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SUMMARY

Clinically described for over a century, sickle cell disease is a genetic disorder af-

fecting 100,000 people in the US and millions worldwide. While the mutation only

affects a single protein (hemoglobin) that is expressed in a single cell type (red blood

cells), sickle cell disease has devastating effects throughout the body, significantly

reducing the lifespan of those afflicted. One significant comorbid condition is the

200-fold increase in stroke risk in children under the age of 20, with the highest risk

between 2 and 5 years of age. Although clinicians have demonstrated that the in-

creased stroke risk is attributed to severe remodeling of the cerebral arteries, the

underlying cause of this remodeling remains unknown. In fact, the only treatment

option available for children with sickle cell disease is monthly blood transfusions,

which carries life-threatening risks for alloimmunity and iron overload. Therefore,

there is a clear need to develop a more complete, mechanistic understanding of stroke

in sickle cell disease. To address this need, my research investigates the unique cir-

culatory environment of sickle cell disease and mechanisms promoting rapid arterial

remodeling leading to stroke.

Clinical descriptions of the remodeled cerebral arteries in patients with sickle cell

disease reveal elastin degradation, neointimal formation, and luminal narrowing. Such

arterial remodeling exhibits similarities to other cardiovascular diseases, including

atherosclerosis, which are characterized by changes in vessel structure, concomitant

with protease-mediated remodeling of the extracellular matrix (Platt et al. Am J

Physiol Heart Circ Physiol. 2007). Of particular interest are the cathepsins K and V,

powerful enzymes that degrade collagen and elastin. In order to study the proteolytic
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response in sickle cell disease, our lab developed the multiplex cathepsin zymography

technology, which quantifies of the activity of multiple enzymes with high specificity

and sensitivity (Li et al. Anal Biochem 2010 & Wilder et al. Arch Biochem Biophys

2011).

We have demonstrated that the inflammatory cytokine TNFα is sufficient to in-

crease the activity of cathepsins K and V in endothelial cells (Keegan et al. Mol Cell

Biochem. 2012). This is particularly relevant because sickle cell disease presents as

a chronic inflammatory syndrome, with a 20-fold increase in serum TNFα (Keegan

et al. Anemia. 2012). Therefore, the vasculature in sickle cell disease may be pre-

conditioned by the circulatory milieu to induce cathepsin-mediated remodeling. The

predisposition for remodeling is also aggravated by circulating monocytes in sickle cell

disease; these monocytes exhibit the unique ability to induce cathepsin K activity in

endothelial cells, independent of TNFα (Keegan et al. Anemia. 2012). Together,

these findings indicate that the circulatory environment of sickle cell disease contains

powerful, pro-cathepsin activation factors, which may be responsible for the degree

and speed of remodeling in the cerebral vasculature.

Cathepsins K and V are also sensitive to changes in vascular hemodynamics.

In healthy individuals, pro-remodeling shear stress is generally restricted to regions

where arteries bifurcate; however, in sickle cell disease, aggregations of red and

white blood cells can spontaneously form throughout the vascular tree and impede

blood flow, leading to spontaneous, localized regions of pro-remodeling shear stress.

Through the implementation of a custom shear stress bioreactor, we determined that

endothelial cells exposed to oscillatory, pro-remodeling shear stress significantly in-

crease cathepsin K activity, independent of TNFα activity (Keegan et al. in prep).

Conversely, unidirectional, vasoprotective shear stress reduced cathepsin K activity

below detectable levels, even after stimulation with TNFα. Therefore, the propensity
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for spontaneous perturbation of vascular hemodynamics in sickle cell disease exacer-

bates the already profound risk for cathepsin-mediated remodeling.

To more mechanistically uncover the biochemical pathways regulating the cathep-

sin response to shear stress, monocyte adhesion and TNFα stimulation, we examined

the phosphorylation state of several intracellular kinases. Of several kinases assayed,

the phosphorylated isoforms of JNK and its downstream target c-Jun were signifi-

cantly increased, suggesting a role for the MAPK pathway in mediating cathepsin

activity under inflammatory stimuli. The MAPK pathway was further implicated

when inhibition of JNK signaling significantly reduced (45-65%) cathepsin K and V

activity after TNFα or sickle mononuclear cell stimulation (Keegan et al. Anemia

2012). Interestingly, despite their effects on cathepsin activity, neither vasoprotec-

tive nor pro-remodeling shear stress induced changes in the phosphorylation of JNK

or c-Jun, suggesting divergent biochemical and biomechanical pathways regulating

remodeling responses in sickle cell disease (Keegan et al. in prep).

Our studies have identified constituents of the MAPK/JNK pathway as druggable

targets for the prevention of stroke in sickle cell disease. Therefore, we have employed

a transgenic mouse model that expresses human sickle hemoglobin, thus recapitulating

the multi-faceted pathology of sickle cell disease, including the first identification of

stroke lesions (Keegan et al. in prep). Primary cerebral cells from sickle transgenic

mice also exhibited higher levels of cathepsin activity, compared to wild type controls.

The cerebral and carotid arteries of sickle transgenic animals displayed evidence of

significant elastin fragmentation and remodeling which co-localized with increased

cathespin K expression within the arterial wall; in vivo inhibition of JNK substantially

reduced this expression as well as decreased the number of elastin breaks in the elastic

lamina. Ongoing work aims to conduct additional drug trials to specifically inhibit

active cathepsin, with the hypothesis that specific targeting of cathespin K activity

will prevent the vasculopathy associated with sickle cell diseas thereby reducing the

xxv



risk of stroke.

The etiology of stroke in sickle cell disease is complex, resulting from a ”perfect

storm” of individual biological, biochemical, and biomechanical factors capable of

uniquely and synergistically promoting cathepsin activity. Together, this project has

established a robust, mechanistic, and multi-scale approach for studying remodeling

in response to physical and chemical stimuli, in vitro and in vivo, which will ultimately

enable the development of novel, targeted therapeutics for sickle cell disease, as well

as countless other clinically described systemic remodeling pathologies.
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CHAPTER I

INTRODUCTION

Sickle cell disease (SCD) is a genetic disorder that causes polymerization of hemoglobin

molecules within red blood cells, deforming them into the canonically described

”sickle” shape, resulting in a 220-fold increase in the risk of stroke for children under

the age of 16. Seminal studies have concluded that increased blood velocities in the

middle cerebral artery (MCA) of children with sickle cell disease strongly correlated

to an increased risk for stroke lesion formation. These lesions show advanced arterial

remodeling, characterized by changes in extracellular matrix composition, cell orga-

nization, and cell phenotypes that induce chronic effects on the structure, mechanical

properties, and overall vessel health; however, the underlying mechanisms govern-

ing this process remain unknown. Traditionally, studies of sickle cell cardiovascular

pathologies are limited to low shear, low oxygen, venous-side capillaries. However,

stroke in sickle cell disease originates in large, well-oxygenated arteries exposed to

high shear stress. Endothelial cells normally maintain arterial homeostasis, but in

pathological states they respond to monocyte adhesion, inflammatory cytokines, and

low and oscillatory fluid shear stress. In response, endothelial cells promote mal-

adaptive remodeling of the artery, leading to luminal narrowing and restricted blood

flow. One way this is accomplished is by increasing secretion of cathepsins, power-

ful cysteine proteases, and downregulation of protease inhibitors. Two cathepsins,

cathepsins K and V, are increased during arterial remodeling, and represent the most

powerful elastase and collagenase, respectively, yet identified. In sickle cell disease,

pro-remodeling stimuli, including chronically elevated plasma levels of tumor necro-

sis factor alpha (TNFα), cause systemic activation of the endothelium and induce
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monocyte adhesion. Simultaneously, aggregations of rigid, sickled red blood cells

spontaneously form along the endothelium, disturbing flow and inducing low or os-

cillatory fluid shear stress. Alterations in hemodynamic shear stress due to these

aggregations potentially occur throughout the vascular tree, rather than being lim-

ited to regions near branches or bifurcations, as seen in individuals without sickle cell

disease.

The objective of this proposal is to develop a mechanistic understanding of how the

sickle mutation induces a cardiovascular syndrome that promotes arterial remodel-

ing. The central hypothesis is that disturbed flow, chronic inflammation, and elevated

monocyte adhesion due to sickle cell disease increase cathepsin-mediated arterial re-

modeling contributing to increased risk for stroke. The central hypothesis will be

tested through following aims (Fig 1-1):

Specific Aim 1: Determine the combinatory effects of TNFα stimula-

tion and monocyte adhesion on large artery endothelial cell (EC) cathepsin

activity. Hypothesis: Monocyte adhesion and TNFα stimulation will induce cathep-

sin activity in large artery endothelial cells. People with sickle cell disease have

increased numbers of circulating monocytes and chronically elevated plasma levels

of TNFα. We will investigate how these inflammatory mediators independently and

co-operatively increase cathepsin activity in large artery endothelial cells. EC cul-

tures will be maintained with or without TNFα, as well as co-cultured with primary

monocytes isolated from whole blood of individuals with either normal (AA) or sickle

(SS) β-globin. This study will allow us to parse out critical stimulators of cathepsin

activity, as well as the intracellular signaling cascade that transduce extracellular, in-

flammatory signals circulating in the blood milieu of sickle cell disease into increased

cathepsin production.
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Specific Aim 2: Examine the extent to which low or oscillatory shear

stress observed in sickle cell disease exacerbates cathepsin activity induced

by inflammatory factors and monocyte-endothelial cell interactions. Hy-

pothesis: Low or oscillatory shear stress characteristic of arterial stenosis in sickle

cell disease will promote greater amount of monocyte adhesion and cathepsin activity

compared to unidirectional shear stress. In sickle cell disease, disruption of cerebral

blood flow profiles may accelerat arterial remodeling by upregulating cathepsin activ-

ity, which have been shown to be shear regulated, leading to stroke lesion formation.

Large artery endothelial cells will be stimulated with or without TNFα, as well as

co-cultured with primary monocytes isolated from AA or SS individuals and placed

in a cone-and-plate shear system, which will impart either pulsatile, unidirectional

shear stress characteristic of a normal cardiac cycle, or low or oscillatory shear stress

characteristic of arterial narrowing in sickle cell disease. This study aims to elucidate

how the superposition of low or oscillatory shear stress on the underlying biochemi-

cal and cell-cell interactions in sickle cell disease increase cathepsin activity in large

artery endothelial cells.

Specific Aim 3: Investigate the role of the JNK/c-jun signaling axis

in cathepsin-mediated arterial remodeling and stroke lesion formation in

sickle transgenic mice. Hypothesis: Inhibition of JNK and c-jun singling in sickle

transgenic mice will reduce in vivo cathepsin K and V activities, thereby preserv-

ing structural integrity of cerebral and carotid arteries and reducing the incidence

of stroke. The sickle transgenic mice used in this study have been genetically mod-

ified to exclusively express human hemoglobin, specifically normal or sickle human

β-globin, thereby effectively recapitulating the multifactorial sequelae observed in hu-

man patients. Transgenic mice will be treated with or without an inhibitor of JNK

activity for 8 weeks. Animal brains will be isolated and imaged using a 9T animal
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Figure 1-1: Research aims schematic overview

MRI system to identify and quantify sites of stroke lesions. Subsequently, cathepsin

activity and fragmentation of the elastic lamina of the internal carotid and middle

cerebral arteries will be quantified from these animals, compared to vehicle treated

controls. This study aims to specifically determine the influence of the JNK/c-jun

axis on cathepsin-mediated arterial remodeling leading to stroke in sickle cell disease.

This proposal is innovative because it seeks to elucidate a currently unknown

fundamental, mechanistic understanding of the initiation and progression of large

artery remodeling in sickle cell disease. Currently, there are limited treatment options

available to detect, prevent, or mitigate the development of lethal cardiovascular

pathologies. However, this proposed work aims to analyze the potential of biochemical

and biomechanical factors characteristic to sickle cell disease to induce remodeling of

large arteries, and identify novel, therapeutic targets to improve the quality of life of

people living with this life-shortening disease.
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CHAPTER II

BACKGROUND

2.1 Significance

Sickle cell disease affects nearly 100,000 people in the United States, and millions

more across the globe. Of the multitude of pathologies and syndromes associated

with sickle cell disease, perhaps one of the more devastating is the development of

stroke in young children. By the age of 20, 11% of children suffering from sickle cell

disease will suffer a major, clinically aparent stroke [97]. A further 17% to 35% of

affected children will suffer an asymptomatic, silent, infarcts that can result in cog-

nitive defects and learning disabilities later in life [94, 107, 125, 144]. Additionally,

the risk of first stroke is highest during the first decade of life, specifically between

the ages of 2 and 5 years [97, 133, 35]. Pioneering work done by the Stroke Pre-

vention Trial in Sickle Cell Anemia (STOP) has shown that elevated middle cerebral

blood flow velocities greater than 200 cm/sec are highly predictive of stroke risk,

which can be mitigated with monthly blood transfusions [2, 4]. Unfortunately, regu-

lar monitoring of cerebral blood flow remains difficult at the clinical level, and regular

blood transfusions carry significant risks of infection, alloimmunity, and iron overload

[143, 133, 4]. Additionally, hydroxyurea remains the only approved drug specifically

approved by the FDA for the management and mitigation of symptoms associated

with sickle cell disease, yet has been shown to be ineffective with reduction of risk of

stroke [39, 130, 145]. Therefore, there is a pressing need for improved for long-term

screening and/or treatment of stroke in sickle cell disease.

One of the complicating factors in developing novel therapeutics and diagnostic

technologies is the lack of a mechanistic understanding of stroke lesion formation or

5



progression. Magnetic resonence angiograms of stroke victims with sickle cell disease

showed substantial reduction of blood perfusion through the carotid and middle cere-

bral arteries. Furthermore, the vascular occlusions were shown to be the result of

luminal narrowing due to advanced arterial remodeling, characterized by neoimtimal

formation due to proliferation of endothelial and smooth muscle cells, monocyte in-

filtration, excess matrix deposition, and elastic lamina degradation. The remaining

luminal area becomes further occluded due to aggregations of circulating mononu-

clear cells, red blood cells, and activated platelets [153, 133, 113]. While there are

several working hypotheses describing the luminal aggregation of circulating blood

cells, arterial remodeling in the context of sickle cell disease remains understudied.

The research presented here is significant because it aims to develop a mechanistic

understanding of how the inflammatory circulatory environment unique to sickle cell

disease promotes rapid remodeling of large arteries, in order to identify new thera-

peutic targets for the prevention of stroke lesion formation.

2.2 Sickle Cell Disease

2.2.1 Molecular Basis

Sickle cell disease is a genetic condition that is caused by substitution of valine for

glutamic acid in the sixth position of β-globin, a constituent protein of hemoglobin

protein [57]. While glutamic acid is a polar, hydrophilic molecule, valine is nonpo-

lar and strongly hydrophobic. When saturated with oxygen, the valine residue is

shielded from the aqueous cytoplasm of the red blood cells allowing the hemoglobin

molecules to remain soluble. However, deoxygenation caused by gas exchange within

the microcirculation results in conformational changes in the sickle hemoglobin (HbS)

molecules which expose the hydrophobic residues to the aqueous cytoplasm [11]. Hy-

drophobic interactions between the HbS molecules, governed by overall hemoglobin

concentration, result in the formation of rigid fibers within the red blood cell [54, 24].
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Through heterogeneous nucleation, valine residues along the surface of these fibers

act as focal points for further nucleation and growth of adjacent fibers [38]. As these

fibers grow, they distort the red blood cell membrane resulting in the canonically

described ”sickle” shape. As the red blood cell becomes re-oxygenated, the poly-

merization reaction is reversed; the hemoglobin fibers ”melt” as oxygen is taken up

by the HbS and the normal discoid shape returns. However, the time required to

melt sickled hemoglobin polymers is greater than the time an average red blood cell

spends in oxygenated circulation, which allows for a significant population of sickled

red blood cells to exist in the arterial circulation [95].

One of the more well-characterized presentation of sickle cell disease is the vaso-

occlusive, or pain, crisis. Normally, the bi-concave discoid shape, excess plasma

membrane, and lack of a rigid nucleus allows red blood cells to be highly deformable

thereby permitting them to pass through the microcirculation [123]. However, the

formation of the HbS fibers in sickle red blood cells during gas exchange negates this

capacity for extreme deformation. As a result, sickled red blood cells can become

trapped in the microcirculation restricting or blocking blood flow. The etiology of

sickle cell vaso-occlusion begins with the heterogeneity of the red blood cell popula-

tion. Sickle red blood cells exist in four distinct fractions, with the more immature

cells, reticulocytes, being the most adherent [64, 62]. As sickled reticulocytes begin

accumulating along the endothelium, larger, less deformable cells, such as circulating

monocytes, become entrapped. The resulting cell aggregation further restricts blood

flow until complete occlusion is achieved [65, 40]. Although classically described in

the microcirculation, pathological RBC adhesion to vascular endothelial cells can po-

tentially occur throughout vascular system. One of the significant causes of these

vascular occlusions originates with the pathological interactions between circulating

RBCs and other vascular cells.
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2.2.2 Chronic Inflammation as a Co-Morbidity of Sickle Cell Disease

Although sickle cell disease is canonically classified as a genetic hematological disor-

der, the associated complications that arise from pathological interactions between

RBCs, vascular endothelial cells, and circulating mononuclear cells results in a chronic

inflammatory state, evidenced by the abnormal presence of circulating endothelial cell

adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1), vascular cell

adhesion molecule-1 (VCAM-1), and E-selectin in the plasma [14], as well as ele-

vated plasma levels of inflammatory cytokines like TNFα and IL-1 [104, 86]. Direct

interactions between RBCs and circulating monocytes results in monocytes acquir-

ing an activated phenotype, as shown by the expression of activated integrins [82],

and cytokine-inducible CD64 [36], by increased release of leukocyte elastase, and by

increased shedding of L-selectin and CD16 [75, 14, 153]. The perpetual activated

phenotype of the monocytes, increase in circulating monocyte numbers, and elevated

circulating inflammatory cytokines results in a chronically activated endothelium that

promotes pathological monocyte-endothelial cell interactions. Such interactions are

also independently exacerbated via direct interactions between endothelial cells and

sickle RBCs. Cyclic sickling of the RBC membrane causes membrane inversion, lead-

ing to pathological adhesion to endothelial cells [11], especially among the immature

reticulocytes, which damages the endothelium [14] causing elevated EC expression of

VCAM-1, ICAM-1, P-selectin, and E-selectin [46, 64, 22]. Ultimately, the circulatory

milieu of people with sickle cell disease maintains a chronic activation of endothelium

throughout the vascular tree and promotes monocyte-EC interactions which repre-

sents an initial stage in many pathological vascular remodeling pathologies.
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2.3 Stroke in Sickle Cell Disease

2.3.1 Prevalence of stroke in SCD

While the vaso-occlusive crises of the microvasculature represent a significant co-

morbidity associated with sickle cell disease, aggregations of red blood cells, alone,

are insufficient to explain the clinical reality that children with sickle cell disease

have a 221-fold increase in stroke risk and a 410-fold increase in cerebral infarction

specifically; the risk of first stroke is highest during the first decade of life, specifically

between the ages of 2 and 5 years [97, 133, 35]. In addition to the devastating strokes

with clinically detectable symptoms, 17% to 35% children with sickle cell disease

also suffer from numerous silent, or unsystematic strokes [94, 107, 125], resulting in

cognitive defects and learning disabilities that are undetected until later in the child’s

development [144]. Additionally, children that have had previous silent infarcts are

at higher risk of future strokes in terms of both covert and silent cerebrovascular

events [94, 92]. The risk factors for silent infarction are generally different from those

for clinical stroke with the only identified laboratory predictors being raised white

blood-cell count and the SEN βglobin haplotype [69].

2.3.2 Characteristics of stroke lesion formation

Autopsies and angiographs in the 1970s and 1980s of patients with SCD who died

or suffered clinically presenting strokes showed narrowing, and sometimes complete

occlusion, of the large cerebral arteries that was associated with intimal hyperplasia

[19, 53, 47, 120, 127, 53]. The regions of luminal narrowing often had thickening

caused by fibrous connective tissue and smooth muscle cell proliferation with redu-

plication and fraying of the internal elastic lamina [138]. As mentioned previously,

people with sickle cell disease are also at elevated risk of silent strokes, which are

likely caused by ischemic changes of the frontal lobes, which do not cause motor or

sensory deficits. However, the majority of patients with silent stroke have normal
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large vessel histology and angiography, yet had multiple sites of small vessel disease

resulting in focal areas of necrosis and/or hemorrhage [107, 19]. While the histo-

logical examinations of stroke formation have been previously investigated, there is

a pressing need to more completely underestand the cellular and systemic mecha-

nisms that initiate and regulate progression of vascular lesions leading to stroke in

sickle cell disease. However, recent studies have identified a possible, positive feed-

back loop, that may predispose the large cerebral vessels to stroke lesion formation.

The endothelium of the cerebral vasculature exists in a perpetually activated state

in response to elevated circulating inflammatory cytokines, which, in turn, promotes

adhesion of circulating monocytes and RBCs [133, 53, 153]. Simultaneously, cyclic

sickling of erythrocytes causes hemolysis, in which damaged red blood cells release

hemoglobin into the blood, and its reactive heme group scavenges nitric oxide (NO),

inhibiting flow-mediated vasodilation and exacerbating the luminal narrowing [133].

The byproducts of hemolysis and inflammation act to positively feedback increasing

systemic levels of inflammatory cytokines, monocyte mobilization, and pathologi-

cal monocyte-endothelial [30, 133, 10]. However, the chronic inflammation, elevated

monocyte-endothelial interactions, and elastin fragmentation clinically described in

people with sickle cell disease are similar to what has been observed during other

cardiovascular remodeling pathologies, such as atherosclerotic plaque development.

Therefore, it is plausible that that common mechanisms for arterial remodeling may

exist between the well-studied, well-characterized atherosclerosis and the understud-

ied mechanisms of strokes in children with sickle cell disease.

2.3.3 Treatment options and limitations

While it is difficult for doctors to provide early detection of stroke in sickle cell

disease, seminal work by Adams et al. as part of the Stroke Prevention Trial in

Sickle Cell Anemia (STOP) established the gold-standard for clinical evaluation of
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stroke risk in sickle cell disease by statistically linking cerebral blood flow velocities

greater than 200 cm/s to high stroke risk, as well as establishing monthly blood

transfusions as an effective prophylactic against lesion formation[4]. Transfusions

also result in reductions in middle cerebral artery velocities correlated with the pre-

transfusion velocity [142]. In fact, that the progression of large-vessel stenoses can

be curtailed by transfusion therapy has been corroborated through angiography [120,

133]. It is predicted that children who receive monthly blood transfusions have a

95% of remaining stroke free [106, 4]. However, monthly blood transfusions carry a

significant risk of alloimmunity and iron overload, which preclude this treatment from

being widely deployed across the general population of pediatric sickle cell patients

[143, 133, 4].

2.4 Cathepsins and Arterial Remodeling

2.4.1 Cathepsin overview

Cathepsins, generally known as lysosomal cysteine proteases, are normally described

to degrade intracellular or endocytosed proteins [141, 139, 140]. However, these

proteins have recently been shown to be induced and secreted into the extracellu-

lar spaces, where they participate in pathological tissue remodeling in inflammatory

and autoimmune diseases such as atherosclerosis [121, 129, 81, 58, 99, 131], obesity

[149, 148, 134], rheumatoid arthritis [55, 8], cardiac repair [131], cardiomyopathy

[128, 108, 124], and cancer [93, 29]. Cathepsins are synthesized as precursors that are

enzymatically inactive; removal of the N-terminal propeptide by other proteinases or

autocatalysis allows for exposure of the cathepsin active site allowing for substrate

catalysis [72]. Cathepsins have broad substrate specificity for cell matrix components,

and through the combination of different species, they can degrade nearly all intra and

extracellular proteins. While highly active and extremely potent, cathepsin activity

is tightly regulated extracellularly by cystatin C, which is found in all extracellular
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fluids [34].

2.4.2 Cathepsins in arterial remodeling

For the purposes of this thesis, arterial remodeling will be defined as changes in the

composition of proteins, cell types, and even cell phenotypes that induce chronic ef-

fects on the structure, mechanical properties, and total health of a vessel [98, 81]. This

includes degradation of old matrix by newly activated proteases as well as synthesis

and deposition of new extracellular matrix proteins. Cathepsins have been shown to

be highly active at extracellular matrix degradation, in a variety of tissue remodeling

pathologies. As discussed previously, arterial remodeling in atherosclerotic plaques

shows strong parallels in structure and pathology to stroke lesions observed in children

with sickle cell disease, although there are key differences. Atherosclerotic plaques

form around excess lipid deposition below the endothelial layer, leading to luminal

narrowing. In sickle cell disease, the ”plaques” are not lipid-laden, and are thought

to develop due to excess extracellular matrix deposition. Cathepsins K and V, the

most powerful mammalian collagenase and elastase, respectively, have recently gained

interest as mediators of vascular remodeling. Both cathepsins K and V have been

identified in atherosclerotic plaques [7, 76] and in neointima following balloon an-

gioplasty [87, 111]. Furthermore, the pathophysiological importance of cathepsin K

in atherosclerosis has been demonstrated in double-knockout mice deficient in both

apolipoprotein E and cathepsin K. In this model, the number and size of atheroscle-

rotic lesions were reduced, and there were fewer breaks in the elastic lamina [129].

Several studies have shown expression of cathepsin K by vascular smooth muscle cells

(SMCs) and macrophages, and their roles in vascular remodeling [147, 76, 4, 111].

Studies with human atherosclerosis samples showed a positive correlation between the

cathepsin K levels in endothelium and atherosclerotic lesion development, providing

supporting evidence for cathepsin K in elastic degradation [111].
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2.4.3 Shear stress regulation of cathepsin activity

It has been well established that high, unidirectional fluid shear stress is critical for

maintaining vascular health. Arteries exposed to low or oscillatory (OS) blood flow

are more likely to develop atherosclerotic lesions, while vasculature exposed to unidi-

rectional (USS) flow are more atheroprotected. Part of this shear-dependent plaque

development may, in a significant part, be attributed to biomechanical regulation of

cathepsin activity. Previous studies have shown that OS increases endothelial cell

cathepsin K mRNA and protein levels and activity compared with USS, suggesting

that cathepsin K is regulated by fluid shear stress [111]. Conversely, USS inhibits

gelatinase and elastase activity in endothelial cells in a cathepsin-dependent manner.

It has also been shown that mouse cathepsin L, the ortholog of human cathepsin V,

partially contributes to the shear-dependent regulation of the extracellular matrix

protease activity; knockdown of mouse cathepsin L showed a partial inhibitory effect

[111, 110].
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CHAPTER III

TUMOR NECROSIS FACTOR ALPHA STIMULATES

CATHEPSIN K AND V ACTIVITY VIA JUXTACRINE

MONOCYTE-ENDOTHELIAL CELL SIGNALING AND

JNK ACTIVATION1

3.1 Introduction

Children with sickle cell disease have an 11% chance of suffering a major stroke by

the age of 16, and pulmonary hypertension represents 20-30% of mortality due to

sickle cell disease in adult patients [85, 143]. Both of these pathologies progress with

severe vascular remodeling, defined as changes in the composition of proteins, cell

types, and even cell phenotypes that induce chronic effects on the structure, me-

chanical properties, and total health of a vessel [13, 79, 88]. Histological studies of

vascular remodeling in people with sickle cell disease have implicated increased mono-

cyte infiltration into the subendothelial space, degradation of the elastic lamina, and

luminal narrowing as contributors to lesion development in the cerebral vasculature

that contributes to sickle strokes [113].

Sickle cell disease is a multi-factorial, genetic disorder that causes in vivo poly-

merization of hemoglobin molecules into rigid fibers within red blood cells, deforming

them in the canonically described ”sickle” shape. This hemoglobin polymerization

is thought to occur under low oxygen, or hypoxic, environments of the postcapil-

lary venules as a consequence of the vaso-occlusion and ischemia [11, 61, 65]. The

1Modified from: Keegan, P. M., Wilder, C. L., & Platt, M. O. (2012). Tumor necrosis factor alpha
stimulates cathepsin K and V activity via juxtacrine monocyte-endothelial cell signaling and JNK
activation. Molecular and Cellular Biochemistry, 367(1-2), 6572. doi:10.1007/s11010-012-1320-0
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formation of the hemoglobin fibers, increases membrane tension and cell stiffness, sig-

nificantly reducing the ability of the red blood cells to traverse the microcirculation

[11]. On average, sickle red blood cells only survive 10 days, compared to the 120

days of normal red blood cells before lysing. During hemolysis, damaged red blood

cells release hemoglobin into the blood, and its reactive heme group scavenges ni-

tric oxide, inhibiting flow-mediated vasodilation and exacerbating luminal narrowing

[133]. Stiff, sickled red blood cells and the byproducts of their hemolysis cause dam-

age and increase systemic levels of inflammatory cytokines, mobilized monocytes [30],

and pathological levels of increased monocyte adhesion to the endothelium [133, 10].

Furthermore, sickled red blood cells can spontaneously form aggregations in both the

venus and arterial circulation, obstructing blood flow and leading to localized areas

of hypoxia [10]. Taken together, the inflammation, monocyte adhesion, and vascular

remodeling seen in sickle cell disease are all steps similar to atherosclerotic plaque

development, suggesting that common mechanisms for arterial remodeling may ex-

ist between the well-studied, well-characterized atherosclerosis and the understudied

mechanisms of strokes in children with sickle cell disease.

In atherosclerosis and other cardiovascular disease, endothelial cells initiate vascu-

lar responses to inflammatory cytokines, such as tumor necrosis factor alpha (TNFα).

Activation of the endothelium results in increased surface expression of cell adhe-

sion molecules and secretion of powerful chemokines essential for the recruitment of

circulating monocytes to the vascular wall [91]. Once adhered, paracrine and jux-

tacrine signaling between monocytes and endothelial cells arrest monocytes along the

endothelium, and permit transmigration to the subendothelial space [14, 132]. Ulti-

mately, these inflammatory signals can initiate cellular programs to promote arterial

remodeling as atherosclerotic plaques progress.

Collagen and elastin are two important extracellular matrix proteins degraded

by cathepsins during atherosclerotic lesion formation [77, 83, 111]. Cathepsins are
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a family of cysteine proteases that have been highly implicated in cardiovascular

disease [80, 83], and endothelial cells contribute to their production and this pathology

[110, 111]. Cathepsins K and V, in particular, have gained attention due to their

potent proteolytic activity. Cathepsin K is both the most potent human collagenase

identified, as well as an extremely powerful elastase [59], and has been shown to

be highly expressed in atherosclerotic lesions [129, 111]. Cathepsin V is the most

powerful mammalian elastase yet identified, and is expressed in human monocyte-

derived macrophages [150]. Studies have shown that the human cathepsin V ortholog,

murine cathepsin L [21, 137], significantly contributes to cardiovascular disease in

mouse models [149, 70]. However, elucidating the contributions of specific cell types

and their stimulation of each other is still an important goal to treat this disease.

In this study, the individual and combinatorial effects of TNFα, heme, and mono-

cyte adhesion, and oxygen level on cathepsin activity by human aortic endothelial

cells was investigated to understand how the unique circulatory environment of sickle

cell disease may induce proteolytic remodeling of the arterial wall leading to stroke.

This was accomplished using multiplex cathepsin zymography, a novel enzymatic ac-

tivity assay developed in our lab to simultaneously quantify cathepsins K, L, S, and V

expression levels of active enzyme [78, 147]. Furthermore, we investigated phospho-

rylation of Akt, extracellular signal-regulated kinase 1 and 2 (ERK, c-Jun N-terminal

kinases (JNK), and c-jun to identify intracellular signaling cascades linking TNFα

stimulation and monocyte binding to increased levels of cathepsins K and V activity

to suggest a mechanism for pharmaceutical targeting.
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3.2 Methods

3.2.1 Cell Culture

Human aortic endothelial cells (HAECs) (Lonza) were cultured in MCDB medium

131 (Mediatech) containing 10% fetal bovine serum (FBS), 1% L-glutamine, 1% peni-

cillin/streptomycin, and 1% endothelial cell growth serum (ECGS). Human THP-1

acute monocytic leukemia cells (American Type Culture Collection [ATCC]) were cul-

tured in RPMI medium 1640 (Mediatech) containing 10% FBS, 0.05% β-mercaptoethanol,

1% L-glutamine, and 1% penicillin/streptomycin. HAECs were transfected with

cathepsin K overexpression plasmids on the pCMVSport6 background at 50-80%

confluence with Lipofectin (Invitrogen) in OptiMEM according to manufacturer’s

instructions.

3.2.2 Monocyte adhesion and endothelial cell co-cultures

HAECs were preconditioned in the presence or absence of 10 ng/mL recombinant

human TNFα (Invitrogen), 2.5µM heme (Sigma), or both for 4 hours in either nor-

moxic (20% O2) or hypoxic (1% O2) conditions prior to adding 500,000 monocytes/ml.

THP-1 monocytes were allowed to adhere for 45 minutes prior to washing with PBS,

and co-cultures adhered to HAECs were maintained for an additional 20 hours un-

der normoxic or hypoxic oxygen conditions. Indirect co-cultures were generated by

suspending 500,000 monocytes/mL above pre-stimulated HAECs using a transwell

insert with a 0.2m pore size for 20 hours. For JNK inhibition studies, HAECs were

preconditioned with 10 µg/mL of SP6000125 (EMD Biosciences) for one hour prior

to addition of THP-1s and co-culture.

3.2.3 Monocyte cell counts

Prior to co-culture, HAECS were stained with 5µM cell tracker red (Life Technolo-

gies) for 15 minutes followed by 3, 5 minute washes with sterile PBS. Simultaneously,
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THP-1 monocytes were incubated in a 5µM dilution of cell tracker blue (Life Tech-

nologies) for 15 minutes, followed by 3, 5 minute washes. THP-1 monocytes were then

allowed to adhere as described previously, and fluorescent images were taken, and cell

counts were detected using automated segmentation algorithms based upon Otsu

global thresholding within Cell Profiler (Broad Institute). For enhanced contrast,

fluorescent images were pseudocolored such that HAECs appear blue and THP-1

monocytes appear green.

3.2.4 Multiplex cathepsin zymography

Cathepsin zymography was performed as described previously [147]. Determination

of cathepsin V band required incubation in acetate buffer, pH 4. Gels were imaged

using an ImageQuant 4010 system (GE Healthcare). Images were inverted in Adobe

Photoshop and densitometry was performed using Scion Image.

3.2.5 in situ zymography

Co-cultures of HAECs and THP-1s monocytes were prepared as above; after the 20

hour incubation time, cultures were rinsed with PBS and incubated in zymography as-

say buffer (0.1M sodium phosphate buffer, 1mM EDTA, 2mM DTT, pH 6.0) contain-

ing 0.5mM Z-GPR-MβNA (Enzo) and 1mM 5-nitrosalicylic acid (Sigma). To isolate

cathepsin K signal, serine proteases were inhibited with 1mM PMSF (Sigma), matrix

metalloproteinases (MMPs) were inhibited with 10 mM EDTA (Sigma), and cathep-

sin B was inhibited with CA-074 (EMD Biosciences). 5µM of the broad-spectrum

cathepsin inhibitor, E-64 (EMD Biosciences), was added for negative controls. Cul-

tures were incubated for 8 hours, washed, and imaged using a Nikon Ti-E fluorescent

microscope. Fluorescence was quantified by averaging pixel intensity across images

of a given area using ImageJ.
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3.2.6 Phosphorylated kinase analysis with Bioplex

HAEC or co-culture lysates were prepared according to Bioplex instructions (BioRad),

and beads conjugated with antibodies for phosphorylated Akt, extracellular signal-

regulated kinases 1 and 2 (ERK 1/2), c-Jun NH2-terminal kinase (JNK), and c-Jun

(BioRad) were incubated overnight, followed by labeling with biotinylated secondary

antibodies for 1 hour, then with avidin/streptavidin conjugated with phycoerythrin.

Phosphorylated kinase levels were measured using a BioPlex 200 System (BioRad).

3.2.7 Statistical Analysis

Each experimental condition was repeated with a minimum of three biological repli-

cates and each data point is presented as the mean value and standard error of the

mean. Representative images are shown. Unpaired student t-tests were used to de-

termine statistical significance (*p<0.05) between most experimental groups.

3.3 Results

3.3.1 TNFα, but not heme or hypoxia, increase monocyte adhesion to
endothelial cells

One of the initiating factors of arterial remodeling is the activation of vascular en-

dothelial cells to promote monocyte adhesion. In sickle cell disease, vaso-occlusive

crises create regions of local hypoxia, and increased levels of TNFα and heme are

known to induce endothelial dysfunction. Therefore, we sought to determine how

TNFα, heme, and oxygen levels independently and synergistically induce monocyte

adhesion to endothelial cells. Co-cultures of human aortic endothelial cells (HAECs)

and THP-1 monocytes were generated as previously described. TNFα induced 2.5-3

times more monocytes to adhere to endothelial cell cultures (p≤0.05). Interestingly,

oxygen levels had no significant effect on monocyte adhesion (Fig 3-1). Furthermore,

heme did not significantly increase monocyte adhesion, but instead reduced the po-

tency of TNFα-induced monocyte adhesion, although not significantly suggesting that
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heme may interfere with ECs ability to respond to inflammatory cytokines (Fig 3-2).

3.3.2 TNFα and monocyte adhesion synergistically induce cathepsins K
and V

To determine how TNFα and heme,individually and cooperatively, regulate cathepsin

activity in large artery endothelial cells, we co-cultured human aortic endothelial cells

(HAECs) with and without TNFα and heme, as previously described. TNFα induced

cathepsin K activity (37kDa) in all conditions regardless or oxygen level and increased

cathepsin V activity (35kDa). Interestingly, heme appeared to slightly decrease the

induction of cathepsin K in normoxic conditions but intensified its activity in hypoxic

conditions (Fig 3-3)

Furthermore, TNFα-stimulated active cathepsin K (37 kDa) in HAECs and HAEC/-

monocyte co-cultures, and also increased cathepsin V expression and activity (35 kDa)

by two-fold (Fig 3-4A; n=3, p<0.05). THP-1 monocytes alone did not stimulate

cathepsin K activity, but co-culture with endothelial cells stimulated a 50% increase

in cathepsin V activity (Fig 3-4A lane 3). TNFα and co-culturing with THP-1 mono-

cytes stimulated a 460% increase in cathepsin V active enzyme compared to HAEC

controls (Fig 3-4A lane 6; n=3, p<0.05).

In order to ascertain if the increased active cathepsin observed in the co-cultures

was mediated by direct monocyte-endothelial cell contacts, paracrine factors, or some

combination of both, we implemented a transwell culture system permitting exchange

of soluble factors between the cell types, while being physically separated by a 0.22

µm pore size filter. Indirect communication between monocytes and endothelial cells

failed to increase cathepsin V activity as high as direct contact cultures; additionally,

there was no detectable cathepsin K activity without TNFα stimulation (Fig 3-4B).
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Figure 3-1: TNFα induces increased monocyte adhesion independent of
environmental oxygen Confluent HAEC cultures were stained with 5µM of cell
tracker red prior to stimulated with or without 10ng/mL TNFα. Cultures were
then maintained in either normoxic (20% O2) or hypoxic (1% O2) conditions for 4
hours, after which cell tracker blue labeled monocytes were added. TNFα induced
significantly higher levels of monocyte adhesion to HAECs, but oxygen level had no
significant effect compared to condition matched controls. Images were pseudocolored
for enhanced contrast. (n=6, § p<0.05, SEM bars shown.)21



Figure 3-2: Heme does not significantly alter monocyte adhesion to large
artery endothelial cells. Confluent HAECs were stained with 5µM cell tracker
red stimulated and stimulated with 2.5µM heme; select cultures were simultaneously
stimulated with 10ng/mL TNFα for 4 hours in either normoxic or hypoxic conditions
prior to monocyte co-culture. Neither heme nor heme in combination with TNFα
significantly increased monocyte adhesion regardless of oxygen level. (n=6, § p<0.05,
SEM bars shown.)
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Figure 3-3: TNFα induces cathepsin K activity in large artery endothelial
cells. Cell lysates were obtained from endothelial cell cultures conditioned with
10ng/mL TNFα, 2.5µM heme, or both in either normoxic (20% O2) or hypoxic (1%
O2). Cathepsin activity as assayed using multiplex gelatin zymography.

3.3.3 TNFα turns on cathepsin K in endothelial cells

To confirm the identity of the TNFα-dependent, 37kDa active band as cathepsin K,

HAECs were transfected with CMVSport6 plasmid with cathepsin K gene to drive

constitutive overexpression. We achieved 25% transfection efficiency as estimated

from parallel transfections with GFP vector with same concentration and protocol

(data not shown). Lysates from transfected HAECs were loaded for zymography in

the same gel as lysates from HAECs stimulated with TNFα or vehicle, and results

are shown in figure 3-5. Transfected HAECs displayed an active band at the same

electrophoretic migration distance as that of HAECs stimulated with TNFα, and with

greater intensity than control cells confirming the 37kDa band as cathepsin K (Fig 3-

5A). Further confirmation was achieved with an exclusionary cathepsin zymography

modification; we previously demonstrated that lowering the pH from 6 to 4 during

overnight incubation selects for cathepsin V activity and reduces the cathepsin K

signal [147]. When incubated at pH 4, the upper 37 kDa band intensity diminished in

the TNFα-stimulated samples, but cathepsin V (35 kDa) signal remained detectable
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Figure 3-4: TNFα and direct monocyte adhesion induced cathepsin K and
V activities in endothelial cell-monocytes co-cultures. Endothelial cells, THP-
1 monocytes, and co-cultures were conditioned with 10 ng/mL TNFα. Monocytes
were allowed to interact either (A) directly (indicated by ”D”), or (B) indirectly,
suspended above in a transwell insert with a 0.2µm pore size (indicated by ”I”). (A)
Cell lysates were collected and loaded for cathepsin zymography. Cathepsin K active
enzyme bands were quantified with densitometry and normalized to HAEC, THP-1,
TNFα samples, and cathepsin V active enzyme bands were normalized to unstimu-
lated endothelial cell controls (n=7, *p<0.05, # represents significant difference from
EC control, SEM bars shown). (B) Lysates from transwell cultures were also collected
and loaded for zymography and active enzyme quantified with densitometry (n=3,
*p<0.05, SEM bars shown).
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under both conditions (Fig 3-5) confirming the upper band as cathepsin K.

Quenched, fluorescent synthetic substrates are commonly used to quantify the ac-

tivity of cathepsin family members in cells and in vitro studies [76, 119, 147], and we

used this method to identify TNFα stimulated cathepsin K activity in situ as increased

fluorescence captured by microscopy. After HAECs were stimulated with TNFα, cul-

ture media was replaced with zymography assay buffer containing the cathepsin K

cleavable substrate Z-GPR-MβNA (5 µM), and fluorescent images were captured. To

select for the cathepsin K activity among other proteases that can cleave this sub-

strate, parallel cultures were inhibited with 5 µM E-64 to block all cathepsin activity

or with a protease inhibitor cocktail (10 µM CA-074, 1 mM phenylmethanesulfonyl

fluoride (PMSF), and 10 mM EDTA to inhibit cathepsin B, serine proteases, and

matrix metalloproteinases, respectively) thereby identifying the residual activity as

cathepsin K. TNFα stimulation increased total fluorescent intensity, and more im-

portantly, the fluorescence due to cathepsin K seen after incubation with the protease

inhibitor cocktail (Fig 3-5C). E-64 incubation significantly reduced fluorescent inten-

sity as expected, as shown in the picture and indicated by the dashed line on the

graph (Fig 3-5C,D).

3.3.4 TNFα stimulation and monocyte interactions with endothelial cells
increased JNK and Akt phosphorylation

Next, the intracellular signal cascades initiated by TNFα and THP-1 monocyte adhe-

sion, which appeared to have increased cathepsin K and V activities, were investigated

at baseline (0 hours), after TNFα stimulation and monocyte binding (4 hours), and

six hours of co-culture (10 hours). Co-cultures were maintained for 6 hours instead

of 20, to shorten the length of time between stimulation and analysis to quantify the

phosphorylated kinase signal before it was quiesced. Cell lysates were analyzed for

phosphorylation of Akt, ERK1/2, JNK, and c-Jun using Bioplex technology. JNK

and its downstream signaling protein substrate, c-Jun showed the greatest activation
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Figure 3-5: TNFα turns on cathepsin K activity in endothelial cells. (A) ECs
were transfected with cathepsin K gene on pCMVSport6 to drive overexpression. Cell
lysates collected from HAECs treated with and without 10 ng/mL TNFα, and ECs
transfected with cathepsin K plasmid were lysed, prepared, and loaded for cathepsin
zymography. (B) Cell lysates collected from HAECs treated with and without 10
ng/mL TNFα were incubated in assay buffer of pH 4 or 6 to observe the disappearance
of the 37 kDa cathepsin K band at pH 4. The cathepsin K bands and TNFα stimulated
bands appeared at the same molecular weight in the zymogram. (C) HAECs were
stimulated with 10 ng/mL TNFα combined with either 10g/mL anti-TNFα antibody,
or isotype controls. Cell lysates were collected and cathepsin activity was assessed
via gelatin zymography. (D) For in situ zymography, endothelial cells treated with
or without 10 ng/mL TNFα were incubated in zymography assay buffer containing
1mM 5-NSA and 0.5 mM Z-GPR-MβNA only or 10mM EDTA, 2mM DTT, 1mM
PMSF, and 10µM CA-074 to select for cathepsin K activity, endothelial cells were
also treated with 5µM E-64 to block all cathepsin activity. (E) Fluorescent images of
cultures were taken and mean fluorescence intensity for total fluorescent signal and
cathepsin K specific cathepsin activity was quantified.
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in response to TNFα stimulation by 2.8 and 5.3 fold, respectively (Fig 3-6, n=3,

p<0.01). Akt phosphorylation was significantly increased by TNFα stimulation and

monocyte binding (Fig 3-6, n=3, p<0.01). There were no changes in ERK 1/2 phos-

phorylation in any condition for all time points measured (Fig 3-6).

JNK inhibition significantly decreased TNFα and THP-1 monocyte induced cathep-

sin K and V activities. Since TNFα stimulation of HAECs increased cathepsin K and

V activities, and JNK and c-Jun were highly activated in response, we next tested

the hypothesis that inhibiting JNK pathway would reduce cathepsin K and V activ-

ity. Endothelial cells were incubated for 1 hour with the JNK inhibitor SP6000125

(10 µM), followed by stimulation with 10 ng/mL TNFα or vehicle for 4 hours, and

co-culture with THP-1 monocytes. Inhibition of JNK significantly reduced cathepsin

K active enzyme by 49% in HAEC cultures stimulated with TNFα and by 39% in

co-cultures stimulated with TNFα (Fig 3-7; n=3, p<0.05). In the absence of TNFα

stimulation, there was no detectable cathepsin K activity. A similar effect was ob-

served for cathepsin V; JNK inhibition reduced TNFα stimulated active cathepsin V

by 60% (n=3, p<0.005) in HAECs, by 27% in co-cultures (n=3, p<0.005), and by

81% in TNFα stimulated co-cultures (n=3, p<0.001) (Fig 3-7).

3.4 Discussion

Increased cathepsin activity has been linked to tissue destructive mechanisms in the

cardiovascular system including atherosclerotic elastic lamina degradation [129, 111],

stent restenosis [23, 42], abdominal aortic aneurysm formation [1], and heart valve

remodeling under hypertensive conditions [110]. The identification of TNFα and

monocyte adhesion as both separate and partnering mediators of cathepsins K and

V activation in endothelial cells via JNK signaling provides new insight into the

initiation of proteolytic remodeling in cardiovascular diseases. While the progression

of arterial remodeling in atherosclerosis is well described, little is known of the initial
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Figure 3-6: TNFα and monocyte interactions increase JNK and Akt phos-
phorylation. Confluent HAECs and co-cultures were pre-conditioned with 10ng/mL
TNFα prior to monocyte adhesion as described earlier. HAEC and co-culture cell
lysates were collected for kinase analysis using the BioPlex 200TM machine that uses
Luminex technology. Kinase lysates were collected prior TNFα stimulation (0 hour),
4 hours post stimulation (4 hours), and then after another 6 hours of co-culture with
monocytes (10 hours). Levels of phosphorylated (A) ERK1/2, Akt, JNK, and c-Jun
were measured and phosphorylated protein signal was normalized to unstimulated
EC control (n=3, *p<0.05, SEM bars shown).
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Figure 3-7: Cathepsins K and V activities induced by THP-1 monocytes
are significantly reduced by JNK inhibition with SP6000125. (A) HAECs
were incubated with or without 10µM of SP6000125 for 1 hour, followed by condition-
ing with TNFα or vehicle for 4 hours. THP-1 monocytes were subsequently added,
non-adhered cells were removed, and co-cultures were maintained for an additional
20 hours. Cell lysates were collected analyzed via cathepsin zymography. (B) Den-
sitometric analysis quantified cathepsin K and cathepsin V activity (n=3, *p<0.05,
SEM bars shown).
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degradation or breaks in elastic lamina that will later result in smooth muscle cell

phenotypic switch and migration into neointimal space to initiate lesion formation.

Here we propose that induction of cathepsin expression and mature, active cathepsins

by monocyte binding to endothelial cells during the earliest steps participates in this

initial elastin proteolysis.

Indirect contact between the two cell types increased cathepsin activity, but direct

monocyte-endothelial cell contact induced even higher levels of active cathepsins K

and V activity, even in the presence of TNFα, suggesting that juxtacrine communica-

tion is involved. Pro-TNFα present on monocyte plasma membranes is proteolytically

cleaved to release the soluble cytokine [50]. Soluble TNFα then binds primarily to

TNFR1 with low affinity for TNFR2, but membrane bound pro-TNFα has greater

affinity for TNFR2 [136]. The direct contact between monocytes and endothelial

cells may place the pro-TNFα on monocyte surfaces in close enough contact to lig-

ate TNFR2 on endothelial cell surfaces, which may be a mechanism to explain the

elevated induction of cathepsin activity with direct vs. indirect contact co-cultures

(Fig 3-4B). Stimulation of either TNFR1 or TNFR2 pathway with soluble TNFα or

pro-TNFα on monocyte surfaces may explain the differential regulation of cathepsins

K and V in these results, but further studies are still needed.

The significant effect of JNK inhibition (Fig 3-7) on reducing cathepsin K and V

activity in the co-cultures and after TNFα stimulation implicates JNK signaling cas-

cade as a potentially successful target for therapeutic intervention. Although JNK in-

hibition has been shown to block ICAM-1 expression [25, 56], our studies did not show

a reduction in monocyte adhesion after culturing with the JNK inhibitor, SP6000125

(data not shown) but did reduce cathepsin activity in response. It was shown previ-

ously that the transcription factor AP-1, comprised of the subunits c-fos and c-Jun,

a target of JNK, stimulates cathepsin K promoter activity in macrophages [100], so

the link shown here between JNK activation downstream of TNFα stimulation and
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cathepsin K and V induction may involve AP-1 as well and further investigation of

these pathways may be informative for reducing proteolysis during cardiovascular

disease progression due to multiple cell types and their heterotypic interactions.
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CHAPTER IV

SICKLE CELL DISEASE ACTIVATES PERIPHERAL

BLOOD MONONUCLEAR CELLS TO INDUCE

CATHEPSINS K AND V ACTIVITY IN ENDOTHELIAL

CELLS1

4.1 Introduction

Sickle cell disease is a genetic disorder that causes in vivo polymerization of hemoglobin

molecules into rigid fibers within red blood cells, deforming them in the canonically

described ”sickle” shape. Rigid, sickled red blood cells and the byproducts of their

hemolysis cause chronic vascular damage and increase systemic levels of inflammatory

cytokines, mobilized mononuclear cells [30], and pathological levels of increased mono-

cyte adhesion to the endothelium [133, 10]. Overall, these pathological inflammatory

conditions and mononuclear cell-endothelial cell interactions may contribute to in-

timal thickening, and lumen narrowing seen in pulmonary hypertension and stroke

lesions of children; pulmonary hypertension is responsible for 20-30% of sickle cell

related deaths in adult patients [85, 143] and 11% of children with sickle cell disease

will suffer from a major stroke by the age of 16.

Development of vascular leasions in sickle cell disease, like those that lead to

stroke in young children, is the result intima-media thickening of the arterial wall

[13, 81, 88]. The arterial remodeling that is observed in sickle cell disease has many

similarities to what has been seen in other cardiovascular remodeling diseases, such

1Modified from: Keegan, P. M., Surapaneni, S., & Platt, M. O. (2012). Sickle cell disease
activates peripheral blood mononuclear cells to induce cathepsins k and v activity in endothelial
cells. Anemia, 2012, 201781. doi:10.1155/2012/201781
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as atherosclerosis, where mononuclear cell infiltration of the subendothelial space,

degradation of the elastic lamina, and subsequent smooth muscle cell proliferation

mediate lesion progression and luminal narrowing [133]. These similarities suggest

that common mechanisms for arterial remodeling may exist between the well-studied,

well-characterized atherosclerosis and the less understood mechanisms of sickle cell

disease.

Arterial remodeling can be defined as changes in the composition of proteins, cell

types, and even cell phenotypes that induce chronic effects on the structure, mechani-

cal properties, and total health of the artery [14, 13, 88, 81]. This includes degradation

of old matrix by newly activated proteases as well as synthesis and deposition of new

extracellular matrix proteins. Cysteine cathepsins, one such family of proteases up-

regulated in arterial remodeling [14, 13, 112], belong to the papain superfamily of

proteases and contain the most potent human collagenases and elastases [150]. In-

creased cathepsin activity has been linked to tissue destruction in the cardiovascular

system with atherosclerotic elastic lamina degradation [111, 129], stent restenosis

[23, 42], abdominal aortic aneurysm formation[1], and heart valve remodeling under

hypertensive conditions [112].

Two cathepsins in particular have gained significant interest in their role in arterial

remodeling in cardiovascular disease. Cathepsin K is the most potent human collage-

nase yet identified[44], as well as an extremely powerful elastase [59, 26]. Additionally,

cathepsin K has been shown to be highly expressed in atherosclerotic lesions where

it degrades arterial collagen and sub-endothelial elastic lamina [129, 111]. Cathepsin

V is the most powerful mammalian elastase yet identified, and is expressed in human

monocyte-derived macrophages [150]. Studies have shown that the human cathepsin

V homolog, murine cathepsin L [21, 137], significantly contributes to cardiovascular

disease in mouse models [149, 112]. Neither of these two enzymes have been linked

to sickle cell disease induced vascular wall remodeling and pathology.
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In this study, we evaluated the potential involvement of cathepsin-mediated arte-

rial remodeling in sickle cell disease by studying the effects of TNFα stimulation and

adhesion of mononuclear cells isolated from individuals homozygous for the sickle mu-

tation on endothelial cell expression of activated cathepsins K and V. We employed

a novel, multiplex cathepsin zymography technique to simultaneously quantify the

active forms of cathepsins K, L, S, and V in response to the different stimulation

and co-culture conditions [28]. Furthermore, we investigated the phosphorylation of

key kinases to identify intracellular signaling cascades linking TNFα stimulation and

mononuclear cell binding to increased levels of active cathepsins K and V as a pro-

posed model for the unique and accelerated tissue remodeling observed in arteries of

children and adults living with sickle cell disease.

4.2 Methods

4.2.1 Ethical Statement

All protocols were reviewed and approved by the Georgia Institute of Technology

Institutional Review Board, and informed consent was received from all participants.

In the case of minors, assent was provided by parents/guardians.

4.2.2 Culture of Primary Human Aortic Endothelial Cells

Human aortic endothelial cells (HAECs) (Lonza) were cultured in MCDB medium

131 (Mediatech) containing 10% fetal bovine serum (FBS), 1% L-glutamine, 1% peni-

cillin/streptomycin, and 1% endothelial cell growth serum (ECGS). Cells were main-

tained with 5% CO2 at 37◦C.

4.2.3 TNFα ELISA

Whole blood samples were allowed to coagulate for 6 hours, followed by centrifu-

gation at 900g for 30 minutes to remove platelets and cells. The supernatant was

collected and TNFα levels were quantified using an enzyme-linked immunosorbent
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assay (ELISA) specific for soluble, human TNFα (R&D Biosystems). Absorbance

values were recorded using Synergy 4TM (Biotek) at 450nm with correction readings

at 540nm. Quantification of TNFα protein levels was calculated by generating a four

parameter logistic standard curve using Gen5TM software (Biotek).

4.2.4 Peripheral Blood Mononuclear Cell Isolation

Whole blood samples were obtained from males and females homozygous for sickle

(SS) or normal (AA) hemoglobin; patients on hydroxyurea, chronic transfusion, or

that had experienced a recent crisis were excluded from this study. Whole blood sam-

ples were centrifuged against a Ficoll-Paque density gradient (density: 1.077g/mL;

GE Healthcare) for 30 minutes at 2450 rpm to separate the buffy coat layer. After

centrifugation, peripheral blood mononuclear cells (PBMCs) were aspirated, washed

in PBS, and pelleted by centrifugation for 10 minutes. The isolated cells were then

washed with a red blood cell lysis buffer (0.83% ammonium chloride, 0.1% potassium

bicarbonate, and 0.0037% EDTA) for seven minutes to remove any contaminating

RBCs. Cell number and viability were determined using a Vi-Cell (Beckman Coul-

ter).

4.2.5 PBMC Adhesion Assay

HAECs were preconditioned in normal growth media in the presence or absence of

10 ng/mL recombinant human TNFα (Invitrogen) and cultured for 4 hours prior

to the addition of 500,000 PBMCs/ml. Isolated PBMCs were allowed to adhere

for 45 minutes prior to washing three times with PBS, and then co-cultures were

maintained for an additional 20 hours. For JNK inhibition studies, endothelial cells

were preconditioned with 10 µg/mL of SP600125 (EMD Biosciences) for one hour

prior to addition of media containing vehicle, 10 ng/mL TNFα, and/or 10 µg/mL of

SP600125.
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4.2.6 Phosphorylated Kinase Screening

Cell lysates were prepared per BioPlex Suspension Array SystemTM instructions

(BioRad). Lysates were incubated overnight with fluorescently labeled beads specific

for the phosphorylated forms of Akt (Ser473), extracellular signal-regulated kinases 1

and 2 (Thr202/Tyr204, Thr185/Tyr187), c-Jun NH2-terminal kinase (JNK) (Thr 183

/Tyr 185), and c-Jun (Ser63) (BioRad). The samples were then washed and incubated

with kinase-specific, biotinylated antibodies for 2 hours, followed by treatment with

avidin/streptavidin tagged with phycoerythrin. Phosphorylated kinase levels were

measured using a BioPlex 200 System (BioRad).

4.2.7 Multiplex Cathepsin Zymography

Cathepsin zymography was performed as described previously [78]. Determination of

cathepsin V band required incubation in acetate buffer, pH 4 [147]. Gels were imaged

using an ImageQuant 4010 system (GE Healthcare). Images were inverted in Adobe

Photoshop and densitometry was performed using Scion Image.

4.2.8 Statistical Analysis

Each experimental condition was repeated with a minimum of three biological repli-

cates and each data point is presented as the mean value and standard error of the

mean. Representative images are shown. Unpaired student t-tests were used to de-

termine statistical significance (*p<0.05) between most experimental groups.

4.3 Results

4.3.1 Sickle cell disease preconditions circulating PBMCs to induce cathep-
sin K activity

Whole blood samples were obtained from donors homozygous for normal (AA) or

sickle (SS) hemoglobin. First, an ELISA was run to quantify blood serum levels of

TNFα. SS donors had 5.43 ± 2.3 pg/ml of TNFα compared to 0.3 ± 0.3 pg/ml of
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TNFα in AA controls (n=3 p<0.05), an almost 20-fold increase (Fig 4-1A). TNFα

stimulation of endothelial cells increased the adhesion of AA PBMCs, compared to

unstimulated EC cultures (Fig 4-1B); however, the number of adhered SS PBMCs

was 100 times higher than TNFα stimulated AA PBMC co-cultures (Fig 4-1B; n=3,

p¡0.001). Cells were cultured together for an additional 20 hours for cathepsin in-

duction, prior to lysing, collection, and multiplex cathepsin zymography. SS PBMCs

significantly increased levels of active cathepsins K and V when co-cultured with en-

dothelial cells, and without exogenous TNFα stimulation (Fig 4-1C), suggesting that

the SS PBMCs were preconditioned to induce this activity. AA PBMC co-cultures

in the absence of TNFα lacked detectable bands of active cathepsin K (Fig 4-1C, left

lane).

4.3.2 TNFα stimulation and PBMC interactions with endothelial cells
activate JNK signaling

To investigate the intracellular signaling cascades increasing the levels of active cathep-

sins K and V downstream of TNFα and PBMC adhesion cues, we measured phos-

phorylation of JNK, c-jun, Akt, and ERK1/2 using Bioplex/Luminex technology, a

quantitative bead-based immunofluorescent assay that allowed measurement of all

four signals in one cell extract after 24 hours of co-culture. JNK and its downstream

signaling protein substrate, c-Jun showed the greatest activation in response to TNFα

stimulation with or without AA or SS PBMCs (Fig 4-2A, B, n=3, p<0.01) with c-

Jun activation as high as 6-fold that of the EC controls. Akt phosphorylation was

significantly increased by AA PBMC binding alone even without TNFα stimulation

(Fig 4-2C, n=3, p<0.01). There were no changes in ERK 1/2 phosphorylation in any

condition for all time points measured (Fig 4-2D).
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Figure 4-1: Sickle cell disease preconditions circulating peripheral blood
mononuclear cells to induce cathepsin K activity. Whole blood samples were
obtained from donors homozygous for the normal β-globin allele (AA) and homozy-
gous for the sickle allele (SS). (A) Baseline serum levels of TNFα were quantified
using an ELISA specific for human TNFα (n = 3, *p<0.05, SEM bars shown). (B)
PBMCs were isolated via differential centrifugation through a density gradient. For
co-cultures, confluent EC cultures were preconditioned with 10 ng/mL TNFα for 4
hours, prior to the addition of either AA or SS PBMCs. Nonadherent cells were
washed away, and co-cultures were maintained for an additional 20 hours. Repre-
sentative images of co-cultures were used for mononuclear cell adhesion counts. (C)
Cells were lysed and cathepsin K activity was assessed using multiplex cathepsin
zymography and quantified via densitometry (n = 10, *p<0.05).
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Figure 4-2: TNFα and PBMC interactions increase JNK and Akt phospho-
rylation. Confluent HAECs were cocultured with peripheral blood mononuclear cells
isolated from AA or SS donors, and lysates were collected for kinase analysis. Levels
of phosphorylated (A) JNK, (B) c-Jun, (C) Akt, and (D) ERK1/2 were measured,
and phosphorylated kinase signals were normalized to unstimulated HAEC control
(n = 3,*p<0.05, SEM bars shown).
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4.3.3 Cathepsins K and V activities induced by sickle cell disease PBMCs
were significantly reduced by JNK inhibition

Since JNK and c-jun phosphorylation were significantly upregulated, we tested if in-

hibiting this signal cascade would block the increase in levels of active cathepsins K

and V by endothelial cells after adhesion and co-culture with SS PBMCs. HAECs

were cultured with or without SP600125, a JNK inhibitor, for 1 hour prior to addi-

tion of 10 ng/mL TNFα or vehicle. AA or SS PBMCs were subsequently added, and

non-adhered cells were washed away. Cell lysates were collected after 24 hours, and

cathepsin activity was assessed through multiplex cathepsin zymography. SP600125

significantly reduced the upregulated cathepsin K and cathepsin V activities of un-

stimulated SS PBMCs when co-cultured with endothelial cells by 48% and 29%,

respectively (Fig 4-3; n=5, p<0.05).

4.4 Discussion

Endothelial cell expression of cathepsins and increased cathepsin-mediated elastase

activity are upregulated during atherosclerotic development and induced by inflam-

mation and altered hemodynamics [11, 112, 111, 122, 129] which are both present in

sickle cell disease [11], leading to our hypothesis that elevated TNFα and increased

circulating mononuclear cells would stimulate increased endothelial cell cathepsin ac-

tivity. This elevated activity may contribute to arterial remodeling in sickle cell

disease. The findings of this study specifically implicate TNFα and mononuclear cell

binding to endothelium as key mediators, and that circulating mononuclear cells in

sickle cell disease are predisposed to induce cathepsin proteolytic activity.

Here, we have specifically shown that TNFα stimulation increased the expres-

sion and activity of the most potent mammalian collagenase and elastase, cathepsins

K and V, respectively (Fig 4-1). Additionally, SS PBMCs significantly increased

cathepsin K activity in endothelial cells in the absence of TNFα, suggesting that
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Figure 4-3: Cathepsins K and V activities induced by sickle cell dis-
ease PBMCs are significantly reduced by JNK inhibition with SP600125.
HAECs were incubated with or without 10 µM of the JNK inhibitor, SP600125, 1
hour prior to TNFα stimulation, as described previously. Co-cultures with AA or
SS PBMCs were maintained for an additional 20 hours. Cell lysates were collected
and analyzed via multiplex cathepsin zymography. Densitometric analysis quantified
active cathepsins K and cathepsin V (n = 3, *p< 0.05, SEM bars shown).
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they were preconditioned in the blood for adhesion to endothelium and cathepsin K

induction (Fig 4-1); AA PBMCs required TNFα stimulation to reach these higher

levels of cathepsin K and V (Fig 4-1). These findings are consistent with reports

that circulating sickle erythrocytes increase mononuclear cell activation and adhe-

sion to endothelial cells[153], and support our hypothesis that the blood milieu of

people living with sickle cell disease predisposes circulating mononuclear cells to ad-

here to endothelium and promote arterial remodeling. Previous studies have already

established that the circulatory environment in sickle cell disease preconditions pe-

ripheral blood mononuclear cells into a pathologically activated state, where these

cells produce 139% more TNFα per cell than control mononuclear cells [14, 153];

these mechanisms may be at play here leading to increased active cathepsins K and

V.

Inhibition of JNK signaling with SP600125 reduced the inflammation-induced ac-

tivation of cathepsins K and V in AA and SS PBMC co-cultures with endothelium

(Fig 4-3). These findings highlight the role of JNK signaling as an integration control

point and as a therapeutic target to inhibit the initiation of gene and protein expres-

sion in response to inflammatory stimuli resulting in endothelial cell upregulation of

cathepsins K and V protein and activity. More importantly, the predisposition of SS

PBMCs to induce these effects suggests that these novel mechanisms may be occur-

ring constantly in the vasculature of individuals with sickle cell disease. It will be

important to continue these studies by quantifying cathepsin activation of SS donors

with and without a history of stroke, or coupling these analyses with high transcra-

nial doppler velocity measurements which are known to be a risk factor for stroke, in

order to parse differential activation mechanisms potentially responsible for the in-

creased risk. Such investigations may reveal novel biomarkers relevant to stroke risk

prediction in pediatric patients and open new avenues for pharmaceutical therapies

to prevent the arterial remodeling and luminal narrowing that cause cardiovascular
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complications and death.

4.5 Conclusion

Elevated inflammatory factors and circulating mononuclear cells inherent to sickle

cell disease induce pathologically high levels of cathepsins K and V activity when

binding to and stimulating endothelial cells, increasing proteolytic activity that may

be involved in arterial wall remodeling to increase risk of stroke and pulmonary hy-

pertension. There is a pressing need for novel pharmaceutical targets to inhibit these

activities, and from this work, we propose that JNK, cathepsin K, and cathepsin V

are three new targets for inhibition to reduce pathological arterial remodeling in sickle

cell disease.
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CHAPTER V

NFKB AND JNK SIGNALING INTEGRATE

PATHOLOGICAL BIOMECHANICAL AND

INFLAMMATORY SIGNALS TO REGULATE

CATHEPSIN K PROTEOLYTIC ACTIVITY IN AORTIC

ENDOTHELIAL CELLS: IMPLICATIONS FOR CHRONIC

VASCULOPATHY IN SICKLE CELL DISEASE.1

5.1 Introduction

Sickle cell disease is a genetic disorder affecting nearly 100,000 Americans and millions

worldwide. Although commonly regarded as a hematological disorder characterized

by the unique, sickle red blood cells, people with sickle cell disease have an 11%

chance of stroke before the age of 20, with the highest risk between 2 and 5 years old

[10, 2, 115]. Post-mortem examination of the cerebral vasculature of children who

have suffered strokes revealed significant luminal narrowing, as well as delamination

and fragmentation of the internal elastic lamina of the internal carotid and middle

cerebral arteries [133, 53, 116]. Moreover, in contrast to other cardiovascular diseases

in which vascular remodeling develops over decades prior to clinical presentation,

arterial remodeling in children with sickle cell disease progresses at a dramatically

accelerated rate. Despite the high risk and rapid formation of arterial remodeling in

sickle cell disease, there currently exists no mechanistic understanding of how these

1Modified from: Keegan, P. M., Anbazhakan, S., Pace, B.S. & Platt, M. O. NFKB and JNK
signaling integrate pathological biomechanical and inflammatory signals to regulate cathepsin K
proteolytic activity in aortic endothelial cells: implications for chronic vasculopathy in sickle cell
disease. Manuscript in preparation

44



vascular lesions form or progress. However, the unique inflammatory and hemody-

namic circulatory environment in sickle cell disease led our group to hypothesize that

pathological proteolytic remodeling may play an important role in vascular lesion

development.

An often overlooked complication associated with sickle cell disease is the perpet-

uation of a chronic inflammatory syndrome characterized by elevated serum levels

of the inflammatory cytokine tumor necrosis factor alpha (TNFα); in fact, people

with sickle cell disease exhibit over 20-fold higher levels of baseline serum TNFα [67].

Additionally, people with sickle cell disease also have highly elevated numbers of cir-

culating monocytes and increased monocyte-endothelial cell interactions throughout

the vascular tree. Both elevated serum levels of TNFα and monocyte-endothelial cell

interactions have been strongly correlated with the initiation and progression of many

cardiovascular diseases characterized by arterial remodeling, such as atherosclerosis

[71, 91]. Work by our group has shown that arterial endothelial cells respond to both

elevated TNFα levels and interactions with sickle white blood cells by activating the

powerful elastase and gelatinase, cathepsin K [68, 67]. Cathepsin K has become of

particular interest in the context of arterial remodeling as it is the most powerful hu-

man collagenase, an extremely potent elastase [59], and has been strongly implicated

in the progression of several cardiovascular diseases such as atherosclerosis [83, 80]

and abdominal aneurisms [81]. In addition to responding to circulating inflammatory

signals, arterial endothelial cells are sensitive to biomechanical signals, such as blood

flow.

Endothelial cells are capable of monitoring and responding to hemodynamic shear

stress, generated by blood flow through a vessel. Alterations in hemodynamic shear

stress stimulate various cellular responses within endothelial cells, resulting in dy-

namic changes to the arterial environment. It is because of the strong mechanosensi-

tive nature of endothelial cells, and their ability to affect not only the function, but
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also structure, of the artery that hemodynamic shear stress represents of the crit-

ical mediators of arterial remodeling diseases [88, 60, 74]. Vessels exposed to high

magnitude, unidirectional shear stress (vasoprotective) statistically are not at risk

for pathological arterial remodeling [152, 49] while vessels exposed to low magnitude,

oscillatory shear stress (pro-remodeling) are at significantly higher risk for arterial

remodeling pathologies [73, 49]. Previous work done by our group and others have

shown that cathepsin K is also shear regulated, with pro-remodeling shear stress

stimulating increased cathepsin K expression and activity [27, 111].

In patients who have suffered a sickle cell related stroke, vascular lesions are com-

monly found in the cerebral and carotid arteries [90, 118, 2, 18, 48]. However, these

arteries may spontaneously develop regions of pro-remodeling shear stress due to ad-

hesion of red and white blood cell aggregations along the arterial wall [11] providing

a second, independent, pro-cathepsin K signal to the vascular wall. Taken together,

the cerebrovasculature of children with sickle cell disease represents a unique amal-

gam of inflammatory and biomechanical factors that, independently, are known to

activate cathepsin K; however, the interplay between TNFα and shear stress reg-

ulation of cathepsin activity in large artery endothelial cells remains unclear. In

this study, we developed an in vitro model to independently and combinatorially as-

sess physiologically relevant stimuli and define a mechanistic pathway by which large

artery endothelial cells simultaneously integrate TNFα stimulation and pathological

hemodynamic shear stress via the JNK and NFκB pathways to regulate cathepsin

expression and enzyme activity.
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5.2 Methods

5.2.1 Cell Culture and Actuation of Physiological Shear Stress

Human aortic endothelial cells (HAECs) (Lonza) were cultured in MCDB medium

131 (Mediatech) containing 10% fetal bovine serum (FBS), 1% L-glutamine, 1% peni-

cillin/streptomycin, and 1% endothelial cell growth supplement (ECGS) isolated from

bovine cerebral tissue. Vasoprotective and pro-remodeling shear stress profiles were

generated by digitizing physiological the physiological shear stress waveforms recoded

by Dai et al [32, 31]. The vasoprotective waveform, characterized by high, unidirec-

tional wall shear stress was obtained from the distal internal carotid artery as it is

a representative region protected from atherogenesis; conversely, the pro-remodeling

waveform was obtained from the carotid sinus due to it experiencing the highest

degree of low, oscillatory shear stress and being vulneratble to pathological arterial

remodeling. HAECs were grown to confluence in a 10cm dish, and stimulated with or

without 10ng/mL recombinant human TNFα (Invitrogen), then placed into a cone-

and-plate bioreactor, and exposed to vasoprotective or pro-remodeling shear stress

for 20 hours (Appendix A; Fig 5-1). For JNK inhibition studies, confluent HAECs

were stimulated with 10µg/mL of the JNK inhibitor SP6000125 (Invitrogen) for 1

hour prior to treatment with 10ng/mL TNFα. For NFκB inhibition studies, 5µM of

the inhibitor Bay 11-7082 (Sigma) which selectively and irreversibly inhibits NFκB

activation by blocking phosphorylation of IκBα was added to cultures for 1 hour prior

to stimulation with TNFα.

5.2.2 Multiplex Cathepsin Zymography and Western Blot

Cells were lysed using zymography lysis buffer (20 nM TrisHCl [pH 7.5], 5 mM

ethyleneglycoltetraacetic acid [EGTA], 150 mM NaCl, 20 mM β-glycerol phosphate,

10 mMNaF, 1 mM sodium orthovanadate, 1% Triton X-100, and 0.1% Tween 20) with

0.1% leupeptin [78, 147]. To assess cathepsin activity, cell lysates were analyzed using
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Figure 5-1: Physiological vasoprotective and pro-remodeling waveforms ac-
tuated by cone-and-plate bioreactor. Digitization of the time-dependent wall
shear stress functions at the atheroprotected and atheroprone regions of the human
carotid sinus as previously derived by Dai et al.[31]
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multiplex cathepsin zymography, as described previously [78, 147, 67, 68]. Gels were

imaged using an ImageQuant 4010 system (GE Healthcare). Images were inverted

in Adobe Photoshop and densitometry was performed using NIH ImageJ. Western

blotting was used to determine phosphorylated and total c-Jun N-terminal kinase

(JNK); Cell Signaling) and c-jun primary antibodies (Cell Signaling) and secondary

antibodies to be visualized with a LI-COR Odyssey scanner. Densitometry of labeled

nitrocellulose membranes was performed using NIH ImageJ.

5.2.3 Chromatin Immunoprecipitation Assay for Activator Protein 1

Isolation of HAEC genomic DNA for chromatin immunoprecipitation (ChIP) was

completed using the EZ-Chip system (Millipore). Briefly, after isolation of genomic

DNA, and fragmentation via sonication for 5 seconds at 15% amplitude followed by a

10 second rest was repeated 22 times for a total sonication time of 110 seconds. PCR

primers were synthesized based on previously identified using previously identified

binding regions for activator protein 1 (AP-1) on the cathepsins K geneGelb:1997tx.

The forward sequence, 5’-TCCTAACAGGAAAGGGGTAGGA-3’, and the reverse

sequence, 5’-AGACTGTCTTTGGTGGCAAAT-3’, were analyzed using the Basic

Local Alignment Search Tool (BLAST; NIH) to ensure minimal cross reactivity with

other sequences prior to synthesis (Integrated DNA Technologies).

5.2.4 Quantification of cathepsin K mRNA

mRNA was isolated from shear conditioned HAEC cultures using RNeasy mini-

prep (Quiagen) and reverse transcribed to cDNA using the forward primer sequence

5’-ATATGTGGGACAGGAAGAGAGTTGT-3’ and the reverse primer sequence 5’-

GGATCTCTCTGTACCCTCTGCATTT-3’. Quantitative real time PCR was per-

formed and relative cathepsin K mRNA synthesis was quantified using ∆∆Ct
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5.2.5 Immunostaining

As described previously, confluent HAEC cultures were conditioned with 10ng/mL

TNFα, and maintained under static, vasoprotective, or pro-remodeling shear stress for

20 hours. Cells were rinsed with PBS three times, and fixed with 4% paraformalde-

hyde (PFA) for 10 minutes, rinsed with PBS, permeabilized using 0.2% Triton X,

and blocked with 3% BSA in PBS for 1 hour at room temperature. HAECs were

incubated overnight at 4C with monoclonal rabbit anti-cathepsin K (Cell Signaling;

1:100), monoclonal rabbit anti-phosphorylated c-Jun (Cell Signaling; 1:100), or mon-

oclonal rabbit anti-NFkB (Cell Signaling; 1:50). Cells were rinsed three times with

PBS, and then incubated with Alexa Fluor 488 conjugated secondary antibodies (In-

vitrogen; 1:150) for 1h at room temperature. Cultures were counterstained with

Alexa Fluor 568 phalloidin (10µg/mL; Invitrogen), and Hoechst (10mg/mL; Invitro-

gen), mounted, and cover slipped. Images were acquired using a Zeiss LSM 700-405

confocal microscope.

5.2.6 Statistical Analysis

Each experimental condition was repeated with a minimum of three biological repli-

cates and each data point is presented as the mean value and standard error of the

mean (SEM). Representative images are shown. Unpaired student t-tests were used

to determine statistical significance (*p<0.05) between most experimental groups.

5.3 Results

5.3.1 Vasoprotective shear stress is sufficient to reduce the amount of
active cathepsin K in endothelial cells

We first examined the regulation of cathepsin K in response to simultaneous integra-

tion of physiological shear stress with TNFα stimulation in large artery endothelial

cells. HAECs were grown to confluence and stimulated with TNFα and simultane-

ously exposed to either vasoprotective or pro-remodeling shear stress. Pro-remodeling
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shear stress (Fig 5-2 A, Lane 5) induced a 1.5-fold higher level of active cathepsin

K compared to TNFα-stimulated cells cultured in static conditions (Fig 5-2 A, Lane

2); co-stimulation of pro-remodeling shear stress with TNFα did not significantly

increase cathepsin K activity compared to pro-remodeling shear stress alone. Vaso-

protective cultures stimulated with TNFα exhibited a 0.5-fold decrease in cathepsin

K activity (Fig 5-2 A Lanes 4; n=3 p<0.05). Immunocytochemistry staining for intra-

cellular cathepsin K in HAECs indicated that TNFα-stimulation, and pro-remodeling

shear stress both increase protein expression of cathepsin K in HAECs. Conversely,

vasoprotective shear stress reduced staining of intracellular cathepsin K, even in the

presence of TNFα (Fig 5-2B). These findings suggest that biomechanical cues may be

capable of enhancing or repressing the proteolytic response to inflammatory stimuli.

Cystatins are potent physiological inhibitors of cathepsin activity, and are ubiq-

uitously expressed by all cell types in the body. Cystatin B primarily functions to

inhibit intracellular cathepsin activity activity, and while cystatin C primarily in-

hibits extracellular activity, it can be taken up by cells and inhibit cathepsins along

the endocytic pathway. We have so far observed that hemodynamic shear stress signif-

icantly reduces the amount of activate cathepsin K produced by arterial endothelial

cells; therefore we next hypothesized that hemodynamic shear stress may regulate

cathepsin activity through differential expression of cystatin B and C. Cultures were

immunostained for cystatin B protein expression showed no substantive changes in

response to either shear stress or TNFα stimulation, suggesting that the changes in

active cathepsin K levels as a result of either vasoprotective or pro-remodeling shear

stress are not likely due to increased cystatin B-cathepsin K interactions (Fig 5-3).

Additionally, we also investigated the potential for cystatin C to be shear regu-

lated. Immunostaining of sheared HAECs indicated that pro-remodeling shear stress

had markedly increased intracellular cystatin C levels compared to vasoprotective

shear stress (Fig 5-4), which is in apparent opposition to what observed cathepsin
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Figure 5-2: Vasoprotective shear stress reduces TNFα induced cathepsin
K protein and activity. Confluent HAECs were stimulated with 10 ng/mL TNFα,
and subjected to static conditions (lanes 1 & 2), vasoprotective (lanes 3 & 4), or
pro-remodeling (lanes 5 & 6) shear stress for 20 hours, (A) then lysed to quan-
tify cathepsin activity with multiplex cathepsin zymography and densitometry. Pro-
remodeling shear stress alone was sufficient to induce detectable levels of cathepsin
K activity (Lane 5 vs Lane 1); however, co-stimulation with TNFα did not result
in a synergistic effect. Conversely, cultures maintained under vasoprotective shear
stress reduced TNFα-mediated cathepsin K activity by 0.5-fold. * denotes statistical
significance with p<0.05. (B) Alternatively, cells were fixed with 4% paraformalde-
hyde, permeabilized with 0.2% Triton-X, and immunolabeled for cathepsin K protein
(green); cultures were counterstained with phalloidin (red) for actin, and Hoechst
(blue) for nuclei. Baseline cathepsin protein in HAECs was increased in response to
pro-remodeling shear stress, but vasoprotective inhibited this (n=3, representative
images shown). TNFα also stimulated an increase in cathepsin K activity in static
and pro-remodeling conditions, but was substantially reduced vasoprotective cultures
stimulated with TNFα.
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Figure 5-3: HAEC expression of cystatin B is not changed by TNFα and
shear stress stimulation. Confluent HAECs were stimulated with 10ng/mL TNFα,
and sheared with vasoprotective or pro-remodeling hemodynamic waveforms for 20
hours. Cultures were immunostained for expression of cystatin B (green), and coun-
terstained for nuclear DNA (blue), and actin filaments (red) for increased visualization
of the cell body.
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activity in Fig 5-2. However, cystatin C is secreted by cells soon after synthesis

and is likely to inhibit the intracellular cathepsin activity we assay for in this study.

Upregulation of cystatin C under proremodeling shear stress likely serves to protect

the extracellular environment from pathological remodeling caused by upregulated

cathepsin activity.

5.3.2 Physiological Shear Stress Regulates Cathepsin K Activity Inde-
pendently of JNK/c-Jun Signaling

Next, we investigated the intracellular kinase-signaling network that integrates bio-

chemical and biomechanical stimuli. Previously, our group established that TNFα-

dependent activation of cathepsin K activity in large artery endothelial cells is depen-

dent on the JNK/c-jun signaling axis [68]. Based upon the synergistic cathepsin K

activity in response to both biomechanics and TNFα, we then tested the hypothesis

that physiologically relevant shear stress would also modulate JNK and c-Jun phos-

phorylation, leading to changes in cathepsin K expression and activity. As expected,

TNFα alone resulted in 3.3-fold increase in JNK phosphorylation, and a 3.4-fold in-

crease in c-Jun phosphorylation compared to vehicle controls (Fig 5-5; n=3, p<0.05).

Interestingly, despite the previously established increase in cathepsin K activity, JNK

and c-Jun phosphorylation were not significantly increased by pro-remodeling shear

stress alone or in combination with TNFα, compared to static controls (Fig 5-5 C-

D; n=3 p>0.3). Furthermore, while vasoprotective cultures inhibited cathepsin K

activity, they did not significantly decrease phosphorylation of JNK or c-Jun, com-

pared to controls (Fig 5-5 A-B; n=3, p>0.8). Together, these data confirm that the

JNK/c-Jun signaling axis is involved in inflammatory cytokine induction of cathep-

sin K; however, the biomechanical shear stress regulation of proteolytic activity is

independent of JNK/c-Jun, suggesting regulation through a secondary, independent,

mechanism.
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Figure 5-4: Pro-remodeling shear stress increases cystatin C expression
in large artery endothelial cells. HAECs conditioned with pro-remodeling shear
stress had markedly more intense cystatin C signal (green) by immunostaining, com-
pared to cultures maintained under vasoprotective shear stress. Cultures were im-
munostained for expression of cystatin C (green), and counterstained for nuclear
DNA (blue), and actin filaments (red) for increased visualization of the cell body.
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Figure 5-5: TNFα stimulates JNK/c-Jun activation under vasoprotective
and pro-remodeling shear stresses. Confluent HAEC cultures stimulated with
or without 10ng/mL TNFα, and maintained under static, pro-remodeling, or vaso-
protective shear stress were lysed and phosphorylated and total protein levels of JNK
and c-Jun were assessed using Western blot. (A, B) TNFα, alone induces a 3-fold in-
crease in phosphorylation of JNK and c-Jun, relative to total protein levels. However,
vasoprotective shear stress does not significantly alter JNK or c-Jun phosphorylation
levels, regardless of TNFα stimulation. (C, D) Additionally, pro-remodeling shear
stress did not alter JNK or c-Jun phosphorylation levels, relative to vehicle or TNFα
static controls. * denotes p<0.05.
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We also tested the hypothesis that hemodynamic shear stress altered transcrip-

tional regulation of cathepsin K either by altering nuclear localization of phosphory-

lated c-Jun, or preventing binding of phosphorylated c-Jun to the promoter region

of the cathepsin K gene. Immunostaining of sheared endothelial cells indicated that

TNFα induced a substantial increase in phosphorylated c-Jun within the nucleus of

HAECs compared to vehicle, as expected (Fig 5-6 A). Pro-remodeling shear stress

alone also induced translocation of phosphorylated c-Jun compared to static vehicle

cultures, though to a lesser extent compared to that exhibited by TNFα stimulation

(Fig 5-6 A). Consistent with the Western blot results, vasoprotective shear stress did

not reduce TNFα-mediated phosphorylation or nuclear translocation of c-Jun (Fig 5-6

A). Furthermore, quantification of c-Jun binding to the cathepsin K promoter region

indicated that TNFα alone increased binding by 2.7-fold compared to vehicle, and was

not significantly decreased by vasoprotective shear stress. Vasoprotective shear stress

alone increased c-Jun binding by 8.3-fold, and TNFα co-stimulation with vasopro-

tective shear increased c-Jun binding to the cathepsin K promoter region by 28-fold

(Fig 5-6 B; n=4, *p<0.05). However, despite increases in phosphorylated c-Jun bind-

ing to the promoter region of the cathepsin K gene, quantification of cathepsin K

mRNA levels gene activity is significantly reduced under vasoprotective shear stress,

regardless of TNFα stimulation (Fig 5-6 C). Conversely, pro-remodeling shear stress

alone significantly increased cathepsin K gene activity (Fig 5-6 D), corroborating the

immunostaining and zymography data. Therefore, these data confirm that, while

shear stress influences both baseline and TNFα-mediated cathepsin K expression and

activity, the mechanism is independent of the established TNFα-dependent JNK/c-

Jun signaling axis.
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Figure 5-6: Vasoprotective shear stress does not block nuclear localiza-
tion of phosphorylated c-Jun. Confluent HAECs were stimulated with 10ng/mL
TNFα, and subjected to static conditions, vasoprotective, or pro-remodeling shear
stress for 20 hours. (A) Cells were fixed with 4% paraformaldehyde, permeabilized
with 0.2% Triton-X, and immunolabeled for phosphorylated c-Jun (green); cultures
were counterstained with phalloidin (red) for actin, and Hoechst (blue) for nuclei.
No detectable levels of phosphorylated c-Jun was observed in static or vasoprotec-
tive shear stress, but pro-remodeling cultures had increased slight increase in nuclear
localization of phosphorylated c-Jun. Stimulation with TNFα increased nuclear lo-
calization across all shear conditions. (B) Alternatively, cells were fixed with 4%
PFA, and lysed with a 1% SDS lysis buffer to recover chromatin-protein complexes.
Genomic DNA was sheared and isolated based on manufacturer’s instructions. TNFα
increased phosphorylated c-Jun binding to the cathepsin K promoter region by 2.7-
fold under static and by 28-fold under vasoprotective shear conditions. (C-D) Ad-
ditionally mRNA was isolated and cathepsin K gene expression was quantified with
qRT-PCR. n=3, * denotes statistical significance with p<0.05.
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5.3.3 Shear Stress Regulates Cathepsin K Gene Expression via NFκB
Signal Transduction

To elucidate the multi-pathway cross talk in the synergistic regulation of proteolysis

by biomechanical and inflammatory stimuli, we next investigated the roles of alter-

native downstream kinase pathways. Intracellular responses to TNFα-stimulation in

endothelial cells are often divided into two canonical pathways: (1) JNK activation

and downstream signaling, and (2) nuclear factor kappa-light-chain-enhancer of acti-

vated B cells (NFκB) translocation and transcriptional regulation. There is evidence

to suggest that regulation and activation of NFκB is shear stress regulated, and has

been implicated in arterial remodeling in vivo [135, 43, 102]. Therefore, we next in-

vestigated the potential for NFκB to function as the shear stress responsive element

in endothelial cell cathepsin K activation. Immunostaining for total NFκB expres-

sion indicated that vasoprotective shear stress significantly decreased whole-cell levels

of NFκB compared to pro-remodeling shear stress, regardless of TNFα stimulation

(Fig 5-7). The decreased bioavailability of NFκB in response to vasoprotective shear

stress was confirmed via Western blot (Fig 5-7).

To directly establish a link between NFκB and cathepsin K, we next tested the

hypothesis that preventing the activation of NFκB would inhibit pro-remodeling ac-

tivation of cathepsin K. Inhibition of NFκB activation reduced cathepsin K activity

under pro-remodeling shear stress, both with and without TNFα, to undetectable lev-

els (Fig 5-8 Lanes 7 and 8). Interestingly, inhibition of NFκB activation significantly

reduced cathepsin K activity in pro-remodeling cultures by 0.5-fold (Fig 5-8 Lane 7

vs Lane 3), and pro-remodeling cultures co-stimulated with TNFα were reduced by

0.9-fold (Fig 5-8 Lane 8 vs Lane 4); inhibition of NFκB activation had no signifi-

cant effect on TNFα-mediated induction of cathepsin K activity. Additionally, there

was no significant change in total NFκB protein levels due to inhibition of NFκB

activity. The findings from this data implicate shear-regulated NFκB signaling in
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Figure 5-7: TNFα and vasoprotective shear stress decrease NFκB protein
levels. Cultures were either lysed for Western blot analysis, or fixed with 4% PFA for
immunohistochemistry, and stained for NFκB (green); cultures were counterstained
with phalloidin (red) for actin, and Hoechst (blue) for nuclei. (A) Western blot
analysis of culture lysates show a decrease in detectable, whole-cell NFκB protein
levels in vasoprotective culture. (B) Pro-remodeling cultures had detectable levels of
phosphorylated NFκB, but (C&E) vasoprotective cultures had substantially decreased
NFκB expression.
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pro-remodeling-induction of cathepsin K activity.

5.4 Discussion

In this study, we investigated how large artery endothelial cells integrate biochem-

ical and biomechanical signals; specifically intracellular kinase signal pathway by

which physiological shear stress mitigated or enhanced TNFα-stimulated cathepsin

K, a powerful elastase and collagenase upregulated in other cardiovascular disease

[111, 110, 80, 81]. We show here that active cathepsin K is increased in response

to pro-remodeling shear stress, a physiological shear stress waveform known to in-

duce arterial wall remodeling and atherosclerotic plaques. Additionally, cultures co-

stimulated with pro-remodeling shear stress and TNFα, which we have shown previ-

ously to activate cathepsin K in endothelial cells [68, 67], increased average cathepsin

K activity in endothelial cells, although the increase was not significant (Fig 5-5).

Conversely, vasoprotective shear stress significantly reduced TNFα-stimulated induc-

tion of cathepsin K (Fig 5-2) independent of the JNK/c-Jun signaling pathway (Fig 5-

5). These data suggest that cathepsin K activation in large artery endothelial cells is

regulated by distinct signaling pathways that respond independently to biochemical

(TNFα) or biomechanical (shear stress). Examination of cathepsin K gene expression

indicated that TNFα induced nuclear localization of phosphorylated c-Jun and subse-

quent binding to the cathepsin K promoter region, regardless of shear stress conditions

(Fig 5-6 A-B); however, vasoprotective shear stress did significantly decrease overall

cathepsin K gene expression (Fig 5-6 C-D). Furthermore, we demonstrated that va-

soprotective shear stress reduces NFκB protein levels in HAECs maintained under

vasoprotective shear stress, compared to cultures maintained under pro-remodeling

shear stress (Fig 5-7), and inhibition of NFκB activity significantly reduced activation

of cathepsin K by pro-remodeling shear stress (Fig 5-9). Based on the findings of this

study, the loss of cathepsin K activity and expression in response to TNFα in cultures
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Figure 5-8: Shear stress-mediated activation of cathepsin K is dependent
on NFκB activation. Confluent HAECs were pre-conditioned with 5µM of Bay 11-
7082, an inhibitor of NFκB activation, for 1 hour prior to being stimulated with or
without 10ng/mL TNFα, and maintained in static (lanes 1, 2, 5, 6), or pro-remodeling
(lanes 3, 4, 7, 8) shear stress for 20 hours. Cultures were lysed and (A) cathepsin
activity was determined using multiplex cathepsin zymography, and NFκB protein
levels were determined using Western blot, and (B) quantified using densitometry
analysis. Pro-remodeling shear stress alone induced detectable levels of cathepsin
K activity, but inhibition IκBα phosphorylation prevented detectable cathepsin K
activity.
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Figure 5-9: Schematic representation of biomechanical and biochemical reg-
ulation of cathepsin K activity in endothelial cells. Proposed mechanism by
which vasoprotective shear stress inhibits cathepsin K protein expression and activa-
tion downstream of TNFα stimulation via reduced NFκB activation and expression.

maintained under vasoprotective shear stress suggests that transcriptional activation

cathepsin K gene may be dependent on the ability for both c-Jun and NFκB to bind

to the promoter region.

Vascular biomechanical studies have established that regions of the vasculature

exposed to vasoprotective shear stress are protected from vascular remodeling, while

regions exposed to pro-remodeling shear stress are more vulnerable [59, 80, 88, 152,

49, 32]. Work done by our group has previously correlated increased active cathepsin

K levels at sites of disturbed flow to arterial remodeling [111, 110]. Additionally, the

initiation of arterial remodeling pathologies is the result of endothelial cell dysfunction
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and activation from inflammatory cytokines, such as TNFα [151, 71]. The findings

from this study provide a mechanistic link for how arterial endothelial cells integrate

biomechanical shear stress and inflammation to differentially regulate cathepsin K,

which has particular relevance for those suffering from sickle cell disease. People

with sickle cell disease suffer from a chronic inflammatory syndrome characterized

by elevated TNFα and chronic activation of vascular endothelial cells, which may

induce upregulation of cathepsin K throughout the vasculature. Additionally, tran-

sient aggregation of red and white blood cells along the arterial wall may generate

spontaneous regions of pro-remodeling shear stress [11], allowing regions of the vascu-

lature to become vulnerable to cathepsin-mediated arterial remodeling. The findings

from this study implicate that c-Jun phosphorylation and NFκB are necessary for

up-regulation of cathepsin K. Work done by others have found NFκB activity to be

increased in regions of pro-remodeling shear stress in mice, and in vivo inhibition of

NFκB protects against atherosclerotic lesion formation [43, 51]. Furthermore, TNFα

stimulation of HAECs stimulates NFκB to complex with phosphorylated c-Jun and

bind to the TPA response element in human aortic endothelial cells [117, 126], which

is present in the cathepsin K promoter region. Therefore, we conclude that TNFα is

sufficient to induce cathepsin K activity only if there is sufficient NFκB availability to

allow for activation of the TPA response element on the cathepsin K promoter region;

loss of NFκB signaling or expression, as is seen after exposure to vasoprotective shear

stress or through inhibition with Bay 11-7082, significantly cathepsin K expression

and activity.

The identification of NFκB as a shear-responsive activator of cathepsin K ex-

pression provides a novel therapeutic target for for people suffering from sickle cell

disease, especially children who have a 220-fold increase in the chance of stroke be-

fore the age of 20 as a resulting from advanced arterial remodeling of the middle

cerebral and carotid arteries [133, 3, 4, 2, 116]. Based on previous work establishing
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cathepsin-mediated arterial remodeling and elastin degradation in other vascular dis-

eases, such as atherosclerosis, in conjunction with our findings that TNFα increases

active cathepsin K activity in large artery endothelial cells [68], we hypothesize that

pathological activation of cathepsin K may also contribute to rapid cerebral arterial

remodeling leading to stroke [67]. Due to the effects of elevated plasma levels of

TNFα and it potential to induce cathepsin K expression and activity, combined with

the altered rheology of sickle red blood cells and the possibility of spontaneous gen-

eration of pro-remodeling shear stress anywhere along the arterial tree, we posit that

people with sickle cell disease are uniquely vulnerable to sustained, upregulation of

cathepsin K within the arterial wall leading to rapid arterial remodeling. Although

regular blood transfusions have been shown to mitigate the risk of stroke in young

children with sickle cell disease, the chronic transfusions needed carry significant and

life-threatening risks of alloimmunity, iron over load, and infection; however, this re-

mains the only available therapy as there are currently no pharmaceutical treatment

options available. By identifying other mechanistic pathways by which cathepsin ac-

tivity is regulated by the hemodynamic and inflammatory environment of sickle cell

disease, these may present new therapeutic targets for reduction in the risk of death

for young children with sickle cell disease.
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CHAPTER VI

SYSTEMIC INHIBITION OF JNK PREVENTS

CATHEPSIN K MEDIATED VASCULOPATHY IN

CAROTID ARTERIES OF SICKLE TRANSGENIC MICE

6.1 Introduction

Sickle cell disease is a genetic disorder affecting nearly 100,000 Americans and millions

worldwide. Although commonly regarded as a hematological disorder characterized

by the unique, ”sickle” red blood cells, people with sickle cell disease have an 11%

chance of a major stroke before the age of 20, and a 35% chance of a silent stroke

before the age of 16; children are at the highest risk between 2 and 5 years old

[10, 2, 115]. Post-mortem examination of the cerebral vasculature of children who have

suffered strokes revealed significant luminal narrowing, as well as delamination and

fragmentation of the internal elastic lamina of the internal carotid and middle cerebral

arteries [133, 53, 116]. Moreover, in contrast to other cardiovascular diseases in which

vascular remodeling develops over decades prior to clinical presentation, sickle cell

disease induces arterial remodeling at a dramatically accelerated rate. Despite the

high risk and rapid formation of arterial remodeling in sickle cell disease, there is

little consensus on how these vascular lesions are initiated or progress. However, the

rapid and extensive remodeling of the carotid and cerebral arteries of young children

with sickle cell disease led our group to hypothesize that pathological proteolytic

remodeling may play an important role in vascular lesion development.

Research on the development of pathological arterial remodeling have indicated

that specific, predictable regions of the vascular tree are vulnerable, specifically sec-

tions that are characterized by sharp bends or bifurcations, such as the carotid and
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cerebral arteries, due to the generation of low, oscillatory shear stress [152, 73, 49, 32].

Additionally, work done by our group and others has elucidated that one of the key

effects of sustained oscillatory blood flow is the activation and secretion of powerful

proteases into the arterial wall, leading to degradation of the elastic lamina, a prin-

ciple initiating step of further pathological remodeling. As mentioned previously, we

are interested cathepsin K’s involvement in arterial remodeling in sickle cell disease

due to it being a potent elastase and its established role in other cardiovascular dis-

eases. In addition to regions of sickle-mediated arterial remodeling, namely the carotid

and cerebral arteries, being identified as inherently vulnerable to increased cathep-

sin activity, our work has identified that the often overlooked chronic inflammatory

syndrome generated by sickle cell disease also generates a perpetual pro-cathepsin

environment within the vasculature. People with sickle cell disease have chronically

elevated inflammatory cytokines, such as tumor necrosis alpha (TNFα), which is suf-

ficient to induce cathepsin K in arterial endothelial cells via JNK and c-Jun signaling

[68]. Additionally, people with sickle cell disease have higher numbers of circulating

monocytes in the peripheral blood, and these monocytes are also uniquely conditioned

to also be able to induce cathepsin K activity in endothelial cells, again dependent on

JNK and c-Jun signaling [67]. Therefore, it is apparent that the chronic inflamma-

tion characteristic to sickle cell disease, in conjunction with the natural geometry and

hemodynamics of the carotid and cerebral arteries generate a powerful pro-cathepsin

environment for the development and progression of arterial remodeling.

Developed in the late 1990s, the Townes transgenic murine model successfully

recapitulates many of the symptoms and comorbidities seen in humans [16]. Mice

were genetically modified such that the murine hemoglobin genes were knocked out

and human hemoglobin genes, including those that contain the sickle mutation, were

knocked in. However, there remains a need for more comprehensive characterization

of the vascular and neural pathologies associated with sickle cell disease in the Townes
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model. Furthermore, a more complete characterization of the animal model would be

benefit the continued investigation and development of pharmacological therapeutics

for the prevention and treatment of stroke in sickle cell disease. Therefore, the purpose

of this study was three-fold. First, we tested the hypothesis that sickle transgenic mice

develop vasculopathies analogous to what is observed clinically in the cerebral and

carotid arteries leading to stroke in the Townes model of sickle cell disease. Second, we

tested the hypothesis that vascular remodeling in vivo was the result of pathologically

elevated cathepsin K activity within the arterial wall. Third, we hypothesized that

inhibition of JNK signaling in vivo, based on our previous findings in vitro, would

be sufficient to reduce cathepsin K expression and activity, thereby preventing the

initiation and progression of arterial remodeling in sickle cell disease.

6.2 Methods

6.2.1 Animals

Townes sickle transgenic mice (B6; 129-Hbatm1(HBA) Tow Hbbtm2 (HBG1,HBB*)

Tow/Hbbtm3 (HBG1,HBB) Tow/J) were obtained from Jackson Laboratories and

used to establish a breeding colony in the Physiology Research Laboratory at Georgia

Tech. Animals were housed according to a 12:12 light:dark cycle and fed an ad lib

diet. Pups born to breeders were sexed and separated into different cages at 21

days old. All mice were housed and all experiments were conducted with approval of

the Georgia Institute of Technology Institutional Animal Care and Use Committee

(protocol number A13011) and the supervision of the Physiology Research Laboratory

veterinarian technologists.

6.2.2 Identification of Normal and Sickle Hemoglobin

Animals were evaluated for entry into the drug trial based on sickle status at 21 days

old. Animals were anesthetized using an 3% isoflurane and approximately 600µL

of whole blood was obtained via retro orbital blood draw into heparinized blood
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Figure 6-1: Identification of sickle status of transgenic mice using Native
PAGE. Whole blood samples were obtained via retro-orbital blood collection and
lysed with 1mL of distilled water. Hemoglobin was run using standard Native PAGE
to isolate normal hemoglobin at a smaller hydrodynamic radius, resulting in faster
migration and development of a lower band. Sickle hemoglobin has a larger hemo-
dynamic radius, resulting in slower migration and development of a higher band.
Representative image is shown.

collection tubes. Whole blood was lysed with 500µL 100% dH2O and spun at 90,000xg

for 10 minutes to pellet cellular debris leaving hemoglobin within the supernatant.

The hemoglobin was then categorized based on the electrophoretic migration distance

through a standard Native PAGE protocol. Briefly, the supernatant was diluted 1:8 in

a 50% glycerol solution and 20µL was loaded into a modified 12.5% polyacrylamide

gel lacking SDS. The gel was run for 2 hours at 100V using a 3% Tris base and

14.18% glycine running buffer. Gels were imaged using an ImageQuant 4010 system

(GE Healthcare). Since hemoglobin containing the sickle mutation has a slightly more

positive electrical charge, compared to normal hemoglobin, sickle hemoglobin will not

migrate as far through a Native PAGE gel. Therefore, animals with a single, high

hemoglobin band were classified as homozygous for sickle cell disease (SS), animals

with a doublet band were classified as sickle trait (AS), and animals with a single,

low hemoglobin band were classified as normal (AA, Fig 6-1).

6.2.3 JNK Inhibition

For the JNK inhibition drug trial, 9 animals were selected at 21 days old and sickle

status was determined; a total of 2 AA animals, 4 AS animals, and 2 SS animals
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were enrolled. Animal weights were determined at the onset and weekly measure-

ments were taken for the duration of the drug study. The inhibitor of JNK activity,

SP600125 (Invitrogen), was diluted in 10% DMSO and injected intraperitoneally at

a concentration of 50mg/kg of animal body weight. Injections were performed daily

over the course of 8 weeks, and animal weights were monitored according to IACUC

policy as an indicator of general animal health.

6.2.4 Tissue Isolation

Animals were euthanized after 8 weeks using CO2 asphyxiation. After termination,

the animal’s thoracic cavity was exposed and a 28 gauge catheter was inserted 2-

4mm through the apex of the heart and into the left ventricle. The ascending vena

cava was cut and the circulatory system of the animal was perfused with via gravity-

driven system with physiological saline for 5 minutes to remove residual blood. The

spleen, along with the thoracic aorta, heart, left and right common carotid arteries,

and brain was then isolated. Relative size and weight of the heart and spleen were

measured and recorded. The thoracic aorta was cleaned of surrounding adventitia,

and placed in 60µL of zymography lysis bufferLi:2010km, Wilder:2011gk with 0.1mM

leupeptin. Additionally, the carotid arteries were carefully cleaned of adventitia and

placed in 10% neutral buffered formalin for 30 minutes, and then embedded in His-

toGel (Richard-Allen Scientific). Brains were removed via craniotomy and placed in

10% neutral buffered formalin for 24 hours.

6.2.5 MRI scans of sickle transgenic mice brains

After fixation, brains were immersed and embedded in a 2% agarose (Phenix Research

Products) with 2mM Gadolinium(III) oxide (Acros Organics) overnight. The brains

were then scanned using a Bruker 9.4 Tesla magnet with a T2-weighted protocol (TE

= 13.4 ms. TR= 10,000, 512 x 512 x 70).
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6.2.6 Arterial Elastin Morphology

HistoGel-embedded carotid arteries and isolated brains, not selected for MRI imaging,

were imbedded were paraffin processed and 5µm sections were obtained and select

serial sections were deparaffinized. Elastin was visualized using a modified Verhoeff

elastic-van Gieson stain (Electron Microscopy Sciences). Briefly, sections were placed

in a modified Verhoeff elastic solution (3 parts 3% Hematoxylin, 2 parts 2% ferric

chloride, 1 part Lugol’s idodine) for 7 minutes, and washed with warm water for

1 minute. Samples were then resolved in 0.4% ferric chloride for 75 seconds, rinsed

again with warm water for 5 minutes, and counter-stained with Van Gieson’s solution

for 60 seconds. Slides were then dehydrated, cover-slipped, and imaged with a Ti-

Eclipse microscope (Nikon Instruments). For elastin fragmentation quantification,

carotid artery sections were blinded and imaged under 40x magnification, and areas

of elastin fraying, fragmentation, and delamination were identified and recorded by

eye (n3, p¡0.05).

6.2.7 Immunohistochemistry for Cathepsin K

Deparaffinized sections of carotid arteries or brain tissue were permeabilized with

0.2% Triton X for 15 minutes, washed 3x with PBS, followed by antigen retrieval

using 0.1% trypsin for 15 minutes at room temperature. Samples were washed again

3x with PBS and blocked with 2% BSA for 1 hour at room temperature. Slides were

stained with a 1:50 dilution of rabbit monoclonal anti-mouse cathepsin K (Santa

Cruz Biotechnology) for 24 hours at 4C, washed in PBS, and stained again with

AlexaFluorTM 488 secondary antibody (Invitrogen). Slides were counter stained with

a 1:20 dilution of AlexaFluorTM 562 phallotoxin (Invitrogen) for 10 minutes to visual-

ize actin filaments. Slides were washed a final time in PBS and mounted with Prolong

Gold anti-fade mounting media containing DAPI (Invitrogen) for visualization of the

nucleus.
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6.2.8 Fluoro Jade B Staining of Degenerating Neurons

Select animals were fixed through perfusion of 10% neutral buffered formalin through

the left ventricle of the heart using a gravity-fed perfusion system; brains were iso-

lated and processed for paraffin embedding, 5µm sections were obtained and samples

were dried for 30 min at 50C. Sections were postfixed with 4% neutral buffered for-

malin again, and washed 3x with PBS. Slides were incubated in 0.06% potassium

permanganate for 10 minutes on a table shaker, and washed twice with distilled wa-

ter, followed by incubation in 0.0004% Fluoro Jade B (Milipore) solution containing

0.1% acetic and 0.0004% DAPI solution for 20 minutes at room temperature. Slides

were rinsed 3x for 2 minutes, and placed in an over at 50C until fully dried. Fi-

nally, slides were cleared by immersion in xylene for 2 min before cover slipping with

Prolong Gold mounting medium (Invitrogen).

6.2.9 Multiplex Cathepsin Zymography

Multiplex cathepsin zymography was used to assess cathepsin activity in the arterial

walls of mouse thoracic aortas. Excised suprarenal were placed in 50µL of lysis buffer

(20 nM Tris-HCl [pH 7.5], 5mM ethylene glycol tetraacetic acid [EGTA], 150mM

NaCl, 20mM β-glycerol phosphate, 10mM NaF, 1mM sodium orthovanadate, 1%

Triton X-100, and 0.1% Tween 20) with 0.1mM leupeptin, homogenized using dis-

posable sample grinders (GE Healthcare). Additionally, whole brain lysates were ob-

tained through use of a neural tissue dissociation kit (Miltenyi Biotec). Briefly, whole

brains were minced in ice cold PBS and enzymatically dissociated at 37 degrees C

for 15-20 minutes. The solution was then passed through a 40 µm cell strainer to

render a single cell suspension. Cells were pelleted at 500xg for 10 minutes, and lysed

with 60µL of lysis buffer with 0.1mM leupeptin added fresh. Protein concentrations

were obtained by the bicinchoninic acid (BCA) assay (Pierce). Cathepsin zymogra-

phy was performed as described previouslyLi:2010km, Wilder:2011gk, Hansen:2012ef,
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Hansen:2013gc. Gels were imaged using an ImageQuant LAS 4000 (GE Healthcare).

6.2.10 Statistical Analysis

Each experimental condition was repeated with a minimum of three biological repli-

cates, and each data point is presented as the mean value and standard error of the

mean. Representative images are shown.

6.3 Results

6.3.1 Sickle Cell Disease Promotes Cathepsin Mediated Elastin Degra-
dation of the Carotid Arteries

After identification of each animal as normal, trait, or sickle transgenic, animals

were inspected for hallmark pathologies associated with sickle transgenic animals.

Spleens from euthanized animals were excised and measured. Normal (AA) and trait

(AS) spleens were of comparable size, but sickle spleens were substantially larger,

consistent with both human pathophysiology (Fig 6-2, representative image shown).

Additionally, hearts from each animal were also isolated and measured for relative

size differences. Again, there was no substantive difference between normal and sickle

trait animals, but sickle transgenic animals had larger hearts, specifically with regards

to the left ventricle Fig 6-3, suggesting that sickle transgenic mice have increased

peripheral resistance caused by vasooclusion.

We first investigated if sickle cell disease in transgenic animals induced vascular

remodeling similar to what has been clinically observed in humans. 5µm sections

of the common carotid arteries isolated animals after gravity perfusion fixation with

10% neutral buffered formalin (NBF), prepared for paraffin histology. Elastin mor-

phology was visualized through modified Verhoeff elastic-van Gieson stain. Sickle

transgenic (SS) mice had 8-times more elastin fragmentation compared to sickle trait

(AS) animals (Fig 6-4, orange arrowheads); however, there was no significant differ-

ence between AS animals and normal (AA) animals (data not shown).
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Figure 6-2: Comparison of spleen sizes isolated from normal and trasngenic
sickle mice. Normal (AA), trait (AS), and sickle transgenic (SS) mice were eutha-
nized and the spleens were isolated and measured along their longest axis. Spleens
from normal and sickle mice were of comparable length, and spleens from sickle ani-
mals were substantially larger; representative images shown.
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Figure 6-3: Sickle cell disease increases size of left ventricle in transgenic
mice. Hearts were isolated from normal (AA), trait (AS), and sickle transgenic (SS)
mice and measured to determine relative size differences. Normal and trait animals
had comparable heart sizes, but sickle transgenic animals were markedly larger.
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Figure 6-4: Sickle cell disease promotes elastin fragmentation in transgenic
mice. Perfusion fixed carotid arteries from trait and transgenic mice were isolated,
sectioned, and stained for elastin morphology using modified Verhoeff elastic-van
Gieson stain. (A-C) Sickle transgenic mice had significantly smaller luminal areas,
and (D) significantly increased incidence of elastin fragmentation, compared to trait
mice. * denotes p<0.05, n=4.
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Furthermore, carotid arteries in sickle transgenic mice had more linear elastin

fibers compared to trait animals, indicated by a higher form factor, which suggests

carotid arteries in these animals may have significantly altered biomechanical prop-

erties. Loss of elastin integrity also resulted in a significant increase in luminal area

in SS mice, compared to AS mice, further implicating onset of pathological arterial

remodeling (Fig 6-5; p<0.05, n=4.)

Work done previously by our group, and others, has implicated cathepsin K in

cardiovascular remodeling pathologies, such as atherosclerosis. Furthermore, we have

also shown that the circulatory environment in sickle cell disease is sufficient to induce

elevated cathepsin K activity in arterial endothelial cells [67]. Therefore, we next

investigated if areas of elastin fragmentation coincided with elevated cathepsin K

expression. Serial sections of AA, AS, and SS carotid arteries were obtained and

immunostained for cathepsin K protein levels. SS mice had substantially higher

cathepsin K protein expression within the arterial, compared to both AA and AS

animals (Fig 6-6). Furthermore, the elevated cathepsin K activity co-localized to

regions of elastin fragmentation. These data suggest that sickle cell disease promotes

elastin degradation and arterial remodeling through up-regulation of cathepsin K

protein expression within the arterial wall. Next, we investigated the repercussion of

sickle cell disease on the vessel integrity of the cerebral arteries.

6.3.2 Sickle transgenic mice develop cerebral vasculopathy and stroke

In addition to the carotid arteries, clinicians have identified that strokes associated

with sickle cell disease occur as a result of remodeling and occlusion of the cerebral

arteries. Sickle trait and sickle transgenic mice were euthanized and perfusion fixed

using 4% PFA, followed by craniotomy to remove the brain. 5µm section were ob-

tained and histologically stained with a modified Verhoeff elastic-van Gieson stain
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Figure 6-5: Sickle cell disease promotes arterial remodeling leading to in-
creased luminal area of carotid arteries. Perfusion fixed carotid arteries from
AS and SS mice were isolated, sectioned, and stained for elastin morphology using
modified Verhoeff elastic-van Gieson stain. Images were analyzed using photomasking
and image analysis to quantify luminal area, eccentricity, form factor, and perimeter.
* denotes p<0.05, n=4.
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Figure 6-6: Sickle cell disease upregulates cathepsin K in transgenic mice.
Perfusion fixed carotid arteries from trait and transgenic mice were isolated, sectioned,
and immunostained for the presence of cathepsin K protein. Only sickle transgenic
animals possessed positive cathepsin K staining (orange) in the arterial wall, with
undetectable levels in normal and trait animals; elastin fibers are autofluorescent
(green).
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Figure 6-7: Sickle transgenic mice develop luminal narrowing and elastin
remodeling in middle cerebral artery. Histological sections of whole brains
were obtained and stained for elastin morphology using modified Verhoeff elastic-van
Gieson stain, and the middle cerebral artery was imaged. Sickle transgenic animals
present advanced elastin remodeling (orange arrowheads), as well as aggregations of
blood cells along the vessel wall (white arrowheads); trait animals did not present
any detectable elastin remodeling or cell aggregations.

to visualize elastin structures. Sickle transgenic animals presented regions of sig-

nificant remodeling within the middle cerebral artery characterized by pathological

elastic reorganization (orange arrowheads), luminal narrowing, and aggregations of

red blood cells along the arterial wall (white arrowheads); AS animals had no dis-

cernible remodeling, elastin fragmentation, or accumulation of circulating red blood

cells (Fig 6-7). These data suggest that sickle cell disease uniquely induces cerebral

arterial remodeling, as well as promotes aggregations of circulating blood cells along

the luminal wall, potentially leading to arterial dysfunction and obstruction of blood

flow.
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Figure 6-8: Brains from sickle transgenic mice have elevated cathepsin ac-
tivity. Whole brains were isolated from 12-24 week old trait and transgenic mice,
enzymatically dissociated, lysed, and cathepsin activity was assayed using multiplex
cathepsin zymography. Brains from sickle transgenic mice have markedly increased
cathepsin activity, compared to trait animals; cathepsin activity also appears to in-
crease with age.

Additionally, brains from 24-week-old AS mice, as well as 12- and 24-week-old

SS mice were isolated without perfusion fixation. Wholes brains were enzymatically

disassociated, and the resulting single cell suspension was collected and lysed for zy-

mography. Interestingly, SS mice had substantially higher levels of active cathepsins,

which increased with age; ASS animals had no detectable cathepsin K activity (Fig 6-

8). These results suggest that, like the carotid arteries, sickle cell disease also induces

in vivo arterial remodeling of the cerebral arteries, potentially through pathologically

elevated cathepsin K activity.
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Figure 6-9: Sickle cell disease generates potential stroke lesions and in-
crease neuronal death in transgenic animals. Isolated brains from sickle trait
or transgenic animals were imbedded in gadolinium (III) oxide-agarose gel and imaged
using a 9.4T animal MRI scanner running a T2-weighted modality. (A-B) Transgenic
mice develop dark regions (red arrows) that are indicative of cerebral damage due to
stroke. (C-D) Additionally, histological sections of whole mice brains were stained
with FluroJadeB to identify perimortem neuronal cell death (bright green). Sickle
transgenic animals had higher incidence of positive FluorJadeB staining, compared
to trait animals.

Based on the our findings of arterial remodeling evidenced by increased luminal

area, form factor, and incidence of elastin fragmentation in the carotid arteries of SS

mice, we also tested the hypothesis that transgenic animals developed stroke lesions

akin to what is observed in humans. AS and SS mice were euthanized and perfu-

sion fixed, as previously discussed, and the brains were isolated and imbedded in a

gadolinium (III) oxide-agarose gel. The brains were subsequently imaged using with

a 9.4-Tesla MRI scanner running a T2-weighted imaging modality. Examination of

the scans indicated both the sickle transgenic mice develop brain lesions indicative of

stroke (Fig 6-9, red arrows), while sickle trait animals do not develop any lesions.
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6.3.3 In vivo inhibition of JNK signaling reduces arterial cathepsin K
expression and activity in sickle transgenic animals

Work done previously by our group has effectively established that the pro-inflammatory

circulatory environment of sickle cell disease is sufficient to induce cathepsin K activ-

ity in large artery endothelial cells via JNK/c-Jun signaling [67, 68]. Additionally, the

findings in this study have established a strong correlation between increased cathep-

sin K activity and expression in the carotid and cerebral arteries of sickle transgenic

animals, exclusively. Therefore, we next determined if in vivo inhibition of JNK sig-

naling would inhibit arterial cathepsin K and prevent elastin degradation, preserve

arterial structure, and prevent stroke lesion formation. Nine mice were divided into

drug treatment and vehicle groups based on genotype (Fig 6-10), and were given IP

injections of 50mg/kg of the JNK inhibitor SP600125 daily for 8 weeks.

After, animals were euthanized and the thoracic aorta and common carotid arter-

ies were isolated after perfusion fixation. Over the course of the 8 weeks, the systemic

injections of SP600125 had no significant effect on the animals overall health, be-

havior, or weight. Tissue lysates were collected from the thoracic aortas and system

inhibition of JNK activity was quantified by immunoblotting for c-Jun phosphoryla-

tion. The SS animal and AS animals had increased baseline levels of phosphorylated

c-Jun, compared to the normal animals (Fig 6-11). Additionally, all mice injected

with SP600125, regardless of sickle status, exhibited substantial reduction in c-Jun

phosphorylation after 8 weeks of injection, compared to the vehicle control group

(Fig 6-11) indicating that daily injections of the inhibitor SP600125 were sufficient

to reduce physiological levels of JNK activity in arteries.

Having established that the JNK inhibitor successfully reduced JNK/c-Jun sig-

naling within arteries of the mice, we next investigated if the effect of sustained JNK

inhibition on the development of sickle cell disease related vasculopathy. 5/mum his-

tological sections of the common carotid artery were obtained and serial sections were
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Figure 6-10: Sickle status, age, and bodyweight of animals receiving daily
injections of SP600125. Littermate mice were blood typed to determine sickle
status, and placed into the drug treatment or placebo groups. Animal ages and
weights were recorded at initiation and termination of the study as indicators of
general animals health. There was no substantial difference in animal weights in the
drug versus placebo group.
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Figure 6-11: Intraperitoneal injections of SP600125 reduces arterial c-Jun
phosphorylation. Thoracic aortas were isolated from drug and placebo group an-
imals, and whole tissue lysates were assessed for c-Jun phosphorylation via Western
blot. Sickle trait and transgenic animals had elevated phosphorylated c-Jun compared
to normal animals, but all participants had marked decrease in c-Jun phosphorylation
after injections of SP600125.
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stained for elastin morphology and cathepsin K protein expression. As expected, the

SS mice had 11 times more instances of elastin fragmentation within the wall of the

carotid artery, compared to AA and AS mice (Fi 6-12). Furthermore, the total lumi-

nal area of carotid arteries from sickle mice were XX-times greater, compared to both

normal and trait animals, indicating increased degradation of the elastin fibers within

the arterial wall leading to decreased circumferential strain (Fig ). Interestingly, how-

ever, inhibition of JNK signaling reduced both the instances of elastin fragmentation

and luminal area of sickle transgenic animals to levels comparable to both treated and

untreated AA and AS animals, suggesting that inhibition of the JNK/c-Jun signaling

axis may be sufficient to prevent the development of sickle cell disease induced elastin

degradation.

Based on our previous findings that cathepsin K activation is downstream of

JNK/c-Jun signaling in vitro, and that cathepsin K protein co-localized with areas

of elastin fragmentation in sickle transgenic mice, we next investigated the effect of

in vivo inhibition of JNK signaling on cathepsin K protein expression in the carotid

arteries of transgenic mice. Immunostianing for cathepsin K protein indicated a sub-

stantially higher level of protein expression throughout the arterial wall in SS animals,

with little to no staining apparent in AS or AA animals. However, administration

of the JNK inhibitor substantially reduced protein staining in the sickle transgenic

animal, indicating that inhibition of JNK signaling inhibits sickle cell disease-induced

cathepsin K expression in the arterial wall (Fig 6-13). Additionally, we assayed overall

cathepsin activity in the mice using multiplex cathepsin zymography on tissue lysates

obtained from the thoracic aortas. As expected, sickle transgenic mice had elevated

total cathepsin activity, compared to normal and trait mice; however, inhibition of

JNK signaling reduced cathepsin activity in transgenic, paralleling what was observed

in the carotid arteries and previous in vitro studies (Figure 6-14). Taken together,

we have established in this study that sickle cell disease results in over expression of
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Figure 6-12: Inhibition of JNK signaling reduces elastin fragmentation in
carotid arteries of transgenic mice. Carotid aortas were isolated from drug and
placebo group animals, sectioned, and histologically stained for elastin morphology.
Sickle transgenic animals receiving daily injections of the JNK-inhibitor SP600125
had substantially reduced incidence of elastin fragmentation compared to both trait
and normal animals.
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Figure 6-13: Inhibition of JNK signaling inhibits cathespin K protein ex-
pression in carotid arteries of transgenic mice. Carotid aortas were isolated
from drug and placebo group animals, sectioned, and immunostained for cathepsin
K protein. Sickle transgenic animals receiving daily injections of the JNK-inhibitor
SP600125 had substantially weaker staining for cathepsin K, compared to the placebo
group.

cathepsin K within the wall of the carotid artery, leading increased elastin fragmen-

tation; however, systemic inhibition of JNK signaling is sufficient to reduce cathepsin

K protein expression and activity, ultimately leading to better arterial integrity.

6.4 Discussion

In this study we are the first group to identify systematically characterize the devel-

opment of vascular remodeling in the gold standard Townes sickle transgenic mouse

model. Sickle transgenic mice present increased elastin fragmentation and remodel-

ing in the carotid artery, evidenced by increased numbers of elastin breaks within
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Figure 6-14: Inhibition of JNK signaling reduces arterial cathepsin activity
in sickle transgenic mice. Whole tissue lysates were collected from the thoracic
aortas of normal, trait, and transgenic mice and cathepsin activity was assayed us-
ing multiplex cathepsin zymography. Sickle transgenic animals had higher baseline
cathepsin activity, but administration of the JNK inhibitor SP600125 substantially
reduced activity.

the arterial wall (Fig 6-4). Furthermore, the luminal area of the carotid arteries

of sickle mice was significantly larger than normal and trait mice, which is indica-

tive of elastin degradation and loss of circumferential stress (Fig 6-5). Additionally,

we determined that sickle transgenic mice have increased elastin fragmentation and

pathological elastin restructuring within the middle cerebral artery (Fig 6-7), in-

dicating that the Townes model of sickle cell disease recapitulates two important

hallmarks of vascular degeneration found in human patients. Additionally, we not

only identified that sickle cell disease induces substantially higher cathepsin K ex-

pression, that co-localizes with elastin degradation, in both the carotid and cerebral

arteries, compared to both trait and normal mice, but that animals with sickle cell

disease have higher cathepsin activity in their brain (Fig 6-7 and 6-6). Our group

is also the first to identify increased neural death and the potential development of

stroke lesions in sickle transgenic animals (Fig 6-9). In addition to being the first to

describe and characterize the vascular pathology of sickle transgenic mice, our group

was also able to use systemic inhibition of JNK signaling to reduce not only cathepsin

K expression and activity in the carotid arteries of sickle mice, but also decrease the
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elastin degradation observed in untreated animals.

Numerous investigations of sickle cell disease have focused on the generation of

the vasoocclusive crises that forms due to aggregations of sickled red blood cells

obstructing blood flow through the microvasculature, resulting in damage to bone [5],

spleen [105], lungs [84], and many other organ systems, while simultaneously inducing

extreme pain that can last anywhere from hours to days. In the past decade, research

stemming from vasoocclusive crises has begun to examine the role of the abnormally

adherent, stiff, oxidizing sickle red cells as an irritant that provokes an inflammatory

response as it obstructs flow [114]. In vivo investigations using the Townes transgenic

mouse model have implicated reperfusion injury as a possible source for the chronic

inflammatory syndrome of sickle cell disease that is also observed in human subjects

[63]. Ischemia followed by reoxygenation of the vasculature in sickle mice generated

a distinct inflammatory response with increased rolling, adhesion, and emigration

of vascular white blood cells facilitated by endothelial surface expression of adhesion

molecules, implying that reperfusion following vasoocclusive crises in sickle cell disease

results in activation of the endothelium, production of inflammatory cytokines like

TNFα, promote circulation of abnormally high base-line leukocyte counts [146], as

well as increased production of reactive oxygen species [153, 66], consistent with what

is found in humans with sickle cell disease.

The presence of elevated inflammatory factors, activation of vascular endothelial

cells, and increased monocyte adhesion and emigration into the vascular wall char-

acteristic of vascular injury and inflammation in sickle cell disease are also known

to be critical initiating events in the development of several vascular remodeling

pathologies, such as atherosclerosis [151, 89, 37, 17]. During the progression of vas-

cular remodeling diseases systemic inflammation and monocyte infiltration into the

sub-endothelial space stimulate production and secretion of cathepsins, specifically

cathepsin K. Previous work by our group has shown that both TNFα and circulating
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monocytes isolated from people with sickle cell disease are sufficient to induce cathep-

sin K activity in vascular endothelial cells [68, 67], suggesting that the elevated TNFα

and increased circulating monocytes reported by others may result in the substantially

elevated levels of arterial cathepsin K reported in this study (Fig 3, 11). In addition to

increased cathepsin activity, matrix metalloproteinase (MMPs), specifically MMP-2

and MMP-9, have also been implicated as mediators of vascular remodeling diseases

due to increased MMP activity at sights of arterial remodeling [71, 112], and their

activation in response to TNFα in atherosclerosis [52, 151]. However, cathepsin K

is regarded as a principle initiators of arterial remodeling pathologies due to their

extreme potency for hydrolyzing both insoluble elastin and collagen I [80, 59, 44], as

well as their activation in response to hemodynamic shear stress [111].

Although elevated inflammatory cytokines and recruitment of circulating white

blood cells aid in the early development of vascular remodeling, hemodynamic shear

stress has been regarded for decades as the initiating perturbation to the vasculature

to initiate pathological remodeling [73, 152, 49, 96, 31]. Normally, changes in arterial

blood flow are detected by the mechanosensitive endothelial cells that line the luminal

of the vessel alter vascular tone and maintain a stable wall shear stress. However,

sections of the vascular tree that have sharp bends or bifurcations inexorably develop

regions of disturbed blood flow, which stimulate pro-remodeling cellular responses

in the vascular wall. Specifically, cathepsin K is upregulated at these sites of the

disturbed flow, which is secreted into the arterial wall and degrades the elastin fibers

that provide mechanical support and function to the arterial wall.

Insoluble elastin fibers in the arterial wall provide the restoring force necessary to

propagate blood through large vessels and throughout the body, as well as provide

a resistance to blood pressure; loss of elastin integrity leads to reduced blood per-

fusion and increased risk of vessel rupture, as observed in aortic aneurisms [81, 12].

In addition to the changes in vessel biomechanics, elastin degradation also alters the
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phenotypes of the component cells within the arterial wall. Loss of elastin integrity

within the medial layer of the artery induces resident smooth muscle cells to revert

from a quiescent, contractile state, to a migratory, proliferative state whereby they

invade the sub-endothelial space resulting leading to luminal narrowing, further dis-

ruption of blood flow, as well as secretion of cathepsin K, ultimately generating a

pro-remodeling feed-forward system.

In sickle cell disease, it is believed that regions of disturbed blood flow are not

only limited to specific geometries, as is seen with atherosclerosis, but instead can

form spontaneously throughout the vascular tree. Sickle red blood cells are inherently

adhesive to themselves, other circulating white blood cells, and the vascular endothe-

lium allowing the spontaneous formation of aggregations along luminal side of the

vessel wall [61, 64, 20, 40]. While aggregations of circulating red cells are the root of

the vasooclusive crises described above, they are not limited to the microvasculature;

there is growing evidence that cellular aggregations can spontaneously form in larger

vessels resulting in disturbed blood flow [11]. The capacity of the sickle vasculature

to spontaneously develop regions of disturbed flow, combined with the ubiquitous

presence of elevated TNFα and enhanced mobilization of circulating monocyte, could

explain why people with sickle cell disease develop vascular remodeling lesions in ves-

sels, such as the middle cerebral artery, where other remodeling pathologies are rarely

seen.

Repetitive sickling of the red blood cell results in premature hemolysis, releas-

ing free heme, the oxygen carrying core of hemoglobin, into the blood plasma [133].

Increased plasma levels of heme scavenge nitric oxide, a powerful vasodilator pro-

duced by endothelial cells, crippling arteries capacity to dilate and increase blood

profusion. Loss of available nitric oxide by heme scavenging has been hypothesized

to specifically hinder vasodilation in the cerebral arteries, not only inhibiting oxygen

profusion to the brain, but also may be one of the initiating stages of stroke lesion
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development. It is plausible that inhibition of vasodilation could significantly im-

pair endothelial cells capacity to restore hemodynamic shear stress in the presence

of a spontaneous red cell aggregation, thereby leading to the premature initiation of

arterial remodeling cellular programs and accelerating progression of vascular lesion

development. Additionally, loss of nitric oxide has been speculated to result in a

hyper sensitivity of the sickle vasculature to vasoconstrictors, such as angiotensin II

[9]. Increased angiotensin II signaling is known to increase arterial restructuring akin

to what is observed in sickle cell disease, with increased hypertension resulting from

intima-media thickening. Furthermore, angiotensin II activates the JNK signaling

pathway, which we have shown here to be strongly implicated in arterial remodeling

in sickle cell disease (Fig 6-12- 6-14). Therefore, the findings of this study implicate

that JNK signaling may represent a significant integration point for the induction of

cerebral vascular remodeling in sickle cell disease. We have shown previously that

JNK signaling is critical for TNFα induction of cathepsin K in vascular endothelial

cells [67, 68], which may contribute to elastin fragmentation stimulating in vivo lead-

ing to stimulation of arterial remodeling. Simultaneously, increased reactive oxygen

stress may induce angiotensin II-induced signaling of JNK to promote smooth muscle

cells proliferation and intimal-medial thickening, and exacerbating arterial remodel-

ing. However, inhibition of JNK signaling, as we have seen in this study reduces

cathepsin K activity (Fig 6-13, 6-14), and may also inhibit angiotensin II signaling,

thereby mitigating pro-remodeling signals in the arterial wall two-fold.

The development of the Townes sickle transgenic animal model has been an in-

valuable tool for elucidating the underlying cellular mechanisms that result in the

multitude of pathologies and syndromes associated with human sickle cell disease.

However, the vasculopathy responsible for development of stroke in sickle cell disease

remains largely under-characterized in the transgenic mouse model, hindering robust

mechanistic descriptions of how it is initiated and progresses in humans. Townes sickle
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transgenic animals have a markedly shorter life span, and are vulnerable to asymp-

tomatic, idiopathic mortality[16, 103]. In this study we are the first to identify that

sickle transgenic animals develop substantial remodeling of the carotid arteries, nar-

rowing of the cerebral arteries (Fig 6-4- 6-7), and potentially development of stroke

lesions throughout the brain (Fig 6-9), implicating the development of cerebrovascu-

lar disease and stroke may also result in the observed decrease in animal survivability.

Furthermore, our work here has identified JNK as a potential in vivo integration point

for the development of severe arterial remodeling in the carotid and middle cerebral

arteries of sickle mice, which has strong implications towards development of pharma-

ceutical prophylactics for stroke development. Although regular blood transfusions

have been shown to mitigate the risk of stroke in young children with sickle cell dis-

ease, the chronic transfusions needed carry significant and life-threatening risks of

alloimmunity, iron over load, and infection [4, 41, 133]; however, this remains the

only available therapy as there are currently no pharmaceutical treatment options

available. By identifying other mechanistic pathways by which cathepsin activity is

regulated by the hemodynamic and inflammatory environment of sickle cell disease,

these may present new therapeutic targets for reduction in the risk of death for young

children with sickle cell disease.
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CHAPTER VII

FUTURE CONSIDERATIONS

7.1 Major Findings

The work presented in this thesis focused on developing a more complete under-

standing of the initiation and progression of vascular dysfunction leading to stroke

in young children with sickle cell disease. Based on the strong histological similar-

ities between sickle cell vasculopathy and other progressive cardiovascular diseases,

specifically rapid remodeling of the cerebral and carotid arteries, we hypothesized

that the unique circulatory milieu of sickle cell disease may stimulate upregulation of

cathepsins, which have been linked to initiation and progression of arterial remodel-

ing. To achieve this, we systematically investigated how the large artery endothelial

cells integrated the complex inflammatory signals unique to circulatory environment

of sickle cell disease.

As discussed previously and confirmed by our studies, people with sickle cell dis-

ease have chronically elevated serum levels of TNFα, resulting in a perpetual ac-

tivation of the vascular endothelium. My work demonstrates that TNFα alone is

sufficient to induce high levels of cathepsin K and V in large artery endothelial cells,

both of which are known to be up-regulated in early arterial remodeling pathologies.

Furthermore, I have shown that the circulating monocytes isolated from people with

sickle cell disease are more adherent than normal monocytes, and have the unique

ability themselves to induce and increase cathepsin K and V, respectively; monocyte-

endothelial cell interactions are also argued to be one of the key initiating steps of

arterial remodeling. Therefore, the findings from this thesis support the idea that
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sickle cell disease promotes and sustains a pro-arterial remodeling environment me-

diated by elevated cathepsin activation and expression. More specifically, however,

I have also identified that both TNFα and sickle monocyte adhesion up-regulate

cathepsins K and V through the JNK-c-Jun signaling cascade. Taken together, these

data identify three unique targets for novel therapeutic intervention: management of

chronic inflammation, direct inhibition of cathepsin K and V activities, and inhibition

of JNK/c-Jun activation and signaling.

There is a well-established correlation between the vulnerability of arteries to re-

modeling, and the magnitude and direction of hemodynamic wall shear stress; specifi-

cally, high shear stress is protective from pathological remodeling, and low, oscillatory

shear stress promotes remodeling. Furthermore, cathepsin K and V are both known

to be up-regulated by the same low, oscillatory shear stress that promotes arterial

remodeling. Therefore, given stroke in sickle cell disease results from rapid arterial

remodeling, combined with the implication that the remodeling is a result of inflam-

matory up-regulate cathepsin K and V, it was important that our work also take into

consideration the contributions of biomechanical shear stress. Through use of a cone-

and-plate shear stress bioreactor, we were capable of actuating physiological shear

stress waveforms characteristic of arterial regions protected or vulnerable to remodel-

ing. Of particular note was our conclusion that vasoprotective shear stress is sufficient

to significantly reduce active cathepsin K in large artery endothelial cells, even in the

presence of TNFα; similarly, pro-remodeling shear stress was able to induce cathepsin

K independent of TNFα stimulation. Furthermore, we identified regulation of NFκB

expression in arterial endothelial cells as the crucial intracellular signaling cascade

responsible for biomechanical regulation of cathepsin K activity. Not only do the

findings here serve to directly identify NFκB as another novel therapeutic target,

but my work also contributes to a more complete understanding of the fundamental

regulation of the systemic and cellular mechanisms that may be responsible for the

96



generation of arterial occlusion leading to stroke in sickle cell disease.

In an effort to expand these findings into a test system that would allow for greater

translation into clinical development of therapies for stroke in sickle cell disease, we

investigated the effect of systemic inhibition of JNK signaling in the Townes sickle

transgenic mouse model. In our in vivo studies, we identified that sickle cell disease

promotes remodeling of the carotid and cerebral arteries, as evidenced by increased

elastin fragmentation, delamination, and luminal narrowing, compared to both AA

and AS mice. Sickle cell disease also resulted in substantially higher cathepsin K ex-

pression in the carotid arteries, suggesting that elevated cathepsin K expression and

activity may be linked to the increased incidence of elastin degradation. Additionally,

mice with sickle cell disease also presented high neuronal cell death and the devel-

opment of potential stroke lesions identified by MRI scans. However, administration

of the JNK inhibitor SP600125 had the notable result reducing cathepsin expression

and activity, as well as reducing the incidence of elastin fragmentation. While pre-

liminary, these results strongly support targeted JNK inhibition as viable therapeutic

target for the inhibition of cathepsin K and prevention of sickle cell disease related

vasculopathy.

The cumulative findings of this doctoral thesis provide a novel foundation for

understanding the dynamic interactions between the unique inflammatory and hemo-

dynamic environment in sickle cell disease, and their contributions to promoting the

formation of stroke in young children. Through the use in vitro bioreactor systems,

my work has identified multiple new therapeutic targets and begun to test their va-

lidity in in vivo animal models. However, there remains a large body of work yet to

be completed with regards to more completely understanding the hemodynamic en-

vironment of the cerebral vasculature, and its potential effect on cathepsin-mediated

arterial remodeling, the incorporation of more advanced analysis techniques for more

complete understanding of the biomolecular networks involved, and development and
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implementation of more advanced in vitro culture technologies.

7.2 Exploration of cathepsin K activation in cerebral vas-
culature through in vitro actuation of cerebral blood
flow

Work discussed in this thesis has underscored the critical regulatory nature of hemo-

dynamics in regulating the structure and function of the vasculature, and how al-

terations to wall shear stress can generate powerful feed-forward loops that lead to

pathological arterial remodeling, potentially leading to stroke in children with sickle

cell disease. However, the sickle mutation also significantly changes the bulk bio-

physical properties of whole blood. The altered red blood cell morphology caused

by sickling, combined with aberrant aggregation of red cells to each other, circulat-

ing white blood cells, and the arterial wall result in changes in blood viscosity in

non-intuitive ways, potentially leading to unique hemodynamic shear stresses that

develop through the vessels known clinically to be vulnerable to stroke formation.

By analyzing whole blood obtained from donors with sickle cell disease, it would be

possible to obtain key, bulk physical properties, such as viscosity, that could then be

incorporated into a computational fluid dynamic model of the vasculature to directly

calculate pathophysiologically relevant wall shear stress unique to sickle cell disease at

several points along the vascular tree. Since alterations in hemodynamic shear stress

have long been regarded as a key initiating factor of pathological arterial remodeling,

it would be highly advantageous to incorporate the unique biophysical properties of

the hemodynamic environment in the study of sickle cell related vasculopathy.

Work done by the Veneziani group at Emory University has developed advanced

computational tools to recreate three-dimensional, arterial geometries through anal-

ysis of magnetic resonance angiography (MRA) images [6, 109]. The reconstructed

geometry can then be imported into novel computational fluid dynamic software, also
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developed by the Veneziani group, that develops a high resolution, finite element anal-

ysis (FEA) model of the vasculature that can be used to calculate multiple system

values, including wall shear stress, blood pressure, and multi-dimensional flow profiles

with high spatiotemporal fidelity based on a small number of user-defined boundary

and initial conditions. The ability to analyze human arterial geometries is of consid-

erable benefit as it will allow for an unprecedented level of comparison of the changes

in the circulatory and hemodynamic environment in sickle cell disease compared to

people with normal hemoglobin, especially in the regions of the cerebral vasculature

where little is known about hemodynamic flow profiles. Use of advanced computa-

tional fluid analysis can also be easily paired with the in vitro cone-and-plate shear

system used in our lab. Derivation of the time-dependent wall shear stress could be

input into the shear bioreactor and actuated on arterial endothelial cell cultures with

the for millisecond temporal accuracy. Additionally, this technology could then be

used to analyze unique differences in vasculature and hemodynamics between people

without sickle cell disease, people with no history of sickle cell related stroke, those

at risk for sickle related stroke, and those with a history of stroke. Currently, there

the only predictive method for identification of stroke risk in children with sickle cell

disease is transcranial Doppler ultrasound (TCD), in high risk is defined as blood ve-

locities greater than 200cm/s [3, 60, 2]. While non-invasive and useful for ascertaining

relative risk of stroke, TCD generally does not have sufficient resolution to evaluate

the severity or location of stroke lesions. However, more complete mechanistic inves-

tigations into potential differences in vascular geometry, and biophysical properties

of blood from a wide range of patients with varying stroke risk could lead to novel

discoveries and more accurate predictive and preventative methods. Additionally,

bi-directional investigations between computation analysis and in vitro bioreactor

experiments would also allow for novel retrospective and prospective clinical stud-

ies. MRAs taken from patients with identified sites of arterial remodeling, leading
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to stroke, could be analyzed through computational analysis to determine hemody-

namic shear profiles near the site of occlusion, actuate those shear stresses on arterial

endothelial cells, and quantify the resulting changes in cathepsin activity, and intra-

cellular kinases which could be used as novel predictive biomarkers for early detection

of arterial remodeling. Correlation of cathepsin upregulation activity, in conjunction

with up-stream kinase signals, with severity of stroke progression could also lead to

the development of novel preventative measures, by which physicians could more ac-

curately assess the risk a given patient has for the development of stroke as well as

provide more accurate and personalized treatment options.

7.3 Development of high resolution imaging of vascular re-
modeling proximal to stroke lesions in sickle transgenic
mice

The development of the sickle transgenic mouse with humanized hemoglobin has been

a substantial boon to the entire field dedicated to understanding the in vivo repercus-

sions of sickle cell disease; however many of the human pathologies associated with

sickle cell disease are not yet characterized in the animal model. This study was not

only the first to describe the development of cathepsin-mediated vascular remodeling

in the carotid and cerebral arteries in sickle transgenic animals comparable to what

is observed in humans, but was also the first study to identify the potential develop-

ment of stroke lesions. While the findings from this study are extremely promising for

developing a more complete, mechanistic understanding of the initiation, progression,

and regulation of sickle mediated arterial remodeling, additional investigations must

be completed.

Stroke lesions were identified in these studies through the use of high-resolution

MRI scanning to identify areas of the brain that developed a dark appearance on

the image, indicative of poor blood profusion and possible stroke development. The

brains should then be histologically processed to identify morphological changes in
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the cerebral arteries around the anomalous regions identified by MRI. By cross vali-

dating the MRI imaging with histological morphology, it could be more conclusively

stated how the stroke lesions developed, better characterize the type of lesion (hemor-

rhagic versus ischemic), and characterize similarities between the pathology of stroke

in mice compared to what is known about sickle cell mediated stroke in human pa-

tients. However, this process is laborious and would require an extremely high level of

histological proficiency to successfully reconstruction of the entire brain vasculature

for a 1:1 comparison to the MRI scans. Additionally, the high degree of tortuosity of

the cerebral vessels would make it difficult to predict the axis on which to conduct

the histological slices; based on which surgical axis the vessel is oriented; sectioning

along the incorrect axis significantly impair the ability to identify evidence of arterial

remodeling and other morphological changes in and around the stroke lesion. To ad-

dress these complications and limitations, one could use plastination of the cerebral

vessels to gain high resolution reconstruction of changes in the arterial network as a

result of sickle cell disease.

The cerebral vessels in mice are substantially smaller than those found in humans,

and therefore it is difficult to obtain high resolution, structural images of the vessels

using traditional, non-invasive techniques such as MRA or angiography. However, mi-

cro computed tomography (µCT) is capable of generating high resolution imaging of

internal vasculature of small animals, such as mice. Perfusion of a liquid plastic poly-

mer throughout the vasculature of the animal perimortem allows for the delivery of a

contrast agent that is detected by the µCT imager; the plastic solidifies shortly after

profusion preventing diffusion or weakening of the contrast signal. Three-dimensional

reconstructions of the cerebral vasculature can be analyzed on a population level to

identify systemic changes in the profusion of the plastic that could indicate regions of

arterial narrowing or occlusion in sickle animals. The plastinated brains could then be

imaged by MRI to determine if potential stroke lesions co-localize with the identified
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regions of arterial narrowing. Additionally, the reconstructed µCT scans could also

be used to generate finite element models of cerebral blood flow in the transgenic an-

imal models, as we discussed previously. Analysis of blood velocity, wall shear stress,

and blood viscosity and generation of predictive models for the development of stroke

lesions in the transgenic animals, compared to human data could further validate the

use of the Townes mouse model for the study of sickle cell related vascular disease.

7.4 in vivo investigation of specific cathepsin K inhibitors
as novel drug therapeutics for prevention of stroke in
sickle cell disease

The finding sickle transgenic animals had substantially elevated cathepsin K expres-

sion in the carotid arteries, which co-localized with the increased degradation of the

elastin fibers within the arterial wall strongly supports the hypothesis that sickle cell

mediated arterial remodeling is propagated, to a significant level, by the pathological

activation of cathepsin K. In this study, inhibition of JNK was shown to be effective

in decreasing cathepsin K expression and activity in the sickle vasculature, as well

as preventing arterial degradation, based on our findings from in vitro studies, JNK

signaling is strongly implicated in activation of cathepsin K in vascular endothelial

cells. However, JNK signaling is critical in several cellular responses to inflammation,

damage, and infection; therefore, systemic inhibition of JNK signaling may have sub-

stantial side effects in humans, although none were observed in the mice. However,

direct, targeted inhibition of cathepsin K could prove to be highly effective in the

prevention of sickle cell related vasculopathy. Odanacatib is a highly specific cathep-

sin K specific inhibitor that is currently undergoing FDA approval for the treatment

of osteoporosis and bone metastasis[45, 33]. Initiation of animal trials for odanacatib

would not only provide additional verification that pathological cathepsin K activa-

tion in sickle cell disease leads to increased vascular remodeling, but may also identify

odanacatib as the first ever drug for the safe treatment and prevention of vascular
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remodeling and potentially stroke development in sickle cell disease.

7.5 Application of systems biology for analysis of hetero-
geneity of vascular pathology sickle cell disease

In conjunction with the influence of hemodynamic shear stress initiation of arterial

remodeling, findings from my in vitro studies implicate chronic exposure to inflam-

matory cytokines, such as TNFα, as well as increased monocyte-endothelial cell in-

teractions, are potent activators of cathepsin activity in arterial endothelial cells,

particularly in sickle cell vasculopathy. However, while all people who suffer from

sickle cell disease possess the same genetic mutation, clinical case studies of multiple

sickle cell pathologies report a wide dichotomy of severity among different patients;

sickle cell disease increases risk of stroke in young children over 200-fold, but stroke

is only reported in about 10% of affected children. Some studies attribute decreased

severity in some patients due to a natural preservation of the expression of fetal

hemoglobin (HbF). Similar to -globin, HbF forms a tetramer with β-globin molecules

to form a complete hemoglobin molecule, however, human expression of HbF is usu-

ally silenced and replaced by -globin within weeks after birth. However, some people

with sickle cell disease retain significant levels of HbF expression well into adulthood,

effectively diluting the level of expressed sickle hemoglobin. Reactivation of HbF

is also the hypothesized mode of action of hydroxyurea, the only pharmacological

treatment shown to be effective at ameliorating complications of sickle cell disease;

however, hydroxyurea alone has not been effective at reducing the incidence of strokes

in young children.

Research by Park et al. and others [101, 15] successfully demonstrated that sys-

tems biology can be applied to generate predictive models of disease outcomes based

on analysis of a variety of biomarkers and signaling kinases. Furthermore, systems

biology is unique in its ability to process extremely large data sets to determine which
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inputs co-vary with known pathologies as highly efficient way to parse out how com-

plex systems are regulated and influence clinical outcomes in otherwise unforeseen

ways. In sickle cell disease, patients can have variations in serum levels of TNFα and

other inflammatory cytokines, numbers of circulating monocytes, relative cathepsin

activity levels, red blood cell population composition, fetal hemoglobin content, and

a variety of other factors that could themselves, or in conjunction with other fac-

tors, modulate a person’s susceptibility to comorbidities, such as stroke development.

Many of these values may also vary depending if the person is experiencing a vasooc-

clusive crisis. The number of variables that can contribute to sickle cell pathologies

make systematic investigation and development of comprehensive, mechanistic expla-

nations for the development and progression of known pathologies difficult.

Sickle cell disease can be thought of as a disease of compounding unity: a mutation

in nucleotide of one gene that results in one amino acid substitution in one protein

expressed in only one type of cell. Since the cells most directly affected by the sickle

mutation are circulating red blood cells, every organ system in the body is negatively

effected in an appreciable, and sometimes, deadly ways. However, investigations into

sickle cell disease often operate in relative isolation due to somewhat arbitrary divi-

sions; it is rare to see investigations on a multi system scale. This tendency towards

isolative investigation is an artifact of needing to reduce the number of variables in

the system, but the resulting assumptions preclude the possibility that complications

from one sickle pathology could have a significant impact on other pathologies. Using

a systems biology approach, it would be possible to use efficiently and accurately

quantify hundreds, maybe thousands, of data points across multiple cell and tissue

types.

Chronic inflammation is a serious syndrome associated with sickle cell disease,

and has been implicated here as an initiating factor in arterial vasculopathy and

stroke development in young children. However the perpetuation of inflammation
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in sickle cell disease is contested by several investigators, some hypothesizing that

chronic inflammation is the result of pathological adherence of red blood cells to

the vascular endothelium, resulting in systemic endothelial damage and dysfunction.

Others contend that chronic inflammation may result from ischemic-profusion injury

and exposure to reactive oxygen species generated by repetitive vasooclusive crises

in the microvasculature. The work presented here, and research conducted by others

[67, 114, 40], indicate that circulating monocytes in sickle cell disease are patholog-

ically activated to be more adherent to the endothelium and secrete 300% higher

amounts of TNFα [14]. It is likely that there exists one single event that, alone,

generates and propagates the chronic inflammatory environment in sickle cell disease,

but expansion of experimental designs to incorporate multiple cell types stimulated

with different chemical and biophysical conditions would allow for the generation of

a more robust and physiologically relevant in vitro model system. Advances in mul-

tiplex kinase, cytokine, protein, and genetic assays allow for thousands of different

biomolecules to be assayed and quantified simultaneously, resulting in the generation

of a comprehensive molecular networks. Use of similar experimental techniques has

shown to be effective in the study of endometriosis, another inflammatory disease

characterized by heterogeneity in system presentation and severity, as well as vari-

ability in clinical outcomes. Researchers were capable of precisely identifying not only

which immune cells significantly influence the severity of endometrial lesion growth

in an in vivo animal model, but also which specific signaling pathways within those

immune cells could most effectively be targeted for maximal therapeutic effect us-

ing advanced multiplex experimental systems in conjunction with systems biology

techniques.

105



APPENDIX A

CODE FOR ACTUATION OF PHYSIOLOGICAL

WAVEFORMS IN CONE-AND-PLATE BIOREACTOR

1 PROGRAM

2 ’Program 0

3 ’TODO: ed i t your program here

4 CLEAR

5 dr ive on A

6 dr iv e on B

7 dr iv e on C

8 dr iv e on D

9 dr iv e on V

10 dr ive on X

11 dr ive on Y

12 dr ive on Z

13

14 dim LV(1)

15

16 #DEFINE timecount LV0

17 #DEFINE sy s c l o c k P6916

18

19 sy s c l o ck = 0

20 timecount = 0

21
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22 whi l e ( timecount <100000)

23

24 sy s c l o ck = 0

25

26

27 whi l e ( sy sc l ock <30)

28 JOG ACC A 100 B100 V100 X100 C80 D80 Y80 Z80

29 JOG VEL A2.77 B2 .77 V2.77 X2.77 C2 D2 Y2 Z2

30 JOG FWD A B C D V X Y Z

31 wend

32

33 whi l e ( ( s y s c l o ck =30) OR ( sysc lock >30) AND ( sysc lock <60) )

34 JOG ACC A110 B110 V110 X110

35 JOG DEC C91 D91 Y91 Z91

36 JOG VEL A2.77 B2 .77 V2.77 X2.77

37 JOG VEL C0 D0 Y0 Z0

38 JOG FWD A B V X

39 JOG FWD C D Y Z

40 wend

41

42 whi l e ( ( s y s c l o ck =60) OR ( sysc lock >60) AND ( sysc lock <95) )

43 JOG ACC A110 B110 V110 X110

44 JOG ACC C125 D125 Y125 Z125

45 JOG VEL A2.77 B2 .77 V2.77 X2.77

46 JOG VEL C4.15 D4.15 Y4.15 Z4 .15

47 JOG FWD A B V X

48 JOG REV C D Y Z
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49 wend

50

51 whi l e ( ( s y s c l o ck =95) OR ( sysc lock >95) AND ( sysc lock <115) )

52 JOG ACC A110 B110 V110 X110

53 JOG DEC C101 D101 Y101 Z101

54 JOG VEL A2.77 B2 .77 V2.77 X2.77

55 JOG VEL C0 D0 Y0 Z0

56 JOG FWD A B V X

57 JOG REV C D Y Z

58 wend

59

60 whi l e ( ( s y s c l o ck =115) OR ( sysc lock >115) AND ( sysc lock <145) )

61 JOG ACC A115 B115 V115 X115

62 JOG DEC C101 D101 Y101 Z101

63 JOG VEL A8.33 B8 .33 V8.33 X8.33

64 JOG VEL C0 D0 Y0 Z0

65 JOG FWD A B C D V X Y Z

66 wend

67

68 whi l e ( ( s y s c l o ck =145) OR ( sysc lock >145) AND ( sysc lock <170) )

69 JOG ACC A115 B115 V115 X115

70 JOG ACC C58 D58 Y58 Z58

71 JOG VEL A8.33 B8 .33 V8.33 X8.33

72 JOG VEL A0.78 B0 .78 Y0.78 Z0 .78

73 JOG FWD A B V X

74 JOG FWD C D Y Z

75 wend

108



76

77 whi l e ( ( s y s c l o ck =170) OR ( sysc lock >170) AND ( sysc lock <195) )

78 JOG ACC A115 B115 V115 X115

79 JOG DEC C30 D30 Y30 Z30

80 JOG VEL A8.33 B8 .33 V8.33 X8.33 C0.01 D0.01 Y0.01 Z0 .01

81 JOG FWD A B V X

82 JOG FWD C D Y Z

83 wend

84

85 whi l e ( ( s y s c l o ck =195) OR ( sysc lock >195) AND ( sysc lock <200) )

86 JOG DEC A26 B26 V26 X26

87 JOG DEC C30 D30 Y30 Z30

88 JOG VEL A3.5 B3 . 5 V3. 5 X3. 5

89 JOG REV C0.01 D0.01 Y0.01 Z0 .01

90 JOG FWD A B V X

91 JOG FWD C D Y Z

92 wend

93

94 whi l e ( ( s y s c l o ck =220) OR ( sysc lock >200) AND ( sysc lock <260) )

95 JOG DEC A26 B26 V26 X26

96 JOG ACC C19 D19 Y19 Z19

97 JOG VEL A3.5 B3 . 5 V3. 5 X3. 5 C0.97 D0.97 Y0.97 Z0 .97

98 JOG FWD A B V X

99 JOG REV C D Y Z

100 wend

101

102 whi l e ( ( s y s c l o ck =260) OR ( sysc l ock >260) AND ( sysc lock <305) )
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103 JOG DEC A26 B26 V26 X26

104 JOG ACC C27 D27 Y27 Z27

105 JOG VEL A3.5 B3 . 5 V3. 5 X3. 5

106 JOG VEL C0 D0 Y0 Z0

107 JOG FWD A B V X

108 JOG REV C D Y Z

109 wend

110

111 whi l e ( ( s y s c l o ck =305) OR ( sysc l ock >305) AND ( sysc lock <380) )

112 JOG DEC A26 B26 V26 X26

113 JOG ACC C13 D13 Y13 Z13

114 JOG VEL A3.5 B3 . 5 V3. 5 X3. 5

115 JOG VEL C0.83 D0.83 Y0.83 Z0 .83

116 JOG FWD A B V X

117 JOG FWD C D Y Z

118 wend

119

120 whi l e ( ( s y s c l o ck =380) OR ( sysc l ock >380) AND ( sysc lock <400) )

121 JOG DEC A26 B26 V26 X26

122 JOG DEC C11 D11 Y11 Z11

123 JOG VEL A3.5 B3 . 5 V3. 5 X3. 5

124 JOG VEL C0 D0 Y0 Z0

125 JOG FWD A B V X

126 JOG FWD C D Y Z

127 wend

128

129 whi l e ( ( s y s c l o ck =400) OR ( sysc l ock >400) AND ( sysc lock <465) )
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130 JOG ACC A25 B25 V25 X25

131 JOG DEC C11 D11 Y11 Z11

132 JOG VEL A3.82 B3 .82 V3.82 X3.82

133 JOG VEL C0 D0 Y0 Z0

134 JOG FWD A B V X

135 JOG FWD C D Y Z

136 wend

137

138 whi l e ( ( s y s c l o ck =465) OR ( sysc l ock >465) AND ( sysc lock <510) )

139 JOG ACC A25 B25 V25 X25

140 JOG ACC C3 D3 Y3 Z3

141 JOG VEL A3.82 B3 .82 V3.82 X3.82

142 JOG VEL C0 . 5 D0. 5 Y0. 5 Z0 . 5

143 JOG FWD A B V X

144 JOG FWD C D Y Z

145 wend

146

147 whi l e ( ( s y s c l o ck =510) OR ( sysc l ock >510) AND ( sysc lock <610) )

148 JOG ACC A16 B16 V16 X16

149 JOG ACC C3 D3 Y3 Z3

150 JOG VEL A3.02 B3 .02 V3.02 X3.02

151 JOG VEL C0 . 5 D0. 5 Y0. 5 Z0 . 5

152 JOG FWD A B V X

153 JOG FWD C D Y Z

154 wend

155

156 whi l e ( ( s y s c l o ck =610) OR ( sysc l ock >610) AND ( sysc lock <745) )
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157 JOG DEC A4 B4 V4 X4

158 JOG ACC C3 D3 Y3 Z3

159 JOG VEL A2.63 B2 .63 V2.63 X2.63

160 JOG VEL C0 . 5 D0. 5 Y0. 5 Z0 . 5

161 JOG FWD A B V X

162 JOG FWD C D Y Z

163 wend

164

165 whi l e ( ( s y s c l o ck =745) OR ( sysc l ock >745) AND ( sysc lock <975) )

166 JOG DEC A4 B4 V4 X4

167 JOG DEC C1.9 D1. 9 Y1. 9 Z1 . 9

168 JOG VEL A2.63 B2 .63 V2.63 X2.63

169 JOG VEL C0.17 D0.17 Y0.17 Z0 .17

170 JOG FWD A B V X

171 JOG FWD C D Y Z

172 wend

173

174 timecount = timecount +1

175

176 print ”Timecount=” , timecount

177 print ” Sysc lock=” , s y s c l o ck

178 wend

179

180 jog o f f A B C D

181

182 ENDP
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124



and Reinheckel, T., “Cell Type-specific Functions of the Lysosomal Protease
Cathepsin L in the Heart,” Journal of Biological . . . , vol. 282, pp. 37045–37052,
Dec. 2007.

[125] Steen, R. G., Emudianughe, T., Hankins, G. M., Wynn, L. W., Wang,
W. C., Xiong, X., and Helton, K. J., “Brain imaging findings in pediatric
patients with sickle cell disease,” Radiology, vol. 228, pp. 216–225, July 2003.

[126] Stein, B., Baldwin, A. S., Ballard, D. W.,Greene, W. C., Angel, P.,
and Herrlich, P., “Cross-coupling of the NF-kappa B p65 and Fos/Jun tran-
scription factors produces potentiated biological function.,” EMBO J., vol. 12,
pp. 3879–3891, Sept. 2014.

[127] Stockman, J. A., Nigro, M. A., Mishkin, M. M., and Oski, F. A., “Oc-
clusion of large cerebral vessels in sickle-cell anemia.,” N Engl J Med, vol. 287,
pp. 846–849, Oct. 1972.
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