equation as

First iteration

f1 = −
∫ ∫ ∫

1

Pr
[3f0f

′′

0 − 2(f ′

0)
2] dx dy dz−

∫ ∫ ∫

1 dx dy dz +C10
η2

2
+C20η+C30 , (4.58)

We can express the right-hand side of Eq. (4.58) in terms of η by substituting for f , f ′ and f ′′

from Eqs. (4.39), (4.40) and (4.41). Following are the solutions obtained for Eq. (4.27) after

the first itearation of AIM :

f1 = −η
3

6
+
η2

δ

Pr

η5

120
+ C1

η2

2
, (4.59)

f ′

1 = −η
2

2
+
η2

δ

Pr

η4

24
+ C1η , (4.60)

f ′′

2 = −η +
η2

δ

Pr

η3

6
+ C1 , (4.61)

where

C1 = ηδ −
η5

δ

6Pr
. (4.62)

Thus, we now have a new set of f , f ′ and f ′′ which can be used for carrying out the next iteration,

and so on. This iteration procedure can be repeated up to 5 iterations and 2 iterations for the

Eqs. (4.27) and (4.28), respectively. The inability of not performing more number of iterations

is the computation limitation. This limitation arises because of the very large polynomial

obtained at the end of the 5th iteration. This polynomial has 122 terms in it. It should

be mentioned here that all the successive iterations, and hence the integrations in the AIM,

are done using MAPLE [144]. Eventhough there is a limitation on performing the number

of iterations in AIM, it is capable of producing accurate and converged solutions for a large

number of Prandtl numbers. Thus, once we have the converged solution from the momentum
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equation in terms of f , it is substituted into the energy equation (4.28). We now apply AIM to

the energy equation by integrating the linear part of it to obtain an initial guess for its solution.

Thus,

θ′′0 = 0 , (4.63)

with the following associated boundary conditions:

θ(0) = 1 , θ(ηδ) = 0 .

Integrating this linear part and using the boundary conditions mentioned above, leads to poly-

nomials P(η)s for the θ(η) and the θ′(η):

θ0 =
−1

ηδ

η + 1 , (4.64)

θ′0 =
−1

ηδ

. (4.65)

This θ′ and the converged solution of momentum equation f can be used to evaluate a new θ

by setting up the analytical iterations in the following manner:

θ′′1 = −3fθ′0 , (4.66)

θ′1 = −
∫

3fθ′0 dx+ A1 , (4.67)

θ1 = −
∫ ∫

3fθ′0 dx dy + A1η +B1 . (4.68)

Here A1 andB1 are the constants of integration that will be evaluated using boundary conditions

(4.30). Thus again, an iteration procedure can be set up for the energy equation until we get

the converged solution for θ. This iteration procedure for θ converges in only 2 iterations for

a wide range of Prandtl numbers. Moreover, it is worthwhile to mention here that not more

than 2 iterations can be performed for θ. This is because of the large polynomial (509 terms)

obtained at the end of 2nd iteration.

4.2.3 Results for condensation equation

We will divide the discussion of the results in two parts. In the first part, we present the

results for the high Prandtl numbers, i.e., Pr ≥ 1. In the second part, we discuss the low

Prandtl numbers which are suitable for liquid metals, i.e., Pr < 0.03.

High Prandtl numbers

Since condensation over a vertical plate involves a process of heat transfer, it would be more

useful to report the results in the form of a variation of the local heat transfer coefficient or
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the local Nusselt number. A plot of this variation of the local Nusselt number, Nux, with Ja

for various Pr is shown in Fig. 4.5. In the plots shown in Fig. 4.5, the local Nusselt number

is represented in terms of θ′(0). This θ′(0) can be obtained directly from the solution of the

energy equation (4.28). These plots can also be viewed as the variation of the local heat transfer

coefficient hx with Ja. To be more explicit about the relationship between Nux and hx and

between Nux and θ′(0), the following relations are given below in terms of similarity variables:

Nux =
hxx

k
= [−θ′(0)]

[
gcpl(ρl − ρv)x

3

4νkl

] 1

4

(4.69)

or

Nux

[
gcpl(ρl − ρv)x

3

4νkl

]− 1

4

= −θ′(0) , (4.70)

where ρl is condensate density, ρv is vapor density, x is distance along the plate from the leading

edge, ν is kinematic viscosity, kl is thermal conductivity and g is the acceleration due to gravity.

The right-hand side of Eq. (4.70) is found from the solution of Eq. (4.27) and is a function of

Pr and of ηδ, or of Pr and Ja. Thus variation of Nux with Ja can be seen in the plot of θ′(0)

vs. Ja. Each of the Figs. 4.5 (a), (b) and (c) shows the variation of θ′(0) with Ja for 3 different

values of the Prandtl numbers (Pr = 1, 10, 100) for AIM. These results match favorably with

those of the Runge–Kutta numerical scheme as shown in Fig. 4.5.
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Figure 4.5 Comparison of profiles of local Nusselt number vs. Jacob number obtained from the
AIM and the Runge–Kutta for Pr = 1, 10, 100.
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Figure 4.6 Relative error between the solutions of the AIM and the Runge–Kutta w.r.t. the
Runge–Kutta for Pr = 1, 10, 100.

However, for more detailed comparisons of the solutions obtained from the AIM and the

Runge–Kutta numerical scheme, plots of the relative error of the AIM and the Runge–Kutta

with respect to the Runge–Kutta for each of f , f ′ and f ′′ are shown in Fig. 4.6. These errors

are calculated at different points of the domain for all the 3 Prandtl numbers (Pr = 1, 10, 100).

The maximum error for each of the solution (f , f ′ and f ′′) is found to be of the order of ≈ 10−3

(Pr = 1), ≈ 10−4 (Pr = 10) and ≈ 10−5 (Pr = 100). Thus from the accuracy point of view,

AIM converges rapidly for Prandtl numbers Pr > 1.

We now discuss the convergence behavior of each of these 3 Prandtl numbers. We will start

with Pr = 1 and Ja = 1.061. The convergence behavior for each of f , f ′ and f ′′ is shown .
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Figure 4.7 Convergence of the iterations of the AIM for f , f ′ and f ′′ for Pr = 1.

4.7. The figure shows the solutions obtained at various iterations of the AIM. A Runge–Kutta

solution has also been superimposed in each of these plots of f , f ′ and f ′′. This numerical

solution from the Runge–Kutta as shown in Fig. 4.7 is found to be in an agreement with the

converged solution of AIM obtained at the 5th iteration. However, in order to understand this

convergence behavior of AIM it is necessary to investigate the trend of its iteration error. Fig.

4.8 shows relative error plots for f , f ′ and f ′′ calculated throughout the domain at each of the

5 iterations. Here quantity inside the bracket on y-axis is defined as follows:

iteration error (f ′′) =
|f ′′(n+1) − f ′′(n)|

f ′′(n+1)
, (4.71)

iteration error (f ′) =
|f ′(n+1) − f ′(n)|

f ′(n+1)
, (4.72)

and
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Figure 4.8 Iteration error profiles of f , f ′ and f ′′ for Pr = 1.

iteration error (f) =
|f (n+1) − f (n)|

f (n+1)
. (4.73)

Here n represents the iteration number. The itr error 1 in each of these plots is a relative

difference between the solution obtained after the first iteration and the initial guess w.r.t.

the first iteration, while the rest of the plot lines are the relative errors calculated between

consecutive iterations. It should be noted that in each of these plots, y-axis is scaled in log.

It is quite evident from the figures that at each iteration, there is a significant decrease in the

iteration error. Due to the fact that we can perform only 5 iterations because of the computation

limit, results of 5 iterations are shown. However, from the behavior of the iteration error in Fig.

4.8, it is clear that if we can perform more number of iterations more accurate solutions can
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be obtained from AIM. Similar trends of the iteration errors are obtained in the iterations for

the dimensionless temperature θ, see Fig. 4.9 (b). In Fig. 4.9 (a) convergence of temperature

distribution along the film is shown for Pr = 1 and Ja = 1.061. As mentioned earlier because

of the computation limitation only 2 iterations for θ are performed and hence the results for

only 2 iterations are shown. The solution converges very rapidly and is found to be in good

agreement with the solution obtained from the Runge–Kutta numerical scheme (see Fig. 4.9

(a)).
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Figure 4.9 Iteration error profiles of θ for Pr = 1.
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Figure 4.10 Temperature distribution for two different Jacob numbers.

Furthermore, as a standard result that is frequently reported in the literature of the con-

densation, a variation of this temperature distribution with film thickness δ or Ja is shown for

two different values of Ja for Pr = 1 in Fig. 4.10. The temperature profiles are essentially

a straight line. However with increasing values of Ja increasing deviations from linearity are

found. This fact has already been confirmed by different authors [128, 129], consolidating fur-

ther the accuracy of our solution procedure. The similar trends are found in the convergence

of solutions and iteration errors for other higher Prandtl numbers too. As an example, we have

taken into account two cases of Prandtl numbers i.e., Pr = 10 and Pr = 100. The results for

Pr = 10 and Ja = 2.12 are shown in Fig. 4.11. This Fig. 4.11 shows the convergence of the

solution for f , f ′ and f ′′. It is obvious from the figure that the solution has begun to converge

from the first iteration. All the successive iterations for each of the f , f ′ and f ′′ converged very

quickly to an exact solution. These converged solutions of the AIM are compared, and found to

be in an excellent agreement with those obtained from the Runge–Kutta 4th order numerical

scheme as shown in Fig. 4.11.
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Figure 4.11 Convergence of the iterations of the AIM for f , f ′ and f ′′ for Pr = 10.

The next results in line for this Prandtl number are the plots of iteration error for f , f ′

and f ′′. In Fig. 4.12 iteration errors for f , f ′ and f ′′ are plotted as before. The variation of

iteration error in this case is not very different from the one we discussed in Pr = 1. Here also

the quantity inside the bracket on y-axis is defined as follows:

iteration error (f ′′) =
|f ′′(n+1) − f ′′(n)|

f ′′(n+1)
, (4.74)

iteration error (f ′) =
|f ′(n+1) − f ′(n)|

f ′(n+1)
, (4.75)

and

iteration error (f) =
|f (n+1) − f (n)|

f (n+1)
. (4.76)
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It is evident from these iteration error plots that AIM is converging quite beautifully for this
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Figure 4.12 Iteration error profiles of f , f ′ and f ′′ for Pr = 10.

Prandtl number and in fact, it is able to obtain results of approximately ≈ 10−7 tolerance at the

end of the 5th iteration. We now discuss the convergence of iterations and variation of iteration

error for dimensionless temperature θ. It can be seen that the solution converges quickly with

a maximum error of ≈ 10−2 at the end of the 2nd iteration. Despite of this large maximum

error this solution is very close to the one obtained from the Runge–Kutta numerical scheme.

The reason for this close confirmity is the rapid convergence of the AIM, which can be seen in

the iteration error plot of θ, where going from first iteration to the second has almost decreased

the maximum error by 500%. Thus we can expect that in the 3rd iteration, the relative error

between the iterations will be of the order of ≈ 10−6. This in turn implies that the current
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solution at the 2nd iteration is very accurate and converged. It should be noted that the y-axis

in Fig. 4.13 is scaled in log and

iteration error (θ) =
|θ(n+1) − θ(n)|

θ(n+1)
. (4.77)
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Figure 4.13 Iteration error profiles of θ for Pr = 10.

Moving further to the Prandtl number of 100, we have found the similar behavior in the

convergence of solution profiles of f , f ′, f ′′ and θ. In fact from the profiles of f , f ′ and f ′′,

shown in Fig. 4.14, it can be easily concluded that the solution of the (4.27) is approaching

towards the solution of the equation with no acceleration terms in it i.e.,

f ′′′ + 1 = 0 .

So, it is reasonable to expect increasing effects due to the retention of acceleration terms at

the lower Prandtl numbers. However, for the purpose of comparison, we are presenting all the

results for Pr = 100, that are discussed for Pr = 1 and Pr = 10. The plots of convergence of

iterations for this case are found to be convergent from the beginning. This can be observed

in Fig. 4.14 where all the 5 iterations along with the Runge–Kutta numerical solution are

overlapping each other. It should be noted that the present value of the Jacob number is very

high and generally the values of much lower Jacob number than this are of practical importance.

This further means that lower ηδs are required for such situations. This decrease, or lowering

of ηδs, results in a more rapid convergence along with increased accuracy.
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Figure 4.14 Convergence of iterations of the AIM for f , f ′ and f ′′ for Pr = 100.
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In the next Fig. 4.15, iteration error for 5 iterations of the AIM can be seen for Pr = 100.

As a matter of fact, we have not shown the iterative error between the 4th and the 5th iteration

in this plot, as it is zero. This error cannot be shown on the y-axis, as it is scaled in log. The

quantity on y-axis in each of these plots is same as defined for Pr = 1 and Pr = 10.
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Figure 4.15 Iteration error profiles of f , f ′ and f ′′ for Pr = 100.

The temperature distribution across the condensate layer are also of some interest. The

convergence results for the dimensionless temperature θ are shown in Fig. 4.16 (a). In Fig.

4.16 (b), variations of the iteration error in the entire domain, are plotted. It can be seen from

the comparison of 4.16 (b) and 4.13 (b) that for the same value of ηδ, higher Prandtl numbers

converged more rapidly towards the exact solution. The y-axis here too is defined as before.

The next important result in this discussion of high Prandtl numbers is of the variation
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Figure 4.16 Iteration error profiles of θ for Pr = 100.

of the Jacob number Ja with respect to condensate film thickness (ηδ) for each fixed Prandtl

number. Recalling Eq. (4.57), the following are the critical values of ηδ for the above discussed

Prandtl numbers:

For Pr = 1

(ηδ)critical = 0.78 (4.78)

For Pr = 10

(ηδ)critical = 0.92 (4.79)

For Pr = 100

(ηδ)critical = 0.99 (4.80)

which suggest that the AIM will give the converged solution for a fixed Prandtl number (say

Pr = 10) if the thickness of the condensate layer is less than (ηδ)critical (i.e., ηδ < 0.92, for

Pr = 10). But because of the reasons pointed out in convergence analysis, we found AIM

stable for ηδ ∈ [0.5 , 1.1] for all the three Prandtl numbers. This range gives Jacob numbers

0 < Ja < 1.7 for Pr = 1, 0 < Ja < 2.1 for Pr = 10 and 0 < Ja < 2.2 for Pr = 100 as shown

in Fig. 4.17 which covers most of the practical situations.
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We now present solutions for momentum equation and energy equation in the form of

following polynomials:

Momentum equation

f =

(
η2

δ

Pr

)
η5

120
− η3

6
+ C1

η2

2
(4.81)

Energy equation

θ =
( ηδ

Pr

) η7

1680
− 1

ηδ

η5

120
+
C1

ηδ

η4

8
+ A1η +B1 (4.82)

where

A1 =

(
17

840

)
η7

δ

Pr
− η3

δ

10
− 1

ηδ

, (4.83)

B1 = 1 (4.84)

and

C1 = − η5
δ

6Pr
+ ηδ . (4.85)

These solutions are able to produce results which are accurate up to two places of decimal for

the range of Prandtl numbers greater than 8 i.e., Pr > 8 with ηδ ≤ 1.1. These polynomials

are obtained at the end of the first iteration for both momentum and energy equations. It

is evident from Fig. 4.18 that these polynomials are able to produce reasonable solutions for

1 ≤ Pr < 8 having ηδ < 1, and highly accurate solutions for Pr > 8 having ηδ ≥ 1.1.
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Low Prandtl numbers

In the previous section, we showed that the laminar film condensation problem in boundary

layer formulation for high Prandtl numbers can be solved analytically via AIM. We now describe

the applicability of the AIM to the Prandtl numbers, which corresponds to liquid metals, i.e.,

Pr ∈ [0.003 , 0.03]. We have chosen two Prandtl numbers, Pr = 0.03 and Pr = 0.008, from this

range. Eqs. (4.27) and (4.28) are solved for these two Prandtl numbers via AIM and the results

are shown in Fig. 4.19 as the variation of the Nusselt number obtained from the Sparrow and

Gregg’s model with respect to the Nusselt number obtained from the classical Nusselt model,

which predicts that

Nux





cpl∆T

hfg

(ρl−ρv)x3

4νkl





1

4

= 1 . (4.86)
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Figure 4.19 Local heat transfer results for low Prandtl nmuber.

For small values of Ja, i.e., relatively thin condensate films, Nusselts theory gives results in

close accord with those of the complete boundary-layer solutions. As Ja increases, i.e., thicker

films, the inertia affects lead to a dropping off of the Nusselt number. Heat transfer results

corresponding to these solutions are presented in Fig. 4.19 in terms of the local Nusselt number.

The ordinate variable is chosen to provide a direct comparison with Nusselt’s simple theory.

We now discuss the results for Prandtl numbers 0.03 and 0.008 obtained via AIM. For both

the cases only results of f ′ and f ′′ are discussed. Thus starting with Pr = 0.008, we show

the convergence of the solution for this Prandtl number in the next two figures. In Fig. 4.20

profiles for both f ′ and f ′′ are plotted for Ja = 0.0067. The converged solution from the
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Runge–Kutta numerical scheme is also shown in the figure. In both the cases of f ′ and f ′′ a

good agreement between the numerical solution and the analytical solution is obtained. Similar
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Figure 4.20 Iteration error profiles of f ′ and f ′′ for Pr = 0.008.

pattern of convergence is found in the results for Pr = 0.03 and Ja = 0.022. It can be seen

from the plots that after the 1st iteration, solution for both f ′ and f ′′ is converging rapidly to

the exact solution (see Fig. 4.21).
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Figure 4.21 Iteration error profiles of f and f ′′ for Pr = 0.03.
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For the direct comparison between the solutions obtained numerically and analytically,

relative error plots between the solutions obtained from the Runge-Kutta numerical scheme

and the AIM are shown in Fig. 4.22 for both the Prandtl numbers. In each case maximum

error is found to be of the order of 10−3 (see Fig. 4.22).
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Figure 4.22 Relative error profiles of the AIM and the Runge–Kutta numerical scheme for f , f ′

and f ′′ for Pr = 0.008 and Pr = 0.03.

Here it would be worthwhile to mention that in both the cases, the Jacob numbers taken

into account are low, as higher Jacob numbers cause decrease in the accuracy and the stability

of the AIM. We now show this effect of increasing Jacob number on the accuracy of the results

obtained via AIM and the Runge–Kutta numerical scheme. For this we compare the solution

of the second derivative f ′′ obtained from the AIM with that of the Runge–Kutta numerical

scheme for different Jacob numbers. This solution is calculated at the surface of the vertical

plate. The plots show a trend of decrease in the relative error of the results for a given Prandtl

number with the increase in the Jacob number. In fact the relative error reaches to its minimum

for some Jacob number whereafter it starts to increase.
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We now discuss the special case of Pr = 0 and the accuracy of its solution obtained via

AIM with respect to the Runge–Kutta numerical scheme. However, it should be noted that

for this case we have to eliminate the Pr from the denominator of momentum equation (4.27).

Thus if in the similarity transformation if we define constant c as c = g(ρ−ρv)/4ν
2ρ, we obtain

the following equations of momentum and energy respectively:

f ′′′ + 3ff ′′ − 2(f ′)2 + 1 = 0 , (4.87)

θ′′ + 3Pr fθ′ = 0 . (4.88)

The Jacob number can now be defined as

Ja = 3Pr
f(ηδ)

θ′(ηδ)
. (4.89)

Here note that Eq. (4.88) can be solved exactly for θ by substituting Pr = 0. Following are

the solutions for the energy equation for Pr = 0:

θ = − η

ηδ

+ 1 , θ′ = − 1

ηδ

. (4.90)

The result for this Prandtl number is shown in the form of variation of modified Jacob number

which is Ja/Pr with respect to Nusselt number (Nu) or θ′(0) in Fig. 4.24. Results from both

the AIM and the Runge–Kutta numerical scheme are plotted. It is obvious from the Fig. 4.24

that the results of the two schemes are in agreement.
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Extending further the discussion of the accuracy of the AIM in low (Pr < 0.03) and high

(Pr > 1) Prandtl numbers, we now present the stability plot for the above method. In Fig.

4.25 stability regions for the Prandtl numbers range from 0.03 to 10 are shown. In these plots
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Figure 4.25 Stability plots of low and high Prandtl numbers.

the data plotted in red line is the data obtained from stability equation (4.57), which defines

the stability region for each Prandtl number. According to this stability analysis if we select a

ηδ less than the (ηδ)critical determined from Eq. (4.57), AIM is guaranteed to give a converged

solution. However, we have seen that for low Prandtl numbers this analysis overpredicts the

value of (ηδ)critical and underpredicts it for high Prandtl numbers. In fact, we have found that

in the case of Pr = 0.008, AIM gives converged solution till the value of ηδ ≈ 0.3 while the

analysis (4.57) preditcs it to be ≤ 0.397. Similarly for Pr = 0.03 it is found to be ηδ ≈ 0.4

instead of 0.47. Thus it would be worthwhile to report a result about the stability of the AIM

based on some assumption for its successful application to a given set of Pr and ηδ. Fig. 4.25 is

the graph of such stable region for the AIM to operate with a maximum iteration error of 10−2

in the solution of f ′′ at the end of 5th iteration for any Prandtl number lying between [0.03, 10].

Fig. 4.25 (a) shows the stable region for the range of Prandtl numbers Pr ∈ [0.008, 0.2] while

Fig. 4.25 (b) represents the stability for Pr ∈ [0.3, 10]. In both the figures, if for a particular

Pr we select a value of ηδ less than the value of ηδ, which corresponds to a given Pr on the green

line, AIM is guaranteed to give a converged solution with a maximum error of ≤ 10−2. The

significance of this discussion lies in the fact that even though the iteration error in the solutions

obtained via AIM is of the order of 10−2 they agree very well with the solutions obtained from
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the Runge–Kutta 4th order numerical scheme, which is accurate up to the tolerance of 10−8.

Copyright c© Abhishek Tiwari 2007
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Chapter 5

Analytical solution for a flow over flat plate

In the early 20th century, the mechanics of fluid developed in two different directions. One

of these approach was guided by theoretical hydrodynamics which was evolved from Euler’s

equations of motion for a frictionless, non-viscous fluid and which achieved a high degree of

completeness. The results of this so-called classical science of hydrodynamics however were

found to be in contradiction to the experimental results. This anamolous behavior in the two

results was particularly seen in the problems of pressure losses in pipes and channels and in the

drag of a body which moves through a mass of fluid. Thus practical engineers, prompted by the

need to solve the important problems arising from the rapid progress in technology, developed

their own highly empirical science of hydraulics. The science of hydraulics was based on a large

number of experimental data and differed greatly in its methods and in its objects from the

science of theoretical hydrodynamics.

At the beginning of the present century, L. Prandtl distinguished himself by showing how to

unify these two divergent branches of fluid dynamics. He achieved a high degree of correlation

between theory and experiment and paved the way to the remarkably successful development

of fluid mechanics which has taken place over the past 50 years. He proved that the flow about

a solid body can be divided into two regions: a very thin layer in the neighbourhood of the

body (boundary layer) where friction plays an essential part, and the remaining region outside

this layer, where friction may be neglected. With the aid of this hypothesis, Prandtl succeeded

in giving a physically penetrating explaination of the importance of viscosity in the assessment

of drag and paved the way for the theoretical analysis of viscous flows, achieving at the same

time a maximum degree of simplification of the attendant mathematical difficulties.

The boundary layer theory finds its application in the calculation of the skin friction drag

which acts on a body as it is moved through the fluid: for example, the drag experienced by

the flat plate at zero incidence, the drag of a ship, of an airplane or turbine blade. Boundary-

layer flow has the peculiar property that under certain conditions, the flow in the immediate

neighbourhood of a solid wall becomes reversed, causing the boundary layer to separate from

it. Boundary layer theory gives an answer to the very important question of what shape must

a body be given in order to avoid this detrimental sepration.
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5.1 Flow over a flat plate (Blasius equation)

The simplest example of the application of the boundary-layer equations is the flow past

a flat plate. Historically, this was the first example illustrating the application of Prandtl’s

boundary layer theory; it was discussed by H. Blasius [40] in his doctoral thesis. Let the

leading edge of the plate be at x = 0, following are the assumptions taken into account:

1. a steady potential flow has constant velocity U in the x direction, and, therefore, dp/dx = 0.

2. an infinitely thin flat plate is placed into this flow so that the plate is parallel to the potential

flow (0 angle of incidence).

δx

y

U

U

Figure 5.1 Boundary layer along a flat plate.

Because of the vicosity, the flow will retard, creating a boundary layer on either side of the

plate. Here only the boundary layer on one side of the plate is considered. The flow is assumed

to be laminar. Thus the N.-S. equations for this flow,

u
∂u

∂x
+ v

∂u

∂y
=

�
�

�
��

0

−1

ρ

dp

dx
+ ν

∂2u

∂y2
, (5.1)

∂u

∂x
+
∂v

∂y
= 0 , (5.2)

with tangential and normal velocities vanish at boundary: tangential velocity = free stream

velocity far from plate i.e.,

u|y=0 = 0 , v|y=0 = 0 , u|y=∞ = U . (5.3)

Since the system under consideration has no preferred length, it is reasonable to suppose that

the velocity profiles at varying distances from the leading edge are similar to each other, which

means that the velocity curves u(y) for varying distances x can be made identical by selecting

suitable scale factors for u and y appear quite naturally as the free stream velocity, U , and the
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boundary layer thickness, δ(x), respectively. It will be noted that the latter increases with the

current distance x. Hence the principle of similarity of velocity profiles in the boundary layer

can be written as u/U = φ(y/δ), where the function φ must be the same at all distances x from

the leading edge.

Figure 5.2 Sketch of a boundary layer along a flat plate.

Until now, we have not given a precise definition of boundary layer thickness. Here we use δ

to denote nominal boundary thickness, which is defined to be the value of y at which u = 0.99U ,

i.e.,

u(x, y)|y=δ = 0.99U . (5.4)

As we have seen in the first chapter in the case of a suddenly accelerated plate, that δ ∼
√
νt,

where t denotes the time from the start of the motion. In this case we will consider it as the

time which a fluid particle takes in reaching from the leading edge to the point x. For a particle

outside the boundary layer this is t = x/U , so that we may put δ ∼
√

νx/U . We now introduce

the new dimensionless similarity variable η = y/δ or,

η = y

√

U

2νx
. (5.5)

The stream function of the flow, ψ =
∫
u dy|x=const, should increase as δ, or x1/2, and can be

put as,

ψ =
√

2νUxf(η) (5.6)

where f(η) denotes the dimensionless stream function. Thus the velocity components become:

u =
∂ψ

∂y
=
∂ψ

∂η

∂η

∂y
= Uf ′(η) , (5.7)

v = −∂ψ
∂x

=

√

νU

2x
(ηf − f ′) (5.8)
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where the prime denotes differentiation with respect to η. Here u is of the order of U while v is

of small order, U/
√
Rex. Substitution of u and v from Eqs. (5.7) and (5.8) into the boundary

layer momentum relation (5.1) yields,

−U
2

x
ηf ′f ′′ +

U2

x
(ηf ′ − f)f ′′ = ν

U2

xν
f ′′′ . (5.9)

After simplification, the following ordinary diffrential equation is obtained:

f ′′′ + ff ′′ = 0 . (5.10)

Referring to Eq. (5.3) , the no-slip conditions u|y=0 = 0, v|y=0 = 0, and the freestream-merge

condition, u|y=∞ = U , convert to

f ′(0) = f(0) = 0 , f ′(∞) = 1 . (5.11)

Equation (5.10) is the celebrated nonlinear Blasius equation for flat-plate flow. Thus both

partial differential equations have been transformed into an ordinary differential equation via

similarity transformation. The resulting differential equation is nonlinear and of third order.

The three boundary conditions are, therefore, sufficient to determine the solution completely. A

Number of techniques that are prevalent for solving this equation have already been discussed

in chapter 2. However, in the next section we have attempted to solve this equation via AIM.

It should be noted that in the Blasius equation, the thickness of boundary layer is not well

defined. In the case of flow over a flat plate, this η → ∞ is taken at η = ηmax = 6.0. However,

we have found our solution technique to be convergent up to ηmax = 3.5. Although this radius

of convergence of ηmax = 3.5 is restrictive in capturing the solution for the complete flow in the

boundary layer, it provides a reasonable idea about the 99% of the flow within the boundary

layer.

5.1.1 Analytical solution of the Blasius equation

To begin the analytical procedure, we find the initial guess for the solution or the zeroth

approximation. To do this, we solve the linear part of Eq. (5.10) which is

L(f) = f ′′′ , (5.12)

and equate it to zero. Integrating this linear part thrice will give us a zeroth approximation for

the solution,

f0 = C10
η2

2
+ C20η + C30 , (5.13)
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f ′

0 = C10η + C20 , (5.14)

f ′′

0 = C10 . (5.15)

We will now evaluate each of these constants of integration C10, C20 and C30 using the boundary

conditions given by Eq. (5.11), as follows:

C10 =
1

ηmax

, C20 = 0 , C30 = 0 , (5.16)

which on substitution into Eqs. (5.13), (5.14) and (5.15) yields,

f0(η) =
η2

2ηmax

, f ′

0(η) =
η

ηmax

, f ′′

0 (η) =
1

ηmax

. (5.17)

This solution of linear part will be used for the convergence analysis and as an initial guess for

solving Eq. (5.10) via AIM.

Convergence analysis for the Blasius equation

After obtaining the initial guess, we will perform the following convergence analysis. Thus

rewriting Eq. (5.10) for the highest derivative,

f ′′′ = −ff ′′ . (5.18)

We solve the above equation for f(η) by integrating f ′′′(η) thrice. We get,

η∫

0

ζ∫

0

ξ∫

0

f ′′′ dx dy dz = −
η∫

0

ζ∫

0

ξ∫

0

f ′′f dx dy dz ,

f = −
η∫

0

ζ∫

0

ξ∫

0

f ′′f dx dy dz,

F (f) = −
η∫

0

ζ∫

0

ξ∫

0

f ′′f dx dy dz . (5.19)

This F (f) will converge if it obeys the following Lipschitz condition,

‖F (f) − F (g)‖ ≤ L ‖f − g‖ ∀ f, g ∈ P , (5.20)

where Lipschitz constant L is defined by

L = max
f∈P

‖F ′(f)‖ .

80



F ′(f) can be expressed by differentiating Eq. (5.19) as

F ′(f) = − d

df

η∫

0

ζ∫

0

ξ∫

0

f ′′f dx dy dz . (5.21)

Here f(η) and f ′′(η) are the initial guesses obtained from linear part i.e., Eq. (5.17). Thus

substituting their value in Eq. (5.21) yields,

F ′(f) = − d

df

η∫

0

ζ∫

0

ξ∫

0

C2
1

2
η2 dx dy dz , (5.22)

F ′(f) = − d

df

η∫

0

C2
1

2

η4

12
dz , (5.23)

but we know that

f 2 =
C2

1

4
η4 , (5.24)

therefore we can write Eq. (5.23) as

F ′(f) = −1

6

d

df

η∫

0

f 2 dz . (5.25)

Commuting the integral operator with the differential operator and differentiating the integrand

w.r.t. f in Eq. (5.25), we get the following:

F ′(f) = −1

6

η∫

0

2f dz , (5.26)

F ′(f) = −1

3

η∫

0

f dz , (5.27)

F ′(f) = −C1η
3

18
. (5.28)

From the definition of L1 norm we can write

max ‖F ′(f)‖1 =
C1

18

ηmax∫

0

∣
∣−η3

∣
∣ dη , (5.29)

max ‖F ′(f)‖1 =
C1η

4
max

72
, (5.30)

here C1 = 1/ηmax and the term inside the | · | is monotone. Thus

L = max
f∈P

‖F ′(f)‖where L < 1 for convergence , (5.31)
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or
η3

max

72
< 1 ⇒ ηmax < 4.16 . (5.32)

This is a third-degree polynomial that has three values, but as ηmax > 0, we consider only

positive values. In the given case of flow over a flat-plate, these values should be less than

4.16. The significance of the relationship (5.32) and hence of the critical value of ηmax < 4.16

lies in the fact that if we take boundary layer thickness more than 4.16, the AIM will not give

converged solutions of the Blasius equation. However, in our application of AIM to the Blasius

equation, we have found the converged solutions for the values of ηmax up to 3.5. We now

discuss the solution procedure for ηmax = 3.5 in the next section.

Analytical iteration method for Blasius equation

As outlined earlier, to start the analytical iterations we solve the original nonlinear ordinary

differential equation for the highest derivative i.e.,

f ′′′

1 = −f0f
′′

0 . (5.33)

The right hand side of the above equation can be reduced to a polynomial by substituting the

values of f anf f ′′ from Eq. (5.17). The equation can now be integrated thrice to yield a new

polynomial with terms containing constants of integration. These constants of integration can

be evaluated via boundary conditions as before. Following are the solutions obtained after the

first iteration.

f1 = − η5

120η2
max

+ ηmax
η2

48
, (5.34)

f ′

1 = − η4

24η2
max

+ ηmax
η

24
, (5.35)

f ′′

1 = − η3

6η2
max

+
ηmax

24
. (5.36)

These new solutions will begin a new analytical iteration. In this way we develop an itera-

tion method which will be repeated until two successive polynomials are sufficiently close in

L1(0, ηmax) to satisfy a specified convergence criterion. The specified criterion in the present

case is taken as the iteration error of shear stress at the wall should not be greater than 10−2.

In this case also we have a limitation on the number of iterations because of the limitation in

computing power. The maximum number up to which MAPLE [144] can iterate the solution

is 9. The number of terms present in the polynomial at the end of 9th iteration is 512.
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5.1.2 Results and discussions for Blasius equation

In the convergence analysis for the Blasius equation, we found that AIM will converge for

any value of ηmax less than 4.16. However, in practice it is found to be convergent for the values
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Figure 5.3 Convergence of the iterations of the AIM for f , f ′ and f ′′ for ηmax = 3.5.

up to ηmax = 3.5. This indicates that AIM cannot predict the exact solution of the Blasius

equation for the entire domain. However, this value of ηmax = 3.5 is sufficient to capture the

solution of 99% of the boundary layer. In Fig. 5.3, convergence of the solution for each of the

f , f ′ and f ′′ is shown. In these plots, iterations numbering from 4th till 9th are shown. At the

end of the 9th iteration, a good agreement between the solutions of the Runge–Kutta and the

AIM can be seen. However, to judge the relative accuracy of the solutions at various iterations,

in the next figure iteration errors of the solution of the Blasius equation are plotted for each of

the f , f ′ and f ′′. It can be seen from the relative error plots for f and f ′ that the maximum

error is of the order of 10−3. In the case of shear stress f ′′, the solution is converging with a
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Figure 5.4 Iteration error profiles of f , f ′ and f ′′ for ηmax = 3.5.

maximum error of ≈ 10−2. It should be noted that the maximum error in case of f ′′ ocurrs near

the edge of the boundary layer. This can be explained from the fact that we are considering

the infinity boundary condition at 3.5 i.e., f ′(3.5) = 1.0, which is actually f ′(3.5) = 0.99 in real

flow conditions. Although this error seems to be small in f ′, it gets more pronounced in its next

derivative which is f ′′ and thus affects the solution. We now compare the converged solutions

obtained via AIM with those of the 4th order Runge–Kutta numerical scheme. In this case,

also, we have found a reasonable agreement between the solutions of stream function f , velocity

profile f ′, and shear stress profile f ′′ (see Fig 5.5). Here the maximum error is found to be of

the order of 10−2 for each of the f , f ′ and f ′′. The results obtained from the Runge–Kutta 4th

order numerical scheme are for ηmax = 6.0, and are accurate up to 8 decimal places. It can be

seen from Fig. 5.5 that all solutions of the two methods are in good agreement. Moving further,

we now compare the different parameters of the boundary layer that can be obtained from f , f ′
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Figure 5.5 Relative error between the solutions of the AIM and the Runge–Kutta w.r.t. the
Runge–Kutta for ηmax = 3.5.

Table 5.1 Relative error between the boundary layer parameters obtained from the AIM and the
Runge–Kutta w.r.t. the Runge–Kutta for ηmax = 3.5.

Parameters AIM Runge–Kutta Relative error
δ99%/x ≈ 4.54/

√
Rex ≈ 5.0/

√
Rex 9.2

δ∗/x ≈ 1.6788/
√
Rex ≈ 1.7208/

√
Rex 2.44

θ/x ≈ 0.673/
√
Rex ≈ 0.664/

√
Rex 1.35

Cf ≈ 0.673/
√
Rex ≈ 0.664/

√
Rex 1.35

and f ′′. We note that f ′ = 0.99 occur at η ≈ 3.5 when the boundary layer thickness is taken to

be 6.0. However, in our case it occurs at η ≈ 3.21 as we have taken ηmax = 3.5. The table 5.1

shows the results of the coefficient of friction at the wall (Cf ) and the ratio of momentum and

displacement thickness to the distance x along the plate. These results are obtained for each

of the Runge–Kutta and the AIM. The relative errors of all these parameters are also included

in table 5.1. It can be seen that barring the relative error of δ99%, other parameters differ only

by ≈ 2% from the actual values. This error in all the parameters is directly related to the

restrictive radius of convergence. The restriction on the radius of convergence of AIM can be

explained from the viewpoint of the singularity present in the Blasius equation. As it belongs

to a class of boundary-layer problems over an infinite interval, the radius of convergence can

only be defined for some specific domain size, which is ηmax ≈ 4.16 in our analysis. However,

this radius of convergence is found to be overpredictive than the actual ηmax ≈ 3.5. One of the

reasons of this overprediction is the basis of convergence analysis, which uses an initial guess
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as a solution of the given nonlinear ordinary differential equation. This assumption works well

when the initial guess and the converged solution are close, but underpredicts/overpredicts the

domain size when they are not close, as we have seen in the case of the Blasius equation.
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Chapter 6

Summary and conclusions

In this chapter, a summary of the present research will be given. We will then present a list

of conclusions drawn from the research. Finally, a brief note on future work that can be done

as a consequence of this research will be presented.

6.1 Summary

1. In chapter I, a brief introduction of transport equations and their solutions via similarity

transformation was presented. This chapter also presented the background information

and significance of similarity transformations.

2. In Chapter II, we presented some background information to enable the reader to un-

derstand the motivation behind this work as much as possible. In particular, relevant

previous work on the exact solutions for the N.-S. equations was presented. Included

were discussions on the various methods to solve the nonlinear ordinary differential equa-

tions: approximate methods and numerical methods. The approximate methods included

variational methods, Galerkin procedure, collocation methods, quasilinearization, regu-

lar perturbation method, Cauchy–Picard iteration, series solutions, homotopy analysis

method, integral analysis method and Green’s functions. In the numerical methods sec-

tion, we gave the brief account of interpolation methods, shooting methods, and several

references to the other numerical methods.

3. The classical theory of fixed-point iteration in the polynomial spaces was discussed in

chapter III. An analytical iteration method (AIM) for solving nonlinear ordinary differ-

ential equations was developed in this chapter. The linear part of the nonlinear ordinary

differential equation was separated, and was used to obtain the initial guess for the non-

linear ordinary differential equation. An analytical iteration procedure was then set up

for obtaining the exact analytical solution. A convergence criterion for estimating the

radius of convergence for this method was also been deduced.

4. In chapter IV, the process of film-wise condensation was discussed. Different models

(Nusselt’s classical, Rohsenow’s, Bromley’s, Chen’s, Koh’s, and Sparrow and Greggs’s

models) of film-wise condensation were outlined. An analytical solution (by applying
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AIM) was given to Sparrow and Gregg’s boundary layer model of film-wise condensation.

The results of this analytical method were compared and explained with the numerical

results of the 4th order Runge–Kutta numerical scheme. The analytical iteration method

was first applied to the high Prandtl numbers 1, 10 and 100, and then extended to the

low Prandtl numbers of 0.03 and 0.008.

5. In Chapter V, we developed an analytical iteration method for solving the Blasius equa-

tion. The problem was solved for 99% of the boundary layer. The results obtained from

the AIM were compared with the Runge–Kutta numerical scheme. Various other param-

eters, for instance, displacement thickness, momentum thickness and shear stress at the

wall were also compared and explained.

6.2 Conclusions

1. The “Analytical Iteration Method (AIM)” proposed by us was found to be successful

in obtaining solutions of the transport equations in the similarity form. The solutions of

two celebrated equations, film-wise condensation and flow over a flat-plate, were obtained.

These solutions were found in good agreement with the numerical results.

2. In the case of film-wise condensation, results for both high and low Prandtl numbers were

reported. In the case of high Prandtl numbers of 1, 10 and 100, the solutions obtained from

the AIM were found in an excellent agreement with that of the Runge–Kutta numerical

scheme. The solutions were reported in terms of the variation of the Nusselt number with

respect to the Jacob number. The range of film thickness for high Prandtl numbers was

taken as ηδ = [0.5, 1.1]. This range covers most of the practical situations.

3. Several other forms of results, for instance, variation of stream function and its derivatives

with respect to film thickness, were also explained and compared with the corresponding

Runge–Kutta results. Dimensionless temperature varaition for different Jacob numbers

for a given Prandtl number was also shown and found to be deviating from linearity with

the increasing Jacob numbers.

4. The convergence of iterations in high Prandtl numbers was found to be high. In fact in

moving from Pr=1 to Pr=10, the iterations converged immediately after the first iteration.

5. For low Prandtl numbers, two Prandtl numbers 0.03 and 0.008 were selected. The re-

sults were shown as the variation of the Nusselt number obtained via AIM for Sparrow
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and Gregg’s model with respect to the Nusselt number obtained from Nusselt’s model.

Dropping off of the Nusselt number in the results showed the effects of inertia in these

comparisons.

6. Effects of increasing the Jacob number on the accuracy of the AIM w.r.t. the Runge–

Kutta were discussed. The results showed the decrease in the accuracy for the high Jacob

numbers. The results were compared for f ′′ at the vertical plate.

7. Stability plots for Prandtl numbers ranging from 0.03 to 10 were shown. A criteria to

obtain reasonably accurate solutions via AIM was also discussed for this range.

8. It was found in the convergence analysis that it overpredicts the critical value of film

thickness (ηδ) for low Prandtl numbers. However, in case of high Prandtl numbers this

analysis was found to underpredict the film thickness. This lack of consistency in the

convergence analysis was due to its dependence on the the initial guess of the solution.

As a matter of fact, this initial guess is not a converged solution of the equation; it

only provides a rough estimate about the radius of convergence of the solution. Similar

deviations in the critical value of boundary layer thickness were observed and explained

for the Blasius equation.

6.3 Future work

As alluded to at the beginning of this thesis, this research effort was focused primarily on

developing the analytical solutions for transport equations in the similarity form. We have

shown that the equations in similarity form can be solved analytically via fixed-point iteration,

and the solution can be represented as a polynomial (similar to power series). Further work

needs to be done with the other transport equations in the similarity form. This includes the

equation of stretching flows, free shear flows, point sink flow and other Falkner–Skan wedge

flows. Another perspective of this research can be extended for improving the convergence

analysis. However, we would like to mention here that all the analytical integrations for various

iterations in AIM are performed via MAPLE. Therefore in the future, if we can go beyond 9

iterations, some of the problems can be solved for the large radius of convergence; for instance,

the Blasius equation can be solved for a radius of convergence ≈ 4.0.

Copyright c© Abhishek Tiwari 2007
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75. H. Poincaré. Mecanique Celeste, Vol. I, Gauthier-Villars, Paris, 1892.

76. J. L. Nowinski, I. A. Ismail. Developments in Theoretical and Applied Mechanics, N. A.
Shaw, ed., Vol. II, pp. 35, Pergamon Press, Oxford, 1965.

93



77. W. F. Ames, J. L. Sontowski. J. Appl. Mech., 33, 218, 1966.

78. J. Shohat. J. Appl. Phys., 15, pp. 568, 1944.

79. R. Bellman. Quart. Appl. Math., 13, pp. 135, 1955.

80. R. Bellman. Paper 55-APM-33, Am. Soc. Mech. Eng., New York, 1955.

81. K. O. Friedrichs Theory of viscous fluids, Fluid Dynamics, Chapter 4, Brown Univ. Press,
Providence, Rhode Island, 1942.

82. K. O. Friedrichs Special Topics in Fluid Mechanics, N. Y. U. Press, New York, 1953.

83. S. Kaplun, P. A. Lagerstrom Asymptotic expansions of Navier–Stokes solutions for small
Reynolds numbers, J. Math. Mech., Vol. 6, pp. 585–593, 1957.

84. F. P. Bretherton. The motion of long bubbles in tubes, J. Fluid Mech., 10, pp. 166, 1961.

85. P. A. Lagerstrom, J. D. Cole. Examples illustrating expansion procedures for the Navier–
Stokes equations, J. Rat. Mech. Anal., 4, pp. 817–882, 1955.

86. M. Van Dyke. Perturbation Methods in Fluid Mechanics, Academic Press, New York, 1964.

87. K. Hiemenz. Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom einge-
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